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Editorial on the Research Topic 


Innovative use of imaging techniques within plant science



Several examples in the history of biology show how technological advances have facilitated fundamental discoveries in biology. The development and application of imaging techniques in plant sciences represent such an example that is currently unfolding. By using image analysis, spatially resolved information can be obtained that allows new questions in the field to be explored. Furthermore, when applied for example in crop monitoring, quality control or management, these techniques allow objective real-time decisions to be made, often based on non-destructive measurements and a reduction in time and labor that could also translate into cost savings.

This Research Topic brings together research papers that demonstrate how image-based techniques can help solve actual problems in the world of plant sciences. Generally, the presented papers offer image-based solutions to assess plant disease status, predict and detect grain and fruit yield, and analyze wood samples for their species and quality. These general application areas were achieved with a range of imaging instruments from the microscopy level to airborne image collection with unmanned aerial vehicles (UAV).

Zhang et al. (2021) tackle the long-standing and laborious yield prediction problem to precisely quantify yellowness in canola flowers. In doing so, they propose a UAV method to effectively estimate yield in Canola (Brassica napus L.) from airborne imagery. Their remote-sensing solution is to define a normalized yellowness vegetation index (NDYI) that demonstrated high predictive performance for seed yield.

Using similar technology, Shi et al. (2022) propose the use of UAV-based multispectral imagery and machine learning (ML) models for aboveground biomass (AGB) and leaf area index (LAI) estimation of two intercropping species (mung bean and red bean) in tea plantations. Five ML algorithms were evaluated based on the vegetation indices derived from the UAV multispectral images as well as the actual AGB and LAI data. Their results show that two models (Support Vector Machine and Back Propagation Neural Network) outperformed the AGB and LAI prediction of red bean and mung bean as compared to other ML models.

Crop disease detection using image-based techniques is also a field that experiences growth due to the positive impact crop productivity and greater environmental and economic sustainability of agriculture. In this sense, Jiang et al. (2022) have conducted a study aimed at assessing the severity of wheat stripe rust using a low-cost approach based to evaluate images of infected leafs obtained by smartphones. This approach may represent a compromise between the sometimes-subjective visual disease assessment and symptoms assessment using costly devices such as multi- and hyper- spectral cameras. Along, Leiva et al. (2022) compared the performance of two low-cost image-based methods for predicting Fusarium Head Blight (FHB) infection in winter wheat seeds. The two analysis methods use RGB images of wheat seeds to provide various morphological traits of the seed, which were used to predict FHB using multiple regression models.

The development of robots for automatic fruit harvesting is a growing discipline due to the increasing costs of manual harvesting and the difficulty of finding skilled labor. Accurate and robust detection of fruits under natural conditions is crucial for the success of automatic fruit harvesting with robots. In this line of work, Hou et al. (2022) have developed a methodology based on the use of binocular cameras and deep learning to improve both citrus fruit detection and 3D localization under natural lighting conditions in commercial citrus orchards. To this end, an improved version of the YOLO v5s model is proposed for citrus detection, Cr-Cb chromatic mapping together with Otsu threshold algorithm and morphology processing are used to extract citrus shape, and a geometric image model for 3D citrus localization. Liu et al. (2022) present another work aimed at improving the automatic detection of fruits under natural conditions using deep learning models. In their case study, the authors have developed an anchor-free detector based on the CenterNet architecture that outperforms other tomato detection methods.

Another innovative application of the use of image-based techniques is that developed by Husaini et al. (2022) for the detection of fraudulent saffron. Saffron adulteration is a major problem, because Saffron is an expensive spice that is normally used as hand-picked dried flower stigmas. As a technological advancement, the authors have successfully tested two new methods for detecting adulterated saffron, one based on the use of a low-cost optical microscope (Foldscope) in combination with a chemical staining technique for visual identification of fake saffron samples, and another based on deep learning to automatically classify images taken with Foldscope and a smartphone.

Berger et al. (2021) report on a study in which image data obtained using darkfield and fluorescence microscopy was used to quantify the histology in cross sections of whole maize stems. This information was used for phenotyping different maize lines. The method developed makes it possible to assess unusually large cross sections, i.e., in the cm range. It is possible to quantify plant anatomy and autofluorescence after excitation with ultraviolet and/or visible light.

Determining the wood species or genus of timber and wooden artefacts based on light microscopy is important when controlling wood trade, especially to protect endangered tree species. However, wood identification is a skill that requires training and expertise, which means that far less wood is controlled than one could wish for from a conservation viewpoint. Adding to the challenge is the limited availability of microscopy images from known species in species-rich forests. Lopes et al. (2022) describe an exciting first step towards addressing this problem. Their approach involves neural networks to generate artificial images based on microscopy images of known species. In a second step, the method increases the number of images available per species to train neural networks to be able to identify the wood species in microscopy images of unknown species.

The article by Ponzecchi et al. (2022) describes a study where chemically modified wood was studied using Raman micro-spectroscopy. The novelty of this article lies in the development and test of a miniature climate chamber that makes it possible to adjust the relative humidity of microtomed sample sections mounted below a normal coverslip while they are presented to the instrument. In addition to the advantage of securing a well-defined and adjustable relative humidity, the setup has the advantage of being compatible with immersion objectives.

Together, the articles of this Research Topic illustrate the many useful applications that are currently being explored within this active field of research and development.
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Phenotyping crop performance is critical for line selection and variety development in plant breeding. Canola (Brassica napus L.) flowers, the bright yellow flowers, indeterminately increase over a protracted period. Flower production of canola plays an important role in yield determination. Yellowness of canola petals may be a critical reflectance signal and a good predictor of pod number and, therefore, seed yield. However, quantifying flowering based on traditional visual scales is subjective, time-consuming, and labor-consuming. Recent developments in phenotyping technologies using Unmanned Aerial Vehicles (UAVs) make it possible to effectively capture crop information and to predict crop yield via imagery. Our objectives were to investigate the application of vegetation indices in estimating canola flower numbers and to develop a descriptive model of canola seed yield. Fifty-six diverse Brassica genotypes, including 53 B. napus lines, two Brassica carinata lines, and a Brassica juncea variety, were grown near Saskatoon, SK, Canada from 2016 to 2018 and near Melfort and Scott, SK, Canada in 2017. Aerial imagery with geometric and radiometric corrections was collected through the flowering stage using a UAV mounted with a multispectral camera. We found that the normalized difference yellowness index (NDYI) was a useful vegetation index for representing canola yellowness, which is related to canola flowering intensity during the full flowering stage. However, the flowering pixel number estimated by the thresholding method improved the ability of NDYI to detect yellow flowers with coefficient of determination (R2) ranging from 0.54 to 0.95. Moreover, compared with using a single image date, the NDYI-based flowering pixel numbers integrated over time covers more growth information and can be a good predictor of pod number and thus, canola yield with R2 up to 0.42. These results indicate that NDYI-based flowering pixel numbers can perform well in estimating flowering intensity. Integrated flowering intensity extracted from imagery over time can be a potential phenotype associated with canola seed yield.

Keywords: canola, flowering, seed yield, multispectral camera, remote sensing


INTRODUCTION

Canola (Brassica napus L.) is the predominant oilseed crop grown in Canada (Clayton et al., 2000). Canada has the largest area of canola production in the world (Statistics Canada, 2018). With the growing global demand for canola, Canada needs to maintain and improve canola yield and seed quality to meet the market demands. Yield components of canola consist of the number of pods, the seeds per pod, and the weight per seed (Tayo and Morgan, 1975; McGregor, 1981; Diepenbrock, 2000; Ivanovska et al., 2007; Faraji, 2012). Among these components, pod number retained at maturity is the most important factor as it is influenced most by environmental constraints (Tayo and Morgan, 1975; McGregor, 1981; Diepenbrock, 2000; Ivanovska et al., 2007; Faraji, 2012; Gan et al., 2016; Kirkegaard et al., 2018). The flowering stage in canola is important for yield estimation as flowers produced in the first 2–3 weeks from anthesis contribute to 75% of the pods at maturation (Tayo and Morgan, 1975). Additionally, the flowering period can last from 2 to 6 weeks, which is a major portion of the crop growth cycle (Gan et al., 2016; Kirkegaard et al., 2018). Thus, flower production is one of the most important factors in determining final seed yield (Tayo and Morgan, 1975; Diepenbrock, 2000; Faraji et al., 2008; Faraji, 2012; Fang et al., 2016; Gong et al., 2018; Kirkegaard et al., 2018; Zhang and Flottmann, 2018).

During the plant breeding process, field-based phenotyping plays an important role in evaluating plant performance. It contributes to the selection of ideal genotypes that are high-yielding by associating genotype with the corresponding phenotype (Montes et al., 2007; Sankaran et al., 2015). To select better canola lines and eventually develop better varieties, breeders need to assess many distinct lines grown in multiple environments to detect interactions between genotype and environment (White et al., 2012; Araus and Cairns, 2014).

The quantification of flowering intensity based on traditional visual scales is subjective, labor-consuming, and is often destructive (Sulik and Long, 2015; Fang et al., 2016; Wan et al., 2018). Although ground-based platforms such as Greenseeker, Crop Circle, or time-lapse RGB imaging can provide adequate spectral data, these platforms still require a prohibitive amount of time and labor (Xu et al., 2018; Hassan et al., 2019). Additionally, data collection using these ground-based platforms may cause soil compaction and crop canopy damage (Xu et al., 2018). Therefore, it is necessary to develop an objective, non-destructive, and efficient method to estimate flower numbers. With this, one can model seed yield by assessing real-time radiometric data of the crop canopy, which has the potential to accelerate breeding methods for yield improvement. Current improvements in aerial-based platforms and sensors equipped on aerial platforms make it possible to effectively collect phenotypes via analyzing digital imagery (Kim et al., 2019). Unmanned aerial vehicles (UAVs) equipped with various sensors can quickly provide large quantities of field data enabling plant breeders to efficiently detect traits of numerous plots in large-scale field trials (Kefauver et al., 2017).

Spectral reflectance of the crop canopy is strongly correlated with morphological and physiological traits. Leaf composition and molecular structure can affect the reflectance of the crop; thus, ratios or differences of different bands in the visual light, near IR (NIR), and shortwave IR wavelengths (i.e., vegetation indices) can be a tool to characterize plant traits (Sankaran et al., 2015; Wójtowicz et al., 2016). Previous studies have shown that multispectral reflectance profiles of visible bands (i.e., blue, green, and red) and NIR bands could estimate canopy features, such as nitrogen use efficiency (Kefauver et al., 2017; Prey et al., 2020), leaf area index (Tunca et al., 2018; Blancon et al., 2019), and flower numbers (Guo et al., 2015; Sulik and Long, 2015, 2016; Carl et al., 2017; Gong et al., 2018; Wan et al., 2018; Xu et al., 2018). These plant traits investigated remotely have the potential to improve yield estimates. Flower numbers, as an important factor in determining crop yield, have exhibited close correlations with optical properties in various crops, such as rice (Guo et al., 2015), cotton (Xu et al., 2018), and canola (Sulik and Long, 2015, 2016; Gong et al., 2018; Wan et al., 2018). Guo et al. (2015) applied a machine learning model, the support vector machine, for flowering quantification using RGB images in rice, which resulted in a good correlation between the actual rice flowering panicles and identified flowering (correlation coefficients ranging from 0.64 to 0.82) (Guo et al., 2015). In canola, there are three different canopy morphologies during the growing season, namely, the vegetative phase (green canopy dominated by leaves), the flowering phase (yellow canopy dominated by the yellowness of flower petals), and the mature phase (green or brown canopy because of pods and branches) (Sulik and Long, 2016). During the flowering phase, the yellowness of canola petals is due to carotenoid absorption of blue and reflectance of a mixture of green and red wavelengths (Sulik and Long, 2015, 2016), but the yellow color has little impact on red edge and NIR reflectance unlike a green vegetative canopy (Shen et al., 2009; Migdall et al., 2010; Sulik and Long, 2015, 2016). Thus, the contributed red light decreases the normalized difference vegetation index (NDVI) values (Equation 1) and adversely impact the ability of NDVI to monitor crop growth condition and estimate yield during the flowering phase (Shen et al., 2009, 2010; Sulik and Long, 2015, 2016). Sulik and Long (2015) found that the ratio of green and blue was strongly correlated with the actual flower numbers with a coefficient of determination (R2) of 0.87, and they proposed the plot-level normalized difference yellowness index (NDYI) (Equation 2) could be a potential yield predictor (R2 = 0.76) (Sulik and Long, 2016). d'Andrimont et al. (2020) and Han et al. (2021) reported that NDYI successfully captured canola yellowness and detected the peak flowering dates using Sentinel-2 imagery. Fang et al. (2016) found that reflectance at 550 nm was the most sensitive band to estimate flowering coverage with an estimation error below 6% when compared with wavelengths at 490, 670, 720, 800, and 900 nm. Wan et al. (2018) and Gong et al. (2018) reported that combining vegetation index and image classification methods (i.e., k-means clustering method by CIE L*a*b space and pixel-level spectral mixture analysis) improved the accuracy of flower numbers and yield estimation in canola with R2 values of 0.89 and 0.75, respectively.

Although several studies have detected canola flowering number and predicted yield, most of these field experiments were conducted with relatively few canola lines and environments, which may neglect the effect of genotype and environmental fluctuations on yellowness of flower (Ohmiya, 2011) and petal size (Jiang and Becker, 2003). In addition, yield estimation models used in those studies were based on only one image date (Sulik and Long, 2016; Gong et al., 2018), which ignores the effect of time and duration of flowering (Tayo and Morgan, 1975). Thus, the reflectance data of flowering throughout the flowering period may provide a better estimate of crop yield. Therefore, the objectives of this study were to use UAV multispectral data to detect flowers within a wide range of canola lines and to estimate seed yield in canola using time series imagery collected during the flowering period.



MATERIALS AND METHODS


Experimental Sites and Plant Materials

The experiment was conducted at the Agriculture and Agri-Food Canada Research Farm near Saskatoon, SK, Canada from 2016 to 2018 (52° 10' 52.9” N, 106° 30' 10.6” W in 2016; 52° 10' 59.3” N, 106° 30' 53.7” W in 2017; and 52° 10' 57.7” N, 106° 30' 01.4” W in 2018), and near Melfort (52° 49' 9.6” N and 104° 35' 46.9” W) and Scott (52° 21' 55.3” N and 108° 52' 32.6” W), SK, Canada in 2017 (Table 1). The soil texture at Saskatoon was a clay loam with a pH of 7.3 and an organic matter content of 5.5%. The field plots were set up in a randomized incomplete block design (rectangular lattice design) with three replications (Figure 1). A rectangular lattice design was used to reduce spatial variability within each block. Individual plot size was 6.0 m long × 1.2 m wide in 2016 and 2018 and 6.0 m long × 1.5 m wide in 2017. Fifty-six genotypes (Saskatoon Research and Development Center, Agriculture and Agri-Food Canada), including 53 diverse B. napus lines, two B. carinata lines, and a B. juncea variety, were selected and planted. Fifty of the diverse lines were used as founders to develop Nested Association Mapping (NAM) population by developing population from crossing to a common reference line (Parkin et al., 2017). This panel, which represents diverse germplasm resources and the historical basis of canola breeding programs, differs in geographic origin, pedigree, phenotypes, and genotype (Parkin et al., 2017). Seeding occurred on May 27, 28, and 21 in 2016, 2017, and 2018, respectively, at a seeding rate of 108 seeds m−2 (Table 1). Out of 56 lines, 16 were selected and planted twice in two adjacent but separate plots as double plots. The criteria of line selection for the double plots were based on contrasting seed quality (i.e., seed color, acid detergent lignin, seed glucosinolates, and seed erucic acid) and similarity in flowering timing. The reason for setting double plots was to preserve one plot for imaging without any subsamples being removed. The 16 B. napus lines planted in double plots were YN04-C1213, NAM-0, 5, 13, 14, 17, 23, 30, 37, 32, 43, 46, 48, 72, 76, and 79.


Table 1. Summary of canola trials and data collection (imagery acquisition and manual flower count) at Saskatoon, SK, Canada from 2016 to 2018 and at Melfort and Scott, SK, Canada in 2017.
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FIGURE 1. The overview of experimental plot layout at the Agriculture and Agri-Food Canada Research Farm (52° 10' 52.9” N, 106° 30' 10.6” W) near Saskatoon, SK, Canada on July 14, 2016.


The selected 16 B. napus lines were planted in a randomized complete block design with three replications at the Melfort and Scott locations in 2017. All lines were planted in 5 m long × 1.2 m wide plots at Melfort and in 5 m long × 1 m wide plots at Scott. Canola was seeded on May 18 at Melfort and June 20 at Scott at a desired seeding rate of 108 seeds m−2 (Table 1). Edge® (ethalfluralin) was applied as a pre-emergence herbicide at a rate of 19.1 kg ha−1 to control weeds. Any weeds not controlled by the herbicides were removed by hand.



Image Acquisition


Platform and Sensor

The UAV used in this study was a Draganflyer X4-P model in 2016 and 2017 (DraganFly Inc., Saskatoon, SK, Canada). It is a rotary-wing platform with a maximum payload of 800 g. It can semiautomatically depart and land based on GPS navigation mode and optional Surveyor software. Flight mission was planned in Surveyor software (DraganFly Inc., Saskatoon, SK, Canada) by importing ground coordinates of the field boundaries. The other rotary-wing platform was a Draganflyer Commander model (DraganFly, Inc., Saskatoon, SK, Canada), used in 2018, which differs from the X4-P model in its maximum payload capacity (1,000 g).

A multi-spectral camera (RedEdge, MicaSense Inc., Seattle, WA, United States) was used to acquire images (12-bit image) with an image resolution of 1.2 megapixels (1,280 × 960 pixels) for each of five spectral bands (blue: 475 ± 10 nm; green: 560 ± 10 nm; red: 668 ± 5 nm; red edge: 717 ± 5 nm; and near-infrared: 840 ± 20 nm) (Table 2). The focal length of the camera is 5.5 mm and the ground sampling distance at 15, 20, and 25 m above ground level was 1.02, 1.36, and 1.70 cm per pixel, respectively (Table 2). Images of a MicaSense reflectance panel (RedEdge, MicaSense Inc., Seattle, WA, United States) were taken before and after each UAV flight for radiometric calibration. To geo-reference aerial images, six ground control points (GCPs) were distributed across the experimental area during the whole crop season in 2016 at Saskatoon. The size of the GCPs was 60 × 60 cm, which were geolocated by Trimble GeoExplorer 2008 GPS (Trimble Inc., Westminster, CO, United States). GCPs were manually placed at the same location when phenotyping canola by UAV, which provided an overlay of images taken from various dates and reduced workload by using the same geolocation information for each GCP. For the four locations in 2017 and 2018, GCPs were permanently mounted within guard plots to avoid manually carrying GCPs to the field.


Table 2. Basic specifications for the multispectral camera (RedEdge) equipped on the unmanned aerial vehicle (UAV) platforms.
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UAV Flight Schedule

The UAV, equipped with a multispectral camera, captured the images of the fields taken weekly during the flowering stage at Saskatoon in 2016 and at Melfort and Scott in 2017 (Table 1). The imagery was collected semiweekly in 2017 and 2018 at Saskatoon for the duration of canola flowering (Table 1). For the Saskatoon location, although weather conditions such as rain, clouds, and heavy wind limited the flight schedule, image timing interval was achieved as close to 7 days in 2016 and to 4 days in 2017 and 2018. For the Melfort and Scott locations in 2017, image collection was carried out at a 7-day interval.




Image Process and Data Extraction


Image Pre-process

Multispectral images were processed, stitched, and calibrated in Pix4Dmapper Pro (Pix4D Inc., San Francisco, CA, United States). Individual images were aligned based on common points from the overlapped images to generate a geo-referenced image that matched the overflown study area. Geometric calibration was done by importing the geo-location of GCPs to reduce geometric distortion problems of the camera. A system coordinate, World Geodetic System 1984, was applied to generate geo-referenced images. The images of the MicaSense reflectance panel were used in the radiometric calibration to enhance spectral consistency between different flight dates. Then, the five generated reflectance maps were exported and used for further analysis.



Vegetation Index Calculation, Thresholding, and Integration of Flowering Progress

ArcGIS software version 10.4.1 (ESRI Canada, Toronto, ON, Canada) was applied for plot segmentation, vegetation indices calculation, and thresholding. In this study, the middle three rows for each plot were segmented using polygon shapes with assigned plot numbers. The polygon shapes were generated using the “Create Feature” tool. Vegetation index maps were derived via calculation of the reflectance maps using the “Rater calculator” tool. Commonly used vegetation indices, NDVI (Rouse et al., 1974), NDYI (Sulik and Long, 2016), green normalized difference vegetation index (GNDVI) (Gitelson et al., 1996), and normalized difference red edge index (NDRE) (Gitelson and Merzlyak, 1997), were calculated as following equations to compare with the actual flower number counts:
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where RNIR, Rred, Rgreen, Rblue, and Rrededge are the reflectance values at bands centered on 840, 668, 560, 475, and 717 nm, respectively (Table 2). NDVI is the most commonly used vegetation index to identify crop growth conditions and yield estimation (Rouse et al., 1974). NDYI has previously shown a strong correlation with seed yield (Sulik and Long, 2016). GNDVI (Gitelson et al., 1996) and NDRE (Gitelson and Merzlyak, 1997) are related to photosynthesis and have been reported in previous research.

Canola flowers and leaf organs co-existed within each plot during flowering; thus, the “Conditional Function” [Con (index map > threshold value, index map, “”)] in the “Raster Calculator” tool was used to separate flowering pixels from non-flowering pixels by applying threshold values on vegetation index maps. Threshold values were manually determined by comparing the composited RGB images with calculated index maps so that most flowering pixels could be selected and segmented. All pixels in the index map that have values larger than the threshold values were kept in a threshold index map, otherwise, pixels were discarded. Then, the “Zonal Statistics” tool was used to extract the summary statistics of the threshold index map, which included the number of flowering pixels per plot.

This study involved 56 diverse lines with a high flowering density gradient. It is difficult to determine which image date is proper for yield estimation. For this reason, the area under the flowering progress curve (AUFPC) was used to calculate the integration of flowering progress during the flowering season using the following equation:
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where F1, F2, F3, Fn−1, and Fn represent the flowering pixel numbers at each image date and t1, t2, t3, tn−1, and tn represent Julian date at each image timing. The AUFPC is an adjusted integration equation based on the area under the disease progress curve (AUDPC), which is used in general in pathology studies for estimating the effect of disease progression on crop yield (Jeger and Viljanen-Rollinson, 2001; Simko and Piepho, 2012). Compared with AUDPC, the advantage of the AUFPC is providing a baseline for each line to adjust flowering progress, which can reduce the effect of diverse initial flowering pixel numbers of each line on the calculated area. The AUFPC equation converted several flowering pixel numbers at a series of image timings into a single value for reporting. The larger the AUFPC value is, the further the flowering had progressed. Figure 2 displays an example of flowering progress over time for a line (NAM-23). Seven data points on the curve line represent NDYI-based pixel numbers for each image date. Pictures under the seven points are corresponding threshold index maps. Then, the area under the curve line was calculated using the AUFPC equation (Equation 5) for NAM-23. The same mathematical method was used to calculate flowering progress for all other lines across 5 site years.


[image: Figure 2]
FIGURE 2. The growth pattern of flowering progress for a Brassica napus line (NAM-23) during the flowering stage at the Agriculture and Agri-Food Canada Research Farm (52° 10' 59.3” N, 106° 30' 53.7” W) near Saskatoon, SK, Canada in 2017. The x-axis is the imagery acquisition date (Julian date) in 2017. The y-axis is normalized difference yellowness index (NDYI)-based pixel number per plot. A solid curve line is the flowering progress trend of NAM-23. Seven points on the progress curve line represent NDYI-based pixel number per plot at seven imagery acquisition dates. Seven pictures under each point are corresponding false-color images after thresholding with flowers highlighted in yellow. The region of interest was highlighted in red.





Ground Reference Data/Field Data Collection

The first row of each plot was manually sampled to quantify flowering. Canola flowering typically starts in early July and ends in early August. Flower numbers on the main stem and branches of randomly selected plants were counted at a 7-day interval from July to August. Grain yield was straight combined by a small plot combine harvester when the crop was mature and dry. This occurred multiple times due to differing maturity dates of the B. napus lines. To reduce the edge effect, the middle four rows of each plot were harvested. All harvested seeds were air-dried to 10% seed moisture. Final yields were weighed after seed cleaning.



Statistical Analysis

The PROC LATTICE procedure of SAS version 9.4 (SAS Institute, Cary, NC, United States) was used to analyze the data. The LATTICE procedure reduced variations within blocks. After data adjustment, PROC REG in SAS version 9.4 was used as the statistical tool to investigate the simple linear regressions between ground reference data and imagery. Scatterplots of variables were observed to determine whether data could be combined for analysis. In the case where data could not be combined, data were analyzed within site years.




RESULTS AND DISCUSSION


Regression Between Flowering Pixel Number and Actual Flower Numbers

These initial results showed that GNDVI and NDRE did not demonstrate significant correlations with the actual flower count (P > 0.05, data not shown). Meanwhile, regression results showed that NDYI had greater coefficients of determination (R2) than NDVI with actual flower numbers within 3 years of study. An increased red light from the yellow petals can reduce NDVI values and affect its ability to detect canola growth conditions. In addition, there was no strong relationship between plot-level NDYI and actual flower numbers in 2016 (data not shown). Noise from soil background and green vegetation within a plot at the early flowering stage may have resulted in these weak relationships. For this reason, we used NDYI maps to extract flowering pixels and remove non-flowering pixels by the thresholding method. We detected and counted flowering pixels when pixel values were greater than NDYI-based threshold levels. Threshold values were 0.59, 0.52, and 0.45 in 2016, 2017, and 2018, respectively.

Across 5 site years, the R2 values between flowering pixel numbers and actual flower numbers ranged from 0.54 to 0.95 during flowering duration (Figures 3–7). There were significant relationships between flowering pixel numbers and actual flower numbers in 2016 at Saskatoon (Figure 3). Not surprisingly, the early flowering stage (July 15) had the strongest regression relationship with actual flower numbers with an R2 of 0.85 (Figure 3A). Developing flowers were on the upper part of a plant at the early flowering stage so sensors could easily detect these early-blooming flowers. Whereas, the late flowering stages (August 05) showed the weakest regression (R2 = 0.54) (Figure 3D), which may be a result of the lower sensitivity of NDYI to differentiate yellow flowers and dark green pods. Dark green pods impart more green reflectance, which can make NDYI less sensitive to yellow flowers, as yellow is a composite color of green and red (Yates and Steven, 1987; Sulik and Long, 2015, 2016). Additionally, the potential reason why it had the smallest R2 value is that many flowers growing on the lower branches adversely affected the ability of the sensor to detect the late-developing flowers.


[image: Figure 3]
FIGURE 3. The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK, Canada in 2016. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July 15, 2016: y = 1.60x, R2 = 0.85. (B) Regression equation for July 22, 2016: y = 2.20x, R2 = 0.77. (C) Regression equation for July 29, 2016: y = 2.24x, R2 = 0.79. (D) Regression equation for August 05, 2016: y = 1.18x, R2 = 0.54.


The Saskatoon location in 2017 and 2018 had similar regression patterns between flowering pixel numbers and actual flower numbers (Figures 4, 5). There were very strong relationships at the early flowering stages (July 10, 2017 and July 17, 2018) (Figures 4, 5). Similar to 2016, the relationships became weaker with the late flowering stages (August 01, 2017 and July 31, 2018) (Figures 4, 5). Although the late flowering stages had weaker regressions compared with the early flowering timing, the regressions at the peak flowering dates (July 25, 2017 and July 24, 2018) were relatively strong (Figures 4, 5).


[image: Figure 4]
FIGURE 4. The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK, Canada in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July 10, 2017: y = 2.41x, R2 = 0.95. (B) Regression equation for July 18, 2017: y = 1.83x, R2 = 0.91. (C) Regression equation for July 25, 2017: y = 2.23x, R2 = 0.82. (D) Regression equation for August 01, 2017: y = 0.78x, R2 = 0.67.



[image: Figure 5]
FIGURE 5. The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK, Canada in 2018. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July 10, 2018: y = 2.21x, R2 = 0.92. (B) Regression equation for July 17, 2018: y = 2.46x, R2 = 0.94. (C) Regression equation for July 24, 2018: y = 2.68x, R2 = 0.92. (D) Regression equation for July 31, 2018: y = 2.03x, R2 = 0.61.


For the Melfort location in 2017, the first image date (July 05) had the weakest regression (R2 = 0.71) (Figure 6A). Variability from subsampling plants can be a potential reason for decreased regressions at the early flowering stage. However, the peak flowering time (July 20) and late flowering stage (July 26) showed strong relationships with the value of R2 of up to 0.91 (Figures 6B,C). The potential reason why this site year had a greater R2 at the late flowering stage is that flight altitude (15 m) at Melfort in 2017 was lower than the other site years (Table 1). The high resolution may have increased the ability of the sensor to detect flowers growing lower in the canopy. Although the flight altitude was relatively low compared with other locations, there was no significant canopy movement due to the UAV platform. The seeding date at Scott was June 22, 2017. Flowering started relatively late with a shorter duration compared with other site years. There was no imagery collected at the end of the flowering stage, and thus, those relationships are unknown. At Scott, the R2 values for the regressions between flowering pixel numbers and actual flower numbers followed similar patterns as the Saskatoon location. The early flowering stage (August 09) and the peak flowering time (August 16) had strong relationships (Figures 7A,B).


[image: Figure 6]
FIGURE 6. The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Melfort, SK, Canada in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July 05, 2017: y = 3.70x, R2 = 0.71. (B) Regression equation for July 20, 2017: y = 1.46x, R2 = 0.90. (C) Regression equation for July 26, 2017: y = 1.29x, R2 = 0.91.



[image: Figure 7]
FIGURE 7. The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Scott, SK, Canada in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for August 09, 2017: y = 0.81x, R2 = 0.82. (B) Regression equation for August 16, 2017: y = 0.78x, R2 = 0.83.


In this study, we used a zero-intercept linear regression model in the regression analysis as there was no flowering pixel prior to the commencement of flowering. Furthermore, the fitted intercept values were close to zero in most cases. For the Saskatoon location over 3 years, slopes were relatively consistent at the early flowering stages (Figures 3–5). Slope values became smaller with the delayed flowering stage. There was a smaller slope value at the late flowering stage (slope = 1.18) compared with the peak flowering time (slope = 2.20) at Saskatoon in 2016. The Saskatoon location in 2017 and 2018 had similar patterns (Figures 4, 5). The Melfort location had similar patterns with a smaller slope at the late flowering stage (Figure 6), but the slope of the first image date (slope = 3.70) was greater than the other image dates. This indicated that early flowering imagery overestimated the actual flower numbers. Experimental plots at this location showed non-uniform flowering with fewer flowers at the front of each plot, which may be caused by the edge effect. Thus, manual flower count based on subsampling plants at the front row of a plot may not accurately represent the average flower numbers. In 2017, at Scott, slopes were consistent at the early and the peak flowering times (Figure 7). The slope values at this location were smaller than the other site years. A potential reason for this underestimation of flower numbers is that the plots had a more condensed canopy and there were more branches at this site year than other site years (data not shown) due to poor emergence percentage. Thus, for the Scott location, there were more flowers produced on the lower branches which could not be detected by the sensor. As mentioned above, there was no available data collected at the end of flowering; thus, the relationship at this stage is unknown.

In general, although the linear regression slopes varied across site years, the high R2 values indicated that the flowering pixel numbers extracted from the threshold NDYI map performed well to predict actual flower numbers at the early and peak flowering stages in canola (R2 up to 0.95). These results were consistent with that reported by Sulik and Long (2015), wherein the ratio of blue and green strongly correlated with the yellow flowers in canola with a significant R2 value of 0.87 at the full flowering stage. Wan et al. (2018) reported good estimation for the flowering number of canola using the k-means clustering method based on the CIE L*a*b space model during the full flowering period. Xu et al. (2018) found that white cotton flowers had higher prediction accuracy at the early flowering stage. The lower classification accuracy at the later growth stage may have resulted from coverage of leaves which increased misclassified non-flowers when using a convolutional neural network (Xu et al., 2018). They recommended that using one raw image might solve this issue, as more cotton flowers would be detected from different perspectives. Moreover, the early flowering stages across 5 site years showed greater slope values, as most flowers at this early stage were visible and had less overlap. In contrast, flowers growing on lower branches were likely to be underestimated at the late flowering stages. Subsampling variability may make the actual flower count non-representative for a plot, which may reduce the accuracy of flower estimation.



Yield Estimation Using Integrated Flowering Accumulation During Flowering Period

Flowering pixel numbers derived from the threshold NDYI map were able to estimate actual flower numbers across 5 experimental site years. Initially, we did regression analysis between yield and flowering pixel numbers at each image date. Among the 5 site years, in most cases, there were no significant relationships until the middle of July when most varieties started blooming (Table 3). In addition, it is difficult to determine a single well-defined image time for crop yield estimation because of various environmental fluctuations and various flowering timings in large-scale breeding programs, especially involving many diverse lines. Furthermore, we may miss important flowering progress information if yield estimation is only based on the imagery from a single date (Haynes and Weingartner, 2004; Gan et al., 2016). Although flower formation at the later stage may contribute less than early timing points, they may still have the potential to increase final grain yield. Therefore, integrating all aspects of the entire flowering duration using AUFPC can reflect flowering accumulation progress and improve the accuracy of crop yield estimation.


Table 3. The coefficient of determination (R2) between flowering pixel numbers from a single image date and yield at Saskatoon, SK, Canada from 2016 to 2018 and at Melfort and Scott, SK, Canada in 2017.
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We found significant relationships between integrated flower accumulation and yield during the flowering period (Figures 8, 9). In 2016, at Saskatoon, integrated flower accumulation had a moderate relationship with yield (R2 = 0.12, P < 0.05) (Figure 8A). We calculated the flower accumulation progress by integrating the flowering pixel numbers over four image dates at a 7-day interval, which missed the starting point of the flowering period. There was no adequate imagery data for the entire flowering period, so it may be the reason for the low accuracy of yield estimation. In both 2017 and 2018 at Saskatoon, we collected imagery semiweekly (Table 1). For the 2 site years, the relationships between integrated flower accumulation and seed yield were relatively stronger compared to the 1st experimental year (R2 = 0.30, P < 0.05 in 2017; R2 = 0.34, P < 0.05 in 2018) (Figures 8B,C). At the Melfort and Scott locations in 2017, there were more consistent and stronger regressions (Figure 9) using the integration of flowering progress, when compared with a single image date (Table 3).


[image: Figure 8]
FIGURE 8. The relationship between seed yield and integrated flower accumulation at Saskatoon, SK, Canada from 2016 to 2018. The integrated flower accumulation was calculated using the area under the flowering progress curve function. (A) Regression for the Saskatoon location in 2016: y = 0.0014x + 1558.72, R2 = 0.12. (B) Regression for the Saskatoon location in 2017: y = 0.0026x + 1384.70, R2 = 0.30. (C) Regression for the Saskatoon location in 2018: y = 0.0095x + 1535.88, R2 = 0.34.



[image: Figure 9]
FIGURE 9. The relationship between seed yield and integrated flower accumulation at Melfort and Scott, SK, Canada in 2017. The integrated flower accumulation was calculated using the area under the flowering progress curve function. (A) Regression for the Melfort location in 2017: y = 0.0044x + 1400.80, R2 = 0.28. (B) Regression for the Scott location in 2017: y = 0.0062x + 692.73, R2 = 0.42.


In general, compared with using a single image, applying the integration of flowering progress to estimate yield includes more information to provide consistent accuracy (Figures 8, 9). Although the R2 values for yield estimation are not very high, our results still demonstrate potential ability of AUFPC to predict yield, especially for crops producing bright flowers (e.g., canola and cotton) under different environmental conditions.

Several studies have reported similar results (Sulik and Long, 2016; Gong et al., 2018; Xu et al., 2018; Hassan et al., 2019). Sulik and Long (2016) reported that the plot-level NDYI values during flowering had high accordance with field yield observations (R2 = 0.72), which showed a better correlation with seed yield than NDVI at the peak flowering time in canola. Gong et al. (2018) found that NDVI multiplied by leaf-related canopy fraction had the strongest relationship with canola yield with low estimation errors (coefficient of variation < 13%) at the early flowering stages. Some research also investigated yield estimation using canopy reflectance data in other crops including cotton and wheat (Xu et al., 2018; Hassan et al., 2019). Xu et al. (2018) reported that the estimated cotton flower numbers derived from aerial images using a convolutional neural network significantly correlated with cotton yield (R2 = 0.36). Hassan et al. (2019) reported that UAV-based NDVI measured at the grain filling stage could be a promising tool for wheat yield prediction with R2 ranging from 0.83 to 0.89 in field conditions.

Our regression results had smaller R2 values compared with the previous studies. This is probably associated with many diverse lines (i.e., 56 diverse lines) estimated in this study. Most previous research only planted one or few lines. The stability of pigments in rapeseed flowers for each line may change under different developmental stages (Ohmiya, 2011). These factors can impact yellow to some degree (Ohmiya, 2011). The inconsistent yellowness may explain that the more varieties included in regression analysis, the less model variation could be explained by integrated flower accumulation. Furthermore, flowering pixels extracted based on threshold values may not be highly consistent over the flowering stage, as each threshold value was determined manually. In addition, canola yield components include plant density, pod number per plant, seed number per pod, and seed weight. Although pod number per plant is highly correlated with seed yield (Tayo and Morgan, 1975; McGregor, 1981; Ivanovska et al., 2007), only 45% of flowers produce pods (McGregor, 1981). Seed weight per pod and thousand seed weight also significantly correlated with seed yield (Ivanovska et al., 2007). The simple regression analysis of flower numbers could not fully explain yield variation. Additional yield components considered in the yield estimation model would improve the accuracy of seed yield estimation. Finally, flower abortion and poor pod formation can happen under drought and heat stress during the crop season (Faraji et al., 2008). Flowering progress only reveals part of crop growth stages, so some varieties even with high AUFPC may end up with low yield under stress, which may result in a weaker relationship between integrated flower accumulation and seed yield. Combining UAV-based reflectance data at both flowering and pod stages may enhance yield estimation accuracy.

Usually, breeding programs need to assess a large number of varieties or breeding lines across multiple environmental conditions. Therefore, from a practical perspective, these results revealed a more realistic yield estimation trend for large-scale breeding programs. Moreover, most previous research used one image date or selected the largest reflectance index value for each plot across all sampling dates to estimate crop yield. In fact, it is difficult to determine the best image date for yield estimation using multiple crop varieties grown in differing environmental conditions. Fluctuating environments can influence flowering progress; therefore, integrated flower accumulation is a promising and predictable variable in the descriptive yield model.




CONCLUSIONS

In this study, we proposed a simple and effective approach to estimate relative flower numbers and model seed yield based on the integrated flowering pixel. This study results showed that flowering pixel numbers estimated by the thresholding method regressed strongly with manual flower count during the flowering stage with an R2 value of up to 0.95, indicating that flowering pixel numbers can be used as a good indicator of flowering intensity in the field. Additionally, the integrating flowering progress from consecutive images via AUFPC math function was more consistently and strongly related to yield compared with using a single image date because integrated flowering pixel over time utilizes more growth information. Therefore, the integrated flower accumulation can be a good indicator for yield estimation. These tools do not require extra coding or strong computer science background, can be used for calculating thresholding and vegetation indices, and is a convenient tool for agronomists and breeders. Future studies need to consider and test a multivariate model including multiple vegetation indices related to other yield components and more reflectance information from the pod stage to improve yield estimation accuracy.
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Microscopic wood identification plays a critical role in many economically important areas in wood science. Historically, producing and curating relevant and representative microscopic cross-section images of wood species is limited to highly experienced and trained anatomists. This manuscript demonstrates the feasibility of generating synthetic microscopic cross-sections of hardwood species. We leveraged a publicly available dataset of 119 hardwood species to train a style-based generative adversarial network (GAN). The proposed GAN generated anatomically accurate cross-section images with remarkable fidelity to actual data. Quantitative metrics corroborated the capacity of the generative model in capturing complex wood structure by resulting in a Fréchet inception distance score of 17.38. Image diversity was calculated using the Structural Similarity Index Measure (SSIM). The SSIM results confirmed that the GAN approach can successfully synthesize diverse images. To confirm the usefulness and realism of the GAN generated images, eight professional wood anatomists in two experience levels participated in a visual Turing test and correctly identified fake and actual images at rates of 48.3 and 43.7%, respectively, with no statistical difference when compared to random guess. The generative model can synthesize realistic, diverse, and meaningful high-resolution microscope cross-section images that are virtually indistinguishable from real images. Furthermore, the framework presented may be suitable for improving current deep learning models, helping understand potential breeding between species, and may be used as an educational tool.
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INTRODUCTION

Transverse microscopic cross-sections of wood species have long been used for forensic wood identification, for analysis of critically important properties such as permeability and treatability with chemical agents, and to gain an understanding of the functioning of the tree (Zhang and Cai, 2006; Esteves and Pereira, 2008; Martins et al., 2013; Leggate et al., 2020; Lengowski et al., 2020; Słupianek et al., 2021). Microscopic capture of various anatomical features is accomplished in the lab by preparing individual thin slices of wood samples through standard stringent procedures that include several manually intensive steps: softening, cutting, clearing, staining, dehydrating, and mounting of the thin wood sections (Jansen et al., 1998).

Historically, creating and curating large datasets of microscopic wood images has been cumbersome with only a handful of datasets available to the public for research and development. The dataset produced by Martins et al. (2013) is perhaps the most used dataset for benchmarking several different wood identification approaches. The art of wood identification using such datasets is limited to only highly trained and experienced wood anatomists, due to the complexity of the wood structure within species and among a multitude of different species. Moreover, the number of senior wood anatomists with broad taxonomic expertise is declining (Lens et al., 2020). These limitations have set the stage for new artificial intelligence/machine-learning (AI/ML) technologies to make significant advances into the wood identification process.

Currently, deep learning in the form of convolutional neural networks (CNN) and optimization algorithms is beginning to revolutionize wood identification services. In fact, this technology is matching or surpassing expert wood anatomists in both macroscopic and microscopic image recognition and is being increasingly proposed as an adjunct to human wood identification decision-making (Hafemann et al., 2014; Lens et al., 2020; Lopes et al., 2020, 2021; Olschofsky and Köhl, 2020; de Geus et al., 2021; Fabijańska et al., 2021). The growth of computer-based wood identification and many other recognition tasks is facilitated by recent advancements in computational power, especially with graphical processing units (GPUs), which have enabled the widespread use of supervised machine-learning.

The AI/ML approaches have a rich potential within wood science and technology. For example, computer vision approaches could help identify and protect forests in the future (Lens et al., 2020). In this case, the expansion of computer vision-based wood identification would heavily depend on either establishing traditional extensive collaborations across wood science organizations as explained by Hwang and Sugiyama (2021) or through the development and application of artificial intelligence solutions that are novel, economically relevant, innovative, and stakeholder-engaged.

Successful applications of deep learning for wood identification are based on supervised learning algorithms that critically depend on labeled data for training purposes (Hwang and Sugiyama, 2021). For example, Martins et al. (2013); Filho et al. (2014), and Hafemann et al. (2014) applied deep CNN models on macroscopic and microscopic images by manually labeling the forest wood species. Their custom deep learning-based model achieved 96.0 and 97.0% accuracies on the macroscopic and microscopic datasets, respectively. Similarly, Fabijańska et al. (2021) automatically identified 14 European tree species using a residual convolutional encoder network in a sliding window with 99.0% accuracy. Collecting large sets of labeled training data constitutes a non-trivial bottleneck in AI/ML workflows. However, AI/ML has the potential to artificially synthesize the requisite labeled data, which we will explore in this manuscript.

Generative adversarial networks (GANs) are special types of deep learning where two neural networks are trained simultaneously, with the generator Network G, focusing on image generation from feedback given by a discriminator Network D, that is designed to determine whether a given input data is from an actual dataset or is synthetically generated (fake) by G (Yi et al., 2019). The GANs can achieve state-of-the-art synthetic generation of remarkably realistic images using CNN in an unsupervised manner. The GANs have been successfully applied in many fields including medical analysis, satellite imagery, computational fluid dynamics, and precision agriculture (Goodfellow et al., 2014; Nie et al., 2018; Wu et al., 2020; Pang et al., 2021).

Given the ability to use deep learning to synthesize images from multiple domains, we herein seek to explore the utility of GANs to map and generate labeled microscopic images on a large number of hardwood species. Therefore, the purpose of this manuscript is fourfold: (1) to demonstrate the feasibility of image synthesis in the field of wood anatomy; (2) to quantitatively and qualitatively assess the quality of generated images; (3) to present synthetically generated images to experts in the field through a visual Turing test (VTT); and (4) to raise awareness of the potential of deep learning techniques for steering the forestry and forest and wood products industry toward transformative directions.

To our knowledge, no study has been conducted using GANs to synthesize and critically evaluate microscopic cross-sectional images of hardwood species or in wood anatomy in general. This study seeks to demonstrate proof-of-concept technical and computational feasibility of performing image domain transformation to better equip wood anatomists and to introduce the wood science and technology communities to a novel AI/ML-based approach.



MATERIALS AND METHODS


Transverse Microscopic Hardwoods Section Dataset

This study was conducted using a publicly accessible transverse section of microscopic hardwood species dataset obtained from the Xylarium Digital Database (XDD) for Wood Information Science and Education – Kyoto University Research Information. This database was created, curated, processed, and labeled by Sugiyama et al. (2020). It was created in an effort to expand research and development in the area of wood anatomy and wood identification. The methods for obtaining the cross-section of the wood species are thoroughly described in the series of manuscripts published by the XDD research team in Hwang et al. (2018, 2020a, 2020b) and Kobayashi et al. (2019). Figure 1 shows eight different woody species present in the dataset.
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FIGURE 1. (A) Betulaceae - Alnus firma; (B) Cannabaceae - Aphananthe aspera; (C) Fagaceae - Quercus crispula; (D) Fagaceae - Fagus japonica; (E) Lauraceae - Sassafras tzumu; (F) Magnoliaceae - Liriodendron tulipifera; (G) Sapindaceae - Acer distylum; (H) Ulmaceae - Ulmus laciniata. Refer to the dataset for full dataset description.


Observing Figure 1, it is evident the diversity in anatomical structure with clear growth rings distinction, latewood and earlywood transitions, parenchyma cells, arrangement of parenchyma cells, fiber, vessel elements, pores and pores arrangement, multiple porosity classifications (ring, semi-ring, semi-diffuse, and diffuse porous), pore structure, and rays. These features are examples of key anatomical elements for hardwood identification. The full list of features and their terminology can be seen in Wheeler et al., 1989. The XDD dataset contained 7,051 images from 33 genus, 119 species, and 540 individuals at a resolution of 2.96 μm/pixel in a compressed HDF5 file at a grayscale resolution of 900 pixels × 900 pixels in JPEG (Joint Photographic Expert Group) format. The full description of the wood species can be seen in the Supplementary Material 1.



Custom Training the Generative Adversarial Network

We leveraged the style-based generative adversarial network, henceforth StyleGAN model developed by Karras et al. (2019) to generate realistic microscopic cross-section images of hardwood species. The StyleGAN includes the progressive increase of resolution by adding layers to the network as described in Karras et al. (2018) with a series of later modifications described in Karras et al. (2019). The main reason for choosing StyleGAN was that it achieves state-of-the-art in human face transformations with extraordinary levels of detail. Similarly, to human faces, wood is a biological material with high-level attributes and stochastic variation in its structure, which requires an AI/ML framework that generates small and subtle intricacies of wood anatomy such as fibers, cells, pores shapes, pore arrangements, and rays, etc.

As the original image size was 900 pixels × 900 pixels, we resized the images to be 512 pixels × 512 pixels without further image processing. In this implementation, the StyleGAN progressively increased image size from 42 pixels to 5122 pixels. We used 5,650 images for training. A latent vector of dimension 512 was used. The batch size decreased from 256 to 4 as training progressed. The adaptive momentum estimator (Adam) (Kingma and Ba, 2015) optimizer was used for training. The learning rate for the discriminator and generator were initially set to 0.0015 up to the resolution of 1282 pixels and slowly increased to 0.02 and 0.03 for resolutions of 2562 and 5122 pixels, respectively. The training setup doubled the image resolution when 600,000 images were shown to the discriminator. Training finished when the model had seen 7.5 million synthesized images. The Wasserstein GAN-gradient penalty (WGAN-GP) loss developed by Gulrajani et al. (2017) with modifications included by Karras et al. (2019) was used.. Throughout the training session, the model serialized checkpoints for later inference by using a script for image generation. The training took approximately 10 days. The computational resources used for this study included a workstation powered by 4 × NVIDIA GeForce RTX 2080Ti graphics processing units (GPU) with 11 GB of memory each and an Intel Core i9-9920K with a central processing unit (CPU) with 128 GB of memory.



Quantitative Analysis of Generative Adversarial Network Images

There is no unified and universal metric to compare and evaluate generative adversarial networks (Borji, 2019). In the case of wood anatomy, the quantitative measure of GANs is limited or even non-existent. This work, to the best of our knowledge, is the first study to present GAN metrics in the domain of wood anatomy. For GAN metrics, we relied on the Fréchet inception distance (FID) by Heusel et al. (2018) and the Structural Similarity Index Measure (SSIM) by Hore and Ziou (2010) to assess the realism and diversity of the images generated by the StyleGAN.

The FID score is a metric that measures the maximum Gaussian entropy distribution for given mean and covariance. The difference of two Gaussians is then measured by Eq. 1:
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where, μr and μg and Cr and Cg are the mean and covariance of real and generated images.

The lower FID score means higher accuracy in synthetically generating microscopic cross-sectional images. The FID score enables a quantifiable anatomical comparison between a ground-truth image and a GAN generated image with respect to the fidelity of generated images.

The SSIM is a quality metric used to measure the similarity between two images. It is considered to be correlated with the quality perception of the human visual system (HVS) (Hore and Ziou, 2010). The SSIM is designed by modeling any image distortion as a combination of three factors, namely loss of correlation, luminance, and contrast distortions. The SSIM was defined by Eq. 2:
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where,
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Equations 3–5, respectively, refer to the luminance comparison function that measures the closeness of two images mean luminance (μf and μg); the contrast comparison function, which calculates the closeness of the contrast of the two images by the standard deviation (σf and σg); and the structure comparison function that measures the correlation coefficient between the two images, f and g. The σfg argument is the covariance between f and g. A value of zero (0) means no correlation between images, and a value of one (1) means that f = g (Hore and Ziou, 2010).



Visual Turing Test

To compare between actual and generated microscopic cross-section images of hardwood species, we used a VTT based on Park et al. (2021) and Chuquicusma et al. (2018). Our VTT experiments were conducted by a group of eight wood anatomy experts divided into two levels of expertise for analysis of microscopic wood images, namely, four intermediate wood anatomy experts [more than 1 and less than 5 years of experience (Group I)], and four advanced wood anatomy experts [more than 5 years of experience (Group II)].

The wood anatomists were blinded to each other’s evaluations of experiments and were not shown real or generated images prior to the experiments. The VTT contained 60 distinct 5122 images (30 actual images and 30 generated images). We randomly selected the images from the actual dataset, such that a minimum of three images were selected from each family. To avoid any bias, the generated image data were automatically generated by the StyleGAN. Furthermore, these images were not individually selected by our group.

The experts were given two choices to classify the fidelity of the images, namely, actual image or generated image. A website (Google Forms) was created to upload the images in a random manner. The link for the website can be seen in the GitHub.1 The visuals evaluated did not contain any information about the wood species and only the microscopic cross-section of hardwood species was presented.

In this experiment, the experts were not informed how many of the images were real or not real. The non-disclosed ratio allowed the evaluation of three important metrics: (1) number of incorrectly identified actual images (a high number represents how real the generated images look), (2) number of corrected identified real images (a high number represents how accurately the experts recognized salient anatomical features), and (3) a confusion metric that represents how effective our results were to confuse experts in identifying actual versus generated images.

The mean sensitivity, specificity, and accuracy of the eight expert VTT evaluations were calculated by Eqs 6–8.
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A statistical t-test was used to compare the means of the experts’ evaluations across the experiment. The scientific computing Python package Pauli et al. (2020) was used for the statistical analyses with the significance level set at p ≤ 0.05.



RESULTS AND DISCUSSION


Feasibility of StyleGAN Generative Adversarial Network Training

The first goal of the study was to demonstrate the feasibility of training StyleGAN from scratch to generate realistic microscopic cross-section images of hardwood species. We found concomitant training improvement of the model up to approximately 7.5 million images seen by the discriminator, which corresponded to training at the final resolution of 5122 pixels. Figure 2 illustrates the progress of image generation as the resolution increased during training from 42 to 5122 pixels. Initially, at 42 pixels resolution, the generated images were pure abstract noise with concomitant progress in image quality with remarkable realism obtained at resolution of 5122 pixels. The StyleGAN trained as expected and was found to generate visually acceptable synthetic cross-section images of hardwood species.
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FIGURE 2. Overview of StyleGAN training using progressively increased image resolution from 4 × 4 pixels to 512 × 512 pixels.




Qualitative Analysis of Generated Images

Artificial intelligence and deep learning frameworks are revolutionizing interpretation, identification, and decision-making in wood species recognition. As data quantity and quality are critical to train deep learning-based image recognition systems, the proposed method herein should be useful to assist the computer vision wood identification community by providing realistic and meaningful microscopic images of cross-section of hardwood species. Using trained StyleGAN model, examples of the random generation of synthetic microscopic cross-section hardwood species are shown in Figure 3.
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FIGURE 3. Examples of synthetic cross-section images of hardwood species produced by the StyleGAN.


Qualitatively, a remarkable variety of anatomical elements was generated by the trained generative adversarial StyleGAN network. The StyleGAN was capable of synthesizing high detail levels of the earlywood and latewood bands and growth ring transitions; ray width, height, and arrangement of apotracheal and paratracheal parenchyma cells; porosity such as ring-porous, semi-ring, semi-diffuse, and diffuse porous; and vessels with different arrangements and diameters were produced and recognized. Such detailed anatomical elements are what enable wood anatomists to scientifically identify wood species. Correct wood identification promotes reliable utilization of wood in various forms as in flooring, structural elements, plywood, particleboard, cross-laminated timber (CLT), various engineered wood products, and many other structural applications. Figure 4 illustrates the learned anatomical elements by the generative model in detail. Figures 4A–D should be carefully analyzed as these species do not exist, although may look similar to actual data. They were created using the StyleGAN generator, which allows control over various aspects of the image. They represent the capability of the proposed network in generating realistic and meaningful microscopic cross-section images of hardwood species.
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FIGURE 4. Wood anatomy images generated by StyleGAN. Synthesis of anatomical elements. Potential semi-ring-porous wood (A), diffuse-porous wood (B), ring-porous wood (C), and diffuse-porous wood (D).


In Figure 4A, there is a visible transition between earlywood and latewood growth ring bands, parenchyma and fiber cells noticeable, and uniseriate rays that are clearly seen. Different earlywood and latewood pores, pore arrangement, rays, initial earlywood band, and a few nested pores or pore clusters are also identifiable. There are also numerous solitary pores. No tyloses or mineral deposits can be seen in the vessel elements. The presence of paratracheal vasicentric, paratracheal aliform, and/or paratracheal confluent longitudinal parenchyma cells was not identifiable. Possible semi-ring-porous wood with clear separation between earlywood and latewood pores in Figure 4A.

In Figure 4B, the growth ring bands are visible, parenchyma and fiber cells noticeable, and uniseriate rays are clearly seen. There are numerous pore multiples that occur throughout, where two or more pores are connected to another pore. The radially arranged series of pore multiples or closely arranged solitary pores are visible as pore chains. These characteristics along with no clear separation between earlywood and latewood pores, small vessel element pore sizes, uniform pore size, and evenly distribution of the pores make this a possible diffuse-porous wood in Figure 4B.

In Figure 4C, shows a visible transition between earlywood and latewood growth ring bands, parenchyma and tracheids cells noticeable, and uniseriate rays are clearly seen in this cross-sectional view. Different earlywood and latewood pores, broad rays and pore arrangement, and initial earlywood band are observable. The pores are arranged in irregular concentric bands that are tangential in the earlywood are wavy bands (ulmiform pore arrangement). A few nested pores or pore clusters are also identifiable. Few tyloses can be seen in the vessel elements as well. A few solitary pores that do not touch any other pores are clearly seen. Possible ring-porous wood with clear separation between earlywood and latewood pores in Figure 4C.

In Figure 4D, the growth ring bands are visible, parenchyma cells noticeable, and uniseriate rays are evident. The growth ring boundary is clearly delineated by a line of marginal parenchyma as several cells thick of longitudinal parenchyma. There are numerous pore multiples that occur throughout, where two or more pores are connected to another pore. The radially arranged series of pore multiples or closely arranged solitary pores are visible as pore chains. These characteristics along with no clear separation between earlywood and latewood pores transitions, the small vessel element pore sizes, uniform pore size, and evenly distribution of the pores make this a possible diffuse-porous wood in Figure 4D.

The potential applicability of generative adversarial in wood science and technology is tremendous. As macroscopic cross-section datasets become publicly available for research and development, especially from tropical species, GANs can be trained to generate unlimited numbers of realistic cross-sections of endangered wood species listed by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). The synthetic and meaningful images could then be implemented to train, validate, and test current deep learning wood species recognition models. The methodology of this work could potentially eliminate economic and processing burdens in acquiring images of tropical species for machine-learning purposes. Furthermore, the GANs framework proposed herein is a logical step to increase collaboration among academia, research laboratories, local, state, and federal agencies, private sector, and the industry.

Another innovative use of the StyleGAN framework demonstrated in this work is to generate anatomical elements of a hybrid from two targeted parental species. The training of GAN on microscopic cross-section images from two parental species would potentially generate a hybrid species. The generated hybrid would then be validated by a real hybrid species. If the generated hybrid possesses relevant and accurate information, this technology could potentially steer a series of new research directions within the wood science and technology field, especially in breeding and genetics for estimating wood permeability, strength, density, and calculating the hydraulic potential of the tree trunk of a species that has not even been planted.

While the StyleGAN implementation appears to be very useful in creating realistic and meaningful microscopic cross-section images for more robust deep learning models and targeted biological engineering, it could also create content to facilitate training and education in wood anatomy. The realistic images could provide personalized interactions based upon an individual’s experience and areas of expertise. For students interested in anatomical elements, the GAN frameworks could provide new content that would help in training a new workforce faster and cheaper. In that case, this work has the capabilities of extending the wood anatomy and wood identification body beyond research and development.



Quantitative Analysis of Generated Images

The FID score was calculated on 5,650 images drawn from the generator. The score was calculated by using the Inception-V3-network (Szegedy et al., 2016). The FID scores are reported in Figure 5. It was noted that as the model was trained, the StyleGAN model decreased the FID score from 657 points to a final value of 17.38, which indicates more realistic image quality generation at full resolution of 5122 pixels. The lower FID score of 17.38 means higher similarity between the two distributions, namely, between actual and synthetic data.
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FIGURE 5. The Fréchet inception distance (FID) score achieved by the StyleGAN generative adversarial network (GAN) on cross-section images of hardwood species. Top images show the evolution of anatomical detail with training.


In the context of wood anatomy, it is not possible to compare the FID score to prior research or literature because this work is the first known application of generative adversarial for wood cross-sectional synthesis. However, GANs have been extensively used in different non-wood domains with comparatively low FID scores being reported. For instance, FID scores in Karras et al. (2019) were 4.40 for Flickr-Faces-HQ (FFHQ) on human faces, 2.65 for Large-scale Scene Understanding (LSUN) on a bedroom, and 3.27 for LSUN on car datasets, using an identical model. Conversely, in research by Skandarani et al. (2021), the FID scores were 24.74, 23.72, and 29.06 for cardiac, liver, and diabetic retinopathy datasets, respectively, also using StyleGAN. It is worth mentioning that the datasets used in Karras et al. (2019) were much larger than those in Skandarani et al. (2021) and in this work.

However, FID scores do not completely ensure reliability when evaluating diversity of image data (Borji, 2019). In order to further quantitatively assess the quality of our image synthesis, we calculated the structural similarity index for ground-truth pairs and ground-truth/generated image pairs on 5,650 actual and 5,650 generated images.

The XDD dataset used in this work consisted of hundreds of different species that would bring the SSIM to near zero (0.00) if the images were not correlated. The lower the SSIM, the more structurally different two given images are, which denotes diversity. To that end, the calculated SSIM for ground-truth training data pairs was 0.061 ± 0.015, which indicates a highly diverse dataset. Generally, collapsed GANs would generate similar images to the training set as explained by Srivastava et al. (2017); Lala et al. (2018), and Thanh-Tung and Tran (2020). In that case, the SSIM for ground-truth and generated images for collapsed GANs would be much higher, tending to approach 1.00. In this study, the calculated SSIM for the comparison between ground-truth and StyleGAN generated images was 0.061 ± 0.026. The intuition is relatively simple. The lower the SSIM, the more diverse the StyleGAN generated pairs seem to be. Likewise, Odena et al. (2017) used the same concept to evaluate the diversity of generated images from the ImageNet dataset. Furthermore, in this work, the StyleGAN model generated images as diverse as the training set, where the orange and blue curves highly overlapped (see Supplementary Material 2).

In order to provide a clear understanding about the StyleGAN implemented in this research, we developed a graphic user interface where one can generate images of microscopic hardwood species in a menu-driven and intuitive web application. The goal of this application is to provide knowledge about StyleGAN via user interactions. The application is an open-source framework available at https://github.com/LignumResearch/stylewood-model-usage. It is worth noting that the user has the capability of generating unlimited amount of data (images) with this pre-trained model.



Anatomic Validation via Visual Turing Test

Table 1 summarizes the results of the realism assessment of images from the VTT by the eight wood anatomists. The mean accuracy obtained in the entire VTT was statistically lower than the random guessing [221/480 (46.04%) vs 240/480 (50.00%), respectively, p = 0.018]. In terms of correctly identifying generated images (specificity), there was no statistical difference between all wood anatomists and random guessing [116/240 (48.33%) vs 120/240 (50.00%), respectively, p = 0.6717]. Similarly, there was no statistical difference between all eight wood anatomists and random guessing to correctly identify actual images [105/240 (43.75%) vs 120/240 (50.00%), respectively, p = 0.064], despite the trend was in the predicted direction (p ≤ 0.05).


TABLE 1. Assessment of the realism of 60 images by the eight professional wood anatomists readers by the visual Turing test (VTT).

[image: Table 1]
By analyzing Groups I and II, there was no statistical significant difference between the two groups for accuracy, sensitivity, and specificity, respectively [45.0 vs 47.1% (p = 0.548), 40.8 vs 46.6% (p = 0.317), and 49.2 vs 47.5% (p = 0.873)]. The only actual species captured (100% true positive) by all wood anatomists was Litsea glutinosa. Additionally, none of the wood anatomists (100% false negative) captured Zelkova serrata, which was also an actual species. The full data regarding the VTT can be obtained in the GitHub.

In summary, results of the VTT indicated that the StyleGAN synthetically generated image fidelity comparable to actual data. The VTT data suggests that the generated images were highly realistic and indistinguishable from real microscopic cross-section images of hardwood species, regardless of the level of expertise in anatomical evaluation.



CONCLUSION

This study shows that StyleGAN can successfully synthesize highly realistic and anatomically meaningful 5122 microscopic cross-section images of hardwood species that are virtually indistinguishable from real cross-section images. We confirmed the realism and diversity for generated images by calculating the FID score, an SSIM distribution, and a VTT using two groups of professional wood anatomists with different levels of expertise.

We discussed several novel research directions involving wood anatomy and wood identification, StyleGAN, namely, data augmentation for current computer vision-based wood identification, dataset generation for wood species that are listed as threatened, endangered, or critical by CITES, and simulation of breeding between two parental woody species. Along with these applications, the StyleGAN can be used as an educational tool for improving training of a new workforce in wood anatomy and wood identification. It is our ultimate goal to provide AI/ML solutions that are reliable, economically relevant, safe, and robust to better equip the forestry and forest and wood products industries, students, researchers, staff, faculty, and enthusiasts in the field.

Future research will focus of exploring latent space when generating images. It would allow us to explore single attributes of a given species, for example porosity, ray thickness, growth ring, etc. to potentially increase model’s generalization. Specifically, this research would increase the meaning and realism of images and enable targeted effects on the generated images. Additionally, GANs can perform multimodal learning that enables image synthesis by feature description.
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The proportion and composition of plant tissues in maize stems vary with genotype and agroclimatic factors and may impact the final biomass use. In this manuscript, we propose a quantitative histology approach without any section labelling to estimate the proportion of different tissues in maize stem sections as well as their chemical characteristics. Macroscopic imaging was chosen to observe the entire section of a stem. Darkfield illumination was retained to visualise the whole stem cellular structure. Multispectral autofluorescence images were acquired to detect cell wall phenolic compounds after UV and visible excitations. Image analysis was implemented to extract morphological features and autofluorescence pseudospectra. By assimilating the internode to a cylinder, the relative proportions of tissues in the internode were estimated from their relative areas in the sections. The approach was applied to study a series of 14 maize inbred lines. Considerable variability was revealed among the 14 inbred lines for both anatomical and chemical traits. The most discriminant morphological descriptors were the relative amount of rind and parenchyma tissues together with the density and size of the individual bundles, the area of stem and the parenchyma cell diameter. The rind, as the most lignified tissue, showed strong visible-induced fluorescence which was line-dependant. The relative amount of para-coumaric acid was associated with the UV-induced fluorescence intensity in the rind and in the parenchyma near the rind, while ferulic acid amount was significantly correlated mainly with the parenchyma near the rind. The correlation between lignin and the tissue pseudospectra showed that a global higher amount of lignin resulted in a higher level of lignin fluorescence whatever the tissues. We demonstrated here the potential of darkfield and autofluorescence imaging coupled with image analysis to quantify histology of maize stem and highlight variability between different lines.

Keywords: autofluorescence multispectral imaging, darkfield imaging, quantitative histology, macrovision, maize stem


INTRODUCTION

Maize is a major productive crop worldwide and the most widely used forage crop in dairy cow feeding (Boon et al., 2008; Barros-Rios et al., 2012; Barriere, 2017). In addition, maize stems are considered one of the key lignocellulosic feedstocks to produce biofuels and other value-added chemicals (Carpita and McCann, 2008; Barrière et al., 2009b; Melati et al., 2019). Many of these uses involve efficient degradation of the cell walls either by enzymes or microbes.

The cell wall in maize stems is a complex polymer network of polysaccharides, namely, cellulose, hemicelluloses, and phenolics, as well as other minor compounds, such as pectins and structural proteins (Carpita and McCann, 2008). Cell wall phenolics comprise lignins and hydroxycinnamates and para-coumaric and ferulic acid derivatives. Lignin is a heterogeneous mixture of randomly polymerised phenolic monolignols (Vanholme et al., 2019). In maize stems, the amount of lignin in the cell wall fraction typically ranges between 12 and 20% (Jung and Buxton, 1994; Méchin et al., 2000; Barrière et al., 2009a,b). Para-coumaric acid, which accounts for approximately 1.5–2.5% of the cell wall, is mainly associated with lignin, while ferulic acid, which accounts for approximately 0.7% of the cell wall, is ether linked to lignin or ester linked to hemicelluloses (Ralph et al., 1998; Méchin et al., 2000; Jung and Casler, 2006a; Barrière et al., 2009a; Hatfield et al., 2017). Ferulic acid can mediate cross-linkages between hemicelluloses and lignins or between hemicellulosic chains via diferulic bridges (Ralph et al., 1998; Hatfield et al., 2017; Terrett and Dupree, 2019). The amount of lignins in the cell wall, their variable structure, and the cross-linkages between cell wall components have been suggested to have a variable depressive effect on cell wall polysaccharide degradation by enzymes or microorganisms (Méchin et al., 2000; Fontaine et al., 2003; Jung and Phillips, 2010; Barriere, 2017; Casler and Jung, 2017; Hatfield et al., 2017; Terrett and Dupree, 2019). This effect is related to the limited access of enzymes or microbes to degradable/fermentable polysaccharides (Meng and Ragauskas, 2014; Melati et al., 2019). However, the main determinant among these factors for recalcitrance is still not clear (McCann and Carpita, 2015; Melati et al., 2019; Zoghlami and Paës, 2019), which is partly due to the large variability of biomass and assignment of biomass as a bulk material without considering the heterogeneity of plant cell walls according to organs and tissues.

In fact, within a species, the cell wall composition depends on the genotypes and the plant-breeding environment but also on other components, such as the organs, stems, and leaves to the tissues and cell types. For example, a maize stem or internode is composed of different tissues, namely, rind, parenchyma and vascular bundles, whose proportions, morphologies and compositions vary according to the genotype, maturity and agro-climatic conditions (Cone and Engels, 1993; Morrison et al., 1998; Jung and Casler, 2006a,b; Legland et al., 2017; Perrier et al., 2017; El Hage et al., 2018; Zhang et al., 2019). It has been shown that these tissues differ in their fermentation/digestibility yield and rate, which has been related to their cell wall composition (Akin, 1989; Scobbie et al., 1993; Wilson et al., 1993; Wilson and Mertens, 1995; Hatfield et al., 1999; Jung and Casler, 2006b; Barros-Rios et al., 2012; Ding et al., 2012; Devaux et al., 2018). Several authors have reported that the relative proportion of tissues and lignin distribution within organs can explain the differences in digestibility observed at an equivalent stage of maturity (Akin, 1989; Wilson and Mertens, 1995; Méchin et al., 2005; Barros-Rios et al., 2012).

To study the histological features of plant organs, methods are required to quantify the proportion of tissues and their composition. Microscopic techniques are generally proposed for this purpose. However, these methods are not compatible with large-scale or high-throughput studies. In the case of maize stems, the stem section area can be of 1–2 cm2 while the cells diameter can be of approximately 60 μm (Zhang et al., 2013; Legland et al., 2014, 2017); moreover, the experiments often need to repeated to tackle the biological variability. For a few years, whole stem section imaging has been developed (Zhang et al., 2013, 2019; Legland et al., 2014, 2017, 2020; Heckwolf et al., 2015; Perrier et al., 2017). Images of hand- or microtome-cut stem cross-sections were acquired with either a macroscope, a microscope slide scanner or a flatbed scanner. Different modes of illumination (darkfield, brightfield, and epifluorescence, etc.) associated or not with contrast-enhancing methods, such as Fasga staining (Tolivia and Tolivia, 1987), are implemented to visualise the tissues. Other authors favour 3D imaging and use micro-computed tomography technology for stem imaging (Zhang et al., 2018, 2020, 2021). Optical macrovision systems have the advantage of being relatively inexpensive compared to more sophisticated equipment, such as X-ray tomographs and are well suited for studying histology because they combine a large field of view and good spatial resolution, thus allowing for observations of a whole stem cross-section and differentiation of the different tissues (Legland et al., 2014; Corcel et al., 2016).

Regardless of the image acquisition methods, image analysis is required to identify and quantify morphological features, which are also called anatomical traits. Maize stems include the proportions of tissues, e.g., rind, parenchyma cells, and vascular bundles, and the morphology and density of cells and vascular bundles. Different image analysis workflows have been proposed, which depend on the targets and on the contrast in the images. Most workflows include a tissue segmentation step followed by morphological feature quantification. Heckwolf et al. (2015) developed custom image processing software that utilises a variety of global thresholding and local filtering to extract rind, pith and vascular bundle sizes from stem cross-section scanned images. Legland et al. (2017) proposed a series of morphological filters to identify the rind and vascular bundles in the pith from stem cross-sections after Fasga staining. Zhang et al. (2018, 2020, 2021) presented an image analysis pipeline to extract micro-phenotypic traits from 3D tomography images that combine threshold-based segmentation and morphological operations.

Once tissues are segmented, it is a straightforward process to measure the rind thickness, pith area, vascular bundle area or vascular bundle size or shape. These descriptors were related to stem lodging (Zhang et al., 2018), developmental stages (Zhang et al., 2020), and water stress (Legland et al., 2017; El Hage et al., 2018) or used to analyse the phenotypic variation between lines (El Hage et al., 2018; Zhang et al., 2021). In addition to tissue segmentation, Devaux and Legland (2014) proposed applying grey-level granulometry using morphological closings to directly extract cell size distributions from grey-level images. Legland et al. (2021) used the method on maize stem images to compute the parametric maps of cell size.

Chemical imaging techniques are required to reveal the variations in the cell wall composition of tissues or cell types. Specific staining methods or spectral imaging can be used for this purpose, and each technique leads to very different image analyses. Several authors have used Fasga staining to assess the distribution of lignin in maize or sorghum stem tissue according to developmental stages (Zhang et al., 2013, 2019) or in response to water deficit (Legland et al., 2017; Perrier et al., 2017; El Hage et al., 2018). Fasga staining colours lignified tissues in red and non-lignified tissues in blue. In Zhang et al. (2013, 2019), lignification was assessed by the ratio of red to blue intensity. The image analysis workflow made it possible to assess the distribution of lignin within a cross-section by profiling the red/blue intensity ratio from the epidermis to the centre of the cross-section. The image processing workflow was further improved and fully automated by Legland et al. (2017), and it was designed for measuring the amount of blue and red intensities in the parenchyma and the amount of red intensity in the rind. Perrier et al. (2017) also developed a dedicated tool in ImageJ software for analysing Fasga-stained cross-sections from sorghum internodes. The dedicated script allowed quantification of the outer zone area in percentage of internode cross-section area, the percentage of sclerenchyma tissue in the outer zone, the percentage of nonlignified tissue in the central zone of the internode and the density of vascular bundles in the central zone.

Apart from histochemical staining, spectral imaging techniques have been proposed to perform chemical mapping of cell wall variations in wood or plant stems. Microspectroscopy, such as Fourier transform infrared (FT-IR) or Raman microspectroscopy, is very useful to study carbohydrates or phenolic constituents (lignin or hydroxycinnamic acids) (Gierlinger, 2018; Beć et al., 2020). The main drawback is that the techniques are time-consuming, thus allowing for the mapping of only a small region of the sample, which limits the application of these techniques for the comparison of large numbers of samples. To monitor the chemical variation in tissue composition, multispectral fluorescence imaging can be applied (Corcel et al., 2016). Full-field fluorescence macroscopy has a sufficient spatial resolution (≈3 μm per pixel), high acquisition speed and large fields of view. Taking advantage of the autofluorescence properties of many plant compounds, fluorescence imaging can be performed with little tissue preparation and, more importantly, without labelling. Fluorescence imaging techniques have two main attributes over other techniques associated with their greater sensitivity and selectivity due to the unique properties of autofluorescent molecules being excited at a specific wavelength and emitting radiation at specific wavelengths. Plant cell wall autofluorescence is mainly linked to the presence of phenolic compounds, such as lignin and hydroxycinnamic acids. Hydroxycinnamic acids emit blue fluorescence under UV excitation at approximately 350 nm (Fulcher et al., 1971; Harris and Hartley, 1976; Lang et al., 1991), while lignin excited using UV and visible light emitted blue, green and red fluorescence (Djikanović et al., 2007; Donaldson et al., 2010; Donaldson, 2013, 2020; Donaldson and Williams, 2018). The nature of the phenolic compounds, their variable relative proportions and the environment (pH, presence of quenching molecules, etc.) result in variable tissue fluorescence responses that can be interpreted as a fluorescence tissue signature.

The analysis of multispectral images requires specific analysis tools that can account for both the spatial and the spectral dimensions of the image. Using the chemometric approach, the first step in the analysis of multispectral images is to process the spectral dimension of the data (Geladi and Grahn, 2006; Ghaffari et al., 2019). Spectral information can be extracted either manually or automatically from regions in the images (de Juan et al., 2009). In many cases, regions in the image are segmented based on the spectral information (Salzer and Siesler, 2014).

In this study, we developed a quantitative histology approach to estimate the proportion of different tissues in maize stem sections and associated a chemical profile with each of these tissues. Two macroscopic imaging techniques without prior labelling of the tissues were used. Darkfield macroscopy was chosen to visualise the different tissues independently of their chemical composition. In parallel, multispectral autofluorescence macroscopy was used to associate a multispectral autofluorescence profile to the tissues with the aim of evaluating the relative distribution of lignin and hydroxycinnamic acids. In the darkfield images, tissues and cells are visualised based on the diffraction properties of the light by the cell walls. An image analysis workflow was implemented to identify the tissues and then extract 2D morphological descriptors. We propose that a simple stem model can be used to estimate the volume descriptors of the amount of rind, vascular bundles and parenchyma cell walls. We sought to measure multispectral autofluorescence pseudospectra in each tissue. Tissues were also segmented from the multispectral images using a “sum of intensities” image and a workflow similar to that of the darkfield images. Because the parenchyma near the rind has been revealed to have specific enzymatic degradation properties (Jung and Casler, 2006b; Devaux et al., 2018), two regions of parenchyma were considered, and we evaluated and compared their fluorescence properties, i.e., relative amounts of lignin and hydroxycinnamic acid. Two stem internodes of 14 inbred lines were analysed with the aim of demonstrating the feasibility of the method suggested here. Correlations between the histological descriptors and the amounts of phenolic compounds and digestibility measured at the stem level for the 14 inbred lines were examined.



MATERIALS AND METHODS


Plant Material and Stem Cell Wall Characterisation


Plant Material

Fourteen maize inbred lines selected for their contrasting digestibility were grown in Arras (France) in 2018. Twelve plants per inbred line were harvested at the silage stage. The stems were separated from leaves, panicles and ears. The internode located under the main ear was collected for two plants per line and stored in 70% ethanol/water (v/v) for quantitative histology. The stems of the remaining 10 plants were pooled, chopped and oven dried (70°C). The dried stems were ground with a hammer mill to pass through a 1 mm screen for the analysis of phenolic compounds and cell wall enzymatic digestibility.



Chemical Analysis

Cell wall material was prepared from the 10 dried and ground pooled stems. The ground material was placed in 80% ethanol at 100°C in an automated solvent extractor (ASE 350, Dionex Sunnyvale, CA, United States; 6 min flow time, 2 mL/min flow rate, 150% flush, and 30 s purge). The ethanol insoluble material was taken as the cell wall estimate (Chazal et al., 2014) and therefore called cell wall content and expressed in percent of the dry matter. Using the automated solvent extractor, the standard deviation is less than 1%.

The Klason lignin content was measured according to Dence (1992). Ester-linked para-coumaric and ferulic acids were measured after mild alkaline hydrolysis as described by Ho-Yue-Kuang et al. (2016). Analyses were performed in duplicate, and the results are expressed as the percentage of dry matter.



Digestibility Measurement

The enzymatic digestibility was measured in duplicate on the extractive-free material using the Aufrère and Michalet-Doreau method (Aufrère and Michalet-Doreau, 1983). The technique involves three stages: (1) pretreatment with pepsin (pepsin Merck 2000 FIP U/g Art7190) in hydrochloric acid (0.2% pepsin in 0.1 N HCl in a water bath at 40°C for 24 h; (2) starch hydrolysis in a water bath in the same mixture for exactly 30 min at 80°C; and (3) attack by cellulase (cellulase Onozuka R 10 extracted from Trichoderma viride, Yakult Honsha Co. Ltd, Japan, 1 g/L in 0.05 M sodium acetate buffer, pH 4.6) after filtration and rinsing for 24 h in a water bath at 40°C. The final residue was weighed. Due to the low starch content (<2% of the dry matter content of the alcohol-insoluble material), cell wall digestibility was equated with dry matter digestibility and calculated as follows:
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where M1 is the dry mass of the extractive-free sample and M2 is the dry mass of the residue after enzymatic degradation.




Image Acquisition


Sample Sectioning for Histological Analysis

For the two internodes retained for histology, a one cm long segment was sampled in the middle of the internode. For each segment, 150 μm thick cross-sections (called sections in the following) were cut in air with a gsl1 microtome (Design and production: Lucchinetti, Schenkung Dapples, Zurich, Switzerland) (Gärtner et al., 2014) and stored in 70% ethanol at 4°C until image acquisition. Prior to image acquisition, the sections were rehydrated in water overnight at 4°C to remove the air.



Darkfield Imaging

Images were acquired using the “BlueBox” macrovision acquisition prototype specially designed to observe plant tissue sections at the macroscopic scale without any prior labelling steps (Devaux et al., 2008, 2009). A monochrome CCD camera (Prosilica Digital Camera DCAM 1.31 – distributed by Alliance Vision, Montélimar, France) was equipped with a 1.2X magnification lens (Navitar Precise Eye, Rochester, NY, United States). With these settings, the images were 1,620 × 1,220 pixels and corresponded to a field of view of 5.92 × 4.43 mm2, with a pixel size of 3.63 μm. Grey levels were coded between 0 (black) and 255 (white). An optical fibre ring was connected to an intensity-controlled light source (SCHOTT DCRIV Light Source, Mainz, Germany) and placed under the samples to provide darkfield illumination. Motorised stages for positioning the camera and the samples allowed for the acquisition of large images. All elements were placed in a box to prevent outside light from entering. Homemade software developed under LabView was used for image acquisition.

Sections were placed between two round lamellae for observation. Mosaic images, called large images, were acquired to observe the entire sections. The largest images corresponded to a field of view of 20 × 20 mm2. Two sections per internode were imaged. Images of one internode were removed for M06 because air was still present after overnight rehydration. Finally, 54 large images were obtained. Examples of individual fields of view and large images can be seen in Figures 1, 2. Several tissues were observed within the stem sections: the rind, the vascular bundles and the pith parenchyma (Esau, 1977).
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FIGURE 1. BlueBox images. Example of inbred lines: individual fields of view of cross-sections. Fields of view: 5.92 × 4.43 mm2. Rind, parenchyma cells, vascular bundles are visible. Rind thickness and vascular bundle and cells size vary according to the inbred lines.



[image: image]

FIGURE 2. BlueBox images. Example of large images for four inbred lines. The large image reveals the stem section area, rind, vascular bundle repartition, and parenchyma.




Multispectral Autofluorescence Imaging

Autofluorescence images were acquired using a Multizoom AZ100M fluorescence macroscope (Nikon, Japan) equipped with a Q Imaging EXI Aqua monochrome camera plus an RGB-HM-S-IR filter wheel for colour image acquisition. The system provides 1,392 × 1,040 pixel RGB images with grey-level intensities coded using 16,386 values. The total magnification was set to X4 by combining the AZ-Plan Fluor 2X lens (NA: 0.2/WD: 45 mm) and a X2 optical zoom. With these settings, the pixel size was 2.78 μm and the field of view was 3.9 × 2.9 mm2. The macroscope was equipped with a Prior Proscan II (Nikon, Japan) motorised stage, which allowed large image acquisition. The INTENSILIGHT (C-HGFI/C-HGFIE Precentred Fibre Illuminator Nikon, Japan) device with a mercury lamp ensured lighting for fluorescence imaging. Four fluorescence filter cubes corresponding to two UV excitations, namely, U1 and U2, and two visible excitations, namely, blue (BL) and green (GR), were placed inside the motorised filter wheel (Supplementary Table 1).

The acquisition software NIS-Elements (AR 5.02.02) allows automatised multispectral acquisition of large images. The multispectral sequence was designed to successively acquire the four RGB images corresponding to the four fluorescence filters for a given field of view before moving to the next field of view. The order of acquisition was GR, BL, U2, and U1, with exposure times set after viewing a few samples (Supplementary Table 1). After all acquisitions, the fluorescence intensity was found to be much lower for the two visible filters than for the UV filters, and a multiplicative factor of 2 was applied to the RGB images of the blue and green filters.

The resulting multispectral images contained 12 channels by merging the RGB images recorded using the four filter cubes (Corcel et al., 2016). The channels were put in an order from high to low wavelengths: blue, red and green channels of each RGB image acquired with filters U1, U2, blue and green. The channels names were U1b, U1g, U1r, U2b, U2g, U2r, BLb, BLg, BLr, GRb, GRg, and GRr. Channel U1r was removed from the sequence because it contained unwanted reflection from the excitation Rayleigh band. The final multispectral image therefore contained 11 channels.

For morphological image acquisition, rehydrated sections were placed in water between two round lamellae for observation. One multispectral image per internode was acquired (except for the anomalous M06 internode), and for seven inbred lines, a second section of one internode was imaged for repetition. The final set contained 34 large multispectral images.




Image Analysis

Image analysis was performed in the MATLAB 2019b environment (Mathworks, Natick, MA, United States) using the image processing toolbox, dedicated homemade functions and scripts developed for BlueBox and macrofluorescence collections of images.


Image Representations

Displaying a set of large images is difficult, and the content of multispectral images cannot be viewed in a direct way. With the objective of comparing different inbred lines or sections and enabling details to be seen, a multiscale image representation was adopted. Zoom images corresponding to one field of view of the mosaic in the case of the BlueBox images were selected, and they showed details into the middle of the section and on the border of the section. Up to four large images with a resolution of 14 μm per pixel were compared. Low-resolution images (24 μm per pixel) were finally retained to draw A4 300 dpi figures, with one image per inbred line.

In parallel, an RGB representation of the multispectral fluorescence image was implemented. The red channel of the RGB image was computed as the average of the red channels U2r, BLr, and GRr. The green channel of the RGB image was computed as the average of the green channels U1g, U2g, and BLg. The blue channel of the RGB image was computed as the average of the blue channels U1b and U2b. The RGB images were called composite macrofluorescence images in the following. Two grey-level images were also computed for segmentation purposes: the image “sum of fluorescence intensity of the 11 channels” and the image “sum of visible fluorescence intensity” corresponding to the sum of the three channels BLg, BLr, and GRr.



Definition of Morphological and Autofluorescence Descriptors of Maize Stem Tissue

For each tissue, morphological and autofluorescence descriptors were defined. The stem area was retained as an absolute size descriptor. Relative areas were chosen to compare the rind, parenchyma and vascular bundle amounts. For the vascular bundles, the descriptors that were selected were the number density, individual surface area and elongation, which was defined as the width/length ratio. Parenchyma was also characterised by the cell size. Due to their different behaviour toward enzymatic degradation, two regions of parenchyma were considered (Jung and Casler, 2006b; Devaux et al., 2018): parenchyma near the rind and middle parenchyma. For each tissue, the average fluorescence properties were used to characterise the composition of cell walls. Measurements of the descriptors were performed after segmentation of the different tissues in the two types of images.



Segmentation of Tissues

Regions of interest (ROIs) corresponding to each tissue were identified for the dark field and macrofluorescence images. A semiautomated workflow was adapted from Legland et al. (2014). The main steps summarised in Figure 3 were similar for the two kinds of images. The specific implementations for the two kinds of images are given in Supplementary Table 2.
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FIGURE 3. Image segmentation workflow and resulting tissue regions of interests (ROIs). The “whole stem” ROI corresponds to the mask of the section. In the “all tissues” ROI, the holes encountered in some of the sections are segmented. Parenchyma ROI and rind and vascular bundle ROI are temporary ROIs necessary to compute tissue ROIs. Middle parenchyma ROI and rind parenchyma ROI are subregions of the parenchyma ROI.


For some stems, the parenchyma was torn during cutting, resulting in the presence of holes. The whole stem ROI was obtained by thresholding followed by hole filling to observe the whole stem area. A second region, called all tissue ROI, was considered, in which the possible holes were segmented by a second thresholding operation. The objective was to obtain an ROI that avoided possible holes to measure the parenchyma cell size and fluorescence properties.

From the all tissue ROIs and the original images, intermediate ROIs were created to correspond to the rind and vascular bundle ROIs. Alternating filtering based on morphological openings and closings (Soille, 2003) was applied to contrast rinds and vascular bundles from the parenchyma. It was followed by automatic thresholding. In the resulting ROIs, some vascular bundles could be connected and the rind could be split into several fragments. Rind and vascular bundles were differentiated by size analysis. The size of the vascular bundles was determined from the mode of the size distribution of the segmented objects in the BlueBox image located at a distance greater than 1 mm from the epidermis. It was used to define a size threshold to extract the individualised vascular bundle ROIs. Rind ROIs were built by merging external fragments larger than five times the value of the mode. In the BlueBox images, some vascular bundles were connected, and an additional region was computed to correspond to all vascular bundle ROIs, both connected and not connected.

The parenchyma ROIs were obtained as the logical difference between the whole stem ROIs and the rind and vascular bundle ROIs. The parenchyma near the rind ROIs and the middle parenchyma ROIs were obtained using a priori distances from the rind: below 500 μm for the parenchyma near the rind and over 1,000 μm for the middle parenchyma. Distances were chosen to contrast the two kinds of parenchymas.



Morphological Descriptors


Measuring the Raw Morphological Descriptors

Raw morphological descriptors could be directly measured from the segmented regions of interest as specified in Table 1. Areas were obtained by pixel counting; perimeters, vascular bundle length and width were obtained using the regionprops MATLAB function. Rind thickness was evaluated by granulometry using mathematical morphology transformations (Soille, 2003; Devaux et al., 2008; Legland et al., 2014, 2020); see “Parenchyma Cell Size” for an introduction to the method. The thickness distributions were obtained by applying opening transformations using squared structuring elements and a maximum size of 1,456 μm. The mean size of the distribution was taken as a measure of the average thickness of the rind.


TABLE 1. Measurement of the raw morphological descriptors: regions of interests (ROIs) used for measurement, morphological descriptors and acronyms.
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However, some defects related to section cutting and image segmentation were observed, such as missing pieces of rind or bundles not separated. Therefore, we developed an estimate of the morphological features as described below.



Estimating Rind Area

In sections where some rind pieces were missing, the rind area Ri(A) was estimated using the thickness Ri(T) and the perimeter of the whole stem St(P):
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However, when examining undamaged sections, the estimated values were always higher than the measured values. The reason was an overestimation of the rind thickness due to vascular bundles that remained connected to the rind after segmentation. The average difference diffEstMeas between the estimated and measured rind areas was computed from the undamaged images and used as a correction factor to estimate the rind areas:
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Estimating Stem Area

The stem area was equal to the measure of the area of the whole stem ROI when the rind was preserved, and it was estimated when the rind was fragmented:

[image: image]



Computing the Relative Areas

Relative areas of measured parenchyma, estimated rind and measured vascular bundles were computed as percentages of the estimated whole stem area.



Average Morphology of Individual Vascular Bundles

Individual area and elongation measured for each vascular bundle were averaged to obtain one value per section: [image: image] and [image: image].



Density of the Number of Vascular Bundles

The number of vascular bundles (Vb(N)) was estimated as the total area of vascular bundles divided by the average area of vascular bundles:

[image: image]

The density of the number of vascular bundles (Vb(D)) was computed as the number Vb(N) divided by the whole stem area.



Parenchyma Cell Size

Cell size was measured from the BlueBox greyscale image on the two parenchyma regions. Grey-level granulometry developed using mathematical morphology (Soille, 2003) was applied without segmenting the cells as described in Devaux et al. (2008) and Legland et al. (2021). Grey-level granulometry consists of successively applying size transformations of the image through a mask of known geometry, called a structuring element (Soille, 2003). The size and shape of the structuring element are chosen according to the characteristics of the image. In the BlueBox images (Figure 1), cells appeared as isotropic dark objects, and closing transformations using squared structuring elements were retained. Closing can be compared to sieving dark objects in the image: dark objects smaller than the structuring element are removed while preserving the size of larger objects. When closings of increasing size are applied, the sum of grey levels, measured after each operation, increases. The increase depends on the quantity of objects removed. The result is a granulometric curve expressed as a percentage of grey-level variations according to the closing step.

In the present work, closing transformations between 18 and 207 μm were applied by steps of 7.26 μm. Compared to the procedure described in Devaux et al. (2009), grey-level granulometry curves were postprocessed by subtracting the residual size variations caused by the general background of the image in the region of interest and renormalisation of the curves. Grey-level mean sizes and standard deviations were computed from the granulometric curves as described in Devaux and Legland (2014).




Measure of Autofluorescence Pseudospectra

For each pixel, 11 fluorescence intensity values were measured. The set of fluorescence intensities measured for individual pixels or averaged over a set of pixels was called pseudospectra (Corcel et al., 2016). Because no photon can be emitted at wavelengths higher than the excitation wavelength, for the two visible filters blue and green, the channels BLb, GRb, and GRr showed no signals. They were nevertheless maintained in the pseudospectra and were considered a baseline.

Average autofluorescence pseudospectra were measured for the four tissue ROIs: rind, all vascular bundles, parenchyma near the rind and middle parenchyma. A preliminary analysis revealed a channel-dependent background intensity. Three regions without any signal were manually selected in four images of the series. The background pseudospectrum was computed as their average pseudospectra. It was subtracted from all other measured pseudospectra. A section-dependent overall intensity effect was observed, which was probably due to variations in section thickness. A normalisation procedure was set, which is detailed in the “Results” section.



Data Analysis

The morphological descriptors and the autofluorescence pseudospectra were analysed based on a principal component analysis and variance analysis, followed by multiple comparisons of the estimated marginal means. Analyses were performed within the MATLAB 2019b environment (Mathworks, Natick, MA, United States) using the statistics and machine learning toolbox.

Principal component analyses were applied separately to the morphological descriptors and the autofluorescence pseudospectra. The morphological descriptors were normalised to describe the variations independently of the units, and the loadings were represented as correlation circles. In the case of pseudospectra, the variables were not normalised to avoid assigning importance to the baselines of the pseudospectra, and the loadings were represented in the form of pseudospectra.

Variance analyses were applied to morphological descriptors and principal components to determine their significance with regard to the 14 inbred lines studied. Multiple comparisons of the estimated means were applied to reveal the most contrasted lines. In the case of autofluorescence pseudospectra, analyses of variance were applied to the principal component scores to determine the effects of inbred lines, tissues and their interactions.





RESULTS


Variation in Cell Wall Phenolics and Digestibility Within the 14 Inbred Lines

The stems of the 14 lines were analysed for the cell wall content, lignin and hydroxycinnamic acid content of the cell walls, and digestibility. The cell wall content represented on average 54.9% of the stem dry matter, with a coefficient of variation (CV) of 8.5% (Table 2). The content of esterified para-coumaric acid showed the highest variability, with an average value of 1.60% of the cell wall dry matter and a coefficient of variation of 15.56%. Lower variability was observed for Klason lignin and esterified ferulic acid contents. On average, the lignin content was 18.3%, with a coefficient of variation of 9.2%, and the esterified ferulic acid content was 0.61%, with a coefficient of variation of 9.22%. Cell wall digestibility ranged from 25.4 to 43.9%, with an average value of 33.6% and a coefficient of variation of 14.9%.


TABLE 2. Mean values for stem cell wall contents, Klason lignin (KL), hydroxycinnamic acid – esterified p-coumaric acid (Ester pCA), esterified ferulic acid (Ester FA) – and cell wall digestibility (IVCW digestibility) for the 14 inbred lines.
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The values of the biochemical traits measured in this study are in the range of those reported in the literature for inbred lines (Jung and Buxton, 1994; Méchin et al., 2000; Barrière et al., 2009a; El Hage et al., 2018). Despite the observed variability within the 14 inbred lines for the measured traits, no correlation between these traits was found. Inbred Lines M06 and M05 showed the lowest cell wall lignin content, while the highest values were found for M02, M01, and M11. M04 had a low content of para-coumaric acid but a high amount of lignin. In contrast, M11 had both high amounts of lignin and para-coumaric acid, and M14 had a high amount of para-coumaric acid and an intermediate amount of lignin. M03 and M05 had intermediate values for lignin and para-coumaric acid, while M03 and M05 the highest and lowest values of ferulic acid content, respectively. The highest cell wall digestibility was found for Lines M05 and M06, which had the lowest amount of lignin. Although M01 and M02 had the highest lignin content, they showed intermediate cell wall digestibility.

In summary, our panel of inbred lines showed variability in the stem cell wall contents and phenolic composition and a lack of correlation between these biochemical traits.



Examples of Images From Details to the Collection

Four samples from inbred lines with contrasting morphologies were selected for a preliminary investigation of the dataset.


Zoom Images

Zoom images were selected to compare the border and the middle of the sections from four contrasting samples (Figures 1, 4). At this scale, details in the rind, vascular bundles, and parenchyma cells are visible. Cell walls appeared in white in the morphological images and had colours ranging from pink to blue in the autofluorescence images. Based on the colour representation of the autofluorescence images, blue fluorescence represents cell walls with mainly UV-induced fluorescence while pink or yellow fluorescence represents cell walls with visible-induced fluorescence. Differences between the four inbred lines were observed for all the tissues.
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FIGURE 4. Composite macrofluorescence images. Example of inbred lines. Fields of view: 1.06 × 1.27 mm2 for the left column images and 3 × 3 mm2 for the middle and right column images. Blue fluorescence represents cell walls whose fluorescence is mainly induced by UV excitation, while pink or yellow fluorescence represents cell walls whose fluorescence is induced by visible excitation. Differences between the four inbred lines were observed for all tissues.


The rind is composed of vascular bundles and small cells of cortical parenchyma (Esau, 1977). In the morphological images of Lines M04 and M09, the vascular bundles were clearly visible, while for M01 and M14, the rind formed a larger white ribbon and the cortical cells could hardly be distinguished. The autofluorescence images showed that for M01 and M14, the cortical cells contained fragments that fluoresced red, while for M04 and M09, the cells seemed empty. The red fluorophore probably corresponded to residual chlorophyll (Donaldson and Williams, 2018; Donaldson, 2020), which resulted in a seemingly wider rind observed using the BlueBox system. In the rind, the lignified sclerenchyma sheaths of vascular bundles (Lopez and Barclay, 2017; El Hage et al., 2018) were thick and fluoresced considerably, with the colour varying from yellow for M04 and orange for M01 and M09 to pink for M14.

In the pith, the vascular bundle sizes and shapes differed according to the line, with the vascular bundles from M04 and M09 smaller than those from M01 and M14. M01 vascular bundles were round, whereas, vascular bundles of the other three lines were more elongated. The fluorescence colour of vascular bundles was less strong but consistent with that observed in the rind. Inside vascular bundles, blue fluorescence was observed for the phloem and vascular parenchyma.

The parenchyma cells were clearly visible at this scale, and their size was dependent on the line and the region in the section. The smallest cells were observed for M09, and the largest were observed for M04. Cells near the rind seemed smaller than those in the middle parenchyma. Parenchyma cell walls fluoresced mainly in blue except for Line M04, which mainly showed yellow fluorescence. Specific fluorescence was observed in the parenchyma near the rind for M04 and M09. In the case of M09, the intensity was much lower, and in the case of M04, the fluorescence colour was blue compared to the yellow fluorescence of the middle parenchyma.



Large Image Scale

Large images were created from individual fields of view of the images (Figures 2, 5). The concave regions in the sections correspond to the location of the main ear. The large image reveals the stem section area, rind, vascular bundle repartition and parenchyma. The section area was the largest for Line M14 and the smallest for M09. The images show that the rind thickness was homogeneous all around the section as well as the vascular bundle size. The composite macrofluorescence images (Figure 5) showed largely homogeneous fluorescence around the rind, vascular bundles and parenchyma. In particular, the specific fluorescence found for the parenchyma near the rind for Lines M04 and M09 could be observed all around the sections. For M01, yellow fluorescence occurred in small places of the rind.
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FIGURE 5. Composite macrofluorescence images: Example of large images for four inbred lines. The composite macrofluorescence images shows the homogeneity of fluorescence around the rind, vascular bundles, and within parenchyma.





Extraction of Morphological Descriptors for the Four Examples of Inbred Lines


Proportions of Tissue Areas, Vascular Bundle Morphology, and Density

The proportion of tissues extracted for the four example lines are reported in Table 3: area of the stem section in cm2, parenchyma, rind and vascular bundle areas, which are expressed as a percentage of the area of the stem section, vascular bundle density, mean area and elongation of individual bundles.


TABLE 3. Morphological descriptors of the four examples of inbred lines.
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The stem area was two times larger for M14 than for M09 and similar for M01 and M04. The rind area was larger for M01 and M14, as expected from the images. Both lines also showed a larger vascular bundle total area together with a large area for individual vascular bundles. The smallest vascular bundles were observed for Line M09 along with the highest density, nevertheless resulting in a small relative total area. The proportion of parenchyma was consequently smaller for M01 and M14 and larger for M04 and M09. The vascular bundle shape did not vary much, as visually observed in the images.



Parenchyma Cell Size

Cell size was evaluated by grey-level granulometry without segmenting individual cells. The method was shown to be relevant to compare tissue sections from the BlueBox darkfield images (Devaux et al., 2008, 2009). Figure 6 shows the average granulometric curve computed for the parenchyma near the rind (dashed lines) and the middle parenchyma (solid lines). Granulometric curves can be compared to normal particle size distributions, with the position of the mode indicating the predominant cell size and the width reflecting the heterogeneity of cell sizes. Because the cells were isotropic, the closing size can be interpreted as the cell diameter.
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FIGURE 6. Parenchyma cell size. Example of granulometric curves computed for four inbred lines. The solid and dashed lines represent the granulometric curves computed in the middle parenchyma and the parenchyma near the rind, respectively. Granulometric curves can be compared to normal particle size distributions, with the position of the mode indicating the predominant cell size and the width reflecting the heterogeneity of cell sizes. Because the cells are isotropic, the closing size can be interpreted as the cell diameter.


In the middle parenchyma, the smallest cells were observed for Lines M09 and M14, with a cell diameter of approximately 60 μm, and the largest cells were observed for M04, with a cell diameter of approximately 85 μm, with M01 being intermediate. The distribution was more heterogeneous for M04, for which small cells were clearly distinguished around vascular bundles (Figure 1).

Cells were found to be smaller in the parenchyma near the rind, which was also measured in Legland et al. (2020), who computed local granulometric curves in a section of maize stem. M09 and M14 showed the smallest diameters of approximately 40 μm, and M01 showed the largest diameter of approximately 55 μm. M14 differed from the other lines by its greater heterogeneity in cell size. Figure 1 shows that the cell walls were not always clearly contrasted due to the presence of cell content that may result in measuring small size reflecting the distance between cell wall and cell content together with cell size.

To summarise the granulometric curves, grey-level mean sizes and standard deviations were computed (Devaux and Legland, 2014; Legland et al., 2014; Table 3). The grey-level mean sizes were approximately 65–80 μm for the middle parenchyma and 45–60 μm for the parenchyma near the rind. The standard deviations of the granulometric curves were approximately 30 μm and depended on the inbred line, i.e., larger values were observed for M04 in the middle parenchyma and for M14 in the parenchyma near the rind.



Estimating the Proportions of Tissue Cell Walls


From 2D Images to Volumes of Cell Walls: Principles and Hypotheses

Morphological features were extracted with the objective of examining their relationships with data such as chemical composition data or wall digestibility, which are measured on stems. In the present work, we proposed estimating the volume of tissues from 2D images considering several approximations and hypotheses. First, we considered that the internode under the ear was representative of the stem (Méchin et al., 1998). The internode was considered as a cylinder, and the density value of the cell walls was constant regardless of the cell type. This means that the volume and mass of cell walls are proportional. With these assumptions, the relative proportions of tissues in the internode can be estimated from their relative areas in the internode sections.

In the case of rinds and vascular bundles, the area proportions of tissue largely reflect the quantity of cell walls because these are thick and the lumen of the cells is only slightly visible. Therefore, we approximated that the area of these tissues that corresponded mainly to their cell wall proportion. In contrast, the amount of parenchyma cell wall depends on the cell size. This amount was estimated using the parenchyma tissue area and the parenchyma cell wall density that was evaluated from the cell size as described below.



Parenchyma Cell Wall Density

A parenchyma cell wall density estimate was derived from the grey-level mean sizes. Parenchyma cells were modelled as spheres with a radius (R) that corresponded to the grey-level mean size divided by 2. The cell wall density is equal to the ratio between the wall volume and cell volume, and the wall volume is equal to the cell surface multiplied by the wall thickness. In this case, the cell wall density Cw(D) expressed in percentage of volume is equal to the following:
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In the present work, the cell wall thickness CwThickness was set to 0.5 μm (Jung and Engels, 2001). Consistent with the cell size, the cell wall density was greater in the parenchyma near the rind (5–6%) than in the middle parenchyma (approximately 4%) (Table 3).

The total amount of cell wall in the parenchyma was assessed as the density of the cell wall multiplied by the parenchyma area, i.e., parenchyma cell wall areas, which are considered representative of their volume in the case of a cylindrical internode (Table 3). The middle parenchyma area was taken to estimate the cell wall amount. The area for the parenchyma near the rind was computed as the total parenchyma area minus the middle parenchyma area. It therefore also included the region between 500 and 1,000 μm.



Estimating Tissue Cell Wall Proportions

The total cell wall amounts were computed as the sum of the rind and vascular bundle areas plus the parenchyma cell wall amounts. Finally, the proportion of tissues was computed as the relative cell wall amounts. The values are reported in Table 3. Because of the different approximations, the rind and vascular bundle cell wall amounts could be somewhat overestimated. Nevertheless, these values were considered relevant to compare the lines. Table 3 shows that the rind was the major tissue, followed by the bundles. Depending on the cell size, stem diameter and parenchyma proportion, the contribution of parenchyma near the rind and middle parenchyma varied for the four inbred lines: the smallest contribution of the parenchyma near the rind was observed for M14 and the largest was observed for M09.





Tissue Pseudospectra of the Four Examples of Inbred Lines


Normalisation of Pseudo Spectra

Tissue-specific fluorescence pseudospectra were studied for the rinds, vascular bundles, and parenchyma near the rind and in the middle of the section. In the parenchyma, the pseudospectra depended on the fluorescence properties of the cell walls but also on the density of the cell wall. Parenchyma pseudospectra were therefore divided by the cell wall density. In this way, we expected to estimate the fluorescence that would have been measured on the walls alone, thereby avoiding the cell lumens. In addition, the overall fluorescence intensity was found to be section-dependent regardless of the tissue, which was attributed to uncontrolled thickness variations. A section normalisation factor was assessed as follows. For each section and for each tissue pseudospectra (rind, vascular bundles, parenchyma near the rind and middle parenchyma after correction for the cell wall density), the mean fluorescence intensity measured for the 11 channels was computed: [image: image], [image: image], and [image: image]. The normalisation factor of the section was computed as the mean fluorescence intensity:
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Each tissue pseudospectrum was divided by this normalisation factor.



Spectral Information in the Pseudospectra

The resulting pseudospectra are shown in Figure 7 for the four example lines. In the pseudospectra, each value corresponds to the average fluorescence intensity of one of the 11 channels of the multispectral images. The colour images in Figures 4, 5 represent a summary of the 11 spectral fluorescence channels, while the pseudospectra represent the average spectral fluorescence behaviour computed over all pixels of the considered region of interest. The first five pseudospectra values report the intensity of UV-induced fluorescence, and the six others report the intensity of visible-induced fluorescence. As mentioned in the “Materials and Methods” section, no signal was observed in the channels BLb, GRb, and GRg, which were kept at baseline. Because the pseudospectra were normalised, only relative intensity variations can be discussed.


[image: image]

FIGURE 7. Macrofluorescence analysis. Tissue-normalised pseudospectra of the four examples of inbred lines: (A) middle parenchyma, (B) parenchyma near the rind, (C) rind and (D) vascular bundles. The pseudospectra represent the average spectral fluorescence behaviour computed over all pixels of the considered region of interest. The first five values report the intensity of UV-induced fluorescence, and the six others report the intensity of visible-induced fluorescence. The pseudospectra were normalised and only relative intensity variations can be discussed.


In the plant cell walls, not all the constituents are fluorescent for this range of excitation wavelengths. Polysaccharides are not fluorescent while lignin and hydroxycinnamic acids are the major natural fluorophores. To compare the normalised fluorescence intensities with the number of phenolic compounds (lignin + hydroxycinnamic acids), their relative amounts were calculated (Table 2). With this normalisation, Line M04 contained less para-coumaric acid than the three other lines, with a value of 4.87% compared to more than 7.00%, but more lignin, with a value of 92.51% compared to less than 90.3%. M14 was characterised by a high relative amount of para-coumaric acid (9.30%).

Hydroxycinnamic acids emit blue fluorescence with UV excitation at neutral pH, and lignin has a wide excitation range. Excitation with UV and blue light results in blue and green emission of lignins (Donaldson and Williams, 2018; Donaldson, 2020). Thus, a greater amount of visible fluorescence was assumed to correspond to samples that contained more lignin. Similarly, a greater amount of UV fluorescence was assumed to correspond to more hydroxycinnamic acids.

In addition, localisation or the lack of localisation of hydroxycinnamic acids and lignin could be responsible for the specific colour observed within a given line. Thus, the yellow colour of Line M04 observed in Figure 4 could be ascribed to a high relative amount of lignin together with a low relative amount of hydroxycinnamic acid. For M14, pink fluorescence could be ascribed to a low relative amount of lignin together with a high hydroxycinnamic acid content. In the following, tissue pseudospectra were examined to identify tissues that presented differences in phenolic compounds and differences between lines.



Tissue Pseudospectra of the Four Example Lines

For the parenchyma regions (Figures 7A,B), the UV-induced fluorescence was always stronger than the visible-induced fluorescence, showing that these tissues contained relatively less lignin and more hydroxycinnamic acids, which resulted in the generally blue-coloured parenchyma (Figures 4, 5). In contrast, rind and vascular bundles showed visible-induced fluorescence similar to UV-induced fluorescence (Figures 7C,D), which was consistent with the lignification of these tissues (Akin, 1989; Wilson et al., 1993; Hatfield et al., 1999; Zhang et al., 2013).

After normalisation, the fluorescence of the parenchyma was approximately 10 times more intense than that of the rind and vascular bundles. This ratio is somewhat overestimated because cell size was considered for the parenchyma cells and not for rind and vascular bundles. Nevertheless, the result is consistent with the fact that the parenchyma cell walls were clearly visible despite the wall thickness between two cells (1 μm) being much smaller than the pixel size (2.78 μm). Willemse and Emons (1991) also reported lower UV autofluorescence for sclerenchyma walls than for parenchyma walls, which was even more pronounced when related to the cell wall area. Another explanation for the relatively lower fluorescence intensity of lignified tissues is that lignin fluorescence is a complex process involving different fluorophores with different fluorescence profiles and energy transfer processes. Lignin fluorescence can be quenched by interactions with other polymers inside the cell walls, especially UV-induced fluorescence (Donaldson, 2020).

Comparing the rind and vascular bundles, visible-induced fluorescence was higher in the rind regions for the four lines. The composite macrofluorescence images in Figure 4 show that visible-induced fluorescence was mainly observed in the sclerenchyma sheath of vascular bundles and that the sheath was much thicker in the rind than in the pith. In addition, the relative proportion of blue parenchyma was higher in the bundle than in the rind.

In the case of the M09 parenchyma, pseudospectra allow the quantification of the lower intensity of the parenchyma near the rind compared to the middle parenchyma. In the case of M04, visible-induced fluorescence was found to be much lower in the parenchyma near the rind than in the middle parenchyma. This finding corresponds to the blue and yellow–white fluorescences observed in Figure 4 for the parenchyma near the rind and the middle parenchyma, respectively. For the other two lines, the pseudospectra of the two parenchyma were largely similar.

Looking more specifically at the lines, the intensity of the visible-induced fluorescence was much higher for M04 than for the other three lines in the rind, bundles and middle parenchyma. This finding is consistent with the high relative amount of lignin. It also suggests that a significant amount of lignin was found in the parenchyma cell walls for this line. The occurrence of an equal intensity after blue excitation in the green BLg and red BLr channels led to the strong yellow fluorescence of the rind and vascular bundles and to the yellow–white fluorescence of the cell walls in the middle parenchyma (Figure 4).

The pink fluorescence of the rind and vascular bundles observed for M14 was due to a lower relative green fluorescence after blue excitation (Blg channel), which corresponded to the lower relative lignin content. This was also measured for parenchyma cell walls. More generally, for a given line, the relative proportions of fluorescence measured after blue excitation in channels green BLg and red BLr were similar for all tissues, which suggests that the signature of blue-induced lignin fluorescence would not be tissue-dependent but line-dependent.

The highest UV-induced fluorescence intensity was observed for M09 and M14 in the rind and the two parenchymas. The two lines contained the most hydroxycinnamic acids. In the case of M09, almost no visible-induced fluorescence was observed in the parenchyma, suggesting that lignin was only found in the rind and vascular bundles.

In conclusion, the normalised pseudospectra were considered relevant to quantify the differences in the tissue fluorescence observed in the multispectral images.




Histological Variability Within the 14 Inbred Line Collections


Morphological Analysis


Descriptors Extracted for the 14 Inbred Lines

Examples of images acquired for each of the 14 inbred lines can be found in the Supplementary Figure 1. All descriptors were computed for the two stems of the 14 inbred lines. Average values are reported in the Supplementary Table 3. The main points are reported here. The area of the stem section ranged from 1.21 to 2.36 cm2, with an average of 1.78 cm2. The parenchyma covered on average 76.1% of the total area of stem sections, and the coefficient of variation was 8% for the set of 14 inbred lines. Larger variations between inbred lines were observed for the rind and vascular bundle relative areas, with average values of 17.0 and 7.0%, respectively, and coefficients of variation of 27 and 20%, respectively. The vascular bundle density varied from 117 to 50 per cm2 with an average value of 77. Legland et al. (2017) also studied maize internodes under the ears of four inbred lines grown under two irrigation conditions and found values ranging from 1.0 and 3.0 cm2 for the area of the sections. The rind accounted for 10.3 to 16.8% of the section area, the vascular bundles accounted for 3.1 to 7.3% and the parenchyma accounted for 80–86%. The bundle density ranged between 111 and 66 per cm2. Vo et al. (2020) compared internodes under the ear of six maize inbred lines and reported values ranging from 1.6 and 4.0 cm2 for the area of the sections and 11–19 and 77–86% of the section area of the rind and pith parenchyma, respectively. The bundle density ranged between 76 and 42 per cm2. In the internode sections of sorghum, a species that is very close to maize, Wilson et al. (1993) found that the rind accounted for 16.2% of the total section area, the parenchyma accounted for 79.2% and the vascular bundles in the pith parenchyma accounted for 4.7%. The values found in our work are on the same order of magnitude of those reported in these manuscripts.

In the present work, we estimated the contribution of the different tissues to the total wall content of the internodes on the basis of the tissue surface proportion in the sections and from a simple internode model. The rind and vascular bundles represented 61 and 25% of the total cell wall on average, respectively, with coefficients of variation of 8 and 12%, respectively. The middle parenchyma and parenchyma near the rind represented 9 and 5%, respectively, of the total cell wall, with high coefficients of variation of 25 and 30%, respectively. The values reported here for the relative contribution of tissues to the total cell walls were in the range of those reported by Wilson et al. (1993) for sorghum internodes. In this study, the tissues of one cultivar were manually separated and analysed individually. The rind and vascular bundles accounted for 68.7 and 11.4% of the total cell wall, respectively. The pith parenchyma accounted for 22% of the total cell walls.

Considering all descriptors, the coefficient of variation ranged between 6% (standard deviation of cell diameters) and 36% (average area of individual vascular bundles). An ANOVA test was run individually on the descriptors to test their ability to discriminate lines. All descriptors were found to be significant for the line effect, with p values lower than 0.01.



Principal Component Analysis

A principal component analysis was performed on the subset of 13 morphological descriptors of the 14 inbred lines, including the stem area, proportion of cell walls in the stem, relative proportions of cell wall ascribed to tissues, parenchyma mean cell diameters and standard deviations, and vascular bundle density and morphology. A variance analysis was applied to the principal components. The four first principal components accounted for 44, 15, 14, and 10% of the total variance, and the line effect of these components was highly significant.

Figure 8A shows the similarity map of components 1 and 2 and Figure 8C shows the similarity map of components 3 and 4 according to inbred lines. The corresponding loadings (Figures 8B,D) show the importance of the individual variables for the specified components.
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FIGURE 8. Morphological analysis of 14 inbred lines: principal component analysis. (A,B) Similarity map and loadings of components 1 and 2 (44 and 15% of the total variance). (C,D) Similarity map and loadings of components 3 and 4 (14 and 10% of the total variance). Convex hulls were drawn for each inbred line. Loadings are shown as correlation circles. Considering that the variables in the middle of the correlation circles are not representative of principal components, they were represented as points. Only variables with correlation over 0.5 with the principal component are shown. The similarity maps reveal a considerable variability between inbred lines based on their morphological descriptors.


Component 1 differentiates Lines M06, M11, M14, M01, and M03 based on the relatively high rind proportions [Ri(Cw)], high total cell wall amounts [Cw(T)] and large vascular bundle individual areas [Vi(A)], and it differentiates Lines M09, M07, M13, M12, and M04 based on the high vascular bundle densities [Vb(D)] and parenchyma cell wall amounts [Pm(Cw) and Pr(Cw)].

Component 2 differentiates lines based on their stem section area [St(A)], and it differentiated M09 and M07, which had a small section area, from M14 and M10, which had a larger section area. The two stems of M11 had very different stem diameters, with actual values of 2.6 and 1.5 cm2. For all other lines, the two stems were largely similar, as revealed by the convex hulls. Component 2 mainly described the stem area variations, with Lines M14, M10, M13, and M08 showing larger stem diameters than Lines M09, M07, M02, and M04.

Figure 8B highlights the correlation between the morphological descriptors. Namely, the expected strong contribution of the rind to the total cell wall amount in the stem as well as the negative correlation with the parenchyma cell wall amounts. A negative correlation r = −0.77 was observed between the vascular bundle density and the average individual area of vascular bundles. Indeed, a general trend was observed among the 14 inbred lines, with M06, M11, M14, and M01 having large bundles over 0.1 mm2 and less than 60 bundles per cm2 and M09, M07, M12, and M05 having small bundles smaller than 0.1 mm2 and more than 80 bundles per cm2. Zhang et al. (2020) measured the area of individual vascular bundles and their density in the stem for 480 inbred lines and reported a negative correlation between these two descriptors.

Beyond examining the components individually, it is interesting to note the distribution of the 14 inbred lines that reveals their specificity and the great variability of the collection. The same comment can be applied to the similarity maps of components 3 and 4. In this case, the components described variations in the parenchyma cell diameters Pm(Cd), Pm(Cs), Pr(Cd), and the proportion of vascular bundles Vb(CW). Line M03 was clearly highlighted mainly because of the much lower relative number of vascular bundles due to its low density in number. On this similarity map, the other lines contrasted were M08, M04, M02, M05, M14, M11, and M12.

We investigated the correlation between the morphological descriptors and the relative amounts of chemical compounds to further explore their tissue origin, but no correlation was found.




Autofluorescence Variations According to Tissue and Lines

The fluorescence colour quantified in the pseudospectra should reveal more lignin or hydroxycinnamic acids and their localisation in some specific tissues. To compare the 14 inbred lines of the study, multivariate analyses were performed on the tissue pseudospectra. Principal component analyses were performed to assess the relative importance of the tissue or line in determining the fluorescence properties. In a second step, the correlation between the relative amounts of phenolic compounds and the tissue pseudospectra was examined.


Principal Component Analysis of Tissue Pseudospectra

Because of the general intensity differences, principal component analyses were carried out separately on the rind and vascular bundle pseudospectra on the one hand and on the parenchyma pseudospectra on the other hand. A variance analysis was applied to the principal components to evaluate the effects of lines and tissues and their interaction.

Table 4 reports the results of the variance analysis applied on the four first principal components computed for the rind and vascular bundles accounting for 72, 16, 11, and 1% of the total variance. For the four components, the line effect was significant. Rind and vascular bundles differed on components 1 and 3, and no interaction was revealed. Figure 9A shows the similarity map of components 1 and 3 according to the tissues. Figure 9B shows the similarity map of components 3 and 4 according to the lines. Figure 9C shows and the loadings of components 1, 3, and 4. Loading 1 revealed the relative variations between UV- and visible-induced fluorescence. Loading 3 was based on the relative variations observed in visible-induced fluorescence, e.g., green emission after blue excitation (BLg channel) versus red emission after green excitation (GRr channel). Loading 4 showed a difference in the relative blue emission using UV excitation of U1 and U2 (U1b and U2b channels). The similarity map of components 1 and 3 shows that for all lines, the rind and vascular bundles differed mainly by their relative visible and UV-induced fluorescence, and to a lesser extent by a relatively higher red fluorescence emission of the rind after green excitation. This difference could be ascribed either to cortical parenchyma cell walls or to their content. On this map, the line effect was mainly caused by M04, which corresponded to the extreme points for the two tissue scatterplots. The similarity map of components 3 and 4 reveals the line effect among the 14 lines. Despite some overlap, contrasting fluorescence fingerprints were observed for some lines, such as M04, M05, M14, and M12. M14, M03, and M06 showed relatively higher red fluorescence after green excitation (GRr channel) (see also Figures 7C,D for M14). Line M05 was characterised by its relatively high blue emission after U1 excitation compared to M12 or M13.


TABLE 4. Macrofluorescence analysis of 14 inbred lines.

[image: Table 4]
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FIGURE 9. Macrofluorescence analysis of the rinds and vascular bundles of 14 inbred lines: principal component analysis. (A,B) Sample similarity maps of components 1–3 (72 and 11% of the total variance) according to tissues and 3 and 4 according to inbred lines (11 and 1% of the total variance). (C) Loadings 1, 3, and 4. The similarity map 1–3 reveals the strong variability between rind and vascular bundles. The significant variability between inbred lines based on their fluorescence properties is observed in the similarity map 3 and 4.


Table 4 and Figure 10 show the results obtained for the two parenchyma tissues. The first four components accounting for 71, 18, 7, and 3% of the total variance were found to be significant for both the lines, tissue and their interaction. Similarity maps and loadings are shown for components 1 and 2 (Figures 10A,B). The same map was drawn twice by considering the tissues or the lines. Figures for components 3 and 4 are given in Supplementary Figure 2. Loading 1 (Figure 10C) was partly similar to the one obtained for the rind and vascular bundles, thus showing the relative response after UV and visible excitation. Component 1 mainly described the differences between lines, with M04, M02, and M03 showing stronger visible-induced fluorescence and M09 and M05 showing stronger UV-induced fluorescence, especially in the middle parenchyma. Loading 2 (Figure 10C) described the relative intensity of the two parenchyma tissues, thus attesting to the generally higher fluorescence in the middle parenchyma except for the U1-induced fluorescence, which was slightly higher in the parenchyma near the rind. The interaction was also significant, highlighting that the differences near the rind and middle parenchyma were enhanced for some lines, such as M09 and M05. As expected, M04 was found to be different from the other lines. Other lines, such as M05, were found to be characteristic. For this line, the visible fluorescence in the middle parenchyma was very low, which could be related to the low lignin content of this line. In addition, the intensity difference between the middle and near the rind parenchyma was important, the cell content was found near the rind, and relatively high U1-induced fluorescence compared to U2-induced fluorescence could be observed, especially near the rind.
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FIGURE 10. Macrofluorescence analysis of the parenchyma tissues of 14 inbred lines: principal component analysis. (A,B) Sample similarity maps of components 1–2 (71 and 18% of the total variance) according to tissues and inbred lines. (C) Loadings 1 and 2. The similarity maps reveal the significant variabilities between inbred lines and between parenchyma near the rind and middle parenchyma.


In summary, this analysis revealed that fluorescence properties were primarily tissue-dependent but also clearly line-dependent. In particular, the relative fluorescence emission after blue excitation seemed to be similar within an inbred line regardless of the tissue. These differences should be related to variations in the lignin content, composition and structure or in the phenolic acid contents.



Exploring the Correlation Between Biochemical Data and Tissue Fluorescence

Because the fluorescence properties of compounds depend on several factors, the interpretation of fluorescence variations is not straightforward. We investigated the correlation between tissue fluorescence pseudospectra and the relative amounts of fluorescent chemical compounds to further explore their tissue origin. The tissue fluorescence pseudospectra were normalised according to the individual sections, and this normalisation still allowed for the preservation of the relative intensity variations among the rind, vascular bundles and parenchyma. In parallel, the relative lignin, ferulic and para-coumaric acid amounts were considered after normalisation to their total amount (Table 2). A drawback is that this normalisation generates correlations between the variables. Thus, the correlation coefficient values were −0.94 between lignin and para-coumaric acid amounts, −0.54 between lignin and ferulic acid amounts, and 0.23 between para-coumaric and ferulic acid amounts.

Correlation coefficients were drawn according to the channels of the tissue pseudospectra (Figure 11). Significant coefficients are highlighted by black points. The correlation was always reversed for lignin and hydroxycinnamic acids, which is expected from the correlation induced by normalisation. For all tissues, a significant positive correlation was found between lignin and blue-induced fluorescence. This finding suggests that lignin is observed regardless of the tissue and that a high relative amount measured for the whole stem occurs in all tissues. In the case of the middle parenchyma, the lignin correlation is also related to red emission after U2 and green excitation. For para-coumaric acid, significant positive correlations were found for UV-induced fluorescence in the rind and in the parenchyma near the rind but not in vascular bundles and middle parenchyma. A significant positive correlation was found for ferulic acid in the parenchyma near the rind and to a lesser extent in the middle parenchyma. These results indicate that para-coumaric acids are mainly localised in the rind and parenchyma near the rind, and localisations of ferulic acids are mainly located in the parenchyma near the rind and in the middle parenchyma. In addition, the ferulic acid fluorescence signal was revealed mainly after U1 excitation, i.e., for shorter excitation wavelengths, while para-coumaric acid was revealed using both U1 and U2 filters.
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FIGURE 11. Macrofluorescence analysis. Correlation among lignin, para-coumaric acid (pCA), ferulic acid (FA) and tissue autofluorescence pseudospectra: (A) middle parenchyma, (B) parenchyma near the rind, (C) rind, and (D) vascular bundles. Significant coefficients are highlighted by black points. For all tissues, a significant positive correlation was found between lignin and blue-induced fluorescence. For para-coumaric acid, significant positive correlations were found for UV-induced fluorescence in the rind and in the parenchyma near the rind but not in vascular bundles and middle parenchyma.







DISCUSSION AND CONCLUSION

The objective of the present work was the histological quantification of the morphology and fluorescence signature of maize forage stem sections for a set of 14 inbred lines used as parents for maize hybrid production. In addition to the relationship with end-use properties such as digestibility, this work aimed to explore the methodological potential of two techniques, namely, darkfield and fluorescence imaging, to study maize stem collection. Macrovision was retained to acquire images of whole stem sections with a fair pixel resolution, thus allowing for the quantification of cell size together with tissue proportions. The INRAE BlueBox prototype is dedicated to morphological plant tissue imaging with good contrast without any labelling because of darkfield illumination. This kind of illumination, which is less sensitive to variations in the density of walls than the usual transmitted light, is more suited to cell size analysis directly from grey-level images without any cell segmentation. Automated fluorescence macroscopes for multispectral image acquisition are the tools of choice for studying the autofluorescence properties of phenolic compounds in plant tissues. Both techniques should be considered medium-throughput methods that allow for the acquisition of 1 cm2 large images in approximately 5 and 20 mins per image for the BlueBox and the fluorescence macroscope, respectively. In the present work, sections were observed after being stored in ethanol, i.e., ethanol soluble material was removed, which led to the emptying of the cells except in the rind or in the parenchyma near the rind, where residual cell contents remained for some inbred lines. The fluorescence properties of this material suggest that it could be residual chlorophyll.

Image analysis was implemented to extract morphological features and autofluorescence pseudospectra. Four tissues were studied: rind, vascular bundles, parenchyma near the rind and middle parenchyma. In the present work, serial sections were used for the two devices, and images were segmented separately. One improvement would be to acquire images exactly for the same section and develop a segmentation workflow that takes into account both fluorescence and darkfield properties. For both images, the segmentation workflow was based on the same image processing steps, i.e., grey-level and size thresholds and alternating filtering, and it was fully automated. The only user intervention was to validate and adapt if necessary the automatic or preset thresholds. The rind, vascular bundles and parenchyma regions of interest were extracted. The rind segmented from the darkfield images corresponded to a material-dense region, with small cells having thick walls and bundles with thick sclerenchyma sheaths. The segmentation was also partially dependent on the occurrence of cell contents in and near the rind. The parenchyma near the rind was not segmented in the same manner. The 500 μm below the rind was examined to demonstrate the presence or absence of differences with the middle parenchyma. For this parenchyma, the cell size was smaller, and the fluorescence differences with the middle parenchyma were dependent on the line.

In this manuscript, 3D descriptors were estimated from 2D images given some assumptions. Indeed, the morphological descriptors were computed based on an estimation that considered the cell wall density of parenchyma tissues and the stem as a cylinder and the same histology of cross-sections all along the cylinder. The total derived cell wall amount can be interpreted as the relative areas of rind, bundles and parenchyma cell walls in the stem section. The fluorescence pseudospectra were also normalised by considering the parenchyma cell wall density.

We found a strong inbred line effect on the morphological descriptors. The most discriminant features were (1) the relative amount of rind and parenchyma tissues together with the density and size of individual bundles, (2) the stem area, and (3) the middle parenchyma cell diameter and distribution of the total vascular bundle amount. No correlation was observed between cell size and stem section, indicating that the diameter of the stem would rather depend on the number of cells in the parenchyma. A significant inverse correlation was observed between the vascular bundle size and density. Heckwolf et al. (2015) and Zhang et al. (2021) also found variations in stem diameter as well as in the area of the rind and pith of the inbred lines they analysed. Zhang et al. (2021) further analysed the variation in vascular bundle traits and reported wide phenotypic variations in vascular bundle size, number, and distribution density. Thirty of the phenotypic traits related to bundles showed high heritability, suggesting that the observed variations were at least partly of genetic origin. At the scale of whole cross-sections, they observed a negative correlation between the vascular bundle area and density, which was also observed in this study. However, neither of these studies considered the size of the cells in the parenchyma.

We did not find any correlation between the morphological descriptors and the phenolic composition of the 14 inbred lines, which could be explained by several hypotheses. First, biochemical measures were obtained from the whole stem, including the node, and we analysed sections taken in the middle of the internode. Second, none of the three phenolic constituents, i.e., lignin, para-coumaric or ferulic acids, can be considered tissue-specific biochemical markers. This conclusion is consistent with the results of the fluorescence pseudospectral analysis, at least for lignin. Indeed, the correlation profiles of the relative amount of lignin with the tissue pseudospectra clearly showed that a higher level of lignin resulted in a higher visible-induced fluorescence in all tissues.

Specific fluorescence signatures with a predominant tissue effect have been identified, and the inbred line effect was also always found to be significant. The rind, as the most lignified tissue, showed strong visible-induced fluorescence. Our results suggest that the colour of the visible-induced fluorescence, which was line-dependent, may depend on the amount of colocalised lignin and para-coumaric acid.

The relative amount of para-coumaric acid was found to be significantly correlated with the UV-induced fluorescence intensity in the rind and in the parenchyma near the rind, while ferulic acid was significantly correlated mainly with the parenchyma near the rind. In grasses, para-coumaric acid is ester linked to lignin and, to a lesser extent, to hemicelluloses (Hatfield et al., 2017). Since the rind is highly lignified, the presence of para-coumaric acid was expected. More surprisingly, para-coumaric acid was present in the parenchyma near the rind.

The parenchyma near the rind was less fluorescent on average than the middle parenchyma, although the extent of the difference was dependent on the inbred lines. Fasga staining is performed to reveal tissue lignification and often reveals this parenchyma region (El Hage et al., 2018). In this manuscript, the parenchyma Fasga that was coloured in red was correlated to the lignin amount, cell wall digestibility, and para-coumaric acid content (to a lower extent). They did not find any correlation between the lignin content and the red intensity in the rind or the number or density of bundles in the stem.

To further interpret the differences in autofluorescence between the tissues, it would be useful to have additional information about the biochemical composition of the different tissues. For example, the amount of etherified ferulic acid was not determined. Fasga or other lignin selective staining, such as Wiesner or Maüle staining, could be advantageously used to confirm the localisation of lignified tissues and reveal chemical differences in the lignin type (Méchin et al., 2005). Immunolabelling using antibodies would allow further identification and localisation of hydroxycinnamic acids (Philippe et al., 2007; Tranquet et al., 2009). Microspectroscopic techniques, such as Raman or infrared imaging (Gierlinger, 2018), would allow further localisation of phenolic compounds together with cell wall polysaccharides.
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Aboveground biomass (AGB) and leaf area index (LAI) are important indicators to measure crop growth and development. Rapid estimation of AGB and LAI is of great significance for monitoring crop growth and agricultural site-specific management decision-making. As a fast and non-destructive detection method, unmanned aerial vehicle (UAV)-based imaging technologies provide a new way for crop growth monitoring. This study is aimed at exploring the feasibility of estimating AGB and LAI of mung bean and red bean in tea plantations by using UAV multispectral image data. The spectral parameters with high correlation with growth parameters were selected using correlation analysis. It was found that the red and near-infrared bands were sensitive bands for LAI and AGB. In addition, this study compared the performance of five machine learning methods in estimating AGB and LAI. The results showed that the support vector machine (SVM) and backpropagation neural network (BPNN) models, which can simulate non-linear relationships, had higher accuracy in estimating AGB and LAI compared with simple linear regression (LR), stepwise multiple linear regression (SMLR), and partial least-squares regression (PLSR) models. Moreover, the SVM models were better than other models in terms of fitting, consistency, and estimation accuracy, which provides higher performance for AGB (red bean: R2 = 0.811, root-mean-square error (RMSE) = 0.137 kg/m2, normalized RMSE (NRMSE) = 0.134; mung bean: R2 = 0.751, RMSE = 0.078 kg/m2, NRMSE = 0.100) and LAI (red bean: R2 = 0.649, RMSE = 0.36, NRMSE = 0.123; mung bean: R2 = 0.706, RMSE = 0.225, NRMSE = 0.081) estimation. Therefore, the crop growth parameters can be estimated quickly and accurately using the models established by combining the crop spectral information obtained by the UAV multispectral system using the SVM method. The results of this study provide valuable practical guidelines for site-specific tea plantations and the improvement of their ecological and environmental benefits.
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INTRODUCTION

Intercropping, as the essence of traditional agriculture, has the advantages of increasing yield and quality (Mao et al., 2014; Egesa et al., 2016), promoting the utilization of nutrient resources (Rivest et al., 2010; Crème et al., 2016; Davies et al., 2016), increasing biodiversity (Bainard et al., 2011; Sanaa et al., 2016), and reducing pests and weeds (Brooker et al., 2015; Lopes et al., 2016). Tea plants [Camellia sinensis (L.) O. Kuntze] are cultivated worldwide as an economical woody plant, which grow in warm, humid, and light scattering regions. The different intercropping patterns of tea plantations, such as tea-fruit and tea-soybean intercropping, will be more in line with the biological characteristics of tea plant growth by improving microenvironment and resource utilization. Previous studies have shown that diverse agroforestry-tea intercropping systems, such as tree/tea and soybean/tea cannot only regulate the ecological environment of tea plantation, improve the soil nutrition, but also reduce the occurrence of diseases and insect pests and grass, and achieve high yield and quality (Sedaghathoor and Janatpoor, 2012; Li et al., 2019). However, the intercropping density and the growth status of intercropping crops have a great influence on the growth of tea plants (Natarajan and Willey, 1980; Huang et al., 2019). A better understanding of the growth and development of intercropping crops is of great significance for guiding young tea plantation intercropping techniques and improving planting benefits.

Aboveground biomass (AGB) and leaf area index (LAI) are two main parameters of crop growth, which can reflect the growth status of legumes intercropped in young tea plantations, thus contributing to production management in tea plantations (Li et al., 2015; Liu B. et al., 2017). Rapid and accurate estimation of these two parameters can provide a strong basis for the timely formulation of management measures for young tea plantations (Li B. et al., 2020). However, the traditional crop growth assessment method is based on destructive sampling, which is to manually collect data samples in the field, or use field measuring instruments to evaluate crops (Freeman et al., 2007; Yue et al., 2018; Afrasiabian et al., 2020). Although this method is accurate, it is destructive, labor-intensive, time-consuming, and not operationally feasible for large-scale spatial and temporal measurements (Wang et al., 2017). Another relatively new method is to use instruments for measurement, which is less destructive to crops, but external factors have a certain impact on experimental equipment, and it is also difficult to apply to rapid monitoring of field crops.

In recent years, high-throughput non-destructive plant phenotyping techniques based on UAV are becoming a powerful tool for crop monitoring, due to the advantages of convenient operation, high spatial and temporal resolution, and reasonable spatial coverage, such as crop plot detection (Liu H. et al., 2017), crop growth status monitoring (Pölönen et al., 2013; Harkel et al., 2019; Maimaitijiang et al., 2019), crop yield prediction (Zhou et al., 2017; Gilliot et al., 2020; Li B. et al., 2020), and plant water status assessment (Romero et al., 2018). Machine learning, as an important data analysis method, has been used to establish crop remote sensing estimation models combined with spectral parameters of remote sensing images. For example, Jin et al. (2015) used a vegetation index (VI) and radar parameter to accurately estimate the LAI (R2 = 0.83) and biomass (R2 = 0.90) of winter wheat using partial least-squares regression (PLSR). Devia et al. (2019) used an unmanned aerial vehicle (UAV)-based multispectral system for aerial crop monitoring to combine seven VIs of rice growth in a multivariate regression model to estimate rice biomass. Furthermore, it was confirmed that this method could estimate crop biomass in a large area with an average correlation coefficient of 0.76. Han et al. (2019) pointed out that the random forest (RF) model derived from the crop surface model using VIs and crop height correlation indicators can predict corn biomass (R2 = 0.699, root-mean-square error (RMSE) = 1.2), and its accuracy is slightly higher than that of the backpropagation artificial neural network (ANN) and stepwise multiple linear regression (SMLR) models. Qi et al. (2020) developed a model for the estimation of peanut LAI by using a backpropagation neural network (BPNN) with UAV-based multispectral image data (R2 = 0.968, RMSE = 0.165). Tatsumi et al. (2021) constructed a tomato biomass estimation model using red-green-blue (RGB) and multispectral image data acquired from UAV with feature variable selection and machine learning and improved the estimation accuracy (rRMSE = 8.8–28.1%). Similarly, Jiang et al. (2019) established a model for the estimation of rice biomass by using RGB and multispectral image data obtained from UAV and further improved the estimation accuracy of the model by combining meteorological data with RF (R2 = 0.92, RMSE = 126.28 g/m2).

However, there were few reports on the use of UAV-based multispectral image data combined with machine learning to monitor crop growth of tea plantations, and it is difficult to provide valuable data support and practical guidance for site-specific management decisions and the construction of smart tea plantations. Therefore, this study attempts to use UAV-based multispectral imagery combined with ground-measured sample data to explore the feasibility of estimating AGB and LAI using the spectral parameters in intercropping tea plantations. The spectral parameters sensitive to crop growth response were selected according to the correlation analysis. Then, the remote sensing monitoring models of intercropping crop growth parameters suitable for young tea plantation were constructed using machine learning, and the estimation performance of five machine learning models was evaluated: (1) Simple linear regression (LR), (2) SMLR, (3) PLSR models, (4) support vector machine (SVM), and (5) BPNN. We hypothesized that the SVM method can simulate both linear and non-linear relationships between multiple independent variables and one factor. Compared with other modeling methods, the SVM model should have a higher degree of explanation for AGB and LAI. It is hoped that the results of this study can provide basic data and theoretical support for the growth monitoring of crops in young tea plantations in order to provide valuable practical guidelines for site-specific tea plantations and the improvement of their ecological and environmental benefits.



MATERIALS AND METHODS


Study Area and Experimental Design

The field experiment was conducted at the tea research demonstration base of Qingdao Agricultural University (36°26 N, 120°34 E, average altitude 54.47 m a.s.l.). The area has a warm temperate continental monsoon climate, with precipitation mostly occurring during summer and autumn and a large temperature difference between day and night. The average annual temperature is 12.1° (the annual maximum/minimum temperature is 38.6/−18.6°), and the annual average precipitation is 708.9 mm. The experimental tea plantation covers an area of 100 m × 30 m, with a soil pH of 6.5. The location diagram of the experiment area is shown in Figure 1A.
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FIGURE 1. Research area. (A) The location of the experiment area; (B) experimental design.


The tea plants planted in the tea plantation are half-year seedlings and the variety was Zhongcha 108, with a total of 11 rows. In early June 2020, mung bean and red bean were planted in the tea plantation, and the varieties, namely, Zhonglv 4 and Qidonghong were used. Red bean (Vigna angularis L.) and mung bean (V. radiata (L.) Wilczek) were planted in rotation with 6 rows each. Each row was divided into 10 plots, with a total of 120 plots. The specific test design is shown in Figure 1B.



Unmanned Aerial Vehicle Imagery Data Acquisition and Preprocessing

Multispectral cameras and accessories were mounted on a UAV platform (DJI M200 V2, DJI, Shenzhen, China) during data collection. The UAV has four propellers, is equipped with two 7,660 mAh (22.8 V) batteries with a battery life of 38 min, and can maintain stability at low speed and low altitude; for the data acquisition, the takeoff mass was 5.5 kg. Images were taken at 25 m above ground level (AGL) at a speed of 1.5 m/s. The collection dates were July 24 and August 11, 2020.

Multispectral images were acquired using a multispectral camera MS600 (Yusense, Qindao, Shandong, China), which has a resolution (effective pixels) of 1,280 × 960 pixels. The multispectral camera used in this experiment was equipped with six spectral wavebands, namely blue, green, red, red edge, and two near-infrared wavebands (Table 1). A downward light sensor system was installed horizontally on the top of the UAV to measure the environmental irradiance and the readings of post-calibrate reflectance. As another source of radiometric calibration data, the standard panel attached to the multispectral camera was used for image calibration on the ground before each flight. Images in this study were captured in sub-centimeter pixel resolution, and the flight survey was configured with an 80% side and 80% forward overlap. The original multispectral images obtained from each aerial photography operation were processed using Yusense map V1.0 software (Yusense, Qindao, Shandong, China) to generate a complete multispectral image. Then, the average digital number (DN) values of the six bands of each experimental cell are extracted using ENVI 5.2 software (Research Systems Inc., Boulder Co., United States) for subsequent processing.


TABLE 1. Center wavelength and full width at half maximum (FWHM) bandwidth of each spectral band of the multispectral camera.
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Ground Data Acquisition

Field measurements were conducted on the same days as the UAV surveys to provide ground-truth data. To measure the LAI of red bean and mung bean accurately, a place with uniform crop growth (1 m × 1 m) in each plot was selected to measure the LAI using CI-110 plant canopy digital image analyzer (CID Bio-Science Inc., WA, United States). When measuring LAI, direct sunlight was avoided. First, a blank value was measured above the crop canopy, and then four values were randomly measured below the crop canopy. The average LAI of mung bean and red bean in the community was obtained by maintaining the lens level throughout the measurement, and the results are shown in Figure 2.


[image: image]

FIGURE 2. The ground-truth data for leaf area index (LAI) and aboveground biomass (AGB) of intercropping crops. (A) AGB of red bean and mung bean; (B) LAI of red bean and mung bean.


After the measurement of LAI, mung bean or red bean were randomly selected from experimental plots, which were intercepted from the height of 1 cm above the ground, and the total number of plants in the sampling area was measured. The sample was placed in a paper bag, and the fresh biomass of the sample was measured immediately. The paper bag was placed in an oven at 80° for 24 h and maintained in a constant mass state. Then the sample was weighed to determine the dry mass to estimate the total biomass of the whole plot, and the results are shown in Figure 2.



Selection of Spectral Parameters

A spectral parameter should combine the reflectance of different bands with a VI in a certain way, which can reduce the influence of background environmental information on the crop canopy spectrum. According to previous studies, we selected 22 VIs and combined them with the 6 spectral bands of the MS600 multispectral camera to estimate the AGB and LAI of red bean and mung bean. Specific spectral parameters are shown in Table 2.


TABLE 2. The spectral parameters used in this study.
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Data Analysis

In this study, 120 datasets of red bean and mung bean were collected. Each dataset was composed of ground measurement data and UAV remote sensing data. In data analysis, three-fourth (90 datasets) and one-fourth (30 datasets) of the total data were divided into training sets and test sets, respectively. In the training sets, the LR method was used to establish growth parameter estimation models based on a single spectral parameter, and the SMLR method was used to establish growth parameter estimation models based on multiple spectral parameters. These two different established models were evaluated using the test datasets. The feasibility of the models was evaluated by the coefficient of determination (R2), root-mean-square error (RMSE), and normalized RMSE (NRMSE). A larger R2 value indicates a better model fit, while smaller RMSE and NRMSE values indicate a higher model accuracy. Finally, the estimation models of AGB and LAI were established by using three machine learning methods: PLSR, SVM, and BPNN. In the process of model building, the random 10-fold cross-validation method was used to divide 120 sample data into 10 parts. Each time, 90% of all samples was used to fit the model, and the remaining 10% was used as a test set to estimate performance metrics. This process was repeated ten times, and each model was run 100 times in total. The mean values of R2, RMSE, and NRMSE were calculated to evaluate the accuracy of AGB and LAI estimation models. The values of R2, RMSE, and NRMSE were calculated using the following formulas (1)–(3), respectively:

[image: image]

where xi is the measured AGB or LAI for red bean and mung bean, [image: image] is the average measured AGB or LAI, yi is the AGB or LAI predicted by the model, and n is the number of data points.




RESULTS


Correlation Analysis Between Spectral Parameters With Growth Parameters

To select the spectral parameters that are highly correlated with the growth parameters (AGB and LAI) of red bean and mung bean, the correlation analysis between 28 spectral parameters and the growth parameters of red bean and mung bean (Figure 3) was carried out. For the AGB and LAI of red bean, the spectral parameters with the strongest correlation were RVI1 and red-edge chlorophyll index, and their correlation coefficients were 0.847 and 0.783, respectively. For the AGB and LAI of mung bean, the spectral parameters with the strongest correlation were RVI1 and B.450, and their correlation coefficients were 0.801 and 0.774, respectively. In general, most of the spectral parameters selected in this study had a strong correlation with the growth parameters, which can be used for the modeling and inversion of AGB and LAI of red bean and mung bean.


[image: image]

FIGURE 3. Correlation coefficients between spectral parameters and growth parameters (AGB and LAI) of intercropped crops. (A) AGB and LAI of red bean; (B) AGB and LAI of mung bean.




Estimation of Aboveground Biomass and Leaf Area Index Using Optimal Spectral Parameters Combined With Simple Linear Regression

To evaluate the direct relationship between spectral parameters and crop growth parameters, the LR method was used to establish AGB and LAI estimation models of red bean and mung bean in the training set using the optimal spectral parameters screened by correlation analysis (Table 3). Then, we verified the models with a test set (Figure 4). The training results showed that RVI1 could explain 76.1% (RMSE = 0.168 kg/m2, NRMSE = 0.157) and 62.6% (RMSE = 0.088 kg/m2, NRMSE = 0.113) of AGB variation in red bean and mung bean, respectively. As for LAI, the optimal spectral parameter red-edge chlorophyll index (RECI) could explain 63.4% (RMSE = 0.376, NRMSE = 0.129) of the LAI variation in red bean and B.450 could explain 59.1% (RMSE = 0.25, NRMSE = 0.09) of the LAI variation in mung bean. In addition, for growth parameters of red bean, these models deteriorated with the test dataset and the explanatory degree for AGB and LAI variation decreased to 52.4% (RMSE = 0.194 kg/m2, NRMSE = 0.187) and 56.3% (RMSE = 0.357, NRMSE = 0.119), respectively (Figures 4A,C). In contrast, for growth parameters of mung bean, the models performed better with the test dataset and the explanatory degree for AGB and LAI variation increased to 66.3 and 62.1%, respectively. At the same time, the values of RMSE increased to 0.113 and 0.271, and the values of NRMSE increased to 0.138 and 0.096, respectively (Figures 4B,D).


TABLE 3. Performance indicators of the AGB and LAI estimation models established by the LR method using the optimal spectral parameters in the training set.
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FIGURE 4. Relationship between the predicted and measured AGB and LAI obtained by using linear regression (LR) methods using the optimal spectral parameters in the test set. (A) AGB of red bean; (B) AGB of mung bean; (C) LAI of red bean; (D) LAI of mung bean. The red line is a 1:1 line.




Estimation Aboveground Biomass and Leaf Area Index Using Spectral Parameters Combined With Stepwise Multiple Linear Regression

To compare the growth parameter estimation models based on the optimal spectral parameters, we screened out 2–4 spectral parameters with a high correlation with the growth parameters of red bean and mung bean. Then, the SMLR method was used to establish AGB and LAI estimation models in the training set (Table 4). SMLR analysis showed that the models explained 85.7% (RMSE = 0.133 kg/m2, NRMSE = 0.125) and 75.7% (RMSE = 0.073 kg/m2, NRMSE = 0.093) of AGB variation in red bean and mung bean. Similar results were obtained for LAI. These models explained 69.8% (RMSE = 0.351, NRMSE = 0.121) and 67.2% of LAI (RMSE = 0.227, NRMSE = 0.081) variation in red bean and mung bean, respectively.


TABLE 4. Performance indicators of AGB and LAI estimation models established by the SMLR methods in the training set.

[image: Table 4]

To evaluate the performance of the AGB and LAI estimation models constructed using SMLR, we plotted the relationship between the measured values and predicted values of AGB and LAI in the test dataset (Figure 5). Compared with the training set, the SMLR model showed a greater decrease in the explanatory degree of AGB variation, indicating that the estimation accuracy of the model decreased significantly. The NRMSE value increased to 0.129, indicating that the AGB estimation model of red bean was not stable. Compared with the training set, the SMLR model had lower explanatory power for AGB variation and higher NRMSE value, indicating that the accuracy of the estimation models of AGB of red bean decreased significantly and its stability was not good (Figure 5A). The accuracy of other models was basically consistent with the results of the training set, indicating that the stability of models was better. Compared with evaluation indexes of the LR models based on optimal spectral parameters, the R2 values of SMLR models based on multispectral parameters increased, while the RMSE and NRMSE values decreased. These results indicated that the performance of SMLR models was better than LR models in estimating the growth parameters of red bean and mung bean.


[image: image]

FIGURE 5. Relationship between the predicted and measured AGB and LAI obtained by using the SMLR models within the test dataset. (A) AGB of red bean; (B) AGB of mung bean; (C) LAI of red bean; (D) LAI of mung bean. The red line is a 1:1 line.




Estimation of Aboveground Biomass and Leaf Area Index Using Spectral Parameters Combined With SVMs, Partial Least-Squares Regression, and Backpropagation Neural Network

In addition, to evaluate the performance of SVMs, PLSR, and BPNN) in the estimation of crop growth parameters, we established AGB and LAI estimation models of red bean and mung bean by combining SVM, PLSR, and BPNN with spectral parameters. To prevent overfitting caused by using too many independent variables when establishing models, we selected five spectral parameters with high correlation for each growth parameter for modeling and analyzing according to the results of correlation analysis (Supplementary Figure 1). The training results given in Figure 6 indicated that the SVM method showed better performance than other methods in the estimation of the AGB and LAI of red bean and mung bean. Compared with PLSR and BPNN models, SVM models had the highest R2 values and relatively low RMSE and NRMSE values, indicating that SVM models had the highest accuracy in the estimation of the growth parameters of red bean and mung bean. Although BPNN also provided higher R2 values in the estimation of the growth parameters of red bean and mung bean, the obtained RMSE and NRMS values were higher with high variability. In addition, the accuracy of estimating the AGB of the red bean by three methods was better than that of mung bean, but the performance was the opposite in LAI estimation. The SVM models obtained the highest values of R2 and the lowest values of RMSE and NRMSE when estimating the growth parameters of red bean and mung bean in the test set (Figure 7). These results prove the excellent performance of the SVM models in estimating the growth parameters of red bean and mung bean. Similarly, the PLSR models were still the least applicable model for estimating the LAI and AGB of red bean and mung bean.


[image: image]

FIGURE 6. Boxplots for the coefficient of determination (R2), root-mean-square error (RMSE), and normalized RMSE (NRMSE) of the training results of SVM, PLSR, and BPNN models. (A) AGB of red bean and mung bean; (B) LAI of red bean and mung bean. The point plots indicate outliers encountered during the phase of the 100 different verifications repetitions and the black multiplication sign indicates the mean value.



[image: image]

FIGURE 7. Box plots of coefficient of determination (R2), RMSE, and NRMSE of test results of SVM, PLSR, and BPNN. (A) AGB of red bean and mung bean; (B) LAI of red bean and mung bean. The point plots indicate outliers encountered during the phase of the 100 different test repetitions and the black multiplication sign indicates the mean value.


To further compare the differences between the performance indicators calculated by using the training dataset and the test dataset in the three methods, we had drawn comparison charts of line segment connection (Figures 8, 9). For AGB of red bean, the SVM model showed high performance (Figure 8A). In the training set, the SVM model could explain 88.2% of the AGB variation in red bean, and the RMSE and NRMSE values were 0.113 and 0.116, respectively. In the test set, the explanatory degree of the SVM model for AGB variation decreased to 81.1%, RMSE and NRMSE increased to 0.137 and 0.134, respectively. Although the explanatory degree of AGB variation and RMSE value of the SVM models changed greatly, the prediction accuracy and stability of the models were better than that of PLSR and BPNN models. For AGB of mung bean, the SVM model showed better stability (Figure 8B). In both the training set and the test set, the SVM model had the highest explanatory degree (80.5 and 75.1%) of AGB variation and the lowest RMSE (0.070 and 0.078) and NRMSE (0.116 and 0.134). The difference between training results and test results was small, which is more stable than other models.


[image: image]

FIGURE 8. The difference between the performance indicators for AGB estimation of red bean and mung bean using three machine learning methods within training and test datasets. (A) Red bean; (B) mung bean.



[image: image]

FIGURE 9. The difference between the performance indicators for LAI estimation of red bean and mung bean using three machine learning methods within training and test datasets. (A) Red bean; (B) mung bean.


Similarly, the SVM model also showed high performance for LAI estimation of red bean and mung bean (Figure 9). In the training set and test set, the explanatory degrees of the SVM model for LAI variation were 70.5 and 64.9%, for RMSE were 0.326 and 0.360, and NRMSE were 0.116 and 0.134, respectively. The explanatory degrees of LAI for mung bean were 74.1 and 70.6%, RMSE were 0.208 and 0.225, NRMSE were 0.11 and 0.123, respectively. In terms of overall performance indicators, the SVM models had better accuracy than the PLSR model and BPNN model and had lower RMSE and NRMSE as well as small test differences.




DISCUSSION


The Spectral Data Obtained From Unmanned Aerial Vehicle Multispectral Image Can Reliably Reflect the Growth Status of Crops Intercropped in Tea Plantation

Monitoring the growth of intercropping crops in tea plantations and guiding the formulation of tea plantation management measures using UAV-based multispectral imagery are very attractive. The results indicated that a single spectral parameter can be used to estimate the AGB and LAI of crops. However, the optimal spectral parameters for estimating growth parameters of red bean and mung bean were different, among which RVII could accurately estimate AGB, while RECI and B.450 were more suitable for estimating LAI. The difference between optimal spectral parameters for estimating AGB and LAI indicated that different VIs showed different sensitivities to AGB and LAI changes in different crops. Similarly, Li W. et al. (2020) found that RVI had a strong correlation with wheat biomass and LAI in the process of using meteorological factors and spectral information to study the disease measurement model of winter wheat, and Liu et al. (2019) also proved that RVI is an important VI for estimating biomass of winter oilseed rape. These conclusions were consistent with our results.

In addition, it was reported that LAI and AGB could exert a certain influence on the spectral reflectance of crop canopy in near infrared (NIR) and visible spectrum (Anthony et al., 2012; Liu et al., 2012; Jin et al., 2015). Qi et al. (2020) found that red and near-infrared bands were sensitive bands for LAI in the process of estimating the LAI of peanuts by using UVA multispectral images. According to the calculation formula of spectral parameters in Table 4, RVI1 is composed of red band and near-infrared band, and the red-edge chlorophyll index is composed of the red-edge band and near-infrared band. Jin et al. (2015) found that enhanced VI (EVI) with the blue band could estimate LAI and biomass more accurately than other spectral parameters when estimating LAI and biomass of wheat using multitemporal optical and radar parameters. In this study, the optimal spectral parameter B.450 used to estimate the LAI of mung bean represents the blue band, which is consistent with this result. In contrast, in the remote sensing monitoring of sorghum growth and development based on UAV system, Li et al. (2018) found that NDVI and RDVI showed a good exponential correlation with biomass; Shafian (2018) also proved that there was a high correlation between NDVI and LAI. Although the calculation of these two spectral parameters has a red band and near-infrared band, in our study, the correlation between these two spectral parameters and AGB and LAI of mung bean and red bean is not the highest, which may be due to some interference of shadow soil pixels in the process of extracting spectral parameters. Some studies also pointed out that the saturation problem of NDVI would reduce its function of predicting LAI under very high LAI values (Feng et al., 2020). However, the growth period of red bean and mung bean was relatively short and the growth rate was very fast, resulting in higher LAI data values collected later, which further leads to the low correlation between NDVI and the LAI of mung bean and red bean in this study.



Different Machine Learning Algorithms Combined With Spectral Data Can Effectively Estimate the Growth Parameters of Intercropping Crops in Tea Plantation

In addition to single spectral parameters, SMLR, PLSR, SVM, and BPNN algorithms were used to monitor the growth parameters of intercropping crops in tea plantations. The results showed that the SMLR and PLSR models performed significantly better than the LR models, which is consistent with LAI estimation of peanut (Qi et al., 2020) and LAI and AGB estimation of winter wheat (Tao et al., 2020). The reason is that SMLR models and PLSR models use more spectral information related to the variables of interest than single spectral parameter models (Qin et al., 2017; Wei et al., 2018).

In addition, compared with the LR models based on a single spectral parameter or SMLR and PLSR models based on multiple parameters, the SVM and BPNN models can realize non-linear mapping between input and output variables. Therefore, the performance of the SVM and BPNN models in the estimation of growth parameters was better than other models. When the two models were compared, the SVM models still maintained excellent performance. Both the training results and test results of models maintained a high explanatory degree for AGB and LAI variations of red bean and mung bean. Because the SVM method is suitable for small samples, the BPNN method is usually used for a large number of sampled data (Zhu et al., 2019). However, the sample size used to construct models in this study is small, which highlights the superiority of the SVM method. In conclusion, the SVM model can effectively estimate the growth parameters of intercropping crops in tea plantations, and the fitting, stability, and accuracy of this model are better than other models. The superior performance of the SVM method observed in this study is consistent with previous results. For example, Yang X. et al. (2008) found that the SVM method had good learning ability and robustness in estimating the LAI of rice, while Yue et al. (2017) also proved that SVM had strong adaptability in estimating AGB of grassland. However, other studies have shown that PLSR provides better results than SVM in estimating crop growth parameters (Marabel and Alvarez-Taboada, 2013). This difference might depend on the degree of non-linearity in the relationships, the degree of multilinearity and noise in the independent variables, and how accurately the SVM parameters can be tuned (Christoffer et al., 2013). However, our crop growth data precisely fit the advantages of SVM in simulating non-linear relationships, thus highlighting the superiority of the SVM model in estimating growth parameters.




CONCLUSION

Reasonable and reliable estimation of AGB and LAI is of great significance for monitoring crop growth and agricultural site-specific management decision-making. In this study, five machine learning algorithms (LR, SMLR, PLSR, SVM, and BPNN) were used to estimate AGB and LAI of red bean and mung bean in tea plantations based on the extracted multispectral image features collected by UAV remote sensing system. The results showed that the SVM and BPNN models, which can simulate non-linear relationships, were more accurate in estimating AGB and LAI of red bean and mung bean compared with simple LR, SMLR, and PLSR models. In particular, the SVM model provides higher performance in the estimation of AGB and LAI of red bean and mung bean. Both RMSE and NRMSE of the training set and test set were smaller, and the explanatory degree for AGB and LAI variation was higher. It is proved that the use of UAV multispectral image data combined with machine learning methods can effectively monitor the growth status of crops in tea plantations and provide valuable practical guidelines for site-specific tea plantations and the improvement of their ecological and environmental benefits.
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Intelligent detection and localization of mature citrus fruits is a critical challenge in developing an automatic harvesting robot. Variable illumination conditions and different occlusion states are some of the essential issues that must be addressed for the accurate detection and localization of citrus in the orchard environment. In this paper, a novel method for the detection and localization of mature citrus using improved You Only Look Once (YOLO) v5s with binocular vision is proposed. First, a new loss function (polarity binary cross-entropy with logit loss) for YOLO v5s is designed to calculate the loss value of class probability and objectness score, so that a large penalty for false and missing detection is applied during the training process. Second, to recover the missing depth information caused by randomly overlapping background participants, Cr-Cb chromatic mapping, the Otsu thresholding algorithm, and morphological processing are successively used to extract the complete shape of the citrus, and the kriging method is applied to obtain the best linear unbiased estimator for the missing depth value. Finally, the citrus spatial position and posture information are obtained according to the camera imaging model and the geometric features of the citrus. The experimental results show that the recall rates of citrus detection under non-uniform illumination conditions, weak illumination, and well illumination are 99.55%, 98.47%, and 98.48%, respectively, approximately 2–9% higher than those of the original YOLO v5s network. The average error of the distance between the citrus fruit and the camera is 3.98 mm, and the average errors of the citrus diameters in the 3D direction are less than 2.75 mm. The average detection time per frame is 78.96 ms. The results indicate that our method can detect and localize citrus fruits in the complex environment of orchards with high accuracy and speed. Our dataset and codes are available at https://github.com/AshesBen/citrus-detection-localization.

KEYWORDS
citrus detection, citrus localization, binocular vision, YOLO v5s, loss function


INTRODUCTION

Citrus plays an essential role in the fruit industry around the world, with an annual production of approximately 140 million tons (Zheng et al., 2021; Noorizadeh et al., 2022). As the cost of fruit harvesting increases and the availability of skilled labor decreases in China, the traditional manual harvesting method is no longer practical (Gongal et al., 2015; Tang et al., 2021). Presently, fruit harvesting has become increasingly automated for labor-saving and large-scale agriculture (Onishi et al., 2019). The development of an automated citrus picking robot is an inevitable trend for fruit harvesting (Zhuang et al., 2018). In recent work, the development of automatic fruit picking with a robot involves two main tasks: (1) fruit detection and (2) fruit localization via computer vision. The accuracy of fruit detection and fruit localization directly determines the picking efficiency of the robot.

Fruit detection using computer vision has been investigated in numerous recent studies, and most have applied deep learning methods to achieve good performance and robustness (Yang et al., 2020; Chen et al., 2021; Yan et al., 2021). Wan and Goudos (2020) integrated multiclass classification into Faster R-CNN to detect oranges, apples, and mangoes. The improved model achieved a 90.72% mAP. Kang and Chen (2020) proposed a LedNet network with a feature pyramid network and an atrial space pyramid pool for mature apple detection; the recall rate and precision were 0.821 and 0.853, respectively. Chu et al. (2021) improved mask R-CNN by adopting a suppression branch to suppress the generation of nonapple fruit features. However, their method has poor detection performance under backlight conditions. He et al. (2020) developed a deep bounding box regression forest to describe the characteristics of immature citrus on three levels, which is beneficial for differentiating an object from the background. However, the detection speed is slow (0.759 s per frame), making it challenging to apply in real-time applications. For the real-time application of fruit harvesting, the detection speed should be at least 10–15 frames per second (Tu et al., 2020). YOLO series models have been used in various applications for fast detection speed with high accuracy (Jiang et al., 2020; Wang et al., 2021). Xiong et al. (2020) used a YOLO v2 model to detect green mango and reported a recall of 89.0%, a precision of 96.1%, and an average detection time of 0.08 s per frame. Liang et al. (2020) combined YOLO v3 and U-Net to detect litchi fruits and litchi stems at night for picking robots under different illuminations; 96.1% precision and 89.0% recall were achieved. However, the method has not yet been assessed in the daytime. Wang and He (2021) developed an improved YOLO v5 model to detect apple fruitlets using the channel pruning method. However, the network architecture must be manually adjusted during detection. Notably, the target-background class imbalance is typically the main obstacle encountered in training convolutional neural networks (Buda et al., 2018). To address such class imbalance, Lin et al. (2020) designed a focal loss function to make the network pay more attention to hard samples in training, but the approach cannot push the object further from the background. Rahman et al. (2020) proposed polarity loss to improve focal loss. In the above studies, various deep learning methods have been proposed to detect fruit targets and have achieved good results. However, the detection performance deteriorates in unstructured growing environments with variable illumination conditions. For better accuracy, the disparity between citrus and background under variable illumination conditions and different occlusion states should be incorporated into the network structure.

The purpose of fruit localization is to determine the spatial coordinates of the detected fruit and its location information, such as posture and shape (Huang et al., 2019). Many fruit localization methods require a binocular stereo vision system. The depth map or point cloud image is captured to obtain three-dimensional (3D) localization of fruit. Yang et al. (2020) employed a mask R-CNN to detect citrus objects and branches and matched the color and depth maps to locate fruits and branches. The average error in the diameter of the fruit and the branch was less than 4 mm. However, the distance from the fruit to the camera was not provided in their work. Nguyen et al. (2016) used a Euclidean clustering algorithm to segment a single apple using a point cloud image. The results showed that the errors in the spatial coordinates and the diameter of the fruit were slightly less than 10 mm, but the 3D location information about apples was not the aim of their work. Xu et al. (2018) proposed the PointFusion structure to estimate the 3D object bounding box and its confidence from RGB image and point cloud information. The approach produces good results in the KITTI and SUN-RGBD datasets, with 78% AP. Since the information of the depth map or point cloud is incomplete, fruit localization often requires the use of empirical knowledge (Liu et al., 2017). Wang et al. (2017) adopted Otsu’s method and a one-dimensional filter to remove occluded objects (leaves, branches, fruit particles, etc.) and employed ellipse fitting to extract a well-separated mango region. Finally, mango dimensions were calculated using depth information. Ge et al. (2020) developed a shape completion method to reconstruct the point clouds of strawberries; the average error of the center point of strawberries was 5.7 mm. However, the reconstructed error is larger in the case of the neighboring overlapping fruits. Note that an incomplete depth map makes it difficult to recover the missing depth value lost by variable illumination or the fruit region being occluded by randomly overlapping participants, such as neighboring fruits and other background objects. Therefore, this paper aims to restore the depth map with high accuracy for locating fruits in unstructured orchard environments.

The objective of this work is to develop a novel method for the detection and localization of mature citrus fruits in natural orchards using a binocular camera. The pipelines of the study are to (1) design a new loss function to enhance the detection performance of the YOLO v5s network architecture under variable illumination conditions, (2) extract the fruit region in the RGB image and recover the missing value in the depth map under different occlusion states of citrus fruit, and (3) estimate the 3D localization of citrus fruits using the camera imaging model and the geometric features of citrus fruits. Our method can provide 3D localization information of citrus fruits, such as the diameters of citrus fruits in the 3D direction, the spatial coordinates of citrus fruits, the distance between citrus fruits and the camera, and the 3D bounding box of citrus fruits.



Materials and methods


Datasets

A variety of citrus named “Shantanju” was investigated in the hillside orchard of the Guangzhou Conghua Hualong Fruit and Vegetable Freshness Co. Ltd., located in Guangzhou, China (113°39’2.38’E, 23°33’12.48’N). A total of 4855 groups of images were captured in December 2020 and December 2021 before harvest. Image acquisition was performed using a binocular camera (Model ZED 2, Stereolab’s Co. Ltd, USA) with a 1920 × 1080 pixel resolution under sunny and cloudy conditions. The distance between the camera and citrus was set to approximately 30∼150 cm. Each group of images contains a left view (RGB image) and a depth map (grayscale image). Note that the right view images were also captured and used only to generate the depth map with the left view images. The depth map is provided with a Z value for every pixel (X, Y) in the left view image. According to the illumination of the citrus surface, images are divided into three groups: non-uniform illumination (non), weak illumination (weak), and well illumination (well). In total, 2913 images were randomly selected as the training dataset (train), 971 images were selected as the validation dataset (validation), and 971 images were selected as the test dataset (test), the number of citrus samples in each group is shown in Table 1.


TABLE 1    Dataset distribution.
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The hand of the harvesting robot is designed to pick citrus fruits that are in the correct position in front of the camera. In each left view image, the citrus fruits located near the center of the image were manually labeled with bounding boxes using Labelme software. Figures 1A–C provides examples of citrus images from each illumination group. The bounding boxes of labeled citrus are annotated with red rectangles. The corresponding depth maps with labeled citrus are shown in Figures 1D–F, where the grayscale of color is based on distance from the camera, i.e., closer objects are darker; further objects are lighter.


[image: image]

FIGURE 1
Examples of citrus images captured in three illumination conditions: (A) non, (B) weak, (C) well, (D) depth map of (A), (E) depth map of (B), and (F) depth map of (C).




Detection and localization of citrus

An overview of our proposed method for citrus detection and localization is presented in Figure 2. The main procedure involves the following steps: Firstly, an improved YOLO v5s is developed to detect citrus in the 2D bounding box. Secondly, Cr-Cb chromatic mapping, Otsu threshold algorithm, and morphology processing are used to extract citrus shape. The missing depth values are recovered by the kriging method. Finally, the 3D localization of citrus fruit is realized by geometric imaging model. Each procedure is described in detail in the following subsections.


[image: image]

FIGURE 2
Flow diagram of our proposed method.



Detection of the 2D bounding box of citrus fruit

YOLO (You Only Look Once) is a one-stage detection network that converts object detection into a regression problem using convolutional neural networks (Wang et al., 2021, 2022). YOLO v5, the latest version of the YOLO model (Jocher and Stoken, 2021), has a faster detection speed and higher accuracy than the previous version. The release of YOLO v5 consists of four different model sizes: YOLO v5s (smallest), YOLO v5m, YOLOv5l, and YOLO v5x (largest). The network structures of these four models are basically the same, but the numbers of modules and convolution kernels are different. Considering that the application scenario of this paper requires fast detection efficiency, the YOLO v5s model is selected as the basic network, and its structure is shown in Figure 3A. The YOLO v5s network is divided into three parts. The first part is the backbone network, which is responsible for the feature extraction of the target. The second part is PANet, which generates feature pyramids for object scaling. The third part is the head network, which conducts the final detection.


[image: image]

FIGURE 3
Citrus detection model based on You Only Look Once (YOLO) v5s: (A) network structure of improved YOLO v5s and (B) function graph of penalty function fp.


In YOLO v5s, binary cross-entropy with a logit loss function (LossB) is used to calculate the class probability and objectness score for each sample, as follows:

[image: image]

where i is the sample index, xi is the predicted likelihood, yi stands for the ground truth, and σ(⋅) is the sigmoid function that maps the prediction xi to the probability for the ground truth. In object detection tasks, the problem of unbalanced training sets is considerable (Lin et al., 2020), i.e., the background information in the dataset used for training is overrepresented compared to that of the target class. The sum of LossB from the easy samples over the entire images can overwhelm the overall LossB from the hard samples. Moreover, the training is inefficient, as most locations are easy samples that do not contribute to learning. Furthermore, in our trial-and-error experiments, the hard negative samples, i.e., the citrus misclassified as background, are difficult to distinguish from the background under weak illumination or obvious occlusion. On the other hand, the hard positive samples, i.e., the background misclassified as a citrus target, exhibit similar characteristics to mature citrus due to the uncontrolled factors in the orchard environment.

To better differentiate citrus from the background under variable illumination conditions and different occlusion states, we design a new loss function, the polarity binary cross-entropy with logit loss (LossPB), to calculate the class probability and objectness score to penalize the hard samples. In particular, a penalty function fp (Rahman et al., 2020) is developed to represent the disparity between the prediction for citrus and background. LossPB is defined as follows:

[image: image]

where zi is the probability of sample i being predicted as the true class, such as citrus target or background, [image: image] is the probability of sample i being misclassified as the incorrect class, and γ is a slope parameter of the sigmoid function fp (Figure 3B). fp is used to calculate the disparity between the prediction for the true class and false class based on the value of [image: image]. If the citrus target is misclassified as background, the prediction probability [image: image] is greater than, such that a large value of [image: image] is obtained, and a large penalty will be assigned by fp. In this case, the penalty value of LossPB is larger than that of LossB, which helps to suppress the missed detection of citrus. Similarly, if the background is misclassified as citrus, a large penalty will be assigned by fp due to the large value of [image: image], which will improve the false detection of citrus. On the other hand, if a citrus target or the background is predicted with a more reliable probability of zi, the penalty value applied by fp will be closer to 0 due to the small value of [image: image]. In such a case, the penalty value of LossPB is smaller than that of LossB and is pushed toward zero. In general, a large penalty is applied to missed detection and false detection of citrus targets. Thus, fp enforces a large margin to push predictions zi and [image: image] further apart.

Recall rate (R), precision (P), and Fβ-score (Fβ) are selected to evaluate the performance of the improved YOLO v5s in the test dataset:

[image: image]

[image: image]

[image: image]

where FN is the number of false negatives for the false detection of citrus samples, FP is the number of false positives for the missed detection of citrus samples, and TP is the number of true positives for the detected citrus samples. Fβ uses a positive real number β to weigh the importance between R and P. In this paper, β is set to 1 as F1 by regarding R and P are equally necessary for our experiment.



Extraction of the citrus fruit region from the 2D bounding box

Image data captured in a natural orchard always contain multiple participants, e.g., grass, soil, lawn, leaves, branches, trunks, and sky. The citrus fruit region is difficult to extract exactly from the 2D bounding box predicted from the improved YOLO v5s. Fortunately, these participants have different color characteristics, so the different targets can be extracted based on their color information. Here, the proper color space is beneficial to robustly extract the citrus fruit region from the background. Zhuang et al. (2018) and Zhuang et al. (2019) adopted improved R-G chromatic mapping to extract fruit regions. In this paper, the input images are converted into the YCbCr color space for better contrast enhancement between the citrus fruit region and background.

As shown in Figure 4A, a horizontal red line was drawn across citrus fruits and the background. The color intensities of the pixels of the line are represented with the R curve (the red element of RGB), the G curve (the green element), and the B curve (the blue element) in Figure 4B. The Cr curve (the Cr element of YCbCr) and the Cb curve (the Cb element) are represented in Figure 4C. The intensity difference between the R curve and G curve is small in both the citrus region and background, and there are no obvious rules exhibited in the B curve among the citrus fruit regions and backgrounds. However, the intensity difference between the Cr curve and Cb curve values within the citrus region is obviously greater than that of the background. Thus, Cr-Cb chromatic mapping is suitable to enhance the disparity between the citrus region and the background participants.
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FIGURE 4
Examples of color curves of the citrus and background in different color spaces: (A) original RGB image, (B) color intensity on the line on R, G, and B elements in RGB color space, and (C) color intensity on the line on Cb and Cr elements in YCrCb color space.


The Otsu thresholding algorithm is an appropriate method to segment the potential citrus regions from the background, where the best threshold value is selected by maximizing the variance between foreground and background. As shown in Figure 5, the Cr-Cb chromatic mapping has prominent bimodal characteristics in the intensity histogram under variable illumination, where the citrus fruit region contributes to the high value and background contributes to the lower value. Therefore, the best threshold value from Otsu is suitable to segment the citrus fruit region from the background.


[image: image]

FIGURE 5
Examples of the citrus image after Cr-Cb chromatic mapping and its gray histogram under variable illumination: (A) non, (B) weak, and (C) well.


The fruit region segmented by Otsu thresholding will not be complete in terms of shape due to the irregular growth situations of citrus fruit that are occluded by adjacent fruits, branches and leaves. To address this problem, the mathematical morphology operations of erosion, dilation, and hole filling are subsequently adopted to fill the gaps between detected regions, remove noise, fill small holes, and smooth the region’s boundary. Then, the mathematical morphology operation of convex hull is used to estimate the occluded regions of the fruit from the partially compact region. In this way, the citrus fruit can be almost completely segmented from its corresponding 2D bounding box.



Recovery of missing depth values

To achieve the 3D localization result of citrus, it is essential to obtain a complete depth map of the whole citrus fruit region; however, an incomplete depth map is always obtained for two main reasons. First, the depth map is sparse in the case of binocular stereo conditions. The depth value is missing and set to zero for pixels where no depth information is sensed by the ZED camera, which may be caused by variable illumination, camera performance limitation, and shooting angle (Liu et al., 2017). Second, the depth values can be missing due to the occluded region estimated from the morphological processing. To restore the complete depth map of the citrus region, the kriging method is adopted to predict the missing depth value by adding the weight of the observed depth value.

Let IO be the citrus region segmented by Otsu thresholding and IC be the citrus fruit region extracted via the convex hull operation. We denote by Iin the set of pixels whose depth value is missing in IC, such that the depth value is zero or the pixel is located outside of IO. Let IV be the set of pixels whose observed depth value is available in IO. Therefore, the missing depth value in Iin can be obtained as follows:

[image: image]

where Z(p) is the observed depth value at pixel p and λp(s) is the weight of Z(p), which depends not only on the distance between the depth values but also on the position and overall spatial arrangement of the observed depth value around pixel s. Note that the kriging method is the best linear unbiased estimator to restore the missing depth value using observed depth values from the incomplete depth map. Therefore, all the missing depth values in IC will be restored completely.



3D localization of citrus fruit

The 3D localization of citrus determines the spatial position and posture information, such as citrus diameter in the 3D direction dx, dy, and dz, the spatial coordinates of citrus Q0(Xq,Yq,Zq), the distance between the citrus and camera d, the spatial coordinates of the citrus 3D bounding box P1,P2,…,P8, and the corresponding 2D coordinates of the 3D bounding box in the image plane p1,p2,…,p8. The 3D coordinates of a point in the real world must be precisely mapped to the 2D coordinates of a pixel in the imaging plane. Here, the transformation relation among the camera coordinate system Oc, the physical coordinate system Oi, and the pixel coordinate system Op should be analyzed.

As illustrated in Figure 6, a physical coordinate system Oi is depicted with the origin in the imaging plane (unit: millimeter). The camera coordinate system Oc is created with the optical center as the coordinate origin. Note that the coordinates of the object in the real world are represented relative to Oc, and Oc reaches Oi through perspective projection transformation. Suppose the coordinates of point P in Oc are (Xp,Yp,Zp), and the corresponding coordinates projected onto Oi are (xp,yp). The relationship of point P between Oc and Oi is given by


[image: image]

FIGURE 6
Coordinate system transformation diagram.
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where f is the camera focal length. As demonstrated in Figure 6, a pixel coordinate system Op is depicted with the origin on the top-left vertex of the image (unit: pixel). The u- and v-axes are parallel to the x- and y-axes of Oi. Let the point (up,vp) in Op corresponding to the point (xp,yp) in Oi. The two coordinate values can be obtained as follows:

[image: image]

where (u0,v0) represents the translation of the origin of Oi relative to the origin of Op and du and dv represent the actual size of the pixels in the u-axis and v-axis directions, respectively. According to Eqn. (7) and (8), the transformed relationship between Op and Oc is given as

[image: image]

where fx = f/du, fy = f/dv. Note that f, du, dv, u0, and v0 are the intrinsic camera parameters that can be provided from the factory parameters of the ZED camera, and Zp is the observed depth value of the depth map.

As shown in Figure 7A, let A, B, C, and D be the leftmost, topmost, rightmost, and bottom-most endpoints of the citrus fruit region projected in Oi, respectively, which have coordinates (uA,vA), (uB,vB), (uC,vC), and (uD,vD). Denote (XA,YA,ZA), (XB,YB,ZB), (XC,YC,ZC), and (XD,YD,ZD) as the corresponding spatial coordinates of points A, B, C, and D in Oc. According to Eqn. (9), the spatial coordinates of A, B, C, and D are given by


[image: image]

FIGURE 7
Example of 2D and 3D location information of citrus fruit: (A) 2D information of citrus fruit with four endpoints (green points) and center points Q0 (red points) in Op. (B) Citrus 3D bounding box in Oc with eight vertices.
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where i is A, B, C and D. Let dx, dy and dz be the fruit diameter in the Xc-, Yc-, and Zc-axes, respectively. dx and dy are obtained according to the spatial coordinates of A, B, C, and D,

[image: image]

In 3D perspective projection, the citrus fruit diameter dz cannot be obtained directly from the image. Fortunately, the shape of a citrus fruit is similar to an ellipsoid; thus, the magnitudes of dx, dy, and dz will be highly correlated. In this paper, dz can be estimated by fitting a quadratic polynomial function of dx and dy:

[image: image]

where β0,β1,…,β4 are the regression coefficients of a polynomial that can be determined using the least-squares method.

Let Q0(uq,vq) be the center point of the citrus 2D bounding box (Figure 7), which indeed corresponds to the center of the citrus surface. The spatial coordinates (Xq,Yq,Zq) of Q0 in Oc are obtained using Eqn. (10). Denote by d the Euclidean distance from Q0 to the origin point, i.e., the distance between the citrus and camera,

[image: image]

The position and posture information for detected targets can usually be determined by the 3D bounding box (Xu et al., 2018). Let P1,P2,…,P8 be the eight vertices of the citrus 3D bounding box (Figure 7B), which have coordinates of (Xi,Yi,Zi) for i = 1, 2,…, 8. In particular, (Xi,Yi,Zi) can be obtained from the relative geometrical position of Pi to Q0, e.g., (X1,Y1,Z1) is inferred as follows:

[image: image]

To visualize the 3D bounding box of citrus in the image, the corresponding projected 2D coordinates are calculated. Let the eight vertex points p1,p2,...,p8 be the corresponding P1,P2,…,P8 projected on Op, which have coordinates (ui,vi), i = 1, 2,…, 8. They can be deduced by Eqn. (9). Therefore, the 3D localization for each citrus is summarized in Algorithm 1.


Algorithm 1 - Calculation of 3D localization for a citrus fruit.

[image: Algorithm 1]





Results and discussion

The performance of the proposed method was evaluated on a workstation with an Intel Core i9-9920X processor with 3.50 GHz, 32 GB RAM, and an NVIDIA GeForce RTX 2080 GPU with 8 GB RAM. The operating system is Windows 10, and the software framework is PyTorch 1.8. All the algorithms were developed in Visual Studio Code 1.63 and MATLAB R2020a software.


Performance evaluation of citrus 2D detection

To evaluate the performance of citrus 2D detection using our proposed loss function, (LossPB), on YOLO v5s, three loss functions, LossB, focal loss (LossF) (Lin et al., 2020), and polarity loss (LossP) (Rahman et al., 2020), were used for comparison. The YOLO v5s models were trained using the training dataset, and the hyperparameters of the model were fine-tuned using the validation dataset. The performance of the final model was evaluated using the test dataset. After several trial-and-error training runs, the learning rate was set to 0.0032, the batch size was set to 32, the IoU threshold was set to 0.5, the training epoch was 200 and γ was set to 20. All the input images were resized to 640 × 640 pixels. The network weights of YOLO v5s were initialized with the weights of the model pretrained on the COCO image dataset.

The detection results under three illumination conditions on the test dataset are provided in Table 2. With our proposed loss function, LossPB, we achieves the best improvement on the non-uniform illumination than weak illumination and well illumination, compared to LossB, LossF, and LossP. Specifically, under non-uniform illumination, the recall of our loss is 99.55%, which is an average improvement of 9.08% over LossB, 7.17% over LossF, and 5.38% over LossP. The precision of our loss is 95.79%, which is almost the same result as that of the other three loss functions, while the highest precision of 95.93% is obtained by LossF. The F1-score of our loss is 0.98, which is the highest.


TABLE 2    Detection results of You Only Look Once (YOLO) v5s using different loss functions in the test dataset.

[image: Table 2]

Under weak illumination, the precision of our loss is 96.13%, which is 1.33% higher than that of LossB and 1.04% higher than that of LossF and LossP. The recall of our loss is 98.47%, and the F1-score is 0.97, both of which are better than those of the other loss functions. Under well illumination, the F1-score of our loss is 0.98, an average of 3%, 4%, and 2% higher than that of LossB, LossF and LossP, respectively. The precision and recall of our loss are 96.64% and 98.48%, respectively, which are both the best highest.

Overall, for our loss, the recall is 98.85%, the precision is 96.22%, and the F1-score is 0.98, on average, under the three illumination conditions, values that are approximately 2–9% higher than those of LossB, about 1–6% higher than those of LossF, and approximately 1–4% higher than those of LossP. In terms of other metrics, the detection time per image (T) is similar for all loss functions and is consistent with the requirements of the picking robot (Tu et al., 2020).

Figure 8 shows the citrus samples detected by our loss function LossPB but not LossB under different illumination conditions. As listed in Table 2, the recall rate of LossB under non-uniform illumination is the lowest at 90.47% than other illumination conditions. On the other hand, the recall rate of LossPB performed the best at 99.55% over other illumination conditions. The reason may be twofold: (1) As shown in Figure 8, the illumination component is uniform on the surface of a citrus fruit under weak or well illumination conditions. Therefore, the total number of samples is larger under weak and well illumination than under non-uniform illumination, making the YOLO v5s with LossB more likely to learn citrus with uniform color features. (2) It is likely that, compared with weak and well illumination, the color features of a citrus fruit under non-uniform will be hard to extract by the Yolo v5s with LossB, such that the most citrus sample cannot be detected. Using our loss function, the citrus target under non-uniform illumination will be further pushed from the background. A large penalty is applied to missed detection from the penalty function fP in the training process.


[image: image]

FIGURE 8
The missed detection of citrus samples of You Only Look Once (YOLO) v5s but detected by our proposed loss in different illumination on test data: (A) non, (B) weak, and (C) well.


Figure 9 shows the detection results for different loss functions. Specifically, the red bounding box represents the predicted output by models, the yellow bounding box represents the missed detection, and the blue bounding box represents the false detection. Figure 9A indicates that the YOLO v5s model with our loss function achieves the best citrus detection performance under all illumination conditions, reducing the occurrence of both missed detection and false detection.
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FIGURE 9
Comparison of detection results using different loss functions: (A) Our loss, (B) LossB, (C) LossF, and (D) LossP.


There are several examples of missed detection or false detection by other loss functions, as presented in Figures 9B–D. With such loss functions, some background objects, such as immature citrus and yellow insect-attracting boards, can lead to false detection of the citrus target. It is likely that immature green citrus has similar texture and shape properties as mature citrus, and the yellow insect-attracting board has similar color characteristics as citrus. On the other hand, citrus that is occluded by leaves, branches, or other backgrounds objects may be misclassified as background, i.e., missed detection. For such citrus fruits, it is likely that only a few features can be extracted from the image, resulting in a hard negative sample that is difficult to distinguish from the background.

Figure 9A shows that our proposed loss function achieves the best detection performance. Specifically, the penalty for false detection is enhanced by the penalty function fP during the training process, and citrus targets are displaced from the background. As a result, the probability of missed detection is reduced substantially, and the detection performance of citrus is thus improved. Note that LossP uses a penalty function similar to fP and also achieves better performance than that of LossF and LossB. Indeed, it was developed based on LossF. However, LossF cannot push the object further from the background, which may not be an effective improvement on our dataset.



Performance evaluation of citrus region extraction and depth value restoration

Figure 10 illustrates the results of citrus region extraction and depth map restoration under variable illumination conditions. Under the well illumination conditions, the citrus occluded by leaves is shown in the first row of Figure 10A. The results of Cr-Cb chromatic mapping and Otsu thresholding are presented in Figures 10B–C. Image noise, holes, and weakly connected regions can exist in the binary image obtained via Otsu thresholding. The citrus region is likely blurred, mainly due to the far distance from the camera. The result of morphological processing is shown in Figure 10D. The image noise was completely removed, and contour smoothing was achieved, such that the majority of the citrus region occluded by the leaves was filled perfectly. As shown in Figure 10E, the depth map of the extracted citrus fruit region after the convex hull operation is incomplete, i.e., the area of missing values covers approximately large than half of the area of the citrus fruit region, which may be caused by camera performance limitations. As shown in Figure 10F, the missing depth values are restored using the kriging method, thereby estimating the complete depth values of the fruit region.
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FIGURE 10
Results of samples under different illumination conditions: (A) RGB image, (B) Cr-Cb chromatic mapping, (C) Otsu segmentation, (D) morphological operations, where the red point is the center point and the green point is the maximum and minimum point of the citrus fruit, (E) color map of the original depth map, and (F) color map on depth map restored by the kriging method.


The results of citrus fruit extraction and depth map restoration under the non-uniform illumination conditions are presented in the second row of Figure 10. The shape of the extracted citrus region is obviously incomplete, which may result from overexposure to the citrus surface. As shown in Figure 10D, the incomplete part was restored by morphological operations. Subsequently, the missing depth values in the citrus region (Figure 10E) were recovered, as shown in Figure 10F. Similarly, the results under weak illumination conditions are illustrated in the third row of Figure 10. The citrus fruit region occluded by branches is extracted almost completely, as shown in Figure 10D. Due to the lack of light and other factors, the depth map of the extracted citrus region is sparse, as shown in Figure 10E. After using the kriging method, the missing depth values are effectively restored, as shown in Figure 10F.

To evaluate the accuracy of the kriging method to recover depth values on the occluded citrus region, an experiment was conducted by simulating the restoration using the incomplete depth map. Figure 11 shows the results of using the kriging method on an extracted citrus region. Figure 11A is the complete depth map of Figure 11B. Figure 11C shows that the incomplete depth map was generated by setting the corresponding depth values to zero with four schemes. About 50% of the pixels are set as missing values. Specifically, the incomplete depth maps ① and ④ were created by setting the pixels of the central part to zero in the vertical and horizontal directions. The incomplete depth map ② was created by setting the pixels of the right part to zero, and ③ was created by setting the interleaving pixels to zero. As shown in Figure 11D, the missing values are recovered using the kriging method, such that the depth map of the fruit region is completely restored.


[image: image]

FIGURE 11
Experiment results using the Kriging method: (A) color map of depth values, (B) RGB image of a citrus fruit, (C) color map by setting depth values zero at random pixels, and (D) color map of restoration by kriging.


Compared with the original depth map of Figure 11B, the average restoration error of depth map ①, ②, ③, and ④ is 2.29, 2.15, 2.08, and 2.31 mm, respectively, such that the average of the all the restoration errors is 2.21 mm. The minimum error was performed in the depth map ③, indicating that the estimate of missing depth value is recovered with high accuracy when the depth values are only missing randomly in the depth map. On the other hand, the maximum error was performed in the depth map ① and ④, indicating that the restoration error is large when the missing depth values are in the most discontinuous part of the depth map. In total, the mean relative error is 1.36%, indicating that the kriging method effectively restored the depth map with high accuracy.



Performance evaluation of citrus 3D localization

Citrus diameter dx, dy, and dz, coordinates of citrus Q0(Xq,Yq,Zq), the distance between the citrus and camera d, the 3D coordinates of the citrus 3D bounding box (Xi,Yi,Zi), and its 2D coordinates (ui,vi) are calculated using Algorithm 1. Specifically, to obtain the regression model for dz, as mentioned in Eqn. (12), a total of 137 citrus samples were collected in the orchard. The diameter dx, dy, and dz of each fruit were measured by a Vernier caliper (Pro skit, PD-151). The quadratic polynomial function fitted for dz is determined as follows:

[image: image]

where the root mean square error (RMSE) is 4.51 mm and the coefficient of determination R2 = 0.940, indicating a good model for estimating dz.

Figure 12 shows the result of 3D bounding boxes predicted for each citrus fruit. The boxes are drawn by connecting the adjacent vertices (ui,vi), for i = 1, 2,…, 8, with a straight line. The front face of the 3D bounding box was drawn by the blue rectangle, the back face of the 3D bounding box was drawn by the red rectangle, and the side face of the 3D bounding box was drawn by the yellow line. The citrus fruits near the center of the image are correctly detected with the 3D bounding boxes. Moreover, the four edge lines (yellow lines) of the 3D bounding box disappear in the center of the image, which is consistent with the principle of parallel perspective (Cai et al., 2021). Thus, our proposed method achieves accurate localization results.


[image: image]

FIGURE 12
Examples of 3D bounding boxes for citrus fruits.


To evaluate the localization accuracy of citrus 3D localization, 22 images of citrus fruits were considered. The distance between the citrus and the camera d was measured by a laser rangefinder (UNI-T, UT392B), and citrus diameters dx, dy, and dz were measured with a Vernier caliper (Pro skit, PD-151). A scatter plot of the measured values and the values predicted by our method is presented in Figure 13. Our method obtains good accuracy for predicting d, dx, dy, and dz: the closer the measured values and the predicted value are to the 45-degree line, the higher the accuracy. Figure 13A shows the best prediction and fewer errors between the measured value and predicted values for d, where all the plotted points lie almost on the 45-degree line. Furthermore, Figures 13B–D shows that the predicted values of dx, dy, and dz are generally close to the 45-degree line, indicating that our proposed method is able to achieve accurate localization results.
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FIGURE 13
Comparison between the measured values and predicted values: (A) d, (B) dx, (C) dy, and (D) dz.


Overall, the average error of distance d between the citrus and camera is 3.98 mm, which is better than the 15 mm achieved in Wang et al. (2016). The average errors of citrus diameters dx, dy, and dz were 2.75, 2.52, and 2.11 mm, respectively, which is almost the same precision as (Yang et al., 2020) and better than the 10 mm achieved in (Nguyen et al., 2016) and the 4.9 mm achieved in (Wang et al., 2017).

Our method can accurately locate citrus under variable illumination and different occlusion conditions in natural orchards. The distance d can be used to determine the extension length of the robot hand, and the coordinates of citrus Q0(Xq,Yq,Zq) can be used to manipulate the robot hand’s the series of joints or articulations. The diameter dx, dy, dz and the 3D bounding box (Xi,Yi,Zi) can be used to finetune the posture of grasping structures.




Conclusion

This paper aims to address the problem of the lower detection rate for mature citrus under variable illumination and occlusion conditions. We proposed a novel method to detect and localize citrus fruits in natural orchards using binocular cameras and deep learning. The main conclusions are as follows:


1.A new loss function LossPB for YOLO v5s is proposed to calculate the loss value for class probability and objectness score, with a penalty function fp developed to account for the disparity between citrus and background. As a result, the citrus detection performance of our loss function is improved by pushing the citrus further from the background in the training process, even under variable illumination and different occlusion conditions. The recall values of the three groups of illumination conditions were 99.55%, 98.47%, and 98.48%, the precision values were 95.79%, 96.13%, and 96.64%, respectively, and the F1-scores were close to 0.98. The average detection time was 78.97 ms per image. Compared with the original YOLO v5s, the performance improvement was 2-9% on average.

2.Based on the detected 2D bounding box for a citrus, the potential fruit region of mature citrus was segmented completely using Cr-Cb chromatic mapping, Otsu thresholding and morphology processing. In particular, the difference in color intensity between citrus targets and background objects is enhanced using Cr-Cb chromatic mapping, which helps to extract the complete shape of citrus fruit using Otsu thresholding and morphology processing.

3.To recover the missing depth values in the citrus region under different occlusion states, the kriging method was applied based on the spatial proximity among neighboring points. The experimental results show that the average error of the restored depth values was 2.02 mm and the relative error was 1.26%, indicating that the method can accurately restore the depth map of citrus fruit.

4.Based on the ellipsoid characteristic of citrus fruit, the 3D localization information of citrus is accurately determined using the camera imaging model and a restored depth map. The experimental results show that the average error of the distance d between the citrus fruit and the camera was 3.98 mm, and the average errors of the citrus diameter dx, dy and dz were 2.75, 2.52, and 2.11 mm, respectively, which is better than the results achieved in other research.



Our method can provide 3D citrus position data under variable illumination and different occlusion conditions in natural orchards. Future work will focus on few-shot learning and reduce the number of citrus fruits in the training dataset to improve citrus detection and localization.
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The accurate and robust detection of fruits in the greenhouse is a critical step of automatic robot harvesting. However, the complicated environmental conditions such as uneven illumination, leaves or branches occlusion, and overlap between fruits make it difficult to develop a robust fruit detection system and hinders the step of commercial application of harvesting robots. In this study, we propose an improved anchor-free detector called TomatoDet to deal with the above challenges. First, an attention mechanism is incorporated into the CenterNet backbone to improve the feature expression ability. Then, a circle representation is introduced to optimize the detector to make it more suitable for our specific detection task. This new representation can not only reduce the degree of freedom for shape fitting, but also simplifies the regression process from detected keypoints. The experimental results showed that the proposed TomatoDet outperformed other state-of-the-art detectors in respect of tomato detection. The F1 score and average precision of TomatoDet reaches 95.03 and 98.16%. In addition, the proposed detector performs robustly under the condition of illumination variation and occlusion, which shows great promise in tomato detection in the greenhouse.
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1. Introduction

Tomato harvesting is a labor-intensive work, which needs a lot of human resources. It is also very time consuming and includes much tedious work. However, with the development of urbanization and aging of society, the people in the countryside have decreased a lot, and the labor cost continues to increase, resulting in a big labor shortage in farming work (Yue et al., 2015). On the other side, intelligent agriculture is developing fast in the past decades, which is an ideal substitute of human resources for farming work. Among the various technologies applied in the agriculture, the fruit harvesting robot is one of the prominent artificial intelligent techniques. It has huge potential efficiency in fruit harvesting, which can bring high profit as well as liberating the labor force. Thus, it is of great value and significance to develop harvesting robots.

A harvesting robot usually consists of two components—a vision system and an eye-hand coordination system (Zhao et al., 2016a). The vision system plays a key role in the whole system, since the first critical step for the harvesting robot is to detect fruits autonomously. This step determines the detection and subsequent picking accuracy of harvesting robots. Thus, it is very crucial to develop a robust fruit detection algorithm of the vision system. However, at present, no harvesting robot has been commercialized successfully due to either low detection accuracy or low detection speed. Many factors have hindered the pace of harvesting robot development such as uneven illumination, occlusion, overlap, and some other unpredictable factors (Gongal et al., 2015).

To deal with the above challenges, many researchers have studied fruit detection over the past years. In the early years, some researchers used threshold discriminant methods for fruit detection based on color, shape, texture, or fusion of them (Linker et al., 2012; Kelman and Linker, 2014; Wei et al., 2014), and achieved reasonable detection results. Bulanon et al. (2002) used an optimal threshold extracted from the intensity histogram of a red-color-difference enhanced image for apple recognition. The results showed that the success rate exceeds 88%. This method is restricted to ripe apples which present different color to the background. Okamoto and Lee (2009) employed hyperspectral imaging for detection of green citrus. The method is separated into pixel-wise segmentation process using pixel discrimination functions and fruit recognition process with thresholds selected by trial and error. This method greatly relies on the selection of several optimal thresholds, and thus is lack of robustness when the fruit environment changes. Inspired by the eigenface concept, Kurtulmus et al. (2011) proposed a novel eigenfruit feature for green citrus detection, combined with color and circular gabor texture. Although intrinsic texture features are used other than only color features, the method still confuses some fruits with background and does nothing with severe occluded fruits. Zhao C. et al. (2016) developed a cascaded pixel segmentation method for immature citrus detection in natural environment. Three color feature maps and a block matching method are adopted to identify potential fruit pixels. Finally, an SVM classifier is used to remove false detections. Nevertheless, with only color feature for segmentation in the early stage, many fruits are missed by the method due to similarity between green fruits and background. Zhao et al. (2016b) proposed a multi color feature fusion method based on wavelet transformation for mature tomato recognition. The detection accuracy reaches 93%. However, since only color features are employed, the method is inferred to be sensitive to illumination variation. These methods greatly rely on the selection of suitable thresholds, making them sensitive to the changes in the form of fruit presentation, such as illumination variation and occlusion.

With the development of machine learning, many researchers tried to apply them to fruit detection, such as adaboost, support vector machine (SVM) or other statistical classifiers (Kurtulmus et al., 2014; Lv et al., 2014; Yamamoto et al., 2014), and get better results than the threshold discriminant methods. Zhao et al. (2016c) used an adaboost classifier associated with haar features for tomato detection. An average pixel value feature is adopted for the removal of false detections. More than 96% of tomatoes are detected in their study. Li et al. (2017) proposed to use an SVM trained on histogram-based features for green and ripe tomato recognition. Prior to detection, the fast normalized cross correlation method is used to extract the potential tomato regions. Finally, the circular hough transform and color analysis are combined to obtain tomato positions. Behroozi-Khazaei and Maleki (2017) proposed to use an artificial neural network optimized by genetic algorithm for grape cluster detection. Also, the genetic algorithm is adopted for color feature selection, which subsequently serves as input to the network. A Bi-Layer schema was proposed for automatic detection of ripening tomatoes by Wu et al. (2019). In their method, a weighted relevance vector machine is used for tomato recognition based on six color-related features and five textural features. A detection rate of 94.90% is reported in the results. Liu et al. (2019) developed a coarse-to-fine method for ripe tomato detection in the greenhouse. First, a naïve bayes classifier is used to identify potential tomato area, on which an SVM classifier combined with histogram of oriented gradients is applied to recognize tomatoes. At last, a color analysis method is proposed to remove false detection. The machine learning methods usually achieve better performance than threshold discriminant methods. However, the low-level abstraction capabilities of hand-crafted features make it difficult to adapt these methods to complicated environmental change.

The emergence of deep learning methods especially convolutional neural networks provides a new paradigm for computer vision tasks, including fruit detection tasks (Sa et al., 2016; Tian et al., 2019; Zheng et al., 2021). These methods can learn feature representations directly from the data and can be trained end-to-end. Nevertheless, the detection accuracy and robustness still need to be improved to enable real commercial applications under complicated conditions as discussed above.

To address the above problems, this study proposes an effective anchor-free detector called TomatoDet for tomato detection. The proposed model represents a tomato by the center point of its bounding circle, as shown in Figure 1. First, to improve the expression ability of the backbone network, an attention mechanism is introduced to guide the network to pay more attention to the region of interest (ROI), especially small tomatoes. Second, a bounding circle is adopted for tomato localization instead of the traditional bounding box, which is commonly used for general object localization.


[image: Figure 1]
FIGURE 1
 A tomato is modeled as a center point of its bounding circle. The radius of the bounding circle can be inferred from the keypoint at the center.


Our main contribution is three-fold as follows:

1. The Convolutional Block Attention Module is introduced into the backbone network of CenterNet (Zhou et al., 2019) called Attentive-DLA34 to boost the representation power.

2. A circle representation for tomato detection is adopted to adapt the traditional detection methods to our specific detection task. The new circle representation not only reduces the degree of freedom for shape fitting, but also simplifies the regression process from detected keypoints.

3. Extensive experiments are conducted on tomato datasets. We show that the proposed TomatoDet achieves better performance in terms of both accuracy and robustness, compared to the original CenterNet and other state-of-the-art object detectors.



2. Related work

In recent years, deep learning methods have shown continuous performance improvements on fruit detection. A “MangoYOLO” detector was proposed for fruit detection and fruit load estimation by Koirala et al. (2019). This model combines the advantages of YOLOv2 (Redmon and Farhadi, 2017) and YOLOv3 (Redmon and Farhadi, 2018), which has both high detection speed and detection accuracy. It outperforms other methods such as Faster R-CNN (Ren et al., 2015), YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), and SSD (Liu et al., 2016), on their Mango dataset. Bresilla et al. (2019) improved YOLO (Redmon et al., 2016) model for apples and pears detection. First, the grid-scale is scaled up twice to fit the size of the fruits. Second, the model is pruned to improve the detection speed while not degrading the accuracy. Afonso et al. (2020) applied Mask R-CNN to the tomato dataset for detection. Several neural networks are used as backbone for feature extraction. The best F1 score reaches over 94% in their report. Liu G. et al. (2020) proposed a YOLO-Tomato for tomato detection based on YOLOv3 (Redmon and Farhadi, 2018). A dense architecture is incorporated to the backbone to facilitate feature reuse, and a circular bounding box is adopted to optimize the non-maximum suppression process. The model achieves a competing performance compared to state-of-the-art detection methods. Zheng et al. (2021) improved YOLOv4 (Bochkovskiy et al., 2020) for green citrus detection. First, the backbone network is trimmed to reduce detection time. Then, a novel Bi-PANet is proposed to fuse features from different layers. With the modifications, the detection accuracy is reported to be 86% on their dataset. Zhang et al. (2021) developed an edge-device oriented lightweight model for fruit detection. The structure of the original CSPNet is lightened to boost detection speed, and a deep-shallow feature fusion model is proposed to enhance the expression ability of the network. Tested on three types of edge devices, the average detection precision reaches 93, 84.7, and 85% for oranges, tomatoes, and apples, respectively. Wei et al. (2022) proposed a green fruit detection model based on D2Det. By incorporating MobileNetV2, feature pyramid networks and region proposal network structure into the original model, the detection accuracy of green fruits in orchard environments was greatly improved. Chen et al. (2022) improved YOLOv4 for the detection of citrus by incorporating an attention mechanism and a depthwise separable convolution module. In addition, a pruning algorithm was applied to remove the influence of irrelevant latent factors of the data.

Although exciting results are achieved by the above methods, there is still much room for optimization of the networks to improve detection performance. Moreover, the above methods are all anchor-based methods, which commonly perform nearly exhaustive anchor classification over the image and have many hyperparameters for anchor design, reducing the detection efficiency.



3. Materials and methods


3.1. Image acquisition

The images used in this study are captured using a digital camera (Sony DSC-W170, Tokyo, Japan) with a resolution of 3,648 ×2,056 pixels in a Tomato Production Base, which is located in Shouguang City, Shandong Province, China. The datasets are collected under various environment conditions including sunlight, shading, occlusion, and overlap, etc. Some examples captured under different conditions are shown in Figure 2.


[image: Figure 2]
FIGURE 2
 Some tomato samples with different growing circumstances: (A) a single tomato, (B) a cluster of tomatoes, (C) occlusion case, (D) overlap case, (E) shading case, and (F) sunlight case.


To verify the proposed method, the datasets are split into two subsets—a training set and a test set. The training set contains 725 images, and 241 images are included in the test set. Totally, 966 images are used in this study. For data labeling, a tool called Label-Tomato has been developed to annotate images with proposed bounding circles based on Python. The output format of Label-Tomato is txt files, which include the numbers and locations of tomatoes for each image.



3.2. Data augmentation

To avoid over-fitting of the model in the training process, the data augmentation is used in this study to simulate real-life interference and enhance the richness of the collected datasets. Several image processing technologies are adopted for augmentation - horizontal flip, scaling and cropping, brightness transformation, color balancing and image blurring, as shown in Figure 3. For the brightness transformation, we use a factor falling in the range [0.6, 1.4] to change the intensity of the pixels in the image randomly. This process can simulate different weather factors on the image intensity. For the scaling and cropping operation, we follow the same process as in Liu G. et al. (2020). To eliminate the effect of lighting on color rendering, we adopt the gray world algorithm (Lam, 2005) for color balancing. Finally, we randomly blur the augmented images by flip, scaling and cropping, brightness transformation, and color balancing to simulate indistinct images caused by camera movement. After data augmentation, the whole number of resultant images is shown in Table 1.


[image: Figure 3]
FIGURE 3
 Data augmentation of tomato images: (A) original image, (B) horizontal flip, (C) scaling and cropping, (D) high brightness, (E) low brightness, (F) color balancing, and (G) blur processing.



TABLE 1 The number of training images after data augmentation.

[image: Table 1]



3.3. Overview of tomatoDet

Our tomato detection model, called TomatoDet, pools several concepts from the past work with our novel idea to improve the detection performance. An overview of the proposed model is shown in Figure 4. The proposed TomatoDet is based on CenterNet and consists of two modules. The first module is used for feature extraction. It adopts Deep Layer Aggregation-34 (DLA34) (Yu et al., 2018) as the backbone and incorporates Convolutional Block Attention Module (CBAM) (Woo et al., 2018) to improve the feature expression ability and guide the network to focus on small-scale tomato targets. The second module is the detection head. The architecture of the detection head is like that of CenterNet, except that we use a radius head instead of the height and width head for bounding circle prediction. More details are presented in Sections 3.4 and 3.5.


[image: Figure 4]
FIGURE 4
 An overview of the proposed model.




3.4. The proposed attentive-DLA34 backbone

In this study, an attentive Deep Layer Aggregation network (Attentive-DLA34) is proposed as the base backbone for feature extraction. The DLA is inspired by dense connection and feature pyramid and has two main structures: the iterative deep aggregation (IDA) and the hierarchical deep aggregation (HDA). The IDA is mainly used for feature fusion across resolutions and scales while the HDA focuses on semantic fusion, i.e., aggregating features from different channels and depths in a tree-based structure. Based on these two structures, the DLA could make better use of spatial and semantic information for recognition and localization. However, the complicated conditions make it challenging to detect tomatoes in a natural environment, not to mention the existence of a large number of small tomatoes. To mitigate this problem, we introduce an attention mechanism—Convolutional Block Attention Module (CBAM)—into the backbone network to guide it to pay more attention to the region of interest (ROI). The architecture of the proposed Attentive-DLA34 model is shown in Figure 5.


[image: Figure 5]
FIGURE 5
 The proposed attentive-DLA34 model.


As shown in Figure 5, we replace the original layers in each stage with CBAM to focus its attention on tomato areas. For CBAM, it is divided into a channel attention module and a spatial attention module in a sequential manner. First, the channel attention module takes the input and infers a 1D channel attention map. Then, the multiplication output of the input and the attention map is inputted to the spatial attention module to get the final output feature map in the same way. The detailed operation can be depicted in Equations (1) and (2):

[image: image]

[image: image]

where ⊗ indicates element-wise multiplication, F∈RC×H×W is the input feature map, [image: image] denotes the generated channel attention map, and [image: image] denotes the generated spatial attention map. F′′ is the final output by CBAM.



3.5. Circle representation

For general object detection, a bounding box is usually adopted for object localization. However, this type of detection representation is not optimal for specific objects which have a particular shape. In this study, since our detection target is tomato, which is roughly circular, it is better to use bounding circles instead of bounding boxes for localization. It has three folds of advantages. Firstly, compared with bounding boxes, bounding circles could better match the shape of tomatoes. Secondly, the representation of a circle is simpler than that of a box, which makes it easier for the network to learn. Lastly, the circle is invariant to rotation.


3.5.1. From point to bounding circle

For an input image I ∈ RW×H×3 with width W and height H, the target is to produce a keypoint heatmap [image: image], where K is the downsampling ratio of output and C is the number of classes. A prediction from the heatmap Ŷx, y, c = 1 denotes a detected keypoint, and Ŷx, y, c = 0 denotes background. Following Law and Deng (2018), the ground truth of the keypoints is mapped onto a heatmap Y using a 2D Gaussian kernel as in Equation (3):

[image: image]

where [image: image] and [image: image] are the equivalent groundtruth keypoints of prediction, and they are downsampled by the factor K from the original keypoint p and are then discretized. σp is a kernel standard deviation.

After getting the peaks of the heatmap for tomatoes, the top N peaks are selected among all the detected responses whose value is greater or equal to its eight-connected neighbors. We define [image: image] as the set of N detected center points. The confidence of the detected bounding circle is represented by the keypoint values Ŷxi, yi, c, and the center point [image: image] and radius [image: image] of the bounding circle is denoted as follows:

[image: image]

[image: image]

where [image: image] is the offset prediction and [image: image] is the radius prediction.



3.5.2. Bounding circle IOU

The intersection-over-union (IOU) is commonly used to evaluate the similarity of two bounding boxes. In this study, we introduce a circle IOU (cIOU) for evaluation of two bounding circles.

As shown in Figure 6, denoting the center coordinates of two intersected circles O1 and O2 be (x1, y1) and (x2, y2), respectively, the distance between two centers d can be represented in Equation (6) and satisfies the condition |R − r| ≤ d ≤ |R + r|.

[image: image]

The angles α and β can be calculated as:

[image: image]

[image: image]

Then, the intersection area AO1 ∩ O2 and union area AO1∪O2 of circles O1 and O2 can be derived as in Equations (9) and (10).

[image: image]

[image: image]

Consequently, the cIOU can be represented as follows:

[image: image]


[image: Figure 6]
FIGURE 6
 The schematic diagram of cIOU.





3.6. Loss function

The loss function of TomatoDet in the training stage consists of three parts, i.e., the keypoint heatmap loss, bounding circle radius loss and center offset loss. The keypoint heatmap loss Lhm is based on focal loss (Lin et al., 2017) as in Equation (12).

[image: image]

where N is the number of keypoints in an image, and α and β are hyper-parameters for the focal loss. In this study, α and β are set to be 2 and 4 following Zhou et al. (2019).

To rectify the keypoint location error resulting from the discretization of downsampling, an offset loss Loff is designed to measure the difference between the predicted offset Ô and the groundtruth O based on L1 loss.

[image: image]

The tomato radius is regressed from the center points optimized by the radius loss Lr in Equation (14).

[image: image]

where [image: image] and rk denotes the predicted and groundtruth radius of the kth tomato, and N represents the number of results.

Above of all, the total loss of TomatoDet is denoted as in Equation (15).

[image: image]

where λoff = 1 and λr = 0.1 are used in our experiment to balance different losses, referring to Zhou et al. (2019).



3.7. Experimental setup

The experiments are performed on a Ubuntu 16.04 with an Intel(R) Core(TM) i7-9700 K CPU@3.60 GHz. It is accelerated by an NVIDIA GeForce GTX 1080Ti GPU. The proposed TomatoDet model is implemented on Pytorch.

The model is trained on an input resolution of 512 ×512 pixels. It is trained with a batch size of 8 and an initial learning rate of 1.25e-4 for 140 epochs. The learning rate is then dropped 10 at 90 and 120 epochs, respectively.

To evaluate the performance of the proposed method, recall (R), precision (P), and F1 score are used as the criterion indexes. They are defined in Equations (16)–(18):
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where TP, FP, and FN represent true positives (correct detections), false positives (false detections), and false negatives (missing detections), respectively.

Besides, the average precision (AP) is adopted in this study to evaluate the overall detection performance. AP is defined as follows:

[image: image]
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where [image: image] is the measured precision at recall [image: image].




4. Results and discussion


4.1. Ablation study

In this study, an attention mechanism and a circle representation are incorporated to the proposed detector. In order to evaluate the effectiveness of each component, an ablation study is performed on the tomato dataset. The results of the ablation experiments are shown in Table 2 and Figure 7.


TABLE 2 Ablation study on the major components of TomatoDet.

[image: Table 2]


[image: Figure 7]
FIGURE 7
 PR curves of the major components of TomatoDet for ablation study. The markers indicate the points where recall and precision are obtained when the prediction confidence threshold equals 0.6.


From Table 2, we can see that the incorporation of the attention mechanism brought a significant improvement of all the indexes including the recall, precision, F1 score and average precision (AP). The F1 score and AP increases by 1.33 and 1.36%, respectively. This verifies the advantages of the proposed attentive-dla34 backbone, which optimizes the focus of the network and boosts the representation power. We also performed a contrast experiment to verify the effectiveness of the circle representation. With circle representation, the F1 score and AP increases by 1.44 and 1.23%, respectively, as shown in Table 2. This benefits from the intrinsic shape fitting of the new circle representation to tomatoes, which can reduce the degree of freedom of the rectangle representation and simplify the regression process from detected keypoints. We also show the precision-recall (PR) curves of different components in Figure 7. The markers indicate the points where recall and precision are obtained when the confidence threshold equals 0.6. It can be seen that the detection performance improves significantly with the incorporation of different components.



4.2. Comparison of different methods

To verify the performance of the proposed TomatoDet model, we designed a comparative experiment of the state-of-the-art detection algorithms, including YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), YOLO-Tomato (Liu G. et al., 2020), YOLOv4 (Bochkovskiy et al., 2020), Faster R-CNN (Ren et al., 2015), CenterNet (Zhou et al., 2019), and the proposed model. Among all of these algorithms, the Faster R-CNN is a two-stage detector, and the others are one-stage detectors. Moreover, CenterNet and the proposed TomatoDet are anchor-free detectors, while the remaining are all anchor-based methods.

The recall, precision, F1 score, average precision (AP), and average detection time are the evaluation indicators, as shown in Table 3. The precision-recall (PR) curves of different detection models are shown in Figure 8. In terms of detection performance, one can see that the proposed TomatoDet is superior to the other five methods. The F1 score of TomatoDet is 95.03%. It is 1.12% higher than that of YOLO-Tomato, which obtains the second-best performance. In terms of AP, TomatoDet performs 1.76 and 1.57% better than YOLO-Tomato and YOLOv4, respectively. Compared to CenterNet, the proposed TomatoDet is about 2.8 and 2.4% higher in terms of F1 score and AP, respectively. We also show the F1, recall and precision curves in Figure 9, separately. In accordance with the PR curves, they demonstrate the superiority of the proposed TomatoDet over other methods. This verifies the effectiveness of the proposed modifications. The introduction of CBAM guides the model to pay more attention to the ROI and thus improves the feature expression ability of the network. Besides, the adoption of bounding circles makes it easier to regress from center points to the size as the bounding circle only has one parameter, i.e., radius. Furthermore, bounding circles could match the shape of tomatoes better in nature and improve the IOU. The average detection time of the proposed model reaches 0.036 s per image. It is about 0.2 s less than Faster R-CNN and almost the same as the YOLOv2 model. The experimental results show that the proposed TomatoDet could detect tomatoes in complex environments in real-time with strong robustness.


TABLE 3 Tomato detection results of different algorithms.
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[image: Figure 8]
FIGURE 8
 PR curves of different detection algorithms.



[image: Figure 9]
FIGURE 9
 The (A) F1, (B) recall, and (C) precision curves of different detection algorithms.




4.3. Qualitative analysis

To better understand the prediction ability of our proposed TomatoDet, the output feature is visualized. Figure 10 shows some examples of detection results along with the output heatmap. From the second row of the subfigures, one can see that through the proposed attentive-DLA34 backbone, the heatmap almost only fires at the area of tomatoes, including small and severe occluded ones. This benefits from the combination of CBAM and DLA34, which emphasizes the meaningful features throughout the network and thus boosts the representation power. Further, the keypoints for tomatoes are extracted from the peaks of the heatmap and are then regressed to the radius of the proposed bounding circle, which reduces the degree of freedom of fitting compared to the traditional bounding boxes, as is shown in the first row of the subfigures.


[image: Figure 10]
FIGURE 10
(A–F) Some examples of detection results along with the output heatmap.




4.4. Performance of the proposed model under different lighting conditions

In the natural environment, tomatoes may be exposed to different lighting conditions due to uneven illuminations. The performance of the proposed TomatoDet under different lighting conditions is evaluated in this study. Among all the tomatoes in the test set, 425 tomatoes are in shading conditions, while 487 tomatoes are in sunlight conditions. The correct identification rate (or recall), false identification rate and missing rate are used as evaluation indicators.

As shown in Table 4, 460 out of 487 tomatoes are correctly identified by the TomatoDet under sunlight conditions. The counterpart is 400 out of 425 for the shading conditions. The correct identification rates are comparable. The false identification rates are 4.56 and 3.85% for sunlight and shading conditions, respectively. This means that some of the detections are falsely recognized as tomatoes, which in fact are leaves, branches, or other backgrounds. This occurs when the background presents similar color and shape to tomatoes. The above results show that the proposed method is robust under different lighting conditions in real scenes. From Figure 11, one can see that the PR curves under sunlight and shading conditions are comparable, showing the robustness of the proposed method to different lighting conditions. Some examples are shown in Figure 12.


TABLE 4 Performance of the proposed TomatoDet under different lighting conditions.
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[image: Figure 11]
FIGURE 11
 PR curves of the proposed method under different lighting conditions.



[image: Figure 12]
FIGURE 12
 Some examples of the detection results under different lighting conditions: (A–C) sunlight conditions, and (D–F) shading conditions.




4.5. Performance of the proposed model under different occlusion conditions

In the greenhouse, tomatoes are inevitably obscured by leaves or branches and overlap with each other. This will have a certain impact on tomato detection. In this study, we also evaluate the performance of the proposed method under different occlusion conditions. As in YOLO-Tomato (Liu G. et al., 2020), depending on the degree of occlusion or overlap, we classify tomatoes as slight and severe occlusion cases. Severe cases refer to tomatoes being blocked by leaves, branches, or other tomatoes by more than 50% degrees. Conversely, tomatoes are regarded as slight cases. The detection results are shown in Table 5 and Figure 13.


TABLE 5 Performance of the proposed TomatoDet under different occlusion conditions.
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[image: Figure 13]
FIGURE 13
 PR curves of the proposed method under different occlusion conditions.


Based on the above experiments, one can see that the detection performance for tomatoes under slight occlusion cases is marginally better than that of tomatoes under severe cases. This shows that occluded and overlapped tomatoes cause inaccurate detections. Nevertheless, most of the occluded and overlapped tomatoes can be detected by our model correctly. This is achieved by the accurate keypoints estimation resulting from the implicit contextual information utilization of the convolutional neural networks since the networks learn hierarchical features through multiple levels of abstraction. However, it is believed that the detection performance of occluded tomatoes can be further improved by exploiting contextual information explicitly (Liu L. et al., 2020). Figure 14 shows some examples of detection results for both cases.


[image: Figure 14]
FIGURE 14
 Some examples of detection results under different occlusion conditions: (A–C) slight cases and (D–F) severe cases.





5. Conclusions and future work

In this study, we propose TomatoDet, an improved anchor-free detector for tomato detection based on CenterNet. The proposed detector incorporates an attention mechanism to optimize the focus of the network and thus boost the representation power. In addition, a circle representation is introduced to adapt the detector to our specific detection task. With circle representation, the degree of freedom for tomato fitting is reduced and the regression process from keypoints to the size is simplified.

The experimental results show that the proposed TomatoDet is superior to other state-of-the-art detectors for tomato detection in the greenhouse. It can also detect tomatoes under different lighting and occlusion conditions with strong robustness.

Although the proposed model has achieved a good performance on the tomato datasets, there is still much space for further development. They can be summarized as follows:

When the overlap or occlusion area is high, the detection rate will drop. One possible solution is to incorporate contextual information such as branches or leaves to improve the detection accuracy.

The experimental dataset is relatively small and more data are needed for training and verification in the future study.

Moreover, the characteristics of tomatoes in different growing stages will be analyzed to realize multi-stage tomato detection.
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Saffron authenticity is important for the saffron industry, consumers, food industry, and regulatory agencies. Herein we describe a combo of two novel methods to distinguish genuine saffron from fake in a user-friendly manner and without sophisticated instruments. A smartphone coupled with Foldscope was used to visualize characteristic features and distinguish “genuine” saffron from “fake.” Furthermore, destaining and staining agents were used to study the staining patterns. Toluidine blue staining pattern was distinct and easier to use as it stained the papillae and the margins deep purple, while its stain is lighter yellowish green toward the central axis. Further to automate the process, we tested and compared different machine learning-based classification approaches for performing the automated saffron classification into genuine or fake. We demonstrated that the deep learning-based models are efficient in learning the morphological features and classifying samples as either fake or genuine, making it much easier for end-users. This approach performed much better than conventional machine learning approaches (random forest and SVM), and the model achieved an accuracy of 99.5% and a precision of 99.3% on the test dataset. The process has increased the robustness and reliability of authenticating saffron samples. This is the first study that describes a customer-centric frugal science-based approach to creating an automated app to detect adulteration. Furthermore, a survey was conducted to assess saffron adulteration and quality. It revealed that only 40% of samples belonged to ISO Category I, while the average adulteration percentage in the remaining samples was 36.25%. After discarding the adulterants from crude samples, their quality parameters improved significantly, elevating these from ISO category III to Category II. Conversely, it also means that Categories II and III saffron are more prone to and favored for adulteration by fraudsters.

KEYWORDS
 Crocus sativus, Foldscope, microscopy, adulteration, fraud, machine learning, deep learning, image processing


Introduction

Saffron (Crocus sativus L.) is a highly remunerative cash crop and a source of luxury spice obtained from handpicked flowers as dried crimson stigmas (Kafi et al., 2018). According to Food and Agricultural Organization (FAO), it forms “a loosely matted mass of dark, reddish-brown flattened threads, among which a few narrower yellow ones can be distinguished. The upper, enlarged part of the flattened threads is the stigma of the flower, the lower narrower portion is the style” (Husaini et al., 2010a). Saffron bioactive compounds have immense therapeutic properties useful for coronary artery diseases, neurodegenerative disorders, bronchitis, asthma, diabetes, fever, and colds. It has the potential to help tackle problems associated with severe acute respiratory syndrome (COVID-19) patients and post-COVID-19 problems (Ahmed and Husaini, 2021). It can help manage stress and anxiety during isolation, quarantine, and lockdowns (Husaini et al., 2021). Owing to all these beneficial properties and as an immunity booster, saffron extracts may be added to some drug formulations in future (Husaini et al., 2022). These properties and their importance in religious rituals of many communities make it costly and hence prone to adulterations. Some have even advocated its cultivation in kitchen gardens to ensure the supply of pure saffron for household use (Husaini and Wani, 2020).

The best quality saffron is usually sold in filaments (Melnyk et al., 2010; Nehvi and Yasmin, 2021); therefore, in the present study, we focused on filamentous saffron. Different kinds of fake products sold under the name of “saffron” are reported in the literature (Husaini et al., 2010b; Heidarbeigi et al., 2015). The most common fraudulent practice includes artificial dyeing of some selected plant materials, making these look similar to saffron. According to a study on saffron sold in India, only 52% are genuine, 30% are poor grade, and 17% are adulterated (Husaini et al., 2010a). This menace of saffron adulteration is mushrooming as a white-collar fraud at a tremendous pace (Husaini et al., 2010a, 2013; Er et al., 2017).

According to the ISO 3632 standards (ISO, 2010, 2011), up to 1% (w/w) of foreign material is permitted in third-class products. Several chromatographic and spectroscopic methods are used for detecting saffron adulterants (Alonso et al., 1998; Lozano et al., 1999; Haghighi et al., 2007; Sabatino et al., 2011; Er et al., 2017). Moreover, several biotechnological and molecular methods are also employed to detect plant adulterants in saffron (Ma et al., 2001; Javanmardi et al., 2011; Marieschi et al., 2012; Babaei et al., 2014; Torelli et al., 2014; Petrakis et al., 2015; Kumari et al., 2021). These methods are useful for detecting low amounts (up to 1%) of bulking materials and are ideal for checking the purity of the product. However, all these analytical methods are too complicated, expensive, and need sophisticated instrumentation and higher skill levels of experts. The lack of sophisticated laboratories and ineffective law enforcement adds to the constraints in handling cheating by retailers. Some affordable methods like simple microscopy or spectrometry have their limitations too. While a conventional microscope is a fairly expensive instrument seldom used by common people, UV-vis spectrophotometric method used in labs does not detect saffron contamination up to 20% (w/w) (Sabatino et al., 2011). None of the methods developed so far is easily accessible to customers or retailers. Hence, there is a need to invent faster, low-cost screening methods for detecting saffron adulteration and fictitious look-alike versions of saffron, and make these easily accessible to the end-users.

There is a need to have a customer-centric rather than a lab-centric approach. We want to change the standpoint of looking at the problem by bringing the customer directly into the screening procedure. Customers should be able to check the authenticity of a particular sample on a retail scale because saffron being expensive, is generally sold in small packings of 1–5 grams. The present study focuses on “fictitious look-alike” versions of saffron sold in the markets under the names of fictitious brands on a commercial scale around religious places, spice markets, individual retailers, and the unorganized sector. We aim to share a customer-friendly technology that is the first of its kind and does not depend on sophisticated instrumentation.

Recent developments in “frugal science” have made a monocular origami-based low-cost optical microscope, called Foldscope, commercially available and easily accessible (Cybulski et al., 2014; Moreno-Roman and Bobick, 2022). Similarly, there are tremendous advances in artificial intelligence-based solutions and machine learning (Ben Ayed and Hanana, 2021; Janiesch et al., 2021; Vijayakumar and Balakrishnan, 2021; Greener et al., 2022). We explored these developments and developed two methods for the self-detection of fake saffron by customers and retailers. One method uses Foldscope in combination with chemical staining and destaining technique for developing a printed poster to detect fake look-alike saffron through visual comparison. The effect of different dyes on the staining pattern of the samples was studied so that even school children could use this technique. The second method uses deep learning for image classification to automatically identify genuine from fake look-alike saffron samples. The method uses Foldscope and a mobile application (app) to automate the process without using any invasive procedure. It is time-efficient and can be used by people who do not have much knowledge about the domain (Saffron). To the best of our knowledge, this is the first time that Foldscope and machine learning have been used to authenticate saffron as fake/genuine and provide user-friendly testing access to a broader audience.



Materials and methods


Survey and collection of samples for analysis

The collection of plant material and all experiments were performed following relevant institutional, national, and international guidelines and legislation. Direct interactions were done with saffron farmers, traders, and consumers/tourists to know their experiences and to find out the nature of adulterants being commonly used by fraudsters. Only a few cooperated in giving some basic information about adulteration methods.


Categorization of genuine and fake look-alike samples

A total of nine diverse classes of samples were used in the present study (Table 1). Seven classes belonged to the fictitious look-alike saffron filaments collected from open markets in India, while two classes belonged to genuine saffron grades (known as “Laccha” in native Kashmiri [“saffron in filaments” as per ISO3632 and IS5453] and “Mongra” [saffron processed using a technique indigenous to Kashmir or “saffron in cut filaments” as per ISO3632 and IS5453]) (Figure 1). “Laccha” is the vernacular Kashmiri term for saffron filament with style and “Mongra” for a locally processed grade of cut filaments lacking style.


TABLE 1 Distinctive morphological features in saffron and look-alikes as visualized using Foldscope.
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FIGURE 1
 Photographs of closely resembling samples as visualized by a naked eye: Genuine saffron (a) saffron in filaments (Laccha), (b) saffron in cut filaments (Mongra); fake samples, (c) unknown look-alike, (d) unknown look-alike, (e) neon yellow dyed corn silk, (f) maroon red dyed corn silk, (g) unknown look-alike, (h) saffron stamen, and (i) paper strips.





Microscopic study

Samples were observed under stereo-microscope (Olympus SZX16 using software LCmicro-2016-17 version) and Foldscope. Foldscope is an origami-based optical microscope developed at the University of Stanford, USA and designed to cost <US$1. It weighs about 8–10 g and provides a magnification of 140×. It does not require external power and can survive being dropped from a three-story building (Cybulski et al., 2014; Joshi and Bhosale, 2018). With good resolution cell phone cameras, direct imaging is possible. Alternatively, the image can be viewed on a frosted sheet (thin velum) which can be placed above the lens.

To develop the Foldscope-based method, we used 2,250 filaments belonging to nine classes, with at least 250 individual filaments from each class for microscopic study. Single strands of dry, intact filaments were placed directly on clean, dry glass slides and covered with transparent cello-tape (Supplementary Figure S1f). These were observed under Foldscope in natural sunlight. Images were obtained by coupling the Foldscope with a cell phone (iPhone SE) using a custom magnetic coupler. The Foldscope magnification is 140×, which was further enhanced digitally by the zooming function of the smartphone having a 12-megapixel resolution camera. Observations were recorded for morphological features like (a) papillose protuberances; (b) margins; (c) serrations; (d) texture; (e) dyeing patterns; (f) pubescence; (g) pollen grains.



De-pigmentation

In order to distinguish between artificially dyed samples and genuine ones, the dry filaments were de-pigmented by suspending in methanol (100%) for 4 h, followed by washing with 1:1 (methanol: water) 3–4 times.



Staining

For staining, dry filaments were placed in a 1% staining solution of each staining agent (toluidine blue, safranin O, iodine, fast green, crystal violet) for 1–2 min. Staining was followed by washing with water to remove excess stain. Filaments were placed on clean glass slides. Filaments were covered with coverslip after putting a drop of water on them and observed under Foldscope. Photographs were taken with a smartphone.



Machine learning

Before using machine learning, we tried a simpler image processing technique. As genuine saffron sample images have papillae on stigma, while being absent in fake saffron samples, we converted all images to single channel image, i.e., gray image, and employed the Canny edge detector multi-stage image processing algorithm to detect the edges in the image. We counted the number of contours on the edges in the image based on the highest gradient difference. Subsequently we used neural networks to fine tune the process.

Neural networks (NNs) are a subset of ML and basic components of the deep learning algorithm. Convolutional neural network (CNN) is a special form of NN that performs better with high-dimensional data like images and videos, and it allows faster training and reduces model complexity. We used deep neural network architecture based on ResNet18 (He et al., 2016) and Densenet121 (Huang et al., 2017) networks, with different model parameters and states. We used Python version 3.7.13 as a programming language, OpenCV version 4.1.2 for image processing, fastai version 1.0.61, backed by PyTorch version 1.11.0, as a deep learning framework, and scikit-learn version 1.0.2 as a machine learning library. We used NVIDIA Tesla K80 GPU with 12 GBs of memory capacity and Intel Xeon 2.20 GHz CPU with 12 GBs of memory capacity. We modified the last layer of networks and used it as a binary classifier with two labels, separating genuine from fake saffron samples.



Baseline and comparative methods

To ablatively test the introduction of ML algorithm for the classification of fake and genuine saffron samples, we compared NN with the conventional ML algorithms, i.e., random forestand SVM. Evaluation of the different NNs and their variants was also done. For training the random forest model, we used 100 trees in the forest and two as the minimum number of splits for the internal node. The maximum depth of the tree is expanded until all leaves contain less than the minimum number of split samples. Gini impurity was employed to measure the quality of a split. SVM model was trained using radial basis function (RBF) kernel. During the training process, model leveraged squared hinge loss for the optimization, with 0.001 as the tolerance for the stopping criteria.

Three experiments per network were conducted for deep neural networks, namely ResNet18 and DenseNet121. First, the model weights were randomly initialized using the Kaiming initialization (He et al., 2015) approach. Second, convolutional layers of the deep neural network were initialized with pre-trained ImageNet (Deng et al., 2009) weights. The layers were kept in a frozen state during training, while the last two layers were initialized with random weights and updated as training proceeded. And finally, all the layers of both the networks with pre-trained weights were unfrozen, and during training, all the weights belonging to the layers got updated based on the loss function optimization.

Random lightning and contrast changes were performed to further enhance the training and generalize the process. Real-time data augmentation of random flip with 50% probability was also applied to training samples. These augmentations help overcome the overfitting of the model on training data and improve the overall model accuracy. Models were trained using an Adam optimizer with a learning rate of 0.001 and momentum of 0.9. Binary cross entropy was used as a loss function due to the binary classification nature of the task, i.e., a sample can be either fake or genuine. All the variations of both neural networks were trained for 15 epochs.



Data acquisition and pre-processing

During the data acquisition phase, we randomly captured multiple images of the same filament for different samples to incorporate the variation that might arise due to clicking the image via smartphone from different angles, orientation, contrast, etc. It helps to make the dataset more generalized, to avoid neglecting the possible scenarios in the real-world, where users can click images with uncertainty toward any assumption, which in turn resulted in 3,794 images in total; out of these, 1,434 images belong to genuine samples and 2,360 images to fake samples. The dataset consisted of dried, with, and without stained saffron sample images to include the tolerance toward different processing performed on saffron strands.

In the pre-processing step, each image was resized to 224 × 244 × 3 (width × height × color channels) dimension to decrease the computational load and create a uniformly sized dataset. After resizing, the pixel values of images were subtracted by the mean and divided by the standard deviation. This process brings all image pixel values between 0 and 1 range and allows faster convergence later in the model training.

For the experimentation purpose, the saffron dataset was split into a training dataset containing ~72% (2,732 samples), a validation dataset containing ~18% (683 samples), and a test dataset consisting of ~10% (379 samples). The training dataset was used to train the above-mentioned models in a supervised learning fashion, where input was a saffron sample image and the label was the class it belongs to, i.e., fake or genuine. The validation dataset was handy to validate and select the best-trained model in an unbiased manner while finetuning the model hyperparameters. Last but not least, since the test dataset was not used during the training phase, it depicts the real-world behavior and allows for the evaluation of the final model.



Machine learning algorithms for classification

Machine learning algorithms are mainly categorized into unsupervised, supervised, and reinforcement learning. The classification task falls under the supervised learning algorithm, where training takes place based on the pre-labeled data. During training, the algorithm learns the pattern from the labeled data (Veronese et al., 2013). Once trained, the algorithm assigns a new label to the new and unseen data and classifies the sample. There are multiple ML-based classification algorithms available, and, in this work, we explored random forest (Verma and Achutha, 2016), support vector machine (SVM) (Le et al., 2012), and multiple variations of CNN.

Random forest is an ensemble learning method and consists of a number of decision trees. Each decision tree predicts a class associated with the data sample, and the class with the maximum number of votes is taken as a final prediction. This combined approach adds robustness toward errors linked with the individual decision tree predictions.

SVM algorithm takes data samples during training as input and tries to find the optimal hyperplane in an N-dimensional space, where N is the number of input features. This hyperplane is a decision boundary and distinguishes the data samples into different classes.


Performance evaluation

For measuring the performance of all the trained ML-based classification models, accuracy and precision were employed. The classification accuracy was calculated as:

[image: image]

True positive (TP) represents the saffron samples correctly classified as genuine samples in the above equation. False positive (FP) represents the saffron samples falsely classified as genuine samples. True negative (TN) represents the saffron samples correctly classified as fake samples, while false negative (FP) represents the genuine saffron samples falsely classified as fake.

For the evaluation, accuracy focuses on the fraction of the classification of samples, both fake and genuine, corrected as predicted by the model.

The classification precision is represented as:

[image: image]

Precision performance metric quantifies the number of correctly classified genuine saffron samples by the trained model.



Assessment of adulteration and quality estimation

Eighty crude saffron samples were collected from eight cities/towns of Jammu and Kashmir, India. Ten samples were collected from each city/town, with two packets of 1 g each bought from each vendor. All the 80 samples were then screened for adulteration using Foldscope. The quantum of adulteration in each sample was determined and expressed as adulteration percentage, and then averaged for each location. Spectrophotometer-based quality of the crude and the pure samples was determined to categorize these into Categories I, II, and III as per the ISO 3632.





Results and discussion


Limitations of saffron quality and adulteration detection methods

The quality and the commercial value of saffron are based on an estimation of coloring power, bitter taste, and aroma (Carmona et al., 2007; Kafi et al., 2018). It is certified in the international trade market following the International Organization for Standardization (ISO) 3632 Normative (Husaini et al., 2010b). Regardless of the fraudulent practice, it is challenging to identify commercial frauds in saffron because changes in physical, chemical, and organoleptic characteristics are not easily identifiable (Koocheki and Milani, 2020). Artificial intelligence technique-based artificial neural network and electronic nose have been used for quality control of saffron using its aroma fingerprint and distinguishing it from the samples mixed with safflower or corn stigma up to a proportion of 50% (w/w) (Heidarbeigi et al., 2015). The technique can detect adulterated saffron with a percentage classification accuracy of 86.87%.

An electronic nose is used to determine the geographic origins of saffron with 90% of confidence (Carmona et al., 2006). The principle of this detection is based on the differences in dehydration techniques followed in different countries and the consequent changes in the composition of volatile compounds of saffron. Several fake and original products like sunflower oil, corn oil, sesame oil, tea, and coffee have also been detected using the electronic nose (Hai and Wang, 2006; Mildner-Szkudlarz and Jeleń, 2008; Son et al., 2009). The most significant limitation with the users of such electronic sensors (e-nose and e-tongue) is the requirement of strictly controlling sample preparation, sampling, and data processing. At the same time, training a sensory panel is time-consuming and expensive. Moreover, these sensors are very sensitive to temperature, humidity, pressure, gas velocity, and vapor concentration (Tan and Xu, 2020).

Several studies have combined many techniques and used multiple types of sensors through the fusion technique to overcome the above-discussed limitations, but with limited success (Kiani et al., 2018). Contrary to the previously discussed methods, our aim is not to develop a method for detecting adulterants or extraneous “powdery material” in the saffron “powder” or the mixing of “different grades” of genuine saffron. Our paper focuses on the “filamentous” adulterants and fictitious “look-alike” versions of saffron commercially sold in markets.



Stigma papillae are the characteristic morphological markers of genuine saffron

The stigma of C. sativus consists of three orange-red trumpet-shaped lobes, and it is papillate on the rim, and the average length is 3 cm. C. sativus pollen tube growth in intra- and interspecific pollinations has been studied in detail under a microscope (Chichiriccò, 1984; Chichiricco and Caiola, 1986). The stigma surface of saffron is of the dry type, as in the case of many other Crocus species (Heslop-Harrison and Heslop-Harrison, 1975; Heslop-Harrison, 1977; Caiola and Chichiriccò, 1991). While the stigmas of Crocus sativus and its allies C. cartwrightianus, C. thomasii, and C. hadriaticus have been studied in detail for reproductive biology (Caiola et al., 2000), there is no emphasis on using it as a distinct morphological marker for identifying genuine saffron, once dried or processed.

In the present study, we first visualized the filaments of sample classes under a stereo-microscope for a wider field of vision. We observed some differences among the filaments, though these were more conspicuous toward their apices (Supplementary Figure S2). We used Foldscope to focus on the apex area and could easily identify papillae in both commercially available genuine saffron sample classes 1 & 2 (Supplementary Figure S3). Our results show that it is possible to distinguish genuine saffron from its commonly used adulterants or fake look-alikes by detecting the presence of distinct papilla on their trumpet-shaped upper rim (Figures 2b–d,f–h).
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FIGURE 2
 Poster for the identification of genuine/fake saffron: Genuine saffron (a–d) saffron in filament (Laccha), (e–h) saffron in cut filament (Mongra); fake samples (i–##).


While the sample classes we studied showed textural differences between real saffron and the fake ones, serrated top margins and/or pollen grains were seen in authentic as well as spurious sample classes (3, 8) (Supplementary Figure S1). Therefore, unlike the common belief of saffron vendors, the presence of pollen is not a distinctive feature of genuine saffron. Sample class 3 (Supplementary Figure S3c) and sample class 7 (Supplementary Figure S3g) showed serrated top margins, a feature common with authentic saffron; however, both lacked the distinct finger-like projections “papillae.” Similarly, while a large number of pollen grains were seen in sample class 8 and pollen-like granules in sample 3, the papillae were absent in both. Sample classes 4, 5, and 6 (Supplementary Figures S3d–f) featured smooth margins with no serrations, papillae, or pollen grains. Sample class 9 showed smooth, wide top margins with narrower stalk, but lacked the characteristic papillae. Pollen grains were also absent. Overall, sample classes 1, 2, 3, 7, and 9 closely resembled trumpet/funnel-like structure, typical of most stigma, while the remaining four sample classes showed flattened top and margins. The results are summarized in Table 1.



Creating a poster by de-pigmentation and differential staining

Microscopy is generally used in combination with staining, particularly by school children. Most dyes stain tissues with differing intensities of the same color. However, certain basic dyes stain tissue components with colors other than that of the dye. Such a staining reaction is called metachromasy and is highly selective. Only certain tissue structures stain metachromatically and are said to exhibit metachromasia (Culling et al., 2014).

In the present study, we used staining to further expand the inventory of distinct visual color markers. Toluidine blue (also known as tolonium chloride, methylaniline, or aminotoluene) is used to specifically stain certain components of mucosal lesions and tissue sections owing to its metachromatic property and was first applied for in vivo staining of uterine cervical carcinoma in situ by Reichart in 1963 (Siddiqui et al., 2006). Inspired by this, we used it to stain filaments, which incidentally showed a distinct differential staining pattern in the case of “genuine” saffron. It stained the papillae and the margins deep purple, while it is lighter yellowish green toward the central axis (Figure 2).

Moreover, when we try to remove the color of filaments, the de-pigmentation of genuine saffron requires more extensive washing than the samples which had been artificially dyed (Figures 2c,g,k,o,s,w,#). Genuine saffron retains most of the color despite washing 3–4-times. These significant findings were used to create a poster showing all the major visual features that a person can use for the manual validation of a given sample (Figure 2).



Toluidine blue imparts differential stain only to saffron stigma and not fake look-alikes

The staining of samples with toluidine blue in the present study clearly shows the distinct staining pattern based on the histology of papillae (Figure 2). Toluidine blue is partially soluble in both water and alcohol, and selectively stains acidic tissue components like sulfates, carboxylates, and phosphate radicals (Epstein et al., 1992; Gandolfo et al., 2006). Because of these properties, the differences in color intensity of the papillae, their base, and the tissue toward the central axis of saffron stigma are well depicted in toluidine blue staining.

It is known that saffron papillae possess a thick cell wall, covered with a continuous cuticle under which electron-dense material is visible. The papillae contain a large central vacuole, a scarce endoplasmic reticulum, numerous mitochondria and chromoplasts, and virus-like inclusions at the base (Caiola and Chichiriccò, 1991; Caiola et al., 2000). These features are absent in the artificially created fake look-alikes and therefore, get stained uniformly across the whole tissue.

As a metachromatic dye, toluidine absorbs light at different wavelengths, varying with concentration and surroundings, and can change its color without changing its chemical structure. This color change is brought about by the specialized physical changes in the form of stacking of dye cations at regions of the high density of anionic groups in the tissue. Stacking causes a hypsochromic shift (shortens the wavelength of maximum absorption) so that the maximum wavelength of the transmitted light is longer, which makes the observed color look different (Kumar and Kiernan, 2010). The color shift in Figure 2 from a blue or violet dye to a greenish-yellow could represent the polymerization of the dye to varying degrees. The tissue at the margin may have an absorption maximum at 630 nm due to its orthochromatic nature, which, therefore, stains blue. In contrast, the inside tissue stains greenish-yellow, and its absorption spectrum may be closer to 540 nm (Culling et al., 2014). However, these differences are not noticed when the samples are stained with safranin O/iodine/fast green/crystal violet, and all the other staining agents show more or less uniform staining patterns. Similarly, the artificial dyes used by fraudsters to dye the look-alikes of saffron cannot generate the differential pattern shown by toluidine blue.

Based on the above findings, a method was developed for the manual validation of a given sample, and the workflow is shown in Figure 3.
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FIGURE 3
 Poster-based validation: (i) Dry samples are used as such (without any chemical treatment) and then common downstream steps, as shown above, are followed; (ii) samples are de-pigmented using methanol first, and then common downstream steps are followed; (iii) samples are stained using toluidine blue, and then common downstream steps are followed.




Machine learning-based approach is quick and robust in detecting fake saffron

Several studies have been conducted on artificial intelligence for identification and classification tasks. However, only a few relevant contributions employ “image classification” in plants. Kurtulmuş et al. (2016) demonstrated using a neural network to classify pepper seed variety based on images. Likewise, Islam et al. (2020) performed flower classification by employing a convolutional neural network on eight different types of flowers and achieved 85% accuracy. The approaches mentioned above focused on identifying the different variety of spices and flowers, while in the present study, we explored end-to-end neural network learning to distinguish the genuine saffron from the fake using image of the sample.

Even when the presence/absence of papillae in genuine/fake saffron is distinct, the approach based on the Canny edge detector multi-stage image processing algorithm did not perform well (Rong et al., 2014). This is due to many factors, like using only gray images (which is needed for edge detection and finding contours) and throwing a lot of information about color schema, texture, etc., and uncertainty in deciding the threshold value of contours, contours created by other structures other than papillae. Moreover, in the machine learning-based approach, we did not process images, and the model learned from all the features available in the sample images, which allowed us to get robustness in performance and much more accurate results (Janiesch et al., 2021; Greener et al., 2022). We compared all the ML-based saffron classification models on validation and test datasets (Table 2). We observed that the deep neural networks (ResNet18 and DenseNet121) performed better than random forest (RF) and support vector machine (SVM)-based approaches (Kremic and Subasi, 2016; Speiser et al., 2019; Nandhini and Ashokkumar, 2022; Zhou et al., 2022). Also, the best models (two in total) out of the three variations per deep neural network are the models using the pre-trained model weights and freezing all the layers, apart from the last two layers. Both the models recorded 99.5% accuracy with a precision of 99.3% on the test dataset, which is pretty decent. The models show 99.5% accuracy and precision of 99.1% on the validation dataset. This shows that the models are generalized and behave almost the same on the validation and the test dataset. Further, this approach has accelerated the decision-making process regarding the genuineness of a sample image as it takes less than a second per photograph.


TABLE 2 Quantitative comparison of ML-based classification models for saffron classification based on accuracy and precision.

[image: Table 2]

Figure 4 illustrates the contrastive results based on the confusion matrix. We observed that the deep neural network-based approaches (ResNet18 and DenseNet121 with pre-trained model weights and freezing all the layers, apart from the last two layers) demonstrate maximal performance with 235 fake samples correctly detected out of 236, and 142 rightly predicted as genuine out of 143 genuine saffron samples on the test dataset. Only one sample from fake and genuine was wrongly classified, as highlighted (Figure 4).


[image: Figure 4]
FIGURE 4
 Quantitative analysis based on the test dataset. Confusion Matrix for: (A) random forestand SVM, (B) ResNet18 with random weight initialization, (C) ResNet18 pre-trained—network is not in freeze state, (D) DenseNet121 with random weight initialization, (E) DenseNet121 pre-trained—network is not in freeze state, and (F) ReNet18 and DenseNet121 pre-trained network, with all the layers in freeze state, but the last two layers.


The machine learning-based classification approach automated and simplified the process to make detecting fake/genuine saffron quicker. The workflow for the process is shown in Figure 5.


[image: Figure 5]
FIGURE 5
 App-based detection: Deep neural network is trained on a dataset comprising genuine and fake saffron samples. Trained model is used to generate inference based on samples to predict the classification, i.e., whether the sample is genuine or fake.




Adulteration and quality estimation

Eighty market samples (1 g each) were used to assess adulteration and quality. The geographical coordinates and the locations of the eight cities/towns from where these samples were procured are shown using the ESRI ArcGIS map (Figure 6A). The names of the sites and the localities are: (1) Budgam (Chadoora, Budgam, Magam, Beerwah, Humhama), (2) Jammu city (Trikuta Nagar, Gandhi Nagar, Raghunath Bazar, Janipur, Chani Himat), (3) Kangan (Kangan town, Dursuma, Wussan, Preng, Cherwan), (4) Katra (Katra town, Dhar Vaishno Devi, Akhli, Bhangal, Arli, Hansali), (5) Kishtwar (Poochal, Matta, Janwas, Dool, Ohli), (6) Pahalgam (Pahalgam town, Ashmukam, Salar, Dirhama, Batkoot), (7) Pulwama (Lethpora, Pampore, Awantipora, Namlabal, Konibal), and (8) Srinagar (Lalchowk, Dalgate, Sonwar, Dargah, Nowhatta).


[image: Figure 6]
FIGURE 6
 Saffron market-sample collection sites for assessing adulteration and quality: (A) Map depicting geographical locations; (B) categorization of the 80 samples according to ISO 3632 standard.


Out of a total of 80 market samples, the number of adulterated samples was 48 (Figure 6B). Twenty samples from Pulwama and Srinagar showed a cumulative average adulteration of <1.5%, while the 30 samples from Budgam, Kishtwar, and Jammu city showed around 16%. The samples (30) from Katra, Pahalgam, and Kangan were highly adulterated, with an average of 40% adulteration. The saffron bought from Pulwama and Srinagar showed adulteration between 0.12 and 2.36% (among the 20 samples), and for the quality, they fall into Categories I and II of ISO 3632 (1 & 2) standards (Figure 6B).

The overall percentage of saffron samples which belonged to Categories II and III is 60% (Figure 6B). While the adulteration among these adulterated samples ranged from 2.09 to 71.23%, and their mean adulteration percentage was 36.25%. Surprisingly, adulteration strongly correlated with the location of sample procurement. Srinagar and Pulwama showed minimal adulteration problems, perhaps because of stricter law enforcement agencies or more awareness among the sellers and buyers. This location-dependent adulteration shows that fraudsters know that cheating would go undetected at places where demand is more due to the tourist rush while its supply is limited.

While the saffron quality depends on many factors (Husaini, 2014), a significant reduction in the quality of color (crocin), bitterness (picrocrocin), and aroma (safranal) was recorded in the adulterated samples which are inversely proportional to the adulteration percentage (Figure 7). After removing the adulterant from the crude market sample, the sample quality improved significantly, pushing some from Category III to Category II (Figure 7B). It infers that Categories II and III saffron are more likely to be adulterated by fraudsters (Figures 6B, 7A).
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FIGURE 7
 Assessment of saffron quality obtained from different locations of Jammu and Kashmir (India) in pure and adulterated samples: (A) Adulteration percent, (B) crocin, (C) picrocrocin, and (D) safranal content. The dotted lines represent the maximum and minimum values of crocin, picrocrocin, and safranal for the categorization of saffron quality as per ISO 3632 standards. Values are the mean of 10 replicates and expressed as mean ± S.D (standard deviation). The letters a, b and c indicate a statistically significant difference at p ≤ 0.05 probability level between different locations. Bars with no common letters are significantly different (p ≤ 0.05).




Practical applications

Saffron is a costly spice used as a routine in common people's religious rituals and local cuisines (Husaini and Wani, 2020). However, it is evident from the above data that saffron adulteration and fraud are a big menace. People prefer to buy it as “filaments” because it is easier to use from the dosage point of view, and there are lesser chances of adulteration than in the powdered form. However, unfortunately, some fraudsters have even found ways to “create” fake saffron-like filaments.

Saffron dealers can use the two methods developed in the present study (Figures 3, 6) to showcase the authenticity of saffron to their customers without much botheration. The customer can himself check the adulteration percentage in a random sample and identify fake saffron by using a simple application on a mobile phone. It would act as an additional check for the fraudsters who manage to get fake GI tags, holograms, and certifications and sell their products in the unorganized sector while going undetected by the law enforcement agencies (Husaini et al., 2010a). Further, genuine retailers can convince the customers about the authenticity of their products by showing these visual markers using Foldscope or by installing the mobile app on their smartphone, thereby promoting genuine retail business.

Furthermore, we created a kit for commercial use and quality control laboratories (the patent is under process). The kit constitutes a poster showing distinct and unique markers in saffron stigma, a Foldscope, slides, cello-tape, methanol, and toluidine solution. These methods have the potential to be put to use in the European Science Foundation-sponsored COST Action FA1101 (Saffron-omics: Omics technologies for crop improvement, traceability, determination of authenticity, adulteration, and origin). The results of the de-pigmentation and the staining procedures can be used to update the relevant sections of “test methods” in the identification test and microscopic examination of the International Standards Organization ISO 3632 (1 & 2).




Conclusion

Individual consumers prefer to buy “saffron in filaments” (Laccha), or “saffron in cut filaments” (Mongra) because it is easier to use from the dosage point of view, and there are lesser chances of adulteration than in the powdered form. However, fraudsters have invented fake saffron-like filaments to cheat customers. We developed two Foldscope-based techniques for the identification of pure saffron. One technique uses a simple visual comparison of distinct markers (papillae of stigma) with a poster, and the other uses an automated approach through a mobile application. Machine learning simplifies the process and automates the detection of fake/genuine saffron samples. It enables end-users not to worry about identifying samples from magnified images themselves. This approach accelerates the whole identification process and takes less than a second per sample after acquiring its image. While large-scale testing of saffron quality using sophisticated methods in specialized laboratories shall always be required for the saffron industry, we have added a new dimension by bringing the customer to the forefront.

Adulteration remains a significant challenge to the saffron industry. The quality of a saffron sample decreases significantly with an increase in adulteration percentage. A critical observation of the present study is that the ISO Category I saffron is not subjected to adulteration, perhaps because elite customers are willing to pay higher prices and generally buy from trusted sources. Saffron belonging to the ISO Categories II and III is more prone to adulteration as it is available freely everywhere as innocent customers prefer to buy saffron at cheaper rates from untrusted sources!
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SUPPLEMENTARY FIGURE 1
 Pollen on (a) freshly cut saffron stigma; (b) sample class 1; (c) sample class 2; (d) sample class 3; (e) sample class 8; (f) saffron stigma mounted on a slide in Foldscope.

SUPPLEMENTARY FIGURE 2
 Stereomicroscopic images of the apices of filament sample classes at a magnification of 80× (a–i).

SUPPLEMENTARY FIGURE 3
 Foldscope images of top region/margin of (a) sample class 1 showing papillae; (b) sample class 2 showing papillae; (c) sample class 3 showing serrations; (d) sample class 4 showing smooth margin with no serrations; (e) sample class 5 showing even margin without serrations; (f) sample class 6 showing smooth edges without serrations; (g) sample class 7; (h) sample class 8; (i) sample class 9 showing smooth surface.
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Water is a key element for wood performance, as water molecules interact with the wood structure and affect important material characteristics such as mechanical properties and durability. Understanding wood-water interactions is consequently essential for all applications of wood, including the design of wood materials with improved durability by chemical modification. In this work, we used Raman micro-spectroscopy in combination with a specially designed moisture chamber to map molecular groups in wood cell walls under controlled moisture conditions in the hygroscopic range. We analyzed both untreated and chemically modified (acetylated to achieve two different spatial distributions of acetyl groups within the cell wall) Norway spruce wood. By moisture conditioning the specimens successively to 5, 50, and 95% relative humidity using deuterium oxide (D2O), we localized the moisture in the cell walls as well as distinguished between hydroxyl groups accessible and inaccessible to water. The combination of Raman micro-spectroscopy with a moisturizing system with deuterium oxide allowed unprecedented mapping of wood-water interactions. The results confirm lower moisture uptake in acetylated samples, and furthermore showed that the location of moisture within the cell wall of acetylated wood is linked to the regions where acetylation is less pronounced. The study demonstrates the local effect that targeted acetylation has on moisture uptake in wood cell walls, and introduces a novel experimental set-up for simultaneously exploring sub-micron level wood chemistry and moisture in wood under hygroscopic conditions.
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Introduction

Durability is a factor that often limits the service life of wood and wood products, especially for in-soil and outdoor applications. The use of wood in outdoor environments is challenging as the wood cell wall will be degraded by decay fungi when exposed to prolonged humid conditions. Moisture plays a key role in this process, as it is essential for fungi to colonize and consume the lignocellulosic cell walls (Ringman et al., 2019; Brischke and Alfredsen, 2020). As a hygroscopic material, wood takes up water from its surroundings both in vapor and liquid state. Hydroxyl (OH) groups are the main water sorption sites in wood cell walls (Simpson, 1980) and these are present throughout the lignocellulosic matrix. Chemical modification of wood is a way to improve the durability, often by limiting the hygroscopicity of the material (Dong et al., 2020). Modifications of wood can limit the access of water molecules in the cell wall by bulking the available space and/or by reducing the number of accessible sorption sites in the structure (Thybring and Fredriksson, 2021). The most utilized wood modification processes are acetylation, thermal modification and furfurylation (Rowell, 2006; Mantanis, 2017; Hill et al., 2021; Zelinka et al., 2022). Acetylation of wood by reaction with acetic anhydride substitutes a fraction of the hydroxyl groups with the more voluminous acetyl groups (Çelen et al., 2007). Since the cell wall chemistry of wood is heterogeneous, chemical modification may not affect all domains evenly. The spatial distribution of a chemical modification can also be deliberately controlled by tuning the reaction conditions (Digaitis et al., 2021) or the reaction path (Keplinger et al., 2015). Chemical changes in wood cell walls as a result of modification are often studied by Raman micro-spectroscopy because it is non-invasive and offers high spatial resolution (Agarwal, 2009, 2019; Gierlinger et al., 2012, 2013; Gierlinger, 2018). The chemical characterization has so far been conducted predominantly on water-saturated wood specimens and information related to non-saturated states is limited (Guo et al., 2017). In this study we introduce a novel combination of Raman micro-spectroscopy and controlled moisture conditioning of wood in a unique, custom-built moisture chamber. With this experimental setup we are able to study water within wood cell walls under controlled, non-saturated environmental conditions. Moreover, by use of deuterium exchange, water-accessible and non-accessible hydroxyl groups can be distinguished from each other. This allows visualization of the moisture distribution within cell walls of native and modified wood. Here, we demonstrate this setup and semi-quantitatively assess the distribution of acetyl groups and moisture within native and two types of acetylated wood cell walls of Norway spruce to illustrate local effects of acetylation.



Materials and methods


Wood material

Wood specimens of untreated, pyridine treated (controls), uniformly acetylated and interface acetylated Norway spruce [Picea abies (L.) Karst.] mature sapwood with dimensions 10 (longitudinal) × 5 × 5 mm3 were employed for this study. The material originated from experimental forests in the southern parts of Sweden and is further described by Fredriksson et al. (2016). To minimize variation between specimens all specimens were cut from the same board. The modification procedures are described in detail by Digaitis et al. (2021). Briefly, the uniform acetylation was achieved by impregnating the samples in a 1:4 (v/v) mixture of acetic anhydride (VWR Chemicals, Radnor, United States) and pyridine (Merck, Darmstadt, Germany) and subsequent heating at 80°C for 60 min. The interface acetylation was achieved using a solution of pure acetic anhydride and carrying out the reaction at 75°C for 24 h. Control specimens were treated with pure pyridine at 80°C for 3 h. The mass gain caused by the modification was evaluated as the relative mass change:
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where mdry (g) is the dry mass after modification and mdry,0 (g) is the dry mass before modification.

The recorded Rmod (g/g) for the interface acetylated specimen used in this study was 0.113 g/g. The mean Rmod of 10 uniformly acetylated specimens was 0.142 g/g. The pyridine extraction gave on average a negative Rmod of 0.023 g/g, indicating a mass loss, possibly due to removal of extractives from the wood.



Raman measurements with controlled humidity

Using a microtome (RM2255, Leica Biosystems, Wetzlar, Germany), three 16 μm cross-sections were produced per specimen, in total 3 × 4 = 12 cross-sections. Four cross-sections at the time, one per each type of wood material, were placed on the moisture chamber (detailed description of the moisture chamber used is provided in Supplementary Material, Section 1) and wetted with a drop of deuterium oxide (99.98% D2O, Sigma-Aldrich, Munich, Germany). The samples were then covered with a borosilicate glass slide (thickness #1), the edges of which were sealed with nail polish. The fully assembled and loaded with wood cross-sections moisture chamber, with open inlet and outlet channels, was then vacuum dried for 12 h at 60°C. Afterward, the moisture chamber was connected to a humidity microcontroller (ACE flow 2.0, SolGelWay, France) to adjust the flow of a wet flux of saturated deuterium oxide (D2O) vapor and a dry flux of air at 0% RH. The water saturated flux was achieved with a bubbling system that included two flasks, a warming plate and D2O (Supplementary Figure 1). To ensure that all water-accessible hydroxyl groups were deuterated, the samples were preconditioned at 95% RH for 12 h. Then, the samples were equilibrated at 5, 50, and 95% RH for 12 h at each humidity level, and at each of these humidity levels, Raman images were captured. A total of 36 Raman images were captured, describing 12 different latewood tracheids at three hygroscopic states, belonging to four types of wood material.

The confocal Raman microscope (alpha 300R, WITec GmbH, Ulm, Germany) was equipped with a UHTS 300 spectrometer and a 100x oil immersion objective (Zeiss “N-Achroplan,” NA = 1.2, transmittance of 73%, Carl Zeiss GmbH, Jena, Germany). A linear polarized 532 nm NdYag was used at a 10 mW laser power and with 0.1 s of integration time per spectrum to avoid sample degradation (Prats-Mateu et al., 2018). Even though the same tracheid was imaged three times, no signs of degradation were observed in the spectra. The images were acquired from cross sections that were previously aligned with the tangential direction parallel to the laser polarization (Gierlinger et al., 2013). Raman scattered light was detected with a back-illuminated charge-coupled device camera, air cooled with Peltier cooling to –60°C and with a 600 g/mm grating, resulting in a spectral resolution of 3.8 cm–1. Images were acquired with a diffraction limited lateral spatial resolution of approximately 0.3 μm.



Treatment and data analysis of Raman scattering data

The treatment and reduction of all Raman scattering data were carried out in Matlab ver. 2020b (Mathworks, Natick, Massachusetts, United States). Prior to analysis, spectra were subjected to (1) image size reduction, specifically shaped for each image, to reduce the size of the dataset; (2) removal of the part of the spectrum not useful for the analysis, consisting in the wavenumbers below 300 cm–1 and above 3,720 cm–1 approximately; (3) cosmic ray removal by use of median filtering (Matlab built-in function medfilt1 using default settings); (4) Alternating Least Squares (ALS) baseline correction according to Eilers and Boelens (2005), which has been shown to cope well with fluorescence contribution (De Juan et al., 2014), with parameters λ = 105 and p = 0.0005. Due to the heterogeneous distribution of wood polymers in the wood cell walls, the data were clustered using k-means cluster analysis (as implemented in Matlab), which successfully separated lignin rich parts of the cell wall, i.e., the cell corner and middle lamella (CCML), the cellulose rich secondary cell wall (S2), and the empty lumina of tracheids and ray cells (LUMEN). A normalization to equal length (2-norm of each spectrum) was used before clustering, as it made the k-means clustering perform better based on our visual inspection of the clustering results.

For the spectra assigned to the cell wall cluster (CELL WALL = S2 + CCML clusters), average spectra were computed and Raman peak heights or areas were estimated using a linear baseline, individually set for each Raman band. Estimation of peak areas was preferred over peak heights when possible, i.e., when the peak of interest was an isolated peak and not a shoulder. For the sake of visual comprehension, in addition to the pre-processing, the average spectra of the cell walls in Figure 1 have been furthered baseline corrected (ALS, λ = 104 and p = 0.0002). Peak areas were estimated with trapezoidal numerical integration (Matlab trapz function), and peak heights by the height of the baselined corrected peak, using a linear baseline individually set for each Raman band of interest. Peak areas were estimated for: (1) O-D stretching at 2,490 cm–1 (Hofstetter et al., 2006), calculated in the range 2,300–2,685 cm–1 and assigned to the absorbed deuterium oxide (D2O) and the deuterated hydroxyls (O-D); (2) C=O carbonyl stretch at 1,738 cm–1 (Marchessault and Liang, 1962; Adebajo et al., 2006), in the range between 1,710 and 1,780 cm–1 and assigned to acetylation and (3)
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FIGURE 1
In the top, schematic representations of untreated, interface and uniformly acetylated cell walls are shown. Below, average Raman spectra calculated for untreated (blue), interface acetylated (red), and uniformly acetylated (yellow) spruce cell walls (i.e., CELL WALL cluster), conditioned in D2O vapor at 5% (top), 50% (middle), and 95% RH (bottom). Wavenumber regions of interest assigned to acetylation, moisture, and water-inaccessible hydroxyls are shaded, respectively, in yellow, blue, and green. Peaks of interests are also highlighted by dotted lines, and marked with their exact wavenumber. The spectra for pyridine control samples are omitted for clarity as they were similar to the untreated wood, see Supplementary Figure 2.


O-H stretching at 3,450 cm–1(Wiley and Atalla, 1987), in the range between 3,150–3,650 cm–1 and assigned to inaccessible hydroxyl groups. Peak heights were estimated for: (1) the mean aromatic ring stretching at 1,601–1,604 cm–1 (Gierlinger and Schwanninger, 2007), using a baseline in the range between 1,545 and 1,710 cm–1 and assigned to the symmetric CC stretch of the aromatic ring of lignin substructures (Bock and Gierlinger, 2019); (2) the mean of the C-H stretch at 2,898–2,902 cm–1 (Gierlinger et al., 2013) using a baseline in the range 2,785–3,040 cm–1; (3) the maximum height of the C=C and C=O stretch calculated between 1,660 and 1,664 cm–1(Bock and Gierlinger, 2019), using a baseline in the range between 1,648 and 1,710 cm–1 and assigned to the to the lignin substructures such as coniferyl alcohol and coniferyl aldehyde. The peak heights and areas were normalized over the aromatic ring stretching peak height at 1,601 cm–1 to compensate for the differences in band intensity due to changes in focal plane. Before normalization, to discard outliers given by negative values and values close to zero, peak areas lower than 1 and peak heights lower than 0.01 were set to 1. Only a small fraction of the areas and heights were rejected as outliers by means of this sorting method (<1%). For the spectra assigned to the CCML cluster, a threshold clustering was applied to further distinguish between the cell corners (CC) and the S1–S3 layers and the middle lamella (S1S3ML). The spectra with ratio 2,898 cm–1/1,601 cm–1 higher than x where assigned to S1S3ML, the rest to the CC cluster. x was individually set for each image after visual inspection, and varied between 1.8 and 2.

Due to the high content of noise, a statistical test was done to exclude unreliable information from the main peaks of interest, identified as the C=O and O-D stretching vibrations. The total raw sum of C=O (1,710–1,780 cm–1) and O-D (2,300–2,685 cm–1) counts were linearly baseline corrected. By evaluating the baselined raw sum of the peaks over the noise of the spectrum, each image pixel was labeled as significant or not, regarding the O-D and CO signals. The non-significant pixels contributed as null values in the averages. The pixels assigned to a mere fluctuation of noise were the ones in which the following expression was not fulfilled:
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with praw,events the total sum of the counts (raw spectra, linearly baselined) and considering the background to be 0±σnoiseevents. The σnoise was computed as the standard deviation of the difference between the raw and the reduced signal (PCA, first 3 components). Considering the Poisson statistic of the event of Raman Stokes scattering from a functional group, the 3.5σnoise threshold is a cautious one (Barlow, 1993). A null value was assigned to the spectra belonging to the pixels of lumina of tracheids and ray cells, as well as to the pixels in which the peak of interest was not significantly greater than the background noise.




Results and discussion


General observations about acetylation, hydroxyl groups and moisture

The average spectra for the acetylated samples showed higher intensity than the one for untreated wood at approximately 645, 910, 1,735, and 2,941 cm–1, as previously reported by Digaitis et al. (2021) for acetylated spruce wood cell walls (Figure 1). These peaks were, respectively, assigned to O-C=O in plane deformation, H-C=C and H-C=O bending, C=O carbonyl stretching vibration and C-H stretching vibration, which are related to acetylation (Wiley and Atalla, 1987; Adebajo et al., 2006; Bock and Gierlinger, 2019). As expected, these peaks did not vary significantly over the three hygroscopic states of the same types of wood. Among those, the peak area assigned to the C=O carbonyl stretching vibration, calculated between 1,710 and 1,780 cm–1 (yellow band in Figure 1), was used as peak of interest to characterize acetylation (Adebajo et al., 2006). The C=O peak intensity is visibly the highest in uniformly acetylated wood (highest degree of wood cell wall acetylation, Rmod = 0.142 g/g), while the interface acetylated had the second highest peak intensity (lower degree of wood cell wall acetylation, Rmod = 0.113 g/g), in all the three hygroscopic states. This is because the interface acetylation only acts at the lumen-cell wall interface, i.e., the somewhat lower peak height compared to uniformly acetylated wood is a dilution effect of the spectral averaging.

The O-D signal (blue shading in Figure 1) is from the deuterated hydroxyl groups and moisture within the cell walls. Since each D2O water molecule contains two O-D functionalities that contributes to the Raman signal, the measured O-D signal reflects the accessible hydroxyls plus two times the concentration of water molecules. Please refer to Supplementary Material, Section 3 for an extended discussion of this point. In the average spectra, the O-D signal was seen at 5% RH and it increased for higher RH levels for all the types of wood studied. These observations indicate that successful deuteration and moisture uptake in the cell walls was achieved.

The O-H band (green shading in Figure 1) derives from the un-deuterated hydroxyl groups. Since the wood specimens were exposed to both liquid D2O and high D2O vapor pressure for prolonged time, it can be assumed that all water-accessible hydroxyl groups were deuterated. Consequently, the O-H signal relates to the hydroxyls inaccessible to water, and these groups are mainly found inside the cellulose microfibrils (Hofstetter et al., 2006; Salmén and Bergström, 2009). No outstanding variations can be pointed out from this band, neither between the different types of wood nor between the hygroscopic states, except for a slightly higher O-H peak at 5% RH for the untreated samples.



Distribution of acetyl groups and deuterium within cell walls

Figure 2 shows the intensity maps of the peak areas assigned to O-D (Figures 2A–C,E–G,I–K) and C=O stretching (Figures 2D,H,L) for one tracheid from each treatment. Due to the complex composition of wood and the lateral resolution of Raman micro-spectroscopy, the spectra from wood specimens often contain overlapping information. However, for this study the intensity maps of O-D and C=O vibrations could with high certainty be related to deuterated hydroxyls plus moisture, and acetyl esters, respectively.
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FIGURE 2
Intensity maps of the Raman peaks assigned to moisture and acetylation of untreated (A–D), interface acetylated (E–H) and uniformly acetylated wood (I–L). The three columns of maps on the left show O-D stretching (2,300–2,685 cm–1) intensity scanned at 5% (first column), 50% (second column), and 95% RH (third column). The column on the right shows intensity maps of C=O stretching (1,710–1,780 cm–1). For further clarity the backgrounds of the O-D and C=O intensity maps are color-coded as the band in Figure 1, i.e., respectively, blue and yellow. All the maps of O-D share the same intensity scale, as do all maps of C=O.


In interface acetylated wood (Figure 2H), the C=O distribution was mainly concentrated in the cell wall area around the lumen, while it was basically absent in untreated wood (Figure 2D) and uniformly distributed in the uniformly acetylated wood (Figure 2L). These maps also indicate that the maximum C=O signal is of the same magnitude for the two different types of acetylation. As also seen from the average spectra in Figure 1, the intensity maps of C=O confirm that intensity and distribution between different hygroscopic states of the same tracheid does not vary significantly, as no acetyl esters are introduced or washed out during the moisture conditioning of the samples.

All types of wood materials showed an increase in the O-D signal over the whole cell wall, when going from nearly dry (5% RH) to more moist hygroscopic states. Since the amount of water-accessible hydroxyl groups does not vary over the three hygroscopic states (Altgen and Rautkari, 2021), the difference between the images of the same material were solely due to the moisture uptake. The major difference between modified and untreated wood was in the intensity and distribution of the O-D signal. The untreated wood (Figures 2A–C) had higher and more even distribution of the O-D signal over the secondary cell wall at every hygroscopic state than what was seen for the interface acetylated (Figures 2E–G) and uniformly acetylated wood (Figures 2I–K). Furthermore, the two types of acetylated wood showed a more uneven distribution of the O-D signal in the cell wall than the untreated wood, and lower values of O-D seemed to be associated with higher values of C=O signal intensity, i.e., the degree of acetylation (Figure 2F with Figure 2H and Supplementary Figure 4). Overall, the O-D intensity maps showed that the moisture uptake was reduced in the acetylated samples, illustrating the usefulness of the experimental setup.



Quantification of acetyl esters and moisture present within individual cell wall layers

Finally, the clustering analysis that identified and localized different areas of the wood cell walls (Figure 3A) was used to quantify the contribution of moisture and acetylation separately for each of those regions. Figure 3B shows the mean value of the C=O stretching from cell walls of every kind of wood material and specific clusters. In each of the clusters analyzed, the average C=O stretching peak area (associated with acetylation) was highest for the uniformly acetylated samples and lowest for the untreated wood, with the interface acetylation in between, however, without being statistically significant (Figure 3B). To evaluate the reliability of the obtained results, the average Raman C=O signal was compared with the bound acetyl content found in literature. This was done by taking the ratio of the C=O signal of acetylated and untreated wood. For the cell wall cluster, this ratio was 7.4 ± 3.3 for uniformly acetylated and 4.0 ± 1.3 for interface acetylated wood. For comparison, the ratio of bound acetyl concentration in uniformly acetylated and untreated wood is theoretically expected to be 11.9 ± 0.8 and 9.4 ± 0.6 (Supplementary Table 1), which align with experimental data for acetylation of Radiata pine (Beck et al., 2017, 2018). Thus, the theoretical ratios were somewhat higher but of the same magnitude as the ratios of the Raman C=O signals.


[image: image]

FIGURE 3
Quantification of the Raman O-D and C=O signals in the different clusters of the cell wall. (A) Example of the wood cell clustering depicting LUMEN (tracheid and ray cell lumina), S2 (secondary cell wall), CC (cell corners), S1S3ML (primary and tertiary cell wall, and middle lamella). The CELLWALL cluster (not shown) is the sum of the S2, CC and S1S3ML clusters, i.e., the whole cell wall. (B) Average Raman C=O intensity computed for untreated, interface acetylated and uniformly acetylated wood by averaging the images from the three replicates and the three hygroscopic states for each cluster (9 images contributed to the average and standard deviation of each bar). (C,D) Average Raman O-D intensity calculated for the three materials in the three hygroscopic states for S2 and CCML clusters. All Raman intensities are normalized over the lignin peak height at 1,601 cm–1. In (B–D) untreated samples are illustrated by blue bars, interface acetylated samples by red and uniformly acetylated samples by yellow. The bars include the standard deviation. The bars were compared using a two-tailed pair t-test for significance with the null hypothesis of no difference between the two set of data and α = 0.05. The letter a on top of the bars in (B) indicates that the interface and uniformly acetylated belonging to the S2 cluster were the only results not rejecting the null hypothesis of equal signal for all three groups.


In the S2 cluster (Figure 3C), the mean O-D values at each of the hygroscopic states of untreated and interface acetylated wood were statistically the same, as well as between interface and uniformly acetylated wood, while results for the untreated wood were different. This is in contrast to the CCML cluster (Figure 3D) where mean O-D values of interface acetylated, uniformly acetylated and untreated wood were all statistically comparable between the same hygroscopic states. Overall, the trends of Figures 3C,D make us speculate that the interface acetylated wood reduces the moisture uptake relatively more in the secondary cell wall than the uniformly acetylated wood, even though the statistics can only partially confirm this claim. The low significance of the data regarding the mean O-D signal suggests that, considering the evidences from the average spectra (Figure 1), the intensity maps (Figure 2) and the trends from the bar charts (Figures 3C,D), three replicas is not enough to overcome the great variability of the material.

To further evaluate the obtained results, the Raman O-D signal at 5% RH was compared with the expected O-D concentration from experimentally determined hydroxyl accessibility and predicted residual moisture. The ratio of the O-D signal of acetylated samples and untreated wood was compared with predicted O-D concentration at 5% RH (Supplementary Table 3). Whereas the latter gave ratios of 0.7 ± 0.1 for interface acetylated and 0.4 ± 0.1 for uniformly acetylated wood, the ratios based on the Raman O-D signal were found to be 0.8 ± 0.3 and 0.9 ± 0.2 for interface and uniformly acetylated wood, respectively. Thus, while the Raman data suggests a decreasing O-D concentration for the acetylated materials, the uniformly acetylated wood exhibited a more intense O-D signal at 5% RH than the predicted values.

The Raman O-D signal from the cell wall cluster (not shown) for each type of material was also compared with the predicted O-D concentration in the different moist states based on experimental data from Digaitis et al. (2021). The values showed the O-D Raman signal and O-D concentration at 50 and 95% RH, normalized over the corresponding values at 5% RH to be of the same order of magnitude (Supplementary Table 2).

Overall, this study demonstrates the effect of acetylation on moisture uptake locally in wood cell walls, and illustrates the possibilities for simultaneously exploring sub-micron level wood chemistry and moisture in wood under hygroscopic conditions.




Conclusion

A novel experimental set-up was introduced in this study for simultaneous exploration of the sub-micron level cell wall chemistry and moisture in wood under hygroscopic conditions. Analysis of both cell wall-lumen interface acetylated and uniformly acetylated latewood cells of Norway spruce illustrated the local effect of acetyl esters on moisture uptake in different regions of the cell wall, at various levels of relative humidity and with sub-microscale resolution. The results collectively point to the conclusion that moisture is reduced more in highly acetylated areas of the cell wall.
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Accurate severity assessment of wheat stripe rust caused by Puccinia striiformis f. sp. tritici is of great significance for phenotypic determination, prediction, and control of the disease. To achieve accurate severity assessment of the disease based on the actual percentages of lesion areas in the areas of the corresponding whole diseased leaves, two new methods were proposed for severity assessment of the disease. In the Adobe Photoshop 2022 software, the acquired images of single diseased leaves of each severity class of the disease were manually segmented, and the numbers of the leaf region pixels and lesion pixels of each diseased leaf were obtained by pixel statistics. After calculation of the actual percentages of lesion areas in the areas of the corresponding whole diseased leaves based on the obtained pixel numbers, the training sets and testing sets were constructed for each severity class by using the system sampling method with two sampling ratios of 4:1 and 3:2. Then the mean and standard deviation of the actual percentages of lesion areas contained in each training set were calculated, respectively. For each sampling ratio, two methods, one based on the midpoint value of the means of the actual percentages of lesion areas corresponding to two adjacent severity classes and the other based on the distribution range of most of the actual percentages of lesion areas, were used to determine the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas for each severity class. According to the determined reference ranges, the severity of each diseased leaf in the training sets and testing sets was assessed. The results showed that high assessment accuracies (not lower than 85%) for the training sets and testing sets were achieved, demonstrating that the proposed methods could be used to conduct severity assessment of wheat stripe rust based on the actual percentages of lesion areas. This study provides a reference for accurate severity assessments of plant diseases.




Keywords: wheat stripe rust, severity, disease assessment, reference range, lesion area, normal distribution method



Introduction

Stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat worldwide (Li and Zeng, 2002; Line, 2002; Chen, 2005; Wellings, 2011; Chen et al., 2014; Wang X. J. et al., 2014; Ali et al., 2017). It was estimated that this disease could cause yield losses of 5.47 million tons of wheat (equivalent to US$979 million) each year in the worldwide wheat-growing regions (Beddow et al., 2015). In the United States in 2000, 2001, 2002, and 2003, the total losses of wheat in the top 12 states with the most severe wheat yield losses resulting from stripe rust were approximately 1.20, 5.24, 1.06, and 11.75 million tons, respectively (Chen, 2005). As an air-borne disease, in China, wheat stripe rust has the characteristics of high epidemic frequency, wide occurrence range, and severe damage to wheat production, and it has been pandemic in wheat-growing regions for many times, especially in 1950, 1964, 1990, and 2002, reducing the yield of wheat by 6, 3.2, 1.8, and 1.3 billion kg, respectively (Li and Zeng, 2002; Wan et al., 2003; Wan et al., 2004; Wan et al., 2007). In China, wheat stripe rust is one of the most important and devastating wheat diseases and is always a serious threat to the safety of wheat production, critically affecting China’s food security (Li and Zeng, 2002; Chen et al., 2014; Wang X. J. et al., 2014; Wang et al., 2022). To carry out the surveys and monitoring of wheat stripe rust is a key way to obtain the information on the occurrences of the disease, which can provide basic supports for disease prediction, resistant variety identification, disease management, and so on.

During the surveys of wheat stripe rust, generally, the main disease indicators surveyed include incidence, severity, disease index, etc. Among these indicators, the severity is applied to describe disease intensity or the degree of infection of a plant unit (e.g., a plant, leaf, fruit, branch, stem, or other plant part) and it is of great significance for disease quantification (Nutter et al., 1991; Bock et al., 2022). For wheat stripe rust, according to the Rules for Monitoring and Forecast of the Wheat Stripe Rust (Puccinia striiformis West.) (National Standard of the People’s Republic China, GB/T 15795–2011), eight severity classes are classified based on the percentages of lesion areas in the areas of the corresponding whole wheat leaves. In this severity grading standard, the disease intensity between two adjacent severity classes is taken as its nearest percentage severity class, and the disease intensity of a diseased leaf with the severity lower than 1% is recorded as the severity class of 1%. Shang et al. (1990) designed a standard area diagram set for the severity assessment of wheat stripe rust, and this diagram set plays an important role in accurate severity assessment of the disease. The severity assessment of wheat stripe rust is an important part in disease surveys, concerning diseased plant phenotyping, disease prediction and forecast, and disease control decision-making. Therefore, the severity assessment should be conducted in strict accordance with the severity grading standard to ensure the assessment accuracy and to facilitate the exchange and sharing of the corresponding assessment information.

At present, the severity assessment of wheat stripe rust is conducted mainly by using visual observation method (i.e., naked eye observation method) that is heavily dependent on experienced personnel. In addition to the method above, disease severity of wheat stripe rust can be assessed by using the methods based on image processing technology (Jiang et al., 2021), remote sensing technology (Huang et al., 2004; Wang et al., 2007; Zhao et al., 2014; Wang et al., 2016), and near infrared spectroscopy technology (Li et al., 2015). In some cases, the severity of wheat stripe rust can be assessed based on the disease incidence obtained via disease survey (Dong et al., 1990).

During Pst infects into wheat leaves, infection sites on wheat leaves are required. The actual area occupied by each infection site may be larger than the area of each lesion with the disease symptom (usually the uredinium produced at the infection site). In the severity grading standard of wheat stripe rust (i.e., the Rules for Monitoring and Forecast of the Wheat Stripe Rust (Puccinia striiformis West.)) as described above, the percentage of the lesion area in the area of a whole diseased wheat leaf corresponding to one of eight severity classes is not the actual percentage of the lesion area in the area of the whole leaf. The percentage of the lesion area in the area of a whole diseased wheat leaf corresponding to a severity class in the severity grading standard is greater than the actual percentage of the lesion area in the area of the whole leaf. This makes it very difficult to accurately assess the severity of wheat stripe rust in practice. Shang et al. (1990) measured the areas of wheat leaves using a leaf area meter, and obtained the actual coverage rate of all the uredinia on a wheat leaf of each severity class using a uredinium parameters based calculating method and a method via actual measurement of the amplified image of the wheat leaf with the most severe disease symptom selected in the field. The results obtained by Shang et al. (1990) showed that the actual uredinium coverage rates for the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were 0.35%, 1.75%, 3.5%, 7%, 14%, 21%, 28%, and 35%, respectively, indicating that the actual percentage of the lesion area in the area of a whole diseased wheat leaf corresponding to one of eight severity classes is quite different from the corresponding percentage of the lesion area in the area of the whole leaf determined by using the severity grading standard of wheat stripe rust. In addition, due to the relatively small size and great shape changes of the Pst uredinia, it is easy to induce errors in the actual measurements of the coverage areas of the uredinia, and thus there may be some induced errors in the actual uredinium coverage rates for the severity classes obtained by Shang et al. (1990). Therefore, it is necessary to develop a more convenient and accurate method for determining the actual percentage of uredinium coverage area in a diseased wheat leaf area. Moreover, the actual uredinium coverage rate of each severity class obtained by Shang et al. (1990) is a fixed value, but most of the actual uredinium coverage rates in practice are between the fixed values of two adjacent severity classes, inducing great difficulties and inconvenience to the severity assessments. Therefore, under these circumstances, when disease severity is assessed by comparing the actual percentage of lesion area in the area of a whole diseased wheat leaf to the percentage of lesion area in the severity grading standard, great assessment errors may be induced and disease severity class may be incorrectly assessed.

The visual observation method is widely utilized to assess the severity of wheat stripe rust, it is time-consuming and laborious, and it has high requirements of experience of an assessor or a rater. When this method is utilized to carry out disease severity assessment in practice, it is not easy to conduct the assessment and to obtain accurate assessment results. Due to the influence of the human vision and experience, using this method, different assessors/raters may obtain different assessed severity class for the same diseased wheat leaf. Therefore, before carrying out the disease severity assessment in practice, an assessor or a rater is required to be trained to master the severity grading standard and the severity grading method, aiming to ensure the accuracy and reliability of the severity assessment results.

In comparison with disease severity of wheat stripe rust, it is easier to investigate disease incidence by determining whether a wheat leaf is diseased. The quantitative relationship between incidence and severity (I-S relationship) can be established after investigations of the incidence and severity of the disease, and then the severity can be speculated according to the incidence. Nevertheless, the I-S relationship is greatly affected by many factors such as the incidence, the growth stage of wheat, and the distribution of lesions on wheat leaf layers (Dong et al., 1990). Therefore, the application of the established I-S relationship equation/model has great limitations, limiting the application of the severity assessing method based on the disease incidence.

Studies on severity assessment of wheat stripe rust based on remote sensing technology, near infrared spectroscopy technology, image processing technology, and other information technologies, have been paid attention to. The severity assessment of wheat stripe rust based on remote sensing technology and near infrared spectroscopy technology is still in the experimental research phase. Due to the high price of the required instruments and the low practical applicability, the related methods based on remote sensing technology and near infrared spectroscopy technology are rarely applied in practical productions. With the rapid development of image acquisition technology and image processing technology, more and more recognition methods (Li et al., 2012; Wang M. L. et al., 2014; Guo et al., 2015; Hu et al., 2018) and severity assessment methods (Bao et al., 2021; Jiang et al., 2021) of wheat stripe rust based on image processing technology are utilized in research and practical applications.

At present, the methods based on image processing technology to assess the severity of wheat stripe rust can be divided into two categories; one is to directly identify the severity classes based on the extracted disease image features (Bao et al., 2021), and the other is to segment the lesion/lesions, calculate the lesion area and the area of a whole diseased wheat leaf (or the number of the lesion pixels and the number of pixels of the whole diseased leaf), calculate the actual percentage of the lesion area in the area of the whole diseased leaf, and assess the severity of the corresponding diseased leaf by comparing the actual percentage of the diseased area to the percentages for the eight severity classes in the disease severity grading standard (Jiang et al., 2021). In the current research and applications of plant disease severity assessment by using image processing technology, the situation that the percentage of the lesion area in the area of a whole diseased plant unit corresponding to each severity class in the severity grading standards of some plant diseases (such as wheat stripe rust and wheat leaf rust caused by Puccinia triticina) is not the actual percentage of the lesion area in the area of the whole diseased plant unit, is not taken into account. Thus the accuracies of the severity assessments of these plant diseases based on image processing technology are seriously affected, resulting in great errors or complete errors in the disease severity assessments. This is also the main reason for the low accuracy obtained in assessing the severity of these plant diseases based on the ratio of lesion area to the total area of a plant unit by using image processing technology, which limits the practical applications of the related technology.

To solve the difficulties in assessing the severity of wheat stripe rust and the problems in severity assessment of the disease based on the actual percentage of lesion area in the area of the corresponding whole diseased wheat leaf, and to improve the severity assessment accuracy, it is necessary to explore a simple, easy-to-operate, and rapid method with high accuracy for assessing the disease severity, which is of great significance for the survey, monitoring, prediction and forecast, and control of the disease. In this study, by using image processing software, the leaf region and lesion region in the acquired image of each single diseased wheat leaf were obtained via image segmentation operations, and the numbers of the lesion pixels and the pixels of the whole diseased leaf were achieved by pixel statistics. Then the actual percentage of the lesion area in the area of the whole diseased leaf was calculated, and the mean of the actual percentages of lesion areas corresponding to each severity class was calculated subsequently. Based on the midpoint value of the means of two adjacent severity classes, the reference range of the actual percentages of lesion areas corresponding to each severity class was determined for severity assessments. Furthermore, by referring to the method for determining the reference ranges in the field of medicine, the reference ranges at different levels (90%, 95%, and 99%) of the actual percentages of lesion areas corresponding to each severity class were estimated based on the distribution range of the actual percentages of lesion areas of most of the diseased wheat leaves belonging to each severity class. According to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the reference ranges at different levels for the eight severity classes, the severity of each of the acquired diseased wheat leaves with the percentages of lesion areas was assessed, and the assessment performance of each reference range was evaluated by using the assessment accuracy. In this study, it is aimed to explore two new methods for severity assessment of wheat stripe rust based on the actual percentages of the lesion areas in the areas of the corresponding whole diseased leaves, to provide a reference for severity assessments of plant diseases based on the ratios of lesion areas to the total areas of plant units, and to provide supports for the automatic severity assessments of plant diseases based on image processing technology.



Materials and methods

In this study, two new methods for severity assessment of wheat stripe rust were developed according to the procedures and steps as shown in Figure 1, and then the constructed data sets were used to evaluate the new methods.




Figure 1 | Work flow diagram for determining the reference ranges for disease severity assessment based on the actual percentages of lesion areas corresponding to each severity class and assessing the severity of wheat stripe rust.




Acquisition of single wheat leaf images of each severity class of wheat stripe rust

According to the Rules for Monitoring and Forecast of the Wheat Stripe Rust (Puccinia striiformis West.) as described above, wheat leaves with typical symptoms of wheat stripe rust with severity levels of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were collected from the diseased wheat plants that were obtained by using artificial spray inoculation method in Shangzhuang Experimental Station of China Agricultural University, Beijing, China and an artificial climate chamber in the Laboratory of Macro-Phytopathology, China Agricultural University, Beijing, China. Each diseased leaf was expanded as flat as possible and fixed on a sheet of A4 white paper with the lesion side facing up by using double sided sticky tape. Images of the diseased leaves were taken with a Nikon D700 digital camera (Nikon Corp., Tokyo, Japan), a HUAWEI P30 smartphone, and an iPhone 6S smartphone, and the sizes of the corresponding acquired images were 4256×2832, 3648×2736, and 4032×3024 pixels, respectively. One image was taken for each diseased leaf, 50 single diseased leaves of each severity class were used to be photographed, and a total of 400 single diseased leaf images were acquired. All the acquired images were in the JEPG format.



Manual image segmentation and pixel statistics of leaf regions and lesion regions of diseased wheat leaves

Manual image segmentation and pixel statistics of leaf regions and lesion regions of diseased wheat leaves were conducted by using the Adobe Photoshop 2022 software (Adobe Systems Incorporated, San Jose, CA, USA). In the software, a single leaf image (as shown in Figures 2A–H) of wheat stripe rust was opened, then the whole leaf region was selected with the quick selection tool, and subsequently the pixel number of the whole leaf region was viewed in the histogram panel and was recorded in a sheet in Microsoft Excel 2016. Inverse selection was carried out, then the selected region was filled with black color, and, finally, the image was saved in the JPEG format and the TIFF format, respectively (as shown in Figures 2I–P). When the quick selection tool was used, the ‘Enhance Edge’ was not selected, and for the brush options, in most cases, the size was set to 5 pixels, the hardness was set to 0%, the spacing was set to 25%, the angle was set to 35°, and the roundness was set to 100%. After completing the image segmentation of the diseased leaf, the diseased leaf layer was duplicated to form a new layer, and the original diseased leaf layer was named background and the new layer was named Layer 1 in the Adobe Photoshop 2022 software. Then the background layer was hidden, and Layer 1 was shown and selected. Repeatedly, the magic wand tool was used to select the non-lesion regions and the corresponding selected regions were filled with black color, so as to complete the initial segmentation of the lesion/lesions. After completing the initial segmentation, if there was still any non-lesion region that was not shown as black, the region was circled by using the lasso tool and was subsequently filled with black color, so as to complete the secondary segmentation of the lesion/lesions. The background layer was shown, Layer 1 was selected, and whether any lesion region was completely segmented or not was checked by repeatedly showing and hiding Layer 1. If there was still any lesion region shown as black, Layer 1 was selected and hidden, the background layer was shown, and then the region was circled by using the lasso tool and was subsequently removed. Until any lesion region was completely segmented, the non-lesion region was clicked by using the magic wand tool, then the inverse selection was carried out, and subsequently the pixel number of the lesion region/regions was viewed in the histogram panel and was recorded in the sheet in Microsoft Excel 2016. Finally, Layer 1 was saved in the JPEG format and the TIFF format, respectively (as shown in Figures 2Q–X). When the magic wand tool was used, the sample size was set to point sample and the tolerance value was set to a number between 0 and 35. According to the actual selection of the lesion region, the tolerance value can be adjusted and the ‘Contiguous’ option can be selected. When the lasso tool was used, the feather value was set to 0 pixel. In all the above processes, the options ‘Anti-alias’ and ‘Sample All Layers’ were not selected. The numbers of the lesion pixels and the whole diseased leaf pixels for each diseased wheat leaf image were obtained by using the method as described above.




Figure 2 | Single wheat leaf images of each severity class of wheat stripe rust and the corresponding leaf region images and lesion images after segmentation. All the images were shown after being cropped uniformly so that they could be demonstrated clearly. (A–H) Single diseased wheat leaf images of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively; (I–P) Segmented images of leaf regions for the single diseased wheat leaf images of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively; (Q–X) Segmented lesion images for the single diseased wheat leaf images of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively.





Calculation of the actual percentage of the lesion area in the area of each whole diseased wheat leaf

For each diseased wheat leaf image, based on the pixel number of the whole leaf region and the pixel number of the lesion region/regions recorded in the sheet in Microsoft Excel 2016, the percentage of the pixel number of the lesion region/regions in the pixel number of the whole leaf region, i.e., the actual percentage of the lesion area in the area of the whole diseased leaf, was calculated according to the following Formula (1).

 

where r is the actual percentage of the lesion area in the area of the whole diseased leaf for a single diseased wheat leaf, Ad is the pixel number of the lesion region/regions in the single diseased wheat leaf image, and Al is the pixel number of the whole leaf region in the single diseased wheat leaf image.



Normal distribution tests on the data of the actual percentages of lesion areas corresponding to each severity class and the data of the reconstructed data sets after sampling

Normal distribution test on the data of the actual percentages of lesion areas in the corresponding whole leaf areas at the severity level of 1%, 5%, 10%, 20%, 40%, 60%, 80%, or 100% was conducted by using the UNIVARIATE procedure in the SAS 9.4 software (SAS Institute Inc. Cary, NC, USA). The results showed that 50 actual percentages of the lesion areas in the corresponding whole leaf areas for each severity class had a normal distribution. After 50 actual percentages of the lesion areas in the corresponding whole leaf areas for each severity class were sorted from large to small, the training and testing sets were constructed based on the data sampled from the 50 actual percentages by using the system sampling method with the ratio of the number of specimens in the training set to the number of specimens in the testing set equal to 4:1 or 3:2. For the sampling ratio of 4:1, the corresponding constructed training and testing sets were recorded as Train40R and Test10R, respectively. Train40R was composed of the 40 specimens obtained by using the system sampling method with the sampling ratio equal to 4:1 when the severity class was R, and Test10R was composed of the 10 remaining specimens. For the sampling ratio of 3:2, the corresponding constructed training and testing sets were recorded as Train30R and Test20R, respectively. Train30R was composed of the 30 specimens obtained by using the system sampling method with the sampling ratio equal to 3:2 when the severity class was R, and Test20R was composed of the 20 remaining specimens. R was the percentage of the lesion area in the area of the whole diseased leaf of the corresponding severity class in the severity grading standard of wheat stripe rust, so the value of R could be 1%, 5%, 10%, 20%, 40%, 60%, 80%, or 100%. Normal distribution tests on the data of the training sets (Train40R and Train30R) for the severity class of R were conducted by using the UNIVARIATE procedure in the SAS software. The results showed that the actual percentages of lesion areas contained in each training set had a normal distribution.



Calculation of the mean and standard deviation of the actual percentages of lesion areas corresponding to each severity class

The mean ( ) and standard deviation (s) of the actual percentages of lesion areas contained in each training set (Train40R or Train30R) for the severity class of R were calculated, respectively. The value of   for each severity class was treated as the representative value of the actual percentage of lesion area in the area of a whole diseased wheat leaf of the corresponding severity class.



Determination of the reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes

The reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes of wheat stripe rust were determined by using the following two methods.

Method 1: The actual percentage reference range corresponding to each severity class was determined by taking the midpoint value (rmidpoint) of the means of the actual percentages of lesion areas of two adjacent severity classes as the demarcation point, and this midpoint-of-two-adjacent-means-based actual percentage reference range was treated as one kind of the reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for the severity class. Based on the actual percentages of lesion areas contained in each training set (Train40R or Train30R), the midpoint value rmidpoint of the means of two adjacent severity classes was treated as the demarcation point, and then the rmidpoint value was regarded as the upper limit of the actual percentages of lesion areas corresponding to the lower severity class in the two adjacent severity classes and was regarded as the lower limit of the actual percentages of lesion areas corresponding to the higher severity class. For the lowest severity class (1%), the lowest actual percentage of lesion area in the corresponding whole diseased leaf is greater than 0%. Thus the midpoint-of-two-adjacent-means-based actual percentage reference ranges corresponding to the severity class of R based on the training sets Train40R and Train30R were determined for the severity assessment of wheat stripe rust. The actual percentage of the lesion area corresponding to demarcation point was calculated according to the following Formula (2).

 

where rmidpoint is the midpoint value of the means of the actual percentages of lesion areas of two adjacent severity classes,   is the mean of the actual percentages of lesion areas corresponding to the lower severity class of a in the two adjacent severity classes, and   is the mean of the actual percentages of lesion areas corresponding to the higher severity class of b in the two adjacent severity classes.

Method 2: The reference ranges at different levels for all the severity classes were determined by referring to the method for determining the medical reference ranges. In this study, since the actual percentages of the lesion areas in the corresponding whole leaf areas contained in each training set (Train40R or Train30R) for each severity class had a normal distribution, the normal distribution method (Sun and Xu, 2014) was used to determine the reference ranges of the actual percentages of the lesion areas for all the severity classes. According to the normal distribution method (Sun and Xu, 2014), for each severity class, the upper and lower limits of the bilateral 100(1–α)% reference range were calculated by using the formula  , and the unilateral 100(1–α)% reference range was determined by using the formula >   or<  . In the formulas,   is the mean of the actual percentages of lesion areas in the corresponding whole leaf areas for a severity class, s is the standard deviation of the actual percentages of lesion areas in the corresponding whole leaf areas for the severity class, and uα is the standard normal deviate corresponding to the α value. In this study, based on the values of   and s of the actual percentages of lesion areas in the corresponding whole leaf areas contained in each training set (Train40R or Train30R) for the severity class of R, the 90% (α=0.1), 95% (α=0.05), and 99% (α=0.01) reference ranges of the actual percentages of lesion areas corresponding to the severity class of 5%, 10%, 20%, 40%, 60%, 80%, or 100% were determined according to the formulas  ,  , and  , respectively. In particular, for the 90% (α=0.1), 95% (α=0.05), and 99% (α=0.01) reference ranges of the severity class of 1%, the lower limits were greater than 0%, and the corresponding upper limits were calculated by using the formulas  ,  , and  , respectively.

For a sampling ratio (4:1 or 3:2), if the 90%, 95%, or 99% reference ranges of the actual percentages of lesion areas of adjacent severity classes of wheat stripe rust obtained by using the normal distribution method overlapped, the normal distribution curves of the actual percentage data contained in the training sets of all the severity classes were drawn with the corresponding values of   and s by using the normal distribution probability density function (normpdf) in the software MATLAB 2019b (MathWorks, Natick, MA, USA), and then the intersection point of the normal distribution curves of the actual percentage data contained in the training sets of two adjacent severity classes was obtained by using the function solve in the software. The abscissa value of the intersection point was denoted as a-b where a was the lower one and b was the higher one in the two adjacent severity classes. The upper limit of the reference range of the actual percentages of lesion areas corresponding to the severity class of a and the lower limit of the reference range of the actual percentages of lesion areas corresponding to the severity class of b were determined based on the a-b value. Subsequently, the probability of the interval composed of the lower and upper limits of the reference range for a severity class was calculated by using the function normspec in the software MATLAB 2019b, and was regarded as the corresponding actual probability of this reference range.

For a sampling ratio, if the normal distribution curve of the actual percentage data contained in the training set of a severity class of R had no intersection point with that of the actual percentage data contained in the training set of any adjacent severity class, or had an intersection point, but the a-b value lay outside the interval corresponding to the 90%, 95%, or 99% probability of the normal distribution curve of the actual percentage data contained in the training set of the severity class of R, the 90%, 95%, or 99% reference range of the actual percentages of lesion areas for the severity class of R was estimated according to the formula as described above. If the normal distribution curve of the actual percentage data contained in the training set of a severity class of R only had an intersection point with that of the actual percentage data contained in the training set of the lower adjacent severity class, and the a-b value lay inside the interval corresponding to the 90%, 95%, or 99% probability of the normal distribution curve of the actual percentage data contained in the training set of the severity class of R, the a-b value was regarded as the lower limit of the 90%, 95%, or 99% reference range of the actual percentages of lesion areas for the severity class of R, then the upper limit of the corresponding reference range was calculated according to the formula as described above, and, subsequently, the probability of the interval composed of the lower and upper limits of the reference range for this severity class calculated by using the function normspec in the software MATLAB 2019b was regarded as the corresponding actual probability of this reference range. If the normal distribution curve of the actual percentage data contained in the training set of a severity class of R only had an intersection point with that of the actual percentage data contained in the training set of the higher adjacent severity class, and the a-b value lay inside the interval corresponding to the 90%, 95%, or 99% probability of the normal distribution curve of the actual percentage data contained in the training set of the severity class of R, the a-b value was regarded as the upper limit of the 90%, 95%, or 99% reference range of the actual percentages of lesion areas for the severity class of R, then the lower limit of the corresponding reference range was calculated according to the formula as described above, and, subsequently, the probability of the interval composed of the lower and upper limits of the reference range for this severity class calculated by using the function normspec in the software MATLAB 2019b was regarded as the corresponding actual probability of this reference range. If the normal distribution curve of the actual percentage data contained in the training set of a severity class of R had an intersection point with that of the actual percentage data contained in the training set of each of the two adjacent severity classes, and the abscissa values of the two intersection points lay inside the interval corresponding to the 90%, 95%, or 99% probability of the normal distribution curve of the actual percentage data contained in the training set of the severity class of R, the two abscissa values were regarded as the lower and upper limits of the 90%, 95%, or 99% reference range of the actual percentages of lesion areas for the severity class of R, respectively, and then the probability of the interval composed of the lower and upper limits of the reference range for this severity class calculated by using the function normspec in the software MATLAB 2019b was regarded as the corresponding actual probability of this reference range.

In this study, according to the formulas as described above, the estimated 95% reference ranges of the actual percentages of lesion areas for some adjacent severity classes overlapped, and the estimated 99% reference ranges of the actual percentages of lesion areas for all the adjacent severity classes overlapped. Therefore, the 95% or 99% reference ranges of the actual percentages of lesion areas of the adjacent severity classes were obtained according to the method as described above. Although the corresponding probabilities of the reference ranges changed, in a convenient manner, the reference ranges were still called the 95% or 99% reference ranges. In this study, for the two sampling ratios, the calculation methods of the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class of wheat stripe rust are shown in Table 1.


Table 1 | Calculation methods of the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class of wheat stripe rust.





Severity assessment of each of the acquired diseased wheat leaves with the percentages of lesion areas

According to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges obtained based on the actual percentage data contained in the training set Train40R, the severity assessment of each diseased wheat leaf with the actual percentage of lesion area in the area of the corresponding whole diseased leaf contained in the training set Train40R and the testing set Test10R was conducted. In the same way, according to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges obtained based on the actual percentage data contained in the training set Train30R, the severity assessment of each diseased wheat leaf with the actual percentage of lesion area in the area of the corresponding whole diseased leaf contained in the training set Train30R and the testing set Test20R was carried out. Then the accuracy of severity assessments of the diseased wheat leaves with the actual percentages of lesion areas contained in each data set of a severity class was calculated by using the following Formula (3).

 

where accuracy is the severity assessment accuracy of the diseased wheat leaves with the actual percentages of lesion areas contained in each data set of a severity class, np is the number of the diseased leaves correctly assessed, and n is the total number of the diseased leaves assessed.




Results


The range, mean, and standard deviation of the actual percentage data contained in each of the training sets corresponding to each severity class

Based on the actual percentages of the lesion areas in the areas of the corresponding whole diseased wheat leaves, the range, mean ( ), and standard deviation (s) of the actual percentage data contained in each training set (Train40R or Train30R) for the severity class of R were achieved as shown in Table 2. The results showed that the range composed of the minimum and maximum actual percentages for the severity class of R (1%, 5%, 10%, 20%, 40%, 60%, 80%, or 100%) obtained based on the actual percentage data contained in Train40R was the same as that obtained based on the actual percentage data contained in Train30R. The ranges of actual percentages for the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were [0.06%, 0.78%], [0.85%, 1.64%], [1.73%, 3.29%], [3.65%, 6.31%], [6.76%, 13.88%], [14.22%, 18.43%], [18.90%, 24.15%], and [24.54%, 36.49%], respectively. In Train40R and Train30R, the maximum actual percentage of lesion area in the corresponding whole leaf area for the severity class of 100% was 36.49%. Based on the actual percentage data contained in each training set that was called Train40R, the means of the actual percentages of lesion areas for the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were 0.40%, 1.27%, 2.50%, 4.92%, 9.89%, 16.61%, 21.23%, and 30.52%, respectively. Based on the actual percentage data contained in each training set that was called Train30R, the means of the actual percentages of lesion areas for the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were 0.40%, 1.28%, 2.50%, 4.92%, 9.87%, 16.61%, 21.23%, and 30.53%, respectively. The results showed that there was no obvious difference between the   values or the s values of the actual percentages of lesion areas in the areas of the corresponding whole diseased leaves contained in Train40R and Train30R at the same severity level (severity class of R). The results demonstrated that for each severity class of wheat stripe rust, there was great difference between the actual percentage of lesion area in the area of a whole diseased leaf and the percentage of the lesion area in the area of the whole diseased leaf corresponding to the severity class in the severity grading standard of the disease as described above.


Table 2 | Statistics of the actual percentage data of the lesion areas in the areas of the corresponding whole diseased leaves contained in each training set (Train40R or Train30R) of the severity class of R including the range of actual percentages of lesion areas, mean, and standard deviation.





The determined reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes

For each sampling ratio (4:1 or 3:2), a total of four sets of reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes of wheat stripe rust, including the midpoint-of-two-adjacent-means-based actual percentage reference ranges, the 90% reference ranges, the 95% reference ranges, and the 99% reference ranges, were determined as shown in Table 3.


Table 3 | The determined reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes based on the actual percentage data in the training sets Train40R and Train30R and the actual probabilities for the corresponding 90%, 95%, and 99% reference ranges.



Based on the actual percentage data contained in the training sets Train40R and Train30R, the determined midpoint-of-two-adjacent-means-based actual percentage reference ranges corresponding to the severity class of R, as shown in Table 3, were obtained by taking the values of rmidpoint of the means of the actual percentages of lesion areas in the corresponding whole leaf areas of two adjacent severity classes as the demarcation points. Based on the actual percentage data contained in each training set that was called Train40R, the midpoint-of-two-adjacent-means-based actual percentage reference ranges for the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were (0, 0.84%], (0.84%, 1.89%], (1.89%, 3.71%], (3.71%, 7.41%], (7.41%, 13.25%], (13.25%, 18.92%], (18.92%, 25.88%], and (25.88%, 100%], respectively. Based on the actual percentage data contained in each training set that was called Train30R, the midpoint-of-two-adjacent-means-based actual percentage reference ranges for the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% were (0, 0.84%], (0.84%, 1.89%], (1.89%, 3.71%], (3.71%, 7.40%], (7.40%, 13.24%], (13.24%, 18.92%], (18.92%, 25.88%], and (25.88%, 100%], respectively. The results showed that for the severity class of R, the midpoint-of-two-adjacent-means-based actual percentage reference range obtained based on the actual percentage data in Train40R was similar to that obtained based on the actual percentage data in Train30R. The midpoint-of-two-adjacent-means-based actual percentage reference range for each severity class obtained based on the actual percentage data contained in each corresponding training set by using the method as described above, had relatively large difference with the range (as shown in Table 2) composed of the minimum and maximum actual percentages for the corresponding severity class.

For the sampling ratio of 4:1, based on the actual percentage data contained in each training set that was called Train40R, the obtained 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class and the actual probabilities for the corresponding reference ranges are shown in Table 3. For the sampling ratio of 3:2, based on the actual percentage data contained in each training set that was called Train30R, the obtained 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class and the actual probabilities for the corresponding reference ranges are also shown in Table 3. On the whole, the obtained 90%, 95%, or 99% reference range for the severity class of R based on the actual percentage data in Train40R had small difference with the corresponding 90%, 95%, or 99% reference range for the severity class of R based on the actual percentage data in Train30R. For the obtained 90%, 95%, and 99% reference ranges based on the actual percentage data contained in each training set of a severity class of R (1%, 5%, 10%, 20%, 40%, 60%, 80%, or 100%), the 95% and 99% reference ranges of the severity class hade small difference, but both of them had relatively large differences with the 90% reference range of the corresponding severity class.

The results indicated that based on the actual percentages of the lesion areas in the corresponding whole leaf areas contained in each training set (Train40R or Train30R), the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class obtained by using the normal distribution method had relatively obvious differences with the obtained midpoint-of-two-adjacent-means-based actual percentage reference range for the corresponding severity class. Moreover, the obtained 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas for the severity class had certain differences with the range (as shown in Table 2) composed of the minimum and maximum actual percentages for the corresponding severity class.



Severity assessment results for the acquired diseased wheat leaves with the actual percentages of lesion areas according to the determined reference ranges

For the sampling ratio of 4:1, according to the determined reference ranges based on the actual percentage data contained in the training sets for all severity classes of wheat stripe rust, including the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas, the results of severity assessment of each diseased wheat leaf contained in the corresponding training sets are shown in Table 4. For the sampling ratio of 3:2, according to the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas determined based on the actual percentage data contained in each training set that was called Train30R, the results of severity assessment of each diseased wheat leaf contained in the corresponding training set are also shown in Table 4. The results demonstrated that satisfactory assessment accuracies for the training sets could be achieved by using each set of the determined reference ranges for all the severity classes of wheat stripe rust, and that the assessment accuracy for each training set (Train40R or Train30R) was not lower than 85%. For the sampling ratio of 4:1, according to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas based on the actual percentage data contained in the training sets for all the severity classes, among the assessment accuracies for all the corresponding training sets, the lowest accuracies were 85.00%, 87.50%, 95.00%, and 95.00%, respectively. For the sampling ratio of 3:2, according to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas based on the actual percentage data contained in the training sets for all the severity classes, the lowest accuracies were 86.67%, 90.00%, 96.67%, and 96.67%, respectively, among the assessment accuracies for all the corresponding training sets. On the whole, for the sampling ratio of 4:1 or 3:2, the severity assessment results of all the diseased wheat leaves contained in the training set of a severity class according to the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas for the corresponding severity class indicated that the 99% reference range had the best assessment performance and that the assessment performance of the 95% reference range ranked second. Furthermore, the severity assessment results of all the diseased wheat leaves contained in the training set of a severity class according to the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90% reference ranges of the actual percentages of lesion areas for the corresponding severity class indicated that the two reference ranges had the similar assessment performances.


Table 4 | Severity assessment results of the diseased wheat leaves with the actual percentages of lesion areas contained in each training set of all the severity classes of wheat stripe rust according to the determined reference ranges.



According to the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas determined based on the actual percentage data in the training set Train40R for a severity classes of R, the results of severity assessments of the diseased leaves contained in the corresponding testing set Test10R are shown in Table 5. According to the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas determined based on the actual percentage data in the training set Train30R for a severity class of R, the results of severity assessments of the diseased leaves contained in the corresponding testing set Test20R are also shown in Table 5. The results demonstrated that satisfactory assessment accuracies for the testing sets could be achieved according to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes of wheat stripe rust, and that the assessment accuracy for each testing set (Test10R or Test20R) was not lower than 85%. For the sampling ratio of 4:1, according to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90% reference ranges of the actual percentages of lesion areas based on the actual percentage data contained in the training sets for all the severity classes, the lowest accuracies were both 90.00% among the assessment accuracies for all the corresponding testing sets; according to the 95% and 99% reference ranges of the actual percentages of lesion areas based on the actual percentage data contained in the training sets for all the severity classes, the assessment accuracies for all the corresponding testing sets were 100.00%. For the sampling ratio of 3:2, according to the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas based on the actual percentage data contained in the training sets for all the severity classes, the lowest accuracies were 85.00%, 85.00%, 95.00%, and 95.00%, respectively, among the assessment accuracies for all the corresponding testing sets. Overall, for the sampling ratio of 4:1 or 3:2, the severity assessment results of all the diseased wheat leaves contained in the testing set of a severity class according to the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas for the corresponding severity class demonstrated that the 99% reference range had the best assessment performance, the assessment performance of the 95% reference range ranked second, that of the 90% reference range ranked third, and that of the midpoint-of-two-adjacent-means-based actual percentage reference range ranked last. The assessment performance of the midpoint-of-two-adjacent-means-based actual percentage reference range, the 90% reference range, the 95% reference range, or the 99% reference range determined based on the actual percentage data in the training set Train40R for a severity class of R when the reference range was used to assess all the diseased wheat leaves contained in the testing set Test10R, was better than that of the corresponding reference range determined based on the actual percentage data in the training set Train30R for the severity class of R when it was used to assess all the diseased wheat leaves contained in the testing set Test20R.


Table 5 | Severity assessment results of the diseased wheat leaves with the actual percentages of lesion areas contained in each testing set of all the severity classes of wheat stripe rust according to the determined reference ranges.



The results demonstrated that according to the two developed methods based on the reference ranges of the percentages of lesion areas for severity assessment of wheat stripe rust in this study, high accuracy can be obtained in the severity assessments of the diseased leaves, indicating that the two methods were suitable for the severity assessment of the disease. In the practical applications, the midpoint-of-two-adjacent-means-based actual percentage reference ranges can be used to carry out severity assessment of wheat stripe rust, or according to the accuracy requirements for the severity assessment results, a set of reference ranges can be selected for severity assessment of the disease from the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to all the severity classes.




Discussion

In this study, two new methods for severity assessment of wheat stripe rust were proposed based on the actual percentages of lesion areas in the areas of the corresponding whole wheat leaves. The main characteristics of the two proposed methods are shown in Table 6. By using the methods, the suitable reference range selected from the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to all the severity classes of wheat stripe rust can be directly used to assess the severity of each diseased wheat leaf with the actual percentage of lesion area in the area of the corresponding whole leaf. The two methods are simple, easy-to-operate, rapid, and accurate. The methods are applicable to all plant diseases for which the severity is classified according to the ratio of lesion area to the area of the corresponding whole diseased plant unit. The method for determination of the midpoint-of-two-adjacent-means-based actual percentage reference ranges corresponding to all the disease severity classes and the method for determination of the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to all the disease severity classes, are provided for severity assessments of plant diseases. The basis of the two methods for disease severity assessment is very intuitive and in line with human psychological cognitive habits. The two methods are very convenient for practical operations and can improve the accuracy of plant disease severity assessment, resulting in more reliable plant disease information for diseased plant phenotyping, disease prediction and forecast, and disease management. The two methods are conducive to solve the classification difficulties in assessing the severity of plant diseases. Especially, during severity assessments of plant diseases according to the ratio of lesion area to the area of the whole diseased plant unit, for some plant diseases such as wheat stripe rust and wheat leaf rust, the ratio of the lesion area to the area of the whole diseased plant unit corresponding to a severity class in the disease severity grading standard is not the actual ratio of the lesion area to the area of the whole diseased plant unit, which can induce great errors or complete errors in the severity assessment results. This problem was well solved in this study, which provided a basis and methodological reference for accurate severity assessments of plant diseases and was of great significance for survey, monitoring, prediction, and control of plant diseases.


Table 6 | The main characteristics of the two proposed methods for determining the reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes of wheat stripe rust.



In this study, 50 single diseased wheat leaf images for each severity class of wheat stripe rust were acquired and the actual percentages of the lesion areas in the corresponding whole leaf areas were obtained. For each severity class of the disease, the training sets and testing sets were constructed by using the system sampling method with two sampling ratios of 4:1 and 3:2. The representative values of the actual percentages of lesion areas corresponding to each severity class for the two sampling ratios had no obvious difference. For the sampling ratio of 4:1 or 3:2, high assessment accuracies for the training set and testing set were achieved according to the midpoint-of-two-adjacent-means-based actual percentage reference range and the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for each severity class. In comparison, by and large, the assessment performance of the midpoint-of-two-adjacent-means-based actual percentage reference range, the 90% reference range, the 95% reference range, or the 99% reference range determined based on the actual percentage data in the training set Train40R constructed by using the sampling ratio of 4:1 was better than that of the corresponding reference range determined based on the actual percentage data in the training set Train30R constructed by using the sampling ratio of 3:2. If more images of the single diseased wheat leaves for each severity class of the disease can be acquired, the more ideal reference ranges for each severity class may be obtained by using the proposed methods in this study, and thus the better severity assessment results may be achieved.

The results obtained in this study showed that the actual percentage of lesion area in the area of a whole diseased leaf corresponding to each severity class of wheat stripe rust had great difference with the percentage of the lesion area in the area of the whole diseased leaf corresponding to the severity class in the disease severity grading standard, which is consistent with the results obtained by Shang et al. (1990). The maximum actual percentage of the lesion area in the area of the whole diseased wheat leaf with the most severe disease symptom among the collected diseased wheat leaves obtained by using image processing technology in this study was 36.49%, and it was higher than the maximum actual uredinium coverage rate of 35% obtained by Shang et al. (1990) via actual measurement of the selected wheat leaf with the most severe disease symptom. The maximum actual percentage of lesion area obtained in this study should be more close to the true value of the percentage of the lesion area in the area of the whole diseased wheat leaf with the most severe disease symptom of wheat stripe rust. Therefore, it is believed that in this study, whether the sampling ratio was 4:1 or 3:2, each set of the determined midpoint-of-two-adjacent-means-based actual percentage reference ranges could cover all possible actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes of wheat stripe rust, and each set of the determined 99% reference ranges of the actual percentages of lesion areas could basically cover all possible actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes of the disease. Each set of the determined 90% reference ranges of the actual percentages of lesion areas or each set of the determined 95% reference ranges of the actual percentages of lesion areas could basically meet the accuracy requirements of severity assessment of wheat stripe rust, although there were gaps between the reference ranges of some adjacent severity classes. If necessary, an actual percentage of lesion area falling into a gap can be assessed as the severity class corresponding to the nearest reference range according to the nearest percent estimate principle (by taking the value of the midpoint of the gap as the demarcation point). In practice, a set of the determined midpoint-of-two-adjacent-means-based actual percentage reference ranges or a set of the determined 99% reference ranges of the actual percentages of lesion areas can be selected, aiming to use a set of reference ranges that can cover all possible actual percentages of lesion areas in the corresponding whole leaf areas for all the severity classes to carry out disease severity assessment.

In this study, when determining the reference ranges for disease severity assessment, the standard deviation was directly used, rather than the standard error. The difference between reference range and confidence interval should be paid attention to. The confidence interval is the estimation interval of a population parameter obtained by the sample statistics. When determining a confidence interval, the standard error is directly used, rather than the standard deviation. In this study, based on the constructed training sets, the 90%, 95%, and 99% confidence intervals were also estimated (as shown in Supplementary Table 1), and then by using these different confidence intervals as the reference ranges, the severity assessments of the diseased wheat leaves with the actual percentages of lesion areas in the areas of the whole diseased leaves contained in the corresponding training sets and testing sets were conducted, but the obtained assessment accuracies (as shown in Supplementary Table 2) were not high. The results indicated that in order to obtain satisfactory severity assessment results, the reference ranges for disease severity assessments should be determined by using the methods proposed in this study.

In the field of medicine, the reference ranges of the normal values of various medical indicators are the normal fluctuation ranges of the corresponding indicators of the vast majority of normal people, and they are used to evaluate whether the measured corresponding indicators are normal and can provide a basis for disease diagnosis, health assessment, and disease treatment (Horn and Pesce, 2003; Sun and Xu, 2014; Haeckel et al., 2021; Yang et al., 2022). There are many methods to determine the medical reference ranges (Horn and Pesce, 2003; Sun and Xu, 2014; Haeckel et al., 2021; Yang et al., 2022). A medical reference range is usually determined by using normal distribution method or percentile method, mainly depending on whether the related data conform to a normal distribution (Horn and Pesce, 2003; Sun and Xu, 2014; Haeckel et al., 2021). When the related data of the corresponding indicator conform to a normal distribution or can be transformed into a normal distribution via data transformation, normal distribution method can be used to estimate the reference range, otherwise, when the data do not conform to a normal distribution, percentile method can be used (Horn and Pesce, 2003; Sun and Xu, 2014; Haeckel et al., 2021). In this study, the reference ranges at different levels (90%, 95%, and 99%) of the actual percentages of lesion areas corresponding to each severity class of wheat stripe rust were estimated by referring to the method for determining medical reference ranges, and the determined 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class can be considered as the fluctuation ranges of the actual percentages of lesion areas of 90%, 95%, and 99% of diseased leaves of the corresponding severity class, respectively. In this study, 50 actual percentages of the lesion areas in the areas of the corresponding whole leaves of each severity class of wheat stripe rust had a normal distribution, and the actual percentages of lesion areas contained in each constructed training set conformed to a normal distribution, so the normal distribution method was used to determine the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each severity class of the disease. When the method proposed in this study is used to determine the reference ranges at different levels of the actual percentages of lesion areas corresponding to each severity class of a plant disease, the determination method of the reference ranges should be modified or changed if the actual percentage data do not conform to a normal distribution. The actual percentage data can be transformed into a normal distribution through data transformation and then the normal distribution method can be used to determine the reference ranges, or the other methods including the percentile method can be used (Horn and Pesce, 2003; Sun and Xu, 2014; Haeckel et al., 2021).

In this study, the images of the single diseased wheat leaves of all the severity classes of wheat stripe rust were acquired by using digital camera and smartphones, the segmented leaf images and the segmented lesion images were obtained by using manual image segmentation method in the Adobe Photoshop 2022 software, then the numbers of the whole leaf region pixels and lesion region pixels of each single wheat leaf were achieved by viewing the histogram panel in the software, and subsequently the actual percentage of the lesion area in the area of each whole diseased leaf was calculated for further data processing. In terms of obtaining the actual ratios of lesion areas to the areas of the corresponding whole diseased plant units, in addition to the method of obtaining the actual percentages of lesion areas in the areas of the corresponding whole diseased wheat leaves used in this study, automatic image processing methods can be used to carry out disease image segmentation and obtain the actual ratios of lesion areas to the areas of the corresponding whole diseased plant units by programming or by using the developed software and packages such as APS Assess (Lamari, 2008), ImageJ (Schneider et al., 2012), Leaf Doctor (Pethybridge and Nelson, 2015), and the pliman package (Olivoto et al., 2022), and in some situations, the graph paper method (Li et al., 2011) and the paper-weighing method (Li et al., 2011) can be used to achieve the actual ratios of lesion areas. After obtaining the actual ratios of lesion areas to the areas of the corresponding whole diseased plant units for a plant disease, the reference ranges corresponding to all the plant disease severity classes can be determined according to the methods proposed in this study and then can be used to carry out the disease severity assessment, or the disease severity assessment can be directly carried out according to the severity grading standard established based on the actual ratios of lesion areas to the areas of the corresponding whole diseased plant units.

At present, in the studies and practical applications of plant disease severity assessment based on image processing technology, the severity classes are determined according to the ratios of segmented lesion areas to the areas of the corresponding whole diseased plant units (Chen et al., 2008; Guan et al., 2010; Li et al., 2011; Barbedo, 2014; Shrivastava et al., 2015; Jiang et al., 2021) or identified by using the established recognition models based on the extracted image features (Bai et al., 2011; Wang et al., 2017; Bao et al., 2018; Bao et al., 2021). However, in the reported studies on the severity assessment of some plant diseases such as wheat stripe rust based on the ratios of lesion areas to the areas of the corresponding whole disease plant units, it was not taken into account that the actual ratios of lesion areas for each disease severity class are obviously lower than the corresponding ratios of lesion areas of the estimated severity class according to the corresponding severity grading standard. The previous understanding of plant disease severity in the plant disease severity assessment can be corrected by using the two methods for disease severity assessment proposed in this study, which will greatly improve the accuracy of plant disease severity assessment and the reliability of plant disease monitoring and early warning information based on image processing technology. Some basis and research ideas for the realization of automatic assessment of plant disease severity based on image processing technology were provided in this study, which is conducive to the automation and intellectualization of plant disease severity assessment and is helpful to improve the levels of disease survey, disease monitoring and early warning, and disease management, thus providing more reliable supports for diseased plant phenotyping, disease monitoring, disease prediction and forecast, and disease control strategy making.



Conclusion

Two new methods were developed based on the reference ranges of the actual percentages of lesion areas for severity assessment of wheat stripe rust in this study. Based on the acquired single diseased wheat leaf images of all the severity classes of the disease, the actual percentage of the lesion area in the area of the corresponding whole diseased leaf for each disease image was obtained by using image processing technology, the training sets and testing sets were constructed by using the system sampling method with two sampling ratios, then the methods were developed for determination of the midpoint-of-two-adjacent-means-based actual percentage reference ranges and the reference ranges of the actual percentages of lesion areas at different levels for all the severity classes, and simultaneously the corresponding detailed reference ranges were provided. The satisfactory assessment accuracies for the training and testing sets were achieved according to the determined midpoint-of-two-adjacent-means-based actual percentage reference ranges and the estimated 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas for all the severity classes. In this study, two simple and practical methods were provided for the severity assessment of wheat stripe rust and a reference was provided for accurate severity assessments of plant diseases.
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Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost–benefit seed image analysis methods, the free software “SmartGrain” and the fully automated commercially available instrument “Cgrain Value™” by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R2 = 0.52 compared with SmartGrain for which R2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains.
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Introduction

In the countries of the Baltic Sea region, the most widely cultivated crop is winter wheat (Triticum aestivum L.), (Shiferaw et al., 2013; Chawade et al., 2018). While efforts are made to achieve sustainable intensification of high grain yields in wheat production, the emergence and increase in the virulence of plant pathogens conversely leave the nutritional integrity and production of wheat grains at risk (Castro Aviles et al., 2020). The decrease in grain quality and protein content negatively impacts the use of the grains and therefore affects food security and safety (Asseng et al., 2019). Fusarium head blight (FHB), mainly caused by the fungus Fusarium graminearum Schwabe [teleomorph: Gibberella zeae (Schwein) Petch], is one of the wheat diseases with a major impact on wheat grain yield and quality. FHB can dramatically reduce grain quality and yield through the formation of sterile and wizened florets. FHB-infected grains suffer from major marketing, consumption, and processing constraints, which is the buildup of mycotoxins—mainly deoxynivalenol (DON) (Del Ponte et al., 2022). DON inhibits protein synthesis, cutting off normal cell function, which is hazardous for the consumption of humans and animals (Polak-Śliwińska and Paszczyk, 2021). FHB disease management strategies rely on integrating several cultural practices such as fungicide treatment, crop rotation, mixed culture, and tillage (Gilbert and Haber, 2013). However, growing FHB-resistant cultivars is seen as a more sustainable and durable strategy for mitigating disease epidemics, thus avoiding large economic losses. Hence, identifying sources of novel resistance is a key component in pre-breeding activities that can be introgressed to develop commercial FHB-resistant cultivars.

The resistance components for FHB, commonly known as resistance types, have been defined into type I to type V (Mesterhazy, 2020): type I is resistance to initial infection, type II is resistance to disease spread (Schroeder and Christensen, 1963), type III is resistance to damage of Fusarium-damaged kernels (FDK), type IV is resistance to the buildup of DON toxins, and type V is tolerance. Traditionally, studies on FHB resistance have relied on measuring the symptoms in spikes and kernels (resistance types II and III). Type II is assessed by rating the visual symptoms on the spikes, which appear as bleached, yellowish or discolored, and stunted (Zakieh et al., 2021; Steed et al., 2022). FDK is quantified traditionally by estimating the amount of visibly damaged kernels, which appear smaller, shriveled, and in a range of colors from pale pink to brown (Delwiche et al., 2010), according to a predetermined scale for visual assessments or by employing manual tools (Ackerman et al., 2022). Comparisons between both types of resistance (resistance types II and III) have revealed that it would be more efficient and consistent to estimate FHB than the degree of colonization on the spike (Agostinelli, 2009; Balut et al., 2013; Khaeim et al., 2019; Ackerman et al., 2022). However, screening by either manual or visual assessments is a labor- and time-consuming process for rating genotypes, is biased due to the subjectivity of visual assessments, and has low reproducibility among experiments (Barbedo et al., 2015; Khaeim et al., 2019). As a result of the previously cited limitations, the use of image analysis approaches has been investigated to evaluate FDK, particularly in estimating morphological characteristics. However, the existing different imaging approaches have their disadvantages and trade-off in terms of costs, time expenses, resolution, and precision when considering an application (Saccon et al., 2017).

Among the investigated methods, Iwata and Ukai (2002) and Iwata et al. (2010) investigated changes in grain shape using elliptic Fourier descriptors of two- and three-dimensional features from vertically and horizontally located seed images. Despite the accuracy reached, there are limitations in terms of image resolution and regarding the manual handling of samples during the procedure. Menesatti et al. (2009) presented a method to classify FHB in wheat-infected kernels—according to the shape criteria—into the following groups: chalky, shriveled, or healthy. The method proved to be functional to categorize kernels as chalky or healthy, but not for shriveled or gravely affected samples. Jirsa and Polišenská (2011) developed a model for the identification of Fusarium-damaged wheat kernels using image analysis. The characterization of healthy or damaged kernels based on color parameters revealed a high accuracy compared with the shape and DON content parameters. However, image processing was done with manual selections and comparing only 40 kernels—either heavily damaged or healthy—without considering any halfway stage. Similarly, the use of hyperspectral imaging for detecting Fusarium sp. in seeds has been previously investigated (Delwiche et al., 2010; Shahin and Symons, 2011; Bauriegel and Herppich, 2014; Barbedo et al., 2015; Femenias et al., 2022; Rangarajan et al., 2022; Yipeng et al., 2022). The methods have been shown to be accurate and have identified more factors involved in FDK. A more advanced technique based on X-ray computed tomography has been implemented for evaluating seed shape in finer detail (Gomes and Duijn, 2017; Liu et al., 2020). Nevertheless, inconsistencies because of specular reflection, correct wavelength selection, kernel orientation, selection of reference parameter, costs of acquisition devices, and the storage requirement for highly dimensional and massive data sets may be limiting the application of these methods (Dissing et al., 2013; Lu et al., 2020).

In the face of the constraints cited earlier, automated and light-weight free software for grain image analysis have been developed (Wang et al., 2009; Komyshev et al., 2017; Colmer et al., 2020; Zhu et al., 2021); some examples of them are GrainScan (Whan et al., 2014), which analyzes size and color features, and SmartGrain (Tanabata et al., 2012), which analyzes size and shape features. Both software are instantaneous in image recognition despite the position, overlapping, or the number of seeds. Alternatively, commercially available imaging instruments for grain image analysis combine hardware and software, including WinSEEDLE (Regent Instruments Inc.), Seed Count (Next Instrument Pty Ltd.), Vibe QM3 Grain Analyzer (VIBE), and Cgrain Value™ (Cgrain AB). The instruments use optical or flatbed scanners to extract features such as size, shape, and color in the color representation hue, saturation, and light (HSL). However, SeedCount and Vibe QM3 Grain Analyzer only scan the top surface of the samples, thus omitting morphological characteristics that are not in the viewing area. A more advanced instrument is Videometer Lab (Videometer A/S, Denmark), which provides rapid color, shape, and texture measurements. Videometer Lab is ideal to use in analyzing kernel surfaces, but it requires certain expertise and allows the analysis of only a few samples at once.

In this context, this paper has three objectives; first is to investigate the applicability of low-cost digital image analysis to predict FHB infection in harvested grains through morphological traits. This will offer more insight into the traits that are correlated to the degree of FDK. The second objective is to compare the applicability of the two methods used for grain image analysis—SmartGrain, and Cgrain Value™—in terms of consistency and throughput. The third one is to illustrate the processing chain and result interpretation with a descriptive data analysis.



Materials and methods


Plant material

Wheat kernel samples were collected from an experiment under accelerated indoor growth conditions (Zakieh et al., 2021) using winter wheat genotypes from two different sources. The first source consisted of 338 genotypes (breeding set) provided by the Swedish agricultural cooperative (Lantmännen Lantbruk, Svalöv, Sweden). The second source consisted of 181 germplasm genotypes (genebank set) provided by the Nordic Genetic Resource Center (Nordgen), with highly diverse plant materials including landraces and old cultivars.



Experimental design/growth and inoculation protocol

Plants were grown following an augmented block design in a climate-controlled chamber. After germination, the plants were subjected to a vernalization period of 57 days at 3°C with 8 h of daily light at medium–high light intensity (LI) of 250 μmol m−2 s−1. At the end of the vernalization period, the climatic conditions were adjusted with a gradual increase in temperature and LI for the acclimatization of the plants to the next phase of accelerated growth conditions. Once the acclimatization period was concluded, the plants were left to grow at a constant temperature of 22°C. The accelerated growth conditions were adapted by exposing the plants to a prolonged daily light duration of 22 h, with LI at 400 μmol m−2 s−1 of uniform light intensity from LED light plates. Under these accelerated growth conditions, the plants were watered daily and fertilized weekly using first a combination of a high-phosphate and high-nitrogen soluble fertilizer SW-BOUYANT 7-1-5 + Mikro + KH2PO4, then only with a high-nitrogen fertilizer, and finally with a high-potassium soluble fertilizer Yara Tera Kristalon NPK 12-5-30 with S and Mikro.

After completing the anthesis stage, at 33 days post-acclimatization, the plants were moved to a glasshouse chamber with relative humidity (rh) of 60% and a constant temperature of 24°C for 24 h to allow their adaptation to the new growth conditions prior to inoculation. Thereafter, the winter wheat spikes were spray-inoculated with an inoculum suspension prepared from the harvested spore of F. graminearum and F. culmorum, with a concentration of 5 × 105 spore/ml. Subsequently, the plants were left to incubate at 90% rh with 16/8 h dark/light cycle at a constant temperature of 24°C for 48 h before adjusting the climatic conditions back to 60% rh. The plants were eventually left to grow under the latter conditions for 24 days before harvesting the seeds. Eight isolates from F. graminearum and F. culmorum species were used in inoculating the plants provided by the Swedish agricultural cooperative Lantmännen Lantbruk. An inoculum preparation was carried out by incubating the fungal spores at 24°C for 4 days in dark conditions to allow for mycelial growth on SNA media plates. Later, the fungal plates were exposed to near ultra-violet UV radiation for 10 h to induce macroconidia formation. Afterward, the fungal plates were incubated for 4 days at 24°C in dark conditions. Finally, macroconidia spores were collected to make the inoculation suspension with the provided concentration after adding the surfactant Tween®20 0.002% (v/v) final volume of the inoculum. A more detailed protocol is described in Zakieh et al. (2021).



FHB visual assessment

In order to evaluate FHB resistance on a large number of genotypes, a modified visual scoring of the FHB disease severity method was adopted. The method took into account the incidence of all FHB symptoms across the main tiller spike of each genotype. Therefore, disease severity was assessed as the percentage score of infected spikelets relative to all spikes, regardless of symptom continuity on the same spike. FHB development was scored at 6, 8, 10, and 12-days post-inoculation (dpi) (Stack and McMullen, 1998). The FHB disease severity scores varied between 100 to 5% for the most susceptible phenotypes and the most resistant ones, respectively. Finally, the results of the visual scores were validated by association mapping, thus identifying the quantitative trait loci of FHB resistance.



Seed shape parameters

Two different grain phenotyping methods were employed in this study: an automated imaging instrument with software and hardware named Cgrain Value™ which is commercially available (Cgrain AB) and the free software named SmartGrain developed by Tanabata et al. (2012) and can be downloaded from the Quantitative Plant website (Lobet, 2017). The implementation of both methods is described in the following sections.



SmartGrain

For image acquisition, the seeds were captured with a low-cost image protocol acquisition from a top-view angle of 55 cm above the seeds and placed manually on a flat surface using a digital single-lens reflex camera Canon EOS 1300D (Canon U.S.A. Inc., Huntington, NY, USA), which has a resolution of 18 megapixels, mounted on a Kaiser RS-1 repro stand. The camera was tethered to the software digiCamControl (Istvan, 2014) with optimal exposure settings based on the best seed view, F-Stop 1/160, exposure time 1/10, and ISO 800. The seeds were placed manually per genotype uniformly on a blue cardboard that was used as a background on a stand aside from a 15-cm ruler for further analysis. Digital images were stored with 3,456 × 2,304-pixel resolution in JPEG format (Figure 1, top images).




Figure 1 | Images of the different levels of Fusarium head blight severity on winter wheat seeds. The rating of disease severity ranged from (A) 0 to (F) 100%. Scoring was based on the proportion of total infected spikes to the total amount of spikes. The top images were obtained for the SmartGrain analysis, and the bottom images were acquired using the Cgrain Value™ instrument.



The image analysis was thereafter carried out using SmartGrain software following its default protocol (Tanabata et al., 2012). Briefly, the image scale was set up by taking a known sample from the ruler and registering it on the software. Then, the segmentation method by color was chosen, the precision sensibility was set at the minimum value of “1”, and the seed detection intensity was at a maximum value of “4” to obtain all possible shape details; the rest of the parameters were set to default. Finally, all the processed images were saved as TIFF files, and the results were saved in a CSV format. The software provides seven morphological characteristics: area seed (AS), perimeter length (PL), length (L), width (W), length-to-width ratio (LWR), circularity of the seed (CS), distance between the intersection of length and width, and the center of gravity (DS). AS corresponds to the total number of pixels of the segmented seed, this parameter estimates the seed size. PL refers to the length measurement of the seed outline. L corresponds to the major length measurement in the axis and W to the minor length axis measurement. CS estimates how round the region of interest is (seed), and it is calculated as  LWR is calculated by  and it provides an idea of the seed shape between rectangular and circular depending on the value. The distance between the transverse axis from the outline of the seed (IS) and the center of gravity (CG) is used to estimate DS [described in detail by Tanabata et al. (2012)].



Cgrain Value™

For single kernel analysis, seeds were scanned with Cgrain Value™, which is an analytical imaging instrument. The device inspects each kernel through a unique mirror design covering more than 90% of the grains’ surfaces in every image. The analysis starts by pouring into the metal bowl of the Cgrain Value™ a batch of seeds per line and per genotype. The seeds rotate into the bowl and then, one by one, are photographed and analyzed simultaneously. After the analysis is completed, three different reports are created (result file, stat file, and image file). The result file consists of the morphological characteristics for each batch of seeds (seed count, thousand kernels, etc.), the stat file provides data per individual seed of a group (length, width, etc.), and the image file corresponds to the single seed images acquired (Figure 1, bottom images).

The instrument provides nine morphological attributes: length (L), width (W), thickness (T), average width (AVG.W), volume (V), weight (WT), light, hue, and saturation. Parameters such as L, W, and T are estimated by taking the longitudinal measurement of the axis major, higher minor, and minor, respectively. In the case of AVG.W, as the seed is received as a three-dimensional image, the measurement is referring to the mean of the average curvature. V corresponds to the seed volume obtained from the 3D image. For WT, the device has an internal balance, so while acquiring the image, it also weighs the grain. Color parameters, hue, saturation, and light are also determined by the instrument; it specifies the color base of a sample, how saturated it is, and how bright it is, respectively.



Statistical analysis

Statistical analyses were conducted using R (Team, R. C, 2013). The visual scorings of the last time-point on infected spikes, including cultivars with zero symptoms, were included in a file together with the mean values per genotype of the results given by Cgrain Value™ and SmartGrain. Each replicate of the data set was filtered by missing data (NA). Those with NA along the four replicates were removed and those with presence in more than one replicate were substituted using FactoMineR (Lê et al., 2008) and missMDA (Josse and Husson, 2016) packages. Then, using the Agricolae R package (De Mendiburu, 2014), the checks in each augmented block were used to adjust the means for each trait per replicate, the model of which is as follows:

	

where yil corresponds to the adjusted means of the ith wheat cultivar in the lth block, u is the general mean value, Gil is the effect of the ith wheat genotype in the lth block, β1 is the lth block effect, and ϵil is the residual. Subsequently, using the adjusted means, the best linear unbiased estimates (BLUEs) was calculated using the randomized complete block design option in META-R 6.04 (Alvarado et al., 2015) based on the following model:

	

where yijm corresponds to the BLUE of the ith genotype from the jth population in the mth replicate, u is the general mean value, Sj is the effect of the jth source of material, Gijm is the effect of the ith genotype in the mth replicate, Rm is the mth replicate of the effect, and ϵijm is the residual effect. The source of wheat genotypes Sj was considered the grouping factor.

The BLUEs data previously centered were used to predict FHB using a multiple regression model:

	

Where for i=n observations: yi corresponds to the dependent variable, xi to the explanatory variables, β0 corresponds to y-intercept (constant term), βp corresponds to the slope coefficients for each explanatory variable, and ϵ corresponds to the error of the model (also known as the residuals). Three models were created using the morphological traits provided by both methods (Cgrain Value™ and SmartGrain) as independent variables and visual scorings as the dependent variable. One model combines all the traits, and two others use the traits provided by each method. To build each model, the data set was partitioned employing the function “createDataPartition” of the caret package (Kuhn et al., 2020) into 70% for model training (training set) and the remaining 30% for evaluating model performance (test set). Subsequently, the model was fitted to the training set, and it predicted the responses using the test set. To evaluate the quality of the predictions and mitigate the possibility of errors due to the random data partitioning, the cross-validation was executed 100 times, which means resampling the data set, and the mean of the criterion was taken as the final result.




Results

This study examined a total of 16 morphological traits, including size, color, and shape of winter wheat grains from the genebank and breeding sets with different levels of FHB infection. Nine traits were obtained with the instrument Cgrain Value™ and seven traits with the software SmarGrain. The distribution of all the morphological traits measured by the two methods showed a Gaussian distribution (Figure 2). In order to understand the association between these traits and FHB resistance, a comparison with the traits measured of 80 FHB susceptible and resistant genotypes was performed. For this purpose, five genotypes per replicate (four replicates) from both sets, breeding and genebank, were selected based on the FHB severity scores on the spikes, genotypes scored as 0% (visually non-infected or resistant), and ones scored as 100% (visually infected or susceptible). Among the infected and non-infected selected groups, there was a 22.61% reduction in V and 11.32% in AS. Other parameters also showed a reduction, such as T_RAW at 10.60%, W at 8.30% in both methods, and WT at 22.63%. Additionally, L was reduced according to the results by 1.96% in Cgrain Value™ and 2.26% in SmartGrain. Similarly, CS and PL showed a decrease, but in less proportions with 4.60 and 3.25%, respectively. The minimum seed L measured was 4.59 mm for non-infected and 4.50 mm for infected genotypes. On the other hand, color parameters expressed major changes compared with all the other morphological traits. Hue and the light increased with the infection by 19.91 and 8.28%, respectively, while saturation decreased at about 15.52% (Table 1). According to the analysis of variance (two-way ANOVA), the morphological traits L, W, T_RAW, light, and hue were highly significant (P< 0.001), likewise with V, CS, and saturation (P< 0.01), indicating a clear association with FHB disease severity level. Meanwhile, the parameters WT, AS, LWR, PL, and DS did not indicate any significance but still showed slight differences between infected and non-infected grains.




Figure 2 | Frequency distribution of the different morphological traits of wheat genotypes seeds from the breeding and genebank sets collected with (A) the Cgrain Value™ instrument and (B) the SmartGrain software.




Table 1 | Descriptive statistics showing differences between the seed shape characters of 80 genotypes from genebank and breeding set under non-infection (0%) and full infection (100%) FHB symptoms, with five genotypes of each one per replicate.



Additionally, a principal component analysis (Figure 3) was performed to show the response of all the seed traits studied regarding the disease infection and how they correlate to each other. The proportion of total variance on the two first principal components and correlations represents 60.50 and 19.90%, respectively, of the total variance. The LWR trait was shown to be the higher positive in the first principal component; similarly, hue was shown to be positive but in a lesser proportion. In the same component but with negative loading, we found CS as the variable with the highest contribution; the traits W from both methods, AVG.W, and T_RAW were also projected onto this component with a loading of a slightly lesser norm. Although saturation was also projected onto this component, it was shown to be the smallest loading. On the other hand, in the second principal component, the traits DS and L from both methods, PL, AS, V, and WT showed a high positive loading with similar proportions, whereas the trait light was the only one with a negative loading into the second principal component and the one with less projection among all the traits. In general, all the seed morphological traits assessed expressed variability and influence in the two principal components. In addition, as can be observed in the graph, the variation of LWR has an opposite projection to the CS trait, expressing a good indicator to study the deformation of the grains caused by the disease infection.




Figure 3 | Principal component analysis biplot of the morphological traits collected with Cgrain Value™ and SmartGrain of the breeding and genebank seeds infected with different levels of Fusarium head blight.



Considering Table 1, the mean values for the same morphological traits measured by both methods (L and W) across the two sets, genebank and breeding, were similar. The difference between infected and non-infected seeds was 0.11 mm in L in both methods and between 0.21 and 0.25 mm in W and AVG_W. Both methods provide important parameters for seed morphology studies. Cgrain Value™ provides V and WT values and color information. Although these are important characteristics for different study purposes, mainly for identifying FHB-infected kernels, SmartGrain, in turn, provides information such as PL, AS, and CS that can show variabilities between infected and non-infected seeds. Here the BLUES for all the measured parameters were correlated with each other and in association with the visual scorings on the spikes (Figure 4). A moderate to high positive correlation was found with the color parameter hue, and a low positive correlation with light was given by Cgrain Value™ and LWR as well as given by SmartGrain (r = 0.65, r = 0.36, and r = 0.27, respectively). Negative correlations were also found between the visual evaluations of symptoms and the other characteristics in different levels of strength of association. There was no correlation between FHB visual scoring and DS (r = 0.01).




Figure 4 | Sorted upper triangle correlation matrix among the morphological attributes of the wheat genotype seeds from the breeding and genebank sets collected with the Cgrain Value™ and the SmartGrain software.



The multiple linear regression model developed to identify the contributions of the 16 different morphological traits provided by Cgrain Value™ and SmartGrain expressed a high moderate prediction (R2 = 0.58), (Figure 5A). Aiming to identify which of both methods used in this study provides a higher prediction and also to identify the best morphological traits to predict FHB, two more models were constructed: one for the results given by Cgrain Value™ and another one for the results of SmartGrain. The model of Cgrain Value™ traits showed a moderate prediction (R2 = 0.52), (Figure 5B). On the other hand, the model of SmartGrain traits showed medium–low prediction (R2 = 0.30), (Figure 5C), clearly showing that the first model had a higher prediction than separately. In addition, the morphological parameters that are the most suitable to assess FHB in grains above all the 16 evaluated were identified. According to the regression model and the ANOVA analysis, the parameters that provided more information about the disease are the length, width, thickness, average width, circularity, and the color parameters in the color representation HSL (Table 2). The sensitivity test showed that these variables provide the highest value of R-square, (R2 = 0.52). These morphological traits are enumerated from most significant to least significant in Figure 6.




Figure 5 | Regression models for predicting Fusarium head blight in wheat: (A) all the characteristics obtained with Cgrain Value™ and SmartGrain, (B) Cgrain Value™ morphological traits, and (C) SmartGrain morphological traits.




Table 2 | Summary of the multiple linear regression model combining all the 16 morphological characteristics provided by Cgrain Value™ and SmartGrain.






Figure 6 | Sensitivity plot of the morphological characteristics to predict Fusarium head blight in wheat. The parameters are organized from the best predictors to the less significant to predict the disease. Color lines indicate the significance, considering red as the most important predictor and pink as the less important one. The highlighted regions reflect the correlation of the parameters among each other.





Discussion

This study compared the potential performances of two different image-based methods to predict FHB. The results of both indicated that morphological seed traits are functional for predicting FHB among two different sets of genotypes evaluated. Furthermore, a comparison of the applicability of the two methods was properly addressed by evaluating the cost, accuracy, and time efficiency—for instance, to extract dimension, shape, and color parameters, Cgrain Value™ utilizes a unique mirror design to inspect all possible angles of individual kernels in the sample. Additionally, image capture and processing are instantaneous, thanks to the hardware and software combination. Conversely, image acquisition using the SmartGrain system was carried out over a relatively long period, yet image processing was done relatively fast. However, compared with Cgrain Value™, the earlier approach is cheaper considering the cost of the tools used in image capture, requiring a simple RGB camera, a static frame, and the free software.

On the other hand, the morphological traits, based on the statistical analysis results, that showed significant correlations to the visual scores were color traits in the HSL color representation and thickness from Cgrain Value™, length and width, from both methods (Figures 5, 6). Although the other measured morphological traits were not significantly correlated to the visual scores, infected grains still expressed differences in these traits that may be ultimately informative about seed health and refine the prediction (Table 1). Nevertheless, DS was not correlated and did not express significant differences in infected seeds of FHB, but it could prove useful in other applications.

The evaluated visual scores of the symptoms associated with FHB—bleached, yellowish or discolored, and stunted spikes—were previously validated by the identification of several loci by genome-wide association studies (GWAS) in a previous study with the same plants and visual scorings (Zakieh et al., 2021). The proposed methods aim to replace costly and labor-intensive genetic analysis.

Therefore, the prediction of both methods studied here appears to be consistent for FHB with the assigned traits concerning the phenotype–genotype association. Previous investigations showed a high correlation between symptoms that are present on wheat heads and the rate of kernel damage (Góral et al., 2018). Therefore, it is feasible to reference the estimated visual scores of disease severity to establish similar results of association/disassociation with the corresponding assessments of grain traits following the methodology in this study.

An important aspect to highlight is that the percentage of disease severity can be assessed, where, in contrast to disease spread from the point of inoculation, it offers less intensive labor by spray inoculation of a larger number of wheat genotypes. Additionally, unlike point-inoculated wheat spikelets, spray-inoculated spikes allow for evaluating the degree of damage caused by the disease to all kernels of the infected spike. Within this work frame, whole spike kernels are investigated for their characteristics rather than the damage to a limited number of kernels caused by Fusarium colonization from the point of inoculation. This, in turn, is expected to shorten the period for disease resistance assessment, lower its cost, and be less labor demanding.



Conclusion

The results indicated that the traits with a higher correlation to FHB were length, width, thickness, and especially color values in HSL color representation. Moreover, Cgrain Value™ was advantageous to SmartGrain in terms of the time required for image capture and outperformed the latter when applied to a large number of samples, yet SmartGrain processes samples fast and is cheaper in comparison to Cgrain Value™. Although the disease prediction showed a low–moderate accuracy for SmartGrain and a high–moderate accuracy for Cgrain Value™ and the results of both methods combined, this is attributed to the prediction reference, which corresponds to FHB disease severity scorings done on the spikes. However, the novelty of this study resides in the accuracy reached even with a different reference source, but which is directly related. Additionally, as the plant material genotypes and visual scores were validated by GWAS analysis, then the results presented here are phenotype–genotype-associated.
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Appendix 1


 Quantitative trait loci (QTL) detected in genome-wide association studies employing seven models at p = 0.0001 (LOD ≥ 4) for Fusarium head blight severity in winter wheat from the breeding, genebank, and combined sets (Zakieh et al., 2021). Chr., chromosome; FAF, favorable allele frequencies. The asterisk means also detected by these models at p = 0.0002. A, detected above Bonferroni corrected threshold (α = 0.05). B, the marker effects are estimated for only GLM, MLM, and CMLM and FarmCPU in GAPIT (Lipka et al., 2012).
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(Xp. Yp. Zp) are calculated by Eqn. (10)

§3: Citrus fruit diameterd, and d are calculated by Eqn. (1), and d_ is estimated
by Eqn. (12).

$4: According to Iy, the spatial coordinates of citrus Qo(Xy. Y. Zy) are
determined by Eqn. (10).

§5: The distance d between Qo and the origin point in O, is obtained by Eqn.
(13).

S6: The spatial coordinates (X;. Yi. Z) of ctrus 3D bounding box are calculated
by Eqn. (14).

§7: The 2D coordinates (i, ) of citrus 3D bounding box are calculated from
(Xi. Yi. Z) using Eqn. (10).
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Inbred  Cell wall KL Ester pCA Ester FA Ivew
line % DM % CW %CW %CW digestibility
MO1 52.7 20.51 1.59 0.62 32.7
0.11 0.03 0.01 0.85
(90.27) (7.00) 2.73)
M02 56.8 20.65 1.61 0.55 34.7
0.56 0.01 0.00 0.05
(90.53) (7.06) (2.41)
MO03 55.5 18.24 1.68 0.72 37.8
0.09 0.00 0.01 0.10
(88.37) (8.14) (3.49)
MO4 57 20.13 1.06 0.57 29.9
0.14 0.01 0.00 0.94
(92.51) (4.87) (2.62)
MO05 52 15.88 1.29 0.64 41
0.07 0.01 0.00 0.29
(89.16) (7.24) (3.59)
MO06 50 15.51 1.33 0.67 439
0.34 0.00 0.01 0.01
(88.58) (7.60) (3.83)
MO7 62 16.58 1.81 0.58 39
0.05 0.02 0.00 0.94
(87.4) (9.54) (3.06)
MO8 53.7 17.92 1.56 0.59 32.8
0.09 0.08 0.03 1.91
(89.29) (7.77) (2.94)
M09 63.6 171 1.38 0.64 BT
0.38 0.03 0.01 0.17
(89.44) (7.22) (3.35)
M10 53.6 16.93 1.65 0.61 30.7
0.32 0.02 0.03 0.76
(88.22) (8.60) (3.18)
M11 47.6 204 1.94 0.57 27.6
0.27 0.09 0.07 1.38
(89.04) (8.47) (2.49)
M12 49.9 19.26 1.68 0.5 30.5
0.32 0.03 0.01 0.57
(89.93) (7.84) (2.33)
M13 61.8 19.15 1.89 0.66 25.4
0.16 0.11 0.04 0.12
(88.25) 8.71) (3.04)
M14 52.3 17.94 1.91 0.68 31.1
0.28 0.06 0.03 0.91
(87.38) (9.30) 3.31)

% DM and % CW means that results are expressed in percent of dry matter and
cell wall amount, respectively.
Numbers in italic correspond to the standard deviations. The cell wall % DM was
measured in single (see “Materials and Methods” section). Number in brackets
corresponds to the relative proportion of each cell wall phenolic compound

expressed as percent of the sum of the cell wall phenolic compounds.
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Descriptor MoO1 Mo4 M09 M14 Code

Proportion of tissue and vascular bundle morphology and density

Stem area (cm?) 1.45 1.48 1.21 2.36 St(A)
0.06 0.07 0.02 0.03

Parenchyma area 71.9 81.7 80.3 71.5 Pa(A)

(%) of the stem area 1.4 0.5 0.1 1.7

Rind area 21.2 13.3 13.0 20.2 Ri(A)

(%) of the stem area 2.0 0.4 0.5 1.0

Vascular bundle 8.2 6.2 6.9 8.7 Vb(A)

area 0.2 02 0.2 0.4

(%) of the stem area

Vascular bundle 63.4 81.7 116.6 62.1 Vb(D)

Density (number 2.3 0.7 6.9 1.2

per cm?)

Vascular bundle 0.130 0.076 0.059 0.141 Vi(A)

Mean Area (mm?2) 0.007 0.002 0.002 0.009

Vascular bundle 0.777 0.802 0.738 0.790 VI(E)

elongation 0.003 0.009 0.026 0.015

Parenchyma cell size

Middle parenchyma ~ 70.0 81.8 65.5 64.2 Pm(Cd)

Grey level mean 0.2 0.7 0.8 0.6

size (uwm)

Middle parenchyma 27.9 31.6 29.1 29.4 Pm(Cs)

Standard deviation 0.6 0.2 0.9 0.6

(wm)

Parenchyma near 57.9 54.9 46.0 56.2 Pr(Cd)

the rind 0.9 0.2 0.6 1.7

Grey level mean

size (um)

Parenchyma near 31.6 30.6 27.4 34.9 Pr(Cs)

the rind 1.0 0.4 0.5 1.3

Standard deviation

(wm)

Parenchyma cell wall density

Middle parenchyma ~ 4.29 3.67 4.58 4.67 Pm(CD)

Cell wall density (%)  0.01 0.03 0.06 0.05

Parenchyma near 5.18 5.46 6.53 5:36 Pr(CD)

the rind 0.08 0.02 0.09 0.16

Cell wall density (%)
Tissue cell wall proportion

Total cell wall Area 32.7 23.1 241 32.4 CW(T)

[% St(A)] 2.0 0.5 0.3 1.3

Middle parenchyma 6.3 8.8 10:1 L7 Pm(Cw)
cell wall area [% 0.6 0.3 0.1 0.5

CW(T)]

Parenchyma near 3.9 6.3 7.4 3.1 Pr(Cw)
the rind 0.2 0.1 0.1 0.1

cell wall area [%

CW(T)]

Rind cell wall area 65.3 58.6 56.4 63.2 Ri(Cw)

[% CW(T)] 2.0 0.8 1.2 0.7

Vascular bundle 25.3 27.0 28.6 26.8 Vb(Cw)
cell wall area [% 1.2 0.7 1.7 0.6

CW(T)]

Proportion of tissues as a percentage of the stem area, parenchyma cell size and
cell wall density, and proportion of tissues as a percentage of the total cell wall.
Mean values and standard errors measured for the two sections of the inbred lines.
Numbers in italic correspond to the standard deviations.
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Rind and vascular bundles

Component1 Component2 Component3 Component4

72% 16% 11% 1%
Gine { e gre 194 g
Tissue 270 - 17 -
Interaction - — - _

Parenchyma tissues
Component1 Component2 Component3 Component4

71% 18% 7% 3%
Line { e g g 15w
Tissue 70%* 94** 2% 6*
Interaction 3 [eits B 4

Variance analysis. Effects of inbred lines and tissues on the principal components.
F value and significance. ™ *> *** means that the probability was below 5%, 1%
and 0.1%, respectively.
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Spectralband  Color  Sample Center Bandwidth FWHM

wavelength (nm) (nm)
Blue Blue [+] 450 25
Green Geen O 555 2%
Red Red (] 660 25
Red edge Pink (o] 710 25
Nearinfrared  Light purple @) 840 25
Near infrared Purple (o] 040 25
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Spectral parameters Calculation formula References

B.450 / /

G.555 /i /

R.660 / /

RE.710 i/ /

NIR.840 / /

NIR.940 / /

DVI NIR.840-G.555 Naito et al., 2017

NDVI (NIR.840- Rouse et al., 1974

R.660)/(NIR.840+R.660)

EVI 2.5%(NIR.940- Prabhakara et al.,

G.555)/(NIR.940+6*R.660- 2015
7.5B.450+1)
GNDVI (NIR.940- Wang et al., 2007
G.555)/(NIR.940+G.555)
PPR (G.555-B.450)/(G.555+B.450) Metternicht, 2003
SIPI (NIR.940-B.450)/(NIR.940- Penuelas et al.,
R.660) 1995

RECI NIR.840/RE.710-1 Kanke et al., 2016

Red edge NDVI (NIR.940- Kanke et al., 2016
RE.710)/(NIR.940+RE.710)

MERIS Terrestrial (NIR.840-RE.710)/(RE.710- Panigada et al.,

Chlorophyll Index R.660) 2010

(MTCI)

Modified chlorophyll [RE.710-R.660-0.2(RE.710- Wu et al., 2008

absorption ratio index
(MCARI)

Triangular vegetation
index (TVI)

Modified triangular
vegetation index
(MTVI2)

Transformed chlorophyll
absorption reflectance
index (TCARI)
Optimization of
soil-adjusted vegetation
index (OSAVI)

Ratio vegetation index
(RVI1)

PPR/NDVI

SIPI/RVI1

Modified non-linear
vegetation index (MNLI)
Soil-adjusted
vegetation index (SAVI)
Modified simple ratio
(MSR)

Non-linear vegetation
index (NLI)
Renormalized
difference vegetation
index (RDVI)

R.660)]
*(RE.710/R.660)
0.5*[120%(NIR.840-G.555)-
200%(R.660-G.555)]
1.5*[1.2%(NIR.840-G.555)-
2.5%R.660-
G.555))/[(12*NIR.880+1)2-
[6"NIR.880-5*(R.660)2]-0.5]1/2
3*(RE710-R.660)-0.2(RE.710-
G.555)
*(RE.710/G.555)]
1.16*(NIR.840-
R.660)/(NIR.840+R.660+-0.16)

NIR.840/R.660

PPR/NDVI
SIPI/RVI1
1.5*(NIR.840)2-
R.660))/(NIR.842)2+R.660+0.5
(NIR.840-
R.660)/(NIR.840+R.660+0.5)
(NIR.840/R.660-
1)/[(NIR.840/R.660)"/2+1]
[(NIR.840)2-
R.660]/[(NIR.840)2+R.660]

(NIR.840-
R.660)/(NIR.840+R.660)'/2

Haboudane et al.,
2004

Haboudane et al.,
2004

Haboudane et al.,
2004

Rondeaux et al.,
1996

Kanke et al., 2016

Jinetal., 2017
Jinetal., 2017
Yang Z. et al., 2008

Pinty and
Verstraete, 1992
Wau et al., 2008
Goel and Qin, 1994

Tucker, 1979
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Growth parameters

Intercropping crops

Optimal spectral parameters

Regression equation

Modeling accuracy

R2 RMSE NRMSE
AGB (kg/m?) Red bean RVI AGB = 0.059*RVI1+0.313 0.761 0.168 0.157
Mung bean RVI AGB = 0.054*RVI1+1.55 0.626 0.088 0.113
LAl Red bean RECI LAl = 0.616"RECI+0.355 0.634 0.376 0.129
Mung bean B.450 LAl = —74.297*B.450+5.292 0.591 0.25 0.09
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Growth parameters

Intercropping crops

Regression equation

Modeling accuracy

R2 RMSE NRMSE
AGB (kg/m?) Red bean AGB = 0.155*RVI1-27.913"B.450-0.964*MSR-5.09*G.555 + 2.748 0.857  0.133 0.125
Mung bean AGB = 0.231703"RVI1-1.1639*MSR-15.0778B.450-3.64563*R.660 + 1.7216 0.757  0.073 0.093
LAl Red bean LAl = 0.478338*RECI-53.7192*B.450 + 0.123683*RVI1-1.12239*MSR+ 4.65337  0.698  0.351 0.121
LAl = -49.2931*B.450-3.39808*SIPI/RVI1 + 4.98799 0672 0227 0.081

Mung bean
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Method

Method 1

Method 2

Devices
used to
acquire
images

Nikon D700

digital
camera,
HUAWEI
P30

smartphone,
and iPhone

6S

smartphone.

Image
assessment
method

Manual image
segmentation
and pixel
statistics in the
Adobe
Photoshop
software.

Mathematical algorithms used Statistical evaluation of the data The deter-

for image evaluation obtained from the images mined ref-
erence
range
Calculation of the actual percentage (r) Mean, standard deviation, the midpoint The midpoint-
of the lesion area in the area of the  value of the means of the actual percentages of-two-
whole diseased leaf by using the of lesion areas of two adjacent severity adjacent-
A ) -]
formula: r = =% x 100 % where Aq is classes means-based
A actual
the pixel number of the lesion region/ percentage
regions in the diseased leaf image, and reference
A is the pixel number of the whole leaf ranges.
region in the diseased leaf image. Mean, standard deviation, normal The 90%, 95%,
distribution test, normal distribution and 99%

method for determining the bilateral 100 reference ranges

(1-01)% reference ranges and the unilateral of the actual
100(1-0)% reference ranges by combining  percentages of
the normal distribution probability density ~  lesion areas.
function (normpdf) and the functions solve

and normspec in the MATLAB software.

Reliability of
the obtained
results

Assessment
accuracy>85.00%.

Assessment
accuracy>85.00%
for the 90%
reference ranges,
and >95.00% for
the 95% and 99%
reference ranges.
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Severity Testing Assessment accuracy based on the mid- Assessment accuracy Assessment accuracy Assessment accuracy

class set point-of-two-adjacent-means-based based on the 90% based on the 95% based on the 99%
actual percentage reference range reference range reference range reference range

1% Test10,5 100.00% 90.00% 100.00% 100.00%
Test20,5 100.00% 95.00% 100.00% 100.00%

5% Test10sy 100.00% 90.00% 100.00% 100.00%
Test20sy, 100.00% 95.00% 100.00% 100.00%

10% Test10,05 90.00% 90.00% 100.00% 100.00%
Test20100 90.00% 90.00% 95.00% 95.00%

20% Test10500 100.00% 100.00% 100.00% 100.00%
Test20,0 100.00% 95.00% 100.00% 100.00%

10% Test10400 90.00% 100.00% 100.00% 100.00%
Test20400 85.00% 95.00% 95.00% 100.00%

60% Test10g09 100.00% 90.00% 100.00% 100.00%
Test2060% 100.00% 90.00% 100.00% 100.00%

80% Test10509 100.00% 90.00% 100.00% 100.00%
Test20500, 100.00% 90.00% 100.00% 100.00%

100% Test10;00% 90.00% 90.00% 100.00% 100.00%

Test20,099 90.00% 85.00% 100.00% 100.00%
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Severity Training Assessment accuracy based on the mid- Assessment accuracy Assessmentaccuracy Assessment accuracy

class set point-of-two-adjacent-means-based based on the 90%  based on the 95%  based on the 99%
actual percentage reference range reference range reference range reference range

1% Traind0, 5, 100.00% 95.00% 97.50% 100.00%
Train30,, 100.00% 93.33% 96.67% 100.00%

5% Traind0sy 100.00% 95.00% 100.00% 100.00%
Train30ss, 100.00% 93.33% 100.00% 100.00%

10% Train40;00, 87.50% 90.00% 100.00% 100.00%
Train30;00, 86.67% 90.00% 96.67% 96.67%

20% Train40,00, 97.50% 95.00% 100.00% 100.00%
Train3000, 96.67% 96.67% 100.00% 100.00%

40% Train40,00, 85.00% 95.00% 95.00% 100.00%
Train30,00, 86.67% 96.67% 96.67% 96.67%

60% Train400% 100.00% 92.50% 97.50% 95.00%
Train30s00, 100.00% 9333% 96.67% 100.00%

80% Train40sos, 97.50% 90.00% 97.50% 100.00%
Train30g00, 96.67% 9333% 96.67% 100.00%

100% Traind0;000 90.00% 87.50% 100.00% 100.00%

Train30,09 90.00% 90.00% 100.00% 100.00%
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Data set

Train40,4,
Traind0s,,
Traind0,gq,
Train40,90,
Train40,04,

Traind0gos,

Traind0gos,

Train40, g0,

Train30,q,
Train30sy,
Train30,9q,
Train3059q,

Train30u,

Train30600,

Train30gq,

Train30,099,

class

20%
40%
60%

80%

100%

60%

80%

100%

Severity Midpoint-of-two-
adjacent-means-
based actual per-
centage reference

range

(0, 0.84%]
(0.84%, 1.89%)
(1.89%, 3.71%)
(3.71%, 7.41%)
(7.41%, 13.25%]

(13.25%, 18.92%]

(18.92%, 25.88%]

(25.88%, 100%]

(0, 0.84%]
(0.84%, 1.89%)
(1.89%, 3.71%]
(3.71%, 7.40%)
(7.40%, 13.24%)

(13.24%, 18.92%]

(18.92%, 25.88%]

(25.88%, 100%]

90% refer-
ence range

(0%,0.64%]
[0.89%, 1.65%)]
[1.81%, 3.19%)]
[3.64%, 6.20%)]
[6.66%,13.12%]

[14.63%,
18.59%]

[18.92%,
23.54%)

[25.29%,
35.75%]

(0%,0.64%]
[0.90%, 1.66%)
[1.79%, 3.21%)]
[3.64%, 6.20%]

[6.67%,
13.07%]

[14.64%,
18.58%]

[18.88%,
23.58%]

[25.27%,
35.79%]

Actual proba-
bility corre-
sponding to

the 90% refer-

ence range

90%
90%
90%
90%
90%
90%

90%
90%

90%
90%
90%
90%
90%

90%
90%

90%

95% refer-
ence range

(0%, 0.71%]
[0.82%, 1.72%]
(1.75%, 3.32%]
[3.39%, 6.45%]
(6.60%,13.75%]

[14.24%,
18.80%)

(18.80%,
23.99%]

[24.27%,
36.77%)

(0%, 0.71%]
[0.83%, 1.73%)
(1.75%, 3.34%]
[3.39%, 6.45%]

(6.60%,
13.69%]
[14.26%,
18.78%]

(18.78%,
24.03%)

[24.24%,
36.82%]

Actual proba-
bility corre-
sponding to

the 95% refer-

ence range

95%
95%
93.75%
95%
92.75%
93.98%

93.24%
95%

95%
95%
93.41%
95%
92.82%

93.96%
93.16%

95%

99% refer-
ence range

(0%, 0.80%]
(0.80%, 1.75%)
(1.75%, 3.43%)
(3.43%, 6.60%)
(6.60%,13.88%]

(13.88%,
18.80%]

(18.80%,
24.46%)

(24.46%,
38.75%)

(0%, 0.81%]
(0.81%, 1.75%)
(1.75%, 3.44%)
(3.44%, 6.60%)

(6.60%,
13.88%]
(13.88%,
18.78%]
(18.78%,
24.48%)

(24.48%,
38.81%)

Actual proba-
bility corre-
sponding to

the 99% refer-

ence range

96.47%
96.11%
94.95%
95.63%
93.11%
95.28%

94.66%
96.63%

96.69%
95.90%
94.50%
95.55%
93.33%

95.33%
94.51%

96.53%
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Data set

Traind0,q,
Traind0g,
Train40,go;
Train40,90,
Train000
Traind0gp0,
Train40gqs;,
Train40;099,
Train30,,
Train30se,
Train30,gs,
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Image segmentation
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(Measurement of whole leaf region pixels and lesion region pixels of each

single wheat leaf)

Calculation of the actual percentage of the lesion area in the area of each whole
diseased leaf

Calculation of mean and standard deviation of the actual percentages of lesion
areas corresponding to each severity class
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reference ranges and the reference ranges at different levels for all the severity
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Severity assessment of diseased wheat leaves according to the determined
reference ranges and evaluation of assessment performance of each reference
range
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Sample Class and
description

Class 1: “Saffron in
filaments™
(1803632)/Laccha
(185453)

Class

“Saffron in cut
filaments™
(1503632)/Saffron
processed using a
technique indigenous to
Kashmir “Mongra”
(185453)

Class 3: Fake-1

“Unknown look-alike”

Class 4: Fake-2

“Unknown look-alike”

Class 5: Fake-3 “Corn

silk dyed maroon”
Class 6: Fake-4 “Corn

silk dyed neon yellow”

Class 7: Fake-5

“Unknown look-alike”

Class 8: Fake-6 “Dyed

saffron stamen”

Class 9: Fake-7 “Dyed

paper strips”

Characteristic features

Serrated distal trumpet shaped top with distinct
papillac; striated texture dotted with pit like

structures; presence/absence of large pollen grains.

Serrated distal trumpet shaped top with distinct

papillac; presence/absence of large pollen grains.

Serrated top exhibiting typical trumpet shaped
structure; epidermal papillose protuberances
absent; pollen like granules present. It may be
stigma of another flower.

Serrations as well s other distinguishing features
of authentic saffron absent. Long flattened
structure with smooth margins and even width.
Resembles stigma lobes; Smooth margins with no
distal serrations or papillose protuberances. Long
flattened structure with even width.

Resembles style; Serrations as well as the papillose
protuberances absent; Long flat structure with
smooth margins and even widths pollen grains
absent.

Wide and serrated top margins with narrow stalk
resembling funnel. Papillose protuberances and
texture distinctive of saffron stigma absent; Pollen
grains absent. The sample structure disintegrates
Qi

thread like fiber.

ly in solvents and reveals a single thin, long

Top margin wide and trumpet shaped; Large
number of pollen grains present along the stalk
and top regions; Papillose protuberances absent.
Smooth and flat, funnel shaped wide top margin
with a narrow stalk; no serrations; It isintegrates
quickly in solvents and reveals a single thin, long

thread like fiber.
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random weight
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Group Accuracy? (%)  Sensitivity® (%)  Specificity® (%)

Group 19
Wood Anatomist 02 50.0 43.3 56.7
Wood Anatomist 04 46.7 40.0 53.3
Wood Anatomist 05 46.7 40.0 53.0
Wood Anatomist 06 45.0 63.0 26.7
Group lI®
Wood Anatomist 01 4.7 43.3 40.0
Wood Anatomist 03 50.0 40.0 60.0
Wood Anatomist 07 40.0 36.7 43.3
Wood Anatomist 08 48.3 43.3 53.3

aQ0verall mean [95% ClI (confidence interval)] accuracy 46.1 (42.9-49.1).

bOverall mean (95% Cl) sensitivity 43.7 (36.9-50.5).

CQverall mean (95% Cl) specificity 48.3 (39.1-57.4).

dGroup I: Wood anatomists with 1-5 years of experience. Mean (95% Cl) accuracy
47.1 (43.8-50.4), sensitivity 46.7 (28.8-64.5), and specificity 47.5 (25.3-69.7).
€Group Il: Wood anatomists with >5 years of experience. Mean (95% Cl) accuracy
45.0 (37.2-52.8), sensitivity 40.8 (35.8-45.9), and specificity 49.15 (25.3-69.7).
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