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Editorial on the Research Topic

Physical neuromorphic computing and its industrial applications

1. Introduction

The importance of handling cognitive data such as images, voices, and natural languages

is wide spreading not only at datacenters but also at networking, edge, and IoT. Artificial

neural networks are a powerful and prospective concept to process such cognitive data.

The improved performance of neural networks is achieved by increasing the scale of

neural network models. This unavoidably has a direct and tremendous impact on the energy

required to training and inference by current software and general-purpose processors due

to their serial operation. On the other hand, current hardware acceleration is based on well-

matured ASIC technology and integrated electronics. However, with the downscaling limit

of conventional technologies, the traditional electronic computing will face difficulties in

further growing in terms of energy efficiency.

To address the power and performance constraints, neuromorphic computing is

a promising approach. In fact, various CMOS-based neuromorphic devices have been

reported so far. In recent years, motivated by potential computational capabilities of

various natural physical phenomena, unconventional computing paradigms have been

actively investigated in the interdisciplinary region of computer science and natural science.

The objective of this Research Topic is to investigate the possibility of incorporating

diverse natural physical phenomena to neuromorphic computing, which we call “physical

neuromorphic computing.”

In this Research Topic, we collected nine papers relevant to the theory, algorithm, and

implementation of physical neuromorphic computing. They can be roughly classified into

the following categories: electric, material, and quantum neuromorphic computing.

2. Electric neuromorphic computing

Undoubtedly, electric neuromorphic computing is the most actively investigated

research area in neuromorphic computing, where non von-Neumann architectures are
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pursued with brain-like features such as distributed and sparse

information representations, massive parallelism, event-driven

operation, analog signal processing and on-chip learning capability.

Stapmanns et al. derived two efficient algorithms for archiving

postsynaptic membrane potentials, based on event-based synapse

updates and compared two algorithms with a time-driven

synapse update scheme in terms of memory and computations.

They showed that the two event-based algorithms significantly

outperform the time-driven scheme. Their results on information

archiving efficiency provide guidelines for the design of learning

rules and make them practical in large-scale networks.

Michaelis et al. developed an open source emulator named

Brian2Loihi for Loihi, which is a neuromorphic many core

processor for spiking neural network with on-chip learning

capability. They demonstrated error-free emulation for a

single neuron and a recurrent spiking neural network and

implementation of on-chip learning. Their work provides a quick

prototyping and deployment of new algorithms for Loihi.

Hopkins et al. presented a new concept “sparse binary

coincidence (SBC) memory” and its realization on surrounding

infrastructure called BitBrain. The SBC memory stores

coincidences between features in a training set and infers the

class of a test example by identifying the class with which it shares

the highest number of feature coincidences. They applied these

concepts to theMNIST and EMNIST benchmarks and showed very

low training costs and robustness to noise. BitBrain is designed to

be implemented efficiently on both neuromorphic devices such as

SpiNNaker and conventional CPU and memory architectures and

is well-suited for edge and IoT applications.

Md Abdullah-Al Kaiser et al. proposed an asynchronous non

von-Neumann analog processing-in-pixel architecture to perform

convolutional multiply and accumulate (MAC) operations by

integrating in-situ multi-bit multi-channel convolution inside the

pixel array. They verified the architecture on vision sensor datasets

and showed that the solution consumes significantly less energy

than their digital MAC alternative; less than half of the backend-

processor energy while retaining front-end energy and a high

test accuracy.

3. Material neuromorphic computing

The major energy consumer of today’s digital processor is data

movement between MAC processors and volatile main memories.

This motivates integration of memory and computation called “in-

memory computing.” Use of intrinsic properties of materials for

in-memory computing is becoming very promising approach for

in-memory computing.

Gokmen and Haensch presented a new training algorithm,

called “Tiki-Taka” algorithm for deep neural networks on

resistive cross-point device arrays. Tiki-Taka alleviates stringent

symmetry requirement that resistive devices must change

conductance symmetrically for positive or negative pulse stimuli.

Simulation results show that the accuracy of the SGD algorithm

with symmetric device switching characteristics is matched in

that of the Tiki-Taka algorithm with non-symmetric device

switching characteristics.

Corti et al. presented an in-memory computing platform

for convolutional neural networks by synchronization in phase

and frequency of coupled VO2 oscillators. The neuromorphic

architecture was fabricated in a crossbar configuration on silicon

and achieved significant improvements of area density, oscillation

frequency, variability and reliability, compared to existing digital

convolutional filters. They applied the platform to MNIST

recognition task and achieved high recognition accuracy.

Garg et al. demonstrated that the phase synchronization of

glial cells can be reproduced by injected radio-frequency signals

in the heavy metal layer of spin-orbit torque oscillators. They

also proposed applications of such neural synchronization to the

temporal binding problem and the design of a coupled neuron-

synapse-astrocyte network.

4. Quantum neuromorphic computing

Quantum computing is an emerging technology based on

completely different principles from classical computers, the laws of

quantum mechanics. Quantum computing, if it happens in reality,

has the potential to solve many industrial problems that classical

computers cannot with a reasonable amount of resources. The

nonlinearity of the quantum devices used in quantum computing

can be applied to energy-efficient neuromorphic computing.

Tschirhart and Segall investigated how superconducting

electronics by Josephson junctions address the requirements

for large scale neuromorphic systems, such as scalability,

programmability, biological fidelity, on-line STDP learning,

efficiency, and speed. The result of detailed numerical analysis

based on digital logic demonstrations showed that superconducting

electronics is suitable for fast and efficient neuromorphic

experimental platform in the future.

Rahman et al. reported a differential device by Fowler-

Nordheim (FN) quantum-mechanical tunneling. They showed

that a prototype FN-synapse array can achieve near-optimal

memory consolidation characteristics with tunable plasticity-

stability trade-offs, compared to other physical implementations.

They also claimed that the proposed FN-synapse provides an

ultra-energy-efficient approach for implementing both synaptic

memory consolidation and continual learning in terms of an energy

footprint per synaptic update.
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Algorithm for Training Neural
Networks on Resistive Device Arrays
Tayfun Gokmen* and Wilfried Haensch

IBM Research AI, Yorktown Heights, NY, United States

Hardware architectures composed of resistive cross-point device arrays can provide
significant power and speed benefits for deep neural network training workloads
using stochastic gradient descent (SGD) and backpropagation (BP) algorithm. The
training accuracy on this imminent analog hardware, however, strongly depends on
the switching characteristics of the cross-point elements. One of the key requirements
is that these resistive devices must change conductance in a symmetrical fashion
when subjected to positive or negative pulse stimuli. Here, we present a new training
algorithm, so-called the “Tiki-Taka” algorithm, that eliminates this stringent symmetry
requirement. We show that device asymmetry introduces an unintentional implicit cost
term into the SGD algorithm, whereas in the “Tiki-Taka” algorithm a coupled dynamical
system simultaneously minimizes the original objective function of the neural network
and the unintentional cost term due to device asymmetry in a self-consistent fashion.
We tested the validity of this new algorithm on a range of network architectures
such as fully connected, convolutional and LSTM networks. Simulation results on
these various networks show that the accuracy achieved using the conventional
SGD algorithm with symmetric (ideal) device switching characteristics is matched
in accuracy achieved using the “Tiki-Taka” algorithm with non-symmetric (non-ideal)
device switching characteristics. Moreover, all the operations performed on the arrays
are still parallel and therefore the implementation cost of this new algorithm on
array architectures is minimal; and it maintains the aforementioned power and speed
benefits. These algorithmic improvements are crucial to relax the material specification
and to realize technologically viable resistive crossbar arrays that outperform digital
accelerators for similar training tasks.

Keywords: deep learning, resistive device, analog hardware accelerator, resistive processing unit, training
algorithms, memristor, crossbar array

INTRODUCTION

In the past few years, deep neural networks (DNN) (LeCun et al., 2015) have made tremendous
advances, in some cases surpassing human level performance, tackling challenging problems such
as speech recognition (Hinton et al., 2012; Ravanelli et al., 2017), natural language processing
(Collobert et al., 2012; Jozefowicz et al., 2016), image classification (Krizhevsky et al., 2012; He
et al., 2015a,b; Chen et al., 2017), and machine translation (Wu, 2016). Training of large DNNs,
however, is a time consuming and computationally intensive task that demands datacenter scale
computational resources composed of state of the art GPUs (Krizhevsky et al., 2012; Coates et al.,
2013). There have been many attempts to accelerate deep learning workloads beyond GPUs by
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designing custom hardware utilizing reduced precision
arithmetic to improve the throughput and energy efficiency
of the underlying CMOS technology (Gupta et al., 2015).
Alternative to digital approaches, resistive cross-point device
arrays are proposed to further increase the throughput and
energy efficiency of the overall system by performing the vector-
matrix multiplications in the analog domain. In addition, these
device arrays can perform the weight update operation locally
with no weight movement and therefore they bring further
benefits compared to digital approaches.

Resistive cross-point devices, so called resistive processing
unit (RPU) (Gokmen and Vlasov, 2016) device arrays that can
simultaneously store and process data locally and in parallel,
are promising candidates for intensive DNN training workloads.
The concept of using resistive cross-point device arrays (Burr
et al., 2015, 2017; Chen et al., 2015a,b; Prezioso et al., 2015;
Agarwal et al., 2016b; Gokmen and Vlasov, 2016; Fuller et al.,
2017) as DNN accelerators has been tested on a variety of
network architectures and datasets mainly by simulations but
also with some limited hardware demonstrations. Considering
state-of-the-art learning algorithms, to par training accuracy
compared to the conventional digital hardware a restrictive set
of RPU device specifications must be met. As shown empirically
(Agarwal et al., 2016a; Gokmen and Vlasov, 2016; Gokmen
et al., 2017), a key requirement is that these analog resistive
devices must change conductance symmetrically when subjected
to positive or negative voltage pulse stimuli. This requirement
differs significantly from those needed for memory elements and
accomplishing such symmetrically switching analog devices is
a difficult task. Substantial efforts are devoted to engineer new
material stacks or adopt the existing ones, originally developed
for memory (Burr et al., 2015) and battery (Fuller et al., 2017;
Tang et al., 2018) applications, to achieve the symmetry criteria
needed for DNN training. Besides material engineering efforts,
CMOS only (Li et al., 2018) and CMOS assisted solutions in
tandem with existing memory device technologies (Ambrogio
et al., 2018) are also considered but introduce an overhead of
making the cross-point element increasingly more complex.

Here, we present a new technique that can address the
issue of non-symmetric device switching characteristics at the
algorithm level, in a physical-hardware invariant form. In
the rest of the paper we show that the device switching
characteristics introduces an additional cost term into the
optimization objective of the conventional SGD algorithm. The
presence of this additional term entails poor training results
for non-symmetric devices as the system is in competition with
minimizing the objection function of the neural network against
this unintentional cost term. In this new technique we introduce
a coupled dynamical system that simultaneously minimizes the
objective function of the original SGD algorithm as well as
the unintentional cost term due to device asymmetry in a
self-consistent fashion. This algorithm learns by continuously
exchanging information between two system’s components and
hence we call it the “Tiki-Taka” algorithm. We show that the
“Tiki-Taka” algorithm is general enough to handle a large range
of non-symmetric device switching behaviors and therefore
applicable to a variety of device technologies. We tested the

algorithm by performing training simulations using various
device switching characteristics on three different network
architectures: fully connected, convolutional and LSTMs. In
all cases the results of the training performed with the “Tiki-
Taka” algorithm using non-ideal device characteristics are
indistinguishable from the ones achieved with the SGD algorithm
using ideal devices. We also discuss the implementation cost
of the “Tiki-Taka” algorithm on realistic RPU device arrays
in terms of area, power and speed and show that the overall
cost is minimal.

MATERIALS AND METHODS

Array Operations: Forward, Backward,
and Update
The stochastic gradient descent (SGD) using the backpropagation
algorithm is composed of three cycles – forward, backward and
weight update – that are repeated many times until a convergence
criterion is met. For a single fully connected layer where N inputs
neurons are connected to M output (or hidden) neurons, the
forward cycle involve computing a vector-matrix multiplication
(y =Wx) where the vector x of length N represents the activities
of the input neurons and the matrix W of size M × N that
stores the weight values between each pair of input and output
neurons. The resulting vector y of length M is further processed
by performing a non-linear activation on each of the elements
and then passed to the next layer. Once the information reaches
to the final output layer, the error signal is calculated and
backpropagated through the network. The backward cycle on a
single layer also involves a vector-matrix multiplication on the
transpose of the weight matrix (z =W>δ), where the vector
δ of length M represents the error calculated by the output
neurons and the vector z of length N is further processed using
the derivative of neuron non-linearity and then passed down
to the next (previous) layer. Finally, in the update cycle the
weight matrix W is updated by performing an outer product of
the two vectors that are used in the forward and the backward
cycles and usually expressed as W ←W − η (δ ⊗ x) where η is
a global learning rate. Consistently, the SGD update rule for each
parameter wij corresponding to ith column and jth row (the layer
index is dropped for simplicity) can be written as

wij ← wij − η1wij (1)

where 1wij is the gradient of the objective function with respect
to parameter wij, and has a form 1wij = xi × δj, where xi is the
input activation for the ith column and δj is the backpropagated
error signal for the jth row.

The above three operations performed on the weight matrix
W during the SGD\BP algorithm are implemented using 2D
crossbar arrays of resistive devices all in parallel and constant
time using the physical properties of the array. For instance,
the stored conductance values in the crossbar array form the
matrix W, however, physically only positive conductance values
are allowed and therefore to encode both positive and negative
weight values a pair of RPU devices is operated in differential
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mode. For each parameter wij in the weight matrix W, there exists
two devices that encode a single weight value

wij = K(gij − gij,ref ) (2)

where gij is the conductance value stored on the first RPU device,
gij,ref is the conductance value stored on the second device used
as a reference both corresponding to ith column and jth row
and K is the gain factor that is controlled by a combination
of factors, such as integration time, integration capacitor and
voltage levels, at the peripheral circuitry. In the forward cycle,
the input vector x is transmitted as voltage pulses through each
of the columns and resulting vector y is read as a differential
current signal from the rows (Steinbuch, 1961). Similarly, the
backward cycle can be performed by inputting voltage pulses
from the rows and reading the results from the columns. These
two cycles simply rely on Ohm’s law and the Kirchhoff’s law in
order to perform the vector-matrix multiplications. In contrast
to the forward and backward cycles, implementing the update
cycle is trickier and employs the device switching characteristics
to trigger the necessary conductance change1gtotal,ij that should
practically match the required weight change η1wij of the SGD
algorithm, such that K1gtotal,ij ∼= η(xi × δj). To perform the
local multiplication operation needed to calculate1wij = xi × δj,
different pulse encoding schemes (Xu et al., 2014; Burr et al.,
2015; Gokmen and Vlasov, 2016) are proposed all of which
reduce the multiplication to a simple coincidence detection
that can be realized by RPU devices. For instance, in the
stochastic update scheme numbers that are encoded from the
columns and rows (xi and δj) are translated to stochastic bit
streams using stochastic translators (Gokmen and Vlasov, 2016).
These stochastic translators adjust the pulse probabilities at the
periphery, and hence they control the total number of the pulse
coincidences happening at each crossbar element. In this scheme
these pulses are sent into the crossbar array simultaneously for
all rows and all columns and then for each coincidence event the
corresponding RPU device changes its conductance by a small
amount 1gmin. However, there exist many pulses in the pulse
stream so that the total conductance change 1gtotal, ij required
by the algorithm is implemented as series of small conductance
changes 1gmin per pulse coincidence. As a result, the weight
update happens as a series of coincidence events each triggering a
conductance increment (or decrement) and the expected number
of coincidences is

E(# of pulse coincidences at ith column and jth row)

=
η(xi × δj)
K1gmin

(3)

where K1gmin , 1wmin is the expected weight change due to a
single coincidence event. We note that the pulses generated at
the peripheral are applied to all RPU devices among the column
(or the row), therefore stochastic translators can assume a single
1gmin (or equivalently1wmin) value for the whole array when the
pulse probabilities are calculated to result in the desired weight
change at each RPU. However, we show next the actual changes
triggered by each RPU device per pulse coincidence 1gij may

differ from the 1gmin, and this mismatch will create artifacts in
the SGD algorithm, which prevent its proper convergence.

Expected vs. Actual Weight Update
Using the formula of the expected number of pulse coincidences
from Eq. 3, the actual algorithmic weight change caused by the
update cycle performed by the RPU devices can be derived as

1wij,actual = 1wij


1gpij

(
gij
)

1gmin
if 1wij < 0

1gnij
(
gij
)

1gmin
if 1wij > 0

(4)

where 1gpij and 1gnij are the actual device responses for the
incremental conductance changes for positive and negative
stimuli at the coincidence event. They may also be functions of
the current device conductance gij. We assume that the update
pulses are applied only to the first set of RPU devices and the
reference devices are kept constant. This requires a bi-directional
switching RPU device as we discuss in detail later. However,
to enable both positive and negative conductance changes the
polarity of the pulses are switched during the update cycle and
hence there exists two branches for each device used for the
updates. Using Eq. 4 in Eq. 1 results in an actual update rule
implemented by the RPU devices

wij ← wij − η1wij

[
1gnij(gij)+1gpij(gij)

21gmin

]

− η
∣∣1wij

∣∣ [1gnij(gij)−1gpij(gij)

2 1gmin

]
(5)

that captures the deviation of the expected device conductance
changes from the actual ones realized by the RPU devices. It can
be interpreted as separating the even and odd part of the RPU
switching behavior. Here we emphasize again that 1gmin is the
single value expected by the periphery during pulse generation,
whereas 1gpij (or 1gnij) are the actual changes triggered by each
RPU device. Since the pulses generated at the periphery are
common for the whole array (columns and rows) it is impossible
to compensate for the mismatch between 1gmin and 1gpij (or
1gnij) at the periphery as each RPU device has a different 1gpij
(or 1gnij) value due to device-to-device variability. Without loss
of generality Eq. 5 can be rewritten as

wij ← wij − η1wijFij(wij)− η
∣∣1wij

∣∣Gij(wij) (6)

where Fij(wij) and Gij(wij) are the symmetric (additive) and
antisymmetric (subtractive) combinations of the positive and
negative update branches parametrized using the weight values
corresponding ith column and jth row. Note that the functions Fij
and Gij can generally be functions of the current weight value wij
as well as vary from one cross-point to another due to device-
to-device variability. Although we used the stochastic pulsing
scheme for the derivation of Eq. 5 and 6, the equations are general
and do not depend on the underlying pulse implementations
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up to some rounding errors. Table 1 compares the desired SGD
update rule (Eq. 1) to the hardware induced update rule (Eq. 6),
that has contributions from the device switching characteristics.

To understand the significance of the hardware induced
update rule, the behavior of Eq. 8 is described below for
three different device switching characteristics, as illustrated in
Figure 1. For the first device, that changes the conductance
in a linear fashion and has the same value for the positive
and negative branches, the hardware induced update rule
simplifies back to the desired SGD update rule as F (w) =
1 and G (w) = 0. This is the case usually considered as the
ideal device behavior required for good convergence. For the
second device, that changes conductance in a non-linear but
symmetric fashion for both up and down branches, then
again G (w) term drops, and Eq. 8 simplifies to a form w←
w− η1wF (w), where more specifically F (w) = 1− 1.66w for
the example device illustrated in Figure 1B. Although this
update rule is different from the original SGD update rule, the
existence of F (w) only modifies the effective learning rate and
therefore does not affect the convergence. Indeed, empirically
it is shown that RPU devices need to have only symmetrical
switching characteristics and the linearity is not required for good
convergence (Agarwal et al., 2016a; Gokmen and Vlasov, 2016;
Gokmen et al., 2017, 2018). Only if updates are performed on two
separate devices that change their conductances monotonically,
such as PCM devices with one-sided switching, then pair-wise
matching and linearity are mandated to satisfy the symmetry
requirement (Haensch et al., 2019). Finally, for the third
device with non-symmetric device switching characteristics the
hardware induced update rule becomes w← w− η1wF (w)−
η |1w|G (w). Since |1w| can only be non-negative, the last term
is solely dictated by the functional form of G (w) and will act as an
unintentional cost term introduced into optimization objective
by the underlying hardware behavior. For the device illustrated in
Figure 1C, where F (w) = 0.65− 0.54w and G (w) = 1.12w, the
hardware induced update rule becomes w← w− ηF(w)1w−
η |1w| (1.12w) which corresponds to an optimization objection
that is a combination of the original problem with an additional
quadratic cost term w2. This is similar to adding `2 regularization
term into the optimization objective but unfortunately its
magnitude cannot be controlled and more strictly its amplitude
is proportional to the updates |1w|. This creates a competition
between the original optimization objective of the neural network
and an internal cost term due to device characteristic; providing
theoretical justification to the empirically observed poor training
results obtained for non-symmetric RPU devices.

Note that even for the non-symmetric device illustrated in
Figure 1C there exists a single point (conductance value) at
which the strengths of the conductance increment and decrement

TABLE 1 | Summary of the update rules.

Desired SGD Update Rule Hardware Induced Update Rule

w← w− η1w (7) w← w− η1wF (w)− η |1w|G (w) (8)

All sub-indexes corresponding to ith column, jth row and the layer index is
dropped for simplicity.

are equal. This point is called the symmetry point of the
updated device and it may correspond to any weight value (not
necessary to zero as illustrated in Figure 1C) due to the device-
to-device variations. As we show next there exists a method,
symmetry point shifting technique (Kim H. et al., 2019), that
can guarantee that the symmetry point of the updated device
matches the conductance of the corresponding reference device
and hence satisfy the condition Gij

(
wij = 0

)
∼= 0 for all elements

of the matrix. Note that the strengths of conductance increment
and decrement are equal at the symmetry point and therefore
G
(
at the symmtery point

)
= 0 by definition. We will show below

that this property is accomplished by copying the symmetry
point of the active device to its reference. However, the behavior
of Gij

(
wij
)

away from zero is still dictated by the updated
device characteristics and for actual hardware implementations
of RPU devices, each device would show different Gij

(
wij
)

characteristics due to device variability. Combination of device
variability and conductance state dependent updates makes it
impossible to compensate for this non-symmetric behavior for
individual devices without breaking the parallel nature of the
array operations. However, the “Tiki-Taka” algorithm, as we
describe below, eliminates the undesired effects of the device
asymmetry for realistic RPU devices without breaking the array
parallelism during training.

Symmetry Point Shifting Technique
The first step of the symmetry point shifting techniques is to
apply a sequence of alternating (positive and negative) update
pulses to the whole array all in parallel to all columns and all
rows. In an alternating pulse sequence, the two consecutive pulses
eliminate the η1wijFij(wij) term from Eq. 8 and the dynamics of
the whole array is dictated by the individual Gij

(
wij
)

terms. The
behavior of Gij

(
wij
)

is expected to be different for each device
due to the device variability and initial conductance variations,
however, after sufficiently long sequence of pulses is applied, at
steady state all elements are expected to converge to a point
where Gij

(
wij
)
∼= 0, although the corresponding weight value is

not necessarily at zero, wij 6= 0.
This behavior is expected from any device where dependence

of conductance increments (and decrements) on current
conductance value can be described by a single curve (bi-
directional switching behavior), such as the device illustrated in
Figure 1C. As shown in Figure 1C, if the device conductance is
smaller than the symmetry point (gij < sij) then the conductance
increments are stronger than the decrements (1gpij > 1gnij), and
similarly, if the device conductance is larger than the symmetry
point (gij < sij) then the conductance decrements are stronger
than the increments (1gpij > 1gnij). Therefore, independent of
the initial conductance value, this alternating pulse sequence
pushes the device conductance toward the symmetry point,
as illustrated in Figure 2. Note that a convergence toward
the symmetry point is expected independent of the functional
form the conductance increments and decrements as long
as there exists a conductance value where the strengths of
conductance increments and decrements are equal in magnitude.
Indeed, symmetry point measurement and shifting technique is
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FIGURE 1 | Three different device switching characteristics are illustrated. (A) Ideal device: conductance increments and decrements are equal in size and do not
depend on device conductance. (B) Symmetric device: conductance increments and decrements are equal in strength, but both have a dependence on device
conductance. (C) Non-symmetric device: conductance increments and decrements are not equal in strength and both have different dependencies on device
conductance. However, there exists a single point (conductance value) at which the strengths of the conductance increment and decrement are equal. This point is
called the symmetry point and for the illustrated example matches the reference device conductance and hence happens at w = 0.

experimentally illustrated for RRAM (Kim H. et al., 2019) and
ECRAM (Kim S. et al., 2019) devices, and this general behavior is
expected for most physically plausible RPU devices. For instance,
it is not realistic to expect alternative pulse sequence to give
divergent conductance behavior, and instead, two consecutive
pulses would push the conductance of the updated device
toward the symmetry point sij at which the up and down
conductance changes are equal in strength and satisfy1gpij

(
sij
)
=

1gnij
(
sij
)
. However, it is not always guaranteed that all devices

would have a symmetry point. For instance, PCM devices show
only one-sided incremental switching (SET) behavior whereas
a single RESET pulse completely switches the device back to
the high resistance state (Burr et al., 2017; Haensch et al.,
2019). Therefore, for one-sided devices, such as PCM, either the
symmetry point cannot be defined, or it can be defined at the
conductance extremum (RESET conductance) making it unfit for
the “Tiki-Taka” algorithm. However, for device arrays composed
of RRAM, ECRAM or similarly behaving two-sided switching
devices (Haensch et al., 2019), the alternating pulse sequence
would bring the conductance of each updated RPU device close
to its symmetry point sij for the whole array. After this initial
alternating pulse sequence is applied, as a second and last step
these conductance values sij are transferred to the corresponding

reference devices so that gij,ref ∼= sij and hence Gij
(
wij = 0

)
∼= 0

for all elements in the matrix. Since this is a onetime cost, the
conductance transfer can be performed iteratively in a closed loop
fashion to overcome hardware limitations.

“Tiki-Taka” Algorithm
In “Tiki-Taka,” each weight matrix of the neural network is
represented by a linear combination of two matrices

W = γA+ C (9)

where A is the first matrix, C is the second matrix and γ is a
scalar factor that controls the mixing of the two matrices. The
elements of A and C matrices, aij and cij, respectively, are also
encoded by a pair of devices and we use upper left superscripts
a and c consistently to refer to the properties of the elements
(and devices) in A and C. For instance, agij and cgij denote
the conductance values stored on devices used for updates, and
similarly agij,ref and cgij,ref denote the conductance values stored
on devices used as references corresponding to ith column and
jth row. For “Tiki-Taka” to be successful, important criteria,
aGij

(
aij = 0

)
∼= 0 for all elements of A, must be realized by the

hardware. Therefore, we assume that the symmetry point shifting
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FIGURE 2 | Illustration of the symmetry point shifting technique. Response of two separate devices to the alternating (up and down) pulse sequence starting from
different initial conductance values.

technique is applied to A before starting the training procedure
described below.

Training Procedure
To simplify the exposition of the key idea, we shall omit for now
the non-linear activation functions. In its most general form, the
weight matrix W is a linear combination of two matrices A and
C and γ is a scalar factor that controls the mixing of the two
matrices. During training, the weight updates are accumulated
on A that has symmetric behavior around the zero point, and
then moved to C. The operations performed during “Tiki-Taka”
is summarized in Table 2 along with the ones performed during
the SGD\BP algorithm for comparison.

The conventional SGD\BP algorithm is composed of three
cycles: (1) forward, (2) backward and (3) weight update; whereas
for “Tiki-Taka” there exist five cycles: (1) forward, (2) backward,
(3) update A, (4) forward A, and (5) update C. The first two

(forward and backward) cycles of the “Tiki-Taka” algorithm are
identical to the ones in SGD\BP, as “Tiki-Taka” also uses the
conventional BP algorithm to calculate the gradients. However,
instead of using a single weight matrix, the linear combination
of two matrices is used to perform the forward and backward
computations. The third (update A) cycle is identical to the
weight update cycle of the SGD\BP algorithm and the update
operation on A is performed using the outer product of the two
vectors that are used in the forward and the backward cycles.
These three cycles are repeated ns times before the fourth and fifth
cycles of the “Tiki-Taka” algorithm are performed. In the fourth
(forward A) cycle a vector-matrix multiplication is performed
on A using an input vector ut . We discuss different choices for
ut later but in its most simple form ut is a single column of
an identity matrix (a one-hot encoded vector) where for each
artificial time step a new column is used in a cyclic fashion and
the sub index t denotes that time index. This operation effectively
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TABLE 2 | Operations for SGD\BP algorithm and “Tiki-Taka” algorithm
on a single layer.

SGD\BP Algorithm

for each data in training dataset
{

(1) y = Wx
(2) z = W>δ
(3) W ← W + η (δ ⊗ x)
}

“Tiki-Taka” Algorithm
k = 0
t = 0
for each data in training dataset
{

k = k + 1
(1) y = (γA+ C)x
(2) z = (γA+ C)>δ
(3) A← A− η (δ ⊗ x)

if (k = = ns)
{
k = 0
t = t + 1

(4) v = Aut

(5) C← C+ λ (v⊗ ut)

}
}

For simplicity, only the operations performed on the weight matrices are shown.

reads a single column of A into the resulting vector v. In the
fifth (update C) cycle, C is updated using the outer product
of the same two vectors ut and v from the fourth cycle. This
update operation changes only the elements corresponding to
a single column of C proportional to the values stored in A,
and λ is the learning rate used for updating C. Note that since
different ut is used at different time steps eventually all elements
of C get updated.

In this algorithm the updates performed on A accumulate the
gradients from different data examples and therefore A is actively
used. In contrast, the updates on C are very sparse and only a
single column of C is updated while the remaining elements are
kept constant. Therefore, there is a big difference in the update
frequency of the elements in these two matrices and C learns on a
much slower time scale only using the information accumulated
on A. As described above, the gradient accumulation happening
on A has artifacts due to the hardware induced update rule,
however, thanks to the symmetry point shifting technique the
sign of the average gradient information is very likely to be
correct (up to a limit that is dictated by the hardware noise).
For instance, any kind of randomness in updates due to the
random sampling of the data examples pushes the elements
of A toward zero while the true average gradients push them
away from zero. Therefore, when the elements of A are read,
all elements are likely to have the correct sign information of
the accumulated gradients although the amplitudes are probably
underestimated. This information is then transferred to C which
effectively grows the total weight in the correct direction that
minimizes the objective function. At the end of the training
process, at the steady state (independent of the choice of γ value),
we expect the elements of C would get very close to a point
in space, cij ∼= wij,opt , where the original objective function is in
its local minima and the elements of A would be close to zero,
aij ∼= 0. This is indeed a stable point for the coupled system to the
first order. When cij ∼= wij,opt , by definition the average gradients
from different data samples are close to zero,

〈
1wij

〉
∼= 0, but

since
〈∣∣1wij

∣∣〉 is always finite due to stochastic data sampling the
hardware induced update rule for A drives all elements toward

zero, aij ∼= 0, which in return diminishes the updates on C. We
note that the hardware induced update rule for C also has artifacts
that repels cij away from wij,opt , however, these updates are sparse
and happens across much slower time scales, rendering such
artifacts negligible.

In contrast, for the SGD\BP algorithm even if the weights
somehow get close to an optimum point corresponding to a
local minimum, wij ∼= wij,opt , the randomness in the updates
pushes the weights away from the optimum point toward the
symmetry point (or toward zero if symmetry point shifting
technique is applied). Using the same arguments presented
above, at a local minimum not only the average gradients
from different data samples are close to zero, 〈1wij〉 ∼= 0, but
also it is guaranteed that 〈

∣∣1wij
∣∣〉 > 0 due to random data

sampling. Therefore, at an optimum point the hardware induced
updates are totally predominated by the non-symmetric device
switching characteristics, Gij

(
wij
)
, and therefore optimum points

are not stable points for the SGD\BP algorithm running on
RPU hardware. The only stable points that SGD\BP can find
are the ones that has a tension between original optimization
objective and the internal cost term due to device asymmetry,
such that 〈1wij〉Fij

(
wij
)
∼= −〈

∣∣1wij
∣∣〉Gij

(
wij
)
, and therefore

give non-satisfactory training results. The artifacts of the
hardware induced update rule for the SGD\BP algorithm are
mitigated using the “Tiki-Taka” algorithm where the optimum
points of the original objective function are turned into
stable points for the coupled dynamical system. Therefore,
this new training approach is expected to give superior
results compared to the SGD\BP algorithm when running
on RPU hardware.

RESULTS

To test the validity of the proposed “Tiki-Taka” algorithm we
performed DNN training simulations on three different network
architectures: (1) FCN-MNIST – a fully connected network
trained on MNIST dataset, (2) CNN-MNIST – LeNet5 like
convolutional neural network trained on MNIST dataset, and
(3) LSTM-WP – a doubly stacked LSTM network trained on
Leo Tolstoy’s War and Peace (WP) novel. For all these three
networks, the training performance of the SGD\BP algorithm
with realistic RPU device specifications was studied carefully
in previous publications (Gokmen and Vlasov, 2016; Gokmen
et al., 2017, 2018). It was shown that a very tight symmetry
requirement is needed to achieve training accuracies comparable
to the ones achieved with high precision floating point numbers.
Here, we use the same network settings from those publications,
such as the activations, the layer sizes and the layer mappings
onto the arrays; and follow a similar methodology for the
RPU models, such that they capture the device-to-device and
cycle-to-cycle variations of the RPU devices as well as the non-
idealities of the peripherical circuitry driving the arrays. However,
we emphasize that different from those studies, here we use
a significantly non-symmetric device switching behavior as
described below to evaluate the performance of the “Tiki-
Taka” algorithm.
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RPU Baseline Model
The RPU-baseline model uses the stochastic update scheme
in which the numbers that are encoded from the periphery
(xi and δj) are implemented as stochastic bit streams. Each
RPU device then performs a stochastic multiplication via simple
coincidence detection. In our simulation tool, each coincidence
event triggers an increment or decrement in the corresponding
device conductance using a device switching characteristics.
As a baseline model we use a non-symmetric device behavior,
similar to one shown in Figure 1C, and this behavior introduces
a weight update (conductance change) that depends on the
current weight value (current device conductance) and the
direction of the update. The dependence of the incremental
weight updates for both branches are assumed to be linear:
for the positive branch 1wp

min (w) = 1wmin0(1− slopep × w)
and for the negative branch 1wn

min (w) = 1wmin0(1+ slopen ×
w), where slopep and slopen are the slopes that control the
dependence of the weight changes on the current weight values,
and 1wmin0 is the weight change due to a single coincidence
event at the symmetry point corresponding to the zero weight
value. In the RPU-baseline model in order to account for the
device-to-device variability for each RPU device there exists
three unique parameters that are sampled independently from
Gaussian distributions at the beginning of the training and then
used throughout the training. The average values of 1wmin0,
slopep and slopen are respectively 1× 10−3, 1.66 and 1.66 with
standard deviations of 0.3× 10−3, 0.42 and 0.42. Therefore,
in the baseline model it is likely to find a device (in one of
the cross-points in one of the layers) similar to one illustrated
in Figure 1C with 1wmin0 = 0.65× 10−3, slopep = 1.66 and
slopen = 0.58 as all values are within 3σ values of the model.
However, we emphasize that it is very unlikely to have two devices
to have identical behaviors due to the device-to-device variability
introduced by the sampling process. Moreover, to capture the
cycle-to-cycle variations for each coincidence event an additional
30% Gaussian noise is introduced to 1wp

min or 1wn
min relative

to their expected values for each device before incrementing or
decrementing the corresponding weight value. In this model, the
weight saturations, corresponding to conductance saturations,
are automatically taken into account due to the weight dependent
updates, and the weight values cannot grow bigger than 1/slopep
or smaller than −1/slopen. For statistically the most likely device
in the model this corresponds to weight bounds between −0.6
and 0.6 but note that for each device slopep and slopen are sampled
independently and therefore they don’t necessarily match and
deviate from the nominal values. In the context of “Tiki-Taka,”
since we use a new set of random variables for each device
in the model there is no correlation between the elements of
A and C, and in this context the weight changes refer to the
changes that occur in the elements of A and C. Note that the
baseline model already implicitly assumes that the symmetry
point shifting technique is applied before training as the expected
weight changes for the positive and negative branches are
equal in strength at the zero weight value, 1wn

min (w = 0) =
1wp

min (w = 0) for each matrix element. Therefore, this model
assumes that the symmetry point shifting technique is applied
perfectly without any noise both to A and C, such that all

reference device conductances are set to the symmetry point of
the corresponding device used for updates. Later we relax this
assumption to test the tolerance of “Tiki-Taka” to the symmetry
point variations.

We emphasize that the chosen mean values for slopep =
slopen = 1.66 that control the device asymmetry are the largest
possible values that can be used without introducing any side
effects. For instance, it is shown in Ref. (Gokmen and Vlasov,
2016) that the acceptable criteria for the weight bounds is
between −0.6 and 0.6 and this range is consistently used in
Refs. (Gokmen et al., 2017, 2018). Therefore, increasing the
slope parameters beyond 1.66 would limit the weights into
a range that is tighter than the acceptable criteria. Although
“Tiki-Taka” is expected to deal with the device asymmetry, it
cannot improve over these weight bounds resulting in side
effects into the training. The chosen mean value for slopep =
slopen = 1.66 is therefore the most aggressive asymmetric
device switching behavior that can used without violating the
other RPU specs derived in Ref. (Gokmen and Vlasov, 2016).
However to show the robustness of the “Tiki-Taka” algorithm
to various device switching behaviors, we also tested a case
where the mean slopes for positive and negative branches are
not matched over the population of devices and we call this
model the Skewed-RPU model. Furthermore, in another model,
the Quadratic-Skewed-RPU model, we added a quadratic term
to the dependence of the weight increment (and decrement) on
the current weight value. The switching behavior all these models
including the device variabilities are illustrated in the top panel
of Figure 3.

In addition to the non-idealities mentioned above, for any
real hardware implementations of RPU arrays the results of
the vector matrix multiplications will be noisy as well and this
noise is considered by introducing an additive Gaussian noise,
with zero mean and standard deviation of σ = 0.06. Moreover,
the results of the vector-matrix multiplications are bounded
to a value of |α| = 12 to account for signal saturation. The
input signals are assumed to be between [−1, 1] with a 7-bit
input resolution, whereas the outputs are quantized assuming
a 9-bit ADC. Although the input signals going into the array
and the output signals coming from the arrays are bounded,
we use the noise management and the bound management
techniques described in Ref. (Gokmen et al., 2017). We note
that apart from the non-symmetric update behavior used for
RPU devices, all other hardware constraints, such as variations,
noise, limited resolutions and signal bounds, are identical to
the ones used in publications (Gokmen and Vlasov, 2016;
Gokmen et al., 2017, 2018).

Fully Connected Network on MNIST
(FCN-MNIST)
The same network from Ref. (Gokmen and Vlasov, 2016),
composed of fully connected layers with 784, 256, 128 and 10
neurons, is trained with the standard MNIST dataset composed
of 60,000 training images. For hidden and output layers sigmoid
and softmax activations are used, respectively. For the floating
point (FP) model, training is performed with the SGD algorithm
using a mini-batch size of unity and a fixed learning rate of
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FIGURE 3 | Bottom panel shows the test errors of FCN on MNIST dataset for three different RPU models. In all figures at the bottom panel open white circles
correspond to a model where the training is performed using high precision floating point (FP) numbers and the SGD algorithm. Black and blue lines correspond to
the model where training is performed using the SGD algorithm and the “Tiki-Taka” algorithm, respectively. The panels (A–C) are for the three different RPU models
where the device behavior used in each model are shown in the top panel. In all models each device behavior is sampled from a distribution of devices in order to
account for the device-to-device variability. Statistically the most likely device is illustrated with the dotted line. Variations in the slopes are shown with continues lines
for the 1σ and 3σ envelope and the 1σ variation in 1wmin0 is shown by the error bar signal at w = 0. (A) RPU-baseline model assumes a linear relation between
1wmin and w. The up and down weight changes have an average slope of –1.66 and 1.66, respectively and both have 1σ variation of 0.42. 1wmin0 is on average
1× 10−3 with 1σ variation of 0.3× 10−3. (B) Different from the RPU-baseline model Skewed-RPU model has different average slopes for the up and down weight
changes, –1.66 and 0.58, respectively and with 1σ variations of 0.42 and 0.15. 1wmin0 is on average 0.65× 10−3 with 1σ variation of 0.2× 10−3. (C) Different from
the Skewed-RPU model, the Quadratic-Skewed model further introduces additional negative quadratic term to the dependence of 1wmin on w for both up and
down changes.

η = 0.01. As shown by open symbols in Figure 3, the FP-model
reaches a classification error of 2.0% on the test data after 50
epochs of training. The same SGD based training using the
RPU-baseline model however results in about 15% test error
that is significantly higher than the error achieved by the FP-
model. This is indeed expected, as the device characteristics in the
RPU-baseline model is highly non-symmetric and well above the
acceptable device symmetry criteria described in Ref. (Gokmen
and Vlasov, 2016). When the training is performed using “Tiki-
Taka” for the same the RPU-baseline model, the test error drops
back to a value close to 2%. This level of error is indistinguishable
from the one achieved by the FP-model, and shows that in
contrast to SGD, “Tiki-Taka” gives good training results even

with highly non-symmetric devices. We emphasize that the “Tiki-
Taka” algorithm is no more sensitive to other hardware issues
(such as stochastic updates, limited number of steps, noise, ADC,
and DAC) than the SGD algorithm as the RPU-model captures
all those hardware constraints. Moreover, we also tested the
validity of the “Tiki-Taka” algorithm for other device switching
behaviors as illustrated in Figures 3B,C. Independent of the
model used for training the “Tiki-Taka” algorithm gives results
that are indistinguishable from the one achieved by the FP-model
whereas the conventional SGD results in test errors much higher
than the FP-model.

Note that different from a single learning rate used for
SGD, there exist additional hyperparameters for the “Tiki-Taka”
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algorithm, as illustrated in Table 2, namely the learning rates η
for updating A and λ for updating C, the parameter γ controlling
the mixing between A and C, the parameter ns controlling the
period of updates performed on C, and the choice of ut used
for the forward A cycle. In order to present the best results
possible by “Tiki-Taka” we performed training simulations at
different hyperparameter settings. For the results presented in
Figure 3 the learning rates η and λ are fixed at 0.01 and 0.02,
respectively, the parameters γ and ns are set to unity, and for ut a
fixed set of one-hot encoded vectors are used in a cyclic fashion.
Additional training results studying the sensitivity of “Tiki-Taka”
to some of these hyperparameters are shown in Figure 4 for the
FCN-MNIST problem using the RPU-baseline model.

In Figure 4A, the training results for cases γ = 1 and γ = 0
are shown while all other hyperparameters are unchanged. When
γ = 1, the gradient updates happening on A are directly visible
in the next cycle while calculating the gradients corresponding
to another image. In contrast, for γ = 0, the learning can
happen only indirectly thorough the updates performed on C
that are sparse and less frequent. As described above we don’t
expect the steady state solutions to be any different between
cases γ = 1 and γ = 0. Consistently, these two simulations
show very similar training curves that improve significantly over
the SGD training and reach test accuracies comparable to one
achieved by the FP-model. However, the training process is
governed by the dynamics of the coupled system and not by the
equilibrium properties. Therefore, one may argue that the case
γ = 0 learns slightly slower than case γ = 1 due to infrequent
updates to explain the slight difference observed between the two

cases for FCN-MNIST problem. Furthermore, these simulations
also consider other possible hardware issues due to stochastic
pulsing, variations as well as noise. Therefore, one may also
expect case γ = 0 to perform better gradient estimations on A
before transferring that information on to C and hence to show
better training performance overall than case γ = 1. Although,
there exist these interesting tradeoffs while choosing the mixing
term, large improvements over the SGD training are consistently
observed as illustrated in Figure 4A independent of γ .

In Figure 4B, we present the training results at various
learning rates λ used to update C. It is clear that choosing a
too large or a too small λ values are both undesirable. In the
case of a too small λ, where λ → 0, “Tiki-Taka” implements the
original SGD algorithm (assuming γ = 1). In this setting only
A learns using the same SGD algorithm on a weight space that is
shifted by values stored in C, but, A cannot find good solutions
because of the artifacts introduced by the hardware induced
update rule. On the other extreme choosing a large λ results in
an unstable behavior for the coupled system. In our simulations,
we try a few λ values that are close to the learning rate η. We
believe choosing similar learning rates keeps the updates on both
systems comparable in strength and therefore the couple system
can minimize the both objective functions simultaneously in a
self-consistent fashion. The simulation results at three different λ
values, 0.005, 0.02 and 0.04, are show in Figure 4B, all of which
are achieving comparable test errors at the end of 50 epochs.

Other important hyperparameters of the “Tiki-Taka”
algorithm are the ut vectors used while doing a forward pass on
A and ns, the period used to update C. Note that there exist three

FIGURE 4 | Test error of FCN on MNIST dataset trained using Tiki-Taka algorithm and the RPU-baseline model at different hyperparameter settings. (A) The
comparison of the training results at two different mixing terms, γ = 1 and γ = 0, corresponding to blue and red curves, respectively. (B) The comparison of the
training results at three different learning rates on C matrix, λ = 0.005,0.02 and 0.04, corresponding to magenta, blue and green curves, respectively. (C) The
comparison of training results at three different choices of ut vectors. Blue curves use one-hot encoded vectors in a cyclic fashion. Cyan and gray curves
respectively use the vectors of Hadamard-2 and Hadamard-4 matrices in a cyclic fashion. For all figures, open white circles correspond to a model where the training
is performed using high precision floating point numbers using the SGD algorithm, and black curves corresponds to the RPU-baseline model where the training is
performed using the SGD algorithm.
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weight matrices for FCN-MNIST, each having the dimensions of
256 × 785, 128 × 257, and 10 × 129 including the bias terms,
where each weight matrix is represented by a pair of matrices
A and C in the “Tiki-Taka” algorithm. Therefore, even when
ns = 1 and a fixed set of one-hot encoded vectors is used for ut ,
for the first layer it takes 785 images for all elements of C to get
updated only once. Similarly, 257 and 129 images are required
for the following layers. Larger ns values can be used to reduce
the number of updates happening on C compared to A and for
each layer ns can be chosen independently. Increasing the update
period on C makes the artifacts of the hardware induced update
even less important for C. However, note that the randomness
of the updates on A tends to push the values of A toward zero
due to the hardware induced update rule and hence slowly
erases true gradient information accumulated on A from earlier
time steps (images). Therefore, increasing ns beyond a certain
value would not make the gradient accumulation more accurate
and therefore there exists an upper bound on how large ns can
be increased meaningfully. On the contrary, one may want to
perform updates more often than the case supported by ns = 1
in order to use the hardware induced updates for regularization
purposes. As illustrated before, the randomness in the updates
attracts the corresponding matrices toward zero which has effects
similar to the `2 regularization for some specific device switching
characteristics, but the strength wasn’t controllable for the SGD
algorithm. In contrast, in “Tiki-Taka” we can control the strength
of this term by performing updates on C using various ut vectors.
For instance, instead of using a set of one-hot encoded vectors
in a cyclic fashion, the vectors of the normalized Hadamard-2
matrix padded with zeros, such as

[ 1
2

1
2 0 0 · · ·

][ 1
2 −

1
2 0 0 · · ·

]
,[

0 0 1
2

1
2 · · ·

]
and so on, can be used in a cyclic fashion. This

results in twice more updates on each element of C, yet a
similar information is transferred from A to C. Because of the
cancelations happening between two back-to-back updates on
C, it would experience a stronger regularization toward zero
thanks to the hardware induced update rule. Examples of the
training performed using the vectors of the Hadamard-2 and
Hadamard-4 matrices are shown in Figure 4C. These examples
show that similar information can be transferred from A to C
independent of the choice of ut and yet the choice of ut can
be used as a knob to control the regularization term. We note
that FCN-MNIST is a simple problem and does not overfit and
hence does not require regularization, however, it is important
to understand the consequences of different hyperparameters,
so they can be tuned properly when they are really needed for
large scale networks.

Convolutional Neural Network on MNIST
(CNN-MNIST)
The CNN network used here is the same network from Ref.
(Gokmen et al., 2017) and is composed of two convolutional
and two fully connected layers. The first two convolutional layers
use 5× 5 kernels each having 16 and 32 kernels, respectively.
Each convolutional layer is followed by a subsampling layer
that implements the max pooling function over non-overlapping
pooling windows of size 2× 2. The output of the second pooling

layer, consisting of 512 neuron activations, feeds into a fully
connected layer consisting of 128 tanh neurons, which is then
connected into a 10-way softmax output layer. Including the
biases there exist four weight matrices with dimensions of
16× 26 and 32× 401 for the first two convolutional layers
and, 128× 513 and 10× 129 for the following two fully
connected layers.

We note that different from the fully-connected layers,
convolutional layers have weight sharing that changes the
vector operations performed on the weight matrices to matrix
operations that are implemented as a series of vector operations
on the arrays as described in Ref. (Gokmen et al., 2017). For
“Tiki-Taka” this means that the first 3 cycles corresponding to
the convolutional layers are now matrix operations and can
be written as y = (γA+ C)X, z = (γA+ C)TD, and A← A−
η (D⊗ X), where X and D are the inputs and the errors feed
into the weight matrices in the forward and backward directions,
while the 4th and 5th cycles remains as before. The weight
sharing factors for the two convolutional layers are 576 and 64,
respectively. Therefore, when ns = 1 and a one-hot encoded
vector is used as ut , the A matrix of the first convolutional layer
is updated 576 times before a single column of C is updated.
Similarly, for the second convolutional layer A is updated 64
times, before C gets a single column update. All other operations
remains identical for fully connected layers.

CNN-MNIST simulation results are shown in Figure 5. For
the FP-model, trained with η = 0.01 and mini-batch of unity,
the network achieves a test error of 0.8%. However, when
RPU-baseline model is trained with the SGD algorithm, the
test error is very high at around 8%. This large discrepancy
from the FP-model significantly drops when the RPU-baseline
model is trained with the “Tiki-Taka” algorithm, resulting in
1.0% test error. To understand the cause of this remaining
0.2% offset from the FP-model, we repeat the SGD training
assuming a model with perfect symmetry (slopep = slopen = 0
for all devices) but with the remaining hardware constraints.
This perfectly symmetric case trained with the SGD algorithm
gives a test accuracy not any better than the one achieved by
the non-symmetric case trained with “Tiki-Taka,” suggesting that
the remaining 0.2% discrepancy from the FP-model is due to
other hardware constraints and not due to the device asymmetry.
These results further highlight the power of this new training
technique that compensates for non-symmetric device behavior
at the algorithm level.

Sensitivity to Symmetry Point Variations
The simulations results presented so far assume the symmetry
point shifting techniques is applied perfectly and hence the
update strength for positive and negative branches are equal in
strength at w = 0. It is clear that the symmetry point shifting
technique cannot be perfect due to hardware limitations: To test
the tolerance of the “Tiki-Taka” algorithm to the symmetry point
variations, we performed training simulations by relaxing this
assumption such that the condition 1wn

min (ws) = 1wp
min (ws)

happens at a weight value ws that is different for each element
in A and C. This is simply achieved by setting the reference
device conductance different from the symmetry point of the
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FIGURE 5 | Test error of CNN on MNIST dataset. Open white circles
correspond to a model where the training is performed using high precision
floating point (FP) numbers using the SGD algorithm. Black and blue lines
correspond to the RPU-baseline model where training is performed using the
SGD algorithm and the “Tiki-Taka” algorithm, respectively. The orange
points\line correspond to SGD based training of a RPU model where all
devices are perfectly symmetric while all other variations are identical to
RPU-baseline model.

corresponding device used for the updates in the RPU baseline
model. The simulation results for both FCN-MNIST and CNN-
MNIST are presented in Figure 6 using the modified RPU-
baseline model, where ws value for each device is sampled from
a Gaussian distribution with zero mean but varying standard
deviation, σws. When the standard deviation of the distribution is
σws ≤ 0.01, the training results are indistinguishable from the one
achieved with no variations, and therefore, these results provide
σws = 0.01 as the acceptable threshold value for the symmetry
point variations.

It is important that this acceptable threshold value of σws =

0.01 is achieved by the symmetry point shifting technique. The
symmetry point shifting technique may introduce two sources
of noise while matching the reference device conductance to the
symmetry point of the active (updated) device: (1) the noise in
the converge to the symmetry point of the updated device and
(2) the noise in the conductance transfer to the reference device.
Given than the weight change due to a single coincidence event
at the symmetry point is about 1wmin0 = 0.001, which is 10
times smaller than the threshold σws = 0.01, the alternating pulse
sequence would result in convergence to the symmetry point
that is much smaller than this acceptable threshold. Furthermore,
using the ratio of this acceptable threshold value σws = 0.01 to a

nominal weight range of 1.2, this specification can be mapped to
physical quantities. For instance, the matching of the reference
device conductance to the symmetry point of the updated device
must be accurate within a few percent compared to the whole
conductance range. Therefore, after this initial converge, the
stored conductance on the update device needs to be copied to the
reference device within a few percent accuracy. Given that this is
a onetime cost, this conductance transfer can be performed using
a closed loop programming while achieving this required few
perfect matching. Therefore, we emphasize that the acceptable
threshold for symmetry point variations can be achieved with the
symmetry point shifting technique and does not introduce any
additional constraints to the required device specifications.

LSTM Network on War and Peace
Dataset (LSTM-WP)
As a third example, the validity of the “Tiki-Taka” algorithm is
tested on a more challenging LSTM network. This network is
composed of 2 stacked LSTM blocks each with a hidden state
size of 64 and it is identical to one studied in Ref. (Gokmen
et al., 2018). As a dataset Leo Tolstoy’s War and Peace (WP)
novel is used and it is split into training and test sets as 2,933,246
and 325,000 characters with a total vocabulary of 87 characters.
Following the same mapping described in Ref. (Gokmen et al.,
2018) results in 3 different weight matrices with sizes 256× (64+
87+ 1) and 256× (64+ 64+ 1) for the two LSTM blocks and
a third matrix of size 87× (64+ 1) for the last fully connect
layer before the softmax activation. Note that each matrix is now
mapped to 2 separate matrices in “Tiki-Taka.” The simulation
results corresponding to the SGD algorithm and “Tiki-Taka” for
various RPU models are shown in Figure 7. For all models the
training is performed using fixed learning rate η = 0.005, mini-
batch of unity and time unrolling steps of 100. Additionally,
the hyperparameters of the “Tiki-Taka” algorithm are λ = 0.005,
γ = 1, ns = 5, and for ut one-hot encoded vectors are used in
a cyclic fashion.

The simulation results presented in Figure 7A for LSTM-
WP are qualitatively in good agreement with the ones presented
for FCN-MNIST and CNN-MNIST above. For instance, the
RPU-baseline model trained with the SGD algorithm results
in a test error (cross-entropy loss) significantly larger than
the one achieved by the FP-model. However, the same RPU-
baseline model performs much better when “Tiki-Taka” is used
for training, further validating this new approach for training
DNNs. The perfectly symmetric case trained with the SGD
algorithm is also shown as a comparison, and interestingly, it
shows quantitative differences compared to ones presented for
FCN-MNIST and CNN-MNIST: First, the perfectly symmetric
case trained with the SGD algorithm cannot reach the level
of accuracy achieved by the FP-model. Second, the RPU-
baseline model trained with “Tiki-Taka” cannot reach the level
of accuracy achieved by the perfectly symmetric case trained
with the SGD algorithm. The former is understandable as it
is shown in Ref. (Gokmen et al., 2018) that LSTM networks
are more challenging to train on crossbar arrays; and even
for perfectly symmetric devices, FP model accuracies cannot

Frontiers in Neuroscience | www.frontiersin.org 12 February 2020 | Volume 14 | Article 10318

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00103 February 25, 2020 Time: 9:5 # 13

Gokmen and Haensch Training Algorithm for Resistive Device Arrays

FIGURE 6 | Sensitivity of the “Tiki-Taka” algorithm to the symmetry point variations for FCN-MNIST and CNN-MNIST. The same hyperparameter settings from
Figures 3 and 5 are used for FCN-MNIST and CNN-MNIST, respectively. Different colors correspond to RPU-baseline models at different symmetry point variations.

be reached due to the limited number of states on RPU
devices. Given that “Tiki-Taka” only addresses issues arising
due to device asymmetry, it is not expected to reach the same
level of accuracy of the FP model. It is only reasonable to
expect it to perform at the same level of accuracy achieved by
the perfectly symmetric case trained with the SGD algorithm,
as all other hardware constraints are the same. Therefore,
it is worth investigating the quantitative difference observed
between the RPU-baseline model trained with the “Tiki-
Taka” algorithm and the perfectly symmetric case trained with
the SGD algorithm.

When the same RPU models with significant device
asymmetry are used, it is clear that the training results
using “Tiki-Taka” outperforms the results achieved by the
SGD algorithm. This relaxes the acceptable device symmetry
requirement by a large margin at equivalent accuracy, however,
it is also obvious that reducing device asymmetry improves the
training accuracy of the “Tiki-Taka” algorithm if the accuracy
is already far from ideal to start with. Therefore, one can
easily blame the very aggressive device asymmetry used in
the RPU-baseline model to explain the quantitative difference
observed between the “Tiki-Taka” algorithm and the perfectly
symmetric case trained with the SGD algorithm. Trivially this
deficit can be minimized by using a less asymmetric device
switching characteristics (data not shown). However, there
exist other hardware issues that may hinder the convergence,
and more interestingly there may exist different tradeoffs
between device switching characteristics and other hardware

limitations for “Tiki-Taka” that are otherwise not applicable to
the SGD algorithm.

To understand whether other existing hardware limitations
play a role in the convergence of the “Tiki-Taka” algorithm
we performed additional simulations using the same device
model but assuming different hardware settings at the peripheral
circuits. For instance, the simulation results presented in
Figure 7B assume that the noise level for the vector-matrix
multiplications is reduced by 10× from its original value in
the RPU-baseline model. This reduction does not affect the
performance of SGD based training both for the RPU-baseline
model and the perfectly symmetric case. However, “Tiki-Taka”
based training improves and the difference observed in Figure 7A
between the RPU-baseline model trained with “Tiki-Taka” and
the perfectly symmetric case trained with the SGD algorithm
disappears in Figure 7B. More interestingly, in Figure 7C when
we repeat the same experiment using an RPU-baseline model
where only the noise spec of the forward A cycle in the “Tiki-
Taka” algorithm is reduced by 10×, the training result remains
unchanged and are very close to the perfectly symmetric case
trained with the SGD algorithm. These simulation results show
that the noise introduced during the transfer of the information
accumulated on A to C may play a role in the convergence of the
“Tiki-Taka” algorithm.

We emphasize that the hardware induced update rule for
C also has artifacts that push the elements of C away from
the optimum points at equilibrium. Although these artifacts
are less important compared to the SGD algorithm, increased
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FIGURE 7 | Test cross-entropy error for LSTM network trained on WP dataset. Open white circles correspond to a model where the training is performed using high
precision floating point (FP) numbers using the SGD algorithm. (A) Black and blue lines correspond to the RPU-baseline model where training is performed using the
SGD algorithm and the “Tiki-Taka” algorithm, respectively. The orange points\line correspond to SGD based training of an RPU model where all devices have a
perfectly symmetric switching characteristics while all other variations are identical to RPU-baseline model. (B) Shows the same training results from (A) at 10×
reduced noise levels for all vector-matrix multiplications. (C) Pink curve corresponds to the RPU-baseline model trained using “Tiki-Taka” but the noise spec of the
forward A cycle in the “Tiki-Taka” algorithm is reduced by 10×. The maroon curve also uses the RPU-baseline model trained using “Tiki-Taka” where the update C
cycle of the “Tiki-Taka” algorithm is modified to C← C+ λ (f(v)⊗ ut), where f(v) is a pointwise thresholding function that returns v only if |v| > 0.06 and otherwise
zero. Black, blue lines and orange points\line are plotted again from (A) for comparison.

noise in updating C due to the randomness in reading A clearly
impacted the training accuracy of the “Tiki-Taka” algorithm as
illustrated above. Therefore, in order to further filter the updates
happening on C, we changed the update C cycle of the “Tiki-
Taka” algorithm as follows C← C + λ (f (v)⊗ ut), where f (v)
is a pointwise thresholding function that returns v only if |v| >
Tv and otherwise zero. The simulation results of this modified
“Tiki-Taka” algorithm for the RPU-baseline model is shown in
Figure 7C, where Tv is set to the 1σ value of the read noise from
the baseline model, Tv = 0.06. Although the improvement is not
large, this filtering approach performs slightly better than the
original unfiltered version and it suggests that there may exists
other strategies that may outperform this simple thresholding-
based filtering.

Speed, Area and Power Costs
Compared to the SGD algorithm, the “Tiki-Taka” algorithm
introduces additional computations and requires additional
hardware resources (crossbar arrays) to perform those
computations, and therefore, their area, power and speed
costs need to be sized properly.

The “Tiki-Taka” algorithm requires two sets of weight matrices
for each layer hence it may increase the area requirement by a
factor of 2. In this worst-case scenario A and C matrices can
simply be allocated on two separate RPU tiles resulting in twice
more area. However, if the RPU devices are integrated at the
back-end-of-line (BEOL) in-between metal levels and stacked

up as multiple layers, then this area cost can be eliminated.
Given that the operations performed on A and C matrices are
identical to the ones performed during the SGD algorithm,
the same peripheral circuity can be used to drive the lines
corresponding to A and C matrices selectively to perform the
forward, backward and update cycles in a time multiplex fashion.
In this setting, the computations for the forward and backward
cycles corresponding to γ = 1 case can also be realized by driving
the lines of A and C matrices simultaneously while integrating
the results from both matrices into the same capacitor. Also
note that the update cycle on both matrices uses the common
stochastic multiplication scheme. Therefore, 4 layers of stacked
crossbar arrays can be operated as A and C matrices needed
for “Tiki-Taka” without changing the peripheral circuitry design.
Given that the same hardware specifications derived in Ref.
(Gokmen and Vlasov, 2016) are sufficient for the “Tiki-Taka”
algorithm, speed and power of each cycle remains identical to
the ones performed in the SGD algorithm. However, “Tiki-Taka”
introduced additional cycles to the training and its speed can
be easily accounted by simply looking at the ns parameters used
during training.

For the FCN-MNIST example ns = 1. This setting means
that the “Tiki-Taka” algorithm repeatedly performs (1) forward,
(2) backward, (3) update, (4) forward and (5) update cycles, 2
additional cycles compared to 3 cycles performed during the
SGD algorithm. Since there are not any significant differences
between the execution times of the forward, backward and
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update cycles, the ratio of the wall clock times of “Tiki-Taka”
to the SGD algorithm would be 5/3. Increasing ns further
decreases this difference as illustrated for the LSTM-WP example
where ns = 5. In this setting, for every 15 (3 by 5) cycles
in the SGD algorithm, the “Tiki-Taka” algorithm introduces 2
additional cycles and hence it runs only ∼15% slower than the
SGD algorithm. In contrast to the fully connected and LSTM
networks where the weight sharing is uniform for all layers, the
wall clock time of CNN networks are mainly dictated by the
first convolutional layer with the largest weight sharing factor
(Gokmen et al., 2017). For the CNN-MNIST example this weight
sharing factor is 576. Therefore, even ns = 1 is used, for the
first convolutional layer the “Tiki-Taka” algorithm introduces
2 additional cycles only after 3 × 576 cycles. This is a tiny
difference and makes the run times of these two algorithms
indistinguishable for CNN networks.

We note that there are additional computations that need to
be performed outside the crossbar arrays, such as generation of ut
and calculation of f (v). These computations can easily be handled
by the digital units that are already responsible for calculating the
activations and derivates used in the SGD algorithm. All these
additional digital operations performed during the “Tiki-Taka”
algorithm are local to the layer and are much simpler than the
calculation of activations and derivates, therefore, their relative
costs are no more than the relative costs already accounted above
for the crossbar arrays.

DISCUSSION AND SUMMARY

We emphasize that throughout the manuscript we assumed that
one crossbar array is used to perform the updates and another
separate array is used as fixed reference conductances. The
“Tiki-Taka” algorithm therefore assumes that the updated RPU
devices change their conductance bidirectionally and therefore
it is not directly applicable to one-sided switching devices
such as PCM. The stability and convergence of the “Tiki-Taka”
algorithm rely on the fact that the random sequence of updates
on the A matrix eventually drive all elements of A toward
zero. This is indeed achieved by the symmetry point shifting
technique, and if this technique is generalized for one-sided
switching devices then “Tiki-Taka” can also be used for devices
like PCM. However, note that “Tiki-Taka” cannot eliminate the
conductance saturation problem. PCM elements change their
conductance gradually at one polarity (SET) and very abruptly
at the opposite polarity (RESET). Therefore, only SET pulses
are send either in the first or the second PCM array depending
on the polarity of the weight updates. This eventually results
in saturation in the conductance values and therefore require
a serial reset operation. None of these complications arise for
bidirectional devices and the “Tiki-Taka” algorithm can run with
a very limited speed penalty using only parallel operations on the
crossbar arrays.

We derived the hardware induced update rule in presence
of non-symmetric devices and then showed its relevance to
the SGD algorithm. For instance, for some specific device
switching characteristics the hardware induced update rule looks

similar to adding `2 regularization term in the optimization
objective. However, the strength of this additional term is large
and not controllable, and hence resulting in poor training
results. Note for the γ = 0 case of “Tiki-Taka” the weights of
the neural network are stored in C which are updated using
the gradients accumulated on A. In this setting the hardware
induced rules on A and C matrices show resemblance to the
momentum-based SGD algorithm providing further intuition
into the “Tiki-Taka” algorithm. However, careful investigation
shows that the “Tiki-Taka” algorithm is not just an instance of the
momentum-based SGD and may require further investigation.
We presented an empirical approach for different network
topologies that show that “Tiki-Taka” surpasses the conventional
SGD in accuracy for relaxed symmetry requirements for analog
cross-point devices. This is an important step forward to take
advantage of analog cross points for deep learning training
with currently available switching materials. As a rigorous
mathematical theory explaining the successes of SGD in form
of backpropagation is still elusive, an interesting avenue to
proceed is to theoretically analyze the stability and convergence
properties of the “Tiki-Taka” algorithm for some realistic
device switching characteristics by applying, for example, the
same techniques used for the stability analysis of discrete or
continues dynamical coupled system. To extend this work
to larger deep learning networks is a general task for the
feasibility of analog cross-point arrays, not only restricted to the
work presented here.

In summary, we proposed a new DNN training algorithm,
so called “Tiki-Taka” algorithm, that uses a coupled system
in order to simultaneously minimize the objective function
of the original network of interest and the hidden cost term
that is unintentionally introduced due to non-symmetric device
switching characteristics. Training simulations performed on
various network architectures show that even a very aggressive
device asymmetry can be compensated by “Tiki-Taka” giving
indistinguishable training results compared to ones achieved with
the perfectly symmetric (ideal) devices. We emphasize that the
asymmetry behavior used in our simulations and shown to be
sufficient for “Tiki-Taka” is already experimentally observed by
many device technologies but declared unsatisfactory due to
asymmetry. Assuming other device specifications are within the
tolerable margins, all those non-symmetric device technologies
can now be used for deep learning applications, as the “Tiki-
Taka” algorithm significantly relaxes the challenging symmetric
switching criteria needed from the resistive cross-point devices.
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In this work we present an in-memory computing platform based on coupled VO2

oscillators fabricated in a crossbar configuration on silicon. Compared to existing
platforms, the crossbar configuration promises significant improvements in terms of area
density and oscillation frequency. Further, the crossbar devices exhibit low variability
and extended reliability, hence, enabling experiments on 4-coupled oscillator. We
demonstrate the neuromorphic computing capabilities using the phase relation of the
oscillators. As an application, we propose to replace digital filtering operation in a
convolutional neural network with oscillating circuits. The concept is tested with a
VGG13 architecture on the MNIST dataset, achieving performances of 95% in the
recognition task.

Keywords: oscillatory neural network, vanadium dioxide, phase-encoding, convolutional neural networks, pattern
recognition, relaxation oscillators, coupled oscillators

INTRODUCTION

Convolutional Neural Networks (CNNs) are the architecture of choice to compute image
recognition tasks. Widely used in commercial technology for their recognition accuracy, they are
hindered in speed and power efficiency by the frequent access to the memory they need to perform
to train a high number of parameters for each convolutional layer in deep networks (Sebastian
et al., 2020). The development of neuro-inspired hardware holds the promise of accelerating these
algorithms by exploiting in-memory computing concepts and limiting the number of accesses to
the memory. A system of coupled oscillator, or Oscillatory Neural Network (ONN) can be used to
store and recognize multiple patterns in compact networks. As described in Hoppensteadt and
Izhikevich (1999) and Izhikevich (2000), systems of coupled oscillators lock in frequency and
establish programmable phase relations that can be used for in-time computing applications. An
ONN comprises a system of oscillators, in the role of neurons, connected to each other with synaptic
weights, that represent the strength of the oscillators’ coupling and the memory of the network.
The ONN systems therefore rely on encoding and processing the information with time-delays in
the circuits, rather than the amplitude of a signal, therefore being resilient to voltage noise and to
scaled power supply.

Exploiting the associative memory capabilities of such networks, tasks as image recognition can
be performed. Numerous works have simulated through mathematical and circuit simulations the
digit pattern retrieval with different coupled oscillators technologies: (Jackson et al., 2015) shows
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20-pixel digit recognition using transition metal oxides and
resistive ram technology; (Nikonov et al., 2015; Liyanagedera
et al., 2016), perform similar simulations on Spin Torque
Oscillators (STOs); (Hölzel and Krischer, 2011) with Van der
Pool oscillators. These works are based on storing patterns with
n × m pixels into an ONN that comprises n × m oscillators.
To perform the recognition, a distorted pattern of the same
pixel size is fed to the ONN, and using the minimum phase
attractor of the circuit, the right stored pattern is retrieved. The
output is an n × m pixels image of the correct digit. Image
classifications tasks, however, work quite differently. Taking as an
example digit classification through a neural network, an image
of n × m pixels if fed into the network. The network output
is an 1 × 10 array containing the classification probabilities
of that image. This classification operation is most commonly
performed by convolutional neural networks, that process the
image with a series of trainable convolutional filters in the first
few layers and achieve recognition after some fully connected
layers (Figure 1).

The link between convolutional neural networks and the
associative memory capabilities of oscillatory neural networks
has so far been explored, to our knowledge, only in Liu
and Mukhopadhyay (2018), where an associative memory
bank (Hopfield network) replaces the fully connected layers
in CNNs. The associative memory is here used to perform
a classification with a combination of unsupervised learning
and transfer learning techniques. Even though the concept is
very interesting and promising, the Hopfield network that this
technique envisions comprises between 256 and 2,024 neurons.
However, the physical demonstrations of oscillatory neural
networks features maximum 100 oscillators as neurons with
standard Phase Locked Loop or equivalent CMOS technology
(Jackson et al., 2018). The technological challenge in the physical
realization of large oscillatory neural networks resides in the
complex dynamics of the oscillators’ frequency and phase
synchronization when the electrical components are affected by
variability. This is even more true when the ONNs are built
with novel oscillator technology, such as STOs or vanadium-
dioxide (VO2) oscillators (Romera et al., 2018; Raychowdhury
et al., 2019), for which a maximum of 6 oscillators have been
connected into a network.

Alternatively, it is suggested that the computing capabilities
of small oscillator networks, with up to 10 nodes, can be
efficiently exploited to do various image processing tasks, like
graph coloring or image saliency processing (Cotter et al., 2014;
Tsai et al., 2016). These previous works propose an ONN
scheme in which the computation is based on the distance
between the input image and the feature to be recognized. For
example in Tsai et al. (2016) this distance is encoded in the
difference in gate voltages between two transistors which bias a
phase transition device. Another popular configuration encodes
the distance between the input pattern and the feature to be
recognized in a frequency shift between oscillators, which are
connected by a fixed coupling. The distance between the two
patterns is then calculated on the time the oscillators need to
converge to the same frequency (Cotter et al., 2014; Nikonov
et al., 2015; Zhang et al., 2019). The implementation of these

concepts does not use the associative memory capabilities of the
ONNs to store multiple patterns. Instead, to perform the distance
measure, the circuit needs to be reconfigured each time a different
feature needs to be recognized. In our work, we propose an
implementation of small, fully connected networks, which exploit
the associative memory capabilities of an Hopfield network. This
allows to store the different features to be recognized in the
same network, and enables the recognition of up to 5 different
features within one computation performed by the same filter.
In addition, in our work we provide the missing the link to
show how the feature extraction performed by ONNs can be
used for image classification tasks. We show the potentiality
of the ONN technology for the realization of reconfigurable
CNN in hardware, therefore bridging the gap between previous
demonstration of ONN pattern retrieval and the industry-
standard algorithms.

Among the new oscillator technologies, we concentrate our
analysis on VO2 oscillators, as they offer the advantage of
realization of very compact oscillators, which can be easily
coupled with standard electrical components, allowing for easy
reconfigurability of the system (Parihar et al., 2015; Corti
et al., 2018). VO2 based oscillators also offer good scalability
perspective and demonstrate operating voltage of less than
1 V and low power consumption (∼20 µW per oscillator)
(Shukla et al., 2016).

We exploit the feature extraction capabilities of small
networks of VO2 coupled oscillator to replace digital filters in
CNNs (Figure 1B). We fabricate VO2 oscillators on a Si platform,
adopting a crossbar (CB) configuration with scaled device
dimensions down to 70 nm. The CB devices exhibit improved
variability and reliability compared to co-planar structures and
enable the coupling of 4 oscillators. We demonstrate that such
a 4-node ONN can memorize and perform 5 different filtering
actions of a CNN in a single circuit. Simulations with a 3 × 3
ONN further show how the concept can be applied to replace
digital filters in the first layer of a CNN with a VGG-13 inspired
architecture and through the adoption of a transfer learning
technique. The hybrid CNN-ONN platform has been tested
on the MNIST algorithm reaching recognition performances
up to 95%. As an outlook, we discuss the benchmark of this
technology when extended to all the layers of a CNN, up to
the fully connected layers, in comparison with existing hardware
and conclude that ONNs might be used as fast and low-power
inference machines.

MATERIALS AND METHODS

Device Fabrication
VO2 is a phase change material that presents a volatile,
temperature driven insulator to metal transition (IMT). The
transition can be triggered by joule heating when a voltage is
applied to a VO2 device (Kim et al., 2010), and it is reversed
when the voltage across the device is removed. Given its
volatile phase-change characteristics, VO2 cannot be used as
memory element like chalcogenide-based phase change materials
(PCM). However, the VO2 phase transition can be instead
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FIGURE 1 | (A) image inference process in an oscillatory neural network; (B) image classification through a convolutional neural network.

exploited to build very compact oscillators. Other materials
have shown similar properties, for example tantalum oxide
(Jackson et al., 2015; Sharma et al., 2015) or niobium oxide
(Li et al., 2015), however, the near-room temperature phase
transition of VO2 and its proven high endurance up to 109 cycles
(Shukla et al., 2015) make this material a most favorable choice
of oscillators-based technology. VO2 can be grown crystalline on
TiO2 substrates; however, when deposited on Si, the film forms
grains of the average dimension of ∼50 nm (Premkumar et al.,
2012). In the interest of future integration with electronics we
have chosen to focus on integration on silicon in our work.

Figure 2 shows VO2 devices fabricated in a CB geometry on
a 4” Si wafer with a 1 µm thermal SiO2 layer. Trenches are
etched into the SiO2 substrate and filled with Pt to provide the
bottom electrode. Subsequently, an 80 nm thick VO2 film is
grown via atomic layer deposition and post-annealed, resulting in
a policrystalline, granular film (Bai et al., 2020; Niang et al., 2020).
Finally, top electrodes are formed using e-beam lithography and
Pt evaporation. The smallest device area is 70 nm × 70 nm
allowing a very compact design. The resistivity vs. temperature
curve (RT) of a 250 nm × 250 nm device is shown in Figure 3A
and exhibits an insulator-to-metal phase-transition with roughly
a two-order of magnitude in resistance change. The step-like
RT implies multi-grain transitions, as already shown in previous
work (Ruzmetov et al., 2009; Takami et al., 2014; Corti et al.,
2019). Figure 3B shows the insulator-to-metal and metal-to-
insulator transition of an electrically activated device. A current
source is used to control the current flowing in the device; a
voltmeter is used to measure the voltage at each point. The
IV characteristic of this device shows three different operating
regions: a first region, in which the device is in its high
resistance state, a negative differential resistance regime upon the

phase change, and finally the low resistance region. A crossbar-
geometry of VO2 based-oscillators applications has previously
been fabricated with point-probe contacts on TiN on Si, yielding
record-speed oscillations performances of 9 MHz, almost an
order of magnitude more than what demonstrated with planar
structures (Mian et al., 2015). In another more recent work, the
oscillating and coupling dynamics of such a vertical structure
have been measured and modeled (Tobe et al., 2020). In this
work, we further report that the cross-bar geometry yields a better
reliability of the devices. In fact, in a previous work we discussed
how coplanar devices needed a burn-in cycle to initialize the
devices, which sometimes resulted in fatal irreversible changes
in morphology (Corti et al., 2019). The crossbar devices do not
need a burn-in cycle, improving reliability as virtually all the
devices fabricated were able to produce oscillations. Compared
to the planar VO2 structure, the crossbar structure provides
improved threshold voltage stability (device-to-device variability
lowered from 20% to 10%) and resistance variability (from 10%
to ∼5%). Compared to other demonstrations on silicon, the
improved variability allows for coupling of more oscillator nodes,
up to 4. However, to go to larger networks, careful material
and device development is necessary to bring this figure down.
The devices are tested in temperature-controlled chamber at 320
K and connected in the circuit configurations through external
electrical components.

Oscillatory Neural Network
A single oscillator unit is realized biasing the VO2 device in
the negative differential resistance regime with a series transistor
as described in Parihar et al. (2014). When the device is
in its insulating state the bias voltage drops mainly across
the VO2, until the Joule heating brings its local temperature
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FIGURE 2 | Left: scanning electron microscopy (SEM) image of 12 VO2 devices. Top right: schematic of a VO2 device deposited on a Si/SiO2 substrate. The device
area is defined by the width of the Pt contact lines. On the bottom, a SEM image of a 350 nm device. Minimum device dimension demonstrated: 70 nm.

FIGURE 3 | (A) Resistivity measure of a 300 nm × 300 nm crossbar VO2

device. The insulator to metal phase transition happens at around 340 K and
registers 2 orders of magnitude phase change. (B) IV curve of a VO2 device.
Three different areas can be identified: the insulating region (I), the negative
differential resistance region (II), and the metallic region (III).

above the phase transition, and the device switches to its
metallic state. When the device is in the metallic state, the
voltage drops mainly across the series transistor. When the
bias is chosen such that the voltage drop does not exceed the
upper threshold of the negative-differential resistance regime,
Joule heating is reduced. The VO2 device therefore cools and
eventually switches back to its insulating state. The switching
between the insulating and metallic state is therefore continuous
and self-sustained, originating relaxation oscillations at the
drain voltage of the transistor. The oscillators are coupled
via resistive and capacitive elements, as shown in Figure 4,
which ensure frequency and phase-locking of the drain voltage

signals. The strength of the coupling element Cij that connects
oscillator i with oscillator j can be calculated starting from the
patterns to be memorized, via the Hebbian Learning Rule (HLR)
(Hoppensteadt and Izhikevich, 1999):

Cij =
1
n

m∑
k = 0

ϑk
i ϑ

k
j

where n is the total number of pixels per each image, or
equivalently the number of oscillators in the network, ϑi

k is the
value associated to the pixel i of pattern k, and m is the total
number of patterns to be memorized in the ONN (Figure 5).
These values Cij are then translated in different values of the
coupling resistance Rc between the oscillators. The memorized
patterns appear in the operating ONN as stable phase relations
between each oscillator i and j. An oscillator in phase with the
reference oscillator is translated into a white pixel; an oscillator
with 180◦ phase difference with the reference corresponds to
a black pixel. Given m patterns memorized in the oscillatory
neural network, the oscillators can stabilize their phase only
according to one of the m memorized patterns. When the
oscillators are initialized to an unstable phase relation, they will
relax to the nearest stable ensemble of phase relations, i.e., to
the nearest memorized pattern. In this way, from a distorted
pattern a memorized pattern is retrieved. In our system in
Figure 4, the oscillators are initialized to have different phase
relations via a delay of the bias voltages to each oscillator.
For instance, an oscillator representing a white pixel input is
switched on at a time td = 0 compared to a reference signal;
an oscillator representing a black pixel input is switched on
at a time td = T/2 compared to the reference signal, with
T indicating the period of one oscillation. Gray-scale values
correspond to proportional delays. The output is represented by
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FIGURE 4 | The coupled oscillator network serves as an image filter. The image input is converted into a delay of the oscillators’ input signal. A single oscillator unit
comprises a VO2 phase-change element in series with a transistor. The coupling is realized with an externally connected resistance and a capacitance. The
capacitance value is fixed, while the resistance value can be changed to store different patterns in the network and can be later substituted with a memristor.

FIGURE 5 | Flow chart of the learning. Weights are assigned to the pixel of each training image; the Hebbian Learning Rule is used to compute the coupling weights,
which are translated into circuit values of the coupling resistance Rc.
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the phase of the oscillating transistor drain voltage, compared
to a reference. When the network is initialized in this fashion
to a phase relation between the oscillators that is different from
the stored, stable phase relations, the system relaxes to the
nearest stable phase relation, therefore achieving recognition of
a pattern. The success of the input time-delay technique for
image recognition is explained in detail in Corti et al. (2020).
The settling time to the desired output typically varies between
4 and 5 oscillation cycles, nevertheless, after 5 oscillation cycles
the phase information becomes stable and can be read-out. The
information about the recognized feature is contained solely in
the relative phase of the oscillators. In the experiments presented
in this paper, the input delay signal is generated through a
signal generator unit (National Instruments), the output of the
oscillators is acquired by a signal acquisition set-up and the phase
calculated with post-processing. The circuit coupling elements
are realized with external electrical resistances. As an outlook,
the input time-delay can be implemented in hardware via ring
oscillators, and the phase-to-digital conversion can be tackled as
described in Staszewski et al. (2006). Also, the coupling resistance
can be implemented with reconfigurable phase change memories
(Boybat et al., 2018).

The simulations for the circuit implementation of the ONNs
have been done using a Spice simulator. The VO2 device was
simulated with a behavioral model as described in Maffezzoni
et al. (2015). TensorFlowTM was used for the CNN and the
hybrid ONN-CNN algorithms. The TensorFlowTM code is used
to calculate the input delay of the driving voltage of the
oscillators, as described above, from an input image, taken from
the MNIST dataset. The code then launches the circuit simulation
of the ONN, which are conducted in SPICE. The output of the
simulation, corresponding to the pattern retrieval computed by
the simulated ONN circuit, is then fed back to the TensorFlowTM

algorithm as an output image. The image is then processed in the
subsequent CNN layers with the TensorFlowTM code.

The choice of the MNIST dataset to perform this computation
is justified by the reduced dimensions of the dataset itself. To
obtain precise results with the simulation, a high time resolution
is required, with very small time-steps for each computation. The
simulations of the ONN are therefore rather slow and require
an extended simulation time and many computational resources.
This problem is not present in the circuit implementation, as the
hardware realization is able to perform at frequencies in the order
of MHz. We are, however, positive that a similar approach on a
more complex dataset will yield the same results here discussed
with the MNIST dataset.

RESULTS

Four-Coupled Oscillators
In this section we present a demonstration of four coupled VO2
oscillators on Si, in which multiple patterns can be memorized.
To form relaxation oscillator circuits, the VO2 resistors on a
silicon wafer are coupled through externally connected resistors
and capacitances. An example of the measured waveforms of
four coupled oscillators is shown in Figure 6. The oscillators

FIGURE 6 | Coupling of four VO2 on Si oscillators. For reliable coupling, a
hybrid R-C scheme was used, and the relative phase is calculated when the
falling edge of the oscillations cross a 1 V threshold. In this experiment, an
external capacitance of 150 nF was used on purpose to slow the oscillations,
to enable a more precise sampling of the output signal.

appear to be locked in frequency and the phase relation is
calculated taking the distance between the crossing of the 1 V
line in the falling edge of the oscillator curves. The coupling
network has been programmed to recognize features as in
a first layer of a convolutional neural networks. Looking at
available analysis of feature extraction in convolutional neural
networks (Zeiler and Fergus, 2014), the filters in the first
layer commonly select edge features, like borders, diagonal,
horizontal and vertical edges. Therefore, for the experimental
demonstration, the ONN was trained to store vertical, horizontal
and diagonal patterns. The weights of the circuit elements
were identified through the Hebbian learning rule. To the
best of our knowledge, this is the first demonstration of
4 coupled VO2 oscillators with memory capabilities realized
on a silicon platform. The circuit parameters used for the
experiments are: R12, R13, R24, R34 = 82 k�, R23, R14 = 130
k�, Cc = 5,6 nF, Vgx = 1.4–1.6 V, Vin = 1.8–2.2 V. The
different values of gate voltages Vg and of the input signal
Vin are used to achieve similar frequency for the oscillators,
and to compensate from intrinsic differences in the devices,
which present around 10% of device-to-device variability. The
horizontal, vertical and diagonal patterns are identified over
multiple experiments, as depicted in Figure 7. In addition, a
fourth pattern in which all the oscillators result equally spaced
was identified. The measurements are performed assuming
Oscillator 1 as the reference oscillator; the phase of the other
oscillators is calculated in respect to the crossing of the 1 V
threshold of oscillator 1. Therefore, Oscillator 1 has always
a phase equal to 0, with a minimal data scattering that is
calculated taking into account the variability of the value
of the first experimental point that crosses the 1 V line.
The other oscillators present a larger scatter, which doesn’t
impair the clear identification of the various patterns. However,
random fluctuation of the oscillations and cross-talk noise
hindered the experimental pattern recognition using the input-
delay to output phase inference process. This is expected to
improve with further process and design optimization of the
crossbar devices.

To demonstrate the filtering capabilities of the circuit on
an entire image, without suffering from the non-idealities of
the experimental demonstration, circuit simulations calibrated
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FIGURE 7 | Experimental phase data that demonstrate that 4 features (e.g., vertical, horizontal and 2 diagonals) can be stored simultaneously in one 4-oscillators
network. The pattern can be controlled by the time-delay of the oscillator drive. Phase-noise due to device variability impedes practical application. Circuit
parameters: R12, R13, R24, R34 = 82 k�, R23, R14 = 130 k�, Cc = 5,6 nF, Vgx = 1.4 –1.6 V, Vin = 1.8–2.2 V.

on the experiments were conducted using Spice, reducing the
variability of the VO2 devices from 10% to 5% and therefore
increasing the recognition accuracy. In these simulations
all the 4 patterns identified in the experiments were also
observed; in addition, when the input delays of the circuit
were chosen to be all the same, the oscillators in simulations
were all oscillating in the in-phase configuration. This is
an example of identification of a spurious pattern that was
not encoded with the HRL. Spurious patterns arise when
the memory capacity of the oscillatory neural network, that
is studied to be 0.15n patterns for a n-oscillator network,
is violated (Nishikawa et al., 2004; Follmann et al., 2015).
Nevertheless, in such small oscillator networks the spurious
patterns can be harvested as additional information. As
shown in Figure 8, when using the 2 × 2 ONN filter on
an image of the MNIST dataset, vertical, horizontal and
diagonal edges can be identified. In addition, the background
as well as the images parts that have little contrast, can
be identified through the in-phase oscillating condition.
This demonstrates that a single ONN filter can operate as
convolutional feature edge extraction identifying 5 different
features. Compared to previous work, the identification of
the features does not need to proceed sequentially feature
by feature, but it is done in parallel by the same filter.
Moreover, the dimensionality of the filter should match
the dimensionality of the input, i.e., 2D input arrays such
as images are preferably processed using 2D filters. The
4 coupled oscillators system here discussed represents the
minimum hardware realization to use ONNs as filters for image
feature extraction.

ONN-CNN
Having shown that our simulations can reproduce experimental
behavior, we extend the simulations to explore the use of ONNs
in combination with CNNs. The ONN circuit described in
section “Oscillatory Neural Network” is simulated with Spice
simulations using for the VO2 device a behavioral model as
described in Maffezzoni et al. (2015). The simulations are
done with 3 × 3 oscillators ONNs based on parameters

extracted from experimental devices. A convolutional neural
network with a structure similar to a VGG-13 is trained on
the MNIST dataset with a standard back-propagation algorithm
(Table 1). The trained weights are used to identify which
features are recognized in the first layer of the CNN, that
comprises 64 filters with a dimension of 3 × 3. In our
network, as in Zeiler and Fergus (2014), it was also possible
to identify multiple filters that selected horizontal, vertical and
diagonal edges. We use the Hebbian Learning rule to store
the same patterns in a 3 × 3 ONN matrix. The matrix
dimension was chosen according to the dimension of the
first layer convolution matrixes in the CNN. Ten thousand
images from the MNIST dataset have been processed by the
ONN matrix with a stride of 2, recognizing in each image
vertical, diagonal, horizontal edges and uniform background.
As already mentioned, storing of more than 0.15 n patterns,
where n is the number of the oscillators (Follmann et al.,
2015), results in the appearance of spurious patterns that can in
principle hinder the feature edge extraction process. However,
as already discussed for the 4-coupled oscillators experiments,
the arising of spurious patterns is not detrimental for feature
extraction operations. In the 3 × 3 filter case, we derived
the pattern information from 3 key oscillators that oscillate
in-phase for each memorized edge. For example, referring to
what is depicted in Figure 9, each time oscillators 2, 5, and 8
oscillate in-phase a vertical edge is recognized, and similarly for
the other edges.

With this technique, a dataset of 10,000 images filtered by
the single ONN was calculated, with dimensions 13 × 13 × 5,
where 5 represent the number of features recognized by the single
ONN filter. The dataset was split in 6,000 training images and
4,000 test images.

Subsequently, five filters in the pre-trained CNN that provide
the same filtered images were identified and replaced by the ONN
with a simple transfer learning process:

1. The 64 CNN filters were convolved with the same
images from the MNIST dataset and activated with
a Relu function.
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TABLE 1 | Schematic of the convolutional neural network architecture used in this work for performing the MNIST classification task.

MNIST dataset 27 × 27 × 1,000

ONN-CNN 5 ONN filters + 59 CNN filters 3 × 3 × 64, stride = 2, padding = same

CNN1 3 × 3 × 64, stride = 1, padding = same

Max pool 1 2 × 2, stride = 2, padding = same

CNN 2(×2) 3 × 3 × 128, stride = 1, padding = same

Max pool 2 2 × 2, stride = 2, padding = same

CNN 3(×2) 3 × 3 × 256, stride = 1, padding = same

Max pool 3 2 × 2, stride = 2, padding = same

Fully connected 1 4,096

Fully connected 2 1,000

Fully connected 3 10

The network architecture is inspired by the VGG-13 architecture.

2. The CNN-filtered images were compared to the ONN-
filtered images calculating the mean square error; the
minimum of the mean square error was used to identify the
filters from the CNN that can be substituted with the ONN.

3. A new dataset is created after the first layer, substituting the
images filtered by 5 CNN filters with the 5 filtered images
from the ONN.

The remaining neural network layers are trained on the
new dataset, achieving a recognition accuracy on the training
set of 100% and on the test set of 95%. The original CNN,
in comparison, reported better accuracy on the test set, of
97%. The reason for the worsening of the neural network
performances is attributed to the cases in which the ONN
fails the feature edge extraction. In fact, insufficient training
of the ONN (just using HLR) also leads to recognition
errors. The implementation of a backpropagation algorithm
to the ONN layer would allow to increase the recognition
performance in the network. We therefore implemented and
tested a backpropagation scheme in our simulations. In Figure 10
we show an input image feature that should be recognized
as a vertical edge. However, when the ONN is trained with
the HLR the recognition fails. A cost function C = (ϕtrain–
ϕout)2/2 is calculated from on the phases of the desired
output ϕtrain and the obtained output ϕout . Assuming an
exponential dependence of the rising and falling edge of
the relaxation oscillator waveforms, the derivative in time
can be derived and an improved coupling matrix calculated.
During subsequent epochs of this training the phase error is
reduced. In the example shown in Figure 10, the feature is
recognized after 8 epochs of training. While blurred features
(allowing 40% gray scale) were only recognized with 30%
probability using the untrained ONN, 100% of the features
were recognized with the trained ONN. The extension of the
backpropagation algorithm to the entire ONN-CNN is yet
to be implemented, but is expected to boost the recognition
performance. In addition, the direct implementation of the
backpropagation algorithm would allow for direct training of
a CNN algorithm on an ONN platform and should ultimately
result in an increase of the training speed. Despite the reduction
in recognition performances, the proposed ONN implementation

FIGURE 8 | Simulation of convolution operation on MNIST images with a 2 ×
2 VO2 oscillator filter, which corresponds to 5 digital filters of the first layer of a
CNN. The simulations are calibrated with the experimental results in Figure 7.

allows for a reduction of the number of parameters that
need to be trained by the network. In fact, 45 parameters
undergo training for 5 CNN filters of 3 × 3 pixels size,
however, only 36 parameters need to be trained for a single
ONN that performs all filtering actions. The number of
parameters to be trained is therefore reduced of 20%: this
can represent an important advantage in terms of speed and
power consumption when training larger networks. In addition,
a further acceleration of the network speed and a further
reduction of the number of memory accesses is achieved by
the parallel processing of 5 filters from a single ONN unit,
whilst in the standard CNN these five convolution actions are
performed sequentially.

Benchmark
In this section we benchmark the convolution operations
conducted with the ONN compared to a conventional CPU
or GPU. We assume that the first layer of the convolutional
neural network presented in this paper is integrally realized via
ONN filters operating in parallel. The first layer of the CNN
consists of 64 filters of 3 × 3 dimension passing through a
27 × 27 pixel image with a stride of 2, accounting to total of
13 × 13 operations per filter. Assuming that each ONN can
perform 5 filtering actions inherently, a total amount of 13
× 13 × 64/5 ≈ 2,200 ONNs is required, which corresponds
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FIGURE 9 | Extension of the convolution filtering operation to a 3 × 3 oscillator matrix with stride of 2. (A) example of handwritten digit images from the MNIST
dataset. (B) Five digital filters are replaced with 1 ONN filter that performs equivalent edge extraction actions. The 9-bit information output is compressed in a 5-bit
fashion for better representation of the edge direction in (C). In (D), the image in (C) is post-processed and expanded to a 27 × 27 pixel image to show the
effectiveness of the ONN filter in recognizing the image features.

FIGURE 10 | Example of backpropagation algorithm applied to a vertical edge recognition problem of the VO2 ONN filter. Left: a distorted edge is given as an input
to the ONN filter. The difference between the expected output phase and the output phase of the filter is depicted as pixel coloring from green (no phase error) to red
(phase error). At the beginning the ONN filter fails the recognition, but after 8 learning epochs the filter is able to recognize the edge as a vertical edge. Right: the
backpropagation algorithm allows the recognition of the image for increasingly distorted input features. This backpropagation algorithm is suitable for implementing
filter training in an ONN-CNN.
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TABLE 2 | Benchmark of the ONN technology against currently available platforms for convolutional neural network applications.

ONN (current) ONN (projected) CPU Intel’s Core I9 GPU Tesla V100

Frames/s 0.6 × 106 20 × 106 5 × 106 600 × 106

Energy/frame 3.4 µJ 3 nJ 20 µJ 500 nJ

TFLOP/s 0.12 4 1 120

TFLOP/s W−1 0.06 67 0.01 0.4

roughly to 20,000 oscillator units and 80‘000 memristors for
implementing the coupling. Assuming a minimum feature
size of 100 nm for both the VO2 oscillators as well as
the memristor, the total estimated area would be around
0.001 mm2.

For calculating the power consumption of the circuit, we refer
to Shukla et al. (2016), Corti et al. (2020), that demonstrate
operations of the oscillators at the power P = 20 µW with a scaled
supply voltage <1 V and f = 3 MHz frequency operation. The
total energy for the ONN to process one image with 64 filters at
3 MHz, including the waiting time of 5 oscillating period for the
output stabilization, is calculated as

P × f × 5 = 0.6 µJ/frame

Similarly, assuming the mean value of the coupling resistance
to be around 100 k�, and the voltage drop across it 0.7 V, the
total energy consumption of the memristors is calculated to be
3.4 µ J/frame.

Scaling of the device dimensions, it is envisioned that
the VO2 oscillator could be driven with 1 µW @ 0.3
V at a moderately increased oscillation frequency of
20 MHz. Moreover, through improved processing and
resulting device uniformity, the coupling strength could be
weakened allowing 1 M� coupling resistance (Shukla et al.,
2015). The figure of merit for such a scaled system would
improve by 3 orders of magnitude resulting in an energy
consumption of 3 nJ/frame.

For conducting the same operation, a standard GPU
needs to perform (13 × 13) convolutions × 64 filters × (3
× 3) pixels/filter = 97,344 multiply-accumulation operation,
that correspond to around 200,000 flops. In Intel’s CPU
Core I9, which runs 1 TFLOP/s at 95 W, the total energy
accounts for 20 µJ/frame; in the NVIDIA Tesla V100 GPU,
that operates 120 TFLOP/s @ 300 W, the total energy is
500 nJ/frame (Table 2). We can conclude that the ONN
system, when built with the current VO2 technology, is
operating now at less power consumption of a conventional
CPU, and given the scaling capabilities presented in other
works, has the possibility of outperforming the top GPU
available on the market. This analysis has been conducted
not considering the peripheral circuitry that the ONN
system will require, and therefore should be taken just as
a projection of the potentiality of this technology and as
an indication on the reduction in power consumption that
this architecture can bring. Further benchmark should,
however, be conducted at a stage when the technology is
more advanced, to compare the performances to other

specialized hardware that serve as accelerators for neural
networks applications.

CONCLUSION

A concept for exploiting oscillatory neural networks as hardware
accelerators in convolutional neural networks is presented in
this paper. A 4-nodes oscillatory neural network was built
with scaled VO2 oscillators’ technology on a Si platform. We
show that the time-encoded output signal can store up to 5
trained filters and performs the equivalent function of multiple
digital convolutional filters in a neural network. We expand
the concept to a 3 × 3 VO2-ONN trained with Hebbian
learning rule and simulate back-propagation for performance
optimization. With the 3 × 3 filter and a transfer learning
approach, we show that multiple digital filters of a CNN can
be trained on a single ONN platform, achieving competitive
recognition performances.
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Due to the point-like nature of neuronal spiking, efficient neural network simulators often

employ event-based simulation schemes for synapses. Yet many types of synaptic

plasticity rely on the membrane potential of the postsynaptic cell as a third factor

in addition to pre- and postsynaptic spike times. In some learning rules membrane

potentials not only influence synaptic weight changes at the time points of spike events

but in a continuous manner. In these cases, synapses therefore require information on the

full time course of membrane potentials to update their strength which a priori suggests

a continuous update in a time-driven manner. The latter hinders scaling of simulations to

realistic cortical network sizes and relevant time scales for learning. Here, we derive two

efficient algorithms for archiving postsynaptic membrane potentials, both compatible with

modern simulation engines based on event-based synapse updates. We theoretically

contrast the two algorithms with a time-driven synapse update scheme to analyze

advantages in terms of memory and computations. We further present a reference

implementation in the spiking neural network simulator NEST for two prototypical

voltage-based plasticity rules: the Clopath rule and the Urbanczik-Senn rule. For both

rules, the two event-based algorithms significantly outperform the time-driven scheme.

Depending on the amount of data to be stored for plasticity, which heavily differs between

the rules, a strong performance increase can be achieved by compressing or sampling

of information on membrane potentials. Our results on computational efficiency related

to archiving of information provide guidelines for the design of learning rules in order to

make them practically usable in large-scale networks.

Keywords: event-based simulation, voltage-based plasticity rules, spiking neural network simulator, NEST,

Clopath rule, Urbanczik-Senn rule

1. INTRODUCTION

One mechanism for learning in the brain is implemented by changing the strengths of connections
between neurons, known as synaptic plasticity. Already early on, such plasticity was found to
depend on the activity of the connected neurons. Donald Hebb postulated the principle “Cells
that fire together, wire together” (Hebb, 1949). Later on, it was shown that plasticity is shaped by
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temporal coordination of activities even down to the level of
individual spikes (Markram et al., 1997; Bi and Poo, 1998).
Synaptic plasticity rules for spiking neural networks, such as
spike timing-dependent plasticity (STDP, Gerstner et al., 1996),
consequently employ spike times of pre- and postsynaptic cells
to predict the change in connections.

In recent years, a new class of biologically inspired plasticity
rules has been developed that takes into account the membrane
potential of the postsynaptic neuron as an additional factor (for
a review, see Mayr and Partzsch, 2010; Gerstner et al., 2014). The
rule by Clopath et al. (2010) can be seen as a prototypical example
for a voltage-based plasticity rule since long-term potentiation of
synapses depends on the presynaptic spike arrival and a filtered
version of the postsynaptic membrane potential. This additional
voltage dependence enables the Clopath rule to describe
phenomena that are not covered by ordinary STDP but can be
observed in experimental data, such as the complex frequency
dependence of the synaptic weight changes in spike pairing
experiments (Sjöström et al., 2001). Furthermore, it provides a
mechanism for the creation of strong bidirectional connections
in networks, which have been found to be overrepresented in
some cortical areas (Song et al., 2005).

Further inspiration for recently proposed plasticity rules
originates from the field of artificial neural networks. These
networks showed great success in the past decade, for example
in image or speech recognition tasks (Hinton et al., 2006;
Krizhevsky et al., 2012; Hannun et al., 2014; LeCun et al.,
2015). The involved learning paradigms, for example the
backpropagation algorithm (Werbos, 1974; Lecun, 1985; Parker,
1985; Rumelhart et al., 1986), are, however, often not compatible
with biological constraints such as locality of information
for weight updates. To bridge the gap to biology, different
biologically inspired approximations and alternatives to the
backpropagation algorithm have been proposed (Neftci et al.,
2017; Sacramento et al., 2018; Bellec et al., 2020; Cartiglia
et al., 2020). A common feature of many of these rules is
that weight updates not only depend on the output activity
of pre- and postsynaptic cells, but also on a third factor,
which is a time-continuous signal. A prominent example of
such biologically and functionally inspired rules is the voltage-
based plasticity rule proposed by Urbanczik and Senn (2014),
where the difference between somatic and dendritic membrane
potential serves as an error signal that drives learning. This rule,
incorporated in complex microcircuits of multi-compartment
neurons, implements local error-backpropagation (Sacramento
et al., 2018).

Research on functionally inspired learning rules in
biological neural networks is often led by the requirement
to implement a particular function rather than efficiency.
Present studies are therefore primarily designed to prove
that networks with a proposed learning rule minimize
a given objective function. Indeed many learning rules
are rather simple to implement and to test in ad-hoc
implementations where at any point the algorithm has access
to all state variables. While the latter implementations are
sufficient for a proof of principle, they are hard to reuse,
reproduce, and generalize. In particular, simulations are

restricted to small network sizes, as the simulation code
cannot be straight-forwardly distributed across compute
nodes and thus parallelized. This also limits the simulation
speed which is, in particular, problematic given that
successful learning requires simulating networks for long
biological times.

In parallel to the above efforts are long-term developments
of simulation software for biological neural networks (for a
review, see Brette et al., 2007). Such open-source software,
combined with interfaces and simulator-independent languages
(Davison et al., 2008; Djurfeldt et al., 2010, 2014), supports
maintainability and reproducibility, as well as community driven
development. The design of such simulators is primarily led
by implementation efficiency. Code is optimized for neuron
and synapse dynamics, with the aim to upscale simulations to
biologically realistic network sizes. A modular structure of the
code facilitates re-use and extensions in functionality. Therefore,
one aim of the community should be the transfer of ad-hoc proof-
of-principle implementations to these well-tested platforms.
Given the differences in design principles behind the exploratory
development of specific models and general-purpose simulation
technology, this transfer is not trivial. In the current study, we
show how to make voltage-based learning rules compatible with
spiking neural network simulators that employ an event-driven
update scheme for synapses.

Modern network simulators use individual objects for
different neurons and synapses. One common strategy of
parallelization is to distribute these objects across many
compute processes (Lytton et al., 2016; Jordan et al., 2018).
Communication between neurons then implies exchange of
information between compute processes. Neurons in the brain
primarily communicate in an event-based fashion via spikes. The
duration of these spike events is on the order milliseconds, which
together with typical rates during physiological brain states of
a few spikes per second yields a coupling that is sparse in time
(Figure 1A). Spiking simulators emulate this communication by
idealizing spikes as instantaneous events. Thus, in the absence of
direct electrical coupling via gap junctions (Kumar and Gilula,
1996; Hahne et al., 2015; Jordan et al., 2020a), there is no
neuronal interaction in between two spike events such that the
dynamics of neuronal and synaptic state variables can be evolved
independently in time. This led to the development of event-
based simulation schemes, where synapses are only updated in
their state at the times of incoming spikes (Watts, 1994; Morrison
et al., 2005). This significantly reduces the amount of function
calls to synapse code and optimizes computational performance
in network simulations.Modern spiking network simulators such
as Auryn (Zenke and Gerstner, 2014), Brian2 (Stimberg et al.,
2014), Neuron (Carnevale andHines, 2006), NEST (Gewaltig and
Diesmann, 2007), and Nevesim (Pecevski et al., 2014) therefore
employ an event-based update scheme for synapses. Even though
spike events at single synapses are rare, each single neuron
typically receives a large amount of spikes in rapid succession
due to its large number of incoming connections (in-degree).
This suggests a time-driven update of neurons (Figure 1B). The
resulting hybrid simulation scheme for neurons and synapses
(Morrison et al., 2005; D’Haene et al., 2014; Krishnan et al.,
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2017) is nowadays commonly used across many spiking network
simulators (for a review, see Brette et al., 2007).

An event-based scheme for synapses is perfectly suitable
for classical STDP rules, which only rely on a comparison
between the timings of spike events. In these rules, synaptic
weights formally depend on spike traces, which are continuous
signals that are fully determined by spike timings of pre- and
postsynaptic neurons and which can be updated at the time
of spike events. Optimizations of simulations including STDP
have been extensively discussed (Song et al., 2000; Ros et al.,
2006; Rudolph and Destexhe, 2006; Morrison et al., 2007a) and
routinely used in spiking network simulators such as Auryn
(Zenke and Gerstner, 2014), Brian2 (Stimberg et al., 2014),
Neuron (Carnevale and Hines, 2006), NEST (Gewaltig and
Diesmann, 2007), and Nevesim (Pecevski et al., 2014) as well as in
neuromorphic hardware (Pfeil et al., 2013; Serrano-Gotarredona
et al., 2013; Neftci et al., 2014; Galluppi et al., 2015; Friedmann
et al., 2016; Thakur et al., 2018). Some STDP variants also include
the membrane potential of postsynaptic cells at the time points
of presynaptic spike events as a gating variable (Brader et al.,
2007; Diederich et al., 2018). At the update, these rules only
require the synapse to know the current value of the postsynaptic
membrane potential in addition to the pre- and postsynaptic
spike time. Obtaining this value from the neuron objects is
efficient to implement and already employed in Brian2 (Stimberg
et al., 2014) and in a range of neuromorphic systems (Serrano-
Gotarredona et al., 2013; Galluppi et al., 2015; Qiao et al., 2015;
Moradi et al., 2018; Cartiglia et al., 2020).

We here focus on more complex voltage-based learning rules
which not only rely on membrane potentials at the time points of
spike events, but on an extended history of membrane potentials.
For these rules synapses continuously require information from
the postsynaptic neurons in order to update their weights
(Clopath et al., 2010; Mayr and Partzsch, 2010; Brea et al.,
2013; Yger and Harris, 2013; Urbanczik and Senn, 2014; Albers
et al., 2016). This a priori breaks the idea behind an event-based
update scheme. Therefore, previous attempts to incorporate such
voltage-based plasticity in spiking network simulators resorted
to time-driven synapse updates for NEST (Jordan et al., 2020b)
and NEURON (see implementation of Clopath plasticity on
ModelDB, Hines et al., 2004). These implementations therefore
only profit from the simulation environment on the level
of the implementation language, but have not been able to
exploit the algorithmic optimizations and speedup of event-based
synapse updates.

In this study we present an efficient archiving method for
the history of postsynaptic state variables that allows for an
event-based update of synapses and thus makes complex voltage-
based plasticity rules compatible with state-of-the-art simulation
technology for spiking neural networks. In particular, we derive
two event-based algorithms that store a time-continuous or
discontinuous history, respectively. These algorithms apply to
plasticity rules with any dependence on post-synaptic state
variables and therefore cover a large range of existing models
(Brader et al., 2007; Mayr and Partzsch, 2010; Legenstein and
Maass, 2011; Brea et al., 2013, 2016; Yger and Harris, 2013; Qiao
et al., 2015; Albers et al., 2016; Sheik et al., 2016; Diederich

et al., 2018; Sacramento et al., 2018; Cartiglia et al., 2020).
We theoretically analyze advantages of the two event-driven
algorithms with respect to each other and compare to a straight-
forward time-driven algorithm.

The presented simulation concepts are exemplified and
evaluated in a reference implementation in the open source
simulation code NEST (Gewaltig and Diesmann, 2007; Jordan
et al., 2019). The reference implementation thereby exploits
existing functionality of a scalable software platform which
can be used on laptops as well as supercomputers. NEST is
employed by a considerable user community and equipped with
an interface to the programming language Python (Eppler et al.,
2009) that is currently widely used in the field of computational
neuroscience (Muller et al., 2015). It supports relevant neuron
models and connection routines for the construction of complex
networks. Despite this flexibility the simulation engine shields the
researcher from the difficulties of handling amodel description in
a distributed setting (Morrison et al., 2005; Plesser et al., 2015).

To exemplify the general simulation algorithms, we here focus
on the voltage-based plasticity rules by Clopath et al. (2010) and
Urbanczik and Senn (2014). The two rules represent opposing
ends of a family of learning rules in the amount of data required
to compute weight updates. The Clopath rule by design only
triggers plasticity in the vicinity of postsynaptic spike events;
storing a history, which is non-continuous in time, thus becomes
beneficial. In contrast, the Urbanczik-Senn rule considers noisy
prediction errors based on postsynaptic membrane voltages
and spikes. Such prediction errors never vanish and therefore
always need to be stored to update the weights, leading to
time-continuous histories. For a given span of biological time,
simulations of the Urbanczik-Senn rule are therefore by design
less efficient than those of the Clopath rule. However, we show
that a compression of membrane potential information reduces
this performance gap. Changing the learning rule to include
a sparse sampling of the membrane voltage further increases
efficiency and makes performance comparable to simulations
with ordinary STDP.

Our study begins with a specification of the mathematical
form of the learning rules that we consider (section 2.1). We
distinguish between classical STDP (section 2.2) and voltage-
based rules (section 2.3) and present a special case where voltage-
based rules can be efficiently implemented by compressing
information on the postsynaptic membrane potential. We then
introduce the Clopath and the Urbanczik-Senn rule as two
examples of voltage-based plasticity (sections 2.4 and 2.5). In
section 3 we first contrast time- and event-driven schemes for
updating synapses with voltage-based plasticity (section 3.1).
Subsequently, we detail a reference implementation of the
algorithms inNEST (section 3.2) and use this to reproduce results
from the literature (section 3.3). After that, we examine the
performance of the reference implementation for the Clopath
and the Urbanczik-Senn rule (section 3.4). Conclusions from
the implementation of the two rules are drawn in section 3.5,
followed by a general Discussion in section 4. The technology
described in the present article is available in the 2.20.1 release
of the simulation software NEST as open source. The conceptual
and algorithmic work is a module in our long-term collaborative
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FIGURE 1 | Update schemes for neurons and synapses. (A) A spike crosses

a synapse from the presynaptic (pre) to the postsynaptic (post) neuron. Since

this is a rare event, the synaptic weight is computed only when a spike is

delivered, indicated by the green bar (event-driven update). (B) Neurons with a

large in-degree receive spikes in rapid succession which suggests a

time-driven update of the neuron’s state in each time step (red bars). (C) Since

the computation of the synaptic weights requires information from the

postsynaptic neuron, storing the synapses on the same compute node

reduces the amount of expensive communication between compute

processes.

project to provide the technology for neural systems simulations
(Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS

2.1. General Structure of Learning Rules
The focus of this study are plasticity models of the general form

dWij(t)

dt
= F(Wij(t), s

∗
i (t), s

∗
j (t),V

∗
i (t)), (1)

where the change
dWij(t)

dt
of the synaptic weight Wij between

the presynaptic neuron j and postsynaptic neuron i is given by
a function F that potentially depends on the current synaptic
weight Wij(t), as well as on s∗i (t), s

∗
j (t),V

∗
i (t) which are causal

FIGURE 2 | Voltage-based plasticity rules. The change 1Wij in synaptic

strength between presynaptic neuron j and postsynaptic neuron i depends on

the presynaptic spike train sj , the postsynaptic spike train si and the

postsynaptic membrane potential Vi .

functionals of the postsynaptic spike train si, the presynaptic
spike train sj, and the postsynaptic membrane potential Vi,
respectively (Figure 2). Causal functional here refers to s∗i (t)
potentially depending on all past values si(t

′ ≤ t); likewise
V∗(t) depends on V(t′ ≤ t). Note that for simplicity of the
notation, we only show one function F on the right hand side of
(1), while generally there could be a sum of multiple functions
or functionals Fα , where each one depends on spike trains
and membrane potentials in a different manner. Note also that
F mixes information of pre- and postsynaptic neurons, while
the functionals denoted by ∗ only need to take into account
information of either the pre- or postsynaptic neuron. In cases
where F is a functional, i.e., where F depends on the whole time
course of its arguments, it can take into account an additional
joint history dependence on s∗i , s

∗
j , and V∗

i . A special case, the

Urbanczik-Senn learning rule, is discussed further below.
One can formally integrate (1) to obtain the weight change

between two arbitrary time points t and T

1Wij(t,T) =

∫ T

t
dt′F(Wij(t

′), s∗i (t
′), s∗j (t

′),V∗
i (t

′)). (2)

2.2. Spike-Timing Dependent Plasticity
In general, the integral on the right hand side of the equation
cannot be calculated analytically. There is, however, a notable
exception, which is the model of spike-timing dependent
plasticity (STDP). This model is a form of Hebbian plasticity that
relies on the exact spike times of pre- and postsynaptic neurons
and ignores any effect of the postsynaptic membrane potential.
The dependence on the exact spike times becomes apparent by
the fact that either the pre- or postsynaptic spike functional is the
spike train itself, for example

s∗i (t) = si(t) =
∑

k

δ(t − tki ), (3)
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where tki is the k-th spike of the i-th neuron. This yields a
plasticity rule that reads (Morrison et al., 2008)

dWij(t)

dt
= −f−(Wij(t))s

∗
−,i(t)sj(t)+ f+(Wij(t))s

∗
+,j(t)si(t) (4)

with functions f± that model the weight dependence, and
functionals s∗±(t) = (κ± ∗ s)(t) given as convolutions of
spike trains with kernels κ±, which in the classical STDP rule
correspond to one-sided exponential decays. The appearance
of the raw spike trains (delta distributions) in the differential
equation of the STDP model renders the integration of the
ODE trivial

1Wij(t,T) = −
∑

spikes k

f−(Wij(t
k
j ))κ−,i(t

k
j )

+
∑

spikes l

f+(Wij(t
l
i))κ+,j(t

l
i), (5)

where tkj , t
l
i ∈ [t,T]. An update of the synaptic weight

between any two time points only requires knowledge of the
weight and spike functionals at the timing of the pre- and
postsynaptic spikes.

For models that do not solely rely on exact spike times,
but for example on filtered versions of the spike trains, much
more information is needed in order to calculate a weight
update 1Wij(t,T) between any two time points. This makes
the computation more involved: the synapse needs all values of
Wij(t

′), s∗i (t
′), s∗j (t

′),V∗
i (t

′) for t′ ∈ [t,T] to update its weight.

The remainder of this study describes different approaches to this
problem and their advantages and disadvantages.

2.3. Voltage-Based Plasticity
In a time-driven neuron update, themembrane potential inmany
simulators is computed at each simulation step tα = α · h, where
h is the simulation step size and α ∈ N. For plasticity models
that rely on the membrane potential, the time discretization of
(2) therefore yields

1Wij(t,T) =
∑

stepsα

1Wij(t
α , tα+1), (6)

1Wij(t
α , tα+1) =

∫ tα+1

tα
dt′F(Wij(t

′), s∗i (t
′), s∗j (t

′),V∗
i (t

α)). (7)

which, in comparison to the small sum over spikes in the
STDP rule (5), contains a large sum over all time steps tα in
between time points t and T. As the membrane potential is
only known at time points t′ = tα , it generally enters (7)
in a piecewise constant manner – hence the argument V(tα).
The synapse therefore predominantly needs information of the
postsynaptic neuron in order to update its weight. Thus, in
a distributed simulation framework, where neurons are split
across multiple compute processes, it is beneficial to store the
synapses at the site of the postsynaptic neurons in order to reduce
communication (Figure 1C). This confirms the earlier design
decision of Morrison et al. (2005) who place synapses at the

site of the postsynaptic neuron to reduce the amount of data
communicated by the presynaptic site.

If weight changes 1Wij depend on the synaptic weight
themselves, then (7) cannot be used in practice as intermediate
weights Wij(t

′) for tα < t′ < tα+1 are not known. In this
scenario, weight changes have to be calculated on the simulation
grid withWij(t

′) → Wij(t
α) in case of a forward Euler scheme, or

Wij(t
′) → Wij(t

α+1) in case of a backward Euler scheme. In the
following we, for simplicity, stick to the forward Euler setting and
arrive at the core computation for voltage-based plasticity rules

1Wij(t
α , tα+1) =

∫ tα+1

tα
dt′F(Wij(t

α), s∗i (t
′), s∗j (t

′),V∗
i (t

α)). (8)

Given that si and sj are spike trains, the functionals s∗i and s∗j
are obtained trivially from the kernels of their corresponding
Volterra expansions. If F in addition does not depend on s∗i and
s∗j in a too complicated manner, which is usually the case (see

examples below), the integral in (8) can be calculated analytically.

2.3.1. Compression of Postsynaptic Information
The major operation of the plasticity scheme in terms of
frequency and complexity is the computation of infinitesimal
weight changes 1Wij(t

α , tα+1). Since the presynaptic spike train
s∗j enters F in (8), the same postsynaptic information on s∗i andV

∗
i

is used many times for very similar computations: the membrane
potential trace of each neuron is effectively integrated many
times. Is there a way to employ the result of the computation
1Wij(t

α , tα+1) for neuron j for the computations 1Wik(t
α , tα+1)

for other neurons k 6= j? In a simple setting, where F factorizes
into F(Wij(t), s

∗
i (t), s

∗
j (t),V

∗
i (t)) = s∗j (t)G

(

s∗i (t),V
∗
i (t)

)

with

s∗j (t) =
(

κ ∗ sj
)

(t) and

κ (t) = H (t)
1

τ
e−

t
τ , (9)

defined via the Heaviside step functionH (x), we can make use of
the property

s∗j (t) = (s∗j (tLS)+ τ−1) e−(t−tLS)/τ , (10)

where t > tLS and tLS denotes the last spike time of the
presynaptic neuron. In this case the weight update in between
two spike events factorizes

1Wij(tLS, tS) =
(

s∗j (tLS)+ τ−1
)

︸ ︷︷ ︸

=: x̄j(tLS)

∫ tS

tLS

dt′e−(t′−tLS)/τ G
(

s∗i (t
′),V∗

i (t
′)
)

︸ ︷︷ ︸

=:1Wi(tLS ,tS)

,

(11)

where the latter integral 1Wi(tLS, tS) is independent of the
presynaptic spike train s∗j . Moreover, 1Wi depends on tLS only

via an exponential prefactor. Thus, an integral 1Wi(t1, t2) over
an arbitrary time interval tLS ≤ t1 < t2 ≤ tS which is completely
independent of any presynaptic information, can be used as a part
of the whole integral 1Wi(tLS, tS) since it can be decomposed as

1Wi(tLS, tS) = 1Wi(tLS, t1)+ e−
t1−tLS

τ 1Wi(t1, t2)

+ e−
t2−tLS

τ 1Wi(t2, tS).
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Therefore, whenever an integral of the postsynaptic quantities s∗i
and V∗

i is computed, it can be used to advance the weight update
of all incoming connections and the integration only needs to be
performed once. To account for the generally different last spike
times tLS of the incoming connections, the postsynaptic neuron
stores the different 1Wi (tLS, t) in a so-called compressed history.
At the time of an incoming spike event, 1Wi(tLS, tS) can be read
out by the synapse for the correct tLS of that synapse and be
combined with the stored presynaptic spike trace s∗j .

2.4. Example 1: Clopath Plasticity
The Clopath rule (Clopath et al., 2010) was designed as a
voltage-based STDP rule that accounts for non-linear effects of
spike frequency on weight changes which had been previously
observed in experiments (Sjöström et al., 2001). It does so by
using the evolution of the postsynapticmembrane voltage around
postsynaptic spike events instead of the postsynaptic spikes
themselves. This requires a neuron model that takes into account
features of membrane potential excursions near spike events,
such as modified adaptive exponential integrate-and-fire (aeif)
model neurons that are used in the original publication (Clopath
et al., 2010, see section 5.2) or Hodgkin-Huxley (hh) neurons that
are used in a NEURON reference implementation on ModelDB
(Hines et al., 2004).

The plasticity rule is of the general form (1) with a sum of two
different functions Fα on the right hand side. It treats long-term
depression (LTD) and potentiation (LTP) of the synaptic weight
in the two terms FLTD and FLTP, with

FLTD
(

sj(t),V
∗
i,LTD(t)

)

= −ALTD sj(t)V
∗
i,LTD(t) (12)

with V∗
i,LTD = (ū− − θ−)+ ,

ū−(t) = (κ− ∗ Vi)(t − ds)

and

FLTP
(

s∗j (t),V
∗
i,LTP(t)

)

= ALTP s∗j (t)V
∗
i,LTP(t) (13)

with s∗j = κs ∗ sj ,

V∗
i,LTP = (ū+ − θ−)+(Vi − θ+)+ ,

ū+(t) = (κ+ ∗ Vi)(t − ds) .

Here (x− x0)+ = H(x − x0) (x− x0) is the threshold-linear
function and H (x) is the Heaviside step function. ALTD and
ALTP are prefactors controlling the relative strength of the two
contributions. κ± are exponential kernels of the form (9), which
are applied to the postsynaptic membrane potential, and κs is
an exponential kernel applied to the presynaptic spike train.
The time-independent parameters θ± serve as thresholds below
which the (low-pass filtered) membrane potential does not
cause any weight change (Figure 3). Note that ALTP can also
depend on the membrane potential. This case is described in
Appendix Section 5.5.

In a reference implementation of the Clopath rule by C.
Clopath and B. Torben-Nielsen available on ModelDB (Hines
et al., 2004), there is a subtle detail not explicitly addressed

FIGURE 3 | Illustration of LTP contribution to the Clopath rule. A presynaptic

neuron (A) and a postsynaptic neuron (B) emit a spike at tsp,pre = 4ms and

tsp,post = 6ms, respectively. The presynaptic spike elicits a trace s∗j (gray) at

the synapse. The excursion of the postsynaptic membrane potential Vi (B,

blue) elevates the low-pass filtered potential ū+ (green) so that both Vi and ū+

exceed the respective thresholds θ+ (dash-dotted, dark blue) and θ−

(dash-dotted, dark green), cf. (13), between t1 and t2. Only within this period,

shifted by ds = 3ms, which is for times t1 + 3ms < t < t2 + 3ms (B, red

background), see section 3.2.3 for details, the LTP of the synaptic weight is

non-vanishing because of the threshold-linear functions in equation (13). The

shift by ds = 3ms does not apply to the spike trace (A, red background). The

rectangular shape of the spikes is achieved by a clamping of the membrane

potential to Vclamp = 33mV for a period of tclamp = 2ms.

in the original journal article. In their implementation the
authors introduce an additional delay ds between the convolved
version of the membrane potentials ū± and the bare one [cf.
parameter ds in (12) and (13)]. The convolved potentials are
shifted backwards in time by the duration of a spike ds (see
Supplementary Tables 1, 3). As a result, the detailed shape of
the excursion of the membrane potential during a spike of
the postsynaptic neuron does not affect the LTP directly but
only indirectly via the low-pass filtered version ū+, see red
background in Figure 3B. Incorporating this time shift in ū± is
essential to reproduce the results from Clopath et al. (2010) on
spike-pairing experiments.

The depression term FLTD depends on the unfiltered spike
train sj. It can thus be treated analogous to ordinary STDP
rules (cf. (4)ff). In particular, V∗

i,LTD only needs to be available
for time points of presynaptic spikes (potentially taking into
account additional delays of the connection). The potentiation
term FLTP, however, depends on the filtered spike train s∗j ; V

∗
i,LTP

consequently needs to be known also for times in between
spike events.

2.5. Example 2: Urbanczik-Senn Plasticity
The Urbanczik-Senn rule (Urbanczik and Senn, 2014) applies to
synapses that connect to dendrites of multicompartment model
neurons. The main idea of this learning rule is to adjust the
weights of dendritic synapses such that the dendrite can predict
the firing rate of the soma. The dendrite expects the firing rate to
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be high when the dendrite’s membrane potential is elevated due
to many incoming spikes at the dendrite, and to be low if there
are only a few incoming spikes. Thus, for this prediction to be
true, synapses that transmit a spike toward the dendrite while the
firing rate of the soma is low are depressed and those that provide
input while the soma’s firing rate is high are facilitated. Learning
can be triggered by applying a teacher signal to the neuron via
somatic synapses such that the actual somatic firing deviates from
the dendritic prediction.

The plasticity rule is again of the general form (1), with a
functional F on the right hand side that reads

F[s∗j ,V
∗
i ] =η κ ∗

(

V∗
i s

∗
j

)

(14)

with V∗
i =

(

si − φ(Vi)
)

h (Vi) , (15)

s∗j = κs ∗ sj.

with exponential filter kernels κ and κs and non-linearities φ and
h. Note that F depends on the postsynaptic spike train si via V

∗
i .

The latter can be interpreted as a prediction error, which never
vanishes as spikes si (point process) are compared against a rate
prediction φ(Vi) (continuous signal).

In order to solve (1), we need to integrate over F[s∗j ,V
∗
i ], cf.

(2). Writing down the convolution with κ explicitly, we obtain

1Wij(t,T) =

∫ T

t
dt′ F[s∗j ,V

∗
i ](t

′)

=

∫ T

t
dt′ η

∫ t′

0
dt′′κ

(

t′ − t′′
)

V∗
i

(

t′′
)

s∗j
(

t′′
)

. (16)

A straight forward implementation of this expression is
inefficient in terms of memory usage and computations because
of the two nested integrals. However, since the kernels κ and
κs are exponentials, one can perform one of the integrations
analytically (see Appendix Section 5.1 for a derivation) to
rewrite the weight change as

1Wij(t,T) = η

[

I1 (t,T) − I2 (t,T) + I2 (0, t)
(

1− e−
T−t
τκ

)]

,

(17)

with I1
(

a, b
)

=

∫ b

a
dt V∗

i (t) s∗j (t) ,

I2
(

a, b
)

=

∫ b

a
dt e−

b−t
τκ V∗

i (t) s∗j (t) ,

which is in line with the general formulation discussed in
section 2.3.

3. RESULTS

In the following, we first discuss time- and event-driven update
schemes for synapses with voltage-based plasticity. Then we
present a reference implementation for the Clopath rule (Clopath
et al., 2010) and the Urbanczik-Senn rule (Urbanczik and Senn,
2014) in the spiking network simulator NEST (Jordan et al.,

2019). Finally, we show that these implementations reproduce
results of the original works and we assess their simulation
performance on a distributed computing architecture.

3.1. Time-Driven vs. Event-Driven Update
Scheme for Synapses With Voltage-Based
Plasticity
Let’s assume in the following that tLS and tS denote two
consecutive spike times of a presynaptic neuron j. The synaptic
weight Wij(tS) corresponding to the spike at time tS can be
obtained from the weight Wij(tLS) at the time of the previous
spike at tLS and (6) by employing (8) to calculate the latter. As
F mixes information of the pre- and postsynaptic neurons, this
computation should be done in the synapse. Since there are no
spikes in between tLS and tS, it does not matter when the synapse
is performing the updates of its weight. Two possibilities are: 1)
Neurons calculate their own s∗ and V∗ for the current time step
and make it accessible to the synapse to enable direct readout
and update according to (8) in every time step. This method
corresponds to a time-driven update of synapses (Figure 4A).
2) Neurons store a history of s∗ and V∗ and the synapse
reads out this information at tS, i.e., at the time where the
weight update becomes relevant for the network. This method
corresponds to an event-driven update of synapses (Figure 4B).
Both methods have their advantages and disadvantages analyzed
in the following section.

3.1.1. Time-Driven Scheme
In a time-driven update scheme the information on the
membrane potential is directly processed by the synapses such
that only the current value of the membrane potential needs
to be stored, corresponding to a membrane potential history of
length L = 1 (Figure 5 and Table 1). For a simulation of T
time steps, the history needs to be manipulated H = T times:
the single stored value gets updated once per time step. The
price that comes with the short history is that synapses need to
be updated as often as neurons. This amounts to M = K · T
function calls to synapse code for each neuron. Here K denotes
the in-degree of each neuron. Each function call of synapse code
causes a single computation of 1Wij(t

α , tα+1), giving rise to in
total C = K · T computations per neuron. The membrane
potential trace is thus effectively integrated K times; once for
each synapse. As both K and T are large numbers in typical
simulations of plastic cortical networks, the amount of function
calls and computations is therefore large in this setting. The time-
driven scheme furthermore forces the execution of synapse code
also at time steps where no update would be required, i.e., at time
steps, where s∗i , s

∗
j ,V

∗
i have values for which 1Wij(t

α , tα+1) = 0.

In addition, for delayed connections a history of V∗
i of length

L = dmax of the maximal delay dmax measured in simulation
steps needs to be stored. We here assume the delay to be on
the postsynaptic side; it represents the time the fluctuations of
the somatic membrane potential propagate back through the
dendrites to the synapses. Therefore, F does not depend onV∗

i (t),
but on V∗

i (t − dj) with a delay dj encoding the location of the
synapse with presynaptic neuron j.
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FIGURE 4 | Simulation concepts. Left: illustration of processing the postsynaptic voltage trace Vm (t) for three simulation concepts. Two incoming synapses (1 and 2)

transmit spikes (black, vertical bars) to the postsynaptic neuron. Depending on the algorithm, a different number of past membrane potentials has to be stored (green

blocks) so that synapse 2 can update its weight when it delivers the spike at time tS. Right: corresponding pseudocodes. (A) In the time-driven update scheme the

synaptic weight change is evaluated in every time step of the simulation for all the synapses. This requires only the latest value of the membrane potential to be

accessible by the synapse to update its weight at tS (see line marked SUP in pseudocode). (B) In the event-driven update scheme the computation of the synaptic

weight change is performed only if a spike crosses the synapse. Therefore, storage of the time trace of Vm (see HST in code) from the last spike delivered by synapse

2 at tLS up to the current time step tS is needed. (C) In the compressed event-driven update scheme synapse 2 uses the time trace of Vm integrated from the last

incoming spike at tLI up to the current time step tS (see INT in code) to complete its weight update (see SUP in code) and also to advance that of synapse 1. The

preceding part of Vm from tLS to tLI was already integrated and applied to all incoming synapses (see HUP in code) by synapse 1 when it delivered the spike at tLI.

3.1.2. Event-Driven Scheme
In an event-driven update scheme for synapses, the time trace of
the membrane potential V∗

i needs to be stored until all incoming
synapses have read out the information to update their weight for
a given period. The storage andmanagement of such a history can
be expensive in terms of memory and runtime. In each time step,
the value of the current membrane potential is appended to the

history, leading to H = T history manipulations for a simulation
of T time steps. Assuming for simplicity a homogeneous inter-
spike interval of I time steps between consecutive spikes of
single neurons, we in the following showcase some qualitative
history sizes. As synapses need all values of V∗

i in between
two consecutive spikes, the maximum history length is L = I
(Figure 5). In case of different firing rates, I corresponds to the
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FIGURE 5 | Illustration of buffer sizes for different simulation schemes in case

of fully synchronous or asynchronous spikes. (A) All incoming spikes arrive

synchronously: In the time-driven scheme the synaptic weight is updated in

every time step of the simulation, so that only the current value of Vm,post

needs to be available (green). In the event-driven scheme every synapse

processes Vm,post from the last spike to the current one. Therefore, the relevant

time trace needs to be stored (red). In the compressed event-driven scheme

this part of Vm,post is processed only once and used to update the weight of all

the synapses. Since the weight change is a function of the last spike time

which is the same for all the synapses, only one value needs to be updated

(blue). In this situation the length L of the compressed history is i = 1, see

Table 1. (B) All incoming spikes arrive in different time bins: For the

time-driven and the event-driven scheme the scenario is similar to (A). For the

compressed event-driven scheme the number of values that need to be

updated equals the number of incoming synapses K so that i = K.

maximum inter-spike interval of any of the presynaptic neurons.
Synapse code in this scheme is, however, only called in the event
of a spike, leading to onlyM = K ·T/I function calls per neuron,
where T/I is the number of spikes passing a single synapse during
the simulation of T time steps. The total amount of computations
C of weight changes 1Wij(t

α , tα+1) is of course unchanged with
respect to the time-driven scheme; they are just split across fewer
function calls (C = M · L = K · T). Table 1 immediately shows
the trade-off between memory consumption (length of history)
and run time (number of function calls): the event-based scheme
consumes more memory, but is faster than the time-driven
scheme. Note that since a history of the membrane potential is
stored anyway, this scheme is naturally applicable to connections
with different delays. A further performance increase can be

TABLE 1 | Comparison of synapse update schemes.

Time-driven Event-driven Event-driven &

compression

History length L 1 I i

Synapse function calls M K · T K · T/I K · T/I

Weight change computations C K · T K · T T

History entry manipulations H T T K · T/I · i

From the view point of a postsynaptic neuron, the table shows the maximal length

of the history L, the number of function calls M of synapse code, the number of

computations C of infinitesimal weight changes 1Wij (t
α , tα+1 ), and the number of history

entry manipulations H for a simulation of T time steps, a uniform inter-spike interval I

between spikes of a single presynaptic neuron, and an in-degree K for each neuron and

no delays. For the event-driven compression scheme the entries show the length of the

compressed history where i is the number of different spike times within the last inter-spike

interval I.

achieved in plasticity rules, where weight changes only happen
under certain conditions on V∗

i : if values 1Wij(t
α , tα+1) 6= 0 are

rare, a non-continuous history can be stored. In such a scenario,
time stamps need to be stored alongside the membrane potential
to enable synapses to read out the correct time intervals (see
section 3.2.3).

3.1.3. Event-Driven Compression
The event-driven compression scheme is amodified event-driven
scheme that makes use of the fact that for a specific class
of plasticity rules the integrated time trace of the membrane
potential V∗

i can be used to advance the weight update of
all incoming synapses, see section 2.3.1. Therefore, the time
trace of V∗

i stored in the postsynaptic neuron only needs
to extend back to the last incoming spike (denoted by tLI
in Figure 4C). This way the history of V∗

i is always short,
as the total rate of incoming spikes is high in physiological
network states. Due to the dependence of the weight update
on the time of the last spike that crossed the synapse, the
postsynaptic neuron stores the compressed history of length
L = i, where i is the number of different spike times within
the last inter-spike interval I (Figure 5). The compressed history
is consequently never larger than the history length L = I of
the ordinary event-driven scheme (Figure 5B). For synchronous
spikes where the last presynaptic spike time is the same for
all synapses, the compressed history, however, contains only
one entry (Figure 5A). Still, synapse code is executed at every
spike event, giving rise to M = K · T/I function calls. The
full membrane potential trace of length T is effectively only
integrated once, amounting to in totalC = T infinitesimal weight
change computations that are performed in batches in between
any two incoming spike events (Table 1). The price for this is
that history updates are more expensive: instead of appending
a single entry in each time step, at each spike event the full
compressed history is updated, giving rise to in totalH = M · i =
K · T · i/I history entry manipulations, as opposed to H = T
in the time- and ordinary event-driven schemes (Table 1). In
practice, infinitesimal weight change computations are, however,
oftenmore costly than history updates, such that the compression
algorithm achieves a performance increase (see section 3.4).
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Finally, a drawback of the event-driven compression is that
it relies on the fact that all synapses use the same processed
membrane potential V∗

i . For distributed delays, 1Wi(tLS,T) has
a dependence on the presynaptic neuron j via V∗

i (t − dj). In this
case, a separate compressed history needs to be stored for every
different delay of connections to the neuron.

3.2. Reference Implementation in Network
Simulator With Event-Based Synapse
Updates
This section describes the implementation of two example
voltage-based plasticity rules by Clopath et al. (2010) and
Urbanczik and Senn (2014) in a spiking neural network simulator
that employs a time-driven update of neurons and an event-based
update of synapses. While the naming conventions refer to our
reference implementation in the simulation software NEST, the
algorithms and concepts presented below are portable to other
parallel spiking network simulators.

The Clopath and Urbanczik-Senn rule are chosen as widely
used prototypical models of voltage-based plasticity. The
differences in the two rules help to exemplify the advantages
and disadvantages of the algorithms discussed in section 3.1. As
originally proposed, they are implemented here for two different
types of neuron models, Adex and Hodgkin-Huxley point-
neurons for the Clopath rule (aeif_psc_delta_clopath
and hh_psc_alpha_clopath) and two-compartment
Poisson neurons (pp_cond_exp_mc_urbanczik) for
the Urbanczik-Senn rule. Extensions to multiple dendritic
compartments in the latter case are straight forward. Our
implementation of aeif_psc_delta_clopath follows
the reference implementation on ModelDB which introduced a
clamping of the membrane potential after crossing the spiking
threshold to mimic an action potential. Details can be found in
Appendix Section 5.2.

The plasticity rules differ in the state variable that is being
stored and its interpretation. For the Clopath rule, the stored
variable is a thresholded and filtered version of the membrane
potential that takes into account characteristics of membrane
potential evolution within cells in the vicinity of spike events.
The restriction to temporal periods around spikes suggests
to implement a history that is non-continuous in time. In
contrast, the Urbanczik-Senn rule uses the dendritic membrane
potential to predict the somatic spiking; the resulting difference
is taken as an error signal that drives learning. This error
signal never vanishes and thus needs to be stored in a time-
continuous history.

Finally, the proposed infrastructure for storing both
continuous and non-continuous histories is generic so that it can
also be used and extended to store other types of signals such as
external teacher signals.

3.2.1. Exchange of Information Between Neurons and

Synapses
The implementation of voltage-based plasticity rules in NEST
follows the modular structure of NEST, key part of which
is the separation between neuron and synapse models. This

separation makes it easy for a newly added neuron model to
be compatible with existing synapse models and vice versa. A
downside is that information, such as values of parameters and
state variables, is encapsulated within the respective objects.
Simulations in NEST employ a hybrid parallelization scheme:
OpenMP threads are used for intra node parallelization and the
Message Passing Interface (MPI) for inter node communication.
In parallel simulations, synapses are located at the same MPI
process as the postsynaptic neurons (Morrison et al., 2005).
Thereby, no communication between MPI processes is needed
for the required transfer of information between postsynaptic
neurons and synapses to compute weight changes of connections
and only one spike needs to be communicated by a given
source neuron for all target neurons living on the same
MPI process.

The model of STDP requires synapses to access spike times
of postsynaptic neurons. In order to provide a standardized
transfer of this information across all neuron models that
support STDP, in recent years the so-called Archiving_Node
has been introduced as a parent class of the respective neuron
models (Morrison et al., 2007a). It provides member functions
to store and access spike histories. If a neuron model supports
STDP, it only needs to be a child of Archiving_Node and
contain one additional line of code, namely a call of the function
set_spiketime(), which stores the time of outgoing spike
events. We here extended this framework for voltage-based
plasticity rules and enhanced the functionality of the archiving
node by the member functions write_history(),
get_history(), and compress_history() to
additionally store, read out and manipulate voltage
traces or other continuous signals (for Details, see
Appendix Section 5.3). To avoid overhead for simulations
with only STDP synapses, we introduced two child classes
of Archiving_Node, Clopath_Archiving_Node,
and Urbanczik_Archiving_Node, that each provide
containers and functions for the specific histories required
for the two plasticity rules. Neuron models that support the
respective synapse model then derive from the child classes
instead of the root level archiving node.

3.2.2. Delays and Min_delay Communication
All synapses implemented in NEST are so far purely event-
driven. To assess the performance of the time-driven update
scheme of synapses with voltage-based plasticity, we also
implemented a time-driven version of the Clopath and
Urbanczik-Senn synapse. Spiking network simulators exploit the
delay of connections to reduce communication between compute
processes (Morrison et al., 2005): Instead of sending each spike
individually, spikes are buffered and sent in a batch after a
certain period. The length of this period, the min_delay,
corresponds to the minimal delay of all connections in the
network. The buffering of spikes within this period is possible
because the earliest time point that a spike at time tS can affect
the postsynaptic membrane potential is at t = tS + min_delay.
In between tS and t neurons are decoupled such that their
state variables can be propagated forward in time independent
of each other and in a batch (Morrison and Diesmann, 2008).

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2021 | Volume 15 | Article 60914744

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Stapmanns et al. Event-Based Update of Synapses

FIGURE 6 | Class diagram of NEST classes and functions. Simplified class diagram for embedding the Clopath (Left) and Urbanczik-Senn rule (Right) in the NEST

infrastructure. The code is distributed across the nestkernel and neuron models. nestkernel contains the base class Node of all neurons models. Models that

support ordinary STDP are derived from the Archiving_Node, models that can use the Clopath synapse (aeif_psc_delta_clopath and

hh_psc_alpha_clopath) or Urbanczik-Senn synapse (pp_cond_exp_mc_urbanczik) are derived from the Clopath_Archiving_Node or the

Urbanczik_Archiving_Node, respectively. The latter add the required functions for storing and managing the history of continuous quantities. The model

pp_cond_exp_mc_urbanczik requires a helping class pp_urbanczik_parameters because the Urbanczik_Archiving_Node needs to access functions

and parameters that are specific to the neuron model and therefore not located in the Urbanczik_Archiving_Node to keep its implementation more general.

We implemented the same min_delay update scheme for
synapses, by imposing a function call to time-driven synapses
in every min_delay period to update their synaptic weight.
If min_delay equals the simulation step size h, this scheme
corresponds to the scheme explained in section 3.1.1. Making
use of the min_delay infrastructure of NEST speeds up
simulations with time-driven synapses in the case d > h as fewer
function calls to synapses are needed (see section 3.4). In case of
simulations with synaptic delays, the time-driven update scheme
requires the storage of a history of the membrane potential of
length max_delay.

Storing state variables in event-driven schemes is
more complex as the history does not have a fixed
length max_delay. Instead it needs to be dynamically
extended and shortened. A long history can occupy
a large amount of memory and its processing by the
synapses becomes computationally expensive. Therefore,
it is advantageous to optimize the way how information
is stored and accessed and how entries that are no
longer needed can be identified for deletion. For details
of these optimizations in our NEST implementation, see
Appendix Section 5.3.
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As discussed in section 3.1.3, the event-based compression
scheme relies on the fact that all synapses to one postsynaptic
neuron employ the same V∗

i . This is not the case if delays of
the corresponding connections are distributed. The compression
scheme can therefore only be efficient if all delays have a fixed
value. If spikes are processed and synapses are updated in a
chronological order, then a well-defined segment of the history
of V∗

i can be integrated and the compressed history can be
updated. In NEST, spikes are, however, buffered within a period
of min_delay before being sent and processed. Consequently,
synapses are not necessarily updated in chronological order.
Therefore, the event-based compression scheme can only be
implemented in NEST in the case where delays equal the
simulation time step. Future work may explore whether the
latter restriction could be overcome by sorting all incoming spike
events of a given postsynaptic neuron prior to delivery.

3.2.3. Specifics of Clopath Plasticity
We implement both an adaptive exponential integrate-and-
fire neuron model (aeif_psc_delta_clopath) and a
Hodgkin-Huxley neuron model (hh_psc_alpha_clopath)
supporting Clopath plasticity. These implementations consider
the filtered versions ū± of the membrane potential as additional
state variables of the neuron. Thereby, they can be included
in the differential equation solver of the neurons to compute
their temporal evolution. Parameters of κ± consequently need
to be parameters of the neuron object rather than the synapse.
The same is true for the values of θ±; they are used in the
neuron to determine whether V∗

i,LTP and V∗
i,LTD evaluate to zero,

which systematically happens due to the Heaviside functions in
their definitions.

The LTD mechanism is convenient to implement within the
event-driven framework: when the synapse is updated at time
t, it reads the values ū−

(

t − d
)

and θ− from its target and
computes the new weight. Here, d denotes the dendritic delay of
the connection that accounts for the time it takes to propagate
somatic membrane potential fluctuations to the synapse. The
archiving node contains a cyclic buffer, also called ring buffer,
that stores the history of ū− for the past max_delay time
steps so that the synapse can access a past value of this quantity.
Consequently, the LTD history is always short and can be
forgotten in a deterministic fashion.

The computation of the weight change due to LTP requires
the evaluation of the integral over V∗

i,LTP(t). The latter is stored
in the archiving node as a vector whose elements are objects that
contain three values: the corresponding time t, the value of V∗

i,LTP
and an access counter that initially is set to zero.

3.2.3.1. Time-Driven Update
For simulations with homogeneous delays equal to the
simulation time step, the history of V∗

i,LTP always contains only
a single value as it is read out in every time step by all synapses.
For larger delays, the history is of length max_delay, and each
synapse reads out a segment of length min_delay, increasing
the access counter of the corresponding entries by one. For the
last synapse that requests a certain segment, the access counter
then equals the in-degree K, which is the criterion to delete the

corresponding entries from the history. Although for simplicity
done in our reference implementation, the time-driven scheme
does not require us to store the time stamp t of each history entry.
The overhead of this additional number is, however, negligible.

3.2.3.2. Event-Driven Update
In event-driven schemes, the history of V∗

i,LTP dynamically grows
and shrinks depending on the spikes of presynaptic neurons.
Since many values of V∗

i,LTP are zero, it is beneficial to only store
the non-zero values. In this case, a time stamp of each entry
is required to assign values of the non-continuous history of
V∗
i,LTP to their correct times. In case of the uncompressed scheme,

when a synapse j is updated at time tS of a spike, it requests the
part of the history between the last spike tLS and the current
spike tS (minus the dendritic delay, see Appendix Section 5.3)
from the archiving node. This history segment is then integrated
in synapse j and used for its weight update. Each synapse
thus integrates the history V∗

i,LTP anew (section 3.1.2). For the
compressed scheme, the history of V∗

i,LTP is integrated between
the last incoming spike at tLI and the current spike at tS inside the
archiving node. Using this newly integrated time trace, the weight
of synapse j is updated and the compressed history for all other
last spike times is advanced. Afterwards the history of V∗

i,LTP is
deleted. Thereby, V∗

i,LTP is only integrated once for all synapses.
In any case, the integrated history of V∗

i,LTP needs to be
combined with the presynaptic spike trace s∗j . The latter is

easily computed analytically inside the synapse because it is an
exponential decay of the corresponding value at the time of the
last spike. At the end of the update process the trace is increased
by τ−1

s to account for the trace of the current spike, where τs is
the time constant of the kernel κs.

3.2.4. Specifics of Urbanczik-Senn Plasticity
Following the original publication (Urbanczik and Senn,
2014), we implement a Poisson spiking neuron model
(pp_cond_exp_mc_urbanczik) supporting Urbanczik-
Senn plasticity. One peculiarity of this model is that the
gain function φ that translates the membrane potential
into a firing rate also enters the plasticity rule through V∗.
Therefore φ as well as its parameters need to be known
by the neuron and the synapse. Creating an additional
helper class (pp_urbanczik_parameters) as a
template argument for the corresponding archiving node
(Urbanczik_Archiving_Node) and neuron model
(pp_cond_exp_mc_urbanczik) solves this problem
(Figure 6): it contains all parameters and functions required by
both classes. As explained in section 2.5, the representation (17)
is more beneficial for implementing the Urbanczik-Senn rule
than that of (16). The first two integrals in (17) only extend from
t to T; history entries for times smaller than t are not needed and
can be deleted after the corresponding update. The dependence
on the full history back until 0 arising from the convolution
with κ is accumulated in the last term in (17), which the synapse
computes with the help of storing one additional value I2 (0, t).
At the end of a weight update this value is overwritten by the

new value I2 (0,T) = e−
T−t
τκ I2 (0, t) + I2 (t,T) which is then used

in the next update. Either the synapse (time- and event-driven
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update) or the archiving node (event-driven compression)
compute the two integrals I1 and I2 but in all cases the archiving
node stores the history of V∗

i (t).

3.3. Reproduction of Results in Literature
The reference implementation of the Clopath plasticity
reproduces the results from Clopath et al. (2010) on the
frequency dependence of weight changes in spike-pairing
experiments and the emergence of bidirectional connections in
small all-to-all connected networks (Figure 7). The setup of the
spike-pairing experiment in Figure 7A consists of two neurons
connected via a plastic synapse. The pre- and postsynaptic
neuron are forced to spike with a time delay of 1t multiple
times which leads to a change in synaptic weight that depends
on the frequency of the spike pairs (Figure 7B). The setup of
the small network is shown in Figure 7C. The weights of the
plastic synapses within the recurrently connected excitatory
population are initialized all to the same value. At the end
of the simulation during which the network receives a time
varying input, some pairs of neurons show strong bidirectional
connections (Figure 7D). See Appendix Section 5.4 for details
on the setup of both experiments as implemented in NEST.

The basic use of the Urbanczik-Senn rule in NEST is
exemplified in Figure 8which shows the reproduction of a simple
learning experiment from the original publication (Urbanczik
and Senn, 2014). Here the neuron is supposed to transform
spike patterns in the input to the dendritic compartment into
a sinusoidal modulation of the somatic membrane potential.
This target potential is determined by an external teaching
signal during learning. Via minimizing the error between the
dendritic prediction of the somatic membrane potential and the
actual somaticmembrane potential, weights of dendritic synapses
are organizing such that the neuron can produce the desired
membrane potential. There is, however, no stop-learning region
in the Urbanczik-Senn rule (for a modified version, see Cartiglia
et al., 2020): The error never vanishes completely which causes
weights to keep changing despite an overall good approximation
of the target signal. Details of the experiment andNEST setup can
be found in Appendix Section 5.6.

3.4. Performance of the Reference
Implementations
3.4.1. Clopath Plasticity
In order to evaluate the performance of the implementation of
the Clopath rule in NEST, in a weak-scaling setup, we simulate
excitatory-inhibitory networks of increasing size, but fixed in-
degree K. As we expect the performance to critically depend on
the number of synapses, we examine two scenarios: a small in-
degree K = 100, and a rather large in-degree K = 5, 000. While
the first case might be suitable for small functional networks, the
latter in-degree represents a typical number for cortical networks.
Further details on network and simulation parameters are given
in Supplementary Table 5. As a reference, we also simulate the
same network with STDP synapses, which require much fewer
computations as they rely solely on spike times. To achieve the
same network state, that is the same spikes, for the different
connectivity rules, we impose the weights to stay constant across

time by setting learning rates to zero. This way all computations
for weight changes are being performed, but just not applied.
This has the additional advantage that reasonable asynchronous
irregular network states are simple to find based on predictions
for static synapses (Brunel, 2000).

The Clopath rule has originally been proposed for connections
without delays (Clopath et al., 2010). Therefore, we first evaluate
its performance in this setting (delay equals simulation time
step), which is, however, not the natural setting for a simulator
like NEST that makes use of delays to speed up communication
between compute processes. The first observation is that, as
expected, simulations with Clopath synapses are slower than
those with ordinary STDP (Figure 9). Given the update of
synapses in every simulation step, the time-driven scheme for
Clopath synapses is much slower than the event-driven scheme
(Figure 9A). The difference becomes larger the more synapses
there are (Figure 9B). Introducing a delay leads to fewer function
calls to synapses (once every min_delay) and therefore
increases the speed of the time-driven scheme (Figure 9C). Its
simulation times, however, remain much above the event-driven
scheme. This comparison illustrates the benefit of event-driven
updates for Clopath synapses.

How does compression of the history change the picture?
As discussed in section 3.1.3, compression has the advantage of
not integrating the membrane potential history for each synapse
separately. A downside of the event-based compression is that
it requires storing one history entry for each last spike time of
presynaptic neurons. For large in-degrees, this history is therefore
longer than the history of V∗

i,LTP, which we implemented as non-
continuous for the Clopath rule. Consequently, the event-based
compression scheme only outperforms the ordinary event-driven
scheme for small in-degrees (Figure 9A), but not for large in-
degrees (Figure 9B). Given that the compression can only be
implemented in NEST for connections with delay equal to the
resolution of the simulation (see section 3.2.2), the method of
choice is therefore the ordinary event-driven scheme (section
3.1.2). Although a bit slower, its run-time is on the same order
of magnitude as the ordinary STDP synapse, with similar weak-
scaling behavior (Figure 10). The additional computations with
respect to STDP result in a constant overhead.

Another advantage of having short non-continuous
histories is that searching the history at readout is fast.
A simple linear iteration scheme is therefore even faster
than a binary search (Figure 9D) because the latter search
requires an additional list of presynaptic spike times (see
Appendix Section 5.3) which is unnecessary overhead in
this scenario. As a result the ordinary event-driven scheme
with linear history iteration is the most general and efficient
scheme and therefore integrated into NEST 2.20.1 (Jordan et al.,
2019).

3.4.2. Urbanczik-Senn Plasticity
TheUrbanczik-Senn rule, in its original version, does not account
for delays in connections (Urbanczik and Senn, 2014). As for
the Clopath rule, we therefore first evaluate its performance
for connections with delays that equal the simulation time
step. We compare the results to networks with ordinary STDP
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FIGURE 7 | Reproduction of results with Clopath rule. (A) Setup of the spike pairing experiment. Two neurons (“pre” and “post”) that are connected by a plastic

synapse receive input so that they spike one after another with a delay 1t. The change of the synaptic weight is computed according to the Clopath rule as a function

of the frequency fpair with which the spike pairs are induced. (B) Result of the spike pairing experiment. The relative change of the synaptic weight after five spike pairs

as a function of fpair is shown for two different neuron models (aeif: solid curves, Hodgkin-Huxley: dashed curves). The blue curves represent a setup where the

postsynaptic neuron fires after the presynaptic one (pre-post, 1t = 10ms) and the green curves represent the opposite case (post-pre, 1t = −10ms). This panel

corresponds to Figure 2B of Clopath et al. (2010). (C) Setup of the network that produces strong bidirectional couplings. The network consists of an inhibitory (I) and

an excitatory (E) population which receive Poisson spike trains (P) as an external input. The firing rate of the latter is modulated with a Gaussian shape whose center is

shifted every 100ms. The external input connections to the excitatory population are plastic as well as the connections within the excitatory population (indicated by

blue arrows). (D) Synaptic weights of the all-to-all connected excitatory neurons after the simulation of the network. Strong bidirectional couplings can be found, e.g.,

between neurons 2 and 3, 2 and 9, and 4 and 7. The setup of this experiment is similar to that shown in Figure 5 of Clopath et al. (2010). A more detailed description

of the two experiments can be found in Appendix Section 5.4.

synapses, again setting all learning rates to zero to maintain
the same network state across different types of plasticity.
Naturally, the processing of the membrane potential information
makes the Urbanczik-Senn plasticity less efficient to simulate
than networks with ordinary STDP synapses (Figure 11). Note
that the absolute numbers of simulation times are not directly
comparable to simulations with Clopath plasticity (Figure 9)
as network sizes are smaller here (Supplementary Table 5 ).
Networks with small and large in-degrees behave qualitatively
similar: given the long continuous history that needs to be stored
and read out, the event-driven scheme does not significantly
outperform the time-driven scheme (Figures 11A,B). In the
network with small in-degree, the time-driven scheme is even
slightly faster (Figure 11A). This behavior reverses for large in-
degrees as the number of synapse calls grows stronger than
the length of the history (Figure 11B). However, given that the
length of the history is so critical in this rule, the compression
algorithm can in both cases achieve a significant increase in

performance (Figures 11A,B). This performance increase is
larger the smaller the in-degree, as the compressed history
becomes shorter (Figure 11A). Due to current NEST specifics
(see section 3.2.2), the compression algorithm cannot be used
in settings with delays that are larger than the simulation time
step (Figure 11C): Here, as expected, the time-driven scheme
becomes faster than in the d = h case, but it is in general
still comparable in performance to the event-driven scheme.
The latter is therefore the method of choice for simulations
with delayed connections; for zero-delay connections, the
compression algorithm performs best. Whether the history
readout is done via linear iteration or via computing positions
of history entries has no significant impact on the performance
(Figure 11D). Therefore, the simple linear iteration is integrated
in NEST 2.20.1.

We furthermore employ a weak-scaling setup with excitatory-
inhibitory networks of increasing size and fixed in-degree
K = 5, 000 (Figures 12A,B, and Supplementary Table 5). Apart
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FIGURE 8 | Reproduction of results with Urbanczik-Senn rule. (A) Setup of a simple learning task using the Urbanczik-Senn plasticity rule. The somatic conductances

gI and gE of a two-compartment neuron are modulated such that they induce a teaching signal with sinusoidal shape. The dendrite receives a repeating spike pattern

as an input via plastic synapses (green arrows). (B) The synapses adapt their weights so that the somatic membrane potential U (blue) and the dendritic prediction Vi
(green) follow the matching potential UM (red) after learning. (C) Excitatory (gE ) and inhibitory (gI ) somatic conductances that produce the teaching signal. (A,B)

correspond to Figure 1 of Urbanczik and Senn (2014). (D) Temporal evolution of the synaptic weights during learning. For the sake of better overview, only a subset of

weights is shown (gray) with three randomly chosen time traces highlighted in blue. Synapses in NEST fulfill Dale’s principle which means that a weight update cannot

convert an excitatory into an inhibitory synapse and vice versa giving rise to the rectification at zero.

FIGURE 9 | Comparison of simulation times Tsim for excitatory-inhibitory networks with different implementations of the Clopath plasticity in NEST. Simulation times

exclude network building and only account for updates of the dynamical state of the system. The following implementations are shown: “stdp”: standard

implementation of STDP synapse, “td”: time-driven implementation of Clopath synapse, “ed”: event-driven scheme as included in NEST 2.20.1, “edc”: event-driven

compression. (A) Network of size N = 1.92 · 106 with small in-degree K = 100 and all synapses having a delay d equal to the resolution of the simulation h = 0.1ms.

(B) Network of size N = 1.54 · 105 with large in-degree K = 5, 000 and d = h. (C) Same network as in (B) but d = 1.5ms (for d > h “edc” not compatible with NEST,

see section 3.1.3). In (A–C) both “ed” and “edc” use linear search of the history and access counters, see Appendix Section 5.3. (D) Comparison between

“ed”-implementations using linear search and direct computation of the position, see Appendix Section 5.3.0.2. All simulations use 768 threads distributed over 32

compute nodes each running one MPI process. Further parameters as in Supplementary Table 5.

from a constant offset, the scaling of simulation time Tsim

for updating neurons and synapses is similar for Urbanczik,
static and STDP synapses. With increasing network size N
and proportionally increasing number of MPI processes, Tsim

rises only slightly (Figure 12B), indicating almost ideal weak-
scaling behavior. The constant offset in Tsim is larger than
for Clopath synapses as the Urbanczik-Senn rule requires
longer histories of membrane potentials and a more extensive
history management.

3.5. Conclusions
The analyses of the Clopath and the Urbanczik-Senn plasticity
as prototypical examples for rules that rely on storage of
discontinuous vs. continuous histories show that the former are
much faster to simulate, in particular for large networks that
require distributed computing. For discontinuous histories, the
event-driven scheme is most generally applicable and efficient,
which makes corresponding rules easy to integrate into modern
simulators with event-based synapses. The performance gap

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2021 | Volume 15 | Article 60914749

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Stapmanns et al. Event-Based Update of Synapses

FIGURE 10 | Scaling of simulation time Tsim with network size for 2 s of

biological time: Clopath plasticity. Weak scaling: computational resources

(horizontal axis) increase proportionally to network size N (black curve and

triangles, right vertical axis). Event-driven scheme for Clopath rule (blue)

compared to static (green) and STDP synapse (red). Network and simulation

parameters as in Supplementary Table 5 with in-degree K = 5, 000. For all

simulations each compute node runs one MPI process with 24 threads.

between the different rules should be kept in mind in the design
of new learning rules. Furthermore, it is worthwhile to test
modifications of existing learning rules to decrease the amount
of stored information.

For illustration, we here test a spike-based alternative to
the original Urbanczik-Senn rule, where we replace the rate
prediction φ (Vi (t)) in V∗ of (15) by a noisy estimate, which
we generate by a non-homogeneous Poisson generator with rate
φ (Vi (t)), see Appendix Section 5.7. The prediction error then
results in a comparison of somatic and dendritic spikes, si and
sdendi , respectively; it is therefore purely based on point processes.
In terms of storage and computations, the rule thereby becomes
similar to ordinary STDP [cf. (5)]. This becomes apparent in the
weak-scaling experiment in Figure 12C, which shows that the
modification of the learning rule results in a speedup of a factor
10 to 30 arriving essentially at the same run time as the ordinary
STDP rule.

When changing learning rules to improve the efficiency of an
implementation, the question is in how far the modified rule,
in our example including the noisy estimate of the dendritic
prediction, still fulfills the functionality that the original rule
was designed for. Generally, without control of the error any
simulation can be made arbitrarily fast. Therefore, Morrison
et al. (2007b) define efficiency as the wall-clock time required
to achieve a given accuracy. We test in Figure 13 whether
the dynamics is still robust enough to achieve proper learning
and function in the reproduced task of Figure 8. The learning
works as well as in the original Urbanczik-Senn rule. However,
given the simplicity of the chosen task, this result may not

generalize to other more natural tasks. We leave a more detailed
investigation of this issue to future studies. The basic exploration
here, however, illustrates how taking into account the efficiency
of implementations can guide future development of learning
rules to make them practically usable for large-scale simulations
of brain networks.

4. DISCUSSION

This work presents efficient algorithms to implement voltage-
based plasticity in modern neural network simulators that rely
on event-based updates of synapses (for a review, see Brette
et al., 2007). This update scheme restricts function calls of
synapse code to time points of spike events and thereby improves
performance in simulations of biologically plausible networks,
where spike events at individual synapses are rare and the
total number of synapses is large compared to the number
of neurons. While our framework has no restrictions on the
postsynaptic voltage-dependence of the learning rule, a particular
focus of this work is on those plasticity rules, where synapses rely
on an extended history of membrane potentials and therefore
continuous information of state variables of postsynaptic cells to
update their strength. This dependence naturally suggests a time-
driven update of synapses. Instead, we here propose an efficient
archiving of voltage traces to enable event-based synapse updates
and detail two schemes for storage, read out and post-processing
of time-continuous or discontinuous information.We show their
superior performance with respect to time-driven update both
theoretically and with a reference implementation in the neural
network simulation code NEST for the rules proposed in Clopath
et al. (2010) and Urbanczik and Senn (2014).

Event-driven update schemes for voltage-based plasticity
come at the expense of storing possibly long histories of a priori
continuous state variables. Such histories not only require space
in memory but they also affect the runtime of simulations,
which we focus on here. The time spent for searching and post-
processing the history to calculate weight updates increases with
increasing length, and these operations have to be done for
each synapse. Therefore, in addition to an ordinary event-driven
scheme, we devised a compression scheme that becomes superior
for long histories as occurring in the Urbanczik-Senn rule. In
particular for networks with small in-degrees or synchronous
spiking, the compression scheme results in a shorter history. It
further reduces the total amount of computations for weight
changes by partially re-using results from other synapses thereby
avoiding multiple processing of the history. For short histories
as occurring in the Clopath rule, the compression results in
unnecessary overhead and an increase in history size as one entry
per last presynaptic spike time needs to be stored instead of a
discontinuous membrane potential around sparse postsynaptic
spike events. We here, for simplicity, contrasted time- and
event-driven update schemes. However, further work could also
investigate hybrid schemes, where synapses are not only updated
at spike events, but also on a predefined and coarse time grid to
avoid long histories and corresponding extensive management. A
similar mechanism is used in Kunkel et al. (2011) to implement a

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2021 | Volume 15 | Article 60914750

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Stapmanns et al. Event-Based Update of Synapses

FIGURE 11 | Comparison of simulation times Tsim for excitatory-inhibitory networks with different implementations of the Urbanczik-Senn plasticity in NEST. The

following implementations are shown: “stdp”: standard implementation of STDP synapse in NEST, “td”: time-driven implementation of Urbanczik-Senn synapse, “ed”:

event-driven scheme, edc”: event-driven compression. (A) Network of size N = 3.84 · 105 with small in-degree K = 100 and all synapses having a delay d equal to

the resolution of the simulation h = 0.1ms. (B) Network of size N = 3.84 · 104 with large in-degree K = 5, 000 and d = h. (C) Same network as in (B) but d = 1.5ms

(for d > h “edc” not compatible with NEST, see section 3.1.3). In (A–C) both “ed” and “edc” use linear search of the history and the access counters, see

Appendix Section 5.3. (D) Comparison between “ed”-implementations using linear search and direct computation of the position, see Appendix Section 5.3.0.2.

All simulations use 768 threads distributed over 32 compute nodes each running one MPI process. Details on network parameters in Supplementary Table 5.

FIGURE 12 | Scaling of simulation times Tsim with network size for 2 s of biological time: Urbanczik-Senn plasticity. Same weak scaling as in Figure 10. (A)

Event-driven Urbanczik-Senn rule (blue) compared to static (green) and STDP synapse (red). On the scale of the vertical axis the red curve (STDP synapses) falls on

top of the green curve (static synapses), indicated by finer line width and marker size of the former. (B) Same simulation time data as in (A) but with a smaller range on

the vertical axis. Upper panel: enlargement of Urbanczik-Senn data. Lower panel: enlargement of data for static and STDP synapses. (C) Spike-spike version of the

Urbanczik-Senn rule compared to static and STDP synapse. Network and simulation parameters as in Supplementary Table 5 with in-degree K = 5, 000. For all

simulations each compute node runs one MPI process with 24 threads.

normalization of synaptic weights. The corresponding technical
details can be found in Kunkel (2015, ch. 5.2).

The storage and management of the history as well as
complex weight change computations naturally reduce the
performance of simulations with voltage-based plasticity in
comparison to static or STDP synapses. The latter only
require information on spike times which is much less
data compared to continuous signals. Nevertheless, given
that the Clopath rule is based on thresholded membrane
potentials and consequently short, discontinuous histories, the
performance and scaling of the event-driven algorithms is
only slightly worse than for ordinary STDP. Time-driven

implementations cannot employ this model feature and update
weights also in time steps where no adjustment would be
required, leading to significantly slower simulations. The
performance gain of using event-driven schemes is less
pronounced for the Urbanczik-Senn rule as, by design,
histories are typically long. In this case, the compression
scheme naturally yields better results in terms of runtime.
Our own modification of the Urbanczik-Senn rule only
requires storage of sparsely sampled membrane potentials,
giving rise to the same performance as STDP. Generally, an
algorithm is faster if it requires fewer computations. However,
opportunities for vectorization and cache efficient processing,
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FIGURE 13 | Comparison of learning curves in the experiment described in

Appendix Section 5.6 for different variants of the Urbanczik-Senn plasticity

rule. The loss is averaged over 128 trials of different input patterns. Solid

curves denote the mean value and the shaded area the corresponding

standard deviation of the loss.

outside of the scope of the present manuscript, may change
the picture.

We here chose the Clopath and the Urbanczik-Senn rule as
two prototypical models of voltage-based plasticity. While both
rules describe a voltage dependence of weight updates, their
original motivation as well as their specific form are different:
The Clopath rule refines standard STDP models to capture
biologically observed phenomena such as frequency dependence
of weight changes (Sjöström et al., 2001). For this it is sufficient
to take into account membrane potential traces in the vicinity of
spike events, leading to storage of time-discontinuous histories
in our implementation. In contrast, the Urbanczik-Senn rule
is functionally inspired by segregating dendritic and somatic
compartments of cells and using the difference between somatic
output and dendritic prediction as a teacher signal for dendritic
synapses. The teacher signal is by construction never vanishing,
imposing the need to store a time-continuous history. The
original publications of both rules had a great and long-lasting
impact on the field. The Clopath rule has been used in a variety
of studies (Clopath and Gerstner, 2010; Ko et al., 2013; Litwin-
Kumar and Doiron, 2014; Sadeh et al., 2015; Bono and Clopath,
2017; Maes et al., 2020), partly in modified versions which are,
however, still compatible with the here presented simulation
algorithms. The same holds for the Urbanczik-Senn rule (Brea
et al., 2016; Sacramento et al., 2018).

The current implementation, which is published and freely
available in NEST 2.20.1, supports an adaptive exponential
integrate-and-fire and a Hodgkin-Huxley neuron model for the
Clopath rule. The former is used in the original publication
(Clopath et al., 2010) and the latter appears on ModelDB (Hines
et al., 2004) in code for the Clopath rule for the NEURON
simulator (Hines and Carnevale, 2001). For the Urbanczik-Senn
rule, NEST currently supports the two-compartment Poisson
model neuron of the original publication (Urbanczik and Senn,
2014). A three-compartment version as used in Sacramento et al.
(2018) or other models are straight forward to integrate into
the current simulation framework. However, with voltage-based
plasticity rules, borders between neurons and synapses become

blurred as these rules often depend on specifics of the employed
neuron models rather than only spike times as for standard
STDP. Consequently, archiving nodesmight need to have specific
functionalities, which, in light of the zoo of existing neuron
models, could easily lead to a combinatorial explosion of code.
These problems can in future be overcome with automatic code
generation using NESTML that only creates and compiles code
that is needed for the specified model simulations (Plotnikov
et al., 2016).

While the here presented implementation refers to the
neural network simulator NEST (Gewaltig and Diesmann, 2007),
the proposed algorithms and simulation infrastructure are
compatible with any network simulator with event-driven update
of synapses, such as for example, NEURON (Lytton et al., 2016,
cf. ch. 2.4) and Brian2 (Stimberg et al., 2014). Furthermore,
applicability is not restricted to the Clopath and Urbanczik-Senn
rule, but the framework can be adapted to any other learning
rule that relies on state variables of postsynaptic neurons. State
variables hereby not only encompass membrane potentials such
as for example, in the LCP rule by Mayr and Partzsch (2010),
the Convallis rule by Yger and Harris (2013), the voltage-triple
rule by Brea et al. (2013), the MPDP rule by Albers et al. (2016),
the voltage-gated learning rules by Brader et al. (2007), Sheik
et al. (2016), Qiao et al. (2015), Diederich et al. (2018), and
Cartiglia et al. (2020), or the branch-specific rule by Legenstein
and Maass (2011), but also, for example, firing rates of stochastic
neuron models or rate models (Brea et al., 2016; Sacramento
et al., 2018), or other learning signals (Neftci et al., 2017; Bellec
et al., 2020). The infrastructure in NEST allows for the storage
of time-continuous and discontinuous histories and therefore
poses no restrictions on the dependence of the learning rule on
the postsynaptic state variables. The here developed machinery
could be also used to store external teacher signals that are
provided to model neurons by stimulation devices mimicking
brain or environmental components not explicitly part of the
model. Since synapses are located at the compute process of the
postsynaptic neuron, readout of state variables from presynaptic
neurons comes with large costs in simulations on distributed
computing architectures and is therefore not considered here.
Due to specifics of the present NEST code in spike delivery,
the event-driven compression proposed here is only applicable
in NEST for delays that equal the simulation time step. Such a
restriction can be readily overcome in a simulation algorithm that
performs a chronological update of synapses.

In general, one has to distinguish two types of efficiency
in the context of simulating plastic networks: Firstly, the
biological time it takes the network to learn a task by adapting
the weights of connections. Secondly, the wall-clock time it
takes to simulate this learning process. Both times crucially
depend on the employed plasticity rule. In this study, we
focus on the wall-clock time and argue that this can be
optimized by designing learning rules that require storing
only minimal information on postsynaptic state variables.
Ideally, the plasticity rule contains unfiltered presynaptic or
postsynaptic spike trains to reach the same performance as
in ordinary STDP simulations. This amounts to synapses
requiring postsynaptic state variables only at the time of spike
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events. The Clopath and Urbanczik-Senn rule capture the
dependence of synaptic weights on the postsynaptic membrane
potential in a phenomenological manner. The dependence on
the voltage history observed in biological synapses (Artola et al.,
1990; Ngezahayo et al., 2000) is an indirect effect mediated by
receptors and channels with voltage-dependent dynamics (see
Clopath et al., 2010, and references therein). Modeling these
complex dynamics explicitly and evolving corresponding state
variables in the postsynaptic neurons would enable a readout
of these quantities only at spike times and thereby remove
the need to maintain explicit histories. If phenomenological
rules, however, need to capture the pre- and post-spike
dynamics of postsynaptic membrane potentials explicitly,
it is beneficial to make use of thresholds as in the example
of the Clopath rule as these yield short, time-discontinuous
histories. Reducing the amount of information available for
synapses to adjust their weights can in general slow down the
learning. We present a modification of the Urbanczik-Senn rule
where the dendritic prediction of the somatic firing contains
an additional sampling step with Poisson spike generation.
This modification significantly reduces the simulation time.
For the here presented simple task, learning speed is largely
unaffected, but generally a performance decrease is to be
expected when error signals become more noisy. Therefore,
there is a trade-off between learning speed and simulation
speed, which should be considered in the design process of
new learning rules. Complex voltage-based plasticity rules
have been simplified and turned into voltage-gated learning
rules to make them compatible with event-based synapse
updates: Cartiglia et al. (2020) propose a modification of the
Urbanczik-Senn rule underlying the model in Sacramento
et al. (2018). This simplification only requires postsynaptic
membrane potentials at the time of spike events, which makes
the rule much more efficient to simulate and applicable to
neuromorphic hardware. Bono and Clopath (2017) simplify
the Clopath rule in an analogous fashion to allow for its
event-based simulation in the spiking network simulator
Brian2, see documentation at https://brian2.readthedocs.io/en/
stable/examples/frompapers.Clopath_et_al_2010_homeostasis.
html (Stimberg et al., 2014). Our general framework supports
systematic testing of such simplifications in terms of simulation
performance and functionality.

For the plasticity rules by Clopath et al. (2010) and Urbanczik
and Senn (2014), we present a highly scalable reference
implementation that is published and freely available in NEST
2.20.1. The parallelism of the NEST implementation enables
simulations of plastic networks of realistic size on biologically
plausible time scales for learning. The field of computational
neuroscience recently entered a new era with the development
of large-scale network models (Markram et al., 2015; Schmidt
et al., 2018; Billeh et al., 2020). Emulating the dynamics of cortical
networks, such models are so far restricted to static connections.
We here provide simulation algorithms for plasticitymechanisms
that are required for augmenting such complex models with
functionality. It is our hope that incorporating both biologically
and functionally inspired plasticity models in a single simulation
engine fosters the exchange of ideas between communities

toward the common goal of understanding system-level learning
in the brain.
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5. APPENDIX

5.1. Analytical Integration in
Urbanczik-Senn Rule
To derive (17) it is convenient to first investigate 1Wij(0, t)
and 1Wij(0,T) and then compute 1Wij(t,T) = 1Wij(0,T) −
1Wij(0, t). Assuming that the simulation starts at t = 0, the
weight change from the start to time t is given by

1Wij(0, t) = η

∫ t

0
dt′

∫ t′

0
dt′′κ

(

t′ − t′′
)

V∗
i

(

t′′
)

s∗j
(

t′′
)

= η

∫ t

0
dt′′

∫ t

t′′
dt′ κ

(

t′ − t′′
)

V∗
i

(

t′′
)

s∗j
(

t′′
)

= η

∫ t

0
dt′′

[

κ̃
(

t − t′′
)

− κ̃ (0)
]

V∗
i

(

t′′
)

s∗j
(

t′′
)

= η [−I2 (0, t) + I1 (0, t)]

where we exchanged the order of integration from the first to
the second line. In the third line we introduced κ̃ (t) defined by
κ (t) = ∂

∂t κ̃ (t) and in the fourth line we defined the two integrals

I1 (t1, t2) = −
∫ t2
t1
dt′ κ̃ (0)V∗

i

(

t′
)

s∗j
(

t′
)

,

I2 (t1, t2) = −
∫ t2
t1
dt′ κ̃

(

t − t′
)

V∗
i

(

t′
)

s∗j
(

t′
)

.

In case of the Urbanczik-Senn rule

κ̃ (t) = −e−
t

τκ

which implies the identities

I1 (t1, t2 + 1t) = I1 (t1, t2) + I1 (t2, t2 + 1t) ,

I2 (t1, t2 + 1t) = e−
t2−t1

τκ I2 (t1, t2) + I2 (t2, t2 + 1t) ,

which we use to write the weight change from t to T as

1Wij(t,T) = 1Wij(0,T)− 1Wij(0, t)

= η [−I2 (0,T) + I1 (0,T) + I2 (0, t) − I1 (0, t)]

= η

[

I1 (t,T) − I2 (t,T) + I2 (0, t)
(

1− e−
T−t
τκ

)]

.

This is the the result (17).

5.2. Voltage Clamping of the Adaptive
Exponential Integrate-and-Fire Model
For the Clopath rule the change of the synaptic weight strongly
depends on the excursion of the membrane potential Vm around
a spike of the postsynaptic neuron which causes ū± to cross
the respective thresholds θ± so that (12) and (13) yield non-
vanishing results. Within the original neuron model Brette and
Gerstner (2005) u is reset immediately after it reached the
spiking threshold so that the shape of the action potential
is not described accurately. In our NEST implementation of
aeif_psc_delta_clopath we adapted the approach of
the reference implementation on ModelDB (Hines et al., 2004)
and introduced a clamping of u to a fixed value Vclamp for a

period of tclamp before it is reset. The reference implementation
is restricted to a simulation resolution of exactly 1ms and sets
u to two different values for the two subsequent simulation
steps after a spike. To be independent of the resolution of the
simulation, the implementation in NEST uses a constant Vclamp.
In the simulations we set tclamp to 2ms and Vclamp to 33mV.
These values are chosen to match the behavior of the reference
implementation.

5.3. History Management
There are three points that need to be considered in the context
of history management: First, which information needs to be
stored. Second, how to search and read out the history. Third,
how to identify and remove information that is no longer needed.
The first and third point mainly affect memory usage, while the
second point impacts the simulation time as searching within
shorter histories is faster.

There are four different histories to which our considerations
apply. The one to store the membrane potential V∗

i , the
compressed history 1Wi(tLS,T) used only for the compressed
event-driven scheme, the history to store the spike times si of the
postsynaptic neuron (also used for ordinary STDP), and finally
one might need a history that stores the last spike time for every
incoming synapse (see below for details).

5.3.0.1. Adding Information to the History
This paragraph concerns only the history that stores the time
trace of V∗

i . In every time step of the simulation, neurons call
the protected function write_history() of the archiving
node and pass the current value of the (low-pass filtered)
membrane potential. The archiving node then computes the
derived quantities V∗

i or combinations of V∗
i and s∗i , and saves

them in the history, which is of type vector. It is more efficient
to do the computations inside the archiving node and not in
the synapse for two reasons: Firstly, the computation is done
only once and then used for all incoming synapses. This way
no direct exchange of information between different synapses is
required. Secondly, the archiving node does not need to store
the raw membrane potentials before readout, but can directly
store the derived quantities V∗

i , which reduces the memory
consumption, especially in cases where only a non-continuous
history is needed.

5.3.0.2. Readout of Information From the History
Let’s assume tLS and tS be the times of the last and the current
spike of a synapse. At time tS that synapse then needs to request a
part from t1 = tLS−d to t2 = tS−d > t1 of the history that ranges
from tstart < t1 to tend > t2. This part is shifted with respect
to the spike times by a delay d which models the time of signal
propagation from the postsynaptic soma back to the synapse. The
software framework NEST of our reference implementation uses
only one variable to represent the delay from synapse to soma and
the delay in the opposite direction. Consequently, when a spike
arrives at the synapse of the postsynaptic neuron, the synapse sees
a membrane potential from the past. In case every time step of
the simulation adds a new entry to the history, one can easily
compute the positions of the entries corresponding to t1/2 by
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just knowing tstart and tend. As pointed out in section 3.2 this
is the case for the Urbanczik-Senn plasticity rule. If the history
is not continuous in time, like in case of the Clopath rule, this
scheme is not applicable. Instead, we add a time stamp s as an
additional variable to each entry and search for those with the
smallest/greatest swithin the interval (t1, t2) using e.g., a linear or
a binary search. Searching for the positions that define the start
and the end of the requested interval is slower than computing
them directly. Nevertheless, a non-continuous history can lead to
a large acceleration of simulations as we discussed in case of the
Clopath rule (section 3.4.1). Here, only values of the membrane
potential in the vicinity of a spike of the postsynaptic neuron are
needed so that neglecting the majority of values in between leads
to a non-continuous history but saves memory.

Technically, the archiving node contains a function called
get_history() which expects two iterators start and
finish and two times t1 and t2. When executed, the
function sets the iterators to point to the correct entries of
the history of the postsynaptic neuron corresponding to t1 and
t2, respectively. Having received the correct position of the
pointers, the synapse evaluates the integral (6). In the event-
driven compression scheme, the integration (11) is not done
inside the synapse but inside the archiving_node. The
reason for this is that the compressed history 1Wi(tLS, tS),
which is updated in case of an incoming spike, is stored
inside the archiving_node. This way no exchange of
information is needed. The synapse only triggers the updating
process by calling the function compress_history() of the
archiving_node. Internally, the archiving_node can
use get_history() to obtain the part of the history that has
to be integrated. Even though the linear search a priori might
seem less efficient than a binary search or direct computation of
the position, it turns out that it has an advantage in that it iterates
consecutively over the history entries which can be employed to
identify data no longer needed. Therefore, especially for short
histories a simple iteration that comes without any overhead is
fastest (see section 3.4.1).

5.3.0.3. Removing Information From the History
To prevent the history from occupying an unnecessary amount of
memory, it is crucial to have a mechanism to delete those entries
that have been used by all incoming synapses. The simplest
implementation to identify these entries is to add one additional
variable to each entry called access counter initialized to zero
when the entry is created. When a synapse requests a part from
t1 to t2 of the history, the algorithm iterates over all entries
t1 < t < t2 and increases the access counters by one. After the
update of the synaptic weight all entries whose access counters
are equal to the number of incoming synapses are deleted. This
scheme can be combined easily with a linear search starting the
iteration from the oldest entry of the history.

For long histories a linear search is inefficient and should be
replaced by a binary search or direct computation of positions
if applicable. To avoid iteration within long histories, we replace
access counters by a vector that stores the last spike time tLS for
every incoming synapse. If a synapse delivers a spike, it updates
its entry in that vector by replacing tLS by the time stamp of

the current spike. After each weight update, searching the vector
for the smallest tLS allows us to safely remove all membrane
potentials with time stamps t < min({tLS,i}). In practice, we
can further improve this mechanism with two technical details.
Firstly, n incoming spikes with the same time stamp can share
the same entry tLS which we then have to provide with a counter
that goes down from n to zero in steps of one whenever one of
the n synapses sends a new spike for a time t > tLS. Secondly, we
can avoid the search for the smallest tLS by making sure that the
entries tLS are in chronological order. This can be easily achieved
if a synapse does not update its entry in the vector but removes it
and appends a new one at the end of the vector.

5.4. Implementation of Experiments Using
Clopath Rule
5.4.1. Spike Pairing Experiment
The setup of the spike pairing experiment from Clopath et al.
(2010) presented in Figures 7A,B consists of two neurons
connected via a plastic synapse. The pre- and postsynaptic
neuron are forced to spike with a time delay of 1t by stimulation

with spike_generators at times t
(i)
pre = t(i) and t

(i)
post =

t(i) + 1t, respectively. A positive time shift 1t > 0 refers
to the presynaptic neuron spike before the postsynaptic one
(pre-post pairing, solid lines in Figure 7) and vice versa. Spike

pairs
(

t
(i)
pre, t

(i)
post

)

are induced with frequency fpair = 1
t(i+1)−t(i)

and the weight change of the synapse is measured after a set
of five pairs. In our simulation using NEST the presynaptic
neuron is modeled as a parrot_neuron and the postsynaptic
neuron is either of type aeif_psc_delta_clopath or
hh_psc_alpha_clopath. In NEST parrot_neurons
are model neurons that emit a spike whenever they receive
one. In this setup they are required because devices like
spike_generators support only static synapses in NEST so
that we cannot connect the postsynaptic neuron directly to the
spike_generator via a plastic synapse. The initial weight of
the clopath_synapse connecting the two neurons is given
by winit . In this experiment we use the Clopath rule with fixed
amplitude ALTD. A list with all the parameters can be found in
Supplementary Table 1.

5.4.2. Emergence of Strong Bidirectional Couplings
In this experiment after Clopath et al. (2010), a small network of
NI inhibitory and NE excitatory neurons subject to an external
input develops strong bidirectional couplings between neurons
of the excitatory population. The input is given by Np Poisson
spike trains with rates

f
(j)
p = Ape

−
(j−µp)

2

2σ2p + cp, (18)

where j = 1, . . . ,Np. The center µp of the Gaussian is drawn
randomly from a set sp of possible values and a new value is drawn
after each time interval tµ. The total number of intervals isNµ. In
our simulation with NEST we used aeif_psc_delta model
neurons with the same parameters (cf. Supplementary Table 3)
for both the inhibitory and the excitatory population. The
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simulation is divided into Nµ intervals between which the rates
of the Np poisson_generators are set according to (18).
The poisson_generators are connected in a one-to-one
manner to Np parrot_neurons which in turn are connected
to the network. The details of the latter connectivity can be found
in Supplementary Table 2. In NEST a poisson_generator
that is connected to several target model neurons generates
an independent Poisson spike train for each of these neurons.
Thus, the intermediate step via parrot_neurons is required
to provide neurons in the network with common Poisson
inputs. Moreover, a direct connection from a device like a
poisson_generator to a model neuron via a plastic synapse
is not possible in NEST. In this experiment, the Clopath rule with
homeostasis (time dependent prefactor for LTD, cf. section 5.5)
is used. Figure 7C shows the weights of the synapses among the
excitatory population after the simulation.

5.5. Implementation of Homeostasis

ALTD

(
¯̄u
)

For the network simulations presented in Clopath et al. (2010),
the authors use a sightly modified version of the Clopath rule
defined in (12): The constant factor ALTD is replaced by a voltage
dependent term

ALTD

(
¯̄u
)

= ALTD

(

¯̄u

uref

)2

to take into account homeostatic processes. The quantity ¯̄u is
a temporal average of the quantity ū− (t) over a time window
of T = 1 s and uref is a reference value. An exact temporal
average requires storing the time trace of ū− (t) for the entire
interval T. This would cancel the advantage of keeping only a
sparse history as discussed in 3.2.3.2 where storage of time traces
is needed only in the vicinity of spikes. Therefore, deviating
from the original work by Clopath et al. (2010), we implement
an additional low-pass filtering ¯̄u (t) = (κlow ∗ ū−) (t) with
an exponential kernel κlow (t) = H (t) exp

(

−t/ ¯̄τ
)

instead.

Like ū±, ¯̄u is passed as an additional state variable to the
solver.

5.6. Implementation of Experiment Using
Urbanczik-Senn Rule
In the simulation experiment shown in Figure 8 the dendrite of
a conductance-based two-compartment model neuron receives
a spike pattern of duration T as an input via plastic synapses.
The pattern consists of Np independent Poisson spike trains with
a firing rate fp. For learning, the pattern is repeated Nrep times.
Dendritic synapses adapt their weights so that after learning
the somatic membrane potential U and the dendritic prediction
V∗
w follow a matching potential UM . The latter is created by

somatic input via two spike_generators that are connected

via a static excitatory or inhibitory connection, respectively.
Both spike generators send spikes in every simulation step.
Inhibitory input spikes have a constant weight to generate a
constant somatic inhibitory conductance gI . Excitatory spikes
have a modulated weight to generate a periodic excitatory
conductance gE. The input to the dendritic compartment
is provided by Np spike_generators each of which is
connected to one parrot_neuron which in turn is connected
to the dendrite via a plastic urbanczik_synapse. The
intermediate parrot_neurons are required since in NEST the
spike_generators can have only static synapses as outgoing
connections. The spike times of the spike_generators are
set to repeatedly generate the spike pattern created before the
start of the actual simulation. The neuron’s state variables are
read out by a multimeter and the synaptic weights by a
weight_recorder.

5.7. Experiment With Modified Version of
the Urbanczik-Senn Rule
The weight change of the Urbanczik-Senn rule as presented in
section 2.5 in line with the original publication is driven by the
prediction error

V∗
i =

(

si − φ(Vi)
)

h (Vi) ,

where si is the somatic spike train and Vi the dendritic prediction
of the somatic membrane potential Ui. Instead of integrating
over the difference between the spike train and the rate φ (Vi)

(spike-rate), one can derive two variants

V∗
i =

(

si − sdendi

)

h (Vi) (spike− spike) and

V∗
i = (φ (Ui) − φ (Vi)) h (Vi) (rate− rate).

In the first one (spike-spike) we replaced the dendritic rate
prediction by a noisy realization sdendi using an inhomogeneous
Poisson process with rate φ (Vi). In the second one (rate-rate)
the somatic spike train is replaced by the rate of the underlying
Poisson process which is computed by applying the rate function
φ to the somatic potential Ui. The learning of a matching
potential UM as described in section 3.3 also works in these two
cases. Figure 13 shows the learning curve for all three variants
of the Urbanczik-Senn rule. The loss is defined as the average
mismatch between Ui and UM averaged over one period Tp of
the input pattern

1

Tp

∫

dt (U (t) − UM (t))2 .

The decrease of the loss as a function of the pattern repetitions
has a similar shape for all three variants with a significantly higher
variance in case of the spike-spike version.
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Astrocytes play a central role in inducing concerted phase synchronized neural-wave

patterns inside the brain. In this article, we demonstrate that injected radio-frequency

signal in underlying heavy metal layer of spin-orbit torque oscillator neurons mimic the

neuron phase synchronization effect realized by glial cells. Potential application of such

phase coupling effects is illustrated in the context of a temporal “binding problem.”

We also present the design of a coupled neuron-synapse-astrocyte network enabled

by compact neuromimetic devices by combining the concepts of local spike-timing

dependent plasticity and astrocyte induced neural phase synchrony.

Keywords: neuromorphic computing, magnetic tunnel junction, astrocytes, Spintronics, spiking neural networks

1. INTRODUCTION

Neuromorphic engineering is emerging to be a disruptive computing paradigm in recent times
driven by the unparalleled efficiency of the brain at solving cognitive tasks. Brain-inspired
computing attempts to emulate various aspects of the brain’s processing capability ranging
from synaptic plasticity mechanisms, neural spiking behavior to in-situ memory storage in the
underlying hardware substrate and architecture. The work presented in this article is guided by the
observation that current neuromorphic computing architectures havemainly focused on emulation
of bio-plausible computational models for neuron and synapse—but have not focused on other
computational units of the biological brain that might contribute to cognition.

Over the past few years, there has been increasing evidence that glial cells, and in particular,
astrocytes play an important role in multitude of brain functions (Allam et al., 2012). It is estimated
that glia form ∼50% of the human brain cells (Möller et al., 2007) and participate by modulating
the neuronal firing behavior, though unable to discharge electrical impulses of their own. Indeed,
these glial-cells work in coordination with neural assemblies, to enable information processing
in the human brain and performing incisive operations. Astrocytes hold the recipe to potentiate
or suppress neurotransmitter activity within networks and are responsible for phenomenon
like synchronous network firing (Fell and Axmacher, 2011; Wade et al., 2011) and self-repair
mechanisms (Wade et al., 2012; Rastogi et al., 2020). It is therefore increasingly important to
capture the dynamics of such ensembles, a step toward realizing more sophisticated neuromimetic
machines and ultimately enabling cognitive electronics.

Recently, there has been extensive literature reporting astrocyte computational models and
their impact on synaptic learning (De Pittà et al., 2012; Manninen et al., 2018). Continuing these
fundamental investigations to decode neuro-glia interaction, there have been recent neuromorphic
implementations of astrocyte functionality in analog and digital Complementary Metal Oxide
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Semiconductor (CMOS) hardware (Möller et al., 2007; Irizarry-
Valle and Parker, 2015; Naeem et al., 2015; Ranjbar and Amiri,
2017; Karimi et al., 2018; Faramarzi et al., 2019). For instance,
analog CMOS circuits capturing the neural-glial transmitter
behavior have been demonstrated (Joshi et al., 2011; Irizarry-
Valle et al., 2013; Irizarry-Valle and Parker, 2015; Lee and
Parker, 2016). There is also increasing interest in low-complexity
FPGA implementation of the astrocyte computation models
(Nazari et al., 2015; Ranjbar and Amiri, 2016, 2017; Karimi
et al., 2018; Faramarzi et al., 2019). However, the primary focus
has been on a brain-emulation perspective, i.e., implementing
astrocyte computational models with high degree of detail in the
underlying hardware.

On the other hand, recent advances in emerging post-CMOS
technologies like phase change materials, resistive memories,
ferromagentic, and ferroelectric materials (Jo et al., 2010; Kuzum
et al., 2011; Ramakrishnan et al., 2011; Jackson et al., 2013;
Sengupta and Roy, 2017; Saha et al., 2021), among others
have resulted in the development of electronic device structures
that can reproduce various biomimetic characteristics at low
operating voltages through their intrinsic physics. However,
while there has been extensive work on exploring post-CMOS
technologies for mimicking bio-realistic computations due to
the prospects of low-power and compact hardware design,
they have been only studied from standalone neuron/synapse
perspective. Emulation of the neuron-astrocyte crosstalk using
bio-mimetic devices has largely been neglected, and no such
literature exists hitherto, to the best of our knowledge. This work
is therefore an effort to bridge this gap and, specifically, elucidates
the emulation of transient synchronous activity resulting from
neural-glial interactions by utilizing spin-orbit torque induced
phase synchronization of spintronic oscillator neurons. It is
worth mentioning here that we abstract the neuron functionality
as a non-linear oscillator, in agreement with prior neuroscience
and computational models (Jaeger and Haas, 2004). Emulation of
astrocyte induced neural phase synchrony through the intrinsic
physics of spintronic devices will be critical to enable the
next generation of resource constrained cognitive intelligence
platforms like robotic locomotion (Polykretis et al., 2020). This
work also presents an important addition to the wide variety
of next-generation computational paradigms like associative
computing, vowel-recognition, physical reservoir computing
among others (Fan et al., 2015; Torrejon et al., 2017; Romera
et al., 2018, 2020; Riou et al., 2019; Tsunegi et al., 2019), being
implemented using spin-torque oscillator devices.

2. NEUROSCIENCE BACKGROUND

The human brain houses multiple-independent local neuronal
groups which perform dedicated computations in relevance to
their assigned tasks. Besides this general uncorrelated activity
of neurons, multiple neural spiking data recordings reveal that
the independent signals from these neural assemblies frequently
coalesce in time to generate a synchronous output (Fries, 2005;
Fell and Axmacher, 2011). Multiple reports on the cause of such
patterns now provide compelling evidence that astrocytes are the

agents of this phenomenon (Fellin et al., 2004; Wade et al., 2011).
Astrocytes modulate the concentration of neurotransmitters
like glutamate inside the synaptic clefts in response to its
internal Calcium (Ca2+) oscillations (Newman, 2003; Garbo
et al., 2007). A single astrocyte spans tens of thousands of
synapses, where units called microdomains (concentrated Ca2+

stores within the astrocyte) monitor the activity for a group
of neurons and perform subsequent chemical actions (Volterra
and Meldolesi, 2005; Haydon and Carmignoto, 2006). The
astrocyte-derived glutamate binds to extrasynaptic NMDAR
(N-methyl-D-aspartate) receptor channels, and induce Slow-
inward Currents (SIC) in the post-synaptic membrane. SICs
are attributed to triggering a simultaneous response in different
synapses with high timing precision, and its large amplitude
and slow-decay rate provide an increased timescale for the
correlated activity (Fellin et al., 2004; Wade et al., 2011). The
astrocytic units influencing synapses, can act both independently
or in coordination enabling long-distance indirect signaling
among independent neuronal groups. Furthermore, an increased
intensity of synaptic activity can trigger multiple astrocytes
to share their information through their gap-junctions and
elicit coherent behaviors among different uncorrelated neuronal
networks. We in this paper do not discriminate among the two
signaling processes. Thus, the two astrocytes shown in Figure 1A

for different sub-networks can also imply microdomains within a
single astrocyte. These units control the synchronization signal to
networks A and B. Figure 1A captures the biological perspective
of such a system which controls the neural synchronization
among neurons present in these different sub-networks. Sub-
networks A and B each consist of three different neurons,
which in-turn generate oscillatory outputs. The temporal profiles,
shown in Figure 1B, depict the neuron outputs before and
after synchronization is initiated by Astrocyte 1 in the network
A. Interested readers are referred to Wade et al. (2011) for
details on the astrocyte computational models. It is worth
mentioning here that unlike CMOS implementations that are
able to implement computational models with a high degree
of detail, emerging device based implementations usually focus
on mimicking key aspects of the neurosynaptic functionality
necessary from computing perspective since the exact behavior
is governed by the intrinsic device physics. In this work, we
primarily consider emulating the neural phase synchrony effect
of astrocytes and evaluate it in the context of a temporal
information binding application.

3. ASTROCYTIC SYNCHRONIZATION
EMULATION

3.1. Device Basics
In this work, we utilize Magnetic Tunnel Junctions (MTJs)
(Julliere, 1975) as the core hardware primitive to mimic neural
oscillations. The MTJ consists of two ferromagnetic layers
(pinned layer and free layer) with a spacer oxide layer in between.
The direction of magnetization of the pinned layer (PL) is
fixed, while that of the free layer (FL) can be manipulated
by external stimuli (spin current/magnetic field). The MTJ
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FIGURE 1 | (A) Top-level network depicting the synchronization control by astrocytic injection. Astrocytes share information among their glial network. (B) The curves

show the synchronized and unsynchronized outputs of Neurons 1–3 in Network A depending on the astrocyte input.

stack exhibits a varying resistance depending on the relative
magnetic orientations of the PL and the FL. The extreme
resistive states are referred to as the parallel (P) and anti-parallel
(AP) states depending on the relative FL magnetization. The
magnetization dynamics of the FL can be modeled by Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation with stochastic
thermal noise (Sengupta and Roy, 2017):

dm̂

dt
= −γ (m̂×Heff )+ α(m̂×

dm̂

dt
)+

1

qNs
(m̂× Is × m̂) (1)

In Equation (1), m̂ is the unit vector representing the
magnetization direction of FL, Heff is the effective magnetic field
including thermal noise (Scholz et al., 2001), demagnetization
field and external magnetic field, γ is the gyromagnetic ratio,
α is Gilbert’s damping ratio, Is is the spin current, q is the
electronic charge, and Ns = MsV

µB
is the number of spins in

free layer of volume V (Ms is saturation magnetization and
µB is Bohr magneton). If the magnitude of spin current and
external magnetic field are chosen appropriately such that the
damping due to the effective magnetic field is compensated, a
steady procession of the FL magnetization can be obtained. It is
worthmentioning here that the intrinsicmagnetization dynamics
in Equation (1) is used to model the oscillator dynamics. Other

FIGURE 2 | Spin-orbit torque device undergoes oscillation due to applied

external magnetic field, H, and charge current, Ic. Note that the directions of

both the magnetic field and magnetic anisotropy are in-plane.

variants of oscillatory behavior can be achieved by modified spin
device structures (Matsumoto et al., 2019).

In order to achieve decoupled output oscillator readout
and astrocyte injection induced phase coupling, we utilize
a three terminal device structure, as shown in Figure 2, in
which a nanomagnet with in-plane magnetic anisotropy lies
on top of a heavy metal (HM) layer with high spin-orbit
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TABLE 1 | MTJ device simulation parameters.

Parameters Value

Ferromagnet area, AFM 40× 100 nm

HM thickness, tHM 3 nm

Energy barrier, Eb 62.76 kT

Saturation magnetization, Ms
107

4π
A/m

Spin-hall angle, θSH 0.3

Spin-flip length, λsf 1.4 nm

Gilbert damping factor, α 0.03

External magnetic field, H 750 Oe

TMR ratio, TMR 200%

Temperature, T 300 K

coupling. Due to spin-Hall effect (Hirsch, 1999), a transverse
spin current is injected into the MTJ FL by charge current,
Ic, flowing through the HM between terminals T2 and T3.
The relation between spin current Is and charge current Ic
is,

Is = θSH
AFM

AHM

(

1− sech

(

tHM

λsf

))

Ic (2)

where, AFM and AHM are the FM and HM cross-sectional
areas respectively, θSH is the spin-Hall angle (Hirsch, 1999),
tHM is the HM thickness and λsf is the spin-flip length.
Note that an in-plane magnetic field, H, is also applied to
achieve sustained oscillation. The MTJ state is read using the
current sensed through terminal T1. The device simulation
parameters are tabulated in Table 1 and are based on typical
experimental measurements reported in literature (Fan et al.,
2015). However, the conclusions presented in this study are
not specific to these parameters. Experimental demonstration
of injection locked spin-torque oscillators have been achieved
(Rippard et al., 2005, 2013; Georges et al., 2008; Demidov
et al., 2014). It is worth mentioning here that we assume
all the devices are magnetically isolated and sufficiently
spaced such that dipolar coupling is negligible (Yogendra
et al., 2017). We also consider that the generated charge
current in the HM layer due to FL magnetic precession
via the Inverse spin-Hall effect (ISHE) is not dominant
enough to impact the phase coupling phenomena. While
recent studies have shown that the ISHE modulated current
alone, without any amplification, is not sufficient to impact
phase locking (Elyasi et al., 2015), such effects can be also
overcome by limiting the number of oscillators sharing a
common HM substrate.

3.2. Phase Synchronization of MTJ
Oscillator Neurons
The electrical analog of Figure 1A is shown in Figure 3,
where the MTJs represent the oscillatory neurons present in
a particular network. The neurons share a HM layer which
acts as the common substrate for the driving astrocyte signal.

The current flowing through the HM has two components—
a DC current input which determines the free-running
frequency of the oscillator and a radio-frequency signal
which represents the astrocyte input. Figure 4A highlights the
oscillation characteristics of the MTJ. The DC current controls
the precession frequency in absence of other inputs. This DC
input is analogous to the external stimulus determining the
frequency of neuron oscillation in a particular network. In the
absence of the RF signal, all the neurons oscillate at the same
frequency (dependent on stimulus magnitude or DC current)
but out-of-phase due to thermal noise. Upon the application
of the external RF astrocyte signal, the device oscillation locks
in phase and frequency to this input. Higher peak-to-peak
amplitude of the astrocyte locking signal increases the locking
range of the device. It is worth mentioning here that the locking
frequency of neurons in a particular network is dependent on the
stimulus and astrocytes only induce phase locking. Therefore, the
alternating astrocyte signal flowing through the HM layer can
be generated from a separate astrocyte device that is driven by
the corresponding DC input of the network, thereby ensuring
independent phase and frequency control. The astrocyte device
is interfaced with a Reference MTJ and a voltage-to-current
converter to drive the alternating current signal through the
common HM layer. The Reference MTJ state is fixed to the AP
state (by ensuring that the read supply voltage, VDD = 0.65V
is not high enough to write the MTJ state) and forms a resistive
divider with the oscillating Astrocyte MTJ resistance. Therefore,
the gate voltage of the interfaced PMOS transistor, VG =

RA
RA+RREF

VDD where RA is the Astrocyte MTJ resistance and RREF
is the Reference MTJ resistance, also varies accordingly, which in
turn, modulates the current flowing through the common HM
layer proportionally.

In order to evaluate the degree of phase synchronization in
presence of thermal noise, we consider two MTJ devices lying
on top of a common HM layer at room temperature. Cross-
correlation metric is evaluated for the two MTJ output signals to
measure the similarity among them as a function of displacement
of one relative to the other. Considering two time-domain
functions x(t) and y(t), whose power spectrum density (PSD) is
given by Sxx(ω) and Syy(ω), respectively, their cross-correlation is
defined by:

Rxy(τ ) = (x ⋆ y)(τ ) =

∫ ∞

−∞

x(t − τ )y(t) dt (3)

where, x(t) represents the complex conjugate of x(t) and τ

denotes the lag parameter. Further, cross-power spectral density
(CPSD) is defined as the Fourier transformation of cross-
spectrum in (3) and is given by:

Sxy(ω) =

∫ ∞

−∞

Rxy(t)e
−jωt dt (4)

Sxy comprises of both magnitude and phase (6 ) information
at different frequencies present in

[

ω
]

vector. When
two signals are phase synchronized, the cross-spectrum
phase vector becomes zero, indicating high correlation.
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FIGURE 3 | Electrical emulation of astrocyte induced neural synchrony is shown where an astrocyte device drives an alternating current through a common HM

substrate to phase-lock the MTJ oscillator neurons.

FIGURE 4 | (A) Oscillator frequency plotted against the DC current input to the device. Higher AC amplitudes lead to increased DC locking range at the injected RF

signal of 6.5 GHz frequency. (B) Cross-spectrum phase for 100 independent stochastic LLGS simulations of two noisy MTJ neurons, under RF injection of 5GHz.

Average CPSD phase indicates tight phase-coupling at the required frequency with un-correlated activity at other frequencies. (C) Average cross-spectrum phase at

the injection frequency accounting for device dimension variations.

Such a property is highlighted in Figure 4B where 100
independent stochastic-LLGS simulations are performed for
two neuronal devices placed on a common HM layer with
a 5 GHz injected RF current. Cross-spectrum phase at the
injection frequency, i.e., 5 GHz converges close to zero. Average
cross-spectrum phase is also shown in the plot depicting
tight phase-coupling between the neurons at the injection
frequency. Notably, a sharp reduction of average phase offset
to just 7.22◦ at 5 GHz is observed compared to 90◦ for
other frequencies, thereby establishing the robustness of the
synchronization scheme. Additionally, the impact of non-
idealities like device dimension variations on the phase coupling
phenomena is evaluated in Figure 4C. The results are reported
for 50 independent Monte-Carlo simulations with variation in
both the length and width of the MTJ. Each Monte-Carlo
simulation consisted of 50 stochastic LLGS simulation for the
average cross-spectrum phase calculation. The phase correlation
between the device oscillations remains reasonably high even
with 7.5% variation in both length and width dimensions of the
MTJ. Related discussions on oscillator dynamics with respect to
perturbative current and correspondence of the results with the
Kuramotomodel for oscillator synchronization is provided in the
Supplementary Material.

4. BINDING PROBLEM

4.1. Problem Formulation
Next, we discuss a renowned problem which is envisioned

to be solved by neural synchronous activity. Amongst the
most intriguing themes of neuro-psychological studies is the

“binding problem” (BP) (Feldman, 2013; Fields et al., 2014). It
concerns with how different attributes of sensory information are

encoded, processed, and perceived for decision-making by the

human brain circuits. With a now widely accepted viewpoint of
distributive computing and segregated processing for different
features (especially visual) and later integration into a unified

percept via re-entrant connections (Milner, 1974; Bartels and
Zeki, 2006), we have progressed further toward understanding
cognition. Primate brains have evolved to continuously assimilate

the voluminous perceptive information available in their social
setting and find a best fit for the primate’s goals in the quickest
manner. This training and growth, although very crucial in most

situations—sometimes also leads to “misbinding” (Whitney,
2009). In particular, optical illusions, such as shown in Figure 5A,

exploit the feature patterns ingrained in the human visual
percept, causing misbinding. The figure is a bistable portrait
of an elephant, or an overlap of two (seemingly) possible
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FIGURE 5 | (A) The optical illusion induces confusion in the viewer concerning association among different apparent limbs with the body and the background

(Courtesy of Roger Shepard’s “L’egsistential paradox") (Shepard, 1990). (B) MTJ system architecture depicting hierarchical organization of neurons. The illustrated

binding problem is mapped to this hardware with one possible interpretation shown. The connection between different neuron layers is implemented by the

memristive cross-bar array with initially untuned synaptic weights. Unsupervised STDP learning rule causes the weights to evolve, making the network to finally elicit

synchronous responses post-training.

interpretations, obtained by associating different body parts to
other features of the image. For instance, the labels 1 and 2
can be viewed associated with the body (A), while 3 and 4 to
the background (B) to paint one such possible interpretation.
The other interpretation can be visualized if the roles A and B
are reversed. For an in-depth discussion, interested readers are
directed to Hasz and Miller (2013) and Ignatov et al. (2017).
In this work, we do not address the clustering mechanism of
labels 1–2 and 3–4. This labeling and identification can be
potentially attributed to the agent’s visual attention. In particular,
attention captures the most relevant information present in a
space-time lapse by masking (filtering) off the distractor areas,
while performing feature labeling of the cropped scene (Kosiorek
et al., 2017). Assuming that attention performs the role of spatio-
temporal integration among such multiple attributes captured by
a visual scene, synchronous activity in the neurons is considered
as the underlying mechanism in brain to create a coherent
episode of perception, and perhaps cognition. Indeed, it is now
becoming more evident that cognitive processes like attention
and behavioral efficiency elicit targeted synchronous activity in
different brain regions tuned to responding toward different
spatial and featural attributes of the attended sensory input
(Ward, 2003; Womelsdorf and Fries, 2007).

4.2. Hardware Mapping
In order to correlate our spin-orbit torque oscillator phase

synchronization due to astrocyte injection locking in the
context of “temporal binding,” we consider a network as shown

in Figure 5B. Adhering to the currently prominent view of

hierarchical organization in the neural assemblies, spin-torque
neurons N1,N2,N3,N4 here are dedicated to processing simple

attributes, while Na and Nb after receiving inputs from previous

layers perform complex feature processing corresponding to the

assigned task. In reference to potential processing applications
like cognitive feature binding, each spin-orbit torque neuron
in the network represents the corresponding feature in the
elephant’s bistable image, previously shown in Figure 5A. All
neuronal devices are mounted atop a HM with Idc = 420µA
DC drive (f free = 7.05 GHz). The network utilizes two
different injection signals with the same frequency of 7.05
GHz with 180o phase difference (corresponding to the two
different interpretations/configurations of the bistable image).
Here, we use two RF voltage sources, namely Vac1 and Vac2

with amplitude of 250 mV. The connection between the two
neuron layers is achieved by means of a resistive synaptic cross-
bar array.We combine the concepts of bio-inspired unsupervised
Spike-Timing Dependent Plasticity (STDP) (Bi and Poo, 1998)
and astrocyte induced neural phase synchrony to automatically
enable the network to learn to elicit such behavioral patterns,
on the fly. The developed system sets off from an unlearnt state
where all neurons have an independent response and remain
unsynchronized in phase. However, upon system activation (and
consequently astrocyte RF injection), the architecture eventually
learns to bind the different possible configurations for the
visual scene through phase correlation to either Vac1 or Vac2.
It is to be noted that neurons N1,N2,N3,N4 comprise of
pre-neurons while Na and Nb are post neurons, separated
by the resistive cross-bar array. Ultimately, a tight phase and
frequency locking is observed among a particular pair of pre-
neurons (N1,N2, and N3,N4) and post-neurons (Na and Nb).
Due to random thermal fluctuations, the devices can converge to
either of the two possible configurations for the bistable image,
thereby illustrating the concept of optical illusion. The work
can potentially pave the way for efficient hardware realization of
coupled neuron-synapse-astrocyte networks enabled by compact
neuromimetic devices.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 69963265

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Garg et al. Astrocyte Induced Spintronic Neural Phase Synchrony

4.3. Learning Phase Correlation
The premise for triggering the synchronous activity via astrocyte
is accredited to the sensory attention as discussed before, and
can be mapped in our proposed system to the amplitude of RF
injection signal. Similar to better binding observed with increased
attention, larger amplitudes lead to improved neural coupling.
The strength of each input current to Na and Nb is controlled by
the synaptic conductances G11−G22 of the memristive cross-bar
array as shown in Figure 5B. Implementation of such cross-bar
arrays with in-situ STDP learning has been previously explored
for spintronic devices (Sengupta et al., 2016; Sengupta and Roy,
2017) and other post-CMOS technologies (Jo et al., 2010; Kuzum
et al., 2011; Saha et al., 2021). It is worth mentioning here
that each cross-connection also features a prior filtering “bias
tee” to eliminate any possible DC current interactions among
different devices. The DC paths of the bias tee are terminated
to ground, while the AC signals get passed on to the cross-bar
for coupling. Elaborating, the input AC current to the jth post-
neuronal device (considering HM resistance to be considerably
lower in comparison to the synaptic resistances at each cross-
point) can be described by Equation (5) as:

Iac,Nj (t) =
∑

i

Gij.Vi(t) (5)

We now elucidate how our proposed architecture captures the
essence of the optical illusion problem, shown in Figure 5, in
reference frame of an observer. Specifically, the system should be
able to adapt and converge to one of the possible interpretation
discussed above. In particular, biologically inspired unsupervised
STDP principles are used to train the programmable synaptic
conductances (G11 − G22) in the cross-bar architecture for
this purpose. The STDP weight (conductance) update equations
are given by: 1w = η+w exp(−1t

τ+
) (for 1t > 0) and

1w = η+w exp(1t
τ+
) (for 1t < 0), where η+ and τ+ are

learning hyperparameters, 1w is the synaptic weight update and
1t is the timing difference between the spikes corresponding
to the selected post- and pre-neuron. The positive learning
window (1t > 0) update occurs whenever a post-neuron
fires while the negative learning window (1t < 0) update
occurs at a pre-neuron firing event. It is worth pointing out
here that we use a symmetric STDP learning rule in this
work, i.e., the synaptic weight is potentiated for both the
positive and negative learning windows. This is in contrast to
the more popular asymmetric STDP observed in glutamatergic
synapses (Bi and Poo, 1998), typically used in neuromorphic
algorithms (Diehl and Cook, 2015). While symmetric STDP
has also been observed in GABAergic synapses (Woodin et al.,
2003), further neuroscience insights are required to substantiate
the exact underlying mechanisms and cause of this plasticity.
Asymmetric STDP is useful in application domains requiring
temporal ordering of spikes, i.e., a pre-synaptic neuron spike
will trigger a post-neuron spike. However, for our scenario, a
temporal correlation is crucial irrespective of the sequence, which
is enabled by the symmetric STDP behavior. Implementation of
symmetric STDP in memristive cross-bar arrays can be easily
achieved by proper waveform engineering of the programming

TABLE 2 | Learning simulation parameters.

Parameters Value

Time-step for LLG simulation 0.1 ps

STDP learning rate, η+ 0.25

STDP time constant, τ+ 5

Inhibition learning rate, η− 0.15

Inhibition time constant, τ− 5

Maximum synapse resistance in cross-bar array 25 k�

voltage applied across the synapses (Serrano-Gotarredona et al.,
2013; Sengupta et al., 2016). The cross-bar resistances are
considered to have an ON/OFF resistance ratio of 10. The
different input spike trains are derived from each device’s
magnetoresistance (MR) where a spike is triggered when the
MR crosses its mean-value of 2 K�. Because N1 (N3) and
N2 (N4) share a common HM, either of them can be used to
extract the pre-neuron spikes during the weight update period.
Besides STDP, a lateral inhibition effect (Diehl and Cook, 2015)
is utilized. Whenever a spike occurs for any pre-neuron (post-
neuron), the corresponding row (column) weights of the array
are potentiated. However, the remaining rows (columns) are
depressed proportionately. The lateral inhibition weight update
equations are given by: 1w = −η−w exp(−1t

τ−
) (for 1t > 0)

and 1w = −η−w exp(1t
τ−
) (for 1t < 0), where η− and τ− are

learning hyperparameters, 1w is the synaptic weight update and
1t is the timing difference corresponding to the symmetric STDP
weight update for the row or column which experiences weight
potentiation. The lateral inhibition scheme is a simple extension
of the synaptic programming voltage waveform engineering
used in prior work (Indiveri et al., 2011; Serrano-Gotarredona
et al., 2013; Sengupta et al., 2016). During the learning phase,
this lateral inhibition effect causes the neuron under study to
start responding selectively toward a specific configuration. This,
in turn, enables the network to later converge to one of the
interpretations for Figure 5A, as mentioned previously. The
network simulation parameters are outlined in Table 2. The
tabulated time-constants are measured with respect to the time-
step for LLG simulation.

4.4. Simulation Results
The net currents for devices A and B, evolving through time, is
portrayed for one of the simulations in Figures 6A,B respectively.
Meanwhile, the corresponding synaptic resistances for the
network are plotted in Figure 6C to elucidate the learning process
discussed previously. The learning phase for the simulation
is plotted as a function of timestep of the LLG simulation
of the MTJ devices (0.1 ps). Observing the temporal profiles,
an interesting deduction can be formulated, confirming that
the different post-neurons get dominantly locked to different
injection frequencies. The two sinusoids, being initially out of
phase and adding up in comparable amounts for post-neurons,
result in very low net currents. But, as the learning progresses,
it becomes clear that one of the frequency gets dominant for a
particular post-neuron, and thus the envelope tends to flatten in
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FIGURE 6 | (A,B) The temporal evolution profiles of the net currents (DC+AC)

flowing through the heavy metal for devices A and B are shown. The

increasing AC amplitudes about the mean DC value can be seen. The relatively

flattened envelopes post-learning suggest that the post-neuron devices are

dominantly locked to one of the frequencies. (C) Temporal evolution of the

cross-bar resistances during the learning process is shown.

the end. It is worth mentioning here that the synaptic learning
simulation in this work was performed from an algorithmic
standpoint in a technology agnostic fashion. Depending on the
underlying synapse technology, prior proposals for peripheral
design for STDP learning needs to be considered (Serrano-
Gotarredona et al., 2013; Sengupta et al., 2016). Since the focus
of this article is on the MTJ neural synchrony aspect, we did
not consider any specific synaptic device programming delay
constraint (which is reflected in the instantaneous state changes
of the synaptic connection strengths in Figure 6C). In reality,
from a system design perspective, we need to have interleaved
synaptic device state update phases that do not interfere with

the neuron oscillation behavior (for instance, through decoupled
write-read phases of three-terminal synaptic devices; Sengupta
et al., 2016). The convergence was also not affected with reduced
programming resolution of the synaptic connections (4-bits),
thereby indicating resiliency to quantization (Hu et al., 2021).

Cohesing to one of the percept should surmise of a
random event to provide equal chance for any of the two
possible configurations to develop. Indeed, it is observed in
our network that the synchronization occurs for random first
and second layer neurons, post-training. Such a phenomenon
can be accredited to the natural thermal fluctuations in our
system, which tend to perturb the MTJ device’s periodic nature.
Figures 7A,B, respectively, depict the FFTs and cross-spectrum
phase for various devices in the network for one such possible
configuration upon learning termination. Specifically, cross-
spectrum phases for device-pairs 1 & A (blue curve), 1 & 3
(yellow curve), and 1 & B (green curve) in Figure 7B are plotted
to highlight that device 1, 2, and A get locked in phase at the
injection frequency (7.05 GHz) while being completely out of
phase with devices 3, 4, and B for the considered configuration.

Figure 8 plots the temporal profile of device
magnetoresistance (MR) for N1,N2, and Na devices in the
top panel, along with MR of N3, N4, and Nb devices shown in
the bottom panel. Initially all neuronal devices, albeit operating
at the same free-running frequency (f free = 7.05 GHz), elicit
un-correlated phases, and hence temporal spike response due to
devices’ inherent thermal noise. After the astrocyte AC signal
injection and STDP learning commences, it is observed that
the devices N1 (N3) and N2 (N4) achieve a gradual coherent
phase along with device Na (Nb), getting locked to the respective
injection signal, as can be clearly seen in the right panels. The
subsequent cross-correlation phase at the 7.05 GHz injection
frequency post-synchronization averages to 1.6232◦ for the
three-possible temporal profile pairs among N1,N2, and Na

(N1 ⋆ N2: 0.88
◦,N2 ⋆ Na: 2.136

◦, and N1 ⋆ Na: 1.856
◦). Likewise,

N3,N4, and Nb after learning, achieve an average cross-phase
of 1.848◦. Bio-physically equivalent, this can be interpreted as a
tight correlation among the attributes 1, 2, and A, corresponding
to one of the interpretations of the bistable image. Finally, an
increasing phase-mismatch is visible in neuronal outputs of all
devices if the synchronization is revoked by the astrocyte, and
the devices revert to their uncorrelated original free running
frequency. This can be attributed to a diverted attention toward
the sensory modal-input features leading to the impairment in
correlated activity.

5. DISCUSSION

Even though this work proves to be a good preliminary
framework for emulating such brain-like functions, more
investigation is required for decoding the neural code in such
processes along with integrating these insights in Artificial
Intelligence (AI) systems. For instance, selectivity bias toward
some features among the myriad available sensory information,
and, reductionism (down-streaming) of such higher-level modal
inputs to local neuronal groups in the hierarchical structure,
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FIGURE 7 | (A) FFT plots for all devices for one of the two possible configurations are shown post-learning. (B) Cross-spectrum phase for devices-pairs 1–3

(178.53◦), 1-A (3.35◦), and 1-B (178.3◦) are plotted to show the phase-locking nature of the network post-learning at the injection frequency of 7.05 GHz.

FIGURE 8 | Temporal profile for the devices in the network (shown in Figure 5B) before (left) and after synchronization (right) are depicted for one particular

configuration. Astrocyte functionality activates the synchronous regime causing learning to occur and subsequently coherent neural patterns are achieved for this

configuration (a stochastic event). Devices N1, N2, and Na (top-right panel) lock to injection signal with φ = 0◦, while devices N3, N4, and Nb reveal concerted neural

patterns in conjunction to φ = 180◦ injection signal (bottom-right panel).

is poorly understood. There have been some efforts to study
such processes using a reverse approach, where robots like
Darwin VIII, inspired by the re-entrant neuroanatomy and
synaptic plasticity, are developed and trained on visual mode
data (Seth et al., 2004). In agreement with our work, they show
synchronous activity binds different representative features of the
detected object. Incorporating such connections in our system
can be explored to further bridge the gap between real cortical
networks and the respective inspired models. Supported by both
neuroscience research and AI hardware developments, coupled
astrocyte-neuron network architectures can potentially pave the
way for a new generation of artificial cognitive-intelligence.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the writing of the paper,
developing the concepts, and performing the simulations.

FUNDING

The work was supported in part by the National Science
Foundation grant nos. BCS #2031632, ECCS #2028213, and
CCF #1955815.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.699632/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 69963268

https://www.frontiersin.org/articles/10.3389/fnins.2021.699632/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Garg et al. Astrocyte Induced Spintronic Neural Phase Synchrony

REFERENCES

Allam, S. L., Ghaderi, V. S., Bouteiller, J.-M. C., Legendre, A., Nicolas, A.,

Greget, R., et al. (2012). A computational model to investigate astrocytic

glutamate uptake influence on synaptic transmission and neuronal spiking.

Front. Comput. Neurosci. 6:70. doi: 10.3389/fncom.2012.00070

Bartels, A., and Zeki, S. (2006). The temporal order of binding visual attributes.

Vis. Res. 46, 2280–2286. doi: 10.1016/j.visres.2005.11.017

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

De Pittá, M., Volman, V., Berry, H., Parpura, V., Volterra, A., and Ben-

Jacob, E. (2012). Computational quest for understanding the role of astrocyte

signaling in synaptic transmission and plasticity. Front. Comput. Neurosci. 6:98.

doi: 10.3389/fncom.2012.00098

Demidov, V., Ulrichs, H., Gurevich, S., Demokritov, S., Tiberkevich, V.,

Slavin, A., et al. (2014). Synchronization of spin hall nano-oscillators to

external microwave signals. Nat. Commun. 5, 1–6. doi: 10.1038/ncomms

4179

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Elyasi, M., Bhatia, C. S., and Yang, H. (2015). Synchronization of spin-transfer

torque oscillators by spin pumping, inverse spin hall, and spin hall effects. J.

Appl. Phys. 117:063907. doi: 10.1063/1.4907914

Fan, D., Maji, S., Yogendra, K., Sharad, M., and Roy, K. (2015). Injection-

locked spin hall-induced coupled-oscillators for energy efficient

associative computing. IEEE Trans. Nanotechnol. 14, 1083–1093.

doi: 10.1109/TNANO.2015.2471092

Faramarzi, F., Azad, F., Amiri, M., and Linares-Barranco, B. (2019).

A neuromorphic digital circuit for neuronal information encoding

using astrocytic calcium oscillations. Front. Neurosci. 13:998.

doi: 10.3389/fnins.2019.00998

Feldman, J. (2013). The neural binding problem(s). Cogn. Neurodyn. 7, 1–11.

doi: 10.1007/s11571-012-9219-8

Fell, J., and Axmacher, N. (2011). The role of phase synchronization

in memory processes. Nat. Rev. Neurosci. 12, 105–118. doi: 10.1038/

nrn2979

Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P. G., and Carmignoto,

G. (2004). Neuronal synchrony mediated by astrocytic glutamate

through activation of extrasynaptic nmda receptors. Neuron 43, 729–743.

doi: 10.1016/j.neuron.2004.08.011

Fields, R. D., Araque, A., Johansen-Berg, H., Lim, S.-S., Lynch, G., Nave, K.-A.,

et al. (2014). Glial biology in learning and cognition.Neuroscientist 20, 426–431.

doi: 10.1177/1073858413504465

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal

communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480.

doi: 10.1016/j.tics.2005.08.011

Garbo], A. D., Barbi, M., Chillemi, S., Alloisio, S., and Nobile, M. (2007). Calcium

signalling in astrocytes and modulation of neural activity. Biosystems 89, 74–83.

doi: 10.1016/j.biosystems.2006.05.013

Georges, B., Grollier, J., Darques, M., Cros, V., Deranlot, C., Marcilhac, B.,

et al. (2008). Coupling efficiency for phase locking of a spin transfer

nano-oscillator to a microwave current. Phys. Rev. Lett. 101:017201.

doi: 10.1103/PhysRevLett.101.017201

Hasz, B., and Miller, P. (2013). Storing autoassociative memories through gamma-

frequency binding between cell assemblies of neural oscillators (Thesis). Brandeis

University, Waltham, MA, United States

Haydon, P. G., and Carmignoto, G. (2006). Astrocyte control of synaptic

transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031.

doi: 10.1152/physrev.00049.2005

Hirsch, J. (1999). Spin Hall effect. Phys. Rev. Lett. 83:1834.

doi: 10.1103/PhysRevLett.83.1834

Hu, S., Qiao, G., Chen, T., Yu, Q., Liu, Y., and Rong, L. (2021). Quantized STDP-

based online-learning spiking neural network. Neural Comput. Appl. 1–16.

doi: 10.1007/s00521-021-05832-y

Ignatov, M., Ziegler, M., Hansen, M., and Kohlstedt, H. (2017). Memristive

stochastic plasticity enables mimicking of neural synchrony: memristive circuit

emulates an optical illusion. Sci. Adv. 3:e1700849. doi: 10.1126/sciadv.1700849

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Irizarry-Valle, Y., and Parker, A. C. (2015). An astrocyte neuromorphic circuit

that influences neuronal phase synchrony. IEEE Trans. Biomed. Circ. Syst. 9,

175–187. doi: 10.1109/TBCAS.2015.2417580

Irizarry-Valle, Y., Parker, A. C., and Joshi, J. (2013). “A CMOS neuromorphic

approach to emulate neuro-astrocyte interactions,” in The 2013 International

Joint Conference on Neural Networks (IJCNN), Dallas, TX, 1–7.

doi: 10.1109/IJCNN.2013.6707076

Jackson, B. L., Rajendran, B., Corrado, G. S., Breitwisch, M., Burr, G.W., Cheek, R.,

et al. (2013). Nanoscale electronic synapses using phase change devices. ACM J.

Emerg. Technol. Comput. Syst. 9:12. doi: 10.1145/2463585.2463588

Jaeger, H., and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic

systems and saving energy in wireless communication. Science 304, 78–80.

doi: 10.1126/science.1091277

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.

10, 1297–1301. doi: 10.1021/nl904092h

Joshi, J., Parker, A. C., and Tseng, K. (2011). “An in-silico glial microdomain to

invoke excitability in cortical neural networks,” in 2011 IEEE International

Symposium of Circuits and Systems (ISCAS), Rio de Janeiro 681–684.

doi: 10.1109/ISCAS.2011.5937657

Julliere, M. (1975). Tunneling between ferromagnetic films. Phys. Lett. A 54,

225–226. doi: 10.1016/0375-9601(75)90174-7

Karimi, G., Ranjbar, M., Amirian, M., and Shahim-aeen, A. (2018). A

neuromorphic real-time VLSI design of Ca2+ dynamic in an astrocyte.

Neurocomputing 272, 197–203. doi: 10.1016/j.neucom.2017.06.071

Kosiorek, A., Bewley, A., and Posner, I. (2017). “Hierarchical attentive recurrent

tracking,” in Advances in Neural Information Processing Systems 30, eds I.

Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett (Long Beach, CA: Curran Associates, Inc.), 3053–3061.

Kuzum, D., Jeyasingh, R. G., Lee, B., and Wong, H.-S. P. (2011). Nanoelectronic

programmable synapses based on phase change materials for brain-inspired

computing. Nano Lett. 12, 2179–2186. doi: 10.1021/nl201040y

Lee, R. K., and Parker, A. C. (2016). “A CMOS circuit implementation

of retrograde signaling in astrocyte-neuron networks,” in 2016 IEEE

Biomedical Circuits and Systems Conference (BioCAS), Shanghai 588–591.

doi: 10.1109/BioCAS.2016.7833863

Manninen, T., Havela, R., and Linne, M.-L. (2018). Computational models

for calcium-mediated astrocyte functions. Front. Comput. Neurosci. 12:14.

doi: 10.3389/fncom.2018.00014

Matsumoto, R., Lequeux, S., Imamura, H., and Grollier, J. (2019).

Chaos and relaxation oscillations in spin-torque windmill spiking

oscillators. Phys. Rev. Appl. 11:044093. doi: 10.1103/PhysRevApplied.11.04

4093

Milner, P. M. (1974). A model for visual shape recognition. Psychol. Rev. 81,

521–535. doi: 10.1037/h0037149

Möller, C., Lücke, J., Zhu, J., Faustmann, P. M., and von der Malsburg,

C. (2007). Glial cells for information routing? Cogn. Syst. Res. 8, 28–35.

doi: 10.1016/j.cogsys.2006.07.001

Naeem, M., McDaid, L. J., Harkin, J., Wade, J. J., and Marsland, J. (2015). On the

role of astroglial syncytia in self-repairing spiking neural networks. IEEE Trans.

Neural Netw. Learn. Syst. 26, 2370–2380. doi: 10.1109/TNNLS.2014.2382334

Nazari, S., Faez, K., Amiri, M., and Karami, E. (2015). A digital implementation of

neuron-astrocyte interaction for neuromorphic applications. Neural Netw. 66,

79–90. doi: 10.1016/j.neunet.2015.01.005

Newman, E. A. (2003). New roles for astrocytes: regulation

of synaptic transmission. Trends Neurosci. 26, 536–542.

doi: 10.1016/S0166-2236(03)00237-6

Polykretis, I., Tang, G., and Michmizos, K. P. (2020). “An astrocyte-modulated

neuromorphic central pattern generator for hexapod robot locomotion on

Intel’s loihi,” in International Conference on Neuromorphic Systems 2020, Oak

Ridge, TN 1–9. doi: 10.1145/3407197.3407205

Frontiers in Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 69963269

https://doi.org/10.3389/fncom.2012.00070
https://doi.org/10.1016/j.visres.2005.11.017
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.3389/fncom.2012.00098
https://doi.org/10.1038/ncomms4179
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1063/1.4907914
https://doi.org/10.1109/TNANO.2015.2471092
https://doi.org/10.3389/fnins.2019.00998
https://doi.org/10.1007/s11571-012-9219-8
https://doi.org/10.1038/nrn2979
https://doi.org/10.1016/j.neuron.2004.08.011
https://doi.org/10.1177/1073858413504465
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1016/j.biosystems.2006.05.013
https://doi.org/10.1103/PhysRevLett.101.017201
https://doi.org/10.1152/physrev.00049.2005
https://doi.org/10.1103/PhysRevLett.83.1834
https://doi.org/10.1007/s00521-021-05832-y
https://doi.org/10.1126/sciadv.1700849
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TBCAS.2015.2417580
https://doi.org/10.1109/IJCNN.2013.6707076
https://doi.org/10.1145/2463585.2463588
https://doi.org/10.1126/science.1091277
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/ISCAS.2011.5937657
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/j.neucom.2017.06.071
https://doi.org/10.1021/nl201040y
https://doi.org/10.1109/BioCAS.2016.7833863
https://doi.org/10.3389/fncom.2018.00014
https://doi.org/10.1103/PhysRevApplied.11.044093
https://doi.org/10.1037/h0037149
https://doi.org/10.1016/j.cogsys.2006.07.001
https://doi.org/10.1109/TNNLS.2014.2382334
https://doi.org/10.1016/j.neunet.2015.01.005
https://doi.org/10.1016/S0166-2236(03)00237-6
https://doi.org/10.1145/3407197.3407205
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Garg et al. Astrocyte Induced Spintronic Neural Phase Synchrony

Ramakrishnan, S., Hasler, P. E., and Gordon, C. (2011). Floating gate synapses with

spike-time-dependent plasticity. IEEE Trans. Biomed. Circ. Syst. 5, 244–252.

doi: 10.1109/TBCAS.2011.2109000

Ranjbar, M., and Amiri, M. (2016). Analog implementation of neuron-

astrocyte interaction in tripartite synapse. J. Comput. Electron. 15, 311–323.

doi: 10.1007/s10825-015-0727-8

Ranjbar, M., and Amiri, M. (2017). On the role of astrocyte analog circuit

in neural frequency adaptation. Neural Comput. Appl. 28, 1109–1121.

doi: 10.1007/s00521-015-2112-8

Rastogi, M., Lu, S., Islam, N., and Sengupta, A. (2020). On the self-repair role of

astrocytes in STDP enabled unsupervised SNNs. Front. Neurosci. 14:603796.

doi: 10.3389/fnins.2020.603796

Riou, M., Torrejon, J., Garitaine, B., Abreu Araujo, F., Bortolotti, P., Cros, V.,

et al. (2019). Temporal pattern recognition with delayed-feedback spin-torque

nano-oscillators. Phys. Rev. Appl. 12:024049. doi: 10.1103/PhysRevApplied.12.0

24049

Rippard, W., Pufall, M., and Kos, A. (2013). Time required to injection-

lock spin torque nanoscale oscillators. Appl. Phys. Lett. 103:182403.

doi: 10.1063/1.4821179

Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J., Russek, S. E., and

Katine, J. A. (2005). Injection locking and phase control of spin transfer

nano-oscillators. Phys. Rev. Lett. 95:067203. doi: 10.1103/PhysRevLett.95.06

7203

Romera, M., Talatchian, P., Tsunegi, S., Abreu Araujo, F., Cros, V., Bortolotti, P.,

et al. (2018). Vowel recognition with four coupled spin-torque nano-oscillators.

Nature 563, 230–234. doi: 10.1038/s41586-018-0632-y

Romera, M., Talatchian, P., Tsunegi, S., Yakushiji, K., Fukushima, A., Kubota, H.,

et al. (2020). Binding events through the mutual synchronization of spintronic

nano-neurons. arXiv [Preprint] arXiv:2001.08044.

Saha, A., Islam, A., Zhao, Z., Deng, S., Ni, K., and Sengupta, A. (2021). Intrinsic

synaptic plasticity of ferroelectric field effect transistors for online learning.

arXiv preprint arXiv:2107.13088.

Scholz,W., Schrefl, T., and Fidler, J. (2001).Micromagnetic simulation of thermally

activated switching in fine particles. J. Magn. Magn. Mater. 233, 296–304.

doi: 10.1016/S0304-8853(01)00032-4

Sengupta, A., Banerjee, A., and Roy, K. (2016). Hybrid spintronic-cmos

spiking neural network with on-chip learning: devices, circuits, and

systems. Phys. Rev. Appl. 6:064003. doi: 10.1103/PhysRevApplied.6.0

64003

Sengupta, A., and Roy, K. (2017). Encoding neural and synaptic

functionalities in electron spin: a pathway to efficient neuromorphic

computing. Appl. Phys. Rev. 4:041105. doi: 10.1063/1.50

12763

Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G.,

and Linares-Barranco, B. (2013). STDP and STDP variations with

memristors for spiking neuromorphic learning systems. Front. Neurosci.

7:2. doi: 10.3389/fnins.2013.00002

Seth, A. K., McKinstry, J. L., Edelman, G. M., and Krichmar, J. L. (2004).

Visual Binding through reentrant connectivity and dynamic synchronization

in a brain-based device. Cereb. Cortex 14, 1185–1199. doi: 10.1093/cercor/

bhh079

Shepard, R. N. (1990). Mind Sights: Original Visual Illusions, Ambiguities, and

Other Anomalies, With a Commentary on the Play of Mind in Perception and

Art. New York, NY: W H Freeman; Times Books; Henry Holt & Co.

Torrejon, J., Riou, M., Araujo, F. A., Tsunegi, S., Khalsa, G., Querlioz, D., et al.

(2017). Neuromorphic computing with nanoscale spintronic oscillators.Nature

547:428. doi: 10.1038/nature23011

Tsunegi, S., Taniguchi, T., Nakajima, K., Miwa, S., Yakushiji, K., Fukushima, A.,

et al. (2019). Physical reservoir computing based on spin torque oscillator with

forced synchronization. Appl. Phys. Lett. 114:164101. doi: 10.1063/1.5081797

Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to

communication elements: the revolution continues. Nat. Rev. Neurosci. 6,

626–640. doi: 10.1038/nrn1722

Wade, J., McDaid, L., Harkin, J., Crunelli, V., and Kelso, S. (2012). Self-repair in

a bidirectionally coupled astrocyte-neuron (an) system based on retrograde

signaling. Front. Comput. Neurosci. 6:76. doi: 10.3389/fncom.2012.00076

Wade, J. J., McDaid, L. J., Harkin, J., Crunelli, V., and Kelso, J. A. S. (2011).

Bidirectional coupling between astrocytes and neurons mediates learning and

dynamic coordination in the brain: a multiple modeling approach. PLoS ONE

6:e29445. doi: 10.1371/journal.pone.0029445

Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes.

Trends Cogn. Sci. 7, 553–559. doi: 10.1016/j.tics.2003.10.012

Whitney, D. (2009). Neuroscience: toward unbinding the binding problem. Curr.

Biol. 19, R251-R253. doi: 10.1016/j.cub.2009.01.047

Womelsdorf, T., and Fries, P. (2007). The role of neuronal synchronization

in selective attention. Curr. Opin. Neurobiol. 17, 154–160.

doi: 10.1016/j.conb.2007.02.002

Woodin, M. A., Ganguly, K., and Poo, M.-m. (2003). Coincident

pre-and postsynaptic activity modifies gabaergic synapses by

postsynaptic changes in CL- transporter activity. Neuron 39, 807–820.

doi: 10.1016/S0896-6273(03)00507-5

Yogendra, K., Liyanagedera, C., Fan, D., Shim, Y., and Roy, K. (2017). Coupled

spin-torque nano-oscillator-based computation: a simulation study. ACM J.

Emerg. Technol. Comput. Syst. 13, 1–24. doi: 10.1145/3064835

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Garg, Yang and Sengupta. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 69963270

https://doi.org/10.1109/TBCAS.2011.2109000
https://doi.org/10.1007/s10825-015-0727-8
https://doi.org/10.1007/s00521-015-2112-8
https://doi.org/10.3389/fnins.2020.603796
https://doi.org/10.1103/PhysRevApplied.12.024049
https://doi.org/10.1063/1.4821179
https://doi.org/10.1103/PhysRevLett.95.067203
https://doi.org/10.1038/s41586-018-0632-y
https://doi.org/10.1016/S0304-8853(01)00032-4
https://doi.org/10.1103/PhysRevApplied.6.064003
https://doi.org/10.1063/1.5012763
https://doi.org/10.3389/fnins.2013.00002
https://doi.org/10.1093/cercor/bhh079
https://doi.org/10.1038/nature23011
https://doi.org/10.1063/1.5081797
https://doi.org/10.1038/nrn1722
https://doi.org/10.3389/fncom.2012.00076
https://doi.org/10.1371/journal.pone.0029445
https://doi.org/10.1016/j.tics.2003.10.012
https://doi.org/10.1016/j.cub.2009.01.047
https://doi.org/10.1016/j.conb.2007.02.002
https://doi.org/10.1016/S0896-6273(03)00507-5
https://doi.org/10.1145/3064835
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


HYPOTHESIS AND THEORY
published: 21 December 2021

doi: 10.3389/fnins.2021.750748

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 750748

Edited by:

Yoeri van de Burgt,

Eindhoven University of Technology,

Netherlands

Reviewed by:

Yang Cindy Yi,

Virginia Tech, United States

Maryam Parsa,

George Mason University,

United States

*Correspondence:

Paul Tschirhart

paul.tschirhart@ngc.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 12 August 2021

Accepted: 08 November 2021

Published: 21 December 2021

Citation:

Tschirhart P and Segall K (2021)

BrainFreeze: Expanding the

Capabilities of Neuromorphic Systems

Using Mixed-Signal Superconducting

Electronics.

Front. Neurosci. 15:750748.

doi: 10.3389/fnins.2021.750748

BrainFreeze: Expanding the
Capabilities of Neuromorphic
Systems Using Mixed-Signal
Superconducting Electronics

Paul Tschirhart 1* and Ken Segall 1,2

1 Advanced Technology Laboratory, Northrop Grumman, Linthicum, MD, United States, 2Department of Physics and

Astronomy, Colgate University, Hamilton, NY, United States

Superconducting electronics (SCE) is uniquely suited to implement neuromorphic

systems. As a result, SCE has the potential to enable a new generation of neuromorphic

architectures that can simultaneously provide scalability, programmability, biological

fidelity, on-line learning support, efficiency and speed. Supporting all of these capabilities

simultaneously has thus far proven to be difficult using existing semiconductor

technologies. However, as the fields of computational neuroscience and artificial

intelligence (AI) continue to advance, the need for architectures that can provide

combinations of these capabilities will grow. In this paper, we will explain how

superconducting electronics could be used to address this need by combining analog

and digital SCE circuits to build large scale neuromorphic systems. In particular, we

will show through detailed analysis that the available SCE technology is suitable for

near term neuromorphic demonstrations. Furthermore, this analysis will establish that

neuromorphic architectures built using SCE will have the potential to be significantly

faster and more efficient than current approaches, all while supporting capabilities

such as biologically suggestive neuron models and on-line learning. In the future,

SCE-based neuromorphic systems could serve as experimental platforms supporting

investigations that are not feasible with current approaches. Ultimately, these systems

and the experiments that they support would enable the advancement of neuroscience

and the development of more sophisticated AI.

Keywords: neuromorphic, architecture, superconducting, mixed-signal, spiking

1. INTRODUCTION

Superconducting electronics (SCE) has many characteristics that make it a natural fit for
implementing neuromorphic systems. This work will explore how such a system might be
constructed using a combination of digital and analog SCE. The unique collection of capabilities
enabled by SCE neuromorphic systems has the potential to provide solutions to some of the most
difficult problems facing AI research in the future. In particular, the efficiency and speed of SCE
architectures could help to address the compute challenges facing AI development. Similarly, the
biological fidelity that is possible in SCE-based neural circuits may also prove to be a valuable
source of future capabilities as researchers seek to incorporate novel functionality into their
neural networks.

71

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.750748
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.750748&domain=pdf&date_stamp=2021-12-21
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paul.tschirhart@ngc.com
https://doi.org/10.3389/fnins.2021.750748
https://www.frontiersin.org/articles/10.3389/fnins.2021.750748/full


Tschirhart and Segall BrainFreeze

The amount of computation required to train more
sophisticated AI applications is one of the most significant
problems facing the development of these applications. As
machine learning applications have advanced in terms of
capabilities, their training requirements have also greatly
increased. In Figure 1 we can see that over the last decade, the
amount of compute required to train new machine learning
applications has grown much faster than the performance
improvement in computing hardware. If this trend continues,
then training times for future machine learning applications will
become prohibitively long and eventually untenable.

As more advanced machine learning applications are
developed, understanding and incorporating more complex
system dynamics will likely be required to provide novel
functionality. Inspiration for the form and function of these
dynamics could potentially come from biological brains as was
the case with the very concept of neural networks (Sompolinsky,
2014). However, efforts to understand the purpose of biological
neural dynamics are limited by the significant computational
requirements of accurate models of biological neurons. Current
approaches generally struggle to simultaneously support the
complexity, scale, and length of the experiments that would
ideally explore these dynamics.

These trends suggest that a paradigm shift is needed in
the area of neuromorphic computing in order to address both
the need for novel functionality and the need for improved

FIGURE 1 | This graph shows that compute requirements for training novel AI applications is growing at a much faster rate than improvements in compute

performance. This figure expands on the analysis presented in Amodei et al. (2018). The AI application data is from Hinton et al. (2012), Mnih et al. (2013), Simonyan

and Zisserman (2014), Sutskever et al. (2014), Zeiler and Fergus (2014), Szegedy et al. (2015), Amodei et al. (2016), He et al. (2016), Wu et al. (2016), Zoph and Le

(2016), Chollet (2017), Krizhevsky et al. (2017), Silver et al. (2017b), Silver et al. (2017a), and Vinyals et al. (2019). The GPU data is the maximum theoretical single

precision floating point operations per second for the NVIDIA Titan, TitanX, TitanV, and TitanRTX GPUs. The HPC data is the maximum theoretical double precision

floating point operations per second for the Sequoia, Tianhe-2, TaihuLight, and Summit supercomputers.

support for training. Existing neuromorphic approaches provide
a set of capabilities that include scalability, programmability,
on-line learning support, complex soma models, efficiency,
and accelerated simulation timescales. However, to the best of
our knowledge, no architecture has been able to provide all
of these capabilities simultaneously. Instead, each design has
been optimized for one or more of the capabilities at the
cost of others (Furber, 2016). Enabling all of these capabilities
simultaneously would be a significant step in the development
of neuromorphic systems that will meet the future needs of
machine learning applications and computational neuroscience
experiments. Superconducting electronics has the potential to
support all of these capabilities simultaneously but serious
challenges need to be overcome with either architecture or device
solutions in order to realize that potential.

A successful superconducting architecture needs to be scalable
and programmable. To satisfy these requirements, we propose
a mixed-signal approach that combines superconducting digital
logic with superconducting analog neuron circuits. To investigate
the suitability of possible SCE mixed-signal architectures, this
work presents a series of trade-off studies using numerical
analysis based on measurements and designs from previously
demonstrated circuits. It is important to note that this work
represents an early feasibility study and that additional research
is required to fully develop the architecture and ideas discussed
here. This work will hopefully motivate future work in this area
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that will result in the development of efficient, fast, and scalable
neuromorphic systems that are also programmable, biologically
suggestive, and capable of supporting on-line learning. Such
systems could provide a critical platform that is needed for future
AI development as well as computational neuroscience research.

The main contributions of this paper are:

• A description of a novel mixed-signal superconducting
neuromorphic architecture

• A detailed analysis of the design trade-offs and feasibility of
mixed-signal superconducting neuromorphic architectures

• A comparison of the proposed system with other state-of-the-
art neuromorphic architectures

• A discussion of the potential of superconducting
neuromorphic systems in terms of on-line learning support
and large system scaling.

2. BACKGROUND

2.1. Neuromorphic State-of-the-Art
Neuromorphic computers are designed to replicate the structures
and behaviors of the biological brain using analog or digital
hardware or a mixture of both. By mimicking biology,
neuromorphic computers are able to incorporate characteristics
that support novel applications and research. There have been
many different approaches to building these sorts of systems
each with its own priorities and innovations. Five large-scale
neuromorphic systems that we considered to be representative
of the current state-of-the-art are compared in Table 1. This
comparison is intended to be a brief sample of the current state
of the field rather than a comprehensive review. As a result,
there are other compelling approaches that are not included in
this comparison.

It is worth noting that it is possible make use of
novel technologies, such as phase change memory (PCM) or
Memristors to efficiently implement the functionality of different
portions of the neuron (Ebong and Mazumder, 2012; Soudry
et al., 2015; Sebastian et al., 2018). However, a review of the
literature failed to locate an example large scale implementation
of these approaches that provided the relevant details andmetrics
that would be needed evaluate it relative to the other approaches
considered here. As a result, these sorts of approaches are not
considered in the comparison in Table 1 which is focused on
large scale implementations of spiking neuromorphic systems.

The primary characteristic that the approaches in Table 1 have
in common is that they are designed to enable scaling to millions
of neurons and billions of synapses. To achieve that scale several
critical design decisions must be made regarding the complexity
of the neuron model, the number and resolution of synapses to
allow per neuron in the design, and the interconnect scheme
used to communicate between the neurons. These decisions,
in turn, affect how many neurons the system can reasonably
accommodate, the power that is consumed, and the speed with
which the system can update the neuron models. In some cases
these decisions also limit or preclude functionality such as on-line
learning (Benjamin et al., 2014).

Perhaps the most fundamental design decision of
neuromorphic architectures is how much detail to support
in the neuron model. It is possible to implement biologically
relevant models using semiconductor electronics but this
approach typically requires prohibitively complex circuit designs
that have reduced yield probabilities and scaling limitations
(Arthur and Boahen, 2011). An example of this trade off can be
seen by comparing IBM’s TrueNorth which used a completely
digital design to implement a million LIF neurons on a single
chip (Merolla et al., 2014) and BrainScales which used a mixed
signal approach to implement a more detailed neuron model
in a wafer scale system (Schemmel et al., 2010; Meier, 2015).
In the case of TrueNorth, the neuron model is power and area
efficient but does not capture many biological details in a single
instance (Cassidy et al., 2013b). BrainScales, on the other hand,
uses a more complex model but the power used by the system
is significant with 1.3 W required for just 512 neurons (Furber,
2016). This is roughly 1000–10,000x more power per neuron
than is needed by large neuromorphic systems that use simplified
neuron models (Furber, 2016).

Another interesting design decision concerns the interconnect
scheme used to enable communication between the neurons.
Aspects of these schemes, such as whether the messaging is
unicast or multicast and what network topology is employed,
ultimately determine the bandwidth and latency characteristics
of the network. These decisions also affect the complexity of the
routers required to implement the network. SpiNNaker is an
approach that devotes a lot of effort to solving the networking
problems posed by the need for thousands of synapses per
neuron (Rast et al., 2008; Furber et al., 2013, 2014). Instead
of implementing the neuron model directly in hardware like
the other approaches that are featured in Table 1, SpiNNaker
uses a software neuron model implementation running on ARM
cores that enables flexibility in terms of model choice. As a
result, SpiNNaker does not directly improve the time it takes to
update individual neurons relative to a software only approach.
However, the innovations in the SpiNNaker network enable it
to achieve impressive scales and performance despite lacking a
hardware-based neuron model. Additional details regarding the
design of communication networks can be found in Young et al.
(2019).

Modern neuromorphic systems can achieve impressive scales
and performance while using relatively little power. However, all
of the current approaches have drawbacks that can ultimately
be traced to technology limitations. It is possible that pursuing
a neuromorphic system in a different technology, such as SCE,
could open up new possibilities in terms of system capabilities.

2.2. Superconducting Digital Electronics
Development
Recently, the field of superconducting digital electronics
has been reinvigorated by the IARPA C3 and SuperTools
programs. As a result, the capabilities of superconducting
digital electronics have been significantly improved and are
ready for use in novel architectures. In particular, the C3
program has significantly helped to drive progress in this area
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TABLE 1 | A comparison of representative large scale spiking neuromorphic architectures.

BrainScaleS Neurogrid TrueNorth SpiNNaker Loihi

Feature size 180 nm 180nm 28nm 130 nm 14nm

Neurons per core 8–512 65 k 256 1 k 1 k

Synapses per core 130 k 100 M 65 k 1 M 16 k

Technology Analog Analog Digital Digital Digital

Soma model AEIF AQIF LIF Variable Variable

Soma equiv FLOPS 15 12 ∼5 Variable (∼13) Variable (∼5)

Synapse resolution 4 bits 13 bits shared 1 bit Variable 1–64 bits

Run-time plasticity STDP No No Variable Variable

Interconnect
Hierarchical Tree 2D Mesh 2D Toroidal Mesh 2D Mesh

Multicast Unicast Multicast Unicast

Watts/Neuron 2.54mW 2.31µW 0.72 nW 62.5µW < 5µW

Joules/Spike 198pJ 119pJ 26pJ 11 nJ 23.6 pJ

The overall comparison expands on analysis from Furber (2016).

Sources for architecture details are Rast et al. (2008), Schemmel et al. (2010), Benjamin et al. (2014), Furber et al. (2013, 2014), Merolla et al. (2014), Meier (2015), Davies et al. (2018),

Lin et al. (2018), and Yang and Kim (2020).

Soma Equivalent FLOPS refers to the number of floating point operations required to advance the soma model by a 1 ms time step when the model is implemented in software. This

provides a very rough comparison of the complexity of the models that each architecture implements. TrueNorth, SpiNNaker, and Loihi all use soma models that incorporate varying

degrees of programmability that allow for a range of model complexities. For the purposes of this comparison we assume an LIF model as the baseline configuration for TrueNorth and

Loihi because that is what is reported in the literature (Cassidy et al., 2013b; Furber, 2016; Davies et al., 2018). Both approaches use a modified LIF model that would likely require

more computation to simulate than a standard LIF model however it is unclear how much. SpiNNaker is assumed to use an Izhikevich model. FLOPS values are from Izhikevich (2004)

and Makhlooghpour et al. (2016).

(Manheimer, 2015). C3 sought to address the unsustainable
power demands of future CMOS-based supercomputers by
developing energy efficient superconducting processors. To
accomplish this goal, the program was divided into two thrusts
with one focusing on developing digital logic and the other
focusing on memory.

The digital logic portion of the program focused on the
development of a processor with one of two competing families
of superconducting digital logic: eRSFQ (Kirichenko et al.,
2012) and RQL (Herr et al., 2011). The initial work of
both the eRSFQ and RQL teams involved developing and
demonstrating designs for basic processor components such as
adders, shifters, and control logic. The eRSFQ team adopted
a bit-sliced architecture for their processor while the RQL
team used a more traditional bit-parallel architecture. Over
the course of the program, 8-bit and 16-bit adders were
successfully designed and demonstrated by the RQL team. In
addition, other complex control circuits were also designed and
demonstrated in RQL. These results established the feasibility
of utilizing superconducting electronics to build complex,
large scale processors. Designs for 8-bit and 16-bit Turing
complete processors with integratedmemory were developed and
fabricated as part of the C3 program but are still being evaluated.
Importantly, the process of developing the various digital logic
designs has led to the development of design methodologies
and a better understanding of how to utilize the technology to
efficiently perform computations.

The memory portion of the program focused primarily on
the development of magnetic memories that could provide the
dense arrays needed to support larger scale computation. In
general, superconducting electronics is not currently a dense
technology from a fabrication standpoint. This is most obvious

in the area of memory where the lack of density translates into
a lack of capacity. Magnetic memories provide a solution to
this because their bit cells can be potentially small and packed
tightly together. Several versions of superconducting magnetic
memory were investigated as part of the C3 program including
JMRAM and CSHE (Ye et al., 2014; Aradhya et al., 2016; Dayton
I. M. et al., 2018). In addition, to meet the immediate memory
needs of the processor designs, a non-magnetic memory was also
demonstrated during the program. This memory, NDRO, only
utilizes JJs and so is significantly less dense than the magnetic
memory alternatives. However, its characteristics made it a good
fit for implementing register files and other small memory
arrays that support the operation of a processor (Burnett et al.,
2018).

In addition to the C3 program, other researchers have also
been working to develop superconducting digital logic. One such
effort that should be mentioned is using another family of logic,
AQFP, to develop adders with the goal of eventually building a
processor. This work has also shown promise and has had some
successful demonstrations (Inoue et al., 2013; Inoue et al., 2015;
Narama et al., 2015).

These developments have laid the groundwork for the
development of larger, more complex digital and mixed-signal
systems using superconducting electronics. Many aspects of
the system architecture that is explored in this work build
upon the successful demonstrations of these programs. For
instance, thememory technologies developed onC3 are critical to
enabling the local storage of synapse weights that are required by
neuromorphic processors. Similarly, the complex control circuits
that have been demonstrated are representative of the control
circuits that will be needed to organize and coordinate the
activities of the neurons across a neuromorphic processor.
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2.3. Superconducting Neuromorphic
Development
Many features of Josephson junctions and superconducting
electronics are advantageous to neuromorphic computing.
Josephson junctions have a well-defined threshold for moving
into the voltage state, similar to the threshold for neurons to emit
action potentials. Low-loss transmission lines can carry pulses
without distortion over long distances, effectively acting as axons
and dendrites. Mutually-coupled superconducting loops can
weight and store circulating currents, helping to perform synaptic
and summing operations. These advantages were noticed by
groups in Japan in the 1990s, who proposed and measured
(Hidaka and Akers, 1991; Mizugaki et al., 1993, 1994; Qian
et al., 1995; Rippert and Lomatch, 1997) the first Josephson-based
circuits to make simple perceptron neural networks. Work has
continued since then, especially over the last 10 years or so. In
this section we review recent developments, focusing specifically
on the biological realism of the soma, analog synaptic weighting,
and extension to larger networks.

The Hodgkin-Huxley model (Hodgkin and Huxley, 1990) is
the standard for the dynamics of the action potential generated
at the soma. It describes the opening and closing of sodium and
potassium ion channels which allow the bi-lipid membrane of the
axon to charge up (polarize) and discharge (depolarize), causing
the rise and fall of the neural spike. The Josephson junction
soma, or JJ soma, is a circuit of two Josephson junctions in
a superconducting loop which displays very similar dynamics
(Crotty et al., 2010). The two junctions act like the sodium and
potassium channels, one allowing magnetic flux to charge up
the loop and the other allowing flux to discharge from the loop.
The result is a soma with biologically realistic dynamics that are
similar to those of the Hodgkin-Huxley model.

The degree of biological realism present in a mathematical
neuronmodel was addressed by Izhikevich (2004), who identified
20 dynamical behaviors possible for neurons. Not all behaviors
are present in all neurons, but the more behaviors that a model
is capable of generating, the more biologically realistic it is.
The Hodgkin-Huxley model, for example, obtains 19 of the
20 behaviors. Recent work in benchmarking the JJ soma has
obtained 18 of the 20 behaviors (Crotty et al., in preparation),
making it more biologically realistic than alternative neuron
models like the Nagumo et al. (1962) or Rose and Hindmarsh
(1989). This high level of biological realism is very impressive
considering it is obtained with only two Josephson junctions
and the circuit is capable of running at very high clock rates
(∼20 GHz).

Biological synapses are responsible for coupling neurons
together. They receive the action potential as their input and
feed forward a small current to the downstream neuron,
an action which is mediated through a chemical system of
neurotransmitters. The amount of the feed-forward current is
dependent on the strength or “weight” of the synapse which
can, in principle, take on many values. Excitatory synapses
have a positive weight and bring the downstream neuron closer
to threshold; inhibitory synapses have a negative weight and
push the downstream neuron away from threshold. Over time

synapses can change their weight due to the coincident firing
of their connecting neurons, a feature called plasticity. Plasticity
allows for unsupervised training in artificial neural networks.

In order to mimic this behavior in an electrical circuit, a

memory element is necessary to hold the weight of the synapse. It
is possible to use a superconducting loop as this memory, holding
a value of flux proportional to the synaptic strength; however,

memory circuits based on loops tend have a large footprint.
Following the variety of magnetic memories in the computer

industry, a new kind of native synapse has recently been
developed (Schneider et al., 2018a,b) using a magnetic doped
Josephson junction. By putting small magnetic nanoparticles
inside the insulating barrier between the two superconductors,
the critical current of the junction can be changed. Since one can
put many of these particles in a single barrier and they can all
be in different orientations, the resulting critical current can take
on essentially a continuum of values, making it an ideal memory
element for the synaptic strength.

In addition to changing the critical current, these magnetic

nanoparticles can alter their orientation in response to a current

pulse across the junction, provided there is an external magnetic

field applied parallel to the junction. This allows for the

possibility of inherent plasticity: the pulsing of action potentials
applied to the magnetic junction changes the orientation of the
nanoparticles and hence the critical current. If this junction
is embedded in a synapse circuit in which the critical current
encodes the value of synaptic strength, then action potentials
which arrive at this circuit will “train” the junction and alter its
weight, similar to plasticity in a biological neuron.

In the analog domain, the maximum fan-in and fan-out of
single neurons will be about 100 or so, limited by parasitic
inductances and fabrication tolerances (Schneider and Segall,
2020). Meanwhile, in the human brain each neuron is connected
to about 10,000 synapses, on average. Although it is not clear
that this level of connectivity is necessary to do interesting and
novel computations, increasing it above the all-electronic level of
100 is certainly worth pursuing. Toward that end, optoelectronic
neurons have been recently been proposed (Shainline et al., 2016;
Buckley S. M. et al., 2017; Buckley et al., 2018; Shainline et al.,
2019). These neurons, operating at low temperatures, receive
single photons and produce faint photonic signals. In between,
photonic communication can be used to route synaptic signals
over long distances through the network. Several aspects of such
an integrated system have been demonstrated, including light
sources, detectors and full optical links at 4K (Buckley S. et al.,
2017) and passive photonic routing networks utilizing multiple
planes of waveguides (Chiles et al., 2018). The superconducting
neurons which interface with these photonic networks are similar
kinds of Josephson neuron circuits (Shainline et al., 2019;
Shainline, 2020).

In short, there is a growing “toolbox” of superconducting
neuromorphic circuits which can be incorporated into spiking
neural networks. One can, in fact, use these circuits on their
own to design a fully-dedicated, analog neuromorphic processor.
Our approach has been instead to combine some of these analog
neuromorphic circuits with superconducting digital logic in a
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mixed-signal configuration, which we believe will ultimately
result in more flexibility, scalability and programmability.

3. SUPERCONDUCTING MIXED-SIGNAL
NEUROMORPHIC ARCHITECTURE

This work builds upon recent developments in SCE and
superconducting neuromorphic systems by proposing a
novel mixed-signal SCE neuromorphic design: BrainFreeze.
The proposed architecture combines previously explored
bio-inspired analog neuron circuits with established digital
technology to enable scalability and programmability that
is not possible in other superconducting approaches. This
is because the digital SCE components of the architecture
facilitate time-multiplexing, programmable synapse weights,
and programmable neuron connections. The time-multiplexing
supported by the architecture allows multiple neurons in
the simulated network to take turns using some of the same
physical components, such as the pipelined digital accumulator.
This helps to improve the effective density of the hardware.
Communication between neurons in BrainFreeze is performed
by a digital network like the one used by other large scale
neuromorphic approaches. The digital network allows the
architecture to share the wires that are used to connect the
neuron cores between multiple simulated neurons. This avoids
the need to provide a dedicated physical wire to connect each
pair of neurons and thereby greatly improves scalability. The
arbitrary connectivity provided by the digital network also
allows BrainFreeze to implement a wide variety of neural
network organizations by reprogramming the routing tables
in the network. In this way, BrainFreeze leverages both recent
developments in SCE digital logic and innovations from large
scale semiconductor neuromorphic architectures to overcome
the primary challenges facing SCE neuromorphic systems.

The BrainFreeze architecture is comprised of 7 major
components in its most basic form: control circuitry, a
network interface, a spike buffer, a synapse weight memory, an
accumulator, a DAC, and at least one analog soma circuit. A
block diagram of the overall architecture can be seen in Figure 2.
We refer to one instance of this architecture as a Neuron
Core. The control circuitry ensures that the correct spike buffer
entries, synapse weights and other states are used on each time
step. The network interface handles address event representation
(AER) (Mahowald, 1992; Boahen, 2000; Park et al., 2017)
packet formation and interpretation as well as interactions
with the network router. The spike buffer temporarily stores
incoming spike messages until it is time to apply them to the
neuron circuits. These buffers are implemented with Josephson
transmission lines and should be very compact compared to
other components. Multiple buffers may be needed in the case
of multiplexing so that the spikes for each multiplexed neuron
can be kept separate. The synapse weight memory stores the
synapse weights for all of synapses implemented using the core.
The accumulator is used to sum up the total incoming weight that
should be applied to the neuron circuit during each time step.
In order to provide a single answer as quickly as possible a tree

of adders is used in the accumulator. The superconducting DAC
is responsible for turning the digital output of the accumulator
into the signal needed by the analog soma circuits. Finally, one
or more analog soma circuits are included that can implement a
biologically suggestive neuron model, such as the JJ soma (Crotty
et al., 2010). These components provide the critical functionality
that is required to implement a neuron. This architecture allows
for the inclusion of bio-inspired analog neuron circuits in a large
scale, programmable neuromorphic system.

One of the challenges that must be overcome to enable
competitive large scale SCE neuromorphic systems is the
limited density of SCE digital logic. SCE fabrication nodes
are currently many times larger than those of CMOS. As a
result, fewer SCE components can fit on a chip than is the
case with CMOS. In the case of large scale neuromorphic
systems this density disadvantage can result in a prohibitively
small number of implementable neurons. To overcome this
situation, multiplexing is used to improve the effective density
of BrainFreeze’s neuron core. In addition, SCE supports clock
rates that are significantly faster than CMOS, so components can
be multiplexed to a high degree without significantly slowing
down the system relative to current neuromorphic approaches.
However, multiplexing introduces latency and memory capacity
requirements that must be addressed by the architecture.

Memory capacity has also been a major challenge for
SCE systems in the past. This is especially concerning for
neuromorphic approaches where large amounts of memory are
typically needed to store synapse weights and information about
the connections between neurons. To overcome this challenge,
BrainFreeze leverages recently developed superconducting
memory technologies and multi-temperature memory system
organizations in order to ensure that sufficient memory is
available to the system. In addition, BrainFreeze implements
prefetching to hide some of the longer latencies associated with
accessing information at different levels of its memory hierarchy.

The overall goal of the BrainFreeze architecture is to enable
a combination of speed, efficiency, scalability, programmability,
and biological suggestivity that is not possible in other state-of-
the-art approaches. In addition, in order to help address the need
for reduced training times, BrainFreeze endeavors to achieve
these goals while allowing for the possibility of on-line learning
support. To accomplish these goals a mixed-signal approach has
been adopted but this introduces additional challenges that must
be addressed by the architecture. Detailed trade-off analysis is
needed to determine the best way to overcome each challenge and
to establish the feasibility of the overall approach.

4. METHODOLOGY

The data presented in this paper is the result of detailed numerical
analysis based on results from digital logic experimental
demonstrations. In particular, the results are used to inform the
area and latency estimates of various components of the proposed
neuromorphic system. For instance, the sizes of demonstrated
NDRO and JMRAMmemories are used when estimating the area
required for synapse storage. To estimate the area and latency of a
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FIGURE 2 | A high-level block diagram of the proposed mixed-signal SCE neuromorphic architecture that includes all of the major components. We refer to this

collection of components as a Neuron Core. This architecture combines the scalability and programmability enabled by superconducting digital logic with biological

suggestivity enabled by superconducting analog circuits.

neuromorphic core, the appropriate quantities of the component
values are added together. Comparing these estimates for
different configurations of the BrainFreeze architecture allows us
to explore the potential trade-offs of this design. The estimates
also help to establish the feasibility of the proposed architecture
and provide motivation for future research.

4.1. Analysis Parameters
Table 2 presents the various parameters that are used throughout
the analysis in this work. The memory and ALU parameters in
this table come from circuits and designs that were developed
for experimental demonstrations. For the purposes of this work,
the memory parameters are used to estimate the area and

delay required to store synapse weights and network routing
information. Similarly, the ALU parameters are used to estimate
the area and delay of the accumulators and control required
in the BrainFreeze core. The area of an ALU is actually more
than twice the area of a single adder because the ALUs included
logical operations, an adder, a shifter, and control. However, this
additional area is included to account for the tree of adders
needed by the architecture. In other words a design with 8 parallel
adders actually needs 15 adders organized as a tree to quickly
produce a single result. The total area required by this tree is
estimated as roughly the area of 8 ALUs or 1 ALU for each
parallel adder in a design. This rough estimate is used because
it is an overestimation and because the ALUs were the most
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TABLE 2 | The latency and size parameters that were used to generate the

analysis.

X Size Y Size Latency

NDRO (1 bit) 55µm 55µm 3.125ps

JMRAM (1 bit)
5µm 5µm 0.25 ps (read)

100 ps (peripheral)

8-bit ALU 844µm 1,166µm 550ps

16-bit ALU 1,771µm 2,860µm 650ps

Spike buffer (1 bit) 12µm 24µm

MCM 200mm 240mm

Cabinet (1,869mm Tall) 600mm 912mm

The NDRO, JMRAM, and ALU parameters were taken from designs that were used for

experimental demonstrations (Dayton I. et al., 2018; Hearne et al., 2018; Vesely et al.,

2018).

suitable demonstrated designs available. The parameters for both
8-bit and 16-bit ALUs are included to show the area and latency
impacts of both design choices. For this study only 8-bit adders
are considered. For the purposes of this study the latencies and
sizes of the DAC and soma are negligible compared to the other
components of the architecture. This is possible because there
are orders of magnitude fewer DACs and somas in the system
than other components such as memory cells and logic gates.
As a result, the impact of these components on the overall area
and latency of the architecture is minimal. The MCM parameters
were selected so that they could theoretically be made using a 300
mm wafer and so that 3 MCMs could fit side by side in a cabinet.
The parameters for a cabinet are the dimensions of a standard
server rack.

4.2. Energy Efficiency Estimation
One of the main figures of merit (FOM) for energy efficiency
in neuromorphic computing is Synaptic Operations per Second
per Watt (SOPS/Watt), first introduced by IBM with their
True North system. The main argument for this FOM is
that it combines power and speed; a SNN which spikes twice
as fast will dissipate (at least) twice as much power. For
complete, working systems, this number is easily calculated by
the following equation:

FOM =
fs′

P
(1)

Here f is the average spiking frequency of the SNN, s′ is the
average number of active synapses and P is the total measured
power dissipated by the network. The number of active synapses
s′ is a fraction of the total number of synapses s, typically
in the 30–50% range but theoretically as high as 100%. The
most efficient semiconductor SNNs achieve on the order of 1010

SOPS/Watt.
For systems which have yet to be fully built, we can estimate

this FOM by summing up the power dissipated by the different
components of the system. Figure 3 shows a schematic of a SNN
showing the placement of somas, axons, synapses and dendrites.
Here we assume there are N total somas and s total synapses;

FIGURE 3 | A diagram of neurons connected by a synapse that shows the

placement of the components of the neurons and the corresponding energy

that is associated with action performed by each component.

since there is one axon for each soma and one dendrite for
each synapse, then there are also N axons and s dendrites. Let
us assume that the energy dissipated per spiking event is Esoma,
Eaxon, Eden and Esyn for each soma, axon, dendrite and synapse,
respectively. Then we can write the total power dissipation P:

P = fNEsoma + fNEaxon + fs′Esyn + fs′Eden (2)

The upper limit of P occurs when s′ = s; this is the worst-
case scenario. If we assume that the energy dissipation in the
axon is small compared to the soma (Esoma >> Eaxon) and the
dissipation of the dendrite is small compared with the synapse
(Esyn >> Eden), then the second and the fourth term in Equation
(2) can be ignored. Plugging into Equation (1), we then obtain
(for the worst-case scenario where s = s′):

FOM =
1

(Esyn + (Ns )Esoma)
(3)

Finally, in large networks it is often true that Esyn >> (N/s)Esoma,
since the number of synapses s are of O(N2). In that case FOM is
simply 1/Esyn. Of course, the above all assumes that any control
circuitry or other extraneous energy dissipation in the network
is either small or accounted for in one of the four energy terms;
otherwise additional contributions must be added to the power
in Equation (2). For BrainFreeze, we use 1/Esyn for our FOM; we
are in the limit where Esyn >> (N/s)Esoma and where our axons
and dendrites, being composed of superconducting transmission
lines, have negligible power dissipation. To calculate Esyn, we
count the number of Josephson junctions per synapse and assume
that each junction dissipates 10−19 Joules per pulse (true for a
junction with Ic = 300 µA). In addition, we multiply by a factor
of 500 to account for the cooling. For example, the 8-bit design
of BrainFreeze has about 6,000 junctions per synapse, giving a
FOMof 3.3×1012 SOPS/Watt, about 70x higher than True North
(4.6× 1010 SOPS/Watt).
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5. TIME-MULTIPLEXING

One of the primary motivators behind adopting a mixed-
signal approach is to enable the sharing of axon wires and
core components between different simulated neurons. This
time-multiplexing capability can improve scalability by allowing
the system to support a larger number of virtual simulated
neurons than the physical hardware would natively support.
However, the improved scalability comes at the cost of increased
overall simulation run-time, increased area to store the state
of the additional virtual neurons, and increased complexity in
terms of the organization of events in the simulated neural
network. The increased control and organization complexity
includes design decisions such as determining when to switch
to a different virtual neuron and how to handle out of
order or delayed AER packets as well as other considerations.
The design and evaluation of this control logic is not
relevant to the current study so we leave those tasks for
future work.

The impact of time-multiplexing on simulation runtime is
determined by the time it takes to update the model of each
virtual neuron and the degree of multiplexing. Neuron update
latency can be greatly affected by the number of inbound spikes
that can be processed in parallel and the memory access delays
required to access synapse weights. The number of parallel adders
included in the accumulator determines how many spikes can
be processed at a time. In some designs, spikes that arrive
on one time step could be processed on a later time step if
there is not sufficient parallel capacity to accommodate them.
It is more likely, however, that such excess spikes will need to
be discarded. Therefore, selecting the appropriate amount of
parallelism to include affects the functionality of the system in
addition to its latency. However, it is unlikely that very many
of the presynaptic neurons will fire during the same time step,
provided that each time step is sufficiently short. Therefore, a
modest number of adders, such as 4 or 8, will likely be sufficient
in many implementations of BrainFreeze. It is important to note
that the latency of superconducting logic is low enough that
considerable multiplexing can be employed before the simulation
time step approaches that of most semiconductor architectures.

The degree of multiplexing that can be supported by the
architecture is limited by the area that is available to implement
the synapse memory component of the neuron core. The physical
neuron hardware could potentially perform calculations related
to a different virtual neuron on each time step of the system.
This means that signals and states need to be preserved until
the hardware is again performing calculations related to the
appropriate virtual neuron. As a result, the memory system needs
to have enough capacity to store all of the required information
for each virtual neuron. The capacity of the memory component
is directly related to its area so once the available area has been
used, no additional capacity can be added to support more virtual
neurons. The memory system also needs to be configured to
support the number of parallel accesses required by the number
of adders used by the architecture. This could be achieved by
assigning particular sub-arrays of memory to each adder. In this
study we assume one memory bank is provided for each adder

and that the bank is sized to accommodate the number of virtual
neurons present in the system.

Figure 4 illustrates the trade-off that exists between the degree
of multiplexing, area and latency in the design space of the
neuron core. The trade-off shown in Figure 4 captures the worst
case scenario for a neuron core where a spike is received on all
1,000 synapses in the same time step. The actual number of spikes
that may be seen per time step is a function of design decisions
that are beyond the scope of this study. As a result, selecting the
optimal number of adders for BrainFreeze is a subject for future
work. For the purposes of this study the highly unlikely worst case
is used as a stress test to evaluate the impact of neuron update
latency. We use 8-bit adders for this trade-off analysis because
the synapses in our proposed system have 8 bits of resolution.
In this figure we can see that the area impact of increasing the
number of adders is minimal until 32 or more adders are used.
Prior to that point, the area is primarily affected by the degree
of multiplexing due to the memory that is required to store the
synapse weights of the additional virtual neurons. The impact
of memory technology choice is emphasized by these results
as just 2 virtual neurons worth of synapses require more area
in NDRO than 32 virtual neurons required in JMRAM. These
results suggest that 16 adders may represent a reasonable upper
bound design point for a 1,000 synapse BrainFreeze system. A
design with 16 adders provides coverage for many simultaneous
spike events but does not require too much area or introduce too
much delay. A smaller number of adders may be more reasonable
if smaller numbers of spikes per time step is typical in a system or
if update speed is not the most important design aspect.

6. SYNAPSE DENSITY

A primary metric of feasibility for SCE mixed-signal
neuromorphic designs is the number of synapses that can
be implemented per neuron using this approach. The quantity
and resolution of the synapses that a neuromorphic architecture
can implement can greatly affect the types of networks that can be
implemented on that architecture and the performance of those
networks. Efficiently ensuring the largest number of synapses,
each with an acceptable resolution, is a major consideration
of all neuromorphic architectures. This is particularly true in
superconducting neuromorphic systems where the memory
capacity required to store synapse weights is at a premium. The
sizing and organization of the synapse memories need to be
balanced to provide the maximum number of synapses possible
without negatively affecting other aspects of the neuron core
design. For this early study of the potential of BrainFreeze,
we have settled on an 8-bit synapse resolution. 8-bits is
more resolution than is used by many other neuromorphic
architectures and provides a wider range of synapse weights.

Synapse latency can be a major contributor to overall core
latency. If the memory arrays are too large they can incur
very long latencies which will negatively affect performance. In
order to minimize synapse weight access latency while providing
adequate storage capacity, the memory will likely need to be
organized into many banks. Each bank will then hold a subset
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FIGURE 4 | The effect of increasing the degree of multiplexing and parallelism on the area and latency of the BrainFreeze neuron core. Increasing the multiplexing

improves the effective neuron density of the architecture but requires additional memory. Adding more adders enables the neuron core to process incoming spikes

faster but also adds area. The latency presented here is for handling the worst case situation where all 1,000 inbound synapses receive a spike. The adders used in

this analysis are 8-bits wide.

of the total synapse population for each virtual neuron. This
organization introduces the issue of bank collisions where several
synapse weights that all map to the same bank are needed at the
same time. Improperly handling this situation could lead to a
degradation in performance or functionality as spikes will either
be delayed or discarded as a result of the collision. One possible
solution to this issue is aggressively banking the memory array
such that each array is so small that very few synapses for a
particular virtual neuron will map to the same bank. This would
greatly reduce the odds of a collision but would introduce area
and delay overheads due to the additional hardware required to
interface with and manage so many banks. For the purposes of
this study we consider only the area required for the memory to
support some number of neurons.

In order to determine how many synapses could be
accommodated on typical die sizes, we calculated the area
required for a neuron core as the number of virtual neurons per
core was increased. The area needed for other components of the
neuron core was also included in this calculation. For this study a
16 adder configuration was used based on the result presented
in Section 5. The results of these calculations can be seen in
Figure 5. Here we can see that both NDRO and JMRAM can
support more than one virtual neuron using typical die sizes. In
fact, hundreds of thousands of synapse weights can fit on a single
die when a relatively dense superconductingmemory technology,
like JMRAM, is used to store them. Nevertheless, even less dense
technologies, such as NDRO, still enable synapse counts that are
appropriate for near term demonstrations. Importantly, these

memories provide sufficient capacity to act as local buffers for
systems that use a backing store to enable even larger numbers of
virtual neurons. The implications of this capability are discussed
later in Sections 8 and 9.

7. NETWORK CONFIGURATION

Programmability is another important aspect of a neuromorphic
architecture because it allows the system to implement different
neural networks using the same hardware. A key aspect of
programmability is that the connections between neurons need
to be configurable so that a wide variety of neural network
topologies can be implemented. This can accomplished by
implementing the connections between neurons as a computer
network using routers and shared wires. Each neuron is given
a network address and spike messages are routed through the
network based on those addresses. AER representation could be
used such that each spike message contains all the information
needed by the post synaptic neuron core to apply the spike to its
current state. This information could be as simple as indicating
the presence of a spike on that synapse during this time step
or could include finer grained temporal information or other
spike characteristics.

The architecture of the digital network between the neurons
greatly affects the functionality and speed of the overall network.
In general, there are three primary decisions regarding the
network architecture of neuromorphic systems: the network
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FIGURE 5 | The die area required to support BrainFreeze neuron cores as the number of synapses per neuron and the degree of multiplexing is increased. These

results show that (A) NDRO and (B) JMRAM based designs have sufficient capacity to act as local buffers for neuron information. Both NDRO and JMRAM also

provide enough capacity to directly support small scale and larger demonstrations, respectively.

topology, the packet type, and the routing style (Young et al.,
2019). The topologies that are often employed by state-of-the-
art neuromorphic architectures are the 2-D mesh and the tree.
Of these two topologies, the 2-D mesh topology provides better
bisection bandwidth due to the larger number of links in the
topology compared to a tree topology (Benjamin et al., 2014).
However, the tree topology generally has fewer hops between
destinations than the 2-D mesh and so it provides better latency.
An important aspect of both of these topologies is that they can
be implemented using routers with a relatively small number of
ports (radix). The radix of the router (number of ports) greatly
affects its complexity and increasing the number of ports rapidly
grows the size of the router.

A tree topology seems to be a good design choice for
SCE neuromorphic systems. The limited density of SCE
means that topologies that require higher radix routers are
probably not a reasonable design choice at this time. Therefore,
the ability to implement a tree topolgy using low radix
routers satisfies an important requirement of BrainFreeze. In
addition, the superconducting wires used to communicate
in BrainFreeze provide a potentially useful advantage over
room temperature wires in terms of their efficiency over long
distance. A comparison of the energy required for long distance
communication using both traditional semiconductor as well as
superconductor wires can be seen in Figure 6. This difference in
communication energy means that topologies that feature longer
connections may be better suited to implementation in SCE-
based systems. So, the longer connections that can exist in a
tree provide additional motivation to use this topology in an
SCE-based system like BrainFreeze.

In addition to the topology of the network, designers must also
determine what style of packets to use and how to route them.
Packets can be either unicast or multicast, meaning that one
packet can either have one destination or many. Neural spikes

tend to have multiple destinations so a multicast network seems
to make the most sense. Networks that support multicast packets
can maximize bandwidth efficiency by only generating additional
packets at the routers that have destinations on more than one
port. Source address routing can help to minimize the logic
required in the router to provide this functionality. However,
in order to support source address routing a large memory is
required in the router to store all of routing information for each
source address. Destination address routed packets, on the other
hand, include the connectivity information in the packet itself.
So they can be implemented without the need for a large memory
in the router. These additional requirements in terms of memory
and router complexity mean that the multicast and source routed
approaches would require routers that would be prohibitively
large and slow in an SCE neuromorphic system. As a result, a
unicast, destination routed network is likely the best choice when
only on-die memory is available to the router.

Even in a unicast, destination routed network, the memory
requirements of the destination neuron address storage quickly
dominate the overall memory requirements of the architecture as
the size of the network grows. In other words, as the network size
grows to millions of neurons or more, we need more memory to
store the addresses for the post synaptic neurons than we need to
store the synapse weights. This can be seen in Figure 7 where the
area required to store neuron addresses increases rapidly as the
size of the overall simulated neural network grows. Therefore,
JJ-based memories, such as NDRO, are likely only sufficient
to provide storage for both synapse weights and post-synaptic
addresses in networks that contain a few thousand neurons or
less. JMRAM can support larger numbers of neurons but would
require a prohibitive number of chips to support the hundreds
of millions of neurons that some state-of-the-art approaches
can support. The addition of a backing store to the system
could alleviate this situation by providing additional capacity for
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FIGURE 6 | The energy cost of communicating across different distances in both CMOS and SCE. The efficiency of SCE wires provide a distinct advantage that can

be leveraged by networks of BrainFreeze neuron cores. The CMOS data in this figure is from Borkar (2011).

FIGURE 7 | The area required to store the post-synaptic addresses for neural networks with increasing numbers of neurons. As the network grows the area required

to store this information can become prohibitive. The incorporation of a backing store may be an effective way of addressing this need for additional memory capacity.

(A) NDRO and (B) JMRAM.

address storage for very large systems. Furthermore, a backing
store might also enable support for multicast, source routed
networks by providing sufficient capacity for the larger routing
tables that that communication scheme requires.

8. MEMORY HIERARCHY

Providing enough memory to meet the requirements of each
component in the BrainFreeze architecture is particularly
challenging due to the relatively limitedmemory density available
in SCE memory technologies. One solution is to include chips

in the architecture that serve as off-die memories for the neuron
cores. Theoretically, these off-die memories would free up space
on the neuron chips so that more neuron cores could be
implemented on those chips. Similarly, the dedicated memory
chips should provide additional memory capacity because the
memory arrays should fit more tightly together. This approach
also has the benefit of easing any integration issues that might
arise from incorporating magnetic memories and SCE logic
circuits on the same die. However, as Figure 8 shows, placing
neuron cores and synapse memories on separate chips does not
actually result in improved neuron core density. This is because
removing the memories from the neuron chip does not free up
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FIGURE 8 | The relationship between effective neuron density and the location and type of memory. Using separate dies for JMRAM does not improve the number of

neurons that can be implemented per die in BrainFreeze.

enough space for additional neuron cores to offset the cost of
adding the memory chips to the system. Clever floorplanning of
neuron cores could potentially address this though that is beyond
the scope of this study.

The available on-die memory is sufficient for storing the
synapse weights for a reasonable number of virtual neurons.
However, the limited capacity of superconducting memories
will ultimately limit the number of neurons and synapses that
can be implemented using only superconducting electronics. To
achieve continued scaling, denser memories are needed. One
solution to this problem may be a multi-temperature memory
hierarchy that uses semiconductor memory technologies as a
backing store for the superconducting memories. An example
of such a hierarchy can be found in Figure 9. The much
denser semiconductor memories enable an overall memory
capacity for the superconducting architecture that is comparable
to the memory capacities of semiconductor approaches. To
alleviate some of the power and heat considerations that would
be introduced by adding a large amount of semiconductor
memory to the SCE system, the semiconductor memory could be
implemented at an intermediate temperature. Cryogenic-DRAM
is a technology that could potentially be used to fill this role in the
system (Tannu et al., 2017; Ware et al., 2017; Wang et al., 2018;
Kelly et al., 2019).

Local superconducting memories will still needed to buffer
the data because there is a considerable latency involved with
accessing data stored in the semiconductor memories. These
local buffers could be much smaller because they would only
need to contain a subset of the total system data. This could

improve neuron core density, increase the number of synapses
that could be implemented per virtual neuron, and result in
much better area utilization in off-die memory organizations. In
practice, the amount of data that needs to be buffered locally
will depend on the type of data. For instance, only the post-
synaptic neuron addresses for the current virtual neuron would
need to be buffered. However, if the system is supporting spike
time dependent plasticity (STDP), then the buffer would need
to be large enough to store the synapse weights for multiple
virtual neurons. This is because STDP may result in synapse
weight changes after a virtual neuron has completed its update.
In both cases the buffer needs to have room to store the incoming
data that will be used by the next virtual neuron to be handled
by the neuron core. So in the address case, the buffer would
need to hold two virtual neurons worth of data and in the
weight case it would need to hold three or more virtual neurons
worth of data. This is still considerably less than the amount
of memory that would be needed to store all of addresses and
weights for all of the virtual neurons that are assigned to a neuron
core. However, the latencies involved with requesting data from
the intermediate temperature backing store are prohibitive. A
technique is needed to improve or hide these latencies in order for
the multi-temperature memory hierarchy to be a viable solution.

9. PREFETCHING

One way to hide the latency involved with retrieving data from a
memory is to request it in advance of when it is actually needed.
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FIGURE 9 | A block diagram of the proposed multi-temperature memory system that would enable the use of cryo-DRAM with the BrainFreeze architecture. This

could greatly increase the memory capacity available to BrainFreeze.

That way the data can arrive just when it is needed and the latency
involved will not affect the performance of the system. This
technique is called prefetching. The problem with prefetching
is that it’s not always easy to know what should be requested
from memory. As a result, prefetching can sometimes result in
performance degradation as it can tie up memory resources with
requests for data that will not be needed anytime soon. Therefore,
the key to effectively utilizing prefetching is correctly anticipating
which data will be needed in the near future.

Neuromorphic systems like BrainFreeze are particularly
well suited to prefetching because their data accesses follow
predictable patterns. This makes determining which data will be
needed in the near future relatively straightforward. For instance,
the addresses and weights that are needed for the next virtual
neuron can be fetched while the current virtual neuron is being
updated. This deterministic behavior ensures that the data that
is prefetched, is data that is likely to be needed. As a result,
prefetching can provide an effective way to hide the latencies
incurred by using a multi-temperature memory hierarchy. This
allows BrainFreeze to preserve its performance advantage even
when using a longer latency backing store.

Of course, not all of the relevant addresses or weights are
always used during the update of each virtual neuron in the
network. As a result, some data will be fetched that is not used
and therefore it is possible that some energy will be wasted with
this approach. One way to avoid this problem is to use more

information from the system to determine exactly what data
should be prefetched. For example, the spike buffer holds a record
for each inbound spike that will be applied to a virtual neuron
when it is next updated. These records can be utilized to specify
a subset of the synapse weights to read from the backing store
rather than requesting all of the synapse weights that might be
needed by a virtual neuron. In this way, unnecessary data accesses
due to prefetching can be greatly reduced and degradation to
memory efficiency and performance can be avoided. A block
diagram of a potential implementation of this scheme is provided
in Figure 10.

10. COMPARISON TO STATE-OF-THE-ART

Now that we have established some feasible design choices
for the BrainFreeze architecture, it’s important to evaluate
how that architecture might compare against other state-of-
the-art approaches. For the purposes of this evaluation we
compare against the neuromorphic architectures that were
described in Section 2.1. These architectures represent some
of the most successful and studied neuromorphic designs
that have been proposed. Details regarding the methodology
used to produce these comparisons can be found in Section
4.2 of this paper. This analysis attempts to compare only
the neuron implementations of each approach. As a result,
only the components of the BrainFreeze neuron core are
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FIGURE 10 | A block diagram of the proposed prefetching system that would use information in the neuron core, such as which synapses received a spike, to better

avoid fetching data that will not be needed.

included in these calculations. Other potential supporting
hardware, such as a cryo-DRAM backing store, are not
considered. To the best of our knowledge, the values used
for other neuromorphic approaches also do not include
supporting hardware.

One of the most compelling capabilities of SCE is its ability
to support very high clock rates. To determine how this might
benefit a neuromorphic system we consider the peak rate at
which neuron updates might occur in each of the different
architectures. For the purposes of this study we consider such
a neuron update to be roughly equivalent to the process it
takes to produce a spike in response to incoming signals. The
peak spike rate is one of several factors that can affect how
quickly a simulation can be performed by the hardware. The
values in Figure 11A for peak spike rate where determined by
consulting the literature to determine the rate at which each
established architecture can produce a spike (Benjamin et al.,
2014; Stromatias et al., 2015; Amir et al., 2017; Davies et al.,
2018). For TrueNorth the system clock frequency is used to
estimate the maximum spike rate and for Loihi the mesh-wide
barrier synchronization time is used. This peak spike rate is
calculated on a per-neuron basis, rather than per-chip, to provide
a direct comparison between the designs. The peak spike rate
for BrainFreeze was calculated for the ideal situation where
only a single action potential arrives and only a single adder
is needed for its integration. The spike rate for BrainFreeze
includes the latency for each of the major components of
the SCE neuron core including memory lookup and digital
accumulation. The results of this comparison show that, like
BrainScaleS, BrainFreeze is capable of running significantly faster

than biological real time. This is an important result as it
indicates that the high clock rates enabled by SCE will support
the accelerated simulation time scales that will likely be necessary
for future AI research.

However, speed alone cannot meet all of the anticipated
requirements of future AI research. Efficiency is another
important aspect of neuromorphic systems as it can ultimately
be a limiting factor on the size of the system that can be
reasonably implemented. As a result, very large simulations
require efficient neuromorphic systems to effectively host them
over acceptable time scales. From the comparison in Figure 11B.
we can see that some approaches, such as TrueNorth, use
extremely efficient hardware to achieve impressive overall energy
efficiency despite the relatively slow spiking rate of the hardware.
Other approaches, such as BrainScales, are capable of achieving
extremely fast spike rates and accelerated simulation times
but pay a heavy price for this speed in terms of power
so their overall energy efficiency is not as good as other
designs. Balancing between speed and efficiency often results
in designs that deliver impressive overall energy efficiency but
that cannot simulate faster than biological real-time. For most
of the past neuromorphic approaches this was acceptable since
simulating faster than biological real time was not a primary
design goal. BrainFreeze is capable of simultaneously delivering
both speed and energy efficiency that is nearly two orders
of magnitude better than current state-of-the-art approaches.
This is possible because of the low power characteristics
of SCE.

A discussion of the computational efficiency of the SCE
approach should also take into account the complexity of

Frontiers in Neuroscience | www.frontiersin.org 15 December 2021 | Volume 15 | Article 75074885

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Tschirhart and Segall BrainFreeze

FIGURE 11 | A comparison of state-of-the-art neuromorphic architectures to BrainFreeze in order to demonstrate the potential of the proposed architecture. (A) The

first comparison looks at how quickly each design can update its neuron model and emit a spike. (B) The second comparison looks at how efficient each architecture

is at performing its computations in terms of time and power. (C) The third comparison looks at the computational complexity of the neuron models implemented by

each architecture. Overall, BrainFreeze have the potential to enable significant improvements over current neuromorphic approaches.

neuron model that the approach enables. This is an important
point of comparison against existing neuromorphic designs
because all of them implement less complex models such as
LIF, AdEx or the Izhikevich model. If these designs instead
implemented the Hodgkin-Huxley model then it is reasonable
to assume that their energy efficiency would greatly decrease
either due to the extended neuron update times or due to the
power needed to support additional hardware. The ability of
BrainFreeze to support a biologically suggestive model similar
to Hodgkin-Huxley means that each neuron update is not
only happening in less time, it is also more computationally
complex. To illustrate this difference in complexity between the
neuromorphic approaches we compare the effective FLOPs/Sec.
These values are based on the FLOPS per 1 ms simulation time
step values that are provided by Izhikevich in Izhikevich (2004).
Here we take the 1 ms simulation time step to be roughly
equivalent to a neuron update in each of the neuromorphic
designs. So, to estimate the equivalent simulation work that
is being accomplished by each architecture per second, the
FLOPS value is multiplied by the spike rate for each approach.
This comparison can be seen in Figure 11C. The ability of
BrainFreeze to support a model similar to Hodgkin-Huxley
means that each neuron update is roughly equivalent to 1,200
FLOPs in a software implementation of the model. This
effect combined with the speed of BrainFreeze results in an
improvement of nearly three orders of magnitude compared to
the other designs.

Overall these results show that a mixed-signal SCE
neuromorphic approach could provide significant improvements
over the current state of the art in terms of speed, energy
efficiency, and model complexity. These improvements are
important because they will enable future neural network
simulations to run in less time while simultaneously
incorporating more biologically inspired functions.

11. ON-LINE LEARNING SUPPORT

Improving the computational efficiency of neuromorphic
systems will help to address some of the needs of future
neural network simulations but training times also need to be

accelerated. Figure 1 in Section 1 illustrated the immediate need
for enhanced training methodologies as training requirements

are growing much faster than the capabilities of computer
hardware. One way to approach the problem of computationally
intensive training is to use on-line learning to perform at least
some of the training. On-line learning provides three potentially

useful capabilities to a neuromorphic system like BrainFreeze.
First, the improved speed and efficiency of BrainFreeze could

possibly result in on-line learning reaching an acceptable solution
in less time and using less power than other approaches.
Second, utilizing on-line learning could allow the implemented
neural network to adapt to changes in the input data thereby

avoiding the need to completely retrain the network. And
third, on-line learning is more biologically relevant and may
help to support computational neuroscience experiments. For
these reasons incorporating on-line learning into neuromorphic
systems could prove to be a valuable capability for future
applications and experiments.

On-line learning techniques train the neural network using a
stream of input data rather than training the network with an
entire set of data prior to run-time. In spiking neuromorphic
systems like BrainFreeze, on-line learning techniques can take
the form of run-time synaptic plasticity where synapse weights
are adjusted as neurons in the system react to inputs. One on-
line learning technique that may be particularly well suited to
SCE neuromorphic systems is Spike-Time Dependent Plasticity
(STDP). STDP is a Hebbian reinforcement learning rule that
updates the synaptic weights based on the timing relationship
between the input and output spikes of neurons. Hebbian
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FIGURE 12 | A block diagram of an example hardware implementation of Spike-Time Dependent Plasticity (STDP) that was inspired by Cassidy et al. (2013a). This

hardware could allow BrainFreeze to support on-line learning.

learning seeks to increase the synaptic weight of a synapse if
the pre-synaptic neuron tends to influence the firing of the
post-synaptic neuron. In STDP this influence is determined by
considering the timing of the firing of pre and post synaptic
neurons. If the pre-synaptic neuron tends to fire before the post-
synaptic neuron then the weight of the synapse between them
is increased. Conversely, if an action potential from the pre-
synaptic neuron does not typically result in an output from the
post-synaptic neuron then the weight of the synapse between
them should be decreased.

In order to incorporate on-line learning into a large scale
neuromorphic architecture it is critical that the hardware
required to support the learning functionality is itself scalable.
This can be achieved by keeping the hardware simple and
by utilizing time multiplexing to share the hardware between
neurons in the simulated neural network. It is possible to
efficiently integrate STDP into BrainFreeze without disrupting
the functionality of the system because BrainFreeze already
makes use of time-multiplexing and the required hardware

additions are not individually complex. In particular, the
functionality of the control component of the neuron core
will need to be expanded to make decisions regarding the
synapse weight updates. The control will need to determine
if an update should occur as well as the degree and type
of update. Some small memories will also likely be needed
to store information about the learning rules that should be
applied. Figure 12 depicts a potential implementation of on-
line learning support hardware that is compatible with the
BrainFreeze architecture. In this implementation, a shift register
is used to establish the timing relationship between the pre and
post synaptic spikes. If the pre-synaptic spike occurred before the
post-synaptic spike then the weight of the corresponding synapse
is increased. Alternatively, if the pre-synaptic spike occurs after
the post-synaptic spike then the weight of the corresponding
synapse is decreased. This particular implementation is included
to provide a straightforward example of STDP hardware,
other implementations are possible and should be explored by
future work.
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Beyond the changes to the control hardware on the neuron
core, supporting STDP also requires additional local memory
resources if a multi-temperature memory system is used. This is
because the STDP hardware will need to update the weights for
previous neurons before those weights can be written back to the
backing store. As a result, the local buffers will need to be large
enough to store the synapse weights for three or more virtual
neurons. In systems that do not include STDP, the local buffers
would only need to store the synapse weights for the current
neuron and the weights for the next neuron that are being loaded
from the backing store. In systems that do not include a multi-
temperature memory system, no additional local memory is
needed because all of the synapse weights for all of the simulated
neurons already need to be present in the memory of the neuron
core. Also, in systems that include STDP, the local buffers will
need additional ports or additional banks so that a weight update
can occur while other synapses are being accessed. However,
these buffers will be reused by different simulated neurons due
to the time-multiplexed nature of the BrainFreeze architecture
so they will not greatly impact the scalability of the system.
Synapse weights will require some time to be updated due to
communication and access delays. In a time-multiplexed system,
this update latency should be hidden since the synapses being
updated will not be needed again for many clock cycles. Overall,
supporting on-line learning will require additional hardware in
the system but the additions should not significantly impact the
scalability of the architecture.

12. LARGE SYSTEM SCALING

Building upon the capabilities and configurations of BrainFreeze
that have been explored so far, we can roughly estimate how well
the architecture would scale for very large simulations. One of
the ultimate tests of scalability for neuromorphic architectures is
supporting a simulation that involves roughly 80 billion neurons.
This is the approximate number of neurons contained in the
human brain (Furber, 2016). In order to evaluate the scalability
of BrainFreeze, we compare it to other approaches in terms
of the number of standard server cabinets of equipment that
would be needed to support a simulation of this size. For the
purposes of this comparison we ignore the cabinets of peripheral
equipment needed by the various approaches and focus only on
the cabinets that contain the neuromorphic chips themselves.
Many neuromorphic approaches require additional hardware
to operate. Additional hardware will also likely be required
to support the superconducting approach but the quantity is
currently unknown. The neuromorphic chips for the BrainFreeze
system studied here include the neuron core, the synapse weight
memories, the post-synaptic address memories, and the routers.
In addition, we include 25 cabinets that we estimate will be
needed to host the roughly 1 petabyte of Cryo-DRAM that will
be needed if a backing store is included in the architecture.

The scalability of superconducting neuromorphic systems like
BrainFreeze is supported by several important characteristics of
SCE. First, the low heat dissipation of SCE means that chips
and boards can be packed much closer together than is possible

in CMOS. This results in better density per unit volume even
though SCE is typically less dense than CMOS in terms of area.
Second, the efficiency of long distance communications in SCE
means that the long wires needed to build very large systems
require much less energy to operate. Third, the overall energy
efficiency of SCE means that the neuron cores themselves require
much less energy to operate than many CMOS alternatives.
As a result of these two characteristics, much larger SCE
neuromorphic systems can be built before power requirements
become an obstacle. Finally, the speed of SCE means that a much
higher degree of multiplexing can be employed before the run-
time of the neural network simulation becomes prohibitive. This
means that SCE can support more simulated neurons with less
hardware. These factors combined mean that approaches like
BrainFreeze are uniquely suited to scale to very large systems due
to their efficient use of space, energy, and hardware.

For the superconducting system, the anticipated chip size
greatly affects the amount of hardware that is required. We
assume a chip size roughly equivalent to an NVidia V100 (28.5
x 28.5 mm). Chips of this size can support roughly 3 MB of
a JMRAM like memory or 1,000–2,000 neurons per die. We
anticipate arranging the chips on a 200 x 240 mm interposer
that can accommodate 49 chips. Alternatively smaller interposers
could possibly be used and connected together to build the
systemwith a slightly higher volume overhead. Due to the limited
heat generated by superconducting electronics, the boards can
be placed into the racks with only 7.3 mm of space between
each board.

In Figure 13 we compare BrainFreeze to SpiNNaker.
SpiNNaker was chosen for this comparison because it is the
state-of-the-art neuromorphic approach that has been scaled to
the largest number of neurons (Furber, 2016; Yang and Kim,
2020). It is worth noting that the 866 cabinets that are projected
for SpiNNaker are an extrapolation of the available data. From
the results in Figure 13, we can see that the number of standard
server cabinets needed to house 80 billion neurons is roughly
700–2,500 if no backing store is used and 200–1,600 if the
backing store is included. This illustrates the difficulty of scaling
the architecture to extremely large numbers of neurons using
only superconducting memories. However, with the support of
a backing store it is possible to implement 80 billion neurons
using roughly a quarter of the cabinets that would be required
by the SpiNNaker approach. More importantly, 200 cabinets
is roughly the size of a modern supercomputer. Therefore,
BrainFreeze has the potential to enable extremely large neural
network simulations that involve biologically relevant dynamics
while requiring a volume that is suitable for a typical datacenter.

13. DISCUSSION

The analysis presented in this paper shows that feasible
configurations exist for the BrainFreeze architecture that would
enable it to be competitive with other state-of-the-art large scale
neuromorphic designs. Local superconducting memory capacity
is shown to be sufficient for small scale demonstrations and for
acting as a local buffer for large systems. A multi-temperature
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FIGURE 13 | The number of standard rack sized cabinets that would be required to house an 80 billion neuron BrainFreeze system for different degrees of

multiplexing. Provided that sufficient multiplexing is employed, BrainFreeze could potentially implement such a system in considerably less volume than other

state-of-the-art neuromorphic approaches.

memory hierarchy combined with prefetching and the local
buffers is shown to be capable of providing enough memory
capacity for even large scale systems. This memory capacity and
the high clock rates enabled by SCE can then be utilized to enable
multiplexing to improve neuron densities per chip. Finally, the
low power dissipation and subsequent low heat generation of
SCE allows for more tightly packed systems ultimately resulting
in a density per volume that is shown to be potentially superior
to existing approaches. Taken together these results describe a
system that can simultaneously provide improved performance,
energy efficiency, and scalability while supporting biologically
suggestive neuron models and on-line learning.

The analysis and results presented in this paper also
provide motivation for future work in this area. Research is
needed to continue the development of the various digital
and analog components that are required to build a mixed-
signal SCE neuromorphic system like BrainFreeze. For example,
enabling greater configurability in the analog soma circuits
could introduce new functionality to the system and expand
the research that it could support. In addition, while the
parameters used in this work are based on experimental
demonstrations, they are still just approximations of the
latency and area needed for an actual implementation of
BrainFreeze. In order to validate and refine the findings
of this analysis, a complete BrainFreeze core should be
built in hardware. In particular, the control scheme of the
BrainFreeze system needs to be carefully designed in order to
preserve the important aspects of the biologically suggestive
soma model despite the discretized digital communication of
action potentials.

Developing large scale SCE neuromorphic systems could
provide a pivotal experimental apparatus to both the machine
learning and computational neuroscience communities.
Enabling high performance biologically suggestive simulations

could support the development of new applications andmay help
in the development of general AI. A large scale SCE system could
be deployed as a cloud appliance thereby allowing researchers
from various fields access to it. This would help to distribute the
costs of developing and maintaining the system while ensuring
the broadest impact of its unique collection of capabilities.

14. CONCLUSIONS

This work has endeavored to explain how a programmable,
large scale SCE neuromorphic system could be built using
a mixed-signal architecture. The feasibility of the proposed
BrainFreeze architecture was supported by numerical analysis
and trade studies based on measurements from experimental
demonstrations. The results showed that it should be possible
to build a BrainFreeze system that simultaneously provides
programmability, scalability, speed, energy efficiency, biological
suggestivity, and on-line learning support. Such a system could
prove to be a critical resource supporting the development of
novel machine learning applications, supporting computational
neuroscience experiments, and perhaps one day supporting the
drive to artificial general intelligence.
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Brian2Loihi: An emulator for the
neuromorphic chip Loihi using
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Developing intelligent neuromorphic solutions remains a challenging

endeavor. It requires a solid conceptual understanding of the hardware’s

fundamental building blocks. Beyond this, accessible and user-friendly

prototyping is crucial to speed up the design pipeline. We developed an open

source Loihi emulator based on the neural network simulator Brian that can

easily be incorporated into existing simulation workflows. We demonstrate

errorless Loihi emulation in software for a single neuron and for a recurrently

connected spiking neural network. On-chip learning is also reviewed and

implemented, with reasonable discrepancy due to stochastic rounding. This

work provides a coherent presentation of Loihi’s computational unit and

introduces a new, easy-to-use Loihi prototyping package with the aim to help

streamline conceptualization and deployment of new algorithms.

KEYWORDS

neuromorphic computing, Loihi, Brian2, emulator, spiking neural network, open

source

1. Introduction

Neuromorphic computing offers exciting new computational structures.

Decentralized units inspired by neurons are implemented in hardware (reviewed

by Schuman et al., 2017; Rajendran et al., 2019; Young et al., 2019). These can be

connected up to one another, stimulated with inputs, and the resulting activity patterns

can be read out from the chip as output. A variety of algorithms and applications

have been developed in recent years, including robotic control (DeWolf et al., 2016,

2020; Michaelis et al., 2020; Stagsted et al., 2020), spiking variants of deep learning

algorithms, attractor networks, nearest-neighbor or graph search algorithms (reviewed

by Davies et al., 2021). Moreover, neuromorphic hardware may provide a suitable

substrate for performing large scale simulations of the brain (Furber, 2016; Thakur et al.,

2018). Neuromorphic chips specialized for particular computational tasks can either be

provided as a neuromorphic computing cluster or be integrated into existing systems,

akin to graphics processing units (GPU) in modern computers (Furber et al., 2014;

Davies et al., 2021). With the right ideas, networks of spiking units implemented in
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neuromorphic hardware can provide the basis for powerful

and efficient computation. Nevertheless, the development of

new algorithms for spiking neural networks, applicable to

neuromorphic hardware, is a challenge (Grüning and Bohte,

2014; Pfeiffer and Pfeil, 2018; Bouvier et al., 2019).

At this point, without much background knowledge of

neuromorphic hardware, one can get started programming

using the various software development kits available (e.g.,

Brüderle et al., 2011; Sawada et al., 2016; Lin et al., 2018;

Rhodes et al., 2018; Michaelis, 2020; Müller et al., 2020a,b;

Spilger et al., 2020; Rueckauer et al., 2021). Emulators for

neuromorphic hardware (Furber et al., 2014; Petrovici et al.,

2014; Luo et al., 2018; Valancius et al., 2020) running on a

standard computer or field programmable gate arrays (FPGA),

make it possible to develop neuromorphic network architectures

without even needing access to a neuromorphic chip (see e.g.,

NengoLoihi1 and Dynap-SE2). This can speed up prototyping

as the initialization of networks, i.e., distributing neurons and

synapses, as well as the readout of the system’s state variables

on neuromorphic chips takes some time. At the same time

emulators transparently contain the main functionalities of the

hardware in code and therefore provide insights into how it

works. With this understanding, algorithms can be intelligently

designed and complex network structures implemented.

In the following, we introduce an emulator for the digital

neuromorphic chip Loihi (Davies et al., 2018) based on the

widely used spiking neural network simulator Brian (Stimberg

et al., 2019). We first dissect an individual computational

unit from Loihi. The basic building block is a spiking unit

inspired by a current based leaky integrate and fire (LIF)

neuron model (see Gerstner et al., 2014). Connections between

these units can be plastic, enabling the implementation of

diverse on-chip learning rules. Analyzing the computational

unit allows us to create an exact emulation of the Loihi

hardware on the computer. We extend this to a spiking

neural network model and demonstrate that both Loihi and

Brian implementations match perfectly. This exact match

means one can do prototyping directly on the computer using

Brian only, which adds another emulator in addition to the

existing simulation backend in the Nengo Loihi library. This

increases both availability and simplicity of algorithm design for

Loihi, especially for those who are already used to working

with Brian. In particular for the computational neuroscience

community, this facilitates the translation of neuroscientific

models to neuromorphic hardware. Finally, we review and

implement synaptic plasticity and show that while individual

weights show small deviations due to stochastic rounding, the

statistics of a learning rule are preserved. Our aim is to facilitate

the development of neuromorphic algorithms by delivering an

1 https://www.nengo.ai/nengo-loihi/

2 https://code.ini.uzh.ch/yigit/NICE-workshop-2021

open source emulator package that can easily be incorporated

into existing workflows. In the process we provide a solid

understanding of what the hardware computes, laying the

appropriate foundation to design precise algorithms from the

ground up.

2. Loihi’s computational unit and its
implementation

Developing a Loihi emulator requires precise

understanding of how Loihi works. And to understand

how something works, it is useful to “take it apart and put

it back together again”. While we will not physically take

the Loihi chip apart, we can inspect the components of

its computational units with “pen and paper”. Then, by

implementing each component on a computer we will test that,

when put back together, the parts act like we expect them to.

In the following we highlight how spiking units on Loihi

approximate a variant of the well-known LIF model using first

order Euler numerical integration with integer precision. This

understanding enables us to emulate Loihi’s spiking units on

the computer in a way that is straightforward to use and easy to

understand. For a better intuition of how the various parameters

on Loihi interact, we refer readers to our neuron design

tool3 for Loihi. Readers familiar with Davies et al. (2018) and

numerical implementations of LIF neurons may prefer to skip

to Section 2.3.

2.1. Loihi’s neuron model: A recap

The basic computational unit on Loihi is inspired by a

spiking neuron (Davies et al., 2018). Loihi uses a variant of the

leaky integrate and fire neuron model (Gerstner et al., 2014) (see

Appendix 9.1). Each unit i of Loihi implements the dynamics

of the voltage vi

dvi

dt
= −

1

τv
vi(t)+ Ii(t)− vthi σi(t), (1)

where the first term controls the voltage decay, the second term

is the input to the unit, and the third term resets the voltage

to zero after a spike by subtracting the threshold. A spike is

generated if vi > vthi and transmitted to other units to which

unit i is connected. In particular, vmodels the voltage across the

membrane of a neuron, τv is the time constant for the voltage

decay, I is an input variable, vth is the threshold voltage to spike,

and σ (t) is the so-called spike train which is meant to indicate

whether the unit spiked at time t. For each unit i, σi(t) can be

3 https://github.com/andrewlehr/loihi_parameter_tuning_dashboard
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written as a sum of Dirac delta distributions

σi(t) =
∑

k

δ(t − ti,k), (2)

where ti,k denotes the time of the k-th spike of unit i. Note

that σi is not a function, but instead defines a distribution

(i.e., generalized function), and is only meaningful under an

integral sign. It is to be understood as the linear functional

〈σi, f 〉 : =
∫

σi(t)f (t) dt =
∑

k f (ti,k) for arbitrary, everywhere-

defined function f (see Corollary 1 in Appendix 9.1.2).

Input to a unit can come from user defined external

stimulation or from other units implemented on chip. Davies

et al. (2018) describe the behavior of the input I(t) with

Ii(t) =
∑

j

Jij(αI ∗ σj)(t)+ Ibiasi , (3)

where Jij is the weight from unit j to i, Ibiasi is a constant bias

input, and the spike train σj of unit j is convolved with the

synaptic filter impulse response αI , given by

αI(t) = exp

(

−
t

τI

)

H(t), (4)

where τI is the time constant of the synaptic response and H(t)

the unit step function. Note that αI(t) is defined differently here

than in Davies et al. (2018) (see Appendix 9.1.3 for details).

The convolution from Equation (3) is a notational convenience

for defining the synaptic input induced by an incoming spike

train, simply summing over the time-shifted synaptic response

functions, namely (σi ∗ f )(t) = 〈σi, τt f̃ 〉 =
∑

k f (t − ti,k), where

τt f (x) = f (x− t) and f̃ (x) = f (−x) (see Appendix 9.1.2).

2.2. Implementing Loihi’s spiking unit in
software

From the theoretical model on which Loihi is based, we

can derive the set of operations each unit implements with

a few simple steps. Using a first order approximation for the

differential equations gives the update equations for the voltage

and synaptic input described in the Loihi documentation.4

Combined with a few other details regarding Loihi’s integer

precision and the order of operations, we will have all we need

to implement a Loihi spiking unit in software.

2.2.1. Synaptic input

From Equation (3), we see that the synaptic input can

be written as a sum of exponentially decaying functions with

4 The documentation for the NxSDK is available from Intel on request.

amplitude Jij beginning at the time of each spike tj,k (see

Appendix 9.1.2). In particular we have

Ii(t) =
∑

j

Jij
∑

k

exp

(
tj,k − t

τI

)

H(t − tj,k)+ Ibiasi . (5)

To understand the behavior of the synaptic input it is helpful

to consider the effect of one spike arriving at a single synapse.

Simplifying Equation (5) to just one neuron that receives just

one input spike at time t1 = 0, for t ≥ 0 we get

I(t) = J · exp

(

−
t

τI

)

(6)

and for t < 0, I(t) = 0. Each spike induces a step increase

in the current which decays exponentially with time constant τI .

Taking the derivative of both sides with respect to t gives

dI

dt
= −

1

τI
· I(t), (7)

I(0) = J. (8)

Applying the forward Euler method to the differential equation

for 1t = 1 and t ≥ 0, t ∈ N we get

I[t] = I[t − 1]−
1

τI
· I[t − 1]+ J · s[t], (9)

where s[t] is zero unless there is an incoming spike on the

synapse, in which case it is one. Here, s[0] = 1 and s[t] =

0 for t > 0. With this we have simply incorporated the

initial condition into the update equation. Note that we have

switched from a continuous [e.g., I(t)] to discrete (e.g., I[t]) time

formulation, where 1t = 1 and t is unitless.

Loihi has a decay value δI , which is inversely proportional

to τI , namely δI = 212/τI . Swapping τI by δI reveals

I[t] = I[t − 1] · (212 − δI) · 2−12 + J · s[t]. (10)

The weight J is defined via the mantissa w̃ij and exponent2 (see

Section 3.1) such that the equation describing the synaptic input

becomes (with indices)

Ii[t] = Ii[t−1] ·(2
12−δI) ·2−12+26+2 ·

∑

j

(

w̃ij · sj[t]
)

, (11)

where sj[t] ∈ {0, 1} is the spike state of the jth input neuron.

Please note that Equation (2.2.1) is identical to the Loihi

documentation.

From this we can conclude that the implementation of

synaptic input on Loihi is equivalent to evolving the LIF synaptic

input differential equation with the forward Euler numerical

integration method (see Figure 1A1).
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2.2.2. Voltage

It is straightforward to perform the same analysis as above

for the voltage equation. We consider the subthreshold voltage

dynamics for a single neuron and can therefore ignore the reset

term vthi σi(t) from Equation (1), leaving us with

dv

dt
= −

1

τv
v(t)+ I(t). (12)

Applying forward Euler gives

v[t] = v[t − 1]−
v[t − 1]

τv
+ I[t]. (13)

Again, to compare with the Loihi documentation we need

to swap the time constant τv by a voltage decay parameter, δv,

which is inversely proportional to the time constant, the same as

above for synaptic input. Plugging in τv = 212/δv leads to

v[t] = v[t − 1] · (212 − δu) · 2−12 + I[t]. (14)

By introducing a bias term, the voltage update becomes

vi[t] = vi[t − 1] · (212 − δu) · 2−12 + Ii[t]+ Ibiasi . (15)

Equation (15) agrees with the Loihi documentation. Like

the synaptic input, the voltage implementation on Loihi is

equivalent to updating the LIF voltage differential equation

using forward Euler numerical integration (see Figure 1A2).

2.2.3. Integer precision

Loihi uses integer precision. So the mathematical

operations in the update equations above are to be understood in

terms of integer arithmetic. In particular, for the synaptic input

and voltage equations the emulator uses round away from zero,

which can be defined as

xround := sign(x) · ⌈|x|⌉. (16)

where ⌈·⌉ is the ceiling function and sign(·) the sign function.

2.3. Summary

We now have all of the pieces required to understand

and emulate a spiking unit from Loihi. Evolving the

differential equations for the current-based LIF model with

the forward Euler method and using the appropriate rounding

(see Section 2.2.3) and update schedule (see Section 4.1

and Appendix 9.2.1) is enough to exactly reproduce Loihi’s

behavior. This procedure is summarized in Algorithm 1 and an

exact match between Loihi and an implementation for a single

unit in Brian is shown in Figure 1A. Please note that during the

refractory period Loihi uses the voltage trace to count elapsed

time (see Figure 1A2, Appendix 9.2.2), while in the emulator the

voltage is simply clamped to zero.

Result: Simulate one Loihi unit with one input

synapse for tmax time steps and read out

state variables (I, v) and spikes (σ).

# Define round away from zero

rnd(·) := sign(·)⌈|·|⌉

# Define input spike train

St = {0, 1} ∀ t ∈ N | t ≤ tmax

# Define synaptic weight

J : = 26+2 · w̃, 2 ∈ [−8, 7], w̃ ∈ [−256, 255]

# Define threshold

vth : = vmant · 2
6, vmant ∈ [0, 131071]

# Define voltage and synaptic input decay

τ−1v = δv/212, δv ∈ [0, 4096]

τ−1I = δI/212, δI ∈ [0, 4096]

# Initialize variables

It , vt , σt = 0 ∀ t ∈ N | t ≤ tmax

# Loop over simulation steps

for t from 1 to tmax do

# Spike input

s← St

# Update and read synaptic input

It ← It−1 − rnd(τ
−1
I · It−1)+ J · s

# Update and read voltage

vt ← vt−1 − rnd(τ−1v · vt−1)+ It

# Check threshold

if v > vth then

# Read spike

σt ← 1

# Reset voltage

vt ← 0

end

end

Algorithm 1. Loihi single neuron emulator.

3. Network and plasticity

We now have a working implementation of Loihi’s spiking

unit. In the next step, we need to connect these units up into

networks. And if the network should be able to learn online,

connections between units should be plastic. In this section, we

review how weights are defined on Loihi and how learning

rules are applied. This includes the calculation of pre- and post-

synaptic traces. Based on this, we outline how these features are

implemented in the emulator.

3.1. Synaptic weights

The synaptic weight consists of two parts, a weight mantissa

w̃ and a weight exponent2 and is of the form w̃·26+2. However,
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FIGURE 1

(A) Input trace of a single synapse (left) and voltage trace (right) of a neuron. The neuron receives randomly timed excitatory and inhibitory input

spikes. The emulator (yellow) matches Loihi (blue) in both cases perfectly. Note that Loihi uses the voltage register to count refractory time,

which results in a functionally irrelevant di�erence after a spike, e.g time step 17 in A2 (see Appendix 9.2.2). (B) Network simulation with 400

excitatory (indices 100− 500) and 100 inhibitory (indices 0− 100) neurons. The network is driven by noise from an input population of 40

Poisson spike generators with a connection probability of 0.05. All spikes match exactly between the emulator and Loihi for all time steps. The

figure shows the last 400 time steps from a simulation with 100, 000 time steps.

in practice the calculation of the synaptic weight depends on bit

shifts and its precision depends on a few parameters (see below).

The weight exponent is a value between −8 and 7 that scales

the weight mantissa exponentially. Depending on the sign mode

of the weight (excitatory, inhibitory, or mixed), the mantissa is

an integer in the range w̃ ∈ [0, 255], w̃ ∈ [−255, 0], or w̃ ∈

[−256, 254], respectively. The possible values of the mantissa

depend on the number of bits available for storing the weight and

whether the sign mode ismixed or not. In particular, precision is

defined as 2ns , with

ns = 8− (nwb − σmixed). (17)

This can intuitively be understood with a few examples. If the

weight bits for the weight mantissa are set to the default value

of nwb = 8 bits, it can store 256 values between 0 and 255,

i.e., the precision is then 28−(8−0) = 20 = 1. If nwb = 6 bits

is chosen, we instead have a precision of 28−(6−0) = 22 = 4

meaning there are 64 possible values for the weight mantissa,

w̃ ∈ {0, 4, 8, 16, ..., 252}. If the sign mode is mixed, i.e., σmixed =

1, one bit is used to store the sign, which reduces the precision.

Mixed mode enables both positive and negative weights, with

weight mantissa between −256 and 254. Assuming nwb = 8

in mixed mode, precision is 28−(8−1) = 21 = 2 and w̃ ∈

{−256,−254, ...,−4,−2, 0, 2, 4, ..., 254}.

3.1.1. Weight initialization

While the user can define an arbitrary weight mantissa

within the allowed range, during initialization the value is

rounded, given the precision, to the next possible value toward

zero. This is achieved via bit shifting, that is the weight mantissa

is shifted by

w̃shifted = (w̃≫ ns)≪ ns, (18)
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where≫ and≪ are a right and left shift respectively. Afterwards

the weight exponent is used to scale the weight according to

Jscaled = w̃shifted · 26+2. (19)

This value cannot be greater than 21 bits and is clipped if it

exceeds this limit. Note that this only happens in one case for

w̃ = −256 and 2 = 7. Finally the scaled value Jscaled is shifted

again according to

J = (Jscaled≫ 6)≪ 6, (20)

where J is the final weight.

We provide a table with all 4096 possible weights depending

on the mantissa and the exponent in a Jupyter notebook5.

These values are provided for all three sign modes.

3.1.2. Plastic synapses

In the case of a static synapse, the initialized weight remains

the same as long as the chip/emulator is running. Thus static

synapses are fully described by the details above. For plastic

synapses, the weight can change over time. This requires a

method to ensure that changes to the weight adhere to its

precision.
For plastic synapses, stochastic rounding is applied to the

mantissa during each weight update. Whether the weight
mantissa is rounded up or down depends on its proximity to the
nearest possible values above and below, i.e.,

RS2ns (x) =
{

sign(x) · ⌊|x|⌋2ns with probability (2ns − (|x| − ⌊|x|⌋2ns ))/2
ns

sign(x) · (⌊|x|⌋2ns + 2ns ) with probability (|x| − ⌊|x|⌋2ns ))/2
ns

(21)

where ⌊·⌋2ns denotes rounding down to the nearest multiple

of 2ns . After the mantissa is rounded, it is scaled by the weight

exponent and the right/left bit shifting is applied to the result to

compute the actual weight J. How this is realized in the emulator

is shown in Code Listing 3.

To test that our implementation of the weight update for

plastic synapses matches Loihi for each possible number of

weight bits, we compared the progression of the weights over

time for a simple learning rule. The analysis is described in detail

in Appendix 9.4.

3.2. Pre- and post-synaptic traces

Pre- and post-synaptic traces are used for defining learning

rules. Loihi provides two pre-synaptic traces x1, x2 and three

post-synaptic traces y1, y2, y3. Pre-synaptic traces are increased

5 https://github.com/sagacitysite/brian2_loihi_utils/blob/main/

algorithm/02_weight-calculation.ipynb

by a constant value x̂i, for i ∈ {1, 2}, if the pre-synaptic neuron

spikes. The post-synaptic traces are increased by ŷj for j ∈

{1, 2, 3}, accordingly. So-called dependency factors are available,

indicating events like x0 = 1 if the pre-synaptic neuron spikes

or y0 = 1 if the post-synaptic neuron spikes. These factors can

be combined with the trace variables by addition, subtraction, or

multiplication.

A simple spike-time dependent plasticity (STDP) rule with

an asymmetric learning window would, for example, look like

dw = x1 · y0 − y1 · x0. This rule leads to a positive change

in the weight (dw > 0) if the pre-synaptic neuron fires shortly

before the post-synaptic neuron (i.e., positive trace x1 > 0 when

y0 = 1) and to a negative change (dw < 0) if the post-synaptic

neuron fires shortly before the pre-synaptic neuron (i.e., positive

trace y1 > 0 when x0 = 1). Thus, the time window in which

changes may occur depends on the shape of the traces (i.e.,

impulse strength x̂i, ŷi; and decay τxi , τyj , see below).

For a sequence of spikes s[t] ∈ {0, 1}, a trace is defined as

xi[t] = α · xi[t − 1]+ x̂i · s[t], (22)

where α is a decay factor (see Davies et al., 2018). This equation

holds for presynaptic (xi) and postsynaptic (yi) traces. However,

in practice, on Loihi one does not set α directly but instead

decay time constants τxi and τyj .

In the implementation of the emulator we again assume a

first order approximation for synaptic traces, akin to synaptic

input and voltage. Under this assumption for the exponential

decay, in Equation (22) we replace α by

α(τxi ) = 1−
1

τxi
. (23)

Using this approximation gives reasonable results across a

number of different τxi and τyi values (see Figure A2). While

this essentially suffices, it could be improved by introducing an

additional parameter, e.g., β , and optimizing α(τxi ,β).

Note that we have integer precision again. But different

from the round away from zero applied in the neuron model,

here stochastic rounding is used. Since traces are positive values

between 0 and 127 with precision 1, the definition above in

Equation (21) simplifies to the following

RS1,≥0(x) =







⌊x⌋ with probability 1− (x− ⌊x⌋)

⌊x⌋ + 1 with probability x− ⌊x⌋
(24)

Since this rounding procedure is probabilistic and the details

of the random number generator are unknown, rounding

introduces discrepancies when emulating Loihi on the

computer. Further improvements are possible if more details of

the chip’s rounding mechanism were to be considered.
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3.3. Summary

At this point we are able to connect neurons with synapses

and build networks of neurons (see Figure 1B). It was shown

how the weights are handled, depending on the user defined

number of weight bits or the sign mode. In addition, using the

dynamics of the pre- and post synaptic traces, we can now define

learning rules. Note that different from the neuron model, the

synaptic traces cannot be reproduced exactly since the details

of the random number generator, used for stochastic rounding,

are unknown. However, Figure 2 shows that the synaptic traces

emulated in Brian are very close to the original ones in Loihi

and that the behavior of a standard asymmetric STDP rule can

be reproduced with the emulator.

4. Loihi emulator based on Brian

Here we provide an overview over the emulator package and

show some examples and results. This enables straightforward

emulation of the basic features from Loihi as a sandbox for

experimenters. Note that we have explicitly not included routing

and mapping restrictions, like limitations for the number

of neurons or the amount of synapses, as these depend on

constraints such as the number of used Loihi chips.

4.1. The package

The emulator package is available on PyPI6 and can be

installed using the pip package manager. The emulator does

not provide all functionality of the Loihi chip and software,

but the main important aspects. An overview over all provided

features is given in Table A1 (Appendix). It contains six classes

that extend the corresponding Brian classes. The classes are

briefly introduced in the following. Further details can be taken

from the code.7

4.1.1. Network

The LoihiNetwork class extends the Brian Network

class. It provides the same attributes as the original Brian class.

The main difference is that it initializes the default clock, the

integrationmethods and updates the schedule when aNetwork

instance is created. Note that it is necessary tomake explicitly use

of the LoihiNetwork. It is not possible to use Brian’smagic

network.

Voltage and synaptic input are evolved with the forward

Euler integration method, which was introduced in Section 2.2.

6 https://pypi.org/project/brian2-loihi/

7 https://github.com/sagacitysite/brian2_loihi/

1 lif_equations = ’’’
2 rnd_v = sign(v)*ceil(abs(v*1_tau_v)) : 1
3 rnd_I = sign(I)*ceil(abs(I*1_tau_I)) : 1
4 dv/dt = -rnd_v/ms + I/ms: 1 (unless refractory)
5 dI/dt = -rnd_I/ms : 1
6 ’’’

Neuron model equations of the voltage and the synaptic input for

Brian. It contains a round away from zero rounding.

Additionally a state updater was defined for the pre- and post-

synaptic traces.

The default network update schedule for the computational

order of the variables from Brian do not match the order of

the computation on Loihi. The Brian update schedule is

therefore altered when initializing the LoihiNetwork, more

details are given in Appendix 9.2.1.

4.1.2. Neuron group

The LoihiNeuronGroup extends Brian’s

NeuronGroup class. Parameters of the

LoihiNeuronGroup class are mostly different from the

Brian class and are related to Loihi. When an instance

is created, the given parameters are first checked to match

requirements from Loihi. Finally, the differential equations to

describe the neural system are shown in Code Listing 1. Since

Brian does not provide a round away from zero functionality,

we need to define it manually as an equation.

4.1.3. Synapses

The LoihiSynapses class extends the Synapses class

from Brian. Again, most of the Brian parameters are

not supported and instead Loihi parameters are available.

When instantiating a LoihiSynapses object, the needed

pre- and post-synaptic traces are included as equations (shown

in Code Listing 2) as theoretically introduced in Section 3.2.

Moreover, it is verified that the defined learning rule matches

the available variables and operations supported by Loihi. The

equations for the weight update is shown in Code Listing 3.

Since we have no access to the underlying mechanism

and we cannot reproduce the pseudo-stochastic mechanisms

exactly, we have to find a stochastic rounding that matches

Loihi in distribution. Note that on Loihi the same network

configuration leads to reproducible results (i.e., same rounding).

Thus to compare the behavior of Loihi and the emulator, we

simulate over a number of network settings and compare the

distribution of the traces. Figure 2B shows the match between

the distributions. Note that with this, our implementation is

always slightly different from the Loihi simulation, due to

slight differences in rounding. In Figure 2C, we show that

these variations are constant and not diverging. In addition,
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1 x1decay_equations = ’’’
2 x1_new = x1 * (1 - (1.0/tau_x1)) : 1
3 x1_int = int(x1_new) : 1
4 x1_frac = x1_new - x1_int : 1
5 x1_add_or_not = int(x1_frac > rand()) : 1 (

constant over dt)
6 x1_rnd = x1_int + x1_add_or_not : 1
7 dx1/dt = x1_rnd / ms : 1 (clock-driven)
8 ’’’

Synaptic decay equation for Brian. Only the decay for x1 is shown,

the decay for x2, y1, y2, y3 is applied analogously. It contains an

approximation of the exponential decay and stochastic rounding.

1 weight_equations = ’’’
2 u0 = 1 : 1
3 u1 = int(t/ms % 2**1 == 0) : 1
4 ...
5 u9 = int(t/ms % 2**9 == 0) : 1
6

7 dw_rounded = int(sign(dw)*ceil(abs(dw))) : 1
8 quotient = int(dw_rounded / precision) : 1
9 remainder = abs(dw_rounded) % precision : 1
10 prob = remainder / precision : 1
11 add_or_not = sign(dw_rounded) * int(prob > rand())

: 1 (constant over dt)
12 dw_rounded_to_precision = (quotient + add_or_not)

* precision : 1
13 w_updated = w + dw_rounded_to_precision : 1
14 w_clipped = clip(w_updated, w_low, w_high) : 1
15 dw/dt = w_clipped / ms : 1 (clock-driven)
16

17 w_act_scaled = w_clipped * 2**(6 + w_exp) : 1
18 w_act_scaled_shifted = int(floor(w_act_scaled /

2**6)) * 2**6 : 1
19 w_act_clipped = clip(w_act_scaled_shifted, -limit,

limit) : 1
20 dw_act/dt = w_act_clipped / ms : 1 (clock-driven)
21

22 dx0/dt = 0 / ms : 1 (clock-driven)
23 dy0/dt = 0 / ms : 1 (clock-driven)
24 ’’’

Weight equations for Brian. The first part creates variables that allow

terms of the plasticity rule to be evaluated only at the 2k time step. dw

contains the user defined learning rule. The updated weight mantissa

is adapted depending on the number of weight bits, which determines

the precision. The weight mantissa is rounded with stochastic

rounding. After clipping, the weight mantissa is updated and the

actual weight is calculated.

Figure 2D shows that the principle behavior of a learning rule

is preserved.

4.1.4. State monitor and Spike monitor

The LoihiStateMonitor class extends the

StateMonitor class from Brian, while the

LoihiSpikeMonitor class extends the SpikeMonitor

class. Both classes support the most important parameters from

their subclasses and update the schedule for the timing of the

probes. This schedule update avoids shifts in the monitored

variables compared to Loihi.

4.1.5. Spike generator group

The LoihiSpikeGeneratorGroup extends the

SpikeGeneratorGroup class from Brian. This class

only reduces the available parameters to avoid that users

unintentionally change variables which would cause an

unwanted emulation behavior.

4.2. Examples

To demonstrate that the Loihi emulator works as

expected, we provide three examples covering a single neuron,

a recurrently connected spiking neural network, and the

application of a learning rule. All three examples are available

as Jupyter notebooks.8

4.2.1. Neuron model

In a first test, we simulated a single neuron. The neuron

receives randomly timed excitatory and inhibitory input spikes.

Figure 1A1 shows the synaptic responses induced by the input

spikes for the simulation using the Loihi chip and the

Loihi emulator. The corresponding voltage traces are shown in

Figure 1A2. As expected, the synaptic input as well as the voltage

match perfectly between the hardware and the emulator.

4.2.2. Network

In a second approach we applied a recurrently connected

network of 400 excitatory and 100 inhibitory neurons with log-

normal weights. The network gets noisy background input from

40 Poisson generators that are connected to the network with

a probability of 0.05. As already shown by others, this setup

leads to a highly chaotic behavior (Sompolinsky et al., 1988;

Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; London

et al., 2010). Despite the chaotic dynamics, spikes, voltages and

synaptic inputs match perfectly for all neurons and over the

whole time. The spiking pattern of the network is shown in

Figure 2B. All yellow (Brian) and blue (Loihi) dots match

perfectly.

4.2.3. Learning

In the last experiment, we applied a simple STDP learning

rule, as introduced in Equation (25), at a single plastic synapse.

The experiment is sketched in Figure 2A. One spike generator,

denoted input, has a plastic connection to a neuron with a very

low weight (w̃ = 128, 2 = −6), such that it has a negligible

effect on the post-synaptic neuron. Another spike generator,

denoted noise, has a large but static weight (w̃ = 254, 2 = 0)

8 https://github.com/sagacitysite/brian2_loihi_utils/tree/main/

examples

Frontiers inNeuroinformatics 08 frontiersin.org

100

https://doi.org/10.3389/fninf.2022.1015624
https://github.com/sagacitysite/brian2_loihi_utils/tree/main/examples
https://github.com/sagacitysite/brian2_loihi_utils/tree/main/examples
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Michaelis et al. 10.3389/fninf.2022.1015624

FIGURE 2

Comparing a STDP learning rule performed with the emulator and with Loihi. (A) Sketch showing the setup. (B) Synaptic trace for many trials

showing the arithmetic mean and standard deviation. The inset shows the same data in a logarithmic scale. Note that every data point smaller

than 100 shows the probability of rounding values between 0 and 1 up or down. (C) Relative di�erence |w̃L − w̃B|/w̃max for the plastic weight

between the emulator, w̃B, and the Loihi implementation, w̃L, for 50 simulations, w̃max = 255. (D) STDP weight change in respect to pre- and

post-synaptic spike times, data shown for time steps 0− 2, 000 for visualization purposes.

to reliably induce post-synaptic spikes. Figure 2B compares the

distribution of traces between the emulator and Loihi. For this

400 trials were simulated.

We chose an asymmetric learning window for the STDP

rule. The learning rule uses one pre-synaptic trace x1 (x̂1 = 120,

τx1 = 8) and one post-synaptic trace y1 (ŷ1 = 120, τy1 = 8). In

addition the dependency factors x0 ∈ 0, 1 and y0 ∈ 0, 1 are used,

which indicate a pre- and post-synaptic spike respectively. Using

these components, the learning rule is defined as

dw = 2−2 · x1 · y0 − 2−2 · x0 · y1. (25)

Due to the stochastic rounding of the traces, differences

in the weight changes occur, which are shown in Figure 2C.

Fortunately, the relative weight error remains low at a constant

level of 0.027 ± 0.027 and does not diverge, even over long

simulation times, e.g., 100 000 steps. Despite these variations, the

STDP learning window of the emulator reproduces the behavior

of the Loihi learning window, as shown in Figure 2D.

4.3. Performance tests

An important argument for the development of the

Brian2Loihi emulator was—besides improving the

understanding of Loihi’s functionality—its usefulness for

prototyping. When developing new models, algorithms,

and applications, often large parameter scans are performed

in which many networks with different parameter sets are

initialized and executed. During this process, it is crucial to be

able to read out spiking information to measure performance.

For this reason we measured initialization and execution times

both with and without spike monitoring on the Loihi chip

and in the Loihi emulator.
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FIGURE 3

Comparing performance of the Loihi emulator with the Loihi chip. The initialization time (A,B) and execution time (C,D) for Loihi-based
(blue) and emulator-based (orange) simulations was compared for di�erent network sizes. In one case spikes were read out for all neurons and

time steps (A,C) and in a second case no spikes were read out (B,D). The Brian-based simulation using Brian2Loihi had faster initialization

times across all network sizes, both with and without spike monitoring. For the execution time, a Brian-based simulation was only faster when

a read out was defined. If no spikes were read out, Loihi-based execution is faster. Execution time both on the Loihi chip and using the

emulator increase with network size. Points show the mean and shaded areas show the standard deviation over 5 trials.

Figure 3A compares initialization times for a randomly

connected network with different sizes. Networks were

stimulated with background noise tomaintain a consistent firing

rate. Note that more details about the network implementation

are provided in Appendix 9.2.2. From the figure, it is clear that

Loihi takes much more time to setup the network compared

to the emulator based on Brian. If no spiking information is

read out from the network during simulation, the result is quite

similar, as shown in Figure 3B. Brian2Loihi reduces the

initialization time drastically, in particular for larger networks.

This boost in initialization time is highly valuable for parameter

scans across many network configurations.

We were also interested in the comparison for the execution

times of the simulation. Figure 3C compares Loihi- and

Brian-based execution times if all spikes were read out. Clearly,

Brian2Loihi is much faster and the difference becomes

larger as the network size grows. However, if no read out is

performed, Figure 3D shows that in this case Loihi is faster

in executing the simulation across all network sizes. Therefore,

Brian2Loihi is more efficient for prototyping networks,

when we depend on analyzing comprehensive data from the

networks’ behavior. For applications where a read out is not

important or only few spikes must be read out, execution on

Loihi is faster.

This underlines the significance of the Brian2Loihi

emulator for prototyping on one hand and shows the potential

of Loihi for large and long-term network simulations on the

other hand. Note, however, that due to longer initialization times

on Loihi, faster execution times are likely beneficial only if

network initialization must not be performed often, readout

is minimal, and the simulation time is long. In many cases,

choosing a Brian-based simulation for development and a

Loihi-based simulation for productive use cases could be an

efficient combination in our view.

4.4. Applications

As a starting point for working with the

emulator beyond the examples above, here we

briefly describe two more complex applications
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implemented using the emulator. The code is openly

available.

4.4.1. Anisotropic network

In a recent study, we showed that a recurrently connected

neural network with spatially inhomogeneous locally correlated

connectivity (i.e., “the anisotropic network”, for original

model see Spreizer et al., 2019) could be implemented

on Loihi to generate noise-robust trajectories for robotic

movements (Michaelis et al., 2020). This biologically plausible

network model can generate stable sequences of neural

activity on the timescale of behavior, making it interesting

for both neuroscience and for neuromorphic applications. We

implemented this network in the Loihi emulator and made it

publicly available on GitHub.9

4.4.2. SSSP

The goal of the Single Source Shortest Path (SSSP) problem

is to find the shortest path from a start node to a target node in

a given graph. Spiking neuronal networks can solve the problem

through a wave front algorithm (Ponulak and Hopfield, 2013).

Within this algorithm a wave of spikes propagates through

a network of neurons that acts to represent the graph. The

algorithm stops when the target neuron spikes. To enable path

back tracing a local learning rule alters the weights during the

wave propagation phase accordingly. An implementation using

the Loihi emulator is available on GitHub.10

Furthermore, a new type of the SSSP algorithm for

neuromorphic hardware was developed using the Loihi

emulator, the so-called add-and-minimize (AM) algorithm

(Michaelis, 2022, Appendix 9.5). It is capable of solving the SSSP

problem for larger graphs, especially when the costs of the edges

have a higher resolution. The code is again publicly available.11

5. Discussion

This study was motivated by two goals. We hope to simplify

the transfer of models to Loihi and therefore developed a

Loihi emulator for Brian, featuring many functionalities of

the Loihi chip. In the process of developing the emulator, we

aimed to provide a deeper understanding of the functionality of

the neuromorphic research chip Loihi by analyzing its neuron

and synapse model, as well as synaptic plasticity.

We hope that the analysis of Loihi’s spiking units has

provided some insight into how Loihi computes. With the

numerical integration method, numerical precision and related

9 https://github.com/andrewlehr/Brian2Loihi_SpreizerNet

10 https://github.com/Winnus/Brian2Loihi_SSSP

11 https://github.com/elena-o�/sssp-loihiemulator

rounding method, as well as the update schedule, we were able

to walk from the LIF neuron model down to the computations

performed. For neurons and networks without plasticity we

are able to emulate Loihi without error. Analyzing and

implementing synaptic plasticity showed that, due to stochastic

rounding, it is not possible to exactly replicate trial by trial

behavior when it comes to learning. However, on average the

weight changes induced by a learning rule are preserved.

The main benefit of the Brian2Loihi emulator lies

in lowering the hurdle for the experimenter. Especially in

neuroscience, many scientists are accustomed to neuron

simulators and in particular Brian is widely used. It makes a

deep dive into new software frameworks and hardware systems

unnecessary. The emulator can be used for simple and fast

prototyping, as it improves the initialization time in all cases

drastically and the execution time, when a read out is used.

In addition, hardware specific complications, like distributing

neurons to cores, or constraints like potential limits on the

number of available neurons or synapses, or on the speed or

size of read-out, do not occur in the emulator. While this will

surely improve with new generations of hardware and software

in the upcoming years, they can already be ignored by using the

emulator.

At this point it is important to note that not all Loihi

features are included in the emulator, yet. In particular, the

homeostasis mechanism, rewards, and tags for the learning rule

are not included. In Table A1, we provide a comparison of all

functionalities from Loihi with those available in the current

state of the emulator. Development of this emulator is an open

source project and we expect improvements and additions with

time. Note that a follow up project, called Brian2Lava has

already started.12

An important vision for the future is to flexibly connect

front-end development environments (e.g., Brian, NEST,

Keras, TensorFlow) with various back-ends, like neuromorphic

platforms (e.g., Loihi, SpiNNaker, BrainScaleS, Dynap-SE) or

emulators for these platforms. PyNN (Davison et al., 2009) is

such an approach to unify different front-ends and back-ends

in a more general way. Nengo (Bekolay et al., 2014), as another

approach, does not provide the use of other simulators, but

allows several back-ends and focuses on higher level applications

(DeWolf et al., 2020). NxTF (Rueckauer et al., 2021) is an API

and compiler aimed at simplifying the efficient deployment of

deep convolutional spiking neural networks on Loihi using an

interface derived from Keras. We think that ideally, one could

continue to work in their preferred front-end environment while

a package maps their code to existing chips or computer-based

emulators of these chips. We expect an interface along these

lines will play an important role in the future of neuromorphic

computing and want to contribute to this development with our

Brian2Loihi emulator.

12 https://gitlab.com/tetzlab/brian2lava
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At least for now, with an emulator at hand, it is

easier to prototype network models and assess whether an

implementation on Loihi is worth considering. When getting

started with neuromorphic hardware, to e.g., scale up models

or speed up simulations, researchers familiar with Brian can

directly deploy models prepared with the emulator. We hope

that with this, others may find a smooth entry into the quickly

emerging field of neuromorphic computing.
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Introduction: For artificial synapses whose strengths are assumed to be

bounded and can only be updated with finite precision, achieving optimal

memory consolidation using primitives from classical physics leads to synaptic

models that are too complex to be scaled in-silico. Here we report that a

relatively simple di�erential device that operates using the physics of Fowler-

Nordheim (FN) quantum-mechanical tunneling can achieve tunable memory

consolidation characteristics with di�erent plasticity-stability trade-o�s.

Methods: A prototype FN-synapse array was fabricated in a standard

silicon process and was used to verify the optimal memory consolidation

characteristics and used for estimating the parameters of an FN-synapse

analytical model. The analytical model was then used for large-scale memory

consolidation and continual learning experiments.

Results: We show that compared to other physical implementations of

synapses for memory consolidation, the operation of the FN-synapse is near-

optimal in terms of the synaptic lifetime and the consolidation properties.

We also demonstrate that a network comprising FN-synapses outperforms a

comparable elastic weight consolidation (EWC) network for some benchmark

continual learning tasks.

Discussions: With an energy footprint of femtojoules per synaptic update,

we believe that the proposed FN-synapse provides an ultra-energy-e�cient

approach for implementing both synaptic memory consolidation and

continual learning on a physical device.

KEYWORDS

hardware synapse, memory consolidation, quantum-tunneling, neuromorphic,

continual learning

1. Introduction

There is a growing evidence from the field of neuroscience and neuroscience

inspired AI about the importance of implementing synapses as a complex high-

dimensional dynamical system (Fusi et al., 2005; Benna and Fusi, 2016), as opposed to

a simple and a static storage element, as depicted in standard neural networks (Sohoni

et al., 2019). This dynamical systems viewpoint has been motivated by the hypothesis
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that complex interactions between plethora of biochemical

processes at a synapse (illustrated in Figure 1A) produces

synaptic metaplasticity (Abraham, 2008) and plays a key role

in synaptic memory consolidation (Li et al., 2017). Both these

phenomena have been observed in biological synapses (Yang

et al., 2009, 2014) where the synaptic plasticity (or ease of

update) can vary depending on age and task-specific usage that

is accumulated during the process of learning. In literature these

long-term synaptic memory consolidation dynamics have been

captured using different analytical models with varying degrees

of complexity (Amit and Fusi, 1994; Fusi, 2002; Fusi et al.,

2005; Fusi and Abbott, 2007; Roxin and Fusi, 2013; Benna and

Fusi, 2016). One such model is the cascade model (Benna and

Fusi, 2016) which has been shown to achieve the theoretically

optimal memory consolidation characteristic for benchmark

random pattern experiments. However, the physical realization

of cascade models as described in Benna and Fusi (2016) uses

a complex coupling of dynamical states and diffusion dynamics

(an example illustrated in Figure 1B using a reservoir model),

which is difficult to mimic and scale in-silico. Similar optimal

memory consolidation characteristics have been reported in the

context of continual learning in artificial neural networks (ANN)

where synapses that are found to be important for learning a

specific task are consolidated (or become rigid) (Aljundi et al.,

2017; Kirkpatrick et al., 2017; Lee et al., 2017; Zenke et al.,

2017; Chaudhry et al., 2018; Liu et al., 2018). As a result, when

FIGURE 1

On-device memory consolidation using FN-synapses: (A) An illustration of a biological synapse with di�erent coupled biochemical processes

that determine synaptic dynamics (B) physical realization of the cascade model reported in Benna and Fusi (2016) that captures the

consolidation dynamics using fluid in reservoirs uk that are coupled through parameters gkj. (C) Illustration of the FN-synapse dynamics using a

di�erential reservoir model and its state at time-instants t0, t1, and t2; (D) energy-band diagram to show the implementation of the reservoir

model in (C) using the physics of Fowler-Nordheim quantum-mechanical tunneling where a single synaptic element (as show in E) which stores

the weight Wd as the di�erential charge stored between each tunneling junction, i.e., Wd = W+ −W−

2
and the common-mode tunneling voltage

Wc as the average of the individual charges, i.e., Wc = W+ +W−

2
); (E)micrograph of a single FN-synapse; (F)micrograph of an array of FN-synaptic

devices fabricated in a standard silicon process.

learning a new task the synaptic weight does not significantly

deviate from the consolidated weights, hence, the network seeks

solutions that work well for as many tasks as possible. However,

these synaptic models are algorithmic in nature and it is not

clear if the optimal consolidation characteristics can be naturally

implemented on the synaptic device in-silico. Also, it is not

clear if the consolidation properties of the physical synaptic

device can be tuned to achieve different plasticity-stability trade-

offs and hence can overcome the relative disadvantages of the

EWC models. In this paper, we report that a simple differential

device that operates using the physics of Fowler-Nordheim (FN)

quantum-mechanical tunneling can achieve tunable synaptic

memory consolidation characteristics similar to the algorithmic

consolidation models. The operation of the synaptic device,

referred to in this paper as the FN-synapse, can be understood

using a reservoir model as shown in Figure 1C). Two reservoirs

with fluid levels W+ and W− are coupled to each other using

a sliding barrier X. The barrier is used to control the fluid

flow from the respective reservoirs into an external medium.

The respective flows, which are modeled by functions J(W+)

and J(W−), at time-instant t are modulated by the position of

the sliding barrier X(t) and the level of fluid in the external

reservoir m(t). In this reservoir model, the synaptic weight is

stored as Wd = 1
2 (W

+ − W−) whereas Wc = 1
2 (W

+ +

W−) serves as an indicator of synaptic usage with respect to

time.
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In the Section 3, we show that for a synapse based

on a general differential reservoir model [without making

assumptions on the nature of the flow function J(.)] the synaptic

weight Wd evolves in response to the external input X(t)

according to the coupled differential equation

dWd

dt
= −r(t)Wd + X(t) (1)

where

r(t) =
d2Wc

dt2

(
dWc

dt

)−1

(2)

is a time varying decay function that models the dynamics of the

synaptic plasticity as a function of the history of synaptic activity

(or its usage). The usage parameterWc evolves according to

dWc

dt
= −J (Wc) +m(t) (3)

based on the functions J(.) and m(t). Equations (1)–(3) show

that the weightWd update does not directly depend on the non-

linear function J(.) but implicitly through the common-mode

Wc. Furthermore, Equation (1) conforms to the weight update

equation reported in the EWC model (Kirkpatrick et al., 2017)

where it has been shown that if r(t) varies according to the

network Fisher information metric, then the strength of a stored

pattern or memory (typically defined in terms of signal-to-noise

ratio) decays at an optimal rate of 1/
√
t when the synaptic

network is subjected to random, uncorrelated memory patterns.

In Section 3, we show that if the objective is to maximize the

operational lifetime of the synapse, then equating the time-

evolution profile in Equation (2) to r(t) ≈ O(1/t) (Kirkpatrick

et al., 2017) leads to an optimal J(.) of the form J(V) ∝

V2 exp (−β/V) where β is a constant. The expression for J(V)

matches the expression for a Fowler-Nordheim (FN) quantum-

mechanical tunneling current (Lenzlinger and Snow, 1969)

indicating that optimal synaptic memory consolidation could be

achieved on a physical device operating on the physics of FN

quantum-tunneling.

To verify on-device optimal consolidation dynamics we

fabricated an array of FN-synapses and Figures 1D, E show

the micrograph of the fabricated prototype. In the Section 3,

we show the mapping of the differential reservoir model using

the physical variables associated with FN quantum tunneling

and Figure 1F shows the mapping using an energy-band

diagram. Similar to our previous works (Zhou and Chakrabartty,

2017; Zhou et al., 2019; Rahman et al., 2022), the tunneling

junctions have been implemented using polysilicon, silicon-

di-oxide, and n-well layers, where the silicon-di-oxide forms

the FN-tunneling barrier for electrons to leak out from the

n-well onto a polysilicon layer. The polysilicon layer forms

a floating-gate where the initial charge can be programmed

using a combination of hot-electron injection or quantum-

tunneling (Mehta et al., 2020, 2022). The synaptic weight is

stored as a differential voltage Wd = 1
2 (W

+ − W−) across

two floating-gates as shown in Figure 1F. The voltages on the

floating-gates W+ and W− at any instant of time are modified

by the differential signals ± 1
2X(t) that are coupled onto the

floating-gates. The dynamics for updating W+ and W− are

determined by the respective tunneling currents J(.) which

discharge the floating-gates. In the Supplementary Figure 1, we

describe the complete equivalent circuit for the FN-synapse

along with the read-out mechanism used in this work to

measure Wd. The presence of additional coupling capacitors

in Supplementary Figure 1 provides a mechanism to inject a

common-mode modulation signal m(t) into the FN-synapse.

We will show in the Section 2 that m(t) can be used to tune the

memory consolidation characteristics of the FN-synapse array to

achieve memory capacity similar to or better than the cascade

consolidation models (with different degrees of complexities)

or the task-specific synaptic consolidation corresponding to the

EWCmodel.

2. Results

2.1. FN-synapse characterization

The first set of experiments were designed to understand the

metaplasticity exhibited by FN-synapses and how the synaptic

weight and usage change in response to an external stimulation.

The charge stored on the floating-gates in the FN-synapse were

first initialized according to the procedure described in the

Section 3 and in the Supplementary material. The tunneling

barrier thickness in FN-synapse prototype shown in Figures 1D,

E was chosen to be greater than 12 nm which makes the

probability of direct-tunneling of electrons across the barrier

to be negligible. The probability of FN-tunneling of electrons

across the barrier (as shown in Figure 1F) is reduced to be

negligible by lowering the electric potential of the tunneling

nodes W+ and W− (see Supplementary Figure 1) with respect

to the reference ground to be less than 5 V. In this state the

FN-synapse behaves as a standard non-volatile memory storing

a weight proportional to Wd = W+ − W−. To increase the

magnitude of the stored weight a differential input pulse ± 1
2X

is applied across the capacitors that are coupled to the floating-

gates (see Supplementary Figure 1). The electric potential of the

floating-gate W− is increased beyond 7.5 V where the FN-

tunneling current J(W−) is significant. At the same time the

electric potential of the floating-gate W+ is also pushed higher

but W− > W+ such that the FN-tunneling currents J(W+) <

J(W−). As a result, the W− node discharges at a rate that is

faster than the W+ node. After the input pulse is removed, the

potential of both W− and W+ are pulled below 5 V and hence

the FN-synapse returns to its non-volatile state. Figures 2A–C
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FIGURE 2

Experimental weight evolution of FN-synapse: (A) A random set of potentiation and depression pulses of equal magnitude and duration applied to

the FN-synapse leading to (B) bidirectional evolution of weight (Wd) and (C) the corresponding trajectory followed by the common-mode

tunneling node (Wc).

show the measured responses which shows that an FN-synapse

can store both the weight and the usage history. When a series

of potentiation and depression pulses of equal magnitude and

duration is applied to the FN-synapse, as shown in Figure 2A,

the weight stored Wd evolves bidirectionally (like a random

walk) due to the input pulses (see Figure 2B). Meanwhile, the

common-mode potential Wc decreases monotonically with the

number of input pulses irrespective of the polarity of the input,

as shown in Figure 2C. Therefore, Wc reliably tracks the usage

history of the FN-synapse whereas Wd stores the weight of the

synapse. Figures 3A, B show the measured weight update 1Wd

in response to different magnitudes and duration of the input

pulses. For this experiment the common-modeWc =
1
2 (W

+ +

W−) is held fixed. In Figure 3A, we can observe that for a fixed

magnitude of input voltage pulses (= 4V)1Wd changes linearly

with pulse width. Whereas, Figure 3B shows that the updated

1Wd changes exponentially with respect to the magnitude of

the input pulses (duration= 100ms). Thus, the results show that

pulse width modulation or pulse density modulation provides a

more accurate control over the synaptic updates. Furthermore,

in regard to energy dissipation per synaptic update pulse width

modulation is also more attractive than using pulse magnitude

variation. The energy required to write each time on FN-synapse

can be estimated by measuring the energy drawn from the

differential input source X in Supplementary Figure 1 to charge

the coupling capacitor Cc and is given by

Ewrite =
1

2
Cc(X)

2 (4)

This means that using smaller pulse magnitude accompanied by

longer pulse width is preferable than the other way around in the

context of write energy dissipation for the same desired change

in weight. However, this would come at a cost of slower writing

speed. Therefore, a trade-off exists. For the fabricated FN-

synapse prototype, the magnitude of the coupling capacitor Cc is

approximately 200f F which leads to 400f J for an input voltage

pulse change of 2V across Cc. For the differential input voltage

pulse of 4V a total of 800f J of energy was dissipated for each

potentiation and depression of the synaptic weights. When the

common-modeWc is not held fixed, irrespective of whether the

weightWd is increased or decreased (depending on the polarity

of the input signal) the common-mode always decreases. Thus,
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FIGURE 3

Experimental characterization of a single FN-synapse: (A) Dependence of change in magnitude of weight with change in pulse-width which

follows a linear trajectory defined by y = mx+ c (where m = 0.005136 and c = −6.227× 10−5). (B) Dependence on pulse magnitude of the

input pulse which follows an exponential trajectory defined by y = c× exp(ax+ b)+ d (where a = 1, b = −6.611, c = 0.009959 and

d = −0.0002142). (C) Change in the magnitude of successive weight updates (1Wd) corresponding to repeated stimulus.

Wc serve as an indicator of the usage of the synapse. Figure 3C

shows the metaplasticity exhibited by an FN-synapse where we

measured 1Wd as a function of usage by applying successive

potentiation input pulses of constant magnitude (4 V) and width

(100 ms). Figure 3C shows that when the synapse is modulated

with same excitation successively, the amount of weight update

decreases monotonically with increasing usage, similar to the

response illustrated in Figures 1C, F.

2.2. FN-synapse network capacity and
memory lifetime without plasticity
modulation

The next set of experiments were designed to understand

the FN-synaptic memory consolidation characteristics when

the array is excited using a random binary input pattern

(potentiation or depression pulses). This type of benchmark

experiment is used extensively in memory consolidation

studies (Benna and Fusi, 2016; Kirkpatrick et al., 2017) since

analytical solutions exist for limiting cases which can be used

to validate and compare the experimental results. A network

comprising of N FN-synapses is first initialized to store zero

weights (or equivalently W− = W+). New memories were

presented as random binary patterns (N dimensional random

binary vector) that are applied to the N FN-synapses through

either potentiation or depression pulses. Each synaptic element

was provided with balanced input, i.e., equal number of

potentiation and depression pulses. The goal of this experiment

is to track the strength of a memory that is imprinted on this

array in the presence of repeated new memory patterns. This

is illustrated in Figures 4A, B where an initial input pattern (a

2D image of the number “0” comprising of 10 × 10 pixels)

is written on a memory array. The array is then subjected to

images of noise patterns that are statistically uncorrelated to

the initial input pattern. It can be envisioned that as additional

new patterns are written to the same array, the strength of a

specific memory (of the image “0”) will degrade. Similar to the

previous studies (Benna and Fusi, 2016; Kirkpatrick et al., 2017)

we quantify this degradation in terms of signal-to-noise ratio

(SNR). If n denotes the number of new memory patterns that

have been applied to an empty FN-synapse array (initial weight

stored on the network is zero), then the Section 3 shows that

for the pth update the retrieval memory signal S(n, p) power,

the noise ν(n, p) power and the SNR(n, p) can be expressed

analytically as

S2(n, p) =
1

(n+ γ )2
; ν2(n, p) =

n

N(n+ γ )2
;

SNR(n, p) =

√

N

n
. (5)

where γ > 0 is a device parameter that depends on the

initialization condition, material properties and duration of the

input stimuli.

Equation (5) shows that the initial SNR is
√
N and the

SNR falls off according to a power-law decay with a slope

of 1√
n
. Like previous consolidation studies (Benna and Fusi,

2016) we will assume that a specific memory pattern is retained

as long as its SNR exceeds a predetermined threshold (unity

in this experiment). Therefore, according to Equation (5) the

network capacity and memory lifetime for FN-synapse scales

linearly with the size of the network N when the initial weight

across all synapse is zero. We verified the analytical expressions

in Equation (5) for a network size of N = 100 using

results measured from the FN-synapse chipset. Details of the
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FIGURE 4

Comparison of measured and simulated memory consolidation for an empty FN-synapse network: (A) Set of 10×10 randomized noise inputs

fed to a network of 100 FN-synapses initialized to store an image of the number 0 and (B) the corresponding memory evolution. Comparison of

(C) signal strength, (D) noise strength, and (E) SNR for a network size of 100 synapse measured using the fabricated FN-synapse array shown in

Figure 1F for 25 (for γ1) and 15 (for γ2) Monte-Carlo runs. (F) SNR comparison of the γ1 and γ2 models with the analytical model for 1,000 Monte

Carlo simulations. The legends associated with the plots are specified as (γ , Number of Monte-Carlo runs). All of these results correspond to the

behavior of an empty FN-synapse network.

hardware experiment is provided in the Section 3. Figures 4C–

E show the retrieval signal, noise, and SNR obtained from

the fabricated FN-synapse network for two different values

of γ . We observe that the SNR obtained from the hardware

results conform to the analytical expressions relatively well.

The slight differences can be attributed to the Monte-Carlo

simulation artifacts (only 25 and 15 iterations were carried

out). In the Supplementary Figure 3, we show verification of

these analytic expressions using a behavioral model of the

FN-synapse which mimics the hardware prototype with great

accuracy (as shown in Supplementary Figure 2). Details on the

derivation of FN-synapse model is provided in the Section

3. The simulated results in Figures 4C–E verifies that results

from the software model can accurately track the hardware FN-

synapse measurements for both values of γ when subjected

to the same stimuli. Therefore, FN-synapse and its behavioral

model can be used interchangeably. The results in Figure 4F also

show that when the number of iterations on the Monte-Carlo

simulation is increased (1,000 iterations), the simulated SNR

closely approximates the analytic expression. This verifies that

hardware FN-synapse is also capable of exactly matching the

optimal analytic consolidation characteristics. Figure 3C shows

the measured evolution of weights stored in the FN-synapse

where initially the weights grow quickly but after a certain

number of updates settle to a steady value irrespective of new

updates. This implies that the synapses have become rigid with

an increase in its usage. This type of memory consolidation

is also observed in EWC models which has been used for

continual learning. However, note that unlike EWC models that

need to store and update some measure of Fisher information,

whereas, here the physics of the FN-synapse device itself can

achieve similar memory consolidation without any additional

computation.

2.3. Plasticity modulation of FN-synapse
models

In our next set of experiments, we verified that the plasticity

of FN-synapses can be adjusted to mimic the consolidation

properties of both EWC and steady-state models (such as

cascade models). While the EWC model only allows for the

retention of old memories, steady state/cascade models allow

for both memory retention and forgetting. As a result, these

models avoid blackout catastrophe whereas an EWC network

is unable to retrieve any previous memories or store new
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experiences as the network approaches its capacity. Steady-state

models allow the network to gracefully forget old memories and

continue to remember new experiences indefinitely. For an FN-

synapse network, a coupling capacitor in each synapse (shown

in Supplementary Figure 1) which is driven by a global voltage

signal Vmod(t) (which produces m(t) =
dVmod(t)

dt
) can control

the plasticity of the FN-synapse to mimic the characteristics

of a steady-state model. Details of the modified FN-synapse

achieving a steady-state response are provided in the Section 3.

To understand and compare the blackout catastrophe in FN-

synapse models with a steady-state model, e.g., the cascade

model we define the metric #patterns.retained as the total

number of memory patterns whose SNR exceeds 1 at any given

point of time. The #patterns.retained for FN-synapse network

with modulation profiles m0(t), m1(t), m2(t), m3(t), and m4(t)

of size N = 1, 000 is shown in Figure 5A together with those

for cascade models of different levels of complexity (Benna and

Fusi, 2016) (denoted by c = 1, .., 5). In order to calculate

the #patterns.retained the SNR resulting from each stimulus

was calculated and tracked at every observation to determine

the number of such stimuli that had a corresponding SNR

greater than unity. The profiles of m1(t), m2(t), and m3(t) are

produced by changing Vmod(t) at each update as three quarter,

half, and quarter of the average of 1Wd across all the synapses

during the latest update, respectively, while m0(t) is achieved

through a constant voltage signal Vmod(t). We can observe in

Figure 5A that the FN-synapse network with m0(t) forgets all

observed patterns in addition to not forming any new memories

as #patterns.retained goes to zero as the network capacity is

reached starting from an empty network. Whereas, in the case

for FN-synapse under m1(t) and m2(t) modulation profile the

#patterns.retained reaches a finite value similar to that of the

cascade models. This indicates that the FN-synapse network

when subjected to plasticity modulation profiles continues to

form new memory while gracefully forgetting the old ones. For

them3(t) modulation profile the network is slowly evolving and

yet to reach the steady state condition within 2000th update.

The FN-synapse network under the m4(t) modulation profile,

which switches between m0(t) and m1(t) periodically, is in

an oscillatory steady-state with the same periodicity as the

modulation profile itself. However, note that the network does

not suffer from blackout catastrophe and has a variable capacity.

This shows that the capacity of the FN-synapse network can also

be tuned to the specificity of different applications. From the

figure, we also observe that the steady state network capacity for

m2(t) modulation profile is higher than that of cascade models.

Note here that network capacity for cascade models may be

increased by increasing the complexities of the synaptic model.

Nevertheless, we find that network capacity for FN-synapse is

comparable to cascade models of moderate complexities.

In order to understand the plasticity modulation further, we

investigated the SNR for patterns introduced to a non-empty

network. For this experiment, we tracked the 1000th pattern

observed by the network ofN = 1, 000 synapse. Figure 5B shows

the SNR of this pattern underm1(t)−m4(t) modulation profile

along with cascade models of various complexity. Note that the

x-axis now represents the age of the stimulus, i.e., number of

patterns observed after the tracked pattern. For the modulation

profile m1(t) the initial SNR is large, comparable to that of

cascade models, but the SNR falls off quickly indicating high

plasticity. Whereas, for modulation profile m2(t) and m3(t) the

initial SNR is smaller than m1(t) but it falls off at a much later

time similar to cascade models with high complexities. These

SNR profiles for FN-synapse model with modulation m1(t) −

m3(t) are similar to that of a constant weight decay synaptic

model used in deep learning neural network as a regularization

method. On the other hand, the SNR profile for the 1000th

pattern under m4(t) modulation has both high initial SNR and

a large lifetime. However, from Figure 5B, we observe that the

network is in an oscillatory state which indicates that this profile

is specific to the 1000th pattern, and if we tracked any other

pattern the SNR profile would be different (for reference the

SNR tracked for the 750th update is also shown). This is not

the case for the cascade models which would consistently have

similar SNR profiles irrespective of the pattern that is tracked.

Nevertheless, this SNR profile for the FN-synapse model would

repeat itself corresponding to the periodicity of the modulation

profile. This suggests that the amount of plasticity and memory

lifetime for the FN-synapsemodel is readily tunable and depends

on the amount of modulation provided to the network. We have

also verified that the synaptic strength of FN-synapse is bounded

similarly to that of the cascade models. This can be observed

in Supplementary Figure 10 which shows that the variance in

retrieval signal (Noise) of an FN-synapse network with both

constant modulation and time-varying modulations remains

bounded. Furthermore, Supplementary Figure 11 shows that

plasticity modulation indeed introduces a forgetting mechanism

as the SNR for different modulation profiles (when tracked

from an empty network) starts to fall off earlier than the one

without modulation. In addition to different modulation profile,

the plasticity-lifetime tradeoff of the FN-synapse model can

also be achieved by varying the parameter γ as shown in

Supplementary Figure 12. Therefore, our synaptic models can

exhibit memory consolidation properties similar to both EWC

and steady-state models while being physically realizable and

scalable for large networks.

2.4. Continual learning using FN-synapse

The next set of experiments was designed to evaluate the

performance of FN-synapse neural network for a benchmark

continual learning task. A fully-connected neural network

with two hidden layers was trained sequentially on multiple

supervised learning tasks. Details of the neural network

architecture and training are given in Section 3 and in the
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FIGURE 5

Network capacity and saturation experiments: Comparison of (A) no. of patterns retained by networks composed of 1,000 synapses following

di�erent synaptic models when exposed to 2,000 patterns and (B) steady-state SNR of the 1000th update (p = 1, 000) of networks consisting of

1,000 synapses with various synaptic models when exposed to subsequent updates. For m4(t) modulation SNR profiles for both 450th and 1000th

(p = 450,1000) updates are shown.

Supplementary material. The network was trained on each task

for a fixed number of epochs and after the completion of its

training on a particular task tn, the dataset from tn was not used

for the successive task tn+1.

The aforementioned tasks were constructed from the

Modified National Institute of Standards and Technology

(MNIST) dataset, to address the problem of classifying

handwritten digits in accordance with schemes popularly used

in several continual-learning literature (Hsu et al., 2018). Also

known as incremental domain learning using split-MNIST

dataset, each task of this continual learning benchmark dictates

the neural network to be trained as binary classifier which

distinguishes between a set of two hand-written digits, i.e., the

network is first trained to distinguish between the set [0, 1] as t1

and is then trained to distinguish between [2, 3] in t2, [4, 5] in t3,

[6, 7] in t4, and [8, 9] in t5. Thus, the network acts as an even-odd

number classifier during every task.

Supplementary Figures 7A–E compare the task-wise

accuracy of networks trained with different learning and

consolidation approaches. Note here that the absence of a data-

point corresponding to a particular approach indicates that the

accuracy obtained is below 50%. All the approaches taken into

consideration perform equally well at learning t1 as illustrated

in Supplementary Figure 7A. However, as the networks learn

t2 (see Supplementary Figure 7B), the performance of both

EWC (Kirkpatrick et al., 2017) and online EWC (Liu et al.,

2018) degrade for task t1 as do the networks with conventional

memory using SGD and ADAM. The FN-synapse based

networks on the other hand retain the accuracy of task t1 far

better in comparison. This advantage in retention comes at the

cost of learning t2 marginally poorer than others. This trend

of retaining the older memories or tasks far better than other

approaches continues in successive tasks. Particularly, if we

consider the retention of t1 when the networks are trained on

t3 (see Supplementary Figure 7C), it can be observed that it is

only the FN-synapse based networks that retain t1 while others

fall below the 50% threshold. Similar trends can be observed

in Supplementary Figures 7D, E. There are a few instances

during the five tasks where the EWC variants and SGD with

conventional memory marginally outperform or match the FN-

synapse in terms of retention. However, if the overall average

accuracy of all these approaches are compared (see Figure 6A),

it is clearly evident that both the FN-synapse networks

significantly outperform the others. It is also worth noting

here that even when a network equipped with FN-synapse is

trained using a computationally-inexpensive optimizer such as

SGD, it shows remarkably superior performance than highly

computationally-expensive approaches such as ADAM with

conventional memory and ADAM with EWC variants.

The only drawback of the FN-synapse based approach is

that its ability to learn the present task slightly degrades with

every new task. This phenomenon results from the FN-synapses

becoming more rigid and can be seen in Figure 6B which shows

the evolution of plasticity of weights in the output and input

layer of the network with successive tasks with respect to Wc.

As mentioned earlier, Wc keeps track of the importance of
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FIGURE 6

Continual learning benchmarks results and insights: (A) Overall average accuracy comparison of SGD and ADAM with FN-synapse, ADAM with

EWC and Online EWC, SGD, and ADAM with conventional memory. (B) Distribution of the usage profile of weights in the output layer and the

input layer of the FN-synapse neural network. Overall Average Accuracy comparison of incremental-domain learning scenarios on the

Permuted MNIST dataset using (C) ADAM with EWC, ADAM with FN-Synapse and ADAM with conventional memory and (D) ADAGRAD with

conventional memory and ADAGRAD with FN-synapse.

each weight as a function of the number of times it is used.

The higher the Wc of a particular weight, the less it has been

used and therefore, the more plastic it is and sensitive to

change. On the other hand, a more rigid and frequently used

weight has a lower value of Wc. Suppose the output layer is

considered from Figure 6B. In that case, it can be observed

that with each successive task the Wc of the weights of the

network collectively reduces, leading to more consolidation and

consequently leaving the network with fewer plastic synapses to

learn a new task. In comparison, the majority of the weights

in the input layer remain relatively more plastic (or less spread

out) owing to the redundancies in the network arising from the

vanishing gradient problem (see Section 4 for more details). In

Supplementary Figure 5, we show that the ability of the network

to learn or forget new tasks is a function of the initial plasticity

of the FN-synapses and can be readily adjusted.

In addition to the split-MNIST benchmark, the performance

of FN-synapse based network was compared with EWC for

the permuted MNIST benchmark. These incremental-domain

learning experiments were carried out by randomly permuting

the order of pixels of the images in the MNIST dataset in

accordance with Hsu et al. (2018) to create new tasks. The

overall average accuracy for 10 Monte Carlo simulations when

using ADAM as the optimizer with EWC, FN-Synapse and

conventionalmemory are depicted in Figure 6C.We can observe

from Figure 6C that despite not being as retentive as EWC in this

particular scenario, the network equipped with FN-synapse as

the memory element performs better than the network without

any memory consolidation mechanism, thereby exhibiting

continual learning ability. Furthermore, when compared to a

network with traditional memory employing an optimizer like

ADAGRAD, which has been shown to be suitable for this

learning scenario (Hsu et al., 2018), the FN-synapse network

with ADAGRAD exhibits marginal improvements without any

drop in performance with respect to the former as shown in

Figure 6D.

3. Materials and methods

The main methods are described in this section of the

paper while Supplementary material includes additional details,

supporting information, and figures.

3.1. Weight update for di�erential
synaptic model

Consider the differential synaptic model described by

Figure 1C where the evolution of two dynamical systems with
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state variablesW+ andW− is governed by

dW+

dt
= −J(W+)+

1

2
X(t)+

1

2
m(t) (6)

dW−

dt
= −J(W−)−

1

2
X(t)+

1

2
m(t) (7)

where J(.) is an arbitrary function of the state variables,

+ 1
2X(t) or − 1

2X(t) are differential time varying inputs and

m(t) is a common mode modulation input. In this differential

architecture, we define the weight parameter Wd as Wd =
1
2 (W

+ −W−) which represents the memory and the common-

mode parameter Wc as Wc = 1
2 (W

+ + W−) which represents

the usage of the synapse. Applying this definition to (6) and (7),

we obtain:

d(Wc +Wd)

dt
= −J(Wc +Wd)+

1

2
X(t)+

1

2
m(t) (8)

d(Wc −Wd)

dt
= −J(Wc −Wd)−

1

2
X(t)+

1

2
m(t) (9)

Now, adding and subtracting (8) and (9), we get:

dWc

dt
= −

(
J(Wc +Wd)+ J(Wc −Wd)

2

)

+m(t) (10)

dWd

dt
= −

(
J(Wc +Wd)− J(Wc −Wd)

2

)

+ X(t) (11)

Assuming thatWc >> Wd, applying Taylor series expansion on

(10) and (11) leads to

dWc

dt
= −J (Wc) +m(t) (12)

dWd

dt
= −J′ (Wc)Wd + X(t). (13)

This means that the modulation input impacts the usage of the

synapse. Therefore, the plasticity of the synapse can be tuned

using m(t) when needed. Now we first look into the trivial case

when a constant modulation input is provided, i.e., m(t) = c

where c is any arbitrary constant. In this scenario the plasticity

of the synapse is solely dependent on the usage of the synapse

asm(t) does not change with time. Substituting the derivative of

Wc from (12), whenm(t) is constant, into (13), the rate of change

inWd can be formulated as:

dWd

dt
= −

[

d2Wc

dt2

(
dWc

dt

)−1
]

Wd + X(t) (14)

Please refer to the Supplementary material for detailed

derivation. Equation (14) shows that the change in weight 1Wd

is directly proportional to the curvature of usage while being

inversely proportional to the rate of usage.

3.2. Optimal usage profile

We define the decaying term in (14) as

r(t) = −

[

d2Wc

dt2

(
dWc

dt

)−1
]

(15)

Now, comparing the weight update equation in (14) to the

weight update equation for EWC in the balanced input scenario,

the decay term has the following dependency with time for

avoiding catastrophic forgetting.

r(t) = O

(
1

t

)

(16)

Now, the usage of a synapse is always monotonically increasing

and since Wc represents the usage, it too needs to monotonic.

At the same time Wc also needs to be bounded, therefore

Wc has to monotonically decrease with increasing usage while

satisfying the relationship in Equation (16). It can be shown that

Equations (16) and (15) can be satisfied by any dynamical system

of the form

Wc =
1

f (log t)
(17)

where f (.) ≥ 0 is anymonotonic function. Substituting Equation

(17) in Equation (15) we obtain the corresponding usage profile

as follows

r(t) =
1

t

(

1+
2f ′(log t)

log t
−

f ′′(log t)

f ′(log t)

)

(18)

where f ′(log t) and f ′′(log t) are derivatives of f (log t) with

respect to log t. While several choices of f (.) are possible, the

simplest usage profile can be expressed as

Wc =
β

log(t)
(19)

where β is any arbitrary constant. The corresponding non-linear

function in this model is determined by substituting Equation

(19) in Equation (12) to obtain

J (Wc) =
1

β
W2

c exp

(

−
β

Wc

)

. (20)

The expression for J(.) in Equation (20) bears similarity with the

form of FN quantum-tunneling current (Lenzlinger and Snow,

1969) and Figures 1D–F show the realization of Equations (6)

and (7) using FN tunneling junctions.
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3.3. Achieving optimal usage profile on
FN-synapse

For the differential FN tunneling junctions shown

in Figure 1F and its equivalent circuit shown in the

Supplementary Figure 1, the dynamical systems model is

given by

CT
dW+

dt
= −J(W+)+

Cc

2

dvin

dt
(21)

CT
dW−

dt
= −J(W−)−

Cc

2

dvin

dt
(22)

where W+,W− are the tunneling junction potentials, Cc is the

input coupling capacitance, vin(t) is the input voltage to the

coupling capacitance and CT = Cc+Cfg is the total capacitance

comprising of the coupling capacitance and the floating-gate

capacitance Cfg . J(.) are the FN tunneling currents given by

J
(

W+
)

=

(
k1

k2

)
(

W+
)2

exp

(

−
k2

W+

)

(23)

J
(

W−
)

=

(
k1

k2

)
(

W−
)2

exp

(

−
k2

W−

)

(24)

where k1 and k2 are device specific and fabrication specific

parameters that remain relatively constant under isothermal

conditions. Following the derivations in the previous sections

and the expression in Equation (19) leads to a common-mode

voltageWc profile as

Wc(t) =
k2

log(k1t + k0)
(25)

where k0 = exp
(

k2
Wc0

)

and Wc0 refers to the initial voltage at

the floating-gate.

3.4. FN-synpase network SNR estimation
for random pattern experiment

Upon following the same procedure used in previous

sections, the weight update equation for an FN-synapse using

Equation (21) and Equation (22) can be expressed as

CT
dWd

dt
= −

[

d2Wc

dt2

(
dWc

dt

)−1
]

Wd + Cc
dvin

dt
(26)

We designed the floating-gate potential and the input voltage

pulses such that the FN-dynamics is only active when there is

an memory update. Therefore, the dynamics in Equation (26)

evolve in a discrete manner with respect to the number of

modulations. Assuming CT = Cc we formulate a discretized

version of the weight update dynamics from Equation (26) in

accordance with the floating-gate potential profile of the device

expressed in Equation (25) as follows

△Wd(n)

△t
= −k1

(

1+
2

log (k1△tn+ k0)

)(
1

k1△tn+ k0

)

Wd(n− 1)+
△vin(n)

△t

(27)

Wd(n) =



1−

(

1+
2

log (k1△tn+ k0)

)



1

n+ k0
k1△t









Wd(n− 1)+ (vin(n)− vin(n− 1))

(28)

where n represents the number of patterns observed and 1t is

the duration of the input pulse. Let us denote the weight decay

term as

α(n) =



1−

(

1+
2

log (k1△tn+ k0)

)



1

n+ k0
k1△t







 (29)

Thus, we obtain the weight update equation with respect to

number of patterns observed as

Wd(n) = α(n)Wd(n− 1)+ (vin(n)− vin(n− 1)) (30)

When we start from an empty network, i.e.,Wd(0) = 0, the

memory update can be expressed as a weighted sum over the past

input as

Wd(n) =

n−2
∑

i=1






(α(i+ 1)− 1)





n
∏

j=i+2

α(j)



 vin(i)







+ (α(n)− 1)vin(n− 1)+ vin(n)

(31)

We define the retrieval signal and the noise associated with it

as per the definition in Benna and Fusi (2016). For a network

comprising of N synapses, each weight in the network is indexed

asWd(a, n) where a = 1, ...,N. Similarly, the input applied to the

ath synapse after n patterns is vin(a, n). Then, the signal strength

for the pth update (where p < n) introduced to the initially

empty network tracked after n patterns can be formulated as:

S(n, p) =
1

N

〈
N

∑

a=1

Wd(a, n)vin(a, p)

〉

(32)

where angle brackets denote averaging over the ensemble of all

of the input patterns seen by the network. If we assume that
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the input patterns are random binary events of ±1 and are

uncorrelated between different synapses and memory patterns

then substituting Equation (31) in Equation (32), we obtain

S(n, p) = (α(p+ 1)− 1)

n
∏

j=p+2

α(j) (33)

Given that in Equation (29), k0 = O(1019) and k1 = O(1016),

the term
(

1+ 2
ln (k1△tn+k0)

)

≈ 1, the signal power simplifies to:

S2(n, p) =
1

(n+ γ )2
(34)

where γ = k0
k1△t

and depends on the pulse-width △t and the

initial condition k0. The above equation shows that the signal’s

strength is a function of the system parameter γ and decays with

the number of memory pattern observed. If we assume that the

weightWd(n) is uncorrelated from the input vin(n) and that the

inputs vin(1), vin(2), ...vin(n) are uncorrelated from each other,

then the corresponding noise power is given by the variance

of the retrieval signal expressed in Equation (32). This can be

estimated as the sum of the power of all signals tracked at n

except for the retrieval signal corresponding to the pth update

we are tracking and is given by:

ν2(n, p) =
1

N

n
∑

i=1,i6=p

S2(n, i) (35)

However, in order to derive a more tractable analytical

expression for further analysis we added the retrieval signal

as well into the summation which introduces a small error in

the estimation (overestimating the noise by the retrieval signal

term). This leads us to the following estimation of the noise

power:

ν2(n, p) =
n

N(n+ γ )2
(36)

Based on the value of n in comparison to γ , we obtain two trends

for the noise profile. When γ >> n,

ν(n, p) =
1

√
N

(√
n

γ

)

(37)

which implies that noise increases with increase in updates

initially. On the other hand, when γ << n,

ν(n, p) =

√
n

√
Nn

=
1

√
N

(
1
√
n

)

(38)

which implies that noise falls with increase in updates in the later

stages. The signal-to-noise ratio (SNR) of a network of sizeN can

then be obtained as:

SNR(n, p) =

√

S2(n, p)

ν2(n, p)
=

√

N

n
(39)

3.5. FN-synapse with tunable
consolidation characteristics

In the previous sections, we derived the analytical

expressions for the memory retrieval signal, the noise associated

with it, and the corresponding SNR for the case when the

modulation input m(t) was kept constant. This led to a

synaptic memory consolidation which is similar to that of

EWC. However, blackout catastrophic forgetting occurs in

networks with such memory consolidation due to the absence

of a balanced pattern retention and forgetting mechanism. The

forgetting mechanism is naturally present in a steady state model

such as the cascade model which do not suffer from memory

“blackouts". Since the increase in retention is equivalent to an

increase in rigidity and forgetting is tantamount to a decrease

in rigidity, it is necessary to adjust the plasticity/rigidity of the

synapse accordingly. From Figures 2A, B, we notice that without

external modulation Wc decreases monotonically with each

new updates which correspondingly makes the synapse only

rigid. Therefore, to balance the same, the idea is to keep Wc as

steady as possible to keep the synapse plastic as long as possible

by applying a modulation profile m(t) that recovers/restores Wc

after every synaptic update. This results inm(t) of the form

m(t) = m(i)δ(t − iT) (40)

where δ(t) is the Dirac-delta, m(i) is the magnitude of

the modulation increment, and T is the time between each

modulation increment. This increment is determined by the rate

of the differential update to the FN-synapse. Integrating this

form ofm(t) into Equation (12) leads to

dWc

dt
= −J (Wc) +m(i)δ(t − iT) (41)

which implies a tunable plasticity profile for the FN-synapse. An

analytical solution to the differential equation (41) is difficult and

hence we resort to a recursive solution. Due to the nature of the

m(t), it can be seen that the initial condition of the variable Wc

changes at increments of T, whereas between two modulation

increments Wc evolves naturally according to Equation (25).

Thus, the dynamics of Wc in the presence of the modulation

increments can be described as
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Wc(t) =





















Wc0 ; t = 0

Wc(t)+ Vmod(t) ; t = iT

k2

log(k1(t−iT)+exp(
k2

Wc(iT)
))

; iT < t < (i+ 1)T

(42)

where Vmod(t) is an external voltage signal applied to the FN-

synapse as shown in Supplementary Figure 1 and is given by:

Vmod(t) =

∞
∑

i=1

m(i)δ(t − iT) (43)

In this case the change in plasticity of the synapse is determined

by the step-size of the staircase voltage function Vmod(t). Note

that the weight update equation in (13) is still valid sincem(t) is

kept constant during differential input.

Although an analytic expression for the SNR is no longer

tractable in this iterative form, the ability of the modulation

term to regulate the plasticity and induce a more graceful form

of forgetting is shown in the corresponding no. of patterns

retained plot in Figure 5A and the SNR plot Figure 5B for

various modulation input profiles.

3.6. Programming and initialization of
FN-synapses

The potential corresponding to the tunneling nodes W+

and W− can be accessed through a capacitively coupled

node, as shown in Supplementary Figure 1. This configuration

minimizes readout disturbances and the capacitive coupling

also acts as a voltage divider so that the readout voltage is

within the input dynamic range of the buffer. The configuration

also prevents hot-electron injection of charge into the floating

gate during readout operation. Details of initialization and

programming are discussed in Mehta et al. (2020), so here we

describe the methods specific for this work. The tunneling node

potential was initialized at a specific region where FN-tunneling

only occurs while there is a voltage pulse at the input node and

the rest of the time it behaves as a non-volatile memory. This

was achieved by first measuring the readout voltage every 1 s

for a period of 5 min to ensure that the floating gate was not

discharging naturally. During this period the noise floor of the

readout voltage was measured to be ≈ 100µV . At this stage, an

voltage pulse of magnitude 1 V and duration 1 ms was applied at

the input node and the change in readout voltage was measured.

If the change was within the noise floor of the readout voltage,

the potential of the tunneling nodes were increased by pumping

electrons out of the floating gate using the program tunneling

pin. This process involves gradually increasing the voltage at the

program tunneling pin to 20.5 V (either from external source

or from on-chip charge pump). The voltage at the program

tunneling pin was held for a period of 30 s, after which it

was set to 0 V. The process was repeated until substantial

change in the readout voltage was observed (≈ 300µV) after

providing an input pulse. The readout voltage in this region

was around 1.8 V.

3.7. Hardware and software experiments
for random pattern updates

The fabricated prototype contained 128 differential FN

tunneling junctions, which corresponds to 64 FN-synapses.

However, due to the peripheral circuitry only one tunneling

node could be accessed at a time for readout and modification.

Now, since the memory pattern is completely random, each

synapse can be modified independently without affecting

the outcome of the experiment. Therefore, two tunneling

nodes were initialized following the method described in the

aforementioned section. Input pulses of magnitude 4 V and

duration 100 ms was applied to both the tunneling nodes.

The change in the readout voltages were measured, and the

region where the update sizes of both the tunneling node

would be equal was chosen as the initial zero memory point

for the rest of the experiment. The nodes were then modified

with a series of 100 potentiation and depression pulses of

magnitude 4.5 V and duration 250 ms and the corresponding

weights were recorded. This procedure represented the 100

updates of a single synapse. The tunneling nodes were then

reinitialized to the zero memory point and the procedure

was repeated with different random series of input pulses

representing the modification of other 99 synapse in the

network. The first input pulses of each series of modification

forms the tracked memory pattern. To modify the value of γ

the FN-synapses were initialized at a higher tunneling node

potential.

The behavioral model of the FN-synapse was generated by

extracting the device parameters k1 and k2 from the hardware

prototype. The extracted parameters have been shown to capture

the hardware response with an accuracy greater than 99.5% in

our previous works (Zhou and Chakrabartty, 2017; Zhou et al.,

2019). These extracted parameters were fed into a dynamical

systemwhich follows the usage profile described in the hardware

implementation subsection and follow the weight update rule

elaborated in the SNR estimation subsection to reliably imitate

the behavior of the FN-synapse. The behavioral model network

was started with exactly the same initial condition as hardware

synapses and subjected to the exact memory patterns used for

the hardware experiment for the same number of iterations.

The simulation was also extended to 1,000 iterations and the

corresponding responses are included in Figure 4F.
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3.8. Probabilistic FN-synapse model

Adaption of FN-synapse occurs by tunneling of electrons

through a triangular FN quantum-tunneling barrier. The

tunneling current density is dependent on the barrier profile

which in turn is a function of the floating-gate potential. When

W+,W− is around 7 V the synaptic update 1Wd due to

an external pulse can be determined by the continuous and

deterministic form of the FN-synapse model (as described in

the previous sections). Since the number of electrons tunneling

across the barrier is relatively large (≫1), themethod is adequate

for determining 1Wd. However, once W+,W− is around 6

V, each updates occurs due to the transport of a few electrons

tunneling across the barrier and in the limit by a single electron

tunneling across the barrier at a time. In this regime, the

continuous behavioral model is no longer valid. Therefore,

the behavioral model of the FN-synapse has to switch to a

probabilistic model. In this mode of operation, we can assume

that each electron tunneling event follows a Poisson process

where the number of electrons e+(n), e−(n) tunneling across

the two junctions during the nth input pulse is estimated by

sampling from a Poisson distribution with rate parameters

λ+, λ− given by

λ+(n) =
AJ(W+(n))

q
(44)

λ−(n) =
AJ(W−(n))

q
. (45)

q is the charge of an electron, A is the cross-sectional area of the

tunneling junction. Using the sampled values of e+(n), e−(n),

the corresponding discrete-time stochastic equation governing

the dynamics of the tunneling node potentialsW+(n),W−(n) is

given by

W+(n) = W+(n− 1)−
qe+(n)

CT
(46)

W−(n) = W−(n− 1)−
qe−(n)

CT
(47)

where CT is the equivalent capacitance of the tunneling node.

We have verified the validity/accuracy of the probabilistic

model against the continuous-time deterministic model in

high tunneling rate regimes. Supplementary Figure 4A shows

that the output of the probabilistic model matches closely

to the deterministic model and the deviation which arises

due to the random nature of the probabilistic updates

(shown in Supplementary Figure 4B) is within 200µV . Using

the probabilistic model we performed the memory retention

and network capacity experiments (as discussed in the main

manuscript) by initializing the tunneling nodes at a low

potential. In this regime, each updates to the FN synapse results

from tunneling of a few electrons. Supplementary Figures 4C,

D show that even when each update sizes are on the order of

tens of electrons, the network capacity and memory retention

time remains unaffected. However, as the synaptic voltage

is modified by less than ten electrons per update (shown

in Supplementary Figure 4E), the SNR curve starts to shift

downwards and the network capacity along with memory

retention time decreases. The tunneling node potential can

be pushed further down to a region where the synapses

might not even register modifications at times and other times

update sizes drop down to single electron per modification (see

Supplementary Figure 4F). In this regime, the SNR curve shifts

down further, the SNR decay still obeys the power-law curve.

3.9. Neural network implementation
using FN-synapses

TheMNIST dataset was split into 60,000 training images and

10,000 test images which yielded about 6,000 training images

and 1,000 test images per digit. Each image, originally of 28×28

pixels, was converted to 32 × 32 pixels through zero-padding.

This was followed by standard normalization to zero mean with

unit variance. The code for implementing the non-FN-synapse

approaches such as EWC and online EWC were obtained from

the repository mentioned in Hsu et al. (2018). To enforce an

equitable comparison, the same neural network architecture

(as shown in Supplementary Figure 6), in the form a multi-

layered perceptron (MLP) with an input layer of 1024 nodes,

two hidden layers of 400 nodes each (paired with the ReLU

activation function) and a softmax output layer of 2 nodes, has

been utilized by every method mentioned in this work. Based on

the optimizer in use, a learning rate of 0.001 was chosen for both

SGD and ADAM (with additional parameters β1, β2, and ǫ set to

0.9, 0.999, and 10−8, respectively, for the latter). Each model was

trained with a mini-batch size of 128 for a period of 4 epochs.

Similar to the continual learning experiments conducted

on split-MNIST, benchmark incremental-domain learning

experiments were also carried out by randomly permuting the

order of pixels of the images in theMNIST dataset in accordance

with Hsu et al. (2018) which is referred as the Permuted-MNIST.

The architecture of the neural network employed is similar to the

one for the split-MNIST with the exception of being equipped

with 1,000 neurons in each of the two hidden layers instead of

400 and with 10 neurons in the output layer instead of 2. This

essentially means that at each task, the network learns a new set

of permutations of the 10 digits. The network was trained on 10

such tasks for 3 epochs using a learning rate of 0.0001 for ADAM

and 0.001 for ADAGRAD.

Corresponding to every weight/bias in the MLP, an instance

of the FN-synapse model was created and initialized to

a tunneling region according to the initial Wc value. As

demonstrated by the measured results, 1Wd can be modulated

linearly and precisely by changing the pulse-width of the
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potentiation/depression pulses. Therefore, each weight update

(calculated according to the optimizer in use) is mapped as

an input pulse of proportional duration for the FN synapse

instance. Then, every instance of the FN-synapse model is

updated according to Equation (27) and theWd thus obtained in

voltage is scaled back to a unit-less value and within the required

range of the network.

4. Discussion

In this paper, we reported a differential FN quantum-

tunneling based synaptic device that can exhibit near-optimal

memory consolidation that has been previously demonstrated

using only algorithmic models. The device called FN-synpase,

like its algorithmic counterparts, stores the value of the weight

and a relative usage of the weight that determines the plasticity

of the synapse. Similar to algorithmic consolidation models,

an FN-synapse, “protects” important memory by reducing the

plasticity of the synapse according to its usage for a specific

task. However, unlike its algorithmic counterparts like the

cascade or EWC models, the FN-Synapse doesn’t require any

additional computational or storage resources. In EWC models

memory consolidation in continual learning is achieved by

augmenting the loss function using penalty terms that are

associated with either Fisher information (Kirkpatrick et al.,

2017) or the historical trajectory of the parameter over the

course of learning (Chaudhry et al., 2018; Liu et al., 2018).

Thus, the synaptic updates require additional pre-processing of

the gradients, which in some cases could be computationally

and resource intensive. FN-synapse on the other hand, does

not require any pre-processing of gradients and instead can

exploit the physics of the device itself for synaptic intelligence

and for continual learning. For some benchmark tasks, we have

shown an FN-synapse network shows better multi-task accuracy

compared to other continual learning approaches. This leads

to the possibility that the intrinsic dynamics of the FN-synapse

could provide important clues on how to improve the accuracy

of other continual learning models as well.

Figures 6A, B also show the importance of the learning

algorithm in fully exploiting the available network capacity.

While the entropy of the FN-synapse weights for the output

layer is relatively high, the entropy of the weights of the

input layer is still relatively low, implying most of the input

layer weights remain unused. This is an artifact of vanishing

gradients in a standard backpropagation based neural network

learning. Thus, it is possible that improved backpropagation

algorithms (Deng et al., 2016; Tan and Lim, 2019) might be

able to mitigate this artifact and in the process enhance the

capacity and the performance of the FN-synapse network. In

Supplementary Figure 8, we show that FN-synapse based neural

network is able to maintain its performance even when the

network size is increased. Thus, it is possible that the network

becomes capable of learning more complex tasks due to increase

in overall plasticity of the network while ensuring considerably

better retention than neural networks with traditional synapses.

In addition to being physically realizable, the FN-synapse

implementation also allows interpolation between a steady state

consolidation model and the EWC consolidation models. This

is important because it is widely accepted that the EWC model

can potentially suffer from blackout catastrophe (Kirkpatrick

et al., 2017) as the learning network approaches its capacity.

During this phase, the network becomes incapable of retrieving

any previous memory as well as is unable to learn new

ones (Kirkpatrick et al., 2017). Steady-state models such as

the cascade consolidation models and SGD-based continuous

learning models avoid this catastrophe by gracefully forgetting

old memories. As shown in Figure 5A, an FN-synapse network,

through the use of a global modulation factor m(t), is able

to interpolate between the two models. In fact, the results in

Figures 5A, B, show that the number of patterns/memories

retained in an FN-synapse network under modulation profile

m2(t) at steady state is higher compared to that of a high-

complexity cascade model for a network size of N = 1, 000

synapses. Even though we have not used the interpolation

feature for benchmark experiments, we believe that this attribute

is going to provide significant improvements for continuous

learning of a large number of tasks.

The interpolation property of FN-synapse could mimic

some attributes ofmetaplasticity observed in biological synapses

and dendritic spines (Mahajan and Nadkarni, 2019). The role

of metaplasticity, the second-order plasticity of a synapse which

assigns a task-specific importance to every successive task being

learned (Laborieux et al., 2021), is widely accepted as the

fundamental component of neural processes key to memory

and learning in the hippocampus (Abraham and Bear, 1996;

Abraham, 2008). Since unregulated plasticity leads to runaway

effects resulting in previously stored memories to be impaired at

saturation of synaptic strength (Brun et al., 2001), metaplasticity

serves as a regulatory mechanism which dynamically links the

history of neuronal activity with the current response (Hulme

et al., 2014). The FN-synapse mimics the same regulatory

mechanism through the decaying term r(t) that takes into

account the history of usage or neuronal activity to determine

the plasticity of the synapse for future use as well as prevents

runaway effects by making the synapses rigid at saturation.

The on-device memory consolidation in FN-synapse can not

only minimize the energy requirements in continual learning

tasks, additionally, the energy required for a single synaptic

weight update is also lower than memristor-based synaptic

updates for a fixed precision of update. This attribute has been

validated in our previous works (Mehta et al., 2022) where the

update energy was estimated to be as low as 5f J increasing up to

2.5p J depending on the status of the FN-synapse and the desired

change in synaptic weights. Note that the energy required to

change the synaptic weight is derived from the FN-tunneling
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current and not from the electrostatic energy used for charging

the coupling capacitor. Thus, by designingmore efficient charge-

sharing techniques across the coupling capacitors the energy-

efficiency of FN-synaptic updates can be significantly improved.

Furthermore, when implemented on more advanced silicon

process nodes, the capacitances could be scaled which can

improve the energy-efficiency of FN-synapse by an order of

magnitude. Compared to memristor-based synapses, the FN-

synapse can also exhibit high endurance 106−107 cycles without

any deterioration. However, the key distinction lies in terms

of the dynamic range of the stored weights. Generally, a single

memristor has two distinct conductive states (corresponding to

“0” or “1”) which give each device a 1-bit resolution. When used

in a crossbar array, highly-dense designs can reach densities

up to 76.5 nm2 per bit as reported by Poddar et al. (2021)

where a 3-D memristor array was constructed using Perovskite

quantumwires. The dynamic range or resolution of such designs

is determined by the number of memristive devices that can

be packed into the smallest feasible physical form factor. If

we consider multi-level memristors instead, the resolution per

memristor can reach up to 3-5 bits depending on the number

of stable distinguishable conductive states (He et al., 2017; Wu

et al., 2019; Lee et al., 2021). In comparison, the dynamic

range of the FN-synapse (a single device) is considerably

higher as it is determined by the number of electrons stored

on the floating-gates which in-turn is determined by the

FN-synapse form-factor and the dielectric property of the

tunneling barrier. Thus, theoretically, the dynamic range and

the operational-life of the FN-synapse seems to be constrained

by the single-electron quantization. However, at low-tunneling

regimes, the transport of single electrons across the tunneling

barrier becomes probabilistic where the probability of tunneling

is now modulated by the external signals X(t) and m(t). In

the Section 3 and in Supplementary Figure 4, we show that

a stochastic dynamical system model emulating the single-

electron dynamics in the FN-synapse can produce O(1/
√
t)

consolidation characteristics for the benchmark random input

patterns experiment for an empty network. The SNR still follows

the power-law curve and the FN-synapse network continues

to learn new experiences even if the synaptic updates are

based on discrete single-electron transport. A more pragmatic

challenge in using the FN-synapse will be the ability of the read-

out circuitry to discriminate between the changes in floating-

gate voltage due to single-electron tunneling events. For the

magnitude of the floating-gate capacitance, the change in voltage

would be in the order of 100 nV per tunneling event. A more

realistic scenario would be tomeasure the change in voltage after

1,000 electron tunneling events which would imply measuring

100 µV changes. Although this will reduce the resolution of the

stored weights/updates to 14 bits, recent studies have shown that

neural networks with training precisions as low as 8 bits (Sun

et al., 2019) and networks with inference precisions as low as

2–4 bits (Choi et al., 2018, 2019) are often capable of exhibiting

remarkably good learning abilities. In Supplementary Figure 9,

we show that for the split-MNIST task, the performance of the

FN-synapse based neural network remains robust even in the

presence of 5% device mismatch.

Another point of discussion is whether the optimal decay

profile r(t) ≈ O(1/t) can be implemented by other

synaptic devices, in particular, the energy-efficient memristor-

based synapses that have been proposed for neuromorphic

computing (Tuma et al., 2016; Fuller et al., 2019; Pal et al.,

2019a,b; Karunaratne et al., 2020; Mehonic et al., 2020). Recent

works using memristive devices have demonstrated on-device

metaplasticity (Giotis et al., 2022), however, achieving an optimal

decay profile would require additional control circuitry, storage

and read-out circuits. In this regard, we believe that the FN-

synapse represents one of the few, if not the only class of synaptic

devices that can achieve optimal memory consolidation on a

single device.
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BitBrain and Sparse Binary
Coincidence (SBC) memories:
Fast, robust learning and
inference for neuromorphic
architectures

Michael Hopkins*, Jakub Fil, Edward George Jones and

Steve Furber

Advanced Processor Technologies Group, Department of Computer Science, The University of

Manchester, Manchester, United Kingdom

We present an innovative workingmechanism (the SBCmemory) and surrounding

infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse

coding, computational neuroscience and information theory that enables fast and

adaptive learning and accurate, robust inference. Themechanism is designed to be

implemented e�ciently on current and future neuromorphic devices as well as on

more conventional CPU and memory architectures. An example implementation

on the SpiNNaker neuromorphic platform has been developed and initial results

are presented. The SBC memory stores coincidences between features detected

in class examples in a training set, and infers the class of a previously unseen

test example by identifying the class with which it shares the highest number of

feature coincidences. A number of SBC memories may be combined in a BitBrain

to increase the diversity of the contributing feature coincidences. The resulting

inference mechanism is shown to have excellent classification performance on

benchmarks such as MNIST and EMNIST, achieving classification accuracy with

single-pass learning approaching that of state-of-the-art deep networks with

much larger tuneable parameter spaces andmuch higher training costs. It can also

be made very robust to noise. BitBrain is designed to be very e�cient in training

and inference on both conventional and neuromorphic architectures. It provides

a unique combination of single-pass, single-shot and continuous supervised

learning; following a very simple unsupervised phase. Accurate classification

inference that is very robust against imperfect inputs has been demonstrated.

These contributions make it uniquely well-suited for edge and IoT applications.

KEYWORDS

single-pass learning, neuromorphic, e�cient inference, classification, machine learning,

robust, event-based, IoT

1. Introduction

With the inevitable ubiquity of AI (Artificial Intelligence) decision-making that the IoT

(Internet of Things) will facilitate, there is a clear need for mechanisms and architectures

that allow accurate inferences to be made quickly, robustly (in the presence of imperfect

input data) and with low energy use. Current state of the art information architectures such

as deep learning can provide excellent inference but at the cost of vast numbers of parameters

that need to be learned at training time and computed at inference time. This makes their
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learning phase a huge resource commitment in both energy and

time, and discourages a local implementation of inference at

the end of realistic network branches where storage, energy and

communication resources are likely to be severely constrained.

Arguably, their requirement for huge parameter sets also makes

them liable to over-fitting and the lack of robustness that this leads

to, leading some researchers to use ad hocmethods such as dropout

which can sometimes improve performance but at the cost of a

further significant learning burden. It is also currently not clear

how well they can be applied to the problem of continuous learning

which is likely to become more important in practical applications.

In the near future, intelligent decisions and classifications are

going to become required in an increasing number of devices and

architectures with constrained resources. This will focus attention

on the following issues, and technologies that help to address them

will become desirable:

• Faster learning and inference.

• Energy-efficient learning and inference.

• More robust inference in the presence of imperfections and

noise at the network inputs and partial system errors so that

performance degradation is graceful rather than brittle.

• An easy mapping onto the growing number of neuromorphic

architectures that facilitate large gains in speed and energy

efficiency.

• A natural receiving mechanism for event-based visual and

audio sensors which leverage further gains in energy use and

communication bandwidth.

These technologies should be of interest to anyone who

wants to address the issues described above, in particular those

looking to make fast and reliable inferences at the edge. Another

possibility is those who would like to create a large number of

small and efficient self-contained inference modules which perform

potentially complex pattern recognition with a very low energy-

latency product and communicate via relatively simple and sparse

messages. The latter is a good conceptual match to the dendritic

computation paradigm in computational neuroscience which is

gaining traction, and which changes quite significantly the balance

between computation and communication in large neural networks

where each action potential now becomes a carrier of more

information content.

We introduce an innovative working mechanism (the SBC

memory) and surrounding infrastructure (BitBrain) based upon

a novel synthesis of ideas from sparse coding, computational

neuroscience and information theory.1 The key contributions of

this technology presented here are:

• Single-pass and single-shot supervised learning; following

a simple unsupervised phase where parameters are learned

quickly in a simple and “local” way that does not require global

optimisation over high-dimensional spaces or the calculation

of derivatives.

1 A patent GB 2113341.8 covering this technology was filed by MH and SF

at the UKIPO on 17th September 2021.

• Accurate inference (currently classification) that is very robust

against imperfect inputs.

• Simple support for continuous adaptive learning.

• Algorithms that are designed to be implemented with

excellent energy efficiency on conventional CPUs andmemory

architectures, and on current and future neuromorphic

devices.

• A natural target for the increasing number of event-based

sensors such as silicon retinas, enabling further energy and

bandwidth gains to be exploited—in particular for edge

computing and IoT devices.

2. Background

The ideas that contributed to the BitBrain mechanism are

drawn from a variety of areas:

2.1. Sparsity of activity and homeostasis

An aspect of neural activity which is clear in the neocortex

and also globally to some extent is that activity—in terms of

action potentials at least—is relatively sparse. Perhaps 5–10% of

neurons are firing in a specific time window. If one considers

the massive complexity of the brain and all its interconnections

then this surely must imply some kind of self-adaption or self-

regulation, and for this to work consistently one can further

infer that it should be present at the local level. Hence we

believe that some form of homeostasis in the basic functional

mechanisms is an important part of any neural or neurally-inspired

mechanism. In this context, homeostasis means that the underlying

physiological mechanisms tend toward a natural, equilibrium rate

of activity despite all the complex non-linearities and interactions

that they share.

Sparse memory mechanisms have been discussed before. One

important example is the concept of Sparse Distributed Memory

(SDM) introduced by Pentti Kanerva in his PhD thesis (Kanerva,

1988). The key concept in an SDM is to use random address

decoders to map a binary input space into a very high-dimensional

intermediate space where associated information can be stored

very sparsely and redundantly, leading to robust recovery of

that information whenever a similar input is presented to the

memory. Kanerva speculated that a similar mechanism might be

at work in the cerebellum, where there are similarities between

the neuronal organisation and the structure of an SDM. Furber

et al. developed this idea further showing that the same approach

was effective using sparse N-of-M codes for both the input and

the stored information (Furber et al., 2004) and an SDM could

even be used to store and recover the temporal patterns (Furber

et al., 2007) when rank-order codes (Thorpe and Gautrais, 1998)

were used.

There are similarities between the address decoders used in our

SBCs and those used in SDMs, though we have added homeostatic

tuning mechanisms such as threshold adjustment and structural

plasticity to the original address decoder concept.
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2.2. Robustness in the presence of noise,
errors, or partial failure

Biological neural systems are extremely good at inferring

correct decisions and actions from imperfect sources

of information, whether this is poor data from sensory

systems in noisy or otherwise perturbed environments,

imperfect conditions within the neural mechanism itself

(such as the presence of alcohol or other disorders of

the ideal equilibrium) or a total failure of some parts of

the system.

Neurons and synapses are far from perfect processing elements,

with probabilistic and somewhat unreliable transfer functions even

when working at their full potential, and prone to change and

failure as are all biological mechanisms. Yet in the presence

of all these perturbations the system as a whole performs very

well. Understanding how this apparent paradox can be explained

will be an important step forwards in engineering mechanisms

of inference that degrade gracefully in the presence of realistic

amounts of error and uncertainty in their working environment.

In the 1980s, inspired partly by the thinking of the Japanese

engineer Genichi Taguchi, much research and practical work

focused on the importance of this issue in engineering robust

systems (Phadke, 1989; Edwards et al., 2000) and the outcome

was a change of focus in the design process which remains

current today.

It has also been suggested that noise and uncertainty

within the processing mechanism is not a problem but

is in fact a valuable resource in allowing this robustness

to occur (Maass, 2014) and this is a view that we

agree with.

2.3. Avoiding optimisation over
high-dimensional parameter spaces

Optimisation over high-dimensional parameter spaces with

multiple non-linear objective functions where there are vast

numbers of local optima is very hard to do consistently

well, and intuitions about dimensions above about 10 do not

serve well in realistic problems. When one considers that in

some contemporary deep neural networks (DNNs) the learning

mechanism is optimising an error function over perhaps billions

or trillions of parameters, one can see that both the energy and

time cost, and the almost guaranteed sub-optimality that will

result, are major issues. That is to say nothing of the inevitability

of over-fitting, which is clear from probability and information

theory when the numbers of independent degrees of freedom

in the system may be several orders of magnitude higher than

required for the appropriate model (see for example, chapter 4

in both Sivia and Skilling, 2006 and Jaynes, 2003 books). As

well as being too numerous these degrees of freedom are rarely

if ever, apportioned where they are most justified within the

resulting very complex models though work has been done on

how to approach this problem on a rational basis (Tishby et al.,

1999).

2.4. Spike-time coding, dendritic
computation, and local unsupervised
learning

There has been a long history of debate about the coding

mechanisms used in brains to represent and transmit information.

The main two contenders at the base computational level are spike-

time and rate coding, though these apparently distinct categories

can overlap somewhat at the extremes of their ranges (Reike

et al., 1996). For output neurons that drive muscles there is

general agreement that rate coding is used, however within more

time-critical and energy-sensitive parts of the brain many believe

that spike-time coding must be involved. This opens up many

avenues of exploration for the kinds of representations and learning

mechanisms that generate the sparse activity that we observe, whilst

at the same time allowing fast and energy-efficient computation.

It is clear that neural systems do at least some of their learning

(i) locally and (ii) without reference to a global error or utility

function. This is presumably to help the mechanism as a whole

orient itself in relation to the representations required in order

to solve the higher-level problem using the minimum amount of

time and energy. In machine learning terms we can say this is

unsupervised learning. A proven neurally-inspired mechanism for

facilitating this is spike-time dependent plasticity (STDP), but the

decision about where to access the required post-synaptic signal

can be debated. Many implementations choose to use the action

potential at the soma after having back-propagated through the

dendritic tree, but there are some issues with both timing and

reliability in this model. With the recent increased interest in

dendritic computation (London and Häusser, 2005; Stuart et al.,

2016) it has become apparent that NMDA (N-methyl-D-aspartate)

potentials local to the synapses involved (i.e., within the local

synaptic cluster or at least in a close part of the dendritic branch)

can provide the signal required without these issues (Larkum and

Nevian, 2008; Branco and Häusser, 2010; Govindarajan et al.,

2011) and some work has already been done to apply these

understandings to neuromorphic architectures (Yang et al., 2021a).

There are many other aspects of dendritic computation which

may elucidate mechanisms that allow for sparse and robust

representations which balance local and global behaviours (Mel,

1992; Papoutsi et al., 2014; Kastellakis et al., 2015; Ahmad and

Hawkins, 2016; Richards and Lillicrap, 2019).

Although adjusting the size of local synapses and hence their

drive capability is often the chosen mechanism for STDP, we

instead choose structural plasticity as an effective mechanism so

that synapses are added or removed using a Hebbian approach

(Hopkins et al., 2018) where synapse size only relates to its

longevity. This allows us to stay with binary computation and

connectivity in order to stay consonant with some of the other aims

outlined in this section.

2.5. Low resolution computation and
mapping onto neuromorphic substrates

In neural systems memory and computation are colocated,

setting it apart from the von Neumann model. The ideas inherent
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in neuromorphic computation should help us to understand how

biological neural systems achieve their remarkable performance

and energy-efficiency. Such mechanisms should take advantage of

engineering opportunities for: energy efficiency, sparsity of activity,

low resolution (ideally binary) computation and communication,

massive parallelism, asynchrony and event-driven computation.

Choices made at the algorithmic design stage can facilitate this

mapping onto current and future substrates.

Contemporary large-scale machine learning displays a strong

trend toward lower-resolution parameters and computation to

leverage the large gains in energy and storage efficiency that result.

The lowest useful resolution is the single bit. Earlier work has taken

similar directions, though at the time probably for different reasons.

Random Access Memory (RAM)-based methods for machine

learning have been around since the late 1950s. Their direct use

of RAM for storing the inference mechanism based upon complex

patterns of binary logic learned directly from the data provides a

simple and fast mechanism that should be amenable to hardware

optimisation. After a period of relative obscurity, these ideas had

a renaissance in the 1970s as RAM-nets or N-Tuple methods, and

particularly in the 1980s where they benefited from some of the

mindshare developed by the renewed interest in neural networks

under the name of weightless neural networks where Austin (1998)

collects together some of the more advanced work in this area.

There are resonances from those ideas in the work presented here.

Another more contemporary neuromorphic approach using

custom system and routing hardware and multiple FPGAs is

inspired directly by brain connectivity patterns and provides an

alternative set of trade-offs for energy, scaling and speed in realistic

neural simulation and learning scenarios (Yang et al., 2021b).

2.6. Kernel methods and their mapping into
high-dimensional feature spaces

Kernel methods have proven to be a powerful and versatile tool

in many areas of machine learning (Shawe-Taylor and Cristianini,

2004; Rasmussen and Williams, 2006). By exploiting only the

similarity/difference between cases and projecting (usually non-

linearly) into high-dimensional feature spaces that match the data

distribution in some sense, both continuous approximation and

discrete classification problems can be solved accurately and with

few assumptions. The practical limitations are primarily due to

the quantity of data and the expensive O(n3) linear computations

that usually result, and the necessity of finding closed-form kernel

functions for practical efficiencies, in particular for inference.

As discussed more thoroughly in Section 6, we see a number

of analogies between Kernel methods and the ideas that we are

exploring here. Our method can be seen as constructing a non-

linear projection into a high-dimensional feature space and dot

products in this space can be used to assess similarity or difference

and generate impressive inference accuracies considering that it is

a simple and automatic algorithm. Both methods are basically non-

parametric, i.e., using the data themselves for inference rather than

parameters learned from them. It is also the coincidences between

our analogue of feature detectors abstracted from synaptic clusters

(Mel, 1992) that are at the heart of our method and these too could

be seen as dot products in some space. We hope that a further

understanding of these parallels will provide a better foundation for

the theory of our method.

Neal (1996) elucidates and explores interesting parallels

between Kernel methods (specifically Gaussian Processes) and

neural networks.

3. An overview of the basic
mechanisms

Taking inspiration from the conception of synaptic clusters

and their ability to both create and learn from local NMDA

plateau potentials, a key concept within the SBC memory is that

of an Address Decoder Element (ADE). This subsamples from the

input stream—initially in a random fashion—and then during the

unsupervised learning phase each ADE “homes in” on a feature

and at the same time learns a homeostatic threshold θ to facilitate

a target firing probability that creates sparse activity patterns. By

adding delays of differing values to the synapses in an ADE one

can also detect temporal coincidence patterns and so carry out a

combined spatio-temporal classification for input data where this

is relevant. Figure 1 illustrates the basic mechanism.

In the form of an equation where j indexes every ADE.

∀j activationj =

synapses(ADEj)
∑

i=1

inputi × weighti (1)

where synapses(ADEj) = 6 in Figure 1. The homeostatic

threshold θj has been learned for each ADE during the

unsupervised phase. Then

∀j if activationj ≥ θj → ADEj fires (2)

The ADEs can be organised in flexible ways. One method that

is convenient for software exploration and a simple description

is in vectors which we will call Address Decoders (ADs) as they

now look similar to more conventional memory mechanisms.

During the supervised learning phase that follows, the coincidental

firing between pairs (or higher-dimensional n-tuples) of the ADEs

are used to access a memory structure for writing according to

certain rules that can be adapted to the particular problem in

various useful ways (e.g., choice of class encoding, delays to induce

robustness and/or control memory occupancy, biases between

classes to improve quality of inference). An equation defines this

coincidence mechanism where j & k are indices over the lengths of

each AD

∀j,k if AD1j ∩ AD2k → set SBCjkl where l = class (3)

During inference, the ADEs are driven by test cases and the now

populated memory is read using these same coincidence patterns

and a simple function of the count of active memory location by

class is used to make a class prediction.

For example, imagine a 2D memory with different ADs along

the row and column edges. Each ADE in these ADs connects to

a different subset of the input data and has learned a different

feature. Typically, the width (i.e., the size of subsample ≡ number
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FIGURE 1

An example ADE subsampling a greyscale raster input from MNIST.

of synapses in the cluster) of the ADEs would be different between

ADs but the same within an AD. This allows the ADEs within an

AD to learn features of similar sizes, whereas those in different ADs

learn features of different sizes, perhaps analogous to pooling or

convolutional nets of different scales. The upper panel of Figure 2

illustrates this mechanism for a single 2D SBC memory.

Each point formed by the coincidence of 2 ADEs is an accessible

region of memory. This region stores a set of the number of classes

required in the input data using an encoding appropriate to the

problem. The simplest mechanism is “one-hot” encoding. This

is illustrated in the lower panel of Figure 2 for 10 classes, each

represented by a unique bit in the memory “depth”.

4. A sample BitBrain implementation

This section gives an overview of the processing steps required

for a basic BitBrain implementation. This should just be seen as

a bare-bones description to clarify what is required.2 In Section

7.1, we outline a number of interesting variations that we already

have some experience with and there will certainly be other novel

developments as the technology matures. To fix ideas, we will

assume that the data input is a 784D vector as used in the MNIST

and EMNIST examples given in the next section.

4.1. Using the global data distribution

Firstly, the global distribution of data over the input vector is

calculated over the training set. This is as simple as summing every

pixel value into one of 784 bins whilst ensuring no overflow. This

2 An implementation of this basic mechanism in self-contained C source

code with the necessary data files for the example in Section 5.1 is available

here: https://doi.org/10.48420/c.6331565.v1

vector is then passed to a Metropolis-Hastings (M-H) sampling

algorithm [see, for example, Section 5.5 of Bernardo and Smith’s

book (Bernardo and Smith, 2000) or Section 8.71 of O’Hagan’s

book (O’Hagan and Kendall, 1994)] which is a reliable method for

drawing pseudo-random samples from an arbitrary distribution—

in this case generating synapse connections into the input space.

Although simple to achieve, there is no need to normalise

this vector to a genuine probability distribution because the M-H

algorithm that works with it only requires relative probabilities. In

fact, it is not the actual global distribution that is used here but the

sqrt() of the distribution. There are two possible reasons why this

appears to work optimally on problems that have been explored

so far:

1. These can be seen as counts and therefore each bin has a Poisson

distribution. This means that the uncertainty rises with the

mean. The sqrt() of a Poisson distribution is approximately

homoscedastic above very small counts i.e., the uncertainty

becomes independent of the mean.

2. By taking the sqrt() of the distribution we are “flattening” it and

therefore allowing synapses to be sampled slightly outside of the

training data distribution. There are good reasons to believe that

this is a good idea for working with data not yet seen in the

training set.

It is possible that for data other than greyscale pixels different

transformations may be useful, or perhaps a different approach

altogether may be preferable at this stage.

4.2. Initial AD and ADE setup

We choose w for the length of the ADs, let’s say w = 2,048. This

will also define the size of the SBC memories. Larger is typically

better but slower and there are diminishing returns beyond a

Frontiers inNeuroinformatics 05 frontiersin.org128

https://doi.org/10.3389/fninf.2023.1125844
https://doi.org/10.48420/c.6331565.v1
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Hopkins et al. 10.3389/fninf.2023.1125844

FIGURE 2

Upper panel is an example 2D SBC memory using 2 ADs. Lower panel is an example class encoding using the “depth” dimension of the 2D SBC

memory.

certain point. This is likely to differ between problems. An initial

default value for the threshold is set for each ADE. These will be

adapted as necessary during the unsupervised learning phase.

Each AD is likely to contain ADEs of the same width n (i.e.,

the number of synapses in the ADE) but typically n will differ for

each AD. This allows each AD to work with features of different

sizes which is useful in image processing and may also be useful

with other data types. Each synapse is assigned to one pixel of the

image by drawing from the global target distribution—calculated

above—using M-H sampling. Hence, pixels which appear more in
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the data are more likely to be sampled and pixels in the corner with

almost no “ink” and no variation between images and classes (and

therefore no information) will almost certainly not be sampled.

Currently multapses (where more than one synapse per ADE

connects to the same pixel) are disallowed.

4.3. Choice of synapse types and data

There are several choices available here; we will describe two

current ones. One can use binary synapses (i.e., either positive

or negative) and their weights then relate to the “longevity” of

the synapse which is used during the unsupervised learning phase

described below. Initial values of longevity are also set here.

Alternatively, one can use 8-bit signed weights drawn pseudo-

randomly from some distribution such as uniform or Gaussian

which are used to multiply the pixel values.

4.4. Preprocessing of the pixel data

In all cases, the pixel greyscale values are centred either side

of zero by subtracting 127 from the original 8-bit unsigned values.

This provides a bipolar input which can then be multiplied by the

weights described above. Early versions of the algorithm discarded

all greyscale information by using binary synapses and thresholding

the greyscale inputs. The loss in performance was very small and

this version is a more natural match to event-based inputs that are

becoming increasingly common in neuromorphic sensors.

4.5. Clustering of synapses for image and
related data

In the case of image or volumetric data it is likely that enforcing

a locality constraint will be useful (Dahmen et al., 2022) so that

pixels chosen in each ADEmust be from the same part of the image.

To enforce this, if one draw of M-H sampling does not conform

to this constraint then another draw is made until one is found.

This can be justified either from a knowledge of the organisation

of the retina (Masland, 2012) or by analogy with convolutional

front ends in DNNs. This distance may be calculated from any of

the other pixels in the ADE which then allows feature detectors of

various shapes, or else it can be calculated from a centroid which

encourages spherical feature detectors.

4.6. Unsupervised learning

To establish a simple form of homeostasis and sparsity as

discussed in Section 2 we run through the training set (either in

order or, preferably, drawing randomly from it so as to avoid order

biases) and, for each training example, establish the ADEs that fire.

If drawing randomly we can continue for more than the number of

training cases. We accumulate the number of firing events per ADE

and after an interval t (perhaps 2,000) compare that to the target

number of firing events, e.g., 1% of the cases. If it is too high or low

we increase or decrease the threshold accordingly. The end point is

a threshold which ensures≈1% firing on average.

During this process we can also carry out a simple Hebbian

learning mechanism per synapse within each ADE. One version

is related to a simple idea first explored by Hopkins et al. (2018)

inspired by NMDA plateau potentials in a synaptic cluster. If the

ADE fires then the smallest contributor to the sum which led to

the threshold crossing has its longevity decremented by 1 and the

largest contributor to the sum has its longevity increased by 1.

After an interval t, if any single synapse has a longevity below

a critical value it is replaced using the same mechanism as was

used in the original setup of the ADE (as described above); a

new pixel is chosen and its longevity is reset to the default value.

This allows each ADE to home in on a feature. Neither this nor

the threshold learning requires class information, hence this phase

is “unsupervised”.

4.7. Supervised learning

Now that we have all the ADs setup we can carry out the

supervised learning using class information. First there is the

choice of SBC architecture. In all cases 2D SBCs with one-hot

class encoding are currently assumed. The number of SBCs can be

chosen, each using either a pair of distinct ADs or using the same

AD for both its row and its column decoder. For example, with 4

ADs each of different width ni there are
(4
2

)

= 6 SBCs where the

AD on each row and column is a distinct combination. These SBCs

recognise coincidences between ADEs of different widths, where

the feature sizes differ. In addition, there are 4 possible SBCs that

recognise coincidences between ADEs of the same width. These are

half-size SBCs because only one half of the off-diagonal elements

of the SBC are describing unique coincidences. An intelligent

implementation will fit two of these half-size SBCs into the storage

for one full-size SBC. So for example, the first 6 will be AD1 * AD2,

AD1 * AD3, AD1 * AD4, AD2 * AD3, ... , and the last 4 will be AD1 *

AD1, AD2 * AD2 etc. Other good results have been obtained using

a simpler setup: 3x ADs with (6, 10, 12) synapses placed randomly

at (+/−2, +/−3, +/−4) in x and y relative to a centroid chosen by

M-H sampling. 3 SBCs are used, each using a different pair of the 3

ADs with no half-size SBCs.

The SBCs are now populated using a simple single-pass

supervised learning mechanism that lies at the heart of the method.

In a single pass through the training data all coincidences between

ADEs cause the respective class bit to be set in the SBCs. A specific

class bit may be set many times by different training examples,

with the same outcome as if it were set only once by one training

example. After a single pass through the training set, supervised

learning is complete. An additional pass would, in any case, have

no additional effect on the SBC contents unless training noise was

being added to increase robustness as described in the next section

though the differences are likely to be very small in realistic cases.

4.8. Inference

The inference and supervised learning mechanisms are very

similar, accessing the relevant SBC locations in exactly the same
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way, setting respective class bits during training but instead

counting the set bits during inference. For inference an input

case is acquired from a test set and presented to the ADs. For

each coincidence between ADEs all class bits are read from the

corresponding location in the relevant SBC, and the number of

bits set for each class is summed across all SBCs. The highest sum

indicates the inferred class of this test case.

If the classes are not one-hot encoded then there is an extra

decoding phase required here to identify the most likely class from

the accumulated bit counts.

5. Example results using MNIST and
EMNIST

Some results are given below for two standard classification

problems, the first very well-known and relatively easy, the second

less so. They both provide input data as greyscale raster plots of

handwritten digits/characters and require the correct classification

over a test set once the training set has been digested by the

learning mechanism.

In both of these cases, the basic BitBrain algorithmwith one-hot

class encoding, as described in the previous section, has been used.

Improvements are possible using spatial jitter at the training stage,

a technique termed data augmentation in the machine learning

literature, but for simplicity and clarity we present raw results

here. The test setup for these results is 4 ADs with different ADE

widths {6, 8, 10, 12} where the subsampling pattern for each ADE is

spatially clustered. The ADs each contain 2,048 ADEs and there are

10 2D SBC memories; 6 of which are full-size 2-way coincidences

between different ADs, the other 4 being half-size memories

containing coincidences within one AD as described above.

In each case we present results for varying amounts (including

zero) of noise added independently per pixel during the training

and/or testing phases. This noise can take one of two forms:

Gaussian noise of the specified SD with maximum and minimum

clamped at 255 and 0 respectively, and “Salt and Pepper” noise with

a given probability of a pixel being replaced with 0 or 255, with each

of these values being equally likely. Zero noise for both training and

test is comparable to standard results. Noise added to the test set

simulates imperfect inputs. Noise added to the training set helps to

make inference more robust to test noise as can be seen in the plots.

For BitBrain, the uncertainty due to different random number

seeds can be assumed at ≈0.1% on the Y axes which is too small to

be represented by error bars so the thickness of the lines is a good

guide. This represents another form of robustness for the learning

process itself.

5.1. MNIST

This is the standard MNIST problem and data set (Deng, 2012)

using 60,000 training images labelled with the 10 digit classes and

10,000 test images. In Figure 3, we give two views of the robustness

performance of the setup described. In order to optimise expected

performance in a real-world application a view must therefore be

taken on the quality of the input data likely to be encountered.

Perfect input data is unlikely in any realistic scenario (unlike

benchmark testing), and this graceful degradation in real-world

usage is one of the primary drivers for our interest in these ideas.

To give some idea of inference speed for this problem, an

implementation of BitBrain was set up with 3 ADs each containing

2,048 ADEs driving 3 full-size 2D SBC memories, requiring 16 MB

ofmemory for the total SBC footprint. Running on a 2020MacBook

Air laptop with a 3.2 GHz Apple Silicon CPU this took around 7 s

for supervised training on 60,000 examples and 0.42 s for the 10,000

test inferences, delivering 96.6% accuracy with no training or test

noise. This was single-threaded C code on the default compiler with

no attempt to optimise beyond good coding practice, and no use

was made of the GPU.

It is instructive to compare the robustness performance

against some representative CNNs which represent a technology

designed expressly for such image classification tasks. LeNet-5 was

an early breakthrough and reference designed for handwritten

digit recognition (LeCun et al., 1998) which performs to a

similar standard to our default BitBrain setup in the presence of

noise-free inputs. Efficient CapsNet (Mazzia et al., 2021) is very

recent and arguably close to state-of-the-art, so therefore a very

challenging comparison.

Efficient CapsNet models were trained for a maximum of

100 epochs with ReLU activations, while the training setup for

LeNet-5 was a maximum of 100 epochs and sigmoidal activations.

To save computational effort we used Tensorflow and some

simplifications to the weight setup and training schedule. Also,

there is no canonical Tensorflow implementation and the original

LeNet-5 paper uses a 32 × 32 version of the MNIST data.

Together these are reasons why our noise-free results are not quite

as good as the original results, but perhaps more importantly

in this context they are comparable to BitBrain on noise-free

data. Despite these small differences, we are confident that

the important trends over training and test noise values will

be unaffected.

In all cases we apply the same noise pattern per training image

which is then frozen over training epochs. We call this static noise

and the aim is to try and provide a fair comparison with BitBrain

because during our key supervised learning phase each image is (in

this study) only seen once and therefore contaminated with only

one realisation of the noise distribution. This is not necessarily the

case during our unsupervised learning phase, however we believe

this is a secondary consideration. In any case, during a small

number of test runs we have found that LeNet-5 results were not

significantly improved using dynamic noise where a different noise

pattern per image is produced for every training epoch.

For the LeNet-5 results there is considerable variation in the

accuracy results with different random number seeds. We believe

this is the combined effect of differing startup configurations and

noise distributions over the training images. As a result, we have

shown mean and SD error bars for these results from a small

number of independent runs. It is worth noting that this sensitivity

to setup conditions is another form of non-robust behaviours

independent of the one that we are aiming to test here, but with its

own practical implications. For Efficient CapsNet we have limited

runs available due to time constraints; indicative error bars are

given but these are less precise than those for LeNet-5. Figure 4

compares BitBrain and the two CNNs on the same Y-axis with the

MNIST data set and Gaussian noise.
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FIGURE 3

BitBrain performance against training and test Gaussian noise levels. Training noise SDs indicated in the legend for top plot and on second axis in

surface plot. The trade-o� between inference performance with perfect and noisy test data is clear. To perform well with inputs that are very noisy or

otherwise imperfect, a small penalty must be accepted with perfect input data by training with appropriate amounts of noise. Over this range of test

noise a training noise of 40–60 SD seems to be a good compromise; not penalising performance badly with perfect data whilst protecting against

degradation with quite large quantities of test noise.

Clearly LeNet-5 suffers badly in the presence of noise here

but with an interesting pattern of the best test noise performance

matching the same training noise setting, as if it has learned to

recognise the appropriate signal-to-noise ratio. This pattern is

even clearer in the middle panel of Figure 6 and has also been

observed in independent work using a different CNN and where

modifications of the training and test sets have been distortions

other than noise (Adithya, 2022). This is suggestive of another

kind of overfitting where the CNN is only learning to recognise

data with one particular signal-to-noise ratio or contrast level, and

is therefore lacking inferential robustness in realistic real world

scenarios. It may be that this is a fruitful area of investigation
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FIGURE 4

BitBrain (top) vs. LeNet-5 (middle) vs. E�cient CapsNet (bottom) robustness comparison for MNIST and Gaussian noise with bounded pixels.

Training noise SDs are the lines identified in the legend, test noise SD is on the X axis. LeNet-5 results are mean and SD error bars from 8 independent

runs. CapsNet results are mean and SD error bars from 3 independent runs.
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FIGURE 5

BitBrain (top) vs. E�cient CapsNet (bottom) robustness comparison for MNIST and Salt & Pepper noise. Training noise probabilities are the lines

identified in the legend, test noise probability is on the X axis. CapsNet results are mean and SD error bars from 3 independent runs.

for future study. CapsNet is far more robust and in fact responds

very well to high values of training noise. Presumably this acts

as an effective regulariser which may be an interesting discovery.

BitBrain is the least affected by different amounts of training noise

at higher test noise levels but does not quite reach the accuracy

levels of CapsNet.

We thought it would be interesting to show a similar

comparison between BitBrain and CapsNet for a different type of

noise: “Salt and Pepper” as described at the start of this section.

LeNet-5 appears unable to produce consistent results with this form

of noise over these ranges. This is shown in Figure 5.

5.2. EMNIST

EMNIST (Cohen et al., 2017) is a problem similar in nature to

MNIST (i.e., 28× 28 raster plots of greyscale digitised handwritten

characters) but much more challenging. All digits and lower- and

upper-case characters are used in the most comprehensive by_Class

data set where the 62 classes are significantly unbalanced and

several characters effectively alias each other, e.g.,

{o, O, 0}, {i, I, l, 1}, {s, S, 5}, {B, 8}

Figure 6 provides the results along with the CNNs as in the

previous subsection.

Here we achieve results significantly better than the original

results for noise-free operation (Cohen et al., 2017) with our basic

mechanism, though more recent work has moved the achievable

bound upwards by a few percent over ours (Baldominos et al.,

2019) as can be seen from the CNN results here. The trade-off

between noisy and noise-free test data here is clearer and accuracy

generally much lower due to the nature of the problem. Again,

adding an appropriate amount of training noise protects the initial

performance effectively across a wide range of test noise though

with a greater penalty for noise-free data.
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FIGURE 6

BitBrain (top) vs. LeNet-5 (middle) vs. E�cient CapsNet (bottom) robustness comparison for EMNIST and Gaussian noise with bounded pixels.

Training noise SDs are the lines identified in the legend, test noise SD is on the X axis. LeNet-5 results are mean and SD error bars from 6 independent

runs. CapsNet results are mean and SD error bars from 3 independent runs.
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FIGURE 7

BitBrain (top) vs. E�cient CapsNet (bottom) robustness comparison for EMNIST and Salt & Pepper noise. Training noise probabilities are the lines

identified in the legend, test noise probability is on the X axis. CapsNet results are mean and SD error bars from 3 independent runs.

Similar patterns are observed here. LeNet-5 suffersmost and has

very high variability, BitBrain is least affected by different training

noise settings at high test noise and CapsNet again performs very

well with high training noise. Despite being completely unrelated

technologies, both BitBrain andCapsNet respond well to high levels

of training noise. We again compare BitBrain and CapsNet using

Salt and Pepper noise in Figure 7.

The EMNIST problem combined with Salt & Pepper noise

at these levels is obviously a significant challenge for both

technologies, though again CapsNet with high levels of training

noise performs very well.

5.3. Comparison with other single-pass ML
methods

In this section, we present a summary of results from the ML

literature about single-pass learning, where each sample from the

training set is used only once and is not stored in memory. We

investigate how BitBrain in its current form compares to a number

of natively single-pass approaches (Wang et al., 2012, 2013; Zhou

et al., 2016), well-established deep neural networks (He et al., 2016;

Mazzia et al., 2021), and two simple CNNs with one and two

convolutional layers trained with just a single epoch.3 We continue

to use MNIST here as the results are widely reported.

Although the state-of-the-art modernmachine learningmodels

often rely on deep networks which are successively trained over

many epochs, simpler approaches which need only a single pass

through the training set are still of interest to the community,

especially in applications with limited resources. These single-

pass approaches typically employ a form of online learning which

allows them to process large datasets without the need for excessive

computational resources. One particular approach—local online

3 CNN A—https://github.com/jiuntian/pytorch-mnist-example and CNN

B—https://github.com/ya332/Simple-CNN-for-MNIST
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FIGURE 8

Performance comparison between BitBrain (green bar), deep neural networks (red bars), and natively single-pass learning approaches (blue bars).

Accuracy in % on the test set.

TABLE 1 Two-class results for accuracy in % compared with BitBrain from Table 1 of Rai et al. (2009).

Task libSVM Perceptron Pegasos1 Pegasos20 LASVM StreamSVM1 StreamSVM2 BitBrain

0 vs. 1 99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95

8 vs. 9 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49

The relevant parts of their table are replicated here with the best result for each case in red.

learning (LOL) (Zhou et al., 2016), proposes an extension of

commonly used Passive-Aggresive (PA) method (Crammer et al.,

2006) which updates the classifier sequentially based on the

feedback from each data point in the training set. Unlike the PA

and related approaches, the LOL allows for learning multiple local

hyperplanes to non-linearly process sequential data in a one-pass

manner. The authors also introduced a novel optimisation strategy

which significantly improves the performance on classification

tasks with multiple classes of patterns compared to previously

proposed methods.

Figure 8 shows the single-pass performance of deep learning

methods (red bars) and natively single-pass methods (blue bars) in

comparison to BitBrain (green bar). The performance of BitBrain

is visibly better than deep learning methods, which significantly

underperform when trained with just a single epoch, as well

as the online single-pass approaches. Notably, natively single-

pass approaches also provide a better classification accuracy than

more commonly used convolutional neural networks, however

this discrepancy is likely to result from the fact that the training

hyperparameters of the CNNs have not been adjusted adequately in

such a limited training time.

Another single-pass comparison can be made with online

methods for SVMs in two-class problems (Rai et al., 2009). In

Table 1, results are provided fromMNIST for discriminating 0 vs. 1

and 8 vs. 9 using a number of different algorithms.

5.4. Single-shot performance

In this section, we present some results that show learning

performance as a function of n for MNIST and EMNIST with very

small training sets from n = 1 per class upwards. These are shown

in Figure 9 where error bars are one standard deviation from 10

repeats with different randomly generated subsets of the training

cases. These results show that training data sets far smaller than are

common in current machine learning applications can be useful

in terms of generating inference accuracy well beyond chance.

This will have implications for where BitBrain can be applied. It

is also worth noting that the error bars are very small, even for

n = 1. This indicates another aspect of robustness demonstrated

by the BitBrain mechanism because it hardly seems to matter

which training cases are chosen and anyone familiar with the

MNIST and EMNIST data sets will know that the training cases can

vary substantially.

6. Relationships to Kernel methods
theory

BitBrain is a new idea and the underlying theory has to be

developed further in order to catch up with the empirical results.

This will help guide future directions for research and improve

practical results and implementations. In Section 2 of the main

document we discuss ideas from a number of fields which have

informed this technology. In this section, we want to explore one

of them further.

Kernel methods are based upon amatrix which is created by the

similarities between data points in the training set. This is called the

Gram or Kernel matrix which we will call K . If there are n training

data this matrix will be n x n positive definite symmetric (PDS) with

“self-similarities” (however that is defined) along the diagonal and
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FIGURE 9

Accuracy as a function of the upper bound of the number of per class training examples. The X axis is less obvious for EMNIST because as we move

further to the right some of the under-represented classes will have their training sets exhausted whilst other classes are still being subsampled. It

may not be obvious but beyond 10,000 training examples on EMNIST the accuracy falls very slightly because the over-represented classes are still

being added into the SBCs when there are none of the under-represented class training examples left which exacerbates the unbalanced nature of

the data set.

all the off-diagonal entries being the similarities between different

training data cases.

Similarities can be defined in many ways, the primary

constraint being that they must generate a PDS Kernel matrix. A

standard description in the kernel methods literature is that the

elements of K are formed by dot products between features so that

K ij = < φ(xi), φ(xj) > where φ() is an arbitrary function that maps

the input data x into a corresponding feature space. The choice of

φ() is therefore key in order to make any given method appropriate

for the data involved.

The “kernel trick” which provides potentially very large

computational benefits for kernel methods is to find a closed-form

function k(xi, xj)= < φ(xi), φ(xj) > without having to calculate the

(perhaps very high-dimensional) dot products required explicitly.

A good example from Gaussian Process methods is the covariance

function between two points in input space which can be of a very

simple closed form whilst at the same time (i) guaranteeing a PDS

Kernel matrix and (ii) expressing a very high-dimensional feature

space that can be parameterised and adapted easily but which never

needs to be explicitly calculated (Rasmussen and Williams, 2006).

6.1. A simple multi-class Kernel-based
classification (KBC) method

Probably the most straightforward KBC method that can be

applied effectively to problems with multiple classes is called Least-

squares Classification (LSC) (Rasmussen and Williams, 2006) and

various versions are compared by Rifkin and Klautau (2004). In

its simplest form, assume that K is formed from the training data

and that there are c = 10 classes (e.g., for the 10 MNIST digits)

with each training case labelled with one of the set {0, 1, ... 8, 9}.

Now make c “dummy targets” y0-y9 which are of length n and in

each case contain a zero for training cases where the label doesn’t

match their subscript and a one where it does. So in this case there

are about 90% zeroes and 10% ones for each yi. Now generate 10

“hat” vectors h0-h9 of length n which are essentially weights (both

positive and negative) used for assessing any new case and which

class it corresponds to. The algebra4 of this is:

hi = K−1yi (4)

So now the class of a new data case can be inferred. For each

case form the vector k* of length n which gives the similarity

(exactly as defined when K was formed between training cases)

between the new case and all n training cases. This is like forming a

new row/column of K . Now create the dot product of k* with each

hi to produce c “class indicator” values, i.e.,

class indicatori = k∗.hi (5)

In the ideal case this would produce c-1 class indicators = 0

and 1 class indicator = 1, with the index of the latter providing

the class inference. In reality, imprecision in the similarity metric,

noise in the training and test data and other issues will make these

results approximate, but a simple and robust mechanism for class

choice is to pick the largest value. This intuitively describes “overall

similarity to training cases of classi” in the similarity metric defined

by the kernel function chosen.

4 For actual computation it is both faster and numerically more stable to

decompose K (e.g., using the Cholesky decomposition) and then solve for

yi using a backsubstitution rather than forming the inverse explicitly and

then multiplying. This decomposition only needs to be done once but it is

O(n3) and so clearly for large training sets is a time-consuming linear algebra

operation. The solutions to form each hi are O(n2) and only need to be done

once.
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6.2. How does BitBrain resemble and di�er
from KBC methods?

Now think about all possible 2D coincidences from a data

input as one long bit vector. For example, assume there are

3 ADs each of length w = 2,048 and 3 2D SBC memories

to capture all the full-size coincidences. “Unrolling” the 2D bit

positions from this setup would make one vector, b, of length

2,0482 x 3 = 12,582,912 bits. This ignores the class bit depth,

which will be addressed later. The number of possible bits turned

on in b ranges from 0 to 12,582,912. Assume a 1% firing

probability per AD and a random distribution for the active bits,

then the expected number of bits turned on ≈ 20.482 x 3 =

1,258.3.

Now consider two different inputs. These will turn on different

sets of bits in b. Taking the logical AND of these two vectors

is also, of course, a dot product, which can then be written in

exactly the form < φ(xi), φ(xj) > as described at the start of

Section 6. This can be thought of as an overlap between bit

vectors or an intersection between bit sets. As it can be expressed

as a dot product it is a valid similarity measure which will

produce a PDS Kernel matrix, with φ() here being a projection

of the image data via the ADEs into a sparse 12,582,912D

binary space

It may be instructive to try and demystify the hi vectors

somewhat. The upper panel of Figure 10 is a plot from the

first 600 MNIST cases, sorted by label so that the first ones

are 0s, then 1s, etc. As expected by the form of the yi vectors,

these ‘gate’ the weightings for their own labels. However, there

are subtleties as well such as substantial differences between

same label cases (caused by the interrelated relative similarities

encoded in K-1) and some less trivial negative weights as

in case 183, which presumably means that case (which is a

2) is particularly dissimilar to a/some 1 case(s), hence the

negative weight.

Using the above setup and the mechanisms described in Section

4.6 we achieved 98.6% on MNIST, which is the best result so far

using these ADEs. Table 2 shows all the class indicator values for

two correctly assigned sample outputs. The first is obviously a clear

result with good confidence and the second less so.

6.3. The relationship to BitBrain

In BitBrain the same vector b is formed for every data case but

used in a different way. For every training image the class label is

stored for every active bit position of b where it is not already set.

This assumes that b now has a 2nd depth dimension of length c (for

one-hot encoding), or alternatively think of c vectors bi which are

analogous in some sense to the KBC “hat” vectors hi. The second

perspective corresponds more directly to the kernel definitions and

is used in what follows.

The essence of understanding the relationship between these

two apparently distinct methods is to see how the supervised

learningmemory write mechanism relates to Equation (4), and how

the read operation for inference relates to Equation (5). They are

clearly performing related tasks, albeit in very different ways. A

current hypothesis is that the BitBrain mechanism is forming an

empirical approximation to the kernel function k(xi, xj) described

earlier, so that the expensive O(n2) and O(n3) operations required

in Equations (4) and (5) are now converted into memory writes and

reads over the training data as a whole.

What is not yet clear is exactly how that relationship can be

derived, but perhaps some progress can be made. A starting point

is the observation that Mercer’s Theorem means a kernel function

can be appropriately decomposed into a summation over products

of orthonormal functions, i.e.,

κ(x, z) =

m
∑

j=1

φj(x)φj(z) (6)

So that, for example, the φj() could be eigenvectors of the φ()

function that defines the feature space. A suggestion is that x is

a vector of binary values, m = length(b) and φj(x) = x[j] where

[ ] indexes into the vector and therefore returns one of {0, 1}.

Kernel functions such as this are described by Shawe-Taylor and

Cristianini (Shawe-Taylor and Cristianini, 2004) in Sections 9.5

and 9.7 as set kernels and by Odone et al. (2005) as histogram

intersection kernels which turn out to have a natural link to L1

distance in their Equation (15). Their use in image processing

problems is described by Raginsky and Lazebnik (2009). So it is

possible that the c vectors bi are related to this summation, where

the summation index is now over their length. As required above,

each bit of bi would by definition be (approximately) orthonormal

in a large, sparse binary vector.

6.4. Di�erences from Kernel methods

Unfortunately, we don’t have direct access to the full Kernel

matrix K which describes the similarities between all training cases

and so cannot explicitly form Equations (4) and (5) which are

essential for LSC. However, we have generated a union over all the

bit patterns found from the training set and stored them in the

relevant bi according to their class information. It seems that this

sampling and storage mechanism has taken the place of Equation

(4) and then Equation (5) is being approximated by the overlap

of the bit pattern from a new data input which we can call o*
(analogous to k*) and the stored bit pattern in each bi (analogous

to hi).

So what can we say about this? For one thing, in the kernel

method the similarities are unambiguously calculated between

cases. In BitBrain the similarities are calculated between o* and

either the bit pattern projections over length(b) or the c classes,

depending on your perspective. It may be useful to think about

this in terms of set theory. The cardinality of the whole bit set =

length( b). The subsets for each class are defined by the active bits in

each bi let’s define these subsets as S{bi}. The relationship between

any new point and the stored training cases for classi is defined by

the intersection of the active bits in o* with those of S{bi}. We can

directly call this a similarity by appealing to Equation (6). This gives

us half of Equation (5) but where do we get the equivalent of hi
and how do we deal with the different domain over which the dot

product is calculated?
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FIGURE 10

Upper panel is sample hi vectors for first 600 MNIST training cases. Lower panel is synthetic hi vectors for n = 100 as described in text.

To address this question it might be useful to consider the

structure of the hi. If in the kernel setup all cases are equally similar

to cases in their own class, and equally but less similar to cases in

other classes then hi just looks like a gating variable. A synthetic

simulation for n = 100 is shown in the lower panel of Figure 10,

sorted by class. This was created by a K matrix with 3,000 on the

diagonal (i.e., self-similarity or the number of bits activated by a

case), 500 off diagonal for cases of the same class and 50 off diagonal

for cases of different classes.

It’s interesting to compare this with the upper panel of

Figure 10 where varying mean similarities by class and within-class

similarities between specific cases produce a very complex pattern

of weightings. In this case the exact (and unrealistic) uniformity of

similarity provides a very clear weighting pattern. Arguably, what

we are doing with BitBrain is the same as this but gated across c

classes or length(b) depending on your perspective.

It’s also worth bearing in mind that the S{bi} will intersect with

each other in potentially complex ways. An intersection between

any number of S{bi} simply means the subset of memory positions

in all the SBC memories where those class bits are all set. Figure 11

gives a matrix plot for the number of bits in each S{bi} on the

diagonal and the two-way intersections between these subsets off
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TABLE 2 The class indicator values for two sample outputs.

Digit ID 3357 is a 5 ID 5680 is a 3

0 0.008482 0.113866

1 0.099251 0.008050

2 −0.003518 0.023137

3 −0.058747 0.414228

4 −0.058338 −0.005619

5 1.087230 0.063122

6 −0.040066 0.010855

7 −0.063182 0.029908

8 0.058970 −0.026898

9 0.039974 0.019438

FIGURE 11

Cardinality of subsets and intersections for length(b) = 33.5M in this

case.

the diagonal. The intersections are substantial, but does it matter

or is it inevitable? What about three- and higher- (i.e., up to c-)

way intersections?

We can observe the different cardinalities of each S{bi} on

the diagonal which is particularly low for class 1 and high for

classes 2 and 8. However, directly correcting for this (e.g., a naive

multiplication by their inverse ratio) makes prediction accuracy

worse, and so the cardinality is not all that matters. One observation

is that 1s might be more similar, leading to fewer bits being set

in S{b1} because the same bits are constantly being activated but

cannot be stored more than once. The relatively low values of hi
in Figure 10 for class 1 would tend to support this. This may not

matter in inference if the test cases have a similar behaviours and are

well-separated in feature space from the other classes. Presumably,

“well-separated” is some function of the intersections (of various

orders) between all the S{bi}.

For precise inference it would be ideal to have no intersections

at all, but minimising them is a much more realistic aim. That

would suggest a very clear difference in the bit count values

between classes assuming that test cases follow the training case

patterns, which is a realistic assumption that is often required

in machine learning. Achieving this kind of behaviours where

classes of interest are separated as widely as possible is a standard

problem in optimal experimental or sampling design (Shewry and

Wynn, 1987). However, working out how to get to that position

in this problem is not easy. One would need to ensure that

entirely different patterns of bits are set by the different classes

which would mean consistently different combinations of ADEs

firing per class, and it’s not currently clear how this could be

achieved. Some early work tried learning each 1
10

th of the ADEs

(i.e., the feature detectors) on digit data distribution separately by

class or differences between classes at the unsupervised stage, but

this did not provide any significant improvement in prediction

performance.

To visualise the intersections of active bits in o* with

those of S{bi}, Table 3 shows the first results from the

same setup as Figure 11. The number of active bits in

the test case shows that the ADEs are tending to fire at

slightly more than the 1% target rate, at least assuming

complete randomness.

There are several things of interest here. Firstly the correct

class has been chosen each time (this sample is from a 97.12%

performance, so not such a surprise). Secondly is that almost all

the active bits in a test case intersect with the bits in the relevant

S{bi}. Of course this is good but such a high overlap is somewhat

surprising and this seem to be quite general across both test cases

and classes. Thirdly, the size of overlap with the wrong classes is

also much higher than expected. Let’s take the first case for example

and look at class 9 instead. The overlap with S{b9} = 9,704. card

(S{b9} ) = 7,859,278 which gives as a proportion of all possible

bits a 23.42% occupancy. There are 3,803,472 bits shared between

S{b7} and S{b9} (see Figure 11) and card(S{b7}) = 7,075,762. So

we can say that this two-way intersection is about half of each

subset! In other words, for any memory position where one of

these class bits has been set there is about a 50% chance that

the other is set as well. 7 and 9 are likely to be a worse than

average case as they are often one of the higher value pairs in the

confusion matrix.

7. Discussion

In this section, we aim to cover some loose ends and discussion

points that surround what is basically a simple idea that we have

tried to describe in a straightforward way.

Although we have focused on the benefits of BitBrain some

may wonder what is to be paid for these. One discussion

has been about how much data needs to be stored in

the SBC memories and that a comparison should be made

with methods that use this amount of parameter space. We

disagree with this perspective, for the following reasons. We

see BitBrain as a non-parametric method. There is no definitive
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TABLE 3 The first results from the same setup as Figure 11 with classes {0, ... , 9}, length(b) = 33.5M.

card(o*) class 0 1 2 3 4 5 6 7 8 9

12,168 7 4,876 2,909 6,529 6,916 7,291 6,398 2,769 12,055 5,295 9,704

21,011 2 13,624 8,495 20,348 16,114 4,068 12,939 14,645 2,930 13,362 3,179

7,320 1 2,551 7,257 5,965 5,115 5,764 5,160 4,531 6,147 5,962 5,010

15,664 0 15,409 1,941 9,625 8,997 5,459 10,297 11,040 7,434 5,724 7,152

14,110 4 6,816 2,625 9,796 6,231 13,919 7,156 8,005 9,553 7,969 11,495

8,597 1 2,442 8,515 6,577 5,184 6,452 4,983 4,287 7,522 6,843 5,335

10,804 4 3,005 3,087 5,594 6,073 9,974 6,007 4,667 6,638 7,824 7,644

card(o* ) is the number of active bits in the test case, class is the class for the test case, and the remaining columns show the intersections of the test case with each of the training classes.

description of a non-parametric model but this is as good as

any.5

Non-parametric machine learning algorithms try to make

assumptions about the data given the patterns observed from

similar instances. For example, a popular non-parametric

machine learning algorithm is the K-Nearest Neighbor

algorithm that looks at similar training patterns for new

instances. The only assumption it makes about the data set is

that the training patterns that are the most similar are most

likely to have a similar result.

Another parallel is found here then with Kernel methods

which—expressed in the form described in Section 6—are clearly

non-parametric in nature as they use the data directly for their

inference, not parameters that have been somehow inferred from

the data. There may sometimes be hyperparameters involved (for

example the local width of the kernel in Kernel regression) but

nevertheless the predictor is formed from a relatively simple

function of the data themselves.

BitBrain is clearly working in a similar way, and in fact the only

scalar parameters learned are during the unsupervised learning

stage where ADE thresholds are found which give an approximately

correct average firing probability. These are local 1D searches that

are cheap and easy to carry out in parallel and with a well-defined

optimum point. There are also some differences, for example it

is not the data themselves that are used but a high-dimensional

projection of them via φ(). We don’t believe this changes anything

though in relation to the fundamentally non-parametric nature of

the inference. So the SBC memories are storing “a direct encoding

of the data in a form which makes it suitable for inference”,

not “parameters”.

It should also be said that there are versions of the method

with a much lower memory footprint. For example, if only memory

positions containing a single class bit after supervised learning are

saved. In the context of the discussion in Section 6 this means

activated parts of the bit space where there are no intersections

between class subsets. This excludes the vast majority of memory

positions and also means that less space is needed for each.

One may achieve 2-4 orders of magnitude saving in storage

5 https://deepai.org/machine-learning-glossary-and-terms/non-

parametric-model

with a demonstrated small (≈3% on MNIST) loss of inference

performance but also a significant gain in inference speed, though

hash tables or some other mechanism will be needed for the

required sparse storage unless specialised hardware is available and

this will somewhat complicate the implementation. It may be that

in some applications these trade-offs are fully justified.

Another unknown is the capability of the current and

basic implementation on the most challenging problems. We

are unlikely to compete with deep networks with billions or

trillions of parameters at this point, but in defence of the

method it was never designed for this. It remains to be

seen how the more advanced versions discussed below fare in

such problems.

7.1. Future directions

BitBrain is a very new method and there is a lot left to

explore in order to understand and improve behaviours. In this

subsection, we briefly describe a number of ideas that are either

under consideration or being actively investigated.

It has been observed that various ADEs will tend to fire together

more than they should by chance, whereas the ideal would appear

to be independence amongst the ADE firing patterns. There are

various arguments from both information theory and SDM theory

to support this aim, though it is by no means proven. Some

mechanism for modifying or replacing ADEs which are too similar

would therefore appear to be a useful mechanism during the

unsupervised learning phase. Earlier work in unsupervised learning

may be relevant here (Atick and Redlich, 1993; Bell and Sejnowski,

1995; Linsker, 2005).

There can be several subtleties and variations for the basic

supervised learning phase described in Section 4.7. We might,

e.g.,

• Only write a bit probabilistically which will reduce memory

occupancy and potentially increase inferential robustness.

• Add noise to the training data to facilitate inferential

robustness (as seen in Figures 3–7).

• “Jitter” or otherwise augment the training data with elastic

deformations and rotations.

• Use N-of-M codes within each memory location to specify the

class encoding and decoding.
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• Enforce a strict N-of-M code for each AD activation by

choosing theN ADEs that exceed their threshold by the largest

amount.

There will be weightings of the class bit sums which perform

better than the default (uniform) case. The simplest weighting

is to element-wise multiply by a vector the same length as the

number of classes. A more flexible weighting which can take

into account—and perhaps correct for—complex inter-correlation

patterns between the classes is to post-multiply the class bit counts

by a square matrix and use the resulting vector for class choice. In

either of these cases, the challenge is to know what this vector or

matrix should be!

Two types of continuous learning are being considered. Firstly,

dealing with data that changes over time: perhaps the degradation

of a sensor input device or a genuine change in patterns in the

system of interest. As new labelled data arrives over time these

can be added to the SBC memories as in the supervised phase.

A count would be kept of the number of bits added and at a

chosen interval this same number of bits are randomly removed

from the SBCs. This will maintain the memory occupancy at the

chosen level. Over time, even if the nature of the input data has

diverged significantly from the original training set this very simple

mechanism will adapt automatically to changing circumstances

and retain predictive performance on the most recent inputs. The

key decision is how quickly to adapt and this will differ for each

problem. The second possibility is that of adding new classes, which

apart from the administration of the SBC memories would be

almost automatic. In both of these cases there may be an argument

for another phase of unsupervised learning (or perhaps occasional

updating) but this would not necessarily be required. Contrast the

simplicity of these solutions with the problems facing most other

ML methods.

An application where these ideas might be fruitfully applied is

in the ML sensor 2.0 paradigm (Warden et al., 2022) which we feel

is a natural fit for BitBrain for the following reasons:

• A very simple interface is required to provide security and

engineering modularity.

• The impact on model building, training, software

development and integration. For example, the speed

with which a specific sensor could be taught its own custom

model on a training set with BitBrain and thereby sidestep

issues about production variability and the sharing of large

and complex pre-trained models.

• Continuous learning within the black box will generally be a

problem but not for BitBrain.

• Inference that is robust to sensor degradation and

environmental variability is considered essential.

• Specific and neuromorphic H/W is seen as the future of such

low energy/always on devices.

The unsupervised learning mechanism described above has

been shown to work well, however there may be other approaches

using work from image processing in ML which can provide a

useful alternative mechanism. Convolutional neural nets have been

shown to provide very good results on challenging problems and

in many cases the convolutional front end can be reused across

problems of a similar nature. This could allow us to go directly from

acquiring the data to the single-pass learningmechanism, and at the

same time sidestep the issue of needing to relearn the front end in

continuous learning problems.

We have only discussed single channel image data in this paper.

We are keen to expand beyond this into any type of data and

preliminary results are very promising. For example:

• Multi-channel (such as RGB) image or volumetric data (e.g.,

in medical imaging).

• DNA, IP or other engineering/biological/pharmaceutical

codes with no obvious locality structure.

• Uni- or multi-variate time series including real-time data from

event-based sensors so that temporal as well as spatial patterns

can be classified.

There are a number of very interesting questions to answer as

we expand the technique into these areas.

Just as in other areas of AI and ML, layers of inference and/or

hierarchies can be very powerful extensions of a basic learning and

inference mechanism. We believe that the same may be true of

BitBrain. The question will be: how to connect the SBCs together?

For example, in forming layers of SBCs, we would need some form

of ‘output’ from the upper layer which is not the class itself. This

would then feed the next layer as input. There are a number of

interesting possibilities currently under consideration. This also

provides the option that information flow can be feedback as well

as feedforward, and therefore the opportunity for more end-to-end

style learning mechanisms.

Finally, we are interested in experimenting with robustness in

the presence of input perturbation of more realistic forms than

simple Gaussian or Salt and Pepper noise added to the data.

There are so many possibilities here that separate papers will be

required to address them all.

7.2. Neuromorphic interpretation

All computational operations for BitBrain—whether in training

or inference—are small integer addition/multiplication or bitwise

operations, which can be performed in one cycle on a RISC

architecture with low energy use and often also leverage efficient

SIMD units. This is rarely the case in typical ANN computations.

The energy benefits of this difference will vary widely but an order

of magnitude is not unrealistic.

While the BitBrain architecture can be mapped onto existing

neuromorphic computational devices, there are likely to be greater

gains in performance and energy-efficiency from mapping it

into neuromorphic hardware specifically designed to support it.

Figure 2 is highly suggestive of a possible hardware implementation

of an SBC, comprising a 2D array of nodes where each node

incorporates a number of SRAM cells to store the class bits. This

2D array has a row AD and a column AD, where each AD is a

linear array of ADEs. The vector of input values is broadcast across

all the ADEs, each of which selects its chosen inputs, computes
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its activation and, if this exceeds its threshold, fires its output.

Wherever two active ADE outputs meet across the 2D array the

corresponding node is activated for a read or write operation.

Writing can use a class indicator broadcast across the 2D array;

reading is trickier as it involves counting the 1s for each class across

all of the activated nodes, which could be achieved using analogue

techniques or perhaps by serially pulsing the active row ADEs and

counting the 1s by column.

7.2.1. BitBrain implementation on SpiNNaker
On some of the existing neuromorphic devices, such as Loihi

and TrueNorth (Akopyan et al., 2015; Davies et al., 2018), the ADEs

could potentially be mapped onto individual units resembling

simple spiking neurons. The SpiNNaker system (Furber and

Bogdan, 2020) offers a number of ways to directly take advantage

of the sparsity and parallelism inherent in BitBrain thanks to

its ability to execute non-neural simulations. SpiNNaker is a

digital neuromorphic platform which can host up to 1 million

general purpose processors in a single cluster, thus allowing for an

extremely high number of calculations to be executed in parallel.

The SpiNNaker platform, as well as the discussed implementation

of the BitBrain algorithm, are designed to allow for robust and loss-

tolerant routing of messages. Therefore, a loss of information from

faulty nodes is redundant for the computation.

There are many different ways to implement such a system

on SpiNNaker. In this section, we will discuss one such

implementation which consists of two types of application vertices:

ADE and SBC vertices. Here, an application vertex is understood

as a particular type of application running on an independent

core in the SpiNNaker system. These applications carry out certain

computational tasks, and then communicate between each other

viamulticast packets which contain certain type of payload specific

to the application. In the extremely parallel implementation which

assumes a BitBrain instance with 4 ADs of length 2,048, the

ADE vertices alone would require 8,192 cores to be employed.

Additionally, 6 cores would be needed for the SBC vertices

which receive firing patterns and interact with the SBC memory.

We found that such massively parallel implementations are sub-

optimal, due to the large number of messages which need to be

processed. Moreover, we found that computation done by the SBC

vertices requires more time to be completed, therefore further

parallelisation of ADE processing does not bring expected gains

in performance.

For the purpose of this paper we decided to focus on an

implementation which parallelises not only the ADE calculations

but also writing and reading from the SBC memories. Note that

this in an early implementation and we plan to do a more

thorough study to understand and explore the many options, as

there is so much flexibility in how to implement the algorithm

on SpiNNaker that finding the best balance between, e.g., data

movement, AD calculations, SBC calculations, message types and

quantity, memory access patterns is a large and sometimes counter-

intuitive task. Moreover, the SpiNNaker architecture is based on

rather old processors ARM9 with clock rate of 200 MHz.

We found that it is the most beneficial to divide each SBC

into 64 cores which only receive messages from a small subset of

ADE vertices, see the upper panel of Figure 12. Thus, we use 384

cores in total for reading and writing from the SBC memory. We

then divide the ADE computation into further 128 cores. With

this approach we’ve been able to recreate the performance we

have previously recorded on conventional processors, and achieve

an inference time of approximately 48s, or ≈4.8 ms per data

point. Notably, the performance accuracy of our implementation

is higher than that of other approaches previously implemented

on SpiNNaker, such as Liquid State Machines (LSM) (Patiño-

Saucedo et al., 2022). However, it is important to emphasise that

these previous attempt typically used a variant of MNIST dataset—

Neuromorphic MNIST (Orchard et al., 2015), which requires

additional preprocessing steps and operates on temporal inputs,

thus cannot be compared directly.

The ADE cores are responsible for calculating the firing

patterns of a small subset of pixels in the image. When activated,

an ADE vertex sends a message to the set of its corresponding

SBC vertices, see the lower panel of Figure 12. In turn, the SBC

vertices collect the incoming messages, and calculate the feature

coincidences. The updates to the application vertices are performed

on a timer interrupt which occurs every simulation time step. The

length of this time step is determined by the complexity of the

calculations which need to be performed and he messages that need

to be processed. On average the SBC vertices receive≈60 activation

messages from the ADE vertices, with an additional 16 messages

which are meant to indicate that the ADE vertices have finished

their part of the job. On the other hand, the ADE vertices receive

192 messages per one image in the dataset.

The training and testing sets, as well as other data structures

required to implement a BitBrain instance are stored in two types

of memory: SDRAM (shared slow memory) which contains the

SBC memories and the full set of training/testing data, and DTCM

(fast local memory) which contains the simulation parameters,

routing keys, address decoder thresholds, firing patterns, and

test labels (in inference mode). Additionally, we allow the ADE

vertices to transfer the training/testing data for each example

into the DTCM memory, while the system is waiting for the

SBC vertices to interact with their respective SBC memories.

This approach allows us to reduce the inference time further by

approximately≈25%.

Each of the SBC vertices has a recording channel. In the

inference mode the count of SBC activations per class is being

recorded for each example in the test set. In the training

mode the SBC memories are recorded only once after the

whole training set has been processed. The recordings are then

accessed by the host machine in order to save the trained

SBC memories, or calculate the inference accuracy and build a

confusion matrix.

8. Conclusions

We have introduced an innovative working mechanism

(the SBC memory) and surrounding infrastructure (BitBrain)

based upon a novel synthesis of ideas from sparse coding,

computational neuroscience and information theory that

support single-pass learning, accurate and robust inference,

and the potential for continuous adaptive learning. We have
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FIGURE 12

An example of distributed implementation of BitBrain on SpiNNaker neuromorphic platform. In this example, we divide the SBC computation into 64

parts per SBC memory. Additionally, each Address Decoder is split into 8 cores consisting of 256 ADEs. The panel below illustrates the message

routing between di�erent application vertex types in a parallelised implementation of BitBrain.

demonstrated the efficacy of these concepts on the MNIST

and EMNIST benchmarks and shown that the proposed

inference mechanism has very low training costs and is robust

to noise.

Clearly these ideas are not yet fully developed, and

theoretical advances as well as practical experience are likely

to provide further gains in performance and efficiency. There

are various ways that the mechanisms can be reconfigured, for

example to reduce the SBC memory requirements by using

an efficient compressed sparse matrix storage format, and/or

by reducing the number of classes stored at each potential

coincidence node.

Even at this early stage of development, BitBrain displays

state-of-the-art performance in one-shot learning tasks combined

with intrinsic robustness and fast inference. The Sparse Binary

Coincidence memories upon which it is based may be large, but

are simple bit arrays set to mark principal feature coincidences.

This mechanism supports continuous on-line learning provided

that the memories do not become over full, which may be ensured

by incorporating some form of random “forgetting” .
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processing-in-pixel-in-memory
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image sensors
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Edge devices equipped with computer vision must deal with vast amounts of

sensory data with limited computing resources. Hence, researchers have been

exploring di�erent energy-e�cient solutions such as near-sensor, in-sensor, and

in-pixel processing, bringing the computation closer to the sensor. In particular,

in-pixel processing embeds the computation capabilities inside the pixel array

and achieves high energy e�ciency by generating low-level features instead

of the raw data stream from CMOS image sensors. Many di�erent in-pixel

processing techniques and approaches have been demonstrated on conventional

frame-based CMOS imagers; however, the processing-in-pixel approach for

neuromorphic vision sensors has not been explored so far. In this work, for the first

time, we propose an asynchronous non-von-Neumann analog processing-in-

pixel paradigm to perform convolution operations by integrating in-situ multi-bit

multi-channel convolution inside the pixel array performing analog multiply and

accumulate (MAC) operations that consume significantly less energy than their

digital MAC alternative. To make this approach viable, we incorporate the circuit’s

non-ideality, leakage, and process variations into a novel hardware-algorithm co-

design framework that leverages extensive HSpice simulations of our proposed

circuit using the GF22nm FD-SOI technology node. We verified our framework on

state-of-the-art neuromorphic vision sensor datasets and show that our solution

consumes ∼ 2× lower backend-processor energy while maintaining almost

similar front-end (sensor) energy on the IBM DVS128-Gesture dataset than the

state-of-the-art while maintaining a high test accuracy of 88.36%.

KEYWORDS

neuromorphic, processing-in-pixel-in-memory, convolution, address event

representation, hardware-algorithm co-design, DVS gesture

1. Introduction

Today’s widespread video acquisition and interpretation applications [e.g., autonomous

driving (Beltrán et al., 2020), surveillance (Xie et al., 2021), object detection (Jiao et al.,

2022), object tracking (Wu et al., 2021), and anomaly detection (Mansour et al., 2021)]

are fueled by CMOS image sensors (CIS) and deep learning algorithms. However, these

computer vision systems suffer from energy inefficiency and throughput bottlenecks (Chai,

2020) that stem from the transmission of a high volume of data between the sensors at the

edge and processors in the cloud. For example, smart glasses (e.g., Meta AR/VR glasses,
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Google classes, etc.) drain the battery within 2–3 h when used for

intensive computer vision tasks (LiKamWa et al., 2014). Although

significant technological and system-level advancements exist in

both CMOS imagers (Maheepala et al., 2020) and deep neural

networks (Goel et al., 2020), the underlying energy inefficiency

arises due to the physical separation of sensory and processing

hardware. Hence, developing novel energy-efficient hardware for

resource-constrained computer vision applications has attracted

significant attention in the research community.

Many researchers implement the first few computation tasks

of machine vision applications close to the sensor to reduce the

energy consumption of massive data transfer (Zhou and Chai,

2020). These approaches can be categorized into three types (1)

near-sensor processing, (2) in-sensor processing, and (3) in-pixel

processing. The near-sensor processing approach places a digital

signal processor or machine learning accelerator close to the sensor

chip. In Pinkham et al. (2021), a dedicated near-sensor processor

led to a 64.6% drop in inference energy for MobileNetV3. In

Eki et al. (2021), a 3D stacked system consisting of a CNN

inference processor and a back-side illuminated CMOS image

sensor demonstrated an energy efficiency of 4.97 TOPS/W. Near-

sensor computing can improve energy efficiency by reducing the

data transfer cost between the sensor chip and the cloud/edge

processor; however, the data traffic between the sensor and near-

sensor processor still consumes significant amounts of energy.

In contrast, the in-sensor approach utilizes an analog or digital

signal processor at the periphery of the sensor chip. For instance,

RedEye (LiKamWa et al., 2016) uses analog convolution processing

before the sensor’s analog-to-digital conversion (ADC) blocks to

obtain a 5.5× reduction in sensor energy. Moreover, a mixed-

mode in-sensor tiny convolution neural network (CNN) (Hsu

et al., 2022) yielded a significant reduction in bandwidth and, in

particular, reduced power consumption associated with the ADC.

To fully remove the ADC energy overhead, Chen et al. (2019)

processed the raw analog data from the CMOS image sensor

using an on-chip completely analog binary neural network (BNN)

that leverages switched capacitors. Using energy-efficient analog

computing was also explored in Ma et al. (2019), which proposes

a novel current-mode analog low-precision BNN. Furthermore,

SleepSpotter (Lefebvre et al., 2021) implemented energy-efficient

current-domain on-chip MAC operations. Nevertheless, this

solution still requires the potentially-compressed raw analog data

to be streamed through column-parallel bitlines from the sensor

nodes to the peripheral processing networks. In general, these

in-sensor approaches significantly reduce the energy overhead of

analog-to-digital converters; however, they still suffer from the data

transfer bottleneck between the sensor and peripheral logic.

On the other hand, the in-pixel processing approach integrates

computation capabilities inside the pixel array to enable early

processing and minimize the subsequent data transmission. For

instance, a low-voltage in-pixel convolution operation has been

proposed in Hsu et al. (2020) that utilizes a current-based digital-

to-analog converter (DAC) to implement weights and pulse-width-

modulated (PWM) pixels. Moreover, a single instruction multiple

data (SIMD) pixel processor array (PPA) (Bose et al., 2020) can

perform parallel convolution operations within the pixel array by

storing the weights of the convolution filters in registers within

the in-pixel processing elements. In addition, the direct utilization

of the photodetector current to compute the binary convolution

can yield 11.49 TOPS/W energy efficiency (Xu et al., 2020).

Furthermore, Xu et al. (2021) performs classification tasks on

the MNIST dataset by generating the in-pixel MAC results of

the first BNN layer and exhibits 17.3 TOPS/W energy efficiency.

In addition, a processing-in-pixel-in-memory paradigm for CIS

reported an 11× energy-delay product (EDP) improvement on the

Visual Wake Words (VWW) dataset (Datta et al., 2022c). Follow-

up works by the same authors have demonstrated 5.26× and

3.14× reduction in energy consumption on hyperspectral image

recognition (Datta et al., 2022e) and multi-object tracking in the

wild (Datta et al., 2022d), respectively. In summary, due to the

embedded pixel-level processing elements, the in-pixel processing

approach can outperform energy and throughput compared to

in-sensor and near-sensor processing solutions.

Most of the research works on different energy-efficient CIS

approaches (near-sensor, in-sensor, and in-pixel processing)

are focused on conventional frame-based imagers. However,

many researchers are now exploring the use of event-driven

neuromorphic cameras or dynamic vision sensors (DVS)

(Lichtsteiner et al., 2008; Leñero-Bardallo et al., 2011) for different

neural network applications, including autonomous driving (Chen

et al., 2020), steering angle prediction (Maqueda et al., 2018),

optical flow estimation (Zhu et al., 2018), pose re-localization

(Nguyen et al., 2019), and lane marker extraction (Cheng et al.,

2020), due to their energy, latency, and throughput advantages

over traditional CMOS imagers. The DVS pixel generates event

spikes based on the change in light intensity instead of sensing the

absolute pixel-level illumination in conventional CMOS imagers.

Thus, DVS pixels filter out the redundant information from a

visual scene and produce sparse asynchronous events. These sparse

events are communicated off-chip using the address event link

protocol (Lin and Boahen, 2009). By avoiding the analog-to-

digital conversion of the absolute pixel intensity and frame-based

sensing method, DVS exhibits higher energy efficiency, lower

latency, and higher throughput than frame-based alternatives.

Moreover, the dynamic range of the DVS pixel is higher than the

conventional CMOS imagers; hence, the DVS camera can adapt to

the illumination level of the scene due to its logarithmic receptor.

These advantages motivate a paradigm shift toward neuromorphic

vision sensors for vision-based applications.

These DVS cameras are often coupled with spiking convolution

neural networks (CNN) that natively accept asynchronous input

events. Traditionally, time is decomposed into windows, and the

number of spikes that occur in each time window is accumulated

independently for each pixel creating multi-bit inputs to a spiking

CNN. The first spiking CNN layer thus consists of digital MAC

operations (not accumulations because the input is multi-bit

instead of binary), unlike the subsequent spiking CNN layers that

consist of more energy-efficient accumulations that operate on

spikes (Datta and Beerel, 2022; Datta et al., 2022b). To improve

the energy efficiency of such a DVS system, this paper explores

in-pixel processing by performing MAC operations in the analog

domain within the pixel array. In particular, we have developed

a novel energy-efficient neuromorphic processing-in-pixel-in-

memory (P2M) computing paradigm in which we implement the

first spiking CNN layer using embedded transistors that model

the multi-bit multi-channel weights and enable massively parallel
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in-pixel spatio-temporal MAC operations. Because the DVS event

spikes are asynchronous in nature, we perform the multiply

operation by accumulating the associated weight each time a pixel

event occurs. We threshold the accumulated value at the end

of each time window to produce a binary output activation and

reset the accumulator in preparation for the next time window.

To support multiple input filters operating on individual pixels,

we parallelize this operation and simultaneously operate on all

channels (and all pixels). This charge-based in-pixel analog MAC

operation exhibits higher energy efficiency than its digital off-chip

counterpart. Moreover, the sparse binary output activations are

communicated utilizing a modified address-event representation

(AER) protocol, preserving the energy benefit of the workload

sparsity. In addition, we have developed a hardware-algorithm co-

design framework incorporating the circuit’s non-linearity, process

variation, leakage, and area consideration based on the GF22nm

FD-SOI technology node. Finally, we have demonstrated the

feasibility of our hardware-algorithm framework utilizing state-of-

the-art neuromorphic event-driven datasets (e.g., IBM DVS128-

Gesture, NMNIST) and evaluated our approach’s performance and

energy improvement. We incur a ∼5% accuracy drop in these

datasets because our charge-based P2M approach does not capture

the conventional notion of membrane potential for the first CNN

layer. This lack of membrane potential is due to the limited time

a passive analog capacitor can effectively store charge without

significant leakage. However, this problem can be mitigated using

non-volatile memories (Jaiswal and Jacob, 2021) that we plan to

explore in our future work.

The key contributions of our work are as follows:

1. We propose a novel neuromorphic-processing-in-pixel-in-

memory (Neuromorphic-P2M) paradigm for neuromorphic

image sensors, wherein multi-bit pixel-embedded weights

enable massively parallel spatio-temporal convolution on input

events inside the pixel array.

2. Moreover, we propose non-von-Neumann charge-based energy-

efficient in-pixel asynchronous analog multiplication and

accumulation (MAC) units and incorporate the non-idealities

and process variations of the analog convolution blocks into our

algorithmic framework.

3. Finally, we develop a hardware-algorithm co-design framework

considering hardware constraints (non-linearity, process

variations, leakage, area consideration), benchmark the

accuracy, and yield a ∼ 2× improvement in backend-processor

energy consumption on the IBM DVS128-Gesture dataset with

a∼ 5% drop in test accuracy.

The remainder of the paper is organized as follows.

Section 2 describes the circuit implementation, operation,

and manufacturability of our proposed Neuromorphic-P2M

approach. Section 3 explains our hardware-algorithm co-design

approach and hardware constraints on the first layer of the neural

network model. Section 4 demonstrates our experimental results

on two event-driven DVS datasets and evaluates the accuracy and

performance metrics. Finally, Section 5 presents the concluding

remarks.

2. P2M circuit implementation

This section presents the critical hardware innovations and

implementation of our proposed neuromorphic-P2M approach.

Figure 1 illustrates the representative chip stack and computing

flow for the first convolution layer utilizing our proposed

neuromorphic-P2M architecture. The top die consists of DVS

pixels and generates ON (OFF) events based on the increase

(decrease) in input light contrast level. A DVS pixel consists of

a logarithmic receptor, source-follower buffer, capacitive-feedback

difference amplifier, and two comparators (Lichtsteiner et al., 2008;

Leñero-Bardallo et al., 2011; Son et al., 2017). The generated

events (ON and OFF) per pixel are communicated to the bottom

die via pixel-level hybrid Cu-to-Cu interconnects. The bottom

die contains the weights and energy-efficient charge-based analog

convolution blocks. Each DVS pixel’s output channel (ON-channel

and OFF-channel) is connected to a transistor in the bottom die

that implements a multi-bit weight (e.g., w1,ON, w1,OFF, etc.) to

perform the multiplication (e.g., I1,ON × w1,ON, I1,OFF × w1,OFF,

etc.) operation. The positive and negative weights are implemented

by utilizing the pMOS and nMOS transistors, respectively. Each

kernel (corresponding to the filter of the spiking CNN model)

accumulates its weighted multiplication of input events on an

analog memory (capacitor) asynchronously when an ON or OFF

event occurs in the input DVS pixel. As the input spikes are binary,

the accumulation voltage either steps up (positive weight) or down

(negative weight) by an amount, depending on the weight values.

The accumulation continues for a fixed time period (simulation

time length for each event stream of our neural network model),

and after that, the summed voltage is compared with the threshold

(using a comparator or skewed inverter) to generate the output

activation signal (e.g., OACT) of each kernel for the next layer.

A similar computing flow is used across the different kernels

throughout the sensor array.

The operations of our proposed neuromorphic-P2M can be

divided into three phases. These are:-

1. Reset Phase: During the reset phase, the accumulation capacitor

of each kernel is precharged to 0.5VDD so that the accumulation

voltage can step up or down within the supply rail depending on

positive or negative weights, respectively.

2. Convolution Phase: In the convolution phase, the multi-bit

weight-embedded pixels and the accumulation capacitor of

each kernel perform multiplication and accumulation (MAC)

operations in the analog domain for a fixed period of time. After

that, the final accumulated voltage of each kernel is compared

with a threshold voltage to (potentially) generate the output

activation spike for the next layer.

3. Read Phase: Finally, during the read phase, the output

activations of different kernels are sequentially read utilizing

the asynchronous Address-Event Representation (AER) read

scheme.

More details on each step, including their hardware

implementations, will be explained below.
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FIGURE 1

The representative 3D chip stack and computing flow diagram of our proposed neuromorphic-P2M architecture.

2.1. Multi-bit weight embedded pixels

As illustrated in Figure 2, positive and negative weights of

the first spiking CNN layer have been implemented by utilizing

pMOS and nMOS transistors connected with supply voltages VDD

and ground, respectively. For a positive (negative) weight, the

voltage across the kernel’s capacitor (CK) charges (discharges) from

0.5VDD to VDD (ground) as a function of weight values and the

number of input DVS events. The weight values can be tuned by

varying the driving strength (WL ratio) of the weight transistors

(MW). A high-VT pMOS in positive weight implementation

(nMOS in negative weight implementation) (MEN) is activated

during the convolution phase to enable the multiplication and

accumulation operations on the kernel’s capacitor (CK) and

remains off during the reset phase. The weight transistor (MW)

is chosen to have a high-VT to limit the charging (for positive

weight) or discharging (for negative weight) current to avoid

capacitor saturation. Moreover, each DVS pixel includes a delayed

self-reset circuit (consisting of a current-starved inverter chain

and AND gate) to prevent voltage saturation on the capacitor

(CK) by limiting the event pulse duration. A switch transistor

(MSW) controlled by the DVS event spike is used to isolate

the kernel’s capacitor (CK) from the weight transistor (MW)

to reduce the leakage. The switching transistor (MSW) will be

activated only when there are input DVS spikes, hence, ensuring

the asynchronous MAC operation on the kernel’s capacitor (CK).

Furthermore, to reduce the leakage, a kernel-dependent (as leakage

is a function of transistor’s geometry, hence, leakage amount is

dependent on the kernel’s weights) the current source (INULL)

is connected with the accumulation capacitor (CK) that flows

in the opposite direction of the leakage current to nullify the

leaky behavior of the capacitor. The number of weight transistors

associated with a kernel depends on the size of the kernel (e.g.,

for a kernel size of 3 × 3, there will be a total of 18 weight

transistors considering the ON and OFF-channel). Each kernel’s

weight transistors are connected to one accumulation capacitor

(CK).

Note that the weights cannot be re-programmed after

manufacturing. However, it is common to use pre-trained weights

for the first few layers as low-level feature extractors in modern

neural network models (Jogin et al., 2018). Hence, the fixed

weights of our proposed architecture do not limit its application

for a wide range of machine-vision tasks. Moreover, we can also

replace the transistor by utilizing a non-volatile memory device

[e.g., Resistive Random Access Memory (RRAM), Phase Change

Memory (PCM), Magnetic Random Access Memory (MRAM)] to

add reconfigurability in our neuromorphic-P2M approach.

To incorporate the circuit’s non-ideality in our algorithmic

model, we have simulated the output characteristics of the positive

and negative weights for the different numbers of input event

spikes using the GF 22nm FD-SOI node. Figure 3 represents the

output voltage change on the accumulation capacitor (1VOUT)

as a function of the normalized weight transistor’s W
L ratios and

different numbers of input event spikes. The figures show that the

accumulated voltage can step up (for positive weights) and down

(for negative weights), and the size of the step is dependent on the

weight transistor’s W
L ratio. However, the step size dependency is

non-linear, and the non-linearity is larger when the weights are

large, and the pre-step voltage is close to the supply rails. This can

be attributed to the fact that the weight transistors (MW) enter the

triode region when their drain-to-source voltage is low, causing

the charging (discharging) current to drop compared to the typical

saturation current. However, the number of input events is sparse

for the DVS dataset, and having large weight values for all the

weights in a kernel is highly unlikely for a neural network model.

Hence, the weight transistors’ non-linear characteristics do not

cause significant accuracy issues in our algorithmic model. Besides,

the circuit’s asymmetry due to utilizing different types of transistors

(pMOS for positive weights and nMOS for negative weights) is also

captured and included in our algorithmic model.
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FIGURE 2

Embedded multi-bit positive and negative weight implementation.

FIGURE 3

Output accumulation voltage change (1VOUT ) from the reset voltage of the kernel capacitor (CK ) as a function of normalized weight (normalized

transistor W

L
ratio) and input event spikes simulated on GF 22nm FD-SOI node for positive and negative weights.

2.2. In-situ multi-pixel multi-channel
convolution operation

In the first spiking CNN layer, we must perform spatio-

temporalMAC operations across multiple channels simultaneously

for each kernel. Figure 4 illustrates our proposed neuromorphic-

P2M architecture. The left sub-figure represents an array of DVS

pixels (each white rectangular box includes multiple DVS pixels

arranged in rows and columns) consisting of multiple channels

distributed spatially. Each DVS pixel is connected with multiple

weight transistors of the analog MAC blocks depending on the

number of channels and stride (e.g., each DVS pixel will be

connected with four sets of analog MAC blocks for a stride of 2).

Each channel performs analogMAC operations asynchronously for

a fixed temporal window (the length of each algorithmic time step).

For instance, assume the kernel size is 3 × 3, and each kernel has

5 different channels that are represented by the white rectangular

boxes in the left sub-figure. The right sub-figure exhibits the

zoomed version of the 3 × 3 kernel with 5 different channels. Each

channel has a dedicated accumulation capacitor (e.g., CKi, where i =

1, 2, ... 5) and a local bitline so that charge can accumulate across all

the different channels at the same time. Depending on the kernel

size, multiple weight transistors (both positive and negative) are

connected to its kernel-dedicated accumulation capacitor using the

local bitline of each channel. In this example, 18 weight transistors

(kernel size = 3 × 3 and for the ON and OFF channels of the
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FIGURE 4

Neuromorphic-P2M array block diagram with peripheral control circuits and multi-channel configuration of our proposed neuromorphic-P2M

architecture.

DVS pixels) are connected with a single kernel capacitor. The per-

channel accumulation capacitor and local bitline shared among

the kernel’s weight transistors enable simultaneously and massively

parallel spatio-temporal MAC operations across different channels.

The multiplication results (fixed amount of charge transfer to

kernel capacitor from VDD or from kernel capacitor to GND

as a function of positive or negative weight depending on the

weight values) accumulate on the kernel capacitor for a fixed

temporal window (length of each algorithmic time step). These

analog MAC operations are asynchronous and parallel across all

the kernels for all the input feature maps (DVS pixels) throughout

the sensor array. Finally, a thresholding circuit compares the

final accumulated voltage on each channel’s capacitor with a

reference voltage to generate the output activation spike. Output

activations from different channels are multiplexed (controlled by

VK1, VK2, etc.) to communicate with the AER read circuits at the

periphery (left sub-figure) through the kernel-level AER logic block

(right sub-figure). The row request (RA) and row acknowledge

(RA) signals are shared along the rows, and the column request

(CR) and column acknowledge (CA) signals are shared along the

columns. After the read operation (described in Section 2.3), the

kernel’s accumulation capacitor is reset to 0.5VDD by the reset

transistor (MRST) shown in Figure 5. Note that the reset operation

implies no propagation of the voltage accumulated on the kernel’s

capacitor from one time step to subsequent time steps. Thus,

the kernel capacitor voltage is unlike the typical representation

of the membrane potential found in the literature (Datta et al.,

2021, 2022a,b), which is conserved across time steps. Taking into

cognizance the above behavior, for the first layer of the network, we

ensure our algorithmic framework includes thresholding and reset

operation across time steps, thus faithfully representing the circuit

behavior in algorithmic simulations.

The frequency of the reset operation is based on the amount

of time the capacitor can hold the charge without significant

FIGURE 5

A random convolution operation with output activation spike

simulated on GF 22nm FD-SOI node.

leakage. To minimize the capacitor leakage, we use high-VT

weight transistors, a switching transistor (MSW) to disconnect

the kernel’s capacitor from the weight transistors, and kernel-

dependent nullifying current source (INULL) (shown in Figure 2).

According to ourHSpice simulations, in the worst-case scenario (all

weights are maximum in the kernel, which is very unlikely in the

neural network model), the voltage on the accumulation capacitor

deviates due to leakage from its ideal value by a mere 22 mV over a

significantly longer duration of time (e.g., 1 ms). Based on the reset

frequency, the length of each algorithmic time step of our neural

network model has been set to 1 ms for the first layer.
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FIGURE 6

AER read scheme of our proposed neuromorphic-P2M architecture.

Figure 5 illustrates an asynchronous convolution and

output activation spike generation example of our proposed

neuromorphic-P2M using the GF22nm FD-SOI technology node

considering random inputs and weights. For this simulation, a

kernel size of 3× 3 has been considered. The weights, the instant of

the events, and the number of events per DVS pixel are generated

randomly. For the test HSpice simulation, 1 ms simulation time

has been considered according to our algorithmic framework;

hence, all the output events from DVS pixels within this time

period will be multiplied with their weights and accumulated on

the Kernel’s accumulation capacitor before being compared with

a fixed threshold voltage. The top subplot exhibits that the DVS

pixels (e.g., PX11, PX21, etc.) are generating the event spikes at

different time instants. PX13, PX21, PX23, PX32 are connected

with positive weights, whereas the other pixels are connected with

negative weights. It may also be noted that a few pixels (e.g., PX12,

PX22, PX31) do not generate any event during this time frame. This

test simulation also considers these no-event generation scenarios

to mimic the actual dataset sparsity. From the bottom subplot,

it can be observed that the convolution output (VCONV) of our

analog MAC circuit is updating (charging or discharging) for each

input event spike. When the weight is positive (negative), the

accumulation voltage steps up (down) depending on the weight

value. Finally, after the fixed temporal window, the convolution

output has been compared with the threshold voltage. If the

convolution output is higher than the threshold voltage, the

comparator will generate an output activation spike (VACT) for the

next layer for each kernel.

2.3. P2M address-event representation
(AER) read operation

In this sub-section, we propose modifications to the standard

AER scheme in a manner so that it can be compatible with the

presented asynchronous processing in-pixel computations. We are

utilizing the asynchronous AER read-out scheme (Boahen, 2004)

to read the output activations from the first convolution layer

(mapped onto the DVS pixels using our proposed neuromorphic-

P2M paradigm). The representative read scheme is illustrated in

Figure 6. Our P2M architecture can support multiple numbers of

channels (e.g., NC) as required by the spiking CNN model. The

outputs of the channels (thresholded output activation spikes) are

read sequentially throughout the P2M array in an asynchronous

manner. At a time, one channel is being asserted of the P2M array

by activating VKi sequentially, where i = 1, 2, ... NC (shown in

Figure 4). Kernel-level AER logic block shared among different

channels for each spatial feature map generates the row, and

column request signals whenever an output activation spike exists

in the kernel. For AER reading, row-parallel techniques can be used

where it latches all the events generated in a single row and read

them sequentially (Boahen, 2004). The peripheral address encoders

(row and column encoders) of the AER read circuits output the

x and y addresses of the output activation in parallel. Moreover,

while performing the read operation, we can also pipeline the next

reset and convolution phases without waiting for the read phase to

be completed by adding a transistor between the kernel capacitor

and the comparator. The comparator output can be stored on the
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dynamic node for a short period of time, or even we can use a

small holding capacitor to hold the output activation for a sufficient

amount of time considering the read operation. As the output

activations are sparse and AER read can be completed within a

few µs windows, we can also utilize our architecture to perform

the convolution and read phase in parallel. Besides, performing

the in-pixel convolution operation reduces the output activation

map size as a function of the kernel size and number of strides.

In addition, we also do not need to send an extra bit to define the

polarity of the event (ON or OFF-event), similar to the base DVS

systems. As a result, the required number of address bits that need

to be communicated off-chip has been reduced from the base DVS

system. Hence, our P2M architecture maintains the energy benefit

of a sparse system due to utilizing the AER read scheme along with

lower off-chip communication energy cost due to generating fewer

address bits per output activation.

2.4. Process integration and area
consideration

Figure 7 exhibits the representative illustration of a

heterogeneously integrated system featuring our proposed

neuromorphic-P2M paradigm. Our proposed system can be

divided into two key dies, i) a backside illuminated CMOS image

sensor (BI-CIS) consisting of the DVS pixels and biasing circuitry,

and ii) a die containing multi-bit multi-channel weight transistors,

accumulation capacitors, comparators, and AER read circuits.

Figure 4 shows that for each spatial feature (DVS pixels), the

algorithm requires multiple channels that incur higher area due

to multiple weight transistors and one accumulation capacitor

per channel. However, due to the advantages of heterogeneous

integration, our bottom die can be fabricated on an advanced

technology node compared to the top die (BI-CIS). Hence,

multiple channels in the bottom die can be accommodated

and aligned with the top die without any area overhead while

maintaining the neural network model accuracy. It may be noted

that typical DVS pixels are larger due to the inclusion of a capacitive

feedback difference amplifier. The overall system can be fabricated

by a wafer-to-wafer bonding process using pixel-level hybrid

Cu2Cu interconnects (Kagawa et al., 2016; Miura et al., 2019; Seo

et al., 2021). Each DVS pixel has two Cu2Cu interconnects for its

ON and OFF-channel, respectively. Considering the DVS pixel

area of 40 µm × 40 µm (Lichtsteiner et al., 2008) for 128 × 128

sensor array, Cu2Cu hybrid bonding pitch of 1 µm (Kagawa et al.,

2020) and the analog convolution elements (weight transistors,

comparators, accumulation capacitors) area in GF22nm FD-

SOI node, our neuromorphic-P2M architecture can support a

maximum of 128 and 32 channels with a kernel size of 3 × 3 for

stride 2 and 1, respectively. However, 32 channels with stride 2 have

been utilized in our algorithmic framework. Such kernel-parallel

MAC structure allows us to enable in-situ convolution operation

without needing weight transfer from a different physical location;

thus, this method does not lead to any data bandwidth or energy

bottleneck.

FIGURE 7

Representative illustration of a heterogeneously integrated system

featuring neuromorphic-P2M paradigm utilizing Cu2Cu bonding.

3. P2M-constrained
algorithm-hardware co-design

This section presents our algorithmic framework

implementation guided by our proposed neuromorphic-P2M

architecture. The in-pixel charge-based analog convolution

generates non-ideal non-linear convolution; in addition, process

variation yields a deviation of the convolution result from the ideal

output. Moreover, leakage poses constraints on the maximum

length of each algorithmic time step, and the area limits the

number of channels utilized per each spatial feature map. The

hardware-algorithm co-design framework of our proposed

neuromorphic-P2M approach has been illustrated in Figure 8.

More details on including non-idealities, process variation, leakage,

and area effects in our algorithmic framework are given in the

following subsections.

3.1. Custom convolution for the first layer
modeling circuit non-linearity and process
variation

From an algorithmic perspective, the first layer of a spiking

CNN is a linear convolution layer followed by a non-linear

activation unit. In our neuromorphic-P2M paradigm, we have

implemented the weights utilizing voltage accumulation through

appropriately sized transistors that are inherently non-linear. As

a result, any analog convolution circuit built on transistor devices

will exhibit non-ideal non-linear behavior. Hence, to suppress the

non-linearity, we have tuned our weights (transistor’s geometry) in
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FIGURE 8

Hardware-algorithm co-design framework to enable our proposed neuromorphic-P2M approach.

a non-linear manner in such a way that the output accumulation

voltage steps can increase or decrease linearly for positive and

negative weights, respectively. However, the nonlinearity is also a

function of the drain-to-source voltage of the weight transistors. In

our scheme, we are charging or discharging the kernel’s capacitor

during the computation phase. Depending on the weight values,

the charging and discharging current are functionally dependent

on the drain-to-source voltage. Hence, when the accumulation

voltage on the VOUT node (shown in Figure 2) gets larger (smaller)

for the positive (negative) weights, the transistor enters into the

triode region; hence, the charging or discharging current reduces.

Besides, the same positive and negative weight values cannot

ensure the same change in voltage accumulation due to device

asymmetry (pMOS for positive weight implementation and nMOS

for negative weight implementation). Furthermore, due to process

variation, the transistor’s geometry cannot be fabricated precisely;

hence, the convolution output current can also vary due to process

variation. Considering all these non-linear non-ideal behaviors

and process variations, we extensively simulated our proposed

P2M paradigm for a wide range of input spikes and weights

combinations considering leakage and around 3-sigma variation

using GF22nm FD-SOI technology node. Figure 9 illustrates the

resulting HSpice results with a standard deviation bar, i.e., the

normalized convolution output voltages per pixel corresponding to

a range of weights and input number of spikes have been modeled

using a behavioral curve-fitting function. Note, for the scatter plot,

we have used 100 µs temporal window for the convolution phase

to save the total circuit simulation time as we have to run 1,000

Monte-Carlo simulations for each combination of weights and the

number of input spikes. In our algorithmic framework, a random

Gaussian sample value has been generated between the mean ±

standard deviation for each particular normalized weight times

input event value to capture the effects of the process variation.

For the fixed simulation time for the event stream, in each Kernel,

the accumulation output voltage per pixel is calculated first, then

added to the other pixel’s accumulation voltage inside the kernel

to calculate the final output. The algorithmic framework was then

used to optimize the spiking CNN training for the event-driven

neuromorphic datasets. Besides the above-mentioned non-ideality

and variation effects, thermal noise and temperature variation

may affect the inference performance. The thermal noise of the

circuit can also be modeled as zero-mean Gaussian distribution

(Gow et al., 2007). Hence, this can be incorporated by adding

an appropriate standard deviation with the mean and standard

deviation for the process variation in our framework. Moreover,

temperature variation can increase or decrease the step size on each

kernel’s accumulation capacitor. Large deviation (higher than 3-

sigma of the process variation) from the nominal step size due to

temperature can affect the classification accuracy.

To validate our Hspice simulations generated curve-fitting

function’s prediction accuracy, we have tested 1,000 random cases.

In these test cases, we have used a kernel size of 3 × 3, where
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FIGURE 9

A scatter plot with standard deviation comparing the pixel output

voltage to ideal multiplication value of Weights × Input activation

(Normalized W × I).

the weight values are generated randomly. Moreover, the number

of input event spikes and time instants for the input spikes are

also randomly generated. Note these random tests utilize 100 µ s

of simulation time for the convolution phase to reduce the total

simulation time. As mentioned earlier, utilizing kernel-dependent

nullifying current source, high-VT weight transistors and a switch

to disconnect the kernel’s capacitor exhibits a maximum of 22

mV error in the worst-case scenario. Hence, random HSpice tests

ignoring a long time (1 ms of simulation time length for each event

stream of our neural network model) will not incur any significant

accuracy issues for these 1,000 random tests. Among 1,000 random

tests, only 100 test results (for clear visibility) are shown in

Figure 10. The figure shows the curve-fitted mean and mean±

standard deviation predictions of our proposed analog MAC

operations with HSpice-generated simulation results.We have used

a 3rd order single variable (normalized weight times input event

spikes) polynomial to generate the curve fitting functions (mean,

mean ± standard deviation) considering 0.55% mean RMSE of

our analog MAC to minimize the computation complexity in our

algorithmic framework while maintaining high accuracy. It can

clearly be seen that the predicted mean output follows the Hspice

results closely, and the HSpice outputs fall between the mean±

standard deviation value.

3.2. Circuit-algorithm co-optimization of
spiking CNN backbone subject to P2M
constraints

In our proposed neuromorphic-P2M architecture, we have

utilized a kernel-dedicated capacitor to enable instantaneous and

massively parallel spatio-temporal convolution operation across

different channels. We need a kernel-dedicated capacitor to

preserve the temporal information of input DVS spikes across

different channels simultaneously. Moreover, there is a direct

trade-off between the acceptable leakage and capacitance value (a

large capacitor incurs a large area; however, it results in lower

leakage). Almost 47% of the area in our P2M array is occupied by

the capacitors. Hence, we have reduced the number of channels

in our spiking CNN models compared to the baseline neural

architecture not to incur any area overhead while preserving the

model accuracy. In addition, the leakage also limits the length

of each algorithmic time step in our algorithmic framework.

We have also reduced the time length in our neural network

model to minimize the kernel-dependent leakage error of our

custom first convolution layer. Moreover, to reduce the amount

of data transfer between the P2M architecture and the backend

hardware processing of the remaining spiking CNN layers, we

have avoided the max pooling layer and instead used a stride

of 2 in the P2M convolutional layer. Lastly, we incorporate

the Monte Carlo variations in the proposed non-linear custom

convolutional layer explained above in our algorithmic framework.

In particular, we have estimated the mean and standard deviation

of the output of the custom convolutional layer from extensive

circuit simulations. We then train our spiking CNN with the

addition of the standard deviation as noise to the mean output

of the convolutional layer. This noise addition during training is

crucial to increase the robustness of our spiking CNN models, as

otherwise, our models would incur a drastic drop in test accuracy.

In this work, we have evaluated our P2M paradigm on complex

neuromorphic datasets where each event is at least a few seconds

long. Hence, with a timestep length of 1 ms, we will require

more than thousands of total time steps to train our SNNs with

these neuromorphic datasets. This is impractical (it would require

more than a year to train one SNN model on the DVS Gesture

dataset) in modern GPUs typically used for training SNNs. To

mitigate this problem, we only employed a small timestep length

(1 ms) in our first P2M-implemented layer where the weights

are kept frozen while the remaining layers implemented outside

the sensor are trained with a large timestep length that leads to

a small number of total time steps. The weights in the P2M-

implemented layer are obtained from a baseline SNN where all

the layers have the same large timestep length. Thus, the length

of the timestep impacts the trainability of the SNNs. It also affects

the temporal information injected into the SNN, i.e., as the length

of the timestep reduces, the SNN can extract more fine-grained

temporal features, which can potentially improve the inference

performance at the cost of reduced trainability. We expect to

reduce energy consumption by increasing the time step length as

that would inject a smaller number of spikes into the network (a

constant large incoming synaptic input can emit more spikes if

the number of time steps is increased, i.e., the time step length is

decreased).

4. Experimental results

4.1. Benchmarking dataset and model

This article focuses on the potential use of P2M for event-driven

neuromorphic tasks where the goal is to classify each video sample

captured by the DVS cameras. In particular, we evaluate our P2M

approach on two large-scale popular neuromorphic benchmarking

datasets.
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FIGURE 10

One hundred random HSpice simulation results for 3 × 3 Kernel benchmarking with the fitted equations.

4.1.1. DVS128-gesture
The IBM DVS128-Gesture (Amir et al., 2017) is a

neuromorphic gesture recognition dataset with a temporal

resolution in µs range and a spatial resolution of 128×128. It

consists of 11 gestures (1,000 samples each), such as hand clap, arm

roll, etc., recorded from 29 individuals under three illumination

conditions, and each gesture has an average duration of 6 s. To

the best of our knowledge, it is the most challenging open-source

neuromorphic dataset with the most precise temporal information.

4.1.2. NMNIST
The neuromorphic MNIST (Orchard et al., 2015) dataset is a

converted dataset from MNIST. It consists of 50K training images

and 10K validation images. We preprocess it in the same way as in

N-Caltech 101. We resize all our images to 34×34.

For these datasets, we apply a 9:1 train-valid split. We use the

Spikingjelly package (Fang et al., 2020) to process the data and

integrate them into a fixed time interval of 1 ms based on the

kernel’s capacitor retention time supported by our neuromorphic-

P2M circuit. However, such a small integration time would lead

to a large number of time steps for the neuromorphic datasets

considered in this work whose input samples are at least a few

seconds long. This would significantly exacerbate the training

complexity. To mitigate this concern, we first pre-train a spiking

CNN model with a large integration time in the order of seconds

(i.e., with a small number of time steps) without any P2M circuit

constraints. We then decrease the integration time of the first

spiking convolutional layer for P2M implementation and integrate

the spikes in the second interval such that the network from the

second layer processes the input with only a few time steps. We

fine-tune this network from the second layer while freezing the first

layer since training the first layer significantly increases thememory

complexity due to a large number of time steps. This is because the

gradients of the first layer need to be unrolled across all the time

steps.

We use four convolutional layers, followed by two linear

layers at the end with 512 and 10 neurons, respectively. Each

convolutional layer is followed by a batch normalization layer,

spiking LIF layer, and max pooling layer.

4.2. Classification accuracy

We evaluated the performance of the baseline and P2M custom

spiking CNN models on the two datasets illustrated above in

Table 1. Note that all these models are trained from scratch. As

we can see, the custom convolution model does not incur any

significant drop in accuracy for any of the two datasets. However,

removing the state variable, i.e., the membrane potential in the first

layer, leads to an average∼ 5% drop in test accuracy. This might be

because of the loss in the temporal information of the input spike

integration from the DVS camera. Additional P2M constraints,

such as less number of channels and increased strides in the first

convolutional layer (see Section 3.2), hardly incur any additional

drop in accuracy. Overall, our P2M-constrained models lead to an

average 5.2% drop in test accuracy across the two datasets.

4.3. Analysis of energy consumption

We develop a circuit-algorithm co-simulation framework to

characterize the energy consumption of our baseline and P2M-

implemented spiking CNN models for neuromorphic datasets.

Note that we do not evaluate the latency of our models since that

would depend heavily on the underlying hardware architecture

and data flow of the backend hardware (i.e., the hardware

processing the remaining layers of the CNN, excluding the

first layer that is processed using our P2M paradigm). The

frontend energy (Efrontend) is comprised of sensor energy (Esens)

and communication energy (Ecom), while the backend energy
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TABLE 1 Comparison of the test accuracy of our P2M enabled spiking CNNmodels with the baseline spiking CNN counterparts, where “MP” denotes

membrane potential, “Custom conv.” denotes the incorporation of the non-ideal model to the ML algorithmic framework, and “Reduced dimensionality”

denotes the reduction in the number of channels in the first convolutional layer.

Dataset MP 1st layer Custom conv. Reduced dimensionality Accuracy (%)

DVS128-Gesture X × × 93.40

DVS128-Gesture × × × 88.78

DVS128-Gesture × X × 88.54

DVS128-Gesture × X X 88.36

NMNIST X × × 98.10

NMNIST × × × 93.68

NMNIST × X × 93.44

NMNIST × X X 93.12

TABLE 2 Energy estimation for di�erent hardware components.

Model type Sensing energy (mJ) Comm energy (pJ/bit) MAC energy (pJ) MAdds energy (pJ)

(Esens) (ecomm = esens−to−tx + etx) (emac) (eac)

P2M (ours) 26.588 4.1 1.568 0.03

Baseline 26.032 4.1 1.568 0.03

The energy values are measured for designs in 22 nm CMOS technology. Note, the sensing energy (Esens) of our model includes the convolution energy for P2M as the convolution is performed

as a part of the sensing operation. The communication energy (ecomm) includes both the energy consumption of sending the address bits from the sensor to the transmitter (esens−to−tx) and

wireless transmitter energy (etx). For emac and eac , we convert the corresponding value in 45 nm to that of 22 nm by following standard scaling strategy (Stillmaker and Baas, 2017).

FIGURE 11

Comparison of the energy consumption between baseline and P2M

implementations of spiking CNNs to process neuromorphic images

from (A) DVS128-Gesture, and (B) NMNIST datasets.

(Ebackend) to process the SNN layers (excluding the first layer

for the P2M implementation) is primarily composed of the

accumulation operations incurred by the spiking convolutional

layers (Eac) and the parameter read (Eread) costs. Assuming

T denotes the total number of time steps and s denotes

the sparsity. The energy components can be approximated

as follows:

Efrontend ≈ eevent ∗ Nevent + Ebias
︸ ︷︷ ︸

Esens

+ (esens−to−tx + etx) ∗ Nevent
︸ ︷︷ ︸

Ecom

(1)

Ebackend ≈ eac ∗ Nac ∗ s ∗ T
︸ ︷︷ ︸

Eac

+ eread ∗ Nread
︸ ︷︷ ︸

Eread

(2)

Here, eevent represents per-pixel sensing energy, Nevent denotes

the number of events communicated from the sensor to the

backend, and Ebias is the biasing energy for the DVS pixel array

considering the dataset duration. In addition, esens−to−tx is the

communication energy to send the address bits from the sensor

node to the transmitter, and etx is the wireless transmission

energy to the backend. Note that the first convolutional layer

of the SNN in the baseline implementation requires MAC

operations, and hence, we need to replace eac with the MAC

energy emac and use s=1. For a spiking convolutional layer

that takes an input I ∈ Rhi×wi×ci and weight tensor θ ∈

Rk×k×ci×co to produce output O ∈ Rho×wo×co , the Nac (Datta

et al., 2021, 2022b; Kundu et al., 2021a,b) and Nread can be

computed as

Nac = ho ∗ wo ∗ k
2 ∗ ci ∗ co (3)

Nread = k2 ∗ ci ∗ co (4)

The energy values we have used to evaluate Efrontend and

Ebackend are presented in Table 2. While Esens and esense−to−tx

are obtained from our circuit simulations, etx is obtained from

Lin et al. (2021), and eac and eread are obtained from Kang

et al. (2018). Figure 11 shows the comparison of energy costs for

standard vs P2M-implemented spiking CNN models for the DVS

Frontiers inNeuroinformatics 12 frontiersin.org159

https://doi.org/10.3389/fninf.2023.1144301
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Kaiser et al. 10.3389/fninf.2023.1144301

datasets. In particular, P2M can yield a backend energy reduction

of up to ∼ 2× with the cost of 2% increase in frontend energy

only. This reduction primarily comes from the reduced energy

consumption in the backend since we offload the compute of the

first convolutional layer of the SNN. This layer consumes more

than 50% of the total backend energy since it involves expensive

MAC operations (due to event accumulation before convolution

computation), which consume ∼32× more energy compared

to cheap accumulate operations (Horowitz, 2014) with 32-bit

fixed point representation. Thus, the proposed neuromorphic-P2M

paradigm enables in-situ availability of the weight matrix within

the array of DVS pixels (reducing the energy overhead associated

with the transfer of weight matrix) while also significantly reducing

energy-consumption of MAC operations by utilizing massively

parallel non-von-Neumann analog processing-in-pixel.

5. Conclusion

We have proposed and implemented a novel in-pixel-in-

memory processing paradigm for neuromorphic event-based

sensors in this work. To the best of our knowledge, this

is the first proposal to enable massively parallel, energy-

efficient non-von-Neumann analog processing-in-pixel for

neuromorphic image sensors using novel weight-embedded

pixels. Instead of generating event spikes based on the change

in contrast of scenes, our proposed solutions can directly

send the low-level output features of the convolutional neural

network using a modified address event representation scheme.

By leveraging advanced 3D integration technology, we can

perform in-situ massively parallel charge-based analog spatio-

temporal convolution across the pixel array. Moreover, we have

incorporated the hardware (non-linearity, process variation,

leakage) constraints of our analog computing elements as well as

area consideration (limiting the maximum number of channels

of the first neural network layer) into our algorithmic framework.

Our P2M-enabled spiking CNN model yields an accuracy of

88.36% on the IBM DVS128-Gesture dataset and achieved

∼ 2× backed energy reduction compared to the conventional

system.
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