Skip to main content

About this Research Topic

Submission closed.

This collection will gather papers aiming to model, understand, predict, and even control multiphase and reactive flows, where nonequilibrium often prevails leading to instabilities, the emergence of complex patterns and preferential pathways, and dependencies on the path and rate of external driving forces. ...

This collection will gather papers aiming to model, understand, predict, and even control multiphase and reactive flows, where nonequilibrium often prevails leading to instabilities, the emergence of complex patterns and preferential pathways, and dependencies on the path and rate of external driving forces. Examples include:
• Preferential flow pathways induced by mechanical and/or chemical modifications of the solid matrix such as fracturing and dissolution;
• Fluid fingers and mixing patterns associated with microstructural heterogeneity and hydrodynamic instabilities;
• Thermo/turbophoresis, precipitation, and deposition of solutes and particles in channels and porous structures;
• Hysteresis and rate-dependency in immiscible fluid displacement; and,
• Pre-asymptotic regimes for reactive transport and mixing limited processes.

In these phenomena, coupling of fluid-fluid or fluid-solid interactions leads to highly focused flow and deformation, which, on top of producing enchanting patterns also provide enhanced migration pathways for mass and heat and alter the mechanical and chemical state of these materials. Relevant applications span a wide range of scales, from small- and lab-scale industrial processes such as 3-D printing, porous electrode design, coating, microfluidics, filtering, and combustion to geophysical-scale processes such as subsurface contamination, remediation and hazardous waste storage, carbon geo-sequestration, subsurface storage and recovery of energy (e.g. hydrogen, thermochemical), and geomorphology.

We wish to bring together experimental, theoretical, and numerical contributions from diverse fields across engineering, physics, and mathematics including fluid mechanics, earth sciences, soil mechanics, and more. These papers will advance our scientific knowledge and thus our ability to tackle some of the most burning environmental challenges related to processes in which fluid flow patterning is key.

Keywords: nonequilibrium, reactive flows, porous materials, granular materials, fluid flow patterning


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

total views

total views article views downloads topic views

}
 
Top countries
Top referring sites
Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.