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Editorial on the Research Topic

Innovative use of imaging techniques within plant science
Several examples in the history of biology show how technological advances have

facilitated fundamental discoveries in biology. The development and application of

imaging techniques in plant sciences represent such an example that is currently

unfolding. By using image analysis, spatially resolved information can be obtained that

allows new questions in the field to be explored. Furthermore, when applied for example

in crop monitoring, quality control or management, these techniques allow objective

real-time decisions to be made, often based on non-destructive measurements and a

reduction in time and labor that could also translate into cost savings.

This Research Topic brings together research papers that demonstrate how image-

based techniques can help solve actual problems in the world of plant sciences. Generally,

the presented papers offer image-based solutions to assess plant disease status, predict

and detect grain and fruit yield, and analyze wood samples for their species and quality.

These general application areas were achieved with a range of imaging instruments from

the microscopy level to airborne image collection with unmanned aerial vehicles (UAV).

Zhang et al. (2021) tackle the long-standing and laborious yield prediction problem

to precisely quantify yellowness in canola flowers. In doing so, they propose a UAV

method to effectively estimate yield in Canola (Brassica napus L.) from airborne imagery.

Their remote-sensing solution is to define a normalized yellowness vegetation index

(NDYI) that demonstrated high predictive performance for seed yield.

Using similar technology, Shi et al. (2022) propose the use of UAV-based

multispectral imagery and machine learning (ML) models for aboveground biomass
frontiersin.org01
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(AGB) and leaf area index (LAI) estimation of two intercropping

species (mung bean and red bean) in tea plantations. Five ML

algorithms were evaluated based on the vegetation indices

derived from the UAV multispectral images as well as the

actual AGB and LAI data. Their results show that two models

(Support Vector Machine and Back Propagation Neural

Network) outperformed the AGB and LAI prediction of red

bean and mung bean as compared to other ML models.

Crop disease detection using image-based techniques is also

a field that experiences growth due to the positive impact crop

productivity and greater environmental and economic

sustainability of agriculture. In this sense, Jiang et al. (2022)

have conducted a study aimed at assessing the severity of wheat

stripe rust using a low-cost approach based to evaluate images of

infected leafs obtained by smartphones. This approach may

represent a compromise between the sometimes-subjective

visual disease assessment and symptoms assessment using

costly devices such as multi- and hyper- spectral cameras.

Along, Leiva et al. (2022) compared the performance of two

low-cost image-based methods for predicting Fusarium Head

Blight (FHB) infection in winter wheat seeds. The two analysis

methods use RGB images of wheat seeds to provide various

morphological traits of the seed, which were used to predict FHB

using multiple regression models.

The development of robots for automatic fruit harvesting is a

growing discipline due to the increasing costs of manual harvesting

and the difficulty of finding skilled labor. Accurate and robust

detection of fruits under natural conditions is crucial for the

success of automatic fruit harvesting with robots. In this line of

work, Hou et al. (2022) have developed a methodology based on

the use of binocular cameras and deep learning to improve both

citrus fruit detection and 3D localization under natural lighting

conditions in commercial citrus orchards. To this end, an

improved version of the YOLO v5s model is proposed for citrus

detection, Cr-Cb chromatic mapping together with Otsu threshold

algorithm and morphology processing are used to extract citrus

shape, and a geometric image model for 3D citrus localization. Liu

et al. (2022) present another work aimed at improving the

automatic detection of fruits under natural conditions using

deep learning models. In their case study, the authors have

developed an anchor-free detector based on the CenterNet

architecture that outperforms other tomato detection methods.

Another innovative application of the use of image-based

techniques is that developed by Husaini et al. (2022) for the

detection of fraudulent saffron. Saffron adulteration is a major

problem, because Saffron is an expensive spice that is normally

used as hand-picked dried flower stigmas. As a technological

advancement, the authors have successfully tested two new

methods for detecting adulterated saffron, one based on the use

of a low-cost optical microscope (Foldscope) in combination with a

chemical staining technique for visual identification of fake saffron

samples, and another based on deep learning to automatically

classify images taken with Foldscope and a smartphone.
Frontiers in Plant Science 02
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Berger et al. (2021) report on a study in which image data

obtained using darkfield and fluorescence microscopy was used

to quantify the histology in cross sections of whole maize stems.

This information was used for phenotyping different maize lines.

The method developed makes it possible to assess unusually

large cross sections, i.e., in the cm range. It is possible to quantify

plant anatomy and autofluorescence after excitation with

ultraviolet and/or visible light.

Determining the wood species or genus of timber and wooden

artefacts based on light microscopy is important when controlling

wood trade, especially to protect endangered tree species.

However, wood identification is a skill that requires training

and expertise, which means that far less wood is controlled than

one could wish for from a conservation viewpoint. Adding to the

challenge is the limited availability of microscopy images from

known species in species-rich forests. Lopes et al. (2022) describe

an exciting first step towards addressing this problem. Their

approach involves neural networks to generate artificial images

based on microscopy images of known species. In a second step,

the method increases the number of images available per species

to train neural networks to be able to identify the wood species in

microscopy images of unknown species.

The article by Ponzecchi et al. (2022) describes a study where

chemically modified wood was studied using Raman micro-

spectroscopy. The novelty of this article lies in the development

and test of a miniature climate chamber that makes it possible to

adjust the relative humidity of microtomed sample sections

mounted below a normal coverslip while they are presented to

the instrument. In addition to the advantage of securing a well-

defined and adjustable relative humidity, the setup has the

advantage of being compatible with immersion objectives.

Together, the articles of this Research Topic illustrate the

many useful applications that are currently being explored

within this active field of research and development.
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Aerial Vehicle-Based Imagery

Ti Zhang 1, Sally Vail 2, Hema S. N. Duddu 1, Isobel A. P. Parkin 2, Xulin Guo 3,
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Phenotyping crop performance is critical for line selection and variety development

in plant breeding. Canola (Brassica napus L.) flowers, the bright yellow flowers,

indeterminately increase over a protracted period. Flower production of canola plays

an important role in yield determination. Yellowness of canola petals may be a

critical reflectance signal and a good predictor of pod number and, therefore,

seed yield. However, quantifying flowering based on traditional visual scales is

subjective, time-consuming, and labor-consuming. Recent developments in phenotyping

technologies using Unmanned Aerial Vehicles (UAVs) make it possible to effectively

capture crop information and to predict crop yield via imagery. Our objectives were to

investigate the application of vegetation indices in estimating canola flower numbers and

to develop a descriptive model of canola seed yield. Fifty-six diverse Brassica genotypes,

including 53 B. napus lines, two Brassica carinata lines, and a Brassica juncea variety,

were grown near Saskatoon, SK, Canada from 2016 to 2018 and near Melfort and Scott,

SK, Canada in 2017. Aerial imagery with geometric and radiometric corrections was

collected through the flowering stage using a UAV mounted with a multispectral camera.

We found that the normalized difference yellowness index (NDYI) was a useful vegetation

index for representing canola yellowness, which is related to canola flowering intensity

during the full flowering stage. However, the flowering pixel number estimated by the

thresholding method improved the ability of NDYI to detect yellow flowers with coefficient

of determination (R2) ranging from 0.54 to 0.95. Moreover, compared with using a single

image date, the NDYI-based flowering pixel numbers integrated over time covers more

growth information and can be a good predictor of pod number and thus, canola yield

with R2 up to 0.42. These results indicate that NDYI-based flowering pixel numbers can

perform well in estimating flowering intensity. Integrated flowering intensity extracted from

imagery over time can be a potential phenotype associated with canola seed yield.

Keywords: canola, flowering, seed yield, multispectral camera, remote sensing
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INTRODUCTION

Canola (Brassica napus L.) is the predominant oilseed crop grown
in Canada (Clayton et al., 2000). Canada has the largest area
of canola production in the world (Statistics Canada, 2018).
With the growing global demand for canola, Canada needs to
maintain and improve canola yield and seed quality to meet
the market demands. Yield components of canola consist of the
number of pods, the seeds per pod, and the weight per seed
(Tayo and Morgan, 1975; McGregor, 1981; Diepenbrock, 2000;
Ivanovska et al., 2007; Faraji, 2012). Among these components,
pod number retained at maturity is the most important factor
as it is influenced most by environmental constraints (Tayo and
Morgan, 1975; McGregor, 1981; Diepenbrock, 2000; Ivanovska
et al., 2007; Faraji, 2012; Gan et al., 2016; Kirkegaard et al., 2018).
The flowering stage in canola is important for yield estimation as
flowers produced in the first 2–3 weeks from anthesis contribute
to 75% of the pods at maturation (Tayo and Morgan, 1975).
Additionally, the flowering period can last from 2 to 6 weeks,
which is a major portion of the crop growth cycle (Gan et al.,
2016; Kirkegaard et al., 2018). Thus, flower production is one of
the most important factors in determining final seed yield (Tayo
and Morgan, 1975; Diepenbrock, 2000; Faraji et al., 2008; Faraji,
2012; Fang et al., 2016; Gong et al., 2018; Kirkegaard et al., 2018;
Zhang and Flottmann, 2018).

During the plant breeding process, field-based phenotyping
plays an important role in evaluating plant performance.
It contributes to the selection of ideal genotypes that are
high-yielding by associating genotype with the corresponding
phenotype (Montes et al., 2007; Sankaran et al., 2015). To
select better canola lines and eventually develop better varieties,
breeders need to assess many distinct lines grown in multiple
environments to detect interactions between genotype and
environment (White et al., 2012; Araus and Cairns, 2014).

The quantification of flowering intensity based on traditional
visual scales is subjective, labor-consuming, and is often
destructive (Sulik and Long, 2015; Fang et al., 2016; Wan et al.,
2018). Although ground-based platforms such as Greenseeker,
Crop Circle, or time-lapse RGB imaging can provide adequate
spectral data, these platforms still require a prohibitive amount
of time and labor (Xu et al., 2018; Hassan et al., 2019).
Additionally, data collection using these ground-based platforms
may cause soil compaction and crop canopy damage (Xu et al.,
2018). Therefore, it is necessary to develop an objective, non-
destructive, and efficient method to estimate flower numbers.
With this, one can model seed yield by assessing real-time
radiometric data of the crop canopy, which has the potential
to accelerate breeding methods for yield improvement. Current
improvements in aerial-based platforms and sensors equipped on
aerial platforms make it possible to effectively collect phenotypes
via analyzing digital imagery (Kim et al., 2019). Unmanned
aerial vehicles (UAVs) equipped with various sensors can quickly
provide large quantities of field data enabling plant breeders to
efficiently detect traits of numerous plots in large-scale field trials
(Kefauver et al., 2017).

Spectral reflectance of the crop canopy is strongly correlated
with morphological and physiological traits. Leaf composition

and molecular structure can affect the reflectance of the crop;
thus, ratios or differences of different bands in the visual light,
near IR (NIR), and shortwave IR wavelengths (i.e., vegetation
indices) can be a tool to characterize plant traits (Sankaran et al.,
2015; Wójtowicz et al., 2016). Previous studies have shown that
multispectral reflectance profiles of visible bands (i.e., blue, green,
and red) and NIR bands could estimate canopy features, such as
nitrogen use efficiency (Kefauver et al., 2017; Prey et al., 2020),
leaf area index (Tunca et al., 2018; Blancon et al., 2019), and
flower numbers (Guo et al., 2015; Sulik and Long, 2015, 2016;
Carl et al., 2017; Gong et al., 2018; Wan et al., 2018; Xu et al.,
2018). These plant traits investigated remotely have the potential
to improve yield estimates. Flower numbers, as an important
factor in determining crop yield, have exhibited close correlations
with optical properties in various crops, such as rice (Guo et al.,
2015), cotton (Xu et al., 2018), and canola (Sulik and Long, 2015,
2016; Gong et al., 2018; Wan et al., 2018). Guo et al. (2015)
applied a machine learning model, the support vector machine,
for flowering quantification using RGB images in rice, which
resulted in a good correlation between the actual rice flowering
panicles and identified flowering (correlation coefficients ranging
from 0.64 to 0.82) (Guo et al., 2015). In canola, there are
three different canopy morphologies during the growing season,
namely, the vegetative phase (green canopy dominated by leaves),
the flowering phase (yellow canopy dominated by the yellowness
of flower petals), and the mature phase (green or brown canopy
because of pods and branches) (Sulik and Long, 2016). During
the flowering phase, the yellowness of canola petals is due to
carotenoid absorption of blue and reflectance of a mixture of
green and red wavelengths (Sulik and Long, 2015, 2016), but the
yellow color has little impact on red edge and NIR reflectance
unlike a green vegetative canopy (Shen et al., 2009; Migdall
et al., 2010; Sulik and Long, 2015, 2016). Thus, the contributed
red light decreases the normalized difference vegetation index
(NDVI) values (Equation 1) and adversely impact the ability
of NDVI to monitor crop growth condition and estimate yield
during the flowering phase (Shen et al., 2009, 2010; Sulik and
Long, 2015, 2016). Sulik and Long (2015) found that the ratio
of green and blue was strongly correlated with the actual flower
numbers with a coefficient of determination (R2) of 0.87, and
they proposed the plot-level normalized difference yellowness
index (NDYI) (Equation 2) could be a potential yield predictor
(R2 = 0.76) (Sulik and Long, 2016). d’Andrimont et al. (2020)
and Han et al. (2021) reported that NDYI successfully captured
canola yellowness and detected the peak flowering dates using
Sentinel-2 imagery. Fang et al. (2016) found that reflectance
at 550 nm was the most sensitive band to estimate flowering
coverage with an estimation error below 6% when compared
with wavelengths at 490, 670, 720, 800, and 900 nm. Wan
et al. (2018) and Gong et al. (2018) reported that combining
vegetation index and image classification methods (i.e., k-means
clustering method by CIE L∗a∗b space and pixel-level spectral
mixture analysis) improved the accuracy of flower numbers
and yield estimation in canola with R2 values of 0.89 and
0.75, respectively.

Although several studies have detected canola flowering
number and predicted yield, most of these field experiments were
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TABLE 1 | Summary of canola trials and data collection (imagery acquisition and manual flower count) at Saskatoon, SK, Canada from 2016 to 2018 and at Melfort and

Scott, SK, Canada in 2017.

Site Year Seeding date Number of

lines/cultivars

Flight altitude

(m)

Image acquisition dates Manual flower count

dates

Saskatoon 2016 May 27 56 20 July 14; 19; 26

August 06

July 15; 22; 29

August 05

2017 May 28 56 20 July 07; 11; 15; 19; 22; 26

August 01; 09; 16; 22

July 01;18; 25

August 01

2018 May 21 56 25 June 28

July 06; 09; 16; 20; 24; 27; 30

August 03; 07

July 10; 17; 24; 31

Melfort 2017 May 18 16 15 July 05; 13; 20; 26 July 05; 20; 26

Scott 2017 June 20 16 20 August 09; 16; 29 August 09; 16

conducted with relatively few canola lines and environments,
which may neglect the effect of genotype and environmental
fluctuations on yellowness of flower (Ohmiya, 2011) and petal
size (Jiang and Becker, 2003). In addition, yield estimation
models used in those studies were based on only one image date
(Sulik and Long, 2016; Gong et al., 2018), which ignores the
effect of time and duration of flowering (Tayo andMorgan, 1975).
Thus, the reflectance data of flowering throughout the flowering
period may provide a better estimate of crop yield. Therefore, the
objectives of this study were to use UAV multispectral data to
detect flowers within a wide range of canola lines and to estimate
seed yield in canola using time series imagery collected during the
flowering period.

MATERIALS AND METHODS

Experimental Sites and Plant Materials
The experiment was conducted at the Agriculture and Agri-
Food Canada Research Farm near Saskatoon, SK, Canada from
2016 to 2018 (52◦ 10’ 52.9” N, 106◦ 30’ 10.6” W in 2016; 52◦

10’ 59.3” N, 106◦ 30’ 53.7” W in 2017; and 52◦ 10’ 57.7” N,
106◦ 30’ 01.4” W in 2018), and near Melfort (52◦ 49’ 9.6” N
and 104◦ 35’ 46.9” W) and Scott (52◦ 21’ 55.3” N and 108◦

52’ 32.6” W), SK, Canada in 2017 (Table 1). The soil texture at
Saskatoon was a clay loam with a pH of 7.3 and an organic matter
content of 5.5%. The field plots were set up in a randomized
incomplete block design (rectangular lattice design) with three
replications (Figure 1). A rectangular lattice design was used to
reduce spatial variability within each block. Individual plot size
was 6.0m long × 1.2m wide in 2016 and 2018 and 6.0m long
× 1.5m wide in 2017. Fifty-six genotypes (Saskatoon Research
and Development Center, Agriculture and Agri-Food Canada),
including 53 diverse B. napus lines, two B. carinata lines, and a B.
juncea variety, were selected and planted. Fifty of the diverse lines
were used as founders to develop Nested Association Mapping
(NAM) population by developing population from crossing to a
common reference line (Parkin et al., 2017). This panel, which
represents diverse germplasm resources and the historical basis of
canola breeding programs, differs in geographic origin, pedigree,
phenotypes, and genotype (Parkin et al., 2017). Seeding occurred
on May 27, 28, and 21 in 2016, 2017, and 2018, respectively,

FIGURE 1 | The overview of experimental plot layout at the Agriculture and

Agri-Food Canada Research Farm (52◦ 10’ 52.9” N, 106◦ 30’ 10.6” W) near

Saskatoon, SK, Canada on July 14, 2016.

at a seeding rate of 108 seeds m−2 (Table 1). Out of 56 lines,
16 were selected and planted twice in two adjacent but separate
plots as double plots. The criteria of line selection for the double
plots were based on contrasting seed quality (i.e., seed color, acid
detergent lignin, seed glucosinolates, and seed erucic acid) and
similarity in flowering timing. The reason for setting double plots
was to preserve one plot for imaging without any subsamples
being removed. The 16 B. napus lines planted in double plots were
YN04-C1213, NAM-0, 5, 13, 14, 17, 23, 30, 37, 32, 43, 46, 48, 72,
76, and 79.

The selected 16 B. napus lines were planted in a randomized
complete block design with three replications at the Melfort and
Scott locations in 2017. All lines were planted in 5m long ×

1.2m wide plots at Melfort and in 5m long × 1m wide plots at
Scott. Canola was seeded on May 18 at Melfort and June 20 at
Scott at a desired seeding rate of 108 seeds m−2 (Table 1). Edge R©

(ethalfluralin) was applied as a pre-emergence herbicide at a rate
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TABLE 2 | Basic specifications for the multispectral camera (RedEdge) equipped on the unmanned aerial vehicle (UAV) platforms.

GSDa (cm per pixel)

(per band)

Flight altitude

(m)

Sensor resolution per

band (MP)b
Focal length

(mm)

Full width at half

maximum (nm)

Peak wavelength (nm)

1.02

1.36

1.70

15

20

25

1.2c 5.5 Blue: 465–485

Green: 550–570

Red: 663–673

Red edge: 712–722

NIR: 820–860

Blue: 475

Green: 560

Red: 668

Red edge: 717

NIR: 840

aGSD: ground sampling distance.
bMP: megapixel.
c image resolution: 1.2 MP = 1,280 × 960 pixels.

of 19.1 kg ha−1 to control weeds. Any weeds not controlled by the
herbicides were removed by hand.

Image Acquisition
Platform and Sensor
The UAV used in this study was a Draganflyer X4-P model
in 2016 and 2017 (DraganFly Inc., Saskatoon, SK, Canada).
It is a rotary-wing platform with a maximum payload of
800 g. It can semiautomatically depart and land based on GPS
navigation mode and optional Surveyor software. Flight mission
was planned in Surveyor software (DraganFly Inc., Saskatoon,
SK, Canada) by importing ground coordinates of the field
boundaries. The other rotary-wing platform was a Draganflyer
Commander model (DraganFly, Inc., Saskatoon, SK, Canada),
used in 2018, which differs from the X4-P model in its maximum
payload capacity (1,000 g).

A multi-spectral camera (RedEdge, MicaSense Inc., Seattle,
WA, United States) was used to acquire images (12-bit image)
with an image resolution of 1.2 megapixels (1,280 × 960 pixels)
for each of five spectral bands (blue: 475 ± 10 nm; green:
560 ± 10 nm; red: 668 ± 5 nm; red edge: 717 ± 5 nm; and
near-infrared: 840 ± 20 nm) (Table 2). The focal length of the
camera is 5.5mm and the ground sampling distance at 15, 20,
and 25m above ground level was 1.02, 1.36, and 1.70 cm per
pixel, respectively (Table 2). Images of a MicaSense reflectance
panel (RedEdge, MicaSense Inc., Seattle, WA, United States)
were taken before and after each UAV flight for radiometric
calibration. To geo-reference aerial images, six ground control
points (GCPs) were distributed across the experimental area
during the whole crop season in 2016 at Saskatoon. The size
of the GCPs was 60 × 60 cm, which were geolocated by
Trimble GeoExplorer 2008 GPS (Trimble Inc., Westminster,
CO, United States). GCPs were manually placed at the same
location when phenotyping canola by UAV, which provided an
overlay of images taken from various dates and reduced workload
by using the same geolocation information for each GCP. For
the four locations in 2017 and 2018, GCPs were permanently
mounted within guard plots to avoid manually carrying GCPs to
the field.

UAV Flight Schedule
The UAV, equipped with a multispectral camera, captured the
images of the fields taken weekly during the flowering stage at

Saskatoon in 2016 and atMelfort and Scott in 2017 (Table 1). The
imagery was collected semiweekly in 2017 and 2018 at Saskatoon
for the duration of canola flowering (Table 1). For the Saskatoon
location, although weather conditions such as rain, clouds, and
heavy wind limited the flight schedule, image timing interval was
achieved as close to 7 days in 2016 and to 4 days in 2017 and 2018.
For the Melfort and Scott locations in 2017, image collection was
carried out at a 7-day interval.

Image Process and Data Extraction
Image Pre-process
Multispectral images were processed, stitched, and calibrated
in Pix4Dmapper Pro (Pix4D Inc., San Francisco, CA,
United States). Individual images were aligned based on
common points from the overlapped images to generate
a geo-referenced image that matched the overflown study
area. Geometric calibration was done by importing the geo-
location of GCPs to reduce geometric distortion problems of
the camera. A system coordinate, World Geodetic System
1984, was applied to generate geo-referenced images.
The images of the MicaSense reflectance panel were
used in the radiometric calibration to enhance spectral
consistency between different flight dates. Then, the five
generated reflectance maps were exported and used for
further analysis.

Vegetation Index Calculation, Thresholding, and

Integration of Flowering Progress
ArcGIS software version 10.4.1 (ESRI Canada, Toronto, ON,
Canada) was applied for plot segmentation, vegetation indices
calculation, and thresholding. In this study, the middle
three rows for each plot were segmented using polygon
shapes with assigned plot numbers. The polygon shapes were
generated using the “Create Feature” tool. Vegetation index
maps were derived via calculation of the reflectance maps
using the “Rater calculator” tool. Commonly used vegetation
indices, NDVI (Rouse et al., 1974), NDYI (Sulik and Long,
2016), green normalized difference vegetation index (GNDVI)
(Gitelson et al., 1996), and normalized difference red edge
index (NDRE) (Gitelson and Merzlyak, 1997), were calculated
as following equations to compare with the actual flower
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number counts:

NDVI =

(

RNIR−Rred

RNIR+Rred

)

(1)

NDYI =

(

Rgreen−Rblue

Rgreen+Rblue

)

(2)

GNDVI =

(

RNIR−Rgreen

RNIR+Rgreen

)

(3)

NDRE =

(

RNIR−Rrededge

RNIR+Rrededge

)

(4)

where RNIR, Rred, Rgreen, Rblue, and Rrededge are the
reflectance values at bands centered on 840, 668, 560,
475, and 717 nm, respectively (Table 2). NDVI is the
most commonly used vegetation index to identify crop
growth conditions and yield estimation (Rouse et al.,
1974). NDYI has previously shown a strong correlation
with seed yield (Sulik and Long, 2016). GNDVI (Gitelson
et al., 1996) and NDRE (Gitelson and Merzlyak, 1997)
are related to photosynthesis and have been reported in
previous research.

Canola flowers and leaf organs co-existed within each plot
during flowering; thus, the “Conditional Function” [Con (index
map> threshold value, indexmap, “”)] in the “Raster Calculator”
tool was used to separate flowering pixels from non-flowering
pixels by applying threshold values on vegetation index maps.
Threshold values were manually determined by comparing the
composited RGB images with calculated index maps so that most
flowering pixels could be selected and segmented. All pixels in the
index map that have values larger than the threshold values were
kept in a threshold index map, otherwise, pixels were discarded.
Then, the “Zonal Statistics” tool was used to extract the summary
statistics of the threshold index map, which included the number
of flowering pixels per plot.

This study involved 56 diverse lines with a high flowering
density gradient. It is difficult to determine which image date
is proper for yield estimation. For this reason, the area under
the flowering progress curve (AUFPC) was used to calculate the
integration of flowering progress during the flowering season
using the following equation:

AUFPC =

(

F1+F2

2
−F1

)

(t2−t1)+

(

F2+F3

2
−F1

)

(t3−t2)

+ . . . +

(

Fn−1+Fn

2
−F1

)

(tn-tn−1) (5)

where F1, F2, F3, Fn−1, and Fn represent the flowering pixel
numbers at each image date and t1, t2, t3, tn−1, and tn
represent Julian date at each image timing. The AUFPC is
an adjusted integration equation based on the area under the
disease progress curve (AUDPC), which is used in general in
pathology studies for estimating the effect of disease progression
on crop yield (Jeger and Viljanen-Rollinson, 2001; Simko and
Piepho, 2012). Compared with AUDPC, the advantage of the
AUFPC is providing a baseline for each line to adjust flowering
progress, which can reduce the effect of diverse initial flowering

pixel numbers of each line on the calculated area. The AUFPC
equation converted several flowering pixel numbers at a series
of image timings into a single value for reporting. The larger
the AUFPC value is, the further the flowering had progressed.
Figure 2 displays an example of flowering progress over time for
a line (NAM-23). Seven data points on the curve line represent
NDYI-based pixel numbers for each image date. Pictures under
the seven points are corresponding threshold index maps. Then,
the area under the curve line was calculated using the AUFPC
equation (Equation 5) for NAM-23. The same mathematical
method was used to calculate flowering progress for all other lines
across 5 site years.

Ground Reference Data/Field Data
Collection
The first row of each plot was manually sampled to quantify
flowering. Canola flowering typically starts in early July and ends
in early August. Flower numbers on the main stem and branches
of randomly selected plants were counted at a 7-day interval from
July to August. Grain yield was straight combined by a small
plot combine harvester when the crop was mature and dry. This
occurred multiple times due to differing maturity dates of the B.
napus lines. To reduce the edge effect, the middle four rows of
each plot were harvested. All harvested seeds were air-dried to
10% seed moisture. Final yields were weighed after seed cleaning.

Statistical Analysis
The PROC LATTICE procedure of SAS version 9.4 (SAS
Institute, Cary, NC, United States) was used to analyze the data.
The LATTICE procedure reduced variations within blocks. After
data adjustment, PROC REG in SAS version 9.4 was used as the
statistical tool to investigate the simple linear regressions between
ground reference data and imagery. Scatterplots of variables were
observed to determine whether data could be combined for
analysis. In the case where data could not be combined, data were
analyzed within site years.

RESULTS AND DISCUSSION

Regression Between Flowering Pixel
Number and Actual Flower Numbers
These initial results showed that GNDVI and NDRE did not
demonstrate significant correlations with the actual flower count
(P> 0.05, data not shown).Meanwhile, regression results showed
that NDYI had greater coefficients of determination (R2) than
NDVI with actual flower numbers within 3 years of study. An
increased red light from the yellow petals can reduce NDVI
values and affect its ability to detect canola growth conditions.
In addition, there was no strong relationship between plot-level
NDYI and actual flower numbers in 2016 (data not shown).
Noise from soil background and green vegetation within a
plot at the early flowering stage may have resulted in these
weak relationships. For this reason, we used NDYI maps to
extract flowering pixels and remove non-flowering pixels by the
thresholding method. We detected and counted flowering pixels
when pixel values were greater thanNDYI-based threshold levels.
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FIGURE 2 | The growth pattern of flowering progress for a Brassica napus line (NAM-23) during the flowering stage at the Agriculture and Agri-Food Canada

Research Farm (52◦ 10’ 59.3” N, 106◦ 30’ 53.7” W) near Saskatoon, SK, Canada in 2017. The x-axis is the imagery acquisition date (Julian date) in 2017. The y-axis

is normalized difference yellowness index (NDYI)-based pixel number per plot. A solid curve line is the flowering progress trend of NAM-23. Seven points on the

progress curve line represent NDYI-based pixel number per plot at seven imagery acquisition dates. Seven pictures under each point are corresponding false-color

images after thresholding with flowers highlighted in yellow. The region of interest was highlighted in red.

Threshold values were 0.59, 0.52, and 0.45 in 2016, 2017, and
2018, respectively.

Across 5 site years, the R2 values between flowering pixel
numbers and actual flower numbers ranged from 0.54 to 0.95
during flowering duration (Figures 3–7). There were significant
relationships between flowering pixel numbers and actual flower
numbers in 2016 at Saskatoon (Figure 3). Not surprisingly, the
early flowering stage (July 15) had the strongest regression
relationship with actual flower numbers with an R2 of 0.85
(Figure 3A). Developing flowers were on the upper part of
a plant at the early flowering stage so sensors could easily
detect these early-blooming flowers. Whereas, the late flowering
stages (August 05) showed the weakest regression (R2 = 0.54)
(Figure 3D), which may be a result of the lower sensitivity of
NDYI to differentiate yellow flowers and dark green pods. Dark
green pods impart more green reflectance, which can make
NDYI less sensitive to yellow flowers, as yellow is a composite
color of green and red (Yates and Steven, 1987; Sulik and Long,
2015, 2016). Additionally, the potential reason why it had the
smallest R2 value is that many flowers growing on the lower
branches adversely affected the ability of the sensor to detect the
late-developing flowers.

The Saskatoon location in 2017 and 2018 had similar
regression patterns between flowering pixel numbers and
actual flower numbers (Figures 4, 5). There were very strong
relationships at the early flowering stages (July 10, 2017 and July
17, 2018) (Figures 4, 5). Similar to 2016, the relationships became
weaker with the late flowering stages (August 01, 2017 and July

31, 2018) (Figures 4, 5). Although the late flowering stages had
weaker regressions compared with the early flowering timing, the
regressions at the peak flowering dates (July 25, 2017 and July 24,
2018) were relatively strong (Figures 4, 5).

For the Melfort location in 2017, the first image date (July 05)
had the weakest regression (R2 = 0.71) (Figure 6A). Variability
from subsampling plants can be a potential reason for decreased
regressions at the early flowering stage. However, the peak
flowering time (July 20) and late flowering stage (July 26)
showed strong relationships with the value of R2 of up to 0.91
(Figures 6B,C). The potential reason why this site year had a
greater R2 at the late flowering stage is that flight altitude (15m)
at Melfort in 2017 was lower than the other site years (Table 1).
The high resolution may have increased the ability of the sensor
to detect flowers growing lower in the canopy. Although the
flight altitude was relatively low compared with other locations,
there was no significant canopy movement due to the UAV
platform. The seeding date at Scott was June 22, 2017. Flowering
started relatively late with a shorter duration compared with
other site years. There was no imagery collected at the end of the
flowering stage, and thus, those relationships are unknown. At
Scott, the R2 values for the regressions between flowering pixel
numbers and actual flower numbers followed similar patterns as
the Saskatoon location. The early flowering stage (August 09)
and the peak flowering time (August 16) had strong relationships
(Figures 7A,B).

In this study, we used a zero-intercept linear regression
model in the regression analysis as there was no flowering
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FIGURE 3 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK,

Canada in 2016. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation

for July 15, 2016: y = 1.60x, R2 = 0.85. (B) Regression equation for July 22, 2016: y = 2.20x, R2 = 0.77. (C) Regression equation for July 29, 2016: y = 2.24x, R2 =

0.79. (D) Regression equation for August 05, 2016: y = 1.18x, R2 = 0.54.

pixel prior to the commencement of flowering. Furthermore, the
fitted intercept values were close to zero in most cases. For the
Saskatoon location over 3 years, slopes were relatively consistent
at the early flowering stages (Figures 3–5). Slope values became
smaller with the delayed flowering stage. There was a smaller
slope value at the late flowering stage (slope = 1.18) compared
with the peak flowering time (slope= 2.20) at Saskatoon in 2016.
The Saskatoon location in 2017 and 2018 had similar patterns
(Figures 4, 5). The Melfort location had similar patterns with
a smaller slope at the late flowering stage (Figure 6), but the

slope of the first image date (slope = 3.70) was greater than the
other image dates. This indicated that early flowering imagery
overestimated the actual flower numbers. Experimental plots at
this location showed non-uniform flowering with fewer flowers
at the front of each plot, which may be caused by the edge
effect. Thus, manual flower count based on subsampling plants
at the front row of a plot may not accurately represent the
average flower numbers. In 2017, at Scott, slopes were consistent
at the early and the peak flowering times (Figure 7). The slope
values at this location were smaller than the other site years. A
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FIGURE 4 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK,

Canada in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation

for July 10, 2017: y = 2.41x, R2 = 0.95. (B) Regression equation for July 18, 2017: y = 1.83x, R2 = 0.91. (C) Regression equation for July 25, 2017: y = 2.23x, R2 =

0.82. (D) Regression equation for August 01, 2017: y = 0.78x, R2 = 0.67.

potential reason for this underestimation of flower numbers is
that the plots had a more condensed canopy and there were more
branches at this site year than other site years (data not shown)
due to poor emergence percentage. Thus, for the Scott location,
there were more flowers produced on the lower branches which
could not be detected by the sensor. As mentioned above, there
was no available data collected at the end of flowering; thus, the
relationship at this stage is unknown.

In general, although the linear regression slopes varied across
site years, the high R2 values indicated that the flowering pixel

numbers extracted from the threshold NDYI map performed
well to predict actual flower numbers at the early and peak
flowering stages in canola (R2 up to 0.95). These results were
consistent with that reported by Sulik and Long (2015), wherein
the ratio of blue and green strongly correlated with the yellow
flowers in canola with a significant R2 value of 0.87 at the full
flowering stage. Wan et al. (2018) reported good estimation for
the flowering number of canola using the k-means clustering
method based on the CIE L∗a∗b space model during the full
flowering period. Xu et al. (2018) found that white cotton flowers
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FIGURE 5 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK,

Canada in 2018. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation

for July 10, 2018: y = 2.21x, R2 = 0.92. (B) Regression equation for July 17, 2018: y = 2.46x, R2 = 0.94. (C) Regression equation for July 24, 2018: y = 2.68x, R2 =

0.92. (D) Regression equation for July 31, 2018: y = 2.03x, R2 = 0.61.

had higher prediction accuracy at the early flowering stage. The
lower classification accuracy at the later growth stage may have
resulted from coverage of leaves which increased misclassified
non-flowers when using a convolutional neural network (Xu
et al., 2018). They recommended that using one raw image might
solve this issue, as more cotton flowers would be detected from
different perspectives. Moreover, the early flowering stages across
5 site years showed greater slope values, as most flowers at this
early stage were visible and had less overlap. In contrast, flowers
growing on lower branches were likely to be underestimated at
the late flowering stages. Subsampling variability may make the

actual flower count non-representative for a plot, which may
reduce the accuracy of flower estimation.

Yield Estimation Using Integrated
Flowering Accumulation During Flowering
Period
Flowering pixel numbers derived from the threshold NDYI
map were able to estimate actual flower numbers across 5
experimental site years. Initially, we did regression analysis
between yield and flowering pixel numbers at each image date.
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FIGURE 6 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Melfort, SK, Canada

in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July

05, 2017: y = 3.70x, R2 = 0.71. (B) Regression equation for July 20, 2017: y = 1.46x, R2 = 0.90. (C) Regression equation for July 26, 2017: y = 1.29x, R2 = 0.91.

Among the 5 site years, in most cases, there were no significant
relationships until the middle of July when most varieties started
blooming (Table 3). In addition, it is difficult to determine a
single well-defined image time for crop yield estimation because
of various environmental fluctuations and various flowering
timings in large-scale breeding programs, especially involving
many diverse lines. Furthermore, we may miss important
flowering progress information if yield estimation is only based
on the imagery from a single date (Haynes and Weingartner,
2004; Gan et al., 2016). Although flower formation at the later
stage may contribute less than early timing points, they may

still have the potential to increase final grain yield. Therefore,
integrating all aspects of the entire flowering duration using
AUFPC can reflect flowering accumulation progress and improve
the accuracy of crop yield estimation.

We found significant relationships between integrated
flower accumulation and yield during the flowering period
(Figures 8, 9). In 2016, at Saskatoon, integrated flower
accumulation had a moderate relationship with yield (R2

= 0.12, P < 0.05) (Figure 8A). We calculated the flower
accumulation progress by integrating the flowering pixel
numbers over four image dates at a 7-day interval, which missed
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FIGURE 7 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Scott, SK, Canada

in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for

August 09, 2017: y = 0.81x, R2 = 0.82. (B) Regression equation for August 16, 2017: y = 0.78x, R2 = 0.83.

TABLE 3 | The coefficient of determination (R2) between flowering pixel numbers from a single image date and yield at Saskatoon, SK, Canada from 2016 to 2018 and at

Melfort and Scott, SK, Canada in 2017.

Site 2016 R2 2017 R2 2018 R2

Saskatoon July 14 0.04 July 07 0.02 June 28 <0.01

July 19 <0.01 July 11 <0.01 July 06 0.02

July 26 0.02 July 15 0.04 July 09 0.06

August 06 0.04 July 19 0.29*** July 16 0.36***

July 22 0.33*** July 20 0.22***

July 26 0.06 July 24 0.07

August 01 0.06 July 27 <0.01

August 09 0.02 July 30 0.03

August 16 0.05 August 03 0.03

August 22 0.05 August 07 0.02

Melfort July 05 <0.01

July 13 0.23*

July 20 0.02

July 26 0.14

Scott August 09 0.46**

August 16 0.32*

August 29 0.01

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

***Significant at the 0.001 probability level.

the starting point of the flowering period. There was no adequate
imagery data for the entire flowering period, so it may be the
reason for the low accuracy of yield estimation. In both 2017 and
2018 at Saskatoon, we collected imagery semiweekly (Table 1).
For the 2 site years, the relationships between integrated flower
accumulation and seed yield were relatively stronger compared
to the 1st experimental year (R2 = 0.30, P <0.05 in 2017;
R2 = 0.34, P <0.05 in 2018) (Figures 8B,C). At the Melfort
and Scott locations in 2017, there were more consistent and
stronger regressions (Figure 9) using the integration of flowering
progress, when compared with a single image date (Table 3).

In general, compared with using a single image, applying
the integration of flowering progress to estimate yield includes
more information to provide consistent accuracy (Figures 8, 9).
Although the R2 values for yield estimation are not very high,
our results still demonstrate potential ability of AUFPC to predict
yield, especially for crops producing bright flowers (e.g., canola
and cotton) under different environmental conditions.

Several studies have reported similar results (Sulik and Long,
2016; Gong et al., 2018; Xu et al., 2018; Hassan et al., 2019). Sulik
and Long (2016) reported that the plot-level NDYI values during
flowering had high accordance with field yield observations (R2
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FIGURE 8 | The relationship between seed yield and integrated flower accumulation at Saskatoon, SK, Canada from 2016 to 2018. The integrated flower

accumulation was calculated using the area under the flowering progress curve function. (A) Regression for the Saskatoon location in 2016: y = 0.0014x + 1558.72,

R2 = 0.12. (B) Regression for the Saskatoon location in 2017: y = 0.0026x + 1384.70, R2 = 0.30. (C) Regression for the Saskatoon location in 2018: y = 0.0095x +

1535.88, R2 = 0.34.

= 0.72), which showed a better correlation with seed yield than
NDVI at the peak flowering time in canola. Gong et al. (2018)
found that NDVI multiplied by leaf-related canopy fraction had
the strongest relationship with canola yield with low estimation
errors (coefficient of variation < 13%) at the early flowering
stages. Some research also investigated yield estimation using
canopy reflectance data in other crops including cotton and
wheat (Xu et al., 2018; Hassan et al., 2019). Xu et al. (2018)
reported that the estimated cotton flower numbers derived from
aerial images using a convolutional neural network significantly

correlated with cotton yield (R2 = 0.36). Hassan et al. (2019)
reported that UAV-based NDVI measured at the grain filling
stage could be a promising tool for wheat yield prediction with
R2 ranging from 0.83 to 0.89 in field conditions.

Our regression results had smaller R2 values compared with
the previous studies. This is probably associated with many
diverse lines (i.e., 56 diverse lines) estimated in this study. Most
previous research only planted one or few lines. The stability of
pigments in rapeseed flowers for each line may change under
different developmental stages (Ohmiya, 2011). These factors can
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FIGURE 9 | The relationship between seed yield and integrated flower accumulation at Melfort and Scott, SK, Canada in 2017. The integrated flower accumulation

was calculated using the area under the flowering progress curve function. (A) Regression for the Melfort location in 2017: y = 0.0044x + 1400.80, R2 = 0.28. (B)

Regression for the Scott location in 2017: y = 0.0062x + 692.73, R2 = 0.42.

impact yellow to some degree (Ohmiya, 2011). The inconsistent
yellowness may explain that the more varieties included in
regression analysis, the less model variation could be explained
by integrated flower accumulation. Furthermore, flowering pixels
extracted based on threshold values may not be highly consistent
over the flowering stage, as each threshold value was determined
manually. In addition, canola yield components include plant
density, pod number per plant, seed number per pod, and seed
weight. Although pod number per plant is highly correlated with
seed yield (Tayo and Morgan, 1975; McGregor, 1981; Ivanovska
et al., 2007), only 45% of flowers produce pods (McGregor, 1981).
Seed weight per pod and thousand seed weight also significantly
correlated with seed yield (Ivanovska et al., 2007). The simple
regression analysis of flower numbers could not fully explain
yield variation. Additional yield components considered in the
yield estimation model would improve the accuracy of seed yield
estimation. Finally, flower abortion and poor pod formation can
happen under drought and heat stress during the crop season
(Faraji et al., 2008). Flowering progress only reveals part of crop
growth stages, so some varieties even with high AUFPC may end
up with low yield under stress, which may result in a weaker
relationship between integrated flower accumulation and seed
yield. Combining UAV-based reflectance data at both flowering
and pod stages may enhance yield estimation accuracy.

Usually, breeding programs need to assess a large number
of varieties or breeding lines across multiple environmental
conditions. Therefore, from a practical perspective, these
results revealed a more realistic yield estimation trend for
large-scale breeding programs. Moreover, most previous
research used one image date or selected the largest
reflectance index value for each plot across all sampling
dates to estimate crop yield. In fact, it is difficult to
determine the best image date for yield estimation using
multiple crop varieties grown in differing environmental
conditions. Fluctuating environments can influence flowering
progress; therefore, integrated flower accumulation is a

promising and predictable variable in the descriptive
yield model.

CONCLUSIONS

In this study, we proposed a simple and effective approach to
estimate relative flower numbers and model seed yield based
on the integrated flowering pixel. This study results showed
that flowering pixel numbers estimated by the thresholding
method regressed strongly with manual flower count during
the flowering stage with an R2 value of up to 0.95, indicating
that flowering pixel numbers can be used as a good indicator
of flowering intensity in the field. Additionally, the integrating
flowering progress from consecutive images via AUFPC math
function was more consistently and strongly related to yield
compared with using a single image date because integrated
flowering pixel over time utilizes more growth information.
Therefore, the integrated flower accumulation can be a good
indicator for yield estimation. These tools do not require extra
coding or strong computer science background, can be used
for calculating thresholding and vegetation indices, and is a
convenient tool for agronomists and breeders. Future studies
need to consider and test a multivariate model including multiple
vegetation indices related to other yield components and more
reflectance information from the pod stage to improve yield
estimation accuracy.
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Microscopic wood identification plays a critical role in many economically important
areas in wood science. Historically, producing and curating relevant and representative
microscopic cross-section images of wood species is limited to highly experienced and
trained anatomists. This manuscript demonstrates the feasibility of generating synthetic
microscopic cross-sections of hardwood species. We leveraged a publicly available
dataset of 119 hardwood species to train a style-based generative adversarial network
(GAN). The proposed GAN generated anatomically accurate cross-section images with
remarkable fidelity to actual data. Quantitative metrics corroborated the capacity of
the generative model in capturing complex wood structure by resulting in a Fréchet
inception distance score of 17.38. Image diversity was calculated using the Structural
Similarity Index Measure (SSIM). The SSIM results confirmed that the GAN approach
can successfully synthesize diverse images. To confirm the usefulness and realism of
the GAN generated images, eight professional wood anatomists in two experience levels
participated in a visual Turing test and correctly identified fake and actual images at rates
of 48.3 and 43.7%, respectively, with no statistical difference when compared to random
guess. The generative model can synthesize realistic, diverse, and meaningful high-
resolution microscope cross-section images that are virtually indistinguishable from real
images. Furthermore, the framework presented may be suitable for improving current
deep learning models, helping understand potential breeding between species, and may
be used as an educational tool.

Keywords: wood anatomy, machine learning, artificial intelligence, wood image transformation, microscopic
images, StyleGAN

INTRODUCTION

Transverse microscopic cross-sections of wood species have long been used for forensic wood
identification, for analysis of critically important properties such as permeability and treatability
with chemical agents, and to gain an understanding of the functioning of the tree (Zhang and Cai,
2006; Esteves and Pereira, 2008; Martins et al., 2013; Leggate et al., 2020; Lengowski et al., 2020;
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Słupianek et al., 2021). Microscopic capture of various anatomical
features is accomplished in the lab by preparing individual thin
slices of wood samples through standard stringent procedures
that include several manually intensive steps: softening, cutting,
clearing, staining, dehydrating, and mounting of the thin wood
sections (Jansen et al., 1998).

Historically, creating and curating large datasets of
microscopic wood images has been cumbersome with only
a handful of datasets available to the public for research
and development. The dataset produced by Martins et al.
(2013) is perhaps the most used dataset for benchmarking
several different wood identification approaches. The art of
wood identification using such datasets is limited to only
highly trained and experienced wood anatomists, due to the
complexity of the wood structure within species and among
a multitude of different species. Moreover, the number of
senior wood anatomists with broad taxonomic expertise is
declining (Lens et al., 2020). These limitations have set the
stage for new artificial intelligence/machine-learning (AI/ML)
technologies to make significant advances into the wood
identification process.

Currently, deep learning in the form of convolutional neural
networks (CNN) and optimization algorithms is beginning
to revolutionize wood identification services. In fact, this
technology is matching or surpassing expert wood anatomists
in both macroscopic and microscopic image recognition and
is being increasingly proposed as an adjunct to human wood
identification decision-making (Hafemann et al., 2014; Lens et al.,
2020; Lopes et al., 2020, 2021 ; Olschofsky and Köhl, 2020;
de Geus et al., 2021; Fabijańska et al., 2021). The growth of
computer-based wood identification and many other recognition
tasks is facilitated by recent advancements in computational
power, especially with graphical processing units (GPUs), which
have enabled the widespread use of supervised machine-learning.

The AI/ML approaches have a rich potential within wood
science and technology. For example, computer vision
approaches could help identify and protect forests in the
future (Lens et al., 2020). In this case, the expansion of computer
vision-based wood identification would heavily depend on either
establishing traditional extensive collaborations across wood
science organizations as explained by Hwang and Sugiyama
(2021) or through the development and application of artificial
intelligence solutions that are novel, economically relevant,
innovative, and stakeholder-engaged.

Successful applications of deep learning for wood
identification are based on supervised learning algorithms
that critically depend on labeled data for training purposes
(Hwang and Sugiyama, 2021). For example, Martins et al.
(2013); Filho et al. (2014), and Hafemann et al. (2014) applied
deep CNN models on macroscopic and microscopic images by
manually labeling the forest wood species. Their custom deep
learning-based model achieved 96.0 and 97.0% accuracies on the
macroscopic and microscopic datasets, respectively. Similarly,
Fabijańska et al. (2021) automatically identified 14 European
tree species using a residual convolutional encoder network
in a sliding window with 99.0% accuracy. Collecting large sets
of labeled training data constitutes a non-trivial bottleneck

in AI/ML workflows. However, AI/ML has the potential to
artificially synthesize the requisite labeled data, which we will
explore in this manuscript.

Generative adversarial networks (GANs) are special types
of deep learning where two neural networks are trained
simultaneously, with the generator Network G, focusing on
image generation from feedback given by a discriminator
Network D, that is designed to determine whether a given
input data is from an actual dataset or is synthetically generated
(fake) by G (Yi et al., 2019). The GANs can achieve state-
of-the-art synthetic generation of remarkably realistic images
using CNN in an unsupervised manner. The GANs have been
successfully applied in many fields including medical analysis,
satellite imagery, computational fluid dynamics, and precision
agriculture (Goodfellow et al., 2014; Nie et al., 2018; Wu et al.,
2020; Pang et al., 2021).

Given the ability to use deep learning to synthesize images
from multiple domains, we herein seek to explore the utility of
GANs to map and generate labeled microscopic images on a
large number of hardwood species. Therefore, the purpose of
this manuscript is fourfold: (1) to demonstrate the feasibility
of image synthesis in the field of wood anatomy; (2) to
quantitatively and qualitatively assess the quality of generated
images; (3) to present synthetically generated images to experts
in the field through a visual Turing test (VTT); and (4) to
raise awareness of the potential of deep learning techniques for
steering the forestry and forest and wood products industry
toward transformative directions.

To our knowledge, no study has been conducted using
GANs to synthesize and critically evaluate microscopic cross-
sectional images of hardwood species or in wood anatomy
in general. This study seeks to demonstrate proof-of-concept
technical and computational feasibility of performing image
domain transformation to better equip wood anatomists and to
introduce the wood science and technology communities to a
novel AI/ML-based approach.

MATERIALS AND METHODS

Transverse Microscopic Hardwoods
Section Dataset
This study was conducted using a publicly accessible transverse
section of microscopic hardwood species dataset obtained from
the Xylarium Digital Database (XDD) for Wood Information
Science and Education – Kyoto University Research Information.
This database was created, curated, processed, and labeled by
Sugiyama et al. (2020). It was created in an effort to expand
research and development in the area of wood anatomy and
wood identification. The methods for obtaining the cross-section
of the wood species are thoroughly described in the series of
manuscripts published by the XDD research team in Hwang et al.
(2018, 2020a,b) and Kobayashi et al. (2019). Figure 1 shows eight
different woody species present in the dataset.

Observing Figure 1, it is evident the diversity in anatomical
structure with clear growth rings distinction, latewood and
earlywood transitions, parenchyma cells, arrangement of
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FIGURE 1 | (A) Betulaceae - Alnus firma; (B) Cannabaceae - Aphananthe aspera; (C) Fagaceae - Quercus crispula; (D) Fagaceae - Fagus japonica; (E) Lauraceae -
Sassafras tzumu; (F) Magnoliaceae - Liriodendron tulipifera; (G) Sapindaceae - Acer distylum; (H) Ulmaceae - Ulmus laciniata. Refer to the dataset for full dataset
description.

parenchyma cells, fiber, vessel elements, pores and pores
arrangement, multiple porosity classifications (ring, semi-ring,
semi-diffuse, and diffuse porous), pore structure, and rays.
These features are examples of key anatomical elements for
hardwood identification. The full list of features and their
terminology can be seen in Wheeler et al., 1989. The XDD
dataset contained 7,051 images from 33 genus, 119 species, and
540 individuals at a resolution of 2.96 µm/pixel in a compressed
HDF5 file at a grayscale resolution of 900 pixels × 900
pixels in JPEG (Joint Photographic Expert Group) format.
The full description of the wood species can be seen in the
Supplementary Material 1.

Custom Training the Generative
Adversarial Network
We leveraged the style-based generative adversarial network,
henceforth StyleGAN model developed by Karras et al. (2019) to
generate realistic microscopic cross-section images of hardwood
species. The StyleGAN includes the progressive increase of
resolution by adding layers to the network as described in
Karras et al. (2018) with a series of later modifications
described in Karras et al. (2019). The main reason for choosing
StyleGAN was that it achieves state-of-the-art in human face
transformations with extraordinary levels of detail. Similarly,
to human faces, wood is a biological material with high-level
attributes and stochastic variation in its structure, which requires
an AI/ML framework that generates small and subtle intricacies
of wood anatomy such as fibers, cells, pores shapes, pore
arrangements, and rays, etc.

As the original image size was 900 pixels × 900 pixels,
we resized the images to be 512 pixels × 512 pixels without
further image processing. In this implementation, the StyleGAN
progressively increased image size from 42 pixels to 5122 pixels.
We used 5,650 images for training. A latent vector of dimension
512 was used. The batch size decreased from 256 to 4 as training
progressed. The adaptive momentum estimator (Adam) (Kingma
and Ba, 2015) optimizer was used for training. The learning rate
for the discriminator and generator were initially set to 0.0015
up to the resolution of 1282 pixels and slowly increased to 0.02
and 0.03 for resolutions of 2562 and 5122 pixels, respectively.
The training setup doubled the image resolution when 600,000
images were shown to the discriminator. Training finished
when the model had seen 7.5 million synthesized images. The
Wasserstein GAN-gradient penalty (WGAN-GP) loss developed
by Gulrajani et al. (2017) with modifications included by Karras
et al. (2019) was used.. Throughout the training session, the
model serialized checkpoints for later inference by using a script
for image generation. The training took approximately 10 days.
The computational resources used for this study included a
workstation powered by 4 × NVIDIA GeForce RTX 2080Ti
graphics processing units (GPU) with 11 GB of memory each and
an Intel Core i9-9920K with a central processing unit (CPU) with
128 GB of memory.

Quantitative Analysis of Generative
Adversarial Network Images
There is no unified and universal metric to compare and evaluate
generative adversarial networks (Borji, 2019). In the case of wood
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anatomy, the quantitative measure of GANs is limited or even
non-existent. This work, to the best of our knowledge, is the first
study to present GAN metrics in the domain of wood anatomy.
For GAN metrics, we relied on the Fréchet inception distance
(FID) by Heusel et al. (2018) and the Structural Similarity Index
Measure (SSIM) by Hore and Ziou (2010) to assess the realism
and diversity of the images generated by the StyleGAN.

The FID score is a metric that measures the maximum
Gaussian entropy distribution for given mean and covariance.
The difference of two Gaussians is then measured by Eq. 1:

FID =
∣∣∣∣µr − µg

∣∣∣∣2
+ TR

(
Cr + Cg − 2

(
CrCg

) 1
2
)

(1)

where, µr and µg and Cr and Cg are the mean and covariance of
real and generated images.

The lower FID score means higher accuracy in synthetically
generating microscopic cross-sectional images. The FID score
enables a quantifiable anatomical comparison between a ground-
truth image and a GAN generated image with respect to the
fidelity of generated images.

The SSIM is a quality metric used to measure the similarity
between two images. It is considered to be correlated with the
quality perception of the human visual system (HVS) (Hore
and Ziou, 2010). The SSIM is designed by modeling any image
distortion as a combination of three factors, namely loss of
correlation, luminance, and contrast distortions. The SSIM was
defined by Eq. 2:
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(
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)
=

σfg + C3
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(5)

Equations 3–5, respectively, refer to the luminance comparison
function that measures the closeness of two images mean
luminance (µf and µg); the contrast comparison function, which
calculates the closeness of the contrast of the two images by the
standard deviation (σf and σg); and the structure comparison
function that measures the correlation coefficient between the
two images, f and g. The σfg argument is the covariance between
f and g. A value of zero (0) means no correlation between images,
and a value of one (1) means that f = g (Hore and Ziou, 2010).

Visual Turing Test
To compare between actual and generated microscopic cross-
section images of hardwood species, we used a VTT based
on Park et al. (2021) and Chuquicusma et al. (2018). Our
VTT experiments were conducted by a group of eight wood
anatomy experts divided into two levels of expertise for analysis
of microscopic wood images, namely, four intermediate wood

anatomy experts [more than 1 and less than 5 years of experience
(Group I)], and four advanced wood anatomy experts [more than
5 years of experience (Group II)].

The wood anatomists were blinded to each other’s evaluations
of experiments and were not shown real or generated images
prior to the experiments. The VTT contained 60 distinct 5122

images (30 actual images and 30 generated images). We randomly
selected the images from the actual dataset, such that a minimum
of three images were selected from each family. To avoid any
bias, the generated image data were automatically generated by
the StyleGAN. Furthermore, these images were not individually
selected by our group.

The experts were given two choices to classify the fidelity of
the images, namely, actual image or generated image. A website
(Google Forms) was created to upload the images in a random
manner. The link for the website can be seen in the GitHub.1 The
visuals evaluated did not contain any information about the wood
species and only the microscopic cross-section of hardwood
species was presented.

In this experiment, the experts were not informed how many
of the images were real or not real. The non-disclosed ratio
allowed the evaluation of three important metrics: (1) number
of incorrectly identified actual images (a high number represents
how real the generated images look), (2) number of corrected
identified real images (a high number represents how accurately
the experts recognized salient anatomical features), and (3) a
confusion metric that represents how effective our results were
to confuse experts in identifying actual versus generated images.

The mean sensitivity, specificity, and accuracy of the eight
expert VTT evaluations were calculated by Eqs 6–8.

Sensitivity =
True positive

(True positive+ False negative)
(6)

Specificity =
True negative

(True negative+ False positive)
(7)

Accuracy =
(True positive+True negative)

Number of observations
(8)

A statistical t-test was used to compare the means of the experts’
evaluations across the experiment. The scientific computing
Python package Pauli et al. (2020) was used for the statistical
analyses with the significance level set at p ≤ 0.05.

RESULTS AND DISCUSSION

Feasibility of StyleGAN Generative
Adversarial Network Training
The first goal of the study was to demonstrate the feasibility
of training StyleGAN from scratch to generate realistic
microscopic cross-section images of hardwood species. We
found concomitant training improvement of the model up to
approximately 7.5 million images seen by the discriminator,

1https://github.com/LignumResearch/stylewood-model-usage
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which corresponded to training at the final resolution of 5122

pixels. Figure 2 illustrates the progress of image generation as
the resolution increased during training from 42 to 5122 pixels.
Initially, at 42 pixels resolution, the generated images were pure
abstract noise with concomitant progress in image quality with
remarkable realism obtained at resolution of 5122 pixels. The
StyleGAN trained as expected and was found to generate visually
acceptable synthetic cross-section images of hardwood species.

Qualitative Analysis of Generated Images
Artificial intelligence and deep learning frameworks are
revolutionizing interpretation, identification, and decision-
making in wood species recognition. As data quantity and quality
are critical to train deep learning-based image recognition
systems, the proposed method herein should be useful to
assist the computer vision wood identification community by
providing realistic and meaningful microscopic images of cross-
section of hardwood species. Using trained StyleGAN model,
examples of the random generation of synthetic microscopic
cross-section hardwood species are shown in Figure 3.

Qualitatively, a remarkable variety of anatomical elements
was generated by the trained generative adversarial StyleGAN
network. The StyleGAN was capable of synthesizing high detail
levels of the earlywood and latewood bands and growth ring
transitions; ray width, height, and arrangement of apotracheal
and paratracheal parenchyma cells; porosity such as ring-
porous, semi-ring, semi-diffuse, and diffuse porous; and vessels
with different arrangements and diameters were produced and
recognized. Such detailed anatomical elements are what enable
wood anatomists to scientifically identify wood species. Correct
wood identification promotes reliable utilization of wood in
various forms as in flooring, structural elements, plywood,
particleboard, cross-laminated timber (CLT), various engineered
wood products, and many other structural applications. Figure 4
illustrates the learned anatomical elements by the generative
model in detail. Figures 4A–D should be carefully analyzed
as these species do not exist, although may look similar to
actual data. They were created using the StyleGAN generator,

which allows control over various aspects of the image. They
represent the capability of the proposed network in generating
realistic and meaningful microscopic cross-section images of
hardwood species.

In Figure 4A, there is a visible transition between earlywood
and latewood growth ring bands, parenchyma and fiber cells
noticeable, and uniseriate rays that are clearly seen. Different
earlywood and latewood pores, pore arrangement, rays, initial
earlywood band, and a few nested pores or pore clusters are
also identifiable. There are also numerous solitary pores. No
tyloses or mineral deposits can be seen in the vessel elements.
The presence of paratracheal vasicentric, paratracheal aliform,
and/or paratracheal confluent longitudinal parenchyma cells
was not identifiable. Possible semi-ring-porous wood with clear
separation between earlywood and latewood pores in Figure 4A.

In Figure 4B, the growth ring bands are visible, parenchyma
and fiber cells noticeable, and uniseriate rays are clearly seen.
There are numerous pore multiples that occur throughout, where
two or more pores are connected to another pore. The radially
arranged series of pore multiples or closely arranged solitary
pores are visible as pore chains. These characteristics along with
no clear separation between earlywood and latewood pores,
small vessel element pore sizes, uniform pore size, and evenly
distribution of the pores make this a possible diffuse-porous
wood in Figure 4B.

In Figure 4C, shows a visible transition between earlywood
and latewood growth ring bands, parenchyma and tracheids cells
noticeable, and uniseriate rays are clearly seen in this cross-
sectional view. Different earlywood and latewood pores, broad
rays and pore arrangement, and initial earlywood band are
observable. The pores are arranged in irregular concentric bands
that are tangential in the earlywood are wavy bands (ulmiform
pore arrangement). A few nested pores or pore clusters are also
identifiable. Few tyloses can be seen in the vessel elements as well.
A few solitary pores that do not touch any other pores are clearly
seen. Possible ring-porous wood with clear separation between
earlywood and latewood pores in Figure 4C.

In Figure 4D, the growth ring bands are visible, parenchyma
cells noticeable, and uniseriate rays are evident. The growth ring

FIGURE 2 | Overview of StyleGAN training using progressively increased image resolution from 4 × 4 pixels to 512 × 512 pixels.
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FIGURE 3 | Examples of synthetic cross-section images of hardwood species produced by the StyleGAN.

boundary is clearly delineated by a line of marginal parenchyma
as several cells thick of longitudinal parenchyma. There are
numerous pore multiples that occur throughout, where two or
more pores are connected to another pore. The radially arranged
series of pore multiples or closely arranged solitary pores are
visible as pore chains. These characteristics along with no clear
separation between earlywood and latewood pores transitions,
the small vessel element pore sizes, uniform pore size, and evenly
distribution of the pores make this a possible diffuse-porous
wood in Figure 4D.

The potential applicability of generative adversarial in wood
science and technology is tremendous. As macroscopic cross-
section datasets become publicly available for research and
development, especially from tropical species, GANs can be
trained to generate unlimited numbers of realistic cross-sections
of endangered wood species listed by CITES (Convention on
International Trade in Endangered Species of Wild Fauna and
Flora). The synthetic and meaningful images could then be
implemented to train, validate, and test current deep learning
wood species recognition models. The methodology of this work
could potentially eliminate economic and processing burdens
in acquiring images of tropical species for machine-learning
purposes. Furthermore, the GANs framework proposed herein is
a logical step to increase collaboration among academia, research

laboratories, local, state, and federal agencies, private sector,
and the industry.

Another innovative use of the StyleGAN framework
demonstrated in this work is to generate anatomical
elements of a hybrid from two targeted parental species.
The training of GAN on microscopic cross-section images
from two parental species would potentially generate
a hybrid species. The generated hybrid would then
be validated by a real hybrid species. If the generated
hybrid possesses relevant and accurate information, this
technology could potentially steer a series of new research
directions within the wood science and technology field,
especially in breeding and genetics for estimating wood
permeability, strength, density, and calculating the hydraulic
potential of the tree trunk of a species that has not
even been planted.

While the StyleGAN implementation appears to be very
useful in creating realistic and meaningful microscopic cross-
section images for more robust deep learning models and
targeted biological engineering, it could also create content
to facilitate training and education in wood anatomy. The
realistic images could provide personalized interactions
based upon an individual’s experience and areas of expertise.
For students interested in anatomical elements, the GAN
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FIGURE 4 | Wood anatomy images generated by StyleGAN. Synthesis of anatomical elements. Potential semi-ring-porous wood (A), diffuse-porous wood (B),
ring-porous wood (C), and diffuse-porous wood (D).

frameworks could provide new content that would help
in training a new workforce faster and cheaper. In that
case, this work has the capabilities of extending the wood
anatomy and wood identification body beyond research
and development.

Quantitative Analysis of Generated
Images
The FID score was calculated on 5,650 images drawn from the
generator. The score was calculated by using the Inception-V3-
network (Szegedy et al., 2016). The FID scores are reported
in Figure 5. It was noted that as the model was trained, the
StyleGAN model decreased the FID score from 657 points to a
final value of 17.38, which indicates more realistic image quality
generation at full resolution of 5122 pixels. The lower FID score
of 17.38 means higher similarity between the two distributions,
namely, between actual and synthetic data.

In the context of wood anatomy, it is not possible to compare
the FID score to prior research or literature because this work
is the first known application of generative adversarial for wood
cross-sectional synthesis. However, GANs have been extensively
used in different non-wood domains with comparatively low
FID scores being reported. For instance, FID scores in Karras
et al. (2019) were 4.40 for Flickr-Faces-HQ (FFHQ) on human
faces, 2.65 for Large-scale Scene Understanding (LSUN) on a

bedroom, and 3.27 for LSUN on car datasets, using an identical
model. Conversely, in research by Skandarani et al. (2021), the
FID scores were 24.74, 23.72, and 29.06 for cardiac, liver, and
diabetic retinopathy datasets, respectively, also using StyleGAN.
It is worth mentioning that the datasets used in Karras et al.
(2019) were much larger than those in Skandarani et al. (2021)
and in this work.

However, FID scores do not completely ensure reliability when
evaluating diversity of image data (Borji, 2019). In order to
further quantitatively assess the quality of our image synthesis,
we calculated the structural similarity index for ground-truth
pairs and ground-truth/generated image pairs on 5,650 actual and
5,650 generated images.

The XDD dataset used in this work consisted of hundreds
of different species that would bring the SSIM to near zero
(0.00) if the images were not correlated. The lower the SSIM,
the more structurally different two given images are, which
denotes diversity. To that end, the calculated SSIM for ground-
truth training data pairs was 0.061 ± 0.015, which indicates a
highly diverse dataset. Generally, collapsed GANs would generate
similar images to the training set as explained by Srivastava et al.
(2017); Lala et al. (2018), and Thanh-Tung and Tran (2020).
In that case, the SSIM for ground-truth and generated images
for collapsed GANs would be much higher, tending to approach
1.00. In this study, the calculated SSIM for the comparison
between ground-truth and StyleGAN generated images was
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FIGURE 5 | The Fréchet inception distance (FID) score achieved by the StyleGAN generative adversarial network (GAN) on cross-section images of hardwood
species. Top images show the evolution of anatomical detail with training.

0.061 ± 0.026. The intuition is relatively simple. The lower the
SSIM, the more diverse the StyleGAN generated pairs seem to be.
Likewise, Odena et al. (2017) used the same concept to evaluate
the diversity of generated images from the ImageNet dataset.
Furthermore, in this work, the StyleGAN model generated images
as diverse as the training set, where the orange and blue curves
highly overlapped (see Supplementary Material 2).

In order to provide a clear understanding about the
StyleGAN implemented in this research, we developed a
graphic user interface where one can generate images of
microscopic hardwood species in a menu-driven and intuitive
web application. The goal of this application is to provide
knowledge about StyleGAN via user interactions. The application
is an open-source framework available at https://github.com/
LignumResearch/stylewood-model-usage. It is worth noting that
the user has the capability of generating unlimited amount of data
(images) with this pre-trained model.

Anatomic Validation via Visual Turing
Test
Table 1 summarizes the results of the realism assessment of
images from the VTT by the eight wood anatomists. The mean
accuracy obtained in the entire VTT was statistically lower than
the random guessing [221/480 (46.04%) vs 240/480 (50.00%),
respectively, p = 0.018]. In terms of correctly identifying
generated images (specificity), there was no statistical difference
between all wood anatomists and random guessing [116/240
(48.33%) vs 120/240 (50.00%), respectively, p = 0.6717]. Similarly,
there was no statistical difference between all eight wood
anatomists and random guessing to correctly identify actual
images [105/240 (43.75%) vs 120/240 (50.00%), respectively,
p = 0.064], despite the trend was in the predicted direction
(p ≤ 0.05).

By analyzing Groups I and II, there was no statistical
significant difference between the two groups for accuracy,
sensitivity, and specificity, respectively [45.0 vs 47.1% (p = 0.548),

40.8 vs 46.6% (p = 0.317), and 49.2 vs 47.5% (p = 0.873)]. The
only actual species captured (100% true positive) by all wood
anatomists was Litsea glutinosa. Additionally, none of the wood
anatomists (100% false negative) captured Zelkova serrata, which
was also an actual species. The full data regarding the VTT can be
obtained in the GitHub.

In summary, results of the VTT indicated that the StyleGAN
synthetically generated image fidelity comparable to actual data.
The VTT data suggests that the generated images were highly
realistic and indistinguishable from real microscopic cross-
section images of hardwood species, regardless of the level of
expertise in anatomical evaluation.

TABLE 1 | Assessment of the realism of 60 images by the eight professional wood
anatomists readers by the visual Turing test (VTT).

Group Accuracya (%) Sensitivityb (%) Specificityc (%)

Group Id

Wood Anatomist 02 50.0 43.3 56.7

Wood Anatomist 04 46.7 40.0 53.3

Wood Anatomist 05 46.7 40.0 53.0

Wood Anatomist 06 45.0 63.0 26.7

Group IIe

Wood Anatomist 01 41.7 43.3 40.0

Wood Anatomist 03 50.0 40.0 60.0

Wood Anatomist 07 40.0 36.7 43.3

Wood Anatomist 08 48.3 43.3 53.3

aOverall mean [95% CI (confidence interval)] accuracy 46.1 (42.9–49.1).
bOverall mean (95% CI) sensitivity 43.7 (36.9–50.5).
cOverall mean (95% CI) specificity 48.3 (39.1–57.4).
dGroup I: Wood anatomists with 1–5 years of experience. Mean (95% CI) accuracy
47.1 (43.8–50.4), sensitivity 46.7 (28.8–64.5), and specificity 47.5 (25.3–69.7).
eGroup II: Wood anatomists with >5 years of experience. Mean (95% CI) accuracy
45.0 (37.2–52.8), sensitivity 40.8 (35.8–45.9), and specificity 49.15 (25.3–69.7).
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CONCLUSION

This study shows that StyleGAN can successfully synthesize
highly realistic and anatomically meaningful 5122 microscopic
cross-section images of hardwood species that are virtually
indistinguishable from real cross-section images. We confirmed
the realism and diversity for generated images by calculating
the FID score, an SSIM distribution, and a VTT using
two groups of professional wood anatomists with different
levels of expertise.

We discussed several novel research directions involving
wood anatomy and wood identification, StyleGAN, namely,
data augmentation for current computer vision-based
wood identification, dataset generation for wood species
that are listed as threatened, endangered, or critical by
CITES, and simulation of breeding between two parental
woody species. Along with these applications, the StyleGAN
can be used as an educational tool for improving
training of a new workforce in wood anatomy and wood
identification. It is our ultimate goal to provide AI/ML
solutions that are reliable, economically relevant, safe, and
robust to better equip the forestry and forest and wood
products industries, students, researchers, staff, faculty, and
enthusiasts in the field.

Future research will focus of exploring latent space when
generating images. It would allow us to explore single
attributes of a given species, for example porosity, ray
thickness, growth ring, etc. to potentially increase model’s
generalization. Specifically, this research would increase
the meaning and realism of images and enable targeted
effects on the generated images. Additionally, GANs can
perform multimodal learning that enables image synthesis by
feature description.
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The proportion and composition of plant tissues in maize stems vary with genotype
and agroclimatic factors and may impact the final biomass use. In this manuscript,
we propose a quantitative histology approach without any section labelling to estimate
the proportion of different tissues in maize stem sections as well as their chemical
characteristics. Macroscopic imaging was chosen to observe the entire section of a
stem. Darkfield illumination was retained to visualise the whole stem cellular structure.
Multispectral autofluorescence images were acquired to detect cell wall phenolic
compounds after UV and visible excitations. Image analysis was implemented to
extract morphological features and autofluorescence pseudospectra. By assimilating
the internode to a cylinder, the relative proportions of tissues in the internode were
estimated from their relative areas in the sections. The approach was applied to
study a series of 14 maize inbred lines. Considerable variability was revealed among
the 14 inbred lines for both anatomical and chemical traits. The most discriminant
morphological descriptors were the relative amount of rind and parenchyma tissues
together with the density and size of the individual bundles, the area of stem and
the parenchyma cell diameter. The rind, as the most lignified tissue, showed strong
visible-induced fluorescence which was line-dependant. The relative amount of para-
coumaric acid was associated with the UV-induced fluorescence intensity in the rind and
in the parenchyma near the rind, while ferulic acid amount was significantly correlated
mainly with the parenchyma near the rind. The correlation between lignin and the tissue
pseudospectra showed that a global higher amount of lignin resulted in a higher level of
lignin fluorescence whatever the tissues. We demonstrated here the potential of darkfield
and autofluorescence imaging coupled with image analysis to quantify histology of maize
stem and highlight variability between different lines.

Keywords: autofluorescence multispectral imaging, darkfield imaging, quantitative histology, macrovision, maize
stem
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INTRODUCTION

Maize is a major productive crop worldwide and the most widely
used forage crop in dairy cow feeding (Boon et al., 2008; Barros-
Rios et al., 2012; Barriere, 2017). In addition, maize stems are
considered one of the key lignocellulosic feedstocks to produce
biofuels and other value-added chemicals (Carpita and McCann,
2008; Barrière et al., 2009b; Melati et al., 2019). Many of these
uses involve efficient degradation of the cell walls either by
enzymes or microbes.

The cell wall in maize stems is a complex polymer network of
polysaccharides, namely, cellulose, hemicelluloses, and phenolics,
as well as other minor compounds, such as pectins and structural
proteins (Carpita and McCann, 2008). Cell wall phenolics
comprise lignins and hydroxycinnamates and para-coumaric and
ferulic acid derivatives. Lignin is a heterogeneous mixture of
randomly polymerised phenolic monolignols (Vanholme et al.,
2019). In maize stems, the amount of lignin in the cell wall
fraction typically ranges between 12 and 20% (Jung and Buxton,
1994; Méchin et al., 2000; Barrière et al., 2009a,b). Para-coumaric
acid, which accounts for approximately 1.5–2.5% of the cell
wall, is mainly associated with lignin, while ferulic acid, which
accounts for approximately 0.7% of the cell wall, is ether linked
to lignin or ester linked to hemicelluloses (Ralph et al., 1998;
Méchin et al., 2000; Jung and Casler, 2006a; Barrière et al., 2009a;
Hatfield et al., 2017). Ferulic acid can mediate cross-linkages
between hemicelluloses and lignins or between hemicellulosic
chains via diferulic bridges (Ralph et al., 1998; Hatfield et al.,
2017; Terrett and Dupree, 2019). The amount of lignins in
the cell wall, their variable structure, and the cross-linkages
between cell wall components have been suggested to have a
variable depressive effect on cell wall polysaccharide degradation
by enzymes or microorganisms (Méchin et al., 2000; Fontaine
et al., 2003; Jung and Phillips, 2010; Barriere, 2017; Casler and
Jung, 2017; Hatfield et al., 2017; Terrett and Dupree, 2019). This
effect is related to the limited access of enzymes or microbes to
degradable/fermentable polysaccharides (Meng and Ragauskas,
2014; Melati et al., 2019). However, the main determinant among
these factors for recalcitrance is still not clear (McCann and
Carpita, 2015; Melati et al., 2019; Zoghlami and Paës, 2019),
which is partly due to the large variability of biomass and
assignment of biomass as a bulk material without considering the
heterogeneity of plant cell walls according to organs and tissues.

In fact, within a species, the cell wall composition depends on
the genotypes and the plant-breeding environment but also on
other components, such as the organs, stems, and leaves to the
tissues and cell types. For example, a maize stem or internode
is composed of different tissues, namely, rind, parenchyma
and vascular bundles, whose proportions, morphologies and
compositions vary according to the genotype, maturity and agro-
climatic conditions (Cone and Engels, 1993; Morrison et al., 1998;
Jung and Casler, 2006a,b; Legland et al., 2017; Perrier et al.,
2017; El Hage et al., 2018; Zhang et al., 2019). It has been shown
that these tissues differ in their fermentation/digestibility yield
and rate, which has been related to their cell wall composition
(Akin, 1989; Scobbie et al., 1993; Wilson et al., 1993; Wilson
and Mertens, 1995; Hatfield et al., 1999; Jung and Casler, 2006b;

Barros-Rios et al., 2012; Ding et al., 2012; Devaux et al., 2018).
Several authors have reported that the relative proportion of
tissues and lignin distribution within organs can explain the
differences in digestibility observed at an equivalent stage of
maturity (Akin, 1989; Wilson and Mertens, 1995; Méchin et al.,
2005; Barros-Rios et al., 2012).

To study the histological features of plant organs, methods
are required to quantify the proportion of tissues and their
composition. Microscopic techniques are generally proposed for
this purpose. However, these methods are not compatible with
large-scale or high-throughput studies. In the case of maize
stems, the stem section area can be of 1–2 cm2 while the cells
diameter can be of approximately 60 µm (Zhang et al., 2013;
Legland et al., 2014, 2017); moreover, the experiments often need
to repeated to tackle the biological variability. For a few years,
whole stem section imaging has been developed (Zhang et al.,
2013, 2019; Legland et al., 2014, 2017, 2020; Heckwolf et al.,
2015; Perrier et al., 2017). Images of hand- or microtome-cut
stem cross-sections were acquired with either a macroscope, a
microscope slide scanner or a flatbed scanner. Different modes
of illumination (darkfield, brightfield, and epifluorescence, etc.)
associated or not with contrast-enhancing methods, such as Fasga
staining (Tolivia and Tolivia, 1987), are implemented to visualise
the tissues. Other authors favour 3D imaging and use micro-
computed tomography technology for stem imaging (Zhang
et al., 2018, 2020, 2021). Optical macrovision systems have the
advantage of being relatively inexpensive compared to more
sophisticated equipment, such as X-ray tomographs and are well
suited for studying histology because they combine a large field of
view and good spatial resolution, thus allowing for observations
of a whole stem cross-section and differentiation of the different
tissues (Legland et al., 2014; Corcel et al., 2016).

Regardless of the image acquisition methods, image analysis
is required to identify and quantify morphological features,
which are also called anatomical traits. Maize stems include
the proportions of tissues, e.g., rind, parenchyma cells, and
vascular bundles, and the morphology and density of cells and
vascular bundles. Different image analysis workflows have been
proposed, which depend on the targets and on the contrast in
the images. Most workflows include a tissue segmentation step
followed by morphological feature quantification. Heckwolf et al.
(2015) developed custom image processing software that utilises
a variety of global thresholding and local filtering to extract rind,
pith and vascular bundle sizes from stem cross-section scanned
images. Legland et al. (2017) proposed a series of morphological
filters to identify the rind and vascular bundles in the pith from
stem cross-sections after Fasga staining. Zhang et al. (2018, 2020,
2021) presented an image analysis pipeline to extract micro-
phenotypic traits from 3D tomography images that combine
threshold-based segmentation and morphological operations.

Once tissues are segmented, it is a straightforward process to
measure the rind thickness, pith area, vascular bundle area or
vascular bundle size or shape. These descriptors were related to
stem lodging (Zhang et al., 2018), developmental stages (Zhang
et al., 2020), and water stress (Legland et al., 2017; El Hage et al.,
2018) or used to analyse the phenotypic variation between lines
(El Hage et al., 2018; Zhang et al., 2021). In addition to tissue
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segmentation, Devaux and Legland (2014) proposed applying
grey-level granulometry using morphological closings to directly
extract cell size distributions from grey-level images. Legland
et al. (2020) used the method on maize stem images to compute
the parametric maps of cell size.

Chemical imaging techniques are required to reveal the
variations in the cell wall composition of tissues or cell types.
Specific staining methods or spectral imaging can be used for
this purpose, and each technique leads to very different image
analyses. Several authors have used Fasga staining to assess the
distribution of lignin in maize or sorghum stem tissue according
to developmental stages (Zhang et al., 2013, 2019) or in response
to water deficit (Legland et al., 2017; Perrier et al., 2017; El
Hage et al., 2018). Fasga staining colours lignified tissues in red
and non-lignified tissues in blue. In Zhang et al. (2013, 2019),
lignification was assessed by the ratio of red to blue intensity.
The image analysis workflow made it possible to assess the
distribution of lignin within a cross-section by profiling the
red/blue intensity ratio from the epidermis to the centre of
the cross-section. The image processing workflow was further
improved and fully automated by Legland et al. (2017), and
it was designed for measuring the amount of blue and red
intensities in the parenchyma and the amount of red intensity in
the rind. Perrier et al. (2017) also developed a dedicated tool in
ImageJ software for analysing Fasga-stained cross-sections from
sorghum internodes. The dedicated script allowed quantification
of the outer zone area in percentage of internode cross-section
area, the percentage of sclerenchyma tissue in the outer zone,
the percentage of nonlignified tissue in the central zone of the
internode and the density of vascular bundles in the central zone.

Apart from histochemical staining, spectral imaging
techniques have been proposed to perform chemical mapping of
cell wall variations in wood or plant stems. Microspectroscopy,
such as Fourier transform infrared (FT-IR) or Raman
microspectroscopy, is very useful to study carbohydrates
or phenolic constituents (lignin or hydroxycinnamic acids)
(Gierlinger, 2018; Beć et al., 2020). The main drawback is that the
techniques are time-consuming, thus allowing for the mapping of
only a small region of the sample, which limits the application of
these techniques for the comparison of large numbers of samples.
To monitor the chemical variation in tissue composition,
multispectral fluorescence imaging can be applied (Corcel
et al., 2016). Full-field fluorescence macroscopy has a sufficient
spatial resolution (≈3 µm per pixel), high acquisition speed and
large fields of view. Taking advantage of the autofluorescence
properties of many plant compounds, fluorescence imaging
can be performed with little tissue preparation and, more
importantly, without labelling. Fluorescence imaging techniques
have two main attributes over other techniques associated
with their greater sensitivity and selectivity due to the unique
properties of autofluorescent molecules being excited at a specific
wavelength and emitting radiation at specific wavelengths. Plant
cell wall autofluorescence is mainly linked to the presence of
phenolic compounds, such as lignin and hydroxycinnamic
acids. Hydroxycinnamic acids emit blue fluorescence under UV
excitation at approximately 350 nm (Fulcher et al., 1971; Harris
and Hartley, 1976; Lang et al., 1991), while lignin excited using

UV and visible light emitted blue, green and red fluorescence
(Djikanović et al., 2007; Donaldson et al., 2010; Donaldson,
2013, 2020; Donaldson and Williams, 2018). The nature of the
phenolic compounds, their variable relative proportions and the
environment (pH, presence of quenching molecules, etc.) result
in variable tissue fluorescence responses that can be interpreted
as a fluorescence tissue signature.

The analysis of multispectral images requires specific analysis
tools that can account for both the spatial and the spectral
dimensions of the image. Using the chemometric approach, the
first step in the analysis of multispectral images is to process
the spectral dimension of the data (Geladi and Grahn, 2006;
Ghaffari et al., 2019). Spectral information can be extracted either
manually or automatically from regions in the images (de Juan
et al., 2009). In many cases, regions in the image are segmented
based on the spectral information (Salzer and Siesler, 2014).

In this study, we developed a quantitative histology
approach to estimate the proportion of different tissues in
maize stem sections and associated a chemical profile with
each of these tissues. Two macroscopic imaging techniques
without prior labelling of the tissues were used. Darkfield
macroscopy was chosen to visualise the different tissues
independently of their chemical composition. In parallel,
multispectral autofluorescence macroscopy was used to associate
a multispectral autofluorescence profile to the tissues with
the aim of evaluating the relative distribution of lignin and
hydroxycinnamic acids. In the darkfield images, tissues and cells
are visualised based on the diffraction properties of the light
by the cell walls. An image analysis workflow was implemented
to identify the tissues and then extract 2D morphological
descriptors. We propose that a simple stem model can be used to
estimate the volume descriptors of the amount of rind, vascular
bundles and parenchyma cell walls. We sought to measure
multispectral autofluorescence pseudospectra in each tissue.
Tissues were also segmented from the multispectral images
using a "sum of intensities" image and a workflow similar to
that of the darkfield images. Because the parenchyma near the
rind has been revealed to have specific enzymatic degradation
properties (Jung and Casler, 2006b; Devaux et al., 2018), two
regions of parenchyma were considered, and we evaluated and
compared their fluorescence properties, i.e., relative amounts
of lignin and hydroxycinnamic acid. Two stem internodes of
14 inbred lines were analysed with the aim of demonstrating
the feasibility of the method suggested here. Correlations
between the histological descriptors and the amounts of phenolic
compounds and digestibility measured at the stem level for the
14 inbred lines were examined.

MATERIALS AND METHODS

Plant Material and Stem Cell Wall
Characterisation
Plant Material
Fourteen maize inbred lines selected for their contrasting
digestibility were grown in Arras (France) in 2018. Twelve plants
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per inbred line were harvested at the silage stage. The stems
were separated from leaves, panicles and ears. The internode
located under the main ear was collected for two plants per line
and stored in 70% ethanol/water (v/v) for quantitative histology.
The stems of the remaining 10 plants were pooled, chopped and
oven dried (70◦C). The dried stems were ground with a hammer
mill to pass through a 1 mm screen for the analysis of phenolic
compounds and cell wall enzymatic digestibility.

Chemical Analysis
Cell wall material was prepared from the 10 dried and ground
pooled stems. The ground material was placed in 80% ethanol
at 100◦C in an automated solvent extractor (ASE 350, Dionex
Sunnyvale, CA, United States; 6 min flow time, 2 mL/min flow
rate, 150% flush, and 30 s purge). The ethanol insoluble material
was taken as the cell wall estimate (Chazal et al., 2014) and
therefore called cell wall content and expressed in percent of the
dry matter. Using the automated solvent extractor, the standard
deviation is less than 1%.

The Klason lignin content was measured according to
Dence (1992). Ester-linked para-coumaric and ferulic acids were
measured after mild alkaline hydrolysis as described by Ho-Yue-
Kuang et al. (2016). Analyses were performed in duplicate, and
the results are expressed as the percentage of dry matter.

Digestibility Measurement
The enzymatic digestibility was measured in duplicate on the
extractive-free material using the Aufrère and Michalet-Doreau
method (Aufrère and Michalet-Doreau, 1983). The technique
involves three stages: (1) pretreatment with pepsin (pepsin Merck
2000 FIP U/g Art7190) in hydrochloric acid (0.2% pepsin in 0.1
N HCl in a water bath at 40◦C for 24 h; (2) starch hydrolysis in a
water bath in the same mixture for exactly 30 min at 80◦C; and
(3) attack by cellulase (cellulase Onozuka R 10 extracted from
Trichoderma viride, Yakult Honsha Co. Ltd, Japan, 1 g/L in 0.05 M
sodium acetate buffer, pH 4.6) after filtration and rinsing for 24 h
in a water bath at 40◦C. The final residue was weighed. Due to the
low starch content (<2% of the dry matter content of the alcohol-
insoluble material), cell wall digestibility was equated with dry
matter digestibility and calculated as follows:

IVCWD =
M1−M2

M1
∗ 100 (1)

where M1 is the dry mass of the extractive-free sample and M2 is
the dry mass of the residue after enzymatic degradation.

Image Acquisition
Sample Sectioning for Histological Analysis
For the two internodes retained for histology, a one cm long
segment was sampled in the middle of the internode. For
each segment, 150 µm thick cross-sections (called sections
in the following) were cut in air with a gsl1 microtome
(Design and production: Lucchinetti, Schenkung Dapples,
Zurich, Switzerland) (Gärtner et al., 2014) and stored in
70% ethanol at 4◦C until image acquisition. Prior to image
acquisition, the sections were rehydrated in water overnight at
4◦C to remove the air.

Darkfield Imaging
Images were acquired using the “BlueBox” macrovision
acquisition prototype specially designed to observe plant
tissue sections at the macroscopic scale without any prior
labelling steps (Devaux et al., 2008, 2009). A monochrome CCD
camera (Prosilica Digital Camera DCAM 1.31 – distributed
by Alliance Vision, Montélimar, France) was equipped with a
1.2X magnification lens (Navitar Precise Eye, Rochester, NY,
United States). With these settings, the images were 1,620× 1,220
pixels and corresponded to a field of view of 5.92 × 4.43 mm2,
with a pixel size of 3.63 µm. Grey levels were coded between
0 (black) and 255 (white). An optical fibre ring was connected
to an intensity-controlled light source (SCHOTT DCRIV Light
Source, Mainz, Germany) and placed under the samples to
provide darkfield illumination. Motorised stages for positioning
the camera and the samples allowed for the acquisition of large
images. All elements were placed in a box to prevent outside light
from entering. Homemade software developed under LabView
was used for image acquisition.

Sections were placed between two round lamellae for
observation. Mosaic images, called large images, were acquired to
observe the entire sections. The largest images corresponded to a
field of view of 20 × 20 mm2. Two sections per internode were
imaged. Images of one internode were removed for M06 because
air was still present after overnight rehydration. Finally, 54 large
images were obtained. Examples of individual fields of view and
large images can be seen in Figures 1, 2. Several tissues were
observed within the stem sections: the rind, the vascular bundles
and the pith parenchyma (Esau, 1977).

Multispectral Autofluorescence Imaging
Autofluorescence images were acquired using a Multizoom
AZ100M fluorescence macroscope (Nikon, Japan) equipped
with a Q Imaging EXI Aqua monochrome camera plus an
RGB-HM-S-IR filter wheel for colour image acquisition. The
system provides 1,392 × 1,040 pixel RGB images with grey-level
intensities coded using 16,386 values. The total magnification
was set to X4 by combining the AZ-Plan Fluor 2X lens
(NA: 0.2/WD: 45 mm) and a X2 optical zoom. With these
settings, the pixel size was 2.78 µm and the field of view was
3.9 × 2.9 mm2. The macroscope was equipped with a Prior
Proscan II (Nikon, Japan) motorised stage, which allowed large
image acquisition. The INTENSILIGHT (C-HGFI/C-HGFIE
Precentred Fibre Illuminator Nikon, Japan) device with a
mercury lamp ensured lighting for fluorescence imaging. Four
fluorescence filter cubes corresponding to two UV excitations,
namely, U1 and U2, and two visible excitations, namely, blue (BL)
and green (GR), were placed inside the motorised filter wheel
(Supplementary Table 1).

The acquisition software NIS-Elements (AR 5.02.02) allows
automatised multispectral acquisition of large images. The
multispectral sequence was designed to successively acquire the
four RGB images corresponding to the four fluorescence filters
for a given field of view before moving to the next field of view.
The order of acquisition was GR, BL, U2, and U1, with exposure
times set after viewing a few samples (Supplementary Table 1).
After all acquisitions, the fluorescence intensity was found to be
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FIGURE 1 | BlueBox images. Example of inbred lines: individual fields of view
of cross-sections. Fields of view: 5.92 × 4.43 mm2. Rind, parenchyma cells,
vascular bundles are visible. Rind thickness and vascular bundle and cells size
vary according to the inbred lines.

much lower for the two visible filters than for the UV filters, and
a multiplicative factor of 2 was applied to the RGB images of the
blue and green filters.

The resulting multispectral images contained 12 channels by
merging the RGB images recorded using the four filter cubes
(Corcel et al., 2016). The channels were put in an order from
high to low wavelengths: blue, red and green channels of each
RGB image acquired with filters U1, U2, blue and green. The
channels names were U1b, U1g, U1r, U2b, U2g, U2r, BLb, BLg,
BLr, GRb, GRg, and GRr. Channel U1r was removed from the
sequence because it contained unwanted reflection from the
excitation Rayleigh band. The final multispectral image therefore
contained 11 channels.

For morphological image acquisition, rehydrated sections
were placed in water between two round lamellae for observation.
One multispectral image per internode was acquired (except for
the anomalous M06 internode), and for seven inbred lines, a
second section of one internode was imaged for repetition. The
final set contained 34 large multispectral images.

FIGURE 2 | BlueBox images. Example of large images for four inbred lines.
The large image reveals the stem section area, rind, vascular bundle
repartition, and parenchyma.

Image Analysis
Image analysis was performed in the MATLAB 2019b
environment (Mathworks, Natick, MA, United States) using
the image processing toolbox, dedicated homemade functions
and scripts developed for BlueBox and macrofluorescence
collections of images.

Image Representations
Displaying a set of large images is difficult, and the content of
multispectral images cannot be viewed in a direct way. With
the objective of comparing different inbred lines or sections and
enabling details to be seen, a multiscale image representation
was adopted. Zoom images corresponding to one field of view
of the mosaic in the case of the BlueBox images were selected,
and they showed details into the middle of the section and on the
border of the section. Up to four large images with a resolution of
14 µm per pixel were compared. Low-resolution images (24 µm
per pixel) were finally retained to draw A4 300 dpi figures, with
one image per inbred line.

In parallel, an RGB representation of the multispectral
fluorescence image was implemented. The red channel of the
RGB image was computed as the average of the red channels
U2r, BLr, and GRr. The green channel of the RGB image was
computed as the average of the green channels U1g, U2g, and
BLg. The blue channel of the RGB image was computed as the
average of the blue channels U1b and U2b. The RGB images were
called composite macrofluorescence images in the following. Two
grey-level images were also computed for segmentation purposes:
the image “sum of fluorescence intensity of the 11 channels” and
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FIGURE 3 | Image segmentation workflow and resulting tissue regions of interests (ROIs). The “whole stem” ROI corresponds to the mask of the section. In the “all
tissues” ROI, the holes encountered in some of the sections are segmented. Parenchyma ROI and rind and vascular bundle ROI are temporary ROIs necessary to
compute tissue ROIs. Middle parenchyma ROI and rind parenchyma ROI are subregions of the parenchyma ROI.

the image “sum of visible fluorescence intensity” corresponding
to the sum of the three channels BLg, BLr, and GRr.

Definition of Morphological and Autofluorescence
Descriptors of Maize Stem Tissue
For each tissue, morphological and autofluorescence descriptors
were defined. The stem area was retained as an absolute
size descriptor. Relative areas were chosen to compare the
rind, parenchyma and vascular bundle amounts. For the
vascular bundles, the descriptors that were selected were the
number density, individual surface area and elongation, which
was defined as the width/length ratio. Parenchyma was also
characterised by the cell size. Due to their different behaviour
toward enzymatic degradation, two regions of parenchyma
were considered (Jung and Casler, 2006b; Devaux et al.,
2018): parenchyma near the rind and middle parenchyma. For
each tissue, the average fluorescence properties were used to
characterise the composition of cell walls. Measurements of the
descriptors were performed after segmentation of the different
tissues in the two types of images.

Segmentation of Tissues
Regions of interest (ROIs) corresponding to each tissue
were identified for the dark field and macrofluorescence
images. A semiautomated workflow was adapted from

Legland et al. (2014). The main steps summarised in Figure 3
were similar for the two kinds of images. The specific
implementations for the two kinds of images are given in
Supplementary Table 2.

For some stems, the parenchyma was torn during cutting,
resulting in the presence of holes. The whole stem ROI was
obtained by thresholding followed by hole filling to observe the
whole stem area. A second region, called all tissue ROI, was
considered, in which the possible holes were segmented by a
second thresholding operation. The objective was to obtain an
ROI that avoided possible holes to measure the parenchyma cell
size and fluorescence properties.

From the all tissue ROIs and the original images, intermediate
ROIs were created to correspond to the rind and vascular bundle
ROIs. Alternating filtering based on morphological openings and
closings (Soille, 2003) was applied to contrast rinds and vascular
bundles from the parenchyma. It was followed by automatic
thresholding. In the resulting ROIs, some vascular bundles could
be connected and the rind could be split into several fragments.
Rind and vascular bundles were differentiated by size analysis.
The size of the vascular bundles was determined from the mode
of the size distribution of the segmented objects in the BlueBox
image located at a distance greater than 1 mm from the epidermis.
It was used to define a size threshold to extract the individualised
vascular bundle ROIs. Rind ROIs were built by merging external
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fragments larger than five times the value of the mode. In the
BlueBox images, some vascular bundles were connected, and an
additional region was computed to correspond to all vascular
bundle ROIs, both connected and not connected.

The parenchyma ROIs were obtained as the logical difference
between the whole stem ROIs and the rind and vascular bundle
ROIs. The parenchyma near the rind ROIs and the middle
parenchyma ROIs were obtained using a priori distances from the
rind: below 500 µm for the parenchyma near the rind and over
1,000 µm for the middle parenchyma. Distances were chosen to
contrast the two kinds of parenchymas.

Morphological Descriptors
Measuring the Raw Morphological Descriptors
Raw morphological descriptors could be directly measured from
the segmented regions of interest as specified in Table 1. Areas
were obtained by pixel counting; perimeters, vascular bundle
length and width were obtained using the regionprops MATLAB
function. Rind thickness was evaluated by granulometry using
mathematical morphology transformations (Soille, 2003; Devaux
et al., 2008; Legland et al., 2014, 2020); see “Parenchyma
Cell Size” for an introduction to the method. The thickness
distributions were obtained by applying opening transformations
using squared structuring elements and a maximum size of
1,456 µm. The mean size of the distribution was taken as a
measure of the average thickness of the rind.

However, some defects related to section cutting and image
segmentation were observed, such as missing pieces of rind or
bundles not separated. Therefore, we developed an estimate of
the morphological features as described below.

Estimating Rind Area
In sections where some rind pieces were missing, the rind area
Ri(A) was estimated using the thickness Ri (T) and the perimeter
of the whole stem St(P):

R̃i(A) = Ri (T)× St (P) (2a)

However, when examining undamaged sections, the estimated
values were always higher than the measured values. The reason
was an overestimation of the rind thickness due to vascular
bundles that remained connected to the rind after segmentation.
The average difference diffEstMeas between the estimated and

TABLE 1 | Measurement of the raw morphological descriptors: regions of interests
(ROIs) used for measurement, morphological descriptors and acronyms.

Region of interest (ROI) Morphological descriptors Acronym

Whole stem ROI Area
Perimeter

St(A)
St(P)

Rind ROI Area
Thickness

Ri(A)
Ri(T)

All vascular bundles ROI Area Vb(A)

Individual vascular bundles
ROI

Individual area
Individual Elongation = width/length

Vi(A)
Vi(E)

Individual area or elongation means that measurements were performed for each
segmented bundle.

measured rind areas was computed from the undamaged images
and used as a correction factor to estimate the rind areas:

R̃i(A) = Ri (T)× St (P)− diffEstMeas (2b)

Estimating Stem Area
The stem area was equal to the measure of the area of the whole
stem ROI when the rind was preserved, and it was estimated
when the rind was fragmented:

S̃t (A) =

{
St (A) : rind preserved

St (A)− Ri (A)+ R̃i (A) : rind fragments

}
(3)

Computing the Relative Areas
Relative areas of measured parenchyma, estimated rind and
measured vascular bundles were computed as percentages of the
estimated whole stem area.

Average Morphology of Individual Vascular Bundles
Individual area and elongation measured for each vascular
bundle were averaged to obtain one value per section: Vi(A) and
Vi( E).

Density of the Number of Vascular Bundles
The number of vascular bundles

(
Vb (N)

)
was estimated as the

total area of vascular bundles divided by the average area of
vascular bundles:

Vb (N) =
Vb (A)

Vi (A)
(4)

The density of the number of vascular bundles
(
Vb (D)

)
was

computed as the number Vb (N) divided by the whole stem area.

Parenchyma Cell Size
Cell size was measured from the BlueBox greyscale image on
the two parenchyma regions. Grey-level granulometry developed
using mathematical morphology (Soille, 2003) was applied
without segmenting the cells as described in Devaux et al. (2008)
and Legland et al. (2020). Grey-level granulometry consists of
successively applying size transformations of the image through
a mask of known geometry, called a structuring element (Soille,
2003). The size and shape of the structuring element are chosen
according to the characteristics of the image. In the BlueBox
images (Figure 1), cells appeared as isotropic dark objects, and
closing transformations using squared structuring elements were
retained. Closing can be compared to sieving dark objects in
the image: dark objects smaller than the structuring element
are removed while preserving the size of larger objects. When
closings of increasing size are applied, the sum of grey levels,
measured after each operation, increases. The increase depends
on the quantity of objects removed. The result is a granulometric
curve expressed as a percentage of grey-level variations according
to the closing step.

In the present work, closing transformations between 18
and 207 µm were applied by steps of 7.26 µm. Compared
to the procedure described in Devaux et al. (2009), grey-level
granulometry curves were postprocessed by subtracting the
residual size variations caused by the general background of the

Frontiers in Plant Science | www.frontiersin.org 7 December 2021 | Volume 12 | Article 79298139

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-792981 December 7, 2021 Time: 16:16 # 8

Berger et al. Darkfield and Fluorescence Macrovision of Maize Stem

image in the region of interest and renormalisation of the curves.
Grey-level mean sizes and standard deviations were computed
from the granulometric curves as described in Devaux and
Legland (2014).

Measure of Autofluorescence Pseudospectra
For each pixel, 11 fluorescence intensity values were measured.
The set of fluorescence intensities measured for individual pixels
or averaged over a set of pixels was called pseudospectra (Corcel
et al., 2016). Because no photon can be emitted at wavelengths
higher than the excitation wavelength, for the two visible filters
blue and green, the channels BLb, GRb, and GRr showed no
signals. They were nevertheless maintained in the pseudospectra
and were considered a baseline.

Average autofluorescence pseudospectra were measured for
the four tissue ROIs: rind, all vascular bundles, parenchyma
near the rind and middle parenchyma. A preliminary analysis
revealed a channel-dependent background intensity. Three
regions without any signal were manually selected in four images
of the series. The background pseudospectrum was computed
as their average pseudospectra. It was subtracted from all other
measured pseudospectra. A section-dependent overall intensity
effect was observed, which was probably due to variations in
section thickness. A normalisation procedure was set, which is
detailed in the “Results” section.

Data Analysis
The morphological descriptors and the autofluorescence
pseudospectra were analysed based on a principal component
analysis and variance analysis, followed by multiple comparisons
of the estimated marginal means. Analyses were performed
within the MATLAB 2019b environment (Mathworks,
Natick, MA, United States) using the statistics and machine
learning toolbox.

Principal component analyses were applied separately
to the morphological descriptors and the autofluorescence
pseudospectra. The morphological descriptors were normalised
to describe the variations independently of the units, and the
loadings were represented as correlation circles. In the case
of pseudospectra, the variables were not normalised to avoid
assigning importance to the baselines of the pseudospectra, and
the loadings were represented in the form of pseudospectra.

Variance analyses were applied to morphological descriptors
and principal components to determine their significance with
regard to the 14 inbred lines studied. Multiple comparisons
of the estimated means were applied to reveal the most
contrasted lines. In the case of autofluorescence pseudospectra,
analyses of variance were applied to the principal component
scores to determine the effects of inbred lines, tissues and
their interactions.

RESULTS

Variation in Cell Wall Phenolics and
Digestibility Within the 14 Inbred Lines
The stems of the 14 lines were analysed for the cell wall content,
lignin and hydroxycinnamic acid content of the cell walls, and

digestibility. The cell wall content represented on average 54.9%
of the stem dry matter, with a coefficient of variation (CV) of 8.5%
(Table 2). The content of esterified para-coumaric acid showed
the highest variability, with an average value of 1.60% of the cell
wall dry matter and a coefficient of variation of 15.56%. Lower
variability was observed for Klason lignin and esterified ferulic
acid contents. On average, the lignin content was 18.3%, with
a coefficient of variation of 9.2%, and the esterified ferulic acid
content was 0.61%, with a coefficient of variation of 9.22%. Cell
wall digestibility ranged from 25.4 to 43.9%, with an average value
of 33.6% and a coefficient of variation of 14.9%.

The values of the biochemical traits measured in this study are
in the range of those reported in the literature for inbred lines
(Jung and Buxton, 1994; Méchin et al., 2000; Barrière et al., 2009a;
El Hage et al., 2018). Despite the observed variability within the
14 inbred lines for the measured traits, no correlation between
these traits was found. Inbred Lines M06 and M05 showed the
lowest cell wall lignin content, while the highest values were
found for M02, M01, and M11. M04 had a low content of
para-coumaric acid but a high amount of lignin. In contrast,
M11 had both high amounts of lignin and para-coumaric acid,
and M14 had a high amount of para-coumaric acid and an
intermediate amount of lignin. M03 and M05 had intermediate
values for lignin and para-coumaric acid, while M03 and M05
the highest and lowest values of ferulic acid content, respectively.
The highest cell wall digestibility was found for Lines M05 and
M06, which had the lowest amount of lignin. Although M01 and
M02 had the highest lignin content, they showed intermediate cell
wall digestibility.

In summary, our panel of inbred lines showed variability in
the stem cell wall contents and phenolic composition and a lack
of correlation between these biochemical traits.

Examples of Images From Details to the
Collection
Four samples from inbred lines with contrasting morphologies
were selected for a preliminary investigation of the dataset.

Zoom Images
Zoom images were selected to compare the border and the middle
of the sections from four contrasting samples (Figures 1, 4). At
this scale, details in the rind, vascular bundles, and parenchyma
cells are visible. Cell walls appeared in white in the morphological
images and had colours ranging from pink to blue in the
autofluorescence images. Based on the colour representation
of the autofluorescence images, blue fluorescence represents
cell walls with mainly UV-induced fluorescence while pink or
yellow fluorescence represents cell walls with visible-induced
fluorescence. Differences between the four inbred lines were
observed for all the tissues.

The rind is composed of vascular bundles and small cells of
cortical parenchyma (Esau, 1977). In the morphological images
of Lines M04 and M09, the vascular bundles were clearly
visible, while for M01 and M14, the rind formed a larger white
ribbon and the cortical cells could hardly be distinguished. The
autofluorescence images showed that for M01 and M14, the
cortical cells contained fragments that fluoresced red, while for
M04 and M09, the cells seemed empty. The red fluorophore
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TABLE 2 | Mean values for stem cell wall contents, Klason lignin (KL),
hydroxycinnamic acid – esterified p-coumaric acid (Ester pCA), esterified ferulic
acid (Ester FA) – and cell wall digestibility (IVCW digestibility) for the 14 inbred lines.

Inbred
line

Cell wall KL Ester pCA Ester FA IVCW

% DM % CW %CW % CW digestibility

M01 52.7 20.51 1.59 0.62 32.7

0.11 0.03 0.01 0.85

(90.27) (7.00) (2.73)

M02 56.8 20.65 1.61 0.55 34.7

0.56 0.01 0.00 0.05

(90.53) (7.06) (2.41)

M03 55.5 18.24 1.68 0.72 37.8

0.09 0.00 0.01 0.10

(88.37) (8.14) (3.49)

M04 57 20.13 1.06 0.57 29.9

0.14 0.01 0.00 0.94

(92.51) (4.87) (2.62)

M05 52 15.88 1.29 0.64 41

0.07 0.01 0.00 0.29

(89.16) (7.24) (3.59)

M06 50 15.51 1.33 0.67 43.9

0.34 0.00 0.01 0.01

(88.58) (7.60) (3.83)

M07 62 16.58 1.81 0.58 39

0.05 0.02 0.00 0.94

(87.4) (9.54) (3.06)

M08 53.7 17.92 1.56 0.59 32.8

0.09 0.08 0.03 1.91

(89.29) (7.77) (2.94)

M09 63.6 17.1 1.38 0.64 32.7

0.38 0.03 0.01 0.17

(89.44) (7.22) (3.35)

M10 53.6 16.93 1.65 0.61 30.7

0.32 0.02 0.03 0.76

(88.22) (8.60) (3.18)

M11 47.6 20.4 1.94 0.57 27.6

0.27 0.09 0.07 1.38

(89.04) (8.47) (2.49)

M12 49.9 19.26 1.68 0.5 30.5

0.32 0.03 0.01 0.57

(89.93) (7.84) (2.33)

M13 61.8 19.15 1.89 0.66 25.4

0.16 0.11 0.04 0.12

(88.25) (8.71) (3.04)

M14 52.3 17.94 1.91 0.68 31.1

0.28 0.06 0.03 0.91

(87.38) (9.30) (3.31)

% DM and % CW means that results are expressed in percent of dry matter and
cell wall amount, respectively.
Numbers in italic correspond to the standard deviations. The cell wall % DM was
measured in single (see “Materials and Methods” section). Number in brackets
corresponds to the relative proportion of each cell wall phenolic compound
expressed as percent of the sum of the cell wall phenolic compounds.

probably corresponded to residual chlorophyll (Donaldson and
Williams, 2018; Donaldson, 2020), which resulted in a seemingly
wider rind observed using the BlueBox system. In the rind, the

FIGURE 4 | Composite macrofluorescence images. Example of inbred lines.
Fields of view: 1.06 × 1.27 mm2 for the left column images and 3 × 3 mm2

for the middle and right column images. Blue fluorescence represents cell
walls whose fluorescence is mainly induced by UV excitation, while pink or
yellow fluorescence represents cell walls whose fluorescence is induced by
visible excitation. Differences between the four inbred lines were observed for
all tissues.

lignified sclerenchyma sheaths of vascular bundles (Lopez and
Barclay, 2017; El Hage et al., 2018) were thick and fluoresced
considerably, with the colour varying from yellow for M04 and
orange for M01 and M09 to pink for M14.

In the pith, the vascular bundle sizes and shapes differed
according to the line, with the vascular bundles from M04 and
M09 smaller than those from M01 and M14. M01 vascular
bundles were round, whereas, vascular bundles of the other three
lines were more elongated. The fluorescence colour of vascular
bundles was less strong but consistent with that observed in the
rind. Inside vascular bundles, blue fluorescence was observed for
the phloem and vascular parenchyma.

The parenchyma cells were clearly visible at this scale, and
their size was dependent on the line and the region in the
section. The smallest cells were observed for M09, and the largest
were observed for M04. Cells near the rind seemed smaller
than those in the middle parenchyma. Parenchyma cell walls
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FIGURE 5 | Composite macrofluorescence images: Example of large images
for four inbred lines. The composite macrofluorescence images shows the
homogeneity of fluorescence around the rind, vascular bundles, and within
parenchyma.

fluoresced mainly in blue except for Line M04, which mainly
showed yellow fluorescence. Specific fluorescence was observed
in the parenchyma near the rind for M04 and M09. In the case of
M09, the intensity was much lower, and in the case of M04, the
fluorescence colour was blue compared to the yellow fluorescence
of the middle parenchyma.

Large Image Scale
Large images were created from individual fields of view of
the images (Figures 2, 5). The concave regions in the sections
correspond to the location of the main ear. The large image
reveals the stem section area, rind, vascular bundle repartition
and parenchyma. The section area was the largest for Line
M14 and the smallest for M09. The images show that the rind
thickness was homogeneous all around the section as well as the
vascular bundle size. The composite macrofluorescence images
(Figure 5) showed largely homogeneous fluorescence around the
rind, vascular bundles and parenchyma. In particular, the specific
fluorescence found for the parenchyma near the rind for Lines
M04 and M09 could be observed all around the sections. For
M01, yellow fluorescence occurred in small places of the rind.

Extraction of Morphological Descriptors
for the Four Examples of Inbred Lines
Proportions of Tissue Areas, Vascular Bundle
Morphology, and Density
The proportion of tissues extracted for the four example lines
are reported in Table 3: area of the stem section in cm2,

FIGURE 6 | Parenchyma cell size. Example of granulometric curves computed
for four inbred lines. The solid and dashed lines represent the granulometric
curves computed in the middle parenchyma and the parenchyma near the
rind, respectively. Granulometric curves can be compared to normal particle
size distributions, with the position of the mode indicating the predominant
cell size and the width reflecting the heterogeneity of cell sizes. Because the
cells are isotropic, the closing size can be interpreted as the cell diameter.

parenchyma, rind and vascular bundle areas, which are expressed
as a percentage of the area of the stem section, vascular bundle
density, mean area and elongation of individual bundles.

The stem area was two times larger for M14 than for M09
and similar for M01 and M04. The rind area was larger for
M01 and M14, as expected from the images. Both lines also
showed a larger vascular bundle total area together with a
large area for individual vascular bundles. The smallest vascular
bundles were observed for Line M09 along with the highest
density, nevertheless resulting in a small relative total area. The
proportion of parenchyma was consequently smaller for M01 and
M14 and larger for M04 and M09. The vascular bundle shape did
not vary much, as visually observed in the images.

Parenchyma Cell Size
Cell size was evaluated by grey-level granulometry without
segmenting individual cells. The method was shown to be
relevant to compare tissue sections from the BlueBox darkfield
images (Devaux et al., 2008, 2009). Figure 6 shows the average
granulometric curve computed for the parenchyma near the
rind (dashed lines) and the middle parenchyma (solid lines).
Granulometric curves can be compared to normal particle size
distributions, with the position of the mode indicating the
predominant cell size and the width reflecting the heterogeneity
of cell sizes. Because the cells were isotropic, the closing size can
be interpreted as the cell diameter.

In the middle parenchyma, the smallest cells were observed
for Lines M09 and M14, with a cell diameter of approximately
60 µm, and the largest cells were observed for M04, with
a cell diameter of approximately 85 µm, with M01 being
intermediate. The distribution was more heterogeneous for M04,
for which small cells were clearly distinguished around vascular
bundles (Figure 1).
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TABLE 3 | Morphological descriptors of the four examples of inbred lines.

Descriptor M01 M04 M09 M14 Code

Proportion of tissue and vascular bundle morphology and density

Stem area (cm2) 1.45
0.06

1.48
0.07

1.21
0.02

2.36
0.03

St(A)

Parenchyma area
(%) of the stem area

71.9
1.4

81.7
0.5

80.3
0.1

71.5
1.7

Pa(A)

Rind area
(%) of the stem area

21.2
2.0

13.3
0.4

13.0
0.5

20.2
1.0

Ri(A)

Vascular bundle
area
(%) of the stem area

8.2
0.2

6.2
0.2

6.9
0.2

8.7
0.4

Vb(A)

Vascular bundle
Density (number
per cm2)

63.4
2.3

81.7
0.7

116.6
6.9

62.1
1.2

Vb(D)

Vascular bundle
Mean Area (mm2)

0.130
0.007

0.076
0.002

0.059
0.002

0.141
0.009

Vi(A)

Vascular bundle
elongation

0.777
0.003

0.802
0.009

0.738
0.026

0.790
0.015

Vi(E)

Parenchyma cell size

Middle parenchyma
Grey level mean
size (µm)

70.0
0.2

81.8
0.7

65.5
0.8

64.2
0.6

Pm(Cd)

Middle parenchyma
Standard deviation
(µm)

27.9
0.6

31.6
0.2

29.1
0.9

29.4
0.6

Pm(Cs)

Parenchyma near
the rind
Grey level mean
size (µm)

57.9
0.9

54.9
0.2

46.0
0.6

56.2
1.7

Pr(Cd)

Parenchyma near
the rind
Standard deviation
(µm)

31.6
1.0

30.6
0.4

27.4
0.5

34.9
1.3

Pr(Cs)

Parenchyma cell wall density

Middle parenchyma
Cell wall density (%)

4.29
0.01

3.67
0.03

4.58
0.06

4.67
0.05

Pm(CD)

Parenchyma near
the rind
Cell wall density (%)

5.18
0.08

5.46
0.02

6.53
0.09

5.36
0.16

Pr(CD)

Tissue cell wall proportion

Total cell wall Area
[% St(A)]

32.7
2.0

23.1
0.5

24.1
0.3

32.4
1.3

CW(T)

Middle parenchyma
cell wall area [%
CW(T)]

6.3
0.6

8.8
0.3

10.1
0.1

7.7
0.5

Pm(Cw)

Parenchyma near
the rind
cell wall area [%
CW(T)]

3.9
0.2

6.3
0.1

7.4
0.1

3.1
0.1

Pr(Cw)

Rind cell wall area
[% CW(T)]

65.3
2.0

58.6
0.8

56.4
1.2

63.2
0.7

Ri(Cw)

Vascular bundle
cell wall area [%
CW(T)]

25.3
1.2

27.0
0.7

28.6
1.1

26.8
0.6

Vb(Cw)

Proportion of tissues as a percentage of the stem area, parenchyma cell size and
cell wall density, and proportion of tissues as a percentage of the total cell wall.
Mean values and standard errors measured for the two sections of the inbred lines.
Numbers in italic correspond to the standard deviations.

Cells were found to be smaller in the parenchyma near the
rind, which was also measured in Legland et al. (2020), who
computed local granulometric curves in a section of maize stem.

M09 and M14 showed the smallest diameters of approximately
40 µm, and M01 showed the largest diameter of approximately
55 µm. M14 differed from the other lines by its greater
heterogeneity in cell size. Figure 1 shows that the cell walls were
not always clearly contrasted due to the presence of cell content
that may result in measuring small size reflecting the distance
between cell wall and cell content together with cell size.

To summarise the granulometric curves, grey-level mean sizes
and standard deviations were computed (Devaux and Legland,
2014; Legland et al., 2014; Table 3). The grey-level mean sizes
were approximately 65–80 µm for the middle parenchyma and
45–60 µm for the parenchyma near the rind. The standard
deviations of the granulometric curves were approximately
30 µm and depended on the inbred line, i.e., larger values were
observed for M04 in the middle parenchyma and for M14 in the
parenchyma near the rind.

Estimating the Proportions of Tissue Cell Walls
From 2D Images to Volumes of Cell Walls: Principles and
Hypotheses
Morphological features were extracted with the objective of
examining their relationships with data such as chemical
composition data or wall digestibility, which are measured on
stems. In the present work, we proposed estimating the volume
of tissues from 2D images considering several approximations
and hypotheses. First, we considered that the internode under
the ear was representative of the stem (Méchin et al., 1998). The
internode was considered as a cylinder, and the density value
of the cell walls was constant regardless of the cell type. This
means that the volume and mass of cell walls are proportional.
With these assumptions, the relative proportions of tissues in
the internode can be estimated from their relative areas in the
internode sections.

In the case of rinds and vascular bundles, the area proportions
of tissue largely reflect the quantity of cell walls because these
are thick and the lumen of the cells is only slightly visible.
Therefore, we approximated that the area of these tissues that
corresponded mainly to their cell wall proportion. In contrast,
the amount of parenchyma cell wall depends on the cell size. This
amount was estimated using the parenchyma tissue area and the
parenchyma cell wall density that was evaluated from the cell size
as described below.

Parenchyma Cell Wall Density
A parenchyma cell wall density estimate was derived from the
grey-level mean sizes. Parenchyma cells were modelled as spheres
with a radius (R) that corresponded to the grey-level mean size
divided by 2. The cell wall density is equal to the ratio between
the wall volume and cell volume, and the wall volume is equal
to the cell surface multiplied by the wall thickness. In this case,
the cell wall density Cw(D) expressed in percentage of volume is
equal to the following:

Cw(D) =
3× CwThickness

R
∗ 100 (5)

In the present work, the cell wall thickness CwThickness was
set to 0.5 µm (Jung and Engels, 2001). Consistent with the cell
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size, the cell wall density was greater in the parenchyma near
the rind (5–6%) than in the middle parenchyma (approximately
4%) (Table 3).

The total amount of cell wall in the parenchyma was assessed
as the density of the cell wall multiplied by the parenchyma
area, i.e., parenchyma cell wall areas, which are considered
representative of their volume in the case of a cylindrical
internode (Table 3). The middle parenchyma area was taken to
estimate the cell wall amount. The area for the parenchyma near
the rind was computed as the total parenchyma area minus the
middle parenchyma area. It therefore also included the region
between 500 and 1,000 µm.

Estimating Tissue Cell Wall Proportions
The total cell wall amounts were computed as the sum of the rind
and vascular bundle areas plus the parenchyma cell wall amounts.
Finally, the proportion of tissues was computed as the relative cell
wall amounts. The values are reported in Table 3. Because of the
different approximations, the rind and vascular bundle cell wall
amounts could be somewhat overestimated. Nevertheless, these
values were considered relevant to compare the lines. Table 3
shows that the rind was the major tissue, followed by the bundles.
Depending on the cell size, stem diameter and parenchyma
proportion, the contribution of parenchyma near the rind and
middle parenchyma varied for the four inbred lines: the smallest
contribution of the parenchyma near the rind was observed for
M14 and the largest was observed for M09.

Tissue Pseudospectra of the Four
Examples of Inbred Lines
Normalisation of Pseudo Spectra
Tissue-specific fluorescence pseudospectra were studied for the
rinds, vascular bundles, and parenchyma near the rind and in
the middle of the section. In the parenchyma, the pseudospectra
depended on the fluorescence properties of the cell walls but
also on the density of the cell wall. Parenchyma pseudospectra
were therefore divided by the cell wall density. In this way,
we expected to estimate the fluorescence that would have been
measured on the walls alone, thereby avoiding the cell lumens.
In addition, the overall fluorescence intensity was found to be
section-dependent regardless of the tissue, which was attributed
to uncontrolled thickness variations. A section normalisation
factor was assessed as follows. For each section and for each tissue
pseudospectra (rind, vascular bundles, parenchyma near the rind
and middle parenchyma after correction for the cell wall density),
the mean fluorescence intensity measured for the 11 channels was
computed: Ri(F), Vb(F), Pr(F), and Rm(F). The normalisation
factor of the section was computed as the mean fluorescence
intensity:

Fn(section) =

(
Ri (F)+ Vb (F)+ Pr (F)+ Rm (F)

)
4

(6)

Each tissue pseudospectrum was divided by this
normalisation factor.

Spectral Information in the Pseudospectra
The resulting pseudospectra are shown in Figure 7 for the four
example lines. In the pseudospectra, each value corresponds to
the average fluorescence intensity of one of the 11 channels of the
multispectral images. The colour images in Figures 4, 5 represent
a summary of the 11 spectral fluorescence channels, while
the pseudospectra represent the average spectral fluorescence
behaviour computed over all pixels of the considered region of
interest. The first five pseudospectra values report the intensity of
UV-induced fluorescence, and the six others report the intensity
of visible-induced fluorescence. As mentioned in the “Materials
and Methods” section, no signal was observed in the channels
BLb, GRb, and GRg, which were kept at baseline. Because the
pseudospectra were normalised, only relative intensity variations
can be discussed.

In the plant cell walls, not all the constituents are fluorescent
for this range of excitation wavelengths. Polysaccharides are
not fluorescent while lignin and hydroxycinnamic acids are
the major natural fluorophores. To compare the normalised
fluorescence intensities with the number of phenolic compounds
(lignin + hydroxycinnamic acids), their relative amounts
were calculated (Table 2). With this normalisation, Line M04
contained less para-coumaric acid than the three other lines,
with a value of 4.87% compared to more than 7.00%, but more
lignin, with a value of 92.51% compared to less than 90.3%.
M14 was characterised by a high relative amount of para-
coumaric acid (9.30%).

Hydroxycinnamic acids emit blue fluorescence with UV
excitation at neutral pH, and lignin has a wide excitation range.
Excitation with UV and blue light results in blue and green
emission of lignins (Donaldson and Williams, 2018; Donaldson,
2020). Thus, a greater amount of visible fluorescence was
assumed to correspond to samples that contained more lignin.
Similarly, a greater amount of UV fluorescence was assumed to
correspond to more hydroxycinnamic acids.

In addition, localisation or the lack of localisation of
hydroxycinnamic acids and lignin could be responsible for the
specific colour observed within a given line. Thus, the yellow
colour of Line M04 observed in Figure 4 could be ascribed to
a high relative amount of lignin together with a low relative
amount of hydroxycinnamic acid. For M14, pink fluorescence
could be ascribed to a low relative amount of lignin together with
a high hydroxycinnamic acid content. In the following, tissue
pseudospectra were examined to identify tissues that presented
differences in phenolic compounds and differences between lines.

Tissue Pseudospectra of the Four Example Lines
For the parenchyma regions (Figures 7A,B), the UV-induced
fluorescence was always stronger than the visible-induced
fluorescence, showing that these tissues contained relatively less
lignin and more hydroxycinnamic acids, which resulted in the
generally blue-coloured parenchyma (Figures 4, 5). In contrast,
rind and vascular bundles showed visible-induced fluorescence
similar to UV-induced fluorescence (Figures 7C,D), which was
consistent with the lignification of these tissues (Akin, 1989;
Wilson et al., 1993; Hatfield et al., 1999; Zhang et al., 2013).
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FIGURE 7 | Macrofluorescence analysis. Tissue-normalised pseudospectra of the four examples of inbred lines: (A) middle parenchyma, (B) parenchyma near the
rind, (C) rind and (D) vascular bundles. The pseudospectra represent the average spectral fluorescence behaviour computed over all pixels of the considered region
of interest. The first five values report the intensity of UV-induced fluorescence, and the six others report the intensity of visible-induced fluorescence. The
pseudospectra were normalised and only relative intensity variations can be discussed.

After normalisation, the fluorescence of the parenchyma was
approximately 10 times more intense than that of the rind and
vascular bundles. This ratio is somewhat overestimated because
cell size was considered for the parenchyma cells and not for
rind and vascular bundles. Nevertheless, the result is consistent
with the fact that the parenchyma cell walls were clearly visible
despite the wall thickness between two cells (1 µm) being much
smaller than the pixel size (2.78 µm). Willemse and Emons (1991)
also reported lower UV autofluorescence for sclerenchyma walls
than for parenchyma walls, which was even more pronounced
when related to the cell wall area. Another explanation for
the relatively lower fluorescence intensity of lignified tissues is
that lignin fluorescence is a complex process involving different
fluorophores with different fluorescence profiles and energy
transfer processes. Lignin fluorescence can be quenched by
interactions with other polymers inside the cell walls, especially
UV-induced fluorescence (Donaldson, 2020).

Comparing the rind and vascular bundles, visible-induced
fluorescence was higher in the rind regions for the four lines.
The composite macrofluorescence images in Figure 4 show

that visible-induced fluorescence was mainly observed in the
sclerenchyma sheath of vascular bundles and that the sheath
was much thicker in the rind than in the pith. In addition, the
relative proportion of blue parenchyma was higher in the bundle
than in the rind.

In the case of the M09 parenchyma, pseudospectra allow the
quantification of the lower intensity of the parenchyma near the
rind compared to the middle parenchyma. In the case of M04,
visible-induced fluorescence was found to be much lower in the
parenchyma near the rind than in the middle parenchyma. This
finding corresponds to the blue and yellow–white fluorescences
observed in Figure 4 for the parenchyma near the rind and the
middle parenchyma, respectively. For the other two lines, the
pseudospectra of the two parenchyma were largely similar.

Looking more specifically at the lines, the intensity of the
visible-induced fluorescence was much higher for M04 than for
the other three lines in the rind, bundles and middle parenchyma.
This finding is consistent with the high relative amount of lignin.
It also suggests that a significant amount of lignin was found
in the parenchyma cell walls for this line. The occurrence of an
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equal intensity after blue excitation in the green BLg and red BLr
channels led to the strong yellow fluorescence of the rind and
vascular bundles and to the yellow–white fluorescence of the cell
walls in the middle parenchyma (Figure 4).

The pink fluorescence of the rind and vascular bundles
observed for M14 was due to a lower relative green fluorescence
after blue excitation (Blg channel), which corresponded to
the lower relative lignin content. This was also measured
for parenchyma cell walls. More generally, for a given line,
the relative proportions of fluorescence measured after blue
excitation in channels green BLg and red BLr were similar for all
tissues, which suggests that the signature of blue-induced lignin
fluorescence would not be tissue-dependent but line-dependent.

The highest UV-induced fluorescence intensity was observed
for M09 and M14 in the rind and the two parenchymas. The two
lines contained the most hydroxycinnamic acids. In the case of
M09, almost no visible-induced fluorescence was observed in the

parenchyma, suggesting that lignin was only found in the rind
and vascular bundles.

In conclusion, the normalised pseudospectra were considered
relevant to quantify the differences in the tissue fluorescence
observed in the multispectral images.

Histological Variability Within the 14
Inbred Line Collections
Morphological Analysis
Descriptors Extracted for the 14 Inbred Lines
Examples of images acquired for each of the 14 inbred lines can
be found in the Supplementary Figure 1. All descriptors were
computed for the two stems of the 14 inbred lines. Average values
are reported in the Supplementary Table 3. The main points
are reported here. The area of the stem section ranged from
1.21 to 2.36 cm2, with an average of 1.78 cm2. The parenchyma

FIGURE 8 | Morphological analysis of 14 inbred lines: principal component analysis. (A,B) Similarity map and loadings of components 1 and 2 (44 and 15% of the
total variance). (C,D) Similarity map and loadings of components 3 and 4 (14 and 10% of the total variance). Convex hulls were drawn for each inbred line. Loadings
are shown as correlation circles. Considering that the variables in the middle of the correlation circles are not representative of principal components, they were
represented as points. Only variables with correlation over 0.5 with the principal component are shown. The similarity maps reveal a considerable variability between
inbred lines based on their morphological descriptors.
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covered on average 76.1% of the total area of stem sections,
and the coefficient of variation was 8% for the set of 14 inbred
lines. Larger variations between inbred lines were observed for
the rind and vascular bundle relative areas, with average values
of 17.0 and 7.0%, respectively, and coefficients of variation of
27 and 20%, respectively. The vascular bundle density varied
from 117 to 50 per cm2 with an average value of 77. Legland
et al. (2017) also studied maize internodes under the ears of four
inbred lines grown under two irrigation conditions and found
values ranging from 1.0 and 3.0 cm2 for the area of the sections.
The rind accounted for 10.3 to 16.8% of the section area, the
vascular bundles accounted for 3.1 to 7.3% and the parenchyma
accounted for 80–86%. The bundle density ranged between 111
and 66 per cm2. Vo et al. (2020) compared internodes under
the ear of six maize inbred lines and reported values ranging
from 1.6 and 4.0 cm2 for the area of the sections and 11–19 and
77–86% of the section area of the rind and pith parenchyma,
respectively. The bundle density ranged between 76 and 42 per
cm2. In the internode sections of sorghum, a species that is very
close to maize, Wilson et al. (1993) found that the rind accounted
for 16.2% of the total section area, the parenchyma accounted
for 79.2% and the vascular bundles in the pith parenchyma
accounted for 4.7%. The values found in our work are on the same
order of magnitude of those reported in these manuscripts.

In the present work, we estimated the contribution of the
different tissues to the total wall content of the internodes
on the basis of the tissue surface proportion in the sections
and from a simple internode model. The rind and vascular
bundles represented 61 and 25% of the total cell wall on
average, respectively, with coefficients of variation of 8 and 12%,
respectively. The middle parenchyma and parenchyma near the
rind represented 9 and 5%, respectively, of the total cell wall, with
high coefficients of variation of 25 and 30%, respectively. The
values reported here for the relative contribution of tissues to the
total cell walls were in the range of those reported by Wilson et al.
(1993) for sorghum internodes. In this study, the tissues of one
cultivar were manually separated and analysed individually. The
rind and vascular bundles accounted for 68.7 and 11.4% of the
total cell wall, respectively. The pith parenchyma accounted for
22% of the total cell walls.

Considering all descriptors, the coefficient of variation ranged
between 6% (standard deviation of cell diameters) and 36%
(average area of individual vascular bundles). An ANOVA test
was run individually on the descriptors to test their ability to
discriminate lines. All descriptors were found to be significant for
the line effect, with p values lower than 0.01.

Principal Component Analysis
A principal component analysis was performed on the subset of
13 morphological descriptors of the 14 inbred lines, including
the stem area, proportion of cell walls in the stem, relative
proportions of cell wall ascribed to tissues, parenchyma mean cell
diameters and standard deviations, and vascular bundle density
and morphology. A variance analysis was applied to the principal
components. The four first principal components accounted for
44, 15, 14, and 10% of the total variance, and the line effect of
these components was highly significant.

Figure 8A shows the similarity map of components 1 and
2 and Figure 8C shows the similarity map of components 3
and 4 according to inbred lines. The corresponding loadings
(Figures 8B,D) show the importance of the individual variables
for the specified components.

Component 1 differentiates Lines M06, M11, M14, M01, and
M03 based on the relatively high rind proportions [Ri(Cw)],
high total cell wall amounts [Cw(T)] and large vascular
bundle individual areas [Vi(A)], and it differentiates Lines
M09, M07, M13, M12, and M04 based on the high vascular
bundle densities [Vb(D)] and parenchyma cell wall amounts
[Pm(Cw) and Pr(Cw)].

Component 2 differentiates lines based on their stem section
area [St(A)], and it differentiated M09 and M07, which had a
small section area, from M14 and M10, which had a larger section
area. The two stems of M11 had very different stem diameters,
with actual values of 2.6 and 1.5 cm2. For all other lines, the
two stems were largely similar, as revealed by the convex hulls.
Component 2 mainly described the stem area variations, with
Lines M14, M10, M13, and M08 showing larger stem diameters
than Lines M09, M07, M02, and M04.

Figure 8B highlights the correlation between the
morphological descriptors. Namely, the expected strong
contribution of the rind to the total cell wall amount in the stem
as well as the negative correlation with the parenchyma cell wall
amounts. A negative correlation r =−0.77 was observed between
the vascular bundle density and the average individual area of
vascular bundles. Indeed, a general trend was observed among
the 14 inbred lines, with M06, M11, M14, and M01 having large
bundles over 0.1 mm2 and less than 60 bundles per cm2 and M09,
M07, M12, and M05 having small bundles smaller than 0.1 mm2

and more than 80 bundles per cm2. Zhang et al. (2020) measured
the area of individual vascular bundles and their density in the
stem for 480 inbred lines and reported a negative correlation
between these two descriptors.

Beyond examining the components individually, it is
interesting to note the distribution of the 14 inbred lines that

TABLE 4 | Macrofluorescence analysis of 14 inbred lines.

Rind and vascular bundles

Component 1
72%

Component2
16%

Component 3
11%

Component 4
1%

Line 12*** 5*** 19*** 8***

Tissue 270*** – 17*** –

Interaction – – – –

Parenchyma tissues

Component 1
71%

Component2
18%

Component 3
7%

Component 4
3%

Line 11*** 9*** 9*** 15***

Tissue 70*** 94*** 22*** 6*

Interaction 3** 9*** 5*** 4***

Variance analysis. Effects of inbred lines and tissues on the principal components.
F value and significance. *, **, *** means that the probability was below 5%, 1%
and 0.1%, respectively.
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reveals their specificity and the great variability of the collection.
The same comment can be applied to the similarity maps of
components 3 and 4. In this case, the components described
variations in the parenchyma cell diameters Pm(Cd), Pm(Cs),
Pr(Cd), and the proportion of vascular bundles Vb(CW). Line
M03 was clearly highlighted mainly because of the much lower
relative number of vascular bundles due to its low density in
number. On this similarity map, the other lines contrasted were
M08, M04, M02, M05, M14, M11, and M12.

We investigated the correlation between the morphological
descriptors and the relative amounts of chemical compounds to
further explore their tissue origin, but no correlation was found.

Autofluorescence Variations According to Tissue and
Lines
The fluorescence colour quantified in the pseudospectra
should reveal more lignin or hydroxycinnamic acids and their
localisation in some specific tissues. To compare the 14 inbred

lines of the study, multivariate analyses were performed on
the tissue pseudospectra. Principal component analyses were
performed to assess the relative importance of the tissue or line
in determining the fluorescence properties. In a second step, the
correlation between the relative amounts of phenolic compounds
and the tissue pseudospectra was examined.

Principal Component Analysis of Tissue Pseudospectra
Because of the general intensity differences, principal component
analyses were carried out separately on the rind and vascular
bundle pseudospectra on the one hand and on the parenchyma
pseudospectra on the other hand. A variance analysis was applied
to the principal components to evaluate the effects of lines and
tissues and their interaction.

Table 4 reports the results of the variance analysis applied on
the four first principal components computed for the rind and
vascular bundles accounting for 72, 16, 11, and 1% of the total
variance. For the four components, the line effect was significant.

FIGURE 9 | Macrofluorescence analysis of the rinds and vascular bundles of 14 inbred lines: principal component analysis. (A,B) Sample similarity maps of
components 1–3 (72 and 11% of the total variance) according to tissues and 3 and 4 according to inbred lines (11 and 1% of the total variance). (C) Loadings 1, 3,
and 4. The similarity map 1–3 reveals the strong variability between rind and vascular bundles. The significant variability between inbred lines based on their
fluorescence properties is observed in the similarity map 3 and 4.
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Rind and vascular bundles differed on components 1 and 3,
and no interaction was revealed. Figure 9A shows the similarity
map of components 1 and 3 according to the tissues. Figure 9B
shows the similarity map of components 3 and 4 according to
the lines. Figure 9C shows and the loadings of components 1,
3, and 4. Loading 1 revealed the relative variations between UV-
and visible-induced fluorescence. Loading 3 was based on the
relative variations observed in visible-induced fluorescence, e.g.,
green emission after blue excitation (BLg channel) versus red
emission after green excitation (GRr channel). Loading 4 showed
a difference in the relative blue emission using UV excitation
of U1 and U2 (U1b and U2b channels). The similarity map of
components 1 and 3 shows that for all lines, the rind and vascular
bundles differed mainly by their relative visible and UV-induced
fluorescence, and to a lesser extent by a relatively higher red
fluorescence emission of the rind after green excitation. This
difference could be ascribed either to cortical parenchyma cell
walls or to their content. On this map, the line effect was mainly
caused by M04, which corresponded to the extreme points for
the two tissue scatterplots. The similarity map of components 3

and 4 reveals the line effect among the 14 lines. Despite some
overlap, contrasting fluorescence fingerprints were observed for
some lines, such as M04, M05, M14, and M12. M14, M03,
and M06 showed relatively higher red fluorescence after green
excitation (GRr channel) (see also Figures 7C,D for M14). Line
M05 was characterised by its relatively high blue emission after
U1 excitation compared to M12 or M13.

Table 4 and Figure 10 show the results obtained for the two
parenchyma tissues. The first four components accounting for 71,
18, 7, and 3% of the total variance were found to be significant for
both the lines, tissue and their interaction. Similarity maps and
loadings are shown for components 1 and 2 (Figures 10A,B). The
same map was drawn twice by considering the tissues or the lines.
Figures for components 3 and 4 are given in Supplementary
Figure 2. Loading 1 (Figure 10C) was partly similar to the one
obtained for the rind and vascular bundles, thus showing the
relative response after UV and visible excitation. Component
1 mainly described the differences between lines, with M04,
M02, and M03 showing stronger visible-induced fluorescence
and M09 and M05 showing stronger UV-induced fluorescence,

FIGURE 10 | Macrofluorescence analysis of the parenchyma tissues of 14 inbred lines: principal component analysis. (A,B) Sample similarity maps of components
1–2 (71 and 18% of the total variance) according to tissues and inbred lines. (C) Loadings 1 and 2. The similarity maps reveal the significant variabilities between
inbred lines and between parenchyma near the rind and middle parenchyma.
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especially in the middle parenchyma. Loading 2 (Figure 10C)
described the relative intensity of the two parenchyma tissues,
thus attesting to the generally higher fluorescence in the middle
parenchyma except for the U1-induced fluorescence, which was
slightly higher in the parenchyma near the rind. The interaction
was also significant, highlighting that the differences near the
rind and middle parenchyma were enhanced for some lines, such
as M09 and M05. As expected, M04 was found to be different
from the other lines. Other lines, such as M05, were found to
be characteristic. For this line, the visible fluorescence in the
middle parenchyma was very low, which could be related to
the low lignin content of this line. In addition, the intensity
difference between the middle and near the rind parenchyma
was important, the cell content was found near the rind,
and relatively high U1-induced fluorescence compared to U2-
induced fluorescence could be observed, especially near the rind.

In summary, this analysis revealed that fluorescence properties
were primarily tissue-dependent but also clearly line-dependent.
In particular, the relative fluorescence emission after blue
excitation seemed to be similar within an inbred line regardless
of the tissue. These differences should be related to variations

in the lignin content, composition and structure or in the
phenolic acid contents.

Exploring the Correlation Between Biochemical Data and
Tissue Fluorescence
Because the fluorescence properties of compounds depend on
several factors, the interpretation of fluorescence variations is
not straightforward. We investigated the correlation between
tissue fluorescence pseudospectra and the relative amounts of
fluorescent chemical compounds to further explore their tissue
origin. The tissue fluorescence pseudospectra were normalised
according to the individual sections, and this normalisation still
allowed for the preservation of the relative intensity variations
among the rind, vascular bundles and parenchyma. In parallel,
the relative lignin, ferulic and para-coumaric acid amounts were
considered after normalisation to their total amount (Table 2).
A drawback is that this normalisation generates correlations
between the variables. Thus, the correlation coefficient values
were −0.94 between lignin and para-coumaric acid amounts,
−0.54 between lignin and ferulic acid amounts, and 0.23 between
para-coumaric and ferulic acid amounts.

FIGURE 11 | Macrofluorescence analysis. Correlation among lignin, para-coumaric acid (pCA), ferulic acid (FA) and tissue autofluorescence pseudospectra: (A)
middle parenchyma, (B) parenchyma near the rind, (C) rind, and (D) vascular bundles. Significant coefficients are highlighted by black points. For all tissues, a
significant positive correlation was found between lignin and blue-induced fluorescence. For para-coumaric acid, significant positive correlations were found for
UV-induced fluorescence in the rind and in the parenchyma near the rind but not in vascular bundles and middle parenchyma.
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Correlation coefficients were drawn according to the channels
of the tissue pseudospectra (Figure 11). Significant coefficients
are highlighted by black points. The correlation was always
reversed for lignin and hydroxycinnamic acids, which is expected
from the correlation induced by normalisation. For all tissues,
a significant positive correlation was found between lignin and
blue-induced fluorescence. This finding suggests that lignin
is observed regardless of the tissue and that a high relative
amount measured for the whole stem occurs in all tissues.
In the case of the middle parenchyma, the lignin correlation
is also related to red emission after U2 and green excitation.
For para-coumaric acid, significant positive correlations were
found for UV-induced fluorescence in the rind and in the
parenchyma near the rind but not in vascular bundles and
middle parenchyma. A significant positive correlation was found
for ferulic acid in the parenchyma near the rind and to a
lesser extent in the middle parenchyma. These results indicate
that para-coumaric acids are mainly localised in the rind and
parenchyma near the rind, and localisations of ferulic acids are
mainly located in the parenchyma near the rind and in the middle
parenchyma. In addition, the ferulic acid fluorescence signal was
revealed mainly after U1 excitation, i.e., for shorter excitation
wavelengths, while para-coumaric acid was revealed using both
U1 and U2 filters.

DISCUSSION AND CONCLUSION

The objective of the present work was the histological
quantification of the morphology and fluorescence signature
of maize forage stem sections for a set of 14 inbred lines
used as parents for maize hybrid production. In addition to
the relationship with end-use properties such as digestibility,
this work aimed to explore the methodological potential of
two techniques, namely, darkfield and fluorescence imaging, to
study maize stem collection. Macrovision was retained to acquire
images of whole stem sections with a fair pixel resolution, thus
allowing for the quantification of cell size together with tissue
proportions. The INRAE BlueBox prototype is dedicated to
morphological plant tissue imaging with good contrast without
any labelling because of darkfield illumination. This kind of
illumination, which is less sensitive to variations in the density
of walls than the usual transmitted light, is more suited to
cell size analysis directly from grey-level images without any
cell segmentation. Automated fluorescence macroscopes for
multispectral image acquisition are the tools of choice for
studying the autofluorescence properties of phenolic compounds
in plant tissues. Both techniques should be considered medium-
throughput methods that allow for the acquisition of 1 cm2 large
images in approximately 5 and 20 mins per image for the BlueBox
and the fluorescence macroscope, respectively. In the present
work, sections were observed after being stored in ethanol, i.e.,
ethanol soluble material was removed, which led to the emptying
of the cells except in the rind or in the parenchyma near the rind,
where residual cell contents remained for some inbred lines. The
fluorescence properties of this material suggest that it could be
residual chlorophyll.

Image analysis was implemented to extract morphological
features and autofluorescence pseudospectra. Four tissues were
studied: rind, vascular bundles, parenchyma near the rind and
middle parenchyma. In the present work, serial sections were
used for the two devices, and images were segmented separately.
One improvement would be to acquire images exactly for the
same section and develop a segmentation workflow that takes
into account both fluorescence and darkfield properties. For
both images, the segmentation workflow was based on the
same image processing steps, i.e., grey-level and size thresholds
and alternating filtering, and it was fully automated. The only
user intervention was to validate and adapt if necessary the
automatic or preset thresholds. The rind, vascular bundles
and parenchyma regions of interest were extracted. The rind
segmented from the darkfield images corresponded to a material-
dense region, with small cells having thick walls and bundles
with thick sclerenchyma sheaths. The segmentation was also
partially dependent on the occurrence of cell contents in and near
the rind. The parenchyma near the rind was not segmented in
the same manner. The 500 µm below the rind was examined
to demonstrate the presence or absence of differences with
the middle parenchyma. For this parenchyma, the cell size
was smaller, and the fluorescence differences with the middle
parenchyma were dependent on the line.

In this manuscript, 3D descriptors were estimated from 2D
images given some assumptions. Indeed, the morphological
descriptors were computed based on an estimation that
considered the cell wall density of parenchyma tissues and
the stem as a cylinder and the same histology of cross-
sections all along the cylinder. The total derived cell wall
amount can be interpreted as the relative areas of rind,
bundles and parenchyma cell walls in the stem section. The
fluorescence pseudospectra were also normalised by considering
the parenchyma cell wall density.

We found a strong inbred line effect on the morphological
descriptors. The most discriminant features were (1) the relative
amount of rind and parenchyma tissues together with the density
and size of individual bundles, (2) the stem area, and (3) the
middle parenchyma cell diameter and distribution of the total
vascular bundle amount. No correlation was observed between
cell size and stem section, indicating that the diameter of the stem
would rather depend on the number of cells in the parenchyma.
A significant inverse correlation was observed between the
vascular bundle size and density. Heckwolf et al. (2015) and
Zhang et al. (2021) also found variations in stem diameter as
well as in the area of the rind and pith of the inbred lines they
analysed. Zhang et al. (2021) further analysed the variation in
vascular bundle traits and reported wide phenotypic variations in
vascular bundle size, number, and distribution density. Thirty of
the phenotypic traits related to bundles showed high heritability,
suggesting that the observed variations were at least partly of
genetic origin. At the scale of whole cross-sections, they observed
a negative correlation between the vascular bundle area and
density, which was also observed in this study. However, neither
of these studies considered the size of the cells in the parenchyma.

We did not find any correlation between the morphological
descriptors and the phenolic composition of the 14 inbred
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lines, which could be explained by several hypotheses. First,
biochemical measures were obtained from the whole stem,
including the node, and we analysed sections taken in the middle
of the internode. Second, none of the three phenolic constituents,
i.e., lignin, para-coumaric or ferulic acids, can be considered
tissue-specific biochemical markers. This conclusion is consistent
with the results of the fluorescence pseudospectral analysis, at
least for lignin. Indeed, the correlation profiles of the relative
amount of lignin with the tissue pseudospectra clearly showed
that a higher level of lignin resulted in a higher visible-induced
fluorescence in all tissues.

Specific fluorescence signatures with a predominant tissue
effect have been identified, and the inbred line effect was also
always found to be significant. The rind, as the most lignified
tissue, showed strong visible-induced fluorescence. Our results
suggest that the colour of the visible-induced fluorescence, which
was line-dependent, may depend on the amount of colocalised
lignin and para-coumaric acid.

The relative amount of para-coumaric acid was found to
be significantly correlated with the UV-induced fluorescence
intensity in the rind and in the parenchyma near the rind,
while ferulic acid was significantly correlated mainly with the
parenchyma near the rind. In grasses, para-coumaric acid is ester
linked to lignin and, to a lesser extent, to hemicelluloses (Hatfield
et al., 2017). Since the rind is highly lignified, the presence of para-
coumaric acid was expected. More surprisingly, para-coumaric
acid was present in the parenchyma near the rind.

The parenchyma near the rind was less fluorescent on
average than the middle parenchyma, although the extent of the
difference was dependent on the inbred lines. Fasga staining is
performed to reveal tissue lignification and often reveals this
parenchyma region (El Hage et al., 2018). In this manuscript,
the parenchyma Fasga that was coloured in red was correlated
to the lignin amount, cell wall digestibility, and para-coumaric
acid content (to a lower extent). They did not find any correlation
between the lignin content and the red intensity in the rind or the
number or density of bundles in the stem.

To further interpret the differences in autofluorescence
between the tissues, it would be useful to have additional
information about the biochemical composition of the different
tissues. For example, the amount of etherified ferulic acid
was not determined. Fasga or other lignin selective staining,
such as Wiesner or Maüle staining, could be advantageously
used to confirm the localisation of lignified tissues and
reveal chemical differences in the lignin type (Méchin et al.,
2005). Immunolabelling using antibodies would allow further
identification and localisation of hydroxycinnamic acids
(Philippe et al., 2007; Tranquet et al., 2009). Microspectroscopic

techniques, such as Raman or infrared imaging (Gierlinger,
2018), would allow further localisation of phenolic compounds
together with cell wall polysaccharides.
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Aboveground biomass (AGB) and leaf area index (LAI) are important indicators to
measure crop growth and development. Rapid estimation of AGB and LAI is of great
significance for monitoring crop growth and agricultural site-specific management
decision-making. As a fast and non-destructive detection method, unmanned aerial
vehicle (UAV)-based imaging technologies provide a new way for crop growth
monitoring. This study is aimed at exploring the feasibility of estimating AGB and LAI
of mung bean and red bean in tea plantations by using UAV multispectral image data.
The spectral parameters with high correlation with growth parameters were selected
using correlation analysis. It was found that the red and near-infrared bands were
sensitive bands for LAI and AGB. In addition, this study compared the performance
of five machine learning methods in estimating AGB and LAI. The results showed
that the support vector machine (SVM) and backpropagation neural network (BPNN)
models, which can simulate non-linear relationships, had higher accuracy in estimating
AGB and LAI compared with simple linear regression (LR), stepwise multiple linear
regression (SMLR), and partial least-squares regression (PLSR) models. Moreover,
the SVM models were better than other models in terms of fitting, consistency, and
estimation accuracy, which provides higher performance for AGB (red bean: R2 = 0.811,
root-mean-square error (RMSE) = 0.137 kg/m2, normalized RMSE (NRMSE) = 0.134;
mung bean: R2 = 0.751, RMSE = 0.078 kg/m2, NRMSE = 0.100) and LAI (red bean:
R2 = 0.649, RMSE = 0.36, NRMSE = 0.123; mung bean: R2 = 0.706, RMSE = 0.225,
NRMSE = 0.081) estimation. Therefore, the crop growth parameters can be estimated
quickly and accurately using the models established by combining the crop spectral
information obtained by the UAV multispectral system using the SVM method. The
results of this study provide valuable practical guidelines for site-specific tea plantations
and the improvement of their ecological and environmental benefits.

Keywords: UAV, multispectral, machine learning, leaf area index, above-ground biomass
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INTRODUCTION

Intercropping, as the essence of traditional agriculture, has
the advantages of increasing yield and quality (Mao et al.,
2014; Egesa et al., 2016), promoting the utilization of nutrient
resources (Rivest et al., 2010; Crème et al., 2016; Davies
et al., 2016), increasing biodiversity (Bainard et al., 2011; Sanaa
et al., 2016), and reducing pests and weeds (Brooker et al.,
2015; Lopes et al., 2016). Tea plants [Camellia sinensis (L.)
O. Kuntze] are cultivated worldwide as an economical woody
plant, which grow in warm, humid, and light scattering regions.
The different intercropping patterns of tea plantations, such
as tea-fruit and tea-soybean intercropping, will be more in
line with the biological characteristics of tea plant growth by
improving microenvironment and resource utilization. Previous
studies have shown that diverse agroforestry-tea intercropping
systems, such as tree/tea and soybean/tea cannot only regulate
the ecological environment of tea plantation, improve the
soil nutrition, but also reduce the occurrence of diseases
and insect pests and grass, and achieve high yield and
quality (Sedaghathoor and Janatpoor, 2012; Li et al., 2019).
However, the intercropping density and the growth status of
intercropping crops have a great influence on the growth
of tea plants (Natarajan and Willey, 1980; Huang et al.,
2019). A better understanding of the growth and development
of intercropping crops is of great significance for guiding
young tea plantation intercropping techniques and improving
planting benefits.

Aboveground biomass (AGB) and leaf area index (LAI) are
two main parameters of crop growth, which can reflect the
growth status of legumes intercropped in young tea plantations,
thus contributing to production management in tea plantations
(Li et al., 2015; Liu B. et al., 2017). Rapid and accurate
estimation of these two parameters can provide a strong basis
for the timely formulation of management measures for young
tea plantations (Li B. et al., 2020). However, the traditional
crop growth assessment method is based on destructive sampling,
which is to manually collect data samples in the field, or use field
measuring instruments to evaluate crops (Freeman et al., 2007;
Yue et al., 2018; Afrasiabian et al., 2020). Although this method is
accurate, it is destructive, labor-intensive, time-consuming, and
not operationally feasible for large-scale spatial and temporal
measurements (Wang et al., 2017). Another relatively new
method is to use instruments for measurement, which is less
destructive to crops, but external factors have a certain impact on
experimental equipment, and it is also difficult to apply to rapid
monitoring of field crops.

In recent years, high-throughput non-destructive plant
phenotyping techniques based on UAV are becoming a powerful
tool for crop monitoring, due to the advantages of convenient
operation, high spatial and temporal resolution, and reasonable
spatial coverage, such as crop plot detection (Liu H. et al.,
2017), crop growth status monitoring (Pölönen et al., 2013;
Harkel et al., 2019; Maimaitijiang et al., 2019), crop yield
prediction (Zhou et al., 2017; Gilliot et al., 2020; Li B. et al.,
2020), and plant water status assessment (Romero et al., 2018).
Machine learning, as an important data analysis method, has

been used to establish crop remote sensing estimation models
combined with spectral parameters of remote sensing images.
For example, Jin et al. (2015) used a vegetation index (VI)
and radar parameter to accurately estimate the LAI (R2 = 0.83)
and biomass (R2 = 0.90) of winter wheat using partial least-
squares regression (PLSR). Devia et al. (2019) used an unmanned
aerial vehicle (UAV)-based multispectral system for aerial crop
monitoring to combine seven VIs of rice growth in a multivariate
regression model to estimate rice biomass. Furthermore, it was
confirmed that this method could estimate crop biomass in
a large area with an average correlation coefficient of 0.76.
Han et al. (2019) pointed out that the random forest (RF)
model derived from the crop surface model using VIs and
crop height correlation indicators can predict corn biomass
(R2 = 0.699, root-mean-square error (RMSE) = 1.2), and its
accuracy is slightly higher than that of the backpropagation
artificial neural network (ANN) and stepwise multiple linear
regression (SMLR) models. Qi et al. (2020) developed a model for
the estimation of peanut LAI by using a backpropagation neural
network (BPNN) with UAV-based multispectral image data
(R2 = 0.968, RMSE = 0.165). Tatsumi et al. (2021) constructed
a tomato biomass estimation model using red-green-blue (RGB)
and multispectral image data acquired from UAV with feature
variable selection and machine learning and improved the
estimation accuracy (rRMSE = 8.8–28.1%). Similarly, Jiang et al.
(2019) established a model for the estimation of rice biomass
by using RGB and multispectral image data obtained from
UAV and further improved the estimation accuracy of the
model by combining meteorological data with RF (R2 = 0.92,
RMSE = 126.28 g/m2).

However, there were few reports on the use of UAV-based
multispectral image data combined with machine learning to
monitor crop growth of tea plantations, and it is difficult to
provide valuable data support and practical guidance for site-
specific management decisions and the construction of smart
tea plantations. Therefore, this study attempts to use UAV-
based multispectral imagery combined with ground-measured
sample data to explore the feasibility of estimating AGB
and LAI using the spectral parameters in intercropping tea
plantations. The spectral parameters sensitive to crop growth
response were selected according to the correlation analysis.
Then, the remote sensing monitoring models of intercropping
crop growth parameters suitable for young tea plantation
were constructed using machine learning, and the estimation
performance of five machine learning models was evaluated:
(1) Simple linear regression (LR), (2) SMLR, (3) PLSR models,
(4) support vector machine (SVM), and (5) BPNN. We
hypothesized that the SVM method can simulate both linear
and non-linear relationships between multiple independent
variables and one factor. Compared with other modeling
methods, the SVM model should have a higher degree of
explanation for AGB and LAI. It is hoped that the results of
this study can provide basic data and theoretical support for
the growth monitoring of crops in young tea plantations in
order to provide valuable practical guidelines for site-specific
tea plantations and the improvement of their ecological and
environmental benefits.
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MATERIALS AND METHODS

Study Area and Experimental Design
The field experiment was conducted at the tea research
demonstration base of Qingdao Agricultural University
(36◦26 N, 120◦34 E, average altitude 54.47 m a.s.l.). The
area has a warm temperate continental monsoon climate,
with precipitation mostly occurring during summer and
autumn and a large temperature difference between day and
night. The average annual temperature is 12.1◦ (the annual
maximum/minimum temperature is 38.6/−18.6◦), and the
annual average precipitation is 708.9 mm. The experimental
tea plantation covers an area of 100 m × 30 m, with a soil pH
of 6.5. The location diagram of the experiment area is shown
in Figure 1A.

The tea plants planted in the tea plantation are half-year
seedlings and the variety was Zhongcha 108, with a total of 11
rows. In early June 2020, mung bean and red bean were planted
in the tea plantation, and the varieties, namely, Zhonglv 4 and
Qidonghong were used. Red bean (Vigna angularis L.) and mung
bean (V. radiata (L.) Wilczek) were planted in rotation with 6
rows each. Each row was divided into 10 plots, with a total of 120
plots. The specific test design is shown in Figure 1B.

Unmanned Aerial Vehicle Imagery Data
Acquisition and Preprocessing
Multispectral cameras and accessories were mounted on a UAV
platform (DJI M200 V2, DJI, Shenzhen, China) during data
collection. The UAV has four propellers, is equipped with two
7,660 mAh (22.8 V) batteries with a battery life of 38 min, and
can maintain stability at low speed and low altitude; for the data
acquisition, the takeoff mass was 5.5 kg. Images were taken at 25
m above ground level (AGL) at a speed of 1.5 m/s. The collection
dates were July 24 and August 11, 2020.

Multispectral images were acquired using a multispectral
camera MS600 (Yusense, Qindao, Shandong, China), which

has a resolution (effective pixels) of 1,280 × 960 pixels. The
multispectral camera used in this experiment was equipped with
six spectral wavebands, namely blue, green, red, red edge, and
two near-infrared wavebands (Table 1). A downward light sensor
system was installed horizontally on the top of the UAV to
measure the environmental irradiance and the readings of post-
calibrate reflectance. As another source of radiometric calibration
data, the standard panel attached to the multispectral camera
was used for image calibration on the ground before each
flight. Images in this study were captured in sub-centimeter
pixel resolution, and the flight survey was configured with an
80% side and 80% forward overlap. The original multispectral
images obtained from each aerial photography operation were
processed using Yusense map V1.0 software (Yusense, Qindao,
Shandong, China) to generate a complete multispectral image.
Then, the average digital number (DN) values of the six
bands of each experimental cell are extracted using ENVI 5.2
software (Research Systems Inc., Boulder Co., United States) for
subsequent processing.

Ground Data Acquisition
Field measurements were conducted on the same days as the UAV
surveys to provide ground-truth data. To measure the LAI of
red bean and mung bean accurately, a place with uniform crop
growth (1 m × 1 m) in each plot was selected to measure the
LAI using CI-110 plant canopy digital image analyzer (CID Bio-
Science Inc., WA, United States). When measuring LAI, direct
sunlight was avoided. First, a blank value was measured above
the crop canopy, and then four values were randomly measured
below the crop canopy. The average LAI of mung bean and red
bean in the community was obtained by maintaining the lens
level throughout the measurement, and the results are shown
in Figure 2.

After the measurement of LAI, mung bean or red bean
were randomly selected from experimental plots, which were
intercepted from the height of 1 cm above the ground, and the

FIGURE 1 | Research area. (A) The location of the experiment area; (B) experimental design.
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TABLE 1 | Center wavelength and full width at half maximum (FWHM) bandwidth
of each spectral band of the multispectral camera.

Spectral band Color Sample Center
wavelength (nm)

Bandwidth FWHM
(nm)

Blue Blue 450 25

Green Green 555 25

Red Red 660 25

Red edge Pink 710 25

Near infrared Light purple 840 25

Near infrared Purple 940 25

total number of plants in the sampling area was measured. The
sample was placed in a paper bag, and the fresh biomass of the
sample was measured immediately. The paper bag was placed
in an oven at 80◦ for 24 h and maintained in a constant mass
state. Then the sample was weighed to determine the dry mass to
estimate the total biomass of the whole plot, and the results are
shown in Figure 2.

Selection of Spectral Parameters
A spectral parameter should combine the reflectance of different
bands with a VI in a certain way, which can reduce the influence
of background environmental information on the crop canopy
spectrum. According to previous studies, we selected 22 VIs
and combined them with the 6 spectral bands of the MS600
multispectral camera to estimate the AGB and LAI of red
bean and mung bean. Specific spectral parameters are shown
in Table 2.

Data Analysis
In this study, 120 datasets of red bean and mung bean were
collected. Each dataset was composed of ground measurement
data and UAV remote sensing data. In data analysis, three-fourth

(90 datasets) and one-fourth (30 datasets) of the total data were
divided into training sets and test sets, respectively. In the training
sets, the LR method was used to establish growth parameter
estimation models based on a single spectral parameter, and
the SMLR method was used to establish growth parameter
estimation models based on multiple spectral parameters. These
two different established models were evaluated using the
test datasets. The feasibility of the models was evaluated by
the coefficient of determination (R2), root-mean-square error
(RMSE), and normalized RMSE (NRMSE). A larger R2 value
indicates a better model fit, while smaller RMSE and NRMSE
values indicate a higher model accuracy. Finally, the estimation
models of AGB and LAI were established by using three machine
learning methods: PLSR, SVM, and BPNN. In the process of
model building, the random 10-fold cross-validation method was
used to divide 120 sample data into 10 parts. Each time, 90% of
all samples was used to fit the model, and the remaining 10% was
used as a test set to estimate performance metrics. This process
was repeated ten times, and each model was run 100 times in
total. The mean values of R2, RMSE, and NRMSE were calculated
to evaluate the accuracy of AGB and LAI estimation models.
The values of R2, RMSE, and NRMSE were calculated using the
following formulas (1)–(3), respectively:

R2
= 1−

∑n
i = 1 (xi−yi)

2∑n
i = 1 (xi−x)2 (1)

RMSE =

√∑n
i = 1 (yi−xi)

2

n
(2)

NRMSE =
RMSE

X
(3)

where xi is the measured AGB or LAI for red bean and mung
bean, x is the average measured AGB or LAI, yi is the AGB or
LAI predicted by the model, and n is the number of data points.

FIGURE 2 | The ground-truth data for leaf area index (LAI) and aboveground biomass (AGB) of intercropping crops. (A) AGB of red bean and mung bean; (B) LAI of
red bean and mung bean.
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TABLE 2 | The spectral parameters used in this study.

Spectral parameters Calculation formula References

B.450 / /

G.555 / /

R.660 / /

RE.710 / /

NIR.840 / /

NIR.940 / /

DVI NIR.840-G.555 Naito et al., 2017

NDVI (NIR.840-
R.660)/(NIR.840+R.660)

Rouse et al., 1974

EVI 2.5*(NIR.940-
G.555)/(NIR.940+6*R.660-

7.5B.450+1)

Prabhakara et al.,
2015

GNDVI (NIR.940-
G.555)/(NIR.940+G.555)

Wang et al., 2007

PPR (G.555-B.450)/(G.555+B.450) Metternicht, 2003

SIPI (NIR.940-B.450)/(NIR.940-
R.660)

Penuelas et al.,
1995

RECI NIR.840/RE.710-1 Kanke et al., 2016

Red edge NDVI (NIR.940-
RE.710)/(NIR.940+RE.710)

Kanke et al., 2016

MERIS Terrestrial
Chlorophyll Index
(MTCI)

(NIR.840-RE.710)/(RE.710-
R.660)

Panigada et al.,
2010

Modified chlorophyll
absorption ratio index
(MCARI)

[RE.710-R.660-0.2(RE.710-
R.660)]

*(RE.710/R.660)

Wu et al., 2008

Triangular vegetation
index (TVI)

0.5*[120*(NIR.840-G.555)-
200*(R.660-G.555)]

Haboudane et al.,
2004

Modified triangular
vegetation index
(MTVI2)

1.5*[1.2*(NIR.840-G.555)-
2.5*(R.660-

G.555)]/[(12*NIR.880+1)2-
[6*NIR.880-5*(R.660)2]-0.5]1/2

Haboudane et al.,
2004

Transformed chlorophyll
absorption reflectance
index (TCARI)

3*[(RE710-R.660)-0.2*(RE.710-
G.555)

*(RE.710/G.555)]

Haboudane et al.,
2004

Optimization of
soil-adjusted vegetation
index (OSAVI)

1.16*(NIR.840-
R.660)/(NIR.840+R.660+0.16)

Rondeaux et al.,
1996

Ratio vegetation index
(RVI1)

NIR.840/R.660 Kanke et al., 2016

PPR/NDVI PPR/NDVI Jin et al., 2017

SIPI/RVI1 SIPI/RVI1 Jin et al., 2017

Modified non-linear
vegetation index (MNLI)

1.5*[(NIR.840)2-
R.660)]/(NIR.842)2+R.660+0.5

Yang Z. et al., 2008

Soil-adjusted
vegetation index (SAVI)

(NIR.840-
R.660)/(NIR.840+R.660+0.5)

Pinty and
Verstraete, 1992

Modified simple ratio
(MSR)

(NIR.840/R.660-
1)/[(NIR.840/R.660)1/2

+1]
Wu et al., 2008

Non-linear vegetation
index (NLI)

[(NIR.840)2-
R.660]/[(NIR.840)2+R.660]

Goel and Qin, 1994

Renormalized
difference vegetation
index (RDVI)

(NIR.840-
R.660)/(NIR.840+R.660)1/2

Tucker, 1979

RESULTS

Correlation Analysis Between Spectral
Parameters With Growth Parameters
To select the spectral parameters that are highly correlated with
the growth parameters (AGB and LAI) of red bean and mung

bean, the correlation analysis between 28 spectral parameters and
the growth parameters of red bean and mung bean (Figure 3)
was carried out. For the AGB and LAI of red bean, the spectral
parameters with the strongest correlation were RVI1 and red-
edge chlorophyll index, and their correlation coefficients were
0.847 and 0.783, respectively. For the AGB and LAI of mung bean,
the spectral parameters with the strongest correlation were RVI1
and B.450, and their correlation coefficients were 0.801 and 0.774,
respectively. In general, most of the spectral parameters selected
in this study had a strong correlation with the growth parameters,
which can be used for the modeling and inversion of AGB and
LAI of red bean and mung bean.

Estimation of Aboveground Biomass and
Leaf Area Index Using Optimal Spectral
Parameters Combined With Simple
Linear Regression
To evaluate the direct relationship between spectral parameters
and crop growth parameters, the LR method was used to establish
AGB and LAI estimation models of red bean and mung bean in
the training set using the optimal spectral parameters screened
by correlation analysis (Table 3). Then, we verified the models
with a test set (Figure 4). The training results showed that RVI1
could explain 76.1% (RMSE = 0.168 kg/m2, NRMSE = 0.157)
and 62.6% (RMSE = 0.088 kg/m2, NRMSE = 0.113) of AGB
variation in red bean and mung bean, respectively. As for
LAI, the optimal spectral parameter red-edge chlorophyll index
(RECI) could explain 63.4% (RMSE = 0.376, NRMSE = 0.129)
of the LAI variation in red bean and B.450 could explain
59.1% (RMSE = 0.25, NRMSE = 0.09) of the LAI variation
in mung bean. In addition, for growth parameters of red
bean, these models deteriorated with the test dataset and the
explanatory degree for AGB and LAI variation decreased to
52.4% (RMSE = 0.194 kg/m2, NRMSE = 0.187) and 56.3%
(RMSE = 0.357, NRMSE = 0.119), respectively (Figures 4A,C).
In contrast, for growth parameters of mung bean, the models
performed better with the test dataset and the explanatory
degree for AGB and LAI variation increased to 66.3 and 62.1%,
respectively. At the same time, the values of RMSE increased to
0.113 and 0.271, and the values of NRMSE increased to 0.138 and
0.096, respectively (Figures 4B,D).

Estimation Aboveground Biomass and
Leaf Area Index Using Spectral
Parameters Combined With Stepwise
Multiple Linear Regression
To compare the growth parameter estimation models based on
the optimal spectral parameters, we screened out 2–4 spectral
parameters with a high correlation with the growth parameters
of red bean and mung bean. Then, the SMLR method was used
to establish AGB and LAI estimation models in the training
set (Table 4). SMLR analysis showed that the models explained
85.7% (RMSE = 0.133 kg/m2, NRMSE = 0.125) and 75.7%
(RMSE = 0.073 kg/m2, NRMSE = 0.093) of AGB variation in
red bean and mung bean. Similar results were obtained for LAI.
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FIGURE 3 | Correlation coefficients between spectral parameters and growth parameters (AGB and LAI) of intercropped crops. (A) AGB and LAI of red bean;
(B) AGB and LAI of mung bean.
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TABLE 3 | Performance indicators of the AGB and LAI estimation models established by the LR method using the optimal spectral parameters in the training set.

Growth parameters Intercropping crops Optimal spectral parameters Regression equation Modeling accuracy

R2 RMSE NRMSE

AGB (kg/m2) Red bean RVI1 AGB = 0.059*RVI1+0.313 0.761 0.168 0.157

Mung bean RVI1 AGB = 0.054*RVI1+1.55 0.626 0.088 0.113

LAI Red bean RECI LAI = 0.616*RECI+0.355 0.634 0.376 0.129

Mung bean B.450 LAI = –74.297*B.450+5.292 0.591 0.25 0.09

FIGURE 4 | Relationship between the predicted and measured AGB and LAI obtained by using linear regression (LR) methods using the optimal spectral parameters
in the test set. (A) AGB of red bean; (B) AGB of mung bean; (C) LAI of red bean; (D) LAI of mung bean. The red line is a 1:1 line.

TABLE 4 | Performance indicators of AGB and LAI estimation models established by the SMLR methods in the training set.

Growth parameters Intercropping crops Regression equation Modeling accuracy

R2 RMSE NRMSE

AGB (kg/m2) Red bean AGB = 0.155*RVI1–27.913*B.450–0.964*MSR–5.09*G.555 + 2.748 0.857 0.133 0.125

Mung bean AGB = 0.231703*RVI1–1.1639*MSR–15.0778*B.450–3.64563*R.660 + 1.7216 0.757 0.073 0.093

LAI Red bean LAI = 0.478338*RECI–53.7192*B.450 + 0.123683*RVI1–1.12239*MSR+ 4.65337 0.698 0.351 0.121

Mung bean LAI = –49.2931*B.450–3.39808*SIPI/RVI1 + 4.98799 0.672 0.227 0.081

These models explained 69.8% (RMSE = 0.351, NRMSE = 0.121)
and 67.2% of LAI (RMSE = 0.227, NRMSE = 0.081) variation in
red bean and mung bean, respectively.

To evaluate the performance of the AGB and LAI estimation
models constructed using SMLR, we plotted the relationship

between the measured values and predicted values of AGB
and LAI in the test dataset (Figure 5). Compared with the
training set, the SMLR model showed a greater decrease in
the explanatory degree of AGB variation, indicating that the
estimation accuracy of the model decreased significantly. The
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FIGURE 5 | Relationship between the predicted and measured AGB and LAI obtained by using the SMLR models within the test dataset. (A) AGB of red bean;
(B) AGB of mung bean; (C) LAI of red bean; (D) LAI of mung bean. The red line is a 1:1 line.

NRMSE value increased to 0.129, indicating that the AGB
estimation model of red bean was not stable. Compared with
the training set, the SMLR model had lower explanatory power
for AGB variation and higher NRMSE value, indicating that
the accuracy of the estimation models of AGB of red bean
decreased significantly and its stability was not good (Figure 5A).
The accuracy of other models was basically consistent with
the results of the training set, indicating that the stability of
models was better. Compared with evaluation indexes of the
LR models based on optimal spectral parameters, the R2 values
of SMLR models based on multispectral parameters increased,
while the RMSE and NRMSE values decreased. These results
indicated that the performance of SMLR models was better
than LR models in estimating the growth parameters of red
bean and mung bean.

Estimation of Aboveground Biomass and
Leaf Area Index Using Spectral
Parameters Combined With SVMs,
Partial Least-Squares Regression, and
Backpropagation Neural Network
In addition, to evaluate the performance of SVMs, PLSR,
and BPNN) in the estimation of crop growth parameters,
we established AGB and LAI estimation models of red bean
and mung bean by combining SVM, PLSR, and BPNN with

spectral parameters. To prevent overfitting caused by using
too many independent variables when establishing models, we
selected five spectral parameters with high correlation for each
growth parameter for modeling and analyzing according to
the results of correlation analysis (Supplementary Figure 1).
The training results given in Figure 6 indicated that the SVM
method showed better performance than other methods in the
estimation of the AGB and LAI of red bean and mung bean.
Compared with PLSR and BPNN models, SVM models had
the highest R2 values and relatively low RMSE and NRMSE
values, indicating that SVM models had the highest accuracy
in the estimation of the growth parameters of red bean and
mung bean. Although BPNN also provided higher R2 values
in the estimation of the growth parameters of red bean and
mung bean, the obtained RMSE and NRMS values were higher
with high variability. In addition, the accuracy of estimating the
AGB of the red bean by three methods was better than that
of mung bean, but the performance was the opposite in LAI
estimation. The SVM models obtained the highest values of R2

and the lowest values of RMSE and NRMSE when estimating
the growth parameters of red bean and mung bean in the test
set (Figure 7). These results prove the excellent performance of
the SVM models in estimating the growth parameters of red
bean and mung bean. Similarly, the PLSR models were still the
least applicable model for estimating the LAI and AGB of red
bean and mung bean.
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FIGURE 6 | Boxplots for the coefficient of determination (R2), root-mean-square error (RMSE), and normalized RMSE (NRMSE) of the training results of SVM, PLSR,
and BPNN models. (A) AGB of red bean and mung bean; (B) LAI of red bean and mung bean. The point plots indicate outliers encountered during the phase of the
100 different verifications repetitions and the black multiplication sign indicates the mean value.

To further compare the differences between the performance
indicators calculated by using the training dataset and the test
dataset in the three methods, we had drawn comparison charts
of line segment connection (Figures 8, 9). For AGB of red bean,
the SVM model showed high performance (Figure 8A). In the
training set, the SVM model could explain 88.2% of the AGB
variation in red bean, and the RMSE and NRMSE values were
0.113 and 0.116, respectively. In the test set, the explanatory
degree of the SVM model for AGB variation decreased to 81.1%,
RMSE and NRMSE increased to 0.137 and 0.134, respectively.
Although the explanatory degree of AGB variation and RMSE
value of the SVM models changed greatly, the prediction accuracy
and stability of the models were better than that of PLSR and
BPNN models. For AGB of mung bean, the SVM model showed
better stability (Figure 8B). In both the training set and the test
set, the SVM model had the highest explanatory degree (80.5
and 75.1%) of AGB variation and the lowest RMSE (0.070 and
0.078) and NRMSE (0.116 and 0.134). The difference between
training results and test results was small, which is more stable
than other models.

Similarly, the SVM model also showed high performance for
LAI estimation of red bean and mung bean (Figure 9). In the
training set and test set, the explanatory degrees of the SVM
model for LAI variation were 70.5 and 64.9%, for RMSE were
0.326 and 0.360, and NRMSE were 0.116 and 0.134, respectively.
The explanatory degrees of LAI for mung bean were 74.1 and

70.6%, RMSE were 0.208 and 0.225, NRMSE were 0.11 and
0.123, respectively. In terms of overall performance indicators,
the SVM models had better accuracy than the PLSR model and
BPNN model and had lower RMSE and NRMSE as well as small
test differences.

DISCUSSION

The Spectral Data Obtained From
Unmanned Aerial Vehicle Multispectral
Image Can Reliably Reflect the Growth
Status of Crops Intercropped in Tea
Plantation
Monitoring the growth of intercropping crops in tea plantations
and guiding the formulation of tea plantation management
measures using UAV-based multispectral imagery are very
attractive. The results indicated that a single spectral parameter
can be used to estimate the AGB and LAI of crops. However,
the optimal spectral parameters for estimating growth parameters
of red bean and mung bean were different, among which RVII
could accurately estimate AGB, while RECI and B.450 were
more suitable for estimating LAI. The difference between optimal
spectral parameters for estimating AGB and LAI indicated
that different VIs showed different sensitivities to AGB and
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FIGURE 7 | Box plots of coefficient of determination (R2), RMSE, and NRMSE of test results of SVM, PLSR, and BPNN. (A) AGB of red bean and mung bean;
(B) LAI of red bean and mung bean. The point plots indicate outliers encountered during the phase of the 100 different test repetitions and the black multiplication
sign indicates the mean value.

FIGURE 8 | The difference between the performance indicators for AGB estimation of red bean and mung bean using three machine learning methods within
training and test datasets. (A) Red bean; (B) mung bean.
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FIGURE 9 | The difference between the performance indicators for LAI estimation of red bean and mung bean using three machine learning methods within training
and test datasets. (A) Red bean; (B) mung bean.

LAI changes in different crops. Similarly, Li W. et al. (2020)
found that RVI had a strong correlation with wheat biomass
and LAI in the process of using meteorological factors and
spectral information to study the disease measurement model of
winter wheat, and Liu et al. (2019) also proved that RVI is an
important VI for estimating biomass of winter oilseed rape. These
conclusions were consistent with our results.

In addition, it was reported that LAI and AGB could exert
a certain influence on the spectral reflectance of crop canopy
in near infrared (NIR) and visible spectrum (Anthony et al.,
2012; Liu et al., 2012; Jin et al., 2015). Qi et al. (2020) found
that red and near-infrared bands were sensitive bands for LAI
in the process of estimating the LAI of peanuts by using UVA
multispectral images. According to the calculation formula of
spectral parameters in Table 4, RVI1 is composed of red band
and near-infrared band, and the red-edge chlorophyll index is
composed of the red-edge band and near-infrared band. Jin
et al. (2015) found that enhanced VI (EVI) with the blue band
could estimate LAI and biomass more accurately than other
spectral parameters when estimating LAI and biomass of wheat
using multitemporal optical and radar parameters. In this study,
the optimal spectral parameter B.450 used to estimate the LAI
of mung bean represents the blue band, which is consistent
with this result. In contrast, in the remote sensing monitoring
of sorghum growth and development based on UAV system,
Li et al. (2018) found that NDVI and RDVI showed a good
exponential correlation with biomass; Shafian (2018) also proved
that there was a high correlation between NDVI and LAI.
Although the calculation of these two spectral parameters has a

red band and near-infrared band, in our study, the correlation
between these two spectral parameters and AGB and LAI of
mung bean and red bean is not the highest, which may be due
to some interference of shadow soil pixels in the process of
extracting spectral parameters. Some studies also pointed out that
the saturation problem of NDVI would reduce its function of
predicting LAI under very high LAI values (Feng et al., 2020).
However, the growth period of red bean and mung bean was
relatively short and the growth rate was very fast, resulting in
higher LAI data values collected later, which further leads to the
low correlation between NDVI and the LAI of mung bean and
red bean in this study.

Different Machine Learning Algorithms
Combined With Spectral Data Can
Effectively Estimate the Growth
Parameters of Intercropping Crops in
Tea Plantation
In addition to single spectral parameters, SMLR, PLSR, SVM, and
BPNN algorithms were used to monitor the growth parameters
of intercropping crops in tea plantations. The results showed that
the SMLR and PLSR models performed significantly better than
the LR models, which is consistent with LAI estimation of peanut
(Qi et al., 2020) and LAI and AGB estimation of winter wheat
(Tao et al., 2020). The reason is that SMLR models and PLSR
models use more spectral information related to the variables of
interest than single spectral parameter models (Qin et al., 2017;
Wei et al., 2018).
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In addition, compared with the LR models based on a single
spectral parameter or SMLR and PLSR models based on multiple
parameters, the SVM and BPNN models can realize non-linear
mapping between input and output variables. Therefore, the
performance of the SVM and BPNN models in the estimation
of growth parameters was better than other models. When the
two models were compared, the SVM models still maintained
excellent performance. Both the training results and test results
of models maintained a high explanatory degree for AGB and
LAI variations of red bean and mung bean. Because the SVM
method is suitable for small samples, the BPNN method is usually
used for a large number of sampled data (Zhu et al., 2019).
However, the sample size used to construct models in this study
is small, which highlights the superiority of the SVM method. In
conclusion, the SVM model can effectively estimate the growth
parameters of intercropping crops in tea plantations, and the
fitting, stability, and accuracy of this model are better than other
models. The superior performance of the SVM method observed
in this study is consistent with previous results. For example,
Yang X. et al. (2008) found that the SVM method had good
learning ability and robustness in estimating the LAI of rice, while
Yue et al. (2017) also proved that SVM had strong adaptability
in estimating AGB of grassland. However, other studies have
shown that PLSR provides better results than SVM in estimating
crop growth parameters (Marabel and Alvarez-Taboada, 2013).
This difference might depend on the degree of non-linearity in
the relationships, the degree of multilinearity and noise in the
independent variables, and how accurately the SVM parameters
can be tuned (Christoffer et al., 2013). However, our crop growth
data precisely fit the advantages of SVM in simulating non-linear
relationships, thus highlighting the superiority of the SVM model
in estimating growth parameters.

CONCLUSION

Reasonable and reliable estimation of AGB and LAI is of
great significance for monitoring crop growth and agricultural
site-specific management decision-making. In this study, five
machine learning algorithms (LR, SMLR, PLSR, SVM, and
BPNN) were used to estimate AGB and LAI of red bean
and mung bean in tea plantations based on the extracted
multispectral image features collected by UAV remote sensing
system. The results showed that the SVM and BPNN models,
which can simulate non-linear relationships, were more accurate
in estimating AGB and LAI of red bean and mung bean compared
with simple LR, SMLR, and PLSR models. In particular, the SVM
model provides higher performance in the estimation of AGB and

LAI of red bean and mung bean. Both RMSE and NRMSE of the
training set and test set were smaller, and the explanatory degree
for AGB and LAI variation was higher. It is proved that the use of
UAV multispectral image data combined with machine learning
methods can effectively monitor the growth status of crops in
tea plantations and provide valuable practical guidelines for site-
specific tea plantations and the improvement of their ecological
and environmental benefits.
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Zhejiang University, Hangzhou, China

Intelligent detection and localization of mature citrus fruits is a critical

challenge in developing an automatic harvesting robot. Variable illumination

conditions and different occlusion states are some of the essential issues that

must be addressed for the accurate detection and localization of citrus in the

orchard environment. In this paper, a novel method for the detection and

localization of mature citrus using improved You Only Look Once (YOLO) v5s

with binocular vision is proposed. First, a new loss function (polarity binary

cross-entropy with logit loss) for YOLO v5s is designed to calculate the loss

value of class probability and objectness score, so that a large penalty for

false and missing detection is applied during the training process. Second,

to recover the missing depth information caused by randomly overlapping

background participants, Cr-Cb chromatic mapping, the Otsu thresholding

algorithm, and morphological processing are successively used to extract the

complete shape of the citrus, and the kriging method is applied to obtain

the best linear unbiased estimator for the missing depth value. Finally, the

citrus spatial position and posture information are obtained according to

the camera imaging model and the geometric features of the citrus. The

experimental results show that the recall rates of citrus detection under non-

uniform illumination conditions, weak illumination, and well illumination are

99.55%, 98.47%, and 98.48%, respectively, approximately 2–9% higher than

those of the original YOLO v5s network. The average error of the distance

between the citrus fruit and the camera is 3.98 mm, and the average errors

of the citrus diameters in the 3D direction are less than 2.75 mm. The average

detection time per frame is 78.96 ms. The results indicate that our method

can detect and localize citrus fruits in the complex environment of orchards

with high accuracy and speed. Our dataset and codes are available at https:

//github.com/AshesBen/citrus-detection-localization.
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Introduction

Citrus plays an essential role in the fruit industry around
the world, with an annual production of approximately 140
million tons (Zheng et al., 2021; Noorizadeh et al., 2022).
As the cost of fruit harvesting increases and the availability
of skilled labor decreases in China, the traditional manual
harvesting method is no longer practical (Gongal et al.,
2015; Tang et al., 2021). Presently, fruit harvesting has
become increasingly automated for labor-saving and large-
scale agriculture (Onishi et al., 2019). The development of
an automated citrus picking robot is an inevitable trend
for fruit harvesting (Zhuang et al., 2018). In recent work,
the development of automatic fruit picking with a robot
involves two main tasks: (1) fruit detection and (2) fruit
localization via computer vision. The accuracy of fruit
detection and fruit localization directly determines the picking
efficiency of the robot.

Fruit detection using computer vision has been investigated
in numerous recent studies, and most have applied deep
learning methods to achieve good performance and robustness
(Yang et al., 2020; Chen et al., 2021; Yan et al., 2021).
Wan and Goudos (2020) integrated multiclass classification
into Faster R-CNN to detect oranges, apples, and mangoes.
The improved model achieved a 90.72% mAP. Kang and
Chen (2020) proposed a LedNet network with a feature
pyramid network and an atrial space pyramid pool for
mature apple detection; the recall rate and precision were
0.821 and 0.853, respectively. Chu et al. (2021) improved
mask R-CNN by adopting a suppression branch to suppress
the generation of nonapple fruit features. However, their
method has poor detection performance under backlight
conditions. He et al. (2020) developed a deep bounding box
regression forest to describe the characteristics of immature
citrus on three levels, which is beneficial for differentiating
an object from the background. However, the detection
speed is slow (0.759 s per frame), making it challenging to
apply in real-time applications. For the real-time application
of fruit harvesting, the detection speed should be at least
10–15 frames per second (Tu et al., 2020). YOLO series
models have been used in various applications for fast
detection speed with high accuracy (Jiang et al., 2020;
Wang et al., 2021). Xiong et al. (2020) used a YOLO
v2 model to detect green mango and reported a recall
of 89.0%, a precision of 96.1%, and an average detection
time of 0.08 s per frame. Liang et al. (2020) combined
YOLO v3 and U-Net to detect litchi fruits and litchi stems
at night for picking robots under different illuminations;
96.1% precision and 89.0% recall were achieved. However,
the method has not yet been assessed in the daytime.
Wang and He (2021) developed an improved YOLO v5
model to detect apple fruitlets using the channel pruning
method. However, the network architecture must be manually

adjusted during detection. Notably, the target-background
class imbalance is typically the main obstacle encountered in
training convolutional neural networks (Buda et al., 2018).
To address such class imbalance, Lin et al. (2020) designed a
focal loss function to make the network pay more attention
to hard samples in training, but the approach cannot push
the object further from the background. Rahman et al.
(2020) proposed polarity loss to improve focal loss. In the
above studies, various deep learning methods have been
proposed to detect fruit targets and have achieved good
results. However, the detection performance deteriorates in
unstructured growing environments with variable illumination
conditions. For better accuracy, the disparity between citrus
and background under variable illumination conditions and
different occlusion states should be incorporated into the
network structure.

The purpose of fruit localization is to determine the
spatial coordinates of the detected fruit and its location
information, such as posture and shape (Huang et al.,
2019). Many fruit localization methods require a binocular
stereo vision system. The depth map or point cloud image
is captured to obtain three-dimensional (3D) localization
of fruit. Yang et al. (2020) employed a mask R-CNN to
detect citrus objects and branches and matched the color
and depth maps to locate fruits and branches. The average
error in the diameter of the fruit and the branch was
less than 4 mm. However, the distance from the fruit to
the camera was not provided in their work. Nguyen et al.
(2016) used a Euclidean clustering algorithm to segment a
single apple using a point cloud image. The results showed
that the errors in the spatial coordinates and the diameter
of the fruit were slightly less than 10 mm, but the 3D
location information about apples was not the aim of their
work. Xu et al. (2018) proposed the PointFusion structure
to estimate the 3D object bounding box and its confidence
from RGB image and point cloud information. The approach
produces good results in the KITTI and SUN-RGBD datasets,
with 78% AP. Since the information of the depth map or
point cloud is incomplete, fruit localization often requires
the use of empirical knowledge (Liu et al., 2017). Wang
et al. (2017) adopted Otsu’s method and a one-dimensional
filter to remove occluded objects (leaves, branches, fruit
particles, etc.) and employed ellipse fitting to extract a well-
separated mango region. Finally, mango dimensions were
calculated using depth information. Ge et al. (2020) developed
a shape completion method to reconstruct the point clouds
of strawberries; the average error of the center point of
strawberries was 5.7 mm. However, the reconstructed error
is larger in the case of the neighboring overlapping fruits.
Note that an incomplete depth map makes it difficult to
recover the missing depth value lost by variable illumination
or the fruit region being occluded by randomly overlapping
participants, such as neighboring fruits and other background
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objects. Therefore, this paper aims to restore the depth
map with high accuracy for locating fruits in unstructured
orchard environments.

The objective of this work is to develop a novel method
for the detection and localization of mature citrus fruits in
natural orchards using a binocular camera. The pipelines of
the study are to (1) design a new loss function to enhance the
detection performance of the YOLO v5s network architecture
under variable illumination conditions, (2) extract the fruit
region in the RGB image and recover the missing value in
the depth map under different occlusion states of citrus fruit,
and (3) estimate the 3D localization of citrus fruits using the
camera imaging model and the geometric features of citrus
fruits. Our method can provide 3D localization information of
citrus fruits, such as the diameters of citrus fruits in the 3D
direction, the spatial coordinates of citrus fruits, the distance
between citrus fruits and the camera, and the 3D bounding box
of citrus fruits.

Materials and methods

Datasets

A variety of citrus named "Shantanju” was investigated
in the hillside orchard of the Guangzhou Conghua Hualong
Fruit and Vegetable Freshness Co. Ltd., located in Guangzhou,
China (113◦39’2.38’E, 23◦33’12.48’N). A total of 4855 groups
of images were captured in December 2020 and December
2021 before harvest. Image acquisition was performed using
a binocular camera (Model ZED 2, Stereolab’s Co. Ltd, USA)
with a 1920 × 1080 pixel resolution under sunny and cloudy
conditions. The distance between the camera and citrus was set
to approximately 30∼150 cm. Each group of images contains a
left view (RGB image) and a depth map (grayscale image). Note
that the right view images were also captured and used only to
generate the depth map with the left view images. The depth
map is provided with a Z value for every pixel (X, Y) in the left
view image. According to the illumination of the citrus surface,
images are divided into three groups: non-uniform illumination
(non), weak illumination (weak), and well illumination (well).
In total, 2913 images were randomly selected as the training
dataset (train), 971 images were selected as the validation dataset
(validation), and 971 images were selected as the test dataset
(test), the number of citrus samples in each group is shown in
Table 1.

The hand of the harvesting robot is designed to pick citrus
fruits that are in the correct position in front of the camera.
In each left view image, the citrus fruits located near the
center of the image were manually labeled with bounding boxes
using Labelme software. Figures 1A–C provides examples of
citrus images from each illumination group. The bounding
boxes of labeled citrus are annotated with red rectangles.

The corresponding depth maps with labeled citrus are shown
in Figures 1D–F, where the grayscale of color is based on
distance from the camera, i.e., closer objects are darker; further
objects are lighter.

Detection and localization of citrus

An overview of our proposed method for citrus detection
and localization is presented in Figure 2. The main procedure
involves the following steps: Firstly, an improved YOLO v5s is
developed to detect citrus in the 2D bounding box. Secondly,
Cr-Cb chromatic mapping, Otsu threshold algorithm, and
morphology processing are used to extract citrus shape. The
missing depth values are recovered by the kriging method.
Finally, the 3D localization of citrus fruit is realized by geometric
imaging model. Each procedure is described in detail in the
following subsections.

Detection of the 2D bounding box of citrus
fruit

YOLO (You Only Look Once) is a one-stage detection
network that converts object detection into a regression problem
using convolutional neural networks (Wang et al., 2021, 2022).
YOLO v5, the latest version of the YOLO model (Jocher and
Stoken, 2021), has a faster detection speed and higher accuracy
than the previous version. The release of YOLO v5 consists of
four different model sizes: YOLO v5s (smallest), YOLO v5m,
YOLOv5l, and YOLO v5x (largest). The network structures of
these four models are basically the same, but the numbers of
modules and convolution kernels are different. Considering that
the application scenario of this paper requires fast detection
efficiency, the YOLO v5s model is selected as the basic network,
and its structure is shown in Figure 3A. The YOLO v5s network
is divided into three parts. The first part is the backbone
network, which is responsible for the feature extraction of
the target. The second part is PANet, which generates feature
pyramids for object scaling. The third part is the head network,
which conducts the final detection.

In YOLO v5s, binary cross-entropy with a logit loss function
(LossB) is used to calculate the class probability and objectness
score for each sample, as follows:

LossB
(
xi, yi

)
= −yi log (σ (xi))−

(
1− yi

)
log (1− σ (xi)) ,

(1)
where i is the sample index, xi is the predicted likelihood, yi
stands for the ground truth, and σ (·) is the sigmoid function that
maps the prediction xi to the probability for the ground truth. In
object detection tasks, the problem of unbalanced training sets is
considerable (Lin et al., 2020), i.e., the background information
in the dataset used for training is overrepresented compared to
that of the target class. The sum of LossB from the easy samples
over the entire images can overwhelm the overall LossB from
the hard samples. Moreover, the training is inefficient, as most
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TABLE 1 Dataset distribution.

Non Weak Well Total

Images Samples Images Samples Images Samples Images Samples

Train 923 4569 814 2503 1176 4016 2913 11088

Validation 333 1636 255 809 383 1435 971 3880

Test 307 892 269 655 395 1052 971 2599

FIGURE 1

Examples of citrus images captured in three illumination conditions: (A) non, (B) weak, (C) well, (D) depth map of (A), (E) depth map of (B), and
(F) depth map of (C).

locations are easy samples that do not contribute to learning.
Furthermore, in our trial-and-error experiments, the hard
negative samples, i.e., the citrus misclassified as background,
are difficult to distinguish from the background under weak
illumination or obvious occlusion. On the other hand, the hard
positive samples, i.e., the background misclassified as a citrus
target, exhibit similar characteristics to mature citrus due to the
uncontrolled factors in the orchard environment.

To better differentiate citrus from the background under
variable illumination conditions and different occlusion states,
we design a new loss function, the polarity binary cross-entropy
with logit loss (LossPB), to calculate the class probability and
objectness score to penalize the hard samples. In particular,
a penalty function fp (Rahman et al., 2020) is developed to
represent the disparity between the prediction for citrus and
background. LossPB is defined as follows:{

LossPB
(
xi, yi

)
= fp (σ (xi)) LossB

(
xi, yi

)
fp (zi) = 2

1+exp(−γ(zi−zi))
(2)

where zi is the probability of sample i being predicted as the
true class, such as citrus target or background, zi = 1− zi is
the probability of sample i being misclassified as the incorrect

class, and γ is a slope parameter of the sigmoid function fp
(Figure 3B). fp is used to calculate the disparity between the
prediction for the true class and false class based on the value
of zi − zi. If the citrus target is misclassified as background, the
prediction probability zi is greater than, such that a large value of
zi − zi is obtained, and a large penalty will be assigned by fp. In
this case, the penalty value of LossPB is larger than that of LossB,
which helps to suppress the missed detection of citrus. Similarly,
if the background is misclassified as citrus, a large penalty will
be assigned by fp due to the large value of zi − zi, which will
improve the false detection of citrus. On the other hand, if a
citrus target or the background is predicted with a more reliable
probability of zi, the penalty value applied by fp will be closer to 0
due to the small value of zi − zi. In such a case, the penalty value
of LossPB is smaller than that of LossB and is pushed toward zero.
In general, a large penalty is applied to missed detection and false
detection of citrus targets. Thus, fp enforces a large margin to
push predictions zi and zi further apart.

Recall rate (R), precision (P), and Fβ-score (Fβ) are selected
to evaluate the performance of the improved YOLO v5s in the
test dataset:

R =
TP

TP + FN
, (3)
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FIGURE 2

Flow diagram of our proposed method.

FIGURE 3

Citrus detection model based on You Only Look Once (YOLO) v5s: (A) network structure of improved YOLO v5s and (B) function graph of
penalty function fp.

P =
TP

TP + FP
, (4)

Fβ = (1+ β2)
P × R

β2 × P + R
, (5)

where FN is the number of false negatives for the false detection
of citrus samples, FP is the number of false positives for the
missed detection of citrus samples, and TP is the number of
true positives for the detected citrus samples. Fβ uses a positive
real number β to weigh the importance between R and P. In
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FIGURE 4

Examples of color curves of the citrus and background in different color spaces: (A) original RGB image, (B) color intensity on the line on R, G,
and B elements in RGB color space, and (C) color intensity on the line on Cb and Cr elements in YCrCb color space.

this paper, β is set to 1 as F1 by regarding R and P are equally
necessary for our experiment.

Extraction of the citrus fruit region from the 2D
bounding box

Image data captured in a natural orchard always contain
multiple participants, e.g., grass, soil, lawn, leaves, branches,
trunks, and sky. The citrus fruit region is difficult to
extract exactly from the 2D bounding box predicted from
the improved YOLO v5s. Fortunately, these participants
have different color characteristics, so the different targets
can be extracted based on their color information. Here,
the proper color space is beneficial to robustly extract the
citrus fruit region from the background. Zhuang et al.
(2018) and Zhuang et al. (2019) adopted improved R-G
chromatic mapping to extract fruit regions. In this paper,
the input images are converted into the YCbCr color space
for better contrast enhancement between the citrus fruit
region and background.

As shown in Figure 4A, a horizontal red line was drawn
across citrus fruits and the background. The color intensities
of the pixels of the line are represented with the R curve (the
red element of RGB), the G curve (the green element), and
the B curve (the blue element) in Figure 4B. The Cr curve
(the Cr element of YCbCr) and the Cb curve (the Cb element)
are represented in Figure 4C. The intensity difference between
the R curve and G curve is small in both the citrus region
and background, and there are no obvious rules exhibited in

the B curve among the citrus fruit regions and backgrounds.
However, the intensity difference between the Cr curve and
Cb curve values within the citrus region is obviously greater
than that of the background. Thus, Cr-Cb chromatic mapping is
suitable to enhance the disparity between the citrus region and
the background participants.

The Otsu thresholding algorithm is an appropriate method
to segment the potential citrus regions from the background,
where the best threshold value is selected by maximizing
the variance between foreground and background. As shown
in Figure 5, the Cr-Cb chromatic mapping has prominent
bimodal characteristics in the intensity histogram under variable
illumination, where the citrus fruit region contributes to the
high value and background contributes to the lower value.
Therefore, the best threshold value from Otsu is suitable to
segment the citrus fruit region from the background.

The fruit region segmented by Otsu thresholding will not
be complete in terms of shape due to the irregular growth
situations of citrus fruit that are occluded by adjacent fruits,
branches and leaves. To address this problem, the mathematical
morphology operations of erosion, dilation, and hole filling
are subsequently adopted to fill the gaps between detected
regions, remove noise, fill small holes, and smooth the region’s
boundary. Then, the mathematical morphology operation of
convex hull is used to estimate the occluded regions of the fruit
from the partially compact region. In this way, the citrus fruit
can be almost completely segmented from its corresponding
2D bounding box.
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FIGURE 5

Examples of the citrus image after Cr-Cb chromatic mapping and its gray histogram under variable illumination: (A) non, (B) weak, and (C) well.

Recovery of missing depth values
To achieve the 3D localization result of citrus, it is essential

to obtain a complete depth map of the whole citrus fruit region;
however, an incomplete depth map is always obtained for two
main reasons. First, the depth map is sparse in the case of
binocular stereo conditions. The depth value is missing and set
to zero for pixels where no depth information is sensed by the
ZED camera, which may be caused by variable illumination,
camera performance limitation, and shooting angle (Liu et al.,
2017). Second, the depth values can be missing due to the
occluded region estimated from the morphological processing.
To restore the complete depth map of the citrus region, the
kriging method is adopted to predict the missing depth value
by adding the weight of the observed depth value.

Let IO be the citrus region segmented by Otsu thresholding
and IC be the citrus fruit region extracted via the convex hull
operation. We denote by Iin the set of pixels whose depth value
is missing in IC, such that the depth value is zero or the pixel is
located outside of IO. Let IV be the set of pixels whose observed
depth value is available in IO. Therefore, the missing depth value
in Iin can be obtained as follows:

∧

Z (s) =
∑
p∈IV

λp (s)Z
(
p
)
, ∀s ∈ Iin, (6)

where Z(p) is the observed depth value at pixel p and λp(s) is the
weight of Z(p), which depends not only on the distance between
the depth values but also on the position and overall spatial
arrangement of the observed depth value around pixel s. Note
that the kriging method is the best linear unbiased estimator
to restore the missing depth value using observed depth values

FIGURE 6

Coordinate system transformation diagram.

from the incomplete depth map. Therefore, all the missing depth
values in IC will be restored completely.

3D localization of citrus fruit
The 3D localization of citrus determines the spatial position

and posture information, such as citrus diameter in the 3D
direction dx, dy, and dz , the spatial coordinates of citrus
Q0(Xq, Yq, Zq), the distance between the citrus and camera
d, the spatial coordinates of the citrus 3D bounding box
P1, P2, ..., P8, and the corresponding 2D coordinates of the
3D bounding box in the image plane p1, p2, ..., p8. The 3D
coordinates of a point in the real world must be precisely
mapped to the 2D coordinates of a pixel in the imaging plane.
Here, the transformation relation among the camera coordinate
system Oc, the physical coordinate system Oi, and the pixel
coordinate system Op should be analyzed.
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FIGURE 7

Example of 2D and 3D location information of citrus fruit: (A) 2D information of citrus fruit with four endpoints (green points) and center points
Q0 (red points) in Op. (B) Citrus 3D bounding box in Oc with eight vertices.

As illustrated in Figure 6, a physical coordinate system Oi is
depicted with the origin in the imaging plane (unit: millimeter).
The camera coordinate system Oc is created with the optical
center as the coordinate origin. Note that the coordinates of
the object in the real world are represented relative to Oc, and
Oc reaches Oi through perspective projection transformation.
Suppose the coordinates of point P in Oc are (Xp,Yp,Zp), and
the corresponding coordinates projected onto Oi are (xp, yp).
The relationship of point P between Oc and Oi is given by xp = f Xp

Zp

yp = f YpZp
(7)

where f is the camera focal length. As demonstrated in
Figure 6, a pixel coordinate system Op is depicted with the
origin on the top-left vertex of the image (unit: pixel). The
u- and v-axes are parallel to the x- and y-axes of Oi. Let
the point (up, vp) in Op corresponding to the point (xp, yp)
in Oi. The two coordinate values can be obtained as follows:{

up =
xp
du
+ u0

vp =
yp
dv
+ v0

(8)

where (u0, v0) represents the translation of the origin of
Oi relative to the origin of Op and du and dv represent
the actual size of the pixels in the u-axis and v-axis
directions, respectively. According to Eqn. (7) and (8), the
transformed relationship between Op and Oc is given as

Zp

 up
vp
1

 =
 fx 0 u0

0 fy v0

0 0 1


Xp

Yp

Zp

 , (9)

where fx = f
/
du, fy = f

/
dv. Note that f , du, dv,

u0, and v0 are the intrinsic camera parameters that
can be provided from the factory parameters of the
ZED camera, and Zp is the observed depth value
of the depth map.

As shown in Figure 7A, let A, B, C, and D be the
leftmost, topmost, rightmost, and bottom-most endpoints of
the citrus fruit region projected in Oi, respectively, which
have coordinates (uA, vA), (uB, vB), (uC, vC), and (uD, vD).
Denote (XA, YA, ZA), (XB, YB, ZB), (XC, YC, ZC), and
(XD, YD, ZD) as the corresponding spatial coordinates of
points A, B, C, and D in Oc. According to Eqn. (9), the spatial
coordinates of A, B, C, and D are given by

[
Xi

Yi

]
=

[
fx
0

0
fy

u0

v0

] ui
vi
Zi

 , (10)

where i is A, B, C and D. Let dx, dy and dz be the fruit diameter
in the Xc-, Yc-, and Zc-axes, respectively. dx and dy are obtained
according to the spatial coordinates of A, B, C, and D,{

dx = XC − XA

dy = YD − YB
(11)

In 3D perspective projection, the citrus fruit diameter dz
cannot be obtained directly from the image. Fortunately, the
shape of a citrus fruit is similar to an ellipsoid; thus, the
magnitudes of dx, dy, and dz will be highly correlated. In this
paper, dz can be estimated by fitting a quadratic polynomial
function of dx and dy:

d̂z = β0 + β1d2
x + β2d2

y + β3dx + β4dy, (12)

where β0, β1, ..., β4 are the regression coefficients
of a polynomial that can be determined using the
least-squares method.

Let Q0(uq, vq) be the center point of the citrus 2D bounding
box (Figure 7), which indeed corresponds to the center of the
citrus surface. The spatial coordinates (Xq, Yq, Zq) of Q0 in Oc

are obtained using Eqn. (10). Denote by d the Euclidean distance
from Q0 to the origin point, i.e., the distance between the citrus
and camera,

d =
√
X2
q + Y2

q + Z2
q. (13)
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The position and posture information for detected targets
can usually be determined by the 3D bounding box (Xu et al.,
2018). Let P1, P2, ..., P8 be the eight vertices of the citrus
3D bounding box (Figure 7B), which have coordinates of
(Xi, Yi, Zi) for i = 1, 2, ..., 8. In particular, (Xi, Yi, Zi) can
be obtained from the relative geometrical position of Pi to Q0,
e.g., (X1, Y1, Z1) is inferred as follows:

X1 = Xq − dx
/

2
Y1 = Yq + dy

/
2

Z1 = Zq + dz

(14)

To visualize the 3D bounding box of citrus in the
image, the corresponding projected 2D coordinates are
calculated. Let the eight vertex points p1, p2, . .., p8 be the
corresponding P1, P2, ..., P8 projected on Op, which have
coordinates (ui, vi), i = 1, 2, ..., 8. They can be deduced by
Eqn. (9). Therefore, the 3D localization for each citrus is
summarized in Algorithm 1.

Algorithm 1 - Calculation of 3D localization for a citrus fruit.

Input: Citrus fruit region IC and depth map Id .
Output:dx , dy , dz , Q0(Xq, Yq, Zq), d, (ui, vi) and (Xi, Yi, Zi) for
i = 1, 2, ..., 8.
S1: According to IC , 2D coordinates of citrus region extreme points A(uA, vA),
B(uB, vB), C(uC, vC), and D(uD, vD) are obtained.
S2: The spatial coordinates of (XA, YA, ZA), (XB, YB, ZB), (XC, YC, ZC), and
(XD, YD, ZD) are calculated by Eqn. (10).
S3: Citrus fruit diameterdx and dy are calculated by Eqn. (11), and dz is estimated
by Eqn. (12).
S4: According to Id , the spatial coordinates of citrus Q0(Xq, Yq, Zq) are
determined by Eqn. (10).
S5: The distance d between Q0 and the origin point in Oc is obtained by Eqn.
(13).
S6: The spatial coordinates (Xi, Yi, Zi) of citrus 3D bounding box are calculated
by Eqn. (14).
S7: The 2D coordinates (ui, vi) of citrus 3D bounding box are calculated from
(Xi, Yi, Zi) using Eqn. (10).

Results and discussion

The performance of the proposed method was evaluated
on a workstation with an Intel Core i9-9920X processor with
3.50 GHz, 32 GB RAM, and an NVIDIA GeForce RTX 2080
GPU with 8 GB RAM. The operating system is Windows 10,
and the software framework is PyTorch 1.8. All the algorithms
were developed in Visual Studio Code 1.63 and MATLAB
R2020a software.

Performance evaluation of citrus 2D
detection

To evaluate the performance of citrus 2D detection using
our proposed loss function, (LossPB), on YOLO v5s, three

loss functions, LossB, focal loss (LossF) (Lin et al., 2020),
and polarity loss (LossP) (Rahman et al., 2020), were used
for comparison. The YOLO v5s models were trained using
the training dataset, and the hyperparameters of the model
were fine-tuned using the validation dataset. The performance
of the final model was evaluated using the test dataset.
After several trial-and-error training runs, the learning rate
was set to 0.0032, the batch size was set to 32, the IoU
threshold was set to 0.5, the training epoch was 200 and
γ was set to 20. All the input images were resized to
640 × 640 pixels. The network weights of YOLO v5s were
initialized with the weights of the model pretrained on the
COCO image dataset.

The detection results under three illumination conditions
on the test dataset are provided in Table 2. With our proposed
loss function, LossPB, we achieves the best improvement on
the non-uniform illumination than weak illumination and well
illumination, compared to LossB, LossF , and LossP. Specifically,
under non-uniform illumination, the recall of our loss is
99.55%, which is an average improvement of 9.08% over LossB,
7.17% over LossF , and 5.38% over LossP. The precision of our
loss is 95.79%, which is almost the same result as that of
the other three loss functions, while the highest precision of
95.93% is obtained by LossF . The F1-score of our loss is 0.98,
which is the highest.

Under weak illumination, the precision of our loss is 96.13%,
which is 1.33% higher than that of LossB and 1.04% higher than
that of LossF and LossP. The recall of our loss is 98.47%, and
the F1-score is 0.97, both of which are better than those of the
other loss functions. Under well illumination, the F1-score of
our loss is 0.98, an average of 3%, 4%, and 2% higher than that
of LossB, LossF and LossP, respectively. The precision and recall
of our loss are 96.64% and 98.48%, respectively, which are both
the best highest.

Overall, for our loss, the recall is 98.85%, the precision is
96.22%, and the F1-score is 0.98, on average, under the three
illumination conditions, values that are approximately 2–9%
higher than those of LossB, about 1–6% higher than those of
LossF , and approximately 1–4% higher than those of LossP.
In terms of other metrics, the detection time per image (T)
is similar for all loss functions and is consistent with the
requirements of the picking robot (Tu et al., 2020).

Figure 8 shows the citrus samples detected by our loss
function LossPB but not LossB under different illumination
conditions. As listed in Table 2, the recall rate of LossB under
non-uniform illumination is the lowest at 90.47% than other
illumination conditions. On the other hand, the recall rate of
LossPB performed the best at 99.55% over other illumination
conditions. The reason may be twofold: (1) As shown in
Figure 8, the illumination component is uniform on the
surface of a citrus fruit under weak or well illumination
conditions. Therefore, the total number of samples is larger
under weak and well illumination than under non-uniform
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TABLE 2 Detection results of You Only Look Once (YOLO) v5s using different loss functions in the test dataset.

Loss function Illumination P (%) R (%) F1 T (ms) TP FP FN

Our Loss LossPB Non 95.79 99.55 0.98 79.31 888 39 4

Weak 96.13 98.47 0.97 75.49 645 26 10

Well 96.64 98.48 0.98 81.04 1036 36 16

Total 96.22 98.85 0.98 78.96 2569 101 30

LossB Non 95.50 90.47 0.93 81.34 807 38 85

Weak 94.80 91.91 0.93 78.63 602 33 53

Well 96.07 93.06 0.95 83.16 979 40 73

Total 95.56 91.88 0.94 81.33 2388 111 211

LossF Non 95.93 92.38 0.94 79.91 824 35 68

Weak 95.09 91.76 0.93 75.38 601 31 54

Well 96.25 92.78 0.94 82.59 976 38 76

Total 95.85 92.38 0.94 79.75 2401 104 198

LossP Non 95.67 94.17 0.95 79.33 840 38 52

Weak 95.09 94.66 0.95 75.53 620 32 35

Well 96.06 95.06 0.96 81.73 1000 41 52

Total 95.68 94.65 0.95 79.25 2460 111 139

The bold values means the best result on each metrics.

FIGURE 8

The missed detection of citrus samples of You Only Look Once (YOLO) v5s but detected by our proposed loss in different illumination on test
data: (A) non, (B) weak, and (C) well.

illumination, making the YOLO v5s with LossB more likely
to learn citrus with uniform color features. (2) It is likely
that, compared with weak and well illumination, the color
features of a citrus fruit under non-uniform will be hard
to extract by the Yolo v5s with LossB, such that the most
citrus sample cannot be detected. Using our loss function, the

citrus target under non-uniform illumination will be further
pushed from the background. A large penalty is applied
to missed detection from the penalty function fP in the
training process.

Figure 9 shows the detection results for different loss
functions. Specifically, the red bounding box represents
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FIGURE 9

Comparison of detection results using different loss functions: (A) Our loss, (B) LossB, (C) LossF, and (D) LossP.

the predicted output by models, the yellow bounding box
represents the missed detection, and the blue bounding
box represents the false detection. Figure 9A indicates that
the YOLO v5s model with our loss function achieves the
best citrus detection performance under all illumination

conditions, reducing the occurrence of both missed detection
and false detection.

There are several examples of missed detection or false
detection by other loss functions, as presented in Figures 9B–
D. With such loss functions, some background objects, such as
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FIGURE 10

Results of samples under different illumination conditions: (A) RGB image, (B) Cr-Cb chromatic mapping, (C) Otsu segmentation, (D)
morphological operations, where the red point is the center point and the green point is the maximum and minimum point of the citrus fruit, (E)
color map of the original depth map, and (F) color map on depth map restored by the kriging method.

FIGURE 11

Experiment results using the Kriging method: (A) color map of depth values, (B) RGB image of a citrus fruit, (C) color map by setting depth
values zero at random pixels, and (D) color map of restoration by kriging.

immature citrus and yellow insect-attracting boards, can lead
to false detection of the citrus target. It is likely that immature
green citrus has similar texture and shape properties as mature
citrus, and the yellow insect-attracting board has similar color
characteristics as citrus. On the other hand, citrus that is
occluded by leaves, branches, or other backgrounds objects may
be misclassified as background, i.e., missed detection. For such
citrus fruits, it is likely that only a few features can be extracted
from the image, resulting in a hard negative sample that is
difficult to distinguish from the background.

Figure 9A shows that our proposed loss function achieves
the best detection performance. Specifically, the penalty for
false detection is enhanced by the penalty function fP during
the training process, and citrus targets are displaced from the
background. As a result, the probability of missed detection
is reduced substantially, and the detection performance of
citrus is thus improved. Note that LossP uses a penalty

function similar to fP and also achieves better performance
than that of LossF and LossB. Indeed, it was developed
based on LossF . However, LossF cannot push the object
further from the background, which may not be an effective
improvement on our dataset.

Performance evaluation of citrus
region extraction and depth value
restoration

Figure 10 illustrates the results of citrus region extraction
and depth map restoration under variable illumination
conditions. Under the well illumination conditions, the citrus
occluded by leaves is shown in the first row of Figure 10A. The
results of Cr-Cb chromatic mapping and Otsu thresholding are
presented in Figures 10B–C. Image noise, holes, and weakly
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FIGURE 12

Examples of 3D bounding boxes for citrus fruits.

connected regions can exist in the binary image obtained
via Otsu thresholding. The citrus region is likely blurred,
mainly due to the far distance from the camera. The result of
morphological processing is shown in Figure 10D. The image
noise was completely removed, and contour smoothing was
achieved, such that the majority of the citrus region occluded
by the leaves was filled perfectly. As shown in Figure 10E, the
depth map of the extracted citrus fruit region after the convex
hull operation is incomplete, i.e., the area of missing values
covers approximately large than half of the area of the citrus
fruit region, which may be caused by camera performance
limitations. As shown in Figure 10F, the missing depth values
are restored using the kriging method, thereby estimating the
complete depth values of the fruit region.

The results of citrus fruit extraction and depth map
restoration under the non-uniform illumination conditions are
presented in the second row of Figure 10. The shape of the
extracted citrus region is obviously incomplete, which may
result from overexposure to the citrus surface. As shown in
Figure 10D, the incomplete part was restored by morphological

operations. Subsequently, the missing depth values in the citrus
region (Figure 10E) were recovered, as shown in Figure 10F.
Similarly, the results under weak illumination conditions are
illustrated in the third row of Figure 10. The citrus fruit region
occluded by branches is extracted almost completely, as shown
in Figure 10D. Due to the lack of light and other factors, the
depth map of the extracted citrus region is sparse, as shown in
Figure 10E. After using the kriging method, the missing depth
values are effectively restored, as shown in Figure 10F.

To evaluate the accuracy of the kriging method to recover
depth values on the occluded citrus region, an experiment was
conducted by simulating the restoration using the incomplete
depth map. Figure 11 shows the results of using the kriging
method on an extracted citrus region. Figure 11A is the
complete depth map of Figure 11B. Figure 11C shows that
the incomplete depth map was generated by setting the
corresponding depth values to zero with four schemes. About
50% of the pixels are set as missing values. Specifically, the
incomplete depth maps À and Ã were created by setting
the pixels of the central part to zero in the vertical and
horizontal directions. The incomplete depth map Á was created
by setting the pixels of the right part to zero, and Â was
created by setting the interleaving pixels to zero. As shown
in Figure 11D, the missing values are recovered using the
kriging method, such that the depth map of the fruit region is
completely restored.

Compared with the original depth map of Figure 11B,
the average restoration error of depth map À, Á, Â, and
Ã is 2.29, 2.15, 2.08, and 2.31 mm, respectively, such that
the average of the all the restoration errors is 2.21 mm.
The minimum error was performed in the depth map Â,
indicating that the estimate of missing depth value is recovered
with high accuracy when the depth values are only missing
randomly in the depth map. On the other hand, the maximum
error was performed in the depth map À and Ã, indicating
that the restoration error is large when the missing depth
values are in the most discontinuous part of the depth
map. In total, the mean relative error is 1.36%, indicating
that the kriging method effectively restored the depth map
with high accuracy.

Performance evaluation of citrus 3D
localization

Citrus diameter dx, dy, and dz , coordinates of citrus
Q0(Xq, Yq, Zq), the distance between the citrus and camera
d, the 3D coordinates of the citrus 3D bounding box
(Xi, Yi, Zi), and its 2D coordinates (ui, vi) are calculated
using Algorithm 1. Specifically, to obtain the regression
model for dz , as mentioned in Eqn. (12), a total of
137 citrus samples were collected in the orchard. The
diameter dx, dy, and dz of each fruit were measured
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FIGURE 13

Comparison between the measured values and predicted values: (A) d, (B) dx, (C) dy, and (D) dz.

by a Vernier caliper (Pro skit, PD-151). The quadratic
polynomial function fitted for dz is determined as follows:

d̂z = 16.0728+ 0.0028d2
x + 0.0018d2

y + 0.0264dx + 0.4133dy,
(15)

where the root mean square error (RMSE) is 4.51 mm and the
coefficient of determination R2 = 0.940, indicating a good model
for estimating dz .

Figure 12 shows the result of 3D bounding boxes predicted
for each citrus fruit. The boxes are drawn by connecting the
adjacent vertices (ui, vi), for i = 1, 2, ..., 8, with a straight
line. The front face of the 3D bounding box was drawn by
the blue rectangle, the back face of the 3D bounding box
was drawn by the red rectangle, and the side face of the 3D
bounding box was drawn by the yellow line. The citrus fruits
near the center of the image are correctly detected with the 3D
bounding boxes. Moreover, the four edge lines (yellow lines)
of the 3D bounding box disappear in the center of the image,
which is consistent with the principle of parallel perspective
(Cai et al., 2021). Thus, our proposed method achieves accurate
localization results.

To evaluate the localization accuracy of citrus 3D
localization, 22 images of citrus fruits were considered.
The distance between the citrus and the camera d was measured
by a laser rangefinder (UNI-T, UT392B), and citrus diameters

dx, dy, and dz were measured with a Vernier caliper (Pro skit,
PD-151). A scatter plot of the measured values and the values
predicted by our method is presented in Figure 13. Our method
obtains good accuracy for predicting d, dx, dy, and dz : the
closer the measured values and the predicted value are to the
45-degree line, the higher the accuracy. Figure 13A shows the
best prediction and fewer errors between the measured value
and predicted values for d, where all the plotted points lie almost
on the 45-degree line. Furthermore, Figures 13B–D shows that
the predicted values of dx, dy, and dz are generally close to the
45-degree line, indicating that our proposed method is able to
achieve accurate localization results.

Overall, the average error of distance d between the citrus
and camera is 3.98 mm, which is better than the 15 mm achieved
in Wang et al. (2016). The average errors of citrus diameters dx,
dy, and dz were 2.75, 2.52, and 2.11 mm, respectively, which is
almost the same precision as (Yang et al., 2020) and better than
the 10 mm achieved in (Nguyen et al., 2016) and the 4.9 mm
achieved in (Wang et al., 2017).

Our method can accurately locate citrus under variable
illumination and different occlusion conditions in natural
orchards. The distance d can be used to determine the extension
length of the robot hand, and the coordinates of citrus
Q0(Xq, Yq, Zq) can be used to manipulate the robot hand’s the
series of joints or articulations. The diameter dx, dy, dz and
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the 3D bounding box (Xi, Yi, Zi) can be used to finetune the
posture of grasping structures.

Conclusion

This paper aims to address the problem of the lower
detection rate for mature citrus under variable illumination and
occlusion conditions. We proposed a novel method to detect
and localize citrus fruits in natural orchards using binocular
cameras and deep learning. The main conclusions are as follows:

1. A new loss function LossPB for YOLO v5s is proposed to
calculate the loss value for class probability and objectness
score, with a penalty function fp developed to account
for the disparity between citrus and background. As
a result, the citrus detection performance of our loss
function is improved by pushing the citrus further from the
background in the training process, even under variable
illumination and different occlusion conditions. The recall
values of the three groups of illumination conditions were
99.55%, 98.47%, and 98.48%, the precision values were
95.79%, 96.13%, and 96.64%, respectively, and the F1-
scores were close to 0.98. The average detection time was
78.97 ms per image. Compared with the original YOLO
v5s, the performance improvement was 2-9% on average.

2. Based on the detected 2D bounding box for a citrus, the
potential fruit region of mature citrus was segmented
completely using Cr-Cb chromatic mapping, Otsu
thresholding and morphology processing. In particular,
the difference in color intensity between citrus targets
and background objects is enhanced using Cr-Cb
chromatic mapping, which helps to extract the complete
shape of citrus fruit using Otsu thresholding and
morphology processing.

3. To recover the missing depth values in the citrus region
under different occlusion states, the kriging method was
applied based on the spatial proximity among neighboring
points. The experimental results show that the average
error of the restored depth values was 2.02 mm and the
relative error was 1.26%, indicating that the method can
accurately restore the depth map of citrus fruit.

4. Based on the ellipsoid characteristic of citrus fruit, the 3D
localization information of citrus is accurately determined
using the camera imaging model and a restored depth map.
The experimental results show that the average error of
the distance d between the citrus fruit and the camera was
3.98 mm, and the average errors of the citrus diameter dx,
dy and dz were 2.75, 2.52, and 2.11 mm, respectively, which
is better than the results achieved in other research.

Our method can provide 3D citrus position data under
variable illumination and different occlusion conditions in

natural orchards. Future work will focus on few-shot learning
and reduce the number of citrus fruits in the training dataset to
improve citrus detection and localization.
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The accurate and robust detection of fruits in the greenhouse is a critical

step of automatic robot harvesting. However, the complicated environmental

conditions such as uneven illumination, leaves or branches occlusion, and

overlap between fruits make it di�cult to develop a robust fruit detection

system and hinders the step of commercial application of harvesting robots. In

this study, we propose an improved anchor-free detector called TomatoDet to

deal with the above challenges. First, an attention mechanism is incorporated

into the CenterNet backbone to improve the feature expression ability. Then,

a circle representation is introduced to optimize the detector to make it

more suitable for our specific detection task. This new representation can

not only reduce the degree of freedom for shape fitting, but also simplifies

the regression process from detected keypoints. The experimental results

showed that the proposed TomatoDet outperformed other state-of-the-art

detectors in respect of tomato detection. The F1 score and average precision

of TomatoDet reaches 95.03 and 98.16%. In addition, the proposed detector

performs robustly under the condition of illumination variation and occlusion,

which shows great promise in tomato detection in the greenhouse.

KEYWORDS

tomato detection, anchor-free, CenterNet, deep learning, harvesting robots

1. Introduction

Tomato harvesting is a labor-intensive work, which needs a lot of human resources.

It is also very time consuming and includes much tedious work. However, with the

development of urbanization and aging of society, the people in the countryside have

decreased a lot, and the labor cost continues to increase, resulting in a big labor shortage

in farming work (Yue et al., 2015). On the other side, intelligent agriculture is developing

fast in the past decades, which is an ideal substitute of human resources for farming work.

Among the various technologies applied in the agriculture, the fruit harvesting robot is

one of the prominent artificial intelligent techniques. It has huge potential efficiency in

fruit harvesting, which can bring high profit as well as liberating the labor force. Thus, it

is of great value and significance to develop harvesting robots.

A harvesting robot usually consists of two components—a vision system and an

eye-hand coordination system (Zhao et al., 2016a). The vision system plays a key role in
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FIGURE 1

A tomato is modeled as a center point of its bounding circle. The radius of the bounding circle can be inferred from the keypoint at the center.

the whole system, since the first critical step for the harvesting

robot is to detect fruits autonomously. This step determines

the detection and subsequent picking accuracy of harvesting

robots. Thus, it is very crucial to develop a robust fruit

detection algorithm of the vision system. However, at present,

no harvesting robot has been commercialized successfully due

to either low detection accuracy or low detection speed. Many

factors have hindered the pace of harvesting robot development

such as uneven illumination, occlusion, overlap, and some other

unpredictable factors (Gongal et al., 2015).

To deal with the above challenges, many researchers have

studied fruit detection over the past years. In the early years,

some researchers used threshold discriminant methods for fruit

detection based on color, shape, texture, or fusion of them

(Linker et al., 2012; Kelman and Linker, 2014; Wei et al.,

2014), and achieved reasonable detection results. Bulanon et al.

(2002) used an optimal threshold extracted from the intensity

histogram of a red-color-difference enhanced image for apple

recognition. The results showed that the success rate exceeds

88%. This method is restricted to ripe apples which present

different color to the background. Okamoto and Lee (2009)

employed hyperspectral imaging for detection of green citrus.

The method is separated into pixel-wise segmentation process

using pixel discrimination functions and fruit recognition

process with thresholds selected by trial and error. This method

greatly relies on the selection of several optimal thresholds, and

thus is lack of robustness when the fruit environment changes.

Inspired by the eigenface concept, Kurtulmus et al. (2011)

proposed a novel eigenfruit feature for green citrus detection,

combined with color and circular gabor texture. Although

intrinsic texture features are used other than only color features,

the method still confuses some fruits with background and

does nothing with severe occluded fruits. Zhao C. et al. (2016)

developed a cascaded pixel segmentation method for immature

citrus detection in natural environment. Three color feature

maps and a block matching method are adopted to identify

potential fruit pixels. Finally, an SVM classifier is used to

remove false detections. Nevertheless, with only color feature for

segmentation in the early stage, many fruits are missed by the

method due to similarity between green fruits and background.

Zhao et al. (2016b) proposed amulti color feature fusionmethod

based on wavelet transformation for mature tomato recognition.

The detection accuracy reaches 93%. However, since only color

features are employed, the method is inferred to be sensitive

to illumination variation. These methods greatly rely on the

selection of suitable thresholds, making them sensitive to the

changes in the form of fruit presentation, such as illumination

variation and occlusion.

With the development of machine learning, many

researchers tried to apply them to fruit detection, such

as adaboost, support vector machine (SVM) or other

statistical classifiers (Kurtulmus et al., 2014; Lv et al., 2014;

Yamamoto et al., 2014), and get better results than the threshold

discriminant methods. Zhao et al. (2016c) used an adaboost

classifier associated with haar features for tomato detection.

An average pixel value feature is adopted for the removal of

false detections. More than 96% of tomatoes are detected in

their study. Li et al. (2017) proposed to use an SVM trained on

histogram-based features for green and ripe tomato recognition.

Prior to detection, the fast normalized cross correlation method

is used to extract the potential tomato regions. Finally, the

circular hough transform and color analysis are combined

to obtain tomato positions. Behroozi-Khazaei and Maleki

(2017) proposed to use an artificial neural network optimized

by genetic algorithm for grape cluster detection. Also, the

genetic algorithm is adopted for color feature selection, which

subsequently serves as input to the network. A Bi-Layer schema

was proposed for automatic detection of ripening tomatoes

by Wu et al. (2019). In their method, a weighted relevance

vector machine is used for tomato recognition based on six

color-related features and five textural features. A detection

rate of 94.90% is reported in the results. Liu et al. (2019)

developed a coarse-to-fine method for ripe tomato detection in

the greenhouse. First, a naïve bayes classifier is used to identify

potential tomato area, on which an SVM classifier combined

with histogram of oriented gradients is applied to recognize

tomatoes. At last, a color analysis method is proposed to remove

false detection. The machine learning methods usually achieve

better performance than threshold discriminant methods.

However, the low-level abstraction capabilities of hand-crafted

features make it difficult to adapt these methods to complicated

environmental change.
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The emergence of deep learning methods especially

convolutional neural networks provides a new paradigm for

computer vision tasks, including fruit detection tasks (Sa et al.,

2016; Tian et al., 2019; Zheng et al., 2021). These methods can

learn feature representations directly from the data and can be

trained end-to-end. Nevertheless, the detection accuracy and

robustness still need to be improved to enable real commercial

applications under complicated conditions as discussed above.

To address the above problems, this study proposes an

effective anchor-free detector called TomatoDet for tomato

detection. The proposedmodel represents a tomato by the center

point of its bounding circle, as shown in Figure 1. First, to

improve the expression ability of the backbone network, an

attention mechanism is introduced to guide the network to

pay more attention to the region of interest (ROI), especially

small tomatoes. Second, a bounding circle is adopted for tomato

localization instead of the traditional bounding box, which is

commonly used for general object localization.

Our main contribution is three-fold as follows:

1. The Convolutional Block Attention Module is introduced

into the backbone network of CenterNet (Zhou et al., 2019)

called Attentive-DLA34 to boost the representation power.

2. A circle representation for tomato detection is adopted

to adapt the traditional detection methods to our specific

detection task. The new circle representation not only

reduces the degree of freedom for shape fitting, but also

simplifies the regression process from detected keypoints.

3. Extensive experiments are conducted on tomato datasets.

We show that the proposed TomatoDet achieves better

performance in terms of both accuracy and robustness,

compared to the original CenterNet and other state-of-the-

art object detectors.

2. Related work

In recent years, deep learning methods have shown

continuous performance improvements on fruit detection.

A “MangoYOLO” detector was proposed for fruit detection

and fruit load estimation by Koirala et al. (2019). This

model combines the advantages of YOLOv2 (Redmon and

Farhadi, 2017) and YOLOv3 (Redmon and Farhadi, 2018),

which has both high detection speed and detection accuracy.

It outperforms other methods such as Faster R-CNN (Ren

et al., 2015), YOLOv2 (Redmon and Farhadi, 2017), YOLOv3

(Redmon and Farhadi, 2018), and SSD (Liu et al., 2016), on

their Mango dataset. Bresilla et al. (2019) improved YOLO

(Redmon et al., 2016) model for apples and pears detection.

First, the grid-scale is scaled up twice to fit the size of the

fruits. Second, the model is pruned to improve the detection

speed while not degrading the accuracy. Afonso et al. (2020)

appliedMask R-CNN to the tomato dataset for detection. Several

neural networks are used as backbone for feature extraction.

The best F1 score reaches over 94% in their report. Liu G. et al.

(2020) proposed a YOLO-Tomato for tomato detection based

on YOLOv3 (Redmon and Farhadi, 2018). A dense architecture

is incorporated to the backbone to facilitate feature reuse,

and a circular bounding box is adopted to optimize the non-

maximum suppression process. Themodel achieves a competing

performance compared to state-of-the-art detection methods.

Zheng et al. (2021) improved YOLOv4 (Bochkovskiy et al.,

2020) for green citrus detection. First, the backbone network

is trimmed to reduce detection time. Then, a novel Bi-PANet

is proposed to fuse features from different layers. With the

modifications, the detection accuracy is reported to be 86%

on their dataset. Zhang et al. (2021) developed an edge-device

oriented lightweight model for fruit detection. The structure of

the original CSPNet is lightened to boost detection speed, and

a deep-shallow feature fusion model is proposed to enhance the

expression ability of the network. Tested on three types of edge

devices, the average detection precision reaches 93, 84.7, and

85% for oranges, tomatoes, and apples, respectively. Wei et al.

(2022) proposed a green fruit detection model based on D2Det.

By incorporating MobileNetV2, feature pyramid networks and

region proposal network structure into the original model, the

detection accuracy of green fruits in orchard environments was

greatly improved. Chen et al. (2022) improved YOLOv4 for the

detection of citrus by incorporating an attention mechanism

and a depthwise separable convolution module. In addition,

a pruning algorithm was applied to remove the influence of

irrelevant latent factors of the data.

Although exciting results are achieved by the abovemethods,

there is still much room for optimization of the networks to

improve detection performance. Moreover, the above methods

are all anchor-based methods, which commonly perform

nearly exhaustive anchor classification over the image and

have many hyperparameters for anchor design, reducing the

detection efficiency.

3. Materials and methods

3.1. Image acquisition

The images used in this study are captured using a digital

camera (Sony DSC-W170, Tokyo, Japan) with a resolution of

3,648 × 2,056 pixels in a Tomato Production Base, which is

located in Shouguang City, Shandong Province, China. The

datasets are collected under various environment conditions

including sunlight, shading, occlusion, and overlap, etc. Some

examples captured under different conditions are shown

in Figure 2.

To verify the proposedmethod, the datasets are split into two

subsets—a training set and a test set. The training set contains

725 images, and 241 images are included in the test set. Totally,

966 images are used in this study. For data labeling, a tool
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FIGURE 2

Some tomato samples with di�erent growing circumstances: (A) a single tomato, (B) a cluster of tomatoes, (C) occlusion case, (D) overlap case,

(E) shading case, and (F) sunlight case.

FIGURE 3

Data augmentation of tomato images: (A) original image, (B) horizontal flip, (C) scaling and cropping, (D) high brightness, (E) low brightness, (F)

color balancing, and (G) blur processing.

called Label-Tomato has been developed to annotate images

with proposed bounding circles based on Python. The output

format of Label-Tomato is txt files, which include the numbers

and locations of tomatoes for each image.

3.2. Data augmentation

To avoid over-fitting of the model in the training process,

the data augmentation is used in this study to simulate real-

life interference and enhance the richness of the collected

datasets. Several image processing technologies are adopted for

augmentation - horizontal flip, scaling and cropping, brightness

transformation, color balancing and image blurring, as shown

in Figure 3. For the brightness transformation, we use a factor

falling in the range [0.6, 1.4] to change the intensity of the

pixels in the image randomly. This process can simulate different

weather factors on the image intensity. For the scaling and

cropping operation, we follow the same process as in Liu G. et al.

(2020). To eliminate the effect of lighting on color rendering, we

adopt the gray world algorithm (Lam, 2005) for color balancing.

Finally, we randomly blur the augmented images by flip, scaling

and cropping, brightness transformation, and color balancing to

simulate indistinct images caused by camera movement. After

data augmentation, the whole number of resultant images is

shown in Table 1.
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TABLE 1 The number of training images after data augmentation.

Original Flip
Scaling

and cropping
Brightness Color Blur Total

No. of tomato images 725 725 725 1,450 725 725 5,075

FIGURE 4

An overview of the proposed model.

3.3. Overview of tomatoDet

Our tomato detection model, called TomatoDet, pools

several concepts from the past work with our novel idea

to improve the detection performance. An overview of the

proposed model is shown in Figure 4. The proposed TomatoDet

is based on CenterNet and consists of two modules. The first

module is used for feature extraction. It adopts Deep Layer

Aggregation-34 (DLA34) (Yu et al., 2018) as the backbone and

incorporates Convolutional Block Attention Module (CBAM)

(Woo et al., 2018) to improve the feature expression ability and

guide the network to focus on small-scale tomato targets. The

second module is the detection head. The architecture of the

detection head is like that of CenterNet, except that we use a

radius head instead of the height and width head for bounding

circle prediction. More details are presented in Sections 3.4

and 3.5.

3.4. The proposed attentive-DLA34
backbone

In this study, an attentive Deep Layer Aggregation network

(Attentive-DLA34) is proposed as the base backbone for feature

extraction. The DLA is inspired by dense connection and

feature pyramid and has two main structures: the iterative

deep aggregation (IDA) and the hierarchical deep aggregation

(HDA). The IDA is mainly used for feature fusion across

resolutions and scales while the HDA focuses on semantic

fusion, i.e., aggregating features from different channels and

depths in a tree-based structure. Based on these two structures,

the DLA could make better use of spatial and semantic

information for recognition and localization. However, the

complicated conditions make it challenging to detect tomatoes

in a natural environment, not to mention the existence of a

large number of small tomatoes. To mitigate this problem,

we introduce an attention mechanism—Convolutional Block

Attention Module (CBAM)—into the backbone network to

guide it to paymore attention to the region of interest (ROI). The

architecture of the proposed Attentive-DLA34 model is shown

in Figure 5.

As shown in Figure 5, we replace the original layers in

each stage with CBAM to focus its attention on tomato areas.

For CBAM, it is divided into a channel attention module and

a spatial attention module in a sequential manner. First, the

channel attention module takes the input and infers a 1D

channel attention map. Then, the multiplication output of the

input and the attention map is inputted to the spatial attention

module to get the final output feature map in the same way. The

detailed operation can be depicted in Equations (1) and (2):

F′ = Mc(F)⊗ F (1)
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FIGURE 5

The proposed attentive-DLA34 model.

F′′ = Ms
(

F′
)

⊗ F′ (2)

where ⊗ indicates element-wise multiplication, F ∈ RC×H×W

is the input feature map, MC ∈ RC×1×1 denotes the generated

channel attention map, and Ms ∈ R1×H×W denotes the

generated spatial attention map. F′′ is the final output by CBAM.

3.5. Circle representation

For general object detection, a bounding box is usually

adopted for object localization. However, this type of detection

representation is not optimal for specific objects which have

a particular shape. In this study, since our detection target is

tomato, which is roughly circular, it is better to use bounding

circles instead of bounding boxes for localization. It has three

folds of advantages. Firstly, compared with bounding boxes,

bounding circles could better match the shape of tomatoes.

Secondly, the representation of a circle is simpler than that of

a box, which makes it easier for the network to learn. Lastly, the

circle is invariant to rotation.

3.5.1. From point to bounding circle

For an input image I ∈ RW×H×3 with width W and

height H, the target is to produce a keypoint heatmap Ŷ ∈

[0, 1]
W
K ×H

K ×C , where K is the downsampling ratio of output

and C is the number of classes. A prediction from the heatmap

Ŷx,y,c = 1 denotes a detected keypoint, and Ŷx,y,c = 0 denotes

background. Following Law and Deng (2018), the ground truth

of the keypoints is mapped onto a heatmap Y using a 2D

Gaussian kernel as in Equation (3):

Yx,y,c = exp

(

−

(

x− p̃x
)2

+
(

y− p̃y
)2

2σ 2
p

)

(3)

where p̃x and p̃y are the equivalent groundtruth keypoints of

prediction, and they are downsampled by the factor K from

the original keypoint p and are then discretized. σp is a kernel

standard deviation.

After getting the peaks of the heatmap for tomatoes, the top

N peaks are selected among all the detected responses whose

value is greater or equal to its eight-connected neighbors. We

define P̂ =
{(

x̂i, ŷi
)}N

i=1 as the set of N detected center points.

The confidence of the detected bounding circle is represented by

the keypoint values Ŷxi,yi,c, and the center point p̂ and radius r̂

of the bounding circle is denoted as follows:

p̂ =
(

x̂i + 1x̂i, ŷi + 1ŷi
)

(4)

r̂ = R̂x̂i,ŷi (5)

where
(

1x̂i,1ŷi
)

= Ôx̂i,ŷi ∈ R
W
K ×H

K ×2 is the offset prediction

and R̂x̂i,ŷi ∈ R
W
K ×H

K ×C is the radius prediction.

3.5.2. Bounding circle IOU

The intersection-over-union (IOU) is commonly used to

evaluate the similarity of two bounding boxes. In this study,
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FIGURE 6

The schematic diagram of cIOU.

we introduce a circle IOU (cIOU) for evaluation of two

bounding circles.

As shown in Figure 6, denoting the center coordinates of

two intersected circles O1 and O2 be
(

x1, y1
)

and
(

x2, y2
)

,

respectively, the distance between two centers d can be

represented in Equation (6) and satisfies the condition |R− r| ≤

d ≤ |R+ r|.

d =

√

(x1 − x2)
2 +

(

y1 − y2
)2

(6)

The angles α and β can be calculated as:

α = cos−1 r21 + d2 − r22
2r1d

(7)

β = cos−1 r22 + d2 − r21
2r2d

(8)

Then, the intersection area AO1∩O2 and union area AO1∪O2

of circles O1 and O2 can be derived as in Equations (9) and (10).

AO1∩O2 = αr21 + βr22 −
1

2
r21 sin 2α −

1

2
r22 sin 2β (9)

AO1∪O2 = πr21 + πr22 − AO1∩O2 (10)

Consequently, the cIOU can be represented as follows:

cIOU =
(2α − sin 2α)r21 + (2β − sin 2β)r22

(2π − 2α + sin 2α)r21 + (2π − 2β + sin 2β)r22
(11)

3.6. Loss function

The loss function of TomatoDet in the training stage consists

of three parts, i.e., the keypoint heatmap loss, bounding circle

radius loss and center offset loss. The keypoint heatmap loss Lhm
is based on focal loss (Lin et al., 2017) as in Equation (12).

Lhm =

−
1

N

∑

x,y,c







(

1− Ŷx,y,c

)α

log Ŷx,y,c if Yx,y,c = 1
(

1− Yx,y,c

)β
(

Ŷx,y,c

)α

log
(

1− Ŷx,y,c

)

otherwise

(12)

whereN is the number of keypoints in an image, and α and β are

hyper-parameters for the focal loss. In this study, α and β are set

to be 2 and 4 following Zhou et al. (2019).

To rectify the keypoint location error resulting from the

discretization of downsampling, an offset loss Loff is designed

to measure the difference between the predicted offset Ô and the

groundtruth O based on L1 loss.

Loff =
1

N

∑

p

∣

∣

∣
Ôp̃ − Op̃

∣

∣

∣
(13)

The tomato radius is regressed from the center points

optimized by the radius loss Lr in Equation (14).

Lr =
1

N

N
∑

k=1

∣

∣

∣
R̂pk − rk

∣

∣

∣
(14)

where R̂pk and rk denotes the predicted and groundtruth radius

of the kth tomato, and N represents the number of results.

Above of all, the total loss of TomatoDet is denoted as in

Equation (15).

Ldet = Lhm + λoff Loff + λrLr (15)

where λoff = 1 and λr = 0.1 are used in our experiment to balance

different losses, referring to Zhou et al. (2019).

3.7. Experimental setup

The experiments are performed on a Ubuntu 16.04 with an

Intel(R) Core(TM) i7-9700 K CPU@3.60 GHz. It is accelerated

by an NVIDIA GeForce GTX 1080Ti GPU. The proposed

TomatoDet model is implemented on Pytorch.

The model is trained on an input resolution of 512 × 512

pixels. It is trained with a batch size of 8 and an initial learning

rate of 1.25e-4 for 140 epochs. The learning rate is then dropped

10 at 90 and 120 epochs, respectively.

To evaluate the performance of the proposed method, recall

(R), precision (P), and F1 score are used as the criterion indexes.

They are defined in Equations (16)–(18):

P =
TP

TP + FP
(16)
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R =
TP

TP + FN
(17)

F1 =
2× P × R

P + R
(18)

where TP, FP, and FN represent true positives (correct

detections), false positives (false detections), and false negatives

(missing detections), respectively.

Besides, the average precision (AP) is adopted in this study

to evaluate the overall detection performance. AP is defined

as follows:

TABLE 2 Ablation study on the major components of TomatoDet.

Attention Circle Recall Precision F1 AP

module representation (%) (%) (%) (%)

91.56 92.98 92.26 95.75

X 92.87 94.32 93.59 97.11

X 92.98 94.43 93.70 96.98

X X 94.30 95.77 95.03 98.16

FIGURE 7

PR curves of the major components of TomatoDet for ablation

study. The markers indicate the points where recall and

precision are obtained when the prediction confidence

threshold equals 0.6.

TABLE 3 Tomato detection results of di�erent algorithms.

Methods Recall Precision F1 AP (ms)

(%) (%) (%) (%) (ms)

YOLOv2 86.18 87.24 86.71 88.46 30

YOLOv3 90.89 91.60 91.24 94.06 45

YOLO-Tomato 93.09 94.75 93.91 96.40 54

YOLOv4 92.76 94.11 93.43 96.59 25

Faster R-CNN 91.78 92.89 92.33 94.37 231

CenterNet 91.56 92.98 92.26 95.75 32

TomatoDet 94.30 95.77 95.03 98.16 35

AP =
∑

n

(

rn+1 − rn
)

pinterp
(

rn+1
)

(19)

pinterp
(

rn+1
)

= max
r̃ : r̃≥rn+1

p(r̃) (20)

where p(r̃) is the measured precision at recall r̃.

4. Results and discussion

4.1. Ablation study

In this study, an attention mechanism and a circle

representation are incorporated to the proposed detector. In

order to evaluate the effectiveness of each component, an

ablation study is performed on the tomato dataset. The results

of the ablation experiments are shown in Table 2 and Figure 7.

From Table 2, we can see that the incorporation of the

attention mechanism brought a significant improvement of

all the indexes including the recall, precision, F1 score and

average precision (AP). The F1 score and AP increases by 1.33

and 1.36%, respectively. This verifies the advantages of the

proposed attentive-dla34 backbone, which optimizes the focus

of the network and boosts the representation power. We also

performed a contrast experiment to verify the effectiveness of

the circle representation.With circle representation, the F1 score

and AP increases by 1.44 and 1.23%, respectively, as shown in

Table 2. This benefits from the intrinsic shape fitting of the new

circle representation to tomatoes, which can reduce the degree

of freedom of the rectangle representation and simplify the

regression process from detected keypoints. We also show the

precision-recall (PR) curves of different components in Figure 7.

The markers indicate the points where recall and precision are

obtained when the confidence threshold equals 0.6. It can be

FIGURE 8

PR curves of di�erent detection algorithms.
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seen that the detection performance improves significantly with

the incorporation of different components.

4.2. Comparison of di�erent methods

To verify the performance of the proposed TomatoDet

model, we designed a comparative experiment of the state-of-

the-art detection algorithms, including YOLOv2 (Redmon and

Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), YOLO-

Tomato (Liu G. et al., 2020), YOLOv4 (Bochkovskiy et al.,

2020), Faster R-CNN (Ren et al., 2015), CenterNet (Zhou et al.,

2019), and the proposed model. Among all of these algorithms,

the Faster R-CNN is a two-stage detector, and the others are

one-stage detectors. Moreover, CenterNet and the proposed

TomatoDet are anchor-free detectors, while the remaining are

all anchor-based methods.

The recall, precision, F1 score, average precision (AP),

and average detection time are the evaluation indicators, as

shown in Table 3. The precision-recall (PR) curves of different

detection models are shown in Figure 8. In terms of detection

performance, one can see that the proposed TomatoDet is

superior to the other five methods. The F1 score of TomatoDet

is 95.03%. It is 1.12% higher than that of YOLO-Tomato,

FIGURE 9

The (A) F1, (B) recall, and (C) precision curves of di�erent detection algorithms.

TABLE 4 Performance of the proposed TomatoDet under di�erent lighting conditions.

Illumination Tomato count
Correctly identified Falsely identified Missed

Amount Rate(%) Amount Rate (%) Amount Rate (%)

Sunlight 487 460 94.46 22 4.56 27 5.54

Shading 425 400 94.12 16 3.85 25 5.88
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which obtains the second-best performance. In terms of AP,

TomatoDet performs 1.76 and 1.57% better than YOLO-

Tomato and YOLOv4, respectively. Compared to CenterNet,

the proposed TomatoDet is about 2.8 and 2.4% higher in terms

of F1 score and AP, respectively. We also show the F1, recall

and precision curves in Figure 9, separately. In accordance

with the PR curves, they demonstrate the superiority of the

proposed TomatoDet over other methods. This verifies the

effectiveness of the proposed modifications. The introduction

of CBAM guides the model to pay more attention to the ROI

and thus improves the feature expression ability of the network.

Besides, the adoption of bounding circles makes it easier to

regress from center points to the size as the bounding circle

only has one parameter, i.e., radius. Furthermore, bounding

circles could match the shape of tomatoes better in nature and

improve the IOU. The average detection time of the proposed

model reaches 0.036 s per image. It is about 0.2 s less than

Faster R-CNN and almost the same as the YOLOv2 model. The

experimental results show that the proposed TomatoDet could

detect tomatoes in complex environments in real-time with

strong robustness.

4.3. Qualitative analysis

To better understand the prediction ability of our proposed

TomatoDet, the output feature is visualized. Figure 10 shows

FIGURE 11

PR curves of the proposed method under di�erent

lighting conditions.

FIGURE 10

(A–F) Some examples of detection results along with the output heatmap.
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some examples of detection results along with the output

heatmap. From the second row of the subfigures, one can see that

through the proposed attentive-DLA34 backbone, the heatmap

almost only fires at the area of tomatoes, including small and

severe occluded ones. This benefits from the combination of

CBAM and DLA34, which emphasizes the meaningful features

throughout the network and thus boosts the representation

power. Further, the keypoints for tomatoes are extracted from

the peaks of the heatmap and are then regressed to the radius

of the proposed bounding circle, which reduces the degree of

freedom of fitting compared to the traditional bounding boxes,

as is shown in the first row of the subfigures.

4.4. Performance of the proposed model
under di�erent lighting conditions

In the natural environment, tomatoes may be exposed

to different lighting conditions due to uneven illuminations.

The performance of the proposed TomatoDet under different

lighting conditions is evaluated in this study. Among all the

tomatoes in the test set, 425 tomatoes are in shading conditions,

while 487 tomatoes are in sunlight conditions. The correct

identification rate (or recall), false identification rate andmissing

rate are used as evaluation indicators.

As shown in Table 4, 460 out of 487 tomatoes are correctly

identified by the TomatoDet under sunlight conditions. The

counterpart is 400 out of 425 for the shading conditions.

The correct identification rates are comparable. The false

identification rates are 4.56 and 3.85% for sunlight and

shading conditions, respectively. This means that some of

the detections are falsely recognized as tomatoes, which in

fact are leaves, branches, or other backgrounds. This occurs

when the background presents similar color and shape to

tomatoes. The above results show that the proposed method is

robust under different lighting conditions in real scenes. From

Figure 11, one can see that the PR curves under sunlight and

shading conditions are comparable, showing the robustness of

the proposed method to different lighting conditions. Some

examples are shown in Figure 12.

4.5. Performance of the proposed model
under di�erent occlusion conditions

In the greenhouse, tomatoes are inevitably obscured by

leaves or branches and overlap with each other. This will

have a certain impact on tomato detection. In this study, we

also evaluate the performance of the proposed method under

different occlusion conditions. As in YOLO-Tomato (Liu G.

et al., 2020), depending on the degree of occlusion or overlap,

FIGURE 12

Some examples of the detection results under di�erent lighting conditions: (A–C) sunlight conditions, and (D–F) shading conditions.

TABLE 5 Performance of the proposed TomatoDet under di�erent occlusion conditions.

Occlusion
condition Tomato count

Correctly identified Falsely identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight case 609 576 94.58 22 3.68 33 5.42

Severe case 303 284 93.73 16 5.33 19 6.27
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we classify tomatoes as slight and severe occlusion cases. Severe

cases refer to tomatoes being blocked by leaves, branches, or

other tomatoes bymore than 50% degrees. Conversely, tomatoes

are regarded as slight cases. The detection results are shown in

Table 5 and Figure 13.

Based on the above experiments, one can see that the

detection performance for tomatoes under slight occlusion

cases is marginally better than that of tomatoes under severe

cases. This shows that occluded and overlapped tomatoes

cause inaccurate detections. Nevertheless, most of the occluded

and overlapped tomatoes can be detected by our model

correctly. This is achieved by the accurate keypoints estimation

resulting from the implicit contextual information utilization

of the convolutional neural networks since the networks learn

hierarchical features through multiple levels of abstraction.

FIGURE 13

PR curves of the proposed method under di�erent occlusion

conditions.

However, it is believed that the detection performance of

occluded tomatoes can be further improved by exploiting

contextual information explicitly (Liu L. et al., 2020). Figure 14

shows some examples of detection results for both cases.

5. Conclusions and future work

In this study, we propose TomatoDet, an improved

anchor-free detector for tomato detection based on

CenterNet. The proposed detector incorporates an attention

mechanism to optimize the focus of the network and

thus boost the representation power. In addition, a circle

representation is introduced to adapt the detector to

our specific detection task. With circle representation,

the degree of freedom for tomato fitting is reduced

and the regression process from keypoints to the size

is simplified.

The experimental results show that the

proposed TomatoDet is superior to other state-

of-the-art detectors for tomato detection in the

greenhouse. It can also detect tomatoes under

different lighting and occlusion conditions with

strong robustness.

Although the proposed model has achieved a good

performance on the tomato datasets, there is still much space

for further development. They can be summarized as follows:

When the overlap or occlusion area is high, the detection

rate will drop. One possible solution is to incorporate contextual

information such as branches or leaves to improve the detection

accuracy.

The experimental dataset is relatively small and more data

are needed for training and verification in the future study.

FIGURE 14

Some examples of detection results under di�erent occlusion conditions: (A–C) slight cases and (D–F) severe cases.
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Moreover, the characteristics of tomatoes in different

growing stages will be analyzed to realize multi-stage

tomato detection.
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Sa�ron authenticity is important for the sa�ron industry, consumers, food

industry, and regulatory agencies. Herein we describe a combo of two novel

methods to distinguish genuine sa�ron from fake in a user-friendly manner

and without sophisticated instruments. A smartphone coupled with Foldscope

was used to visualize characteristic features and distinguish “genuine” sa�ron

from “fake.” Furthermore, destaining and staining agentswere used to study the

staining patterns. Toluidine blue staining pattern was distinct and easier to use

as it stained the papillae and the margins deep purple, while its stain is lighter

yellowish green toward the central axis. Further to automate the process,

we tested and compared di�erent machine learning-based classification

approaches for performing the automated sa�ron classification into genuine

or fake. We demonstrated that the deep learning-based models are e�cient

in learning the morphological features and classifying samples as either fake

or genuine, making it much easier for end-users. This approach performed

much better than conventional machine learning approaches (random forest

and SVM), and the model achieved an accuracy of 99.5% and a precision

of 99.3% on the test dataset. The process has increased the robustness and

reliability of authenticating sa�ron samples. This is the first study that describes

a customer-centric frugal science-based approach to creating an automated

app to detect adulteration. Furthermore, a survey was conducted to assess

sa�ron adulteration and quality. It revealed that only 40% of samples belonged

to ISO Category I, while the average adulteration percentage in the remaining

samples was 36.25%. After discarding the adulterants from crude samples, their

quality parameters improved significantly, elevating these from ISO category III

to Category II. Conversely, it also means that Categories II and III sa�ron are

more prone to and favored for adulteration by fraudsters.

KEYWORDS

Crocus sativus, Foldscope, microscopy, adulteration, fraud, machine learning, deep

learning, image processing
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Introduction

Saffron (Crocus sativus L.) is a highly remunerative cash

crop and a source of luxury spice obtained from handpicked

flowers as dried crimson stigmas (Kafi et al., 2018). According to

Food and Agricultural Organization (FAO), it forms “a loosely

matted mass of dark, reddish-brown flattened threads, among

which a few narrower yellow ones can be distinguished. The

upper, enlarged part of the flattened threads is the stigma of the

flower, the lower narrower portion is the style” (Husaini et al.,

2010a). Saffron bioactive compounds have immense therapeutic

properties useful for coronary artery diseases, neurodegenerative

disorders, bronchitis, asthma, diabetes, fever, and colds. It has

the potential to help tackle problems associated with severe acute

respiratory syndrome (COVID-19) patients and post-COVID-

19 problems (Ahmed and Husaini, 2021). It can help manage

stress and anxiety during isolation, quarantine, and lockdowns

(Husaini et al., 2021). Owing to all these beneficial properties

and as an immunity booster, saffron extracts may be added to

some drug formulations in future (Husaini et al., 2022). These

properties and their importance in religious rituals of many

communities make it costly and hence prone to adulterations.

Some have even advocated its cultivation in kitchen gardens to

ensure the supply of pure saffron for household use (Husaini and

Wani, 2020).

The best quality saffron is usually sold in filaments (Melnyk

et al., 2010; Nehvi and Yasmin, 2021); therefore, in the present

study, we focused on filamentous saffron. Different kinds of

fake products sold under the name of “saffron” are reported in

the literature (Husaini et al., 2010b; Heidarbeigi et al., 2015).

The most common fraudulent practice includes artificial dyeing

of some selected plant materials, making these look similar to

saffron. According to a study on saffron sold in India, only

52% are genuine, 30% are poor grade, and 17% are adulterated

(Husaini et al., 2010a). This menace of saffron adulteration is

mushrooming as a white-collar fraud at a tremendous pace

(Husaini et al., 2010a, 2013; Er et al., 2017).

According to the ISO 3632 standards (ISO, 2010, 2011),

up to 1% (w/w) of foreign material is permitted in third-class

products. Several chromatographic and spectroscopic methods

are used for detecting saffron adulterants (Alonso et al., 1998;

Lozano et al., 1999; Haghighi et al., 2007; Sabatino et al., 2011; Er

et al., 2017). Moreover, several biotechnological and molecular

methods are also employed to detect plant adulterants in saffron

(Ma et al., 2001; Javanmardi et al., 2011; Marieschi et al., 2012;

Babaei et al., 2014; Torelli et al., 2014; Petrakis et al., 2015;

Kumari et al., 2021). These methods are useful for detecting

low amounts (up to 1%) of bulking materials and are ideal for

checking the purity of the product. However, all these analytical

methods are too complicated, expensive, and need sophisticated

instrumentation and higher skill levels of experts. The lack

of sophisticated laboratories and ineffective law enforcement

adds to the constraints in handling cheating by retailers. Some

affordable methods like simplemicroscopy or spectrometry have

their limitations too. While a conventional microscope is a fairly

expensive instrument seldom used by common people, UV-

vis spectrophotometric method used in labs does not detect

saffron contamination up to 20% (w/w) (Sabatino et al., 2011).

None of the methods developed so far is easily accessible to

customers or retailers. Hence, there is a need to invent faster,

low-cost screening methods for detecting saffron adulteration

and fictitious look-alike versions of saffron, and make these

easily accessible to the end-users.

There is a need to have a customer-centric rather than

a lab-centric approach. We want to change the standpoint

of looking at the problem by bringing the customer directly

into the screening procedure. Customers should be able to

check the authenticity of a particular sample on a retail

scale because saffron being expensive, is generally sold in

small packings of 1–5 grams. The present study focuses on

“fictitious look-alike” versions of saffron sold in the markets

under the names of fictitious brands on a commercial scale

around religious places, spice markets, individual retailers, and

the unorganized sector. We aim to share a customer-friendly

technology that is the first of its kind and does not depend on

sophisticated instrumentation.

Recent developments in “frugal science” have made

a monocular origami-based low-cost optical microscope,

called Foldscope, commercially available and easily accessible

(Cybulski et al., 2014; Moreno-Roman and Bobick, 2022).

Similarly, there are tremendous advances in artificial

intelligence-based solutions and machine learning (Ben

Ayed and Hanana, 2021; Janiesch et al., 2021; Vijayakumar

and Balakrishnan, 2021; Greener et al., 2022). We explored

these developments and developed two methods for the

self-detection of fake saffron by customers and retailers. One

method uses Foldscope in combination with chemical staining

and destaining technique for developing a printed poster

to detect fake look-alike saffron through visual comparison.

The effect of different dyes on the staining pattern of the

samples was studied so that even school children could

use this technique. The second method uses deep learning

for image classification to automatically identify genuine

from fake look-alike saffron samples. The method uses

Foldscope and a mobile application (app) to automate

the process without using any invasive procedure. It is

time-efficient and can be used by people who do not have

much knowledge about the domain (Saffron). To the best

of our knowledge, this is the first time that Foldscope and

machine learning have been used to authenticate saffron as

fake/genuine and provide user-friendly testing access to a

broader audience.
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Materials and methods

Survey and collection of samples for
analysis

The collection of plant material and all experiments

were performed following relevant institutional, national, and

international guidelines and legislation. Direct interactions were

done with saffron farmers, traders, and consumers/tourists

to know their experiences and to find out the nature

of adulterants being commonly used by fraudsters. Only

a few cooperated in giving some basic information about

adulteration methods.

Categorization of genuine and fake look-alike
samples

A total of nine diverse classes of samples were used in the

present study (Table 1). Seven classes belonged to the fictitious

look-alike saffron filaments collected from open markets in

India, while two classes belonged to genuine saffron grades

(known as “Laccha” in native Kashmiri [“saffron in filaments”

as per ISO3632 and IS5453] and “Mongra” [saffron processed

using a technique indigenous to Kashmir or “saffron in cut

filaments” as per ISO3632 and IS5453]) (Figure 1). “Laccha” is

the vernacular Kashmiri term for saffron filament with style

and “Mongra” for a locally processed grade of cut filaments

lacking style.

Microscopic study

Samples were observed under stereo-microscope (Olympus

SZX16 using software LCmicro-2016-17 version) and Foldscope.

Foldscope is an origami-based optical microscope developed at

the University of Stanford, USA and designed to cost <US$1.

It weighs about 8–10 g and provides a magnification of 140×. It

does not require external power and can survive being dropped

from a three-story building (Cybulski et al., 2014; Joshi and

Bhosale, 2018). With good resolution cell phone cameras, direct

imaging is possible. Alternatively, the image can be viewed on a

frosted sheet (thin velum) which can be placed above the lens.

To develop the Foldscope-based method, we used 2,250

filaments belonging to nine classes, with at least 250 individual

filaments from each class for microscopic study. Single

strands of dry, intact filaments were placed directly on

clean, dry glass slides and covered with transparent cello-

tape (Supplementary Figure S1f). These were observed under

Foldscope in natural sunlight. Images were obtained by coupling

the Foldscope with a cell phone (iPhone SE) using a custom

magnetic coupler. The Foldscope magnification is 140×, which

was further enhanced digitally by the zooming function of

the smartphone having a 12-megapixel resolution camera.

Observations were recorded for morphological features like (a)

papillose protuberances; (b) margins; (c) serrations; (d) texture;

(e) dyeing patterns; (f) pubescence; (g) pollen grains.

De-pigmentation

In order to distinguish between artificially dyed samples

and genuine ones, the dry filaments were de-pigmented by

suspending in methanol (100%) for 4 h, followed by washing

with 1:1 (methanol: water) 3–4 times.

Staining

For staining, dry filaments were placed in a 1% staining

solution of each staining agent (toluidine blue, safranin O,

iodine, fast green, crystal violet) for 1–2min. Staining was

followed by washing with water to remove excess stain.

Filaments were placed on clean glass slides. Filaments were

covered with coverslip after putting a drop of water on them

and observed under Foldscope. Photographs were taken with

a smartphone.

Machine learning

Before using machine learning, we tried a simpler image

processing technique. As genuine saffron sample images have

papillae on stigma, while being absent in fake saffron samples,

we converted all images to single channel image, i.e., gray

image, and employed the Canny edge detector multi-stage image

processing algorithm to detect the edges in the image. We

counted the number of contours on the edges in the image based

on the highest gradient difference. Subsequently we used neural

networks to fine tune the process.

Neural networks (NNs) are a subset of ML and basic

components of the deep learning algorithm. Convolutional

neural network (CNN) is a special form of NN that performs

better with high-dimensional data like images and videos, and

it allows faster training and reduces model complexity. We

used deep neural network architecture based on ResNet18 (He

et al., 2016) and Densenet121 (Huang et al., 2017) networks,

with different model parameters and states. We used Python

version 3.7.13 as a programming language, OpenCV version

4.1.2 for image processing, fastai version 1.0.61, backed by

PyTorch version 1.11.0, as a deep learning framework, and

scikit-learn version 1.0.2 as a machine learning library. We used

NVIDIA Tesla K80 GPU with 12 GBs of memory capacity and

Intel Xeon 2.20 GHz CPU with 12 GBs of memory capacity.

We modified the last layer of networks and used it as a

binary classifier with two labels, separating genuine from fake

saffron samples.
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FIGURE 1

Photographs of closely resembling samples as visualized by a naked eye: Genuine sa�ron (a) sa�ron in filaments (Laccha), (b) sa�ron in cut

filaments (Mongra); fake samples, (c) unknown look-alike, (d) unknown look-alike, (e) neon yellow dyed corn silk, (f) maroon red dyed corn silk,

(g) unknown look-alike, (h) sa�ron stamen, and (i) paper strips.

Baseline and comparative methods

To ablatively test the introduction of ML algorithm for the

classification of fake and genuine saffron samples, we compared

NNwith the conventionalML algorithms, i.e., random forestand

SVM. Evaluation of the different NNs and their variants was

also done. For training the random forest model, we used 100

trees in the forest and two as the minimum number of splits for

the internal node. The maximum depth of the tree is expanded

until all leaves contain less than the minimum number of split

samples. Gini impurity was employed to measure the quality of

a split. SVMmodel was trained using radial basis function (RBF)

kernel. During the training process, model leveraged squared

hinge loss for the optimization, with 0.001 as the tolerance for

the stopping criteria.

Three experiments per network were conducted for deep

neural networks, namely ResNet18 and DenseNet121. First, the

model weights were randomly initialized using the Kaiming

initialization (He et al., 2015) approach. Second, convolutional

layers of the deep neural network were initialized with pre-

trained ImageNet (Deng et al., 2009) weights. The layers were

kept in a frozen state during training, while the last two layers
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were initialized with random weights and updated as training

proceeded. And finally, all the layers of both the networks with

pre-trained weights were unfrozen, and during training, all the

weights belonging to the layers got updated based on the loss

function optimization.

Random lightning and contrast changes were performed to

further enhance the training and generalize the process. Real-

time data augmentation of random flip with 50% probability

was also applied to training samples. These augmentations help

overcome the overfitting of the model on training data and

improve the overall model accuracy. Models were trained using

an Adam optimizer with a learning rate of 0.001 andmomentum

of 0.9. Binary cross entropy was used as a loss function due to the

binary classification nature of the task, i.e., a sample can be either

fake or genuine. All the variations of both neural networks were

trained for 15 epochs.

Data acquisition and pre-processing

During the data acquisition phase, we randomly captured

multiple images of the same filament for different samples

to incorporate the variation that might arise due to clicking

the image via smartphone from different angles, orientation,

contrast, etc. It helps to make the dataset more generalized,

to avoid neglecting the possible scenarios in the real-world,

where users can click images with uncertainty toward any

assumption, which in turn resulted in 3,794 images in total;

out of these, 1,434 images belong to genuine samples and

2,360 images to fake samples. The dataset consisted of

dried, with, and without stained saffron sample images to

include the tolerance toward different processing performed on

saffron strands.

In the pre-processing step, each image was resized to 224

× 244 × 3 (width × height × color channels) dimension to

decrease the computational load and create a uniformly sized

dataset. After resizing, the pixel values of images were subtracted

by the mean and divided by the standard deviation. This process

brings all image pixel values between 0 and 1 range and allows

faster convergence later in the model training.

For the experimentation purpose, the saffron dataset was

split into a training dataset containing ∼72% (2,732 samples),

a validation dataset containing ∼18% (683 samples), and a

test dataset consisting of ∼10% (379 samples). The training

dataset was used to train the above-mentioned models in a

supervised learning fashion, where input was a saffron sample

image and the label was the class it belongs to, i.e., fake or

genuine. The validation dataset was handy to validate and select

the best-trained model in an unbiased manner while finetuning

the model hyperparameters. Last but not least, since the test

dataset was not used during the training phase, it depicts

the real-world behavior and allows for the evaluation of the

final model.

Machine learning algorithms for
classification

Machine learning algorithms are mainly categorized into

unsupervised, supervised, and reinforcement learning. The

classification task falls under the supervised learning algorithm,

where training takes place based on the pre-labeled data. During

training, the algorithm learns the pattern from the labeled data

(Veronese et al., 2013). Once trained, the algorithm assigns a

new label to the new and unseen data and classifies the sample.

There are multiple ML-based classification algorithms available,

and, in this work, we explored random forest (Verma and

Achutha, 2016), support vector machine (SVM) (Le et al., 2012),

and multiple variations of CNN.

Random forest is an ensemble learning method and consists

of a number of decision trees. Each decision tree predicts a

class associated with the data sample, and the class with the

maximum number of votes is taken as a final prediction. This

combined approach adds robustness toward errors linked with

the individual decision tree predictions.

SVM algorithm takes data samples during training as input

and tries to find the optimal hyperplane in an N-dimensional

space, where N is the number of input features. This hyperplane

is a decision boundary and distinguishes the data samples into

different classes.

Performance evaluation

For measuring the performance of all the trained ML-based

classification models, accuracy and precision were employed.

The classification accuracy was calculated as:

accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

True positive (TP) represents the saffron samples correctly

classified as genuine samples in the above equation. False

positive (FP) represents the saffron samples falsely classified

as genuine samples. True negative (TN) represents the saffron

samples correctly classified as fake samples, while false negative

(FP) represents the genuine saffron samples falsely classified

as fake.

For the evaluation, accuracy focuses on the fraction of the

classification of samples, both fake and genuine, corrected as

predicted by the model.

The classification precision is represented as:

precision =
TP

TP + FP
(2)

Precision performance metric quantifies the number of correctly

classified genuine saffron samples by the trained model.
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Assessment of adulteration and quality
estimation

Eighty crude saffron samples were collected from eight

cities/towns of Jammu and Kashmir, India. Ten samples were

collected from each city/town, with two packets of 1 g each

bought from each vendor. All the 80 samples were then

screened for adulteration using Foldscope. The quantum of

adulteration in each sample was determined and expressed as

adulteration percentage, and then averaged for each location.

Spectrophotometer-based quality of the crude and the pure

samples was determined to categorize these into Categories I, II,

and III as per the ISO 3632.

Results and discussion

Limitations of sa�ron quality and
adulteration detection methods

The quality and the commercial value of saffron are

based on an estimation of coloring power, bitter taste,

and aroma (Carmona et al., 2007; Kafi et al., 2018). It

is certified in the international trade market following the

International Organization for Standardization (ISO) 3632

Normative (Husaini et al., 2010b). Regardless of the fraudulent

practice, it is challenging to identify commercial frauds in

saffron because changes in physical, chemical, and organoleptic

characteristics are not easily identifiable (Koocheki and Milani,

2020). Artificial intelligence technique-based artificial neural

network and electronic nose have been used for quality control

of saffron using its aroma fingerprint and distinguishing it

from the samples mixed with safflower or corn stigma up to

a proportion of 50% (w/w) (Heidarbeigi et al., 2015). The

technique can detect adulterated saffron with a percentage

classification accuracy of 86.87%.

An electronic nose is used to determine the geographic

origins of saffron with 90% of confidence (Carmona et al., 2006).

The principle of this detection is based on the differences in

dehydration techniques followed in different countries and the

consequent changes in the composition of volatile compounds

of saffron. Several fake and original products like sunflower oil,

corn oil, sesame oil, tea, and coffee have also been detected using

the electronic nose (Hai and Wang, 2006; Mildner-Szkudlarz

and Jeleń, 2008; Son et al., 2009). The most significant limitation

with the users of such electronic sensors (e-nose and e-tongue)

is the requirement of strictly controlling sample preparation,

sampling, and data processing. At the same time, training a

sensory panel is time-consuming and expensive.Moreover, these

sensors are very sensitive to temperature, humidity, pressure, gas

velocity, and vapor concentration (Tan and Xu, 2020).

Several studies have combined many techniques and used

multiple types of sensors through the fusion technique to

overcome the above-discussed limitations, but with limited

success (Kiani et al., 2018). Contrary to the previously discussed

methods, our aim is not to develop a method for detecting

adulterants or extraneous “powdery material” in the saffron

“powder” or the mixing of “different grades” of genuine saffron.

Our paper focuses on the “filamentous” adulterants and fictitious

“look-alike” versions of saffron commercially sold in markets.

Stigma papillae are the characteristic
morphological markers of genuine
sa�ron

The stigma of C. sativus consists of three orange-red

trumpet-shaped lobes, and it is papillate on the rim, and the

average length is 3 cm. C. sativus pollen tube growth in intra-

and interspecific pollinations has been studied in detail under a

microscope (Chichiriccò, 1984; Chichiricco and Caiola, 1986).

The stigma surface of saffron is of the dry type, as in the case

of many other Crocus species (Heslop-Harrison and Heslop-

Harrison, 1975; Heslop-Harrison, 1977; Caiola and Chichiriccò,

1991). While the stigmas of Crocus sativus and its allies C.

cartwrightianus, C. thomasii, and C. hadriaticus have been

studied in detail for reproductive biology (Caiola et al., 2000),

there is no emphasis on using it as a distinct morphological

marker for identifying genuine saffron, once dried or processed.

In the present study, we first visualized the filaments

of sample classes under a stereo-microscope for a wider

field of vision. We observed some differences among the

filaments, though these were more conspicuous toward their

apices (Supplementary Figure S2). We used Foldscope to focus

on the apex area and could easily identify papillae in both

commercially available genuine saffron sample classes 1 & 2

(Supplementary Figure S3). Our results show that it is possible to

distinguish genuine saffron from its commonly used adulterants

or fake look-alikes by detecting the presence of distinct papilla

on their trumpet-shaped upper rim (Figures 2b–d,f–h).

While the sample classes we studied showed textural

differences between real saffron and the fake ones, serrated top

margins and/or pollen grains were seen in authentic as well

as spurious sample classes (3, 8) (Supplementary Figure S1).

Therefore, unlike the common belief of saffron vendors, the

presence of pollen is not a distinctive feature of genuine saffron.

Sample class 3 (Supplementary Figure S3c) and sample class

7 (Supplementary Figure S3g) showed serrated top margins, a

feature common with authentic saffron; however, both lacked

the distinct finger-like projections “papillae.” Similarly, while a

large number of pollen grains were seen in sample class 8 and

pollen-like granules in sample 3, the papillae were absent in

both. Sample classes 4, 5, and 6 (Supplementary Figures S3d–f)

featured smooth margins with no serrations, papillae, or pollen

grains. Sample class 9 showed smooth, wide top margins

with narrower stalk, but lacked the characteristic papillae.
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FIGURE 2

Poster for the identification of genuine/fake sa�ron: Genuine sa�ron (a–d) sa�ron in filament (Laccha), (e–h) sa�ron in cut filament (Mongra);

fake samples (i–##).
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Pollen grains were also absent. Overall, sample classes 1, 2,

3, 7, and 9 closely resembled trumpet/funnel-like structure,

typical of most stigma, while the remaining four sample classes

showed flattened top and margins. The results are summarized

in Table 1.

Creating a poster by de-pigmentation
and di�erential staining

Microscopy is generally used in combination with staining,

particularly by school children. Most dyes stain tissues with

differing intensities of the same color. However, certain basic

dyes stain tissue components with colors other than that

of the dye. Such a staining reaction is called metachromasy

and is highly selective. Only certain tissue structures stain

metachromatically and are said to exhibit metachromasia

(Culling et al., 2014).

In the present study, we used staining to further expand the

inventory of distinct visual color markers. Toluidine blue (also

known as tolonium chloride, methylaniline, or aminotoluene)

is used to specifically stain certain components of mucosal

lesions and tissue sections owing to its metachromatic property

and was first applied for in vivo staining of uterine cervical

carcinoma in situ by Reichart in 1963 (Siddiqui et al., 2006).

Inspired by this, we used it to stain filaments, which incidentally

showed a distinct differential staining pattern in the case of

“genuine” saffron. It stained the papillae and the margins deep

purple, while it is lighter yellowish green toward the central axis

(Figure 2).

Moreover, when we try to remove the color of filaments,

the de-pigmentation of genuine saffron requires more extensive

washing than the samples which had been artificially dyed

(Figures 2c,g,k,o,s,w,#). Genuine saffron retains most of the

color despite washing 3–4-times. These significant findings were

used to create a poster showing all the major visual features that

a person can use for the manual validation of a given sample

(Figure 2).

Toluidine blue imparts di�erential stain
only to sa�ron stigma and not fake
look-alikes

The staining of samples with toluidine blue in the present

study clearly shows the distinct staining pattern based on

the histology of papillae (Figure 2). Toluidine blue is partially

soluble in both water and alcohol, and selectively stains acidic

tissue components like sulfates, carboxylates, and phosphate

radicals (Epstein et al., 1992; Gandolfo et al., 2006). Because of

these properties, the differences in color intensity of the papillae,

TABLE 1 Distinctive morphological features in sa�ron and look-alikes

as visualized using Foldscope.

Sample Class and

description

Characteristic features

Class 1: “Saffron in

filaments”

(ISO3632)/Laccha

(IS5453)

Serrated distal trumpet shaped top with distinct

papillae; striated texture dotted with pit like

structures; presence/absence of large pollen grains.

Class 2: “Saffron in cut

filaments”

(ISO3632)/Saffron

processed using a

technique indigenous to

Kashmir “Mongra”

(IS5453)

Serrated distal trumpet shaped top with distinct

papillae; presence/absence of large pollen grains.

Class 3: Fake-1

“Unknown look-alike”

Serrated top exhibiting typical trumpet shaped

structure; epidermal papillose protuberances

absent; pollen like granules present. It may be

stigma of another flower.

Class 4: Fake-2

“Unknown look-alike”

Serrations as well as other distinguishing features

of authentic saffron absent. Long flattened

structure with smooth margins and even width.

Class 5: Fake-3 “Corn

silk dyed maroon”

Resembles stigma lobes; Smooth margins with no

distal serrations or papillose protuberances. Long

flattened structure with even width.

Class 6: Fake-4 “Corn

silk dyed neon yellow”

Resembles style; Serrations as well as the papillose

protuberances absent; Long flat structure with

smooth margins and even width; pollen grains

absent.

Class 7: Fake-5

“Unknown look-alike”

Wide and serrated top margins with narrow stalk

resembling funnel. Papillose protuberances and

texture distinctive of saffron stigma absent; Pollen

grains absent. The sample structure disintegrates

quickly in solvents and reveals a single thin, long

thread like fiber.

Class 8: Fake-6 “Dyed

saffron stamen”

Top margin wide and trumpet shaped; Large

number of pollen grains present along the stalk

and top regions; Papillose protuberances absent.

Class 9: Fake-7 “Dyed

paper strips”

Smooth and flat, funnel shaped wide top margin

with a narrow stalk; no serrations; It disintegrates

quickly in solvents and reveals a single thin, long

thread like fiber.

their base, and the tissue toward the central axis of saffron stigma

are well depicted in toluidine blue staining.

It is known that saffron papillae possess a thick cell wall,

covered with a continuous cuticle under which electron-dense

material is visible. The papillae contain a large central vacuole,

a scarce endoplasmic reticulum, numerous mitochondria and

chromoplasts, and virus-like inclusions at the base (Caiola and
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FIGURE 3

Poster-based validation: (i) Dry samples are used as such (without any chemical treatment) and then common downstream steps, as shown

above, are followed; (ii) samples are de-pigmented using methanol first, and then common downstream steps are followed; (iii) samples are

stained using toluidine blue, and then common downstream steps are followed.

Chichiriccò, 1991; Caiola et al., 2000). These features are absent

in the artificially created fake look-alikes and therefore, get

stained uniformly across the whole tissue.

As a metachromatic dye, toluidine absorbs light at different

wavelengths, varying with concentration and surroundings, and

can change its color without changing its chemical structure.

This color change is brought about by the specialized physical

changes in the form of stacking of dye cations at regions of the

high density of anionic groups in the tissue. Stacking causes

a hypsochromic shift (shortens the wavelength of maximum

absorption) so that the maximum wavelength of the transmitted

light is longer, which makes the observed color look different

(Kumar and Kiernan, 2010). The color shift in Figure 2 from

a blue or violet dye to a greenish-yellow could represent the

polymerization of the dye to varying degrees. The tissue at

the margin may have an absorption maximum at 630 nm due

to its orthochromatic nature, which, therefore, stains blue.

In contrast, the inside tissue stains greenish-yellow, and its

absorption spectrum may be closer to 540 nm (Culling et al.,

2014). However, these differences are not noticed when the

samples are stained with safranin O/iodine/fast green/crystal

violet, and all the other staining agents show more or less

uniform staining patterns. Similarly, the artificial dyes used by

fraudsters to dye the look-alikes of saffron cannot generate the

differential pattern shown by toluidine blue.

Based on the above findings, a method was developed for the

manual validation of a given sample, and the workflow is shown

in Figure 3.

Machine learning-based approach is
quick and robust in detecting fake sa�ron

Several studies have been conducted on artificial intelligence

for identification and classification tasks. However, only a few

relevant contributions employ “image classification” in plants.

Kurtulmuş et al. (2016) demonstrated using a neural network

to classify pepper seed variety based on images. Likewise, Islam

et al. (2020) performed flower classification by employing a

convolutional neural network on eight different types of flowers

and achieved 85% accuracy. The approaches mentioned above

focused on identifying the different variety of spices and flowers,

while in the present study, we explored end-to-end neural

network learning to distinguish the genuine saffron from the

fake using image of the sample.

Even when the presence/absence of papillae in genuine/fake

saffron is distinct, the approach based on the Canny edge

detector multi-stage image processing algorithm did not

perform well (Rong et al., 2014). This is due to many factors,

like using only gray images (which is needed for edge detection

and finding contours) and throwing a lot of information about

color schema, texture, etc., and uncertainty in deciding the

threshold value of contours, contours created by other structures

other than papillae. Moreover, in the machine learning-based

approach, we did not process images, and the model learned

from all the features available in the sample images, which

allowed us to get robustness in performance and much more

accurate results (Janiesch et al., 2021; Greener et al., 2022).
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TABLE 2 Quantitative comparison of ML-based classification models for sa�ron classification based on accuracy and precision.

Model Training precision Training accuracy Validation precision Validation accuracy Test precision Test accuracy

Random Forest 1.0 1.0 0.94 0.94 0.95 0.95

SVC 0.95 0.95 0.90 0.90 0.95 0.95

Resnet18 with

random weight

initialization

0.96 0.93 0.91 0.91 0.93 0.92

Resnet18

Pretrained—

unfreeze

0.97 0.96 0.93 0.92 0.95 0.93

Resnet18 pretrained 0.99 0.99 0.99 0.99 0.99 0.99

Densenet121 with

random weight

initialization

0.96 0.95 0.95 0.93 0.97 0.93

Densenet121

Pretrained—

unfreeze

0.95 0.94 0.91 0.89 0.94 0.90

Densenet121

pretrained

0.99 0.99 0.99 0.99 0.99 0.99

We compared all the ML-based saffron classification models

on validation and test datasets (Table 2). We observed that the

deep neural networks (ResNet18 and DenseNet121) performed

better than random forest (RF) and support vector machine

(SVM)-based approaches (Kremic and Subasi, 2016; Speiser

et al., 2019; Nandhini and Ashokkumar, 2022; Zhou et al., 2022).

Also, the best models (two in total) out of the three variations

per deep neural network are the models using the pre-trained

model weights and freezing all the layers, apart from the last

two layers. Both the models recorded 99.5% accuracy with a

precision of 99.3% on the test dataset, which is pretty decent.

The models show 99.5% accuracy and precision of 99.1% on the

validation dataset. This shows that the models are generalized

and behave almost the same on the validation and the test

dataset. Further, this approach has accelerated the decision-

making process regarding the genuineness of a sample image as

it takes less than a second per photograph.

Figure 4 illustrates the contrastive results based on the

confusion matrix. We observed that the deep neural network-

based approaches (ResNet18 and DenseNet121 with pre-trained

model weights and freezing all the layers, apart from the last

two layers) demonstrate maximal performance with 235 fake

samples correctly detected out of 236, and 142 rightly predicted

as genuine out of 143 genuine saffron samples on the test dataset.

Only one sample from fake and genuine was wrongly classified,

as highlighted (Figure 4).

The machine learning-based classification approach

automated and simplified the process to make detecting

fake/genuine saffron quicker. The workflow for the process is

shown in Figure 5.

Adulteration and quality estimation

Eighty market samples (1 g each) were used to assess

adulteration and quality. The geographical coordinates and

the locations of the eight cities/towns from where these

samples were procured are shown using the ESRI ArcGIS map

(Figure 6A). The names of the sites and the localities are: (1)

Budgam (Chadoora, Budgam, Magam, Beerwah, Humhama),

(2) Jammu city (Trikuta Nagar, Gandhi Nagar, Raghunath Bazar,

Janipur, Chani Himat), (3) Kangan (Kangan town, Dursuma,

Wussan, Preng, Cherwan), (4) Katra (Katra town, Dhar Vaishno

Devi, Akhli, Bhangal, Arli, Hansali), (5) Kishtwar (Poochal,

Matta, Janwas, Dool, Ohli), (6) Pahalgam (Pahalgam town,

Ashmukam, Salar, Dirhama, Batkoot), (7) Pulwama (Lethpora,

Pampore, Awantipora, Namlabal, Konibal), and (8) Srinagar

(Lalchowk, Dalgate, Sonwar, Dargah, Nowhatta).

Out of a total of 80 market samples, the number of

adulterated samples was 48 (Figure 6B). Twenty samples

from Pulwama and Srinagar showed a cumulative average

adulteration of <1.5%, while the 30 samples from Budgam,

Kishtwar, and Jammu city showed around 16%. The samples

(30) fromKatra, Pahalgam, and Kangan were highly adulterated,

with an average of 40% adulteration. The saffron bought from

Pulwama and Srinagar showed adulteration between 0.12 and

2.36% (among the 20 samples), and for the quality, they fall into

Categories I and II of ISO 3632 (1 & 2) standards (Figure 6B).

The overall percentage of saffron samples which belonged

to Categories II and III is 60% (Figure 6B). While the

adulteration among these adulterated samples ranged from

2.09 to 71.23%, and their mean adulteration percentage was
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FIGURE 4

Quantitative analysis based on the test dataset. Confusion Matrix for: (A) random forestand SVM, (B) ResNet18 with random weight initialization,

(C) ResNet18 pre-trained—network is not in freeze state, (D) DenseNet121 with random weight initialization, (E) DenseNet121

pre-trained—network is not in freeze state, and (F) ReNet18 and DenseNet121 pre-trained network, with all the layers in freeze state, but the last

two layers.

36.25%. Surprisingly, adulteration strongly correlated with the

location of sample procurement. Srinagar and Pulwama showed

minimal adulteration problems, perhaps because of stricter law

enforcement agencies or more awareness among the sellers

and buyers. This location-dependent adulteration shows that

fraudsters know that cheating would go undetected at places

where demand is more due to the tourist rush while its supply

is limited.

While the saffron quality depends on many factors (Husaini,

2014), a significant reduction in the quality of color (crocin),

bitterness (picrocrocin), and aroma (safranal) was recorded

in the adulterated samples which are inversely proportional

Frontiers in Plant Science 11 frontiersin.org

109

https://doi.org/10.3389/fpls.2022.945291
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Husaini et al. 10.3389/fpls.2022.945291

FIGURE 5

App-based detection: Deep neural network is trained on a dataset comprising genuine and fake sa�ron samples. Trained model is used to

generate inference based on samples to predict the classification, i.e., whether the sample is genuine or fake.

FIGURE 6

Sa�ron market-sample collection sites for assessing adulteration and quality: (A) Map depicting geographical locations; (B) categorization of the

80 samples according to ISO 3632 standard.

to the adulteration percentage (Figure 7). After removing the

adulterant from the crude market sample, the sample quality

improved significantly, pushing some from Category III to

Category II (Figure 7B). It infers that Categories II and

III saffron are more likely to be adulterated by fraudsters

(Figures 6B, 7A).

Practical applications

Saffron is a costly spice used as a routine in common

people’s religious rituals and local cuisines (Husaini and Wani,

2020). However, it is evident from the above data that saffron

adulteration and fraud are a big menace. People prefer to buy
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FIGURE 7

Assessment of sa�ron quality obtained from di�erent locations of Jammu and Kashmir (India) in pure and adulterated samples: (A) Adulteration

percent, (B) crocin, (C) picrocrocin, and (D) safranal content. The dotted lines represent the maximum and minimum values of crocin,

picrocrocin, and safranal for the categorization of sa�ron quality as per ISO 3632 standards. Values are the mean of 10 replicates and expressed

as mean ± S.D (standard deviation). The letters a, b and c indicate a statistically significant di�erence at p ≤ 0.05 probability level between

di�erent locations. Bars with no common letters are significantly di�erent (p ≤ 0.05).

it as “filaments” because it is easier to use from the dosage

point of view, and there are lesser chances of adulteration

than in the powdered form. However, unfortunately,

some fraudsters have even found ways to “create” fake

saffron-like filaments.

Saffron dealers can use the two methods developed in

the present study (Figures 3, 6) to showcase the authenticity

of saffron to their customers without much botheration.

The customer can himself check the adulteration percentage

in a random sample and identify fake saffron by using a

simple application on a mobile phone. It would act as an

additional check for the fraudsters who manage to get fake

GI tags, holograms, and certifications and sell their products

in the unorganized sector while going undetected by the law

enforcement agencies (Husaini et al., 2010a). Further, genuine

retailers can convince the customers about the authenticity of

their products by showing these visual markers using Foldscope

or by installing the mobile app on their smartphone, thereby

promoting genuine retail business.

Furthermore, we created a kit for commercial use and

quality control laboratories (the patent is under process). The

kit constitutes a poster showing distinct and unique markers

in saffron stigma, a Foldscope, slides, cello-tape, methanol,

and toluidine solution. These methods have the potential to

be put to use in the European Science Foundation-sponsored

COST Action FA1101 (Saffron-omics: Omics technologies for

crop improvement, traceability, determination of authenticity,

adulteration, and origin). The results of the de-pigmentation

and the staining procedures can be used to update the

relevant sections of “test methods” in the identification test

and microscopic examination of the International Standards

Organization ISO 3632 (1 & 2).

Conclusion

Individual consumers prefer to buy “saffron in filaments”

(Laccha), or “saffron in cut filaments” (Mongra) because it is
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easier to use from the dosage point of view, and there are lesser

chances of adulteration than in the powdered form. However,

fraudsters have invented fake saffron-like filaments to cheat

customers. We developed two Foldscope-based techniques for

the identification of pure saffron. One technique uses a simple

visual comparison of distinct markers (papillae of stigma) with

a poster, and the other uses an automated approach through

a mobile application. Machine learning simplifies the process

and automates the detection of fake/genuine saffron samples.

It enables end-users not to worry about identifying samples

from magnified images themselves. This approach accelerates

the whole identification process and takes less than a second

per sample after acquiring its image. While large-scale testing

of saffron quality using sophisticated methods in specialized

laboratories shall always be required for the saffron industry,

we have added a new dimension by bringing the customer to

the forefront.

Adulteration remains a significant challenge to the

saffron industry. The quality of a saffron sample decreases

significantly with an increase in adulteration percentage. A

critical observation of the present study is that the ISO Category

I saffron is not subjected to adulteration, perhaps because elite

customers are willing to pay higher prices and generally buy

from trusted sources. Saffron belonging to the ISO Categories

II and III is more prone to adulteration as it is available freely

everywhere as innocent customers prefer to buy saffron at

cheaper rates from untrusted sources!
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SUPPLEMENTARY FIGURE 1

Pollen on (a) freshly cut sa�ron stigma; (b) sample class 1; (c) sample

class 2; (d) sample class 3; (e) sample class 8; (f) sa�ron stigma mounted

on a slide in Foldscope.

SUPPLEMENTARY FIGURE 2

Stereomicroscopic images of the apices of filament sample classes at a

magnification of 80× (a–i).

SUPPLEMENTARY FIGURE 3

Foldscope images of top region/margin of (a) sample class 1 showing

papillae; (b) sample class 2 showing papillae; (c) sample class 3 showing

serrations; (d) sample class 4 showing smooth margin with no

serrations; (e) sample class 5 showing even margin without serrations;

(f) sample class 6 showing smooth edges without serrations; (g) sample

class 7; (h) sample class 8; (i) sample class 9 showing smooth surface.
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of Bioeconomy Research, Ås, Norway, 4Department of Wood and Biomaterials, Danish
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Water is a key element for wood performance, as water molecules interact

with the wood structure and affect important material characteristics such as

mechanical properties and durability. Understanding wood-water interactions

is consequently essential for all applications of wood, including the design

of wood materials with improved durability by chemical modification. In this

work, we used Raman micro-spectroscopy in combination with a specially

designed moisture chamber to map molecular groups in wood cell walls

under controlled moisture conditions in the hygroscopic range. We analyzed

both untreated and chemically modified (acetylated to achieve two different

spatial distributions of acetyl groups within the cell wall) Norway spruce

wood. By moisture conditioning the specimens successively to 5, 50, and 95%

relative humidity using deuterium oxide (D2O), we localized the moisture in

the cell walls as well as distinguished between hydroxyl groups accessible

and inaccessible to water. The combination of Raman micro-spectroscopy

with a moisturizing system with deuterium oxide allowed unprecedented

mapping of wood-water interactions. The results confirm lower moisture

uptake in acetylated samples, and furthermore showed that the location of

moisture within the cell wall of acetylated wood is linked to the regions where

acetylation is less pronounced. The study demonstrates the local effect that

targeted acetylation has on moisture uptake in wood cell walls, and introduces

a novel experimental set-up for simultaneously exploring sub-micron level

wood chemistry and moisture in wood under hygroscopic conditions.

KEYWORDS

Raman micro-spectroscopy, wood, acetylation, biological imaging, chemical
modification, moisture, relative humidity, water
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Introduction

Durability is a factor that often limits the service life of
wood and wood products, especially for in-soil and outdoor
applications. The use of wood in outdoor environments
is challenging as the wood cell wall will be degraded by
decay fungi when exposed to prolonged humid conditions.
Moisture plays a key role in this process, as it is essential
for fungi to colonize and consume the lignocellulosic cell
walls (Ringman et al., 2019; Brischke and Alfredsen, 2020).
As a hygroscopic material, wood takes up water from its
surroundings both in vapor and liquid state. Hydroxyl (OH)
groups are the main water sorption sites in wood cell
walls (Simpson, 1980) and these are present throughout
the lignocellulosic matrix. Chemical modification of wood
is a way to improve the durability, often by limiting the
hygroscopicity of the material (Dong et al., 2020). Modifications
of wood can limit the access of water molecules in the
cell wall by bulking the available space and/or by reducing
the number of accessible sorption sites in the structure
(Thybring and Fredriksson, 2021). The most utilized wood
modification processes are acetylation, thermal modification
and furfurylation (Rowell, 2006; Mantanis, 2017; Hill
et al., 2021; Zelinka et al., 2022). Acetylation of wood by
reaction with acetic anhydride substitutes a fraction of
the hydroxyl groups with the more voluminous acetyl
groups (Çelen et al., 2007). Since the cell wall chemistry
of wood is heterogeneous, chemical modification may not
affect all domains evenly. The spatial distribution of a
chemical modification can also be deliberately controlled
by tuning the reaction conditions (Digaitis et al., 2021)
or the reaction path (Keplinger et al., 2015). Chemical
changes in wood cell walls as a result of modification are
often studied by Raman micro-spectroscopy because it is
non-invasive and offers high spatial resolution (Agarwal,
2009, 2019; Gierlinger et al., 2012, 2013; Gierlinger, 2018).
The chemical characterization has so far been conducted
predominantly on water-saturated wood specimens and
information related to non-saturated states is limited
(Guo et al., 2017). In this study we introduce a novel
combination of Raman micro-spectroscopy and controlled
moisture conditioning of wood in a unique, custom-built
moisture chamber. With this experimental setup we are able
to study water within wood cell walls under controlled,
non-saturated environmental conditions. Moreover, by use
of deuterium exchange, water-accessible and non-accessible
hydroxyl groups can be distinguished from each other. This
allows visualization of the moisture distribution within cell
walls of native and modified wood. Here, we demonstrate
this setup and semi-quantitatively assess the distribution of
acetyl groups and moisture within native and two types of
acetylated wood cell walls of Norway spruce to illustrate local
effects of acetylation.

Materials and methods

Wood material

Wood specimens of untreated, pyridine treated (controls),
uniformly acetylated and interface acetylated Norway spruce
[Picea abies (L.) Karst.] mature sapwood with dimensions 10
(longitudinal) × 5 × 5 mm3 were employed for this study. The
material originated from experimental forests in the southern
parts of Sweden and is further described by Fredriksson et al.
(2016). To minimize variation between specimens all specimens
were cut from the same board. The modification procedures are
described in detail by Digaitis et al. (2021). Briefly, the uniform
acetylation was achieved by impregnating the samples in a 1:4
(v/v) mixture of acetic anhydride (VWR Chemicals, Radnor,
United States) and pyridine (Merck, Darmstadt, Germany) and
subsequent heating at 80◦C for 60 min. The interface acetylation
was achieved using a solution of pure acetic anhydride and
carrying out the reaction at 75◦C for 24 h. Control specimens
were treated with pure pyridine at 80◦C for 3 h. The mass gain
caused by the modification was evaluated as the relative mass
change:

Rmod =
mdry−mdry,0

mdry,0
(1)

where mdry (g) is the dry mass after modification and mdry,0 (g)
is the dry mass before modification.

The recorded Rmod (g/g) for the interface acetylated
specimen used in this study was 0.113 g/g. The mean Rmod
of 10 uniformly acetylated specimens was 0.142 g/g. The
pyridine extraction gave on average a negative Rmod of
0.023 g/g, indicating a mass loss, possibly due to removal of
extractives from the wood.

Raman measurements with controlled
humidity

Using a microtome (RM2255, Leica Biosystems, Wetzlar,
Germany), three 16 µm cross-sections were produced per
specimen, in total 3× 4 = 12 cross-sections. Four cross-sections
at the time, one per each type of wood material, were placed
on the moisture chamber (detailed description of the moisture
chamber used is provided in Supplementary Material, Section
1) and wetted with a drop of deuterium oxide (99.98% D2O,
Sigma-Aldrich, Munich, Germany). The samples were then
covered with a borosilicate glass slide (thickness #1), the edges
of which were sealed with nail polish. The fully assembled
and loaded with wood cross-sections moisture chamber, with
open inlet and outlet channels, was then vacuum dried for
12 h at 60◦C. Afterward, the moisture chamber was connected
to a humidity microcontroller (ACE flow 2.0, SolGelWay,
France) to adjust the flow of a wet flux of saturated deuterium
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oxide (D2O) vapor and a dry flux of air at 0% RH. The
water saturated flux was achieved with a bubbling system that
included two flasks, a warming plate and D2O (Supplementary
Figure 1). To ensure that all water-accessible hydroxyl groups
were deuterated, the samples were preconditioned at 95% RH
for 12 h. Then, the samples were equilibrated at 5, 50, and
95% RH for 12 h at each humidity level, and at each of these
humidity levels, Raman images were captured. A total of 36
Raman images were captured, describing 12 different latewood
tracheids at three hygroscopic states, belonging to four types
of wood material.

The confocal Raman microscope (alpha 300R, WITec
GmbH, Ulm, Germany) was equipped with a UHTS 300
spectrometer and a 100x oil immersion objective (Zeiss “N-
Achroplan,” NA = 1.2, transmittance of 73%, Carl Zeiss
GmbH, Jena, Germany). A linear polarized 532 nm NdYag
was used at a 10 mW laser power and with 0.1 s of
integration time per spectrum to avoid sample degradation
(Prats-Mateu et al., 2018). Even though the same tracheid
was imaged three times, no signs of degradation were
observed in the spectra. The images were acquired from
cross sections that were previously aligned with the tangential
direction parallel to the laser polarization (Gierlinger et al.,
2013). Raman scattered light was detected with a back-
illuminated charge-coupled device camera, air cooled with
Peltier cooling to –60◦C and with a 600 g/mm grating,
resulting in a spectral resolution of 3.8 cm−1. Images were
acquired with a diffraction limited lateral spatial resolution of
approximately 0.3 µ m.

Treatment and data analysis of Raman
scattering data

The treatment and reduction of all Raman scattering data
were carried out in Matlab ver. 2020b (Mathworks, Natick,
Massachusetts, United States). Prior to analysis, spectra were
subjected to (1) image size reduction, specifically shaped for
each image, to reduce the size of the dataset; (2) removal
of the part of the spectrum not useful for the analysis,
consisting in the wavenumbers below 300 cm−1 and above
3,720 cm−1 approximately; (3) cosmic ray removal by use
of median filtering (Matlab built-in function medfilt1 using
default settings); (4) Alternating Least Squares (ALS) baseline
correction according to Eilers and Boelens (2005), which has
been shown to cope well with fluorescence contribution (De
Juan et al., 2014), with parameters λ = 105 and p = 0.0005.
Due to the heterogeneous distribution of wood polymers in
the wood cell walls, the data were clustered using k-means
cluster analysis (as implemented in Matlab), which successfully
separated lignin rich parts of the cell wall, i.e., the cell corner
and middle lamella (CCML), the cellulose rich secondary cell
wall (S2), and the empty lumina of tracheids and ray cells

(LUMEN). A normalization to equal length (2-norm of each
spectrum) was used before clustering, as it made the k-means
clustering perform better based on our visual inspection of the
clustering results.

For the spectra assigned to the cell wall cluster (CELL
WALL = S2 + CCML clusters), average spectra were
computed and Raman peak heights or areas were estimated
using a linear baseline, individually set for each Raman
band. Estimation of peak areas was preferred over peak
heights when possible, i.e., when the peak of interest was
an isolated peak and not a shoulder. For the sake of
visual comprehension, in addition to the pre-processing,
the average spectra of the cell walls in Figure 1 have
been furthered baseline corrected (ALS, λ = 104 and
p = 0.0002). Peak areas were estimated with trapezoidal
numerical integration (Matlab trapz function), and peak
heights by the height of the baselined corrected peak, using
a linear baseline individually set for each Raman band of
interest. Peak areas were estimated for: (1) O-D stretching
at 2,490 cm−1 (Hofstetter et al., 2006), calculated in the
range 2,300–2,685 cm−1 and assigned to the absorbed
deuterium oxide (D2O) and the deuterated hydroxyls (O-
D); (2) C=O carbonyl stretch at 1,738 cm−1 (Marchessault
and Liang, 1962; Adebajo et al., 2006), in the range between
1,710 and 1,780 cm−1 and assigned to acetylation and (3)
O-H stretching at 3,450 cm−1(Wiley and Atalla, 1987), in the
range between 3,150–3,650 cm−1 and assigned to inaccessible
hydroxyl groups. Peak heights were estimated for: (1) the mean
aromatic ring stretching at 1,601–1,604 cm−1 (Gierlinger and
Schwanninger, 2007), using a baseline in the range between
1,545 and 1,710 cm−1 and assigned to the symmetric CC
stretch of the aromatic ring of lignin substructures (Bock
and Gierlinger, 2019); (2) the mean of the C-H stretch at
2,898–2,902 cm−1 (Gierlinger et al., 2013) using a baseline
in the range 2,785–3,040 cm−1; (3) the maximum height
of the C=C and C=O stretch calculated between 1,660 and
1,664 cm−1(Bock and Gierlinger, 2019), using a baseline in the
range between 1,648 and 1,710 cm−1 and assigned to the to
the lignin substructures such as coniferyl alcohol and coniferyl
aldehyde. The peak heights and areas were normalized over
the aromatic ring stretching peak height at 1,601 cm−1 to
compensate for the differences in band intensity due to changes
in focal plane. Before normalization, to discard outliers given by
negative values and values close to zero, peak areas lower than
1 and peak heights lower than 0.01 were set to 1. Only a small
fraction of the areas and heights were rejected as outliers by
means of this sorting method (<1%). For the spectra assigned
to the CCML cluster, a threshold clustering was applied to
further distinguish between the cell corners (CC) and the S1–
S3 layers and the middle lamella (S1S3ML). The spectra with
ratio 2,898 cm−1/1,601 cm−1 higher than x where assigned to
S1S3ML, the rest to the CC cluster. x was individually set for
each image after visual inspection, and varied between 1.8 and 2.
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FIGURE 1

In the top, schematic representations of untreated, interface and uniformly acetylated cell walls are shown. Below, average Raman spectra
calculated for untreated (blue), interface acetylated (red), and uniformly acetylated (yellow) spruce cell walls (i.e., CELL WALL cluster),
conditioned in D2O vapor at 5% (top), 50% (middle), and 95% RH (bottom). Wavenumber regions of interest assigned to acetylation, moisture,
and water-inaccessible hydroxyls are shaded, respectively, in yellow, blue, and green. Peaks of interests are also highlighted by dotted lines, and
marked with their exact wavenumber. The spectra for pyridine control samples are omitted for clarity as they were similar to the untreated
wood, see Supplementary Figure 2.

Due to the high content of noise, a statistical test was
done to exclude unreliable information from the main peaks of
interest, identified as the C=O and O-D stretching vibrations.
The total raw sum of C=O (1,710–1,780 cm−1) and O-D
(2,300–2,685 cm−1) counts were linearly baseline corrected.
By evaluating the baselined raw sum of the peaks over
the noise of the spectrum, each image pixel was labeled as
significant or not, regarding the O-D and CO signals. The non-
significant pixels contributed as null values in the averages.
The pixels assigned to a mere fluctuation of noise were the
ones in which the following expression was not fulfilled:

praw,events

σ noise
> 3.5 (2)

with praw,events the total sum of the counts (raw spectra,
linearly baselined) and considering the background to be
0 ± σnoise events. The σnoise was computed as the
standard deviation of the difference between the raw and
the reduced signal (PCA, first 3 components). Considering
the Poisson statistic of the event of Raman Stokes scattering
from a functional group, the 3.5σnoise threshold is a cautious
one (Barlow, 1993). A null value was assigned to the

spectra belonging to the pixels of lumina of tracheids
and ray cells, as well as to the pixels in which the
peak of interest was not significantly greater than the
background noise.

Results and discussion

General observations about
acetylation, hydroxyl groups and
moisture

The average spectra for the acetylated samples showed
higher intensity than the one for untreated wood at
approximately 645, 910, 1,735, and 2,941 cm−1, as previously
reported by Digaitis et al. (2021) for acetylated spruce wood
cell walls (Figure 1). These peaks were, respectively, assigned
to O-C=O in plane deformation, H-C=C and H-C=O bending,
C=O carbonyl stretching vibration and C-H stretching
vibration, which are related to acetylation (Wiley and Atalla,
1987; Adebajo et al., 2006; Bock and Gierlinger, 2019). As
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FIGURE 2

Intensity maps of the Raman peaks assigned to moisture and acetylation of untreated (A–D), interface acetylated (E–H) and uniformly
acetylated wood (I–L). The three columns of maps on the left show O-D stretching (2,300–2,685 cm–1) intensity scanned at 5% (first column),
50% (second column), and 95% RH (third column). The column on the right shows intensity maps of C=O stretching (1,710–1,780 cm–1). For
further clarity the backgrounds of the O-D and C=O intensity maps are color-coded as the band in Figure 1, i.e., respectively, blue and yellow.
All the maps of O-D share the same intensity scale, as do all maps of C=O.

expected, these peaks did not vary significantly over the
three hygroscopic states of the same types of wood. Among
those, the peak area assigned to the C=O carbonyl stretching
vibration, calculated between 1,710 and 1,780 cm−1 (yellow
band in Figure 1), was used as peak of interest to characterize
acetylation (Adebajo et al., 2006). The C=O peak intensity
is visibly the highest in uniformly acetylated wood (highest
degree of wood cell wall acetylation, Rmod = 0.142 g/g),
while the interface acetylated had the second highest
peak intensity (lower degree of wood cell wall acetylation,
Rmod = 0.113 g/g), in all the three hygroscopic states. This is
because the interface acetylation only acts at the lumen-cell
wall interface, i.e., the somewhat lower peak height compared
to uniformly acetylated wood is a dilution effect of the
spectral averaging.

The O-D signal (blue shading in Figure 1) is from the
deuterated hydroxyl groups and moisture within the cell
walls. Since each D2O water molecule contains two O-D
functionalities that contributes to the Raman signal, the
measured O-D signal reflects the accessible hydroxyls plus two
times the concentration of water molecules. Please refer to
Supplementary Material, Section 3 for an extended discussion
of this point. In the average spectra, the O-D signal was
seen at 5% RH and it increased for higher RH levels for all

the types of wood studied. These observations indicate that
successful deuteration and moisture uptake in the cell walls
was achieved.

The O-H band (green shading in Figure 1) derives
from the un-deuterated hydroxyl groups. Since the wood
specimens were exposed to both liquid D2O and high
D2O vapor pressure for prolonged time, it can be assumed
that all water-accessible hydroxyl groups were deuterated.
Consequently, the O-H signal relates to the hydroxyls
inaccessible to water, and these groups are mainly found
inside the cellulose microfibrils (Hofstetter et al., 2006;
Salmén and Bergström, 2009). No outstanding variations
can be pointed out from this band, neither between the
different types of wood nor between the hygroscopic states,
except for a slightly higher O-H peak at 5% RH for the
untreated samples.

Distribution of acetyl groups and
deuterium within cell walls

Figure 2 shows the intensity maps of the peak areas
assigned to O-D (Figures 2A–C,E–G,I–K) and C=O
stretching (Figures 2D,H,L) for one tracheid from each
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FIGURE 3

Quantification of the Raman O-D and C=O signals in the different clusters of the cell wall. (A) Example of the wood cell clustering depicting
LUMEN (tracheid and ray cell lumina), S2 (secondary cell wall), CC (cell corners), S1S3ML (primary and tertiary cell wall, and middle lamella). The
CELLWALL cluster (not shown) is the sum of the S2, CC and S1S3ML clusters, i.e., the whole cell wall. (B) Average Raman C=O intensity
computed for untreated, interface acetylated and uniformly acetylated wood by averaging the images from the three replicates and the three
hygroscopic states for each cluster (9 images contributed to the average and standard deviation of each bar). (C,D) Average Raman O-D
intensity calculated for the three materials in the three hygroscopic states for S2 and CCML clusters. All Raman intensities are normalized over
the lignin peak height at 1,601 cm−1. In (B–D) untreated samples are illustrated by blue bars, interface acetylated samples by red and uniformly
acetylated samples by yellow. The bars include the standard deviation. The bars were compared using a two-tailed pair t-test for significance
with the null hypothesis of no difference between the two set of data and α = 0.05. The letter a on top of the bars in (B) indicates that the
interface and uniformly acetylated belonging to the S2 cluster were the only results not rejecting the null hypothesis of equal signal for all three
groups.

treatment. Due to the complex composition of wood and
the lateral resolution of Raman micro-spectroscopy, the
spectra from wood specimens often contain overlapping
information. However, for this study the intensity maps
of O-D and C=O vibrations could with high certainty be
related to deuterated hydroxyls plus moisture, and acetyl
esters, respectively.

In interface acetylated wood (Figure 2H), the C=O
distribution was mainly concentrated in the cell wall area
around the lumen, while it was basically absent in untreated
wood (Figure 2D) and uniformly distributed in the uniformly
acetylated wood (Figure 2L). These maps also indicate that the
maximum C=O signal is of the same magnitude for the two
different types of acetylation. As also seen from the average
spectra in Figure 1, the intensity maps of C=O confirm that
intensity and distribution between different hygroscopic states
of the same tracheid does not vary significantly, as no acetyl
esters are introduced or washed out during the moisture
conditioning of the samples.

All types of wood materials showed an increase in the
O-D signal over the whole cell wall, when going from nearly
dry (5% RH) to more moist hygroscopic states. Since the
amount of water-accessible hydroxyl groups does not vary
over the three hygroscopic states (Altgen and Rautkari, 2021),
the difference between the images of the same material were
solely due to the moisture uptake. The major difference
between modified and untreated wood was in the intensity
and distribution of the O-D signal. The untreated wood
(Figures 2A–C) had higher and more even distribution
of the O-D signal over the secondary cell wall at every
hygroscopic state than what was seen for the interface acetylated
(Figures 2E–G) and uniformly acetylated wood (Figures 2I–
K). Furthermore, the two types of acetylated wood showed
a more uneven distribution of the O-D signal in the cell
wall than the untreated wood, and lower values of O-D
seemed to be associated with higher values of C=O signal
intensity, i.e., the degree of acetylation (Figure 2F with
Figure 2H and Supplementary Figure 4). Overall, the O-D
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intensity maps showed that the moisture uptake was reduced
in the acetylated samples, illustrating the usefulness of the
experimental setup.

Quantification of acetyl esters and
moisture present within individual cell
wall layers

Finally, the clustering analysis that identified and localized
different areas of the wood cell walls (Figure 3A) was used to
quantify the contribution of moisture and acetylation separately
for each of those regions. Figure 3B shows the mean value of the
C=O stretching from cell walls of every kind of wood material
and specific clusters. In each of the clusters analyzed, the average
C=O stretching peak area (associated with acetylation) was
highest for the uniformly acetylated samples and lowest for
the untreated wood, with the interface acetylation in between,
however, without being statistically significant (Figure 3B).
To evaluate the reliability of the obtained results, the average
Raman C=O signal was compared with the bound acetyl content
found in literature. This was done by taking the ratio of the C=O
signal of acetylated and untreated wood. For the cell wall cluster,
this ratio was 7.4± 3.3 for uniformly acetylated and 4.0± 1.3 for
interface acetylated wood. For comparison, the ratio of bound
acetyl concentration in uniformly acetylated and untreated
wood is theoretically expected to be 11.9 ± 0.8 and 9.4 ± 0.6
(Supplementary Table 1), which align with experimental data
for acetylation of Radiata pine (Beck et al., 2017, 2018). Thus,
the theoretical ratios were somewhat higher but of the same
magnitude as the ratios of the Raman C=O signals.

In the S2 cluster (Figure 3C), the mean O-D values at
each of the hygroscopic states of untreated and interface
acetylated wood were statistically the same, as well as between
interface and uniformly acetylated wood, while results for
the untreated wood were different. This is in contrast to the
CCML cluster (Figure 3D) where mean O-D values of interface
acetylated, uniformly acetylated and untreated wood were all
statistically comparable between the same hygroscopic states.
Overall, the trends of Figures 3C,D make us speculate that
the interface acetylated wood reduces the moisture uptake
relatively more in the secondary cell wall than the uniformly
acetylated wood, even though the statistics can only partially
confirm this claim. The low significance of the data regarding
the mean O-D signal suggests that, considering the evidences
from the average spectra (Figure 1), the intensity maps
(Figure 2) and the trends from the bar charts (Figures 3C,D),
three replicas is not enough to overcome the great variability
of the material.

To further evaluate the obtained results, the Raman
O-D signal at 5% RH was compared with the expected
O-D concentration from experimentally determined hydroxyl
accessibility and predicted residual moisture. The ratio of

the O-D signal of acetylated samples and untreated wood
was compared with predicted O-D concentration at 5% RH
(Supplementary Table 3). Whereas the latter gave ratios of
0.7 ± 0.1 for interface acetylated and 0.4 ± 0.1 for uniformly
acetylated wood, the ratios based on the Raman O-D signal
were found to be 0.8 ± 0.3 and 0.9 ± 0.2 for interface and
uniformly acetylated wood, respectively. Thus, while the Raman
data suggests a decreasing O-D concentration for the acetylated
materials, the uniformly acetylated wood exhibited a more
intense O-D signal at 5% RH than the predicted values.

The Raman O-D signal from the cell wall cluster (not
shown) for each type of material was also compared with the
predicted O-D concentration in the different moist states based
on experimental data from Digaitis et al. (2021). The values
showed the O-D Raman signal and O-D concentration at 50 and
95% RH, normalized over the corresponding values at 5% RH to
be of the same order of magnitude (Supplementary Table 2).

Overall, this study demonstrates the effect of acetylation
on moisture uptake locally in wood cell walls, and illustrates
the possibilities for simultaneously exploring sub-micron
level wood chemistry and moisture in wood under
hygroscopic conditions.

Conclusion

A novel experimental set-up was introduced in this study
for simultaneous exploration of the sub-micron level cell wall
chemistry and moisture in wood under hygroscopic conditions.
Analysis of both cell wall-lumen interface acetylated and
uniformly acetylated latewood cells of Norway spruce illustrated
the local effect of acetyl esters on moisture uptake in different
regions of the cell wall, at various levels of relative humidity and
with sub-microscale resolution. The results collectively point
to the conclusion that moisture is reduced more in highly
acetylated areas of the cell wall.
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Qian Jiang, Hongli Wang and Haiguang Wang*

College of Plant Protection, China Agricultural University, Beijing, China
Accurate severity assessment of wheat stripe rust caused by Puccinia striiformis

f. sp. tritici is of great significance for phenotypic determination, prediction, and

control of the disease. To achieve accurate severity assessment of the disease

based on the actual percentages of lesion areas in the areas of the

corresponding whole diseased leaves, two new methods were proposed for

severity assessment of the disease. In the Adobe Photoshop 2022 software, the

acquired images of single diseased leaves of each severity class of the disease

were manually segmented, and the numbers of the leaf region pixels and lesion

pixels of each diseased leaf were obtained by pixel statistics. After calculation of

the actual percentages of lesion areas in the areas of the corresponding whole

diseased leaves based on the obtained pixel numbers, the training sets and

testing sets were constructed for each severity class by using the system

sampling method with two sampling ratios of 4:1 and 3:2. Then the mean and

standard deviation of the actual percentages of lesion areas contained in each

training set were calculated, respectively. For each sampling ratio, two

methods, one based on the midpoint value of the means of the actual

percentages of lesion areas corresponding to two adjacent severity classes

and the other based on the distribution range of most of the actual percentages

of lesion areas, were used to determine the midpoint-of-two-adjacent-

means-based actual percentage reference range and the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas for each severity

class. According to the determined reference ranges, the severity of each

diseased leaf in the training sets and testing sets was assessed. The results

showed that high assessment accuracies (not lower than 85%) for the training

sets and testing sets were achieved, demonstrating that the proposed methods

could be used to conduct severity assessment of wheat stripe rust based on the

actual percentages of lesion areas. This study provides a reference for accurate

severity assessments of plant diseases.
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Introduction

Stripe rust (yellow rust) caused by Puccinia striiformis f. sp.

tritici (Pst) is an important disease of wheat worldwide (Li and

Zeng, 2002; Line, 2002; Chen, 2005; Wellings, 2011; Chen et al.,

2014; Wang X. J. et al., 2014; Ali et al., 2017). It was estimated

that this disease could cause yield losses of 5.47 million tons of

wheat (equivalent to US$979 million) each year in the worldwide

wheat-growing regions (Beddow et al., 2015). In the United

States in 2000, 2001, 2002, and 2003, the total losses of wheat in

the top 12 states with the most severe wheat yield losses resulting

from stripe rust were approximately 1.20, 5.24, 1.06, and 11.75

million tons, respectively (Chen, 2005). As an air-borne disease,

in China, wheat stripe rust has the characteristics of high

epidemic frequency, wide occurrence range, and severe

damage to wheat production, and it has been pandemic in

wheat-growing regions for many times, especially in 1950,

1964, 1990, and 2002, reducing the yield of wheat by 6, 3.2,

1.8, and 1.3 billion kg, respectively (Li and Zeng, 2002; Wan

et al., 2003; Wan et al., 2004; Wan et al., 2007). In China, wheat

stripe rust is one of the most important and devastating wheat

diseases and is always a serious threat to the safety of wheat

production, critically affecting China’s food security (Li and

Zeng, 2002; Chen et al., 2014; Wang X. J. et al., 2014; Wang

et al., 2022). To carry out the surveys and monitoring of wheat

stripe rust is a key way to obtain the information on the

occurrences of the disease, which can provide basic supports

for disease prediction, resistant variety identification, disease

management, and so on.

During the surveys of wheat stripe rust, generally, the main

disease indicators surveyed include incidence, severity, disease

index, etc. Among these indicators, the severity is applied to

describe disease intensity or the degree of infection of a plant

unit (e.g., a plant, leaf, fruit, branch, stem, or other plant part)

and it is of great significance for disease quantification (Nutter

et al., 1991; Bock et al., 2022). For wheat stripe rust, according to

the Rules for Monitoring and Forecast of the Wheat Stripe Rust

(Puccinia striiformis West.) (National Standard of the People’s

Republic China, GB/T 15795–2011), eight severity classes are

classified based on the percentages of lesion areas in the areas of

the corresponding whole wheat leaves. In this severity grading

standard, the disease intensity between two adjacent severity

classes is taken as its nearest percentage severity class, and the

disease intensity of a diseased leaf with the severity lower than

1% is recorded as the severity class of 1%. Shang et al. (1990)

designed a standard area diagram set for the severity assessment

of wheat stripe rust, and this diagram set plays an important role

in accurate severity assessment of the disease. The severity

assessment of wheat stripe rust is an important part in disease

surveys, concerning diseased plant phenotyping, disease

prediction and forecast, and disease control decision-making.

Therefore, the severity assessment should be conducted in strict
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accordance with the severity grading standard to ensure the

assessment accuracy and to facilitate the exchange and sharing of

the corresponding assessment information.

At present, the severity assessment of wheat stripe rust is

conducted mainly by using visual observation method (i.e.,

naked eye observation method) that is heavily dependent on

experienced personnel. In addition to the method above, disease

severity of wheat stripe rust can be assessed by using the

methods based on image processing technology (Jiang et al.,

2021), remote sensing technology (Huang et al., 2004; Wang

et al., 2007; Zhao et al., 2014; Wang et al., 2016), and near

infrared spectroscopy technology (Li et al., 2015). In some cases,

the severity of wheat stripe rust can be assessed based on the

disease incidence obtained via disease survey (Dong et al., 1990).

During Pst infects into wheat leaves, infection sites on wheat

leaves are required. The actual area occupied by each infection

site may be larger than the area of each lesion with the disease

symptom (usually the uredinium produced at the infection site).

In the severity grading standard of wheat stripe rust (i.e., the

Rules for Monitoring and Forecast of the Wheat Stripe Rust

(Puccinia striiformis West.)) as described above, the percentage

of the lesion area in the area of a whole diseased wheat leaf

corresponding to one of eight severity classes is not the actual

percentage of the lesion area in the area of the whole leaf. The

percentage of the lesion area in the area of a whole diseased

wheat leaf corresponding to a severity class in the severity

grading standard is greater than the actual percentage of the

lesion area in the area of the whole leaf. This makes it very

difficult to accurately assess the severity of wheat stripe rust in

practice. Shang et al. (1990) measured the areas of wheat leaves

using a leaf area meter, and obtained the actual coverage rate of

all the uredinia on a wheat leaf of each severity class using a

uredinium parameters based calculating method and a method

via actual measurement of the amplified image of the wheat leaf

with the most severe disease symptom selected in the field. The

results obtained by Shang et al. (1990) showed that the actual

uredinium coverage rates for the severity classes of 1%, 5%, 10%,

20%, 40%, 60%, 80%, and 100% were 0.35%, 1.75%, 3.5%, 7%,

14%, 21%, 28%, and 35%, respectively, indicating that the actual

percentage of the lesion area in the area of a whole diseased

wheat leaf corresponding to one of eight severity classes is quite

different from the corresponding percentage of the lesion area in

the area of the whole leaf determined by using the severity

grading standard of wheat stripe rust. In addition, due to the

relatively small size and great shape changes of the Pst uredinia,

it is easy to induce errors in the actual measurements of the

coverage areas of the uredinia, and thus there may be some

induced errors in the actual uredinium coverage rates for the

severity classes obtained by Shang et al. (1990). Therefore, it is

necessary to develop a more convenient and accurate method for

determining the actual percentage of uredinium coverage area in

a diseased wheat leaf area. Moreover, the actual uredinium
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coverage rate of each severity class obtained by Shang et al.

(1990) is a fixed value, but most of the actual uredinium coverage

rates in practice are between the fixed values of two adjacent

severity classes, inducing great difficulties and inconvenience to

the severity assessments. Therefore, under these circumstances,

when disease severity is assessed by comparing the actual

percentage of lesion area in the area of a whole diseased wheat

leaf to the percentage of lesion area in the severity grading

standard, great assessment errors may be induced and disease

severity class may be incorrectly assessed.

The visual observation method is widely utilized to assess the

severity of wheat stripe rust, it is time-consuming and laborious,

and it has high requirements of experience of an assessor or a

rater. When this method is utilized to carry out disease severity

assessment in practice, it is not easy to conduct the assessment

and to obtain accurate assessment results. Due to the influence of

the human vision and experience, using this method, different

assessors/raters may obtain different assessed severity class for

the same diseased wheat leaf. Therefore, before carrying out the

disease severity assessment in practice, an assessor or a rater is

required to be trained to master the severity grading standard

and the severity grading method, aiming to ensure the accuracy

and reliability of the severity assessment results.

In comparison with disease severity of wheat stripe rust, it is

easier to investigate disease incidence by determining whether a

wheat leaf is diseased. The quantitative relationship between

incidence and severity (I-S relationship) can be established after

investigations of the incidence and severity of the disease, and

then the severity can be speculated according to the incidence.

Nevertheless, the I-S relationship is greatly affected by many

factors such as the incidence, the growth stage of wheat, and the

distribution of lesions on wheat leaf layers (Dong et al., 1990).

Therefore, the application of the established I-S relationship

equation/model has great limitations, limiting the application of

the severity assessing method based on the disease incidence.

Studies on severity assessment of wheat stripe rust based on

remote sensing technology, near infrared spectroscopy

technology, image processing technology, and other

information technologies, have been paid attention to. The

severity assessment of wheat stripe rust based on remote

sensing technology and near infrared spectroscopy technology

is still in the experimental research phase. Due to the high price

of the required instruments and the low practical applicability,

the related methods based on remote sensing technology and

near infrared spectroscopy technology are rarely applied in

practical productions. With the rapid development of image

acquisition technology and image processing technology, more

and more recognition methods (Li et al., 2012; Wang M. L. et al.,

2014; Guo et al., 2015; Hu et al., 2018) and severity assessment

methods (Bao et al., 2021; Jiang et al., 2021) of wheat stripe rust

based on image processing technology are utilized in research

and practical applications.
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At present, the methods based on image processing technology

to assess the severity of wheat stripe rust can be divided into two

categories; one is to directly identify the severity classes based on

the extracted disease image features (Bao et al., 2021), and the other

is to segment the lesion/lesions, calculate the lesion area and the

area of a whole diseased wheat leaf (or the number of the lesion

pixels and the number of pixels of the whole diseased leaf),

calculate the actual percentage of the lesion area in the area of

the whole diseased leaf, and assess the severity of the corresponding

diseased leaf by comparing the actual percentage of the diseased

area to the percentages for the eight severity classes in the disease

severity grading standard (Jiang et al., 2021). In the current

research and applications of plant disease severity assessment by

using image processing technology, the situation that the

percentage of the lesion area in the area of a whole diseased

plant unit corresponding to each severity class in the severity

grading standards of some plant diseases (such as wheat stripe rust

and wheat leaf rust caused by Puccinia triticina) is not the actual

percentage of the lesion area in the area of the whole diseased plant

unit, is not taken into account. Thus the accuracies of the severity

assessments of these plant diseases based on image processing

technology are seriously affected, resulting in great errors or

complete errors in the disease severity assessments. This is also

the main reason for the low accuracy obtained in assessing the

severity of these plant diseases based on the ratio of lesion area to

the total area of a plant unit by using image processing technology,

which limits the practical applications of the related technology.

To solve the difficulties in assessing the severity of wheat stripe

rust and the problems in severity assessment of the disease based

on the actual percentage of lesion area in the area of the

corresponding whole diseased wheat leaf, and to improve the

severity assessment accuracy, it is necessary to explore a simple,

easy-to-operate, and rapid method with high accuracy for assessing

the disease severity, which is of great significance for the survey,

monitoring, prediction and forecast, and control of the disease. In

this study, by using image processing software, the leaf region and

lesion region in the acquired image of each single diseased wheat

leaf were obtained via image segmentation operations, and the

numbers of the lesion pixels and the pixels of the whole diseased

leaf were achieved by pixel statistics. Then the actual percentage of

the lesion area in the area of the whole diseased leaf was calculated,

and the mean of the actual percentages of lesion areas

corresponding to each severity class was calculated subsequently.

Based on the midpoint value of the means of two adjacent severity

classes, the reference range of the actual percentages of lesion areas

corresponding to each severity class was determined for severity

assessments. Furthermore, by referring to the method for

determining the reference ranges in the field of medicine, the

reference ranges at different levels (90%, 95%, and 99%) of the

actual percentages of lesion areas corresponding to each severity

class were estimated based on the distribution range of the actual

percentages of lesion areas of most of the diseased wheat leaves
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belonging to each severity class. According to the midpoint-of-

two-adjacent-means-based actual percentage reference ranges and

the reference ranges at different levels for the eight severity classes,

the severity of each of the acquired diseased wheat leaves with the

percentages of lesion areas was assessed, and the assessment

performance of each reference range was evaluated by using the

assessment accuracy. In this study, it is aimed to explore two new

methods for severity assessment of wheat stripe rust based on the

actual percentages of the lesion areas in the areas of the

corresponding whole diseased leaves, to provide a reference for

severity assessments of plant diseases based on the ratios of lesion

areas to the total areas of plant units, and to provide supports for

the automatic severity assessments of plant diseases based on

image processing technology.
Materials and methods

In this study, two new methods for severity assessment of

wheat stripe rust were developed according to the procedures
Frontiers in Plant Science 04
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and steps as shown in Figure 1, and then the constructed data

sets were used to evaluate the new methods.
Acquisition of single wheat leaf images
of each severity class of wheat stripe rust

According to the Rules for Monitoring and Forecast of the

Wheat Stripe Rust (Puccinia striiformis West.) as described

above, wheat leaves with typical symptoms of wheat stripe rust

with severity levels of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and

100% were collected from the diseased wheat plants that were

obtained by using artificial spray inoculation method in

Shangzhuang Experimental Station of China Agricultural

University, Beijing, China and an artificial climate chamber in

the Laboratory of Macro-Phytopathology, China Agricultural

University, Beijing, China. Each diseased leaf was expanded as

flat as possible and fixed on a sheet of A4 white paper with the

lesion side facing up by using double sided sticky tape. Images of

the diseased leaves were taken with a Nikon D700 digital camera
FIGURE 1

Work flow diagram for determining the reference ranges for disease severity assessment based on the actual percentages of lesion areas
corresponding to each severity class and assessing the severity of wheat stripe rust.
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(Nikon Corp., Tokyo, Japan), a HUAWEI P30 smartphone, and

an iPhone 6S smartphone, and the sizes of the corresponding

acquired images were 4256×2832, 3648×2736, and 4032×3024

pixels, respectively. One image was taken for each diseased leaf,

50 single diseased leaves of each severity class were used to be

photographed, and a total of 400 single diseased leaf images were

acquired. All the acquired images were in the JEPG format.
Manual image segmentation and pixel
statistics of leaf regions and lesion
regions of diseased wheat leaves

Manual image segmentation and pixel statistics of leaf

regions and lesion regions of diseased wheat leaves were

conducted by using the Adobe Photoshop 2022 software

(Adobe Systems Incorporated, San Jose, CA, USA). In the

software, a single leaf image (as shown in Figures 2A–H) of

wheat stripe rust was opened, then the whole leaf region was

selected with the quick selection tool, and subsequently the pixel

number of the whole leaf region was viewed in the histogram

panel and was recorded in a sheet in Microsoft Excel 2016.

Inverse selection was carried out, then the selected region was

filled with black color, and, finally, the image was saved in the

JPEG format and the TIFF format, respectively (as shown in

Figures 2I–P). When the quick selection tool was used, the

‘Enhance Edge’ was not selected, and for the brush options, in

most cases, the size was set to 5 pixels, the hardness was set to

0%, the spacing was set to 25%, the angle was set to 35°, and the

roundness was set to 100%. After completing the image

segmentation of the diseased leaf, the diseased leaf layer was

duplicated to form a new layer, and the original diseased leaf

layer was named background and the new layer was named

Layer 1 in the Adobe Photoshop 2022 software. Then the

background layer was hidden, and Layer 1 was shown and

selected. Repeatedly, the magic wand tool was used to select

the non-lesion regions and the corresponding selected regions

were filled with black color, so as to complete the initial

segmentation of the lesion/lesions. After completing the initial

segmentation, if there was still any non-lesion region that was

not shown as black, the region was circled by using the lasso tool

and was subsequently filled with black color, so as to complete

the secondary segmentation of the lesion/lesions. The

background layer was shown, Layer 1 was selected, and

whether any lesion region was completely segmented or not

was checked by repeatedly showing and hiding Layer 1. If there

was still any lesion region shown as black, Layer 1 was selected

and hidden, the background layer was shown, and then the

region was circled by using the lasso tool and was subsequently

removed. Until any lesion region was completely segmented, the

non-lesion region was clicked by using the magic wand tool,

then the inverse selection was carried out, and subsequently the

pixel number of the lesion region/regions was viewed in the
Frontiers in Plant Science 05
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histogram panel and was recorded in the sheet in Microsoft

Excel 2016. Finally, Layer 1 was saved in the JPEG format and

the TIFF format, respectively (as shown in Figures 2Q–X). When

the magic wand tool was used, the sample size was set to point

sample and the tolerance value was set to a number between 0

and 35. According to the actual selection of the lesion region, the

tolerance value can be adjusted and the ‘Contiguous’ option can

be selected. When the lasso tool was used, the feather value was

set to 0 pixel. In all the above processes, the options ‘Anti-alias’

and ‘Sample All Layers’ were not selected. The numbers of the

lesion pixels and the whole diseased leaf pixels for each diseased

wheat leaf image were obtained by using the method as

described above.
Calculation of the actual percentage of
the lesion area in the area of each whole
diseased wheat leaf

For each diseased wheat leaf image, based on the pixel

number of the whole leaf region and the pixel number of the

lesion region/regions recorded in the sheet in Microsoft Excel

2016, the percentage of the pixel number of the lesion region/

regions in the pixel number of the whole leaf region, i.e., the

actual percentage of the lesion area in the area of the whole

diseased leaf, was calculated according to the following Formula

(1).

r ¼ Ad

Al
� 100% (1)

where r is the actual percentage of the lesion area in the area of

the whole diseased leaf for a single diseased wheat leaf, Ad is the

pixel number of the lesion region/regions in the single diseased

wheat leaf image, and Al is the pixel number of the whole leaf

region in the single diseased wheat leaf image.
Normal distribution tests on the data of
the actual percentages of lesion areas
corresponding to each severity class and
the data of the reconstructed data sets
after sampling

Normal distribution test on the data of the actual

percentages of lesion areas in the corresponding whole leaf

areas at the severity level of 1%, 5%, 10%, 20%, 40%, 60%,

80%, or 100% was conducted by using the UNIVARIATE

procedure in the SAS 9.4 software (SAS Institute Inc. Cary,

NC, USA). The results showed that 50 actual percentages of the

lesion areas in the corresponding whole leaf areas for each

severity class had a normal distribution. After 50 actual

percentages of the lesion areas in the corresponding whole leaf

areas for each severity class were sorted from large to small, the
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FIGURE 2

Single wheat leaf images of each severity class of wheat stripe rust and the corresponding leaf region images and lesion images after
segmentation. All the images were shown after being cropped uniformly so that they could be demonstrated clearly. (A–H) Single diseased
wheat leaf images of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively; (I–P) Segmented images of leaf regions
for the single diseased wheat leaf images of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively; (Q–X) Segmented
lesion images for the single diseased wheat leaf images of the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%, respectively.
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training and testing sets were constructed based on the data

sampled from the 50 actual percentages by using the system

sampling method with the ratio of the number of specimens in

the training set to the number of specimens in the testing set

equal to 4:1 or 3:2. For the sampling ratio of 4:1, the

corresponding constructed training and testing sets were

recorded as Train40R and Test10R, respectively. Train40R was

composed of the 40 specimens obtained by using the system

sampling method with the sampling ratio equal to 4:1 when the

severity class was R, and Test10R was composed of the 10

remaining specimens. For the sampling ratio of 3:2, the

corresponding constructed training and testing sets were

recorded as Train30R and Test20R, respectively. Train30R was

composed of the 30 specimens obtained by using the system

sampling method with the sampling ratio equal to 3:2 when the

severity class was R, and Test20R was composed of the 20

remaining specimens. R was the percentage of the lesion area

in the area of the whole diseased leaf of the corresponding

severity class in the severity grading standard of wheat stripe

rust, so the value of R could be 1%, 5%, 10%, 20%, 40%, 60%,

80%, or 100%. Normal distribution tests on the data of the

training sets (Train40R and Train30R) for the severity class of R

were conducted by using the UNIVARIATE procedure in

the SAS software. The results showed that the actual

percentages of lesion areas contained in each training set had a

normal distribution.
Calculation of the mean and standard
deviation of the actual percentages of
lesion areas corresponding to each
severity class

The mean (r) and standard deviation (s) of the actual

percentages of lesion areas contained in each training set

(Train40R or Train30R) for the severity class of R were

calculated, respectively. The value of r for each severity class

was treated as the representative value of the actual percentage of

lesion area in the area of a whole diseased wheat leaf of the

corresponding severity class.
Determination of the reference ranges of
the actual percentages of lesion areas in
the corresponding whole leaf areas for
all the severity classes

The reference ranges of the actual percentages of lesion areas

in the corresponding whole leaf areas for all the severity classes

of wheat stripe rust were determined by using the following

two methods.

Method 1: The actual percentage reference range

corresponding to each severity class was determined by taking
Frontiers in Plant Science 07
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the midpoint value (rmidpoint) of the means of the actual

percentages of lesion areas of two adjacent severity classes as

the demarcation point, and this midpoint-of-two-adjacent-

means-based actual percentage reference range was treated as

one kind of the reference ranges of the actual percentages of

lesion areas in the corresponding whole leaf areas for the severity

class. Based on the actual percentages of lesion areas contained

in each training set (Train40R or Train30R), the midpoint value

rmidpoint of the means of two adjacent severity classes was treated

as the demarcation point, and then the rmidpoint value was

regarded as the upper limit of the actual percentages of lesion

areas corresponding to the lower severity class in the two

adjacent severity classes and was regarded as the lower limit of

the actual percentages of lesion areas corresponding to the

higher severity class. For the lowest severity class (1%), the

lowest actual percentage of lesion area in the corresponding

whole diseased leaf is greater than 0%. Thus the midpoint-of-

two-adjacent-means-based actual percentage reference ranges

corresponding to the severity class of R based on the training sets

Train40R and Train30R were determined for the severity

assessment of wheat stripe rust. The actual percentage of the

lesion area corresponding to demarcation point was calculated

according to the following Formula (2).

rmidpoint ¼
ra + rb

2
(2)

where rmidpoint is the midpoint value of the means of the actual

percentages of lesion areas of two adjacent severity classes, ra is

the mean of the actual percentages of lesion areas corresponding

to the lower severity class of a in the two adjacent severity

classes, and rb is the mean of the actual percentages of lesion

areas corresponding to the higher severity class of b in the two

adjacent severity classes.

Method 2: The reference ranges at different levels for all the

severity classes were determined by referring to the method for

determining the medical reference ranges. In this study, since the

actual percentages of the lesion areas in the corresponding whole

leaf areas contained in each training set (Train40R or Train30R)

for each severity class had a normal distribution, the normal

distribution method (Sun and Xu, 2014) was used to determine

the reference ranges of the actual percentages of the lesion areas

for all the severity classes. According to the normal distribution

method (Sun and Xu, 2014), for each severity class, the upper

and lower limits of the bilateral 100(1–a)% reference range were

calculated by using the formula r ± ua=2s, and the unilateral 100

(1–a)% reference range was determined by using the formula >

r − ua s or< r + ua s. In the formulas, r is the mean of the actual

percentages of lesion areas in the corresponding whole leaf areas

for a severity class, s is the standard deviation of the actual

percentages of lesion areas in the corresponding whole leaf areas

for the severity class, and ua is the standard normal deviate

corresponding to the a value. In this study, based on the values

of r and s of the actual percentages of lesion areas in the
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corresponding whole leaf areas contained in each training set

(Train40R or Train30R) for the severity class of R, the 90%

(a=0.1), 95% (a=0.05), and 99% (a=0.01) reference ranges of

the actual percentages of lesion areas corresponding to the

severity class of 5%, 10%, 20%, 40%, 60%, 80%, or 100% were

determined according to the formulas r ± 1:64s, r ± 1:96s, and

r ± 2:58s, respectively. In particular, for the 90% (a=0.1), 95%
(a=0.05), and 99% (a=0.01) reference ranges of the severity class
of 1%, the lower limits were greater than 0%, and the

corresponding upper limits were calculated by using the

formulas r + 1:28s, r + 1:64s, and r + 2:33s, respectively.

For a sampling ratio (4:1 or 3:2), if the 90%, 95%, or 99%

reference ranges of the actual percentages of lesion areas of

adjacent severity classes of wheat stripe rust obtained by using

the normal distribution method overlapped, the normal

distribution curves of the actual percentage data contained in

the training sets of all the severity classes were drawn with the

corresponding values of r and s by using the normal distribution

probability density function (normpdf) in the software MATLAB

2019b (MathWorks, Natick, MA, USA), and then the

intersection point of the normal distribution curves of the

actual percentage data contained in the training sets of two

adjacent severity classes was obtained by using the function solve

in the software. The abscissa value of the intersection point was

denoted as ra-b where a was the lower one and b was the higher

one in the two adjacent severity classes. The upper limit of the

reference range of the actual percentages of lesion areas

corresponding to the severity class of a and the lower limit of

the reference range of the actual percentages of lesion areas

corresponding to the severity class of b were determined based

on the ra-b value. Subsequently, the probability of the interval

composed of the lower and upper limits of the reference range

for a severity class was calculated by using the function normspec

in the software MATLAB 2019b, and was regarded as the

corresponding actual probability of this reference range.

For a sampling ratio, if the normal distribution curve of the

actual percentage data contained in the training set of a severity

class of R had no intersection point with that of the actual

percentage data contained in the training set of any adjacent

severity class, or had an intersection point, but the ra-b value lay

outside the interval corresponding to the 90%, 95%, or 99%

probability of the normal distribution curve of the actual

percentage data contained in the training set of the severity

class of R, the 90%, 95%, or 99% reference range of the actual

percentages of lesion areas for the severity class of R was

estimated according to the formula as described above. If the

normal distribution curve of the actual percentage data

contained in the training set of a severity class of R only had

an intersection point with that of the actual percentage data

contained in the training set of the lower adjacent severity class,

and the ra-b value lay inside the interval corresponding to the

90%, 95%, or 99% probability of the normal distribution curve of

the actual percentage data contained in the training set of the
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severity class of R, the ra-b value was regarded as the lower limit

of the 90%, 95%, or 99% reference range of the actual

percentages of lesion areas for the severity class of R, then the

upper limit of the corresponding reference range was calculated

according to the formula as described above, and, subsequently,

the probability of the interval composed of the lower and upper

limits of the reference range for this severity class calculated by

using the function normspec in the software MATLAB 2019b

was regarded as the corresponding actual probability of this

reference range. If the normal distribution curve of the actual

percentage data contained in the training set of a severity class of

R only had an intersection point with that of the actual

percentage data contained in the training set of the higher

adjacent severity class, and the ra-b value lay inside the

interval corresponding to the 90%, 95%, or 99% probability of

the normal distribution curve of the actual percentage data

contained in the training set of the severity class of R, the ra-b

value was regarded as the upper limit of the 90%, 95%, or 99%

reference range of the actual percentages of lesion areas for the

severity class of R, then the lower limit of the corresponding

reference range was calculated according to the formula as

described above, and, subsequently, the probability of the

interval composed of the lower and upper limits of the

reference range for this severity class calculated by using the

function normspec in the software MATLAB 2019b was regarded

as the corresponding actual probability of this reference range. If

the normal distribution curve of the actual percentage data

contained in the training set of a severity class of R had an

intersection point with that of the actual percentage data

contained in the training set of each of the two adjacent

severity classes, and the abscissa values of the two intersection

points lay inside the interval corresponding to the 90%, 95%, or

99% probability of the normal distribution curve of the actual

percentage data contained in the training set of the severity class

of R, the two abscissa values were regarded as the lower and

upper limits of the 90%, 95%, or 99% reference range of the

actual percentages of lesion areas for the severity class of R,

respectively, and then the probability of the interval composed of

the lower and upper limits of the reference range for this severity

class calculated by using the function normspec in the software

MATLAB 2019b was regarded as the corresponding actual

probability of this reference range.

In this study, according to the formulas as described above,

the estimated 95% reference ranges of the actual percentages of

lesion areas for some adjacent severity classes overlapped, and

the estimated 99% reference ranges of the actual percentages of

lesion areas for all the adjacent severity classes overlapped.

Therefore, the 95% or 99% reference ranges of the actual

percentages of lesion areas of the adjacent severity classes were

obtained according to the method as described above. Although

the corresponding probabilities of the reference ranges changed,

in a convenient manner, the reference ranges were still called the

95% or 99% reference ranges. In this study, for the two sampling
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ratios, the calculation methods of the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas

corresponding to each severity class of wheat stripe rust are

shown in Table 1.
Severity assessment of each of the
acquired diseased wheat leaves with the
percentages of lesion areas

According to the midpoint-of-two-adjacent-means-based

actual percentage reference ranges and the 90%, 95%, and 99%

reference ranges obtained based on the actual percentage data

contained in the training set Train40R, the severity assessment of

each diseased wheat leaf with the actual percentage of lesion area

in the area of the corresponding whole diseased leaf contained in

the training set Train40R and the testing set Test10R was

conducted. In the same way, according to the midpoint-of-

two-adjacent-means-based actual percentage reference ranges

and the 90%, 95%, and 99% reference ranges obtained based on

the actual percentage data contained in the training set Train30R,

the severity assessment of each diseased wheat leaf with the

actual percentage of lesion area in the area of the corresponding

whole diseased leaf contained in the training set Train30R and

the testing set Test20R was carried out. Then the accuracy of

severity assessments of the diseased wheat leaves with the actual

percentages of lesion areas contained in each data set of a

severity class was calculated by using the following Formula (3).

Accuracy =
np
n

� 100% (3)

where accuracy is the severity assessment accuracy of the

diseased wheat leaves with the actual percentages of lesion

areas contained in each data set of a severity class, np is the

number of the diseased leaves correctly assessed, and n is the

total number of the diseased leaves assessed.
Results

The range, mean, and standard deviation
of the actual percentage data contained
in each of the training sets
corresponding to each severity class

Based on the actual percentages of the lesion areas in the

areas of the corresponding whole diseased wheat leaves, the

range, mean (r), and standard deviation (s) of the actual

percentage data contained in each training set (Train40R or

Train30R) for the severity class of R were achieved as shown in

Table 2. The results showed that the range composed of the

minimum and maximum actual percentages for the severity

class of R (1%, 5%, 10%, 20%, 40%, 60%, 80%, or 100%) obtained
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based on the actual percentage data contained in Train40R was

the same as that obtained based on the actual percentage data

contained in Train30R. The ranges of actual percentages for the

severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100%

were [0.06%, 0.78%], [0.85%, 1.64%], [1.73%, 3.29%], [3.65%,

6.31%], [6.76%, 13.88%], [14.22%, 18.43%], [18.90%, 24.15%],

and [24.54%, 36.49%], respectively. In Train40R and Train30R,

the maximum actual percentage of lesion area in the

corresponding whole leaf area for the severity class of 100%

was 36.49%. Based on the actual percentage data contained in

each training set that was called Train40R, the means of the

actual percentages of lesion areas for the severity classes of 1%,

5%, 10%, 20%, 40%, 60%, 80%, and 100% were 0.40%, 1.27%,

2.50%, 4.92%, 9.89%, 16.61%, 21.23%, and 30.52%, respectively.

Based on the actual percentage data contained in each training

set that was called Train30R, the means of the actual percentages

of lesion areas for the severity classes of 1%, 5%, 10%, 20%, 40%,

60%, 80%, and 100% were 0.40%, 1.28%, 2.50%, 4.92%, 9.87%,

16.61%, 21.23%, and 30.53%, respectively. The results showed

that there was no obvious difference between the r values or the s

values of the actual percentages of lesion areas in the areas of the

corresponding whole diseased leaves contained in Train40R and

Train30R at the same severity level (severity class of R). The

results demonstrated that for each severity class of wheat stripe

rust, there was great difference between the actual percentage of

lesion area in the area of a whole diseased leaf and the percentage

of the lesion area in the area of the whole diseased leaf

corresponding to the severity class in the severity grading

standard of the disease as described above.
The determined reference ranges of the
actual percentages of lesion areas in the
corresponding whole leaf areas for all
the severity classes

For each sampling ratio (4:1 or 3:2), a total of four sets of

reference ranges of the actual percentages of lesion areas in the

corresponding whole leaf areas for all the severity classes of

wheat stripe rust, including the midpoint-of-two-adjacent-

means-based actual percentage reference ranges, the 90%

reference ranges, the 95% reference ranges, and the 99%

reference ranges, were determined as shown in Table 3.

Based on the actual percentage data contained in the training

sets Train40R and Train30R, the determined midpoint-of-two-

adjacent-means-based actual percentage reference ranges

corresponding to the severity class of R, as shown in Table 3,

were obtained by taking the values of rmidpoint of the means of the

actual percentages of lesion areas in the corresponding whole

leaf areas of two adjacent severity classes as the demarcation

points. Based on the actual percentage data contained in each

training set that was called Train40R, the midpoint-of-two-

adjacent-means-based actual percentage reference ranges for
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the severity classes of 1%, 5%, 10%, 20%, 40%, 60%, 80%, and

100% were (0, 0.84%], (0.84%, 1.89%], (1.89%, 3.71%], (3.71%,

7.41%], (7.41%, 13.25%], (13.25%, 18.92%], (18.92%, 25.88%],

and (25.88%, 100%], respectively. Based on the actual percentage

data contained in each training set that was called Train30R, the

midpoint-of-two-adjacent-means-based actual percentage

reference ranges for the severity classes of 1%, 5%, 10%, 20%,

40%, 60%, 80%, and 100% were (0, 0.84%], (0.84%, 1.89%],

(1.89%, 3.71%], (3.71%, 7.40%], (7.40%, 13.24%], (13.24%,

18.92%], (18.92%, 25.88%], and (25.88%, 100%], respectively.

The results showed that for the severity class of R, the midpoint-

of-two-adjacent-means-based actual percentage reference range

obtained based on the actual percentage data in Train40R was

similar to that obtained based on the actual percentage data in

Train30R. The midpoint-of-two-adjacent-means-based actual

percentage reference range for each severity class obtained
Frontiers in Plant Science 10
133
based on the actual percentage data contained in each

corresponding training set by using the method as described

above, had relatively large difference with the range (as shown in

Table 2) composed of the minimum and maximum actual

percentages for the corresponding severity class.

For the sampling ratio of 4:1, based on the actual percentage

data contained in each training set that was called Train40R, the

obtained 90%, 95%, and 99% reference ranges of the actual

percentages of lesion areas corresponding to each severity class

and the actual probabilities for the corresponding reference

ranges are shown in Table 3. For the sampling ratio of 3:2,

based on the actual percentage data contained in each training

set that was called Train30R, the obtained 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas

corresponding to each severity class and the actual

probabilities for the corresponding reference ranges are also
TABLE 1 Calculation methods of the 90%, 95%, and 99% reference ranges of the actual percentages of lesion areas corresponding to each
severity class of wheat stripe rust.

Severity class 90% reference range 95% reference range 99% reference range

1% (0%, r+1.28s] (0%, r+1.64s] (0%, r1%-5%]

5% [ r–1.64s, r+1.64s] [ r–1.96s, r+1.96s] ( r1%-5%, r5%-10%]

10% [ r–1.64s, r+1.64s] ( r5%-10%, r+1.96s] ( r5%-10%, r10%-20%]

20% [ r–1.64s, r+1.64s] [ r–1.96s, r+1.96s] ( r10%-20%, r20%-40%]

40% [ r–1.64s, r+1.64s] ( r20%-40%, r+1.96s] ( r20%-40%, r40%-60%]

60% [ r–1.64s, r+1.64s] [ r–1.96s, r60%-80%] ( r40%-60%, r60%-80%]

80% [ r–1.64s, r+1.64s] ( r60%-80%, r+1.96s] ( r60%-80%, r80%-100%]

100% [ r–1.64s, r+1.64s] [ r–1.96s, r+1.96s] ( r80%-100%, r+2.58s]
TABLE 2 Statistics of the actual percentage data of the lesion areas in the areas of the corresponding whole diseased leaves contained in each
training set (Train40R or Train30R) of the severity class of R including the range of actual percentages of lesion areas, mean, and standard deviation.

Data set Severity class The range of actual percentages Mean Standard deviation

Train401% 1% [0.06%, 0. 78%] 0.40% 0.19%

Train405% 5% [0.85%, 1.64%] 1.27% 0.23%

Train4010% 10% [1.73%, 3.29%] 2.50% 0.42%

Train4020% 20% [3.65%, 6.31%] 4.92% 0.78%

Train4040% 40% [6.76%, 13.88%] 9.89% 1.97%

Train4060% 60% [14.22%, 18.43%] 16.61% 1.21%

Train4080% 80% [18.90%, 24.15%] 21.23% 1.41%

Train40100% 100% [24.54%, 36.49%] 30.52% 3.19%

Train301% 1% [0.06%, 0.78%] 0.40% 0.19%

Train305% 5% [0.85%, 1.64%] 1.28% 0.23%

Train3010% 10% [1.73%, 3.29%] 2.50% 0.43%

Train3020% 20% [3.65%, 6.31%] 4.92% 0.78%

Train3040% 40% [6.76%, 13.88%] 9.87% 1.95%

Train3060% 60% [14.22%, 18.43%] 16.61% 1.20%

Train3080% 80% [18.90%, 24.15%] 21.23% 1.43%

Train30100% 100% [24.54%, 36.49%] 30.53% 3.21%
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shown in Table 3. On the whole, the obtained 90%, 95%, or 99%

reference range for the severity class of R based on the actual

percentage data in Train40R had small difference with the

corresponding 90%, 95%, or 99% reference range for the

severity class of R based on the actual percentage data in

Train30R. For the obtained 90%, 95%, and 99% reference

ranges based on the actual percentage data contained in each

training set of a severity class of R (1%, 5%, 10%, 20%, 40%, 60%,

80%, or 100%), the 95% and 99% reference ranges of the severity

class hade small difference, but both of them had relatively large

differences with the 90% reference range of the corresponding

severity class.

The results indicated that based on the actual percentages of

the lesion areas in the corresponding whole leaf areas contained

in each training set (Train40R or Train30R), the 90%, 95%, and

99% reference ranges of the actual percentages of lesion areas

corresponding to each severity class obtained by using the

normal distribution method had relatively obvious differences

with the obtained midpoint-of-two-adjacent-means-based

actual percentage reference range for the corresponding

severity class. Moreover, the obtained 90%, 95%, and 99%
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reference ranges of the actual percentages of lesion areas for

the severity class had certain differences with the range (as

shown in Table 2) composed of the minimum and maximum

actual percentages for the corresponding severity class.
Severity assessment results for the
acquired diseased wheat leaves
with the actual percentages of
lesion areas according to the
determined reference ranges

For the sampling ratio of 4:1, according to the determined

reference ranges based on the actual percentage data contained

in the training sets for all severity classes of wheat stripe rust,

including the midpoint-of-two-adjacent-means-based actual

percentage reference ranges and the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas, the

results of severity assessment of each diseased wheat leaf

contained in the corresponding training sets are shown in

Table 4. For the sampling ratio of 3:2, according to the
TABLE 3 The determined reference ranges of the actual percentages of lesion areas in the corresponding whole leaf areas for all the severity
classes based on the actual percentage data in the training sets Train40R and Train30R and the actual probabilities for the corresponding 90%,
95%, and 99% reference ranges.

Data set Severity
class

Midpoint-of-two-
adjacent-means-
based actual per-
centage reference

range

90% refer-
ence range

Actual proba-
bility corre-
sponding to
the 90% refer-
ence range

95% refer-
ence range

Actual proba-
bility corre-
sponding to
the 95% refer-
ence range

99% refer-
ence range

Actual proba-
bility corre-
sponding to
the 99% refer-
ence range

Train401% 1% (0, 0.84%] (0%,0.64%] 90% (0%, 0.71%] 95% (0%, 0.80%] 96.47%

Train405% 5% (0.84%, 1.89%] [0.89%, 1.65%] 90% [0.82%, 1.72%] 95% (0.80%, 1.75%] 96.11%

Train4010% 10% (1.89%, 3.71%] [1.81%, 3.19%] 90% (1.75%, 3.32%] 93.75% (1.75%, 3.43%] 94.95%

Train4020% 20% (3.71%, 7.41%] [3.64%, 6.20%] 90% [3.39%, 6.45%] 95% (3.43%, 6.60%] 95.63%

Train4040% 40% (7.41%, 13.25%] [6.66%,13.12%] 90% (6.60%,13.75%] 92.75% (6.60%,13.88%] 93.11%

Train4060% 60% (13.25%, 18.92%] [14.63%,
18.59%]

90% [14.24%,
18.80%]

93.98% (13.88%,
18.80%]

95.28%

Train4080% 80% (18.92%, 25.88%] [18.92%,
23.54%]

90% (18.80%,
23.99%]

93.24% (18.80%,
24.46%]

94.66%

Train40100% 100% (25.88%, 100%] [25.29%,
35.75%]

90% [24.27%,
36.77%]

95% (24.46%,
38.75%]

96.63%

Train301% 1% (0, 0.84%] (0%,0.64%] 90% (0%, 0.71%] 95% (0%, 0.81%] 96.69%

Train305% 5% (0.84%, 1.89%] [0.90%, 1.66%] 90% [0.83%, 1.73%] 95% (0.81%, 1.75%] 95.90%

Train3010% 10% (1.89%, 3.71%] [1.79%, 3.21%] 90% (1.75%, 3.34%] 93.41% (1.75%, 3.44%] 94.50%

Train3020% 20% (3.71%, 7.40%] [3.64%, 6.20%] 90% [3.39%, 6.45%] 95% (3.44%, 6.60%] 95.55%

Train3040% 40% (7.40%, 13.24%] [6.67%,
13.07%]

90% (6.60%,
13.69%]

92.82% (6.60%,
13.88%]

93.33%

Train3060% 60% (13.24%, 18.92%] [14.64%,
18.58%]

90% [14.26%,
18.78%]

93.96% (13.88%,
18.78%]

95.33%

Train3080% 80% (18.92%, 25.88%] [18.88%,
23.58%]

90% (18.78%,
24.03%]

93.16% (18.78%,
24.48%]

94.51%

Train30100% 100% (25.88%, 100%] [25.27%,
35.79%]

90% [24.24%,
36.82%]

95% (24.48%,
38.81%]

96.53%
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midpoint-of-two-adjacent-means-based actual percentage

reference range and the 90%, 95%, and 99% reference ranges

of the actual percentages of lesion areas determined based on the

actual percentage data contained in each training set that was

called Train30R, the results of severity assessment of each

diseased wheat leaf contained in the corresponding training set

are also shown in Table 4. The results demonstrated that

satisfactory assessment accuracies for the training sets could be

achieved by using each set of the determined reference ranges for

all the severity classes of wheat stripe rust, and that the

assessment accuracy for each training set (Train40R or

Train30R) was not lower than 85%. For the sampling ratio of

4:1, according to the midpoint-of-two-adjacent-means-based

actual percentage reference ranges and the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas based

on the actual percentage data contained in the training sets for

all the severity classes, among the assessment accuracies for all

the corresponding training sets, the lowest accuracies were

85.00%, 87.50%, 95.00%, and 95.00%, respectively. For the

sampling ratio of 3:2, according to the midpoint-of-two-

adjacent-means-based actual percentage reference ranges and

the 90%, 95%, and 99% reference ranges of the actual

percentages of lesion areas based on the actual percentage data

contained in the training sets for all the severity classes, the

lowest accuracies were 86.67%, 90.00%, 96.67%, and 96.67%,

respectively, among the assessment accuracies for all the

corresponding training sets. On the whole, for the sampling

ratio of 4:1 or 3:2, the severity assessment results of all the

diseased wheat leaves contained in the training set of a severity
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class according to the 90%, 95%, and 99% reference ranges of the

actual percentages of lesion areas for the corresponding severity

class indicated that the 99% reference range had the best

assessment performance and that the assessment performance

of the 95% reference range ranked second. Furthermore, the

severity assessment results of all the diseased wheat leaves

contained in the training set of a severity class according to

the midpoint-of-two-adjacent-means-based actual percentage

reference range and the 90% reference ranges of the actual

percentages of lesion areas for the corresponding severity class

indicated that the two reference ranges had the similar

assessment performances.

According to the midpoint-of-two-adjacent-means-based

actual percentage reference range and the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas

determined based on the actual percentage data in the training

set Train40R for a severity classes of R, the results of severity

assessments of the diseased leaves contained in the

corresponding testing set Test10R are shown in Table 5.

According to the midpoint-of-two-adjacent-means-based

actual percentage reference range and the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas

determined based on the actual percentage data in the training

set Train30R for a severity class of R, the results of severity

assessments of the diseased leaves contained in the

corresponding testing set Test20R are also shown in Table 5.

The results demonstrated that satisfactory assessment accuracies

for the testing sets could be achieved according to the midpoint-

of-two-adjacent-means-based actual percentage reference ranges
TABLE 4 Severity assessment results of the diseased wheat leaves with the actual percentages of lesion areas contained in each training set of all
the severity classes of wheat stripe rust according to the determined reference ranges.

Severity
class

Training
set

Assessment accuracy based on the mid-
point-of-two-adjacent-means-based
actual percentage reference range

Assessment accuracy
based on the 90%
reference range

Assessment accuracy
based on the 95%
reference range

Assessment accuracy
based on the 99%
reference range

1% Train401% 100.00% 95.00% 97.50% 100.00%

Train301% 100.00% 93.33% 96.67% 100.00%

5% Train405% 100.00% 95.00% 100.00% 100.00%

Train305% 100.00% 93.33% 100.00% 100.00%

10% Train4010% 87.50% 90.00% 100.00% 100.00%

Train3010% 86.67% 90.00% 96.67% 96.67%

20% Train4020% 97.50% 95.00% 100.00% 100.00%

Train3020% 96.67% 96.67% 100.00% 100.00%

40% Train4040% 85.00% 95.00% 95.00% 100.00%

Train3040% 86.67% 96.67% 96.67% 96.67%

60% Train4060% 100.00% 92.50% 97.50% 95.00%

Train3060% 100.00% 93.33% 96.67% 100.00%

80% Train4080% 97.50% 90.00% 97.50% 100.00%

Train3080% 96.67% 93.33% 96.67% 100.00%

100% Train40100% 90.00% 87.50% 100.00% 100.00%

Train30100% 90.00% 90.00% 100.00% 100.00%
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and the 90%, 95%, and 99% reference ranges of the actual

percentages of lesion areas in the corresponding whole leaf

areas for all the severity classes of wheat stripe rust, and that

the assessment accuracy for each testing set (Test10R or Test20R)

was not lower than 85%. For the sampling ratio of 4:1, according

to the midpoint-of-two-adjacent-means-based actual percentage

reference ranges and the 90% reference ranges of the actual

percentages of lesion areas based on the actual percentage data

contained in the training sets for all the severity classes, the

lowest accuracies were both 90.00% among the assessment

accuracies for all the corresponding testing sets; according to

the 95% and 99% reference ranges of the actual percentages of

lesion areas based on the actual percentage data contained in the

training sets for all the severity classes, the assessment accuracies

for all the corresponding testing sets were 100.00%. For the

sampling ratio of 3:2, according to the midpoint-of-two-

adjacent-means-based actual percentage reference ranges and

the 90%, 95%, and 99% reference ranges of the actual

percentages of lesion areas based on the actual percentage data

contained in the training sets for all the severity classes, the

lowest accuracies were 85.00%, 85.00%, 95.00%, and 95.00%,

respectively, among the assessment accuracies for all the

corresponding testing sets. Overall, for the sampling ratio of

4:1 or 3:2, the severity assessment results of all the diseased

wheat leaves contained in the testing set of a severity class

according to the midpoint-of-two-adjacent-means-based actual

percentage reference range and the 90%, 95%, and 99% reference

ranges of the actual percentages of lesion areas for the

corresponding severity class demonstrated that the 99%
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reference range had the best assessment performance, the

assessment performance of the 95% reference range ranked

second, that of the 90% reference range ranked third, and that

of the midpoint-of-two-adjacent-means-based actual percentage

reference range ranked last. The assessment performance of the

midpoint-of-two-adjacent-means-based actual percentage

reference range, the 90% reference range, the 95% reference

range, or the 99% reference range determined based on the

actual percentage data in the training set Train40R for a severity

class of R when the reference range was used to assess all the

diseased wheat leaves contained in the testing set Test10R, was

better than that of the corresponding reference range

determined based on the actual percentage data in the training

set Train30R for the severity class of R when it was used to assess

all the diseased wheat leaves contained in the testing set Test20R.

The results demonstrated that according to the two

developed methods based on the reference ranges of the

percentages of lesion areas for severity assessment of wheat

stripe rust in this study, high accuracy can be obtained in the

severity assessments of the diseased leaves, indicating that the

two methods were suitable for the severity assessment of the

disease. In the practical applications, the midpoint-of-two-

adjacent-means-based actual percentage reference ranges can

be used to carry out severity assessment of wheat stripe rust, or

according to the accuracy requirements for the severity

assessment results, a set of reference ranges can be selected for

severity assessment of the disease from the 90%, 95%, and 99%

reference ranges of the actual percentages of lesion areas

corresponding to all the severity classes.
TABLE 5 Severity assessment results of the diseased wheat leaves with the actual percentages of lesion areas contained in each testing set of all
the severity classes of wheat stripe rust according to the determined reference ranges.

Severity
class

Testing
set

Assessment accuracy based on the mid-
point-of-two-adjacent-means-based
actual percentage reference range

Assessment accuracy
based on the 90%
reference range

Assessment accuracy
based on the 95%
reference range

Assessment accuracy
based on the 99%
reference range

1% Test101% 100.00% 90.00% 100.00% 100.00%

Test201% 100.00% 95.00% 100.00% 100.00%

5% Test105% 100.00% 90.00% 100.00% 100.00%

Test205% 100.00% 95.00% 100.00% 100.00%

10% Test1010% 90.00% 90.00% 100.00% 100.00%

Test2010% 90.00% 90.00% 95.00% 95.00%

20% Test1020% 100.00% 100.00% 100.00% 100.00%

Test2020% 100.00% 95.00% 100.00% 100.00%

40% Test1040% 90.00% 100.00% 100.00% 100.00%

Test2040% 85.00% 95.00% 95.00% 100.00%

60% Test1060% 100.00% 90.00% 100.00% 100.00%

Test2060% 100.00% 90.00% 100.00% 100.00%

80% Test1080% 100.00% 90.00% 100.00% 100.00%

Test2080% 100.00% 90.00% 100.00% 100.00%

100% Test10100% 90.00% 90.00% 100.00% 100.00%

Test20100% 90.00% 85.00% 100.00% 100.00%
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Discussion

In this study, two new methods for severity assessment of

wheat stripe rust were proposed based on the actual percentages

of lesion areas in the areas of the corresponding whole wheat

leaves. The main characteristics of the two proposed methods

are shown in Table 6. By using the methods, the suitable

reference range selected from the midpoint-of-two-adjacent-

means-based actual percentage reference ranges and the 90%,

95%, and 99% reference ranges of the actual percentages of

lesion areas corresponding to all the severity classes of wheat

stripe rust can be directly used to assess the severity of each

diseased wheat leaf with the actual percentage of lesion area in

the area of the corresponding whole leaf. The two methods are

simple, easy-to-operate, rapid, and accurate. The methods are

applicable to all plant diseases for which the severity is classified

according to the ratio of lesion area to the area of the

corresponding whole diseased plant unit. The method for

determination of the midpoint-of-two-adjacent-means-based

actual percentage reference ranges corresponding to all the

disease severity classes and the method for determination of

the 90%, 95%, and 99% reference ranges of the actual

percentages of lesion areas corresponding to all the disease

severity classes, are provided for severity assessments of plant

diseases. The basis of the two methods for disease severity

assessment is very intuitive and in line with human

psychological cognitive habits. The two methods are very

convenient for practical operations and can improve the

accuracy of plant disease severity assessment, resulting in more

reliable plant disease information for diseased plant

phenotyping, disease prediction and forecast, and disease

management. The two methods are conducive to solve the
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classification difficulties in assessing the severity of plant

diseases. Especially, during severity assessments of plant

diseases according to the ratio of lesion area to the area of the

whole diseased plant unit, for some plant diseases such as wheat

stripe rust and wheat leaf rust, the ratio of the lesion area to the

area of the whole diseased plant unit corresponding to a severity

class in the disease severity grading standard is not the actual

ratio of the lesion area to the area of the whole diseased plant

unit, which can induce great errors or complete errors in the

severity assessment results. This problem was well solved in this

study, which provided a basis and methodological reference for

accurate severity assessments of plant diseases and was of great

significance for survey, monitoring, prediction, and control of

plant diseases.

In this study, 50 single diseased wheat leaf images for each

severity class of wheat stripe rust were acquired and the actual

percentages of the lesion areas in the corresponding whole leaf

areas were obtained. For each severity class of the disease, the

training sets and testing sets were constructed by using the

system sampling method with two sampling ratios of 4:1 and 3:2.

The representative values of the actual percentages of lesion

areas corresponding to each severity class for the two sampling

ratios had no obvious difference. For the sampling ratio of 4:1 or

3:2, high assessment accuracies for the training set and testing set

were achieved according to the midpoint-of-two-adjacent-

means-based actual percentage reference range and the 90%,

95%, and 99% reference ranges of the actual percentages of

lesion areas in the corresponding whole leaf areas for each

severity class. In comparison, by and large, the assessment

performance of the midpoint-of-two-adjacent-means-based

actual percentage reference range, the 90% reference range, the

95% reference range, or the 99% reference range determined
TABLE 6 The main characteristics of the two proposed methods for determining the reference ranges of the actual percentages of lesion areas in
the corresponding whole leaf areas for all the severity classes of wheat stripe rust.

Method Devices
used to
acquire
images

Image
assessment
method

Mathematical algorithms used
for image evaluation

Statistical evaluation of the data
obtained from the images

The deter-
mined ref-
erence
range

Reliability of
the obtained

results

Method 1 Nikon D700
digital
camera,
HUAWEI

P30
smartphone,
and iPhone

6S
smartphone.

Manual image
segmentation
and pixel

statistics in the
Adobe

Photoshop
software.

Calculation of the actual percentage (r)
of the lesion area in the area of the
whole diseased leaf by using the

formula: r ¼ Ad

Al
� 100% where Ad is

the pixel number of the lesion region/
regions in the diseased leaf image, and
Al is the pixel number of the whole leaf

region in the diseased leaf image.

Mean, standard deviation, the midpoint
value of the means of the actual percentages

of lesion areas of two adjacent severity
classes.

The midpoint-
of-two-
adjacent-

means-based
actual

percentage
reference
ranges.

Assessment
accuracy≥85.00%.

Method 2 Mean, standard deviation, normal
distribution test, normal distribution

method for determining the bilateral 100
(1–a)% reference ranges and the unilateral
100(1–a)% reference ranges by combining
the normal distribution probability density
function (normpdf) and the functions solve
and normspec in the MATLAB software.

The 90%, 95%,
and 99%

reference ranges
of the actual
percentages of
lesion areas.

Assessment
accuracy≥85.00%

for the 90%
reference ranges,
and ≥95.00% for
the 95% and 99%
reference ranges.
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based on the actual percentage data in the training set Train40R
constructed by using the sampling ratio of 4:1 was better than

that of the corresponding reference range determined based on

the actual percentage data in the training set Train30R
constructed by using the sampling ratio of 3:2. If more images

of the single diseased wheat leaves for each severity class of the

disease can be acquired, the more ideal reference ranges for each

severity class may be obtained by using the proposed methods in

this study, and thus the better severity assessment results may

be achieved.

The results obtained in this study showed that the actual

percentage of lesion area in the area of a whole diseased leaf

corresponding to each severity class of wheat stripe rust had

great difference with the percentage of the lesion area in the area

of the whole diseased leaf corresponding to the severity class in

the disease severity grading standard, which is consistent with

the results obtained by Shang et al. (1990). The maximum actual

percentage of the lesion area in the area of the whole diseased

wheat leaf with the most severe disease symptom among the

collected diseased wheat leaves obtained by using image

processing technology in this study was 36.49%, and it was

higher than the maximum actual uredinium coverage rate of

35% obtained by Shang et al. (1990) via actual measurement of

the selected wheat leaf with the most severe disease symptom.

The maximum actual percentage of lesion area obtained in this

study should be more close to the true value of the percentage of

the lesion area in the area of the whole diseased wheat leaf with

the most severe disease symptom of wheat stripe rust. Therefore,

it is believed that in this study, whether the sampling ratio was

4:1 or 3:2, each set of the determined midpoint-of-two-adjacent-

means-based actual percentage reference ranges could cover all

possible actual percentages of lesion areas in the corresponding

whole leaf areas for all the severity classes of wheat stripe

rust, and each set of the determined 99% reference ranges

of the actual percentages of lesion areas could basically

cover all possible actual percentages of lesion areas in the

corresponding whole leaf areas for all the severity classes of

the disease. Each set of the determined 90% reference ranges of

the actual percentages of lesion areas or each set of the

determined 95% reference ranges of the actual percentages of

lesion areas could basically meet the accuracy requirements of

severity assessment of wheat stripe rust, although there were

gaps between the reference ranges of some adjacent severity

classes. If necessary, an actual percentage of lesion area falling

into a gap can be assessed as the severity class corresponding to

the nearest reference range according to the nearest percent

estimate principle (by taking the value of the midpoint of the gap

as the demarcation point). In practice, a set of the determined

midpoint-of-two-adjacent-means-based actual percentage

reference ranges or a set of the determined 99% reference

ranges of the actual percentages of lesion areas can be selected,

aiming to use a set of reference ranges that can cover all possible

actual percentages of lesion areas in the corresponding whole
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leaf areas for all the severity classes to carry out disease

severity assessment.

In this study, when determining the reference ranges for

disease severity assessment, the standard deviation was directly

used, rather than the standard error. The difference between

reference range and confidence interval should be paid attention

to. The confidence interval is the estimation interval of a

population parameter obtained by the sample statistics. When

determining a confidence interval, the standard error is directly

used, rather than the standard deviation. In this study, based on

the constructed training sets, the 90%, 95%, and 99% confidence

intervals were also estimated (as shown in Supplementary

Table 1), and then by using these different confidence intervals

as the reference ranges, the severity assessments of the diseased

wheat leaves with the actual percentages of lesion areas in the

areas of the whole diseased leaves contained in the

corresponding training sets and testing sets were conducted,

but the obtained assessment accuracies (as shown in

Supplementary Table 2) were not high. The results indicated

that in order to obtain satisfactory severity assessment results,

the reference ranges for disease severity assessments should be

determined by using the methods proposed in this study.

In the field of medicine, the reference ranges of the normal

values of various medical indicators are the normal fluctuation

ranges of the corresponding indicators of the vast majority of

normal people, and they are used to evaluate whether the

measured corresponding indicators are normal and can

provide a basis for disease diagnosis, health assessment, and

disease treatment (Horn and Pesce, 2003; Sun and Xu, 2014;

Haeckel et al., 2021; Yang et al., 2022). There are many methods

to determine the medical reference ranges (Horn and Pesce,

2003; Sun and Xu, 2014; Haeckel et al., 2021; Yang et al., 2022).

A medical reference range is usually determined by using normal

distribution method or percentile method, mainly depending on

whether the related data conform to a normal distribution (Horn

and Pesce, 2003; Sun and Xu, 2014; Haeckel et al., 2021). When

the related data of the corresponding indicator conform to a

normal distribution or can be transformed into a normal

distribution via data transformation, normal distribution

method can be used to estimate the reference range, otherwise,

when the data do not conform to a normal distribution,

percentile method can be used (Horn and Pesce, 2003; Sun

and Xu, 2014; Haeckel et al., 2021). In this study, the reference

ranges at different levels (90%, 95%, and 99%) of the actual

percentages of lesion areas corresponding to each severity class

of wheat stripe rust were estimated by referring to the method

for determining medical reference ranges, and the determined

90%, 95%, and 99% reference ranges of the actual percentages of

lesion areas corresponding to each severity class can be

considered as the fluctuation ranges of the actual percentages

of lesion areas of 90%, 95%, and 99% of diseased leaves of the

corresponding severity class, respectively. In this study, 50 actual

percentages of the lesion areas in the areas of the corresponding
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whole leaves of each severity class of wheat stripe rust had a

normal distribution, and the actual percentages of lesion areas

contained in each constructed training set conformed to a

normal distribution, so the normal distribution method was

used to determine the 90%, 95%, and 99% reference ranges of the

actual percentages of lesion areas corresponding to each severity

class of the disease. When the method proposed in this study is

used to determine the reference ranges at different levels of the

actual percentages of lesion areas corresponding to each severity

class of a plant disease, the determination method of the

reference ranges should be modified or changed if the actual

percentage data do not conform to a normal distribution. The

actual percentage data can be transformed into a normal

distribution through data transformation and then the normal

distribution method can be used to determine the reference

ranges, or the other methods including the percentile method

can be used (Horn and Pesce, 2003; Sun and Xu, 2014; Haeckel

et al., 2021).

In this study, the images of the single diseased wheat leaves

of all the severity classes of wheat stripe rust were acquired by

using digital camera and smartphones, the segmented leaf

images and the segmented lesion images were obtained by

using manual image segmentation method in the Adobe

Photoshop 2022 software, then the numbers of the whole leaf

region pixels and lesion region pixels of each single wheat leaf

were achieved by viewing the histogram panel in the software,

and subsequently the actual percentage of the lesion area in the

area of each whole diseased leaf was calculated for further data

processing. In terms of obtaining the actual ratios of lesion areas

to the areas of the corresponding whole diseased plant units, in

addition to the method of obtaining the actual percentages of

lesion areas in the areas of the corresponding whole diseased

wheat leaves used in this study, automatic image processing

methods can be used to carry out disease image segmentation

and obtain the actual ratios of lesion areas to the areas of the

corresponding whole diseased plant units by programming or by

using the developed software and packages such as APS Assess

(Lamari, 2008), ImageJ (Schneider et al., 2012), Leaf Doctor

(Pethybridge and Nelson, 2015), and the pliman package

(Olivoto et al., 2022), and in some situations, the graph paper

method (Li et al., 2011) and the paper-weighing method (Li

et al., 2011) can be used to achieve the actual ratios of lesion

areas. After obtaining the actual ratios of lesion areas to the areas

of the corresponding whole diseased plant units for a plant

disease, the reference ranges corresponding to all the plant

disease severity classes can be determined according to the

methods proposed in this study and then can be used to carry

out the disease severity assessment, or the disease severity

assessment can be directly carried out according to the severity

grading standard established based on the actual ratios of lesion

areas to the areas of the corresponding whole diseased

plant units.
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At present, in the studies and practical applications of plant

disease severity assessment based on image processing technology,

the severity classes are determined according to the ratios of

segmented lesion areas to the areas of the corresponding whole

diseased plant units (Chen et al., 2008; Guan et al., 2010; Li et al.,

2011; Barbedo, 2014; Shrivastava et al., 2015; Jiang et al., 2021) or

identified by using the established recognition models based on

the extracted image features (Bai et al., 2011; Wang et al., 2017;

Bao et al., 2018; Bao et al., 2021). However, in the reported studies

on the severity assessment of some plant diseases such as wheat

stripe rust based on the ratios of lesion areas to the areas of the

corresponding whole disease plant units, it was not taken into

account that the actual ratios of lesion areas for each disease

severity class are obviously lower than the corresponding ratios of

lesion areas of the estimated severity class according to the

corresponding severity grading standard. The previous

understanding of plant disease severity in the plant disease

severity assessment can be corrected by using the two methods

for disease severity assessment proposed in this study, which will

greatly improve the accuracy of plant disease severity assessment

and the reliability of plant disease monitoring and early warning

information based on image processing technology. Some basis

and research ideas for the realization of automatic assessment of

plant disease severity based on image processing technology were

provided in this study, which is conducive to the automation and

intellectualization of plant disease severity assessment and is

helpful to improve the levels of disease survey, disease

monitoring and early warning, and disease management, thus

providing more reliable supports for diseased plant phenotyping,

disease monitoring, disease prediction and forecast, and disease

control strategy making.
Conclusion

Two new methods were developed based on the reference

ranges of the actual percentages of lesion areas for severity

assessment of wheat stripe rust in this study. Based on the

acquired single diseased wheat leaf images of all the severity

classes of the disease, the actual percentage of the lesion area in

the area of the corresponding whole diseased leaf for each disease

image was obtained by using image processing technology, the

training sets and testing sets were constructed by using the

system sampling method with two sampling ratios, then the

methods were developed for determination of the midpoint-of-

two-adjacent-means-based actual percentage reference ranges

and the reference ranges of the actual percentages of lesion areas

at different levels for all the severity classes, and simultaneously

the corresponding detailed reference ranges were provided. The

satisfactory assessment accuracies for the training and testing

sets were achieved according to the determined midpoint-of-

two-adjacent-means-based actual percentage reference ranges
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and the estimated 90%, 95%, and 99% reference ranges of the

actual percentages of lesion areas for all the severity classes. In

this study, two simple and practical methods were provided for

the severity assessment of wheat stripe rust and a reference was

provided for accurate severity assessments of plant diseases.
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Phenotyping Fusarium
head blight through seed
morphology characteristics
using RGB imaging
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and Aakash Chawade1

1Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,
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(CIMMYT), Texcoco, Mexico
Fusarium head blight (FHB) is an economically important disease affecting

wheat and thus poses a major threat to wheat production. Several studies have

evaluated the effectiveness of image analysis methods to predict FHB using

disease-infected grains; however, few have looked at the final application,

considering the relationship between cost and benefit, resolution, and

accuracy. The conventional screening of FHB resistance of large-scale

samples is still dependent on low-throughput visual inspections. This study

aims to compare the performance of two cost–benefit seed image analysis

methods, the free software “SmartGrain” and the fully automated commercially

available instrument “Cgrain Value™” by assessing 16 seed morphological traits

of winter wheat to predict FHB. The analysis was carried out on a seed set of

FHB which was visually assessed as to the severity. The dataset is composed of

432 winter wheat genotypes that were greenhouse-inoculated. The

predictions from each method, in addition to the predictions combined from

the results of bothmethods, were compared with the disease visual scores. The

results showed that Cgrain Value™ had a higher prediction accuracy of R2 =

0.52 compared with SmartGrain for which R2 = 0.30 for all morphological traits.

However, the results combined from both methods showed the greatest

prediction performance of R2 = 0.58. Additionally, a subpart of the

morphological traits, namely, width, length, thickness, and color features,

showed a higher correlation with the visual scores compared with the other

traits. Overall, both methods were related to the visual scores. This study shows

that these affordable imaging methods could be effective to predict FHB in

seeds and enable us to distinguish minor differences in seed morphology,

which could lead to a precise performance selection of disease-free

seeds/grains.

KEYWORDS

Fusarium head blight, seed phenotyping, seed morphological characters, wheat,
visual scores, SmartGrain, Cgrain Value™
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Introduction

In the countries of the Baltic Sea region, the most widely

cultivated crop is winter wheat (Triticum aestivum L.), (Shiferaw

et al., 2013; Chawade et al., 2018). While efforts are made to

achieve sustainable intensification of high grain yields in wheat

production, the emergence and increase in the virulence of plant

pathogens conversely leave the nutritional integrity and

production of wheat grains at risk (Castro Aviles et al., 2020).

The decrease in grain quality and protein content negatively

impacts the use of the grains and therefore affects food security

and safety (Asseng et al., 2019). Fusarium head blight (FHB),

mainly caused by the fungus Fusarium graminearum Schwabe

[teleomorph: Gibberella zeae (Schwein) Petch], is one of the

wheat diseases with a major impact on wheat grain yield and

quality. FHB can dramatically reduce grain quality and yield

through the formation of sterile and wizened florets. FHB-

infected grains suffer from major marketing, consumption, and

processing constraints, which is the buildup of mycotoxins—

mainly deoxynivalenol (DON) (Del Ponte et al., 2022). DON

inhibits protein synthesis, cutting off normal cell function, which

is hazardous for the consumption of humans and animals

(Polak-Ś liwińska and Paszczyk, 2021). FHB disease

management strategies rely on integrating several cultural

practices such as fungicide treatment, crop rotation, mixed

culture, and tillage (Gilbert and Haber, 2013). However,

growing FHB-resistant cultivars is seen as a more sustainable

and durable strategy for mitigating disease epidemics, thus

avoiding large economic losses. Hence, identifying sources of

novel resistance is a key component in pre-breeding activities

that can be introgressed to develop commercial FHB-

resistant cultivars.

The resistance components for FHB, commonly known as

resistance types, have been defined into type I to type V

(Mesterhazy, 2020): type I is resistance to initial infection, type

II is resistance to disease spread (Schroeder and Christensen,

1963), type III is resistance to damage of Fusarium-damaged

kernels (FDK), type IV is resistance to the buildup of DON

toxins, and type V is tolerance. Traditionally, studies on FHB

resistance have relied on measuring the symptoms in spikes and

kernels (resistance types II and III). Type II is assessed by rating

the visual symptoms on the spikes, which appear as bleached,

yellowish or discolored, and stunted (Zakieh et al., 2021; Steed

et al., 2022). FDK is quantified traditionally by estimating the

amount of visibly damaged kernels, which appear smaller,

shriveled, and in a range of colors from pale pink to brown

(Delwiche et al., 2010), according to a predetermined scale for

visual assessments or by employing manual tools (Ackerman

et al., 2022). Comparisons between both types of resistance

(resistance types II and III) have revealed that it would be

more efficient and consistent to estimate FHB than the degree

of colonization on the spike (Agostinelli, 2009; Balut et al., 2013;

Khaeim et al., 2019; Ackerman et al., 2022). However, screening
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by either manual or visual assessments is a labor- and time-

consuming process for rating genotypes, is biased due to the

subjectivity of visual assessments, and has low reproducibility

among experiments (Barbedo et al., 2015; Khaeim et al., 2019).

As a result of the previously cited limitations, the use of image

analysis approaches has been investigated to evaluate FDK,

particularly in estimating morphological characteristics.

However, the existing different imaging approaches have their

disadvantages and trade-off in terms of costs, time expenses,

resolution, and precision when considering an application

(Saccon et al., 2017).

Among the investigated methods, Iwata and Ukai (2002) and

Iwata et al. (2010) investigated changes in grain shape using

elliptic Fourier descriptors of two- and three-dimensional

features from vertically and horizontally located seed images.

Despite the accuracy reached, there are limitations in terms of

image resolution and regarding the manual handling of samples

during the procedure. Menesatti et al. (2009) presented a method

to classify FHB in wheat-infected kernels—according to the

shape criteria—into the following groups: chalky, shriveled, or

healthy. The method proved to be functional to categorize

kernels as chalky or healthy, but not for shriveled or gravely

affected samples. Jirsa and Polisěnská (2011) developed a model

for the identification of Fusarium-damaged wheat kernels using

image analysis. The characterization of healthy or damaged

kernels based on color parameters revealed a high accuracy

compared with the shape and DON content parameters.

However, image processing was done with manual selections

and comparing only 40 kernels—either heavily damaged or

healthy—without considering any halfway stage. Similarly, the

use of hyperspectral imaging for detecting Fusarium sp. in seeds

has been previously investigated (Delwiche et al., 2010; Shahin

and Symons, 2011; Bauriegel and Herppich, 2014; Barbedo et al.,

2015; Femenias et al., 2022; Rangarajan et al., 2022; Yipeng et al.,

2022). The methods have been shown to be accurate and have

identified more factors involved in FDK. A more advanced

technique based on X-ray computed tomography has been

implemented for evaluating seed shape in finer detail (Gomes

and Duijn, 2017; Liu et al., 2020). Nevertheless, inconsistencies

because of specular reflection, correct wavelength selection,

kernel orientation, selection of reference parameter, costs of

acquisition devices, and the storage requirement for highly

dimensional and massive data sets may be limiting the

application of these methods (Dissing et al., 2013; Lu

et al., 2020).

In the face of the constraints cited earlier, automated and

light-weight free software for grain image analysis have been

developed (Wang et al., 2009; Komyshev et al., 2017; Colmer

et al., 2020; Zhu et al., 2021); some examples of them are

GrainScan (Whan et al., 2014), which analyzes size and color

features, and SmartGrain (Tanabata et al., 2012), which analyzes

size and shape features. Both software are instantaneous in

image recognition despite the position, overlapping, or the
frontiersin.org
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number of seeds. Alternatively, commercially available imaging

instruments for grain image analysis combine hardware and

software, including WinSEEDLE (Regent Instruments Inc.),

Seed Count (Next Instrument Pty Ltd.), Vibe QM3 Grain

Analyzer (VIBE), and Cgrain Value™ (Cgrain AB). The

instruments use optical or flatbed scanners to extract features

such as size, shape, and color in the color representation hue,

saturation, and light (HSL). However, SeedCount and Vibe QM3

Grain Analyzer only scan the top surface of the samples, thus

omitting morphological characteristics that are not in the

viewing area. A more advanced instrument is Videometer Lab

(Videometer A/S, Denmark), which provides rapid color, shape,

and texture measurements. Videometer Lab is ideal to use in

analyzing kernel surfaces, but it requires certain expertise and

allows the analysis of only a few samples at once.

In this context, this paper has three objectives; first is to

investigate the applicability of low-cost digital image analysis

to predict FHB infection in harvested grains through

morphological traits. This will offer more insight into the traits

that are correlated to the degree of FDK. The second objective is

to compare the applicability of the two methods used for grain

image analysis—SmartGrain, and Cgrain Value™—in terms of

consistency and throughput. The third one is to illustrate the

processing chain and result interpretation with a descriptive

data analysis.
Materials and methods

Plant material

Wheat kernel samples were collected from an experiment

under accelerated indoor growth conditions (Zakieh et al., 2021)

using winter wheat genotypes from two different sources. The

first source consisted of 338 genotypes (breeding set) provided

by the Swedish agricultural cooperative (Lantmännen Lantbruk,

Svalöv, Sweden). The second source consisted of 181 germplasm

genotypes (genebank set) provided by the Nordic Genetic

Resource Center (Nordgen), with highly diverse plant

materials including landraces and old cultivars.
Experimental design/growth and
inoculation protocol

Plants were grown following an augmented block design in a

climate-controlled chamber. After germination, the plants were

subjected to a vernalization period of 57 days at 3°C with 8 h of

daily light at medium–high light intensity (LI) of 250 mmol m−2 s−1.

At the end of the vernalization period, the climatic conditions were

adjusted with a gradual increase in temperature and LI for the

acclimatization of the plants to the next phase of accelerated growth

conditions. Once the acclimatization period was concluded, the
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plants were left to grow at a constant temperature of 22°C. The

accelerated growth conditions were adapted by exposing the plants

to a prolonged daily light duration of 22 h, with LI at 400 mmol m−2

s−1 of uniform light intensity from LED light plates. Under these

accelerated growth conditions, the plants were watered daily and

fertilized weekly using first a combination of a high-phosphate and

high-nitrogen soluble fertilizer SW-BOUYANT 7-1-5 + Mikro +

KH2PO4, then only with a high-nitrogen fertilizer, and finally with a

high-potassium soluble fertilizer Yara Tera Kristalon NPK 12-5-30

with S and Mikro.

After completing the anthesis stage, at 33 days post-

acclimatization, the plants were moved to a glasshouse

chamber with relative humidity (rh) of 60% and a constant

temperature of 24°C for 24 h to allow their adaptation to the new

growth conditions prior to inoculation. Thereafter, the winter

wheat spikes were spray-inoculated with an inoculum

suspension prepared from the harvested spore of F.

graminearum and F. culmorum, with a concentration of 5 ×

105 spore/ml. Subsequently, the plants were left to incubate at

90% rh with 16/8 h dark/light cycle at a constant temperature of

24°C for 48 h before adjusting the climatic conditions back to

60% rh. The plants were eventually left to grow under the latter

conditions for 24 days before harvesting the seeds. Eight isolates

from F. graminearum and F. culmorum species were used in

inoculating the plants provided by the Swedish agricultural

cooperative Lantmännen Lantbruk. An inoculum preparation

was carried out by incubating the fungal spores at 24°C for 4

days in dark conditions to allow for mycelial growth on SNA

media plates. Later, the fungal plates were exposed to near ultra-

violet UV radiation for 10 h to induce macroconidia formation.

Afterward, the fungal plates were incubated for 4 days at 24°C in

dark conditions. Finally, macroconidia spores were collected to

make the inoculation suspension with the provided

concentration after adding the surfactant Tween®20 0.002%

(v/v) final volume of the inoculum. A more detailed protocol

is described in Zakieh et al. (2021).
FHB visual assessment

In order to evaluate FHB resistance on a large number of

genotypes, a modified visual scoring of the FHB disease severity

method was adopted. The method took into account the incidence

of all FHB symptoms across the main tiller spike of each genotype.

Therefore, disease severity was assessed as the percentage score of

infected spikelets relative to all spikes, regardless of symptom

continuity on the same spike. FHB development was scored at 6,

8, 10, and 12-days post-inoculation (dpi) (Stack and McMullen,

1998). The FHB disease severity scores varied between 100 to 5% for

the most susceptible phenotypes and the most resistant ones,

respectively. Finally, the results of the visual scores were validated

by associationmapping, thus identifying the quantitative trait loci of

FHB resistance (Appendix 1).
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Seed shape parameters

Two different grain phenotyping methods were employed in

this study: an automated imaging instrument with software and

hardware named Cgrain Value™ which is commercially

available (Cgrain AB) and the free software named

SmartGrain developed by Tanabata et al. (2012) and can be

downloaded from the Quantitative Plant website (Lobet, 2017).

The implementation of both methods is described in the

following sections.
SmartGrain

For image acquisition, the seeds were captured with a low-cost

image protocol acquisition from a top-view angle of 55 cm above

the seeds and placedmanually on a flat surface using a digital single-

lens reflex camera Canon EOS 1300D (Canon U.S.A. Inc.,

Huntington, NY, USA), which has a resolution of 18 megapixels,

mounted on a Kaiser RS-1 repro stand. The camera was tethered to

the software digiCamControl (Istvan, 2014) with optimal exposure

settings based on the best seed view, F-Stop 1/160, exposure time 1/

10, and ISO 800. The seeds were placed manually per genotype

uniformly on a blue cardboard that was used as a background on a

stand aside from a 15-cm ruler for further analysis. Digital images

were stored with 3,456 × 2,304-pixel resolution in JPEG format

(Figure 1, top images).

The image analysis was thereafter carried out using

SmartGrain software following its default protocol (Tanabata
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et al., 2012). Briefly, the image scale was set up by taking a known

sample from the ruler and registering it on the software. Then,

the segmentation method by color was chosen, the precision

sensibility was set at the minimum value of “1”, and the seed

detection intensity was at a maximum value of “4” to obtain all

possible shape details; the rest of the parameters were set to

default. Finally, all the processed images were saved as TIFF files,

and the results were saved in a CSV format. The software

provides seven morphological characteristics: area seed (AS),

perimeter length (PL), length (L), width (W), length-to-width

ratio (LWR), circularity of the seed (CS), distance between the

intersection of length and width, and the center of gravity (DS).

AS corresponds to the total number of pixels of the segmented

seed, this parameter estimates the seed size. PL refers to the

length measurement of the seed outline. L corresponds to the

major length measurement in the axis and W to the minor

length axis measurement. CS estimates how round the region of

interest is (seed), and it is calculated as 4�p�AS
PL2 . LWR is

calculated by L
W , and it provides an idea of the seed shape

between rectangular and circular depending on the value. The

distance between the transverse axis from the outline of the seed

(IS) and the center of gravity (CG) is used to estimate DS

[described in detail by Tanabata et al. (2012)].
Cgrain Value™

For single kernel analysis, seeds were scanned with Cgrain

Value™, which is an analytical imaging instrument. The device
A B D E FC

FIGURE 1

Images of the different levels of Fusarium head blight severity on winter wheat seeds. The rating of disease severity ranged from (A) 0 to (F)
100%. Scoring was based on the proportion of total infected spikes to the total amount of spikes. The top images were obtained for the

SmartGrain analysis, and the bottom images were acquired using the Cgrain Value™ instrument.
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inspects each kernel through a unique mirror design covering

more than 90% of the grains’ surfaces in every image. The

analysis starts by pouring into the metal bowl of the Cgrain

Value™ a batch of seeds per line and per genotype. The seeds

rotate into the bowl and then, one by one, are photographed and

analyzed simultaneously. After the analysis is completed, three

different reports are created (result file, stat file, and image file).

The result file consists of the morphological characteristics for

each batch of seeds (seed count, thousand kernels, etc.), the stat

file provides data per individual seed of a group (length, width,

etc.), and the image file corresponds to the single seed images

acquired (Figure 1, bottom images).

The instrument provides nine morphological attributes:

length (L), width (W), thickness (T), average width (AVG.W),

volume (V), weight (WT), light, hue, and saturation. Parameters

such as L, W, and T are estimated by taking the longitudinal

measurement of the axis major, higher minor, and minor,

respectively. In the case of AVG.W, as the seed is received as a

three-dimensional image, the measurement is referring to the

mean of the average curvature. V corresponds to the seed

volume obtained from the 3D image. For WT, the device has

an internal balance, so while acquiring the image, it also weighs

the grain. Color parameters, hue, saturation, and light are also

determined by the instrument; it specifies the color base of a

sample, how saturated it is, and how bright it is, respectively.
Statistical analysis

Statistical analyses were conducted using R (Team, R. C,

2013). The visual scorings of the last time-point on infected

spikes, including cultivars with zero symptoms, were included in

a file together with the mean values per genotype of the results

given by Cgrain Value™ and SmartGrain. Each replicate of the

data set was filtered by missing data (NA). Those with NA along

the four replicates were removed and those with presence in

more than one replicate were substituted using FactoMineR (Lê

et al., 2008) and missMDA (Josse and Husson, 2016) packages.

Then, using the Agricolae R package (De Mendiburu, 2014), the

checks in each augmented block were used to adjust the means

for each trait per replicate, the model of which is as follows:

yil = u + Gil + b1 + ϵil

where yil corresponds to the adjusted means of the ith wheat cultivar

in the lth block, u is the general mean value, Gil is the effect of the i
th

wheat genotype in the lth block, b1 is the lth block effect, and ϵil is the
residual. Subsequently, using the adjusted means, the best linear

unbiased estimates (BLUEs) was calculated using the randomized

complete block design option in META-R 6.04 (Alvarado et al.,

2015) based on the following model:

yijm = u + Sj + Gijm + Rm + ϵijm
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where yijm corresponds to the BLUE of the ith genotype from the jth

population in themth replicate, u is the general mean value, Sj is the

effect of the jth source of material,Gijm is the effect of the ith genotype

in the mth replicate, Rm is the mth replicate of the effect, and ϵijm is

the residual effect. The source of wheat genotypes Sj was considered

the grouping factor.

The BLUEs data previously centered were used to predict

FHB using a multiple regression model:

yi = b0 + b1xi1 + b2xi2 +… + bpxip + ϵ

Where for i=n observations: yi corresponds to the dependent

variable, xi to the explanatory variables, b0 corresponds to y-

intercept (constant term), bp corresponds to the slope

coefficients for each explanatory variable, and ϵ corresponds to
the error of the model (also known as the residuals). Three

models were created using the morphological traits provided by

both methods (Cgrain Value™ and SmartGrain) as independent

variables and visual scorings as the dependent variable. One

model combines all the traits, and two others use the traits

provided by each method. To build each model, the data set was

partitioned employing the function “createDataPartition” of the

caret package (Kuhn et al., 2020) into 70% for model training

(training set) and the remaining 30% for evaluating model

performance (test set). Subsequently, the model was fitted to

the training set, and it predicted the responses using the test set.

To evaluate the quality of the predictions and mitigate the

possibility of errors due to the random data partitioning, the

cross-validation was executed 100 times, which means

resampling the data set, and the mean of the criterion was

taken as the final result.
Results

This study examined a total of 16 morphological traits,

including size, color, and shape of winter wheat grains from

the genebank and breeding sets with different levels of FHB

infection. Nine traits were obtained with the instrument Cgrain

Value™ and seven traits with the software SmarGrain. The

distribution of all the morphological traits measured by the two

methods showed a Gaussian distribution (Figure 2). In order to

understand the association between these traits and FHB

resistance, a comparison with the traits measured of 80 FHB

susceptible and resistant genotypes was performed. For this

purpose, five genotypes per replicate (four replicates) from

both sets, breeding and genebank, were selected based on the

FHB severity scores on the spikes, genotypes scored as 0%

(visually non-infected or resistant), and ones scored as 100%

(visually infected or susceptible). Among the infected and non-

infected selected groups, there was a 22.61% reduction in V and

11.32% in AS. Other parameters also showed a reduction, such

as T_RAW at 10.60%, W at 8.30% in both methods, and WT at
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22.63%. Additionally, L was reduced according to the results by

1.96% in Cgrain Value™ and 2.26% in SmartGrain. Similarly,

CS and PL showed a decrease, but in less proportions with 4.60

and 3.25%, respectively. The minimum seed L measured was

4.59 mm for non-infected and 4.50 mm for infected genotypes.

On the other hand, color parameters expressed major changes

compared with all the other morphological traits. Hue and the

light increased with the infection by 19.91 and 8.28%,

respectively, while saturation decreased at about 15.52%

(Table 1). According to the analysis of variance (two-way
Frontiers in Plant Science 06
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ANOVA), the morphological traits L, W, T_RAW, light, and

hue were highly significant (P< 0.001), likewise with V, CS, and

saturation (P< 0.01), indicating a clear association with FHB

disease severity level. Meanwhile, the parameters WT, AS, LWR,

PL, and DS did not indicate any significance but still showed

slight differences between infected and non-infected grains.

Additionally, a principal component analysis (Figure 3) was

performed to show the response of all the seed traits studied

regarding the disease infection and how they correlate to each

other. The proportion of total variance on the two first principal
A

B

FIGURE 2

Frequency distribution of the different morphological traits of wheat genotypes seeds from the breeding and genebank sets collected with (A)

the Cgrain Value™ instrument and (B) the SmartGrain software.
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components and correlations represents 60.50 and 19.90%,

respectively, of the total variance. The LWR trait was shown to

be the higher positive in the first principal component; similarly,

hue was shown to be positive but in a lesser proportion. In the

same component but with negative loading, we found CS as the

variable with the highest contribution; the traits W from both

methods, AVG.W, and T_RAW were also projected onto this

component with a loading of a slightly lesser norm. Although

saturation was also projected onto this component, it was shown

to be the smallest loading. On the other hand, in the second

principal component, the traits DS and L from both methods,

PL, AS, V, and WT showed a high positive loading with similar

proportions, whereas the trait light was the only one with a

negative loading into the second principal component and the

one with less projection among all the traits. In general, all the

seed morphological traits assessed expressed variability and

influence in the two principal components. In addition, as can

be observed in the graph, the variation of LWR has an opposite
Frontiers in Plant Science 07
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projection to the CS trait, expressing a good indicator to study

the deformation of the grains caused by the disease infection.

Considering Table 1, the mean values for the same

morphological traits measured by both methods (L and W)

across the two sets, genebank and breeding, were similar. The

difference between infected and non-infected seeds was 0.11 mm

in L in both methods and between 0.21 and 0.25 mm in W and

AVG_W. Both methods provide important parameters for seed

morphology studies. Cgrain Value™ provides V and WT values

and color information. Although these are important

characteristics for different study purposes, mainly for

identifying FHB-infected kernels, SmartGrain, in turn,

provides information such as PL, AS, and CS that can show

variabilities between infected and non-infected seeds. Here the

BLUES for all the measured parameters were correlated with

each other and in association with the visual scorings on the

spikes (Figure 4). A moderate to high positive correlation was

found with the color parameter hue, and a low positive
TABLE 1 Descriptive statistics showing differences between the seed shape characters of 80 genotypes from genebank and breeding set under
non-infection (0%) and full infection (100%) FHB symptoms, with five genotypes of each one per replicate.

a) CGRAIN VALUE™
Description Level L W T.RAW AVG.W V WT HUE SAT LIGHT

Mean Non_Infected 5.6 2.76 2.47 2.61 19.18 0.02 25.78 0.48 0.62

Infected 5.49 2.53 2.2 2.36 14.84 0.01 30.81 0.4 0.68

% Reduction 1.96 8.29 10.6 9.41 22.61 25 -19.51 16.52 -9.67

Max Non_Infected 6.88 3.7 3.245 3.41 38.9 0.04 30.46 0.55 0.715

Infected 6.46 3.13 2.93 3.03 26.6 0.03 38.99 0.51 0.81

Min Non_Infected 4.59 2.18 1.98 2.08 10.66 0.01 23.45 0.43 0.55

Infected 4.5 2.05 1.88 1.96 7.1 0.008 24.88 0.3 0.58

SD Non_Infected 0.52 0.36 0.3 0.32 6.74 0.008 1.32 0.02 0.04

Infected 0.45 0.23 0.22 0.23 4.02 0.005 3.01 0.05 0.05

SE Non_Infected 0.08 0.05 0.048 0.05 1.06 0.001 0.21 0.004 0.006

Infected 0.07 0.04 0.036 0.04 0.63 0.0007 0.47 0.008 0.007

CV (%) 9.44 13.02 12.26 12.53 35.15 35.15 5.14 5.8 6.79

b) SMARTGRAIN
Description Level AS PL L W LWR CS DS

Mean Non_Infected 9.77 12.91 5.08 2.44 2.13 0.7 0.48

Infected 8.66 12.49 4.97 2.23 2.25 0.67 0.51

% Reduction 11.32 3.25 2.26 8.27 -5.64 4.6 -6.9

Max Non_Infected 17.36 17.15 6.57 3.71 2.53 0.8 0.85

Infected 13.63 15.54 6.25 2.95 2.65 0.73 1.01

Min Non_Infected 3.41 7.91 3.2 1.39 1.53 0.63 0.24

Infected 3.01 7.31 2.88 1.36 1.88 0.61 0.23

SD Non_Infected 3.21 2.16 0.81 0.48 0.17 0.03 0.13

Infected 2.55 1.95 0.79 0.38 0.15 0.02 0.18

SE Non_Infected 0.5 0.34 0.12 0.07 0.02 0.005 0.02

Infected 0.4 0.3 0.12 0.06 0.02 0.004 0.02

CV (%) 32.85 16.72 16.11 19.72 8.41 4.76 28.27
front
a) Cgrain Value™ size, shape and color characteristics, (L) [mm], Width (W) [mm], Raw Thickness (T.RAW) [mm], Mean Width (AVG.W) [mm], Weight (WT) [g], Hue, Saturation, and
Light; b) SmartGrain size and shape characteristics, Area size (AS) [ mm2], Perimeter length (PL) [mm], Length (L) [mm], Width (W) [mm], Length to width ratio (LWR), Circularity (CS)
Distance between IS and CG (DS) [mm].
iersin.org
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correlation with light was given by Cgrain Value™ and LWR as

well as given by SmartGrain (r = 0.65, r = 0.36, and r = 0.27,

respectively). Negative correlations were also found between the

visual evaluations of symptoms and the other characteristics in

different levels of strength of association. There was no

correlation between FHB visual scoring and DS (r = 0.01).

The multiple linear regression model developed to identify

the contributions of the 16 different morphological traits

provided by Cgrain Value™ and SmartGrain expressed a high
Frontiers in Plant Science 08
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moderate prediction (R2 = 0.58), (Figure 5A). Aiming to identify

which of both methods used in this study provides a higher

prediction and also to identify the best morphological traits to

predict FHB, two more models were constructed: one for the

results given by Cgrain Value™ and another one for the results

of SmartGrain. The model of Cgrain Value™ traits showed a

moderate prediction (R2 = 0.52), (Figure 5B). On the other hand,

the model of SmartGrain traits showed medium–low prediction

(R2 = 0.30), (Figure 5C), clearly showing that the first model had
FIGURE 3

Principal component analysis biplot of the morphological traits collected with Cgrain Value™ and SmartGrain of the breeding and genebank
seeds infected with different levels of Fusarium head blight.
FIGURE 4

Sorted upper triangle correlation matrix among the morphological attributes of the wheat genotype seeds from the breeding and genebank sets

collected with the Cgrain Value™ and the SmartGrain software.
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a higher prediction than separately. In addition, the

morphological parameters that are the most suitable to assess

FHB in grains above all the 16 evaluated were identified.

According to the regression model and the ANOVA analysis,

the parameters that provided more information about the

disease are the length, width, thickness, average width,

circularity , and the color parameters in the color

representation HSL (Table 2). The sensitivity test showed that

these variables provide the highest value of R-square, (R2 = 0.52).

These morphological traits are enumerated from most

significant to least significant in Figure 6.
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Discussion

This study compared the potential performances of two

different image-based methods to predict FHB. The results of

both indicated that morphological seed traits are functional for

predicting FHB among two different sets of genotypes evaluated.

Furthermore, a comparison of the applicability of the two

methods was properly addressed by evaluating the cost,

accuracy, and time efficiency—for instance, to extract

dimension, shape, and color parameters, Cgrain Value™

utilizes a unique mirror design to inspect all possible angles of
A B C

FIGURE 5

Regression models for predicting Fusarium head blight in wheat: (A) all the characteristics obtained with Cgrain Value™ and SmartGrain, (B)

Cgrain Value™ morphological traits, and (C) SmartGrain morphological traits.
TABLE 2 Summary of the multiple linear regression model combining all the 16 morphological characteristics provided by Cgrain Value™ and

SmartGrain.

Model summary

Morphological traits Sum sq Mean sq F-value Pr (>F)

C_L 23,829 23,829 64.587 6.99E-15 ***

C_W 51,079 51,079 138.446 < 2e-16 ***

C_T.RAW 40,500 40,500 109.772 < 2e-16 ***

C_AVG.W 2,013 2,013 5.456 0.0199 *

C_V 2,603 2,603 7.055 0.00816 **

C_WT 680 680 1.843 0.17526

C_LIGHT 31,656 31,656 85.802 < 2e-16 ***

C_HUE 39,386 39,386 106.752 < 2e-16 ***

C_SATURATION 2,649 2,649 7.18 0.00762 **

S_AS 178 178 0.483 0.48734

S_PL 624 624 1.691 0.1941

S_L 3,027 3,027 8.204 0.00436 **

S_W 45 45 0.121 0.72828

S_LWR 0 0 0.001 0.9802

S_CS 1,651 1,651 4.476 0.03489 *

S_DS 539 539 1.461 0.22731
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individual kernels in the sample. Additionally, image capture

and processing are instantaneous, thanks to the hardware and

software combination. Conversely, image acquisition using the

SmartGrain system was carried out over a relatively long period,

yet image processing was done relatively fast. However,

compared with Cgrain Value™, the earlier approach is

cheaper considering the cost of the tools used in image

capture, requiring a simple RGB camera, a static frame, and

the free software.

On the other hand, the morphological traits, based on the

statistical analysis results, that showed significant correlations to

the visual scores were color traits in the HSL color representation

and thickness from Cgrain Value™, length and width, from both

methods (Figures 5, 6). Although the other measured

morphological traits were not significantly correlated to the

visual scores, infected grains still expressed differences in these

traits that may be ultimately informative about seed health and

refine the prediction (Table 1). Nevertheless, DS was not

correlated and did not express significant differences in

infected seeds of FHB, but it could prove useful in

other applications.

The evaluated visual scores of the symptoms associated with

FHB—bleached, yellowish or discolored, and stunted spikes—

were previously validated by the identification of several loci by

genome-wide association studies (GWAS) (Appendix 1), in a

previous study with the same plants and visual scorings (Zakieh

et al., 2021). The proposed methods aim to replace costly and

labor-intensive genetic analysis.

Therefore, the prediction of both methods studied here

appears to be consistent for FHB with the assigned traits

concerning the phenotype–genotype association. Previous

investigations showed a high correlation between symptoms
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that are present on wheat heads and the rate of kernel damage

(Góral et al., 2018). Therefore, it is feasible to reference the

estimated visual scores of disease severity to establish similar

results of association/disassociation with the corresponding

assessments of grain traits following the methodology in

this study.

An important aspect to highlight is that the percentage of

disease severity can be assessed, where, in contrast to disease spread

from the point of inoculation, it offers less intensive labor by spray

inoculation of a larger number of wheat genotypes. Additionally,

unlike point-inoculated wheat spikelets, spray-inoculated spikes

allow for evaluating the degree of damage caused by the disease

to all kernels of the infected spike. Within this work frame, whole

spike kernels are investigated for their characteristics rather than the

damage to a limited number of kernels caused by Fusarium

colonization from the point of inoculation. This, in turn, is

expected to shorten the period for disease resistance assessment,

lower its cost, and be less labor demanding.
Conclusion

The results indicated that the traits with a higher correlation to

FHB were length, width, thickness, and especially color values in

HSL color representation. Moreover, Cgrain Value™ was

advantageous to SmartGrain in terms of the time required for

image capture and outperformed the latter when applied to a large

number of samples, yet SmartGrain processes samples fast and is

cheaper in comparison to Cgrain Value™. Although the disease

prediction showed a low–moderate accuracy for SmartGrain and a

high–moderate accuracy for Cgrain Value™ and the results of both

methods combined, this is attributed to the prediction reference,
FIGURE 6

Sensitivity plot of the morphological characteristics to predict Fusarium head blight in wheat. The parameters are organized from the best
predictors to the less significant to predict the disease. Color lines indicate the significance, considering red as the most important predictor and
pink as the less important one. The highlighted regions reflect the correlation of the parameters among each other.
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which corresponds to FHB disease severity scorings done on the

spikes. However, the novelty of this study resides in the accuracy

reached even with a different reference source, but which is directly

related. Additionally, as the plant material genotypes and visual

scores were validated by GWAS analysis, then the results presented

here are phenotype–genotype-associated.
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Jirsa, O., and Polisěnská, I. (2011). Identification of fusarium damaged wheat
kernels using image analysis. Acta Universitatis Agricult. Silvicult. Mendelianae
Brunensis 59 (5), 125–130. doi: 10.11118/actaun201159050125

Josse, J., and Husson, F. (2016). missMDA: a package for handling missing
values in multivariate data analysis. J. Stat. Software 70, 1–31. doi: 10.18637/
jss.v070.i01

Khaeim, H. M., Clark, A., Pearson, T., and Van Sanford, D. (2019). Methods of
assessing fusarium damage to wheat kernels. Al-Qadisiyah J. For Agric. Sci. (QJAS)
(P-ISSN: 2077-5822 E-ISSN: 2617-1479) 9 (2), 297–308. doi: 10.33794/
qjas.Vol9.Iss2.91

Komyshev, E., Genaev, M., and Afonnikov, D. (2017). Evaluation of the
SeedCounter, a mobile application for grain phenotyping. Front. Plant Sci. 7,
1990. doi: 10.3389/fpls.2016.01990

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., et al.
(2020). Package ‘caret’. R. J. 223, 7. doi: 10.18637/jss.v028.i05
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Appendix 1
Quantitative trait loci (QTL) detected in genome-wide association
studies employing seven models at p = 0.0001 (LOD ≥ 4) for
Fusarium head blight severity in winter wheat from the breeding,
genebank, and combined sets (Zakieh et al., 2021). Chr.,
chromosome; FAF, favorable allele frequencies. The asterisk means
also detected by these models at p = 0.0002. A, detected above
Bonferroni corrected threshold (a = 0.05). B, the marker effects are
estimated for only GLM, MLM, and CMLM and FarmCPU in GAPIT
(Lipka et al., 2012).

QTL Marker Chr. Position
(cM)

FAF Eff

SLUfhbchr1B.1 BS00021877_51 1B 154.58 0.06 N

SLUfhbchr2A.2 BobWhite_c16923_64 2A 125.33 0.06 N

SLUfhbchr3A.3 Kukri_rep_c89183_282 3A 15.05 0.64 27
t

28

SLUfhbchr3B.4 wsnp_Ex_c34975_43204180 3B 67.45 0.95
(CS),
0.94
(BS),
0.97
(GS)

65
t

82

Kukri_c18009_398a 3B 67.67 0.95 78
t

80

wsnp_Ex_c5378_9505533 3B 68.71 0.94 N

SLUfhbchr3D.5a RFL_Contig4591_1759 3D 0.00 0.94 51
t

54.

RAC875_rep_c115090_5 3D 0.00 0.02 N

SLUfhbchr3D.5b JD_c7714_954 3D 143.01 0.04 N

SLUfhbchr5A.6 RAC875_rep_c106118_339 5A 39.02 0.03 -31
t

-29

SLUfhbch6A.7 Tdurum_contig46670_911 6A 128.26 0.96 N

SLUfhbchr7A.8 Kukri_c11530_92 7A 232.11 0.84 44

RAC875_c12733_1509a 7A 228.37 0.83 40
t

45

SLUfhbchr7B.9 wsnp_Ex_c351_689415 7B 143.23 0.02 N

RAC875_c8752_1079 7B 158.98 0.84 39.
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Model
(s)
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A
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