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Editorial on the Research Topic 
The role of immunophenotype in tumor immunotherapy response


The tumor microenvironment (TME) plays an important role in tumor malignant progression, immune escape, and treatment resistance (Huang et al., 2022). It is composed of components such as stromal cells, immune cells and their secreted factors, vascular endothelial cells, and extracellular matrix. The composition of these components in the TME is the basis for determining the invasion and metastasis ability of tumors, and the function of immune cells in the TME is closely related to the clinical prognosis of tumor patients (Giraldo et al., 2019). Studies have shown that immune response in the TME is a key factor involved in multiple stages of disease progression and thus has a major impact on the future development of clinical oncology interventions (Chen et al., 2015). To explore novel therapeutic options related to the tumor immune microenvironment, scholars in the recent studies have studied some molecular markers of tumor immune checkpoints (Hu et al., 2022), prognosis, and treatment (Hu et al., 2021; Cai et al., 2023), which are presented in the current Research Topic.
Sun et al. used bioinformatics to reveal the relationship between oxidative stress-related lncRNAs and lung adenocarcinoma (LUAD). They used LASSO regression and COX proportional hazard model to further identify 16 oxidative stress-related lncRNAs and establish a risk model. The overall survival (OS) was longer in the low-risk group than in the high-risk group of LUAD. Additionally, the abundance of plasma B cells in the high-risk group was higher, revealing the potential of targeting B cells as tumor immunotherapy.
Xu et al. used various databases to investigate the relationship between LMO3 and prostate cancer (PCa). They discovered that the expression of LMO3 in PCa was decreasing compared to that in normal prostate tissue. The lower the expression of LMO3, the worse the prognosis of PCa. Furthermore, enrichment analysis (GSEA) revealed that LMO3 was involved in extracellular matrix and immune response in PCa. The assessment of LMO3 expression and T-cell checkpoint confirmed that LMO3 played a crucial role in immune evasion of PCa.
Huang et al. used the tumor mutation burden (TMB) score to distinguish between “cold tumors” and “hot tumors” in clear cell renal cell carcinoma (ccRCC) through RNA sequencing data. They found significant differences between high-risk and low-risk ccRCC groups and between tumor subtypes. Additionally, the high-risk group and the low-risk group of ccRCC showed different sensitivities to first-line drugs. The TME of the high-risk group enriches more Tregs and CD8+ cells to aid in the immune escape of the tumor.
Li et al. used traditional Chinese medicine and tumor databases to analyze the therapeutic effect of curcumin on melanoma (SKCM) and the correlation between core gene enrichment and various metabolic processes. The results of the cell scratch test showed that the degree of inhibition of SK-MEL-1 at different time periods was different, indicating a potential anti-migration effect. Curcumin was found to promote apoptosis in the TUNEL assay. Traditional Chinese medicine network pharmacology has demonstrated that curcumin can be used as a molecular marker for the diagnosis and prognosis of SKCM.
Jiang et al. explored the necroptosis-related lncRNAs (NLRs) in bladder cancer (BLCA) and used LASSO to screen out the relevant NLRs and establish a risk model. The results showed that the survival time of low-risk NLRs was significantly longer than that of high-risk NLRs. The IC50 drug sensitivity of the two groups in MIBC was also evaluated, and the high-risk group was found to be more sensitive to specific chemotherapy drugs. Additionally, they found that CD4+ T cells were the target cells that influenced the efficacy of BLCA immunotherapy, indicating that CD4+ T cells could predict the clinical effect of anti-PD-L1 and have a better prognosis.
The studies described previously were primarily based on a combination of bioinformatics analysis and validation using retrospective data. The overall clinical challenge remains to identify specific drivers associated with particular phenotypes in the tumor immune microenvironment and to validate them in prospective studies. However, we believe that the current study will stimulate a deeper understanding of cancer development and progression and provide new ideas for clinical prognosis and treatment of cancer.
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Breast cancer (BC) is the most frequent cancer in women and the main cause of cancer-related deaths in the globe, according to the World Health Organization. The need for biomarkers that can help predict survival or guide treatment decisions in BC patients is critical in order to provide each patient with an individualized treatment plan due to the wide range of prognoses and therapeutic responses. A reliable prognostic model is essential for determining the best course of treatment for patients. Patients’ clinical and pathological data, as well as their mRNA expression levels at level 3, were gleaned from the TCGA databases. Differentially expressed genes (DEGs) between BC and non-tumor specimens were identified. Tumor immunity analyses have been utilized in order to decipher molecular pathways and their relationship to the immune system. The expressions of KIF4A in BC cells were determined by RT-PCR. To evaluate the involvement of KIF4A in BC cell proliferation, CCK-8 tests were used. In this study, utilizing FC > 4 and p < 0.05, we identified 140 upregulated genes and 513 down-regulated genes. A five-gene signature comprising SFRP1, SAA1, RBP4, KIF4A and COL11A1 was developed for the prediction of overall survivals of BC. Overall survival was distinctly worse for patients in the high-risk group than those in the low-risk group. Cancerous and aggressiveness-related pathways and decreased B cell, T cell CD4+, T cell CD8+, Neutrophil and Myeloid dendritic cells levels were seen in the high-risk group. In addition, we found that KIF4A was highly expressed in BC and its silence resulted in the suppression of the proliferation of BC cells. Taken together, as a possible prognostic factor for BC, the five-gene profile created and verified in this investigation could guide the immunotherapy selection.
Keywords: breast cancer, immune cell infiltration, biomarker, signature, Kif4A
INTRODUCTION
Breast cancer (BC) remains to be the most common cancer and the most frequent cause of cancer death in females worldwide (Buja et al., 2020; Hanker et al., 2020). Progress in pathological characterisation and molecular processes research has made it possible to better diagnose and treat BC (Yin et al., 2020). However, morbidity and fatality rates for BC patients have risen by over 20 and 14% since 2008 (Tay and Tan, 2021). Until further notice, the most effective method of preventing and controlling local recurrence of BC is adjuvant chemotherapy and radiotherapy followed by surgery (Eini et al., 2021; Ye et al., 2021). The majority of breast cancer tumors were discovered clinically at an advanced stage despite the fact that considerable efforts were made to improve the detection and treatment, and the disease Karyotypic studies further show that BC gets increasingly aggressive by accumulating genetic alterations in a stepwise manner (Garcia-Martinez et al., 2021; Sivaganesh et al., 2021). Increasing attention has been paid to individualized and accurate therapeutic strategies in the field of clinical treatment. Thus, finding new biomarkers and targets for prognostication is therefore seen as a useful strategy for achieving this objective.
BC is not a single disease, but rather a collection of disorders with a wide range of clinical characteristics, treatment responses, and outcomes, even among individuals who are in the same stage of the disease (De Cicco et al., 2019). Recent advances in “omics” technology have revealed new details about the molecular complexity of BC, inspiring scientists to look for new ways to better identify patients at risk for the disease (Garrido-Castro et al., 2019; Tagliafico et al., 2020). Multigene signatures may be more accurate than conventional risk classification methods in BC, according to a number of studies (Sporikova et al., 2018; Li et al., 2021). For instance, Five-gene prognostic model (KRT6A, E2F7, DCBLD2, ASPM and ADM) derived from the TCGA PAAD dataset and shown to be accurate in predicting overall survival. (Liu et al., 2021). Zhang et al. discovered a novel autophagy-related long noncoding RNA signature in BC patients that may bring new insights into predicting the prognosis of patients with BC (Wu et al., 2021). According to a recent study, a new prognostic model connected with nine ferroptosis-related genes was developed, and the model’s good prediction capacity was confirmed by three databases: ICGC, GEO, TCGA datasets (Liang et al., 2020). Prognostic gene signatures based on Chip sequencing (GEO and TCGA, for example) might uncover more survival-associated genes, which in combination with clinical and pathological factors may be a strong tool for the prediction of the outcomes of BC and tailored treatments (Zhang et al., 2018; Gao et al., 2019; Xu et al., 2020).
In the present study, we identified a novel five-gene signature for patients with BC. Our findings might provide an effective prognostic predictor and a new view for individual treatments of BC patients.
MATERIALS AND METHODS
Patient Data Sets
The TCGA (https://cancergenome.nih.gov/) was used to acquire clinical and pathological data from BC patients. The edgeR software was used to normalize gene expression. In this study, a total of 1097 TCGA female BC patients with mRNA expression profiles were used. BC samples with survival information were included in this study. We employed the negative binomial distribution approach to discover differently expressed genes (DGEs) between BC specimens and non-tumor tissues. The Limma package was applied to perform the analysis (Ritchie et al., 2015). A generalized linear model for each gene is fitted using the Limma package’s negative binomial distribution, and empirical Bayes shrinkage is used to estimate dispersion and fold-change. There were no genes with an average count value of less than 1 that could be included in the raw data set. When |log2 fold change (FC)| >4 and a false discovery rate (FDR) < 0.05 were taken into consideration, we employed Limma program to identify the differentially expressed DGEs. In addition, BC gene expression profiles (GSE7904) were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE7904 dataset included 19 non-tumor specimens and 43 BC specimens.
GO and KEGG Pathway Analysis
When performing a GO analysis, genes are broken down into their molecular functions, biological processes, and cellular components, all of which are addressed in separate sections of the report. KEGG is a method for analyzing data to determine which biological pathways a set of genes is particularly prominent in. “clusterProfiler” R package was used to perform GO and KEGG pathway analysis based on DEGs between BC specimens and non-tumor specimens (Yu et al., 2012).
Survival Analysis
The TCGA database has clinical data and related information downloaded, and we now need to gather data on over-survival (OS), eliminating entries for instances for which there are no data. The remaining case data was used for further survival analysis. Our survival experiments focused on the top 20 genes that differed between BC specimens and non-tumor specimens. Assays of survival curves were done by the use of the Kaplan-Meier methods.
Verification of Genes in GEPIA Database
An online database that utilizes data from the UCSC Xena program is called the Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer.pku.cn/). It is possible to use the database to look for changes in gene expression between various malignancies and healthy tissues, as well as the overall survival rate, by using the expression analysis and custom data analysis methods. Cancer and healthy tissues can be compared using the GEPIA database to examine expression differences. We used the GEPIA database to confirm the hub gene’s mRNA expression level.
Construction and Validation of a Prognostic Gene Signature
LASSO penalized Cox regression was used to build a prognostic model following the collection of survival-related DGEs to avoid overfitting (McEligot et al., 2020). Centralization and normalization (using R’s “scale” function) of the TCGA expression data resulted in the risk score being tallied, and the risk score formula was as follows: Risk Score = ∑7iXi×Yi (X: coefficients, Y: gene expression level). By comparing the median OS time across low- and high-risk BC subgroups, all patients were classified as either low- or high-risk. The “survival”, “survminer” and “timeROC” R packages were employed.
Difference of Tumor-Infiltrating Immune Cells in BC
In order to examine the connections between risk score and the infiltration levels of six immune cells (including dendritic cells, macrophases, neurphils, CD8 + T cells, CD4 + T cells and B cells, the public database Tumor Immune Estimation Resource (TIMER) was applied.
Analyses and Visualization of Somatic Mutations
The Maftools R/Bioconductor software was used to retrieve the mutational data from the MAF file. Following that, the MAF file summary was shown using the plotmafSummary function to show the number of variation types and classifications for each variant. Using the oncoplot tool, the top 10 mutant genes and POLE were plotted using the OncoPlot program. In order to plot POLE’s lollipopPlot, the lollipopPlot function was used.
Cell Lines and RNA Interference
The American Type Culture Collection provided the human BC cell lines MCF-7, SKBR, BT-20, ZR-75-1, MDAMB-231, and an immortalized breast epithelial cell line MCF-10A. In DMEM, ZR-75-1 and BT20 cells were cultivated at 37°C in a humidified atmosphere of 5% CO2, whereas MCF7, MDA-MB-231, and SKBR3 were cultured in RPMI-1640 with 10% FBS, 100 U/mL penicillin, and 100 mg/ml streptomycin.
Sigma-Aldrich provided KIF4A small interfering RNA (si-KIF4A) and a negative control siRNA. As instructed by the manufacturer, cells were transfected using Lipofectamine 2000 (Invitrogen).
Real-Time Quantitative PCR
Trizol was used to lyse the cells, and chloroform and isopropanol were used to extract the RNA. After determining the RNA concentration, the cDNA (complimentary deoxyribonucleic acid) was reverse-transcribed. ABI 7500 instruments are used for real-time quantitative PCR. GAPDH was measured as an internal control and the 2−ΔΔCT method was employed to determine the relative expression of KIF4A. The primers used were as follows: KIF4A forward, 5′-GAG​CTA​TTT​GCC​GAC​AAG​GC-3′; KIF4A reverse, 5′-GGA​GTT​TGC​AAG​ACC​CAT​GC-3′; GAPDH forward, 5′-AGT​TGC​GTT​ACA​CCC​TTT​CTT​G-3′; GAPDH reverse, 5′-TCA​CCT​TCA​CCG​TTC​CAG​TTT-3′.
Cell Growth Assay
For the cell growth experiments, 4  ×  103 cells per well were seeded into 96-well plates, with three wells used for each tested group. Cell numbers were evaluated over 5 days using a cell counting kit-8 (CCK-8) (SAB, Laifu Technology, Nanjing, China). A 10 μL volume of CCK-8 reagent was applied to each well, and the plate was incubated at 37°C for 2 h. Subsequently, in each well, using a spectrophotometer, we measured the absorbance at 450 nm for each sample.
Statistical Analysis
All experiments were performed in triplicate. Statistical analyses were performed using R software v3.5.0, SPSS (R Core Team, Massachusetts, USA) or GraphPad Prism software (GraphPad Software, San Diego, CA, USA). Student’s t-test and one-way ANOVA were respectively employed to evaluate two or multiple groups, for statistical significance. The Kaplan-Meier methods were applied to create the survival curves. p < 0.05 was considered statistically significant.
RESULTS
Identification of the DGEs Between BC Specimens and Non-Tumor Specimens
To screen possible regulators in BC, we analyzed TCGA datasets using Limma package, and identified many DGEs between BC specimens and normal breast specimens, which were shown in Heat map (Figure 1A). Then, we screened 140 upregulated genes and 513 down-regulated genes using FC > 4 and p < 0.05, which were shown in Volcanic map (Figure 1B).
[image: Figure 1]FIGURE 1 | The identification of DGEs in BC based on TCGA datasets. (A) Heat map of all DGEs between BC specimens and normal breast specimens. (B) Volcanic map of DGEs based on the standard of FC > 4.
GO and KEGG Enrichment Analysis
ClusterProfiler was used to undertake enrichment analysis of GO and KEGG pathways in order to better understand the potential biological role of common DEGs. The results of KEGG assays showed that 140 upregulated genes were mainly enriched in p53 signaling pathway, Viral carcinogenesis, Transcriptional misregulation in cancer and Systemic lupus erythematosus (Figure 2A). The results of GO assays revealed that 140 upregulated genes were mainly enriched in spindle organization, spindle assembly, sister chromatid segregation and regulation of sister chromatid segregation (Figure 2B). The results of KEGG assays showed that 513 down-regulated genes were mainly enriched in cAMP signaling pathway, Vascular smooth muscle contraction, Tyrosine metabolism and Renin secretion (Figure 2C). The results of GO assays showed that 513 down-regulated genes were mainly enriched in response to steroid hormone, response to peptide hormone, response to ketone and response to glucocorticoid (Figure 2D).
[image: Figure 2]FIGURE 2 | Function Enrichment Analysis of DEGs. (A,B) KEGG and G Analysis of 140 upregulated genes in BC. (C,D) KEGG and G Analysis of 513 down-regulated genes in BC.
The Screen of Survival-Related Genes in BC
Then, we used Kaplan-Meier method to identify the survival-related genes using top 20 dysregulated genes in BC. As shown in Figure 3A, we found that high expressions of SFRP1, SAA1 and RBP4 were related to favorable long-term survival in BC patients, while high expression of KIF4A, UBE2C and COL11A1 was associated with poor prognosis in BC patients (Figure 3B). Moreover, we used GEPIA to further explore the expression of SFRP1, SAA1, RBP4, KIF4A, UBE2C and COL11A1 in both TCGA datasets and GTEx data. We confirmed that the expression of KIF4A, UBE2C and COL11A1 was distinctly increased in BC specimens compared with normal breast specimens, while the expression of SFRP1, SAA1 and RBP4 was distinctly decreased in breast cancer specimens (Figure 4A). The association among the six genes were shown in Figure 4B. There is a positive or negative association among them.
[image: Figure 3]FIGURE 3 | Identification of survival-related DGEs in BC patients. (A) high expression of SFRP1, SAA1 and RBP4 were associated with favorable long-term survival in BC patients. (B) High expression of KIF4A, UBE2C and COL11A1 was associated with poor prognosis in BC patients.
[image: Figure 4]FIGURE 4 | (A) The expression of the six survival-related genes in BC specimens and normal breast cancer specimens from TCGA and GTEx data. (B) The associations between the expressions of the six survival-related genes.
Construction and Validation of a Prognostic Signature
Then, the above six genes were input into the LASSO regression model for feature selection. Under penalizing conditions (alpha = 1), five genes scores with nonzero coefficients were selected to formulate the risk score: Risk score = (–0.0305 × SFRP1 expression) + (–0.0194 × RBP4 expression) + (0.033 × SAA1 expression) + (0.019 × COL11A1 expression) + (0.0788 × KIF4A expression) (Figures 5A,B). The samples were separated into two categories based on the median risk score obtained from all LUAD samples: low-risk and high-risk groups. Figure 5C depicts a survival summary as well as a heatmap of gene expression levels in various tissues. According to the results of the survival analysis, patients in the high-risk group showed a distinctly shorter overall survival (Figure 5D). The area under the ROC curve for 1, 3, and 5 years OS were 0.578, 0.6 and 0.605 (Figure 5E). A study was conducted to determine the correlations between the risk score model and the presence of immune cells. As shown in Figure 6 B cell, T cell CD4+, T cell CD8+, Neutrophil, Macrophage and Myeloid dendritic cells were positively correlated with risk score. It has been confirmed that the levels of immune cells play an important role in the progression of various tumors (Sabado et al., 2017; Tanaka and Sakaguchi, 2019). Our findings further indicated the potential reason why our model was associated with the clinical outcome of BC patients.
[image: Figure 5]FIGURE 5 | LASSO regression analysis of TCGA datasets identifies a five-gene risk profile for overall survival. (A) Adjustment of the proportional hazards model’s tuning parameters using cross-validation. (B) Scan of six BC genes with the LASSO coefficient spectrum. (C) Patient survival and BC status, as well as risk score distribution. (D) Kaplan-Meier was used to categorise patients based on their median risk of developing BC. (E) The risk signature’s predictive power was demonstrated using ROC curves.
[image: Figure 6]FIGURE 6 | The relationships between the risk score model and immune cell infiltration were investigated based on TCGA samples.
Knockdown of KIF4A Suppressed the Proliferation of BC Cells
We assessed numerous basic aspects of BC somatic mutation data from the TCGA datasets using the waterfall and maftools analyses provided by the R package. As identified by a waterfall plot, the top 10 mutated genes were TP53, PIK3CA, TTN, CDH1, GATA3, MUC16, KMT2C, MAP3K1, RYR2, HMCN1, and the somatic mutation rate was also shown (Figures 7A,B). The summary plot exhibited that the main variant classification was missense mutation, It was discovered that SNP was the most prevalent type of variant, and that cytosine altered into thymine was the most common type of SNV class (Figure 7C). To further determine the expression of KIF4A in BC, we analyzed GSE7904, finding that KIF4A expression was distinctly upregulated in BC specimens compared with non-tumor specimens (Figure 8A). Then, we performed RT-PCR to examine the expression of KIF4A in several BC cells, finding that KIF4A expression was distinctly upregulated in Human BC cell lines (MCF-7, SKBR, BT-20, ZR-75–1, MDAMB-231) compared with MCF-10A cells (Figure 8B). By the use of si-KIF4A, we built KIF4A-knockdown cell lines (MCF-7 and BT-20, which was confirmed by RT-PCR(Figure 8C). Moreover, the results of CCK-8 assays revealed that knockdown of KIF4A distinctly suppressed the proliferation of MCF-7 and BT-20 cells (Figures 8D,E). Our finding suggested that KIF4A may influence the prognosis of BC patients via promoting the proliferation of BC.
[image: Figure 7]FIGURE 7 | BC mutation cohorts in TCGA datasets. (A,B) Waterfall diagram depicting the TCGA BC cohort’s top 10 most frequently mutated genes, including KIF4A. (C) Overview of mutations in all BC samples.
[image: Figure 8]FIGURE 8 | Knockdown of KIF4A suppressed the proliferation of BC cells. (A) The expression of KIF4A in BC sample and normal samples were determined using GSE7904 datasets. (B) Analysis of KIF4A gene expression in BC cell lines was carried out using qRT-PCR. (C) RT-PCR was used to examine KIF4A expressions in MCF-7 and BT-20 cells transfected with si-NC or si-KIF4A. (D,E) CCK8 assays for the assessment of the effect of KIF4A knockdown on the proliferation of MCF-7 and BT-20 cells. **p < 0.01, ***p < 0.001.
DISCUSSION
Because of its complex molecular and cellular heterogeneity, BC is the most prevalent malignant tumour in women, accounting for one-quarter of all female cancer cases (Matsen and Neumayer, 2013; Fahad Ullah, 2019). Its incidence is increasing year after year, and it is the most common malignant tumour in women (Maughan et al., 2010). As a result, better understanding of BC biology may provide clinicians with new strategies to utilise in the treatment of the disease. Comprehensive genomic studies demonstrating the impacts of RNA have attracted a great deal of attention recently (Azim and Partridge, 2014; van 't Veer et al., 2002). A large number of potentially useful mRNAs must be identified in order to enhance the clinical outcomes of BC patients (Sun et al., 2019; Zhang and Yu, 2020). However, there is a limited number of particular markers that may be utilised to demonstrate therapeutic results, and prognostic criteria are significant in the management of BC patients. Thus, there is an urgent need for the identification of markers of BC in order to minimise mortality and improve the prognosis of cancer patients.
Using the TCGA database, we examined the gene expression variations between BC and normal breast tissues in this work in order to discover possible gene biomarkers. After screening DEGs, Lasso analysis was applied to build a risk model for predicting the prognosis of BC. We identified five genes: SFRP1, RBP4, SAA1, COL11A1 and KIF4A. high expressions of SFRP1, SAA1 and RBP4 were related to favorable long-term survival in BC patients, while high expression of KIF4A and COL11A1 was associated with poor prognosis in BC patients. In addition, patients in the high-risk group exhibited distinctly lower overall survivals, demonstrating that the four-gene signature had a good ability to predict mortality.
Various cell types are critical to tumour immunology, and the tumour microenvironment (TME) is a fundamental component of cancer (Ren et al., 2021). The response to immunotherapy may be influenced by the TME infrastructure and the interactions between cancer cells and TME throughout the onset and course of the disease (Crespo et al., 2013; Sun et al., 2018). As part of the tumour stroma, tumor-infiltrating immune cells play a key role in tumour progression and response to cancer therapy (Certo et al., 2021; Singleton et al., 2021). Researchers looked into the connections between the risk score model and immune cell infiltration. We found that B cell, T cell CD4+, T cell CD8+, Neutrophil, Macrophage and Myeloid dendritic cells were positive correlated with risk score, suggesting the importance of our signature in the immune system.
Secreted frizzled-related protein 1 (SFRP1) belongs to the secreted glycoprotein SFRP family (Baharudin et al., 2020; Cisneros et al., 2020). Since SFRP1 has been found to be down-regulated in a number of human malignancies, it has been designated as a tumour suppressor gene. This is mostly due to epigenetic inactivation by DNA methylation or transcriptional silence by miRNAs (Zhang et al., 2019; Sunkara et al., 2020). SFRP1 protein expression has been shown to be closely linked to BC, according to one study (Veeck et al., 2006; Schäfer et al., 2019). SFRP1’s usefulness as a biomarker for chemotherapy response in BC is supported by associations with age and tumour grade (Gregory et al., 2019).
Retinol binding protein 4 (RBP4) is a 21-kDa protein belonging to the lipocalin family and is a retinol transporter in the blood (Steinhoff et al., 2021). Growth, eyesight, and metabolic disorders are all impacted by RBP4, an adipokine mostly produced in the liver and fat (Wang et al., 2018; Zhao et al., 2021). In recent years, several studies have reported that RBP4 was dysregulated in several types of tumors (Fei et al., 2017; Karunanithi et al., 2017). However, the function of RBP4 was rarely reported in BC.
SAA1 protein belongs to a member of the serum amyloid A family of apolipoproteins (Jiang et al., 2021). An important acute-phase protein known as SAA1 is increased in response to inflammation and tissue injury (Zhou et al., 2019; Gan et al., 2020). Besides, suppression of SAA1 expression can also occur after surgery or in late cancers. The prognostic value of SAA1 in BC has been frequently reported (Cao et al., 2021; Olivier et al., 2021).
Kinesin family member 4A (KIF4A), a KIF protein, is an essential chromosome-associated molecular motor encoding a 140-kDa protein (Cuijpers et al., 2020). KIF4A has been implicated in the regulation of chromosomal condensation and segregation, middle-spindle formation, and mitotic cytokinesis, according to previous research. Further researches have shown that KIF4A operates as an oncogene and plays critical roles in a number of malignancies, including breast cancer, prostate cancer and colorectal cancer (Matsumoto et al., 2018; Xue et al., 2018; Cao et al., 2020). In this study, we analyzed BC somatic mutation data from the TCGA database, and found that KIF4A showed a high level of somatic mutation. Then, we chose it for further study. Based on the results of GSE7904, we further confirmed that KIF4A expression was distinctly upregulated in BC specimens. The results of RT-PCR also confirmed that KIF4A expression was highly expressed in BC cells, which was consistent with the results form TCGA datasets. We further explored its function, finding that knockdown of KIF4A distinctly suppressed the proliferation of BC cells, suggesting that it acted as a tumor promotor in BC progression.
Several limitations existed in our study. First, Because the sample lacked certain clinical follow-up information, we were unable to identify predictive biomarkers based on criteria such as the existence of other health disorders. Secondly, bioinformatic approaches using RNA-seq data revealed the immunological landscape. Noise may have affected this evaluation. Thus, a larger number of participants in the experiments, along with additional genetic testing, will be needed in the future.
CONCLUSION
Here, A collection of biologically significant genes and a five-gene signature that has been independently validated have been developed using integrated studies. Hopefully, our 5-gene signature may be a clinically beneficial tool for individualized treatment of BC.
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Hypoxia, a typical hallmark of numerous tumors, indicates poor infiltration of antitumor lymphocytes, as well as facilitates the development, progression, and drug resistance of malignant cells. Here, the present research was performed to identify novel hypoxia-related molecular markers and their correlation to the tumor immune microenvironment (TIME) in colon cancer. The expression of hypoxia-related gene signature was extracted from The Cancer Genome Atlas (TCGA) COAD cohort. Based on this signature, a risk score model was constructed using the Lasso regression model. Its discrimination ability and stability were validated in another independent cohort (GSE17536) from Gene Expression Omnibus (GEO) database. Moreover, molecular biology experiments (quantitative real-time PCR and multiple immunohistochemistry) were performed to validate the results of bioinformatics analyses. Three hub genes, including PPFIA4, SERPINE1, and STC2, were chosen to build the risk score model. All of these genes were increasingly expressed in the hypoxia subgroup (HS). Compared with the normoxia subgroup (NS), HS had worse pathological features (T, N, M, and stage) and overall survival (OS), more expression of immune checkpoint molecules, poorer infiltration of some pro-inflammation immune cells (CD4+ T cells and CD8+ T cells), and enriched infiltration of M0/M2 macrophages. After the risk model was proven to be valuable and stable, a nomogram was built based on this model and some clinicopathological factors. Moreover, it had been identified that three hub genes were all increasingly expressed in hypoxic conditions by quantitative real-time PCR (qPCR). The results of multiple immunohistochemistry (mIHC) also showed that higher expression of hub genes was associated with poorer infiltration of pro-inflammation immune cells (CD8+ T cells and M1 macrophages) and richer infiltration of anti-inflammation immune cells (Treg cells and M2 macrophages). In conclusion, the present study uncovered the relations among hypoxia, TIME, and clinicopathological features of colon cancer. It might provide new insight and a potential therapeutic target for immunotherapy.
Keywords: colon cancer, hypoxia, tumor immune microenvironment, prognostic model, overall survival
INTRODUCTION
Colon cancer (CC) is one of the most common malignancies worldwide and responsible for more than 0.5 million deaths in 2020 (Sung et al., 2021). Compared with 2018, the numbers of new cases and deaths of CC have rapidly increased (Bray et al., 2018; Sung et al., 2021). Despite the advance in medical technology, patients with CC still have a relatively high mortality rate, 13.1% in the transitioning and 4.7% in the transitioned countries (Sung et al., 2021). Owing to the heavily medical and financial burden caused by CC, it is urgent to develop novel methods to improve the diagnostic and therapeutic efficiency for these patients.
Recently, immunotherapy has attached much attention from the public for its promising therapeutic efficiency. It is well established that the killing effect induced by immunotherapy relies on some immune cells that are recognized as tumor suppressors (Hiam-Galvez et al., 2021). While in the complex tumor microenvironment (TME), besides these tumor suppressors, there are many other components that promote the development and progression of cancer (Anderson and Simon, 2020). These promoters and the tumor itself deprive of the oxygen and nutrient and subsequently produce a hypoxic and acidic TME, which significantly restrain the function of those antitumor immune cells (Kaymak et al., 2021). Previous studies have well established that hypoxia is a hallmark of tumor growth, survival, and metastasis of CC and confers to resistance to immunotherapy (Hsu et al., 2020; Singhal et al., 2021). Therefore, the establishment of a hypoxia-related gene signature may help to comprehend the immunogenomic profile of CC and provide a useful prognostic tool for CC patients.
Here, based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, we developed a hypoxia-related gene signature to depict the tumor immune microenvironment (TIME) and predict the overall survival (OS) of CC patients. Moreover, we also did quantitative real-time PCR (qPCR) and multiple immunohistochemistry (mIHC) to verify the results of bioinformatics analyses.
MATERIALS AND METHODS
Training and Validation Cohort
The FPKM RNA-seq data (398 tumors and 39 normal tissue samples) and related clinical information of 385 CC patients were obtained from the TCGA database (https://portal.gdc.cancer.gov/) using the GDC API tools on 7 July 2021. Then, 282 patients with complete overall survival (OS) data were included in the training set. Meanwhile, the GSE17536 cohort was applied as the independent validation set. It included 177 colon tumor tissue samples and was obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse17536). The FPKM RNA-seq data from TCGA were transformed to log2(x+1). Then, they were normalized to eliminate the batch effect using limma (version 3.48.1) and sva (version 3.40.0) packages.
Gene Signature List
200 hypoxia-related genes were accessed from the HALLMARK_HYPOXIA gene set of Gene set Enrichment Analysis (GSEA) database (http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_HYPOXIA.html). The complete gene list was contained in Supplementary Table S1.
The immune-related genes were obtained from the Tracking Tumor Immunophenotype database (http://biocc.hrbmu.edu.cn/TIP/index.jsp) (Xu et al., 2018). This gene list contained negative regulatory, positive regulatory, T cell, CD8+ T cell, CD4+ T cell, dendritic cell, eosinophil, macrophage, monocyte, neutrophil, nature kill (NK) cell, Th1 cell, Th17 cell, Th 2 cell, Th22 cell, and Treg cell-correlated genes.
Procedure of Developing Risk Score Model
First, the fold change (FC) of the 200 hypoxia-related genes between tumor and normal tissue samples was calculated using the limma package. Genes with log2|FC|>1 & adjusted p-value < 0.05 were identified as the differentially expressed genes (DEGs). Meanwhile, the statistically prognostic genes were identified using univariate Cox regression analysis. Then, the DEGs (Supplementary Table S2) and prognostic genes (Supplementary Table S3) were intersected to identify hub genes.
Based on the least absolute shrinkage and selection operator (LASSO) regression analysis, the formula of the risk score model was built as follows:
[image: image]
The [image: image] index represents a significantly prognostic gene of the Lasso regression analysis and [image: image] stands for the beta coefficients of these genes.
Differences in RNA Expression and Clinical Characteristics Between Subgroups
To compare the differences between subgroups in RNA expression/gene function/clinical characteristics, we used Rtsne (version 0.15) and pheatmap (version 1.0.12) packages/GSEA analysis/stats (version 4.1.0) package.
Evaluation of Tumor Immune Microenvironment and Drug Response
To investigate the association between tumor immune microenvironment (TIME) and the risk score model, we used CIBERSORT and microenvironment cell populations-counter (MCP-counter) to estimate the infiltration of different immune cells (Newman et al., 2019; Becht et al., 2016). While for single-gene analysis, we used the TIMER webserver to evaluate the relation between six different types of immune cells and the target gene (https://cistrome.shinyapps.io/timer/) (Li et al., 2016; Li et al., 2017).
To evaluate the response of immune checkpoint blockade (ICB), we used the website tool ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/), which was based on ssGSEA analysis (Miao et al., 2020; Miao et al., 2021). But the pRRophetic package (version 0.5) was applied to compare the differences in drug response for cytotoxic and targeted medicine (Geeleher et al., 2014).
Model Visualization, Validation, and Comparison
To visualize the risk score model, we used the rms package (version 6.1-0) to create a nomogram that could predict the 1-, 3-, and 5-year OS of CC patients. It contained clinical factors (age, pathological M, and stage) and the risk score.
The discrimination ability of the risk score model was assessed using operating characteristic curve (ROC) analysis. Based on a series of different binary classification methods (critical or cutoff value), it could calculate the true positive (TP) and false positive (FP). The curve was drawn with TP or sensitivity as the ordinate, and with FP or 1-specificity as the abscissa. The area under the curve (AUC) was used for quantitative analysis in ROC analysis. Generally (Sung et al., 2021) AUC between 0.5 and 0.7 would be considered lower accuracy (Bray et al., 2018); AUC between 0.7 and 0.9 would be considered to be valuable (Hiam-Galvez et al., 2021); AUC above 0.9 would be considered high accuracy; however, AUC = 0.5 meant that the model had no diagnostic value. In this study, ROC analysis was performed using the timeROC package (version 0.4).
The calibration plot was used to assess the 1-, 3-, and 5-year OS, based on the Cox proportional hazard model. Meanwhile, the Kaplan-Meier (K-M) survival analysis was performed according to different subgroups (NS vs. HS) in both training and validation sets. The calibration and K-M analysis were performed using the rms and survival (version 3.2-7) packages.
In this study, Decisive Curve Analysis (DCA) was used to estimate prediction ability among different models. The abscissa of the DCA plot was threshold probability, and the ordinate was the net benefit (NB) after therapeutic advantages minus the disadvantage. In general, the farther the curve was from the extreme curves the better its prediction power represented. The DCA analysis was performed using the ggDCA (version 1.2).
Cell Culture and Culture Conditions
The human colon epithelial cell line (FHC) and colon cancer cell lines (HCT-8, RKO, SW480, and SW620) used in vitro experiment was purchased from the Cell Bank of the Chinese Academy of Science and authenticated by the supplier. These cell lines were grown in DMEM (Gibco) supplemented with 10% fetal calf serum (FCS). We have identified the source of cell lines by STR profiling. Meanwhile, the cells were routinely tested for mycoplasma contamination (MycoAlert PLUS Mycoplasma Detection Kit, Lonza).
In normoxic conditions, cell lines were maintained at 37°C in the humidified incubator with 5% CO2 (Thermo Scientific). Cell lines would be plated at the desired density (60%–70%) 24 h before the placement into a hypoxia incubator (BioSpherix). The condition of hypoxia treatment was set to 1% O2 and 5% CO2 for 24 h.
RNA Extraction and qRT-PCR
RNA was isolated using TRI reagent solution (Sigma) followed by the on-column RNeasy mini kit and DNase treatment (Qiagen, Germany). cDNA synthesis was performed using the Transcription First Strand cDNA Synthesis Kit (Roche). qRT-PCR was performed using ABI 7900T PCR System (Applied Biosystems). Gene expression using SYBR Magic was normalized to the expression of β-actin. The primers used in the present study were supplied in Supplementary Table S4.
Multiple Immunohistochemistry Staining
Four-micron slices, cut from the paraffin block of tissues, were mounted onto charged slides and baked at 60°C for 1 h as the first step. Then, they were dewaxed with xylene for 10 min and stained with 100%, 90%, and 70% ethanol for 10 min per concentration. After being washed with deionized water for 2 min, these slides would be soaked in neutral buffered formalin for 30 min. Next, Opal manual kit (PerkinElmer) was used to stain the slides according to the manufacturer’s instructions. After nonspecific antigen sites were blocked, slides were incubated with antigen-specific primary antibody overnight at 4°C; secondary antibody incubation was performed for 1 h at room temperature. Then, dyes contained in the kit (Opal TSA) would be applied for immunofluorescence staining. We found slide stained with 3 markers plus 4 colors was the optimal choice. AR9 buffer would be used for antigen retrieval after three steps (incubation of primary antibody, secondary antibody, and dye staining) were finished. Finally, the slides were incubated with DAPI for nuclear DNA staining.
All of the primary antibodies used in mIHC are listed in Supplementary Table S5.
Statistical Analysis
Continuous and categorical (frequencies and percentages) variables were analyzed using independent t, chi-square, or 2-tailed Fisher exact tests, respectively. Meanwhile, ranked data were analyzed using the Mann-Whitney U test. The discrimination of the prediction model was assessed using ROC analysis. The OS was defined as the period from the date of surgery to the date of death due to any cause. OS between different groups was measured using the Log-rank method of K-M analysis. Cox regression analysis was used to assess time-event-dependent OS status of CC patients. The correlations of RNA expression among different hub genes were measured using spearman analysis. A p-value less than 0.05 was considered statistically significant. All statistical analyses were carried out using R (version 4.0.3; https://www.r-project.org/) and R studio (version 1.3.1093; https://www.rstudio.com/) software.
RESULTS
Baseline Characteristics of Training and Validation Sets
All detailed information on baseline characteristics of both training and validation sets are listed in Table 1.
TABLE 1 | Different characteristics between low- and high-risk groups in the training (TCGA) and validation (GEO) sets.
[image: Table 1]In the training set, 271 CC patients had complete clinical and pathological data and the remaining 11 patients only had follow-up information. Among the 271 patients, 124 patients were female (43.97%) and 147 were male (52.13%). The average age was 65.06 ± 12.70 years. Meanwhile, 224 patients (79.43%) had advanced disease (Stages II–IV), among them 39 patients (13.83%) with distant metastasis.
Also in the validation set, data of average age, the constituent ratio of gender, and pathological stage were provided. The average age and constituent ratio of pathological were comparable between the two sets. The information on pathological grade was only available in the validation set. There were 16 patients with grade 1 (9.04%), 134 with grade 2 (75.71%), and 27 with grade 3 (15.25%) disease.
Searching Procedure of Hub Hypoxia-Related Genes and Development of Risk Score Model
The complete pipeline of this study is shown in Figure 1.
[image: Figure 1]FIGURE 1 | The complete pipeline of the present study. It contained three major parts, including prognostic model construction, analyses between different subgroups (clinical, immune-related, calibration, bio-functional, and single-hub gene analyses), and multiple immunohistochemistry validation.
We defined hub hypoxia-related genes as those that were differentially expressed between tumor and normal tissue samples and were statistically associated with the prognosis of CC patients.
According to these criteria, we first extracted the expression of 200 hypoxia-related genes from the TCGA-COAD cohort. Second, 64 DEGs (Figure 2A) and 11 prognostic genes (Figure 2B) were identified. Then, three hub genes (PPFIA4, SERPINE1, and STC2) were established as the intersection of DEGs and prognostic genes (Figure 2C).
[image: Figure 2]FIGURE 2 | Construction of the prognostic model. (A) The volcano plot showed hypoxia-related DEGs extracted from the TCGA-COAD cohort. (B) The forest plot displayed the hypoxia-related prognostic genes extracted from the TCGA-COAD cohort. Three hub genes were marked in red font. (C) The Venn diagram showed that the intersection of DEGs and prognostic genes were three hub genes, including PPFIA4, SERPINE1, and STC2. (D) 20-Time cross-validation for tuning parameter selection in the LASSO Cox model. The plot of LASSO coefficients (E) showed the best choice of the number of these genes was 3. The PCA and t-SNE scatter plots confirmed that the risk score model could precisely classify patients into two different groups in the training (F) and validation (G) sets. The heatmap visualized different expression patterns of hub genes in NS and HS in the training (H) and validation (I) sets. DEGs: differentially expressed genes.
After the confirmation of hub genes, Lasso regression analysis was used to construct the risk score model (Figures 2D,E). The formula was built as follows:
Risk score = 1.582 × PPFIA4 + 0.249×SERPINE1 + 0.279 × STC2
After the risk score of each patient was calculated, these patients were divided into two subgroups, according to the median of the risk score. The normoxia subgroup (NS) represented the one having a lower expression level of hub genes, while the hypoxia subgroup (HS) was defined as the one with a higher expression level of hub genes.
To evaluate the distinguishing ability of the risk score, principal component analysis (PCA), t-SNE (t-distributed stochastic neighbor embedding), and heatmap were used. The results of the PCA and t-SNE methods suggested that two subgroups could be separated clearly and stably according to the risk score in the training (Figure 2F) and validation (Figure 2G) sets. Figures 2H,I shows that the expression of all three hub genes was also higher in the HS compared with that in the NS in both sets.
After the grouping method was proven to be acceptable, we then investigated the differences in clinicopathological features, survival, and immune status between the two subgroups.
Different Clinicopathological and Prognostic Characteristics
First, we compared clinicopathological characteristics between two subgroups in both training and validation sets. In the training set, we found that there were more patients with metastatic lymph nodes, venous invasion, lymphatic invasion, perineural invasion, and proficient mismatch repair (pMMR) in the HS. Meanwhile, these patients had the worse pathological stage, T (invasion depth), N (lymph node metastasis), and M (distant metastasis). In the validation set, patients in the HS had poorer pathological stage and grade, and younger age (Table 1).
Second, compared with NS, HS had a higher mortality rate (19% vs. 10% in the training set; 51% vs. 31% in the validation set) (Figures 3A,B). The results of the K-M analysis suggested that patients in HS had significantly poorer OS in both training (p = 0.004) and validation (p = 0.029) sets (Figures 3C,D).
[image: Figure 3]FIGURE 3 | Patients in different subgroups showed statistically different prognoses. (A) The patient distribution, risk score, and status plots showed that patients in the HS in training set related to poorer prognosis. (B) Similar results were identified in the validation set. The survival plot of K-M analysis confirmed that patients in HS had statistically poorer overall survival in the training (C) and validation (D) sets.
The Validation of Discrimination Ability and Stability of the Risk Score Model
In the training set, the results of the ROC analysis showed that the AUCs of our risk score model were larger than 0.6 (1-year: 0.645; 3-year: 0.700; 5-year: 0.669) (Figure 4A). Then, we used Cox regression analysis to determine whether the risk score was an independent prognostic factor. The univariate Cox analysis suggested that age, pathological stage, distant metastasis, and the risk score were associated with the prognosis (Figure 4B). The multivariate Cox analysis identified that age, distant metastasis, and the risk score were the independent prognostic factors (Figure 4C).
[image: Figure 4]FIGURE 4 | The ROC analysis suggested that the prognostic ability of the risk score model was valuable and stable in different survival durations in the training set (A) and validation set (D). In the training set, the univariate (B) and multivariate Cox (C) analysis showed that the risk score was an independent prognostic factor. Meanwhile, the results of Cox analysis in the validation set (E,F) were following those in the training set.
In the validation set, the AUCs of 1, 3, and 5 years were all above 0.5 (1-year: 0.644; 3-year: 0.596; 5-year: 0.583) (Figure 4D). Through univariate and multivariate Cox analysis, we found that the pathological stage and the risk score were the independent prognostic factors (Figures 4E,F).
Taken together, the results confirmed that the risk score model based on the hub hypoxia-related genes had valuable discrimination ability and stability. It could predict the prognosis of patients with colon cancer accurately in the different study populations.
Visualization and Calibration of the Risk Score Model
We decide to use the clinicopathological features (age, M, and pathological stage) in the TCGA-COAD cohort, along with risk score, to build a nomogram for clinical application.
First, in Figure 5A, the result of calibration analysis showed that the blue, red, and green lines, which represented the performance of 1-, 3-, and 5-year prognostic prediction, were just close to the diagonal. It meant that the risk score was a stable prognostic model. Next, we compared the prognostic ability of three models, including the risk score, clinical characteristics (age, M, and pathological stage), and risk score plus clinical characteristics using Decisive Curve Analysis (DCA). The results showed that the performance of the multiple-factor model (risk score plus clinical characteristics) was slightly better than that of the single-factor model (the risk score model alone); however, both of their performance was significantly better than that of the sole clinical characteristics model (Figure 5B).
[image: Figure 5]FIGURE 5 | (A) The calibration analysis suggested that the prognostic performance of the risk score model was stable. (B) The DCA analysis showed that the prognostic ability of the risk score model plus clinical factors was best, followed by the risk score model alone and clinical factors alone. (C) The nomogram was built based on the risk score model and several clinical variates. (D) The ROC analysis of nomogram in the training set.
Since the diagnostic ability of the risk score model was validated to be valuable and stable, we then visualized it using a “nomogram” (Figure 5C). Patients with colon cancer could predict their 1-, 3-, and 5-year OS according to the information of age, pathological stage, status of distant metastasis, and our risk score model. It also could help doctors to predict the prognosis of patients with colon cancer accurately and easily. After the construction of the nomogram, we also evaluated the prediction power of the nomogram; the AUCs of 1-, 3-, and 5-year OS were 0.871, 0.788, and 0.807, respectively (Figure 5D).
Meanwhile, we also did calibration analysis, DCA, and ROC analysis, and built a nomogram in the validation set. The results showed that the risk model had stable prediction performance and the combined usage of the risk model with clinicopathological features had better prediction power than that of mono-marker (Supplementary Figure S1). The AUCs of 1-, 3-, and 5-year OS of nomogram in the validation set were 0.768, 0.724, and 0.676, respectively (Supplementary Figure S1D).
Analyses of Differentially Expressed Genes and Functional Enrichment
After the confirmation of the correlation between risk score and the prognosis of CC patients, we then investigated different bio-functions between NS and HS. First, we used the limma package to identify DEGs between NS and HS. There were 72 DEGs (log2|FC|>1 & adjusted p < 0.05) between different subgroups. Because bio-functional analysis should be built on enough DEGs, we reset the standard of DEGs to |FC|>1.5. As a result, there were 163 DEGs (4 down and 159 up in the HS) (Figure 6A).
[image: Figure 6]FIGURE 6 | The differentially expressed genes and functional enrichment. (A) The volcano plot showed that 159 genes were highly expressed and 4 genes were lowly expressed in HS. (B) The bar plot revealed different functional enrichment involved in HS, according to the DEGs. (C) The results of GSEA analyses showed that hypoxia, EMT, angiogenesis, KRAS, IL2, and hedgehog pathways were enriched in HS.
Through GO and KEGG analyses, we found that the bio-functions of upregulated genes in the HS were enriched in proliferation, differentiation, and tumorigenesis-related signaling pathways, including PI3K-Akt, Hedgehog, and Wnt signaling pathways. Meanwhile, these DEGs were also involved in Growth factor and Cytokine binding and extracellular matrix reorganization and reconstruction (Figure 6B). Moreover, GSEA analysis revealed that compared with NS, HS was enriched in hypoxia, epithelial–mesenchymal transition (EMT), angiogenesis, and KRAS, IL2/STAT5, and Hedgehog signaling pathways (Figure 6C).
Taken together, HS had enriched bio-functions in tumorigenesis, proliferation, and differentiation. Meanwhile, some signaling pathways that would induce the resistance of antitumor drugs (EMT and KRAS) were also found to be involved in HS. These might partially explain why the patients in HS had worse pathological features and prognosis.
Tumor Immune Microenvironment and the Expression of Different Molecules
Previous studies have found that the infiltration of types of immune cells was significantly associated with the clinical outcomes of CRC patients (Galon et al., 2006; Craig et al., 2020; Picard et al., 2020). Based on the previous analyses, we found that the OS between NS and HS were statistically different. We wondered whether it was also associated with different TIME between the two subgroups. Then, we analyzed the immune-cell infiltration of each CC sample in both the training and validation sets using CIBERSORT.
The result showed that the HS had a significantly smaller number of CD8+ T and resting memory CD4+ T cells and a larger number of M0 macrophages in the training (Figures 7A,B) and validation (Supplementary Figure S2A) sets. While in the training set, we could also find that the number of plasma and resting dendritic cells was smaller in the HS than that in the NS. Compared with that, HS had a higher infiltration level of M2 macrophages and neutrophils (Figure 7B). Moreover, to ensure the stability of the results, we then used another algorithm (MCP-counter) to evaluate the infiltration of immune cells in different subgroups. The results showed that the infiltration of T cells, CD8+ T cells, and cytotoxic lymphocytes was significantly fewer in HS, whereas the infiltration of monocytic cells, endothelial cells, and fibroblasts was enriched in HS (Figure 7C). These results revealed that in the hypoxic microenvironment, the infiltration of pro-inflammation immune cells was significantly impeded, whereas the anti-inflammation immune cells and fibroblast were enriched in the hypoxic conditions that would also hinder the proliferation and migration of antitumor immune cells (Vitale et al., 2019; Davidson et al., 2021).
[image: Figure 7]FIGURE 7 | Illustration of different infiltration of immune cells and expression of immune checkpoint molecules and chemokines in NS and HS. In the TCGA-COAD cohort, the stacked bar chart (A) and the grouped bar chart of CIBERSORT analysis (B) showed that a higher level of anti-inflammation macrophages (M0 and M2) and neutrophils and a lower level of T cell (especially CD8+ T cell) were in the HS. The result of MCP-counter (C) confirmed that T cells, CD8+ T cells, and cytotoxic lymphocytes were enriched in NS, compared with those in HS. It also indicated that the infiltration of endothelial cells and fibroblasts was higher in HS. (D) The heatmap displayed the expression of negatively regulatory genes in different subgroups. The immune checkpoint genes were marked in red font. Almost all of the immune checkpoint genes (E), CXCL (G), and CCL (H) chemokines were highly expressed in HS. But some human leukocyte antigens (F), including HLA-DQB2, HLA-DOB, HLA-DPA1, HLA-DQA2, HLA-DPB1, HLA-DOA, HLA-DRA, and HLA-DMB, were lowly expressed in HS. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
We then investigated the differential expression of negative regulatory immune-related genes, immune checkpoint molecules, human leukocyte antigen, CXCL, and CCL chemokines. First, we found that numerous negative regulator immune-related genes, including some immune checkpoint genes, were highly expressed in HS (Figure 7D). Second, we also found that almost all of the immune checkpoint molecules were highly expressed in HS, except LAG3 and ICOSLG (Figure 7E). Multiple studies also found that the highly expressed immune checkpoint molecules would inhibit the antitumor immunity, resulting in a poor prognosis for colorectal cancer patients (Neupane et al., 2021; Kudo-Saito et al., 2021; Gordon et al., 2017). Besides, the expression of some human leukocyte antigens (HLAs) was lowly expressed in HS, which was also consistent with the results of fewer infiltration of pro-inflammation immune cells in HS (Figure 7F). A plenty of studies have confirmed that impediments to processing HLA would hinder the identification, migration, and infiltration ability of tumor-infiltrating lymphocytes (TILs), thus facilitating the proliferation and invasion of malignancy (Dong et al., 2021; Maggs et al., 2021; Kawazu et al., 2022).
Next, we found that most chemokines, including CXCL5, 6, 8, 9, 10, 11, and 12, CCL1, 2, 3, 4, 7, 8, 11, 12, 13, 19, 21, 23, 26, and 28, were significantly highly expressed in HS (Figures 7G,H). Other studies revealed that the upregulated expression of chemokines, including CXC and CC chemokine families, could impede the TILs infiltrating into a tumor, support the growth of malignant cells, and facilitate the migration of myeloid-derived suppressor cells (MDSCs), which would cause the drug resistance to the chemotherapy and immunotherapy (Korbecki et al., 2020; Bullock and Richmond, 2021; Matsuo et al., 2021).
All in all, these findings revealed that the TIME and the expression of immune checkpoint molecules, immune-related genes, and chemokines were quite different between NS and HS, which might be associated with different pathological features and prognosis between the two subgroups. Next, based on the findings mentioned above, we would evaluate the differences in therapeutic responses between NS and HS.
Drug Response of Immune Checkpoint Blockade, Cytotoxic, and Targeted Medicine
We used several methods to evaluate the therapeutic responses between NS and HS, including the website tool (ImmuCellAI: http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) for ICB and pRRophetic package for targeted and cytotoxic medicine.
First, in NS, there were 38 CC (26.9% of all CC patients in NS) patients who responded to ICB therapy. Compared with that, only 17 CC (12.1% of all CC patients in HS) patients would benefit from ICB therapy. The difference between the two subgroups was statistically significant (p = 0.002) (Figure 8A). Second, we evaluated three cytotoxic drugs that were most widely used in clinical application, including 5-fluorouracil (5-FU), cisplatin, and gemcitabine. The result showed that the half inhibitory concentration (IC50) of cisplatin was statistically lower in NS (Figure 8B). For targeted medicine, we found that the IC50s of bosutinib, imatinib, sorafenib, and sunitinib were all lower in NS (Figure 8C).
[image: Figure 8]FIGURE 8 | The differences in drug response between NS and HS. (A) ICB response prediction showed that the number of patients sensitive to ICB therapy was larger in NS than that in HS (38 in NS vs. 17 in HS). (B) The results of cytotoxic therapy response prediction revealed that the IC50s of these drugs were comparable between the two subgroups. (C) The IC50s of targeted medicine, including bosutinib, imatinib, sorafenib, and sunitinib, were lower in NS, compared with those in HS.
Although most targeted drugs were not approved to be used as the first-line therapy for CRC by FDA, some studies revealed that tyrosine kinase inhibitor (TKI), including bosutinib, imatinib, and sunitinib, could enhance the infiltration of cytotoxic and effector T cells, which would directly affect the efficacy of immunotherapy (Roulleaux Dugage et al., 2021; Tazzari et al., 2021; Hirata et al., 2022). These studies revealed that the application of TKI might be positively related to the infiltration of pro-inflammation immune cells, which meant that the combination therapy of TKI and ICB might receive better efficacy than monotherapy. Recently, in a CRC mouse model, researchers found that the combination therapy of TKI and ICB could reduce tumor-stromal volume and increase the infiltration of CD8+ T cells and the activation of immune-related pathways (Yorita et al., 2021).
Analyses of Correlated Expression and Quantitative Real-Time PCR for Hub Genes
Although our previous work revealed that the expression of three hub genes (PPFIA4, SERPINE1, and STC2) might be positively related, we still wondered whether there were direct correlations among these genes. The results suggested that all three genes were indeed positively expressed (Figure 9A). Meanwhile, we found that the correlation between the expression of PPFIA4 and SERPINE1 was statistically highest (Figures 9B–D). To ensure the accuracy of the results, we also used the website tool TIMER to evaluate the correlations among three hub genes. The results confirmed that these genes were statistically positively related (Figures 9E–G).
[image: Figure 9]FIGURE 9 | The correlation among the expression of three hub genes. (A) The plot illustrated that the expression of all three genes was positively related. (B,C,D) Three expression correlation plots visualized that with increasing expression of one hub gene, the expression of two other hub genes statistically increased. (E,F,G) The plots of the Pearson correlation coefficient showed the correlation between PPFIA4 and SERPINE1 was the strongest, followed by the correlation of PPFIA4 and STC2 and the correlation between SERPINE1 and STC2. This result was following the previous result shown in (A). The results of qPCR (H) showed that three hub genes were highly expressed under hypoxic cultivation in different colon cell lines, including colon epithelial cell line (FHC) and CRC cell lines (HCT-8, RKO, SW480, and SW620). * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
All 200 genes included in our analysis were in the hallmark hypoxia gene set of the GSEA database. Next, we used qPCR to confirm whether three hub genes were highly expressed in the hypoxic conditions. We used five types of colon cell lines, including 1 colon epithelial cell line (FHC) and 4 CRC cell lines (HCT-8, RKO, SW480, and SW620). Among them, HCT-8 and RKO were dMMR/MSI cell lines, while SW480 and SW620 were pMMR/MSS. For the hypoxic conditions, cell lines were cultivated in a hypoxia incubator with 1% O2 and 5% CO2 for 24 h. The result showed that all three hub genes were statistically highly expressed in the hypoxic conditions (Figure 9H).
Analysis of Each Hub Gene
All previous analyses were about the risk score model that was constructed with hub genes and related coefficients. We then analyzed the correlation of the expression of single hub gene with clinicopathological features and immune infiltration (Supplementary Figures S3–5).
The results suggested that a higher level of expression of all three hub genes was found in the tumor samples and was associated with a poorer prognosis for CC patients. Meanwhile, all three genes were positively related to the infiltration of macrophages, neutrophils, and NK cells. However, PPFIA4 and STC2 were negatively associated with CD8+ T cells, T cells, and cytotoxic cells, which were following the previous results of TIME in different subgroups that CC patients with higher risk scores had a lower level of infiltration of CD8+ T cells (Figure 7).
Multiple Immunohistochemistry Staining
Finally, we wanted to validate the results of the CIBERSORT analysis, which suggested that the expression of hub hypoxia-related genes (PPFIA4, SERPINE1, and STC2) was associated with the infiltration of some immune cells. We collected 35 colon cancer tissue samples from the Department of General Surgery, Changzhou Wujin Hospital. All the samples were fixed by formalin and embedded in paraffin.
The results showed that the expression of three hub genes was positively related (Figure 10A). NS had a relatively lower expression of hypoxia-related genes. We divided 35 samples into a lower expression subgroup (NS: 18) and a higher expression subgroup (HS: 17), according to the median of the number of positively expressed cells. Then, we checked their immune status, including CD8+ T cells, Treg cells, the expression of PD-L1, M1, and M2 macrophages. In Figures 10B,C, the results suggested that the NS had larger colonization of CD8+ T cells and M1 macrophages (CD80) than HS, which was insistence with our previous results in Figures 7A,B. Meanwhile, similar to the results shown in Figures 7B,E, M2 macrophages (CD163) and PD-L1 were statistically less in NS, compared with those in HS. Moreover, we also compared the pathological feature between NS and HS of the 35 colon cancer patients. The results showed that the OS and pathological variates, including pathological stage, invasion depth, and lymphocytic metastasis, were significantly better than those of the HS (Figures 10D,E).
[image: Figure 10]FIGURE 10 | Multiple immunohistochemistry staining of tissue samples from 35 colon cancer patients. (A) Typical figures of the expression of three hub hypoxia-related genes, including PPFIA4, SERPINE1, and STC2, in NS and HS. According to the median of expression, we divided 35 CC patients into NS and HS. The histogram showed that the expression of three genes was significantly different, and three genes were positively related. (B) Compared with NS, HS had smaller colonization of CD8+ T cells and higher expression of PD-L1. But the number of Treg cells (FOXP3) had no statistical differences between subgroups. (C) The colonization of M1 macrophages was larger and M2 macrophages was smaller in NS, compared with that in HS. (D) The survival plot of K-M analysis of the 35 colon cancer patients. (E) The differences of the pathological features, including pathological stage (Stage), invasion depth (T), lymphocytic metastasis (N), and distant metastasis (M), of the 35 colon cancer patients. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
Combined with these results, we identified that NS, which represented normoxia TIME, had relatively “hot” TIME. It had enriched colonization of pro-inflammation immune cells (CD8+ T cells, M1 macrophages), less population of anti-inflammation immune cells (M2 macrophages), and higher expression of immune checkpoint molecules (PD-L1). Compared with HS, the TIME of NS would be more suitable for TILs to survive and exhibit their tumor-killing function. On the other hand, the results of mIHC were similar to those analyzed by CIBERSORT, indicating its stable performance.
DISCUSSION
In the present study, we have identified a hypoxia-related gene signature, which contained three hub genes, to classify CC patients into NS and HS, and subsequently predicted the different TIME and prognosis between different subgroups. Based on this signature, a risk score model was constructed and proven to be a valuable and stable prognostic tool for CC patients. Moreover, we identified that the TIME and the gene expression were quite different, which might induce distinct drug responses between NS and HS. Based on ImmuCellAI and pRRophetic package, we found that patients in NS were more sensitive to ICB and targeted therapies. Finally, three hub genes (PPFIA4, SERPINE1, and STC2) were confirmed to be highly expressed in the hypoxic conditions by qPCR. Also, the infiltrations of CD8+ T cells and M1 macrophages were proven to be negatively related to the expression of these genes by mIHC.
Our present work identified that hypoxia-related genes and the risk score model built on them were significantly correlated with the prognosis of CC patients. Similar results were found in ovarian cancer (Chen et al., 2021), triple-negative breast cancer (Yang et al., 2021a), osteosarcoma in children (Jiang et al., 2021a), acute myeloid leukemia (Jiang et al., 2021b), and so on. It indicated that along with other factors, hypoxia might play an important role in the development and progression of cancer.
In our risk score model, three hub genes, including PPFIA4, SERPINE1, and STC2, were all identified to be differentially expressed between normal and tumor tissues and be closely associated with the prognosis and infiltration of immune cells in CC patients. PPFIA4, belonging to the PPFIA family of kinesin-cargo linkers, was first identified and characterized in silico in 2003 (Katoh and Katoh, 2003). Recently, it has been proved to be related to CC cell proliferation and migration by enhancing tumor glycolysis (Huang et al., 2021). Besides, previous studies suggested that PPFIA4 was also the key prognostic gene in thyroid and prostate cancer (Xu et al., 2021a; Xu et al., 2021b). Compared with PPFIA4, the role of SERPINE1 in CC had been more deeply investigated. Some studies found that the expression of SERPINE1 was negatively associated with tumor grade and response to adjuvant therapy of CC patients (Halamkova et al., 2011; Cheng et al., 2018). Meanwhile, SERPINE1 has also been proven to play an important role in remodeling TME and enhancing tumor progression in CC (Wang et al., 2021). For STC2, it was recognized as a regulator in CC cell biological processes, and silencing STC2 could effectively suppress cancer cell proliferation, survival, and migration (Li et al., 2019). Moreover, higher expression of STC2 mRNA in tumor tissues was correlated with larger tumor size, presence of venous invasion, lymphatic invasion, distant metastasis, and poorer prognosis of CC patients (Watanabe et al., 2021). However, many studies we mentioned above were only based on the bioinformatics analyses, which were not stable and persuasive enough. Therefore, besides bioinformatics analyses, we also used cell lines and tumor tissues to perform qPCR and mIHC for validation.
The limit of nutrients and oxygen, which also restrains the proliferation of tumor cells, stimulates tumors to enhance the growth of new vasculatures. However, these newly formed vessels are leaky for their discontinuous endothelium, which will induce high permeability and permeation (Majidpoor and Mortezaee, 2021). The disorganized vasculatures, along with the high level of metabolic rate and the low efficiency of ATP producing method of tumor cells, cause a severe hypoxic condition in TME (Bertout et al., 2008). In addition, the hypoxia TME simultaneously promotes the famous “Warburg effect,” enhancing glycolysis and lactic acid production catalyzed by the lactate dehydrogenase A (LDH-A) (Harris, 2002). Subsequently, it will result in acidic pH, which impairs cytotoxicity and proliferation of types of immune cells by reducing their chemotaxis, respiratory activity, and bactericidal ability (Jing et al., 2019). Taken together, the hypoxia and acidic TME greatly suppress the antitumor immune function and thus induce tumor survival and metastasis. Among numerous immune cells infiltrating in TME, macrophages are the principal component, which can differentiate into the tumor-associated macrophages (TAMs) that have been identified to be preferentially located in almost all tumor hypoxic regions (Hegde et al., 2021). Different from M1 TAMs, M2 TAMs play an anti-inflammatory role in the TME by secreting immunosuppressive molecules, including IL-10, human leukocyte antigen G (HLA-G), TGF-β (Komohara et al., 2016). They directly with MDSCs restrain the infiltration of antitumor T cells and their secretion of IFN-γ. In the present study, less infiltration of CD8+ T cells and more infiltration of M2 macrophages were found in the high-risk group in both bioinformatics and mIHC analyses. Meanwhile, M2 TAMs were proven to express increased programmed cell death ligand 1 (PD-L1). It has been established that increased expression of PD-L1 was related to poor prognosis in numerous malignancies (Pérez-Ruiz et al., 2020). Accordant with the previous study, we also found that the expression of immune checkpoint molecules was higher in the high-risk group, which indicated that they might be associated with hypoxia condition. A recent study proved that tumor cells might escape immune attacks from both innate and adaptive immune systems by secreting hypoxia-inducible factor 1 (HIF-1) (You et al., 2021). Since suppressive TAMs, immune checkpoint molecules, and HIF-1 were all important negative factors, blocking them has predictably received promising results in enhancing the infiltration of tumor-infiltrating lymphocytes (TILs), thus improving their tumor-killing effect (Yang et al., 2021b; Caushi et al., 2021; Yap et al., 2021; You et al., 2021).
Based on the knowledge that hypoxia was a key barrier to antitumor immunity, studies have focused on how to target the hypoxic metabolic production or reverse the hypoxic condition in TME. First, enhancing tumor oxygenation is an option, which could be applied by carbogen breathing and intervention to reduce O2 consumption by the tumor (Kheir et al., 2012; Zou et al., 2018). Second, hypoxia-activated prodrugs (HAPs) were designed to specifically target those hypoxic tumor cells. These HAPs could bring both genotoxic agents and non-genotoxic effectors (Penketh et al., 2012; Skwarska et al., 2021). Third, targeting acidosis or hypoxia-acidosis-related pathways in TME is another choice (Singleton et al., 2021). Moreover, the combination therapy could also enhance the antitumor immunity and reduce drug toxicity and resistance. For instance, the objective response rates (ORR) of monotherapy of PD-1 and CTLA-4 blockers were 10%–16% for ipilimumab and 10%–40% for nivolumab and pembrolizumab (Robert et al., 2011; Ribas et al., 2015; Robert et al., 2015). While the combination of them could significantly increase the ORR to 61% and reduce the incidence of grade 3–4 adverse events to 46% (Long et al., 2017). The combination of ICBs with chemotherapy, targeted therapy, radiation, or intratumoral therapy also showed gratifying therapeutic results in treating different types of malignancies (Meric-Bernstam et al., 2021). The reason is these therapeutic methods could enhance the activation and infiltration of TILs by inhibiting angiogenesis, normalizing vasculature, reconstructing immunosupportive TME, increasing antigen presentation, co-stimulating molecules, and so on.
Recently, thanks to the advance in bioinformatics, we have deeper insight into the genomics of human beings. The function of more gene signatures has been identified. Using the existing gene signature, scientists can filter out hub genes and build risk models that have prognostic power and can depict different tumor microenvironments of different cancer patients.
These risk models were built using different statistical methods. For instance, Guan et al. (2020) established a prediction model that could separate gastric cancer patients into two different subgroups using the immune-related gene signature (Guan et al., 2020). They used the ssGSEA score and the hierarchical clustering algorithm. One subgroup had a higher expression of the immune-related score and better prognosis and another had a lower score and poorer prognosis. They successfully associated the tumor immune microenvironment with the prognosis in the population of gastric cancer patients. Based on the immune checkpoint-related gene signature, another study built a risk model to predict the prognosis of hepatocellular carcinoma patients using Lasso and Cox regression analyses (Zhao et al., 2020). Their model could also divide liver cancer patients into 2 subgroups, which had different prognosis and tumor immune microenvironments. The third example is that Bagaev et al. (2021) built a model, which had 29 knowledge-based functional gene signatures, to separate cancer patients into 4 subtypes, including immune-enriches (fibrotic), immune-enriched (non-fibrotic), fibrotic, and depleted (Bagaev et al., 2021). They used the ssGSEA score and the Louvain clustering method. These subtypes had a quite different infiltration of immune cells and prognosis. The most important thing is that this model is pan-cancer conserved, which means that it can be used in most types of cancer and has great clinical application potential. Like the previous studies, we also used Lasso and Cox regression analyses to identify hub genes and built a risk model subsequently. We believe that along with the advance in bioinformatics and statistics, more powerful prediction models will be developed.
There are several limitations in the present study. First, all analyses were based on retrospective data from public databases, which will induce recall and selection biases. Second, although related work to eliminate the batch effect has been done, the potential risk still exists when analyses are based on data from two different databases. Finally, our biomolecular experiments were just to verify the results of bioinformatics analyses. They have not deeply uncovered the bio- and molecular mechanism of hypoxia involved in the development and progression of CC. However, our further work will continuously focus on this field.
CONCLUSION
In summary, based on the hypoxia-related genes, we constructed a risk score model to predict the prognosis of colon cancer patients. Moreover, we deeply analyzed the differences, including functional enrichment, infiltration of immune cells, expression of different genes (immune checkpoint genes, human leukocyte antigen, CXCL, and CCL chemokines), and the therapeutic responses, between high-risk and low-risk subgroups. Finally, we performed qPCR and multiple immunohistochemistry (mIHC) for validation. This stud might provide new insights into the association among hypoxia, clinical prognosis, TIME, and therapy.
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Supplementary Figure S1 | (A) The calibration analysis suggested that the prognostic performance of the risk score model was stable in the validation set. (B) The DCA analysis showed that the prognostic ability of the risk score model plus clinical factors was best, followed by the risk score model alone and clinical factors alone. (C) The nomogram was built based on the risk score model and several clinical variates. (D) The ROC analysis of nomogram in the validation set.
Supplementary Figure S2 | Analyses of TIME were also applied in the validation set. The stacked bar chart (A) and the grouped bar chart of CIBERSORT analysis (B) showed that a higher level of anti-inflammation M0 macrophages and neutrophils and a lower level of CD8+ T cell and CD4 memory resting cells were in the HS. (C) The heatmap displayed the expression of negatively regulatory genes in different subgroups. The immune checkpoint genes were marked in red font. The immune checkpoint genes, including PD-L1, HAVCR2, PD-1, CTLA4, and TGF-β1, were statistically higher expressed in HS. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
Supplementary Figure S3 | The correlation among the expression of PPFIA4, clinical prognosis, and infiltration of immune cells. In the TCGA database, the results in the paired (A) and non-paired (B) tissue samples showed that the expression of PPFIA4 was statistically higher in the tumor samples. The results of K-M analyses of overall (C) and disease-specific (D) suggested that the expression of PPFIA4 and clinical prognosis were statistically negatively correlated. (E) The Lollipop chart revealed that the expression of PPFIA4 was positively related to the infiltration of macrophages, and negatively related to the infiltration of most types of T cells. (F) The results of the Pearson Correlation Coefficient suggested that the expression of PPFIA4 was significantly associated with the infiltration of immune cells. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
Supplementary Figure S4 | The correlation among SERPINE1, clinical prognosis, and infiltration of immune cells. In the TCGA database, the results of the PCR tests in the paired (A) and nonpaired (B) tissue samples showed that the expression of SERPINE1 was statistically higher in the tumor samples. The results of K-M analyses of overall (C) and disease-specific (D) suggested that the expression of SERPINE1 and clinical prognosis were statistically negatively correlated. (E) The Lollipop chart revealed that the expression of SERPINE1 was positively related to the infiltration of macrophages and most types of T cells. (F) The results of the Pearson Correlation Coefficient suggested that the expression of SERPINE1 was significantly associated with the infiltration of immune cells. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
Supplementary Figure S5 | The correlation among STC2, clinical prognosis, and infiltration of immune cells. In the TCGA database, the results of PCR tests in the paired (A) and nonpaired (B) tissue samples showed that the expression of STC2 was statistically higher in the tumor samples. The results of K-M analyses of overall (C) and disease-specific (D) suggested that the expression of STC2 and clinical prognosis were statistically negatively correlated. (E) The Lollipop chart revealed that the expression of STC2 was positively related to the infiltration of macrophages, and negatively related to the infiltration of most types of T cells. (F) The results of the Pearson Correlation Coefficient suggested that the expression of STC2 was significantly associated with the infiltration of immune cells. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
REFERENCES
 Anderson, N. M., and Simon, M. C. (2020). The Tumor Microenvironment. Curr. Biol. 30 (16), R921–R925. Epub 2020/08/19PubMed PMID: 32810447. doi:10.1016/j.cub.2020.06.081
 Bagaev, A., Kotlov, N., Nomie, K., Svekolkin, V., Gafurov, A., Isaeva, O., et al. (2021). Conserved Pan-Cancer Microenvironment Subtypes Predict Response to Immunotherapy. Cancer Cell 39 (6), 845–865. Epub 2021/05/22PubMed PMID: 34019806. doi:10.1016/j.ccell.2021.04.014
 Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al. (2016). Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol. 17 (1), 218. Epub 2016/10/22PubMed PMID: 27765066; PubMed Central PMCID: PMCPMC5073889. doi:10.1186/s13059-016-1070-5
 Bertout, J. A., Patel, S. A., and Simon, M. C. (2008). The Impact of O2 Availability on Human Cancer. Nat. Rev. Cancer 8 (12), 967–975. Epub 2008/11/07PubMed PMID: 18987634; PubMed Central PMCID: PMCPMC3140692. doi:10.1038/nrc2540
 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 68 (6), 394–424. Epub 2018/09/13PubMed PMID: 30207593. doi:10.3322/caac.21492
 Bullock, K., and Richmond, A. (2021). Suppressing MDSC Recruitment to the Tumor Microenvironment by Antagonizing CXCR2 to Enhance the Efficacy of Immunotherapy. Cancers 13 (24), 6293. Epub 2021/12/25PubMed PMID: 34944914; PubMed Central PMCID: PMCPMC8699249. doi:10.3390/cancers13246293
 Caushi, J. X., Zhang, J., Ji, Z., Vaghasia, A., Zhang, B., Hsiue, E. H.-C., et al. (2021). Transcriptional Programs of Neoantigen-specific TIL in Anti-PD-1-treated Lung Cancers. Nature 596 (7870), 126–132. Epub 2021/07/23PubMed PMID: 34290408. doi:10.1038/s41586-021-03752-4
 Chen, X., Lan, H., He, D., Xu, R., Zhang, Y., Cheng, Y., et al. (2021). Multi-Omics Profiling Identifies Risk Hypoxia-Related Signatures for Ovarian Cancer Prognosis. Front. Immunol. 12, 645839. Epub 2021/08/06PubMed PMID: 34349753; PubMed Central PMCID: PMCPMC8327177. doi:10.3389/fimmu.2021.645839
 Cheng, X., Hu, M., Chen, C., and Hou, D. (2018). Computational Analysis of mRNA Expression Profiles Identifies a Novel Triple-Biomarker Model as Prognostic Predictor of Stage II and III Colorectal Adenocarcinoma Patients. Cmar 10, 2945–2952. Epub 2018/09/15PubMed PMID: 30214289; PubMed Central PMCID: PMCPMC6118290. doi:10.2147/cmar.S170502
 Craig, S. G., Humphries, M. P., Alderdice, M., Bingham, V., Richman, S. D., Loughrey, M. B., et al. (2020). Immune Status Is Prognostic for Poor Survival in Colorectal Cancer Patients and Is Associated with Tumour Hypoxia. Br. J. Cancer 123 (8), 1280–1288. Epub 2020/07/21PubMed PMID: 32684627. doi:10.1038/s41416-020-0985-5
 Davidson, S., Coles, M., Thomas, T., Kollias, G., Ludewig, B., Turley, S., et al. (2021). Fibroblasts as Immune Regulators in Infection, Inflammation and Cancer. Nat. Rev. Immunol. 21, 704–717. Epub 2021/04/30PubMed PMID: 33911232. doi:10.1038/s41577-021-00540-z
 Dong, L., Yang, X., Wang, Y., Jin, Y., Zhou, Q., Chen, G., et al. (2021). Key Markers Involved in the Anticolon Cancer Response of CD8+ T Cells through the Regulation of Cholesterol Metabolism. J. Oncol. 2021, 1–11. Epub 2021/12/04PubMed PMID: 34858500; PubMed Central PMCID: PMCPMC8632400. doi:10.1155/2021/9398661
 Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., et al. (2006). Type, Density, and Location of Immune Cells within Human Colorectal Tumors Predict Clinical Outcome, Science 313, 1960–1964. Epub 2006/09/30PubMed PMID: 17008531. doi:10.1126/science.1129139
 Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R Package for Prediction of Clinical Chemotherapeutic Response from Tumor Gene Expression Levels. PLoS One 9 (9), e107468. Epub 2014/09/18PubMed PMID: 25229481; PubMed Central PMCID: PMCPMC4167990. doi:10.1371/journal.pone.0107468
 Gordon, S. R., Maute, R. L., Dulken, B. W., Hutter, G., George, B. M., McCracken, M. N., et al. (2017). PD-1 Expression by Tumour-Associated Macrophages Inhibits Phagocytosis and Tumour Immunity. Nature 545 (7655), 495–499. Epub 2017/05/18PubMed PMID: 28514441; PubMed Central PMCID: PMCPMC5931375. doi:10.1038/nature22396
 Guan, X., Xu, Z.-Y., Chen, R., Qin, J.-J., and Cheng, X.-D. (2020). Identification of an Immune Gene-Associated Prognostic Signature and its Association with a Poor Prognosis in Gastric Cancer Patients. Front. Oncol. 10, 629909. Epub 2021/02/26PubMed PMID: 33628738; PubMed Central PMCID: PMCPMC7898907. doi:10.3389/fonc.2020.629909
 Halamkova, J., Kiss, I., Pavlovsky, Z., Tomasek, J., Jarkovsky, J., Cech, Z., et al. (2011). Clinical Significance of the Plasminogen Activator System in Relation to Grade of Tumor and Treatment Response in Colorectal Carcinoma Patients. neo 58 (5), 377–385. Epub 2011/07/13PubMed PMID: 21744990. doi:10.4149/neo_2011_05_377
 Harris, A. L. (2002). Hypoxia - a Key Regulatory Factor in Tumour Growth. Nat. Rev. Cancer 2 (1), 38–47. Epub 2002/03/21PubMed PMID: 11902584. doi:10.1038/nrc704
 Hegde, S., Leader, A. M., and Merad, M. (2021). MDSC: Markers, Development, States, and Unaddressed Complexity. Immunity 54 (5), 875–884. Epub 2021/05/13PubMed PMID: 33979585. doi:10.1016/j.immuni.2021.04.004
 Hiam-Galvez, K. J., Allen, B. M., and Spitzer, M. H. (2021). Systemic Immunity in Cancer. Nat. Rev. Cancer 21, 345–359. Epub 2021/04/11PubMed PMID: 33837297; PubMed Central PMCID: PMCPMC8034277. doi:10.1038/s41568-021-00347-z
 Hirata, A., Sawai, E., Henmi, M., Shibasaki, C., Mizoguchi, Y., Narumi, K., et al. (2022). Imatinib Mesylate Exerted Antitumor Effect by Promoting Infiltration of Effector T Cells in Tumor. Biol. Pharm. Bull. 45 (1), 34–41. Epub 2022/01/05PubMed PMID: 34980779. doi:10.1248/bpb.b21-00493
 Hsu, T.-S., Lin, Y.-L., Wang, Y.-A., Mo, S.-T., Chi, P.-Y., Lai, A. C.-Y., et al. (2020). HIF-2α Is Indispensable for Regulatory T Cell Function. Nat. Commun. 11 (1), 5005. Epub 2020/10/08PubMed PMID: 33024109; PubMed Central PMCID: PMCPMC7538433. doi:10.1038/s41467-020-18731-y
 Huang, J., Yang, M., Liu, Z., Li, X., Wang, J., Fu, N., et al. (2021). PPFIA4 Promotes Colon Cancer Cell Proliferation and Migration by Enhancing Tumor Glycolysis. Front. Oncol. 11, 653200. Epub 2021/06/08PubMed PMID: 34094943; PubMed Central PMCID: PMCPMC8173052. doi:10.3389/fonc.2021.653200
 Jiang, F., Mao, Y., Lu, B., Zhou, G., and Wang, J. (2021). A Hypoxia Risk Signature for the Tumor Immune Microenvironment Evaluation and Prognosis Prediction in Acute Myeloid Leukemia. Sci. Rep. 11 (1), 14657. Epub 2021/07/21PubMed PMID: 34282207; PubMed Central PMCID: PMCPMC8289869. doi:10.1038/s41598-021-94128-1
 Jiang, F., Miao, X.-L., Zhang, X.-T., Yan, F., Mao, Y., Wu, C.-Y., et al. (2021). A Hypoxia Gene-Based Signature to Predict the Survival and Affect the Tumor Immune Microenvironment of Osteosarcoma in Children. J. Immunol. Res. 2021, 1–13. Epub 2021/08/03PubMed PMID: 34337075; PubMed Central PMCID: PMCPMC8299210. doi:10.1155/2021/5523832
 Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019). Role of Hypoxia in Cancer Therapy by Regulating the Tumor Microenvironment. Mol. Cancer 18 (1), 157. Epub 2019/11/13PubMed PMID: 31711497; PubMed Central PMCID: PMCPMC6844052. doi:10.1186/s12943-019-1089-9
 Katoh, M., and Katoh, M. (2003). Identification and Characterization of Human PPFIA4 Gene In Silico. Int. J. Mol. Med. 12 (6), 1009–1014. Epub 2003/11/13. PubMed PMID: 14612982. doi:10.3892/ijmm.12.6.1009
 Kawazu, M., Ueno, T., Saeki, K., Sax, N., Togashi, Y., Kanaseki, T., et al. (2022). HLA Class I Analysis Provides Insight into the Genetic and Epigenetic Background of Immune Evasion in Colorectal Cancer with High Microsatellite Instability. Gastroenterology 162162 (3), 799799–812812. Epub 2021/10/24PubMed PMID: 34687740. doi:10.1053/j.gastro.2021.10.010
 Kaymak, I., Williams, K. S., Cantor, J. R., and Jones, R. G. (2021). Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell 39 (1), 28–37. Epub 2020/10/31PubMed PMID: 33125860; PubMed Central PMCID: PMCPMC7837268. doi:10.1016/j.ccell.2020.09.004
 Kheir, J. N., Scharp, L. A., Borden, M. A., Swanson, E. J., Loxley, A., Reese, J. H., et al. (2012). Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery. Sci. Transl. Med. 4 (140), 140ra88. Epub 2012/06/30PubMed PMID: 22745438. doi:10.1126/scitranslmed.3003679
 Komohara, Y., Fujiwara, Y., Ohnishi, K., and Takeya, M. (2016). Tumor-associated Macrophages: Potential Therapeutic Targets for Anti-cancer Therapy. Adv. Drug Deliv. Rev. 99 (Pt B), 180–185. Epub 2015/12/02PubMed PMID: 26621196. doi:10.1016/j.addr.2015.11.009
 Korbecki, J., Kojder, K., Simińska, D., Bohatyrewicz, R., Gutowska, I., Chlubek, D., et al. (2020). CC Chemokines in a Tumor: A Review of Pro-cancer and Anti-cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Ijms 21 (21), 8412. Epub 2020/11/14PubMed PMID: 33182504; PubMed Central PMCID: PMCPMC7665155. doi:10.3390/ijms21218412
 Kudo-Saito, C., Ogiwara, Y., Imazeki, H., Boku, N., Uemura, Y., Zhang, R., et al. (2021). CD11b(+)DIP2A(+)LAG3(+) Cells Facilitate Immune Dysfunction in Colorectal Cancer. Am. J. Cancer Res. 11 (11), 5428–5439. Epub 2021/12/08. PubMed PMID: 34873470; PubMed Central PMCID: PMCPMC8640801.
 Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., et al. (2016). Comprehensive Analyses of Tumor Immunity: Implications for Cancer Immunotherapy. Genome Biol. 17 (1), 174. Epub 2016/08/24PubMed PMID: 27549193; PubMed Central PMCID: PMCPMC4993001. doi:10.1186/s13059-016-1028-7
 Li, Q., Zhou, X., Fang, Z., and Pan, Z. (2019). Effect of STC2 Gene Silencing on Colorectal Cancer Cells. Mol. Med. Rep. 20 (2), 977–984. Epub 2019/06/08PubMed PMID: 31173256; PubMed Central PMCID: PMCPMC6625197. doi:10.3892/mmr.2019.10332
 Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 77 (21), e108–e110. Epub 2017/11/03PubMed PMID: 29092952; PubMed Central PMCID: PMCPMC6042652. doi:10.1158/0008-5472.Can-17-0307
 Long, G. V., Atkinson, V., Cebon, J. S., Jameson, M. B., Fitzharris, B. M., McNeil, C. M., et al. (2017). Standard-dose Pembrolizumab in Combination with Reduced-Dose Ipilimumab for Patients with Advanced Melanoma (KEYNOTE-029): an Open-Label, Phase 1b Trial. Lancet Oncol. 18 (9), 1202–1210. Epub 2017/07/22PubMed PMID: 28729151. doi:10.1016/s1470-2045(17)30428-x
 Maggs, L., Sadagopan, A., Moghaddam, A. S., and Ferrone, S. (2021). HLA Class I Antigen Processing Machinery Defects in Antitumor Immunity and Immunotherapy. Trends Cancer 7 (12), 1089–1101. Epub 2021/09/08PubMed PMID: 34489208; PubMed Central PMCID: PMCPMC8651070. doi:10.1016/j.trecan.2021.07.006
 Majidpoor, J., and Mortezaee, K. (2021). Angiogenesis as a Hallmark of Solid Tumors - Clinical Perspectives. Cell Oncol. 44 (4), 715–737. Epub 2021/04/10PubMed PMID: 33835425. doi:10.1007/s13402-021-00602-3
 Matsuo, K., Yoshie, O., and Nakayama, T. (2021). Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers 13 (23), 6132. Epub 2021/12/11PubMed PMID: 34885241; PubMed Central PMCID: PMCPMC8656932. doi:10.3390/cancers13236132
 Meric-Bernstam, F., Larkin, J., Tabernero, J., and Bonini, C. (2021). Enhancing Anti-tumour Efficacy with Immunotherapy Combinations. Lancet 397 (10278), 1010–1022. Epub 2020/12/08PubMed PMID: 33285141. doi:10.1016/s0140-6736(20)32598-8
 Miao, Y.-R., Xia, M., Luo, M., Luo, T., Yang, M., and Guo, A.-Y. (2021). ImmuCellAI-mouse: a Tool for Comprehensive Prediction of Mouse Immune Cell Abundance and Immune Microenvironment Depiction. Bioinformatics 38, 785–791. Epub 2021/10/13PubMed PMID: 34636837. doi:10.1093/bioinformatics/btab711
 Miao, Y. R., Zhang, Q., Lei, Q., Luo, M., Xie, G. Y., Wang, H., et al. (2020). ImmuCellAI: A Unique Method for Comprehensive T‐Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy. Adv. Sci. 7 (7), 1902880. Epub 2020/04/11PubMed PMID: 32274301; PubMed Central PMCID: PMCPMC7141005. doi:10.1002/advs.201902880
 Neupane, P., Mimura, K., Nakajima, S., Okayama, H., Ito, M., Thar Min, A. K., et al. (2021). The Expression of Immune Checkpoint Receptors and Ligands in the Colorectal Cancer Tumor Microenvironment. Anticancer Res. 41 (10), 4895–4905. Epub 2021/10/02PubMed PMID: 34593437. doi:10.21873/anticanres.15303
 Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F., et al. (2019). Determining Cell Type Abundance and Expression from Bulk Tissues with Digital Cytometry. Nat. Biotechnol. 37 (7), 773–782. Epub 2019/05/08PubMed PMID: 31061481; PubMed Central PMCID: PMCPMC6610714. doi:10.1038/s41587-019-0114-2
 Penketh, P. G., Shyam, K., Baumann, R. P., Ishiguro, K., Patridge, E. V., Zhu, R., et al. (2012). A Strategy for Selective O6-Alkylguanine-DNA Alkyltransferase Depletion under Hypoxic Conditions. Chem. Biol. Drug Des. 80 (2), 279–290. Epub 2012/05/05PubMed PMID: 22553921; PubMed Central PMCID: PMCPMC3399964. doi:10.1111/j.1747-0285.2012.01401.x
 Pérez-Ruiz, E., Melero, I., Kopecka, J., Sarmento-Ribeiro, A. B., García-Aranda, M., and De Las Rivas, J. (2020). Cancer Immunotherapy Resistance Based on Immune Checkpoints Inhibitors: Targets, Biomarkers, and Remedies. Drug Resist. Updat. 53, 100718. Epub 2020/08/01PubMed PMID: 32736034. doi:10.1016/j.drup.2020.100718
 Picard, E., Verschoor, C. P., Ma, G. W., and Pawelec, G. (2020). Relationships between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front. Immunol. 11, 369. Epub 2020/03/27PubMed PMID: 32210966; PubMed Central PMCID: PMCPMC7068608. doi:10.3389/fimmu.2020.00369
 Ribas, A., Puzanov, I., Dummer, R., Schadendorf, D., Hamid, O., Robert, C., et al. (2015). Pembrolizumab versus Investigator-Choice Chemotherapy for Ipilimumab-Refractory Melanoma (KEYNOTE-002): a Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 16 (8), 908–918. Epub 2015/06/28PubMed PMID: 26115796. doi:10.1016/s1470-2045(15)00083-2
 Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in Previously Untreated Melanoma withoutBRAFMutation. N. Engl. J. Med. 372 (4), 320–330. Epub 2014/11/18PubMed PMID: 25399552. doi:10.1056/NEJMoa1412082
 Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab Plus Dacarbazine for Previously Untreated Metastatic Melanoma. N. Engl. J. Med. 364 (26), 2517–2526. Epub 2011/06/07PubMed PMID: 21639810. doi:10.1056/NEJMoa1104621
 Roulleaux Dugage, M., Jones, R. L., Trent, J., Champiat, S., and Dumont, S. (2021). Beyond the Driver Mutation: Immunotherapies in Gastrointestinal Stromal Tumors. Front. Immunol. 12, 715727. Epub 2021/09/08PubMed PMID: 34489967; PubMed Central PMCID: PMCPMC8417712. doi:10.3389/fimmu.2021.715727
 Singhal, R., Mitta, S. R., Das, N. K., Kerk, S. A., Sajjakulnukit, P., Solanki, S., et al. (2021). HIF-2α Activation Potentiates Oxidative Cell Death in Colorectal Cancers by Increasing Cellular Iron. J. Clin. Invest. 131 (12), 143691. Epub 2021/04/30PubMed PMID: 33914705; PubMed Central PMCID: PMCPMC8203462. doi:10.1172/jci143691
 Singleton, D. C., Macann, A., and Wilson, W. R. (2021). Therapeutic Targeting of the Hypoxic Tumour Microenvironment. Nat. Rev. Clin. Oncol. 18 (12), 751–772. Epub 2021/07/31PubMed PMID: 34326502. doi:10.1038/s41571-021-00539-4
 Skwarska, A., Calder, E. D. D., Sneddon, D., Bolland, H., Odyniec, M. L., Mistry, I. N., et al. (2021). Development and Pre-clinical Testing of a Novel Hypoxia-Activated KDAC Inhibitor. Cell Chem. Biol. 28 (9), 1258–1270. e13. Epub 2021/04/29PubMed PMID: 33910023; PubMed Central PMCID: PMCPMC8460716. doi:10.1016/j.chembiol.2021.04.004
 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 71 (3), 209–249. PubMed PMID: 33538338. doi:10.3322/caac.21660
 Tazzari, M., Bergamaschi, L., De Vita, A., Collini, P., Barisella, M., Bertolotti, A., et al. (2021). Molecular Determinants of Soft Tissue Sarcoma Immunity: Targets for Immune Intervention. Ijms 22 (14), 7518. Epub 2021/07/25PubMed PMID: 34299136; PubMed Central PMCID: PMCPMC8303572. doi:10.3390/ijms22147518
 Vitale, I., Manic, G., Coussens, L. M., Kroemer, G., and Galluzzi, L. (2019). Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 30 (1), 36–50. Epub 2019/07/04PubMed PMID: 31269428. doi:10.1016/j.cmet.2019.06.001
 Wang, S., Pang, L., Liu, Z., and Meng, X. (2021). SERPINE1 Associated with Remodeling of the Tumor Microenvironment in Colon Cancer Progression: a Novel Therapeutic Target. BMC Cancer 21 (1), 767. Epub 2021/07/04PubMed PMID: 34215248; PubMed Central PMCID: PMCPMC8254339. doi:10.1186/s12885-021-08536-7
 Watanabe, T., Shiozawa, M., Kimura, Y., Hiroshima, Y., Hashimoto, I., Komori, K., et al. (2021). Clinical Significance of Stanniocalcin2 mRNA Expression in Patients with Colorectal Cancer. Anticancer Res. 41 (4), 2117–2122. Epub 2021/04/05PubMed PMID: 33813422. doi:10.21873/anticanres.14983
 Xu, F., Xu, H., Li, Z., Huang, Y., Huang, X., Li, Y., et al. (2021). Glycolysis-Based Genes Are Potential Biomarkers in Thyroid Cancer. Front. Oncol. 11, 534838. Epub 2021/05/14PubMed PMID: 33981593; PubMed Central PMCID: PMCPMC8107473. doi:10.3389/fonc.2021.534838
 Xu, L., Deng, C., Pang, B., Zhang, X., Liu, W., Liao, G., et al. (2018). TIP: A Web Server for Resolving Tumor Immunophenotype Profiling. Cancer Res. 78 (23), 6575–6580. Epub 2018/08/30PubMed PMID: 30154154. doi:10.1158/0008-5472.Can-18-0689
 Xu, Z., Xu, L., Liu, L., Li, H., Jin, J., Peng, M., et al. (2021). A Glycolysis-Related Five-Gene Signature Predicts Biochemical Recurrence-free Survival in Patients with Prostate Adenocarcinoma. Front. Oncol. 11, 625452. Epub 2021/05/07PubMed PMID: 33954109; PubMed Central PMCID: PMCPMC8092437. doi:10.3389/fonc.2021.625452
 Yang, F., He, Z., Duan, H., Zhang, D., Li, J., Yang, H., et al. (2021). Synergistic Immunotherapy of Glioblastoma by Dual Targeting of IL-6 and CD40. Nat. Commun. 12 (1), 3424. Epub 2021/06/10PubMed PMID: 34103524. doi:10.1038/s41467-021-23832-3
 Yang, X., Weng, X., Yang, Y., Zhang, M., Xiu, Y., Peng, W., et al. (2021). A Combined Hypoxia and Immune Gene Signature for Predicting Survival and Risk Stratification in Triple-Negative Breast Cancer, Aging 13. 19486–19509. (undefined)Epub 2021/08/04PubMed PMID: 34341184. doi:10.18632/aging.203360
 Yap, T. A., Parkes, E. E., Peng, W., Moyers, J. T., Curran, M. A., and Tawbi, H. A. (2021). Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 11 (6), 1368–1397. Epub 2021/04/04PubMed PMID: 33811048; PubMed Central PMCID: PMCPMC8178168. doi:10.1158/2159-8290.Cd-20-1209
 Yorita, N., Yuge, R., Takigawa, H., Ono, A., Kuwai, T., Kuraoka, K., et al. (2021). Stromal Reaction Inhibitor and Immune-Checkpoint Inhibitor Combination Therapy Attenuates Excluded-type Colorectal Cancer in a Mouse Model. Cancer Lett. 498, 111–120. Epub 2020/11/02PubMed PMID: 33129954. doi:10.1016/j.canlet.2020.10.041
 You, L., Wu, W., Wang, X., Fang, L., Adam, V., Nepovimova, E., et al. (2021). The Role of Hypoxia‐inducible Factor 1 in Tumor Immune Evasion. Med. Res. Rev. 41 (3), 1622–1643. Epub 2020/12/12PubMed PMID: 33305856. doi:10.1002/med.21771
 Zhao, E., Chen, S., and Dang, Y. (2020). Development and External Validation of a Novel Immune Checkpoint-Related Gene Signature for Prediction of Overall Survival in Hepatocellular Carcinoma. Front. Mol. Biosci. 7, 620765. Epub 2021/02/09PubMed PMID: 33553243; PubMed Central PMCID: PMCPMC7859359. doi:10.3389/fmolb.2020.620765
 Zou, M.-Z., Liu, W.-L., Li, C.-X., Zheng, D.-W., Zeng, J.-Y., Gao, F., et al. (2018). A Multifunctional Biomimetic Nanoplatform for Relieving Hypoxia to Enhance Chemotherapy and Inhibit the PD-1/pd-L1 Axis. Small 14 (28), 1801120. Epub 2018/06/09PubMed PMID: 29882235. doi:10.1002/smll.201801120
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Xu, Cao, Zhu, Wang, Tan and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 08 June 2022
doi: 10.3389/fgene.2022.909797


[image: image2]
Oxidative Stress-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Responses in Patients With LUAD
Xinti Sun1†, Xingqi Huang2†, Xiaojuan Sun3†, Si Chen1, Zeyang Zhang1, Yao Yu1 and Peng Zhang1*
1Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
2Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
3Department of Oncology, Qingdao University Affiliated Hospital, Qingdao, China
Edited by:
Chuyan Wu, Nanjing Medical University, China
Reviewed by:
Qian Chen, Guangxi Medical University Cancer Hospital, China
Tienan Feng, Shanghai Jiao Tong University, China
Meng-Yu Zhang, Shandong University, China
* Correspondence: Peng Zhang, pengzhang01@tmu.edu.cn
†These authors have contributed equally to this work and share the first authorship
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 31 March 2022
Accepted: 04 May 2022
Published: 08 June 2022
Citation: Sun X, Huang X, Sun X, Chen S, Zhang Z, Yu Y and Zhang P (2022) Oxidative Stress-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Responses in Patients With LUAD. Front. Genet. 13:909797. doi: 10.3389/fgene.2022.909797

Lung adenocarcinoma is increasingly harmful to society and individuals as cancer with an inferior prognosis and insensitive to chemotherapy. Previous studies have demonstrated that oxidative stress and lncRNAs play a vital role in many biological processes. Therefore, we explored the role of lncRNAs associated with oxidative stress in the prognosis and survival of LUAD patients. We examined the expression profiles of lncRNAs and oxidative stress genes in this study. A prognosis prediction model and a nomogram were built based on oxidative stress-related lncRNAs. Functional and drug sensitivity analyses were also performed depending on oxidative stress-related lncRNA signature. Moreover, we investigated the relationship between immune response and immunotherapy. The results showed that a risk scoring model based on 16 critical oxidative stress lncRNAs was able to distinguish the clinical status of LUAD and better predict the prognosis and survival. Additionally, the model demonstrated a close correlation with the tumor immune system, and these key lncRNAs also revealed the relationship between LUAD and chemotherapeutic drug sensitivity. Our work aims to provide new perspectives and new ideas for the treatment and management of LUAD.
Keywords: lung adenocarcinoma, lncRNA, oxidative stress, bioinformatics, tumor immune
INTRODUCTION
Lung cancer, the primary malignant tumor, accounts for the main reason for cancer-related deaths worldwide (Schabath and DiGiovanni, 2015; Bray et al., 2018). A large percentage of lung cancers (approximately 85%) are non-small cell carcinomas (NSCLCs), and nearly 60% of patients have metastasized locally or distantly (Tun et al., 2019). The most common type of non-small cell lung cancer is lung adenocarcinoma (LUAD), with its incidence exceeding lung squamous cell carcinoma (Tong et al., 2018). Although clinical outcomes for patients with LUAD have significantly improved because of advances in diagnosis, surgery, radiation therapy, and molecular therapy, LUAD patients still have a relatively low 5-year survival rate (Zhang et al., 2019; Jurisic et al., 2020). The evidence that molecular biomarkers can be used for predictive purposes has been snowballing over the past few years, and these biomarkers have been discovered and applied (Jiao and Wang, 2016).
Oxidative stress is a state where there is an imbalance between the production of reactive oxygen species (ROS) and the effectiveness of antioxidants because of the imbalance between the production of free radicals and the ability to neutralize these oxidative molecules (Brown et al., 2020). Oxidative stress induced by reactive oxygen species (ROS) has become increasingly recognized as having an essential role in cancer development (Hussain et al., 2003). Studies have shown that cancer patients have reduced antioxidant status and elevated levels of oxidative stress even before tumor therapy begins. Furthermore, many biomarkers have been used to understand oxidative stress’ role in cancer pathophysiology (Jelic et al., 2021). An earlier study identified a set of oxidative stress genes implicated in the prognosis and progression of gastric cancer and may be used as potential prognostic and diagnostic biomarkers (Wu Z. et al., 2021).
Long non-coding RNAs (lncRNAs) comprise the majority of non-coding RNAs and represent transcripts with a length greater than 200 nucleotides. Among their functions are chromatin remodeling and transcriptional and post-transcriptional regulation (Kopp and Mendell, 2018). Additionally, lncRNAs are thought to influence tumor cell migration by regulating target genes (Ramilowski et al., 2020). Recently, several studies have demonstrated that immune-related lncRNAs and other lncRNAs may enhance the predictive value of LUAD patients (Sacks et al., 2018; Li et al., 2020). However, oxidative stress-related lncRNA signatures of LUAD have not been widely used.
This is the first bioinformatics study to reveal the association between oxidative stress-related lncRNAs and LUAD. The study utilized TCGA database to obtain the expression profiles of lncRNAs and genes related to oxidative stress. We identified the lncRNAs associated with oxidative stress using Pearson’s correlation analysis. LUAD patients with low risk scores are predicted to have better overall survival using this novel oxidative stress-related lncRNA prognostic model. Furthermore, we detected potential drug candidates aiming for this lncRNA signature associated with oxidative stress based on publicly available drug sensitivity databases. Additionally, we examined the relationship between immunotherapy and patient response. Last, we constructed a nomogram to predict the survival of LUAD patients. Based on the aforementioned studies, we aimed to provide new guidance for the clinical treatment of LUAD and further reveal the mechanism of oxidative stress in LUAD.
METHODS
Data Acquisition and Preprocessing
All data of LUAD patients (tumor = 535 and normal = 59) were downloaded from TCGA database (http://portal.gdc.cancer.gov/). In total, 807 oxidative stress-related genes were obtained from GeneCards (https://www.genecards.org) with a relevance score ≥7 (Wu Z. et al., 2021). Further preprocessed with the “limma” package in R ((FDR) < 0.05 and |log2 fold change (FC)|≥1), 199 differentially expressed oxidative stress genes were identified. We screened oxidative stress-related lncRNAs using Pearson’s correlation test (Pearson correlation coefficient >0.4, p < 0.001), and 3,295 oxidative stress-related lncRNAs were obtained. Volcano maps were created using the R package “ggplot2.” LUAD patients with missing overall survival values and short overall survival values (<30 days) were removed to reduce statistical bias. We obtained 490 samples and divided them into training and testing sets at random. Clinical characteristics were not significantly different between training and testing sets (p > 0.05). A total of 246 samples in the training set were used to develop a predictive risk model. The testing set included 244 samples used to validate the established risk model.
Construction and Validation of the Risk Model
Univariate Cox regression, LASSO regression, and multivariate regression analyses were applied to analyze the oxidative stress-related lncRNAs using R. The risk score is calculated with the formula as follows:
[image: image]
where coef (lncRNA) represents the correlation coefficient between lncRNAs and survival and expr represents the expression of lncRNAs. Patients were divided into high-risk and low-risk groups according to the median risk score.
Independent Factors and ROC
Univariate Cox and multivariate Cox regression analyses were conducted to verify whether risk scores and clinical characteristics were independent variables, and ROC curves were applied to compare the performance of the various factors in predicting outcomes.
Survival Analysis and Principal Component Analysis
Kaplan–Meier (K-M) survival analysis determined the overall survival (OS) of patients in subgroups, including low-risk and high-risk groups using the “survival” package in R. Principal component analysis (PCA) was further applied to verify the risk model.
Nomogram
The nomogram was created to better predict the survival by using the “RMS” packages in R. The concordance index and calibration plot were applied to test the reliability of the nomogram.
The Investigation of the Immune Microenvironment
The tumor mutation burdens (TMBs) were evaluated and summed using the R package “maftools.” The CIBERSORT and ssGSEA algorithms were used to analyze the infiltration status of immune cells. In addition, we compared immune checkpoint activation in low-risk and high-risk patients using the “ggpubr” R package. Stromal score, immune score, and ESTIMATE score of patients were calculated using the “ESTIMATE” package to further explore the tumor microenvironment (TME) in LUAD patients.
Exploration of Clinical Treatment
Using the R package “pRRophetic,” we evaluated their treatment responses according to half-maximal inhibition (IC50) per LUAD patient in terms of Cancer Drug Sensitivity (GDSC) (https://www.cancerrxgene.org/). The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was applied to explore the likelihood of the therapeutic immune response. The data of the immune subtype were downloaded on TIMER (http://timer.comp-genomics.org/) (Kong et al., 2021).
Functional Analysis
The “clusterProfiler” package in R was conducted to carry out GO and KEGG enrichment analysis. GSEA analysis was performed to further screen functional pathways using GSEA 4.2.1 software (http://www.gesa-msigdb.org/gsea/index,jsp). Cytoscape (version 3.6.1) was used to establish the co-expression network between lncRNAs and mRNAs for visualization.
Statistical Analysis
All statistical analyses and data visualization were conducted in R (https://www.r-project.org/, version 4.1.1). When no special instructions were given for the aforementioned methods of analysis, p < 0.05 was considered statistically significant.
RESULTS
Screening the Oxidative Stress-Related lncRNAs in LUAD Patients
The workflow is presented in Figure 1. Table 1 shows the clinical details of 490 patients with LUAD in the training and testing sets. In total, 807 oxidative stress-related genes were downloaded from GeneCards with a relevance score ≥7 (Supplementary Table S1). The expression of 199 differentially expressed oxidative stress genes was notably different among the normal samples and LUAD samples ((FDR) < 0.05 and |log2 fold change (FC)|≥1) (Supplementary Table S2). Among them, 115 were upregulated, and 84 were downregulated (Figure 2A), and a heatmap was drawn in Figure 2B. The oxidative stress–lncRNA co-expression network was shown in the Sankey diagram (Figure 2C), and 3,295 oxidative stress-related lncRNAs were discerned as oxidative stress-related lncRNAs (Pearson correlation coefficient >0.4, p < 0.001). The correlation between oxidative stress associated genes, like PDE5A and PRKG1, and lncRNAs were shown in (Supplementary Table S3), and displayed in (Figure 2D).
[image: Figure 1]FIGURE 1 | Flow diagram of complete data analysis.
TABLE 1 | Clinical details of 490 LUAD patients.
[image: Table 1][image: Figure 2]FIGURE 2 | Identification of oxidative stress-related lncRNAs in LUAD patients. (A) Volcano plot of oxidative stress-associated DEGs in TCGA databases. (B)Heatmap of oxidative stress-associated DEGs in TCGA databases. (C) Sankey relation diagram for differentially expressed oxidative stress genes and oxidative stress-related lncRNAs. (D) Heatmap for the correlations between oxidative stress genes and oxidative stress-related lncRNAs.
Risk Model Construction and Validation
Here, 182 oxidative stress-related lncRNAs were screened using univariate Cox regression analysis (Figure 3A, Supplementary Table S4). As a popular method, LASSO Cox analysis is widely used for the optimal selection of features from high-dimensional data. To prevent overfitting prognostic features, we used LASSO regression to analyze these lncRNAs, which identified 25 lncRNAs significantly associated with survival (Figures 3B,C). Finally, we used multivariate Cox regression analysis to identify the most powerful signatures. A total of 16 oxidative stress-related lncRNAs (Supplementary Table S5) were further identified and used to build a risk model (Figure 3D).
[image: Figure 3]FIGURE 3 | Construction and validation of the predictive model in TCGA training set. (A) Univariate Cox regression analysis of OS for part of 182 oxidative stress-related lncRNA prognostic signatures. (B,C) Altogether 25 lncRNAs were selected using LASSO regression. (D) Multivariate Cox regression analysis showed 16 independent prognostic lncRNAs. (E) Distribution of oxidative stress-related lncRNA model-based risk score for the training set. (F) Different patterns of survival status and survival time between high-risk and low-risk groups in the training set. (G) Heatmap to show the expression of 16 lncRNAs between high- and low-risk groups in the training set. (H) Kaplan–Meier curve of high-risk and low-risk patients in the training set.
Calculation of the risk score is based on the following formula: risk score = expression of LINC02390×(-2.38547318096874)+ expression of AC025048.4×(-1.0744285140728)+ expression of AC007255.1×(0.642127461867371)+ expression of AC073332.1×(2.23226126557912)+ expression of AC104971.3×(-0.49082814485428)+ expression of AC021517.1×( -6.77265267596657)+ expression of AC127070.2×(-0.797790541274756)+ expression of ZNF571-AS1×( -1.24587634589269)+ expression of AC091887.1×(4.74804318521426)+ expression of LINC00626×(0.588193036671943)+ expression of FLG-AS1×(1.45742973729599)+ expression of AC010999.2×(-1.51189302537647)+ expression of COLCA1×(-0.266002934139891)+ expression of AC105020.5×(-1.01917959971841)+ expression of OGFRP1×(1.29144053714695)+ expression of LINC00941×(0.297685670482472).
Using the aforementioned signatures, we calculated the patient’s prognostic risk score. LUAD patients were divided into high-risk and low-risk groups following a median risk score. The distribution patterns of risk scores of LUAD patients between the high-risk and low-risk groups in the training set are shown in Figure 3E. Patients’ survival status and survival time in the high-risk and low-risk groups in the training set are described in Figure 3F. For each patient, the relative expression levels of 16 oxidative stress-related lncRNAs are presented in Figure 3G. K-M analysis showed that the low-risk group in the training set had more prolonged overall survival than the high-risk group (Figure 3H, p< 0.001).
Using the uniform formula, we calculated risk scores for LUAD patients to validate the predictive capability of the established model. Figure 4 shows the diffusion of risk scores, survival status and time, and expression of the oxidative stress-related lncRNAs in the testing set (Figures 4A–C) and the entire set (Figures 4D–F). The K-M survival curve based on the testing set and the entire set also showed that the patients in the low-risk group had a longer OS than those in the high-risk group (Figures 4G,H, p<0.05).
[image: Figure 4]FIGURE 4 | Validation of the prognostic oxidative stress-related lncRNA signature. (A) Risk score, (B) survival status, and (C) heatmap for the testing set. (D) Risk score, (E) survival status, and (F) heatmap for the entire set. (G) Kaplan–Meier curve for the testing set. (H) Kaplan–Meier curve for the entire set.
Nomogram and Independent Prognostic Factor Analysis
Whether the risk model can be used as an independent prognostic factor for LUAD was tested by applying univariate and multivariate Cox regression analyses. Univariate Cox regression analysis indicated that risk score, disease stage, and TNM stage were related to prognosis (Figure 5A, p<0.001). Furthermore, multivariate Cox regression analysis presented that the risk score was an independent factor affecting prognosis (Figure 5B, p<0.001). According to the aforementioned results, it was concluded that the risk model based on the 16 oxidative stress-related lncRNAs had a significant impact on the survival and prognosis of LUAD patients and were independent prognostic factors.
[image: Figure 5]FIGURE 5 | Independent prognostic factors and construction of the nomogram. (A) Univariate analysis of the clinical characteristic and risk score with the OS. (B) Multivariate analysis of the clinical characteristic and risk score with the OS. (C) Nomogram predicts the probability of the 1-, 3-, and 5-year OS. (D) Calibration plot of the nomogram indicates the probability of the 1-, 3-, and 5-year OS.
To better predict the 1-,3-,5-year survival for LUAD patients, we established a nomogram combining gender, age, stage, TNM and risk score (Figure 5C). Using calibration curve analysis, the prediction accuracy of the nomogram was assessed (Figure 5D).
Assessment of the Risk Model
The sensitivity of the risk model was evaluated using time-dependent receiver operating characteristics (ROCs). The 1-, 3-, and 5-year AUC of the training set was 0.789, 0.849, and 0.835, while in the testing set, they were 0.721, 0.650, and 0.600, and of the entire set were 0.755, 0.757, and 0.707, respectively (Figures 6A–C). The AUC of the risk model was significantly higher than that of other clinicopathological features, indicating that the 16 oxidative stress-related lncRNAs are relatively reliable in the prognostic risk model of LUAD (Figure 6D). The concordance index also showed the accuracy of the risk model (Figure 6E). To further assess the group ability of the oxidative stress-related lncRNA model, we applied principal component analysis (PCA) to test for differences between high-risk and low-risk groups (Figures 6F,G). Additionally, we used PCA to verify the authenticity of the risk model constructed based on the complete gene expression profile, 199 oxidative stress-related differentially expressed genes, and risk model sorted by the expression of the 16 oxidative stress-related lncRNAs (Figures 6H–J). The results suggested that the risk model based on oxidative stress-related lncRNAs was able to distinguish high-risk and low-risk groups of patients.
[image: Figure 6]FIGURE 6 | Assessment of the predictive risk model and principal component analysis. The 1-, 3-, and 5-year ROC curves of the (A) training set, (B) testing set, and (C) entire set. (D) ROC curves of the clinical characteristics and risk score. (E) Concordance indexes of the risk score and clinical features. (F) PCA between high-risk and low-risk groups based on 16 prognostic lncRNAs in the training set (G) and testing set. (H) PCA between the high-risk and low-risk groups based on entire gene expression profiles, (I) all oxidative stress genes, (J) and risk model based on the representation profiles of the 16 oxidative stress-related lncRNAs in the entire set.
According to the universal clinicopathological characteristics, we evaluated the discrepancies of LUAD patients between the low-risk and high-risk groups. By dividing patients into groups based on gender, age, stage, or TNM, results indicated that the OS of the patients in the low-risk group was longer than that in the high-risk group (Figure 7).
[image: Figure 7]FIGURE 7 | Kaplan–Meier curves of OS difference stratified by LUAD stage (I–II or III–IV), age (≤65 or >65), gender (female or male), and TNM stage (T1–2 or T3–4) between high-risk and low-risk groups in TCGA entire set.
Stratification Analysis of the Oxidative Stress-Related lncRNA in Immune Features
We first used the CIBERSORT algorithm to explore patients’ immune cell infiltration status in the high-risk and low-risk groups (Supplementary Table S6). Figures 8A,B exhibited the fractions of 22 kinds of immune cells in high-risk and low-risk groups. We further assessed the relative abundance of 22 tumor-infiltrating immune cells in each patient to investigate better the underlying molecular mechanisms of oxidative stress-related lncRNAs and their correlations with tumor immunity using the ssGSEA algorithm (Supplementary Table S7). The results showed that many immune cells and immune responses were related to the risk score. The immune functions like Check−point, T_cell_co−inhibition, and Type_II_IFN_Reponse were higher in the low-risk group (Figure 8C). The infiltration of aDCs, B_cells, DCs, iDCs, neutrophils, T_helper_cells, Tfh, and TIL was significantly higher in the low-risk group (Figure 8D). Furthermore, we found that LUAD patients in the low-risk group had substantially higher stromal, immune, and ESTIMATE scores, suggesting that the TME was different from the high-risk group (Figures 8E–G).
[image: Figure 8]FIGURE 8 | Immune infiltration discrepancy in different risk groups. (A) Heatmap of 22 tumor-infiltrating immune cell types in low- and high-risk groups. (B) Bar chart of the proportions for 22 immune cell types. (C) ssGSEA scores of immune functions in low-risk and high-risk groups. (D) Immune cells in low-risk and high-risk groups. (E–G) TME scores between high- and low-risk groups. *p < 0.5, **p < 0.01, and ***p < 0.001; ns, no sense.
Somatic Mutation Landscape
Further analysis of the mutational landscape of somatic cells was conducted in LUAD patients. Based on the comparison, approximately 90.42% of patients exhibited genetic mutations in high-risk patients, while 86.25% of samples exhibited genetic mutations in low-risk samples (Figures 9A,B). The TMB of patients in the high-risk group was significantly higher than that in the low-risk group (Figure 9C, p<0.05). Therefore, we tested the correlation between the risk model-based oxidative stress-related lncRNAs and TMB using Spearman correlation analysis (Figure 9D, R = 0.24, p = 6.2e-08). The results suggested a strong correlation between the oxidative stress-based classifier index and the TMB. To investigate the impact of TMB state on prognosis in LUAD patients, we applied survival analysis based on high and low TMB groups. However, the survival curve of patients with high TMB was similar to that of patients with low TMB, indicating that the TMB failed to distinguish the survival in LUAD (Figure 9E, p>0.05). Moreover, we tested whether the TMB-combined risk score could accurately predict the OS outcome, as shown in Figure 9F, p<0.05. The results showed that the oxidative stress-related lncRNA model has better prognostic significance than the single tumor mutation burden status.
[image: Figure 9]FIGURE 9 | Exploration of tumor mutation burden and visualization of lncRNA networks. (A,B) Waterfall plot of somatic mutation features established with high- and low-risk groups. (C) Tumor mutation burden in the high-risk and low-risk groups. (D) Correlation between risk score and TMB. (E) Kaplan–Meier curve of the OS among the high- and low-TMB groups. (F) Survival analysis among four patient groups stratified by both TMB and risk score. (G) Correlation between the risk score and immune subtype. (H) Connection degree between the oxidative stress-related lncRNAs, oxidative stress-related genes, and risk types.
In addition, according to the immune subtype data from TIMER2.0 (Supplementary Table S8), we tested whether the risk model based on the 16 oxidative stress-related lncRNAs could distinguish the different immune subtypes (Figure 9G). The result suggested that the risk model had a high discriminative power with the immune subtype. Furthermore, oxidative stress genes, 16 oxidative stress-related lncRNAs, and risk types were included in the Sankey network (Figure 9H). These results may provide some insights into the role of oxidative stress–lncRNAs in LUAD oncogenesis.
Clinical Treatment and Drug Sensitivity Analysis
We speculated that patients in the high-risk and low-risk groups might have different responses to drugs, chemotherapy, critical ICPs, and immunotherapy because of the different immune microenvironments between the two groups. Therefore, to test our hypothesis, we used the R package “pRRophetic” to assess treatment response according to the half-maximal inhibitory concentration (IC50) available in the GDSC database for LUAD patients. The IC50s of A.443654, A.770041, AG.014699, AUY922, AKTinhibitors VIII, AZ628, and AZD.0530 were significantly higher in the low-risk group (Figure 10A), indicating that exposure to these drugs might be more appropriate for high-risk patients. Additionally, we counted the IC50 of common anti-lung cancer drugs in two subgroups. Patients in the low-risk groups were related with a higher IC50 of targeted therapy such as erlotinib (p < 0.05) and gefitinib (p > 0.05) and chemotherapeutics like paclitaxel (p < 0.05), etoposide (p < 0.05) and gemcitabine (p < 0.05), which indicated that the risk model served as a promising predictor of anti-tumor drug sensitivity (Figure 10B). In addition, with ICIs have been applied in the treatment of LUAD and other cancers, we further explored the differences in ICI-related biomarker expression among two subgroups. The results presented that the low-risk group had high CTLA4 (p < 0.05), HAVCR2 (p < 0.05), PD−1 (p < 0.05), TIGIT (p < 0.05), and PD-L1 (p > 0.05) expression (Figure 10C). Furthermore, we analyzed the sensitivity between hub oxidative stress-lncRNAs and drugs (Supplementary Table S9). For example, the highest correlation coefficient is between imiquimod and COLCA1 (Figure 10D, Cor = 0.448 p<0.001). Our study suggested that we could select appropriate drugs based on risk regrouping among LUAD patients.
[image: Figure 10]FIGURE 10 | Clinical application of the risk signature. (A) Comparison of IC50 of chemotherapeutic drugs among two subgroups. (B) Investigation of anti-tumor drug sensitivity-targeting signature. (C) Expression levels of CTLA4, HAVCR2, PD-1, TIGIT, and PD-L1 in the high- and low-risk groups. (D) Correlation between 16 lncRNAs and chemotherapeutic drugs. (E) TIDE prediction difference in the high-risk and low-risk groups.
We finally explored the correlation between oxidative stress-related lncRNAs and immunotherapy-related indicators. Similarly, we found that the low-risk group was more sensitive to immunotherapy than the high-risk group, suggesting that this oxidative stress-based classification index can be used as a predictor of TIDE (Figure 10E, p<0.001).
Functional Analysis
Given that the current study has not fully elucidated the mechanism of occurrence and progression of LUAD, we performed a functional enrichment analysis of differentially expressed genes (DEGs) between high-risk and low-risk groups ((|log2-fold change (FC)| ≥ 1, p < 0.05)). As shown in Figure 11A, Supplementary Table S10, GO enrichment analysis indicated that they mainly participate in the modulation of humoral immune response, immunoglobulin complex, and serine-type endopeptidase inhibitor activity, and so on. KEGG enrichment analysis presented that these lncRNAs were primarily connected with complement and coagulation cascades and hematopoietic cells (Figure 11B). We further explored the differences in biological functions between high-risk and low-risk groups using GSEA software (Figures 11C,D, Supplementary Table S11). Pathways such as aminoacyl tRNA biosynthesis and cell cycle were significantly enriched in the high-risk group. Still, pathways like asthma and autoimmune thyroid disease were highly enriched in the low-risk group. The results of these functional enrichment analyses fully demonstrate the unusual close management between LUAD and the immune system and provide support for our exploration of immunotherapy for LUAD. In addition, to explore how the key lncRNAs we screened affect the LUAD process by affecting differential genes, we constructed an lncRNA–mRNA interaction network (Figure 11E).
[image: Figure 11]FIGURE 11 | Functional analysis. (A) Top 10 classes of GO enrichment terms based on DEGs between two groups, including biological process (BP), cellular component (CC), and molecular function (MF). (B) Top 30 pathways of KEGG enrichment terms. (C) Gene set enrichment analysis of the top 10 pathways significantly enriched in the high-risk group. (D) Gene set enrichment analysis of the top 10 pathways enriched considerably in the low-risk group. (E) Cytoscape of lncRNA–mRNA co-expression network. Green nodes represent lncRNAs, while red nodes represent mRNAs.
DISCUSSION
Lung adenocarcinoma is the most common type of lung cancer and is distinguished from other lung tumors by its unique cellular and molecular features (Zappa and Mousa, 2016; Sainz de Aja et al., 2021). LUAD has a high degree of malignancy and a lack of early diagnosis methods, which also leads to an inferior prognosis of LUAD, that is, the 5-year survival rate of patients is often less than 15% (Spella and Stathopoulos, 2021; Šutić et al., 2021). Therefore, a deeper understanding of the occurrence and development mechanism of LUAD and the search for more accurate diagnostic and prognostic biomarkers are of great significance.
Oxidative stress is a pathological response in organisms, which means an imbalance between the production and consumption of ROS (Flohé, 2020). With the deepening of research, oxidative stress has been found to serve in the process of various diseases (Badanjak et al., 2021; Forman and Zhang, 2021; Kyriazis et al., 2021). Several recent studies have also pointed out the role of oxidative stress in LUAD. For example, the survey by Galan-Cobo et al. (2019) showed that deletion of the LKB1 gene in LUAD led to activation of the KLK pathway, ultimately leading to increased oxidative stress in the corresponding cells. Similarly, Hu et al. (2020) also pointed out that inhibition of the SLC7A11/glutathione axis significantly prolonged the survival time of KRAS-mutant LUAD mice. It can be seen that oxidative stress is of great significance in the process of LUAD. It is worth noting that although there have been experiments using oxidative stress-related indicators as clinical markers (Skoulidis et al., 2015; Sharma and Kanwar, 2018), most of them target specific LUAD subspecies, and there is still a lack of oxidative stress-related biomarkers for generalized LUAD, while lncRNA-based markers are even rarer.
In our study, 16 lncRNAs related to oxidative stress were selected to construct risk models. Most of them have no relevant research at present. With the help of bioinformatics methods, ZNF571-AS1 has been shown to predict the prognosis of dilated cardiomyopathy and acute myeloid leukemia (Pan et al., 2017; Chen et al., 2021). FLG-AS1 was powerfully demonstrated to predict pathological outcomes after therapeutic intervention in esophageal squamous cell carcinoma (Zhang et al., 2020). Similarly, AC025048.4 and AC007255.1 have demonstrated diagnostic and prognostic values in lung adenocarcinoma and esophageal carcinoma, respectively (Wang et al., 2021; Zheng Z. et al., 2021). However, there are many related studies on OGFRP1, LINC00941, and COLCA1. Recent studies have demonstrated that lncRNA OGFRP1 may promote tumor progression by regulating metabolism or mediating endothelial–mesenchymal transition in tumors of the digestive system and female reproductive system (Zou et al., 2019; Zhang et al., 2021; Dong et al., 2022). The study of Xiaojing Liu et al. also pointed out that this lncRNA can play a tumor-promoting role in non-small cell lung cancer through the miR-4640-5p/eIF5A axis. In addition, in our follow-up immune cell-related abundance analysis, it was found that the plasma B cell abundance level in the high-risk group was higher, which was consistent with the study of Zhou et al. (2021), which suggested that the increased expression of OGFRP1 may be one of the reasons for the poor prognosis of patients in the high-risk group of LUAD and may become a focus of tumor immunotherapy-targeting B cells. Similarly, LINC00941 has also been shown to be closely related to digestive system tumors in multiple studies. It can affect classic cancer-related pathways or genes such as the WNT/β-catenin pathway and MYC gene through specific regulatory axes (Ai et al., 2020; Chang et al., 2021; Wu N. et al., 2021). While COLCA1 was first thought to be related to the susceptibility of colorectal cancer (Peltekova et al., 2014), recent studies have pointed out its relationship with the exposure of primary biliary cholangitis (Hitomi et al., 2021). As for the survey by Zheng J. et al. (2021), there was a close relationship between the level of COLCA1 N-6 methylation and the tumor microenvironment of lung adenocarcinoma. In addition, we also noticed that among all 16 lncRNAs, AC021517.1 has the highest absolute value of the coef coefficient but was rarely studied, which may indicate that this RNA may play a vital role in the LUAD effect.
Interestingly, in the drug sensitivity correlation analysis, we found that COLCA1, FLG-AS1, LINC00941, OGFRP1, and ZNF571-AS1 lncRNAs showed statistically significant correlations with multiple drugs. Among them, LINC00941 showed the broadest correlation (related to the sensitivity of 25 drugs), and COLCA1 showed the highest positive correlation with imiquimod (Cor = 0.448 p < 0.001). Imiquimod is a Toll-like receptor 7 (TLR-7) activator, which can activate innate immune cells via TLR-7 or induce apoptosis and autophagy in cancer alone (Edwards, 2000; Huang et al., 2016). The study by Chuang et al. (2020) found that imiquimod can induce severe ROS production in skin cancer cells, which is consistent with our results, implying that oxidative stress may be a solution to the high chemoresistance of LUAD a potential entrance.
In addition, the functional enrichment analysis indicated that those DEGs between high-risk and low-risk groups were strongly correlated with human immune responses. According to ssGSEA analysis, T helper cells (Th cells) and HLA (human leukocyte antigen) systems were highly related to the risk score. Also, the results of immune correlation analysis pointed out that the high-risk group had more obvious immunosuppression than the low-risk group, and the scores of T helper cells and HLA were also lower (Zhu, 2018; Dong, 2021). The cells transform into different phenotypes after receiving other inflammatory stimuli. Recent studies have shown that in systemic lupus erythematosus, oxidative stress can shift Th cells toward pathogenic Th17 (Ohl and Tenbrock, 2021); similarly, vancomycin-induced gut oxidative stress can induce a Th1/Th17 bias in the Th-cell population in patients with colitis (Strati et al., 2021). ROS is necessary for the fate of Th cells (Franchina et al., 2018). Unsurprisingly, the latest study by Dejima et al. (2021) pointed out that the reduced infiltration of Th cells may be a key factor leading to the early carcinogenesis of LUAD. Clinical studies by Guo et al. (2017) also showed that compared with lung squamous cell carcinoma, LUAD patients had low levels of circulating Th cells. All of the aforementioned evidence points to the unique potential of Th cells in the treatment and prognosis of LUAD. The HLA system is critical in mediating immune defense, distinguishing between self and foreign cells to direct the target of immune killing (de Bakker et al., 2006; Redwood et al., 2018). HLA has numerous alleles, and different allelic variants lead to different binding specificities of HLA proteins (Jeiziner et al., 2021). It is worth noting that the HLA system has also been found to play a significant role in tumors, not limited to allergic reactions and rejection reactions. For example, HLA-G molecules exist at high levels in the tumor environment and have excellent potential to become immune checkpoint therapy (Attia et al., 2020; Loustau et al., 2020); the silent mutation or deletion of HLA molecules has proved to be a relatively common phenomenon in cancer (Shukla et al., 2015). The loss of HLA also occurs in LUAD, and the proportion of occurrence is not low (Dejima et al., 2021). But at the same time, we also noticed that the research of van de Water et al. (2021) showed that the expression level of HLA-G was inconsistent with the prognosis of lung cancer, but the prognosis and HLA-G level of patients with breast cancer, esophageal cancer, gastric cancer, and hepatocyte maintained a good correlation. This is in common with our findings and contradicts them, implying that the mutational diversity of HLA molecules has the value for further study.
Of course, there are some limitations to this study. First, this study was based on bioinformatics technology, and the database limited the reliability and applicability of the results, so some animal experiments or cell experiments need to be supplemented in the future; second, the oxidative stress-related data set we used was based on previous research results, so there may be some one-sidedness.
Here, we conducted the first integrated study of LUAD patients to reveal the relationships between the oxidative stress-related lncRNAs and LUAD. The expression profiles of lncRNAs and oxidative stress genes were identified, and a prognosis prediction model and a nomogram were built based on oxidative stress-related lncRNAs. Functional analysis and drug sensitivity analysis depending on the oxidative stress-related lncRNA signature were also performed. Additionally, we explored the relationship association with immunotherapy responses. All these studies aim to examine the role of oxidative stress in LUAD patients and provide new ideas for the precise treatment of LUAD in the future.
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Background: Glioblastoma (GBM) is the most common and malignant type of brain tumor. A large number of studies have shown that the immunotherapy of tumors is effective, but the immunotherapy effect of GBM is not poor. Thus, further research on the immune-related hub genes of GBM is extremely important.
Methods: The GBM highly correlated gene clusters were screened out by differential expression, mutation analysis, and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and proportional hazards model (COX) regressions were implemented to construct prognostic risk models. Survival, receiver operating characteristic (ROC) curve, and compound difference analyses of tumor mutation burden were used to further verify the prognostic risk model. Then, we predicted GBM patient responses to immunotherapy using the ESTIMATE algorithm, GSEA, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.
Results: A total of 834 immune-related differentially expressed genes (DEGs) were identified. The five hub genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) were identified as the prognostic risk model (PRM) screened out by WGCNA and LASSO analysis of DEGs. In addition, the PRM has a significant positive correlation with immune cell infiltration of the tumor microenvironment (TME) and expression of critical immune checkpoints, indicating that the poor prognosis of patients is due to TIDE.
Conclusion: We constructed the PRM composed of five hub genes, which provided a new strategy for developing tumor immunotherapy.
Keywords: biomarker, infiltrated immune cell, glioblastoma, prognostic risk model, tumor immune microenvironment
INTRODUCTION
Glioblastoma (GBM) accounts for 45.2% of primary malignant tumors in the central nervous system (Louis et al., 2016). GBM has remarkable communication ability with the tumor microenvironment (TME) and heterogeneity, which show a significant role in proliferation, invasion, and migration (Li G et al., 2017). Although significant progress has been made in the treatment of GBM, including surgery, radiotherapy, and chemotherapy, the prognosis of GBM is still unsatisfactory (Sathornsumetee et al., 2007; Onishi et al., 2011).
At present, immunotherapy for glioma is the most agreeable option, and a lot of related research is underway, such as programed cell death 1 ligand 1 (PDL-1) (Mathios et al., 2016), indoximod (IDO) (Lukas et al., 2019), and cytotoxic T lymphocyte antigen 4 (CTLA-4) (Fong et al., 2012). Increasing evidence shows that the effect of immunotherapy is not only related to tumor cells but also to the tumor microenvironment (TME) (Wu and Dai, 2017). Recent research has found that new immunoresponse therapies improve the prognosis of patients by enhancing the ability of the human immune system to recognize and attack tumor cells (Pitt et al., 2016; Gieryng et al., 2017).
In this study, we screened immune-related DEGs that are closely related to GBM and determined its prognostic value so as to investigate new GBM predictive models and potential biomarkers. Next, based on the TCGA database and CGGA database, a five-gene PRM that may be involved in immune infiltration was constructed. In addition, independent prognostic analysis, ROC curve and tumor mutation load analysis, and nomogram further verified the effect of the PRM in prognostic prediction. A robust immune-related PRM has been identified as an effective independent prognostic indicator for the subsequent personalized treatment of GBM.
MATERIALS AND METHODS
Patients and Datasets
The gene expression matrix data, sample gene mutation data, and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). The CGGA dataset contained 374 GBM samples. The TCGA dataset contained 156 GBM samples and five normal samples.
Screening of Immune-Related DEGs
The immune-related genes (IRGs) were obtained from the InnateDB database and Analysis Portal (ImmPort) database (Bhattacharya et al., 2014). A total of 6196 IRGs were used for further analysis. The immune-related DEGs were screened via the “pheatmap” and “limma” packages of the R language between normal and tumor tissues in GBM.
Tumor Mutation Burden
The tumor mutation burden (TMB) score was calculated using “Maftools” packages of the R language. According to median data of the TMB score, we could divide GBM samples into high-and low-TMB groups.
Weighted Gene Co-Expression Network Analysis
WGCNA was used to transform the association between genes and phenotypes into the association between some genomes and phenotypes via the R software package “WGCNA.”
LASSO Analysis and Construction of a Prognostic Risk Model
The gene expression matrix of GBM patients in the TCGA database is defined as the training group, and that of GBM patients in the CGGA database is defined as the testing group. We carried out the regression analysis of the least absolute shrinkage and selection operator (LASSO). Then, we calculated the individualized risk score with the coefficient and constructed a prognostic risk model (PRM) to distinguish the high-risk group from the low-risk group. The PRM was established to evaluate the accuracy of the univariate prognostic model, and a multivariate prognostic model was built based on the area under the curve (AUC) of the receiver operating characteristic (ROC) curve using the “pROC” software package of R language.
Clinical characteristics and pathological features including gender, age, BRAF V600E, IDH status, Karnofsky performance status (KPS) scores, promoter methylation status of O6-methylguanine-DNA methyltransferase (MGMT), and original subtype were collected from the TCGA database. Multivariate proportional hazard model (COX) regression analysis proves the prognostic value of the risk score.
Immunotherapy Response Prediction
The relative levels of abundance of the immune cell types were evaluated by the single sample gene set enrichment analysis (ssGSEA), which can quantify the scores of signature genes based on transcriptomic data (Hanzelmann et al., 2013). The CIBERSORT algorithm in the Tumor Immune Evaluation Resource (TIMER) online database is used to calculate the abundance of immune cells (Newman et al., 2015; Li T. et al., 2017). Furthermore, the Tumor Immune Dysfunction and Exclusion (TIDE) score was used to model the primary mechanisms of tumor immune evasion.
Gene Set Enrichment Analysis
GSEA was used to analyze the biological function of a single gene. To analyze the main function of the different genes, the “clusterProfiler” package was used for GO and KEGG analyses.
The Establishment and Evaluation of the Nomogram
The nomogram is used to integrate the related factors of tumor recurrence. The prediction ability of the model is further evaluated and quantified using the calibration curve of the nomogram.
RESULTS
In our study, we analyzed and verified a PRM based on differentially expression profiling of immune-related genes that may be used to aid prognostic analysis in patients with GBM. The PRM was associated with immune infiltration, immune checkpoint gene expression, and clinical characteristics. In summary, the risk model in our study can be used as a prognostic immune biomarker for GBM (Figure 1).
[image: Figure 1]FIGURE 1 | Flowchart of the workflow of the immune-related PRM.
Screening for Immune-Related DEGs and Functional Analysis
We identified 834 immune-DEGs from the TCGA database. The DEGs comprised 652 upregulated genes and 182 downregulated genes, using the criteria of |log2(FC)| > 1 (Figure 2A).
[image: Figure 2]FIGURE 2 | Immune-related DEGs in GBM from the TCGA database. (A) Heatmap visualizing the DEGs screened using the “limma” package. (B,C) Functional enrichment analysis of DEGs.
We annotated the functions of immune-related DEGs using GO functional analysis and KEGG enrichment analysis. The result of GO functional analysis for biological process analysis indicated that the DEGs are enriched in T-cell activation, regulation of the immune effector process, and regulation of innate immune response, (Figure 2B, p < 0.05). Furthermore, KEGG enrichment pathway analysis also demonstrated that the immune-related DEGs are mainly enriched in Th17 cell differentiation, Th1 and Th2 cell differentiation, and cytokine–cytokine receptor interaction (Figure 2C).
WGCNA Analysis to Select the Co-Expression Modules and Hub Genes
We tried to use WGCNA to highlight the gene partial correlation. We used the expression matrix of GBM patients in the TCGA database to perform WGCNA analysis. Consequently, we built the adjacency matrix and constructed the topological overlap matrix (Figures 3A,B). Finally, three modules were identified based on average hierarchical clustering and dynamic tree clipping (Figure 3C). The MEblue, MEbrown, and MEturquoise modules were related to tumor development, which contained 289, 56, and 391 genes, respectively (Figure 3D). Interestingly, MEblue, which is the most statistically significantly different module, was also the most correlated module (correlation coefficient = 0.85, p < 0.001). The complex PPI network of the MEblue module consists of 95 nodes and 1,690 edges (Supplementary Figure S1).
[image: Figure 3]FIGURE 3 | Identification of modules associated with the clinical traits of GBM in the WGCNA. (A) Analysis of the scale-free index for various soft-threshold powers (β). (B) Analysis of the mean connectivity for various soft-threshold powers. (C) Dendrogram of all differentially expressed genes clustered based on the measurement of dissimilarity (1-TOM). (D) Heatmap of the correlation between the module eigengenes and CDCP1 expression level of GBM. The color band shows the results obtained from the automatic single-block analysis.
Construction of a Prognostic Model
A total of 289 genes of the MEblue module were selected to perform LASSO and COX regression. The TCGA cohort and CGGA cohort were defined as the training group and testing group, respectively. Furthermore, the 12 key genes (PSMC2, STAT3, MPO, DES, PTK2B, SEMA4F, FGF17, GREM2, MDK, SH3BP2, SREBF1, and TOLLIP) were constructed with LASSO regression, when the log value (lambda) was between -3 and -4 (Figures 4A,B). The Akaike information criterion (AIC) value is used for further analysis by multivariate COX regression with LASSO penalty (Table 1). Then, we screened out the core gene with the minimum AIC value and constructed a prognostic risk model comprising core genes. Using this method, we obtained five potential prognostic genes as hub genes, namely, STAT3, SEMA4F, GREM2, MDK, and SREBF1 (Figure 4C). We established the PRM using the selected hub genes STAT3, SEMA4F, GREM2, MDK, and SREBF1. By excluding the influence of gender, age, BRAF V600E, IDH status, KPS score, methylation status of MGMT promoter, and original subtype on prognosis, the PRM is substantiated to be an independent prognostic risk factor for GBM patients. The result showed that the hazard ratio (HR) of the PRM was 1.41 (95% confidence interval, CI: 1.20–1.58) in the TCGA database (Figure 4D). Further analysis of hub genes showed that the survival time of high-risk patients was significantly less than that of the low-expression group (Figure 4E). As shown by the ROC curve of the PRM in Figure 3F, the AUC value was 0.72. We further verified the reliability of the PRM through CGGA database prognostic analysis and ROC curve analysis (Supplementary Figures S2A,B).
[image: Figure 4]FIGURE 4 | Construction of a prognostic model based on the 289 genes of the MEblue module in the training set. (A,B) Twelve survival-related genes by LASSO penalized regression. (C) Five potential prognostic genes via multiple Cox regression with LASSO penalty. (D,E) Prognostic classifier analysis of the patients in the internal testing set. (F) ROC curve of the potential prognostic genes.
TABLE 1 | Details of features selected by the multivariate Cox proportional hazard regression model with LASSO penalty.
[image: Table 1]We further analyzed the correlation between the PRM and clinical features (gender, age, BRAF V600E, IDH, KPS, MGMT, and original subtype) and tumor mutation burden (TMB). The results showed that GBM patients in the high-risk group were older, MES-GBM accounted for a larger proportion, and PN-GBM was lower (Supplementary Figure S3A). Also, TMB of the low-expression group is lower (Supplementary Figure S3B).
Biological Function of the Prognostic Risk Model
The GSEA was used to predict the possible biological functions of the PRM in the TCGA dataset. The KEGG pathway enrichment analysis showed that high expression of the PRM was significantly correlated with focal adhesion, MAPK signaling pathway, and regulation of actin cytoskeleton (Figure 5A) and the low expression of the PRM was significantly correlated with cell cycle and oxidative phosphorylation (Figure 5B). The GO enrichment analysis indicated that the PRM was correlated with the cellular response to hormone stimulus, peptide transport, and cytochrome complex (Supplementary Figures S4A,B).
[image: Figure 5]FIGURE 5 | GSEA of KEGG pathway enrichment analysis of the prognostic risk model (PRM) in the TCGA database. (A) High-risk group. (B) Low-risk group.
Risk Score Was Correlated With Genomic Aberration Features
In total, we used the “maftools” package to analyze the tumor mutation profiles of high PRM expression and low PRM expression. As shown in the waterfall plot, the tumor mutation burden was observed in 67 (85.90%) samples of the high-risk group and in 66 (86.84%) samples of the low-risk group. PTEN, TP53, TTN, EGFR, and MUC16 are the top five mutated genes in high-expression PRM group samples, and PTEN mutations are found in more than 30% of high-expression PRM group samples (Figure 6A). In the low-expression PRM group patients, TP53, EGFR, TTN, PTEN, and MUC16 are the top five mutant genes. The TP53 mutations are found in more than 35% of low-expression PRM group samples (Figure 6B).
[image: Figure 6]FIGURE 6 | Heatmap of tumor mutation burden of the PRM in the TCGA database. (A) High-risk group. (B) Low-risk group.
Immune Infiltration Landscape
The CIBERSORT algorithm was used to analyze the immune infiltration in GBM tissues. Figure 7A shows the proportions of immune cells in each GBM sample in different colors, and the lengths of the bars in the bar chart indicate the levels of the immune cell populations. Compared with the low-expression PRM group, we identified that the high-expression PRM had relatively high percentages of activated CD4+ memory T cells (Figure 7B). The results show that the difference in the tumor-infiltrating immune cell (TIIC) subgroup level among individuals partly reflects the prognosis. As shown in Figure 7, M0 macrophages and neutrophils were negatively correlated to overall survival (OS) in patients with glioma (Figures 7C,F). However, M1 macrophages, resting memory CD4+ T cells, and monocytes were positively related to OS (Figures 7D,E,G). The study suggests that the TIIC subgroup can provide the potential prognostic value for GBM treatment.
[image: Figure 7]FIGURE 7 | Immune infiltration in GBM samples as assessed in CGGA data. The proportions of tumor-infiltrating immune cells (TIICs) in 22 GBM patients from the CGGA database (A). Correlation analysis between CDCP1 expression and various types of infiltrating immune cells (B). Survival analysis of the TIIC subsets (C–G).
We further evaluated the correlation between the PRM and the characteristics of the tumor immune microenvironment through the “GSVA” package of R language. The result showed significant differences in immune cell infiltration and immune function, especially for regulatory T (Treg) cells and dendritic cells (DCs). Moreover, the higher CCR, parainflammation, and T-cell stimulation scores and type II IFN response scores were present in the high-expression PRM group rather than the low-expression PRM group (Figure 8A). We further verified the prognostic implications of immune cell infiltration and immune function by overall survival (OS) (Supplementary Figures 5A–W).
[image: Figure 8]FIGURE 8 | Correlation between the PRM and tumor immune microenvironment features. (A) Enrichment scores of 16 immune cells and 13 immune functions in the high-risk and low-risk groups of the PRM. The differential expression of most checkpoint genes, CD44 (B,C), IL-6 (D,E), and ITGAM (F,G) in the high-risk group and the low-risk group.
The expression of immune checkpoint genes, which play a key role in cellular immune regulation, in the PRM was further studied. It was found that compared with the low-risk group, the expression of most checkpoint genes (such as CD44, IL-6, and ITGAM) was upregulated in the high-risk group (Figures 7B–G). In conclusion, the consistency between PRM prognosis and TME characteristics suggests that this classification is reliable and reasonable. The dysfunction and TIDE scores were significantly higher for the high-risk group than for the low-risk group (Figures 9A,B).
[image: Figure 9]FIGURE 9 | Boxplots showed the scores of immune infiltrations and functions among the PRM. (A) Dysfunction. (B) TIDE.
Establishment and Evaluation of Clinical Predictive Models
The receiver operating characteristic (ROC) curve showed that the AUC of the 1-, 2-and 3-year survival rate of PRM was greater than 0.7 and the AUC of the 3-year survival rate was 0.819, which indicated the superiority of our method (Figure 10A). The result shows that our PRM can accurately indicate the prognosis of GBM patients. The ROC curves were used to evaluate the predictive efficacy of the PRM and the TIDE. The AUC values for the PRM and TIDE were 0.719 and 0.591, respectively (Figure 10B).
[image: Figure 10]FIGURE 10 | Establishment and verification of the prognostic risk model. (A) ROC curve of the PRM comprising STAT3, SEMA4F, GREM2, MDK, and SREBF1 expression at 1-year survival, 2-year survival, and 3-year survival. (B) Comparison between the traditional TIDE model and prognostic risk model. (C) Nomogram based on the PRM and clinicopathological factors. Calibration plot evaluating the predictive accuracy of the nomogram at 1-year survival (D) and 2-year survival (E).
The PRM and the clinical relevance and prognostic value of age, gender, IDH status, methylation status of MGMT promoter, and KPS scores were combined to construct a nomogram. Each factor in this nomogram is given a certain score (Figure 9C). The analysis of the nomogram and calibration curve proved that the PRM is reliable and accurate (Figures 10D,E). On the other hand, by comparing the factors in the nomograms, we found that the prognostic risk model had a high score, and this model played an important role.
DISCUSSION
Glioblastoma (GBM) is the most common malignant tumor in the central nervous system (CNS) (Davis, 2018), and there is no targeted therapy to ensure the maximum survival rate of glioma patients (Filbin and Suva, 2016; Louis et al., 2016). In the recent years, a large number of researchers used bioinformatics to analyze the data of thousands of expressed genes in the human genome through high-throughput sequencing and microarray analysis, which can be used to identify the immune-related gene characteristics existing in GBM and reveal its potential mechanism (Zhou et al., 2018).
As the basic unit of the immune system, cells are usually heterogeneous in the analyzed samples. The CIBERSORT algorithm was used to identify cell types so as to capture the background centered on cells and at the whole system level. Researchers have performed a lot of research to verify the effectiveness of the calculation method. The composition of immune cells in cancer tissues has been verified and successfully evaluated by flow cytometry and other methods (Cackowski et al., 2019). Infiltrating immune cells play an important role in promoting and/or regulating tumor progression and growth (Whiteside, 2008). These tumor immune cells produce various cytokines and chemokines, which are necessary for infiltrating immune cells to function in promoting inflammation or eliminating inflammation and have a great influence on the progress of glioma and the drug resistance of therapeutic intervention (Boussiotis and Charest, 2018). Our study and the existing literature report on the immune-related PRM of tumors all use R language to analyze the gene expression matrix of the public database, but we added LASSO regression, multivariate Cox regression analysis, and WGCNA analysis and further used nomograms to verify the model (Chen et al., 2020; Qian et al., 2021). The immune-related genes selected in this study are specific markers.
We finally screened five genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) by WGCNA and LASSO analysis of immune-related DEGs. The gene signal transducer and activator of transcription 3 (STAT3, Gene ID: 6774) is a transcription factor that is activated by various signal-induced phosphorylation. In the microenvironment of glioma and in the tumor microenvironment, the EGFR and the IL6 signaling pathway play important roles in activating STAT3 (Wang et al., 2013; Kim et al., 2016). STAT3 is abnormally activated in various immune cells, creating a microenvironment of immune escape (Wang et al., 2004; Melillo et al., 2010). The gene ssemaphorin 4F (SEMA4F, Gene ID: 10505) encodes a transmembrane class IV semaphorin family protein, which plays a role in neural development (Gabrovska et al., 2011; Shergalis et al., 2018), and the previous study found that SEMA3B was found to be a marker for poor survival in patients over 50 diagnosed with GBM (Rich et al., 2005). Gremlin-2 (GREM2, Gene ID: 64388) has been found to have the highest concentration in the brain but much lower in the kidney and lung (Church et al., 2017). It can inhibit the canceration and progression of endometrial cancer (Sun et al., 2020). Midkine (MDK, Gene ID: 4192) encodes a member of a small family of secreted growth factors that binds heparin and responds to retinoic acid (Guo et al., 2020). Sterol regulatory element binding transcription factor 1 (SREBF1, Gene ID: 6720) is essential for squamous cell carcinoma (SCC) viability and migration, and its overexpression is associated with poor survival in SCC patients (Li et al., 2021).
In our study, immune-related differential genes were screened out through differential expression, and then the PRM was constructed through bioinformatics. It was verified that the PRM was significantly positively correlated with immune cell infiltration and the expression of key immune checkpoints in the TME. These preliminary results provide a perspective for exploring the role of immune escape in GBM. However, this study has the following limitations. First of all, our research lacks further verification by in vivo experiments. Second, this research study is based on the public database, lacking the analysis of sequencing data in our institution to verify our research results.
In conclusion, we identified a five-gene prognostic risk model based on the differential expression profiling of immune-related genes that may be used to aid prognostic analysis in patients with GBM. The low-risk and high-risk groups of the PRM exhibit significant differences with respect to immune infiltration, TMB, and tumor immune evasion. The nomogram established and validated to the PRM is not only reliable but also showed that the accuracy of predicting survival in each patient was high. These findings provide novel insights into the design of immunotherapeutic strategies against GBM.
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Background: Hepatocellular carcinoma (HCC) is the world’s most common cause of cancer death. Therefore, more molecular mechanisms need to be clarified to meet the urgent need to develop new detection and treatment strategies.
Methods: We used TCGAportal, Kaplan–Meier Plotter, the Cistrome DB Toolkit Database, MExpress, GEPIA2, and other databases to discuss the expression profiles, possible biological function, and potential prognostic value of versican (VCAN) in HCC. We conducted cell experiments such as Transwell migration and invasion assays, wound healing assay, and CCK8 experiment to explore the function of VCAN in HCC.
Result: We selected three HCC transcriptome databases GSE124535, GSE136247, and GSE144269 and analyzed the overexpressed genes contained in them. The overlapping genes were found by the Venn map, and two interacting network modules were found by Mcode. Module 1 was mainly related to mitosis and cell cycle, and module 2 was mainly related to EMT, angiogenesis, glycolysis, and so on. We found that the seed gene in module 2 is VCAN. Data from TCGAportal showed that compared with normal tissues, the expression of VCAN was up-regulated in HCC tissues. The patients with high expression of VCAN had shorter distant recurrence-free survival and overall survival. Multiple possible VCAN interactions had also been identified. These results revealed that the level of VCAN was higher in the subtypes of HCC with higher malignant degree and was connected to the poor prognosis. In addition, the treatment of VCAN with DNA methyltransferase inhibitors and transcription factor inhibitors may improve the prognosis of patients with HCC.
Conclusion: Our findings systematically elucidated the expression profile and different prognostic values of VCAN in HCC, which may provide new therapeutic targets and potential prognostic biomarkers for HCC patients.
Keywords: VCAN, hepatocellular carcinoma, prognosis, invasion, immune
INTRODUCTION
HCC is the world’s most common cause of cancer death, the fifth most common cancer in the United States, and the only cancer with an increasing annual incidence among the top five fatal cancers (Siegel et al., 2019). The prognosis of HCC is extremely poor, with a 5-year average survival rate of less than 10% (Bray et al., 2018). In addition, only 5%–15% of patients with HCC are eligible for surgical resection at the early stage, while most patients with HCC are diagnosed with advanced cancer. Advanced treatment includes transarterial chemoembolization (TACE) and oral sorafenib chemotherapy. However, less than 1/3 of patients benefited from treatment, and drug resistance was evident within 6 months after the start of treatment (El-Serag et al., 2008). In addition, immune checkpoint inhibitors (ICIs) have gradually become a hot field of cancer treatment. In some economically developed countries, more than half of metastatic cancer patients are eligible for ICI treatment. As of December 2021, there are eight ICI-related drugs approved, and they are used to treat up to 17 different malignancies (Haslam and Prasad, 2019). At the same time, these drugs are increasingly used in multiple (neo)adjuvant and maintenance treatments, and ICIs are frequently used in combination regimens (Vilgelm et al., 2016). Immune checkpoints are receptors expressed by immune cells that dynamically regulate immune homeostasis and are particularly relevant to T-cell function (Blank et al., 2019). The PD1/PDL1 monoclonal antibody, which has recently attracted much attention, is one of them. However, recent basic and clinical studies have shown that the cancellation of immune checkpoints will bring many unavoidable side effects and even endanger the lives of patients. At the same time, drug resistance is also a problem that cannot be ignored (Sun et al., 2022). Therefore, exploring biomarkers with high specificity and sensitivity or looking for new molecular targets can not only help clinicians to predict the prognosis of patients but also clarify the potential mechanism of HCC, which has long-term significance.
VCAN is a chondroitin sulfate proteoglycan, a major component of extracellular matrix (ECM), which provides hydration and lose matrix in disease progression and critical events (Kinsella et al., 2004; Wu et al., 2005). VCAN refers to a complex molecule that covers the glycosaminoglycan side chain and modular core protein domain and has a series of synthetic procedures and processes to regulate these elements (Wight, 2002). VCAN can affect the process of cell adhesion, proliferation, migration, and angiogenesis, which seriously affects the morphogenesis and maintenance of tissue (Rahmani et al., 2006).In addition, VCAN involves many pathological steps, including axonal outcome, central nervous mechanism injury, hair follicle circulation, tendon remodeling, and atherosclerotic vascular disease (Du et al., 2013; Shen et al., 2020). However, the detailed function and molecular mechanism of VCAN in HCC are still unclear. Therefore, in this study, we studied the expression, molecular mechanism, and clinical correlation of VCAN in HCC.
RESULT
VCAN Might Be Related to EMT, Angiogenesis, and Glycolysis
We selected three HCC transcriptome databases GSE124535, GSE136247, and GSE144269, and used GEO2R to analyze the overexpressed genes contained in them. The overlapping genes were found by the Venn map (Figure 1A), and two interacting networks module, were found by Mcode (Figure 1B). Module1 was mainly related to mitosis and cell cycle (Figure 1C,D), and module2 was mainly related to EMT, angiogenesis, glycolysis, and so on (Figure 1E,F). We found that the seed gene in module2 was VCAN.
[image: Figure 1]FIGURE 1 | VCAN might be related to EMT, angiogenesis, and glycolysis. (A) We selected three liver cancer transcriptome databases GSE124535, GSE136247, and GSE144269, and used GEO2R to analyze the overexpressed genes contained in them. The overlapping genes were found by the Venn map. (B) Two interacting networks module were found by Mcode. (C–D) Module1 is mainly related to mitosis and the cell cycle. (E–F) Module2 is mainly related to EMT, angiogenesis, glycolysis, and so on.
VCAN Was Over-Expressed in HCC
The three databases GSE124535, GSE136247, and GSE144269 all showed that the expression of VCAN in HCC tissue is higher than in normal tissue (Figure 2A), Next, we used UALCAN to conduct a more comprehensive analysis of VCAN mRNA expression in HCC. Subgroup analysis based on race, nodal metastasis status, and histological subtypes showed significantly higher VCAN mRNA levels in HCC patients than in healthy individuals (Figure 2B–D). The results identified, to a certain extent, the population that could benefit from VCAN-targeted liver cancer treatment in the future. The analysis of the Human Protein Atlas data indicated that VCAN staining was stronger in HCC tissue than in normal liver tissue (Figure 2E). RNA expression and protein localization results for VCAN based on data generated in the Human Protein Atlas project are VCAN detected in the vesicles, and expected to be secreted. When VCAN is secreted outside the cell, it is mainly present in the ECM. The subcellular location of VCAN was further confirmed based on immunofluorescence analysis of all study cell lines and all antibodies tested (Figure 2F).
[image: Figure 2]FIGURE 2 | VCAN expression overview. (A) The expression level of VCAN mRNA in HCC is obviously more than that in normal tissues. (B–D) Discrepancy in VCAN mRNA expression is hinged on race, nodal metastasis status, and histological subtypes. (E) The expression level of VCAN in normal tissue and HCC tissue. (F) VCAN is in the same position as microtubule proteins in the cytoplasm of U-2 OS, A-431, and U-251 MG cells.
Research Results of VCAN in the Single-Cell Level
We studied the expression of VCAN at the single-cell level. Stellate is a subtype of fibroblasts. Studies have shown that VCAN was expressed in fibroblasts and had a similar expression pattern to classical fibroblast markers such as COLA1/2 and DCN (Figure 3A). Furthermore, data indicated that there was a strong correlation between VCAN and fibroblast markers in HCC (Figure 3B). In addition to fibroblasts, VCAN was also highly expressed in myeloid (Figure 3C). Some correlation between VCAN and myeloid markers in HCC was exhibited in Figure 3D.
[image: Figure 3]FIGURE 3 | Research results of VCAN in a single cell. (A) VCAN is expressed in fibroblasts and has a similar expression pattern to classical fibroblast markers such as COLA1/2, DCN. (B) There is a strong correlation between VCAN and FB markers in HCC. (C) VCAN is highly expressed in the myeloid. (D)Some correlation between VCAN and myeloid markers in HCC.
VCAN Expression Was Strongly Associated With Clinical Outcome
The prognostic potential of VCAN in HCC was further examined using Kaplan–Meier Plotter. Results indicated that the overall survival of the population with low VCAN expression was significantly higher than that of the population with high VCAN expression (Figure 4A,D). But surprisingly, the recurrence-free survival of the low VCAN-expressing population appears to be lower than the high VCAN-expressing population, but with a p value of 0.049 (Figure 4B). In Grade 2 and Grade 3 HCC patients, the survival of patients with low VCAN expression was significantly higher than that of HCC patients with high VCAN expression. Due to the small number of patients in Grade 1 and Grade 4 counted, the differences between these two populations cannot be accurately counted (Figure 4C).
[image: Figure 4]FIGURE 4 | Clinical role of VCAN in HCC. (A-D) The patient has a poor OS and poor RFS with a high level of VCAN.
VCAN Played a Promoting Role in HCC Cells In Vitro
The results of the scratch assay showed that in the HCC cell line, the scratch closure rate of inhibiting VCAN was significantly lower than that of the control group (Figure 5A). Compared with the control group in the confluence monolayer transwell experiment of cultured HCC cell line, si-VCAN inhibited the relative migration and invasion rate of VCAN (Figure 5B,C). Plate cloning and CCK-8 assay showed that VCAN gene knockout significantly inhibited the proliferation of YY-8103 and LM3 cells compared with the control group (Figure 5D). The overexpression of VCAN has the opposite effect (Figure 6A–D). These results suggested that inhibition of VCAN could delay the proliferation, invasion, and migration of HCC in vitro.
[image: Figure 5]FIGURE 5 | Artificial reduction of VCAN expression can effectively inhibit the proliferation of HCC cells. (A) Scratch assay was used to reduce the expression of the VCAN gene. (B) When VCAN expression was inhibited, the migration of HCC cells was also inhibited. (C) By knocking down the expression of VCAN, the invasion of HCC was effectively prevented. (D) CCK8 assay confirmed that the inhibition of VCAN by si-VCAN could slow down the proliferation of HCC cells. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
[image: Figure 6]FIGURE 6 | Artificial up-regulation of VCAN expression can effectively accelerate the proliferation of HCC cells. (A) Scratch assay was used to increase the expression of VCAN gene. (B) When VCAN expression was up-regulated, the migration of HCC cells was also promoted. (C) By up-regulating the expression of VCAN, the invasion of HCC was effectively promoted. (D) CCK8 assay confirmed that the overexpression of VCAN could accelerate the proliferation of HCC cells.*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
The Transcription Factors (TFs) That May Affect the Transcription of the VCAN Gene
In order to identify the members of the molecular network that may regulate the expression of VCAN, we detected the TF that may affect the transcription of the VCAN gene. First, the 20 most regulated TF in human cancers were identified using Cistrome DB Toolkit (Figure 7A). We reviewed the relevant literature and found that transcription factors such as SOX2, SMAD3, CTNNB1, and TP53 have been reported to play an important role in liver cancer. Previous studies have shown that the high expression of SOX2 is associated with metastasis and a low survival rate of HCC. Hepatoma cells overexpressing SOX2 are characterized by active epithelial-mesenchymal transition, showing a stronger ability for transpose invasion, soft agar colonization, and spheroid formation (Sun et al., 2013). Hepatoma cells release exosomes containing SMAD family member 3 (SMAD3) protein and mRNA and transfer them to isolated hepatoma cells to promote their adhesion. These exosomes can induce the enhancement of SMAD3 signal transduction and adhesion ability of the recipient hepatoma cells. In addition, the research also found that there are abundant SMAD3 exosomes in the peripheral blood of patients with HCC, and its level is related to the stage of the disease and the expression of Smad3 in the primary tumor (Fu et al., 2018). In addition to these, Wnt/CTNNB1 mutation is a characteristic of immune rejection (cold tumor) and maybe a biomarker for predicting drug resistance of immunosuppressants at immune checkpoints in HCC (Pinyol et al., 2019).
[image: Figure 7]FIGURE 7 | VCAN may had the ability to control HCC-related genes and TFs in HCC. (A) VCAN was regulated by those 20 most likely TFs in different human cancers. (B) There’s a connection between VCAN mRNA expression and DNA methyltransferase (DNMT) expression. (C) VCAN DNA methylation modification in HCC.
VCAN mRNA Expression Is Positively Correlated With DNMT
Previous studies have shown that DNA methylation plays an important role in HCC (Xu et al., 2017). In addition, the methylation of CpG island in the promoter region of the gene prevents some TF from binding to DNA, thus inhibiting gene transcription. Therefore, we used MEXPRESS to examine the DNA methylation modification of the VCAN gene in HCC (Figure 7C). Interestingly, in the GEPIA 2 database, there was also a positive correlation between the expression of VCAN and DNA methyltransferase (DNMT) in HCC (Figure 7B). These results suggest that transcription factors and DNA methylation may play an important role in the process of HCC by regulating the expression of VCAN.
miRNA, circRNA, and RBP Interact With VCAN in HCC
By mining the three databases of LinkedOmics, Starbase, and Target can, it was found that four common miRNA were down-regulated in HCC: hsa-miR-144-3p, hsa-miR-455-5p, hsa-miR-944, and hsa-miR-186-5p (Figure 8A). Previous studies have shown that the expression of hsa-miR-144-3p in HCC is significantly higher than that in adjacent tissues, and the ratio of HSA144-3p/hsA-miR-21-5p increases significantly during the occurrence of HCC, which is even better than alpha-fetoprotein in ROC curve analysis, suggesting that HSA144-3p may be an excellent predictive marker of liver cancer (Pu et al., 2018). In addition, HSA-miR-455-5p has also been proved to be involved in the occurrence and development of liver cancer (Wang et al., 2021). Furthermore, the analysis of Starbase showed that the expression of the four miRNAs was negatively correlated with the expression of VCAN in HCC (Figure 8B). Since circRNA can further regulate gene expression through sponge miRNAs, 10 circRNAs of sponge hsa-miR-455-5p, and hsa-miR-144-3p are also identified in HCC (Figure 8C). RNA binding proteins (RBP) are important post-transcriptional regulators, and different RBPs can interact with many RNA binding domains. The development of cancer is often accompanied by abnormal interactions between RBPs and RNA (Deng et al., 2018). We used Starbase to mine 20 RBP most likely to interact with VCAN mRNA in hepatoma cell line HepG2.
[image: Figure 8]FIGURE 8 | CircRNAs and miRNAs that might regulate VCAN. (A) From three miRNA prediction datasets, we select four miRNAs that might regulate VCAN. (B) The four miRNAs are negatively correlated with VCAN mRNA expression. (C) Top 10 circRNAs interacting with HSA-miR-144-3p or HSA-miR-455-5p identified by starBase.
VCAN Expression Was Correlated With Immune Factors
Existing studies have confirmed that the immune system is closely related to the occurrence and development of tumors. Therefore, we studied the relationship between the expression of VCAN and immune factors. Figure 9A–C showed that there was a strong correlation between the expression of immune inhibitors, immunostimulators, and lymphocytes and the expression of VCAN.
[image: Figure 9]FIGURE 9 | Three types of cancer-related immune factors are related to VCAN. (A) Correlation between VCAN expression and immunoinhibitors in HCC. (B) Correlation between VCAN expression and immunostimulator in HCC. (C) Correlation between VCAN expression and lymphocyte in HCC.
MATERIALS AND METHODS
VCAN Expression Level Analysis
TCGAportal (www.tcgaportal.org) was used to study the expression of VCAN in different tumor tissues and corresponding paracancerous tissues. The human protein map (https://www.proteinatlas.org/) database contains pathological and genetic information from many reports from a variety of tissues and cells. We used it to detect the expression of VCAN in different tissues and the localization of VCAN mRNA in cells. Next, we used UALCAN (http://ualcan.path.uab.edu/) to compare the expression of VCAN in patients with HCC of different races, ages, and histological subtypes. Finally, the significance of the observed difference was evaluated by the Wilcoxon rank-sum test.
Relapse and Survival Analysis
Kaplan–Meier Plotter (http://kmplot.com/analysis/index.php?p=background) is a free online database, built by using gene expression data and survival data from a variety of cancer patients including HCC (Gyorffy et al., 2010; Gyorffy et al., 2013; Szasz et al., 2016). We used this online database to explore the relationship between the expression of VCAN and OS and RFS of patients with HCC. Kaplan–Meier survival plots were used to compare OS and RFS in HCC patients with high VCAN expression and those with low VCAN expression, and 95% confidence interval hazard ratios and log-rank p values were calculated.
TF Identification
The Cistrome DB Toolkit database (http://dbtoolkit.cistrome.org) is a resource of human and mouse cis-regulatory information, including about 47,000 human and mouse samples with about 24,000 newly collected data sets compared with 2 years ago. Users can use this database to search for TFs related to the regulation of target genes in order to identify binding factors, histone modifications, and chromatin accessibility in a genomic interval of interest up to 2 Mb in length. Once users provide the overlap with the particular genomic interval sets, similar ATAC-seq, DNase-seq, and ChIP-seq samples can be determined (Mei et al., 2017; Zheng et al., 2019). We used the Cistrome Database Toolkit to search for TFs that were most likely to increase VCAN expression.
DNA Methylation Modification Analysis
MEXPRESS (https://mexpress.be/), a user-friendly database tool for the visualization and interpretation of TCGA data, can be used to study TCGA expression, DNA methylation status, and clinical data and the relationships between them (Koch et al., 2015). In this research study, we use this database tool to study the methylation status of VCAN mRNA and the relationships between VCAN mRNA expression and different clinical characteristics in HCC patients.
Gene Correlation Analysis
GEPIA2 (http://gepia2.cancer-pku.cn/#index), an open-access dataset, can be used to study RNA sequencing expression data from 9,736 tumors and 8,587 normal samples derived from the TCGA and GTEx projects. The dataset provides tumor/normal differential expression analysis, profiling according to cancer types or pathological stages, patient survival analysis, similar gene detection, correlation analysis, and dimensionality reduction analysis. In this study, we used GEPIA2 to synthetically analyze the correlations between all-important genes.
Identification of miRNAs and circRNAs That Target VCAN
TargetScanHuman (http://www.target scan.org/vert_71/) has the ability to search for the presence of conserved 8mer, 7mer, and 6mer sites that match the seed region of each miRNA to predict biological targets of miRNAs. starBase v3.0 (http://starbase.sysu.edu.cn/index.php), an open-source platform for the identification of the interactions between miRNA to lncRNA, RBP to lncRNA, miRNA to mRNA, RNA to RNA, ncRNA to RNA, and RBP to mRNA from CLIP-seq, degradome-seq, and RNA-RNA interactome data. These two databases were used to confirm the potential miRNAs that bind to VCAN mRNA. In addition, starBase v3.0 was used to perform circRNA prediction, miRNA survival analysis, and analysis of correlations between miRNAs and VCAN mRNA.
Protein–Protein Interaction and Functional Enrichment Analysis
Metascape (http://metascape.org/gp/index.html#/main/step1), a web portal, combines 40 independent knowledge bases’s functional enrichment, interactome analysis, gene annotation, and membership search. It promotes comparative analysis of multiple independent and orthogonal experiments across datasets (Zhou et al., 2019). STRING (https://string-db.org/cgi/input.pl) is a database that you can use to search for protein-protein interactions you are interested in, including direct (physical) and indirect (functional) connections; The conclusions obtained are comprehensively calculated and predicted, and knowledge transfer between organisms and interactions summarized in other (main) databases (Szklarczyk et al., 2019). We use STRING to create an interaction network between VCAN and other important proteins.
Immune-Related Analysis
DISIDB (http://cis.hku.hk/TISIDB/index.php) is a web portal. Multiple heterogeneous data types were integrated to analyze the interaction between tumor and immune system in this web portal (Ru et al., 2019). We use it to analyze the spearman correlations between VCAN expression and immunostimulation, immune inhibitors, and lymphocytes across human cancers.
Cell Culture and Transfection
We used RPMI 1640 medium, which contains 10% fetal bovine serum, to cultivate YY-8103 and LM3 cell lines in a 5% CO2 incubator with penicillin (100 IU/ml) and streptomycin (100 mg/ml). The small interfering RNA target to VCAN (si-VCAN) and untargeted control siRNA were produced by HongXin company in Nanjing, China. We used the solution manufacturing by Applied biological materials company (Canada) and the Opti-MEM (Gibco, United States) to transfer. The target sequence of si-VCAN we obtained was as follows: si-RNA: 5‘-GGA​UAG​GCC​UCA​AUG​ACA​ATT-3’.
Cell Proliferation Experiments
In the CCK8 experiment, we firstly transfected the YY-8103 and LM3 cells line and incubated at 37 °C. Then put the CCK8 solution (Biosharp, China) into each hole and incubate for 2 hours. The absorbance was detected at 450 nm at 0, 24, 48, 72, and 96 h. We did all the experiments three times.
Transwell Migration and Invasion Assays
In accordance with the manufacturer's instructions, we vaccinated the YY-8103 and LM3 cells line at the upper chamber, and the culture was performed on a 200 μL serum-free 1640 medium. The matrigel mix (BD Biosciences,United States) covers the transwell chamber (Corning, United States) so that the invasion test can be realized and the matrigel mix is not needed for the migration experiment. The HCC cell chemical inducers made by RPMI 1640 medium and 10% FBS were lured to the bottom of the chamber. Incubation for 24 h, we fixed the color of the upper chamber. Then crystal violet (Kaigen, China) was used for dyeing for 15 min. We photographed and counted the cells in three fields in order to implement visualization.
Wound Healing Assay
After culture on a six-well plate, we transfected YY-8103 and LM3. The artificial linear wound in the monolayer fused cell was removed by the standard 20 μL pipetting devices. The free-floating cells and debris in the well bottom were removed slowly. Inject it into the medium and put the well in an incubator to incubate at 37°C. The width of scratch clearance was recorded by an inverted microscope and taking pictures at 0, 24, and 48 h. The difference between the width of the original wound and the width of the process of quantitative cell migration was done three times.
Statistical Analysis
GraphPad Prism 8(United States) was used to analyze the data. The data had statistical significance when the p value was less than 0.05. An independent t-test was used to compare continuous information between the two groups. Corresponding significance level was shown in those figures.
DISCUSSION
Previous studies have shown that VCAN is an EMT-related gene, which plays a role in promoting, leukemia, breast cancer, non-small cell lung cancer, and other cancers. However, the research on VCAN in HCC is still relatively rare, so we used a variety of databases to explore the expression of VCAN in HCC. As expected, VCAN is highly expressed in HCC.
We use some databases to observe the co-localization of VCAN and tubulin in cells. Some previous studies have shown that tubulin plays an important role in the cell cycle and cell proliferation. Many anti-tumor drugs kill cancer cells by changing the microstructure of cancer cells (Tangutur et al., 2017; Kostrhunova et al., 2019). Therefore, in the development and progression of HCC, VCAN is likely to interact with the microtubule structure to promote cancer. The above reminds us that the focus of future research can be on the co-localization and interaction of VCAN and tumor tubulin.
In vitro experiments showed that VCAN gene knockout inhibited the proliferation, invasion, and migration of HCC cells, while overexpression of VCAN had the opposite effect. The theory of cancer stem cells (CSC) provides a new perspective on the mechanism of tumorigenesis and metastasis (Haraguchi et al., 2006). Some recent studies have pointed out that DNA methylation is a potential epigenetic mechanism to maintain CSC. In addition, studies have shown that DNMT plays a vital role in CSC, and knocking out DNMT can reduce and inhibit the occurrence of tumors by limiting and reducing the CSC pool (Yatabe et al., 2001; Morita et al., 2013; Pathania et al., 2015). In summary, targeting epigenetic modifiers, especially DNA methylation, is a potential way for humans to overcome cancer. Research on colorectal cancer shows that 5-Aza-2′-deoxycytidine (5-AzaDC) is a DNMT inhibitor, which can significantly reduce the number and activity of colorectal CSCs and can inhibit the progression of colorectal cancer (Li et al., 2018). Therefore, we envision whether 5-AzaDC is also an anti-cancer treatment approach for patients with HCC.
The role of immune cells in tumors has received more and more attention. A large number of studies have shown the important role of immune regulation in HCC, and immune-related anti-tumor drugs are also appearing repeatedly. Studies have shown that CSF1 receptor (CSF1R)-mediated signal transduction plays an irreplaceable role in the differentiation and survival of the mononuclear phagocyte system, especially macrophages (Stanley and Chitu, 2014). CSF1R belongs to the type III protein tyrosine kinase receptor family, and binding to CSF1 or the more recently identified ligand IL-34 can induce receptor homodimerization and subsequently activate receptor signal transduction (Achkova and Maher, 2016). Some studies have confirmed that CSF1R + macrophages are associated with poor survival of various tumor types (Zhang et al., 2012; Pedersen et al., 2014), so therapies targeting CSF1R-related signal transduction pathways such as CSF1R inhibitors have been proven effective against cancer (Cannarile et al., 2017). In our study, we confirmed the correlation between CSF1R (Rho = 0.396, p = 9.32e-16) and VCAN in HCC through DISIDB, which implies their positive correlation. Our research shows that low expression of VCAN can significantly improve the survival time of HCC patients, which implied that VCAN may be the downstream or upstream target of CSF1R in HCC, and is partly involved in its cancer-promoting effect. In addition, we have also unearthed many immunoinhibitors like CSF1R related to VCAN, such as CD96, PDCD1, CD271, etc., which are positively correlated with the expression of VCAN. In addition to immunoinhibitors, we also found that some immunostimulators such as CD28, CD86, CD27, lymphocytes such as macrophagesand Act-DC are all positively correlated with the expression of VCAN. It is suggested that VCAN plays an important role in immune regulation in HCC. Therefore, the combination of inhibitors against these immunological checkpoints and VCAN inhibitors may potentially enhance the anti-cancer effect in patients with HCC.
Our single-cell data show that VCAN is expressed in fibroblasts. The study has shown that VCAN mRNA specifically expressed in cancer-associated fibroblasts was further confirmed to be a prognostic factor in two additional independent datasets in 453 and 89 stages II/III patients (Chida et al., 2016). Additional studies have demonstrated using VCAN-negative QRsP11 fibrosarcoma cells that VCAN is an important molecule in functional ECM and maintenance of cancer-associated fibroblasts (Fanhchaksai et al., 2016). In addition to this, the high expression levels of CAF-related molecules including VCAN, periostin, and lumican in the stroma of ESCC were significantly associated with worse recurrence-free survival (RFS) and overall survival in ESCC patients (Yamauchi et al., 2021). In addition, TGF-β enhances ovarian cancer cell invasiveness by up-regulating VCAN in CAFs. VCAN expression is regulated in CAF by TGF-β receptor type II and SMAD signaling. Up-regulated VCAN promotes motility and invasion of ovarian cancer cells by activating the NF-κB signaling pathway and up-regulating the expression of CD44, matrix metalloproteinase 9, and hyaluronan-mediated motility receptors (Yeung et al., 2013). Both these studies and the results presented here support a role for VCAN in cancer-associated fibroblasts.
As mentioned in this article, the expression of VCAN is increased in many cancers, including HCC, which is significantly related to the poor prognosis of patients with HCC. At the same time, further analysis from Starbase showed that a variety of miRNA and circRNA related to VCAN expression, suggesting that these miRNAs and circRNAs may regulate VCAN and promote the progression of HCC. However, we have not carried out further experimental verification, which will be further improved in our follow-up research. Our study provides a new anti-hepatoma idea to find some DNA methyltransferase inhibitors and TF inhibitors that can effectively down-regulate the expression of VCAN. To sum up, VCAN has great potential to become a prognostic marker and therapeutic target for HCC.
CONCLUSION
In conclusion, we systematically analyzed the expression profile and prognostic value of VCAN in HCC and predicted the possible biological functions and potential targeted therapeutic value of VCAN. Overall, our study provides systematic insights into the heterogeneous and complex roles of VCAN in HCC carcinogenesis.
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Despite the availability of advanced multimodal therapy, the prognosis of patients suffering from glioblastoma (GBM) remains poor. We conducted a genome-wide integrative analysis of mRNA expression profiles in 302 GBM tissues and 209 normal brain tissues from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and the Genotype-Tissue Expression (GTEx) project to examine the prognostic and predictive value of specific mRNAs in GBM. A total of 26 mRNAs were identified to be closely related to GBM patients’ OS (p < 0.05). Utilizing survival analysis and the Cox regression model, we discovered a set of five mRNAs (PTPRN, ABCC3, MDK, NMB, and RALYL) from these 26 mRNAs that displayed the capacity to stratify patients into high- and low-risk groups with statistically different overall survival in the training set. The model of the five-mRNA biomarker signature was successfully verified on a testing set and independent sets. Moreover, multivariate Cox regression analysis revealed that the five-mRNA biomarker signature was a prognostic factor for the survival of patients with GBM independent of clinical characteristics and molecular features (p < 0.05). Gene set enrichment analysis indicated that the five-mRNA biomarker signature might be implicated in the incidence and development of GBM through its roles in known cancer-related pathways, signaling molecules, and the immune system. Moreover, consistent with the bioinformatics analysis, NMB, ABCC3, and MDK mRNA expression was considerably higher in four human GBM cells, and the expression of PTPRN and RALYL was decreased in GBM cells (p < 0.05). Our study developed a novel candidate model that provides new prospective prognostic biomarkers for GBM.
Keywords: glioblastoma, prognosis, signature, survival, biomarker
BACKGROUND
Glioblastoma (GBM), also referred to as glioblastoma multiforme, is a grade IV glioma that is the most aggressive type of brain cancer with a high morbidity and mortality rate, accounting for 15% of all brain tumors (Batash et al., 2017; Ostrom et al., 2019). The prognosis and treatment of GBM are very poor because many kinds of cell types are involved. Every year, a large number of people are affected, and the survival duration ranges from 8 to 15 months (Anjum et al., 2017). In patients who had surgery, chemotherapy, and radiation treatment, the median survival period with GBM was 15–16 months (Alifieris and Trafalis, 2015). Unfortunately, only a few minor advances in the prognosis of GBM patients were made in the last decade. Thereby, understanding the molecular mechanisms and developing effective biomarkers to predict prognosis is critical for GBM patients (Polivka et al., 2017; Sasmita et al., 2018).
GBM development is a complex process involving numerous gene alterations. A thorough examination of the molecular mechanisms underlying GBM is critical for the diagnosis and treatment of GBM patients. High-throughput sequencing technologies have been commonly applied with the rapid development of genomics, and several data can be freely accessed from public databases including the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and ArrayExpress. Numerous research studies on brain gene expression profiles have been conducted in recent years utilizing these open database platforms, and these studies have revealed hundreds of differentially expressed genes (DEGs) of GBM that may be implicated in the formation and progression of GBM (Fatai and Gamieldien, 2018; Han and Puri, 2018; Qian et al., 2018). Several investigations utilizing high-throughput sequencing revealed the results of gene expression signatures in GBM. However, the common drawback of gene expression profiling studies is batch effects with the combat function due to many factors, including the application of different microarray and sequencing platforms, different data processing methods, small sample sizes, and different backgrounds of samples (Stein et al., 2015; Yi et al., 2018). To overcome limitations resulting from batch effects in a single-cohort study, we applied surrogate variable analysis (SVA), which is an unbiased approach to integrate multiple data sources and remove batch effects. It has been demonstrated that removing batch effects and using surrogate variables reduces dependence, stabilizes error rate estimates, and improves reproducibility (Leek et al., 2012).
The development of accurate tools to predict the prognosis of GBM patients is of crucial importance to clinical diagnosis and treatment decisions. In this investigation, the integrated bioinformatics strategy was employed to systematically examine the prognostic value of mRNAs in GBM patients from the GEO, TCGA, and GTEx databases. Cox regression analysis and the risk score model technique were used to develop a biologically relevant five-mRNA signature capable of predicting the prognosis of GBM patients in the training set. The prognostic value of the five-mRNA signature was first confirmed in large GBM samples from different databases. Furthermore, these five mRNA expressions were closely associated with immune microenvironment regulation, ERBB signaling pathway, and MAPK signaling pathway in the development of GBM. These findings not only provide reliable independent prognostic factors but also expand our knowledge of the function of these five mRNAs in the development and progression of GBM.
METHODS
Microarray Datasets
The GEO database was used to obtain gene expression profiles of GSE4290, GSE50161, GSE15824, and GSE66354 from GBM and normal brain tissue. These four series, which included 142 GBM tissues and 51 normal brain tissues, were built using the GPL570 platform (Affymetrix Human Genome U133 Plus 2 Array, Affymetrix, Santa Clara, CA, United States). These four datasets were selected for integrated analysis since they share the same platform, which is essential for merging data from multiple datasets. The downloaded files of raw data from the four gene chips were processed using the R software package. Calibration, standardization, and log2 transformation were performed on the data. The gene expression profiles of these four datasets were combined for the analysis, and the robust multiarray average was utilized to preprocess the CEL files (Bolstad et al., 2003). To eliminate the batch effects of these four datasets, the combat function in the SVA package was used (Leek et al., 2012). Table 1 displays the data information, and Figure 1 depicts the flow chart of our investigation.
TABLE 1 | Information for GBM data.
[image: Table 1][image: Figure 1]FIGURE 1 | Flow chart of the study.
GTEx RNA Sequencing Dataset
The GTEx (release V7) project provided the RNA expression profiles of 1,426 normal brain tissue samples (https://www.gtexportal.org/home/). The expression data of 153 brain samples were randomly chosen and quantified as raw read counts.
TCGA RNA Sequencing and Clinical Datasets
The RNA expression profiles (RNA-Seq2 level 3 data, platform: Illumina HiSeq2000 RNA sequencing, through August 2019) of 160 GBM tissues and five normal brain tissues were extracted from the TCGA data repository (https://portal.gdc.cancer.gov). Meanwhile, clinical data from those 160 GBM patients were extracted. Verhaak et al.’s (2010) study provided information on the molecular features and subtypes of GBM patients. Using the ‘sample’ function from the R package, the 160 GBM patients from the TCGA database were randomly assigned to a training set (n = 80) and a testing set (n = 80). Table 2 lists the detailed clinical features of all GBM sets. The gene expression profiles from GTEx and TCGA were integrated using the robust multiarray average and normalized by DESeq2. The SVA package was used to remove the batch effect.
TABLE 2 | Clinical and molecular features of GBM patients.
[image: Table 2]Identification of DEGs
The DEGs in GBM and normal brain tissue samples from the four integrated microarray datasets, GTEx data, and TCGA data, were assessed by the limma package (p ≤ 0.05, log2 fold change (logFC) ≥ 2, false discovery rate (FDR) ≤ 0.01). Afterward, the intersections of DEGs from the four integrated microarray datasets and GTEx-TCGA data were identified and used for further bioinformatics analyses.
Functional Enrichment Analysis
Metascape was used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on the DEGs (http://www.metascape.org/). GO was utilized to describe gene function from three aspects: molecular functions (MFs), cellular components (CCs), and biological processes (BPs). KEGG analysis was employed to examine the signaling pathways involved in the DEGs. In addition, gene set enrichment analysis (GSEA) was performed to evaluate the correlation between DEG expression and cancer-related pathways. The GSEA protocol is detailed on the Broad Institute Gene Set Enrichment Analysis website (http://www.broad.mit.edu/gsea).
Survival Analysis
Univariate Cox proportional hazards regression analysis was conducted to determine the DEGs and clinical features that were closely related to overall survival (OS). The genes and clinical characteristics with log-rank p-values less than 0.05 were then employed in a multivariate Cox proportional hazards regression analysis to identify prognosis-related genes. In addition, the least absolute shrinkage and selection operator (LASSO) estimation-based Cox-PH model was applied to determine the specific prognosis-related genes by the penalized package in the R language.
A risk score model for predicting the prognosis of GBM patients was developed by incorporating the expression level of each optimal prognostic mRNA weighted by their regression coefficient from the multivariate Cox regression model (Li et al., 2021) shown as follows:
[image: image]
where mRNA [image: image] is the candidate of the [image: image]th selected mRNA. The risk score model is a measure of the prognostic risk for each GBM patient. All samples in the training set were separated into two groups: high-risk (risk score greater than the median) and low-risk (risk score less than the median). Moreover, the reliability and validity of the risk score model were verified in independent sets, including the REMBRANDT study, Chinese Glioma Genome Atlas (CGGA) database, and GSE7696. The log-rank test and Kaplan–Meier survival analysis were used to compare the OS times of the high-risk and low-risk groups. Hazard ratios (HRs) and 95% confidence intervals (CIs) were assessed. The sensitivity and specificity of the prognostic prediction model were compared using receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) was also determined.
Cell Culture and Quantitative Real-Time PCR
Human normal glial cell line HEB and human glioblastoma cell lines (A172, LN299, U118, and U138) were cultured in DMEM medium with 10% FBS at 37°C in a humidified incubator with 5% CO2. The cells were harvested during their logarithmic growth phase and their total RNA was extracted using the Trizol reagent (Invitrogen, Carlsbad, CA, United States). To extract cDNA, reverse transcription was conducted using a reverse transcription kit (TaKaRa, Dalian, China) following the manufacturer’s instructions. The relative levels of mRNA were measured by qRT-PCR. The sequences of the specific primers utilized in this study are shown in Supplementary Table S1. Comparative quantification was performed using the 2−ΔΔCt method, with target gene expression normalized to GAPDH.
Statistical Analysis
R studio (version 3.5.1) and SPSS 20.0 were used for statistical analysis (SPSS Inc., Chicago, IL, United States). Differentially expressed mRNAs were determined using the limma package in R studio. Student’s t-test (two-tailed) and the Kruskal–Wallis test were used to compare the difference between two groups or more than two groups, respectively. When the p-value was less than 0.05, differences were deemed statistically significant.
RESULTS
Identification of DEGs in the Four Microarray Datasets and TCGA Dataset
The raw data from the four microarray datasets were integrated for analysis. The data information is shown in Table 1. The robust multiarray average algorithm and combat function of the SVA package was employed to preprocess and eliminate the batch effects of these integrated data. When the integrated data was evaluated using the limma package (p ≤ 0.05, logFC ≥ 2, FDR ≤ 0.01), 1,043 DEGs were detected, comprising 327 upregulated genes and 716 downregulated genes. To further study whether these genes are differentially expressed between normal brain tissue and GBM tissue, we analyzed the DEGs in 318 brain tissue samples from the TCGA and GTEx databases, including 160 GBM samples and 158 normal brain tissue samples. We identified 794 significantly upregulated mRNAs and 1,022 downregulated mRNAs. The DEGs are shown on the heat map in Figures 2A,B based on the |logFC| value. Afterward, we detected 462 intersecting mRNAs from the integrated microarray data and GTEx-TCGA data (171 upregulated and 291 downregulated), as shown in Figures 2C,D. We used Metascape to conduct GO and KEGG pathway enrichment analysis to investigate the potential roles of these dysregulated mRNAs. The GO terms in which the upregulated genes were enriched were mostly extracellular matrix, mitotic cell cycle phase transition, and developmental growth (Figure 3A), while the primary roles of the downregulated mRNAs involved pre-synapse, chemical synaptic transmission, and regulation of neuronal synaptic plasticity (Figure 3B). The p53 signaling pathway, HIF-1 signaling route, and NF-kappa B signaling pathway were the most significant KEGG pathways in which the elevated genes were enriched (Figure 3C). The GABAergic synapse, synaptic vesicle cycle, and apelin signaling pathway were all related to the downregulated mRNAs (Figure 3D). These results indicate that most of the dysregulated mRNAs participate in carcinogenesis and the development of GBM through modulating BPs and critical pathways.
[image: Figure 2]FIGURE 2 | The differentially expressed genes (DEGs) from multiple datasets are analyzed. The DEGs in glioblastoma (GBM) and normal brain tissue samples from the four integrated microarray datasets (A) and Genotype-Tissue Expression (GTEx)-The Cancer Genome Atlas (TCGA) datasets (B) were analyzed by the limma package and are shown in the hierarchical clustering heatmap. Venn diagram analysis of the intersections of the upregulated genes (C) and downregulated genes (D) from four microarray datasets and the GTEx-TCGA datasets.
[image: Figure 3]FIGURE 3 | Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs. GO results of the intersecting upregulated genes (A) and downregulated genes (B). KEGG results of the intersecting upregulated genes (C) and downregulated genes (D). The relationships among the enriched clusters from the GO and KEGG analyses were visualized with Metascape (http://www.metascape.org/).
Identification of Prognosis-Related Genes From the TCGA Training Set
The 160 GBM patients from the TCGA database were assigned randomly to the training sample set (n = 80) and the testing sample set (n = 80), as shown in Table 2. To determine the prognosis-related genes, the expression data of the DEGs were analyzed by univariate Cox proportional hazards regression analysis in the training set. A total of 26 mRNAs were identified to be closely related to GBM patients’ OS (p < 0.05) and were thus involved in the candidate pool for further multivariate Cox proportional hazards regression analysis to analyze their independent prognostic value. According to the Cox model, five of the 26 candidate genes were discovered to be independent biomarkers for prognosis in GBM. Among the five prognostic mRNAs, three mRNAs (NMB, ABCC3, and MDK) with positive coefficients may be prognostic risk factors, and their high expression was correlated with shorter survival, while the remaining two mRNAs (PTPRN and RALYL) with negative coefficients tended to be protective factors, and their high expression was correlated with longer survival (Table 3).
TABLE 3 | Five mRNAs selected as prognosis-associated factors in GBM.
[image: Table 3]The Five-mRNA Prognostic Risk Model and Predictability Assessment
Given the significant and independent association between the expression of the five prognosis-associated mRNAs and OS, the five prognosis-associated mRNAs were combined to construct a five-mRNA biomarker signature to predict the prognosis of the patients. The risk score model was constructed according to the regression coefficients from the multivariate Cox regression model as follows: risk score= (−0.1793×PTPRN expression) + (0.3340×NMB expression) + (−0.3547×RALYL expression) + (0.1849×ABCC3 expression) + (0.4231×MDK expression). Based on the risk score model, the five-mRNA prognostic risk score for each GBM patient in the training set was calculated. According to the median risk score, all patients in the training set were divided into two groups: high risk (n = 40) and low risk (n = 40). Kaplan–Meier survival analysis was performed to compare the OS of the two risk groups of patients in the training set (Figure 4A). The median survival time for the high-risk group was shorter than that of the low-risk group (0.8219 years vs. 1.4575 years, p = 3.099e-05, log-rank test). The high-risk group had lower 2-year survival rates than those in the low-risk group (3.630% vs. 36.48%, p < 0.001). The prognostic power of the five-mRNA biomarker signature was assessed by computing the AUC of the ROC curve. The ROC curve analysis revealed an AUC of 0.749, indicating that the five-mRNA biomarker signature model has good sensitivity and specificity in predicting GBM patient survival risk (Figure 4B). The heat map showed the expression patterns of the five prognosis-associated mRNAs between the high-risk group and low-risk group. For patients with low-risk scores, the expression levels of the two protective mRNAs were upregulated and those of the three risk mRNAs were downregulated. The expression of the five prognosis-associated mRNAs, on the other hand, showed the reverse patterns in patients with high-risk scores (Figure 4C). The risk score distribution and the survival status of the GBM patients in the training set are marked on the dot plot shown in Figures 4D, E, respectively.
[image: Figure 4]FIGURE 4 | Prognostic evaluation of the five-mRNA signature in the training set. (A) Kaplan–Meier survival curve for patient overall survival (OS) in the training set. (B) Receiver operating characteristic (ROC) curve analysis to compare the sensitivity and specificity of the prognosis prediction model. The mRNA expression patterns (C), risk score distribution (D), and survival status of patients (E) in the high- and low-risk groups by the five-mRNA signature. Green dot, alive; red dot, dead.
To verify the predictive power of the biomarker signature, we computed the five-mRNA signature-based risk scores of 80 patients in the testing set. The patients from the testing set were also divided into high-risk groups and low-risk based on the same median cutoff point obtained from the training set (median survival: 0.9370 years vs. 1.2466 years, p = 2.305e-02, log-rank test). The high-risk group had 2-year survival rates of approximately 11.95% vs. 17.68% in the low-risk group (p < 0.001) (Figure 5A). The AUC value was 0.702 (Figure 5B). The expression patterns of the five prognosis-associated mRNAs (Figure 5C) were similar to the results of the training set. Figures 5D,E demonstrate the distribution of risk scores and the survival status of GBM patients. In the overall TCGA set, the performance of predicting patient prognosis by the five-mRNA signature was consistent with the aforementioned results. Kaplan–Meier analysis showed that the median survival times of the high-risk group and the low-risk group were 0.9123 and 1.3863 years (p = 4.612e-05), respectively. The 2-year survival rates for the high-risk and low-risk groups were 8.14% and 27.65% (p < 0.001), respectively (Figure 6A). The AUC value was 0.728 (Figure 6B). Figures 6C–E depict the expression patterns of the five prognosis-associated mRNAs, the risk score distribution, and the survival status of GBM patients.
[image: Figure 5]FIGURE 5 | Prognostic evaluation of the five-mRNA signature in the testing set. (A) Kaplan–Meier survival curve for patient overall survival (OS) in the testing set. (B) Receiver operating characteristic (ROC) curve analysis to compare the sensitivity and specificity of the prognosis prediction model. The mRNA expression patterns (C), risk score distribution (D), and survival status of patients (E) in the high- and low-risk groups by the five-mRNA signature. Green dot, alive; red dot, dead.
[image: Figure 6]FIGURE 6 | Prognostic evaluation of the five-mRNA signature in The Cancer Genome Atlas (TCGA) set. (A) Kaplan–Meier survival curve for patient overall survival (OS) in the entire TCGA set. (B) Receiver operating characteristic (ROC) curve analysis to compare the sensitivity and specificity of the prognosis prediction model. The mRNA expression patterns (C), risk score distribution (D), and survival status of patients (E) in the high- and low-risk groups by the five-mRNA signature. Green dot, alive; red dot, dead.
The prognostic value of the five-mRNA signature was confirmed using independent sets, including the REMBRANDT study, CGGA database, and GSE7696, to further evaluate its robustness. By comparing the patient’s risk score to the cutoff determined from the training set, each patient in the independent sets was also categorized as a high-risk or low-risk case. The log-rank test demonstrated that there was a statistically different OS between the low-risk group and the high-risk group in these independent sets (p < 0.05). Consistent with the findings of the training set described earlier, the five-mRNA biomarker signature model was found to be a predictive factor for the prognosis of GBM (Figures 7A–C).
[image: Figure 7]FIGURE 7 | Survival prediction of the five-mRNA signature in the independent sets. Kaplan–Meier survival curve of overall survival (OS) between high- and low-risk patients in the REMBRANDT study (A), Chinese Glioma Genome Atlas (CGGA) datasets (B), and GSE7696 dataset (C).
Independence of the Prognostic Value of the Five-mRNA Signature From Clinical Variables and Molecular Features
To determine if the five-mRNA signature was a prognostic factor independent of other clinical features, we conducted univariable and multivariable Cox regression analyses using the five-mRNA signature risk score and clinical features as covariates (age, gender, Karnofsky performance score (KPS)) (Figures 8A, B). Multivariable Cox regression analysis results demonstrated that the five-mRNA signature was closely correlated with OS in each set (training set, testing set, and entire TCGA set) when adjusting for other clinical features (Figure 8B). We also found that age was an independent predictor of OS in GBM patients. As a result, stratification analysis was carried out to investigate the age dependence of the five-mRNA signature. Using the five-mRNA signature, patients of each age group (young patient group: age ≤ 60, n = 82; old patient group: age > 60, n = 78) were categorized into two groups: low-risk and high-risk. The log-rank test demonstrated that there was a statistically different OS between the low-risk group and the high-risk group (p = 3.205e-05 for the young patient group and p = 3.941e-02 for the old patient group) in each age group (Figures 8C, D).
[image: Figure 8]FIGURE 8 | The independence of the prognostic value of the five-mRNA signature from clinical characteristics. Univariate (A) and multivariate (B) Cox regression analyses of the correlation between GBM patient overall survival (OS) and clinical characteristics (age, gender, and Karnofsky Performance Score (KPS)). Kaplan–Meier survival curve analysis of OS in the high- and low-risk groups for young patients (≤ 60 years old) (C) and old patients (> 60 years old) (D).
Furthermore, we used univariable Cox regression (Figure 9A) and multivariable Cox regression (Figure 9B) analyses to investigate if the predictive power of the five-mRNA signature for survival was independent of other observed prognostic factors, including IDH1 mutation and MGMT promoter methylation status. The results showed that the five-mRNA signature was substantially linked with survival when adjusted for IDH1 mutation and MGMT promoter methylation status, indicating that the five-mRNA signature’s predictive potential for GBM survival is also independent of these two molecular features (Figure 9B). Interestingly, we also discovered that IDH1 status was closely related to the OS. Therefore, we classified the GBM patients in this study into two groups (IDH1 wild-type group, n = 143; IDH1 mutation group, n = 8) and investigated whether the five-mRNA signature was able to predict the survival of patients. The results indicated that there was a significantly different OS between the low-risk group and the high-risk group (p = 1.69e-04) in the IDH1 wild-type patients (Figure 9C), suggesting that the five-mRNA signature could determine a subgroup of IDH1 wild-type patients who had a better prognosis. Although the multivariable Cox regression analysis results indicated that MGMT status (methylated MGMT group, n = 56; unmethylated MGMT, n = 67) was not significantly correlated with OS (p > 0.05), the five-mRNA signature was also able to determine a subgroup of methylated MGMT patients who had a higher chance of survival (Figure 9D).
[image: Figure 9]FIGURE 9 | The independence of the prognostic value of the five-mRNA signature from molecular features. Univariate (A) and multivariate (B) Cox regression analyses of the correlation between GBM patient overall survival (OS) and clinical characteristics (IDH1 mutation and MGMT promoter methylation status). Kaplan–Meier survival curve analysis of OS in the high- and low-risk groups for patients with IDH wild type (C) and methylated MGMT status (D).
The Expression Levels of the Five-mRNA Signature in the Subtypes of GBM
Next, we investigated the expression levels of the five-mRNA signature in four GBM subtypes (classical, mesenchymal, neural, and proneural). The findings demonstrated a significant difference in the distribution of all five mRNA expression levels across the four GBM subtypes, demonstrating that the five-mRNA signature is also a subtype-specific marker (Supplementary Figure S1). The Kaplan–Meier survival analysis of OS revealed a substantial difference between the high-risk and low-risk groups of patients with three different subtypes (classical, neural, and proneural). These findings suggest that the five-mRNA signature is an independent prognostic factor for OS in GBM patients of various subtypes (Figure 10).
[image: Figure 10]FIGURE 10 | The prognostic value of the five-mRNA signature in the subtypes of GBM. Kaplan–Meier survival curve analysis of OS in the high- and low-risk groups for patients with the four subtypes. Kruskal–Wallis test was used to compare the expression levels of each mRNA in the four subtypes of GBM.
Functional Characterization of the Five-mRNA Signature in GBM
Using the TCGA GBM data, we conducted GSEA to provide new insights into the functions of the five-mRNA signature. The subjects were sorted from low to high according to the expression level of the five mRNAs, and the TCGA GBM data were loaded into R studio and analyzed with the GSEA package. Stratified expression levels of the five-mRNA signature were closely related to genes associated with the occurrence and development of GBM, such as the regulation of cell cycle and cell apoptosis, brain development, immune response, MAPK signaling pathway, and ERBB signaling pathway (Figure 11A). Next, we performed a co-expression network analysis following the Pearson correlation coefficient (|cor| ≥ 0.55, p < 0.01) in the entire TCGA dataset to further reveal the potential biological functions of the five-mRNA signature in GBM. A total of 762 protein-coding genes (PCGs) were found to be strongly associated with at least one mRNA in the five-mRNA signature. The potential function of all PCGs associated with the five-mRNA signature was then predicted using enrichment analysis based on GO terms and KEGG pathways. Consistent with the GSEA results, the results from GO and KEGG analyses revealed that the five-mRNA signature may be involved in cell morphogenesis involved in neuron differentiation, brain development, the apoptosis pathway, the MAPK signaling pathway, the Ras signaling pathway, and the ERBB signaling pathway (Table 4).
[image: Figure 11]FIGURE 11 | The potential biological function of the five-mRNA signature in GBM. (A) Gene set enrichment analysis (GSEA) using stratified five-mRNA signature expression levels for genes downregulated or upregulated in GBM. The GSEA results showed the correlation between the five-mRNA levels and potential biological functions in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. (B) The relative expression levels of the five-mRNA signature were determined by qRT-PCR in four human GBM cell lines.
TABLE 4 | GO and KEGG analyses of the protein targets of the five-mRNA signature.
[image: Table 4]Experimental Verification of Expression Levels of the Five-mRNA Signature in GBM Cell Lines
Finally, we validated the expression of the five-mRNA signature in four human GBM cell lines (A172, LN299, U118, and U138) and human normal glial cell line HEB using qRT-PCR. As revealed in Figure 11B, NMB, ABCC3, and MDK mRNA expression were considerably higher in GBM cells than in the control group (HEB cells). Conversely, the expression of PTPRN and RALYL was decreased in GBM cells (p < 0.05). The findings were consistent with the bioinformatics analysis outlined earlier.
DISCUSSION
In this article, we gathered four series from the GEO database and integrated datasets from the TCGA and GTEx databases to conduct an integrative analysis in order to thoroughly examine the data and identify relevant gene markers. In the DEG analysis, we found 171 upregulated and 291 downregulated DEGs after combining the data from the four GEO datasets and GTEx-TCGA datasets. The GO and KEGG pathway analyses of the 362 aberrantly expressed mRNAs revealed the crucial BPs and pathways in GBM, most of which were classic pathways and BPs that play important roles in GBM, such as extracellular matrix, regulation of the mitotic cell cycle, the p53 signaling pathway, the HIF-1 signaling pathway, and the NF-kappa B signaling pathway. Interestingly, some novel BPs and pathways involved in GBM progression and development, including chemical synaptic transmission, regulation of neuronal synaptic plasticity, GABA receptor activity, and the apelin signaling pathway. Following that, we investigated the relationship between these 362 aberrantly expressed mRNAs and prognosis in GBM patients by performing a genome-wide analysis of the 362 aberrantly expressed mRNAs in 80 patients in the training set and discovered 26 mRNAs that were strongly associated with GBM patients’ OS. We created a five-mRNA signature using multivariate Cox, LASSO estimation, and risk scoring techniques that were able to categorize GBM patients into a low-risk and high-risk group with significantly different OS. Since there is still the possibility of false positives from the development of the five-mRNA signature, we verified its predictive value using independent sets of different sample sizes (testing set, REMBRANDT study, CGGA datasets, and GSE7696). The results with the independent sets demonstrated that the five-mRNA signature has good reproducibility and robustness in predicting prognosis for GBM patients. Further analysis showed that the five-mRNA signature is independent of conventional clinical factors (age, gender, and KPS) and molecular features (IDH1 mutation and MGMT promoter methylation status). When we conducted a subgroup stratified analysis to test the signature’s independence, we discovered that the five-mRNA signature could clearly distinguish patients at low risk from those at high risk based on age, IDH1 wild-type, and methylated MGMT. Subsequently, we assessed the expression patterns of the mRNAs in the signature in specific subtypes of GBM (classical, mesenchymal, neural, and proneural) and discovered that there were significantly different expression patterns for all five prognostic mRNAs across the four GBM subtypes. These results indicated that the five-mRNA signature might help clinicians identify and select patients at high risk from those with identical clinical or molecular characteristics in order to rationalize treatment decisions.
Previous research has found that these five mRNAs are closely connected to the incidence and progression of tumors. Protein tyrosine phosphatase receptor type N (PTPRN), also recognized as IA-2, is a part of the protein tyrosine phosphatase (PTP) family, which includes signaling molecules that regulate a number of cellular processes such as cell growth, differentiation, the mitotic cycle, and oncogenic transformation (Alonso et al., 2016). Many members of this family have been reported to be closely related to tumors (Duś-Szachniewicz et al., 2015; Zhang et al., 2018; Bloch et al., 2019). PTPRN has been identified as an autoantigen that reacts with insulin-dependent diabetes mellitus (IDDM) patient sera (Lan et al., 1994; Acevedo-Calado et al., 2019). Only a few studies have reported a relationship with tumors, such as human midgut carcinoids and small cell lung cancer (Cunningham et al., 2000; Xu et al., 2016). Neuromedin B (NMB) is a member of the bombesin-like family of neuropeptides (Jensen et al., 2008). NMB functions by attaching to its high-affinity cell surface receptor, therefore activating multiple intracellular signaling pathways associated with cell proliferation, several anti-apoptotic genes, long-term memory, and learning. Park et al. (2016) reported that NMB receptor antagonism could inhibit the migration, invasion, and epithelial-mesenchymal transition of breast cancer cells. NMB also functions as an autocrine growth factor in lung cancer cells. The capacity of NMB to promote transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells was observed by Moody et al. (2010). RALY RNA-binding protein-like (RALYL) is a protein-coding gene that may be involved in pre-mRNA splicing and embryonic development. Cui et al. (2012) discovered that low RALYL expression is linked to a poor prognosis in clear cell renal cell carcinoma. ATP-binding cassette subfamily C member 3 (ABCC3) is a member of the superfamily of ATP-binding cassette (ABC) transporters, which is implicated in multidrug resistance. ABCC3 knockdown may improve the retention of chemotherapeutic agents in breast cancer cells, making them more chemosensitive (Balaji et al., 2016). According to Liu et al. (2016), overexpression of ABCC3 enhances cell proliferation, drug resistance, and aerobic glycolysis, and is linked with a poor prognosis in patients with urinary bladder cancer. Midkine (MDK), also termed neurite growth-promoting factor 2, is a heparin-binding growth factor that is highly activated during oncogenesis, inflammation, and tissue repair. Recent studies indicate that serum MDK is a biomarker for malignancy, prognosis, and chemosensitivity in head and neck squamous cell carcinoma (Yamashita et al., 2016). Luo et al. (2015) showed that the transcriptional factor specificity protein 1 (SP1) enhances glioma cell proliferation by upregulating MDK. However, only a few reports have examined the correlation between GBM and the expression of the aforementioned mRNAs. Thus, we further investigated the potential functions of these five mRNAs in GBM using GSEA. The results showed that these five mRNAs may serve as oncogenes in GBM by regulating the cell cycle and cell apoptosis, brain development, immune response, MAPK signaling pathway, and ERBB signaling pathway. Moreover, we conducted GO and KEGG enrichment analyses of the encoded proteins that were co-expressed with these five mRNAs to investigate the roles of the five mRNAs. These five mRNAs’ potential protein targets were shown to play roles in neuron differentiation, brain development, the apoptosis pathway, the MAPK signaling pathway, the Ras signaling pathway, and the ERBB signaling pathway, according to GO and KEGG analyses. Based on the aforementioned bioinformatics analysis, we will pay more attention to the effects of immune microenvironment regulation, ERBB signaling pathway, and MAPK signaling pathway on the occurrence and development of GBM.
However, this study has a few limitations. Although we performed Cox proportional hazards regression analysis to explore the effect of age on the prognosis of GBM patients, we have not considered the influence of the age span. MGMT promote methylation and IDH-1 mutation were critical role in the prognosis of GMB patients (Zhou et al., 2019). However, there was still a lack of those research in the current studies. In order to further verify our bioinformatics predictions, there is a need for in-depth research on the five-mRNA signature and molecular mechanisms.
CONCLUSION
In summary, we discovered a five-mRNA signature (PTPRN, NMB, RALYL, ABCC3, and MDK) among hundreds of potential mRNAs in large-scale GBM samples that can be employed as an independent prognostic marker in stratifying risk subgroups for GBM survival. This signature might also assist the researcher in better understanding the molecular mechanisms that contribute to the development of GBM. We will conduct further clinical trials to evaluate the signature’s predictive efficacy, and experimental research to examine the roles of the prognostic mRNAs.
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Glioblastoma (GBM) is one of the most lethal forms of human cancer, with very few long-term survivors. In addition to surgery, chemotherapy is still an important strategy. Unfortunately, GBM chemotherapy faces two main challenges: first, in GBM, epidermal growth factor receptor (EGFR) overexpression results in chemoresistance; second, temozolomide (TMZ) lacks target specificity, which can lead to a reduction in the concentration and side effects in GBM. Nowadays, with the development of nanomedicine systems for applications in tumor therapies, increasing anticancer efficacy and reducing side effects with multi-drug delivery are huge advantages. In this study, pH-sensitive and GBM-targeting nanovesicle (Tf-PEG-PAE(SS)) was fabricated. The chemotherapy drug (TMZ) and EGFR inhibitor (EGFR-siRNA) were co-encapsulated in the nanocarrier, and their anticancer outcomes were investigated in detail. In vitro experiments have shown that the nanocarrier transports TMZ and EGFR-siRNA efficiently into U87 cells, causing a vigorous apoptotic response by silencing the proliferative EGFR gene and increasing the drug concentration of TMZ simultaneously. An experimental study in mice bearing orthotropic glioma revealed that the accumulated nanocarriers in the tumor site could inhibit the tumor growth and prolong the mice survival remarkably through the intracranial injection of Tf-PEG-PAE(SS)/TMZ@siEGFR. The drug co-delivery system could extend the blood circulation time and offer a new strategy to treat glioblastoma.
Keywords: glioma, pH-responsive polymeric nanocarrier, synergistic therapy, TMZ, siEGFR
INTRODUCTION
Glioblastoma (GBM), a primary malignant brain tumor of grade 4, is one of the most common and aggressive primary brain tumors in adults (Wen and Kesari, 2008; Wu et al., 2022). Even though comprehensive treatment options include traditional surgery, radiation, and chemotherapy, the median survival is only 14.6 months, and the 5-year survival rate is <5% (Stupp et al., 2005). Presently, temozolomide (TMZ), as a standard chemotherapeutic treatment for GBM, has shown confirmed success in improving the survival rate of patients suffering from this disease (Ziu et al., 2015; Bi et al., 2018). However, TMZ’s clinical effectiveness is restricted by the following problems: 1) the acquired drug resistance of glioma cells to TMZ during chemotherapy (Jiapaer et al., 2018), 2) damage to normal cells is caused by the indiscriminate attack on DNA (Kim et al., 2015), and 3) due to the blood–brain barrier (BBB) preventing orally administered or intravenously administered TMZ from entering the brain; thus, the effectiveness of TMZ as an antiglioma treatment is greatly reduced (Yao et al., 2022). Although the BBB restriction and the indiscriminate attack on DNA could be resolved by nanoparticles (NPs) as vehicles to targeted delivery of TMZ (Cheng et al., 2021), drug resistance remains a huge challenge for TMZ to perform its best function (Lee, 2016). Therefore, there is an urgent need for a new strategy to conquer TMZ resistance and increase the therapeutic benefits.
According to clinical pathological findings, the expression of epidermal growth factor receptor (EGFR) in GBM tissues was clearly higher than that in normal brain tissues (An et al., 2018). Statistically, more than half of initial GBMs have gene changes of EGFR, a prominent oncogenic driver of chemoresistance (Eskilsson et al., 2018; Ciechomska et al., 2020). Through downstream effectors such as the Ras/Raf/MAPK and PI3K/Akt/mTOR signaling pathways, EGFR activation could induce tumor cell proliferation and survival (Fan and Weiss, 2012; Gao et al., 2013). EGFR also protects against DNA-damaging substances through a variety of mechanisms including enhanced DNA strand break repair, thus weakening the efficacy of TMZ (Vengoji et al., 2019). Therefore, downregulation of the EGFR expression could cause apoptosis and inhibit proliferation in glioma cells (Ghildiyal et al., 2013). At present, small-molecule inhibitors of EGFR have been proven to increase the sensitivity of temozolomide-resistant glioma (Vivanco et al., 2012). Sharifi et al. (2019) covered that a combination of TMZ and the EGFR inhibitor, ZR 2002, obviously improved the survival of mice harboring intracranial mesenchymal temozolomide-resistant glioma cell line. Chen et al. reported that LRIG1 could reverse multidrug resistance (MDR) by inhibiting EGFR in GBM (Liu et al., 2015). These citations prompted that a combinative strategy using TMZ and EGFR inhibitor may overcome temozolomide resistance and enhance tumor apoptosis. Since RNA interference (RNAi) has such a specific and robust effect on the gene expression, small interfering RNA (siRNA) has been found to be a valuable therapeutic agent for the gene expression control (Hu et al., 2019; Hu et al., 2020). Hence, silencing EGFR through EGFR-siRNA (siEGFR) is a promising therapeutic manner. However, siRNA therapy is generally characterized by weak targeting, poor cell membrane penetration, degradation by enzymes, and a poor sensitization effect, which limits the therapeutic effect (Gilleron et al., 2013; Nikam and Gore, 2018; Singh et al., 2018). Therefore, the development of a new delivery system that can simultaneously deliver TMZ and siEGFR has become the focus of research.
In this study, we developed a pH-responsive chemosensitizer-prodrug system Tf-PEG-PAE (SS) to co-deliver siEGFR and TMZ into glioma cells, with increasing TMZ sensitivity. Tf-PEG-PAE (SS) was self-assembled into micelles encasing TMZ in the hydrophobic core by the hydrophobic contact. The siEGFR was then electrostatically complexed with the cationic micelle. The micelle was expected to be quickly absorbed into glioma cells with the transferrin (Tf)-targeting molecule on the surface layer, where the transferrin receptor (TfR) is greatly overexpressed relative to the normal cells (Sun et al., 2020) (Figure 1). Tf-PEG-PAE(SS)/TMZ@siEGFR may benefit the penetration of siEGFR and TMZ across the blood–brain barrier (BBB) and protect siEGFR from degradation. Consequently, Tf-PEG-PAE(SS)/TMZ@siEGFR increased the sensitivity of glioma cells to TMZ, improving the standard-of-care therapy.
[image: Figure 1]FIGURE 1 | Schematic illustration of the Tf-PEG-PAE(SS)/TMZ@siEGFR micelle. (A) Main components of Tf-PEG-PAE(SS)/TMZ@siEGFR. (B) Tf-PEG-PAE(SS)/TMZ@siEGFR nanoparticles dramatically gather in glioma by Tf-mediated transcytosis strategy and then get rid of the endosome releasing siEGFR and TMZ; the siEGFR silences gene expression by reinforcing the anticancer effect of TMZ.
MATERIALS AND METHODS
Materials
TMZ was purchased from Dalian Meilun Biotechnology Company (Dalian, China). Tf, PAE-PEG-NHS and Cy5-TMZ were obtained from Xian Ruixi Biotechnology Company (Xian, China). siEGFR-targeting EGFR mRNA (sense strand: 5′-CAAAGUGUGUAACGGAAUAdTdT-3′) and FAM-siEGFR were purchased from Gene Pharma Company Limited (Shanghai, China); 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT), 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI), and AnnexinV-fluorescein isothiocyanate (FITC)/propidium iodide (PI) were purchased from Nanjing Key GEN Biosciences Company (Nanjing, China); 5-ethynyl-2-deoxyuridine (EdU) was purchased from Ribo Biotechnology Company (Guangzhou, China). Alanine aminotransferase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN), and Creatinine (CREA) assay kits were obtained from Jian Cheng Biotechnology Company (Nanjing, China).
The U87 glioma cell line was obtained from the National Collection of Authenticated Cell Cultures and cultured in a DMEM medium containing 10% fetal bovine serum (FBS) at 37°C, 5% CO2 atmosphere.
Female BALB/c nude mice (5 weeks old, 15–18 g) were purchased from Beijing Vital River Laboratory Animal Technology Company (Beijing, China). All animal experiments comply with the regulations of the experimental animal management committee of Nanjing Medical University.
Synthesis of the Tf-PEG-PAE(SS) Polymer
First, 100 mg of 2,2 ′- disulfide diethanol, 2.4 eq. of acryloyl chloride, and 2.4 eq. of triethylamine were dissolved in 5 ml of anhydrous dichloromethane and stirred at 25°C for 24 h. The reaction solution was precipitated into water three times, dried with anhydrous sodium sulfate, and then poured it into a large amount of glacial ether for precipitation. The mixture was centrifuged to collect the product and then vacuum-dried to obtain 2,2' -disulfide diethanol diacrylate. Second, 1 g of acrylate-PEG5k-COOH, 10.0 eq. of 2,2 ′- disulfide diethanol diacrylate, and 11 eq. of 1,3-bis (4-piperidine) propane were dissolved in 10 ml of chloroform and stirred for 48 h at 55°C. The reaction solution was concentrated and poured into a large amount of ice ether for sedimentation. The mixture was centrifuged and vacuum-dried to obtain PAE(SS)-PEG5k-COOH. Third, 1 g of PAE(SS)-PEG5k-COOH, 3.0 eq. of EDC, and 3.0 eq. of N-hydroxysuccinimide were dissolved in 10 ml of chloroform and stirred at 25°C for 12 h. The reaction solution was concentrated and poured into a large amount of ice ether for sedimentation. The mixture was centrifuged and vacuum-dried to obtain PAE (SS)-PEG5k-NHS. PAE (SS)-PEG5k-NHS and Tf were dissolved in DMSO, stirred at 25°C for 12 h. Then, the mixture was filtered, dialyzed, and lyophilized to obtain Tf-PEG-PAE (SS).
Preparation of the Drug-loaded Nanocarrier
TMZ and Tf-PEG-PAE(SS) were dissolved in organic solvent and vortexed strenuously at 25°C for 1 h, and then, the mixture solution was stirred for 30 min at 25°C and dialyzed for 24 h. A certain amount of siEGFR was blended with the Tf-PEG-PA (SS)/TMZ micelle by stirring for 60 s and then allowed for reaction for 1 h at 25°C. Using this method, diverse siEGFR-loaded nanocomplexes of Tf-PEG-PAE(SS)/TMZ@siEGFR were produced through different ratios of N/P.
Characterization of the Drug-Loaded Nanocarrier
1H NMR spectra were recorded using a Bruker 400 MHz spectrometer. Particle sizes and zeta potentials were measured using a Malvern Zetasizer Nano ZS90 apparatus at 25°C (Malvern Instruments, Malvern, UK). The TMZ release profile was analyzed by high-performance liquid chromatography (HPLC) (Vanquish Duo HPLC, MA, America).
Gel Retardation Assay
The binding ability of siEGFR with Tf-PEG-PAE(SS)/TMZ micelle was studied through agarose gel electrophoresis. In detail, gel electrophoresis was executed using 2% (w/v) agarose gel in TAE buffer with 0.5 μg/ml of EtBr. Tf-PEG-PAE(SS)/TMZ@siEGFR at diverse N/P ratios (0.5, 1.0, 2.0, 5.0, 10.0, 15.0, and 20.0) and 6× DNA loading buffer were prepared and mixed in the ratio of 5:1 for electrophoresis. The total amount of samples added per well was 20 μl, and then, the process was carried out at 120 V for 10 min. The result was detected using the DNR Bio-Imaging System.
Cellular Uptake Assay
Cy5-TMZ and FAM-siEGFR were managed as a fluorescent probe to reflect the intracellular uptake of nanocarriers. In the experiment, 1 × 105 U87 cells were seeded in 6-well plates in each well and incubated for 24 h. Then, the cells were incubated for 4 h in the FBS-free medium treating with the nanocarriers at a TMZ concentration of 30 nM. For the free TfR inhibition assay, the cells were pretreated with Tf (2 mg/l) for 1 h before the targeting nanocarrier was added to the culture medium. Then, the targeting efficiency of the Tf-PEG-PAE(SS)/TMZ@siEGFR was assessed using a fluorescence microscope and flow cytometry. The intracellular distribution of the Tf-PEG-PAE(SS)/TMZ@ siEGFR was further evaluated by confocal laser scanning microscopy (CLSM).
In Vitro Cytotoxicity
The MTT assay on U87 cells was conducted to evaluate the nanoparticle cytotoxicity (Hua et al., 2018). U87 cells were seeded in 96-well plates at a density of 1 × 104 cells/well and incubated for 24 h. Then, they were incubated with the following reagents for 72 h: 1) PEG-PAE (SS), 2) Tf-PEG-PAE (SS), 3) Tf-targeted nanocarrier loading TMZ and siRNA (Tf-PEG-PAE(SS)/TMZ@siEGFR and Tf-PEG-PAE(SS)/TMZ@siRNAnc), and 4) non-Tf-targeted nanocarrier loading TMZ and siRNA (PEG-PAE(SS)/TMZ@ siEGFR and PEG-PAE(SS)/TMZ@siRNAnc). The siRNA concentration was 20 nM in each well. Then, 100 μl of 0.5 mg/ml MTT was added to each well for incubation at 37°C. After 4 h, the MTT medium was removed, and DMSO was added. Then, the optical density was detected by using spectrophotometric analysis at 540 nm.
Clonogenic Assay
To evaluate the effects of Tf-PAE-PEG/TMZ@siEGFR on the chemosensitivity of U87 cells, the colony formation assay was used. U87 cells were seeded in 6-well plates at a density of 3×103/well and incubated for 24 h. The cells were treated with different groups (PBS, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFR) at a TMZ concentration of 30 nM for 4 h. After 4 h, the existed DMEM medium was displaced by a fresh DMEM medium and then cultured for 14 days until the colonies exceeded.
Cell Apoptosis
U87 cells were seeded in 6-well plates at a density of 1 × 104 cells/well and incubated for 24 h. Then, the cells were cultured for 48 h in the FBS-free medium treated with PBS, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR. Subsequently, the cells were trypsinized, collected, washed, resuspended, and stained with Annexin V-FITC/PI for 30 min at 37°C. Last, the stained cells were analyzed using a flow cytometer (BD FACSCalibur, NJ, America) (Zhan et al., 2019).
EdU Assay
U87 cells were seeded in 96-well plates at a density of 1 × 105 cells/well and incubated for 24 h. After treating with five groups of drugs: PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR, they were incubated in the medium for 4 h. Then, 50 μM of EdU was added to the treated cells for 2 h at room temperature and washed with PBS three times to elute the EdU reagent. Subsequently, the cells were fixed with 4% paraformaldehyde for 30 min and then incubated with 0.5% Triton X-100 for 10 min at room temperature. Under the condition of avoiding light at room temperature, 1 × Apollo® dye solution was used to react with cells for 30 min, and 1 x Hoechst 33,342 was dyed for another 30 min. Finally, the stained cells were washed with PBS three times, and the staining results were observed using a fluorescence microscope.
Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
qRT-PCR was used to assess the expression levels of EGFR mRNA in U87 cells. First, the total RNA was extracted using the TRIzol reagent, and DNase I was used to remove the possible DNA contamination by digesting the extracted RNA. Second, the RNA was purified again using the TRIzol reagent, and the cDNA was synthesized using the reverse transcription kit. Finally, the quantitative analysis of cDNA was calculated using a qRT-PCR machine (Eppendorf AG, Hamburg, Germany).
Western Blotting Analysis
The ability of the siRNA delivered by the Tf-PEG-PAE(SS) polymer in silencing the EGFR gene expression was evaluated by Western blotting. U87 cells (5 × 105) were seeded in a 6-well plate and cultured at 37°C in 5% CO2 for 24 h. Subsequently, the cells were cultured with PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR at a dose of 1 μg/ml siEGFR for 24 h. The transfected cells were washed with PBS, and then harvested using the lysis buffer. Then, the cell lysates were cultured for 30 min at 4°C and centrifuged at a speed of 12,000 rpm for 15 min. The protein concentrations were calculated through the BCA protein assay. The proteins were separated with SDS polyacrylamide gel and transfected onto polyvinylidene difluoride membranes. Next, the membranes were blocked with skimmed milk in TBST buffer and incubated with the anti-EGFR antibody at 4°C overnight. The following day, the membranes were incubated with secondary antibodies at 37°C for 1 h. Last, the membranes were washed and exposed in a dark room.
U87 Glioma Model
Glioma cells (U87 cells) were transformed with the luciferase gene (U87-luci). The brain glioma model was established by the stereotactic implantation of U87-luci cells (Shi et al., 2020). After that, 1 × 105 U87-luci cells in 5 μl of L15 medium were injected for 10 min and allowed to stay for 5 min into the right striatum with microsyringe before removing. Then, the burr hole was sealed off with bone wax. After 10 days, the intensity of luci-fluorescence was observed using an in vivo imaging system to confirm the successful construction of the glioma model. Subsequently, the nude mouse glioma models were randomly divided into five groups (n = 10 in each group): PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFR.
In Vivo Distribution
On day 20, the nude mouse glioma models were checked for their coincident size. Subsequently, these mice were stochastically separated into six groups (n = 3 in each group): Cy5-labeled TMZ (free TMZCy5), FAM-labeled siEGFR (free siEGFRFAM), PEG-PAE(SS)/TMZCy5@siEGFR, PEG-PAE(SS)/TMZ@siEGFRFAM, Tf-PEG-PAE(SS)/TMZCy5@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFRFAM. Each group was injected with doses of TMZCy5, siEGFRFAM, TMZCy5, or siEGFRFAM co-loaded NPs (TMZCy5 = 2 mg/kg and siEGFRFAM = 1 mg/kg) via the tail vein, respectively. After 4 h, the mice were killed, and the major organs (the brain, heart, liver, spleen, lung, and kidney) were isolated and imaged through the Living Image System.
In Vivo Anticancer Efficacy
In vivo fluorescence imaging, survival time, and weight sizes were utilized to reflect the therapeutic outcomes of different groups (Hua et al., 2018). The nude mouse glioma models were stochastically separated into five groups (n = 10) and injected with PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR on days 12, 14, and 16 after implantation, respectively. TMZ was treated with a dose of 3 mg/kg, and siEGFR was treated with a dose of 1 mg/kg. The images of the glioma-bearing mice were taken on days 20 and 30 using the in vivo imaging system, and the Live Image Software was used to analyze the bioluminescence signals (PerkinElmer, MA, United States). In the entire process of the experiment, we recorded the survival time and the weight changes of the mice in each group every 2 days.
Toxicity Study
After the last 24 h treatment, the mice were killed to assess the organ safety. The major organs including the heart, liver, spleen, lung, and kidney were collected and made into sections stained with hematoxylin and eosin (H&E). For further evaluation of the pathological changes, the serum was collected to reflect the levels of ALT, AST, BUN, and CREA.
Statistical Analysis
All experimental data were shown as mean ± SD and executed at least three times. The data were analyzed using one-way analysis of variance and two-tailed Student’s t-tests. p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***) was considered to be statistically significant at different levels.
RESULTS AND DISCUSSION
Synthesis and Characterization of Tf-PEG-PAE(SS)/TMZ@siEGFR
A pH-sensitive copolymer NHS-PEG-PAE(SS) was synthesized via a multistep reaction. The composition of the NHS-PEG-PAE (SS) was further confirmed by 1H NMR analysis. The 1H NMR spectrum explicitly exhibited the characteristic resonance peaks of PAE and PEG blocks, respectively (Figure 2). Next, the Tf-PEG-PAE(SS)/TMZ@siEGFR was constructed successfully (Figure 1).
[image: Figure 2]FIGURE 2 | 1H NMR spectra of NHS-PEG-PAE(SS).
As shown in Figure 3A, Tf-PEG-PAE(SS)/TMZ showed an intense ability in binding siEGFR at a N/P ratio of 5: 1 in the gel. According to the TEM image, Tf-PEG-PAE(SS)/TMZ@siEGFR owned well-defined spherical morphologies with an average particle size around 80 nm at pH 7.4, which was consistent with the DLS determination. According to dynamic light scattering (DLS) detection, Tf-PEG-PAE(SS) and Tf-PEG-PAE(SS)/TMZ@siEGFR possessed a diameter of 95.34 ± 3.25 nm and 80.29 ± 3.14 nm, respectively (Figure 3B). In a sharp contrast, when the Tf-PEG-PAE(SS)/TMZ@siEGFR solution was adjusted to a pH value of 6.0, the average particle size increased significantly, which was due to the destabilization and conformational change of the Tf-PEG-PAE(SS) under acid conditions (Figure 3C). Tf-PEG-PAE(SS)/TMZ@siEGFR was predicted to have a great potential for pH-responsive controlled drug release. Therefore, the TMZ released from Tf-PEG-PAE(SS)/TMZ@siEGFR was investigated at pH 7.4 and 6.0 in vitro. As shown in Figure 3D, the TMZ release was clearly quickened at pH 6.0 (blue squares), suggesting that Tf-PEG-PAE(SS)/TMZ@siEGFR selectively dissociates and releases under acid conditions. However, no significant drug release was found at pH 7.4 (red squares).
[image: Figure 3]FIGURE 3 | Characterization of the pH-sensitive Tf-PEG-PAE(SS)/TMZ@siEGFR. (A) siEGFR binding ability at numerous N/P ratios. (B–C) Average size of Tf-PEG-PAE (SS) and Tf-PEG-PAE(SS)/TMZ@siEGFR at pH 7.4 and pH 6.0. (D) In vitro drug release of Tf-PEG-PAE(SS)/TMZ@siEGFR at pH 7.4 and pH 6.0 (Mean ± SD, n = 3).
Cellular Uptake Studies
In glioma therapy, TMZ and siEGFR encapsulated within NPs must be released into the glioma cells in order to exhibit a synergistic anticancer effect. Researchers have modified a targeting ligand-transferrin (Tf) liposome to specifically recognize transferrin receptors (TfR), increasing brain drug delivery (Li et al., 2021). In this study, Tf was modified on the surface of PEG-PAE(SS)/TMZ@siEGFR to increase the BBB penetrating efficiency and the glioma distribution of drugs. To test the intracellular efficiency of TMZ and siEGFR in Tf-PEG-PAE(SS)/TMZ@siEGFR, Cy5-labeled TMZ (TMZcy5) that radiates red fluorescence and FAM-labeled siEGFR (siEGFRFAM) that radiates green fluorescence were loaded into the nanocarrier, and the human glioma cell line U87 was used for testing after 4 h incubation. The fluorescence microscopy results demonstrated that cells incubated with Tf-PEG-PAE(SS)/TMZcy5 displayed much stronger TMZcy5 fluorescence than the nontargeting PEG-PAE(SS)/TMZcy5 group (Figure 4A). Similarly, the flow cytometry analysis indicated that the TMZcy5 in cells rose obviously when they were incubated with Tf-PEG-PAE(SS)/TMZcy5 rather than PEG-PAE(SS)/TMZcy5 (Figure 4B). These results suggested that the Tf modification enhanced the endocytosis of Tf-PEG-PAE(SS)/TMZ@siEGFR. Moreover, to further estimate the targeting effect of Tf-PEG-PAE(SS)/TMZ@siEGFR, the CLSM was applied to show the drug fluorescence distribution in glioma cells directly. The distributions of TMZcy5 fluorescence and siEGFRFAM fluorescence were almost within the cytoplasm and around the nuclei. As a result of red and green fluorescence overlapping in the merged image, orange stains were generated (Figure 4C). In front of 2 mg/l transferrin, the endocytosis level of Tf-PEG-PAE(SS)/TMZcy5@siEGFRFAM was significantly weakened. Even the ratio of TMZcy5 and siEGFRFAM positive cells was nearly wakened to the same level as that in cells treated with PEG-PAE(SS)/TMZcy5@siEGFRFAM. Thus, Tf mediated an effective cellular uptake of nanoparticles, accelerating the co-delivery of TMZ and siEGFR into the U87 cells.
[image: Figure 4]FIGURE 4 | (A) Intracellular release of TMZcy5 from PEG-PAE(SS)/TMZcy5 and Tf-PEG-PAE(SS)/TMZcy5, Scale bar: 50 μm. (B) Drug fluorescence of PEG-PAE (SS)/TMZcy5 and Tf-PEG-PAE (SS)/TMZcy5 in cells was analyzed by flow cytometry. (C) CLSM images of U87 cells incubated with Tf-PEG-PAE(SS)/TMZcy5@siEGFRFAM (targeting), PEG-PAE(SS)/TMZcy5@siEGFRFAM (nontargeting), and Tf-PEG-PAE(SS)/TMZcy5@siEGFRFAM with 2 mg/l Tf (Tf + targeting). Blue, green, red, and orange fluorescence indicate DAPI (nuclei), FAM (siEGFR), Cy5 (TMZ), and the overlapping of FAM and Cy5, respectively. Scale bar: 20 μm.
In Vitro Synergistic Anticancer Effect
The cytotoxicities of Tf-PEG-PAE(SS) and PEG-PAE(SS) were investigated using the MTT assay. U87 cells incubated with Tf-PEG-PAE(SS) and PEG-PAE(SS) showed above 85% viability even at a high concentration of 500 μg/ml, revealing a low cytotoxicity, which was significant for the follow-up experiments in vivo (Figure 5A). For U87 cells dealing with the TMZ-carried nanocomposite, a negative correlation was monitored between the TMZ concentration and cell survival. In addition, Tf-PEG-PAE(SS)/TMZ@siEGFR displayed substantially higher cytotoxicity than PEG-PAE(SS)/TMZ@siRNAnc, Tf-PEG-PAE(SS)/TMZ@siRNAnc, and PEG-PAE(SS)/TMZ@siEGFR (Figure 5B). For instance, when the TMZ concentration reached 150 μg/ml, U87 cells incubated with Tf-PEG-PAE(SS)/TMZ@siEGFR displayed 28.67% viability, while cells incubated with other micelles exhibited >46.93% viability. The acid condition could induce the degradation of the hydrophobic PAE core to release TMZ and siEGFR by increasing the chemosensitivity of temozolomide-resistant glioma cells, enhancing the cell apoptosis.
[image: Figure 5]FIGURE 5 | (A) In vitro cytotoxicities of Tf-PEG-PAE(SS) and PEG-PAE(SS) at diverse concentrations in U87 cells. (B) In vitro cytotoxicities of PEG-PAE(SS)/TMZ@siRNAnc, Tf-PEG-PAE(SS)/TMZ@siRNAnc, PEG-PAE(SS)/TMZ@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFR at diverse concentrations in U87 cells.
The colony-forming assay and flow cytometry were conducted to calculate whether there was a synergistic effect of TMZ and siEGFR on the instigating apoptosis of U87 cells. As indicated by the colony formation capacity, Tf-PEG-PAE(SS)/TMZ@siEGFR had a chemotherapy sensitization function in U87 cells (Figure 6A). As observed from the Annexin V-FITC and PI dual staining detection assay, the control cells without treatment showed an extremely low apoptosis rate of 3.4%. By contrast, the apoptosis level of cells treated with Tf-PEG-PAE(SS)/TMZ@siEGFR was up to 48.4%, which was higher than that of TMZ@siEGFR (11.7%) and PEG-PAE(SS)/TMZ@siEGFR (1.1%) treatment groups (Figure 6B). To further assess the anticancer performance, the EdU experiment was employed. Tf-PEG-PAE(SS)/TMZ@siEGFR induced the lowest cell proliferation among all groups (Figure 6C). These results revealed that the co-delivery of TMZ and siEGFR showed a synergistic anticancer effect in accelerating cellular apoptosis.
[image: Figure 6]FIGURE 6 | (A) Clonogenic formation of U87 cells treated with PBS, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR. (B) Analysis of apoptotic U87 cells cultured with PBS, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR by flow cytometry. (C) Representative images of EdU assays cultured with PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR.
Gene Silencing Capability
The overexpression of EGFR was found in GBM, which may result in strengthening proliferation and restraining apoptosis of glioma cells (Fang et al., 2021). Hence, knocking down of the EGFR expression would offer a way to improve the sensitivity of TMZ (Tsai et al., 2019). In this study, we used qRT-PCR and Western blotting to assess the transcription and translation of EGFR, respectively. As revealed by qRT-PCR, the treatment with Tf-PEG-PAE(SS)/TMZ@siEGFR obviously reduced the expression of EGFR at the mRNA level (86.7%), as compared to free TMZ (9.3%), TMZ@siEGFR (31.3%), and PEG-PAE(SS)/TMZ@siEGFR (42.7%) (Figure 7A). In the Western blotting experiment, the result was similar to the qRT-PCR data (Figure 7B). The qRT-PCR and Western blotting results both demonstrated that TMZ and siEGFR co-delivered by the Tf-PEG-PAE(SS)/TMZ@siEGFR showed great ability in silencing EGFR.
[image: Figure 7]FIGURE 7 | In vitro gene silencing capability. (A) qRT-PCR analysis results of EGFR mRNA expression with different treatments. (B) Western blot analysis of the EGFR protein expression with different treatments. (Mean ± SD, n = 3), ∗∗p < 0.01, and ∗∗∗p < 0.001.
Biodistribution of Tf-PEG-PAE(SS)/TMZ@siEGFR In Vivo
The targeting ability of Tf-PEG-PAE(SS)/TMZ@siEGFR in striding over the BBB and permeating into GBM is vital for the synergistic therapy. In this study, we applied an in vivo fluorescence imaging technique to examine the distribution of Tf-PEG-PAE(SS)/TMZcy5@siEGFR or Tf-PEG-PAE(SS)/TMZ@siEGFRFAM after intravenous injection into models. An orthotopic implantation model was established by U87-Luci glioma cells in nude mice. On day 10 , the luciferase signal was detected, confirming the presence of a brain glioma with approximately the same volume (Figure 8A). Free TMZcy5, free siEGFRFAM, PEG-PAE(SS)/TMZcy5@siEGFR, PEG-PAE(SS)/TMZ@siEGFRFAM, Tf-PEG-PAE(SS)/TMZcy5@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFRFAM were then injected via the tail vein, respectively. After 4 h, gliomas were excised and observed using an in vivo fluorescence imaging system (Figures 8A,B). Compared with free TMZcy5 and free siEGFRFAM, PEG-PAE(SS)/TMZcy5@siEGFR or PEG-PAE(SS)/TMZ@siEGFRFAM exhibited the stronger cy5 or FAM fluorescence in glioma, revealing that enhanced permeability and retention effect (EPR) make nanocarriers tend to accumulate in the tumor tissue passively. Compared with PEG-PAE(SS)/TMZcy5@siEGFR and PEG-PAE(SS)/TMZ@siEGFRFAM, Tf-PEG-PAE(SS)/TMZcy5@siEGFR or Tf-PEG-PAE(SS)/TMZ@siEGFRFAM showed the strongest fluorescence, indicating Tf-modified nanocarrier promoted TMZ and siEGFR to cross BBB and target glioma forwardly.
[image: Figure 8]FIGURE 8 | Distribution of TMZ and siEGFR in glioma. (A) Biofluorescence imaging of gliomas with the similar size, 4 h after intravenous injection of mice with either free TMZcy5, free siEGFRFAM, PEG-PAE(SS)/TMZcy5@siEGFR, PEG-PAE(SS)/TMZ@siEGFRFAM, Tf-PEG-PAE(SS)/TMZcy5@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFRFAM. (B) Quantitative analysis of TMZ and siEGFR fluorescence intensity in glioma. (Mean ± SD, n = 3) and ∗p < 0.05.
The biodistribution in vivo was examined after the injection of free TMZcy5, free siEGFRFAM, PEG-PAE(SS)/TMZcy5@siEGFR, PEG-PAE(SS)/TMZ@siEGFRFAM, Tf-PEG-PAE(SS)/TMZcy5@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFRFAM by the tail vein; the biodistributions of TMZcy5 and siEGFRFAM in glioma-bearing mice are shown in Figure 9. The TMZ concentration level in glioma is dramatically higher in the Tf-PEG-PAE(SS)/TMZcy5@siEGFR group than that in the free TMZcy5 or PEG-PAE(SS)/TMZcy5@siEGFR group (Figure 9B). In addition, the fluorescence strength in all anatomized organs in the Tf-PEG-PAE(SS)/TMZcy5@siEGFR group was lower than that in the other groups. In the FAM channel, few fluorescent signals were checked in the free siEGFRFAM group, revealing that the free siEGFR barely gets effective EGFR interference without an expedient delivery platform. The FAM intensity in the glioma-bearing mice injected with Tf-PEG-PAE(SS)/TMZ@siEGFRFAM is much stronger than that in the PEG-PAE(SS)/TMZ@siEGFRFAM group (Figure 9A). These experimental results prompted that the Tf decoration exerted a crucial function in this nano transportation system, in line with the previous finding that the Tf could enhance the drug accumulation in tumors.
[image: Figure 9]FIGURE 9 | Fluorescence images of siEGFRFAM and TMZcy5 in organs after intravenous injection of complex nanoparticles (n = 3). (A) Fluorescence image of the FAM channel: (a) free siEGFRFAM, (b) PEG-PAE(SS)/TMZ@siEGFRFAM, and (c) Tf-PEG-PAE(SS)/TMZ@siEGFRFAM. (B) Fluorescence image of cy5 channel: (a) free TMZcy5, (b) PEG-PAE(SS)/TMZcy5@siEGFR, and (c) Tf-PEG-PAE(SS)/TMZcy5@siEGFR.
In Vivo Anticancer Efficacy
The orthotopic implantation models were applied to assess the therapeutic effect of Tf-PEG-PAE(SS) carrying both TMZ and siEGFR in vivo. The mice were randomly divided into five groups (n = 10), and treated with PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, or Tf-PEG-PAE(SS)/TMZ@siEGFR via tail intravenous injection three times during the experimental process (the dose of TMZ = 3 mg/kg and siEGFR = 1 mg/kg) (Figure 10A). On days 10, 20, and 30, the tumor bioluminescence intensity was monitored to evaluate its growth. In the PBS group as a negative control, tumor grew rapidly (glioma inhibition rate of 256.5). By contrast, in treating groups, the glioma inhibition rates of free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFR on day 30 were 164.3, 113.3, 69.2, and 15.3, respectively (Figures 10B,D). According to these results, Tf-PEG-PAE(SS)/TMZ@siEGFR showed the highest antitumor animation than other treatments and revealed that the amalgamation of siEGFR and TMZ through pH-responsive nanocarrier was able to improve TMZ sensitivity in treating GBM.
[image: Figure 10]FIGURE 10 | Synergistic anticancer activity of complex nanoparticles on the U87-Luci glioma mouse model. (A) U87-Luci-bearing mice received five injections of PBS, free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR, and Tf-PEG-PAE(SS)/TMZ@siEGFR. (B) Bioluminescence signal change of different groups. (C) Quantification of the tumor bioluminescence signal (n = 10), ∗∗p < 0.01. (D) Relative tumor inhibitory rate for each group, ∗∗p < 0.01. (E) Kaplan–Meier survival curves for the mice (n = 10). (F) Body weights changed (n = 10).
The survival time of glioma-bearing mice varied with different treatments. The control group (PBS) exhibited the minimum survival time of 25.5 days. In contrast, the longest survival time appeared in the group treated with Tf-PEG-PAE(SS)/TMZ@siEGFR, with the median survival time being 64.5 days, longer than that of the free TMZ (36.5 days), TMZ@siEGFR (43.5 days), and PEG-PAE(SS)/TMZ@siEGFR (48 days) treatments (Figure 10E). The change trends in the survival rate were also reflected in body weights. Similarly, the weight of mice with the treatment of Tf-PEG-PAE(SS)/TMZ@siEGFR decreased slowly, while that of other groups decreased rapidly (Figure 10F). These results indicated that the simultaneous delivery of TMZ and siEGFR through the tumor microenvironment responsive nanocarrier could achieve a synergistic antiglioma effect.
The in vivo toxicity of Tf-PEG-PAE(SS)/TMZ@siEGFR was evaluated by major organs (the heart, liver, spleen, lung, and kidney) through hematoxylin and eosin (H&E) staining (Figure 11A). H&E-stained images showed no obvious tissue damage in the free TMZ, TMZ@siEGFR, PEG-PAE(SS)/TMZ@siEGFR or Tf-PEG-PAE(SS)/TMZ@siEGFR group. compared with the PBS group. Moreover, the biochemical indication levels of ALT, AST, BUN, and CREA in the serum were also detected. The results indicated these biochemical indications had no conspicuous change after Tf-PEG-PAE(SS)/TMZ@siEGFR treatment (Figures 11B–E). The in vivo experimental results demonstrated that the pH-responsive co-loading nanoparticles Tf-PEG-PAE(SS)/TMZ@siEGFR had a good biocompatibility and could further realize the clinical transformation application.
[image: Figure 11]FIGURE 11 | Toxicity study of Tf-PEG-PAE(SS)/TMZ@siEGFR. (A) H&E staining of the heart, liver, spleen, lung, and kidney. (B–E) Biochemical indication levels of ALT, AST, BUN, and CREA of mice after different treatments. (Mean ± SD, n = 3); n.s. indicates no statistical significance.
CONCLUSION
In summary, a pH-sensitive nanoparticle based on polymer PEG-PAE (SS), with TMZ encapsulated in the core and siEGFR complexed by the cationic layer, was studied. Both in vitro and in vivo experiments demonstrated extremely efficient co-delivery of the two therapeutic agents into U87 glioma cells. Tf-PEG-PAE(SS)/TMZ@siEGFR nanoparticles were kept stable under neutral pH conditions but efficiently disassembled for rapid drug release inside the acidic environment of cancer cells. Therefore, the antiapoptotic EGFR gene was silenced, and meanwhile, the TMZ concentration was heightened, enhancing tumor cell apoptosis. Furthermore, in the animal study, due to the efficient targeted transport and pH-responsive release, the combinative therapy of TMZ and siEGFR restrained the hyperplasia of GBM and prolonged median survival of mice dramatically. Consequently, the co-loading of TMZ and siEGFR through Tf-PEG-PAE(SS) could display a striking anticancer efficacy and few side effects in glioma treatment, providing a promising co-delivery system for the clinical application.
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Application of 3D printing individualized guide plates in percutaneous needle biopsy of acetabular tumors
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Objective: The objective of the study was to investigate the effectiveness of applying the individualized guide plate which is based on digital image processing and 3D printing technology to percutaneous needle biopsy of periacetabular tumor.
Methods: From July 2017 to August 2019, 11 patients (5 males and 6 females, aged 13–70 years, mean 42.3 years) with acetabular tumors diagnosed by needle biopsy in our hospital were enrolled in this retrospective study. Preoperative CT and MRI enhancement examination were performed routinely, and the DICOM data were collected and imported into Medraw Print software. According to the specific anatomical morphology of acetabula, this study adopted the reverse calculation and direct design to print the individualized puncture guide plate using 3D printing technology. The puncture point and sampling approaches were determined by the guide plate morphology and the “double guide-hole and slideable groove” design. First, we evaluated the fitness of the 3D guide plate to the local anatomical structure, its assisted-puncture accuracy was estimated by imaging examinations, and postoperative complications were recorded. The accuracy of the needle biopsy pathological result was estimated with reference to that of the tumor resection.
Results: Our results showed that the 3D printing individualized guide plate matched the patients’ pelvic skin well, the puncture approach was consistent with the preoperative design, and no significant anatomical injuries including vascular and neural complications occurred after surgery. Nine patients’ (90%) biopsy results were consistent with their postoperative pathological results, and one patient gave up the tumor resection.
Conclusion: Based on digital image processing and 3D printing technology, the individualized guide plate can be used to guide the needle biopsy of acetabular tumors which makes the operation simpler and more precise.
Keywords: acetabular tumors, individualized guide plate, needle biopsy, 3D printing technology, image registration, and fusion
INTRODUCTION
Minimally invasive biopsy is an important part of bone tumor diagnosis and treatment, and it can provide histopathological and grade information and help to optimize the treatment plan (Filippiadis et al., 2018). The acetabulum is the deepest part of the pelvis and also the site most frequently involved in pelvic tumors. However, it is both a challenge and a potential risk to determine the pathological type of bone tumors by few biopsy samples (Layfield et al., 2014). Now, the traditional puncture biopsy technique mostly relies on the surgeons’ experience and the guidance of imaging equipment. The operation is often blind to some extent, which prolongs the operation time and increases the radiation dose and surgical complications (Mitsuyoshi et al., 2006). Because the acetabulum is deep and adjacent to some great blood vessels and nerves, minimally invasive puncture is difficult to take samples accurately. Therefore, the preoperative plan should be formulated in detail. With the rise of 3D printing technology, individualized guide plates have been applied to many orthopedic disorders, like trauma, spine diseases, joint disease, and bone tumor (Skelley et al., 2019), which provides a theoretical and practical basis for its application in tumor biopsy. This study retrospectively analyzed the clinical data of 11 acetabular tumor patients that performed needle biopsy in our hospital and preliminarily investigated the feasibility of applying the individualized guide plate to needle biopsy of acetabular tumor, which was based on digital image processing and 3D printing. The method introduced in this study can also be applied to radiofrequency ablation and bone cement perfusion of acetabular metastatic tumors.
MATERIALS AND METHODS
Clinical cases data
Inclusion criteria: from July 2017 to August 2019, patients admitted to our hospital diagnosed with acetabular tumors by clinical history and imaging examinations were included, and the tumors’ pathology was uncertain unless the intraoperative biopsy was performed. Preoperative CT and MRI enhanced examination of the lesion area were performed. There were no surgical contraindications. Imaging examinations suggested the tumor location was deep. The tumor was too heterogeneous to obtain samples by routine biopsy.
Exclusion criteria: patients with imaging examination contraindications or did not perform the individualized guide plate-assisted biopsy were excluded. All patients went through a one-month design cycle that includes admission, refinement of tests, design of the surgical plan, printing of the guide, and final surgery. This study was approved by the Ethics Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine.
Image examination and assessment
The CT scans were performed using a 128-slice dual-source CT scanner (SOMATOM Definition Flash, SIEMENS, Germany), and different scan sequences were selected according to bone tumor positions. The scanning parameters were set routinely as follows: tube voltage 120 kV, reference current time 333.0 mA s, detector collimation 32 mm × 0.6 mm, pitch 0.6 mm, and slice thickness 0.625 mm, without interval.
The MRI scans were performed using a 3.0T MR scanner (MAGNETOM Verio 3.0T, SIEMENS, Germany). The routine scanning parameters took the enhanced T1WI sequence as the main reference standard: TR/TE = 600/11 ms, FOV adjusted according to the scanning position, and slice thickness 2∼3 mm.
The CT and MRI images of all cases were double-blind estimated by two senior radiologists with 10 years or more of diagnostic imaging experience, and the location, size, and surrounding anatomical structure of the tumors were recorded. If they have a different assessment, they will discuss and decide. All data were stored in DICOM3.0 standard format and imported into medical surgery design software Medraw (YinWei Medical Technology (Shanghai) Co., Ltd. China).
Design and processing of individualized percutaneous guide plates
The individualized guide plate adopted some unique designs, including its morphology and guide holes (Figure 1). Its whole morphology was determined by the skin fold morphology of the partial hip joint and inguinal region and by two bony anatomical marks of the pelvis: the greater trochanter of the femur and the anterior superior iliac spine. The guide hole adopted the “double guide-hole and slideable groove design, including the puncture hole A, hole B, and the sampling hole band connecting two holes. Hole A ensured that the needle was located in the ilioinguinal approach of subsequent surgery to avoid great blood vessels and nerves. Hole B ensured the optimal sampling angle of the intraosseous tumors to avoid the needle entering the hip joint and obtained enough tissue specimens at the same time.
[image: Figure 1]FIGURE 1 | Design concept of the individualized guide plate for 3D printing.
According to the aforementioned design plan, all patients’ CT and MRI data were imported into Medraw Print software first, and then the registration and fusion modules of CT and MRI images were selected to adjust different images. Clinicians determined the most metabolically active area within the tumor in MRI images and the target area of puncture in CT images. According to the imaging data, we determined the individualized guide plate morphology which was highly consistent with the patients’ local pelvic morphology. The two “notches” of the guide plate matched the greater trochanter of the femur and the anterior superior iliac crest, respectively. By palpating the bony anatomical marks through the “notches,” two marks were located in the notches to fix the guide plate on the pelvic surface. The design of the guide holes accorded to both the angles of puncture and sampling. Its inner diameter was larger than the outer diameter of the needle to ensure the needle pass through.
Three-dimensional printing technology equipment used was light-cured stereoscopic modeling Objet 260 Connex 3 (Stratasys, Israel); 3D printing material used was a photosensitive resin MED 610(Stratasys, Israel).
The process of 3D printing guide plate: first, we established the connection between the computer and 3D printer and prepared a photosensitive resin. Then, we used Medraw Print software to create a guide plate model. The STL files of individualized guide plate models were generated and imported into 3D printing equipment. Finally, we poured the photosensitive resin into the 3D printer and started printing after adjusting the parameters. After printing the guide plate, the supporting material was removed, cleaned, and disinfected edit at low temperature. Then, the inner diameter of the guide hole was checked and recorded and compared with the preoperative design plan; then it was disinfected again, and the equipment was sealed for surgery.
Surgical application of the individualized guide plate

1) The patient was in a supine position with local anesthesia, and the needle biopsy was performed in the routine procedure (Figure 2). The bony anatomical marks were determined by palpation, including the anterior superior iliac spine, the iliac crest, and the greater trochanter of the femur. According to the anatomical characteristics of the groin skin morphology, we fixed the guide plate and checked its match degree.
2) The puncture point was located in the ilioinguinal approach of subsequent surgery, about 1 cm behind the anterior superior iliac spine on the lateral iliac crest. The puncture angle was parallel and close to the iliac outer plate (Figure 2A). The puncture point and its puncture angle were consistent with those of guide hole A. A biopsy needle was selected (8G, TSK, Japan) to reach the acetabular cortex through the skin and guide hole A.
3) We kept the needle tip against the acetabular cortex and adjusted the angle so that it could slide from guide hole A to guide hole B along the linear groove, and its angle was finally consistent with that of guide hole B (Figure 2B).
4) The hollow sleeve was replaced. The needle was inserted into the target area of the bone tumor along the guide hole B angle, and the puncture depth was measured preoperatively for sampling (Figure 2C). Intraoperative X-ray fluoroscopy was performed to verify the needle’s location, and the mark range was consistent with the preoperative design. Samples were taken and sent for pathological examination. The wound was closed layer by layer and bandaged with an aseptic dressing.
[image: Figure 2]FIGURE 2 | Operation procedure of the 3D printing individualized guide plate.
Postoperative complications were recorded such as local hematoma formation, infection, and vascular and nerve injury. The pathological results of needle biopsy were compared with those of the tumor resections.
RESULTS
This study enrolled 11 cases of periacetabular bone tumor in total, including 5 males and 6 females, aged from 13 to 70 years, with an average age of 42 years. All patients’ individualized guide plates basically matched the anatomical structure of puncture sites, and their puncture angles and depth were consistent with the preoperative plans. All patients were in good condition intraoperatively and did not show any abnormalities. No vascular and neural injuries occurred after surgery. We selected a case of acetabular bone giant cell tumor for further discussion (Figure 3). In addition, one patient was diagnosed as low-grade malignant tumor by biopsy pathology and his family finally gave up the surgical treatment due to economic factors. The biopsy results of 9 patients (90%) were consistent with their own postoperative pathological results (Table 1).
[image: Figure 3]FIGURE 3 | Clinical treatment of the 3D printing individualized guide plate. (A) Appearance of the 3D printing individualized guide plate. (B–D) Surgical procedures. (E) X-ray showed the bone tumor in the left acetabulum. (F) 3D model of the individualized guide plate. (G–H) Puncture location was confirmed by intraoperative X-ray fluoroscopy. (I) Tissue sample was obtained by needle biopsy. (J) Pathological section was obtained by needle biopsy (×100, HE staining). (K) Pathological section (×100, HE staining) after the tumor resection suggested giant cell tumor of bone, which was consistent with that of (J).
TABLE 1 | Basic clinical data of patients with acetabular tumor.
[image: Table 1]DISCUSSION
Bone tumor biopsy usually uses imaging equipment to determine the puncture point of the lesions. Because the needle biopsy under X-ray fluoroscopy hardly provides three-dimensional spatial information of the lesions, it fails to accurately locate the bone tumor when only part of the bone cross section is involved. CT-assisted needle biopsy is often applied to small, sclerosing, cystic fluid, deep lesions such as in vertebrae and pelvis or lesions adjacent to vascular and nerve bundles (Hryhorczuk and Biermann, 2011; Chang et al., 2015). Its defects include the following: 1) the large radiation dose; 2) the tissue resolution is too low to determine the tumor active area; 3) limitation of the coil of CT equipment is that the puncture operation is stiff in fat patients or in some areas such as the pelvis. MRI has the advantages of high soft-tissue contrast, multi-plane imaging, accurate positioning, selective access approach, and no radiation. However, MRI-assisted biopsy of bone and soft tissue systems requires corresponding equipment (Ojala et al., 2002; Weiss et al., 2008), which limits its clinical application. Other imaging techniques have also been reported, including combining 18F-deoxyglucose positron tomography (FDG-PET) with MRI to guide biopsy to locate the most active and malignant area of the tumor (Hain et al., 2003; Sheikhbahaei et al., 2015). In addition, using a gamma probe to locate the rib lesions by single-photon emission CT (ECT) during operation can reduce the operation time and avoid excessive resection (Sodha et al., 2004). But now these new biopsy techniques also require specific imaging equipment, so it is difficult to get a clinical promotion.
Because the acetabulum is deep in the pelvis and the tumor morphology of this area is irregular, needle biopsy is often difficult. The increasing 3D printing technology can provide highly individualized treatment for this kind of patients (Zhou et al., 2014). The digital surgery plan can be realized by the 3D printing guide plate (Yan et al., 2016; Guan et al., 2017). The guide plate design and preoperative plan can be completed at the same time. We design its contact surface by the hip joint morphology and specific bone anatomical marks, and the guide hole with a fixed angle can accurately guide the needle. The processed guide plate can realize the preoperative plan and guide the surgeon to perform (Omori et al., 2014). By using Medraw Print digital design software, this study integrates the information reflecting the most active area of bone tumor in MRI images into CT images in CT and MRI image registration and fusion module, so as to determine the sampling sites and improve the accuracy of needle biopsy.
The novel guide plate design is the core of this study. We have accumulated some experience through the discussion with engineers and clinical practice (Yang et al., 2018). During designing the individualized guide plate, attention should be paid to the following aspects:
1) The basis of puncture is the guide plate located accurately on the skin surface, and one can realize it by combining the “soft” marks with “hard” ones. The “soft” means the guide plate morphology in the transition area, from the hip joint to the lower abdomen. It is determined by that of the local soft tissue in the hip joint and groin area. The “hard” means the bony anatomical marks of the hip joint, of which the most characteristic ones are the greater trochanter of the femur and the anterior superior iliac spine. Both have obvious apophyses during palpation. We found that the thin patients lacked obvious soft tissue features and had flat skin and shallow groin, but their bony marks were often more obvious, while the obese patients’ bony marks were difficult to palpate, and their soft tissue features were more obvious, such as deep skin wrinkles in the groin area. Therefore, we considered comprehensively the skin morphology and bony marks during designing the guide plate, so as to achieve its accurate body surface location. Usually, the well-designed guide plate is highly compatible with the morphology of the lesion area, which reflects the combination of the 3D printing design and processing technology.
2) The highlight of this design is the guide holes on the guide plate. The guide hole was usually single-hole and unidirectional in tradition, but we designed the double guide-hole and slideable groove. Puncture guide hole A ensures that the puncture needle is located in the ilioinguinal approach of the subsequent surgery, and its angle is parallel to the ilium. Sampling hole B ensures the optimal angle of sampling the tumors after the needle breaks through the acetabular bone.
The linear groove ensures that the needle can glide smoothly from hole A to hole B. The needle is first inserted into hole A. Then, it glides from hole A to hole B, and finally takes samples from hole B. The angle between the approach of hole A and that of hole B is often less than or equal to 60°, and the distance between two holes is often less than or equal to 10 cm. Because the skin is elastic, the operation should be performed smoothly through the double guide-hole and chute design. In the needle biopsy of acetabular tumor, if only hole A is designed, the needle will wrongly enter into the hip joint and cause additional injury and potential tumor tissue spread because its insertion angle is toward the hip joint. Because the needle insertion path is not in the subsequent surgical approach, if only hole B is designed, the tumor in the insertion approach cannot be completely resected by surgery. Some studies reported the percutaneous biopsies of acetabular lesions under the guidance of imaging equipment. The puncture points were all along the transgluteal muscle approach, which were close to sampling hole B of this study (Vaishya et al., 2016; Kamath and Kamath, 2019). Although their puncture points were close to the acetabulum and facilitated the sampling, if the subsequent surgery was selected along the ilioinguinal approach, it could hardly puncture the whole lesions and cause tumor spread. Others reported the CT-guided biopsy surgeries for deep pelvic lesions from different puncture approaches, but they mainly introduced the pelvic lesions and cannot provide a reference for bone tumors (Gupta et al., 2003; Gupta et al., 2004). This design is unique in two aspects. First, the puncture point can be selected so that the surgeons can resect the whole biopsy approach in subsequent tumor resection. On the other hand, it adopts the most direct sampling approach, so the obtained lesion tissues are more complete and helpful for the subsequent pathological diagnosis. In addition, in terms of the puncture of acetabular tumors, this individualized guide plate can also be directly applied to the iliac region. Moreover, the design concept of this guide plate can be applied to other bone tumor biopsies that their puncture angle differs from the sampling angles.
No vascular and neural complications occurred in this study, demonstrating that individualized guide plate assisted-puncture is safe. However, it also has some limitations, such as short duration, fewer cases, no randomized controlled trial to further evaluate its accuracy, and slightly soft printed by the resin. Therefore, we should further shorten the guide plate design and production time to meet the clinical needs. In addition, the increasing cases can also enrich statistical studies.
In conclusion, based on the digital design and 3D printing technology, the percutaneous needle biopsy guide plate can perform the individualized tumor biopsy of complex areas such as acetabulum. Simultaneously, it is safe, accurate, and repeatable, which deserves the clinical application. We hope that the digital orthopedic technology will play a more significant role in more fields in the near future.
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Glioma is the most malignant cancer of the central nervous system. There are various therapies for treating gliomas, but their outcomes are not satisfactory. Therefore, new targets for glioma treatment are needed. This study examined the cadherin-6 (CDH6) expression in gliomas using The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. CDH6 expression positively correlated with the World Health Organization (WHO) tumor grade and negatively correlated with patient prognosis. A significant decrease in CDH6 promoter methylation was identified with an increase in the WHO grade severity. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that CDH6 might be involved in cell–cell interactions and immune processes in the glioma microenvironment. Weighted gene co-expression network analysis revealed a correlation between CDH6 and cell adhesion molecules, focal adhesions, phosphatidylinositol 3-kinase-protein kinase B signaling pathways, nuclear division, chromosome segregation, mitotic nuclear division, and immune-related pathways. CDH6 strongly correlated with immunosuppressive cells, including regulatory T cells, monocytes, macrophages, tumor-associated macrophages, and myeloid-derived suppressor cells. It also showed correlations with immune-active cells such as B cells, CD8+ T cells, and dendritic cells. Single-cell analysis showed that CDH6 was expressed mainly in astrocyte (AC)-like malignant cells. Differentially expressed genes of AC-like malignant cells were found to be associated with stress response, membranous processes, viral infections, and several types of cancers. Potential drugs associated with high CDH6 expression were also predicted, including AMG-22, rutin, CCT128930, deforolimus, bis(maltolato)oxovanadium, anagrelide, vemurafenib, CHIR-98014, and AZD5582. Thus, this study showed that CDH6 correlates with glioma immune infiltration, it is expressed mainly in AC-like malignant cells, and it may act as a new target for glioma therapy.
Keywords: CDH6, marker, chemotherapy, glioma, prognosis
INTRODUCTION
Glioma is one of the most common and malignant cancers of the central nervous system in humans. According to the World Health Organization (WHO) criteria, gliomas are classified into grades Ⅰ–Ⅳ. Glioblastoma multiforme (GBM) is the most malignant type of glioma and has poor prognosis. Patients with GBM have a 5-years survival rate of less than 10% (Stupp et al., 2009; Weller et al., 2017). Currently, therapies for GBM include surgical resection, radiation, chemotherapy, immunotherapy, and tumor treating fields, but they do not prolong patient survival significantly (Janjua et al., 2021). The development of immunotherapy has improved the treatment outcome in several cancers in humans (Kim et al., 2020; Wang et al., 2021). Immune checkpoint inhibitors, such as anti-programmed death-1 (PD-1), and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) therapies enhance the activity of T cells and inhibit immunosuppression in the tumor microenvironment (Ribas and Wolchok, 2018; Liu et al., 2020).
The presence of certain biomarkers, such as mutated isocitrate dehydrogenase (IDH), O6-methylguanine DNA methyltransferase (MGMT) promoter hypermethylation, epidermal growth factor receptor amplification, and p53 mutations in GBM offer prognostic and diagnostic potential. Therefore, it is promising to identify additional potential molecular targets for the diagnosis and treatment of GBM to improve patient prognosis (Zhang et al., 2020).
The cadherin (CDH) family comprises calcium-dependent transmembrane proteins responsible for cell–cell adhesion during embryogenesis, tissue morphogenesis, differentiation, and maintenance of normal tissue architecture (Yulis et al., 2018; Kaszak et al., 2020). Recent studies have confirmed that CDH-mediated signaling plays a key role in development, proliferation, apoptosis, and disease pathobiology (Arulanandam et al., 2009; Harris and Tepass, 2010; Hawkins et al., 2012; Bektas et al., 2013). Over the past few decades, the role of CDHs has been evaluated in many malignancies, such as melanoma, hepatocellular carcinoma, breast cancer, and gastric cancer (Kaszak et al., 2020). In a previous study, despite isolation of glioma patient-derived tumor cells (GPDCs), characteristic genomic features and potential therapeutic markers were reported (Zhang et al., 2021). CDH6 is a type II cadherin containing five extracellular domains and one cytoplasmic domain that facilitate its interaction with catenin molecules (Casal and Bartolomé, 2019). ß-Catenin binds directly to the cytoplasmic tail of CDHs and to α-catenin to regulate the actin cytoskeleton. CDH6 is believed to play a role in the interaction between cell adhesion and ß-catenin. CDH6 has been implicated in various processes, including epithelial-mesenchymal transition (EMT), autophagy (Gugnoni et al., 2017), and metastasis (Bartolomé et al., 2021). We also found that the transcriptional level of CDH6 significantly increased in high-grade GPDCs. This indicates that CDH6 may play an essential role in glioma tumor progression and interactions with the microenvironment components. In this study, high CDH6 expression was predictive of poor patient prognosis. Weighted gene co-expression network analysis (WGCNA) revealed a correlation between CDH6 and cell adhesion molecules, focal adhesions, phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathways, nuclear division, chromosome segregation, mitotic nuclear division, and immune-related pathways. Single-cell analysis revealed that CDH6 was expressed mainly in astrocyte (AC)-like malignant cells. Additionally, potential drugs associated with high CDH6 expression were also predicted.
RESULTS
Correlation of CDH6 expression with clinicopathological characteristics and prognosis in patients with glioma
We first examined the expression of the CDH family proteins using glioma tissues collected from patients. Gliomas of different grades exhibited differential expression of the CDH family proteins. CDH6 levels in gliomas differed significantly in our collected samples (Figure 1). Then we examined CDH6 expression in subgroups of various clinicopathological characteristics, including IDH mutation status, MGMT promoter methylation status, 1p19q codeletion status, and WHO grade. CDH6 expression was significantly higher in IDH wild-type, MGMT unmethylated, 1p19q non-co-deleted, and WHO Grade III and IV subgroups (Figures 2A–C, E). We also evaluated CDH6 expression in the GBM subgroups defined by Verhaak et al. (Verhaak et al., 2010). The classical subtype of GBM harbored the highest CDH6 expression (Figure 2D). IDH mutation is a principal marker of low-grade glioma (LGG), while MGMT promoter methylation is a predictor of temozolomide drug response. Data from CGGA325 and GSE108474 exhibited similar results (Supplementary Figures S1, 2). These results indicate a latent role of CDH6 in glioma diagnosis and therapeutics.
[image: Figure 1]FIGURE 1 | Real-time qPCR of patient derived glioma tissues.
[image: Figure 2]FIGURE 2 | Correlation of CDH6 expression with clinicopathological characteristics. (A–E) CDH6 expression in different clinicopathological subgroups. (F, G) Survival analyses of high and low CDH6 expression subgroups in TCGA and CGGA datasets. *p < 0.05, **p < 0.01, ***p < 0.001.
The correlation between CDH6 expression and patient prognosis was explored (Figures 2F,G). Patients were divided into high and low CDH6 expression subgroups based on the median CDH6 expression. In The Cancer Genome Atlas (TCGA) LGG–GBM and Chinese Glioma Genome Atlas (CGGA) 325 datasets, patients with low CDH6 expression showed a significantly longer overall survival than those with high CDH6 expression (p < 0.0001).
Regulation of promoter methylation in CDH6 mRNA expression
Promoter methylation is a common regulatory mechanism in mRNA expression. CDH6 promoter methylation was investigated using TCGA LGG–GBM dataset. A significant decrease in CDH6 promoter methylation was associated with an increase in the WHO grade severity (p = 0.00062, 7.9e-16, and <2.22e-16, respectively) (Figure 3A). The status of CDH6 promoter methylation, expression, and survival was investigated for the different WHO tumor grades (Figure 3B). Hypomethylation of the CDH6 promoter potentially leads to high expression of CDH6 and poor prognosis in glioma patients.
[image: Figure 3]FIGURE 3 | CDH6 methylation and enrichment analyses. (A) CDH6 promoter methylation in different grades. (B) Sankey plot of CDH6 promoter methylation, CDH6 expression and patient prognosis. (C,D) GO and KEGG analyses of CDH6 high expression subgroup. (E,F) GSVA analyses of CDH6 expression subgroups.
CDH6 pathway enrichment analyses
We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify pathways associated with CDH6 expression. GO analysis indicated multiple terms, including “cell–cell adhesion via plasma membrane adhesion,” “plasma membrane adhesion molecules,” and “collagen-containing extracellular matrix” (Figure 3C). KEGG analysis identified enriched pathways including “protein digestion and absorption,” “neuroactive ligand-receptor interaction,” “cytokine-cytokine receptor interaction,” and “PI3k-Akt signaling pathway” (Figure 3D). We also performed gene set variation analysis (GSVA) to uncover enriched pathways associated with CDH6 expression and acquired pathways, including “leukocyte chemotaxis involved in inflammatory response,” “C-C chemokine receptor 5 (CCR5) binding,” and “extracellular matrix binding” (Figures 3E,F and Supplementary Figure S3). These results suggest that CDH6 might be involved in cell–cell interactions and immune processes in the glioma microenvironment.
Identification of CDH6 correlated genes in glioma
To identify gene modules associated with CDH6 expression, the top 10,000 median absolute deviation (MAD) genes were used in WGCNA. The genes were clustered into 13 modules (Figures 4A,B). We selected turquoise, green, and purple modules that were highly correlated with CDH6 expression for the downstream GO and KEGG pathway enrichment analyses (Figures 4C–J). The purple module genes were enriched in cell adhesion molecules, focal adhesions, and PI3K-Akt signaling pathways. The green module genes were enriched in pathways associated with cell division and DNA replication, including nuclear division, chromosome segregation, and mitotic nuclear division. The turquoise module genes were enriched in immune-related pathways, including T cell activation, leukocyte cell–cell adhesion, regulation of cell–cell adhesion, and collagen-containing extracellular matrix.
[image: Figure 4]FIGURE 4 | Identification of gene modules associated with CDH6 expression with WGCNA. (A) Cluster dendrogram of genes and clinicopathological variables. (B) Module-trait associations with rows corresponding to module gene sets and columns to traits. (C,D) PPI network and circus plot of the KEGG pathway analysis for the purple module. (E–G) PPI network, circus plot and barplot of the GO and KEGG analysis for the green module. (H–J) PPI network, circus plot and barplot of the GO and KEGG analysis for the turquoise module.
Association of CDH6 with immune cell infiltration and cytokines
The CIBERSORTx algorithm is an analytical tool that estimates immune cell abundance using gene expression data. We examined the infiltration of 22 types of immune cells in the subgroups categorized based on the median value of CDH6 expression (Figure 5A). M2 macrophages exhibited the highest infiltration rate among all the immune cells but showed no significant difference between the low and high CDH6 expression subgroups. Monocytes showed an overall high infiltration and a significantly higher infiltration in the low CDH6 expression subgroup than in the high CDH6 expression subgroup. Other immune cells showing significant differences between the CDH6 expression subgroups included M0 macrophages, M1 macrophages, neutrophils, activated natural killer (NK) cells, naïve CD4 T cells, follicular helper T (Tfh) cells, gamma delta T (Tγδ) cells, and regulatory T cells (Tregs). The underlying mechanism of the immune infiltration difference between the high and low CDH6 expression subgroups warrants further investigation.
[image: Figure 5]FIGURE 5 | Correlation of CDH6 expression with immune cell infiltration. (A) Infiltration of 22 immune cells in CDH6 high and low expression subgroups. (B) Infiltration of 28 immune cells in CDH6 high and low expression subgroups. (C,D) Correlation of CDH6 expression with ESTIMATE score and tumor purity. *p < 0.05, **p < 0.01, ***p < 0.001, NS no significance.
We also examined the infiltration of 28 subpopulations of tumor-infiltrating lymphocytes (TILs) from The Cancer Imaging Archive database (Figure 5B), which yielded similar results. TILs are divided into adaptive and innate immunity cohorts, according to the immunological processes with which they are associated. The adaptive immunity cohort includes activated T cells, central memory, effector memory CD4+ and CD8+ T cells, Tγδ cells, T helper 1 (Th1) cells, Th2 cells, Th17 cells, Tregs, Tfh cells, and activated, immature, and memory B cells. The innate immune system comprises macrophages, monocytes, mast cells, eosinophils, neutrophils, activated plasmacytoid dendritic cells (DCs), immature DCs, NK cells, NKT cells, and myeloid-derived suppressor cells (MDSCs).
Furthermore, we examined the correlation between CDH6 expression and the ESTIMATE score and tumor purity. We used the ESTIMATE algorithm to infer stromal and immune cell fractions from TCGA LGG–GBM dataset. The ESTIMATE score positively correlated with CDH6 expression (R = 0.25; p = 0) (Figure 5C). Tumor purity negatively correlated with CDH6 expression (R = 0.24; p = 0) (Figure 5D). Therefore, we concluded that CDH6 might be related to stroma production and immune infiltration.
Chemokines, interleukins (ILs), interferons (IFNs), and their corresponding receptors play important roles in the induction of inflammatory processes (Figures 6A–C). We examined the correlation between CDH6 and these molecules in TCGA LGG–GBM dataset. CDH6 positively correlated with CCR5, C‐C motif chemokine ligand (CCL) 5, IL12 receptor subunit beta 1, IL2 receptor gamma, IFN gamma receptor 2, and many other cytokines, indicating an important role of CDH6 in signal transmission and different immune processes in the glioma microenvironment.
[image: Figure 6]FIGURE 6 | Correlation of CDH6 expression with cytokines and immune cell markers. (A–C) Correlation of CDH6 expression with chemokines, interleukins, interferons and their receptors. (D–E) Correlation of CDH6 expression with markers of macrophages and immune-related checkpoints. (F–G) Association of CDH6 expression with macrophage subtype markers.
Correlations between CDH6 and immune cell markers
To explore the role of CDH6 further in the glioma microenvironment, we evaluated the correlation between CDH6 and the commonly recognized immune cell markers. Nine classical phenotype markers of M0 (allograft inflammatory factor 1), M1 macrophages (IL12 subunit alpha, tumor necrosis factor, nitric oxide synthase 2, and prostaglandin-endoperoxide synthase 2), and M2 macrophages (IL10, CCL163, transforming growth factor-beta 1, and colony-stimulating factor 1R) were analyzed using TCGA LGG–GBM database (Figure 6D). Correlation analysis of CDH6 and nine immune-related checkpoints (PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin-domain containing 3, lymphocyte-activation gene 3, CTLA4, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, indoleamine 2,3-dioxygenase 1, and CD276) in TCGA LGG–GBM dataset was also performed (Figure 6E). CDH6 strongly correlated with immunosuppressive cells, including Tregs, monocytes, macrophages, tumor-associated macrophages (TAMs), and MDSCs. It also showed correlations with immune-active cells, such as B cells, CD8+ T cells, and DCs (Figures 6F,G). Furthermore, CDH6 exhibited both positive and negative correlations with markers of Th cells, enhanced T cells, cancer-associated fibroblasts, and M1 and M2 macrophages. Considering the complexity of the intercellular and molecular mechanisms underlying the glioma microenvironment, it was difficult to conclude the role of CDH6 through the aforementioned analyses. Future closer-in investigations of CDH6 with certain molecules or intercellular mechanisms are needed.
CDH6 in prediction of drug response
We evaluated the effectiveness of CDH6 in predicting drug responses using data from the PRISM and Cancer Therapeutics Response Portal (CTRP) databases. Drugs with significantly different area under the curve (AUC) values between the high and low CDH6 expression subgroups and Spearman correlation “r” >0.3 were filtered out. The evaluated drugs included AMG-22, rutin, CCT128930, deforolimus, bis(maltolato)oxovanadium, anagrelide, vemurafenib, CHIR-98014, and AZD5582 (Figures 7A,B).
[image: Figure 7]FIGURE 7 | CDH6 in predicting drug response. (A) Correlation of CDH6 expression and AUC value of potential drugs. (B) Distribution of the AUC values of drugs in CDH6 expression subgroups. *p < 0.05, **p < 0.01, ***p < 0.001.
CDH6 expression in astrocyte-like malignant cells trajectory
Tumor Immune Single-cell Hub (TISCH) is an online tool that harbors single-cell datasets for different cancer types and provides metadata, cell type annotation, and several other analysis methods. We examined CDH6 expression in five glioma single-cell datasets (Figure 8A) using TISCH. CDH6 was expressed mainly in a cluster of cells annotated as AC-like malignant cells (Figures 8B,C). Differentially expressed genes were identified between AC-like and other malignant cells (|log2FC|>1; adjusted p-value<0.01). GO and KEGG analyses identified differentially expressed genes to be enriched in pathways associated with stress response, membranous processes, viral infections, and several cancer types (Figures 8D,E). We then performed trajectory analyses of AC-like malignant cells using the Monocle2 algorithm (Figures 8F,G). Gene changes in different sub-clusters of AC-like malignant cells are shown in Figure 8H.
[image: Figure 8]FIGURE 8 | CDH6 in a single-cell point of view. (A) Summary of CDH6 expression in five single cell datasets. (B,C) Cell clustering and CDH6 expression according to TISCH preprocessing and analysis. (D,E) GO and KEGG analyses of differentially expressed genes between AC-like malignant cells and other malignant cells. (F,G) Pseudotime analysis of AC-like malignant cells and corresponding CDH6 expression in each cell. (H) Different expression patterns of AC-like malignant cell subclusters.
MATERIALS AND METHODS
Data acquisition
TCGA LGG–GBM dataset was obtained from the UCSC Xena website (https://xenabrowser.net/). RNA-sequencing data from 702 cases were included in the dataset. The corresponding clinical information was obtained from the UCSC Xena website. Another dataset was obtained from the CGGA website that included 325 cases of glioma. Clinical specimens were collected from surgical patients diagnosed with glioma at the Xiangya Hospital, Central South University. This study was approved by the ethics committee of Xiangya Hospital (No. 201703478).
Functional analyses
GO and KEGG pathway enrichment analyses were performed using clusterProfiler R package to evaluate the biological processes associated with CDH6 expression (Benjamini–Hochberg adjusted p-value<0.01). GSVA was performed to acquire the individual immune function scores for each case in the datasets.
Immune infiltration analyses
The CIBERSORTx online tool (https://cibersortx.stanford.edu/) was utilized to calculate the infiltration of the 22 types of immune cells. The correlation between CDH6 expression and immune cell infiltration was evaluated. The estimate R package was used to calculate the stromal, immune, and ESTIMATE scores of each case in the datasets. The stromal score reflects the stromal cell proportion in the tumor bulk. Immune score indicates the level of immune cell infiltration. The ESTIMATE score determines the tumor purity.
Co-expression module identification
WGCNA was used to identify modules that significantly correlated with CDH6 expression. The top 10,000 genes with the highest MAD values were used in the WGCNA. Soft thresholding power was selected based on the criterion of an approximate scale-free topology. The minimum cut size was set at 30 and cut height at 0.25 for network construction and consensus module detection. Genes in the turquoise, green, and purple modules were selected for the enrichment analyses. Cytoscape software was used for protein–protein interaction network visualization.
Potential drug prediction
Drug sensitivity and corresponding expression information were obtained from PRISM repurposing dataset (https://depmap.org/portal/prism/) and CTRP (https://portals.broadinstitute.org/ctrp). Drug sensitivity was denoted by low AUC values indicative of high drug sensitivity. The AUC values of the samples in this study were calculated using “pRRophetic” R package.
Single-cell sequencing analysis
TISCH is a single-cell RNA-sequencing (scRNA-seq) database that aims to characterize the tumor microenvironment at single-cell resolution (Sun et al., 2021). The preprocessed scRNA-seq expression matrix and metadata, including cell annotations, were downloaded from TISCH. Differential analysis between cell clusters was performed using the Wilcoxon rank-sum test with FindMarkers function in Seurat R package (adjusted p-value<0.01; logfc. threshold = 1). Monocle R package was used for pseudotime analysis.
Real-time quantitative polymerase chain reaction
Total RNA was extracted using TRIzol reagent. The reverse transcription reaction was performed using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher). ChamQ universal SYBR qPCR Master Mix (Vazyme, China) and StepOne Real-time PCR systems (Applied Biosystems) were used for real-time quantitative polymerase chain reaction. Primer sequences were designed in the laboratory and were synthesized using TsingKe Biotech. The expression levels were calculated using the 2−ΔΔCt method. The primer sequences used are listed in Supplementary Table S1.
Statistical analysis
Statistical analysis was performed using R software (version 4.1.3). Immune cell infiltration was calculated using TIMER algorithm. The ESTIMATE, stromal, and immune scores were computed using the ESTIMATE algorithm. Spearman correlation was utilized to evaluate the correlation between variables. Survival analysis was performed using the Kaplan-Meier method; p-values<0.05 were considered statistically significant.
DISCUSSION
CDH6 is an EMT marker that is highly expressed in solid tumors and that facilitates tumor invasiveness and metastasis. It has been implicated in renal carcinomas and correlates with lymph node invasion and metastasis (Paul et al., 1997). Studies have also found CDH6 expression in cases of ovarian carcinoma (Köbel et al., 2008) and thyroid cancers (Zhao et al., 2016). In osteosarcoma, CDH6 overexpression reportedly correlated with overall survival and patient prognosis. Additionally, CDH6 correlated with stem-cell-related transcription factors, including FOXM1, SNAI1, SOX9, and MCM2, in triple-negative breast cancer.
This study focused on the role of CDH6 in gliomas. The significantly varying levels of expression in gliomas of different pathological grades indicate an underlying role of CDH6 in glioma genesis and progression. The significantly high expression of CDH6 in classical and mesenchymal subtypes implied a correlation between CDH6 and certain biomarkers of these two subtypes. Pathway enrichment analyses indicated the involvement of CDH6 in multiple biological processes, including cell–cell adhesion, axon guidance, extracellular matrix constituents, transmembrane transporter activity, and several cancer types. Our results corroborated those of previous studies, indicating a significant role of CDH6 in breast and thyroid cancers and its correlation with Hippo and Wnt signaling pathways and stem cells. GSVA revealed a correlation between CDH6 and multiple immune-related pathways, cell–cell interactions, angiogenesis, and cell cycle. Therefore, we examined the correlation between CDH6 expression and immune processes.
CDH6 expression correlated with the ESTIMATE score and tumor purity. Individual immune cell types were examined for their respective correlations with CDH6 expression. The infiltration levels of M0, M1 macrophages, monocytes, activated NK cells, Tregs, Tγδ cells, and Tfh cells significantly correlated with CDH6 expression. Immune cells have been implicated in the glioma microenvironment, and they may affect the therapeutic response. The correlations between CDH6 and immune cell markers were also examined. Correlations between CDH6 and markers of B cells, DCs, CD8+ T cells, macrophages, monocytes, Tregs, MDSCs, and TAMs were uniformly positive.
Potential drugs were predicted for the high CDH6 expression subgroup. Rutin has been reported to enhance temozolomide efficacy by inhibiting c-Jun N-terminal kinase-mediated autophagy in GBM (Zhang et al., 2017). CCT128930 induces apoptosis and cell cycle arrest in human osteosarcoma cells (Wang et al., 2014). Deforolimus decreases the mammalian target of rapamycin pathway activation and inhibits glioma growth in certain subtypes (Hütt-Cabezas et al., 2013). Anagrelide inhibits GBM cell migration in vitro in an L1-dependent manner (Nagaraj et al., 2022). Vemurafenib demonstrated durable antitumor activity in some patients with BRAFV600-mutant gliomas (Kaley et al., 2018). The glycogen synthase kinase-3 inhibitor, CHIR-98014, downregulates sonic hedgehog (SHH)-driven proliferation in cerebellar neurogenesis and may be useful in treating SHH-driven medulloblastomas (Ocasio et al., 2019). AZD5582, an anti-apoptotic protein inhibitor, activates glioma cell apoptosis when carried by liposomes (Kuo et al., 2021).
Considering the aforementioned role of CDH6 in cell–cell interactions, the underlying molecular mechanism of the correlations between CDH6 and different immune cells warrants further investigation. CDH6 expression was also examined in single-cell resolution and was mainly expressed in a cluster of cells annotated as AC-like malignant cells. GO and KEGG enrichment analysis of differentially expressed genes between AC-like and other malignant cells identified pathways associated with cellular interactions, morphogenesis, various cancers, and apoptosis. Further pseudo-time studies identified the subtypes in AC-like malignant cells, and cells with high CDH6 expression were concentrated in two of the three subtypes. Additionally, genes related to AC-like malignant cell subdivision were identified. Single-cell studies on the gene regulatory network and cell–cell communication are needed to clarify the role of CDH6 further in glioma malignancy and the microenvironment.
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Tumor mutation burden (TMB) is a recognized stratification biomarker for immunotherapy. Nevertheless, the general TMB-high threshold is unstandardized due to severe clinical controversies, with the underlying cause being inconsistency between multiple assessment criteria and imprecision of the TMB value. The existing methods for determining TMB thresholds all consider only a single dimension of clinical benefit and ignore the interference of the TMB error. Our research aims to determine the TMB threshold optimally based on multifaceted clinical efficacies accounting for measurement errors. We report a multi-endpoint joint model as a generalized method for inferring the TMB thresholds, facilitating consistent statistical inference using an iterative numerical estimation procedure considering mis-specified covariates. The model optimizes the division by combining objective response rate and time-to-event outcomes, which may be interrelated due to some shared traits. We augment previous works by enabling subject-specific random effects to govern the communication among distinct endpoints. Our simulations show that the proposed model has advantages over the standard model in terms of precision and stability in parameter estimation and threshold determination. To validate the feasibility of the proposed thresholds, we pool a cohort of 73 patients with non-small-cell lung cancer and 64 patients with nasopharyngeal carcinoma who underwent anti-PD-(L)1 treatment, as well as validation cohorts of 943 patients. Analyses revealed that our approach could grant clinicians a holistic efficacy assessment, culminating in a robust determination of the TMB screening threshold for superior patients. Our methodology has the potential to yield innovative insights into therapeutic selection and support precision immuno-oncology.
Keywords: clinical immunology, stratification biomarker, tumor mutation burden, joint modeling, multiple endpoints, measurement error
INTRODUCTION
Immune checkpoint inhibitor (ICI) therapy has emerged as a promising strategy with confirmed efficacy for advanced or metastatic tumors (Bracarda et al., 2015; Motzer et al., 2015; Chiang et al., 2020; Kuryk et al., 2020; Wołącewicz et al., 2020; Majc et al., 2021). Tumor mutation burden (TMB, defined as the number of somatic mutations per mega-base) is a recognized biomarker of sensitivity to ICIs (Hellmann et al., 2018a; Cristescu et al., 2018; Bai et al., 2020; Wang et al., 2020), according to the underlying connection between the increasing number of somatic mutations and the neo-antigen that the activated T cells can recognize (Van Rooij et al., 2013), enhancing the tumor immunogenicity (Pardoll, 2012; Conway et al., 2018). A high TMB tends to trigger a favorable prognosis (Yarchoan et al., 2017; Legrand et al., 2018), which has been observed in urothelial carcinoma (Rosenberg et al., 2016), small-cell-lung cancer (Hellmann et al., 2018b), non-small-cell lung cancer (NSCLC) (Lim et al., 2015; Rizvi et al., 2015; Carbone et al., 2017; Hellmann et al., 2018c; Singal et al., 2019), and melanoma (Johnson et al., 2016; Goodman et al., 2017). TMB is a suggested test for patients undergoing immunotherapy by both NCCN and FDA (Lemery et al., 2017; Boyiadzis et al., 2018; Subbiah et al., 2020).
In clinical practices, the TMB threshold is a baseline for identifying patients with potential ICI benefits (Samstein et al., 2019). TMB thresholds are typically determined in two ways: either grouped by quartiles, which is obviously imprecise (Campesato et al., 2015; Colli et al., 2016; Riaz et al., 2017; Miao et al., 2018; Wood et al., 2020), or numerical thresholds generated from statistical tests of significance based on efficacy endpoints (Goodman et al., 2017). Notably, among these previous statistical studies, retrospective evaluations of efficacy are limited to a single dimension, most regularly the response. The primary endpoints for immuno-oncology include objective tumor response and time-to-event (TTE), where the TMB biomarker has been observed to be associated with both (Cao et al., 2019). Such diverse efficacy evaluation metrics have sparked controversy in the threshold standardization (Goodman et al., 2017). When assessments base on different endpoints over the same cohort, inconsistent thresholds arise, and clinicians are left inconclusive about which one to choose. Furthermore, clinical decisions need a comprehensive review of the diseased multifaceted efficacy rather than a single endpoint that exhibits a partial treatment effect. Therefore, there is an urgent clinical need for inference on multiple endpoints to derive a comprehensive TMB threshold. However, it is computationally challenging for two reasons. First, if several individual endpoints are to be inferred simultaneously, the intersection cannot be taken directly. Instead, some adjustment for multiple testing is required to control the familywise type I error rate (FWER) (Ristl et al., 2019). Constructing the joint distribution of different endpoints is preferable to the straightforward application of Bonferroni inequalities in terms of maximizing the utilization of available information, providing unbiased results, and allowing for statistical alpha levels closer to nominal levels while boosting the statistical power (Phillips et al., 2003; Asar et al., 2015; Guidance 2017). Secondly, the existing joint modeling studies have mostly taken a perspective on analyzing longitudinal biochemical markers within the survival analysis framework. Whereas the volatility of tumor genomic traits in immunotherapy trials is quite limited, we are more concerned with the within-subject dependence between different endpoints. Binary tumor responses conforming to the Bernoulli distribution do not satisfy the premise of a normal distribution in linear regression. The existing models have limited capacity to comprehend possible shared biologic processes on endpoints of tumor remission with survival and are not applicable to scenarios of immune efficacy investigation.
Moreover, the imprecision of TMB values is another source of threshold controversies (Wood et al., 2020). Despite the different calculation methods of TMB, the accuracy of variant callings can never reach 100% due to technical limitations (Xu et al., 2014; Alioto et al., 2015), and TMB always harbors measurement errors. Existing models neglect the difference between the actual and observed values of TMB, which lead to significant bias in statistical inference (Campesato et al., 2015; Colli et al., 2016; Goodman et al., 2017; Riaz et al., 2017; Miao et al., 2018; Wood et al., 2020). Parameter inference for statistical models is conventionally obtained by maximum likelihood estimation (MLE), and unbiasedness of the score function for likelihood (i.e., expectation equal to zero) is a critical criterion for ensuring estimate consistency. With the accurate TMB values being unascertainable, the observations TMB∗ ([image: image]) have to be used for surrogates. The presence of its inherent random error term e undermines the unbiased nature of the score expectation, yielding inconsistent regression coefficient estimates. The biasing effect caused by error term confounds the proper relationship between TMB and ICI. Furthermore, naïve statistical inference assesses patient prognosis inaccurately. Thus, the final determination of TMB thresholds must be flawed, hindering accurate screening of applicable patients and closely related to the risk of adverse events to immunotherapy. Although the corrected-score methodology is associated with a measurement error (Nakamura, 1990; Novick & Stefanski, 2002; Augustin, 2004), a new algorithm should be re-inferred due to the complexity of the specific joint model. The challenge lies in the fact that the complete joint probability is essentially a complex integration without an exact analytical solution. Patients’ responses couple with the survival process, based on the random effects governing both, so that the joint score function is usually impossible to strip. It is incapable of eliminating mistakes from this joint likelihood directly. A new iterative numerical estimation procedure is required by considering the biasing impacts induced by the mis-specified TMB covariate.
Therefore, we report a generalized method for optimizing the identification of TMB-positive thresholds. Our method integrates binary response and continuous TTE endpoints to provide a comprehensive efficacy assessment, while, to our best knowledge, it is among the first statistical approaches accounting for TMB measurement errors. To verify the viability of the multi-endpoint joint model, we conducted a series of simulation experiments, and the results confirmed our superiority in the accuracy of parameter estimation and fault tolerance of threshold delineation compared with the standard separate regression model. Meanwhile, we gathered a cohort of 73 non-small-cell lung cancer (NSCLC) patients and 64 nasopharyngeal carcinoma (NPC) patients and validation cohorts of 943 patients who underwent ICI treatment to illustrate the applicability of the model across carcinomas. It is known that different cancer types and TMB calculations often yield different thresholds, but we provide here a generalized statistical method applicable for any known scenarios. The data results show that the proposed model can obtain a more comprehensive and robust TMB threshold to support therapeutic refinement for cancer patients. The source code reproduces the figures, and results can be downloaded from https://github.com/YixuanWang1120/TMB_JM.
MATERIALS AND METHODS
To comprehensively determine TMB-positivity thresholds from multifaceted efficacy analyses while considering inevitable measurement errors, we present a general approach for the simultaneous joint modeling of multiple endpoints, yielding approximately consistent statistical inference for mis-specified covariates by developing an iterative numerical estimation procedure using the corrected-score method. The observed sample information contains the patient’s clinically recorded objective response rate (ORR) and TTE endpoints, other clinical indicators (correctly specified), and the corresponding TMB observations with measurement errors. The data consist of n independent observations of R, T, Δ, Z, and TMB∗, denoting the binary tumor response outcome, continuous survival time, event indicator, vector of accurately measured covariates, and mismeasured TMB, respectively. To simplify, the additive measurement error model relates the true unobserved TMB index to the observed TMB∗: TMB∗ = TMB + e, where [image: image].
A Joint Model Considers Binary and Continuous Endpoints
For patient [image: image], Ri denotes the tumor response (Ri = 1,0 for complete response (CR) and partial response (PR), stable disease (SD) and progressive disease (PD))and Zi denotes a vector of covariates, e.g., age, gender, treatment indicator, cancer stage. Binary response outcomes are typically modeled by logistic regression whose standard form is quite well established for the immunological effectiveness analysis. Ri depends on Zi and TMBi, then the mixed-effect logistical regression sub-model for the ORR endpoint is formulated as:
[image: image]
where αz and αm denote the corresponding response regression coefficients, θ represents all unknown parameters in the joint model, and bi denotes the random effect. The exponent of the estimated parameter exp(α) for the logit regression of binary outcomes can be interpreted intuitively as the multiples of change in the odds ratio caused by a one-unit increase in the corresponding variable.
Let Ti denote the observed event time (such as tumor relapses, progression, death, etc.), which is taken as the minimum of the true event time Ui and the censoring time Ci, that is, [image: image]. Define the event indicator as [image: image], where [image: image] is the indicator function. Here, we adopt the widely accepted Cox PH model because it focuses more on the identifying patients’ survival risk classes compared with alternative accelerated failure (AFT) models, is appropriate to the scenario of screening immunotherapy-beneficial patients in this article, and allows for more flexible baseline risk. Ti also depends on Zi, TMBi, unknown parameters θ, and random effect bi; then, the mixed-effect Cox PH regression sub-model for the TTE endpoint is formulated as:
[image: image]
[image: image]
where h(t) describes the instantaneous risk for an event in the time interval [t, t + dt) provided survival up to t, while S(t) represents the survival probability. h0(t) is referred to as baseline hazard and follows the Weibull distribution [image: image] because the trend in the baseline cumulative hazard distribution for progression-free survival in the cohort receiving immunotherapy is consistent with the Weibull distribution with a scale parameter equal to 1 (see in Figure 1). βz is the corresponding vector of covariate effect and βm quantifies the TMB effect.
[image: Figure 1]FIGURE 1 | The distribution of baseline cumulative hazard for patients receiving immunotherapy.
The maximum likelihood estimates are derived as the modes of the log-likelihood function corresponding to the joint distribution of the observed samples [image: image]. The vector [image: image] is the shared random effect on the respective endpoints, accounting for the intra-subject correlation between event times and individual tumor response and is assumed to follow a normal distribution [image: image]. Since the random effect bi accounts for the intra-subject association underlying both response and survival process, thus the two are conditionally independent given the random effect. Formally, for patient i, we have that:
[image: image]
where the likelihood of the response is:
[image: image]
while the likelihood of the survival is:
[image: image]
By incorporating random effects (Barbieri et al., 2020), it is feasible to jointly model the multiple endpoints and regulate intricate correlations between response probabilities and event times. Then, the joint logarithmic likelihood can be formulated as: 
[image: image]
Inference about parameters θ is typically based on the maximization of Eq. 2, while integrals about random effects apparently have no analytical solution. Here, we approximate [image: image] based on the Laplace method, which has the advantage over other numerical integration techniques, including Gaussian Hermite quadrature and Monte Carlo (Lin et al., 2008; Rizopoulos et al., 2014), since the multiplicative form of the series can be easily unfolded by adopting the logarithmic trick, facilitating our correction of the measurement errors of the covariates later. The Laplace approximation is as follows:
[image: image]
where the function f(x) has a unique global maximum at x0. So, the first-order Laplace approximation to the observed-data joint log-likelihood is:
[image: image]
where
[image: image]
and the mode [image: image] is obtained for each patient by solving [image: image] with a fixed θ,
[image: image]
[image: image]
The difference of Eq. 3 from the previous independent standard regressions lies in that the joint assessment entails examining the endpoint correlations, where [image: image] represents the likelihood of ORR, while [image: image] represents the information on survival endpoint, and [image: image] incorporates the within-subject dependence between two endpoints. When [image: image], i.e., there is no correlation between the two clinical endpoints, the joint model degenerates to standard separate logistic regression and Cox PH regression.
Estimates obtained by maximizing [image: image] are thus approximate maximum likelihood estimates (MLEs). The maximization is accomplished by solving the equation [image: image], [image: image] is score function. According to the negative of the inverse Hessian matrix at MLE [image: image], we obtain the standard errors for the parameter estimates [image: image], with [image: image], and the asymptotic confidence interval is [image: image]. It is typically easier to employ a numerical derivative routine for the calculation of Hessian matrix, such as the forward or the central difference approximation.
Based on [image: image], we obtain approximately consistent and unbiased estimates of the fixed effects for TMB and the random effects symbolizing intra-subject correlations between both endpoints. With the mutually moderating random effects, the joint likelihood that a patient has a favorable prognosis can be determined. This joint probability characterizes the positive prognosis of patients with both remission of tumor lesions and prolonged survival time, which can be utilized to analyze the patient’s treatment outcome more completely. The joint probability for patient i is:
[image: image]
where T0 is a pre-specified survival time.
Based on the joint probabilities that characterized the positive prognosis of the patients, we rank them and then label the populations to be analyzed according to the proportion of patients who would potentially benefit for ICI. Ultimately, the proposed joint model can stratify patients into two subgroups according to their TMB levels and the positive prognosis labels using the receiver operating characteristic curve (ROC) to balance the classification performance. Thresholds for the low- and high-TMB groups are selected from the local optima across a range of clinically meaningful values by Yoden Index.
The complete TMB threshold identification procedure based on the aforementioned joint model solved by Laplace approximation is given in Algorithm 1.
Algorithm 1. Identifying TMB threshold without measurement errors
[image: FX 1]Bias Arising From Measurement Error
Here, we further investigate the negative impact of measurement errors in TMB. The score function in Section 2.1 is unbiased. Base on Eqs. 3, 6, [image: image], [image: image], [image: image], [image: image], we have:
[image: image]
where [image: image] represents the score of ORR, [image: image] represents the score on the survival endpoint, and [image: image] represents the score of random effect.
The parameter [image: image] relating R, T, Δ, Z, and TMB is approximately consistent by satisfying [image: image], where the score function [image: image] is conditionally unbiased for the approximate likelihood:
[image: image]
What will happen when measurement error exists? We assume the observed TMB∗ is subject to the measurement error model: [image: image]. The error term ei is independent and identically normal distributed with mean zero and known variance [image: image], and is independent of Ri, Ti, Δi, and Zi. Because true TMB is not observed and hence the true-data score function cannot be used for parameter estimation from the perspective of inconsistency [image: image].
As a more specific illustration, we consult the part of survival function:
[image: image]
The additional term [image: image] on the scoring function is generated by the measurement error, leading the naïve estimator to be biased apparently. As for the response score and distribution of random effects, [image: image] and [image: image] are also subject to the negative impact of the error term with non-zero expectations:
[image: image]
due to the function [image: image] is not axisymmetric about the origin. The presence of the inevitable random error term e undermines the unbiased nature of the score expectation.
Correction of TMB Measurement Error for Threshold Optimization
To reduce the biasing effect caused by measurement errors and obtain a more robust TMB threshold, we integrated the widely applicable corrected score with the joint model, resulting in approximately consistent estimators based on the observed data. A corrected score is a function [image: image] of the observed data having the important property that
[image: image]
which is conditionally unbiased for the true-data score function according to the property of conditional expectation, [image: image]. The corrected scores provide an approach to reducing bias incurred by a covariate measurement error. Thus, [image: image] possesses a consistent, asymptotically normally sequence of solutions for [image: image] (Nakamura, 1990; Carroll et al., 2006).
Based on Eqs. 4 and 8 and the property of corrected score, we derive a correct [image: image] for the random effect estimator, and a corrected score [image: image] for the ideal likelihood score [image: image]. The corrected scores are defined as follows.
Let
[image: image]
where the complex variate [image: image], and [image: image] is a normal random vector with zero mean and variance [image: image]. Then, [image: image] is the corrected-score function for [image: image]. The proof can be found in the Supplementary Material.
Furthermore, we obtain the joint corrected-score [image: image], where [image: image], [image: image], [image: image],
[image: image]
[image: image]
We present the joint corrected scores based on the complex variable simulation extrapolation and the property of Eq. 11. Eq. 13 contains [image: image] representing the corrected score for ORR, which follows the complex variable simulation extrapolation for logistic regression (see Lemma 3 in the Supplementary Material), while [image: image] represents the corrected score for TTE satisfying the property of Eq. 11 (see Lemma 2 in the Supplementary Material). Then, based on the specificity of joint modeling, additional [image: image] needs to be considered, which represents the difference between the standard correction and the joint model correction. Then, [image: image] is the corrected-score function with the proof in the Supplementary Material. Consistency is achieved by virtue of the fact that the estimators are M-estimators whose score functions are unbiased in the presence of measurement error. The critical challenges of inferring the joint model are the random effects that characterize within-subject correlations. In the presence of measurement error, we need to correct the score functions of the random effects [image: image] to ensure the unbiasedness of their estimates before dealing with complex joint score functions without exact solutions by [image: image] as well as Monte Carlo extrapolation, which is the gap in the existing literature addressed in this article. Solving the equations [image: image] and [image: image] by the Newton–Raphson iteration, it is ultimately possible to yield the approximately consistent estimators [image: image] for mis-specified covariates and [image: image] for random effects.
The complete TMB threshold identification procedure based on the aforementioned Laplace approximation and corrected score is given in Algorithm 2.
Algorithm 2. Identifying TMB threshold with measurement errors
[image: FX 2]EXPERIMENTS AND RESULTS
Simulation Study
In order to assess the performance of the proposed joint model with the corrected-score function, we conducted a series of simulation studies whose primary objective was to assess the fixed effect coefficient estimates and the variance of the random effects. Data are simulated in an oncology trial context, with random effects correlated among patients’ multiple endpoints. In the simulations, we assume 200 patients, i.e., [image: image]. For each patient i, we generate the random effects bi from a normal distribution with zero mean, variance [image: image]. We consider three distinct tumor response states CR&PR (Ri = 1), SD & PD (Ri = 0). The response data are generated based on the logistic probability, [image: image], [image: image]. The event time for the patient is generated from the probability density function [image: image], where the baseline hazard is assumed to follow the Weibull distribution with the shape parameter equal to 1.0. Censoring time C is generated from the uniform distribution U (0, 8).
Furthermore, we set [image: image], [image: image], and [image: image], [image: image]. The variance for the error term is set to be 0.5, 0.75, and 1.0, respectively, in order to evaluate the performance of the estimators with different measurement error levels. With the specified parameters, for each dataset, based on the joint model, the true-data estimator, the naive estimator and the correct-score estimator with Monte Carlo approximation J = 10 were computed 1,000 replications. As a comparison, we also based the standard regression models; the true-data estimator and the naive estimator were computed. Results of the simulations are presented in Table 1. We report the fitted value, average bias, SD, and SE for each parameter, where SD and SE are defined as the standard error of the estimates over 1,000 simulations and the average of the standard error of the estimates, respectively.
TABLE 1 | Comparisons of bias and standard errors of estimators between joint model with standard model with varying measurement errors.
[image: Table 1]According to Table 1, the regression parameter estimates for the two function components perform reasonably well for a variety of measurement error conditions. In the absence of measurement errors, the joint model outperforms ordinary regression models in calculating regression coefficients because it more precisely reflects the potential connections between several endpoints. When considering different levels of measurement errors, the performance of the estimator based on corrected score was significantly superior to that of the naive estimator and only marginally poorer than that of the true-data estimator. Clearly, the performance of the naive estimator deteriorates with increasing error magnitude, which further suggests that the measurement error introduces a more significant bias effect on the parameter estimates. Overall, the results of the simulation experiments support the proposed joint multi-endpoint model and the iterative numerical estimation procedure, as well as the applicability of the associated random effects. Additionally, comparing SE and SD, the precision of the stated standard errors is generally satisfactory. The biases of the joint assessments compared to the standard separate regressions emphasize that the dependence among clinical endpoints could be an important and non-negligible confounder in analyzing the factors determining the treatment effect.
To further exhibit the disturbance of measurement errors on TMB thresholds and the stability of our proposed joint model, we additionally simulated the comparison of efficacy grouped by different TMB thresholds. We simulated the prognosis of a cohort of patients based on the assumption that there is a positive correlation between actual TMB levels and a favorable immunotherapy prognosis, with coefficients set exactly as above. The variance fluctuation of TMB measurement error was set to 1.0. We derive the different thresholds for classifying patients and comparing their efficacy based on the joint statistical inference with the TMB actual values, the quantile method with TMB observations, and the joint-correction statistical inference with TMB observations. The outcomes of the comparison are depicted in Figure 2. We can clearly observe that the discrepancies between the efficacies of different groups are minimized or even reversed (Figure 2C,D) when the patients were classified directly using quartiles in the presence of measurement errors. Contrary to the clinical theory that the higher TMB, the more antitumor immunogenic the patient, patients in the TMB-low subgroup demonstrated greater therapeutic benefit in terms of tumor remission and progression-free survival than those in the TMB-high subgroup. The confounding effect of the measurement errors would dilute the actual link between TMB levels and immunotherapy clinical efficacy (Figures 2A,B), preventing appropriate screening for superior patient populations. In contrast, the bias effect due to measurement errors is reduced when we use the joint model as well as the correction estimation procedure. As shown in Figure 2E,F, the TMB threshold determination based on our proposed method ensures both the validity and a certain degree of error tolerance.
[image: Figure 2]FIGURE 2 | Efficacy comparison of patients grouped based on different TMB thresholds. (A) (B) Comparison of ORR and survival curves based on the threshold derived from the joint statistical inference with TMB actual values. (C) (D) Comparison of ORR and survival curves based on median TMB observations. (E) (F) Comparison of ORR and survival curves based on the threshold derived from the joint-correction statistical inference with TMB observed values.
Patient Cohort Characteristics
Sun Yat-sen University Cancer Center recruited 95 NSCLC patients who received anti-PD-(L)1 monotherapy between December 2015 and August 2017, with data collected until January 2019. The study design has already been published (Fang et al., 2019). Between March 2016 and January 2018, R/M NPC patients have enrolled in two single-arm phase I trials (NCT02721589 and NCT02593786), where 128 patients were screened for eligibility. The dose escalation and expansion phases of the study were previously reported (Fang et al., 2018; Ma et al., 2019). Eligible patients aged from 18 to 70 years had histologically or cytologically confirmed locally advanced or metastatic NSCLC or NPC, had an Eastern Cooperative Oncology Group (ECOG) performance-status score of 0 or 1 (on a 5-point scale, with higher numbers indicating greater disability), had at least one measurable lesion according to the Response Evaluation Criteria in Solid Tumors (RECIST version 1.1 (Eisenhauer et al., 2009)), and had failed at least one prior line of systemic therapy. Figure 3 and Supplementary Table S1 depict the distribution of patients’ treatments. Radiographic tumor assessments were taken at the start of the study and every 6 weeks thereafter. The proportion of patients with complete response (CR) and partial response (PR) was known as the ORR. The time from the initial dose until PD or any-cause death was referred to as progression-free survival (PFS). Censored data documented the last radiographic assessment before cut-off, follow-up loss, or treatment change. Overall survival (OS) was defined as the time from the first dosage to death, and patients who remained alive were censored at the date of their last follow-up. The Sun Yat-sen University Cancer Center’s Ethical Review Committee approved this study, which was carried out in conformity with the Declaration of Helsinki. Each patient signed the written informed consent.
[image: Figure 3]FIGURE 3 | Patient samples included in the final analysis. (A) Flowchart for NSCLC sample inclusions. Among the 95 patients who underwent anti-PD-(L) 1 therapies and had available FFPE and/or biopsy tumor samples, we performed WES on samples from 73 patients. (B) Flowchart for NPC sample inclusions. Among the 128 patients who underwent anti-PD-(L) 1 or anti-CTLA-4 therapies, we performed targeted NGS on samples from 64 patients.
At Sun Yat-sen University Cancer Center, 95 Chinese patients with NSCLC were treated with anti-PD-(L)1 monotherapies, with 73 patients being included in the final analysis with evaluable radiological results. Concurrently, 128 patients with R/M NPC who had received anti-PD-(L)1 monotherapies were retrospectively investigated, of whom 64 patients were being screened for the final analysis based on sequencing quality and follow-up completeness. When both FFPE and biopsy samples were available for the patient, the FFPE sample was used in the analysis, given the limited intra-tumoral heterogeneity represented by a single biopsy sample. The study design and clinical characteristics of this cohort are summarized in Figure 3 and Table 2 with details in Supplementary Table S1. For lung cancer, 60% of the patients had adenocarcinoma, followed by squamous carcinoma (32%). Almost all patients (99%) were stage IV at diagnosis; the median age of patients with NSCLC and NPC at the treatment initiation was 55 and 46 years, respectively. 49% of the NSCLC patients and 25% NPC patients had a smoking history and more males in both cohorts (70% vs. 30% for NSCLC, 80% vs. 20% for NPC). ORR of the study cohorts was 19% and 12%, and the median progression-free survival (mPFS) was 91 days for lung cancer and 67.5 days for NPC. No difference in PFS was observed among the different immune agents.
TABLE 2 | Baseline clinical characteristics for NSCLC patients and NPC patients.
[image: Table 2]In addition to the SYSUCC NSCLC cohort and NPC cohort described above, external cohorts of 943 patients from the public literatures treated with ICI are compiled in Supplementary Table S2, encompassing 453 melanoma patients (Snyder et al., 2014; Van Allen et al., 2015; Hugo et al., 2016; Goodman et al., 2017), 407 NSCLC patients (Goodman et al., 2017; Hellmann et al., 2018a; Miao et al., 2018; Rizvi et al., 2018), 56 RCC (Wood et al., 2020), and 27 bladder (Miao et al., 2018), along with treatment modality and outcome analyzed. The mutation callings are derived from three sequencing platforms (WES, F1CDx, and MSK-IMPACT). F1CDx and MSK-IMPACT are NGS targeted panel being authorized by the FDA as practical diagnostic assays. Table 3 summarizes the sequencing methodology and varied TMB thresholds employed in the gathered research.
TABLE 3 | Patient cohorts from the published literatures.
[image: Table 3]Joint Model Prompts a Comprehensive and Robust TMB Subgrouping
The multi-endpoint joint analysis used to locate TMB thresholds is superior to the previous studies as it provides a more comprehensive analysis of patient clinical information. Based on the co-analyzed labels, it can give an overall picture of disease efficacy. Based on these compound indices to establish ROC curves to handle true- and false-positive rates in the classification, we selected a TMB threshold from clinically meaningful values to group patients in the experiment and validation sets.
As shown in Figure 4 and Table 4, we can discern that the ROC curves based on the mixed-endpoint joint labels generally had higher AUCs in either the experiment or validation groups, with an average improvement of about 0.2 over those based on ORR labels alone, and the range of confidence intervals likewise supports this conclusion. More importantly, all the AUCs established on the proposed indices exceeded 0.6, ranges from 0.663 to 0.972, reflecting our model’s more robust discrimination capabilities. For comparison, as for the ROCs based on original ORR labels, despite the classification ability varying among cancer types, the ROCs in most cases showed more inferiority, with half of the cases only marginally exceeding 0.5 not reaching 0.6, even equivalent to random chance. The results in Figure 4 and Table 4 fully demonstrate that the subgrouping of TMB under the joint modeling of multiple endpoints is significantly improved compared to the existing subgrouping based on the ORR single label. We attribute this phenomenon to a proportion of the patients with opposing effects on the two rubrics present in these cases. Although high TMB was reported associated with ICI treatment improvement in terms of overall trends, the status of a single indicator alone is not fully representative of the patient’s actual matter. This is why the ROC curves established based on only a single endpoint have such poor performance. Integrating patients’ multi-dimensional information and joint modeling mixed-endpoints can prompt a more comprehensive stratification of TMB. Our approach could provide clinicians with a full assessment of efficacy, resulting in a comprehensive determination of the TMB screening threshold for superior patients.
[image: Figure 4]FIGURE 4 | Receiver operating characteristic curves of the predictive capacity of prognosis label for two experiment cohorts and validation cohorts, depicting the true-positive rate (sensitivity, y-axis) and false-positive rate (1-specificity, x-axis) for the metric across all possible TMB thresholds. The corresponding area under the curve (AUC) is illustrated in the figure legends. (A) ROC curves for NPC (panel) experiment cohort, bladder cohort, and RCC cohort based on ORR labels alone. (B) ROC curves for NSCLC (WES) experiment cohort, NSCLC_35 cohort, NSCLC_57 cohort, and NSCLC_240 cohort based on ORR labels alone. (C) ROC curves for Mel_37 cohort, Mel_52 cohort, Mel_64 cohort, and Mel_105 cohort based on ORR labels alone. (D) ROC curves for NPC (panel) experiment cohort, bladder cohort, and RCC cohort based on the mixed-endpoint labels. (E) ROC curves for NSCLC (WES) experiment cohort, NSCLC_35 cohort, NSCLC_57 cohort, and NSCLC_240 cohort based on the mixed-endpoint labels. (F) ROC curves for Mel_37 cohort, Mel_52 cohort, Mel_64 cohort, and Mel_105 cohort based on the mixed-endpoint labels.
TABLE 4 | AUC comparison. The table reports the area under the curve (AUC), as well as the corresponding 0.95 confidence interval, for each metric (columns) applied to a different cancer cohort (rows). Bold-faced values indicate the best value for each cancer cohort.
[image: Table 4]To verify that our proposed threshold delineation method for TMB remains valid and robust under the perturbation of measurement errors, we added 10%–20% artificial noise according to the actual TMB level. Given the small number of patients in some cases, which are over-sensitive to data noise, we selected several groups of cases with more patients for analysis. The results are shown in Figure 5 and Table 5. Under the perturbation of artificial noise, the AUC of each group showed mostly a slight decrease compared to the error-free cases. However, the ROC curves based on our proposed joint labels still maintain a high AUC, which is about 0.3 higher on average than the ROC curves based on ORR labels only. These results demonstrate the high error tolerance of our proposed joint model.
[image: Figure 5]FIGURE 5 | Receiver operating characteristic curves of the predictive capacity of prognosis label for two experiment cohorts and validation cohorts, depicting the true-positive rate (sensitivity, y-axis) and false-positive rate (1-specificity, x-axis) for the metric across all possible TMB thresholds considering measurement errors. The corresponding area under the curve (AUC) is illustrated in the figure legends. (A) ROC curves for NPC (Panel), NSCLC (WES) experiment cohort, Mel_64 cohort, Mel_105 cohort, and NSCLC_240 cohort based on ORR labels considering TMB measurement errors. (B) ROC curves for NPC (panel), NSCLC (WES) experiment cohort, Mel_64 cohort, Mel_105 cohort, and NSCLC_240 cohort based on the mixed-endpoint labels considering TMB measurement errors.
TABLE 5 | AUC comparison. The table reports the area under the curve (AUC), as well as the corresponding 0.95 confidence interval, for each metric (columns) applied to a different cancer cohort (rows). Bold-faced values indicate the best value for each cancer cohort.
[image: Table 5]Joint Analysis Prompts a Significant and Error-Tolerant Patient Subgrouping
In addition to the strengths shown in the ROC curves, based on the derived TMB thresholds, we can classify experimental NSCLC patients into two groups with apparently stratified efficacy. The effect of the dichotomy is shown in Figure 6, where we can notice a significant difference between patients in TMB_Low and TMB_High in terms of immunotherapy benefit (p-values = 0.017 and 0.089). The grouping results on the other cohorts can be seen in Supplementary Figures.
[image: Figure 6]FIGURE 6 | Survival curves and ORR comparison between experimental NSCLC patients (n = 73) with low and high TMB. Improved progression-free survival (PFS) and a trend toward increased objective response rate (ORR) are observed in patients with high TMB.
To demonstrate that the TMB thresholds derived from our proposed joint model can significantly separate the treatment effects of patients receiving immunotherapy, we statistically compared the patient outcomes obtained based on our thresholds with those obtained from different quartiles (median, upper tertile, upper quartile) using the log-rank test and the two-sided Mann–Whitney U test. As shown by the results in Table 6, our model-derived TMB thresholds performed satisfactorily and consistently for cohort patient segmentation. This predominance is mainly reflected in the p-values of the statistical tests, which are essentially the lowest among all division scenarios under the threshold division based on the joint model, indicating that the proposed model is predominate. NSCLC_35 and NSCLC_240 were the only two situations in which the p-values performed marginally worse than the quantile divisions. Similarly, five groups of patients were selected to validate the stability of the proposed model in the face of the TMB measurement error. As shown by the results in Table 7, our proposed threshold delineation method for TMB remained efficient and robust under perturbation of measurement error.
TABLE 6 | Immunotherapy mPFS or mOS and response probability based on different tumor mutation burden (TMB) thresholds for non-small-cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), bladder, renal cell carcinoma (RCC), and melanoma. p values are reported by log-rank test and the two-sided Mann–Whitney U test.
[image: Table 6]TABLE 7 | Immunotherapy mPFS or mOS and response probability based on different tumor mutation burden (TMB) thresholds with measurement errors for non-small-cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), bladder, renal cell carcinoma (RCC), and melanoma. p values are reported by log-rank test and the two-sided Mann–Whitney U test.
[image: Table 7]DISCUSSION
Tumor mutation burden has recently become an area of interest, as high TMB is associated with improved response to ICI therapies. However, the threshold defining the TMB-high/TMB-positive patients is controversial in clinical, which is exacerbated by the presence of multiple evaluation metrics and TMB calculation errors. The existing TMB threshold-identifying approaches are merely based on a single endpoint, which may suffer from excessive information loss. TMB metric, as a predictive marker, is closely associated with both of the two types of clinical endpoints (ORR and TTE), where the effect in two endpoints may be of different magnitude or even point in different directions. Herein, we report a generalized framework for comprehensively determining the positivity TMB thresholds based on a mixed-endpoint joint model and an iterative numerical estimation procedure considering measurement errors. In our joint model, we choose the Weibull–Cox proportional hazard model for the TTE endpoint. Although the baseline risk h0(t) in standard survival analysis usually be left unspecified, such as the advantageous partial likelihood method. However, within the joint modeling framework, it turns out that following such a route may lead to an underestimation of the standard errors of the parameter estimates (Hsieh et al., 2006). Thus, we recommend choosing an explicit definition of h0(t) based on the dataset characteristics, corresponding to a parametric distribution. The Weibull, the log–normal, and the Gamma distributions are typically employed in the survival analysis context. By analyzing the progression-free survival of patients receiving immunotherapy, we found that the trend of their baseline cumulative hazard distribution was consistent with the Weibull distribution with a scale parameter equal to 1 (see in Figure 1), so the Weibull–Cox proportional hazard model was employed in this article. Our joint model sheds new light on the tumor mutation burden stratification based on a multi-endpoint assessment of immunotherapy benefits, suggesting more comprehensive and robust TMB-positive thresholds for clinical physicians. Attending physicians should make treatment recommendations based on patients’ multi-dimensional information.
CONCLUSION
The existing statistical methods for determining TMB thresholds are based on a single clinical endpoint while ignoring the difference between the true and observed TMB values. Our study considers TMB measurement error and integrates multifaceted clinical efficacy to optimize TMB thresholds. We report a multi-endpoint joint model as a generalized method for inferring TMB thresholds that facilitates consistent statistical inference using an iterative numerical estimation procedure considering mis-specified TMB. Our simulation results show that the proposed model maintains higher accuracy and stability than standard regressions, in terms of both parameter estimation and threshold determination. To validate the feasibility of the proposed thresholds, we pooled a cohort of 73 patients with non-small-cell lung cancer and 64 patients with nasopharyngeal carcinoma treated with anti-PD-(L)1, as well as a validation cohort of 943 patients for retrospective analysis. From the simulation and experimental results, we reasonably conclude that 1) our proposed joint model with the parameter estimation procedure can more robustly assess patient efficacy even under the interference of measurement error in TMB. 2) Integrating patients’ multi-dimensional information to employ multi-endpoint efficacy analysis can prompt a more comprehensive TMB subgrouping. 3) The TMB-positive threshold derived from multi-endpoint joint analysis can classify patients into two groups with more apparently stratified efficacy. Our model is applicable to clinical multiple endpoint data and can better assist physicians in their clinical decisions.
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Background: Necroptosis, a novel form of apoptosis, plays a crucial function in the progression of colon adenocarcinoma (COAD) and is expected to be triggered in cancer therapy for enhancing anti-tumor immunity. However, the function of necroptosis in tumors and its relationship with the tumor microenvironment (TME) remains largely unclear.
Methods: Necroptosis-related genes (NRGs) were collected from high-quality literature. Using The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov) and the Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) meta-cohorts, a robust risk model was constructed to systematically examine the clinical value, functional status, the role of TME based on the risk model, as also the genomic variations.
Results: A risk model containing nine NRGs, including TNF receptor-associated factor (TRAF2), TNF receptor 1 associated via death domain (TRADD), ubiquitin carboxyl-terminal hydrolase 21 (USP21), TNF receptor superfamily, member 6 (FAS), tumor necrosis factor receptor superfamily 10B (TNFRSF10B), mitogen-activated protein kinase 8 (MAPK8), mixed lineage kinase domain-like (MLKL), TNF receptor-associated factor 5 (TRAF5), and recombinant receptor-interacting serine-threonine kinase 3 (RIPK3), was constructed. The risk model’s stability and accuracy were demonstrated in training, as also the validation cohorts; it was verified as an independent prognostic model for COAD. High-risk group patients developed “cold” tumors having active tumor proliferation and immunosuppression, while those in the low-risk group developed “hot” tumors with active immune and cell killing functions. Moreover, a higher number of copy number variations in the genome and fewer somatic mutations were found in high-risk group patients. Furthermore, higher sensitivity towards immunotherapy and chemotherapy was seen in patients of the low-risk group.
Conclusion: A reliable risk model based on NRGs to assess patient prognosis and guide clinical decision-making was constructed and validated. Our findings may contribute to the understanding of necroptosis and are expected to aid clinical management and guide precision treatment for patients with COAD.
Keywords: colon adenecarcinoma, necroptosis, tumor microenvironment, risk model, genomic variations
INTRODUCTION
Globally, colon adenocarcinoma (COAD) is the fourth most prevalent tumor with approximately 1.1 million new diagnoses and the fifth leading reason for cancer-associated deaths; 550,000 deaths were reported in 2018 alone (Bray et al., 2018). Given the advancements in precision medicine, substantial efforts have gone into refining personalized treatment and management of COAD. In general, strategies for treatment are largely dependent on validated prognostic features from previous studies. Moreover, tumor pathological staging remains a crucial determiner for the treatment and prognosis of colorectal cancer (CRC) (Sargent et al., 2010). However, the utility of the existing staging system is insufficient. Hence, there is a need to discover new biomarkers to predict patient prognoses and identify high-risk groups that are most likely to benefit from treatment. Recently, several developments have been in this field. For instance, Bao et al. report that microsatellite instability (MSI) is significantly associated with immunotherapeutic efficacy in COAD (Bao et al., 2020). Tumor mutation burden (TMB) has also been identified as a predictor of patient prognosis in several cancer types and is an emerging biomarker for assessing the sensitivity to immune checkpoint inhibitors (Chalmers et al., 2017; Samstein et al., 2019).
Necroptosis, a new kind of programmed cell death, was first reported in 2005 (Degterev et al., 2005). It is a genetically programmed, lysogenic apoptosis mechanism, that is regulated in a caspase-independent manner. It is an alternative mode of apoptosis that overcomes resistance and triggers to enhance anti-tumor immunity in cancer therapy (Gong et al., 2019; Tang et al., 2020). Activation of the protein kinases, including the recombinant receptor-interacting serine-threonine kinase 1 (RIPK1) and RIPK3, is involved in the onset of necroptosis, followed by phosphorylation of the executioner molecule, mixed lineage kinase domain-like (MLKL), further inducing rupture of the cell membrane (Chan, Luz, Moriwaki; Pasparakis and Vandenabeele, 2015; Sun et al., 2012). In cancer, necroptosis is a double-edged sword. If, on the one hand, apoptosis is not induced, necroptosis can provide an alternative, thereby eliciting a strong adaptive immune response and halting tumor progression. On the other hand, in a case where the recruited inflammatory response molecules promote tumorigenesis and metastasis, necroptosis may cause the tumor microenvironment (TME) to become immunosuppressive (Gong et al., 2019). Thus, there is a requirement to better construe the mechanisms underlying necroptosis and their physiological and pathological functions to address the queries on the value of necroptosis for patient prognoses, immune regulation, and therapy in cancer.
In the present study, 33 necroptosis-related genes (NRGs) were screened and analyzed for their patterns in COAD using multi-omic data. Further, 10 NRGs that were related to the prognosis were selected by Cox regression and modeled using an iterative least absolute shrinkage and selection operator (LASSO) regression analysis for COAD. Moreover, we systematically assessed the accuracy and stability of the prognostic model in both the training and the external validation cohorts and evaluated the prognostic model in detail for biological function, TME, and genomic variations. Finally, we determined the prognostic predictive ability of the model for chemotherapeutic and immunotherapeutic responses in COAD in clinical settings. A brief flow chart of this study was shown in Supplementary Figure S1.
METHODS
Data extraction from online databases
The clinical information and corresponding data of transcriptomic RNA sequencing, HumanMethylation450 arrays, copy number variation (CNV), and Mutect2 mutation, of COAD patients, were downloaded from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov/). Patients with incomplete clinical information were excluded. Thus, 432 COAD samples were used for subsequent analyses. The raw fragments per kilobase million (FPKM) data were normalized to transcript per million (TPM) and used as the training cohort. We also obtained three datasets from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) as follows: GSE14333 from GPL570, GSE17536 from GPL570, and GSE41258 from GPL96. The three GEO datasets comprising of 654 COAD patients consisted of the complete clinical information and batch effects were eliminated by the combat function of the R package, “sva” (Leek et al., 2012). These data were log2-transformed and used as a validation cohort. In addition, an immunotherapy cohort IMvigor210 was collected from http//research-pub.gene.com/IMvigor210CoreBiologies (Mariathasan et al., 2018). IMvigor210 contains 298 patients with uroepithelial carcinoma treated by anti PD-L1 therapy, and the source data were log2 normalized for assessing immunotherapeutic responses. Finally, 33 NRGs were included from previously published high-quality literature (Vandenabeele et al., 2010; Su et al., 2015; Gong et al., 2019; Yan et al., 2021), as listed in Supplementary Table S1.
Construction and validation of an NRG-related risk model
Using the TCGA cohort, the model was trained. First, the prognosis-related NRGs were screened using univariate Cox regression, and, to avoid omission, those with p < 0.2 were used in subsequent analysis. Next, using a LASSO penalized Cox proportional risk model, the best prognostic model was identified after a 10-rule cross-validation to determine model stability. Assuming random sampling, 250 iterations were performed to identify the most stable prognostic model. Finally, the most stable prognostic model was selected to construct calculate the RiskScore as follows:
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The consistency index (c-index) was computed by the R package, “survcomp” to assess the predictive power of the RiskScore in the validation and training cohorts; a larger c-index indicated higher accuracy of the model (Schröder et al., 2011). In addition, correspondingly the patients were categorized into the high- and low-risk groups basis the median RiskScore.
Functional enrichment analysis
Molecular markers for angiogenesis, myeloid inflammation, epithelial-mesenchymal transition (EMT), and other immune-related pathways were collected from previous studies (Ayers et al., 2017; Gibbons and Creighton, 2018; McDermott et al., 2018; Liang et al., 2020). Molecular markers for hypoxia were obtained from the Msigdb database (www.plob.org/tag/msigdb) (Liberzon et al., 2011). By single-sample gene set enrichment analysis (ssGSEA) using the R package, “gsva”, the pathway activities of the samples were assessed. Subsequently, the gene set enrichment analysis (GESA) was performed for the two risk groups to identify the subtypes that were significantly enriched in the KEGG pathways; the enrichment was considered significant at p < 0.05.
In addition, we collected the homologous recombination defect (HRD) scores, intratumor heterogeneity scores, and microsatellite instability (MSI) scores of the samples as described by Thorsson et al. (2018).
Immune infiltration analysis
The relative infiltration activities of immune cell types in each sample were quantified using the “CIBERSORT” package in R and the “LM22″ background expression profile (Newman et al., 2015). The stromal and immune scores of the patients were computed using the ESTIMATE algorithm (Yoshihara et al., 2013).
Landscape of genomic variation between the two groups
The total number of mutations in the samples was calculated to assess the differences in the mutation burdens between the high- and low-risk groups. Genes with a minimum number of mutations >30 were further identified using the “maftools” R package, and differences in mutation frequencies between two risk groups were contrasted by the chi-square test and visualized using the “maftools” package (Mayakonda et al., 2018). The CNV data were processed using Gistic (version: 2.0) to identify amplifications (value >0.3) and deletions (value < -0.3) at genetic loci using a threshold of 0.3; finally, the CNV landscape was visualized using the R package, Circos.
Assessment of the clinical significance of the risk model
Using the pRRophetic package, we predicted the sensitivity of patients to four first-line COAD drugs (5-FU, cisplatin, paclitaxel, and doxorubicin) in the training and validation cohorts and estimated the half-maximal inhibitory concentration (IC50) values by ridge regression; the smaller was the IC50 value, the greater was the sensitivity to the drugs (Geeleher et al., 2014). The potential therapeutic targets were the differentially expressed genes (DEGs) in the two risk groups, and the CMap database (https://clue.io/) was used to identify the putative molecules which could target the DEGs (Subramanian et al., 2017). The top 150 upregulated and downregulated DEGs were queried for their corresponding possible small molecule compounds. Subsequently, an unsupervised subclass mapping algorithm (https://cloud.genepattern.org/gp/) and a webtool (http://tide.dfci.harvard.edu) (Jiang et al., 2018) and were used to assess the immunotherapeutic responses. Finally, the predictive utility of the RiskScore was verified in an immunotherapy cohort.
Bioinformatics and statistical analyses
The R (version: 4.04) software was used for all statistical analyses and graph plotting. The Wilcoxon test was used to compute the differences between the two groups and compare them. To generate survival curves, the Kaplan-Meier plotter was used and statistically significant differences were assessed by the log-rank test. Time-dependent receiver operating characteristic curves (tROC) were plotted using the R package, “survivalROC”. Using the “survival” package in R, the univariate and multivariate Cox regression analyses were performed. Additionally, the “rms” package was used to construct the nomogram and plot the calibration curves. The decision curve analysis (DCA) was performed using the DCA package (Vickers et al., 2008). Unless stated otherwise, the two-tailed p < 0.05 was regarded as statistically significant.
RESULTS
Landscape of genomic variations in NRGs in COAD patients
First, we summarized the multi-omic profile of NRGs in TCGA-COAD patients (Figure 1A), whereby, a low frequency of mutations in NRGs but a wide range of CNVs, especially in tumor necrosis factor receptor superfamily 10B (TNFRSF10B), Z-DNA-binding protein 1 (ZBP1), and tumor necrosis factor receptor superfamily 10A (TNFRSF10A), were observed, which suggested that CNVs may exert a dominant effect in NRG regulation relative to gene mutations. In addition, DNA methylation also played a dominant role in the regulation of NRGs, especially in NADPH oxidase 1 (NOX1), ZBP1, TNFSF10, TNF receptor-associated factor 5 (TRAF5), and Fas ligand (FASLG). Moreover, three genes, including ubiquitin carboxyl-terminal hydrolase 21 (USP21), TRAF2, and TNF receptor 1 associated via death domain (TRADD), were identified as significant risk factors. Figure 1B demonstrates the CNV profile of NRGs on chromosomes. Next, we summarized the mutation profile of NRGs (Figure 1C) and observed that caspase 8 (CASP8), OTU domain-containing protein 7B (OTUD7B), and toll/interleukin-1 receptor domain-containing adapter molecule (TICAM1) were the three genes having the highest mutation frequency. Moreover, the most common mutation was missense; single nucleotide point mutation was the most common mutation type, very often resulting in the change in residue from cytosine to thymine. The waterfall diagram in Figure 1D shows the mutation profile of NRGs in patients. We then queried the NRGs for constructing the protein-protein interaction network using the STRING database (string-db.org) and (Figure 1E) obtained BIRC2 and BIRC3 as the hub genes at a confidence level of 0.9. Finally, we mapped the correlation network of NRGs, most of which were closely related, and thus, only the pairs with p < 0.0001 are shown (Figure 1F).
[image: Figure 1]FIGURE 1 | Genomic mapping of NRGs in COAD patients. (A). Heat map showing genomic changes and hazard ratios of NRGs in TCGA-COAD cohort; from left to right: correlation between mutation and CNV frequencies for NRGs, modifications in DNA methylation and expression of NRGs, univariate Cox regression analysis showing risk ratios for NRGs; *p < 0.05, **p < 0.01, ***p < 0.001; (B). Circle plot demonstrating CNV events in NRGs on chromosomes; (C). Summary of CNV events in NRGs in TCGA-COAD cohort; (D). Oncoplot showing the mutational mapping of NRGs; (E). String PPI network of NRGs; (F). Correlation network of NRGs.
Construction of the NRG-related risk model
A total of 10 NRGs were identified as candidate genes in the model, including TRAF2, TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, RIPK3, and NOX1, with a threshold of p < 0.2, and the specific Cox results are listed in Supplementary Table S2. After 250 iterations in LASSO regression, we found that the model comprising nine genes, including TRAF2, TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, and RIPK3, was the most stable. This model had good accuracy in both the training and validation cohorts (TCGA: 0.6406; GEO: 0.6241) (Figure 2A). In addition, the model was constructed according to an optimal λ value of 0.007033 (Figure 2B), and the RiskScore was evaluated using the formula for [image: image], with LASSO coefficients for the model genes listed in Supplementary Table S3. The patients were categorized based on the median RiskScore into high- and low-risk groups. In addition, survival analysis suggested that relative to those in the low-risk group, in the high-risk group, the patients had a significantly lower rate of survival (Figure 2C; p = 0.00011). Figure 1D shows the distribution of RiskScore and gene expression in TCGA cohort. Additionally, the tROC analysis showed that RiskScore was the best predictor in addition to staging (Figure 1E). Specifically, the 1-, 3-, 5-, and 8-years AUCs for the model were 0.64, 0.66, 0.67, and 0.68, respectively (Figure 1F). We also assessed the predictive utility of the model in the validation cohort, along with survival analysis, which suggested significantly worse survival in the high-risk group (Supplementary Figure S2A, p < 0.0001). Supplementary Figure S2B shows the model RiskScore distribution in the GEO cohort. The 1-, 3-, 5-, and 8-years AUCs were 0.63, 0.65, 0.66, and 0.66, respectively, for the model in the validation set (Supplementary Figure S2C).
[image: Figure 2]FIGURE 2 | Construction of the NRGs-related risk model. (A). Screening of the best LASSO model; left: frequency of different gene combinations in the LASSO Cox regression model, right: c-index of the best model in TCGA and GEO cohorts; (B). LASSO Cox regression model to identify the top robust nine-gene marker having an optimal λ value of 0.007033; (C). KM survival curves for the high- and low-risk groups in TCGA cohort. (D). Survival status of patients and expression of model genes in TCGA cohort; (E). tROC curves of risk models and clinical characteristics in TCGA cohort; (F). 1-, 3-, 5-, and 8-years ROC curves for the RiskScore in TCGA cohort.
Assessment of the predictive independence of the risk model
First, the relationship between RiskScore and clinical parameters and patient prognoses was evaluated by univariate and multivariate Cox regression analyses. The results of the univariate Cox regression analysis suggested that the RiskScore (hazard ratio [HR] = 3.285, p < 0.001), TNM stage (HR = 2.280, p < 0.001), and age (HR = 1.019, p = 0.0353) in the training cohort were significantly associated with patient prognosis (Figure 3A); RiskScore (HR = 3.588, p < 0.001), TNM stage (HR = 2.829, p < 0.001), and gender (Female versus male; HR = 0.742, p = 0.0174) in the validation cohort were significantly associated with patient prognosis (Figure 3A). The results of the multivariate Cox regression analysis suggested that after correction for clinical characteristics, the RiskScore remained an independent prognostic factor for the overall survival (OS) of patients (TCGA: HR = 2.408, p < 0.001; GEO: HR = 2.315, p < 0.001) (Figure 3B). Hence, the RiskScore could serve as a prognostic marker for OS in COAD patients. In addition, we constructed a nomogram to better quantify the risk assessment of COAD patients (Figure 3C). The correction curve of the nomogram indicated good stability Figure 3Dand accuracy (Figure 3D). Moreover, the tROC analysis showed that the nomogram was the best predictor relative to the clinical characteristics (Figure 3E). We then performed a DCA for the nomogram to assess its decision benefit and the results showed that the nomogram was useful for risk assessment of patients with COAD at 1-, 3-, and 5-years (Figure 3G).
[image: Figure 3]FIGURE 3 | Validation of the NRG-related risk model. (A). Univariate Cox regression analysis for OS in TCGA and GEO cohorts; (B). Multivariate Cox regression analysis for OS in TCGA and GEO cohorts; (C). Nomogram based on NRG-related risk model; (D). Calibration curves for the nomogram; (E). Clinical characteristics and tROC curves for the nomogram; (F). 1-, 3-, and 5-years DCA curves for the nomogram.
Functional enrichment analysis of the risk model
The correlation between RiskScore and some typical biological pathways was assessed. The heat map shows the relationship between RiskScore, activities of the biological pathways, and clinical characteristics (Figure 4A). The RiskScore showed a positive association with angiogenesis and a negative association with hypoxia and certain immune-related pathways (e.g., APC co-stimulation, CCR, Type II interferon response, and myeloid immunity) (Figure 4B). Consistently, we observed that angiogenesis was markedly elevated in the high-risk group, whereas hypoxia and certain immune-related pathways (e.g., APC co-stimulation, myeloid immunity, CCR, and Type II interferon response) were substantially upregulated in the low-risk group (Figure 4C). GSEA showed that the RNA polymerase and spliceosome signaling pathways were markedly enhanced in the high-risk group, whereas P53, apoptosis, and transforming growth factor-beta signaling pathways were substantially upregulated in the low-risk group (Figure 4D). In summary, these results suggested active cell proliferation and tumor angiogenesis in the high-risk group. Immune hyperfunction characterized the low-risk group.
[image: Figure 4]FIGURE 4 | Functional analysis of the NRG-related risk model. (A). Heat map showing the correlation between RiskScore, activities of biological pathways, and clinical characteristics; (B). Correlation analysis between RiskScore and biological pathways; (C). Box plots showing the differences in activities of the biological pathways between the high-risk and low-risk groups; (D). GSEA enrichment plot showing the four pathways of interest in the high-risk group; (E). GSEA enrichment plot showing the 5 pathways of interest in the low-risk group.
Immune landscape of the risk model
The correlation between RiskScore and the immune landscape was assessed in further detail. The heat map shows the association between RiskScore, EstimateScore, the abundance of immune infiltration cell types, typical immune checkpoints (including CTLA-4, TIM-3, PD-1, LAG-3, PD-L1, and PD-L2), and clinical characteristics (Figure 5A). The corresponding correlation analysis is shown on the right of the heat map (Figure 5B). The immune score was significantly positively correlated with the Riskscore. Moreover, the box plot indicated that the immune score was markedly up-regulated in the low-risk group, while the tumor purity significantly ascended in the high-risk group (Figure 5C). Although the correlation analysis showed a significant positive association of LAG-3 and PD-1 with RiskScore, the box plot indicated that LAG-3 and PD-1 were not significantly elevated in the high-risk group, however, the remaining four immune checkpoints were markedly elevated in the low-risk group (Figure 5D). The box plot shows an enhanced abundance of follicular helper T cells, Tregs, CD8 T cells, M0 macrophages, and activated NKT cells, in the high-risk group, while in the low-risk group, resting CD4 memory T cells, acidic granulocytes, neutrophils, and resting dendritic cells, were elevated (Figure 5E). Although the high-risk group appears to have increased cell-killing activity, the significantly higher Treg infiltration herein can suppress the immune responses (Tanaka and Sakaguchi, 2017; Knochelmann et al., 2018). These findings further suggested that the immunological function was active in the low-risk group but was suppressed in the high-risk group. We then assessed two indicators associated with tumor-specific antigens, including HRD and MSI scores. The results showed that RiskScore was significantly negatively related to the HRD and MSI scores and that both of these were significantly high in the low-risk group (Figures 5F,G), which suggested that there were greater chromosomal instability alterations and tumor-specific neoantigens in the low-risk group (Ganesh et al., 2019; Eso et al., 2020; Shi et al., 2021). Finally, a significantly positive association was found between intratumor heterogeneity score and RiskScore; the former was also markedly greater in the high-risk group (Figure 5H), hinting at the tumor complexity and the tendency for malignancy in the high-risk group.
[image: Figure 5]FIGURE 5 | Immune landscape of the NRG-related risk model. (A). Heat map showing the correlation between RiskScore, EstimateScore, the abundance of immune cell infiltration, immune checkpoint expression, and clinical characteristics; (B). From top to bottom: correlation analysis between RiskScore and EstimateScore, immune cell infiltration abundance, and immune checkpoint expression; (C). Box plot showing the differences in the abundances of immune cell infiltrations between the high-risk and low-risk groups; (D). Box plot showing the differences in EsimateScore between the high-risk and low-risk groups; (E). Box plot showing the differences in immune checkpoint expressions between the high-risk and low-risk groups; (F). Correlation between RiskScore and HRD scores; (G). Correlation between RiskScore and MSI scores; (H). Correlation between RiskScore and intratumor heterogeneity scores. *p < 0.05; **p < 0.01; ***p < 0.001.
Correlation between riskscore and genomic variation
Several recent reports indicate that TMB correlates with immunotherapeutic responses, as somatic mutations may generate more potentially mutation-derived antigens that are recognized by the immune system, and such a recognition of the antigen-containing mutant peptides by the immune system can activate immune functions and enhance anti-tumor immunity (Matsushita et al., 2012; Rizvi et al., 2015; Chan et al., 2019). Given the clinical significance of TMB, the correlation between TMB and RiskScore was examined. A significantly negative association between TMB and RiskScore (correlation = -0.11, p = 0.031) was found; the TMB in the low-risk group was significantly high (Figure 6A). We further compared the mutation frequencies of the frequently mutated genes in the two groups. The Forestplot showed that TP53 and APC were significantly more commonly mutated in the high-risk group, whereas PIK3CA, FAT3, FAT4, and LRP1B were more commonly mutated in the low-risk group (Figure 6B). The landscape of the top 20 driving mutant genes was shown in Figure 6C. As CNV causes chromosomal variations too, we further evaluated the correlation between the RiskScore and CNV. Higher CNV events were observed in the high-risk group (Figure 6D) relative to the low-risk group (Figure 6E). The box plots showed a significant increase in both deletion and amplification events in the high-risk group (Figures 6F,G).
[image: Figure 6]FIGURE 6 | Landscape of genomic variations for NRG-related risk model. (A) Correlation between RiskScore and TMB; (B). Forest plot showing genes with significant mutational differences between the high-risk and low-risk groups; (C). Oncoplot showing significantly mutated genes between the high-risk and low-risk groups; (D). Circle plot showing the CNV landscape in the high-risk group; (E). Circle plot showing the CNV landscape in the low-risk group; (F). Box plot showing the differences in the number of chromosomal deletions between the high-risk and low-risk groups; (G). Box plots showing the differences in the number of chromosome amplifications between the high-risk and low-risk groups.
Role of the risk model in guiding clinical decision-making
The sensitivity of the patients to COAD chemotherapeutic agents in training and validation cohorts was evaluated and the findings suggested that patients in the low-risk group of TCGA cohort were more sensitive to 5-FU, paclitaxel, and cisplatin (Figure 7A). Patients in the low-risk group of the validation cohort were more sensitive to 5-FU, cisplatin, and Doxorubicin (Supplementary Figure S3A). Overall, a higher sensitivity to chemotherapy was seen in the patients in the low-risk group. Next, the DEGs were queried in the Clue database for identifying small molecule drugs, and as shown in the waterfall diagram, 41 potential small molecule drugs, and their corresponding target 33 biological pathways were identified (Figure 7B). Following previous results that suggest the potential of risk models for guiding immunotherapy, we assessed the patient response rates to immunotherapy using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm (tide.nki.nl), which showed that those in the low-risk group in TCGA cohort had a greater chance of responding to immunotherapy (p = 0.024, Figure 7C). Similar results were found in the GEO cohort, wherein patients in the low-risk group had a greater probability of responding to immunotherapy (p = 0.005, Supplementary Figure S3B). Subsequently, the subclass mapping results suggested that patients in the low-risk group of both TCGA and GEO cohorts were more sensitive to anti-PD1 therapy (TCGA: false discovery rate [FDR] = 0.048, GEO: FDR = 0.035) (Figure 7D; Supplementary Figure S3C). Finally, we computed the RiskScore in a well-established immunotherapy cohort, which showed significantly worse survival in the high-risk group (p = 0.023, Figure 7E). The RiskScore was significantly higher in patients who did not respond to immunotherapy (Figure 7F). We then evaluated the relationship of TMB and neoantigens with RiskScore in the immunotherapy cohort, which showed a negative correlation of the RiskScore with TMB and neoantigen count; both TMB and neoantigen count were significantly elevated in the low-risk group (Figures 7G,H). These results confirmed that this risk model may be a powerful tool for guiding immunotherapy selection for patients with COAD.
[image: Figure 7]FIGURE 7 | Role of the NRG-related risk model in guiding clinical treatment and decision-making. (A). Box plot showing predicted IC50 values for four commonly used drugs in the high-risk and low-risk groups; (B). Oncoplot showing the small molecule compounds, wherein the horizontal axis represents the name of the small molecule inhibitor and the vertical axis represents the biological pathway targeted by the corresponding small molecule inhibitor; (C). TIDE algorithm for predicting responses to immunotherapy between the high-risk and low-risk groups; (D). Subclass mapping for predicting sensitivity to PD1 and CTLA4 treatment in patients belonging to the high-risk and low-risk groups; (E). KM survival curves for the high-risk and low-risk groups in the IMvigor 210 cohort; (F). Box plot showing the differences in RiskScore between patients in the treatment-responsive and non-responsive groups of the IMvigor 210 cohort; (G). Correlation between RiskScore and TMB in the IMvigor210 cohort; (H). Correlation between RiskScore and neoantigens in the IMvigor 210 cohort.
DISCUSSION
In the present study, based on NRGs, a prognostic model for COAD patients was constructed using a robust LASSO algorithm, followed by an in-depth analysis of the prognostic model for function, immune microenvironment, genomic variations, and clinical therapies. We examined the putative biological functions of NRGs in COAD patients. We confirmed the suitability and accuracy of the constructed prognostic model for predicting survival in COAD patients in both cohorts. Functional analysis suggested that patients in the high-risk group had active cell proliferation and tumor angiogenesis, while immune hyperfunction was a characteristic of the low-risk group. Additionally, immune microenvironment analysis also demonstrated better immunogenicity in COAD patients with low RiskScores. Analysis of genomic variations suggested that TP53 and APC had higher mutation counts in the high-risk group. Moreover, chromosomal amplification and deletion events were also significantly higher in the high-risk group. For clinical settings, we determined that in the low-risk group, the patients were more sensitive to COAD chemotherapeutic agents. Finally, we predicted better immunotherapeutic response in COAD patients with low RiskScores using TIDE and subclass mapping algorithms; these were validated in an external immunotherapy cohort.
Apoptosis is strongly associated with cancer progression, metastasis, and treatment response. Inhibiting apoptosis enhances tumor metastasis and resistance of malignant cells against chemotherapy (Su et al., 2015; Strasser and Vaux, 2020). Ferroptosis, pyroptosis, and necroptosis are emerging forms of apoptosis. As most tumors are innately resistant to apoptosis, the induction of apoptosis mechanisms is emerging as a new strategy for cancer treatment (Tang et al., 2020). The predictive values of pyroptosis and ferroptosis for the prognoses of COAD patients have been demonstrated (Nie et al., 2021; Zhuang et al., 2021). In the present study, wherein, necroptosis as the non-apoptotic program cell death mechanism was focused on, we found that USP21, TRAF2, and TRADD were significant risk factors for COAD. Moreover, the NRG-based risk model showed excellent predictive abilities in both the training and external validation cohorts; a markedly low survival rate was found in the high-risk group.
The association of the risk model and biological pathways was analyzed to examine the functional biology underlying the survival differences. We found that angiogenic activity was significantly higher in the high-risk group. Previous studies report that active angiogenesis is critical for tumor growth and metastasis and is substantially associated with suppression of immune function; inhibition of angiogenesis is also a promising therapeutic strategy for impeding tumor growth (Sharma et al., 2001; Motz and Coukos, 2011; Welti et al., 2013). However, immune-related pathways, such as cell killing, CCR, antigen presentation, interferon response, and myeloid immunity were found to be more active in the low-risk group, which suggested that antigen presentation, anti-tumor immunity, and cell killing were more potent in the low-risk group (Luo et al., 2017; McGranahan et al., 2017; Miar et al., 2020). The above findings suggested that tumor growth and treatment resistance in the high-risk group resulted in significantly poorer survival of patients in the high-risk group; while the low-risk group exhibited strong anti-tumor immunity.
As TME and immune activity are strongly associated with cancer treatment and prognosis (Bruni et al., 2020; Riera-Domingo et al., 2020), we assessed the differences in TME and immune activity between the risk groups. Notably, the low-risk group had higher immune scores and immune checkpoint activity, which suggested that the low-risk group was relatively immunocompetent. Although patients in the high-risk group appeared to have higher cell-killing activity, such as by NK cells and CD8 T cells, significantly elevated Tregs could suppress the immune responses in the high-risk group, thereby leading to immune escape (Tanaka and Sakaguchi, 2017; Knochelmann et al., 2018). In contrast, dendritic cells, acidic granulocytes, resting CD4 memory T cells, and neutrophils showed elevated abundance in the low-risk group, which suggested that patients in the low-risk group had a greater capacity for antigen-presentation and intrinsic immunity (Wculek et al., 2020). The above findings suggested that in the high-risk group, the patients developed immunosuppressed ‘cold’ tumors with a weaker anti-tumor response, leading to poorer prognoses. In contrast, patients in the low-risk group developed immunocompromised ‘hot’ tumors, leading to better prognoses.
TMB is a biomarker of immunotherapeutic response. In general, higher TMB predicts greater benefit from immunotherapy, but there is variability in its prognostic role in different tumors (Chalmers et al., 2017; Liu et al., 2019). Higher TMB in the low-risk group was found in the present study. Additionally, the mutation frequencies of TP53 and APC were markedly greater in the high-risk group, whereas those of PIK3CA, FAT3, FAT4, and LRP1B were higher in the low-risk group. Considering that the low-risk group has a robust immune function, indeed, patients in the low-risk group seemed to benefit more from immunotherapy. We also analyzed the pattern of CNVs in TCGA-COAD cohort and found that patients in the high-risk group had greater chromosomal amplification and deletion events. Studies show that somatic structural rearrangements in chromosomes actively drive oncogenesis and lead to greater tumor heterogeneity and chemoresistance (Stephens et al., 2009; Stephens et al., 2011; Waddell et al., 2015). These results suggested that patients in the low-risk group may be more sensitive to immunotherapy and chemotherapy than those in the high-risk group.
Many studies have shown that bioinformatics has amazing prospects in dealing with genomic variation, TME, and precision therapy (Jiang et al., 2020; Wang et al., 2021; Jiang et al., 2022; Yu et al., 2022). As previous results strongly suggested higher sensitivity to treatment among patients in the low-risk group, we finally analyzed the sensitivity of COAD patients in both groups towards chemotherapy and immunotherapy. In both cohorts, we confirmed that patients in the low-risk group were more sensitive to cisplatin and 5-FU. In addition, TIDE and subclass mapping algorithms also predicted that patients in the low-risk group were more sensitive to PD1 immunotherapy. We confirmed greater sensitivity to PD-L1 treatment and a longer survival time in the low-risk group using an external immunotherapy cohort. This may be because these patients had elevated TMB and neoantigen counts. In conclusion, these results affirmed that the risk model constructed in this study was a powerful tool and may have implications in guiding the treatment of patients with COAD.
There are certain limitations to the present study. First, due to the paucity of data, we only considered inter-patient heterogeneity and not intratumoral heterogeneity. Second, although we have used certain algorithms to determine the accuracy of this risk model in predicting the sensitivity of patients to chemotherapy and immunotherapy, further validation in prospective cohort studies and clinical data is required. Finally, in vitro and in vivo experiments are necessary to confirm the specific biological functions of NRGs in COAD.
In summary, this study pioneered the construction of the NRG-based risk model and identified high- and low-risk patients, showing heterogeneity in functional status, immune microenvironment, genomic variants, and clinical outcomes. In addition, the constructed risk model can be applied to predict the sensitivity of COAD patients toward immunotherapy and chemotherapy. Overall, these results are expected to advance the understanding of necroptosis, clinical management, and precise treatment options for patients with COAD.
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Background: Ulcerative colitis (UC) is a well-known risk factor for developing colitis-associated colorectal cancer (CAC). However, the molecular mechanism of the pathogenesis of CAC remains unclear. This study aimed to explore candidate genes involved in the tumorigenesis of CAC.
Methods: GSE75214 and the Cancer Genome Atlas Program (TCGA) dataset were used to analyze the differentially expressed genes (DEGs) in UC and colorectal cancer (CRC), respectively. Survival-hub genes were identified from these DEGs by sequentially constructing a protein–protein interaction network, selecting hub genes, and conducting survival analysis. Regulatory signatures were also predicted on these genes through the online database. Apcmin/+ and UC mice models were used to validate the expression of the above-predicted molecules. Gene set enrichment analysis and CIBERSORT were performed to explore the enriched molecular pathways and associated tissue-infiltrating immune cells of genes.
Results: Here, 376 common DEGs were identified from the GSE75214 and TCGA datasets. Through survival-hub gene selection and in vivo experiments, we confirmed that CXCL10 and CXCL11 were significantly upregulated in UC and CRC. We also proved that miR-34a-5p and miR-203a-5p were potential regulators of CXCL10 and CXCL11. Meanwhile, CXCL10 and CXCL11 may activate the JAK–STAT signaling pathway via the interaction with cytokine receptors in UC. Furthermore, CXCL10 and CXCL11 were positively associated with the tissue infiltration of proinflammatory M1 macrophages in UC and CRC.
Conclusion: CXCL10 and CXCL11 may act as the candidate genes involved in the tumorigenesis of CAC and potential therapeutic targets to prevent the development of CAC from UC.
Keywords: ulcerative colitis, colorectal cancer, colitis-associated colorectal cancer, differentially expressed genes, TCGA
INTRODUCTION
Ulcerative colitis (UC) is a chronic inflammatory bowel disorder characterized by relapsing and remitting mucosal inflammation that starts in the rectum and generally extends proximally through the colon in a continuous manner (Ungaro et al., 2017). Although UC incidence has stabilized in western countries since 1990, the worldwide incidence and prevalence of this disease are greatly increasing as emerging industrialized societies have adopted a more westernized lifestyle (Ng et al., 2017). The highest prevalence rates of UC have been reported in Europe (505 per 100,000 in Norway) and North America (286 per 100,000 in the United States) (Ng et al., 2017). So far, the precise pathogenesis of UC remains unclear, but genetic susceptibility, dysregulated immune system, microbial dysbiosis, and environmental exposure are all potential pathogenic factors (Du and Ha, 2020). The peak age of UC onset is between the third and fourth decades of life without sex predominance (Cosnes et al., 2011), which tremendously affects patients’ productivity and imposes an immersive financial burden on health systems.
UC is a critical risk factor for colorectal cancer (CRC) development. Although the overall risk of CRC in patients with UC is not different from that of the general population, at least in the first decade after diagnosis, those with long-duration extensive colitis or those diagnosed with UC at a young age remain at a significantly increased risk of CRC development (Jess et al., 2012b). A meta-analysis also revealed that the cumulative risk of CRC could reach 13.9% in patients with a 30-year duration of UC onset (Bopanna et al., 2017). Although colitis-associated CRC (CAC) originating from UC patients only takes up approximately 1% of all CRC cases, one-sixth of all deaths in UC patients were caused by CAC (Gyde et al., 1982). Therefore, it is imperative to deepen our understanding of the cumulative detrimental effects of UC and to develop new agents to impede the occurrence of CAC. However, the molecular mechanism of CAC development remains unknown.
In UC, chronic inflammation is knowingly associated with the pathogenesis of CAC via the production of inflammatory mediators, oxidative stress, and alterations in immune receptor expression on epithelial cells (Kusunoki, 2015). To highlight the impact of the inflammation on intestine tissues, we only enrolled datasets containing UC patients with an active inflammation status. Meanwhile, the Cancer Genome Atlas Program (TCGA) projects provide the largest repository of expression matrices for CRC patients and paracancerous controls at the single-dataset level. We performed a series of bioinformatics analyses in the present study to identify survival-hub genes, including differential expression analysis, protein–protein interaction network, selection of hub genes, and survival analysis. Furthermore, we predicted the regulatory signatures on these genes using the online database. Moreover, we used in vivo experiments to validate the expression difference of survival-hub genes and regulatory signatures in both UC and CRC mice models. Our study demonstrated that CXCL10 and CXCL11 were candidate genes involved in the pathogenesis of CAC, indicating that targeting CXCL10/11 is a promising therapeutic strategy. To our knowledge, this is the first study to explore the underlying carcinogenic mechanism of CAC development using bioinformatics and animal models.
MATERIALS AND METHODS
Data collection and processing
The Gene Expression Omnibus database was thoroughly searched to find eligible UC datasets with the following inclusion criteria: 1) UC patients with an active inflammation status, 2) a UC group with more than 20 patients, and 3) gene expression profiles based on tissue samples. GSE75214 (Vancamelbeke et al., 2017) containing 74 UC patients with an active inflammation status and 11 healthy controls were enrolled for UC analysis. GEOquery (RRID: SCR 000146) R package was used to download the expression matrices of this dataset. The probes were annotated into gene symbols based on the GPL6244 annotation files. When multiple probes matched one gene, the median was calculated as its expression values. Gene expression profiles of 568 CRC patients and 51 healthy controls were downloaded from TCGA through the GDC data portal. Clinical follow-up data of these patients were acquired from the University of Santa Cruz Xena platform.
Differential expression analysis
Differential expression analysis in the GSE75214 and TCGA cohorts was conducted using the limma (RRID: SCR_010943) and DESeq2 (RRID: SCR_015687) R packages, respectively. Any gene with adjusted p values of <0.01 and |log2(Foldchange)| of >1 was regarded as differentially expressed genes (DEGs). DEGs consistently changed in the above two datasets were identified as common DEGs.
Functional enrichment analysis
To determine the potential function of the identified common DEGs, we used the clusterProfiler (RRID: SCR_016884) R package to carry out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. GO analysis was divided into three categories: biological process (BP), molecular function (MF), and cellular components (CC). The cutoff criteria of p values <0.05 and false discovery rate <0.05 were regarded as statistically significant differences for all analyses.
Protein–protein interaction networks
The online database Search Tool for the Retrieval of Interacting Genes (STRING, version 11.0, RRID: SCR_005223) (Szklarczyk et al., 2019) was used to evaluate the interactive relationships among common DEGs. Just the interaction pairs with a combined score of >0.7 were selected. Then, Cytoscape software (version 3.8.2, RRID: SCR_003032) was used to construct and visualize a protein–protein interaction (PPI) network of DEGs (Shannon et al., 2003). The cytoHubba (RRID: SCR_017677) plugin was applied to define the top 10 hub genes of the network using the maximal clique centrality method of topological analysis.
Survival analysis
We applied the Kaplan–Meier plot to analyze the overall survival (OS) and progression-free interval (PFI) probability of different groups using two R packages, namely, survival (RRID: SCR_021137) and survminer (RRID: SCR_021094). OS represented the interval from the diagnosis date until the date of death from any cause, and PFI referred to the interval from the diagnosis date until the date of the first occurrence of a new tumor event, including the progression of the disease, locoregional recurrence, distant metastasis, new primary tumor, or death with tumor (Liu et al., 2018).
Identification of regulatory signatures interacted with genes
Transcription factor–gene and miRNA–gene interactions were analyzed to identify transcription factors (TFs) and miRNAs that regulate the expression of genes at the transcription and posttranscription levels, respectively. JASPAR (RRID: SCR_003030) is an open-access database of curated, nonredundant TF binding profiles stored as position frequency matrices and TF flexible models for TFs across multiple species in taxonomic groups (Stormo, 2013). Moreover, TarBase (version 8.0, RRID: SCR_000577) is one of the largest databases of miRNA–target interactions with experimental support (Karagkouni et al., 2018). NetworkAnalyst (version 3.0, RRID: SCR_016909) was applied to predict potential TFs and miRNAs of genes from the JASPAR and TarBase databases, respectively. Then, Cytoscape software was used to visualize the TF–gene and miRNA–gene interaction networks.
Mice
Apcmin/+ mice were purchased from Jackson Laboratory, and C57BL/6 (MGI Cat# 2159769, RRID: MGI:2159769) mice were obtained from SLAC Laboratory Animal Co., Ltd. (Shanghai, China). The mice were maintained in a pathogen-free animal facility, and all experiments were performed in mice aged 9–14 weeks. All animal experiments were performed according to the National Institute of Health Guidelines for the Care and Use of Laboratory Animals. Our study was approved by the Animal Care and Use Committee of Renji Hospital, School of Medicine, Shanghai Jiao Tong University. At the end of the experiment, under inhalation anesthesia with isoflurane, mice were sacrificed by strangulating their neck, and then, their intestine was harvested for further analysis.
Acute dextran sulfate sodium-induced colitis mouse model
Acute colitis was induced in C57BL/6J mice with the administration of 3% dextran sulfate sodium (DSS) with a molecular mass of 40 kDa (Sigma Aldrich, Darmstadt, Germany) in autoclaved drinking water. After acclimation, 8-week-old mice were randomly divided into two groups (n = 6 per group): 0 DSS (negative control) and 3% DSS-treated group. Mice were treated with 3% DSS for 6 days and plain water for 3 days right after the treatment. The severity of colitis was assessed daily by measuring weight loss and disease activity index (DAI). DAI was calculated based on the degree of diarrhea and visible fecal blood as Cooper et al. described (Cooper et al., 1993). Mice were euthanized on day 10. The intestine was removed and meshed for further analysis.
Western blot assay
The freshly removed intestines were meshed and lysed with RIPA lysis buffer (Thermo Fisher Scientific, Waltham, MA, United States) on ice. The protein concentrations were measured with Bradford assay (Bio-Rad, Hercules, CA, United States), and 20 µg of protein per sample was subjected to 10% SDS-acrylamide gels for electrophoresis. The proteins were separated by electrophoresis at 80–120 V in an electrophoresis unit (Invitrogen, Waltham, MA, United States) with NuPAGE™ MOPS SDS as a running buffer. The separated proteins were transferred onto Immobilon PVDF membranes (Invitrogen, Waltham, MA, United States) with NuPAGE™ Transfer buffer using the Invitrogen blotting system and a BIO-RAD power supply constantly held at 125 mA and a maximum voltage of 10 V. After blocking in 5% skimmed milk/TBS–Tween 20, the membrane was incubated with a primary antibody and then with horseradish-peroxidase (HRP)-conjugated secondary antibodies. Enhanced chemiluminescence (Thermo Fisher Scientific, Waltham, MA, United States) signals were recorded using a 440-CF imaging system (Kodak, Rochester, NY, United States). Primary antibodies included mouse antiactin antibody (Santa Cruz Biotechnology Cat# sc-8432, RRID: AB_626630) and rabbit anti-YY1 antibody (Abcam, Cambridge, Cat# ab245365).
RNA extraction and qRT-PCR
Total RNA was extracted from cells using the NucleoZOL reagent (MACHEREY-NAGEL, Düren, Germany) according to the manufacturer’s instructions. Here, 2 µg of total RNA was reverse-transcribed using SuperScript III First-Strand Synthesis SuperMix for qPCR (Thermo Fisher Scientific, Waltham, MA, United States). For the detection of miRNAs, a TaqMan MicroRNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, United States) was applied for the synthesis of cDNAs. Each cDNA sample was similarly diluted for subsequent PCR amplification with the 2× qPCR Master Mix (Sigma Aldrich, Darmstadt, Germany) with a StepOnePlus Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, United States). The expression of miRNAs was detected with a TaqMan MicroRNA Assay (Thermo Fisher Scientific, Waltham, MA, United States). The qPCR results were calculated using the 2−ΔΔCt method. Results were represented as fold induction of the disease condition compared with the control condition. All primers used in this study are presented in Supplementary Table S1.
Cytokine array
Intestines from all mice models were collected and cut into pieces. After overnight incubation in Hank’s Balanced Salt Solution (Thermo Fisher Scientific, Waltham, MA, United States), tissues were removed through a 350 g centrifuge, and the supernatant was subjected to the proteome profiler mouse XL cytokine array (R&D system, Minneapolis, MN, United States). Signals were visualized using an myECL imager or the iBright imaging system (Thermo Fisher Scientific, Waltham, MA, United States).
Gene set enrichment analysis
We applied gene set enrichment analysis (GSEA) (Subramanian et al., 2005) to predict the KEGG pathways related to CXCL10 and CXCL11 using the clusterProfiler R package with the following parameters: minGSSize = 10, maxGS-Size = 500, nPerm = 100, seed = 2020, and p-value corrected by Benjamini–Hochberg (BH). Significant enrichment terms were considered if the adjusted p-value was less than 0.05. The KEGG gene sets were downloaded from the MSigDB database (https://www.gsea-msigdb.org).
Evaluation of immune cell infiltration
The CIBERSORT algorithm (Chen et al., 2018) was used to estimate the proportions of 22 immune cells in UC and CRC samples. Spearman’s correlation was calculated between the proportions and gene expression. p < 0.05 was considered a significant correlation.
Statistical analysis
The log-rank test was used to evaluate the survival difference between different groups in the Kaplan–Meier plot. The statistical difference between the two groups was calculated using the Wilcoxon rank-sum test or t-test, and a p-value of <0.05 was regarded as the significant threshold. Statistical analyses were conducted using R software (version 4.0.5).
RESULTS
Identification of overlapping differentially expressed genes across ulcerative colitis and colorectal cancer
The study flowchart is illustrated in Figure 1. In the GSE75214 dataset, we identified 926 DEGs in UC samples compared to healthy controls, including 597 upregulated genes and 329 downregulated genes. Meanwhile, 5120 DEGs were obtained from the differential expression analysis between CRC samples and noncancerous tissues in the TCGA cohort. The top 100 DEGs in the UC and CRC groups are displayed in Figures 2A,B. To dissect the underlying mechanisms involved in the malignant transformation of UC, we used the Venn diagram to intersect the consistent DEGs between the GSE75214 and TCGA cohorts. In total, there were 376 common DEGs consisting of 156 upregulated DEGs and 220 downregulated DEGs (Figures 2C,D).
[image: Figure 1]FIGURE 1 | Workflow of processing the datasets. Abbreviation: UC, ulcerative colitis; TCGA, The Cancer Genome Atlas; CRC, colorectal cancer; TFs, transcription factors; miRNA, microRNA.
[image: Figure 2]FIGURE 2 | The common differentially expressed genes (DEGs) between ulcerative colitis (UC) and colorectal cancer (CRC). (A) heatmap of the top 100 DEGs in the UC dataset. (B) heatmap of top 100 DEGs in the CRC dataset. (C) common upregulated DEGs in UC and CRC. (D) common downregulated DEGs in UC and CRC. Abbreviation: DEGs, Differentially expressed genes; UC, ulcerative colitis; CRC, colorectal cancer.
Functional enrichment analysis and protein–protein interaction network of common differentially expressed genes
We performed GO and KEGG enrichment analyses to explore the biological functions of the shared DEGs between UC and CRC. These DEGs were mainly involved in transporting organic substances and leukocyte chemotaxis in three subtypes of GO terms (Figure 3A). Likewise, protein digestion and absorption and cytokine–cytokine receptor interaction were the principally enriched KEGG pathways of common DEGs (Figure 3B). Detailed results of the functional enrichment analysis are shown in Supplementary Table S2.
[image: Figure 3]FIGURE 3 | Functional enrichment analysis and protein–protein interaction (PPI) network of common differentially expressed genes (DEGs). (A) gene ontology enrichment analysis of common DEGs. (B) Kyoto Encyclopedia of Genes and Genomes enrichment analysis of common DEGs. (C) PPI network of common DEGs. The red node represented upregulated genes; the green node stands for downregulated genes. (D) hub genes identified from the PPI network. Abbreviation: DEGs, differentially expressed genes; BP, biological process; CC, cellular components; MF, molecular function; PPI, protein–protein interaction.
To identify the potential interactions of 376 DEGs, we constructed the PPI network based on the STRING database with the threshold of minimum required interaction score of >0.7. A total of 183 nodes and 590 edges were incorporated into this network, as shown in Figure 3C. Each node represented one gene, and the edges indicated the predicted interaction relationships. Furthermore, we used the cytoHubba plugin of Cytoscape software to identify hub genes from the whole PPI network. The top 10 genes are shown in Figure 3D, namely, CXCL1, CXCL2, CXCL3, CXCL8, CXCL10, CXCL11, CCL3, CCL20, IL1B, and IL1A.
Survival analysis of hub genes in the Cancer Genome Atlas Program cohorts
To refine the clinical significance of hub genes, we used TCGA cohorts to analyze their expression difference stratified by tumor stage. As shown in Figure 4A, except for CXCL8 and CCL20, all hub genes have significantly lower expression in advanced tumor stages. Then, we further explored the prognostic effects of these hub genes in CRC patients. Just CXCL11 was associated with the OS in the TCGA cohort (Figure 4B). Meanwhile, three genes have a significant association with PFI (Figures 4C–E). In total, we only have three survival-related hub genes in this study, namely, CXCL10, CXCL11, and IL1A. Furthermore, survival analysis of other hub genes is shown in Supplementary Figure S1. The characteristics of the CRC patients are displayed in Supplementary Table S3.
[image: Figure 4]FIGURE 4 | Clinical significance of hub genes in the Cancer Genome Atlas Program cohorts. (A) expression analysis of hub genes in different tumor stages. (B) overall survival analysis of CXCL11. (C–E) progression-free interval analysis of CXCL10, CXCL11, and IL1A, respectively.
Regulatory signatures of survival-associated hub genes
Furthermore, we used the online database to predict TFs and miRNAs that might interact with survival-associated hub genes at the transcription and posttranscription levels. The medium degree cutoff was applied to reduce redundant nodes of the interaction networks. As shown in Figure 5A, the miRNAs-hub genes interaction network contained 17 miRNAs and 38 edges. Meanwhile, there were five TFs and 10 edges in the TF-hub gene network (Figure 5B).
[image: Figure 5]FIGURE 5 | Regulatory signatures of survival-associated hub genes. (A) miRNA–gene interaction network; (B) transcription factors–gene interaction network. The red node represented survival-related hub genes. The green node indicated miRNAs and transcription factors.
Validation of the expression of survival-hub genes and related regulatory signatures using the in vivo experiments
To validate the upregulated expression of three survival-hub genes in UC and CRC samples, we performed cytokine array studies to detect the expression levels of these genes in UC and CRC mice models. We found that CXCL10 and CXCL11 were consistently upregulated in UC and CRC compared with the corresponding controls (Figures 6A,B), whereas there was no difference in IL1A expression (Figures 6C,D). Thus, CXCL10 and CXCL11 were regarded as the candidate genes involved in the pathogenesis of CAC. We selected three miRNAs possibly regulating CXCL10 and CXCL11 from the miRNA–gene network to examine the potential regulatory miRNAs further. Our results showed that miR-34a-5p and miR-203a-5p have significantly lower expression in UC and CRC than in controls (Figures 6E,F). However, miR-210-3p has a similar expression between the disease group and the controls (Figures 6G,H). Also, we detected the potential TFs of CXCL10 and CXCL11 in UC and CRC mice models. Several studies have reported that YY1 could promote the tumor progression of CRC (Fang et al., 2019; Tang et al., 2019; Yu et al., 2020). Our results indicated that YY1 was only upregulated in the CRC model (Figure 6I).
[image: Figure 6]FIGURE 6 | The expression of survival-hub genes and interacted regulatory signatures in vivo. (A) cytokine array to detect CXCL10 and CXCL11 in ulcerative colitis (UC) mice and controls (n = 3, per group), respectively. (B) cytokine array to detect CXCL10 and CXCL11 in APCmin/+ mice and wild type (WT) (n = 3, per group), respectively. (C) cytokine array to detect IL1A in UC mice and controls (n = 3, per group). (D) cytokine array to detect IL1A in APCmin/+ mice and WT (n = 3, per group). (E) qRT-PCR for miR-34a-5p and miR-203a-3p in UC mice and controls (n = 6, per group), respectively. (F) qRT-PCR for miR-34a-5p and miR-203a-3p in APCmin/+ mice and WT (n = 6, per group), respectively. (G) qRT-PCR for miR-210-3p in UC mice and controls (n = 6, per group). (H) qRT-PCR for miR-210-3p in APCmin/+ mice and WT (n = 6, per group). (I) Western blot for YY1 expression in different groups. Ctrl, control mice for UC model. WT, wild type mice. *, p < 0.05; **, p < 0.01, ***, p < 0.001. Abbreviation: Ctrl, control; UC, ulcerative colitis; WT, wild type.
These results indicated that miR-34a-5p and miR-203a-5p might inhibit the tumorigenesis of the UC mucosa by mediating the downregulation of CXCL10 and CXCL11. Moreover, YY1 may not affect the development of CAC.
Immune cell infiltration and gene set enrichment analysis of survival-hub genes
The CIBERSORT algorithm was used to estimate the proportion of 22 immune cells in CRC and UC patients. To explore the correlation between CXCL10/11 and immune infiltration, we further calculated the correlation coefficient of each gene with immune cells. p-value < 0.05 was applied to filter significantly correlated immune cells. Figures 7A,B illustrate that CXCL10 and CXCL11 significantly correlated with the infiltration of macrophage M1, neutrophils, CD4+ activated memory T cell, and macrophage M0 in CRC and UC cohorts. Moreover, CXCL11 was negatively associated with Tregs infiltration. Moreover, we performed a KEGG pathway analysis of GSEA on CXCL10 and CXCL11 to elucidate the molecular mechanism underlying these two genes. Figures 7C,D consistently show that CXCL10 and CXCL11 might promote the tumorigenesis of CAC through three possible pathways, namely, cytokine–cytokine receptor interaction, chemokine signaling pathway, and JAK–STAT signaling pathway.
[image: Figure 7]FIGURE 7 | Immune infiltration and gene set enrichment analysis (GSEA) of survival-hub genes. (A) correlation analysis between CXCL10 and immune cell infiltration in the Cancer Genome Atlas Program (TCGA) and GSE75214 datasets, respectively. (B) correlation analysis between CXCL11 and immune cell infiltration in the TCGA and GSE75214 datasets, respectively. (C) GSEA of CXCL10 and CXCL11 in TCGA cohorts. (D) GSEA of CXCL10 and CXCL11 in the GSE75214 dataset. Abbreviation: CRC, colorectal cancer; UC, ulcerative colitis; KEGG, Kyoto Encyclopedia of Genes and Genomes; NK, natural killer.
DISCUSSION
Despite advances in therapeutic drugs and cancer screening, UC patients still have a 2.4-fold higher risk of CRC compared with the general population (Jess et al., 2012a). To reduce the incidence of CAC, the shared molecular mechanism between UC and CRC may provide novel insight and targeted molecules to hinder the dysplasia–carcinoma progression for patients with UC. Our results indicated that CXCL10 and CXCL11 might contribute to the tumorigenesis of CAC.
Through bioinformatics analysis and in vivo experimentation, we confirmed that CXCL10 and CXCL11 were consistently upregulated in both UC and CRC. Moreover, high expression levels of CXCL10 and CXCL11 were associated with better PFI and early tumor stage in patients with CRC. CXCL10 and CXCL11 were predominantly synthesized and produced by monocytes, endothelial cells, fibroblasts, and cancer cells under the induction of IFN-γ and TNFα (Ohmori et al., 1993; Ohmori et al., 1997). These two cytokines belong to the CXC (C-X-C motif) chemokine family, a group of small secreted proteins attracting and activating immune and nonimmune cells (Réaux-Le Goazigo et al., 2013). CXCR3 is the commonly shared receptor for the activity of CXCL10 and CXCL11. The chronic inflammation underlying UC contributes to the accumulation of inflammatory mediators and immune cells in the intestine, which leads to the increased turnover of epithelial cells, inducing the formation of dysplasia (Rogler, 2014). CXCL10, also known as the interferon γ-induced protein-10 (IP-10), has a decisive role in the integrin activation and migration of immune cells (Kuhne et al., 2007). Uguccioni et al. proved that UC patients have significantly higher expression of CXCL10 compared with healthy control in colonic tissues (Uguccioni et al., 1999). Furthermore, the recruitment of the proinflammatory cells mediated by CXCL10 stimulation is responsible for inflammation and tissue damage (Kabashima et al., 2002). Several in vivo studies indicated that anti-CXCL10 antibodies could inhibit epithelial ulceration in a UC murine model (Sasaki et al., 2002), attenuate inflammation in IL10−/− mice (Singh et al., 2003), and reduce colitis by compromising T helper type 1 (Th1) induction and recruitment (Hyun et al., 2005). A phase II, randomized, multicenter clinical study has demonstrated the efficacy of monoclonal anti-CXCL10 antibody in moderate-to-severe UC patients who achieved high serum concentrations (Mayer et al., 2014). CXCL11, referred to as interferon-inducible T-cell alpha chemoattractant (I-TAC), could drive Th1 cells to secrete proinflammatory cytokine IL-6 in the inflammatory bowel disease (Liu et al., 2011). One recent study reported that UC patients have significantly higher serum levels of CXCL11 than healthy subjects (Singh et al., 2016). However, there are no reports on the expression levels of CXCL11 in colorectal tissues. Jennifer et al. reported that CXCL11 could also promote tumor progression by activating CXCR7 of tumor cells (Burns et al., 2006). In addition, accumulating evidence has suggested that the CXCL10 and CXCL11/CXCR3 axis could impose antitumor effects by recruiting Th1 cells, cytotoxic T cells, natural killer cells, and natural killer T cells to tumor sites (Hensbergen et al., 2005) and it has protumor effects on cancer cells expressing CXCR3 (Cambien et al., 2009). Taken together, we believe that CXCL10 and CXCL11 may probably involve the malignant transformation of the intestine in patients with UC. Until now, there have been no reported studies on these two genes in the carcinoma pathogenesis of CAC.
MicroRNAs are endogenous noncoding RNAs that could inhibit the expression of genes by specifically binding to the complementary sequences in the 3′-UTR segments of the target mRNAs. After constructing a miRNA–gene interaction network using an online database, we conducted an in vivo test to validate the expression difference of three miRNAs in two mouse models. Our results showed that miR-34a-5p and miR-203a-5p were significantly downregulated in both UC and CRC, negatively correlated with CXCL10 and CXCL11. Moreover, Hart et al. discovered that miR-34a-5p could directly inhibit the expression of CXCL10 and CXCL11 by binding to their 3′-UTRs in M1 macrophages (Hart et al., 2020). Thus, low expression of miR-34a-5p may exacerbate the intestine inflammation influenced by UC. Meanwhile, a previous study has suggested that miR-203a-5p acted as a tumor suppressor in CRC (Qian et al., 2019). As a whole, miR-34a-5p and miR-203a-5p have great potential to involve the regulation of CXCL10 and CXCL11 in the tumorigenesis of CAC.
To explore the downstream molecular mechanism mediated by CXCL10 and CXCL11, we used the GSEA method to predict the significantly enriched pathways in the GSE75214 and TCGA datasets, respectively. Our results suggested that CXCL10 and CXCL11 might activate the JAK–STAT signaling pathway via the interaction with cytokine receptors in UC. Most immune regulatory processes are mediated by JAK–STAT signaling, including tumor cell recognition and tumor immune evasion (Owen et al., 2019). Accumulating studies also suggested that the JAK–STAT signaling pathway is critical in promoting chronic inflammation in inflammatory bowel diseases (Egwuagu, 2009). Therefore, CXCL10 and CXCL11 may mediate the tumorigenesis of CAC by activating the JAK–STAT signaling pathway of stromal cells and epithelial cells in the colorectum mucosa.
Immune cells are indispensable components of inflammation in UC and CRC. To elucidate the relationship between CXCL10/11 and immune infiltration, we applied the CIBERSORT algorithm to estimate the proportions of 22 immune cells in the GSE75214 and TCGA datasets. Our results showed that CXCL10 and CXCL11 were positively associated with the infiltration of M1 macrophages in both UC and CRC. Although the M1 macrophage has an antitumorigenic function, in chronic inflammation, it could induce more severe inflammation by secreting proinflammatory cytokines and reactive oxygen species (Chen et al., 2021).
The primary limitation of this study is the lack of available datasets consisting of matched CAC, UC, and corresponding normal groups, which may comprise the validity of our predicted genes. However, Zhao et al. reported that CAC and non-UC-associated CRC patients have a high degree of similarity in gene expression (Zhao et al., 2013). On the other hand, our study conducted comprehensive bioinformatics analysis and in vivo experiments to predict and validate potential genes involved in the tumorigenesis of CAC.
CONCLUSION
Our study demonstrated that CXCL10 and CXCL11 might participate in the tumorigenesis of CAC by mediating the chronic inflammation in UC. Targeting CXCL10 and CXCL11 could be a promising therapeutic strategy to prevent CAC development in patients with UC.
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CD8A encodes the CD8 alpha chain of αβT cells, which has been proposed as a quantifiable indicator for the assessment of CD8+ cytotoxic T lymphocytes (CTLs) recruitment or activity and a robust biomarker for anti-PD-1/PD-L1 therapy responses. Nonetheless, the lack of research into the role of CD8A in tumor microenvironment predisposes to limitations in its clinical utilization. In the presented study, multiple computational tools were used to investigate the roles of CD8A in the pan-cancer study, revealing its essential associations with tumor immune infiltration, immunosuppressive environment formation, cancer progression, and therapy responses. Based on the pan-cancer cohorts of the Cancer Genome Atlas (TCGA) database, our results demonstrated the distinctive CD8A expression patterns in cancer tissues and its close associations with the prognosis and disease stage of cancer. We then found that CD8A was correlated with six major immune cell types, and immunosuppressive cells in multiple cancer types. Besides, epigenetic modifications of CD8A were related to CTL levels and T cell dysfunctional states, thereby affecting survival outcomes of specific cancer types. After that, we explored the co-occurrence patterns of CD8A mutation, thus identifying RMND5A, RNF103-CHMP3, CHMP3, CD8B, MRPL35, MAT2A, RGPD1, RGPD2, REEP1, and ANAPC1P1 genes, which co-occurred mutations with CD8A, and are concomitantly implicated in the regulation of cancer-related pathways. Finally, we tested CD8A as a therapeutic biomarker for multiple antitumor agents’ or compounds’ responsiveness on various cancer cell lines and cancer cohorts. Our findings denoted the underlying mechanics of CD8A in reflecting the T-cell-inflamed profiles, which has potential as a biomarker in cancer diagnosis, prognosis, and therapeutic responses.
Keywords: pan-cancer, CD8A, prognosis, biomarker, tumor microenvironment, immunotherapy
INTRODUCTION
As knowledge of underlying mechanisms of cancer revolutionarily progressed, it has now been considered a genetic disease (Chen and Mellman, 2017), characterized by genetic mutations that activate oncogenic drivers, and epigenetic regulations independent of genome reprogramming (Hanahan, 2022). The illustrative perspectives provided by multi-omic technologies are intended to illuminate the myriad manifestations of cancer during malignant development and metastasis, thus applying to cancer precision treatment, particularly immunotherapy. The advent of immune checkpoint blockade (ICB) has revolutionized therapeutic profiles of cancer, which reinvigorate antitumor responses by blocking co-inhibitory signaling pathways, thus contributing to the elimination of cancer cells via the release of cytokines, and cytotoxic granules of effector T cells (Sharma and Allison, 2015; Darvin et al., 2018). Since first ICB targeting cytotoxic T lymphocyte antigen 4 (CTLA-4), ipilimumab, garnered approval for the treatment of melanoma in 2011 (Hodi et al., 2010; Robert et al., 2011), ICBs targeting programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) are also being investigated in the clinical trials, manifesting compelling clinical effectiveness (Ansell et al., 2015; Borghaei et al., 2015; Larkin et al., 2015). Partial patients do not benefit from ICB, exhibiting de novo or adaptive resistance (Gnjatic et al., 2017). In contrast, the molecular underpinnings of such resistance remain unknown, providing a rationale for identifying predictive biomarkers and tailoring immunotherapeutic regimens appropriately. Likewise, other canonical biomarkers, such as tumor mutational burden (TMB) (Snyder et al., 2014), microsatellite instability (MSI) (Snyder et al., 2014), tumor-infiltrating lymphocytes (TILs) (Cogdill et al., 2017), and epigenetic signatures (Marwitz et al., 2017), have been intensively studied individually or in combination to identify more specific predictors of ICB efficacy, indicating unmet research and clinical need. Notably, most biomarkers analyses are limited to particular tumor types, making them lack generalizability to other clinical populations. Besides, underlying mechanisms and predictive accuracy of the aforementioned biomarkers are only partially understood; robust predictive options are further limited.
The dynamic alterations of tumor microenvironment (TME) components can influence cancer progression, and therapeutic outcomes, which has been well appreciated and documented. (Binnewies et al., 2018; Chen et al., 2021). Thus, therapeutically targeting the TME as an intervention for mounting active immune responses or relieving immunosuppressive environments has been proposed (Bejarano et al., 2021). Specifically, TME could be divided into three major immune profiles, including immune desert, immune excluded, and immune inflamed (Chen and Mellman, 2017), based upon the infiltration levels and types of immune cell. Indeed, the clinical response rate to ICBs is generally higher in the immune-inflamed profile (Herbst et al., 2014; Hegde et al., 2016), including pre-existing immune cell (Darvin et al., 2018), detectable pro-inflammatory and effector cytokines (Fehrenbacher et al., 2016; Rosenberg et al., 2016). T-cell-inflamed phenotype, characterized by elevated type I interferon-related transcriptional profiling accompanied by promigratory chemokines contributing to recruitment of activated CD8+ effector T cells (Trujillo et al., 2018), has become a significant clinical and research interest owing to its close association with better cancer patient survival outcomes (Bruni et al., 2020), and enhanced responses to ICBs (Chen and Mellman, 2017; Gruber et al., 2020).
To date, the cellular actors of CD8+ effector T cells or cytotoxic T lymphocytes (CTLs) implicated in the tumor immunity cycle are well described, with evidence revealing its paradoxical effects in TME. In addition to acting as a preferred immune cell type targeting tumor cells and serving as a frontline defense against tumor progression (Farhood et al., 2019; Raskov et al., 2021), infiltration of CTLs and high levels of IFN-γ secretion in the microenvironment synergistically attribute to the upregulation of transcripts encoding indoleamine-2,3-dioxygenase (IDO), PD-L1, and forkhead box protein 3 (FOXP3), thus yielding the establishments of the immunosuppressive microenvironment, modification of TME metabolism, and recruitment of FOXP3+ regulatory T cells (Tregs) (Spranger et al., 2013; Trujillo et al., 2018; Olson and Luke, 2019). Thus, these illustrative snapshots raise the intriguing possibility that T cell-inflamed genes or signatures can serve as a paradigm-shifting breakpoint for delineating mechanisms of the immunosuppressive microenvironment, and tailoring therapeutic regimens to overcome immunotherapy resistance.
CD8A encodes the CD8 alpha chain of the αβT cells, proposed as a quantifiable indicator for CD8+ CTL recruitment or activity assessments and a robust biomarker for responses to anti-PD-1/PD-L1 therapy (Ock et al., 2016). Despite being expressed in various immune cell types, CTLs present a predominant expression level of CD8A (Ma K. et al., 2020), which could be a direct indication of pre-existing antitumor immunity with tumor-infiltrating CTLs in TME (Lei et al., 2021). As previously described, the varying function of CTLs makes CD8A a promising gene in predicting cancer patient survival outcomes and a potential biomarker in assessing antitumor agent responses. Nonetheless, the lack of investigation into the role of CD8A in TME predisposed to limitations in its clinical use, necessitating further research into its underlying mechanisms in the pan-cancer cohort. In this work, our purpose here is to delineate the roles of CD8A in pan-cancer cohort, whereby revealing its essential associations with tumor immune infiltration, immunosuppressive environment formation, cancer progression, and therapy responses using multiple computational tools. Besides, the results mentioned above were validated via cancer cell lines and cancer cohorts, together manifesting the underlying mechanics of CD8A in reflecting the T-cell-inflamed profiles, and its potential as a biomarker in cancer diagnosis, prognosis, and therapeutic responses. We then investigated CD8A epigenetic modifications and their relationship to T cell dysfunctional states. Next, we dissected genomic alteration profiles along with co-occurrence patterns of CD8A mutations, and its relevance across functional states in single-cell resolution. The workflow of presented work is depicted in Figure 1.
[image: Figure 1]FIGURE 1 | The workflow of the presented work.
MATERIALS AND METHODS
Raw data acquisition
Transcriptomic information and corresponding clinical data for 33 types of pan-cancer cohorts were downloaded from The Cancer Genome Atlas (TCGA) database via the University of California Santa Cruz Xena (UCSC Xena; https://xena.ucsc.edu/).
Characterization of online analytical tools
GeneCards (www.genecards.org) is a comprehensive compendium of information on human genes, also providing visualization of transcriptomic expression profiles in healthy and cancer tissues (Safran et al., 2010). Protter (http://wlab.ethz.ch/protter) is an online tool supporting proteomic data analysis and hypothesis generation via visualization for annotated sequence features in the context of protein topology (Omasits et al., 2014). GPS-Prot (http://gpsprot.org/index.php) is a web-based platform for integrating and constructing the protein-protein interaction (PPI) network (Fahey et al., 2011). Human Protein Atlas (HPA) (https://www.proteinatlas.org) is an interactive proteome database including multi-omics information at the tissue and organ levels of the human body, allowing for spatial protein localization down to the single-cell level (Uhlén et al., 2015). OPENTARGETS (https://www.targetvalidation.org/) is an integration platform providing evidence about the correlations of potential drug targets with human diseases (Koscielny et al., 2017). Tumor IMmune Estimation Resource (TIMER2.0) (http://timer.cistrome.org/) is a web server supporting robust estimation of immune infiltration levels based on TCGA using multiple algorithms (Li et al., 2020). Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu/) is a web application integrating the expression profiles of T cell dysfunction and exclusion, thereby modeling immune evasion of tumor cells, and has the potential to predict response of ICBs (Jiang et al., 2018). The University of Alabama Cancer database (UALCAN) (http://ualcan.path.uab.edu/) is a user-friendly web portal that performs analysis of gene expression data of various cancer types in TCGA (Chandrashekar et al., 2017). cBioPortal (http://www.cbioportal.org/) is an online tool for researchers to analyze multidimensional cancer genomics data interactively (Gao et al., 2013). Gene Set Cancer Analysis (GSCALite) (http://bioinfo.life.hust.edu.cn/web/GSCALite/) is an accessible webserver to dynamically analyze and visualize gene sets in cancer as well as sensitivity correlation for the drug (Liu C. J. et al., 2018). The ROC plotter (http://www.rocplot.org/) is an online tool designed to identify novel biomarkers that can predict therapy responses for patients treated with chemotherapy, hormonal therapy, and targeted therapy by analyzing the selected genes in multiple independent datasets (Fekete and Győrffy, 2019). Cancer single-cell state atlas (CancerSEA) (http://biocc.hrbmu.edu.cn/CancerSEA/) is a dedicated database that investigates distinct functional states of cancer cells at the single-cell resolutions (Yuan et al., 2019).
Physiological and expression patterns of CD8A
To analyze transcriptomic expression patterns of CD8A under physiological conditions, we used GeneCards database to visualize mRNA levels of CD8A in different organs of the human body. Protter database was used to present the topology structure of CD8A, and intracellular localization of CD8A in varying cell lines was displayed using HPA database, followed by the application of OPENTAGET, thereby identifying disease phenotypes associated with CD8A using 0.1 as the minimum score. Thereafter, differential expression analysis of CD8A between tumor and normal control was analyzed based on TCGA using the “ggpubr” (Kassambara, 2020) package in R language.
Correlation analysis of CD8A with prognosis and clinical stages
Kaplan-Meier analysis was conducted to analyze associations between CD8A and overall survival of pan-cancer patients in TCGA database using “survival” (Therneau, 2015) and “survminer” (Kassambara et al., 2018) R packages. Then, using the Wilcox test, the differential analysis of CD8A expression levels between early and late clinical stages were analyzed and visualized through R packages “limma” (Ritchie et al., 2015) and “ggpubr” (Kassambara, 2020).
Correlation analysis of CD8A expression with infiltrating immune cells, and immunosuppressive cell profiles in TME
We used TIMER2 database to delineate associations between CD8A and canonical infiltrating immune cell types in TME. Besides, we investigated associations between CD8A and immunosuppressive cells, accounting for T cell exclusion. Spearman’s correlation analyses were conducted in the processes above and visualized via “RColorBrewer” (Erich, 2014) R packages.
Epigenetic methylation analysis of CD8A
UALCAN database was used to conduct a differential analysis of methylation levels between tumor and normal tissues. In reference to annotations in UALCAN database (Shinawi et al., 2013; Men et al., 2017), we defined hypermethylation as a beta value of 0.7–0.5, while a beta value of 0.25–0.3 was considered hypomethylation. Besides, the Cox proportional hazard (Cox-PH) model regression based upon the TIDE database was used to reflect the combined effects of CD8A methylation and CTL level on the prognosis of cancer patients, thereby revealing the associations between epigenetic methylation and dysfunctional T cell phenotypes.
Genomic alteration profiles and co-occurrence patterns of CD8A
We used cBioPortal database to visualize CD8A alteration profiles of TCGA pan-cancer atlas studies, thus identifying co-occurrence patterns with CD8A mutation, with a log ratio of >6, p-value and Q-value less than 10−10, then presenting the frequency and mutation type of these co-occurred genes with CD8A using waterfall plots and histograms, respectively. Furthermore, GSCALite was used to assess the role of above-mentioned genes in regulating cancer-related signaling pathways across different cancer types.
Single-cell analysis for providing CD8A repertoires in TME
We used CancerSEA database to investigate the role of CD8A in TME at single-cell resolution and its correlation with malignant phenotype and functional states, thereby providing CD8A repertoires in TME.
Biomarker analysis of CD8A as an indicator of response to antitumor compounds and agents
We used GSCALite database, which contains drug response data toward human cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutic Response Portal (CTRP), to examine relationships between CD8A and the sensitivity of various antitumor agents or compounds to tumor cell lines. 50% inhibitory concentration (IC50) was used as the index reflecting the sensitivity of the small molecules and compounds. Additionally, we evaluated the predictive ability of CD8A for immunotherapy efficacy compared with other canonical biomarker signatures using the multiple cancer cohorts treated with ICB in TIDE database and further analyzed the associations between CD8A expression and CTL levels. Furthermore, ROC plotter database was used to assess the feasibility of CD8A in assessing therapeutic responses to various antitumor drugs in clinical cancer cohorts such as glioblastoma multiforme (GBM) cohorts treated with chemotherapy, invasive breast carcinoma (BRCA) cohorts treated with anti-HER2 antibody and chemotherapeutics, and ovarian cancer cohorts treated with targeted drugs and chemotherapeutics. The receiver operating characteristic (ROC) curves was used to present predictive ability of CD8A in predicting efficacy of various antitumor agents in the above analysis.
Statistical analysis
Mann-Whitney test was used to compare transcriptomic patterns of CD8A between cancer and normal control. Furthermore, Kaplan-Meier analysis determined the relationship between CD8A and pan-cancer patient prognosis. p < 0.05 was indicative of statistically significant.
Ethic statement
Our study was based on the online database, and ethics approval was not required.
RESULTS
Protein topology, subcellular localization, PPI network analysis, and transcriptome expression of CD8A under the physiological status
To deeply analyze the structural information of CD8A protein, we dissected annotated sequence features in the context of protein topology based on Protter database, manifesting the extracellular membrane structure of CD8A from Met1 to Pro21 as N-terminal signal peptide, as well as two disulfide bonds of Cys43, and Cys115. The natural missense variant, in particular, was localized to the extracellular membrane structure, exhibiting the amino acid change from glycine (G) to serine (S) at position 111, and plays a vital role in preventing CD8A expression, resulting in a complete deficit of CD8+ lymphocytes, as previously documented (Mancebo et al., 2008) (Figure 2A). In addition, PPI network analysis demonstrated interactions between CD8A and multiple immune-related genes (e.g., PTPRC, CD4, and HLA class genes) (Figure 2B). Notably, CD8A is correlated with diseases of various systems in the human body and genetic, familial, and congenital disorders (Figure 2C).
[image: Figure 2]FIGURE 2 | Protein topology, subcellular localization, PPI network analysis, and transcriptome expression of CD8A under normal physiological conditions (A) Protein topology of CD8A based on Protter database (B) PPI network construction of interacting genes with CD8A using GPS-Prot platform (C) Identification of diseases associated with CD8A via OPENTARGETS platform (D) Immunofluorescence analysis of cellular localization of CD8A in the alveolar rhabdomyosarcoma RH-30, human neuroblastoma SH-SY5Y, and human osteosarcoma U-2 OS cell lines through HPA database (E) The transcriptome profiles of CD8A in varying systems and organs of human body from GTEx database.
Next, we further performed indirect immunofluorescence analysis to clarify the cellular localization of CD8A. We evaluated distribution of CD8A was in the endoplasmic reticulum (ER) and microtubules (MT) in the alveolar rhabdomyosarcoma RH-30, human neuroblastoma SH-SY5Y, and human osteosarcoma U-2 OS cell lines, and we discovered that CD8A protein overlapped with ER and MT but was not expressed in the nucleus of 3 cell lines, indicating its subcellular location in the plasma membrane (Figure 2D). Intriguingly, the transcriptome profiles of CD8A differed in varying systems and organs and are most predominantly expressed in the immune system, reflecting its intimate involvement in immune-related activities (Figure 2E). In summary, we provided a detailed description of the transcriptomic and proteomic information of CD8A, presenting its multi-omic landscape under physiological status.
Transcriptomic patterns and prognosis analysis of CD8A in pan-cancer datasets
We used TCGA database to perform a differential analysis of CD8A expression between cancer and normal tissues to score the transcriptomic patterns of CD8A. The findings revealed that CD8A expression was significantly diminished in varying cancer tissues, including colon adenocarcinoma (COAD), kidney chromophobe cell carcinoma (KICH), liver hepatocellular carcinoma (LIHC), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), and thyroid carcinoma when compared to normal controls (THCA). Conversely, the CD8A expression was enhanced in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) (Figure 3A). Following that, we dissected the correlation between CD8A expression level and the overall survival of pan-cancer patients, indicating that low CD8A expression may have deleterious effects on the prognosis of specific cancer types (Figure 3B), including thymoma (THYM), head and neck squamous cell carcinoma (HNSC), uterine corpus endometrial carcinoma (UCEC), BRCA, skin cutaneous melanoma (SKCM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In contrast, low CD8A expression played a positive role in uveal melanoma (UVM) and brain low-grade glioma (LGG).
[image: Figure 3]FIGURE 3 | Transcriptomic patterns and prognosis analysis of CD8A in Pan-Cancer datasets (A) Analysis of CD8A expression patterns at transcriptomic level based on TCGA (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001) (B) Correlation between CD8A expression and overall survival as determined through Kaplan–Meier curve analysis in pan-cancer datasets of TCGA (C) Correlation between CD8A and tumor stages in colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), and lung adenocarcinoma (LUAD).
Besides, results elucidated that CD8A expression levels were closely linked to the tumor stage, as evident by higher expression levels in the early stage than in advanced stages of COAD and lung adenocarcinoma (LUAD). In contrast, higher expression levels in advanced KIRC were presented compared with the patients with stages I and II. The findings above shed light on the distinct CD8A expression patterns and their enormous potential as a robust biomarker for predicting prognosis and cancer stage (Figure 3C).
CD8A is implicated in the formation of an immunosuppressive environment through T cell exclusion in TME of various cancer types, with the good predictive ability for immunotherapy efficacy
TME is an ecological niche constituting various components, dynamically varying, which is associated with tumor progressions, and treatment response (Joyce and Fearon, 2015; Chen et al., 2021). Our results noted that CD8A were correlated with six major immune cell types in TME of multiple cancer types (Figure 4A), including BRCA, COAD, esophageal carcinoma (ESCA), HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, pancreatic adenocarcinoma (PAAD), PRAD, sarcoma (SARC), SKCM, testicular germ cell tumor (TGCT), UCEC, and some of their specific cancer subtypes. Surprisingly, based on TIMER database, we discovered a consistently positive correlation between CD8A expression and all six major immune cells of aforementioned cancer types (R > 0, p < 0.05), indicating its critical role in reflecting the dynamical alterations of immune microenvironment remodeling.
[image: Figure 4]FIGURE 4 | The role of CD8A in TME, and its potential in predicting the treatment responses of immunotherapy (A) Heatmap showing correlations between CD8A expression with six major immune cell types in the pan-cancer datasets based on TIMER2 server (B) Heatmap showing correlations between CD8A expression with four immunosuppressive cell in the pan-cancer datasets based on TIMER2 server(C) Bar plot presenting the predictive ability of CD8A for immunotherapy efficacy compared with other canonical biomarker signatures, based on treatment response, and prognosis of varying cancer cohorts treated with immune checkpoint blockade (ICB) in TIDE database (D) Correlation between CD8A expression and survival outcome of cancer cohorts treated with ICB, as well as its associations with cytotoxic T lymphocytes (CTL) levels.
Unambiguous evidence suggests that immunosuppressive cells account for T cell exclusion, thus inducing the establishment of the immunosuppressive microenvironment as a contributor to restriction for CTLs accumulation in the vicinity of tumor cells, which is considered a contributor to restriction as a reason for immunotherapy ineffectiveness (Garcia et al., 2014; Joyce and Fearon, 2015). Thus, we delineated the correlation analysis between CD8A and immunosuppressive cells, containing myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and M2 subtypes of tumor-associated macrophages (M2-TAMs). Results indicated that CD8A were invariably negatively correlated with MDSCs in most cancer and subtypes, including bladder urothelial carcinoma (BLCA), BRCA, COAD, ESCA, HNSC, KIRC, KIRP, KICH, LUAD, LUSC, mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), PAAD, metastatic pheochromocytoma and paraganglioma (PCPG), PRAD, READ, SARC, SKCM, stomach adenocarcinoma (STAD), TGCT, THCA, UCEC, and UVM. Similarly, CD8A expression levels are also correlated negatively with M2-TAM in multiple cancer types, including BRCA, KIRC, LIHC, LUAD, MESO, PRAD, SARC, SKCM, TGCT, THCA, and THYM. In contrast, CD8A is positively correlated with Treg and CAFs in BRCA-LumA, HNSC, and HNSC-HPVneg.
Next, we compared CD8A’s predictive ability for immunotherapy efficacy to other canonical biomarker signatures in TIDE database, using treatment response and survival outcomes from various cancer cohorts treated with ICB. The results confirmed that CD8A had the highest predictive performance, with 21 of the 25 ICB-treated cohorts presenting an area under curve (AUC) greater than 0.5 (Figure 4C), comparable to CD274. Specifically, two melanoma cohorts presented the strongest predictive likeliness of responses for immunotherapy (Riaz2017_PD1 and Gide2019_PD1), with AUC values of 0.8409 and 0.8182, respectively, followed by glioma (AUC = 0.7222), non-small cell lung cancer [NSCLC (AUC = 0.7048)], and gastric cancer cohorts (AUC = 0.798), also presenting moderate predictive performances. Besides, as presented in Figure 4D, high CD8A expression was correlated to longer survival time of patients in CTLA4-treated melanoma cohort (VanAllen2015_CTLA4), PD1-treated melanoma cohort (Gide2019_PD1), PDL1-treated metastatic bladder cancer cohort (Mariathasan2018_PDL1), and PD1-treated NSCLC-HNSC-Melanoma cohort (Prat2017_PD1). Furthermore, we found invariably positive correlations between CD8A expression and CTL levels of patients in these cohorts, such observations corroborated the established role of CD8A in promoting CTL-mediated tumor killing (Oja et al., 2018; Krishna et al., 2021). Above results manifested that CD8A has the potential to be an indicator for TME remodeling, and its underlying impact on the formation of immunosuppressive microenvironments, as well as its good predictive ability for immunotherapy efficacy.
Epigenetic modifications of CD8A were related to the CTL levels and T cell dysfunctional states, whereby affected survival outcomes of certain cancer types
We also aimed to explore the relationship between the epigenetic modification status of CD8A and cancer patient prognosis, attempting to uncover deeper mechanisms of CD8A influencing tumorigenesis and treatment responses. The results disclosed that CD8A presented higher methylation levels in tumor tissues of multiple cancer types, including BLCA, BRCA, cholangiocarcinoma (CHOL), COAD, ESCA, HNSC, KIRC, KIRP, LUAD, LIHC, LUSC, PAAD, PRAD, READ, and UCEC, compared to its corresponding normal control (Figure 5A). Notwithstanding, according to the threshold, CD8A is invariably hypomethylated in BLCA, ESCA, HNSC, KIRC, KIRP, LUAD, LIHC, PAAD, and LUSC tissues. Concurrently, the remaining cancer types did not reach hypermethylation levels, indicating that epigenetic modifications in these cancer cohorts positively regulated their expression levels.
[image: Figure 5]FIGURE 5 | Epigenetic modification profiles of CD8A and its relationships with prognosis in pan-cancer datasets (A) Differential analysis of CD8A methylation levels based on UALCAN database (B) Correlation between CD8A methylation and prognosis as determined through Kaplan-Meier analysis based on TIDE database.
Survival analysis revealed that low methylation levels of CD8A were related to worse prognosis in glioma, gastric cancer, and uveal melanoma cohorts but were associated with longer survival outcomes in ovarian cancer and KIRP cohorts (Figure 5B). Notably, the methylation levels of CD8A manifested a significant negative correlation with level of CTLs in patients with glioma and uveal melanoma and a significant positive correlation with ovarian cancer cohort (Table 1). More importantly, Cox-PH model regression manifested the previously unappreciated association between CD8A and CTL level epigenetic modifications. In particular, we found an antagonistic interaction between CD8A methylation levels and CTL levels in uveal melanoma and KIRP cohorts (Table 1), corroborating its role in decreasing the beneficial association between CTL and survival outcome. In conclusion, above findings clarified the effect of CD8A epigenetic modifications on CTL levels and T cell dysfunctional states, which may contribute to the prognosis of patients with different tumor types, providing compelling evidence for disparities in opposite prognosis in various cancer types.
TABLE 1 | Associations of CD8A epigenetic modifications with cytotoxic T lymphocytes (CTLs) levels, and T cell dysfunctional states, with Cox proportional hazard (Cox-PH) model regression presenting the role of CD8A methylations in influencing the interactions between CTL and survival outcome. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
[image: Table 1]Genomic alteration profiles, co-occurrence patterns of CD8A mutations, and its role in tumorigenesis
Next, we investigated genomic alteration profiles of CD8A in cancer, and results revealed that mutation and amplification were the most common alteration patterns (Figure 6A). Nonetheless, the survival indicators of patients with CD8A mutations did not differ significantly from those of non-mutated patients, namely in the altered and unaltered groups (Figure 6B). Thereafter, we explored the co-occurrence patterns of CD8A mutation and screened the top ten significant genes with log ration greater than 6, thereby identifying RMND5A, RNF103-CHMP3, CHMP3, CD8B, MRPL35, MAT2A, RGPD1, RGPD2, REEP1, and ANAPC1P1 genes, which co-occurred mutations with CD8A, sharing high mutation frequencies (Figure 6C), and genomic alterations (Figure 6D) in an altered group of pan-cancer datasets. Intriguingly, the chromosomal location of these genes is very similar to that of CD8A (Figure 6E). The highly identical genomic alteration profiles and chromosomal location suggest their interactively synergetic roles in physiological and pathological processes. Thus, we reasoned that there was an interaction between these genes and tumorigenesis. The genes mentioned above regulate cancer-related signaling pathways in various cancer types, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), epithelial-mesenchymal transition (EMT), DNA damage response pathways, estrogen and androgen receptor-related pathways (Figure 6F).
[image: Figure 6]FIGURE 6 | Genomic alteration profiles, co-occurrence patterns of CD8A mutations and its role in tumorigenesis (A) Genomic alteration profiles of CD8A in varying cancer types (B) Kaplan-Meier curves analyses of altered and unaltered CD8A groups of pan-cancer datasets in TCGA database (C) Co-occurrence frequency with CD8A alterations (D) Co-occurrence pattern of CD8A alterations (E) Chromosomal location of co-occurrence genes with CD8A (F) The role of co-occurrence genes in regulating cancer-related signaling pathways across various cancer types.
CD8A as a therapeutic biomarker indicating multiple antitumor agents’ responsiveness on various cancer cell lines and cancer cohorts
Based on the GDSC database, we then examined associations between CD8A and sensitivity and responsiveness of tumor cell lines to various antitumor agents or compounds (Figure 7A). Interestingly, results indicated that CD8A expression levels were inversely correlated with the IC50 of different antitumor agents to tumor cell lines, including several previously reported drugs; aurora kinase (AURK) inhibitor: GSK-1070916 (Hardwicke et al., 2009), 3-phosphoinositide-dependent protein kinase-1 (PDK-1) inhibitor: BX-912 (Bai et al., 2021), and nuclear factor kappa B inhibitor: BMS345541 (Li et al., 2019). Notably, the results from CTRP database demonstrated significant negative correlations between CD8A. IC50 values of 41 types of classical chemotherapeutics or targeted drugs approved by FDA, containing histone deacetylase (HDAC) inhibitor: vorinostat (Siegel et al., 2009), microtubule assembly inhibitor: vincristine (Hawkins et al., 2018), and topoisomerase II inhibitor: teniposide (Liu L. et al., 2018), DNA damage inducer: cytarabine (Qi et al., 2020), which manifest that high CD8A expression was related to the decreased sensitives and efficacy of such agents (Figure 7B).
[image: Figure 7]FIGURE 7 | CD8A as a therapeutic biomarker indicating multiple anti-tumor agents’ responsiveness on various cancer cell lines, and cancer cohorts (A) Associations between CD8A expression, and 50% inhibitory concentration (IC50) values of varying antitumor agents or compounds in tumor cell lines based on GDSC and CTRP databases (B) Associations between the expression levels of CD8A, and therapeutic responses to various antitumor drugs in clinical cancer cohorts.
Following that, we investigated the utility of CD8A in evaluating therapeutic responses to various antitumor drugs in clinical cancer cohorts (Figure 7C). In GBM treated with chemotherapy, CD8A expression level was higher in responders, and the time-dependent ROC curves analysis revealed that CD8A had a good predictive ability of overall survival at 16 months, with an AUC of 0.554. Likewise, CD8A was associated with benefits of anti-HER2 therapeutic pathological complete response and chemotherapeutic relapse-free survival (RFS) at 5 years in the BRCA cohorts, with AUC of 0.582 and 0.572, respectively, while the non-responders presented augmented CD8A expression levels relative to responders. AUC of ROC curve for predicting 6- and 12-months RFS in ovarian cancer cohorts treated with chemotherapy and targeted therapy were 0.547 and 0.662, respectively. CD8A expression levels did not differ significantly between responders and non-responders. Taken together, above results elucidated that CD8A could efficaciously function as a therapeutic response biomarker in various cancer cell lines and cohorts treated with multiple anticancer agents.
Single-cell transcriptomics revealed the role of CD8A in TME, as well as its relevance across functional states in distinct cancers
Then, we aimed to interrogate the role of CD8A in TME of diverse cancer types at single-cell resolution and its correlation with malignant phenotype and functional states. Thus, we focused on expression levels of CD8A in published single-cell data from five cancer types, including GBM (Patel et al., 2014), LUAD (Kim et al., 2015), BRCA (Chung et al., 2017), retinoblastoma (RB) (Liu et al., 2020), and UVM (Durante et al., 2020), with results illustrating that CD8A was significantly associated with multiple malignant phenotypes and functional states of four cancer types except for LUAD (Figure 8A).
[image: Figure 8]FIGURE 8 | The role of CD8A and its functional relevance across varying cancer types at single-cell resolution (A) Correlations between CD8A and functional relevance of varying cancer types, with size of the bubble indicating strength of correlation, and bar plots showing datasets number in which CD8A significantly related to the corresponding state (B) Single-cell clustering visualization using tSNE disclosed the heterogeneity in the expression levels of CD8A in various cell clusters (C) Correlation between CD8A expression, and functional states in distinct cancers.
The results of single-cell clustering visualization using t-distributed stochastic neighbor embedding (tSNE) of above-mentioned cancers revealed that the heterogeneity in the expression levels of CD8A in various cell clusters of GBM was found to be mild (Figure 8B), and the correlation analysis indicated that CD8A were positively correlated with malignant phenotypes of differentiation and angiogenesis. Concurrently, it showed a negative correlation with the other eight functional states (Figure 8C), including DNA damage, DNA repair, cell cycle, invasion, hypoxia, stemness, metastasis, and EMT. Interestingly, we found that CD8A presented consistently low expression levels in TME of the other four cancer types (Figure 8B) and was only expressed in a small portion of cells. Furthermore, in retinoblastoma and UVM, CD8A manifested significant negative correlations with two and twelve functional states, respectively, while only showing a positive correlation with quiescence in BRCA (Figure 8C).
DISCUSSION
We tested whether CD8A could be a reliable prognostic biomarker predicting survival outcome of cancer patients in this study, and results based on pan-cancer datasets in TCGA database revealed its aberrant expression profiles in cancer tissues were tightly associated with patient’s clinical characteristics as well as disease phenotypes. Furthermore, our conclusions shed light on the potential roles of CD8A in immunotherapy. Although multiple biomarkers have been proposed to predict the therapeutic response of ICBs, different degrees of limitations exist in clinical applications. Immunohistochemistry (IHC)-based PD-L1 detection was the first candidate indicator proposed in this field (Patel and Kurzrock, 2015), as evidenced by studies of Taube (Taube et al., 2014) and Borghaei (Borghaei et al., 2015), reporting that PD-L1 expression levels presented good predictive ability in reflecting treatment responses to malignancies in patients treated with nivolumab, similar results also obtained in NSCLS cohorts treated with pembrolizumab (Garon et al., 2015). Despite this, some studies have found contradictory results, indicating that PD-L1 expression was not associated with nivolumab efficacy in advanced renal cell carcinoma patients (Motzer et al., 2015). In fact, opposite results were even reported in the Checkmate 037 (Weber et al., 2015) and Checkmate 066 (Robert et al., 2015) trials, demonstrating that patients negative for PD-L1 expressions still have better treatment responses. Lessons learned over the past regarding implementing IHC-based PD-L1 detections elucidated the existence of significant discordance rates when varied antibody used, disparate cells were stained, and the different cut-off values were chosen in the clinical setting (Fusi et al., 2015).
In this study, we explored CD8A as a biomarker for predicting response of ICBs. CD8A exhibited good predictive performance, with 21 of 25 ICB-treated cohorts having an AUC greater than 0.5 (Figure 4C), among which two melanoma cohorts exhibited the strongest predictive likeliness for PD1 blockade. Cancer patients with higher expression levels of CD8A could derive better survival outcomes when treated with anti-PD1 or anti-CTLA4, in accordance with the seminal studies of Tumeh and others (Tumeh et al., 2014), indicating that metastatic melanoma patients responding to pembrolizumab were characterized by proliferation of intra-tumoral CD8+ cells that directly correlated with a radiographic reduction in tumor size, with further multivariate analysis manifesting that CD8+ density in the invasive margin adjacent to the tumor as the best entire predictive parameter. Furthermore, genetic signatures have been proposed to predict the therapeutic benefit of ICBs using RNA-seq data retrospectively, among which CD8A is a critical cardinal ingredient. Sangro et al. (Sangro et al., 2020) conducted a retrospective analysis using CD8A-related signatures originating from prior literature, including the 4-gene inflammatory signature (Ayers et al., 2017; Siemers et al., 2017), and the Gajewski 13-gene inflammatory signature (Spranger et al., 2015), with results indicating that the signatures were closely associated with improved objective response rate (ORR) and overall survival to nivolumab therapy of hepatocellular carcinoma patients in the CheckMate 040 study. Notably, our study demonstrated the predictive potential of CD8A in antitumor compounds or agents, with the results based on GDSC and CTRP databases uniformly presenting close correlations between CD8A and IC50 of such agents to cancer cell lines. More importantly, we discovered that CD8A is a response predictor of chemotherapy and anti-HER2 therapy, which is consistent with report of Denkert (Denkert et al., 2015) and Bianchini (Bianchini et al., 2015). As a result, we may be able to elucidate CD8A’s significant potential as a response predictor to various antitumor therapies, which may aid in understanding the mechanisms underlying drug resistance and survival outcome differences in certain cancer patients.
TME is a disparate ecological niche, not only composed of heterogeneous neoplastic cells but stromal and immune cells (Chen et al., 2021). Dynamic interactions between neoplastic cells and other components could exert either tumor-suppressive or tumor-promoting effects (Turley et al., 2015; Salmon et al., 2019). “Allies,” represented by CD8+ and CD4+ T cells, together orchestrate an efficient antitumor immunity. The former initiates cytotoxic reactions that cause the death of neoplastic cells (Bejarano et al., 2021), and the latter coordinates adaptive immune responses by secreting a wide range of effector cytokines (van den Broek et al., 2018; Salemme et al., 2021). Correspondingly, “hostiles,” namely specific immune sub-populations (viz., Treg, M2-TAM, and MDSC) and stromal components (viz., CAF), could blunt the host antitumor immune response via the productions of cytokine and soluble factors (Salemme et al., 2021), among which MDSC takes the center stages in this circumstances (Tian et al., 2019), characterized by secreting high levels of suppressive molecules [e.g., reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS)] (Condamine et al., 2015; He et al., 2018), recruiting Tregs (Salemme et al., 2021), and facilitating the differentiation of M2-TAMs (Weber et al., 2018). Notably, understanding the immunosuppressive TME contributes to tailor therapeutic regimens that may sensitize cancers to anticancer therapy, thus providing a framework for investigating cell-cell crosstalk and drug efficacy in tumor ecosystems (Koikawa et al., 2021).
Herein, we have elucidated the essential role of CD8A in TME, thus revealing the associations between CD8A and the aforementioned cell subpopulations. Specifically, we found a convergently positive correlation between CD8A and all six major types of immune cells of the pan-cancer TME. These results are unsurprising, as CD8A, per se, has been considered an indicator of immune cell infiltration (Chen et al., 2017). Despite being expressed in other immune cell types (e.g., natural killer T cells or dendritic cells) (Chen et al., 2017; Kim et al., 2019), CTLs have the most dominant expression level of CD8A, which could be directly indicative of pre-existing antitumor immunity in TME (Lei et al., 2021). Nonetheless, the interactions of CD8A with immunosuppressive cells have not been well characterized previously. Thus, we investigated the role of CD8A in the context of immunosuppressive TME, with correlation analysis revealing that it has close associations with immunosuppressive cells. We speculated that this tremendously interesting connection results from the negative crosstalk of CTL with such specific cell types, as corroborated by Xiang (Xiang et al., 2018) and Genard (Genard et al., 2018), indicating that IFN-γ and TNF-α produced by CTL could be a potent anti-M2 polarizing cytokine that closely related to M1 phenotype. Similarly, MDSC has been shown to suppress CD8+ T cell activation and proliferation (Tavazoie et al., 2018), explaining some of the negative crosstalk between MDSC and CTLs. Surprisingly, correlations between CD8A and Treg and CAFs varied by cancer type, and the underlying mechanism for this ambiguous phenomenon may be due to the heterogeneity of TME of pan-cancers.
Although previously published transcriptome studies on cancer have drawn magnificent significance in guiding cancer management, traditional molecular biology techniques, such as bulk RNA sequencing data, only provide interpretation of the averaged gene expression at the populational level, masking the slight yet vital information observable in cellular levels (Zou et al., 2021). Single-cell RNA sequencing (scRNA-seq) has broadened our horizons in exploring physiological and pathological transcriptomic changes at higher resolutions (Ma S. et al., 2020; Liao et al., 2020). In this work, we investigated functional identity information of CD8A at single-cell resolution, with tSNE plots originating from multiple cancer datasets manifesting that CD8A consistently exhibited low expression levels in TME. In contrast, comparatively high levels of CD8A expression were shown in the GBM dataset. Interestingly, we noticed a consistent negative correlation between CD8A, and various functional states, including invasion, metastasis, EMT, angiogenesis, and proliferation, of UVM dataset published by Durante et al., (Durante et al., 2020), whose study indicated that elevated expression levels of CD8A accompanied CD8+ T cells in UVM TME, and specific immune checkpoint molecule LAG3. Nonetheless, other immune checkpoint molecules, PD1, CTLA4, TIM3, and TNFRSF9, only presented low expression levels, which may be the reason for the unsatisfactory therapeutic efficacy of anti-PD1, and CTLA4, thus revealing the great potential of anti-LAG3 in UVM. The results above denoted that CD8A manifested a negative correlation with multiple cancer-related functional states, indicating that CD8A exerts antitumor effects and maintains cancer immunity in UVM. Confusingly, other cancer types showed mixed results, with complex associations with varying functional states. Similarly, CD8A-related scRNA-derived signatures have demonstrated remarkable performance in predicting response effects in antitumor drugs, as demonstrated by Krishna and others (Krishna et al., 2021). They discovered strong enrichment of the CD8A + tissue-resident T cell cluster across all tumor regions, along with low TAM infiltration in TME of patient complete response to ICBs, thereby establishing a CD8A + tissue-resident signature that was associated with improved efficacy with patients treated with ICBs and targeted therapy. Despite certain essential discoveries revealed by our study, there are some limitations. First, it should be noted that we have carried out the analysis only from publicly available databases, and further in vivo or in vitro experiments remain imperative to validate the results obtained. Second, although the correlation between CD8A and various components of TME can surface from the data, it has not been indicated that the mechanism by which CD8A affects such cell populations.
CONCLUSION
Overall, our study convincingly demonstrated that CD8A has enormous potential as a robust biomarker predicting cancer patient survival outcome and their clinical stage, with additional data indicating that CD8A was implicated in forming an immunosuppressive environment through T cell exclusion in TME. We dissected the epigenetic modifications, genomic alteration profiles, co-occurrence patterns of CD8A, and its role in tumorigenesis, proving its good predictive ability for multiple anticancer therapies. We aimed to uncover the underlying mechanisms and predictive accuracy of CD8A, thereby laying the groundwork for future cancer management and research.
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Background: Glioblastoma multiforme (GBM) is the most aggressive primary nervous system brain tumor. There is still a lack of effective methods to control its progression and recurrence in clinical treatment. It is clinically found that Xiaoliu Decoction (XLD) has the effect of treating brain tumors and preventing tumor recurrence. However, its mechanism is still unclear.
Methods: Search the Traditional Chinese Medicine System Pharmacology Database (TCSMP) for efficient substances for the treatment of XLD in the treatment of GBM, and target the targeted genes of the effective ingredients to construct a network. At the same time, download GBM-related gene expression data from the TCGA and GTEX databases, screen differential expression bases, and establish a drug target disease network. Through bioinformatics analysis, the target genes and shared genes of the selected Chinese medicines are analyzed. Finally, molecular docking was performed to further clarify the possibility of XLD in multiple GBMs.
Results: We screened 894 differentially expressed genes in GBM, 230 XLD active ingredients and 169 predicted targets of its active compounds, of which 19 target genes are related to the differential expression of GBM. Bioinformatics analysis shows that these targets are closely related to cell proliferation, cell cycle regulation, and DNA synthesis. Finally, through molecular docking, it was further confirmed that Tanshinone IIA, the active ingredient of XLD, was tightly bound to key proteins.
Conclusion: To sum up, the results of this study suggest that the mechanism of XLD in the treatment of GBM involves multiple targets and signal pathways related to tumorigenesis and development. This study not only provides a new theoretical basis for the treatment of glioblastoma multiforme with traditional Chinese medicine, but also provides a new idea for the research and development of targeted drugs for the treatment of glioblastoma multiforme.
Keywords: network pharmacology, Xiaoliu decoction, glioblastoma multiforme, traditional Chinese medicine, system analysis, treatment
INTRODUCTION
Human cancer has become a main cause of death, and glioma, which can be divided into low-grade glioma and high-grade glioma, is the most frequent main central nervous system malignant tumor. Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, accounting for 14.5% of all tumors and 48.6% of malignant tumors. At present, there is no cure for GBM, and GBM patients have a median survival duration of fewer than 8 months. (Diwanji et al., 2017; Ostrom et al., 2020). Despite the development of novel GBM therapies, surgery, radiation, and chemotherapy remain the most effective treatments (Rusthoven et al., 2017; Tamimi and Juweid, 2017). Surgical therapy should be first explored in patients with primary brain tumors without distant metastases. However, it is often impossible to completely remove the tumor without damaging the nervous system of patients. As a result, whole-brain radiotherapy or stereotactic radiotherapy is needed after the operation (Chaichana et al., 2014; Mengue et al., 2020). For some GBM with distant metastasis, chemotherapy is an alternative treatment. Additionally, molecular targeted therapy is expected to become a breakthrough in cancer treatment. However, due to the presence of the blood–brain barrier, the roles of chemotherapy and molecular targeted therapy in the treatment of GBM have not been further confirmed (Bastien et al., 2015; van Tellingen et al., 2015; Rusthoven et al., 2017). Therefore, it is necessary to explore natural traditional Chinese medicine (TCM) monomers, which can effectively target GBM by penetrating the blood–brain barrier.
TCM has unique tumor prevention and treatment effects, and it is an important part of comprehensive tumor treatment. A large number of clinical studies have demonstrated that TCM can be combined with surgery, radiotherapy and chemotherapy to achieve better results, prevent tumor progression, alleviate clinical symptoms and reduce adverse reactions of radiotherapy and chemotherapy, thereby improving the quality of life and prognosis of patients (The Lancet Oncology, 2015). For example, Xiaoliu decoction (XLD) has been widely used in China and achieved definite curative effects in colorectal cancer, liver cancer, pancreatic cancer, non-small cell lung cancer and glioma (Fu and Xia, 2004; Wang et al., 2004; Hou et al., 2018). The recommended formula mainly includes Baihuasheshecao (15 g), baizhi (10 g), Baizhu (15 g), banxia (10 g), Banzhilian (15 g), chenpi (10 g), Chuanxiong (10 g), Danshen (15 g), Fuling (15 g), Gancao (6 g), Gouteng (10 g) and Yanhusuo (10 g). Table 1 shows the complete scientific species names (Latin binomial nomenclature) of all components of XLD obtained from TCMID, a comprehensive database of TCM.
TABLE 1 | The Chinese names of the components of each herbal medicine of XLD and their corresponding Latin names.
[image: Table 1]Among TCMs, licorice is the core ingredient of XLD. LICRICELICRICE (Glycyrrhiza uralensis) was first found in Shennong Materia Medica, the oldest pharmacopeia in China. Licorice is widely used in clinical prescriptions of TCM. Modern pharmacological studies have shown that Glycyrrhiza uralensis has a variety of biological activities, such as anti-tumor, anti-virus, anti-inflammatory, antioxidant, immune regulation, liver protection and nerve protection. The effects of several components in Glycyrrhiza uralensis have also been studied in glioblastoma multiforme. Glycyrrhizin (ALA) is a natural chalcone extracted from Glycyrrhiza uralensis. It induces mitochondrial dysfunction in glioblastoma multiforme stem cells (GSCs) and further activates the mitochondrial apoptosis signaling pathway, resulting in cell death in vitro. Tanshinone IIA is the main active component of Salvia miltiorrhiza. Recent studies have shown that it inhibits the proliferation, migration and invasion of GBM through miR-16-5p/Talin-1 (Ryu et al., 2012; Yang et al., 2014; You et al., 2020). Although some of the ingredients in XLD have been reported, there is limited knowledge regarding its composition and therapeutic effects. The purpose of this paper was to analyze the active components, potential key targets and biological pathways of XLD. The current study of traditional Chinese medicine for the treatment of glioblastoma multiforme mainly focuses on the study of the simple mechanism of one medicine on the development of tumour, while XLD is currently used in clinical practice, but its specific mechanism of action and core active ingredients for the treatment of glioblastoma multiforme are unknown to us, therefore, it is necessary to explore it, we used a large number of tissues from TCGA and GTEX database The study was conducted to obtain differentially expressed genes for glioblastoma multiforme and to systematically analyse the mechanism of XLD formulae for the treatment of glioma through a network pharmacology approach. In addition to this, the active ingredients in XLD were restricted to cross the blood-brain barrier, and ultimately, molecular docking was used to verify that these active ingredients could bind to the target genes. This will provide a theoretical basis for the subsequent development of small molecule drugs for the targeted treatment of glioblastoma multiforme. This study provides useful information to understand the biological process of XLD in GBM and offers new therapeutic options for the treatment of GBM.
MATERIALS AND METHODS
Data preparation
Searching for active ingredients of XLD
The active ingredients of XLD are downloaded (https://tcmsp-e.com/) from the traditional Chinese Medicine system Pharmacology (TCMSP) Database (Ru et al., 2014), which contains many traditional Chinese medicine entries, drug disease networks and drug target networks. A large number of herbal information is available from the TCMSP database, including composition, molecular name, molecular weight (MW), drug similarity (DL), human oral bioavailability (OB), half-life (HL), water partition coefficient (AlogP), number of hydrogen-bonded donors and receptors (Hdon/Hacc), Caco-2 permeability (Caco-2) and blood-brain barrier (BBB). Oral bioavailability (OB) is one of the most important pharmacokinetic characteristics of oral drugs to evaluate the drug delivery efficiency to systemic circulation. Its value is calculated from the OBioavail 1.1 model developed by the research group in the previous stage, and the (Ru et al. is calculated. 2014). Oral bioavailability indicates the percentage of efficacy that can be produced by a unit of oral dose, which is a key index to determine the drug properties of active molecules. Drug-like drugs are used to evaluate the possibility of compounds becoming drugs, and only the molecules with higher OB and DL may have good pharmacological activity. The average DL of drugs in the reference Drug Bank database is 0.18. Studies have shown that compounds with BBB < -0.3 are considered to be non-penetrating (BBB-), moderate penetration (BBB ±) from-0.3 to +0.3, and strong penetration (BBB+) from 0.3 to +0.3. Therefore, the ingredient with oral bioavailability standard ≥30% and DL ≥ 0.18, BBB > -0.3 was regarded as active ingredient (Wang et al., 2015).
(PPI) analysis of protein-protein interaction
After screening the active components of XLD through the TCMSP database, the active components are uploaded to PubChem (https://www.ncbi.nlm.nih.gov/), a multi-functional Web server for exploring the relationship between pharmacological and chemical structures based on molecular 3D similarity methods (Wang et al., 2017b). We searched the ChemMapper database for the prediction targets of each active component in XLD, and screened them according to the criteria that the 3D structural similarity was higher than 1.0 and the prediction score was higher than 0, and found the two-dimensional structure of the active component (Liu et al., 2010). In addition, Uniprot (https://www.uniprot.Org) are used to standardize the prediction targets (The UniProt Consortium, 2018), and express them in the form of gene ID. In order to improve the credibility of the target, the STITCH database (https://cn.string-db.org/), which is commonly used to search and predict the interaction between the compound and the target protein, is also used to predict the target. Finally, the Venn diagram is made, and the intersection of the two databases is regarded as the final gene target of XLD. Among them, XLD includes 12 kinds of traditional Chinese medicine ingredients, and a total of 200 active ingredients can pass through the blood-brain barrier, of which gancao, Yanhusuo and danshen account for 64% of the total drugs.
Screening of GBM-related genes
TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) database was launched by the National Cancer Institute (NCI) and the National HumanGenome Research Institute (NHGRI) of the United States in 2005. Through the application of genome analysis technology, especially large-scale genome sequencing, this paper attempts to draw and systematically analyze the genome variation map of all human cancers (the short-term target is 50 kinds of tumors including subtypes). We downloaded 169GBM tumor samples, Genotype-Tissue Expression (https://www.gtexportal.org/home/index.html). This database is different from TCGA and ICGC. On the other hand, GTEx collected tissues from normal people for sequencing, and 1,152 normal brain samples were obtained (Vivian et al., 2017). Using Limma version 3.11 software package (https://bioconductor.org/pack ages/Limma/) to screen the differentially expressed genes between high risk group and low risk group (corrected p value and lt; 0.05, fold change ≥ x2), 894 differentially expressed genes were obtained.
Network analysis
Drug-gene targeting network
By using Cytoscape (v.3.8.0) to construct the target network of 166target genes of active components in traditional Chinese medicine that can pass through the blood-brain barrier and 19 genes of drug-disease, and the (CTD) network of compound-target-disease, we can see the core relationship between XLD active component network and molecular targeting prediction target and compound-target-disease (CTD) network. The network analyzer plug-in is used to identify key active components and key candidate targets according to the following criteria: nodes whose values exceed the average of all nodes in the network. The degree value is the number of edges a node has in the network, indicating how many herbs/ingredients/targets a node is associated with. If the degree value of the node is large, it is considered that the node plays a more important role in the network.
(PPI) analysis of protein-protein interaction
The 166 target genes of the above drugs and 19 genes of the same drug-disease were introduced into the STRING database to construct the PPI network. STRING database integrates many protein-protein association networks for biological quality control. We chose the core PPI target based on the above-average degree score and the confidence score above 0.9. Used to build PPI networks. Cytoscape is then applied to examine the potential correlation between these genes. The target-target (TT) network between XLD and GBM is constructed using the plug-in CytoNCA of Cytoscape, and the interaction network of gene protein intersection between XLD and GBM is constructed by the plug-in BisoGenet of Cytoscape, and visualized with Cytoscape (Barabási et al., 2011; Al-Harazi et al., 2016; Muthiah et al., 2017).
Analysis of GO and KEGG pathway
Then R software was used to deal with the above 169genes and 19 intersecting genes, and clusterProfiler, org. Hs.eg.db, enrichplot and ggplot2, pathview plug-in packages (vision 3.6.2) were used to visualize GO and KEGG, respectively. The p-value filtering condition was pvalueFilter <0.05. The corrected p-value filtering condition was qvalueFilter <0.05i. In order to further clarify the biological effects of the active components of XLD and the potential mechanism of antagonizing the therapeutic effect of GBM, the selected targets were marked with signal pathways such as cell cycle, p53 and glioblastoma multiforme (KEGG number: map04210, map04115 and map04151) to identify that the interacting genes and networks were mapped using KEGG parsers.
Molecular docking
First, the eight key genes were imported into STRING (http://stitch.embl.de/) to accurately obtain the PDB number of these proteins in humans and obtain the two-dimensional structure of the eight components through the PDB number. The 2D structures of XLD active components and their main targetswere downloaded from Pubchem database and PDB database (Rayan, 2009) (http://www.rcsb.org/), respectively, and these molecules were dehydrated and hydrogenated. Then, autoDOCK 1.5.7 software was used to complete the molecular docking analysis. The combination of drug composition and target can be visualized by thermal map, which shows good binding activity, and the lower the binding energy is, the better the docking effect is. MOE software (v.2019.0102) was used to verify the molecular docking of the molecular pairs with the lowest binding energy between drug small molecules and protein macromolecules.
RESULTS
The research process is divided into three stages in order. Figure 1 shows all the processes of system analysis. Firstly, search the active ingredients and targets of XLD formula, and screen differentially GBM expressed genes to build a network. Next, the traditional Chinese medicine related network and glioblastoma multiforme gene network are combined, and the topology analysis is carried out to filter out the required core network. Finally, these targets are analyzed by GO and KEGG to determine the mechanism of HLD against GBM.
[image: Figure 1]FIGURE 1 | Flow chart of the systematic analysis of XLD for glioblastoma multiforme treatment. TCMSP, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform; OB, oral bioavailability; DL, drug-likeness; BBB, blood-brain barrier; TCGA, The cancer genome atlas; GTEX, The Genotype-Tissue Expression; PPI, protein-protein interaction; XLD, Xiaoliu Decoction.
The formula of XLD and the screening of its active ingredients and targets
There are 12 components of XLD, including Baihuasheshecao, baizhi, Baizhu, banxia, Banzhilian, chenpi, Chuanxiong, Chuanxiong, Danshen, Fuling, Gancao, Gouteng and Yanhusuo. To reveal the mechanism of action of XLD in glioblastoma multiforme (the selected drugs can pass through the blood–brain barrier), we downloaded the drug ingredients of XLD from TCMIP and analyzed the ingredients to build a drug network. The initial network contained a total of 346 nodes and 2,626 edges. Then, the final active ingredients were screened using the PubChem database. Among them, 53 were licorice, 41 were Yanhusuo, and 34 were Salvia miltiorrhiza Bunge, among which 53 were licorice, 41 were Glycyrrhiza uralensis Fisch, and 34 were Salvia miltiorrhiza Miltiorrhizae (Salvia miltiorrhiza Bunge, Radix Salviae Miltiorrhizae). These three types accounted for 71.11% of the total components.
A compound regulatory network of the relationship between active components and molecules was established with the above-mentioned XLD TCM formula, and an initial network consisting of 346 nodes and 2,626 edges was obtained. Then, topology analysis was applied to filter out the required core network, which contained a total of 44 nodes and 168 edges. This network included nine drug nodes, and 35 molecular nodes (rectangular nodes; the larger the area, the more important the node). The core target network was mapped using Cytoscape (Figure 2).
[image: Figure 2]FIGURE 2 | XLD active ingredient network and its molecular targeting relationship. (A) XLD formulae network of all active components and molecular targeting network (drug nodes are round and molecular nodes are diamond shaped). (B) The 56 drug nodes (round nodes; danshen is yellow, gancao is blue, gouteng is green, yanhusuo is pink, chenpi is red, and a variety of medicines are mixed colors) and 40 molecular nodes (diamond shaped). (C)Drug-target network core: The nine drug nodes (round nodes; Salvia miltiorrhiza is yellow, licorice is blue, uncaria is green, Corydalis is pink, tangerine peel is red, and a variety of medicines are mixed colors) and 35 molecular nodes (diamond shaped). XLD, Xiaoliu Decoction; DC, degree centrality.
Identification of differentially expressed genes in GBM
We downloaded the tissue data of GBM patients (169 samples) from the TCGA database and normal brain tissue data (1,152 samples) from the GTEX database. The downloaded data were combined using the limma software package of R software, and differentially expressed genes were screened. Compared with normal brain tissue samples, there were 894 significantly differentially expressed genes in GBM, including 418 upregulated genes and 476 downregulated genes. According to the fold change, SPP1 (osteopontin) and HLA-DRA (HLA class II histocompatibility antigen) showed the greatest change, MBP (Myelin basic protein) and EEF1G (Elongation factor 1-gamma) showed the highest degree of upregulation, and the first two genes were the most downregulated (screening criteria: FDRFilter <0.05). A heat map (Figure 3A) and a volcano map (Figure 3B) were drawn using the limma software package to visualize the results of differentially expressed genes.
[image: Figure 3]FIGURE 3 | DEGs in GBM. (A) Heat maps of the top 50 DEGs in GBM; (B) the DEGs volcano plot in GBM. DEGs, differentially expressed genes; GBM, glioblastoma multiforme.
Construction and analysis of the PPI network
First, a PPI network of the obtained XLD targets was constructed. Importantly, these components can pass through the blood–brain barrier and play an important role in the brain. We obtained a total of 169 gene targets of the effective components in XLD, as shown in Figure 4A. The network map included 143 nodes and 681 edges. Through screening, the core network was obtained, which included 38 nodes and 213 edges. The selection criteria were as follows: Betweenness >45.94044662, centreCloseness >0.361413043, score degree >9 min, Eigenvector >0.0586778575, Lac > 4Command and Network >5 (Figure 4B). TP53, JUN, MYC, MAPK1, STAT3, FOS and other genes formed the core of the network.
[image: Figure 4]FIGURE 4 | XLD protein interaction core network AND GBM drug-disease-target network for XLD therapy.(A) Interaction network of 143 drug target genes, the yellow oval indicates the 38 core genes in (A). (B) The 38 core drug target gene interaction network in (A). The red oval indicates the final nine core genes. (C) XLD-GBM-target network. (D) XLD-GBM-target core network. Common targets for drugs and diseases are indicated by a diamond and drugs are indicated by circles (yellow for danshen, blue for gancao, green for gouteng, pink for yanhusuo, red for Chen Pi and mixed colours for multiple drugs). XLD, Xiaoliu Decoction; GBM, glioblastoma multiforme.
Then, we used the above-mentioned XLD gene target network and the differentially expressed genes in glioblastoma multiforme to construct the drug-disease-target network. As shown in the network diagram in Figures 4C,D there was a one-to-one correspondence between the 95 targets of XLD and 19 drug-disease common genes. The required core network was filtered out by topology analysis. This core network contained eight targets and six gene targets of XLD. The network graph included 14 nodes and 21 edges. Among them, MMP9 was connected to six core targets, and Jun and TP53 were connected to four core targets. The active components and targets of XLD and disease targets were connected and formed a complex network, indicating that XLD can directly or indirectly act on multiple targets in GBM and play an effective therapeutic role. Furthermore, we also predicted the PPI network using 19 target networks common between GBM and XLD components and used the CytoNCA plug-in in Cytoscape to confirm this network. The selection criterion for the complex network (2,157 nodes and 48,677 edges) was as follows: DC > 54 (Figures 5C,D). Finally, the core network with 555 nodes and 20,614 edges was selected.
[image: Figure 5]FIGURE 5 | Common PPI network of XLD and GBM targets.(A) Wayne diagram of the intersection of the XLD and GBM genes, with a total of 19 shared genes. (B) The PPI network of XLD and GBM targets consists of 2,157 nodes and 48,677 edges. (C) PPI network of significant proteins extracted from (B). The network consists of 555 nodes and 20,614 edges. (D) PPI network of significant proteins in (C). The network consists of 13 nodes and 57 edges. XLD, Xiaoliu Decoction; GBM, glioblastoma multiforme; DC, degree centrality; PPI, protein-protein interaction.
GO and KEGG analysis of XLD and glioblastoma multiforme
We analyzed the GO and KEGG enrichment of 169 targets of XLD and 19 targets common to glioblastoma multiformes using R software (Figure 6). GO analysis included the cellular component (CC), molecular functional (MF) and biological process (BP). GO analysis showed that the 169 targets were widely distributed but mainly localized to the synaptic membrane, cyclin-dependent protein kinase holoenzyme complex, transcription regulator complex, RNA polymerase II transcription regulator complex, serine/threonine protein kinase complex, dopaminergic synapse, protein kinase complex, outer membrane of organelle, for example. Furthermore, the 169 targets were shown to have a variety of molecular functions, including neurotransmitter receptor activity, G protein-coupled amine receptor activity, nuclear receptor activity, ligand-activated transcription factor activity, steroid receptor activity, RNA polymerase II-specific DNA binding, transcription factor binding, DNA binding, ubiquitin-like protein ligase binding and cyclin-dependent serine/threonine kinase regulatory activity.
[image: Figure 6]FIGURE 6 | Functional GBM analysis of XLD targets and GBM differential genes.(A) GO functional enrichment analysis XLD targets. (B,C)GO and KEGG functional enrichment analysis of common targets of XLD and GBM. The size of the bubble indicates the number of enrGBMed genes, and the color indicates qvalue and Pvalue. XLD, Xiaoliu Decoction; GBM, glioblastoma multiforme; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cell components; MF, molecular function.
Among the 19 common genes of drug and disease, the biological processes were mainly those such as regeneration, cell cycle arrest, negative regulation of G1/S transition of mitotic cell cycle, negative regulation of G1/S phase cell cycle transition, G1/S transformation of mitotic cell cycle, regulation of neuron apoptosis, regulation of cell cycle block, regulation of DNA biosynthesis, positive and negative regulation of pri-miRNA transcription by RNA polymerase II. These mainly involve, for example, the cyclin-dependent protein kinase holoenzyme complex, serine/threonine protein kinase complex, transferase complex, transfer phosphorus-containing groups, complex protein kinases, RNA polymerase II transcriptional regulatory complex, complex transcriptional regulatory agencies.
Finally, KEGG enrichment analysis was performed on these genes to determine the mechanism of HLT against GBM, and it was found that they are mainly involved in glioblastoma multiforme, cellular senescence, cell cycle and transcriptional misregulation in cancer pathways. To elucidate the overall mechanism of HLT in glioblastoma multiforme, the above steps were repeated during KEGG network construction, which provided a complete mechanism of XLD to understand the pathogenesis of glioblastoma multiforme (Figure 7). Twelve genes (yellow rectangles) and nine KEGG (red rectangles) were obtained by layer-by-layer screening. The larger the area, the more important the genes were in the network. The 12 genes are: CDK1, CXCL8, CDK4, MYC, TP53, DKN1A, PLAU, MMP9, HIF1A, CCL2, JUN, BIRC5, seven KEGG passages are: hsa05202, hsa04657, hsa05163, hsa04218, hsa05205 hsa01524, hsa04012, hsa04668, hsa04110, hsa04210.
[image: Figure 7]FIGURE 7 | Networks of XLD drug target signalling pathways. A total of nine Kyoto Encyclopedia of Genes and Genomes signaling pathways (elliptical nodes) and 12 genes (rectangular nodes) associated with them were obtained. The size of nodes was proportional to the number of adjacent nodes. hsa, Homo sapiens. Cyclin-dependent kinase 1(CDK1),Interleukin-8(CXCL8),Cyclin-dependent kinase 4(CDK4), Myc proto-oncogene protein (MYC), Cellular tumor antigen p53 (TP53),Cyclin-dependent kinase inhibitor 1(CDKN1A),Urokinase-type plasminogen activator (PLAU), Matrix metalloproteinase-9 (MMP9),Hypoxia-inducible factor 1-alpha (HIF1A),C-C motif chemokine 2(CCL2),Transcription factor AP-1 (JUN), Baculoviral iap repeat-containing protein 5(BIRC5).
Molecular docking analysis
To analyze the feasibility of XLD in the treatment of glioblastoma multiforme, we also performed molecular docking analysis on the active components of XLD and the key targets in glioblastoma multiforme. The PDB with the crystal structure of Jun was 1JNM, the PDB with the crystal structure of PCP4 was 2N77, the PDB with the crystal structure of MMP9 was 1L6J, the PDB with the crystal structure of TP53 was 2K8F, the PDB with the crystal structure of CDKN1A was 4RJF, and the PDB with the crystal structure of TnFaiP6 was 2PF5. Molecular docking was conducted for all pharmacodynamic components and targets in sequence, and the results were displayed in a heat map (Figure 8). Interestingly, we found that tanshinone 2A had the lowest binding energy among all core drugs. Therefore, we showed the docking diagram of tanshinone 2A with six proteins in Figure 9. These findings provide valuable information for the development of drugs to treat glioblastoma multiforme.
[image: Figure 8]FIGURE 8 | Molecular docking energy heat map. Molecular docking of JUN,TP53,MMP9,PCP4, CDKN1A AND TNFAIP6 proteins in Figure 4 was performed with the corresponding small molecule drugs in the network, and the docking energy was drawn into a heat map. Red represents high docking energy required, and blue represents low docking energy required.
[image: Figure 9]FIGURE 9 | Core protein docking with small molecules. The molecules and drugs with the lowest docking energies are visualized in Figure 8, JUN,TP53,MMP9,PCP4, CDKN1A AND TNFAIP6 proteins and Tanshinone 2A. Small molecule drugs and interacting amino acids are red, proteins are blue, their interactions are yellow dotted lines, and numbers are bond lengths.
DISCUSSION
In this study, we systematically explored the potential molecular mechanism of XLD in the brain by performing GO and KEGG pathway enrichment analyses and analyzing the active components and targets of XLD in the PPI network. Furthermore, by comparing the targets of XLD and differentially expressed genes in GBM, we obtained the possible gene targets of XLD in the treatment of GBM. To reveal the potential therapeutic mechanism of the decoction, we collected the components of XLD using TCMSP and TCMID databases and obtained a total of 1,060 active components. Among them, 53 components were found in more than one herbal medicine, and these components shared by different herbs may be the key components contributing to the biological function of XLD. Among the 12 traditional Chinese medicines of anti-tumor decoction, the active ingredients that can pass the blood-brain barrier mainly exist in licorice, Yanhusuo and Salvia miltiorrhiza. Through a literature search, we found that these drugs have a variety of pharmacological properties, such as antioxidant and anti-fibrosis activities (Shin et al., 2008; Li et al., 2010; Fu et al., 2014). Interestingly, our results show that two drugs, licorice and salvia, are the most critical components of the XLD drug network.
Many active ingredients in licorice are related to GBM. One example is licochalcone A, a natural rutin extracted from licorice root with a variety of biological effects, including antioxidant, anti-inflammatory and anticancer activities. Licochalcone A induces caspase-dependent death in GSCs but not differentiated GSCs, normal somatic cells or neural stem cells, and Kuramoto et al. found that licochalcone A caused mitochondrial breakage and decreased membrane potential and ATP production in GSCs, leading to cell death. Moreover, Huang et al. demonstrated that LicA significantly inhibited ADAM9 expression and impaired the migration and invasion activity of human GBM cells (M059K, Umur251 MG, GBM8901) through the MEK/ERK signaling pathway. Lu et al. found that LA effectively inhibited the growth of U87 GBM cells by inducing G0/G1 and G2/M cell cycle arrest, an effect that was attributed to reduced cyclin and cell cycle-dependent kinase mRNA and protein levels (Kuramoto et al., 2017; Huang et al., 2018; Lu et al., 2018). Lupiwighteone (Lup) is a natural isoflavone extracted from licorice. Ren et al. found that Lup has a concentration-dependent and time-dependent effect on the growth of SH-SY5Y cells. Lup induced G2/M phase arrest and significantly reduced the protein expression of cyclin B1/D1 and cyclin-dependent kinase (CDK)-1 and 4–6. Furthermore, Lup altered mitochondrial membrane potential and increased the production of intracellular reactive oxygen species (ROS) (Ren et al., 2015). The anticancer effects on SH-SY5Y cells provide a scientific basis. Formononetin is a recently identified type of TCM isolated from licorice that has anti-tumor activity. Studies have shown that formononetin combination therapy reverses adriamycin-induced epithelial-mesenchymal transformation (EMT) of tumor cells and prevents EMT by inhibiting HDAC5, thereby enhancing the therapeutic effect of adriamycin on GBM cells. Zhang et al. also found that formononetin combined with temozolomide (TMZ) enhanced the expression of Bax, cleaved caspase-3 and cleaved caspase-9, decreased the expression of Bcl-2 and promoted the apoptosis of GBM cells. Moreover, the combination therapy downregulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 and inhibited the migration of GBM cells (Liu et al., 2015; Zhang et al., 2018; Ni et al., 2019). The anticancer drug coumarin has attracted increasing attention in recent years, and glycyrol is the most important representative component in coumarin, which is an active ingredient in licorice. Recently, Lu et al. showed that a glycyrol/butyric acid mixture had the strongest inhibitory effect on colorectal cancer cells by enhancing the activation of caspase-3. Benzofuran, isopentene and methoxy groups in glycyrol play a key role in its anticancer activity. Additionally, furan groups further enhance its anticancer activity. Molecular targeted therapy for non-small cell lung cancer (NSCLC) has shown good efficacy. T-Lymphokine-activated killer cell-derived protein kinase (TOPK) is overexpressed in many cancer types, including NSCLC, and is considered to be an effective target for the treatment of lung cancer. Lu et al. demonstrated that glycyrol binds to TOPK and inhibits its kinase activity, resulting in activation of the apoptosis signaling pathway and inhibition of lung cancer cell growth. Moreover, Xu et al. also found that glycyrol induces G0/G1 phase cell cycle arrest, promotes the activation of c-Jun n-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) and induces caspase-dependent apoptosis, accompanied by the activation of adenosine monophosphate-activated protein kinase (AMPK) (Xu and Kim, 2014; Lu et al., 2019; Lu et al., 2020). Together, these results demonstrate the anti-tumor activity of glycyrol, highlighting its potential for the treatment of cancer.
There are 34 active ingredients in Salvia miltiorrhiza. Salvia miltiorrhiza dispels blood stasis and relieves pain, promotes blood circulation and relieves menstrual pain. Salvia miltiorrhiza contains fat-soluble and water-soluble components. Most of the fat-soluble components are conjugated quinones and ketones, such as tanshinone I, tanshinone IIA, tanshinone IIB and cryptotanshinone. The water-soluble components include Danshensu, Danshen acid A, protocatechuic acid and protocatechuic aldehyde. Among them, tanshinone, cryptotanshinone and tanshinone have all been shown to have effects on GBM cells (Wang et al., 2007; Tang et al., 2010; Yang et al., 2014; Ren et al., 2015; Ding et al., 2017; You et al., 2020; Liu et al., 2021). Furthermore, they also have anti-diabetes, anti-inflammation, antioxidant and anti-cancer therapeutic effects (Wang L. et al., 2017; Maione et al., 2018; Jia et al., 2019; Li et al., 2021; Liu et al., 2021).
In the analysis of XLD targets using the PharmMapper database, 169 targets were obtained, which were found to be closely related to 200 active compounds in XLD. Among them, JUN, TP53, MYC, FOS and STAT3 are closely related to the active components of XLD and associated with the pathophysiology of GBM and the mechanism of tumorigenesis and development.
To understand the specific regulatory mechanism of XLD, 169 targets of XLD were systematically screened by GO and KEGG analyses, which revealed the multi-pathway targets of XLD. GO analysis shows that the 169 targets are widely distributed throughout the nervous system and may be involved in a variety of biological processes, such as cell cycle regulation, transcriptional regulation and negative regulation of apoptosis. Furthermore, KEGG analysis of XLD and GBM intersection genes showed that they were mainly involved in the signaling pathways of GBM with a wide range of anticancer effects, including participation in central carbon metabolism in cancer.
Transcriptional misregulation in cancer, cell cycle, p53 signaling pathway and platinum drug resistance, for example. By comparing the results of GO and KEGG analyses, we found that their results were complementary and interrelated, which facilitates a more comprehensive understanding of XLD. In summary, components in XLD that can pass through the blood–brain barrier may have a therapeutic effect on tumors and GBM through a variety of different pathological mechanisms.
GBM is one of the most aggressive and incurable diseases characterized by high tissue heterogeneity and rapid transformation from low-grade (I–II) to high-grade (III–IV). Approximately 95% of low-grade GBM progress into high-grade tumors; less than 3% of these patients are still alive 5 years after diagnosis (Bastien et al., 2015; Tamimi and Juweid, 2017; Ostrom et al., 2020). At present, surgery, radiotherapy and TMZ chemotherapy are first-line treatments for GBM, and the degree of tumor resection affects the prognosis of GBM patients (Bastien et al., 2015; Tamimi and Juweid, 2017; Ostrom et al., 2020). Unfortunately, complete removal of the tumor cannot be achieved because of the infiltrating nature of GBM cells. Therefore, the realistic goal of neurosurgeons is to remove 90% of the tumor without causing neurological defects associated with surgery. Regarding chemotherapy, it is non-specific and has harmful effects on cells and tissues, including nausea, fatigue, significant myelosuppression, thrombocytopenia, severe infection and myelodysplastic syndrome (Malmström et al., 2017; Schreck and Grossman, 2018).
With a better understanding of genes, new treatments have been developed. For example, gene therapy can be used to inhibit the carcinogenic properties of tumor cells (Caffery et al., 2019; Hossain et al., 2020). Gene therapy in cancer involves introducing tumor suppressor or growth regulatory genes into the tumor [56]. Because conventional therapy cannot overcome treatment resistance, gene therapy can be used to manipulate the genetic composition of tumor cells to provide therapeutic benefits. However, these gene therapies must pass through the blood–brain barrier to achieve the therapeutic effect. To improve the transmission of these therapies, delivery vectors such as viral vectors, polymeric nanoparticles and non-polymeric nanoparticles have been studied. However, a meta-analysis found that these studies were not statistically significant (p = 0.13) (Artene et al., 2018). Furthermore, viral therapy did not statistically improve progression-free survival. Therefore, gene therapy with viral agents alone may not be a feasible treatment in HGG. In immunotherapy, monoclonal antibodies have high affinity and specificity in targeting growth factor receptors, such as PDGFR, VEGFR and EGFR. One challenge with monoclonal antibodies is that because of their large size, they may not easily pass through the blood–brain barrier. Therefore, to overcome this limitation, monoclonal antibodies can be connected to the surface of nano-carriers through the pre-adsorption process to prevent the formation of biomolecule crowns (Tonigold et al., 2018; Loureiro et al., 2020). These treatments are not only expensive, but they also need to pass through the blood–brain barrier, and the efficacy should be considered.
The discovery of plant-derived bioactive compounds as new therapies may provide a therapeutic advantage in GBM research. Approximately 60% of clinically approved anticancer drugs on the market come from medicinal plants (Yool and Ramesh, 2020). Their multi-target, high selectivity, reduced multidrug chemical resistance, cost-effectiveness and minimal side effects make them valuable potential therapies, especially when used in combination with current treatment strategies (Rayan et al., 2017). TMZ used in combination with phytochemicals, such as thymoquinone and cannabinoids, has been shown to enhance the anticancer effect in preclinical models (Dumitru et al., 2018; Pazhouhi et al., 2018). The introduction of the big data concept and the continuous development of pharmacology provide an opportunity to analyze the relationship between drugs and molecular targets (Zhang et al., 2013). Network pharmacology provides a useful approach to explore the regulation of multi-channel signaling pathways, improve the efficacy of drugs and the success rate of clinical trials, and reduce the cost of drug development. Chinese herbal medicines and plant ingredients are positive prospects in the treatment of a variety of complex diseases (Sang et al., 2020). Network pharmacology has been widely used to study the biological mechanism of some prescriptions and components of TCM (Zhu and Hou, 2020). Therefore, we used network pharmacology to understand the biological mechanism by which XLD targets GBM at the molecular level.
In China, XLD is widely used in the treatment of tumors, including GBM. Therefore, comprehensively studying the specific mechanism of XLD in the treatment of tumors, especially GBM, is necessary. This information can help us better understand the regulatory mechanism of drugs in tumors, elucidate the mysteries of TCM and identify new research directions. To address the shortcomings of current gene therapy and immunotherapy regimens and provide novel and effective methods. Therefore, we used R software to study the biological process of related genes. The results showed that XLD regulates the proliferation of tumor cells by affecting the following biological processes: lipopolysaccharide response, phospholipase C-activated G protein-coupled receptor signaling pathway, radiation response, oxidative stress response, transcription initiation of RNA polymerase II promoter, DNA template transcription, hypoxia response and others. Because these regulatory mechanisms are closely related to the occurrence and development of GBM, we hypothesize that XLD may affect the above pathways to regulate GBM cell proliferation, metastasis and other tumor biological processes. To understand the mechanism by which XLD regulates genes in GBM, the expression data of GBM tumor tissues and normal brain tissues were downloaded from TCGA and GTEX databases, and the differentially expressed genes were obtained by R software. The drug-disease-target PPI network was constructed between the target genes of XLD and the differentially expressed genes in GBM. We found that TP53 and Jun were located in the core, indicating that they may be a key hub mediating the effects of XLD on a variety of pathological mechanisms in GBM. Mutations in the tumor suppressor gene TP53 occur in a variety of cancers, including GBM, which usually lead to a loss of TP53 function and several transcriptional changes, promoting the development of tumors. Approximately 30% of glioblastomas carry TP53 mutations. TP53-dependent cell cycle arrest has been shown to be involved in mediating the sensitivity of chemotherapy. Additionally, TP53 has been identified as the main regulator of CSC self-renewal, differentiation and tumorigenic potential in glioblastoma (Moreno et al., 2007; Zheng et al., 2008; Varna et al., 2009; Rivlin et al., 2011). However, no drug targeting TP53 has been developed, and only two compounds targeting mutant p53 are currently being investigated in clinical trials, including APR-246 in phase II trials and COTI-2 in phase I trials (Maslah et al., 2020; Synnott et al., 2020). To further analyze the feasibility of XLD in the treatment of GBM, we performed molecular docking analysis and found that many active components have a high affinity for the core targets in GBM. The components of XLD can each bind to the target molecules. Our analysis of XLD and glioblastoma multiforme system revealed that JUN, TP53, MMP9, PCP4, CDKN1A and TNFAIP6 proteins are the core proteins of XLD in the treatment of glioblastoma multiforme, and KEGG enrichment analysis revealed that these proteins regulate the development of glioblastoma multiforme mainly by regulating cellular senescence, transcriptional misregulation in cancer and affecting the cell cycle. The KEGG enrichment analysis revealed that these proteins regulate the development of glioblastoma multiforme by regulating cellular senescence, transcriptional misregulation in cancer and affecting the cell cycle. Interestingly, we docked the core proteins to the core small molecule drugs and found that tanshinone iia has the lowest docking energy to the core proteins, thus, tanshinone iia may become a small molecule target drug for the treatment of glioblastoma multiforme.
There are still some shortcomings in this study that need to be investigated in depth in the next step. Firstly, only a computer-based exploration of the mechanism of XLD for the treatment of glioblastoma multiforme was used. Next, we need to further confirm the therapeutic effect of XLD on GBM through basic experiments using the core small molecule drugs in our conclusions. In addition, the optimal dose of XLD for treating patients with GBM needs to be determined. In conclusion, we have now obtained a possible mechanism for the treatment of GBM with XLD through a network pharmacological analysis and hope that drugs including tanshinone iia will become a new and promising targeted chemotherapeutic agent. It remains to be further elucidated whether it can be a new adjuvant therapy. In China, XLD has been used clinically with relatively few adverse effects, and therefore it is promising to be used in GBM-related clinical trials.
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FOOTNOTES
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6GTEX:https://www.gtexportal.org/home/index.html
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N7-Methylguanosine (m7G) is an RNA modification serving as a key part of colon cancer development. Thus, a comprehensive analysis was executed to explore prognostic roles and associations with the immune status of the m7G-related lncRNA (m7G-RNAs) in colon adenocarcinoma (COAD). Identification of m7G-RNAs was achieved via Pearson’s correlation analysis of lncRNAs in the TCGA-COAD dataset and m7G regulators. A prognostic signature was developed via LASSO analyses. ESTIMATE, CIBERSORT, and ssGSEA algorithms were utilized to assess immune infiltration between different risk groups. Survival analysis suggested the high-risk group possesses poor outcomes compared with the low-risk group. According to the ROC curves, the m7G-RNAs signature exhibited a reliable capability of prediction (AUCs at 1, 3, and 5 years were 0.770, 0.766, and 0.849, respectively). Multivariate hazard analysis proved that the signature was an independent predictive indicator for OS. Moreover, the risk score was related to infiltration levels of naïve B cells, CD4+ memory T cells, and resting NK cells. The result revealed the prognostic value of m7G modification in COAD and provided a novel perspective on personalized immunotherapy strategies.
Keywords: N7-methylguanosine, long non-coding RNAs, colon adenocarcinoma, prognosis, tumor immune microenvironment
INTRODUCTION
Colorectal cancer is among the top three tumors worldwide (Sung et al., 2021). Colon cancer has a higher incidence compared with rectal cancer (ratio = 2:1), and the ratio of the colon to rectal cases is ≥ 2 in developed countries and generally similar in developing countries (Labianca et al., 2010). Adenocarcinoma originating from epithelial cells of the colon mucosa is the most widely observed colon cancer subtype (Fleming et al., 2012). Despite advances in treatment modalities, colon cancer is ranked fourth in a list of cancer-related mortality causes in 2020 (5.8% of all sites) (Sung et al., 2021). It is urgent to elucidate molecular mechanisms and identify a novel molecular target for personalized management of colon adenocarcinoma (COAD).
As a post-translational modification that can be reversed, RNA methylation influences multiple biological processes, including splicing, nucleation, stability, and immunogenicity of RNA, in an epigenetic way. Meanwhile, the dysregulation of RNA methylation is necessary for human cancer development, especially gastrointestinal cancers (Xie et al., 2020; Zhang et al., 2021). There are several identified types of RNA methylation, including N7-methylguanosine (m7G), N6-methyladenosine (m6A), ribose methylations (Nm), N1-methyladenosine (m1A), and 5-methylcytosine (m5C) (Wiener and Schwartz, 2021). Among them, m7G is the modification of the seventh N of RNA guanine with a methyl group (Liu and Jia, 2014; Zhang et al., 2021).
Long non-coding RNAs (lncRNAs) play a significant role in pre-mRNA processing, gene transcription control, mature mRNAs’ transportation to corresponding cellular compartments, protein translation and turnover, and mRNA stability regulation (Riva et al., 2016). It has been reported that lncRNAs could mechanistically interact with the epigenetic machinery and facilitate tumorigenic chromatin remodeling to promote or suppress cancer progression (Begolli et al., 2019). Because of genome-wide expression patterns and tissue-specific expression characteristics, lncRNAs have potential application prospects in diagnostic biomarkers and therapeutic targets (Bhan et al., 2017).
Recently, more and more studies have found the interaction between lncRNA and RNA methylation in multiple cancer. For example, Zhang et al. found that ALKBH5 promoted GC invasion and metastasis through the demethylation of lncRNA NEAT1 (Sung et al., 2021). In colon cancer, METL14 downregulates the expression of lncRNA XIST by regulating the m6A level of XIST, thereby inhibiting the proliferation and metastasis of cancer cells (Labianca et al., 2010). Zhang et al. found that m5c modified H19 lncRNA may promote the occurrence and development of hepatocellular carcinoma by recruiting G3BP1 oncoprotein (Fleming et al., 2012). However, studies on the interaction between m7G and lncRNA are relatively scarce.
This study explored the predicting role of lncRNAs that are associated with m7G in the overall survival (OS) of COAD. A prognostic signature was developed based on 14 m7G-related lncRNAs (m7G-RNAs) in the development set, whereas its predictive value in the complete set and validation set was validated, respectively. The results revealed that the signature served as an independent survival predictor of COAD and the prediction accuracy was higher than that of clinical baseline features. Besides, the risk groups identified by the signature showed a significant difference in the immune microenvironment.
MATERIALS AND METHODS
Data collection and correlation analysis
Figure 1 illustrates the analysis process of this study. The expression profile of the TCGA-COAD dataset was grouped into lncRNAs and protein-coding genes referring to human genome annotation data. m7G regulators were obtained from previous studies (Kiriakidou et al., 2007; Ng et al., 2015; Tomikawa, 2018) and MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb). Three relevant gene sets were searched in the MSigDB database with “7-Methylguanosine” keywords, including “GOMF_M7G_5_PPPN DIPHOSPHATASE_ACTIVITY”, “GOMF_RNA _7_METHYLGUANOSINE_CAP BINDING”, and “GOMF RNA_CAP BINDING”. Finally, 29 m7G RNA methylation regulators (METTL1, DR4, NSUN2, DCP2, DCPS, NUDT10, NUDT11, NUDT16, NUDT3, NUDT4, NUDT4B, AGO2, CYFIP1, EIF4E, EIF4E1B, EIF4E2, EIF4E3, GEMIN5, LARP1, NCBP1, NCBP2, NCBP3, EIF3D, EIF4A1, EIF4G3, IFIT5, LSM1, NCBP2L, and SNUPN) were obtained, and their expression profiles were extracted from the TCGA-COAD datasets. Then, Pearson’s correlation analysis (PCA) was utilized to clarify the correlation between m7G-regulators and lncRNAs. The m7G-RNAs had an absolute value of correlation coefficients above 0.4 and a p-value less than 0.001.
[image: Figure 1]FIGURE 1 | The flowchart of this study.
Establishment and validation of the m7G-RNAs signature
Samples were randomly divided into development and testing sets. The m7G-RNAs signature was developed and validated using the training and validation sets, respectively. The univariate hazard analysis was performed in the development set to identify the m7G-RNAs associated with OS. Then, prognostic lncRNAs were enrolled into the LASSO analysis to construct the m7G-RNAs signature. The risk score was determined as follows:
[image: image]
The risk score of the validation set was determined using the same equation derived from the development set. Subsequently, the COAD samples were grouped into high-risk (HR) and low-risk (LR) groups, referring to the median of the risk score. The OS and PFS of the two groups were investigated based on the Kaplan–Meier (KM) survival curve. ROC curves and their areas under curve (AUC) were employed to evaluate the predictive accuracy of signature.
Construction and identification of the predictive nomogram
Univariate and multivariate hazard analyses were used to confirm independent prognostic indicators. Then, a nomogram was developed based on clinical baseline features and m7G-RNAs signature with the “rms” R package. A calibration plot was employed to assess the agreement of predicted and actual survivals. The clinical efficacy of m7G-RNAs signature and nomogram was assessed by Decision Curve Analysis (DCA). Besides, the C-index was determined to assess the accuracy of predicted survival of the nomogram, m7G-RNAs signature, and clinical baseline features.
Functional enrichment analyses
In order to clarify the potential molecular functions of m7G-RNAs signature, the Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of the HR and LR groups were executed to evaluate differentially regulated GO or KEGG items between risk subgroups. FDR < 0.05 was considered significant. The “c5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” genesets were used for reference.
Tumor microenvironment analysis
In order to explore the role of the m7G-RNAs signature in the TME of COAD, the ESTIMATE algorithm was used to evaluate stromal and immune scores and the tumor purity of the two risk subgroups. The CIBERSORT algorithm was employed to assess the proportions of immune cell subtypes and the correlation of risk scores with immune cells. Then, the ssGSEA analysis was executed to compare differences in immune function and infiltration of immune cells of the HR and LR groups. Besides, the 18 genes that are related to the immune checkpoint (PDCD1, TIGIT, CD28, CD274, CD160, PDCD1LG2, CD244, BTN2A2, TMIGD2, LAG3, CD96, CD200, TNFRSF18, CD86, CD40, NRP1, CEACAM1, ADORA2A, CD44, CD70, HHLA2) were identified based on previous studies to explore their correlation with the m7G-RNAs signature (Fang et al., 2020; Kitsou et al., 2020; Li et al., 2021).
Statistical analysis
The statistical analysis was processed in R software. The Perl programming language was used for data processing. Unless otherwise noted, p < 0.05 was considered statistically significant. In the figures, “*” represents p < 0.05, “**” represents p < 0.01, and “***” represents p < 0.001.
RESULTS
m7G-RNAs acquisition in COAD
A total of 224 samples were assigned to the development set and 222 samples into the validation set. The clinical baseline features of the HR and LR groups are illustrated in Table 1. According to the lncRNA annotation data, 4,497 lncRNAs were identified in TCGA-COAD datasets. After evaluating the association between lncRNA and 29 m7G regulators, 1,506 m7G-RNAs were confirmed (|Pearson R|> 0.4 and p < 0.001). After that, a univariate hazard analysis was executed to explore the prognostic value of these lncRNAs. The hazard ratio values were all processed by log2 (value +1) to narrow down the absolute value range of the data. The result revealed that ITFG1-AS1, ATP2B1-AS1, LINC02257, SEPTIN7-DT, LINC02593, NSMCE1-DT, LINC01011, PRKAR1B-AS2, ALMS1-IT1, LENG8-AS1, NDUFB2-AS1, and LINC02428 were risky factors with hazard ratio greater than 1, whereas LINC01909 and ALKBH3-AS1 were protective factors with hazard ratio less than 1 (Figure 2A).
TABLE 1 | Clinical baseline features of samples in training and validation sets.
[image: Table 1][image: Figure 2]FIGURE 2 | m7G-related signature construction. (A) The univariate hazard analysis of prognostic m7G-related lncRNAs in the development set. (B and C) LASSO analysis on 14 prognostic m7G-related lncRNAs in the development set. (D) The Pearson correlation analysis of m7G-related regulators and 14 prognostic m7G-related lncRNAs.
Construction of prognostic signature
A LASSO analysis was conducted to generate the prognostic signature consisting of 14 identified m7G-related prognostic lncRNAs. Finally, all 14 lncRNAs were selected based on λ.min values, and the risk coefficient was calculated (Figures 2B,C). The risk coefficient of lncRNAs that comprise the prognostic signature is listed in Table 2. The risk score of each sample was calculated based on the risk coefficient and expression level of 14 m7G-related prognostic lncRNAs. Figure 2D demonstrated the correlation between the prognostic lncRNAs with m7G regulators. Samples with COAD were divided into HR or LR subgroups with the median cutoff of risk score.
TABLE 2 | The risk coefficient of lncRNAs that comprise the prognostic signature.
[image: Table 2]Evaluation of the prognostic signature
KM curves demonstrated that the HR group had a poor OS and PFS than the LR group (Figures 3A–F). The ROC-AUC at 1, 3, and 5 years was 0.770, 0.766, and 0.849 in the development set; 0.724, 0.698, and 0.612 in the validation set; and 0.749, 0.737, and 0.739 in the complete set, respectively, indicating good prediction accuracy of m7G-RNAs signature in COAD survival (Figures 3G–I). According to the distribution plot, samples in the HR group had higher risk scores than those in the LR group (Figures 4A–C). The scatter plot showed a shorter OS of the HR group than the LR group (Figures 4D–F). Besides, the heatmap showed significant differences in tumor stage of risk subgroups (Figures 4G–I). The signature of m7G-RNAs also had prognostic significance in clinical subtypes stratified by age, gender, and tumor stage (Figure 5). These results suggest that the m7G-related prognostic model can effectively predict the OS of patients and is significantly correlated with tumor stage in COAD. In clinical practice, this model may effectively identify COAD patients with a high risk of death and greatly help individualized tumor treatment.
[image: Figure 3]FIGURE 3 | m7G-related signature validation. (A–C) Overall survival analysis between risk subgroups in development set (A, p < 0.001), validation set (B, p < 0.001), and complete set (C, p < 0.001). (D–F) Progression-free survival analysis between risk subgroups in development set (D, p < 0.001), validation set (E, p < 0.001) and complete set (F, p < 0.001). (G–I) ROC curves at 1, 3, and 5 years in the development set (G), validation setm (H) and complete set (I).
[image: Figure 4]FIGURE 4 | m7G-related prognostic signature in COAD. (A–C) Distribution of samples’ risk scores in risk subgroups in the development set (A), validation set (B), and complete set (C). (D–F) Survival status for samples in the development set (D), validation set (E), and complete set (F). (G–I) Distribution heatmap of prognostic m7G-related lncRNAs and clinical baseline features in risk subgroups in the development set (G, stage: p < 0.001), validation set (H, stage: p < 0.01), and complete set (I, stage: p < 0.001). (p < 0.001,“***”; p < 0.01,“**”; p < 0.05,“*”).
[image: Figure 5]FIGURE 5 | Survival analysis in clinical subtypes. (A) KM curve of age-differentiated clinical subtypes (>65 years and ≤65 years). (B) KM curve of gender-differentiated clinical subtypes (female and male). (C) KM curve of stage-differentiated clinical subtypes (Stages I-II and Stages III-IV).
Identification of prognostic nomogram
The univariate hazard analysis indicated that age (HR = 1.029, p = 0.003), stage (HR = 2.067, p < 0.001), and m7G-RNAs (HR = 2.271, p < 0.001) were risk factors for COAD (Figure 6A). Subsequently, the multivariate hazard analyses further confirmed that age (HR = 1.037, p < 0.001), stage (HR = 1.874, p < 0.001), and the prognostic signature (HR = 1.887, p < 0.001) were independent predictors in COAD (Figure 6B). Then, the independent predictors were incorporated to build the prognostic nomogram. Samples had a corresponding nomogram score according to the original risk score and clinical baseline features, including age and stage (Figure 6C). Calibration curves demonstrated that prognostic nomogram may lead to the high consistency of predicted and actual OS (Figure 6D). The C-index indicated that the prognostic nomogram and lncRNA signature had a high prediction accuracy (Figure 6E). The DCA revealed that the prognostic nomogram and the lncRNA signature had great potential for clinical prognosis application (Figure 6F). The ROC curves at 5 years showed that the prognostic nomogram (AUC = 0.813) and the lncRNA signature (0.739) had a more predictive ability of accuracy compared to the stage (AUC = 0.675) and age (AUC = 0.628) (Figure 6G).
[image: Figure 6]FIGURE 6 | The prognostic nomogram generation and validation. (A) Univariate hazard analysis of the prognostic score and clinical baseline features. (B) The multivariate hazard analysis of the prognostic score and clinical baseline features. (C) Establishment of the prognostic nomogram. (D) The calibration curves of the nomogram signature at 1-, 3-, and 5-year OS. (E) C-index of the prognostic nomogram, prognostic signature, and clinical baseline features from 1 to 10 years. (F) DCA curves for prognostic nomogram, prognostic signature, and clinical baseline features. (G) ROC curve at 5 years for prognostic nomogram, prognostic signature, and clinical baseline features.
Functional annotation analysis
GSEA and GSVA were performed to investigate the underlying biological process that the m7G-RNAs signature may be involved in COAD. The top pathways or functions of GSEA are shown in Figure 7. Several enrichment pathways that are significantly associated with cancer were noted, including peroxisome proliferator-activated (PPAR) signaling and cell adhesion pathways in the HR group and enrichment of DNA packaging- and nucleosome-related signaling pathways in the LR group. The results contribute to a thorough understanding of the regulatory mechanism of m7G-RNAs signature in COAD. The top 20 different KEGG and GO items identified with GSVA were respectively displayed with heatmaps (Supplementary Figure S1). In GSVA analysis, the p53 signaling pathway, cell cycle, glycolysis gluconeogenesis, and other cancer-related pathways were identified.
[image: Figure 7]FIGURE 7 | GSEA analysis. (A) Top 10 GO items in the high-risk subgroup. (B) Top 10 GO items in the low-risk subgroup. (C) Top 10 KEGG items in the high-risk subgroup.
Immune landscape of risk subgroups
The stromal and ESTIMATE scores of the HR subgroup were significantly higher than those of the LR group. In contrast, the tumor-purity score of the HR subgroup was lower than that of the LR group, suggesting that stromal cells play a key role in tumor progression of COAD (Figures 8A–D). CIBERSORT analysis demonstrated that m7G-RNAs signature positively correlated with the infiltration of naïve B cells and negatively correlated with CD4+ memory T cells (CD4TC) and resting NK cells (Figures 8E–G). Consistently, naïve B cells exhibited infiltration abundance in the HR group, whereas CD4TC and resting NK cells exhibited infiltration abundance in the HR group (Figure 8H). Besides, the ssGSEA analysis revealed that type II IFN response and the expression of B cells, human leukocyte antigen (HLA), macrophages, and helper T cells were superior in the HR group, whereas Th2 cells were inferior in the HR group (Figure 8I). With regard to the immune checkpoint, the signature of m7G-RNAs was positively related to CD28, BTN2A2, and NRP1 but negatively related to CD44, CD160, and CEACAM1 (Figure 9). The differences in the immune status of HR and LR groups indicated that the immune microenvironment served as a significant participant in the development of COAD.
[image: Figure 8]FIGURE 8 | The landscape of tumor microenvironment. (A–D) Stromal, immune, and ESTIMATE scores and tumor purity in the two risk subgroups. (E–G) The correlation between the prognostic signature with naïve B cells, resting NK cells, and CD4 memory active T cells. (H) CIBERSORT analysis of immune cells. (I) ssGSEA scores of immune cells and activities (p < 0.001,“***”; p < 0.01,“**”; p < 0.05,“*”).
[image: Figure 9]FIGURE 9 | Correlation analysis of the prognostic signature and immune checkpoint-related genes.
DISCUSSION
As a positively charged post-transcriptional modification, m7G regulates most steps of mRNA’s life cycle, such as translation and splicing (Zhang et al., 2019). m7G is present in not only mRNA caps, but also tRNAs, rRNAs, and some internal positions within mRNAs (Pandolfini et al., 2019; Zhang et al., 2019). It has been found that m7G plays an indispensable role in gene expression and cell viability (Chen et al., 2019). RNA methylation is regulated by a crowd of RNA-modifying proteins. Aberrant of RNA modification and corresponding proteins have been identified in tumor tissues (Xie et al., 2020). RNA-modifying proteins related to cancer could regulate the metabolism of RNAs and the expressions of genes necessary for tumor proliferation, transformation, and invasion (Xie et al., 2020). In the present study, the prognostic value of m7G-RNAs and their effects on the immune microenvironment were thoroughly investigated in COAD.
First, m7G-RNAs were confirmed via the Pearson correlation analysis, resulting in the acquisition of 4,497 lncRNAs related to m7G. Then, a univariate hazard analysis was performed to determine m7G-RNAs with prognostic values. Among them, 14 RNAs were associated with OS outcomes of COAD. After that, LASSO analysis was conducted to develop an m7G-RNAs signature based on 14 m7G-RNAs. KM survival analysis indicated that the OS and PFS of the HR group were shorter than those of the LR group. Further ROC analysis results suggest that the prognostic signature has high accuracy in predicting OS of COAD. In addition, multivariate hazard analysis proved that m7G-RNAs signature, tumor stage, and age of samples were independent prognostic indicators for reliable prediction of OS in COAD. Besides, the OS of COAD was quantitatively predicted using a prognostic nomogram. Overall, the prognostic signature and nomogram identified in the present study showed satisfactory predictive accuracy for outcomes of the COAD sample better than clinical baseline features.
GSEA results demonstrated significant enrichment of the peroxisome proliferator-activated receptor (PPAR) signaling and cell adhesion pathways in the HR group and enrichment of DNA packaging- and nucleosome-related signaling pathways in the LR group. Studies have found that cell adhesion was associated with major characteristics of cancers, such as anchorage-independent growth, immune evasion, and metastatic dissemination, which were critical for cancer progression (Läubli and Borsig, 2019; Janiszewska et al., 2020). Variations in the cell-extracellular matrix (ECM) and inter-cell adhesions contribute to intravasation, invasion, extravasation, and anchorage-independent survival in the circulation of cancer cells, as well as their homing in a distant organ (Sousa et al., 2019). The PPAR receptors, which are members of the super-family of nuclear receptors, serve as ligand-inducible transcription factors in metabolisms of glucose and lipid (Mirza and AlthagafiShamshad, 2019). Moreover, the expression of PPARs is observed in immune cells and is of great importance in the differentiation of immune cells (Christofides et al., 2021). Several clinical trials have attempted to use PPARs as a therapeutic target for cancer (Wagner and Wagner, 2020). Nucleosomes serve as a fundamental structural unit of chromatin generated by DNA and histones in eukaryotic cells (Xu and Zhu, 2010). The chromosomal DNA was packaged into nucleosome strings, resulting in condensation and organization of the genome, which are essential for tight regulation of gene expressions by eukaryotic cells (Clapier and Cairns, 2009; Venkatesh and Workman, 2015). Nucleosomes protect the genome from DNA damaging agents and deposit a myriad of epigenetic signals (Cutter and Hayes, 2015). It has been reported that circulating nucleosomes are potential liquid biopsies that facilitate cancer detection at an early stage and treatment response monitoring (McAnena et al., 2017).
Studies have confirmed the regulatory effect of RNA methylation on the immune microenvironment in tumors (Xie et al., 2020). In the current study, the HR group identified by our prognostic signature had higher stromal cell proportions and lower tumor purity than the LR group. The risk score has a positive relationship with the infiltration levels of naïve B cells, whereas it is negatively related to CD4 memory active T cells and resting NK cells. Besides, the degrees of type II IFN response and human leukocyte antigen (HLA) were higher in the HR group. Tumor heterogeneity was previously thought to be related to abnormal genetic mutations, but nowadays, increasing studies indicate cancers also vary with the microenvironmental component, stromal cell infiltration, and activation states (Quail and Joyce, 2013). TME helps maintain tumor stemness and facilitates tumor malignant activates, such as angiogenesis, metastasis, and chronic inflammation (Denton et al., 2018). It has been demonstrated that cancer-associated fibroblasts (CAFs), which are the dominant reactive stroma type, had a pro-tumorigenic effect by secreting growth factors, cytokines, chemokines, and H2O2 and degrading ECM (Liao et al., 2019). Besides, genetic mutations in both type II IFN and its receptor could induce colorectal cancer development (Di Franco et al., 2017). Therefore, it is promising to explore the variability of immune profiles between tumor subtypes and identify potential prognostic or therapeutic targets.
Our study still had some limitations. Firstly, our prognostic signature was established based on the TCGA database and lacked a patient cohort to further verify its value. Secondly, our conclusion is only based on data analysis, and further experiments are needed to explore the mechanisms by which m7G-related lncRNAs influence the development of COAD.
CONCLUSION
In conclusion, our study comprehensively analyzed the predictive value of m7G-associated lncRNAs in COAD prognosis. We developed a 14-lncRNA signature and a prognostic nomogram based on m7G-related lncRNA and clinical baseline features, both showing high predictive accuracy of survival time in COAD samples. Further analysis indicated a valid correlation between the prognostic signature and immune cell infiltration, immune pathways, and immune checkpoints.
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Background: Gastric cancer (GC) is a digestive system tumor with high morbidity and mortality. It is urgently required to identify genes to elucidate the underlying molecular mechanisms. The aim of this study is to identify the key genes which may affect the prognosis of GC patients and be a therapeutic strategy for GC patients by bioinformatic analysis.
Methods: The significant prognostic differentially expressed genes (DEGs) were screened out from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets. The protein–protein interaction (PPI) network was established by STRING and screening key genes by MCODE and CytoNCA plug-ins in Cytoscape. Functional enrichment analysis, construction of a prognostic risk model, and nomograms verify key genes as potential therapeutic targets.
Results: In total, 997 genes and 805 genes were related to the prognosis of GC in the GSE84437 and TCGA datasets, respectively. We define the 128 genes shared by the two datasets as prognostic DEGs (P-DEGs). Then, the first four genes (MYLK, MYL9, LUM, and CAV1) with great node importance in the PPI network of P-DEGs were identified as key genes. Independent prognostic risk analysis found that patients with high key gene expression had a poor prognosis, excluding their age, gender, and TNM stage. GO and KEGG enrichment analyses showed that key genes may exert influence through the PI3K-Akt pathway, in which extracellular matrix organization and focal adhesion may play important roles in key genes influencing the prognosis of GC patients.
Conclusion: We found that MYLK, MYL9, LUM, and CAV1 are potential and reliable prognostic key genes that affect the invasion and migration of gastric cancer.
Keywords: gastric cancer, bioinformatics, key genes, protein–protein interaction network, Cytoscape
INTRODUCTION
Gastric cancer (GC) is the fifth most common cancer and the third most common cause of cancer-related deaths in the world. The statistical results showed that there were more than one million new cases of GC in the world every year, and the number of GC-related death cases continuously increased; statistics for 2018 showed that the death toll had risen to 784,000 (Smyth et al., 2020). Many interfering factors can cause the low survival rates of GC patients, among which the diagnosis of GC patients usually occurs in the middle and late stages; easy recurrence and metastasis after an operation are the most common reasons for the poor prognosis of GC patients (Fang et al., 2020). In the past 10 years, a large number of studies have revealed that there were quite sensitive and effective biomarkers that can affect the occurrence and progression of GC, for example, Graziano et al. (2004) found that methylation of the CpG island in the promoter region of the CDH1 gene will lead to a change in CDH1 expression, which may play an important role in the occurrence and progression of diffusive GC, and CDH1 is likely to be one of the therapeutic targets of GC. Several previous studies (Digklia and Wagner, 2016) also found that HER2 expression is not only an independent risk factor affecting the prognosis of GC patients but also an effective target for the treatment of GC patients. These experiences provide the basis for the research on the occurrence, progression, and treatment of GC. However, previous studies on biomarkers on the occurrence and progression of GC were based on a single-gene pattern, and cancer is usually a disease involving multiple genes and mechanisms. Therefore, it is very important to comprehensively explain the specific mechanism of GC progression and identify significant biomarkers to improve the prognosis of GC patients.
Bioinformatics is a broad multidisciplinary field. Computational tools have been developed to analyze and manage the increasing amount of biological data (Goujon et al., 2010). Bioinformatics can be used to identify the key drivers of each specific cancer patient. Therefore, they have the potential to realize more personalized cancer treatment programs, paving the way for new targeted drugs targeting specific proteins (Zhang et al., 2009). With the development of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the accumulation of cancer genetics knowledge that has developed rapidly in the last 10 years, tumor analysis based on databases not only reveals the whole panorama of tumor-related genome changes but also lays a foundation for the study of related tumor types (Cancer Genome Atlas Research et al., 2013).
In this study, bioinformatics methods and techniques were used to screen out prognostic differentially expressed genes (P-DEGs) of GC from GEO and TCGA databases. Furthermore , we established a PPI network to identify the key genes in DEGs through module analysis and centrality analysis, constructed a prognostic risk model, and verified an unfavorable indicator. This study provides a reliable basis for exploring the molecular mechanisms of GC pathogenesis and identifying molecular targets for clinical diagnosis or treatment.
METHODS
Data
The gene expression matrix data on GC patients were obtained from the dataset (GSE84437) in the GEO database of the national bioinformatics center of the United States. The data set was composed of the gene chip expression profile data and the survival information on 433 GC patients, which were collected through the GPL6947 chip platform. Moreover, 380 cases of GC tissue expression profile data and clinical information were downloaded from TCGA database.
Screening of prognosis-related genes of GC patients
The gene expression matrix of GC tissues was obtained from the GEO (n = 433) and TCGA (n = 380) databases, respectively, and then, the data were mined through R software. To obtain the standardized gene expression matrix of GC patients, the “impute” and “limma” packages in R were used to process the missing value estimation and logarithmic transformation of data. According to the K–M method, each gene in the gene expression matrix was divided into high- or low-expression groups based on the median value of the gene expression. Subsequently, the survival difference between these two groups was evaluated and verified. The proportional hazards model was used for multivariate analyses and survival estimation to analyze, verify, filter, and screen out these genes, which were significantly correlated with the prognosis of GC patients (p < 0.05). Finally, these genes filtered by the aforementioned survival analyses were mutually verified in the two datasets GEO and TCGA. Then, the common significant prognostic differentially expressed genes were identified as P-DEGs.
PPI network
STRING (http://string-db.org) is an online tool, which is often used to predict protein–protein interactions (Szklarczyk et al., 2011). Through STRING, gene interaction analysis can be conducted, including physical and functional interactions. In this study, we used it to establish a PPI network of P-DEGs, while the confidence score of connections in this network is required to be >0.15, and the disconnected nodes in the network were excluded.
Module analysis and centrality analysis of the PPI network
The PPI network of P-DEGs is visualized by Cytoscape software. In this network, the functional modules and the interactions between genes were identified and measured through the MCODE plug-in (Bader and Hogue, 2003). In all sub-modules, the higher the score was, the stronger the protein correlation in the sub-module was, and the sub-module with the highest score was considered the result of MCODE analysis. The plug-in CytoNCA is used for centrality analysis, including three parameters: degree, betweenness, and eigenvector (Tang et al., 2015). Degree is a measurement of the importance of a single node, which describes the number of sides of a connected node (Luo et al., 2017). Betweenness is the shortest path to analyze a specific node (Li et al., 2017). However, for the eigenvector, the importance of the node itself and its neighbors is considered (Negre et al., 2018). The top 5% of the nodes under each parameter are considered the important nodes of CytoNCA analysis, and the genes represented were considered as the result of centrality analysis. Finally, by combining the results of MCODE and CytoNCA plug-ins, the common genes were considered the most important genes in the PPI network of P-DEGs and identified as key genes.
Prognostic analysis and validation of key genes
Based on the gene expression matrix data on GC patients in the GEO and TCGA databases, the median of key gene expression value was set as the cut-off value, and the key gene expression matrix of GC patients was divided into key gene high- and low-expression groups. By using the “survival” package in R, according to K–M analysis and a multivariate Cox regression test, the difference in overall survival events between the high- and low-expression groups of key genes was compared. Then, the survival rate and survival curve were analyzed and drawn. By using the “survival” package, according to univariate and multivariate Cox regression analyses, the hazard ratio (HR) and forest maps of independent prognostic analysis of single-gene and multiple-gene combinations of key genes were analyzed and drawn. Finally, to precisely predict the survival rates of GC patients, the risk scores of key genes and some clinicopathological factors, such as age, gender, and pathological stage, were linked together. According to the risk ratio-weighted key gene expression data, the key genes (Lin T. et al., 2018) were constructed as follows:
[image: image]
where N is the number of selected genes of key genes, expi is the expression value of each single gene of key genes, and HRi is the HR value of each single gene in the multivariate Cox regression model. According to the median value of the risk scores of key genes in the expression matrix of GC patients, GC patients were divided into the low-risk group and the high-risk group, and the prognostic risk rates were measured by K–M analysis. Subsequently, based on the multivariate Cox regression analysis, the nomogram is established and drawn through the “RMS” package in the R language.
GO and KEGG analyses of key genes
According to the median value of each key gene, GC patients in the GEO and TCGA databases were divided into high- and low-expression groups for each gene, respectively. The differentially expressed gene (DEG) sets between high- and low-expression groups of each key gene were identified, and the corresponding GO and KEGG functional enrichment analyses of each DEG were conducted through “limma,” “clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” and “ggplot2″ R software packages. |log2FC|>0.5, p < 0.05, and adjusted p < 0.05 were considered as the cut-off criteria.
Statistical analysis
R language (version 4.0.1) was used for data statistical analysis: K–M analysis, univariate Cox regression analysis, and multivariate Cox regression analysis were used to identify the key genes. Survival curves and forest maps of survival analysis and independent prognostic analysis of single-gene or multiple-gene combinations of key genes were drawn with the R language through the “survival” package. p < 0.05 and adjusted p < 0.05 were considered as the cut-off criteria.
RESULT
Identification of P-DEGs
To explore the key genes affecting the prognosis of GC patients and the roles these genes play in the mechanism of GC progression, the gene expression matrix data obtained from the GEO and TCGA databases were used to conduct multivariate analyses and survival estimation to screen out the genes that were significantly correlated with the prognosis of GC patients (p < 0.05). Subsequently, we obtained 997 and 805 genes related to the prognosis of GC in the GSE84437 and TCGA gene expression matrix datasets, respectively. Therefore, 128 common P-DEGs were obtained by mutual validation between the two datasets, which means 128 of 997 genes in GSE84437 and 128 of 805 genes in TCGA databases (Figure 1A).
[image: Figure 1]FIGURE 1 | Selection of key genes for GC patients. (A) In total, 128 common P-DEGs were obtained from the intersection of TCGA and GEO datasets. (B) Four modules, namely, modules 1–4, and one non-MCODE module and a score ranked up in the top 5% in three parameters from CytoNCA’s centrality analysis. (C) Key genes (MYLK, MYL9, LUM, and CAV1, green diamond in the picture) were obtained.
Module analysis and centrality analysis of the P-DEG-related PPI network
In order to study the molecular mechanism which can affect the prognosis of GC patients from a systematic perspective, we established a PPI network of P-DEGs to explore the molecular mechanism. The results showed that there were 124 nodes and 819 edges in the PPI network. Furthermore, we used the MCODE plug-in in Cytoscape software to analyze the modules available for exploring more closely related genes in the PPI network. The results showed that there were four modules and one non-module in the PPI network, and the scores of the four modules were as follows: 8.667 (module 1), 7.455 (module 2), 4.111 (module 3), and 2.667 (module 4), respectively. We found that the first module (module 1) was the most interactive area in the PPI network, which is located at the center of the whole network, including 16 nodes and 65 edges (Figure 1B). Therefore, the protein interactions in module 1, which rank the first, maybe the strongest and most important part of the whole network. The results of module 1 were considered the final result of the MCODE analysis. At the same time, to obtain GC prognosis-related key genes in this complex PPI network, we used the centrality analysis method to analyze the PPI network. First, we used the CytoNCA plug-in to analyze the score of three parameters of each gene in the PPI network, which were degree, betweenness, and eigenvector. Then, we selected the genes whose scores ranked in the top 5% in three parameters. Finally, we selected these genes which ranked top 5% in three parameters and showed up in module 1 as key genes, which were MYLK, MYL9, LUM, and CAV1, and they were all in module 1 with high centrality (Figure 1C).
Prognostic value of key genes in GC patients
To analyze the role of key genes in the progression of GC, the survival analyses of four genes of key genes were further analyzed through the K–M method. According to the median expression of the gene matrix, GC patients were divided into the high-expression group and the low-expression group. The survival curve showed that the expressions of MYLK, MYL9, LUM, and CAV1 were significantly correlated with the survival rate and overall survival time of GC patients in GEO and TCGA databases (p < 0.05). According to the survival analyses, the median survival time of GC patients with lower expression of MYLK, MYL9, LUM, and CAV1 was1.37, 1.41, 1.35, and 1.42 years; with higher expression of MYLK, MYL9, LUM, and CAV1, the median survival time was 1.06, 1.08, 1.15, and 1.06 years in TCGA database, respectively. Compared with GC patients with lower expression of MYLK, MYL9, LUM, and CAV1 (GEO, n = 217; TCGA, n = 190), these patients with high expression of key genes (n = 216, GEO; n = 190, TCGA) had significantly poorer prognosis (p < 0.05, Figures 2A–D and Supplementary Figures S1A-D). The results were verified through the GEO gene matrix once again. According to the univariate and multivariate Cox regression analyses, the results of independent prognosis of key genes in the GEO and TCGA databases showed that the HR of MYLK, MYL9, LUM, and CAV1 were all presented as HR > 1, which were 1.15, 1.18, 1.19, and 1.31, respectively (p < 0.05). These results indicate that key genes can independently affect the prognosis of GC patients (Figure 3 and Supplementary Figure S2). The influence of key genes is of great significance and has potential value as prognostic biomarkers and therapeutic targets for GC patients.
[image: Figure 2]FIGURE 2 | Survival analyses of key genes [(A) MYLK, (B) MYL9, (C) LUM, and (D) CAV1]. Patients with high expression of key genes have a poor prognosis (p < 0.05).
[image: Figure 3]FIGURE 3 | Independent prognostic analysis of key genes in TCGA database.
GO and KEGG enrichment analyses
To better elucidate the mechanisms of key genes affecting GC prognosis, we performed GO and KEGG enrichment analyses. Results of GO analyses showed that most GO terms were significantly enriched in extracellular matrix organization, extracellular structure organization, cell-substrate adhesion, tissue migration, muscle contraction, muscle tissue development, mesenchymal development, etc. (Figure 4 and Supplementary Figure S3). Moreover, the results of KEGG analyses showed that the related pathways were significantly enriched in focal adhesion, PI3K-Akt signaling pathway, ECM receptor interaction, cell adhesion molecules, proteoglycans in cancer, protein digestion and absorption, cell cycle, calcium signaling pathway, etc (Figure 4). These results indicate that key genes affect the prognosis of GC patients mainly through influencing the invasion, migration, and cell cycle functions of GC cells.
[image: Figure 4]FIGURE 4 | GO enrichment and KEGG enrichment analyses of key genes in TCGA database.
Construction and validation of the prognostic risk model of key genes
Based on multivariate Cox regression analysis, key genes (MYLK, MYL9, LUM, and CAV1) were integrated, and a prognostic risk model of key genes was established according to GEO and TCGA data, respectively. The risk scores of key genes were calculated using the formula mentioned in the method, and processes were as follows: risk score = (HR (MYLK) × MYLK expression level) + (HR (MYL9) × MYL9 expression level) + (HR (LUM) × LUM expression evaluation rate, risk score, and clinical features of GC patients can be estimated based on the total points) (Supplementary Table S1). To confirm the prognostic value of the risk signature, we constructed a nomogram based on the prognostic risk model, and we determined the clinical relevance and prognostic value of age, gender, and TNM staging. The 1-year, 3-year, and 5-year survival rates can be estimated from the total scores, which are the sum of the scores for each item, as shown in the nomogram (Figure 5 and Supplementary Figure S4). The nomogram not only proved that the prognostic risk model is reliable but also showed that the accuracy of predicting survival in each patient was high.
[image: Figure 5]FIGURE 5 | Nomogram based on the risk model and clinicopathological factors in TCGA database.
To further verify the reliability of key genes, GC patients were divided into the low-risk group and the high-risk group according to the median risk score in TCGA and GEO databases, respectively. The survival curves showed that the prognosis of the high-risk group was worse than that of the low-risk group (Figure 6, p < 0.05). With the risk score increasing, the number of patients’ deaths increases (Figure 6 and Supplementary Figure S5). Univariate and multivariate Cox regression analyses were performed based on the gene matrix data, the results of which showed that the risk scores of key genes were independently correlated with the overall survival rate of GC patients (Table 1, p < 0.05). These results indicate that the key genes can be a significant reference to the prognosis of GC patients. The key genes can be used to guide the next step of treatment after surgery or/and chemoradiotherapy treatment. MYLK, MYL9, LUM, and CAV1 can be potential targets to improve the prognosis of GC patients.
[image: Figure 6]FIGURE 6 | Survival analyses of the risk scores of key genes in TCGA database.
TABLE1 | Univariate and multivariate analyses of the prognostic risk model in TCGA database.
[image: T1]DISCUSSION
GC is one of the most common and malignant tumors. Although the main treatment methods for GC such as surgery, radiotherapy, and chemotherapy have made progress, the incidence rate and mortality rate of GC patients remain stubbornly high (Ferlay et al., 2015; Li et al., 2020). More than 90% of the GC patients were in the late stage when diagnosed, which was related to the unclear symptoms in the early stage of GC patients and unclear influential factors of GC prognosis to a large extent (Yan et al., 2018; Huang et al., 2019). The occurrence and progression of GC is a multi-stage, slow-moving pathological process, in which genetic mutations, epigenetic changes, and abnormal molecular signal transduction pathways can all participate in the occurrence, diffusion, and metastasis of GC (Shan et al., 2019). Therefore, it is very important to find specific prognostic biomarkers of GC to develop therapeutic strategies for malignant behaviors of tumors. These problems highlight the necessity of finding prognostic markers for GC. Nowadays, high-throughput platforms for detecting gene expression have been developed rapidly in the processes of disease progression, which lays the foundation for the discovery of new targets that can be used to predict, diagnose, and treat cancer.
Module analysis (MCODE) and centrality analysis (CytoNCA) in the PPI network play important roles in screening molecular markers; these genes appear in the modules with the highest scores and also rank higher in centrality analysis results, which are the key genes that can affect the occurrence of diseases (Tang et al., 2015). Studies have shown that module analysis can help screen key genes in cancers more accurately, such as cervical cancer (Xia et al., 2018), glioblastoma (Yang et al., 2018), and head and neck squamous cell carcinoma (Yang et al., 2017). However, CytoNCA can analyze the centrality degree of each node in the whole PPI network and can exhibit the nodes with important connections, to help select key genes (Lu et al., 2019). Combined with these two methods, key genes (MYLK, MYL9, LUM, and CAV1) with important value in the whole PPI network were obtained. Some studies also elucidated the impact of key genes on various tumors.
Liang X et al. indicated that caveolin 1 (CAV1) plays an important role in the occurrence and progression of varieties of malignant tumors, especially in the malignant progression of GC, by promoting epithelial–mesenchymal transition (EMT) function. Under the conditions of the extracellular matrix integrin interaction and Tyr-14 phosphorylation, CAV1-enhanced melanoma cells will migrate, invade, and migrate to the lungs (Liang et al., 2018; Luo et al., 2020). Positive CAV1 expression is associated with progression and poor prognosis in GC patients after radical gastrectomy (Seker et al., 2017). The results of Jin et al. (2016) showed that, compared with normal gastric mucosa, myosin light chain 9 (MYL9) was abnormally upregulated in GC patients’ tumor tissues, and it could affect the prognosis of GC patients through adhesion plaque and leukocyte cross-endothelial migration. As an important part of the extracellular matrix, luminan (LUM) can be expressed in many organs and tissues of the human body. LUM can play an important role in tumor metastasis and invasion through extracellular matrix (Chen et al., 2020). The previous research study indicated that LUM could be regulated as a potential prognostic marker and therapeutic target for GC (Chen et al., 2020). Myosin light chain kinase (MYLK) can catalyze the phosphorylation of the myosin light chain and regulate the invasion and metastasis of some malignant tumors (Tan and Chen, 2014; Lin J. et al., 2018).
In the past few years, there has been more and more evidence of the key role of the extracellular matrix in mediating different cell processes (including cell adhesion, polarity, migration, differentiation, proliferation, and survival), and tumor cells are closely related to it (Moreira et al., 2020). Focal adhesion is a strong adhesion of the sub-cellular structure to the extracellular matrix. It also acts as a scaffold for many signal transduction pathways involving integral proteins or mechanical force exerted on cells (Burridge, 2017). Focal adhesion dysfunction is considered to be an essential pathway in tumor invasion and migration (Carragher and Frame, 2004; Paluch et al., 2016). Many cellular processes in cancer are attributed to kinase signaling networks. Akt, as a serine/threonine kinase, also known as protein kinase B, is a carcinogenic protein that can regulate cell survival, proliferation, growth, apoptosis, and glycogen metabolism. Over-expression of Akt is a common molecular feature of human malignant tumors. Many tumor tissues and tumor cells are accompanied by activation of the PI3K/Akt signaling pathway (Song et al., 2019). In this study, we explored the relationship between key genes and classical carcinogenic signaling pathways by GO and KEGG enrichment analyses. Results showed that key genes can promote the development of GC by regulating various signaling pathways, many of which have been proven to play important roles in the occurrence and progression of cancer. In particular, focal adhesion and PI3K/Akt signaling pathways may be the main signaling pathways involved in the effect of key genes on GC prognosis, and their influences cannot be divorced from the extracellular matrix.
In this study, we integrated GEO and TCGA databases, using bioinformatics analysis methods, to mine and analyze high-throughput data to conduct module and centrality analysis of the PPI network, which helped us screen out key genes (MYLK, MYL9, LUM, and CAV1) that have an important impact on the prognosis of GC patients and can be considered as a biomarker and potential therapeutic target for GC prognosis. Then, the establishment of a prognostic risk model of key genes further explained the kernel roles the key genes may play in the development of GC.
CONCLUSION
The integrative analyses of the gene expression matrix identified 128 common P-DEGs. The four key genes (MYLK, MYL9, LUM, and CAV1) of P-DEGs may be predictive biomarkers or therapeutic targets for GC prognosis. These predictions should be verified through experimental validation, although this study provided new insights into the development of individualized therapeutic targets for GC.
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Peroxidase (PXDN), a specific extracellular matrix (ECM)-associated protein, has been determined as a tumor indicator and therapeutic target in various tumors. However, the effects of PXDN in prognostic performance and clinical implications in glioblastoma multiforme (GBM) remains unknown. Here, we assessed PXDN expression pattern and its performance on prognosis among GBM cases from TCGA and CGGA databases. PXDN was up-regulated within GBM samples in comparison with normal control. High PXDN expression was a dismal prognostic indicator in GBM. Single cell RNA analysis was conducted to detect the cell localization of PXDN. We also set up a PPI network to explore the interacting protein associated with PXDN, including TSKU, COL4A1 and COL5A1. Consistently, functional enrichment analysis revealed that several cancer hallmarks were enriched in the GBM cases with high PXDN expression, such as epithelial-mesenchymal transition (EMT), fatty acid metabolism, glycolysis, hypoxia, inflammatory response, and Wnt/beta-catenin signaling pathway. Next, this study analyzed the association of PXDN expression and immunocyte infiltration. PXDN expression was in direct proportion to the infiltrating degrees of NK cells resting, T cells regulatory, M0 macrophage, monocytes and eosinophils. The roles of PXDN on immunity were further estimated by PXDN-associated immunomodulators. In addition, four prognosis-related lncRNAs co-expressed with PXDN were identified. Finally, we observed that PXDN depletion inhibits GBM cell proliferation and migration by in vitro experiments. Our data suggested that PXDN has the potential to be a powerful prognostic biomarker, which might offer a basis for developing therapeutic targets for GBM.
Keywords: glioblastoma multiforme, PXDN, TCGA, immunomodulator, prognosis, immune infiltration
INTRODUCTION
Glioblastoma multiforme (GBM) accounts for a frequently occurring primary cancer in the nervous system of adulthood with the highest malignant grade. As classified by the World Health Organization (WHO) classification, GBM has been considered as a Grade IV glioma (Ostrom et al., 2013; Louis et al., 2021). Although multi-mode therapy is greatly successful in the treatment of GBM, including neurosurgery, radiochemotherapy and immunotherapy, GBM has dismal prognostic outcome, with a median survival as short as 15 months (Alifieris and Trafalis, 2015). Several molecular biomarkers have been identified in GBM through genomic analyses. For instance, 1p/19q deletion is a prognostic signature of GBM indicating a superior prognosis. Methyl guanine methyl transferase (MGMT) is another therapeutic effect marker which forecast the sensitivity of temozolomide therapy (Westphal and Lamszus, 2015). In addition, upregulation of epidermal growth factor receptor (EGFR) was observed in more than 30% cases with glioblastoma and suppression of EGFR greatly blocks cancer cells development (Talasila et al., 2013). However, these typical biomarkers could not predict the survival outcome as they are merely used specific parts of GBM patients. Therefore, exploring the GBM mechanism at molecular level and exploiting novel prognostic biomarker is of great necessity.
The application of new immunotherapeutic approaches in GBM treatment is one of the current research hotspots. With advanced research on CNS, it has been shown that CNS tumors can also be infiltrated by lymphocytes of peripheral origin. Moreover, Peripheral immunity may produce a therapeutically meaningful attack on pre-existing GBM (Lim et al., 2018). Recent advances in immunotherapy for glioma have focused on immune checkpoint inhibitors, CAR-T therapy and tumor Vaccine (Wang et al., 2020a). In-depth understanding and elaboration of immunotherapy in the treatment of glioma could facilitate the development of scientific strategies for immunotherapy of GBM in future clinical and basic research.
Peroxidase (PXDN), initially discovered from Drosophila melanogaster in 1994 by Nelson et al. (1994), is a specific protein related to extracellular matrix (ECM). It is a heme-containing peroxidase family member found in basement membranes, and one of its main functions is to catalyze the formation of thionine bonds between hydroxylysine nitrogen and methionine sulfur with the use of hypohalous acids (Bhave et al., 2012; McCall et al., 2014; Dougan et al., 2019). Typically, such an intermolecular bond plays an important role in maintaining basement membrane integrity (Bathish et al., 2020). PXDN also has an essential role in accelerting various cancer types, such as oral squamous cell carcinoma (OSCC), melanoma, prostate cancer (PCa) and ovarian cancer (OC) (Zheng and Liang, 2018; Dougan et al., 2019; Kurihara-Shimomura et al., 2020; Paumann-Page et al., 2021). Nonetheless, its pathogenic function within GBM is still unknown.
The present work focused on investigating the prognostic performance of PXDN in GBM by the public databases. The underlying biological function and possible pathway by which PXDN gets involved in GBM were analyzed by GSEA. Next, CIBERSORT and TISIDB were employed to detect the immune implications of PXDN in GBM. Finally, this study conducted in vitro experiments to illustrate the carcinogenic function of PXDN.
METHODS
Data processing
TCGA-GBM includes RNA-seq data collected from 169 GBM cases together with five healthy controls. GSE108474 (https://www.ncbi.nlm.nih.gov/geo/) were utilized to validate differential PXDN mRNA expression between GBM (n = 221) and matched non-carcinoma (n = 28) samples. This study also obtained the pathological and clinical information for GBM cases from the TCGA-GBM set (https://portal.gdc.cancer.gov/) and the CGGA dataset (http://www.cgga.org.cn/).
Assessment of the Prognostic Significance of PXDN in GBM
For illustrating PXDN’s effect on predicting GBM prognosis, we classified cases as 2 groups according to median GBM level. In addition, we adopted the Kaplan-Meier (K-M) method for assessing 5-years overall survival in TCGA and CGGA cohorts. Additionally, we also drew the receiver operating characteristic (ROC) curves for determining PXDN’s predicting ability.
Pearson correlation analysis of PXDN
Possible PXDN co-expressed lncRNAs and genes were obtained by Pearson correlation analysis using the thresholds of p < 0.001 and correlation coefficient |cor| > 0.3.
Functional annotation for Co-expressed genes of PXDN
PXDN related co-expressed genes were used to investigate the underlying molecular mechanism of PXDN involvement in GBM by conducting Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses (Yu et al., 2012). Additionally, this study also built a PXDN-based protein-protein interaction (PPI) network through STRING (https://string-db.org/).
Immune microenvironment analysis
CIBERSORT is a computational algorithm which can estimate the immune activity of 22 tumor infiltration cell (TIC) types (Newman et al., 2015). To mirror the immune microenvironment of PXDN in GBM, we applied CIBERSORT to calculate fraction of 22 TICs in all cases with GBM. p < 0.05 were selected for the following analysis.
Gene set enrichment analysis
We applied GSEA to examine the underlying biological function related PXDN (Subramanian et al., 2005). We acquired the Hallmark gene sets based on Molecular Signatures Database upon the threshold of normalized p < 0.05.
Single cell analysis
The single cell analysis according to GSE138794 was carried by scTIME Portal (http://sctime.sklehabc.com/unicellular/home), which consists of 10 GBM case’s cells. All samples were imported into Seurat V3 and visualized in UMAP after a standardized quality control process.
Cell culture and cell transfection
The human healthy NHA astrocytes and U87, A172 GBM cells were provided by the Chinese Institute of Biochemistry and Cell Biology. These cell lines were routinely cultivated within DMEM (KeyGEN BioTECH, China) that contained 10% fetal bovine serum (FBS, GIBCO, USA) under 37°C and 5% CO2 conditions. si‐PXDN and corresponding negative control (si‐NC) were obtained from Ribobio (Guangzhou, China). Supplementary Table S1 presents the sequences of si-PXDN. Lipofectamine 3000 reagent (Invitrogen) was adopted for cell transfection in line with specific protocols.
Quantitative real-time polymerase chain reaction
Trizol reagent (Invitrogen) was utilized for extracting total cellular RNA, whereas the NanoDrop spectrophotometer for adopted for quantification. The cDNA was prepared by adopting Prime Script RT Master Mix reagent (Takara Bio, Dalian, China) in line with specific protocols. Thereafter, this study employed StepOnePlus real-time PCR system (Thermo Fisher Scientific) for amplifying target genes. Supplementary Table S1 displays primer sequences of all genes. The 2−ΔΔCt method was adopted for calculating relative gene expression, with GAPDH being the endogenous control.
Cell Counting Kit-8 assay
CCK-8 kit was utilized to evaluate cell proliferation. 96-well plates were inoculated with cells (2 × 103) per well. 4 time points (24, 48, 72, and 96h), all wells were added with CCK-8 solution (10 μl) to incubate for a 2-h period under 37°C, the spectrophotometer was later utilized to measure absorbance (OD) value at 450 nm. Each assay was carried out in triplicate.
Colony formation assay
In this assay, we inoculated cells (1 × 103) in 6-well plates to incubate for a 2-week period under 37°C. Thereafter, colonies were subject to 4% paraformaldehyde (500 μl) fixation for a 20-min period as well as 0.1% crystal violet (Beyotime Biotechnology) staining for another 20-min period. Finally, we count the colony number and took photos.
Cell migration assay
Transwell chambers (24-well plates with 8.0 μm pores; Corning) were employed for transwell assays. In brief, we incubated the 24-well plates under 37°C and 5% CO2 conditions for a 24 h period. After discarding upper cells, the chambers were washed in PBS, followed by 30 min of 4%% methanol fixation and another 30 min of crystal violet staining. Then, five fields were randomly analyzed under the microscope to observe and count the number of infiltrating cells. The experiments were conducted in triplicate.
Statistical analysis
Kaplan-Meier analysis and receiver operating characteristic (ROC) analysis were performed to examine the reliability of the model. All statistical data were analyzed using GraphPad 8.0 and the R software version 4.0.
RESULTS
Expression pattern and prognostic power of PXDN in GBM
To explore the expression pattern of PXDN in GBM samples and normal tissues, we conducted limma package to analyze gene expression profiling from TCGA-GBM and GSE108474. PXDN expression significantly increased within GBM samples compared with normal controls (Figure 1A). The similar result was also verified in GSE108474 (Figure 1B). Next, we further estimate the prognostic value of PXDN in GBM based on OS information of cases in TCGA and CGGA. The results showed that GBM cases showing PXDN up-regulation had remarkably poor OS compared with those with PXDN down-regulation (Figures 1C,D). Moreover, this study also drew ROC curves for identifying the prognostic value of PXDN expression by analyzing values of area under the curve (AUC) with regard to 5-year survival rate. As shown in Figures 1E,F, the AUC values for CGGA and TCGA datasets were determined to be 0.770 and 0.751, separately.
[image: Figure 1]FIGURE 1 | Expression pattern and prognostic value of PXDN in GBM. (A,B) Differential PXDN expression in GBM tissues and normal samples. (C,D) Survival analysis for PXDN based on KM curves. (E,F) ROC curves for assessing the predictive ability of PXDN.
Cell localization of PXDN
To further detect the expression pattern of PXDN in the GBM microenvironment, the scTIME portal was applied. We first clustered all the cells into 11 clusters by KNN clustering algorithm (Figure 2A). As shown in Figure 2B, we observed that PXDN was mainly enriched in the cell cluster with colone mutation. In addition, violin diagram suggested that PXDN was most highly expressed in monocyte-nonclassic cells (Figure 2C).
[image: Figure 2]FIGURE 2 | Single-cell sequencing analysis to detect the cell localization of PXDN. (A) All cells in GBM samples were clustered into 11 clusters. (B) PXDN was mainly enriched in the cell cluster with colone mutation. (C) Violin diagram showing the PXDN expression in different cell clusters.
Construction of PXDN associated PPI network
This study also built the PXDN-associated PPI network based on STRING for examining those interactive proteins, which involved 18 edges, 11 nodes, with the mean coefficient of local clustering being 0.925. The potential interacting genes including NTF4, OPTN, WDR36, MYOC, SNTG2, MYT1L, TSKU, GADD45GIP1, COL4A1 and COL5A1 (Figure 3A). GO analysis showed that PXDN was greatly associated with the regulation of angiogenesis, cell junction and cell cycle arrest (Figure 3B). Moreover, PXDN was bound up with several classic cancer pathways including PI3K/Akt pathway, Hippo signaling and Wnt pathway (Figure 3C).
[image: Figure 3]FIGURE 3 | Function analysis of PXDN. (A) Construction of PXDN associated PPI network. (B) GO biological analysis (C) KEGG pathway enrichment.
PXDN related gene set enrichment
By performing GSEA, we determined hallmark gene set enriched in PXDN high expression group. The results revealed the significant activation of epithelial-mesenchymal transition (EMT), fatty acid metabolism, inflammatory response, Wnt/beta-catenin pathway, hypoxia and glycolysis in PXDN high expression group (Figure 4).
[image: Figure 4]FIGURE 4 | Gene set enrichment analysis of PXDN. (A) Fatty acid metabolism. (B) Epithelial-mesenchymal transition. (C) Inflammatory response. (D) Glycolysis. (E) Hypoxia. (F) Wnt/beta-catenin pathway.
Association between PXDN and TICs and immunomodulators
The proportions of 22 immune cell types within GBM cases obtained based on the CIBERSORT algorithm and the results of all tumor samples were shown using a barplot (Figure 5A). As a result, PXDN level showed positive correlation with M0 macrophage (R = 0.54), T cells regulatory (Tregs, R = 0.49) and NK cells resting (R = 0.28), whereas negative correlation with monocytes (R = 0.48) and eosinophils (R = 0.35, Figures 5B–F). According to the TISIDB tool, we identified five immunoinhibitors (ADORA2A, KDR, PVRL2, TGFB1 and TGFBR1) and three immunostimulators (C10orf54, CD48 and CD86) that were significantly associated with PXDN expression in GBM (Figure 6).
[image: Figure 5]FIGURE 5 | Immunocyte infiltration analysis. (A) Immune cells landscape of all GBM samples. (B–F) Correlation analysis of immunocyte and PXDN expression (M0 macrophage, T cells regulatory, NK cells resting, monocytes and eosinophils).
[image: Figure 6]FIGURE 6 | Association between PXDN and immunomodulators. (A) PXDN-related immunoinhibitors. (B) PXDN-related immunostimulators.
Association of PXDN expression with m6A-Related markers
To explore the relationship between PXDN and m6A-related markers, we conducted Spearman correlation analysis. We found that the expression of PXDN was METTL3 (R = 0.26), METTL14 (R = 0.20), RBM15 (R = 0.25), VIRMA (R = 0.37), YTHDC1 (R = 0.15), YTHDC2 (R = 0.21), YTHDF1 (R = 0.24) and ZC3H13 (R = 0.21). Nevertheless, only HNRNPC showed a negative correlation with PXDN (R = 0.16, Figure 7).
[image: Figure 7]FIGURE 7 | Association of PXDN expression with m6A-related markers. (A) METTL3. (B) METTL14. (C) RBM15. (D) VIRMA. (E) YTHDC1. (F) YTHDC2. (G) YTHDF1. (H) ZC3H13. (I) HNRNPC.
Analysis of lncRNA Co-expressed with PXDN
The potential lncRNAs co-expressed with PXDN were identified by Spearman correlation analysis (Figure 8A). We further used K-M survival method to determine the potential prognostic performance of lncRNAs. As shown in Figure 8B, GBM cases who had AL359921.2 up-regulation had markedly superior prognosis to patients with AL359921.2 down-regulation. However, AC046143.1, AC092535.5 and HEIH presented positive relationship between high expression and dismal clinical outcome (Figure 8B). Figure 8C illustrated the correlation between PXDN and four prognosis-related lncRNAs.
[image: Figure 8]FIGURE 8 | Determination of PXDN-related lncRNAs. (A) PXND-lncRNAs correlation regulation network. (B) Survival analysis of four lncRNAs. (C) Correlation analysis of four lncRNAs.
Silencing of PXDN blocked GBM cell proliferation and migration
To be started, we verified expression level of PXDN between GBM (U87, A172) and NHA cells by qRT-PCR. As shown in Figure 9A, PXDN was upregulated in GBM cells relative to NHA cells, especially in the U87 cell line. Next, we applied siRNAs for inhibiting PXDN within GBM cells and performed qRT-PCR analysis to confirm its efficacy (Figure 9B). We found that the inhibition of PXDN expression dramatically suppressed GBM cell proliferation, which was demonstrated in CCK8 proliferation assay and colony formation assay (Figures 9C,D). We also assessed the effect of silencing PXDN on GBM cell migration. Significantly, loss of PXDN decreased the migration of GBM cells (Figure 9E).
[image: Figure 9]FIGURE 9 | Silencing of PXDN blocked GBM cell proliferation. (A) The mRNA expression level of PXDN in NHA and GBM cell lines. (B) qRT-PCR to assess the silencing effect of PXDN after siRNA transfection. (C,D) The effect of PXDN on proliferation in U87 and A172 was examined using CCK-8 assay and clone formation. (E) The role of PXDN on migration in U87 and A172 was detected by tranwell assay.
DISCUSSION
GBM is one of the most common and most malignant primary nervous system diseases that threatens global health. Due to the shortage of identified specific biomarkers, patients with GBM are diagnosed at late stage, which lead to dismal clinical outcome. Therefore, the determination of novel biomarkers for GBM has become an urgent priority in clinical practice. In our study, we first observed that PXDN has higher expression level in GBM tissues relative to normal counterparts. Additionally, we obtained potential interacting proteins of PXDN from PPI network by string tool. Moreover, PXDN was found to be associated with immunocyte infiltration in GBM. Furthermore, we observed that silencing PXDN greatly inhibited GBM cell growth and migration by in vitro experiments.
Previous studies reported that PXDN was significantly upregulated in oral squamous cell carcinoma and ovarian cancer (Zheng and Liang, 2018; Kurihara-Shimomura et al., 2020). However, the role of PXDN in GBM is unclear. We observed that PXDN expression in GBM samples was distinctly lower than in normal cases. Moreover, PXDN up-regulation within GBM predicted poor prognostic outcome.
In addition, PPI network was constructed and 11 potential interacting genes were identified, including NTF4, OPTN, WDR36, MYOC, SNTG2, MYT1L, TSKU, GADD45, GIP1, COL4A1 and COL5A1. It was reported that a few of these genes are closely bound up to tumorigenesis and cancer therapeutics. For example, NTF4 is upregulated in colorectal cancer and mediates CRC development through regulation of EMT and autophagy (Yang et al., 2020). In neuroblastoma and non-small cell lung cancer (NSCLC), high expression of TSKU was negatively correlated with patients’ prognosis (Zhao et al., 2018; Huang et al., 2021). COL4A1, which belongs to collagen family, accounts for an essential part of ECM structure discovered in many embryonic and connective tissues. As revealed by Wang et al., COL4A1 boosts proliferation, hepatocellular carcinoma (HCC) cell invasion and migration through the activation of FAK-Src pathway, which suggested that COL4A1 was the possible diagnostic and therapeutic marker for HCC (Wang et al., 2020b). Its cancer-promoting role in HCC was also confirmed by Zhang et al. (Zhang et al., 2021a). In addition, COL5A1 up-regulation predicted dismal prognostic outcome in renal clear cell carcinoma (RCCC), BC, OC, and gastric cancer (GC) (Feng et al., 2019; Wei et al., 2020; Zhao et al., 2020; Zhang et al., 2021b).
To exploit the underlying mechanism of PXDN in GBM, we performed GSEA analysis. The results indicated that PXDN mainly regulates GBM development by activating cancer hallmarks, including fatty acid metabolism, epithelial-mesenchymal transition, inflammatory response, glycolysis, hypoxia and Wnt/beta-catenin signaling pathway. Epithelial-mesenchymal transition (EMT) is a reversible cellular process, which keeps cells in a transitional state between partial epithelium and partial mesenchyme. The activation of EMT could lead to the loss of polarity of epithelial cells, the dissolution of intercellular junctions, the acquisition of motor ability and the reorganization of extracellular matrix (ECM) (Dominguez et al., 2017; Shibue and Weinberg, 2017). According to the current research, EMT not only improves the tolerance of tumors to treatment, but also gives cancer cells greater tumorigenicity and metastatic potential (Dongre and Weinberg, 2019). Quite a number of experiments have shown that EMT can be promoted or inhibited through a variety of pathways, and the process of EMT is positively correlated with the degree of GBM invasion (Lu et al., 2015; Polonen et al., 2019; Yang et al., 2019; Pan et al., 2020). Perhaps because oxygen is not available to meet the demands of the rapidly growing tumor, GBM tumor tissue is characterized by widespread hypoxia which could induce the expression of Hypoxia Inducible Factor (HIF) (Mennerich et al., 2019). Interestingly, hypoxia is an important environmental factor for glioma stem cell (GSC) survival, which is also associated with invasion, new vessel formation and radioresistance of tumor (Colwell et al., 2017). Wnt/β-catenin pathway represents the highly conservative signal cascade, which participates in various biological processes, like cell growth, migration, apoptosis, differentiation, and tissue homeostasis. Dysfunctional miR22HG promotes GBM invasiveness and GSC carcinogenesis through Wnt/β-catenin signal pathway (Han et al., 2020). Xiaoping Zhu et al. found that Moesin could promote GBM cell growth and activate Wnt/β-catenin pathway by interacting with CD44 (Zhu et al., 2013). Moreover, RPN2 regulated glioma development and mediated temozolomide sensitivity through Wnt/β-catenin pathway (Sun et al., 2020).
Immunotherapy is an effective novel therapy for a number of tumors. However, GBM has very little benefit on immunotherapy. Tumor resistance to immunotherapy is driven by internal and external factors that lead to immune evasion, including myeloid derived suppressor cells, like tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) (Gomez et al., 2020). Tregs, a subpopulation of CD4+ T cells, suppress immunity by secreting cytokines that suppress effector T cells, maintain immune homeostasis and prevent the development of autoimmune diseases (Gomez and Kruse, 2006; Nakagawa et al., 2016). Previous reports have shown that up to 60% of the tumor-infiltrating lymphocyte (TIL) population in tumor tissue is composed of Treg, a proportion substantially higher than the proportion of circulating Treg cells in high-grade glioma (Sakaguchi, 2005). Abundant infiltration of Tregs may contribute to the defective T cell proliferation as well as to GBM progression. In GBM, infiltration and enrichment of TAMs is a common characteristic (Komohara et al., 2008; Shi et al., 2015). Furthermore, TAMs are more likely to polarize to an immunosuppressive M2-like phenotype (Hussain et al., 2006; Fu et al., 2020). High expression of M2-like TAM markers (CD204 and CD163) in GBM predicts dismal prognostic outcome and aggressive phenotype of glioma (Andersen et al., 2021).
To further explore PXDN immune implication in GBM, we identified PXDN-associated immunomodulators by TISIDB database. KDR, a kinase insert domain receptor of the VEGF, could regulate tumor progression and angiogenesis. As suggested by Wu et al., KDR activation could be induced by autophagy, which in turn facilitates tumor vasculogenic formation by glioma stem cells (Wu et al., 2017). In addition, KDR, a target gene for miR-497 in lung cancer, could boost cancer cell growth and inhibit cell apoptosis (Xia et al., 2019). PVRL2, a novel immune checkpoint, may inhibit PD-L1-T cell activity in various tumors, such as endometrial carcinoma, lung cancer, ovarian cancer and breast cancer (Whelan et al., 2019). In our analyses, we found that PXDN was positively correlated with KDR, suggesting that PXDN might promote GBM development by KDR or PVRL2 related pathways.
Accumulating evidence has suggested that the ectopic expression of lncRNAs in various tumor cells could facilitate tumorigenesis, tumor development and metastasis (Bhan et al., 2017; Li et al., 2018; Jiang et al., 2019). Therefore, we further determined four prognosis-related lncRNAs co-expressed with PXDN. Among these potential lncRNAs, AC046143.1 and HEIH have been previously proved to be associated with cancer. In GBM, AC046143.1 was used to set up an immune-related biomarker signature for risk classification and prognosis prediction (Li et al., 2021). Numerous reports have revealed that HEIH play a central part in all kinds of tumors, including hepatocellular carcinoma, cholangiocarcinoma and esophageal cancer (Wang et al., 2020c; Shen et al., 2020; Wan et al., 2020). In cholangiocarcinoma, HEIH was found to enhance cell viability and metastasis via miR-98-5p/HECTD4. As unearthed by Wang et al., HEIH knockdown suppresses malignant behavior in esophageal cancer by targeting miR-185/KLK5 (Wang et al., 2020c).
The N6-methyladenosine (m6A) modification plays a central part in tumorigenesis and cancer progression. Li et al. showed that inhibiting METTL3 could block the proliferation and self-renewal of glioma stem cells (GSC), suggesting upregulated METTL3 leads to highly aggressive GBM (Li et al., 2019). YTHDF1, a methylation recognition protein, could specifically bind m6A-containing mRNAs and modulates their stability. As suggested by Wang et al., Musashi-1 could enhance the GSC properties of GBM by targeting YTHDF1. They observed that the YTHDF1 expression could be positively affected by inhibition or overexpression of Musashi-1 and silencing of YTHDF1 could repressed the growth and chemoresistance of GBM cells (Yarmishyn et al., 2020). Our data indicated that PXDN expression was positively associated with the expressions of METTL3 and YTHDF1. Consequently, we speculate that PXDN might regulate GBM survival and development by METTL3 and YTHDF1 in a m6A modification way.
As far as we know, the present work is the first to investigate prognostic value and clinical implications in GBM based on bioinformatic methods. First, our study was mainly based on online databases. Moreover, the expression pattern of PXDN needs to be verified in the local cohorts. We will further explore the possible mechanism of PXDN by on oncogenic effects.
CONCLUSION
In summary, our data revealed that PXDN is upregulated in GBM samples, while high PXDN expression predicts a poor prognosis. PXDN expression is associated with the several immunocyte infiltration, such as M0 macrophage, T cells regulatory, NK cells resting, eosinophils and monocytes. Furthermore, we observed that PXDN depletion inhibits GBM cell proliferation and migration, which might offer a basis for developing therapeutic targets for GBM.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.
AUTHOR CONTRIBUTIONS
WS, XZ, and LL visualized the study and took part in the study design, and performance. WD, ZZ, RW, FW, YT, JZ, and CS conducted the manuscript writing and bioinformatics analysis. All authors read and approved the final manuscript.
FUNDING
This work was supported by the Natural Science Foundation of Jiangsu Province (BK20201444); Nantong Jiangsu scientific research project (JC2020012, MS12020003); Qing Lan Project for Excellent Young Key Teachers of Colleges and Universities of Jiangsu Province (2020); Jiangsu Innovation and Enterpreneurial Talent Programme.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.990344/full#supplementary-material
REFERENCES
 Alifieris, C., and Trafalis, D. T. (2015). Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 152, 63–82. Epub 2015/05/07PubMed PMID: 25944528. doi:10.1016/j.pharmthera.2015.05.005
 Andersen, R. S., Anand, A., Harwood, D. S. L., and Kristensen, B. W. (2021). Tumor-associated microglia and macrophages in the glioblastoma microenvironment and their implications for therapy. Cancers (Basel) 13 (17), 4255. Epub 2021/09/11PubMed PMID: 34503065; PubMed Central PMCID: PMCPMC8428223. doi:10.3390/cancers13174255
 Bathish, B., Paumann-Page, M., Paton, L. N., Kettle, A. J., and Winterbourn, C. C. (2020). Peroxidasin mediates bromination of tyrosine residues in the extracellular matrix. J. Biol. Chem. 295 (36), 12697–12705. Epub 2020/07/18PubMed PMID: 32675287; PubMed Central PMCID: PMCPMC7476726. doi:10.1074/jbc.RA120.014504
 Bhan, A., Soleimani, M., and Mandal, S. S. (2017). Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77 (15), 3965–3981. Epub 2017/07/14PubMed PMID: 28701486; PubMed Central PMCID: PMCPMC8330958. doi:10.1158/0008-5472.CAN-16-2634
 Bhave, G., Cummings, C. F., Vanacore, R. M., Kumagai-Cresse, C., Ero-Tolliver, I. A., Rafi, M., et al. (2012). Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 8 (9), 784–790. Epub 2012/07/31PubMed PMID: 22842973; PubMed Central PMCID: PMCPMC4128002. doi:10.1038/nchembio.1038
 Colwell, N., Larion, M., Giles, A. J., Seldomridge, A. N., Sizdahkhani, S., Gilbert, M. R., et al. (2017). Hypoxia in the glioblastoma microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro. Oncol. 19 (7), 887–896. Epub 2017/03/25PubMed PMID: 28339582; PubMed Central PMCID: PMCPMC5570138. doi:10.1093/neuonc/now258
 Dominguez, C., David, J. M., and Palena, C. (2017). Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin. Cancer Biol. 47, 177–184. Epub 2017/08/22PubMed PMID: 28823497; PubMed Central PMCID: PMCPMC5698091. doi:10.1016/j.semcancer.2017.08.002
 Dongre, A., and Weinberg, R. A. (2019). New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20 (2), 69–84. Epub 2018/11/22PubMed PMID: 30459476. doi:10.1038/s41580-018-0080-4
 Dougan, J., Hawsawi, O., Burton, L. J., Edwards, G., Jones, K., Zou, J., et al. (2019). Proteomics-metabolomics combined approach identifies peroxidasin as a protector against metabolic and oxidative stress in prostate cancer. Int. J. Mol. Sci. 20 (12), E3046. Epub 2019/06/27PubMed PMID: 31234468; PubMed Central PMCID: PMCPMC6627806. doi:10.3390/ijms20123046
 Feng, G., Ma, H. M., Huang, H. B., Li, Y. W., Zhang, P., Huang, J. J., et al. (2019). Overexpression of COL5A1 promotes tumor progression and metastasis and correlates with poor survival of patients with clear cell renal cell carcinoma. Cancer Manag. Res. 11, 1263–1274. Epub 2019/02/26PubMed PMID: 30799953; PubMed Central PMCID: PMCPMC6369854. doi:10.2147/CMAR.S188216
 Fu, W., Wang, W., Li, H., Jiao, Y., Huo, R., Yan, Z., et al. (2020). Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent glioblastoma. Front. Immunol. 11, 835. Epub 2020/05/28PubMed PMID: 32457755; PubMed Central PMCID: PMCPMC7221162. doi:10.3389/fimmu.2020.00835
 Gomez, G. G., and Kruse, C. A. (2006). Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther. Mol. Biol. 10 (A), 133–146. Epub 2006/07/01. PubMed PMID: 16810329; PubMed Central PMCID: PMCPMC1474813.
 Gomez, S., Tabernacki, T., Kobyra, J., Roberts, P., and Chiappinelli, K. B. (2020). Combining epigenetic and immune therapy to overcome cancer resistance. Semin. Cancer Biol. 65, 99–113. Epub 2019/12/27PubMed PMID: 31877341; PubMed Central PMCID: PMCPMC7308208. doi:10.1016/j.semcancer.2019.12.019
 Han, M., Wang, S., Fritah, S., Wang, X., Zhou, W., Yang, N., et al. (2020). Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain 143 (2), 512–530. Epub 2020/01/01PubMed PMID: 31891366; PubMed Central PMCID: PMCPMC7009478. doi:10.1093/brain/awz406
 Huang, H., Zhang, D., Fu, J., Zhao, L., Li, D., Sun, H., et al. (2021). Tsukushi is a novel prognostic biomarker and correlates with tumor-infiltrating B cells in non-small cell lung cancer. Aging (Albany NY) 13 (3), 4428–4451. Epub 2021/01/12PubMed PMID: 33428594; PubMed Central PMCID: PMCPMC7906171. doi:10.18632/aging.202403
 Hussain, S. F., Yang, D., Suki, D., Aldape, K., Grimm, E., and Heimberger, A. B. (2006). The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro. Oncol. 8 (3), 261–279. Epub 2006/06/16PubMed PMID: 16775224; PubMed Central PMCID: PMCPMC1871955. doi:10.1215/15228517-2006-008
 Jiang, S., Cheng, S. J., Ren, L. C., Wang, Q., Kang, Y. J., Ding, Y., et al. (2019). An expanded landscape of human long noncoding RNA. Nucleic Acids Res. 47 (15), 7842–7856. Epub 2019/07/28PubMed PMID: 31350901; PubMed Central PMCID: PMCPMC6735957. doi:10.1093/nar/gkz621
 Komohara, Y., Ohnishi, K., Kuratsu, J., and Takeya, M. (2008). Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216 (1), 15–24. Epub 2008/06/17PubMed PMID: 18553315. doi:10.1002/path.2370
 Kurihara-Shimomura, M., Sasahira, T., Shimomura, H., and Kirita, T. (2020). Peroxidan plays a tumor-promoting role in oral squamous cell carcinoma. Int. J. Mol. Sci. 21 (15), E5416. Epub 2020/08/06PubMed PMID: 32751434; PubMed Central PMCID: PMCPMC7432510. doi:10.3390/ijms21155416
 Li, F., Yi, Y., Miao, Y., Long, W., Long, T., Chen, S., et al. (2019). N(6)-Methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 79 (22), 5785–5798. Epub 2019/09/19PubMed PMID: 31530567; PubMed Central PMCID: PMCPMC7360104. doi:10.1158/0008-5472.CAN-18-2868
 Li, X., Sun, L., Wang, X., Wang, N., Xu, K., Jiang, X., et al. (2021). A five immune-related lncRNA signature as a prognostic target for glioblastoma. Front. Mol. Biosci. 8, 632837. Epub 2021/03/06PubMed PMID: 33665208; PubMed Central PMCID: PMCPMC7921698. doi:10.3389/fmolb.2021.632837
 Li, Y., Li, L., Wang, Z., Pan, T., Sahni, N., Jin, X., et al. (2018). LncMAP: Pan-cancer atlas of long noncoding RNA-mediated transcriptional network perturbations. Nucleic Acids Res. 46 (3), 1113–1123. Epub 2018/01/13PubMed PMID: 29325141; PubMed Central PMCID: PMCPMC5815097. doi:10.1093/nar/gkx1311
 Lim, M., Xia, Y., Bettegowda, C., and Weller, M. (2018). Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15 (7), 422–442. Epub 2018/04/13PubMed PMID: 29643471. doi:10.1038/s41571-018-0003-5
 Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., et al. (2021). The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro. Oncol. 23 (8), 1231–1251. Epub 2021/06/30PubMed PMID: 34185076; PubMed Central PMCID: PMCPMC8328013. doi:10.1093/neuonc/noab106
 Lu, Y., Xiao, L., Liu, Y., Wang, H., Li, H., Zhou, Q., et al. (2015). MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation. Autophagy 11 (12), 2213–2232. Epub 2015/11/11PubMed PMID: 26553592; PubMed Central PMCID: PMCPMC4835194. doi:10.1080/15548627.2015.1108507
 McCall, A. S., Cummings, C. F., Bhave, G., Vanacore, R., Page-McCaw, A., and Hudson, B. G. (2014). Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157 (6), 1380–1392. Epub 2014/06/07PubMed PMID: 24906154; PubMed Central PMCID: PMCPMC4144415. doi:10.1016/j.cell.2014.05.009
 Mennerich, D., Kubaichuk, K., and Kietzmann, T. (2019). DUBs, hypoxia, and cancer. Trends Cancer 5 (10), 632–653. Epub 2019/11/11PubMed PMID: 31706510. doi:10.1016/j.trecan.2019.08.005
 Nakagawa, H., Sido, J. M., Reyes, E. E., Kiers, V., Cantor, H., and Kim, H. J. (2016). Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proc. Natl. Acad. Sci. U. S. A. 113 (22), 6248–6253. Epub 2016/05/18. doi:10.1073/pnas.1604765113
 Nelson, R. E., Fessler, L. I., Takagi, Y., Blumberg, B., Keene, D. R., Olson, P. F., et al. (1994). Peroxidasin: A novel enzyme-matrix protein of Drosophila development. EMBO J. 13 (15), 3438–3447. Epub 1994/08/01. PubMed PMID: 8062820; PubMed Central PMCID: PMCPMC395246. doi:10.1002/j.1460-2075.1994.tb06649.x
 Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 (5), 453–457. Epub 2015/03/31PubMed PMID: 25822800; PubMed Central PMCID: PMCPMC4739640. doi:10.1038/nmeth.3337
 Ostrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y., et al. (2013). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro. Oncol. 15 (2), ii1–i56. ii1-56Epub 2013/10/30PubMed PMID: 24137015; PubMed Central PMCID: PMCPMC3798196. doi:10.1093/neuonc/not151
 Pan, C. M., Chan, K. H., Chen, C. H., Jan, C. I., Liu, M. C., Lin, C. M., et al. (2020). MicroRNA-7 targets T-Box 2 to inhibit epithelial-mesenchymal transition and invasiveness in glioblastoma multiforme. Cancer Lett. 493, 133–142. Epub 2020/08/31PubMed PMID: 32861705. doi:10.1016/j.canlet.2020.08.024
 Paumann-Page, M., Kienzl, N. F., Motwani, J., Bathish, B., Paton, L. N., Magon, N. J., et al. (2021). Peroxidasin protein expression and enzymatic activity in metastatic melanoma cell lines are associated with invasive potential. Redox Biol. 46, 102090. Epub 2021/08/27PubMed PMID: 34438259; PubMed Central PMCID: PMCPMC8390535. doi:10.1016/j.redox.2021.102090
 Polonen, P., Jawahar Deen, A., Leinonen, H. M., Jyrkkanen, H. K., Kuosmanen, S., Mononen, M., et al. (2019). Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene 38 (50), 7473–7490. Epub 2019/08/25PubMed PMID: 31444413. doi:10.1038/s41388-019-0956-6
 Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6 (4), 345–352. Epub 2005/03/24PubMed PMID: 15785760. doi:10.1038/ni1178
 Shen, Q., Jiang, S., Wu, M., Zhang, L., Su, X., and Zhao, D. (2020). LncRNA HEIH confers cell sorafenib resistance in hepatocellular carcinoma by regulating miR-98-5p/PI3K/AKT pathway. Cancer Manag. Res. 12, 6585–6595. Epub 2020/08/22PubMed PMID: 32821157; PubMed Central PMCID: PMCPMC7419617. doi:10.2147/CMAR.S241383
 Shi, Y., Ping, Y. F., Zhang, X., and Bian, X. W. (2015). Hostile takeover: Glioma stem cells recruit TAMs to support tumor progression. Cell Stem Cell 16 (3), 219–220. Epub 2015/03/10PubMed PMID: 25748928. doi:10.1016/j.stem.2015.02.008
 Shibue, T., and Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14 (10), 611–629. Epub 2017/04/12PubMed PMID: 28397828; PubMed Central PMCID: PMCPMC5720366. doi:10.1038/nrclinonc.2017.44
 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (43), 15545–15550. Epub 2005/10/04PubMed PMID: 16199517; PubMed Central PMCID: PMCPMC1239896. doi:10.1073/pnas.0506580102
 Sun, J., Ma, Q., Li, B., Wang, C., Mo, L., Zhang, X., et al. (2020). RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the wnt/β-catenin signaling pathway. Cell Death Dis. 11 (10), 890. Epub 2020/10/23PubMed PMID: 33087705; PubMed Central PMCID: PMCPMC7578010. doi:10.1038/s41419-020-03113-5
 Talasila, K. M., Soentgerath, A., Euskirchen, P., Rosland, G. V., Wang, J., Huszthy, P. C., et al. (2013). EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 125 (5), 683–698. Epub 2013/02/23PubMed PMID: 23429996; PubMed Central PMCID: PMCPMC3631314. doi:10.1007/s00401-013-1101-1
 Wan, T., Wang, H., Gou, M., Si, H., Wang, Z., Yan, H., et al. (2020). LncRNA HEIH promotes cell proliferation, migration and invasion in cholangiocarcinoma by modulating miR-98-5p/HECTD4. Biomed. Pharmacother. 125, 109916. Epub 2020/02/18PubMed PMID: 32062383. doi:10.1016/j.biopha.2020.109916
 Wang, B., Hao, X., Li, X., Liang, Y., Li, F., Yang, K., et al. (2020). Long noncoding RNA HEIH depletion depresses esophageal carcinoma cell progression by upregulating microRNA-185 and downregulating KLK5. Cell Death Dis. 11 (11), 1002. Epub 2020/11/24PubMed PMID: 33223519; PubMed Central PMCID: PMCPMC7680792. doi:10.1038/s41419-020-03170-w
 Wang, H., Xu, T., Huang, Q., Jin, W., and Chen, J. (2020). Immunotherapy for malignant glioma: Current status and future directions. Trends Pharmacol. Sci. 41 (2), 123–138. Epub 2020/01/25PubMed PMID: 31973881. doi:10.1016/j.tips.2019.12.003
 Wang, T., Jin, H., Hu, J., Li, X., Ruan, H., Xu, H., et al. (2020). COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling. J. Exp. Clin. Cancer Res. 39 (1), 148. Epub 2020/08/05PubMed PMID: 32746865; PubMed Central PMCID: PMCPMC7398077. doi:10.1186/s13046-020-01650-7
 Wei, Z., Chen, L., Meng, L., Han, W., Huang, L., and Xu, A. (2020). LncRNA HOTAIR promotes the growth and metastasis of gastric cancer by sponging miR-1277-5p and upregulating COL5A1. Gastric Cancer 23 (6), 1018–1032. Epub 2020/06/26PubMed PMID: 32583079. doi:10.1007/s10120-020-01091-3
 Westphal, M., and Lamszus, K. (2015). Circulating biomarkers for gliomas. Nat. Rev. Neurol. 11 (10), 556–566. Epub 2015/09/16PubMed PMID: 26369507. doi:10.1038/nrneurol.2015.171
 Whelan, S., Ophir, E., Kotturi, M. F., Levy, O., Ganguly, S., Leung, L., et al. (2019). PVRIG and PVRL2 are induced in cancer and inhibit CD8(+) T-cell function. Cancer Immunol. Res. 7 (2), 257–268. Epub 2019/01/20PubMed PMID: 30659054; PubMed Central PMCID: PMCPMC7001734. doi:10.1158/2326-6066.CIR-18-0442
 Wu, H. B., Yang, S., Weng, H. Y., Chen, Q., Zhao, X. L., Fu, W. J., et al. (2017). Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy 13 (9), 1528–1542. Epub 2017/08/16PubMed PMID: 28812437; PubMed Central PMCID: PMCPMC5612353. doi:10.1080/15548627.2017.1336277
 Xia, Y., Hu, C., Lian, L., Hui, K., Wang, L., Qiao, Y., et al. (2019). miR497 suppresses malignant phenotype in nonsmall cell lung cancer via targeting KDR. Oncol. Rep. 42 (1), 443–452. Epub 2019/05/23PubMed PMID: 31115562. doi:10.3892/or.2019.7163
 Yang, W., Wu, P. F., Ma, J. X., Liao, M. J., Wang, X. H., Xu, L. S., et al. (2019). Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis. 10 (3), 208. Epub 2019/03/01PubMed PMID: 30814514; PubMed Central PMCID: PMCPMC6393543. doi:10.1038/s41419-019-1449-9
 Yang, Z., Chen, Y., Wei, X., Wu, D., Min, Z., and Quan, Y. (2020). Upregulated NTF4 in colorectal cancer promotes tumor development via regulating autophagy. Int. J. Oncol. 56 (6), 1442–1454. Epub 2020/04/03PubMed PMID: 32236587; PubMed Central PMCID: PMCPMC7170041. doi:10.3892/ijo.2020.5027
 Yarmishyn, A. A., Yang, Y. P., Lu, K. H., Chen, Y. C., Chien, Y., Chou, S. J., et al. (2020). Musashi-1 promotes cancer stem cell properties of glioblastoma cells via upregulation of YTHDF1. Cancer Cell Int. 20 (1), 597. Epub 2020/12/16PubMed PMID: 33317545; PubMed Central PMCID: PMCPMC7734781. doi:10.1186/s12935-020-01696-9
 Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16 (5), 284–287. Epub 2012/03/30PubMed PMID: 22455463; PubMed Central PMCID: PMCPMC3339379. doi:10.1089/omi.2011.0118
 Zhang, H., Wang, Y., and Ding, H. (2021). COL4A1, negatively regulated by XPD and miR-29a-3p, promotes cell proliferation, migration, invasion and epithelial-mesenchymal transition in liver cancer cells. Clin. Transl. Oncol. 23 (10), 2078–2089. Epub 2021/04/24PubMed PMID: 33891266. doi:10.1007/s12094-021-02611-y
 Zhang, J., Zhang, J., Wang, F., Xu, X., Li, X., Guan, W., et al. (2021). Overexpressed COL5A1 is correlated with tumor progression, paclitaxel resistance, and tumor-infiltrating immune cells in ovarian cancer. J. Cell. Physiol. 236 (10), 6907–6919. Epub 2021/03/04PubMed PMID: 33655494. doi:10.1002/jcp.30350
 Zhao, B., Song, X., and Guan, H. (2020). CircACAP2 promotes breast cancer proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci. 244, 117179. Epub 2019/12/22PubMed PMID: 31863774. doi:10.1016/j.lfs.2019.117179
 Zhao, Z., Partridge, V., Sousares, M., Shelton, S. D., Holland, C. L., Pertsemlidis, A., et al. (2018). microRNA-2110 functions as an onco-suppressor in neuroblastoma by directly targeting Tsukushi. PLoS One 13 (12), e0208777. Epub 2018/12/15PubMed PMID: 30550571; PubMed Central PMCID: PMCPMC6294380. doi:10.1371/journal.pone.0208777
 Zheng, Y. Z., and Liang, L. (2018). High expression of PXDN is associated with poor prognosis and promotes proliferation, invasion as well as migration in ovarian cancer. Ann. Diagn. Pathol. 34, 161–165. Epub 2018/04/18PubMed PMID: 29661721. doi:10.1016/j.anndiagpath.2018.03.002
 Zhu, X., Morales, F. C., Agarwal, N. K., Dogruluk, T., Gagea, M., and Georgescu, M. M. (2013). Moesin is a glioma progression marker that induces proliferation and Wnt/β-catenin pathway activation via interaction with CD44. Cancer Res. 73 (3), 1142–1155. Epub 2012/12/12PubMed PMID: 23221384. doi:10.1158/0008-5472.CAN-12-1040
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Shi, Ding, Zhao, Wang, Wang, Tang, Zhu, Su, Zhao and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 31 August 2022
doi: 10.3389/fgene.2022.938488


[image: image2]
Cuproptosis scoring model predicts overall survival and assists in immunotherapeutic decision making in pancreatic carcinoma
Tijun Liu1, Qing Liu1, Yongju Wang1, Rong Yang2 and Fang Tian1*
1Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
2Department of Oncology, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
Edited by:
Chuyan Wu, Nanjing Medical University, China
Reviewed by:
Dong Zhang, Shandong University, China
Zhigang Bai, Beijing Friendship Hospital, China
Ming Jun Zheng, Ludwig Maximilian University of Munich, Germany
* Correspondence: Fang Tian, 1090266372@qq.com
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 07 May 2022
Accepted: 11 July 2022
Published: 31 August 2022
Citation: Liu T, Liu Q, Wang Y, Yang R and Tian F (2022) Cuproptosis scoring model predicts overall survival and assists in immunotherapeutic decision making in pancreatic carcinoma. Front. Genet. 13:938488. doi: 10.3389/fgene.2022.938488

Background: Cuproptosis is a newly identified form of non-apoptotic cell death that is associated with the progression and treatment responses in pancreatic adenocarcinoma (PAAD). However, its impact on oncology and tumor microenvironment (TME) remains unclear.
Methods: Hub genes were identified using least absolute shrinkage and selection operator (LASSO) Cox regression for 25 newly reported cuproptosis-related regulators and subjected to stepwise regression to obtain cuproptosis-related score (CuRS). Additionally, the clinical significance, functional status, role on TME, and genomic variation of CuRS were further examined systematically.
Results: A CuRS model incorporating TRAF2, TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, and RIPK3 was developed. The stability and accuracy of this risk model as an independent prognostic factor for PAAD were confirmed in the training and external validation cohorts. Patients in the high-CuRS group had “cold” tumors with active tumor proliferation and immunosuppression, whereas those in the low-CuRS group comprised “hot” tumors with active immune function and cell killing capacity. Additionally, patients in the high-CuRS group carried fewer genomic copy number variations (CNVs) and greater somatic mutations. Furthermore, patients in the low- and high-CuRS groups exhibited increased sensitivity to immunotherapy and chemotherapy, respectively.
Conclusion: We developed and validated a robust CuRS model based on cuproptosis to assess patients’ prognoses and guide clinical decision-making. Overall, the findings of this study are expected to contribute to the comprehensive understanding of cuproptosis and facilitate precise treatment of PAAD.
Keywords: pancreatic carcinoma, cuproptosis, overall survival, immunotherapy, risk score
INTRODUCTION
Pancreatic adenocarcinoma (PAAD) is a malignancy with one of the poorest prognoses, thus leading to extremely high mortality rates. Although the incidence of pancreatic cancer is low, it is the fourth leading cause of cancer-related deaths (Siegel et al., 2021). One reason for unfavorable prognoses in patients with PAAD is the insensitivity to most therapies, including chemotherapy, radiotherapy, and immunotherapy (Schneider et al., 2005). Therefore, currently, surgical resection is the only feasible option. In most malignancies that respond to treatment, responses to chemotherapy and radiotherapy are realized through apoptosis induction in cancer cells (Schulze-Bergkamen and Krammer, 2004). Apoptosis evasion is a hallmark of all cancers and a plethora of molecular mechanisms have evolved to resist apoptosis, especially in PAAD (Hamacher et al., 2008). Despite years of extensive research worldwide, the prognoses of patients with PAAD remain unfavorable. Therefore, it is crucial to identify new underlying mechanisms to improve patients’ prognoses and develop new therapies.
Stressors, including DNA damage, protein misfolding, or cytoskeleton disruption, can lead to cell death mediated by the inactivation of apoptosis-related pathways (Maiuri et al., 2007). Iron catalyzes the formation of toxic membrane lipid peroxides to mediate a unique form of non-apoptotic cell death-ferroptosis, as evidenced by recent findings (Kagan et al., 2017). Additionally, copper overload can lead to a novel cell death mechanism, namely, cuproptosis (Tsvetkov et al., 2022), mediated by protein acylation wherein copper directly binds to the lipidated components of the tricarboxylic acid (TCA) cycle, leading to lipid-acylated protein aggregation and loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and cell death (Tsvetkov et al., 2022). These findings suggest that copper ion carriers may serve as viable therapeutic targets in cancer cells with a high respiratory rate, abundantly expressing acylated mitochondrial proteins. This new approach to killing cancer cells may be particularly effective for tumors that are naturally resistant to apoptosis (Kahlson and Dixon, 2022; Tsvetkov et al., 2022). Thus, an in-depth evaluation of cuproptosis can provide novel treatment options for PAAD.
In this study, a robust cuproptosis-related score (CuRS) model was developed and validated. This model exhibited stability and accuracy in both the training and external validation cohorts and can be used as an independent prognostic factor for PAAD. Patients in the high-CuRS group had “cold” tumors with active tumor proliferation and immunosuppression, whereas those in the low-CuRS group exhibited “hot” tumors with active immune function and cell killing capacity. Additionally, patients in the high-CuRS group carried fewer genomic copy number variations (CNVs) and greater somatic mutations. Furthermore, patients in the low- and high-CuRS groups showed increased sensitivity to immunotherapy and chemotherapy, respectively.
METHODS
Data acquisition and pre-processing
Data from transcriptomic RNA sequencing (RNA-seq), HumanMethylation450 array, Mutect2 mutation, CNVs, and the corresponding patients’ clinical follow-up in The Cancer Genome Atlas (TCGA)–PAAD cohort were acquired from TCGA (https://cancergenome.nih.gov/). A total of 176 PAAD specimens were included after excluding patients with incomplete clinical information. Paired normal PAAD specimens and RNA-seq data from the International Cancer Genome Consortium (ICGC)–PAAD cohort (comprising 165 PAAD samples with complete clinical information) were collected from the Genotype-Tissue Expression (GTEx) database (https://xenabrowser.net/datapages/) and ICGC (https://daco.icgc.org/). Additionally, dataset E-MTAB-6134 containing 288 PAAD specimens with complete clinical information was collected from the Array Express database (https://www.ebi.ac.uk/arrayexpress).
Raw fragments per kilobase million (FPKM) data from TCGA–PAAD and ICGC–PAAD cohorts (RNA-seq data) were converted to transcripts per million (TPM) format for normalization. In addition, the microarray data were normalized using the R package, “limma”. TCGA–PAAD was used as the training cohort, whereas ICGC–PAAD and E-MTAB-6134 were used as the external validation cohorts. Subsequently, the immunotherapy cohort, IMvigor210, comprising 298 patients with uroepithelial cancer who underwent treatment with PD-L1 immunotherapy (Mariathasan et al., 2018) was obtained (http://research-pub.gene.com/IMvigor210CoreBiologies) and data were subjected to log2 normalization to assess patients’ responses to immunotherapy.
Construction and validation of the cuproptosis-related score model
Twenty-five cuproptosis-related genes (CRGs) were collected from Tsvetkov et al. (Supplementary Table S1). Additionally, prognosis-related necrosis genes were screened by univariate COX regression analysis. To avoid omission, only genes with p < 0.2 were collected for further analysis. Subsequently, a LASSO penalized Cox proportional risk model was used to identify the optimal prognostic model, followed by five-fold cross-validation to assess the model’s stability. Finally, CuRS was calculated using the equation below:
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The consistency index (C-index) was calculated using the R package, “survcomp”, to assess the predictive power of CuRS, where a larger C-index indicated a higher predictive accuracy of the model (Schröder et al., 2011). Additionally, patients were classified into high- and low-CuRS groups according to the median CuRS. Finally, the prognostic value of the CuRS model in the three PAAD cohorts was systematically assessed by Kaplan–Meier (KM) survival curves, univariate and multivariate Cox regression, and time-dependent ROC (tROC) curve analyses.
Functional enrichment and immune infiltration analyses
Single-sample gene set enrichment analysis (ssGSEA) was performed to assess the activities of biological pathways enriched in the samples, including molecular markers for angiogenesis, epithelial-mesenchymal transition (EMT), myeloid inflammation, and other immune-related pathways, based on previously published molecular markers using the R package, “gsva” (Ayers et al., 2017; Gibbons and Creighton, 2018; McDermott et al., 2018; Liang et al., 2020). Hypoxia-related molecular markers were collected from Msigdb (Liberzon et al., 2011) and detailed in Supplementary Table S2. Additionally, GSEA was performed to assess the differences in KEGG pathway enrichment and treatment outcomes between the high- and low-CuRS groups; significant pathways with the criterion of p < 0.05 were obtained.
The infiltration abundance of 22 immune cells in the tumor samples was estimated using the R package, “CIBERSORT” (Newman et al., 2015). The immunoreactivity and tumor purity of the samples were assessed using the Estimate algorithm (Yoshihara et al., 2013). Furthermore, differences in activities among six classical immune checkpoints (CTLA-4, LAG-3, PD-1, PD-L1, PD-L2, and TIM3) were compared.
Finally, homologous recombination defect (HRD) scores, proliferation, lymphocyte infiltration signature scores, TGF-β response, indel neoantigens, and SNV neoantigens were obtained from (Thorsson et al., 2018). The immunophenoscores (IPS) of individual samples were calculated based on a previous study; high IPS indicated a stronger immune activity (Charoentong et al., 2017).
Genomic variation landscape between the two subgroups
Mutation data were processed using the R package, “maftools”, to compare the differences in mutation burden between the high- and low-CuRS groups. The tumor mutation burden (TMB) was calculated for each patient and the high-frequency mutant genes with mutation number >5 were identified. Subsequently, the frequency differences in high-frequency mutant genes between the high- and low-CuRS groups were compared by a chi-square test and visualized using maftools (Mayakonda et al., 2018). Additionally, CNV data were preprocessed using Gistic 2.0 on the Genepattern website to identify the significantly amplified and deleted chromosomal segments and assess CNV differences on the chromosomal arms. Finally, the results for CNV events were visualized using the R package, “ggplot2.”
Clinical value of the cuproptosis-related score model
Four first-line drugs for PAAD (5-FU, cisplatin, gemcitabine, and paclitaxel) were selected to predict the relevant half-maximal inhibitory concentration (IC50) for patients using the ridge regression function in the pRRophetic package. Next, the predictive accuracy of the model was assessed by ten-fold cross-validation (Geeleher et al., 2014), wherein low IC50 indicated high treatment sensitivity. Additionally, differentially expressed genes (DEGs) between the high- and low-CuRS groups were considered potential therapeutic targets. Subsequently, the top 300 DEGs were imported into the CMap database (https://clue.io/) to determine the potential small molecule compounds targeting these genes and elucidate their mechanisms of action. Patient responses to immunotherapy were predicted using the tumor immune dysfunction and exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu) (Jiang et al., 2018). Further, the unsupervised subclass mapping algorithm (https://cloud.genepattern.org/gp/) was used to assess patient responses to anti-PD1 and anti-CTLA-4 immunotherapies based on transcriptomic expressions. Finally, the predictive performance of the CuRS model was validated in the immunotherapy cohort, Imvigor210.
Bioinformatic and statistical analyses
All statistical analyses and plotting were performed using R software (version: 4.05). Comparisons between two groups were conducted using the Wilcoxon test and differences in proportions were compared using the chi-square test. KM survival curves and time-dependent tROC curves were plotted using the R packages, “ggsurvival” and “survivalROC”, respectively. Univariate and multivariate Cox regression analyses were performed using the R package, ‘survival’. Additionally, the R package, “rms”, was used to plot the nomogram and calibration curves, while the decision curve analysis (DCA) was performed using the “DCA” package (Vickers et al., 2008). Two-tailed p < 0.05 was considered statistically significant unless stated otherwise.
RESULTS
Genomic landscape of cuproptosis-related genes in pancreatic adenocarcinoma
The multi-omics profile of CRGs in the TCGA–PAAD cohort is shown in Figure 1A. Most CRGs were upregulated in patients with PAAD and the mutation and CNV frequencies of CRGs were low. However, CDKN2A was substantially active with higher mutation and CNV frequencies. Additionally, only GLS and PHDB were significantly negatively correlated with methylation levels, suggesting that CRGs were relatively silent in PAAD and rarely regulated by other factors. Most cuproptosis-related biological processes were involved in PAAD progression. Five genes, including FDX1, DLAT, ATP7A, GSS, and TIMMDC1 were the significant risk factors for PAAD and their levels of expression were elevated in these patients. In contrast, five significant protective factors, including LIAS, ISCA2, NDUFA1, NDUFA8, and NDUFB2 were markedly low in patients with PAAD. The mutation and CNV profiles of CRGs on the chromosomes are displayed in Figures 1B,C, respectively. Moreover, a comprehensive mutation profile of CRGs is shown in Figure 1D. All CRGs exhibited lower mutation frequencies except for DKN2A. In addition, the most prevalent mutation type was the nonsense mutation. Finally, the correlation network of CRGs was constructed. As most CRGs were significantly positively correlated with each other, only the pairs with p < 0.01 are shown (Figure 1E).
[image: Figure 1]FIGURE 1 | Genomic profile of CRGs in PAAD. (A) Heat map showing genomic variations and hazard ratios of CRGs in TCGA–PAAD; from left to right: mutation and CNV frequencies of CRGs, the correlation between DNA methylation modifications of CRGs and CRG expression; univariate Cox regression analysis showing risk ratios of FRGs. *p < 0.05, **p < 0.01, ***p < 0.001; (B) Bar chart showing CNV events in CRGs in TCGA–PAAD; (C) Circle plot showing CNV events of CRGs on chromosomes; (D) Summary of CRG mutation events in TCGA–PAAD; (E) Correlation network of CRGs (p < 0.01).
Construction of a cuproptosis-related gene-based risk model
A total of 10 CRGs, including ATP7A, DLAT, FDX1, GSS, LIAS, ISCA2, NDUFA1, NDUFA8, NDUFB2, and TIMMDC1, were screened as candidate genes for the model based on the threshold of p < 0.2. The Cox regression results are detailed in Supplementary Table S3. The optimal combination of prognostic factors was screened using the LASSO model, and the optimized model comprising seven prognostic CRGs was obtained according to Lambda = 0.02769202 (Figures 2A,B). This model showed good accuracy in both the training and the external validation cohorts (TCGA: 0.617; ICGC: 0.626; GEO: 0.576) (Figure 2C). Additionally, the CuRS model was constructed according to the equation, [image: image], and the LASSO coefficients for the model genes are listed in Supplementary Table S4. Results of the survival analysis suggested that patients in the high-CuRS group showed significantly lower survival rates than those in the low-CuRS group (Figure 2D; p = 0.0014). Figure 2E illustrates the distribution of CuRS and model genes in TCGA cohort. The 1-, 3-, and 5-year AUCs of the model were 0.64, 0.71, and 0.81, respectively (Figure 2F). In addition, the results of the tROC analysis suggested that CuRS was the best predictor (Figure 2G). Subsequently, the predictive performance of the model was verified in a validation cohort. Survival analysis suggested significantly poorer survival among patients in the high-CuRS group (Supplementary Figures S1A,B, p < 0.01). The distribution of CuRS and model genes in the ICGC and GEO cohorts are shown in Supplementary Figures S1C,D. Overall, the CuRS model showed satisfactory predictive power in both the external validation cohorts [ICGC: 1-, 3-, and 5-year AUCs of 0.64, 0.68, 0.70, respectively (Supplementary Figure S1E); GEO: 1-, 3-, and 5-year AUCs of 0.64, 0.59, 0.56, respectively (Supplementary Figure S1F)].
[image: Figure 2]FIGURE 2 | Construction of the CRG-based risk model. (A) Construction of the LASSO model; (B) Construction of the optimized model incorporating 7 CRGs based on the optimal lambda; (C) C-index of the optimized model in TCGA, ICGC, and E-MTAB cohorts; (D) KM survival curves for high- and low-CuRS groups in TCGA cohort; (E) Survival status of patients in TCGA cohort and expression of the model genes; (F) 1-, 3-, 5-, and 8-year ROC curves for CuRS in TCGA cohort; (G) CuRS model and tROC curves of clinical characteristics in TCGA cohort.
Predictive independence of the cuproptosis-related score model
The relationship of CuRS with clinical characteristics and prognoses of patients was analyzed using univariate and multivariate Cox regression analyses. Results of the univariate Cox regression analysis suggested that CuRS could serve as an independent prognostic indicator in both the training and validation cohorts (p < 0.01) (Figure 3A). Additionally, multivariate Cox regression analysis showed that CuRS remained an independent prognostic factor for OS in both the training and validation cohorts after correction for other clinical characteristics (p < 0.01) (Figure 3B). Furthermore, subgroup analysis suggested that CuRS remained a reliable prognostic factor in different clinical subgroups (Supplementary Figure S2). Subsequently, the nomogram was constructed to better quantify the risk of patients with PAAD (Figure 3C). The correction curve of the nomogram showed excellent 1-, 3-, and 5-year stability and accuracy (Figure 3D). In addition, tROC analysis confirmed that the nomogram was the best predictor relative to all other clinical characteristics (Figure 3E). Further, a DCA was conducted to assess the decision benefit of the nomogram and the results suggested that it could accurately predict the 1-, 3-, and 5-year risks of patients with PAAD (Figure 3F).
[image: Figure 3]FIGURE 3 | Validation of the CuRS model. (A) Univariate Cox regression analysis of OS in TCGA, ICGC, and E-MTAB datasets; (B) multivariate Cox regression analysis of OS in TCGA, ICGC, and GE datasets; (C) FRS-based nomogram; (D) Calibration curves for the nomogram; (E) Nomogram and tROC curves for clinical characteristics; (F) 1-, 3-, and 5-year DCA curves for the nomogram.
Functional enrichment in cuproptosis-related score
The correlation between CuRS and multiple typical biological pathways was assessed. The heat map shows the relationship between CuRS, biological pathway activity, and clinical characteristics (Figure 4A). Results of the correlation analysis of CuRS with biological pathways are shown on the right side of the heat map (Figure 5B). Hypoxia, parainflammation, APC co-inhibition, and angiogenesis were significantly positively correlated with CuRS and significantly upregulated in the high-CuRS group, whereas cytolytic activity was negatively correlated with CuRS and significantly upregulated in the low-CuRS group. Further, GSEA showed that Notch, P53, and VEGF signaling pathways, along with PAAD-related pathways were significantly enriched in the high-CuRS group (Figure 4C). Finally, GSEA suggested that patients with a high CuRS were less resistant to cisplatin, doxorubicin, and gemcitabine but less sensitive to radiation and gefitinib treatment (Figure 4D).
[image: Figure 4]FIGURE 4 | Functional analysis of the CRG-based risk model. (A) Heat map showing the correlation between CuRS, biological pathway activity, and clinical characteristics; (B) Correlation analysis for CuRS and biological pathways; (C) GSEA plot showing five KEGG pathways of interest in the high-CuRS group; (D) GSEA plot showing the responses of patients in the high-CuRS group towards chemotherapy and radiotherapy.
[image: Figure 5]FIGURE 5 | Immune landscape in the CuRS model. (A) Heat map showing the correlation between CuRS, estimate score, immune cell infiltration abundances, immune checkpoint expression, and clinical characteristics; (B) From top to bottom: correlation analysis for CuRS with estimate score, immune cell infiltration abundance, and immune checkpoint expression; Scatter and box plots showing the correlation of CuRS with (C) HRD score, (D) proliferation score, (E) intratumor heterogeneity score, (F) SNV neoantigens, (G) lymphocyte infiltration score, and (H) TGF-beta response.
Immune landscape in the cuproptosis-related score model
The correlation between CuRS and the immune landscape was assessed. The heat map demonstrates the relationship between CuRS, estimate score, immune-infiltrating cell type abundances, and typical immune checkpoints (including PD-1, LAG-3, CTLA-4, PD-L1, TIM-3, and PD-L2), and clinical characteristics (Figure 5A). The corresponding results of correlation analysis are shown on the right side of the heat map (Figure 5B). Tumor purity was positively correlated with CuRS, whereas immune and estimate scores showed a negative correlation. However, no significant differences were observed between the two groups of patients. M0 macrophages were significantly positively correlated with CuRS and upregulated in the high-CuRS group. In contrast, B cells, CD8+ T cells, and NK cells were negatively correlated with CuRS and upregulated in the low-CuRS group. Additionally, TIM3 and PD-L2 were positively correlated with CuRS, whereas CTLA-4, PD-1, and LAG-3 were highly expressed in patients with a low CuRS. Cancers with homologous recombination (HR) defects suppress double-stranded DNA break repair. Therefore, such patients may show better sensitivity to DNA damaging agents, including platinum-based chemotherapy. Moreover, HRD scores were positively correlated with CuRS and markedly elevated in the high-CuRS group. In addition, tumor proliferation was also significantly positively correlated with CuRS (Figures 5C,D). However, indel and SNV neoantigens did not correlate significantly with CuRS, and lymphocyte infiltration scores along with the TGF-beta responses were significantly negatively correlated with CuRS and elevated in the low-CuRS group (Figures 5E–H). Moreover, CuRS was negatively correlated with the IPS; the low CuRS group showed high IPS (Figure 5I). Overall, CuRS could distinguish between “cold” and “hot” tumor subtypes, with lower CuRS suggesting stronger immunoreactivity (“hot” tumor), better patient survival, and more benefits from immunotherapy. In contrast, higher CuRS suggested more active proliferation (“cold” tumor), DNA damage, and benefits from chemotherapy.
Correlation between cuproptosis-related score and somatic mutations
TMB is associated with immunotherapeutic responses, whereby greater TMB may generate more potential neoantigens that can be recognized by the immune system. Antigens carrying mutant peptides, after recognition, can activate the immune system and enhance anti-tumor immunity (Matsushita et al., 2012; Rizvi et al., 2015; Chan et al., 2019). Based on the clinical value of TMB, we examined the correlation between TMB and CuRS. The results suggested that all types of mutational burdens and non-synonymous mutational burdens were elevated in the high-CuRS groups. However, only non-synonymous mutations showed a positive correlation with CuRS (Figures 6A,B). Additionally, the differences in mutation frequencies among high-frequency mutant genes relative to the low-CuRS group were compared. The Forest plot suggested that the mutation frequencies of KRAS, TP53, PCDHB7, KMT2C, FLNA, FAT2, COL6A2, and BTBD11 were significantly higher in the high-CuRS group as compared to those in the low-CuRS group (Figure 6C). Figure 6D illustrates the mutation landscape in both groups. CNV caused chromosomal variations differently. Finally, we assessed the correlation between CuRS and CNV events. Overall, more CNV events were observed on the chromosomal arms in the low-CuRS group (Figure 6E). Box plot showed significantly more deletion and amplification events in the low-CuRS group (Figures 6F,G).
[image: Figure 6]FIGURE 6 | Genomic variation landscape for the CuRS model. (A) Correlation between CuRS and all types of mutation burdens; (B) Correlation between CuRS and non-synonymous mutation burden; (C) Forest plot showing significant differentially mutant genes (DMGs) between groups; (D) Oncoplot of DMGs between groups; (E) Bar chart showing CNV events on different chromosome arms in high- and low-CuRS groups (*p < 0.05); (F) Box plot showing the differences in chromosome amplification numbers between high- and low-CuRS groups; (G) Box plot showing the differences in chromosome deletion numbers between high- and low-CuRS groups.
Role of cuproptosis-related score in clinical decision-making
The above results suggested that patients with high- and low-CuRSs were more sensitive to chemotherapy and immunotherapy, respectively. Differences in patient sensitivity to commonly used chemotherapeutic agents were assessed and those in the low-CuRS group in the TCGA cohort were found to be more sensitive to 5-FU, cisplatin, gemcitabine, and paclitaxel (Figure 7A). Similar results were observed in the validation cohort (Supplementary Figures S3A,B). A total of 37 small molecule drugs effective in patients with a high CuRS were subsequently identified to target 23 biological pathways (Figure 7B). Subsequently, patient responses to immunotherapy were assessed using the TIDE algorithm. Patients with lower CuRSs showed higher responses in both TCGA (p = 0.003, Figure 7C) and external validation cohorts (p < 0.05, Supplementary Figures S2C,D). Additionally, subclass mapping results suggested that patients with lower CuRSs showed increased sensitivity to anti-PD1 therapy in both TCGA and external validation cohorts (FDR <0.01) (Figure 7D; Supplementary Figures S3E,F). Moreover, the CuRS model was constructed for the immunotherapy cohort, IMvigor210, which revealed significantly worse survival among patients in the high-CuRS group (p = 0.0036, Figure 7E). Subsequently, the relationship of TMB and neoantigens with CuRS in the immunotherapy cohort was assessed. The results suggested that neoantigen expression was significantly higher in the low-CuRS group. However, TMB did not exhibit a significant correlation with CuRS (Figures 7F,G). Overall, these findings suggested that the CuRS model was a viable tool to guide clinical treatment decisions for patients with PAAD.
[image: Figure 7]FIGURE 7 | Role of CuRS in clinical decision-making. (A) Box plot showing the predicted IC50 values for four commonly used drugs between the high- and low-CuRS groups; (B) Oncoplot showing the identified small molecule compounds, where the horizontal axis represents the name of the small molecule inhibitor and the vertical axis represents the biological pathway targeted by the corresponding small molecule inhibitors; (C) TIDE algorithm to predict the responses of patients in the high- and low-CuRS groups to immunotherapy; (D) Subclass mapping to predict the sensitivities of patients in the high- and low-CuRS groups to PD1 and CTLA4 treatments; (E) KM survival curves for the high- and low-CuRS groups in the IMvigor210 cohort; (F) Correlation between CuRS and TMB in the IMvigor210 cohort; (G) Correlation between CuRS and neoantigens in the IMvigor210 cohort.
DISCUSSION
A novel CuRS model incorporating seven genes was constructed in this study. CuRS was an independent prognostic factor, whereby a higher CuRS predicted a worse prognosis. Patients in the high-CuRS group showed higher hypoxic and angiogenic activities, lower levels of immune cell infiltration, lower immunogenicity, lower immune checkpoint activity, higher tumor purity, and higher genomic alteration status as compared to those in the low-CuRS group. Additionally, patients with high CuRSs exhibited increased sensitivity to conventional chemotherapy but poorer responses to immunotherapy.
Cell death is significantly associated with cancer progression, metastasis, and treatment responses. Inhibition of cell death enhances tumor metastasis and resistance to chemotherapy in malignant cells (Su et al., 2015; Strasser and Vaux, 2020). As most tumors are innately resistant to apoptosis, the induction of non-apoptotic cell death has emerged as a new strategy in cancer treatment (Tang et al., 2020). PAAD is a malignant tumor and multiple mechanisms of resistance to apoptosis result in low sensitivity to conventional chemotherapy and radiotherapy regimens in these patients (Hamacher et al., 2008). Other cell death-related mechanisms, including ferroptosis and pyroptosis, can be targeted for PAAD treatment (Chen et al., 2021; Ye et al., 2021; Yu et al., 2022). Cuproptosis is a novel form of cell death and plays a role in tumors that are innately resistant to apoptosis (Kahlson and Dixon, 2022; Tsvetkov et al., 2022). This is the first study to focus on cuproptosis as a cell death mechanism in PAAD. Our findings suggested that DLAT, GSS, NDUFB2M, and TIMMDC1 were significant prognostic factors. Additionally, the NRG-based risk model exhibited excellent predictive performance in both the training and the external validation cohorts.
This study confirmed significant differences in biological pathways between the two groups. Patients in the high-CuRS group showed significantly higher angiogenic and hypoxic activities. Previous studies report that active angiogenesis is essential for tumor growth and metastasis, thus resulting in immune function suppression; therefore, angiogenesis inhibition is a promising therapeutic option for suppressing tumor growth (Sharma et al., 2001; Motz and Coukos, 2011; Welti et al., 2013). Hypoxia can suppress TME and promote PAAD progression (Liu et al., 2019; Gupta et al., 2021; Tao et al., 2021). Cancer-related pathways such as P53 and VEGF were enriched in the high-CuRS group. These findings suggested that a high CuRS indicated a higher degree of PAAD malignancy. The elevated cell killing activity in the low-CuRS group suggested high anti-tumor immune responses (Sivori et al., 2021; You et al., 2021). Overall, patients in the high-CuRS group experienced tumor growth and immunosuppression resulting in significantly poorer survival, whereas those in the low-CuRS group exhibited stronger anti-tumor immunity.
The synergistic effects of TME and immunoreactivity are significantly associated with cancer treatment and patients’ prognoses (Bruni et al., 2020; Riera-Domingo et al., 2020). In this study, we assessed the differences in TME and immunoreactivity between the two groups. Patients in the low-CuRS group exhibited higher immune scores and immune checkpoint activity, indicating stronger immune functions. Additionally, high CuRSs were associated with higher M0 macrophage activity, whereas low CuRSs were associated with higher CD8 T, B, and NK cell activities. These findings suggested that high CuRSs may contribute to an immune-silenced tumor phenotype, whereas low CuRSs lead to an immune-activated phenotype with active anti-tumor immune responses (Hamanishi et al., 2007; Thorsson et al., 2018; Bald et al., 2020), consistent with a better survival status among patients in the low-CuRS group. Moreover, patients in the low-CuRS group may develop “hot” tumors that are sensitive to immunotherapy. In addition, high CuRSs represent a high HRD score, leading to impaired double-strand break repairs, a common driver of tumorigenesis (Nguyen et al., 2020). HRD score is highly correlated with the clinical progression of PAAD (Wagener-Ryczek et al., 2021). Further, high CuRS was associated with an increased proliferation score, suggesting a high tumor cell malignancy. Although neoantigens did not exhibit significant differences between the two groups, lymphocyte infiltration scores and TGF-beta responses were significantly associated with low CuRS. Similarly, more tumor-infiltrating lymphocytes lead to stronger anti-tumor immunoreactivity and responses to immunotherapy (Waldman et al., 2020; Paijens et al., 2021). TGF-beta plays a dual role in PAAD by mediating tumor-stromal crosstalk and regulating TME (Qian et al., 2020). These findings suggested that low CuRS could predict immune activation in TME and the development of immunotherapy-sensitive “hot” tumors.
TMB is a biomarker of patients’ responses to immunotherapy, and higher TMB suggests better immunotherapeutic outcomes (Hellmann et al., 2018a; Hellmann et al., 2018b). In this study, patients in the high-CuRS group exhibited high TMB but low immunoreactivity, suggesting that high TMB was not necessarily predictive of high immunogenicity. TMB is reportedly inefficient in predicting the potential benefits of immunotherapy among patients with ADD (Eso and Seno, 2020; Lawlor et al., 2021). Our results suggested that CuRS and TMB represent different aspects of tumor immunobiology in PAAD and the former could better identify “hot” tumors with an immune-activated phenotype.
Immunotherapy is a novel therapeutic strategy for treating multiple cancers including PAAD. Identifying patients who can benefit from immunotherapy remains a great challenge. PD-1 expression, microsatellite instability, and mutation burden are inefficient in predicting the potential benefits of immunotherapy (Lawlor et al., 2021). In this study, the accuracy of CuRS in predicting patients’ responses to immunotherapy was assessed by multiple methods. TIDE and subclass mapping analyses suggested that patients with higher CURSs were more sensitive to anti-PD1 therapy, which was confirmed in an external validation cohort. Evaluation of patients who received anti-PD1 immunotherapy in the IMvigor210 cohort showed significantly better survival among those with low CuRSs. Additionally, patients in the low-CuRS group showed significantly higher neoantigens. Drug sensitivity analysis suggested that CuRS may facilitate chemotherapy. Some drugs commonly used in PAAD treatment, such as 5-FU, gemcitabine, and paclitaxel, were more effective among patients in the high-CuRS group. These results suggested that cuproptosis could affect the efficacy of chemotherapeutic agents. Furthermore, GSEA suggested that patients in the high-CuRS group showed reduced responses to radiotherapy. Therefore, cuproptosis-based strategic optimization of chemotherapy, radiotherapy, and immunotherapy proposed in this study may be effective in treating PAAD. Previous studies have focused on the association between pyroptosis and ferroptosis in the treatment of PAAD. In comparison, cuproptosis shows better efficacy in decision-making for treatment regimens, especially chemotherapy (Yu et al., 2022).
However, this study has some limitations. First, the lack of data resulted in only inter-patient heterogeneity being accounted for, and not intratumoral heterogeneity. Additionally, although we have used some algorithms to assess the accuracy of this risk model in predicting patient sensitivity to chemotherapy and immunotherapy, further validation in prospective cohort trials and clinical data is warranted in the future. Moreover, changes in the immune microenvironment are dynamic; however, we have only discussed the heterogeneity of the immune microenvironment. Additional time series experiments can better explain the dynamic interactions between cuproptosis and the immune microenvironment. Finally, in vivo and in vitro experiments are needed to assess the specific biological functions of cuproptosis in PAAD.
In conclusion, a novel CuRS model was developed in this study to predict the OS of patients with PAAD, which was validated in the training and external validation cohorts. Low CuRSs suggest active anti-tumor immunity and stronger immune activation (“hot” tumors). Additionally, this model could predict patient sensitivities to chemotherapy and immunotherapy. Overall, the findings of this study contribute to further understanding of cuproptosis and the development of precise PAAD treatment.
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Supplementary Figure S1 | External validation of the CuRS model. KM survival curves for patients in the (A) ICGC and (B) E-MTAB cohorts; Survival status of patients and expression of model genes in the (C) ICGC and (D) E-MTAB cohorts; (E) 1-, 3-, 5-, and 8-year ROC curves for CuRS in the (E) ICGC and (F) E-MTAB cohorts.
Supplementary Figure S2 | Subgroup Cox analysis for the CuRS model. Subgroup Cox regression analysis of CuRS in (A) TCGA, (B) ICGC, and (C) E-MTAB cohorts.
Supplementary Figure S3 | External validation of CuRS model-related treatment decisions. Predicted IC50 values for the four commonly used drugs in the high- and low-CuRS groups in the (A) ICGC and (B) E-MTAB cohorts; differences in immune responses predicted by the TIDE algorithm between the high- and low-CuRS groups in the (C) ICGC and (D) E-MTAB cohorts; Immune response differences predicted by subclass mapping between the high- and low-CuRS groups in the (C) ICGC and (D) E-MTAB cohorts.
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Background: Immunotherapy has become a new direction of current research because the effect of traditional radiotherapy and chemotherapy on clear cell renal cell carcinoma (ccRCC) is not satisfactory. T cell proliferation-related genes (TRGs) play a pivotal role in tumor progression by regulating the proliferation, activity, and function of immune cells. The purpose of our study is to construct and verify a prognostic model based on TRGs and to identify tumor subtypes that may guide treatment through comprehensive bioinformatics analyses.
Methods: RNA sequencing data, clinical information, and somatic mutation data of ccRCC are obtained from The Cancer Genome Atlas (TCGA) database. We identified the prognosis-related TRGs which were differentially expressed between normal and tumor tissues. After dividing the patients into a train set and a test set according to proportion 1:1 randomly, the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were performed to construct a risk-stratified model. Its prediction performance was verified. Then, Gene Set Enrichment Analysis (GSEA), principal component analysis (PCA), tumor microenvironment (TME) analysis, and the half-maximal inhibitory concentration (IC50) prediction were performed between the different groups of patients. To further discuss the immunotherapy between hot and cold tumors, we divided all patients into two clusters based on TRGs through unsupervised learning. Analyzing the gene mutation and calculating the tumor mutation burden (TMB), we further explored the relationship between somatic mutations and grouping or clustering.
Results: Risk-stratified model and nomogram predict the prognosis of ccRCC patients accurately. Functional enrichment analyses suggested that TRGs mainly focused on the biological pathways related to tumor progression and immune response. Different tumor microenvironment, drug resistance, and TMB can be distinguished clearly according to both risk stratification and tumor subtype clustering.
Conclusion: In this study, a new stratification model of ccRCC based on TRGs was established, which can accurately predict the prognosis of patients. IC50 prediction may guide the application of anti-tumor drugs. The distinction between hot and cold tumors provides a reference for clinical immunotherapy.
Keywords: clear cell renal cell carcinoma, T cell proliferation, prognostic model, immune, tumor microenvironment, hot and cold tumors
INTRODUCTION
The histological subtypes of renal cell carcinoma include clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), chromophobe renal cell carcinoma (chRCC), and some other rare subtypes. As the most common type of renal cell carcinoma, ccRCC accounts for more than 70% of all renal cell carcinomas. With the development of targeted therapy and immunotherapy, more and more immune checkpoint inhibitors (ICIs) have been used in clinics. For example, anti-programmed cell death protein 1(PD1) combined with anti-cytotoxic T lymphocyte antigen 4 (CTLA4) has become the first-line treatment of metastatic renal cell carcinoma. Although new targeted and immune agents continue to emerge and improve the prognosis of some patients, these drugs are still not suitable for all patients (Linehan and Ricketts, 2019; Samstein, et al., 2019; Kim, et al., 2021; Klumper, et al., 2021; Wu, et al., 2021; Wu, et al., 2022). Antineoplastic drugs are less effective in immunosuppressive tumor microenvironment (TME) (Lai, et al., 2021). The tumor immune microenvironment has become the focus of renal cell carcinoma research. Therefore, it is necessary to further study the immune landscape of ccRCC in order to promote the development of immunotherapy and improve the prognosis of patients.
Related to the proliferation and function of immune cells or tumor progression, T cell proliferation-related genes (TRGs) involve hundreds of protein-coding genes which include CTLA4, HHLA2, PRKCQ, IL4I1, IL20RB, HOMER1, DHPS, and so on. The ccRCC subgroup with hypomethylated CTLA4 promoter was characterized by increased infiltration of immune cells, especially CD8+T cells (Klumper, et al., 2021). IL4I1 inhibited the proliferation of T cells including CD8 + anti-tumor T cells and recruited suppressor immune cells such as Tregs by activating Aryl hydrocarbon receptor (AHR). IL4I1 promoted tumor progression by regulating TME (Lasoudris, et al., 2011; Cousin, et al., 2015; Sadik, et al., 2020). In ccRCC, HHLA2 was significantly correlated with necrosis and microvascular invasion. HHLA2/PD-L1 co-expression was significantly correlated with a high density of CD8 + and CD4 + tumor-infiltrating lymphocyte (TIL). Combined with KIR3DL3, HHLA2 inhibited T cells and NK cells. Targeting HHLA2-KIR3DL3 alone to inhibit the checkpoint pathway or in combination with PD1 blockade is a potential treatment (Zhou, et al., 2020; Bhatt, et al., 2021). After knocking down the expression of HHLA2 in human ccRCC, viability, migration, and invasion of tumor cells were significantly inhibited and the cell cycle was stagnated (Chen, et al., 2019). The function of Treg can be inhibited by PRKCQ, while PRKCQ can activate Teff (Zanin-Zhorov, et al., 2010). By inducing insulin resistance phenotype, activated PRKCQ limited the access of tumor cells to glucose. Therefore, PRKCQ has an anti-tumor effect on tumors with high glycolysis including ccRCC (Sourbier, et al., 2013). The expression of IL20RB is up-regulated in renal cell carcinoma and IL20RB had crosstalk with neutrophils (Guo, et al., 2022). In vitro, HOMER1 promoted the proliferation, migration, and invasion of colorectal cancer cells by up-regulating G3BP1 (Cui, et al., 2020). ERK-mediated Ser-233 phosphorylation of DHPS can affect cell proliferation, and high expression of DHPS was associated with poor prognosis of lung adenocarcinoma (Wang, et al., 2020). According to Kai-Li Liu et al., DHPS inhibitors inhibited the invasion and migration of melanoma cells (Liu, et al., 2021). TME consists of tumor cells, stromal cells, infiltrating immune cells, cytokines and other nontumour components. Positive and negative regulators of T cell proliferation, such as CTLA4, can regulate TME by affecting the clustering and number of T cells (Lai, et al., 2021). Paying attention to these regulatory genes may generate a new understanding of TME and classify tumor subtypes according to immune infiltration.
The construction of a prognostic signature has been proved to be a feasible strategy for predicting disease outcomes (Wu, et al., 2021; Wu, et al., 2022). Recently, Mateusz Legut et al. discovered some new positive regulators of T cell proliferation. It is worth noting that most of these regulators can also enhance T cell function and cytokine secretion. We found that there were 25 new TRGs (Legut, et al., 2022). Although there were many prognostic models for ccRCC patients, the prediction effect of TRGs ensemble modeling based on the fusion of 25 new genes and known TRGs is not reported. Therefore, we constructed a prognostic model based on 8 TRGs by analyzing the data of ccRCC patients in the TCGA database. Importantly, these eight genes contain the key gene CTLA4. Homer scaffold protein 1 (HOMER1), which is one of 25 newly discovered TRGs, was also contributed to the signature. What’s more, we also discussed the immune landscape and drug therapy for patients with ccRCC. The results of this study may provide alternative signature to predict the prognosis and therapeutic effect of ccRCC.
MATERIALS AND METHODS
Data and genes collected
RNA transcriptome datasets and clinical data of ccRCC patients are the latest releases from The Cancer Genome Atlas (TCGA) database (http://tcga.cancer.gov/; 29 March 2022) (Linehan and Ricketts, 2019).Somatic mutation data of ccRCC patients obtained from the TCGA database were downloaded through the University of California Santa Cruz Xena (UCSC Xena; https://xena.ucsc.edu/). (Navarro Gonzalez, et al., 2021) RNA-seq data included 541 tumor tissue samples and 72 normal tissue samples. After excluding patients with a follow-up of fewer than 30 days and missing data, we extracted clinical information from 485 patients for our survival-related study. The raw count data and TPM data from “STAR-Counts” were used for differential analysis and subsequent analyses, respectively. There were 1793 immune-related genes in the ImmPort database (https://www.immport.org/). We searched the AmiGO2 database (http://amigo.geneontology.org/amigo/) to select human protein-coding genes involved in T cell proliferation by keyword “regulation of T cell proliferation” and removed duplicates. New T cell proliferation regulators were extracted from the study performed by Mateusz Legut et al. and incorporated with the TRGs from the AmiGO2 database (Legut, et al., 2022).
Selection of differentially expressed TRGs
Using “edgeR” and “data.table” R packages, all differentially expressed genes (DEGs) between normal and tumor tissues were selected by setting: | Log2(fold change) | > 1 and false discovery rate (FDR) <0.05. R packages “ggplot2” and “pheatmap” were used to plot volcano diagram and heatmap. Protein-protein interaction (PPI) of differentially expressed TRGs were generated through the STRING database (https://www.string-db.org/) (Szklarczyk, et al., 2021). The result was imported into Cytoscape (v3.9.0) for visualization (Shannon, et al., 2003).
Establishment and validation of the prognostic model
Using “caret” R package, we randomly divided samples into train set and test set according to proportion 1:1. R packages “survival”, “glmnet”, and “survminer” were used for modeling and visualization. TRGs related to prognosis were screened by univariate Cox proportional hazard regression analysis. We utilized cross-validated LASSO regression to screen overall survival (OS)-related TRGs without multicollinearity. Then, a risk model based on TRGs was established by multivariate Cox regression. Each patient’s risk score can be calculated according to the model, and the formula is as follows:
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Coef(mRNAx) and expr(mRNAx) are the survival correlation coefficient and expression of TRG involved in the construction of the model, respectively. Patients were divided into low-risk group and high-risk group according to the median risk score of all patients (Wu, et al., 2022). Univariate Cox and multivariate Cox regression analyses were performed to identify independent variables of risk score and clinical information. Besides, we visualized the accuracy of the model prediction by using “survival”, “survminer”, “pheatmap”, and “timeROC” R packages.
Nomogram and calibration
To illustrate that the predicted results have good consistency with the actual situation, we utilized “survival”, “regplot”, and “rms” R packages to establish the nomogram and calibration curves of 1-, 2-and 3-year OS. Nomogram and calibration curves were drawn based on prognostic risk score, age, pathological grade, and tumor stage obtained from multivariate analysis.
Function and pathway enrichment analysis
To determine the main biological properties, we use Gene Ontology (GO) to annotate the functions of TRGs, including molecular functions, cellular components, and biological pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to analyze TRGs function and related high-level genome function information. We also used Gene Set Enrichment Analysis (GSEA) software (v4.2.3) to distinguish the function and pathway enrichment between high- and low-risk groups. | normalized enrichment score (NES) | > 1.5 and FDR q-value < 0.05 were considered screening conditions. “ClusterProfiler”, “org.Hs.eg.db”, “enrichplot”, “GOplot”, “ggplot2”, “grid”, “gridExtra”, and “plyr” R packages were used for visualization.
Immune microenvironment-related research
According to the results of the GSEA analysis, we analyzed and visualized the immune microenvironment of patients in high- and low-risk groups by using “scales”, “tidyverse”, “ggpubr”, “ggExtra”, “reshape2”, “ggplot2”, “ggtext”, and “limma” R packages. Combined with the profile of infiltration estimation for all TCGA tumors downloaded from the TCGA dataset, different software including XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, CIBERSORT were utilized to estimate the patients’ immune infiltration statuses. Besides, using “GSVA”, “GSEABase”, “limma”, “ggpubr”, and “reshape2” R packages, we calculated and visualized immune cell score and immune function score by single-sample gene set enrichment analysis (ssGSEA). Then, we compared the TME score and immune checkpoint activation between high- and low-risk groups by using “estimate” R package.
Drug sensitivity
In addition, to evaluate the chemotherapeutic effect of ccRCC patients, we used “pRRophetic” R package to calculate the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs. The result may guide individualized treatment.
Somatic mutation analysis and tumor mutation burden
The somatic mutations of TRGs involved in constructing the prognostic model were obtained from the cBioPortal database (https://www.cbioportal.org/). According to the “VarScan2 Variant Aggregation and Masking” data downloaded through UCSC Xena, the differentially expressed TRGs mutations of patients in high- and low-risk groups were analyzed and visualized by using “GenVisR” R package. Representing the number of mutations per million bases in tumor tissue, TMB was associated with the prognosis of patients (Samstein, et al., 2019). We showed the mutation landscape of ccRCC patients in the TCGA database and calculated the TMB score for each patient by using “maftools”, “AnnotationDbi”, “SummarizedExperiment”, “tidyverse”, “TCGAbiolinks”, and “org.Hs.eg.db”R packages. Then we assessed the correlation between TMB score and risk score based on the stratified model.
Clusters based on 8 prognostic TRGs
To explore the potential molecular subsets, we used the “ConensusClusterPlus”, “Rtsne”, and “scatterplot3d” R packages to identify the subgroups and performed 3D principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and Kaplan-Meier survival analysis. We also performed immune microenvironment-related analysis, calculated the TMB scores, and investigated the drug sensitivities between different clusters to explore the similarities and differences between clusters and high- and low-risk groups.
Statistical analysis
All statistical analyses were carried out in R language (v4.1.3). Single-factor analysis of variance was utilized to compare gene expression between normal tissues and tumor tissues of ccRCC, and FDR was calculated by Benjamini–Hochberg method. Univariate Cox, cross-validated LASSO, and multivariate Cox regression analyses were used to screen overall survival (OS)-related TRGs which contributed to the risk model. The overall survival rates of different groups and clusters were estimated by Kaplan-Meier method, and the significance was tested by log-rank. The independent prognostic value of the risk signature regarding OS was evaluated by univariate and multivariate Cox regression analyses. Wilcoxon rank-sum test was used for the inter-group comparisons. Spearman rank correlation was used to calculate the correlations between TMB and risk scores, between TMB and expression of TRGs, and between immune cells infiltration scores and risk scores, respectively. All statistical tests take p < 0.05 as statistically significant.
RESULTS
Identification and analyses of differentially expressed TRGs
The main process of this study is shown in Figure 1. A total of 207 TRGs with protein-coding functions were obtained from databases and an article (Legut, et al., 2022) (Figure 2A; Supplementary Table S1). A total of 104 differentially expressed TRGs were obtained by the intersection of all DEGs with the TRGs gene set. Ninety up-regulated TRGs and fourteen down-regulated TRGs were found in the differential analysis between ccRCC and normal kidney tissues (Figure 2B; Supplementary Table S2). We drew a volcano diagram to show the differentially expressed TRGs (Figure 2C). Using the analysis function of the STRING database, we constructed a PPI network of differentially expressed TRGs. The top 10 hub genes and pivotal modules were obtained through the “cytohubba” plugin and “MCODE” plugin of Cytoscape, respectively (Figures 2D,E). We found that the top 10 hub genes included CTLA4, FOXP3, CD28, CD80, CD86, and IL2/4/6/10. According to the previous study, CD28 can activate the PI3K/Akt/mTOR pathway, which is closely related to the promotion of T cell growth and proliferation. CTLA-4 and PD-1 can affect T cell proliferation and function by inhibiting signal molecules in this pathway (Maciver, et al., 2013).
[image: Figure 1]FIGURE 1 | The flowchart of this study.
[image: Figure 2]FIGURE 2 | Analysis of the differentially expressed TRGs. (A) The Venn diagram depicting intersecting genes in the newly found TRGs and different databases; (B) the Venn diagram depicting intersecting genes in TRGs and DEGs; (C) the volcano plot of differentially expressed TRGs; (D) the interconnection of 10 hub differentially expressed TRGs, darker color represented higher scores; (E) the visualized PPI network of differentially expressed TRGs obtained by using “MCODE” plugin of Cytoscape.
Construction, validation, and evaluation of the model
It was found that 39 mRNAs related to T cell proliferation were significantly correlated with OS through univariate Cox regression analysis (Figure 3A). We drew a heatmap based on the expression of 39 TRGs (Figure 3B). Performing LASSO regression, 14 TRGs were extracted when the first-rank value of Log(λ) was the minimum possibility of deviation (Figures 3C,D). Then we performed multivariate Cox regression analysis and got 8 TRGs to construct a risk-stratified model.
[image: Figure 3]FIGURE 3 | The construction of a prognostic model. (A) 39 prognostic TRGs extracted by univariate Cox regression analysis from 104 differentially expressed TRGs; (B) the heatmap of these 39 prognostic TRGs; (C) the LASSO coefficient profiles of these 39 prognostic TRGs; (D) the 10-fold cross-validation for variable selection in the LASSO model.
The risk scores were calculated as follows: risk score = CTLA4 × (0.2337) + HOMER1 × (0.2690) + Protein kinase C theta (PRKCQ) × (−0.2833) + Transmembrane 131 like (TMEM131L) × (−0.3749) + Interleukin 4 induced 1(IL4I1) × (0.4199) + Deoxyhypusine synthase (DHPS) × (0.3211) + HERV-H LTR-associating 2 (HHLA2) × (−0.2633) + Interleukin 20 receptor subunit beta (IL20RB) × (0.1564).
According to the risk score formula, we divided the patients into high- and low-risk groups on average. To evaluate the difference in survival time and survival state between the two groups of patients, we drew survival curves, heatmaps, and so on (Figures 4A–L). As can be seen from the figures, the prognosis of the high-risk group was significantly worse than that of the low-risk group, and there was a significant difference in the expression of 8 TRGs participating in the building model between these two groups. Importantly, the model is suitable not only for patients with early tumor staging but also for patients with advanced stages (Figures 4M,N).
[image: Figure 4]FIGURE 4 | Prognosis value of the risk-stratified model in the train, test, and entire sets. (A–C) The risk-stratified model was based on 8 TRGs of the train, test, and entire sets, respectively; (D–F) the exhibition of survival time and survival status between low- and high-risk groups in the train, test, and entire sets, respectively; (G–I) the heatmap of 8 TRGs in the train, test, and entire sets, respectively; (J–L) Kaplan–Meier survival curves of OS of patients between low- and high-risk groups in the train, test, and entire sets, respectively. (M,N) Kaplan–Meier survival curves of OS of patients between low- and high-risk groups stratified by tumor stage.
The results of univariate Cox and multivariate Cox regression analysis of clinical information were consistent (Figures 5A,B). There was no significant correlation between gender and prognosis, while age, pathological grade, tumor stage, and risk score were negatively correlated with good prognosis. Among the univariate Cox analysis results, the hazard ratios (HR) and 95% confidence interval (CI) of the risk score were 1.167 and 1.136–1.200 (p < 0.001), respectively. In multivariate Cox regression analysis, the HRs of risk score, age, tumor stage, and pathological grade were 1.107, 1.030, 1.614, and 1.296, respectively (p < 0.05). As independent prognostic factors, risk score, age, tumor stage, and pathological grade were used to create nomogram plots that predicted 1-, 3-, and 5-year OS (Figure 5C). In addition, the 1-, 2-, and 3-year calibration plots proved that the OS predicted by the nomogram was consistent with actual conditions (Figure 5D). We plotted 1-, 3-, and 5-year time-dependent receiver operating characteristics ROC curves to assess the sensitivity and specificity of the prognosis of our model (Figures 5E–G). The area under the ROC curve (AUC) of the risk score in the training group was as high as 0.831, and the AUC values of the test group were also greater than 0.7. The AUC values of the entire set for 1-, 3-, and 5-year were 0.805, 0.778, and 0.785, respectively. This shows that the prediction accuracy of our model is relatively high. In addition, ROC curves for risk score, clinical information, and nomogram score were plotted (Figures 5H–J). The 1-, 3-, and 5-year AUC values of the nomogram score were 0.878, 0.828, and 0.796, respectively, which showed high accuracy.
[image: Figure 5]FIGURE 5 | Nomogram and assessment of the risk-stratified model. (A,B) Univariate Cox and multivariate Cox regression analyses of clinical factors and risk score with OS, respectively; (C) the probability of the 1-, 3-, and 5-year OS predicted by the nomogram which integrated the risk score, age, tumor grade, and tumor stage; (D) the calibration curves for 1-, 3-, and 5-year OS; (E–G) the 1-, 3-, and 5-year ROC curves of the train, test, and entire sets, respectively; (H–J) the 1-, 3-, and 5-year ROC curves of risk score, nomogram score, and clinical characteristics.
Function and pathway enrichment analysis
We analyzed the pathway and function enrichment of differentially expressed TRGs by KEGG and GO, which suggested that it was mainly enriched in immune-related pathways and T cell proliferation and activation (Supplementary Figure S1). Using GSEA software, we analyzed the pathway and function by “c2.cp.kegg.v7.5.1.symbols.gmt” and “c5.go.v7.5.1.symbols.gmt” of gene sets database in patients with high- and low-risk groups. Interestingly, GSEA enrichment was mainly concentrated in the low-risk group, while the FDR values of the high-risk group were all greater than 0.25. Therefore, we selected the results of interest in the low-risk group to display (p < 0.05; FDR < 0.05; |NES| > 1.5). Compared with the high-risk group, the low-risk group mainly enriched tumor-related and metabolic-related pathways and functions (Figure 6A).
[image: Figure 6]FIGURE 6 | The investigation of function and pathway enrichment and tumor immune microenvironment between the high- and low-risk groups. (A) GSEA of the top 10 functions and pathways significantly enriched in the low-risk group; (B) the immune cell bubble of risk groups; (C) the correlation between risk score and some of the tumor immune cells; (D) the comparison of ssGSEA score including immune cell score and immune-related function score between risk groups. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
Estimation of intratumoral immune cell infiltration
By using different software for immune cell correlation analysis, we found that immune score, microenvironment score, and cytotoxicity score have a stronger correlation in the high-risk group than the low-risk group (Figure 6B; Supplementary Table S3). The high-risk group had more types of immune-associated cells than the low-risk group. For example, Macrophage M0, Macrophage M1, plasmacytoid dendritic cell, and cancer-associated fibroblast are positively correlated with the risk score. However, eosinophil and endothelial cells were negatively correlated with the risk score (p < 0.05). Interestingly, we found that resting CD4+ memory T cells and resting NK cells were more correlated with low-risk scores. However, activated NK cells and activated CD4+ memory T cells were more closely associated with high-risk scores. Importantly, CD8+T cells and Tregs were strongly associated with high-risk scores (Figure 6C). Therefore, we speculated that the high-risk patients may have a higher state of immune cell infiltration. Boxplots were created to show differences in immune cells, immune-related functions, and TME in the high- and low-risk groups (Figure 6D). We calculated the TME scores of patients (Supplementary Table S4). Although there was no significant difference in stromal score in high- and low-risk groups, immune cell score and estimate score were different significantly (p < 0.05) (Figure 7A). Given the differences in immune cell correlations, we also analyzed immune checkpoints in these two groups. The results indicated that there were significant differences at 32 immune checkpoints in the high-low risk group, with 23 of them with p < 0.001 (Figure 7B). This suggested that we can group ccRCC patients and select appropriate checkpoint inhibitors.
[image: Figure 7]FIGURE 7 | The investigation of tumor immune microenvironment and drug sensitivity between the high- and low-risk groups. (A) The comparison of the stromal score, immune score, and estimate score between risk groups; (B) the difference of checkpoints expression between risk groups; (C) some of the drug sensitivity predictions of risk groups. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
Previous studies have proved that tumors divided into different subtypes often have different immune microenvironments and respond differently to immunotherapy. For the subtypes of ccRCC, the increased infiltration of immune cells suggests that these tumors are immune “hot tumors”, otherwise they are called “cold tumors” (Galon and Bruni, 2019; Klumper, et al., 2021). To distinguish cold and hot tumors in ccRCC, patients were regrouped into two clusters by R package “ConensusClusterPlus” based on the expression levels of the 8 TRGs involved in modeling (Figure 8A; Supplementary Table S6). For different clusters, the curves in the Kaplan-Meier analysis showed significant differences (p < 0.001) (Figure 8B). To compare the similarities and differences between clusters and risk groups, we drew the Sankey diagram and performed PCA and t-SNE. Cluster1 had a better prognosis, while Cluster2 had a poor prognosis. Patients in Cluster1 mostly belong to the low-risk group, while patients in Cluster2 were mostly part of the high-risk group. We can clearly distinguish these two clusters by t-SNE. The differences between clusters can be seen more clearly through 3-dimensional PCA than 2-dimensional PCA (Figures 8C–E). Patients with subtypes were able to distinguish TME significantly. Cluster1 and cluster2 had significant differences in the stromal score, immune score, and estimate score (p < 0.001) (Figure 8F). In the analysis of 47 immune checkpoints, 38 checkpoints showed heterogeneity between different clusters (p < 0.05). Importantly, the p values of 27 checkpoints were less than 0.001 (Figure 8G). The score on immunity and microenvironment of cluster2 was higher than that of cluster1. Analysis of immune cell infiltration by different software showed that neutrophil, endothelial cell, B cell, monocyte, fibroblast associated with cancer, myeloid dendritic cell, NK cell, and T cell were significantly different between different clusters (p < 0.05) (Figure 9A; Supplementary Table S7).
[image: Figure 8]FIGURE 8 | Distinction between risk groups and clusters. (A) Patients were divided into two clusters according to tumor subtypes; (B) Kaplan–Meier survival curves of OS in clusters; (C) the Sankey diagram of risk groups and clusters; (D) the t-SNE of risk groups and clusters; (E) the 3D PCA of risk groups and clusters; (F) the comparison of the stromal score, immune score, and estimate score between clusters; (G) the difference of checkpoints expression between clusters. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
[image: Figure 9]FIGURE 9 | Distinction between risk groups and clusters. (A) The heatmap of immune cells in clusters from different platforms; (B) some of the drug sensitivity prediction of clusters.
Drug sensitivity
Using “pRRophetic” R package, we screened potential therapeutic drugs. The results suggested that the high-risk group had a lower IC50 value (indicating higher sensitivity) in 33 targeted agents (e.g., A.443654) and a higher IC50 value in 26 targeted agents (e.g., AS601245) (p < 0.05) (Figure 7C; Supplementary Table S5; Supplementary Figure S2). As for the first-line agents of ccRCC, patients in the high-risk group were sensitive to Sunitinib, while patients in the low-risk group were sensitive to Pazopanib and Sorafenib. Unlike the risk grouping, it was found that 56 targeted agents such as Sunitinib had significant differences between these two clusters (p < 0.05). Interestingly, 42 targeted agents had lower IC50 in Cluster2, while there were only 14 targeted agents had lower IC50 in Cluster1 (Figure 9B; Supplementary Table S8; Supplementary Figure S3). For clusters based on 8 TRGs, precise drug therapy and immunotherapy may be more likely to contribute to the treatment outcome and prognosis of patients. We will further investigate the possibility of different drug treatments for tumor subtypes.
Research of somatic mutation and TMB
We used the cBioPortal database to analyze the mutations of eight TRGs involved in the modeling. However, we found that there were no significant mutations in these eight genes (Figure 10A). Thus, we analyzed all somatic mutations and visualized the information. The missense mutation was the most common variant classification and VHL is the gene with the highest mutation rate (Figure 10B). VHL and AKAP9 are mutually exclusive mutants, while VHL and PBRM1 are often co-mutated (Figure 10C). The variant allele frequencies (VAF) were mostly at a low level (Figure 10D). Compared with other tumors, the TMB of ccRCC was lower than the moderate level (Figure 10E). Besides, we studied all the differentially expressed TRGs and compared their mutations in high- and low-risk groups (Figure 11A). The results showed that the first four mutant genes, VHL, PBRM1, TTN, and SETD2, were the same between these two groups. The result was consistent with the report of previous studies (Braun, et al., 2020; Kim, et al., 2021). As a tumor suppressor gene, the mutation of Von Hippel-Lindau (VHL) interferes with the normal development and function of Follicular helper T (Tfh) cells by affecting glycolysis through the VHL-HIF-1 α axis (Zhu, et al., 2019). As for VHL-deficient T cells, the normal differentiation of Th17 cells was impaired in vitro (Chitrakar, et al., 2020). We calculated the TMB scores of ccRCC patients and compared them between high- and low-risk groups and between different clusters (Supplementary Table S9). The results suggested that patients with high-risk scores and patients belonging to Cluster2 have higher TMB scores (Figures 11B,C). Besides, the TMB score was positively correlated with the risk score (Figure 11D). Among the 8 TRGs participating in modeling, only the expression of IL4I1 and IL20RB was positively correlated with TMB scores (Figure 11E). In addition, we also analyzed the prognosis of the patients. Interestingly, patients with high-risk scores and high TMB scores had the worst prognosis. Similarly, patients belonging to Cluster2 with high TMB scores had the worst prognosis (Figures 11F,G).
[image: Figure 10]FIGURE 10 | Gene mutation analysis of ccRCC patients. (A)The mutation of 8 modeling TRGs obtained from the cBioPortal database; (B) the mutation landscape of ccRCC patients in the TCGA database; (C) genes with mutually exclusive mutation or simultaneous mutation; (D) the Variant Allele Frequencies (VAF) boxplot of mutated genes; (E) the comparison of TMB among ccRCC and other tumors in TCGA database.
[image: Figure 11]FIGURE 11 | TMB and immunotherapy prediction of ccRCC patients. (A) The comparison of mutations of differentially expressed TRGs in high- and low-risk groups; (B) the comparison of TMB between low- and high-risk groups, * means p < 0.05; (C) the comparison of TMB between clusters, ** means p < 0.01; (D) the correlation of risk score and TMB score; (E) the correlation of TRGs and TMB scores; (F) Kaplan–Meier survival curves of OS of patients among different groups based on risk scores and TMB scores; (G) Kaplan–Meier survival curves of OS of patients among different groups based on clusters and TMB scores.
DISCUSSION
As we all know, immune cells, especially T cells, play an irreplaceable role in the occurrence and development of tumors. For ccRCC, modern medical treatments such as targeted therapy and immunotherapy are carried out around immune cells. The importance of TRGs in anti-tumor is self-evident because of the function of regulating immune cell proliferation. In this study, we established a prognostic signature based on the TRGs found so far.
Our stratified model consists of eight TRGs (CTLA4, IL4I1, HHLA2, PRKCQ, IL20RB, HOMER1, DHPS, and TMEM131L). There were significant differences in prognosis and functional enrichment among the patients who were divided into high- and low-risk groups based on the stratified model. The prediction of immune cell infiltration shows that the TME of high-risk patients may enrich more Tregs and CD8+cells, which have been proved to inhibit tumor immune response in previous studies, thus helping tumor cells escape immune monitoring (Shang, et al., 2015; Tanaka and Sakaguchi, 2017; Dai, et al., 2021; Gao, et al., 2022). Of note, Tregs have the function of regulating T cells, B cells, NK cells, dendritic cells (DCs), and macrophages. It can deprive costimulatory signals of responder T cells by expressing CTLA4 and depriving the surrounding IL2. Importantly, Tregs also produce immunosuppressive cytokines such as TGF-β and IL10 which can inhibit the function of DCs and CD8+ effector T cells (Teffs) and promote the transformation of CD4+T cells into Tregs. Higher FOXP3+Tregs infiltration was found to be significantly associated with shorter OS in renal cell carcinoma (Shang, et al., 2015; Tanaka and Sakaguchi, 2017; Gao, et al., 2022). The decrease of Tregs can inhibit the growth of tumors and improve the effectiveness of tumor immunotherapy (Martin, et al., 2010). A higher Teff/Treg ratio in ccRCC was associated with a lower postoperative recurrence rate (Ghatalia, et al., 2019). Besides, Siyuan Dai et al. reported that excessive infiltration of CXCL13+CD8+T cells in tumors of ccRCC patients impaired the immune function of total CD8+T cells, which was associated with poor prognosis (Dai, et al., 2021). According to previous research, targeted therapy can often bring some adverse reactions and the therapeutic effects were different among individuals. Sometimes patients needed help with immunotherapy. However, tumors with different immune microenvironments had different sensitivities to immunotherapy. Highly invasive tumors with high immune scores were generally considered hot tumors, while non-invasive tumors with low immune scores were considered cold tumors. The distinction between hot and cold tumors can provide a reference for individualized immunotherapy based on tumor subtype clustering (Galon and Bruni, 2019; Kim, et al., 2021). Based on risk stratification, we couldn’t distinguish the difference in immune microenvironment between these two groups well. Therefore, we re-group patients with ccRCC according to tumor subtypes based on risk scores. After clustering, it can be seen that there were significant differences in the scores of immune microenvironments. Cluster2 has a higher stromal score, immune score, and estimate score than Cluster1. For hot tumors of Cluster2, we can use T-cell-targeting immunotherapies or other methods to treat patients. However, cold tumors often have a low mutation burden and rare invasive immune effector cells, which are resistant to a variety of immune checkpoint blocking drugs. We need to find ways to transform cold tumors into hot tumors. For instance, activating innate immune sensing pathways related to cancer is a potential method (Duan, et al., 2020; Liu, et al., 2020).
It is a pity that there are few immunotherapy data on ccRCC patients in the TCGA database. According to the latest research, TMB was significantly related to the efficacy of immunotherapy in tumor patients. There is increasing evidence that TMB is expected to become a predictive biomarker for immunotherapy of solid tumors such as lung cancer (Klein, et al., 2021; Vega, et al., 2021; Kim, et al., 2022). Therefore, we used TMB scores instead of immunotherapy data to validate our stratified model and hot and cold tumor subtypes. The results showed that there were significant differences in TMB scores between high- and low-risk groups and between tumor subtypes. We validated the stratified model internally through the test group and all samples. But it is difficult to verify the prognosis externally because there are few data containing both gene expression and survival data of ccRCC patients in external databases such as the Gene Expression Omnibus database. We used multiple platforms to analyze the immune microenvironment, which may be regarded as external verification in a sense. Our results have some limitations. More experiments are needed to verify and explore the possibility of new-found TRGs as new targets for immunotherapy in the future. We believed that our model is reasonable and can be verified by future clinical data and basic trials.
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AHR Aryl hydrocarbon receptor
AUC area under the ROC curve
ccRCC clear cell renal cell carcinoma
CD4/8/28/80/86 CD4/8/28/80/86 molecule
chRCC chromophobe renal cell carcinoma
CI confidence interval
CTLA4 cytotoxic T lymphocyte antigen 4
DC dendritic cell
DEG differentially expressed gene
DHPS Deoxyhypusine synthase
FDR false discovery rate
FOXP3 Forkhead box P3
GO Gene Ontology
GSEA Gene Set Enrichment Analysis
HHLA2 HERV-H LTR-associating 2
HOMER1 Homer scaffold protein 1
HR hazard ratio
IC50 half-maximal inhibitory concentration
ICB immune checkpoint blocking
ICI immune checkpoint inhibitor
IL2/4/6/10 Interleukin 2/4/6/10
IL20RB Interleukin 20 receptor subunit beta
IL4I1 Interleukin 4 induced 1
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO least absolute shrinkage and selection operator
NES normalized enrichment score
OS overall survival
PCA principal component analysis
PD1 programmed cell death protein 1
PPI protein-protein interaction
pRCC papillary renal cell carcinoma
PRKCQ protein kinase C theta
ROC receiver operating characteristic
ssGSEA single-sample gene set enrichment analysis
TCGA The Cancer Genome Atlas
Teff effector T cell
Tfh follicular helper T
TIL tumor-infiltrating lymphocyte
TMB tumor mutation burden
TME tumor microenvironment
TMEM131L Transmembrane 131 like
Treg regulatory T cell
TRG T cell proliferation-related gene
t-SNE t-distributed stochastic neighbor embedding
UCSC Xena University of California Santa Cruz Xena
VHL Von Hippel-Lindau
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According to the TIMER database, large tumor suppressor 2 (LATS2) is differentially expressed in various tumors. However, the correlation between LATS2 and esophageal squamous cell carcinoma (ESCC) and the association between LATS2 and immune infiltration in ESCC remain unclear. Our synthetic research on LATS2 in ESCC revealed that the expression was low in esophageal squamous epithelium tissues, revealing the pernicious and adverse prognosis of ESCC. The Kaplan–Meier survival investigation pointed out that low LATS2 expression would result in an adverse prognosis. Biological investigation indicated that LATS2 was engaged in cell migration, adhesion, and junction. To further explore the relationship between LATS2 and tumor immunity, we utilized CIBERSORT to assess immune infiltration. The findings revealed that specimens with lower LATS2 expression showed higher immune infiltration, including T-cell follicular helper cells, M0 macrophages, M1 macrophages, and myeloid dendritic cell resting. An association investigation indicated that LATS2 was negatively relevant to immune checkpoints that restrain operative antitumor immune reactions. We also conducted immunohistochemical staining to explore the link between LATS2 expression and immunophenotype. The indicated association between low LATS2 expression and an immunophenotype is conducive to our understanding of ESCC mini-environments and might offer new indications for enhancing new therapeutic targets.
Keywords: esophageal squamous cell carcinoma, overall survival, immune status, LATS2, ESCC
INTRODUCTION
Esophageal cancer is the sixth principal cause of death worldwide. It manifests as a poor prognosis during diagnosis and a high mortality ratio. Its main subtypes are ESCC and adenocarcinoma, of which the former is the most commonly seen (Uhlenhopp et al., 2020). The operative early tumor markers and diagnostic approaches for esophageal squamous cell carcinoma are still insufficient. We have found a growing number of crucial driver genes as technology advances. Nevertheless, many unknown key genes remain, especially those related to the immune microenvironment of ESCC. Recently, as research on the Hippo signaling path has gradually deepened, we have found that it not only regulates the size of organs but also its dysregulation is closely related to tumor occurrence (Pan, 2010; Harvey et al., 2013; Meng et al., 2016). As a key kinase in the Hippo channel, LATS2 is prevalent in the current research (Avruch et al., 2012). However, many studies have revealed that LATS2 is low-expressed in some tumors. For instance, LATS2 is negatively correlated with the outcome of patients with gliomas (Shi et al., 2019). In addition, in osteosarcoma, microRNA-744 accelerates osteosarcoma progression by inhibiting LATS2 (Sun et al., 2019). Simultaneously, miR-103 fosters metastasis and EMT by targeting LATS2 in hepatocellular carcinoma (Han et al., 2018). There is evidence for the functional and clinical significance of LATS2 in ESCC pathogenesis and prognosis, revealing a close relationship between LATS2 and tumorigenesis (Gao et al., 2017).
Several bioinformatics approaches were used in this study to explore the relationship between LATS2 and ESCC and immune infiltration and its molecular regulation. LATS2 was low-expressed in ESCC, which may explain the shorter survival rate. In addition, LATS2 may be involved in cell migration (Yamaguchi and Condeelis, 2007; Duff and Long, 2017), adhesion (Läubli and Borsig, 2019), and connection (Wu et al., 2017; Gardiner and Cukierman, 2022), which are closely related to tumor occurrence and development. Additionally, we assessed the association between LATS2 expression and key molecules associated with the immune system. Finally, immunostaining was performed to determine the expression mode of LATS2 and its association with immune-related factors. These findings indicate that LATS2 may play a significant role in carcinogenesis and regulating immune cell infiltration in ESCC.
MATERIALS AND APPROACHES
Tumor immune estimation Resource investigation
TIMER is considered a comprehensive resource that systematically investigates immune infiltrates covering various cancers (Li et al., 2016). The TIMER data bank can be employed to investigate 10,897 specimens covering 32 tumors in TCGA data bank (Li et al., 2017). The TIMER database is constructed of several modules. For example, the “DiffExp” model can help us explore the differential expression between tumors and normal neighboring tissues. We employed this model to analyze the association between mRNA expression levels of LATS2 with tumor and normal tissues.
LATS2 expression in different cancers in ONCOMINE
The mRNA expression levels of LATS2 between normal and tumor tissues in various cancers were investigated in the ONCOMINE data bank (www.oncomine.org), TCGA, and GEO data. We obtained RNA-seq data (level 3) of esophageal carcinoma (ESCA) from TCGA data bank (https://portal.gdc.cancer.gov/), which covered 162 ESCA specimens. In addition, we obtained LATS2 expression data of 82 ESCC patients and 11 corresponding normal tissue specimens from TCGA database. We also extracted the patient’s clinical information. Simultaneously, we obtained data on LATS2 expression in normal esophageal tissues from GTEx V8 (https://gtexportal.org/home/datasets).
Subsequently, we searched for ESCC as a keyword in the GEO (www.ncbi.nlm.nih.gov/geo) warehouse to obtain potential microarray data. Then, we examined whether samples with ESCC tumors and normal tissues were in the selected datasets. Two tests were chosen in addition in the existing investigation: GSE23400 (Platform: GPL97) and GSE161533 (Platform: GPL570) (Su et al., 2011; Li et al., 2014; Hyland et al., 2016).
Pre-processing procedures
We compiled the clinical information of 162 samples of ESCA from TCGA data bank and the relationship with LATS2 expression levels. Depending on the median of LATS2 gene expression, specimens are separated into two groups, namely, LATS2 high expression and LATS2 low expression. This step was carried out by introducing R software, whose version was 3.6.3. The original data were obtained from the GEO data bank. The extractive data were normalized and handled using log2 conversion. Probes were transformed into gene markers depending on the description information. The batch effect function was utilized as an original quality control procedure by utilizing variance stability count to remove individual horse influence. According to each dataset design, the specimens were separated into two groups: the normal one and the tumor one. We utilized GraphPad Prism 8.0 to map LATS2 gene expression differences in ESCC.
Prognostic investigation
The original data and the matching clinical information of RNA sequence data (level 3) of 82 ESCC patients were obtained from TCGA. In addition, a timeROC investigation was performed to compare the forecasting precision and the risk level of LATS2. The analytical methods were carried out using R software, whose version was 3.6.3, and the “ggrisk” and “timeROC” R packages. The Kaplan–Meier Plotter instrument (www.kmplot.com) consists of survival data of 82 patients who suffered from ESCC (Nagy et al., 2021). Regarding Kaplan–Meier curves, p-values and hazard rate (HR) with a 95% confidence interval (CI) were produced by introducing log-rank tests and univariate Cox proportional hazard regression. In our investigation, all specimens were divided into groups with high and low expression based on the median mRNA expression. OS represents the time between diagnosis and death; HR represents the risk factor of the group with high expression relative to the low-expression group.
Investigation of LATS2-interacting genes and proteins
The GeneMANIA database (http://www.genemania.org) was employed to build up LATS2 interaction network. The STRING database (https://string-db.org/) was employed to build a protein–protein interaction (PPI) network of LATS2.
Correlation and enrichment analysis
An association investigation between LATS2 and other mRNAs in ESCC was conducted using TCGA data. We screened genes according to the following criteria from TCGA dataset: the result is cor value ≥ 0.5 and p value < 0.05. We took the top 50 genes for the correlation analysis. The correlation investigation was carried out by R software, whose version was 3.6.3, and the “ggstat” R package. The map was realized by the “ggplot2” R package. The functional enrichment analysis was utilized to investigate the data further to explore the underlying influence of potential targets. We screened positively correlated genes with LATS2 gene expression from TCGA dataset and selected the top 300 genes for enrichment investigation to mirror the function of LATS2. Gene Ontology (GO) investigation and Kyoto Encyclopedia of Genes and Genomes (KEGG) investigation were carried out by utilizing the enrichGO function in the “clusterProfiler” R package. The map was achieved by the “ggplot2” R package.
Immune cell infiltration
To compare immune cell infiltration levels, we used CIBERSORT to score the immune cell infiltration in 82 ESCC patient tumor tissues and 11 paired adjacent tissues from TCGA database (Newman et al., 2015).
Immunohistochemistry
ESCC and adjacent normal tissues (10 pairs) were obtained from The Second Affiliated Hospital of Guangxi Medical University (Guangxi, China). The study recruited patients aged 52 to 63 (52.2 ± 5.82714) from May 2019 to January 2020, half of them being males and half of them being females. The inclusion criteria included no prior history of any other active cancer, no active cancer treatment, and no history of esophageal cancer. The tissue samples were acquired by resection. The distance between ESCC tissues and adjacent normal tissues was about 1 cm. The Ethics Committee of The Second Affiliated Hospital of Guangxi Medical University (Guangxi, China) approved the use of human samples (approval no. 2021-0300). Written informed consent was obtained from all patients enrolled in the study. All specimens were used following the Ethics Committee’s protocol. The primary antibodies used were rabbit anti-LATS2 (20276-1-AP, Wuhan Sanying Biotechnology, Wuhan, China), rabbit anti-CTLA4 (53560, CST), and rabbit anti-PDL1 (13684, CST). The IOD/area ratio was calculated using Image-Pro Plus 6.0 and GraphPad Prism 8.0 for statistical analysis.
Statistical analysis
TIMER plots were used to assess the statistical significance of various expressions using Wilcoxon rank-sum tests. In ONCOMINE, the results were displayed with p-values, fold changes, and ranks. TCGA boxplots were assessed with unpaired t-tests. Geo boxplots and immunohistochemistry pictures were assessed with a paired t-test. Kaplan–Meier plots were displayed with the HR and p-values from the log-rank test. Spearman’s correlation evaluated the correlation between gene expression and statistical significance. All results were considered to be statistically significant at p < 0.05. *: p < 0.05; **: p < 0.01; and ***: p < 0.001.
RESULTS
The expression of LATS2 in pan-cancer
We first utilized the data obtained from TCGA in the TIMER data bank to assess the mRNA expression of LATS2 in pan-cancer. The differences in LATS2 mRNA expressions between the tumor group and the normal group are displayed in Figure 1A. LATS2 mRNA expression in BLCA (urothelial bladder carcinoma), BRCA (invasive breast carcinoma), KICH (kidney chromophobe), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), and THCA (thyroid carcinoma) was lower than that in the normal tissues. To further confirm the relationship between LATS2 and ESCC, the ONCOMINE data bank was employed to analyze the mRNA expression level of LATS2 in the range of overall cancer. The findings showed that LATS2 expression in numerous cancer groups was lower than that in the corresponding normal groups. ONCOMINE database analysis also showed that the mRNA expression of LATS2 in ESCC was decreased compared with that in the normal group (Figure 1B).
[image: Figure 1]FIGURE 1 | (A) Pan-cancer analysis expression of LATS2 based on the TIMER1.0 database. (B) Meta-analysis expression of LATS2 in ESCC in the ONCOMINE database.
Association between LATS2 expression and clinicopathological factors
The 162 patient samples we collected from TCGA data bank were separated into two groups. First, the association between LATS2 expression and clinicopathological factors is presented in Table 1. We concluded that LATS2 expression was linked to race and histological type, especially in ESCC, LATS2 expression is lower (Table 1).
TABLE 1 | Relationship between clinical factors and LATS2 expression in ESCC.
[image: Table 1]LATST2 expression in ESCC
The relationship between LATS2 expression and ESCC was further illustrated. The normalization and standardization datasets of GSE23400 and GSE161533 are depicted in Supplementary Figure. We concluded that the mRNA expression of LATS2 was lower in ESCC tissues than in normal esophageal tissues in all datasets (Figure 2). These findings revealed that a low level of LATS2 expression might represent the virulent evolution of ESCC.
[image: Figure 2]FIGURE 2 | The differential expression of LATS2 in TCGA (A), GSE23400 (B), and GSE161533 (C) datasets.
Association between LATS2 expression and cancer patient prognosis
The association between LATS2 expression and survival time and survival status was evaluated using TCGA dataset. The top graph represents the scatter diagram of LATS2 expression and different colors representing different expression groups (Figure 3A); the middle graph refers to the scatter diagram allocation of survival time and situation matching to LATS2 gene expression in various specimens (Figure 3A); the basal graph refers to the expression heat chart of the gene (Figure 3A). The link between LATS2 expression and OS was investigated using TCGA cohort to assess the value of LATS2 during cancer patient prediction. The Kaplan–Meier survival investigation revealed that patients who suffered from increased LATS2 expression had longer OS in Asian, grade 2, male, and stage 3 (Figure 3C). Furthermore, the ROC curve and AUC values at different times for LATS2 gene were calculated, wherein AUC values should be between 0 and 1; the better the model, the higher the prediction effect, that is, when the model randomness is 0.5, the AUC prognosis model should typically be at least 0.7 (Figure 3B). These findings proved that a high LATS2 expression had a good prognosis in patients with ESCC, and the gene expression level could be utilized to forecast OS efficiently.
[image: Figure 3]FIGURE 3 | (A) Top graph represents the scatter plot of LATS2 expression from low to high; the middle graph refers to the scatter plot distribution of survival time and survival status corresponding to LATS2 gene expression in different samples; and the bottom graph represents the expression heat map of LATS2. (B) ROC curve and AUC assessed the performance of LATS2. (C) Kaplan–Meier survival analysis revealed that patients with increased LATS2 expression had longer OS in Asian, grade 2, male, and stage 3.
Identification of LATS2-interacting genes and proteins
We built a gene–gene interaction network for LATS2 and the altered adjacent genes with GeneMANIA (Figure 4A). The findings indicated that the 20 genes that changed most frequently were relevant to LATS2, such as YAP1 (Shibata et al., 2018), STK3 (Wang et al., 2020), STK4 (Lin et al., 2020), AMOT (Ruan et al., 2016), and MOB1A (Praskova et al., 2008). In addition, the PPI network of LATS2 was produced using the STRING data bank (Figure 4B). These results indicated that LATS2 may be crucial in tumor inhibition by limiting cell propagation and enhancing apoptosis.
[image: Figure 4]FIGURE 4 | (A) Gene–gene interaction network for LATS2 and the altered neighboring genes constructed on GeneMANIA. (B) Protein–protein interaction identification on the STRING database.
Correlation and enrichment analyses
To forecast the role of LATS2 as well as the relevant path, we carried out an association investigation between LATS2 and other kinds of genes in ESCC by employing TCGA data (Figure 5A). The top 100 genes that were most positively related to LATS2 were chosen for an enrichment investigation. The GO enrichment investigation showed the processes targeted by these expressed genes: epithelial cell migration and extracellular matrix organization (Figure 5B). The Gene Ontology molecular function includes cytokine binding, growth factor binding, chemokine binding, and fibronectin binding (Figure 5C). The Gene Ontology cellular components include cell–substrate adherens junction, a protein complex involved in cell adhesion, and an integrin complex (Figure 5D). The pathway enrichment analysis (KEGG) revealed that the PI3K-Akt signaling pathway, human papillomavirus infection, and ECM–receptor interaction were enriched (Figure 5E). These findings revealed that LATS2 is linked to many pathways associated with malignancy in ESCC, particularly in tumorigenesis.
[image: Figure 5]FIGURE 5 | (A) Correlation analysis between LATS2 and other genes in ESCC. (B) GO enrichment analysis about the biological process. (C) GO enrichment analysis about molecular function. (D) GO enrichment analysis about cellular components. (E) KEGG enrichment analysis.
Correlation between immune cell infiltration and LATS2
We carried out further research to assess the immune cell infiltration point of TCGA esophageal squamous cell carcinoma and found that samples with low LATS2 expression indicated large quantities of immune cells such as T-cell follicular helper M1 macrophages and myeloid dendritic cell resting (Figure 6A). Subsequently, we assessed the association of LATS2 expression with several significant immune checkpoints, which were able to mirror the immune mini-environment of ESCC with diverse LATS2 expression levels. Furthermore, LATS2 expression was negatively related to molecules that restrain the antineoplastic immune reaction, including TIGIT, PDCD1, CTLA4, and CD274 (Figure 6B). To demonstrate the link between LATS2 expression and the immunophenotype, ESCC specimens that showed low and high LATS2 expression levels were treated with immunohistochemical staining of CTLA4 and PD‐L1. As described in Figure 6C, the specimens with low LATS2 expression showed higher CTLA4 and PD‐L1 staining levels. Such findings might account for the disappointing prognosis of ESCC patients with a low level of LATS2 expression.
[image: Figure 6]FIGURE 6 | (A) LATS2 expression correlated with numbers of immune cells. (B) Correlation between LATS2 expression and immune checkpoints. (C) IHC staining of LATS2, CTLA4, and PD‐L1 in ESCC samples.
Prognostic investigation of LATS2 expression based on immune cells in ESCC patients
As LATS2 expression is relevant to immune infiltration and the disappointing prediction in ESCC, we researched to find whether LATS2 expression would influence the prediction of ESCC due to immune infiltration. We conducted a prediction investigation based on the expression levels of LATS2 in ESCC in immune cell subgroups, which were associated, as displayed in Figures 7A,B. ESCC patients with low expression of LATS2 and descending infiltration of basophils and Th1 cells showed a descending prediction (Figures 7A,B). Nevertheless, there was a high association between LATS2 expression and the favorable prediction of ESCC in the group, which had increased infiltration of B cells, CD8+T cells, eosinophils, and macrophages. Such findings revealed that LATS2 may influence ESCC patients’ prediction to some extent because of immune infiltration.
[image: Figure 7]FIGURE 7 | (A) Forest plot shows the prognostic value of LATS2 expression according to different immune cell subgroups in ESCC patients. (B) Kaplan–Meier plot was used to estimate the correlation between LATS2 expression and OS in different immune cell subgroups of ESCC patients.
DISCUSSION
Among malignant tumors, esophageal cancer is regarded as the eighth most commonly diagnosed cancer worldwide. At present, ESCC remains the most predominant kind globally. Despite progress in incipient diagnosis and immune treatment, esophageal squamous cell carcinoma is often detected at a later stage with a disappointing prediction (Uhlenhopp et al., 2020). The treatment of many diseases covers LATS2. Nevertheless, it has not been widely researched in tumors. Consequently, it is necessary to determine the function of LATS2 in predicting and treating cancer. Simultaneously, it has been studied in other tumors. However, there are few studies on LATS2 in ESCC. Therefore, it is necessary to determine the function of LATS2 in predicting and treating ESCC. Regarding the current investigation, we indicated that LATS2 expression in ESCC was lower than that in normal ones through bioinformatics investigation using ONCOMINE.
Furthermore, LATS2 was lowly expressed in ESCC in GSE161533 and GSE23400 data banks. After that, the clinical predictive importance of LATS2 in ESCC patients was explored, through which we found that the low expression of LATS2 was relevant to sex, age, and metastasis for ESCC patients. Such findings revealed that LATS2 may be regarded as a potent symbol for predicting patients with tumors and may enhance the targeted accuracy of oncology.
Published research studies on LATS2 have been mainly performed on glioma, osteosarcoma, and hepatocellular carcinoma. Our studies revealed an association between LATS2 and ESCC. GO findings revealed that LATS2 was linked to epithelial cell migration, cytokine binding, chemokine binding, fibronectin-binding, and cell–substrate adherens junction. On the other hand, KEGG investigation revealed that LATS2 was associated with human papillomavirus infection and ECM–receptor interaction. This may reveal that LATS2 may be relevant to the existence and progression of tumors in ESCC. The experimental results of Gao et al. (2017) are consistent with our predictions. The results of prognosis reports indicate that OS with low expression of LATS2 is poor, which may be related to some aspects of the immune microenvironment in ESCC (Gajewski et al., 2006; Zheng et al., 2020). Tumor mini-environment immune cells are a crucial factor in tumor tissues as more and more signals indicate their clinicopathological importance in forecasting survival conditions. Our findings indicated that ESCC with lower LATS2 expression were more infiltrated by M0 and M1 macrophages, while the penetration by CD8+T cells showed no increase. Simultaneously, in the LATS2 low-expression group, we found that M2 macrophages infiltrated more than M1 macrophages (Zheng et al., 2020). According to previous reports, the immune-inhibited cell populations were abundant in ESCC, including depleted CD8+T cells and M2 macrophages. According to a research study, undifferentiated M0 macrophages can generally diverge into typically activated macrophages (M1) with the pro-inflammatory/antitumoral phenotype. Furthermore, it can diverge into alternatively activated macrophages (M2) with the immune-inhibited/pro-tumoral phenotype (Vitale et al., 2019). Our results indicate that M1/M2 macrophages coexist in ESCC. The co-existence of M1 and M2 revealed that tumor-associated macrophages (TAMs) were more complicated than the typical modes (Zheng et al., 2020). To comprehend the tumor immunosuppression of ESCC, we made predictions through bioinformatics and verified them through IHC. The results confirmed that the tumor immunosuppressive environment of ESCC patients might be related to the relationship between LATS2 and PDL1 (Taube et al., 2014) and CTLA4 (Camacho, 2015). The results may provide a new direction for tumor immunotherapy for ESCC patients (Park et al., 2018; Zayac and Almhanna, 2020). In summary, LATS2 may occupy a significant position in immune cell infiltration and may be considered a valuable predictive symbol for ESCC. In tumor immunotherapy for ESCC patients, patients with high expression of LATS2 may benefit more from this treatment.
The existing investigation enhances our knowledge of the association between LATS2 and ESCC. However, its limitations should also be presented. First, though we have researched the association between LATS2 and immune infiltration for patients who suffer from ESCC, there is a lack of interpretation of immune analysis according to subgroups. Second, based on the present study, most investigations examined the protein levels of LATS2. A further investigation, supplemented on mRNA levels, made the findings more persuasive. In a word, our findings revealed that LATS2 could act as a potential and new predictive symbol for ESCC. Furthermore, we researched the potential evidence that LATS2 could adjust immune cell infiltration for patients who suffer from ESCC. As a result, such findings have underlying value in advancing our current understanding of the function of LATS2 and its translational application in ESCC prediction and immunization therapy.
In conclusion, LATS2 may be related to the occurrence, development, and prognosis of ESCC, and LATS2 may play an important role in the immune infiltration of ESCC, which provides potential value for the role of LATS2 in immunotherapy of ESCC.
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Background: Deoxythymidylate kinase (DTYMK) has been reported to correlate with the progression of hepatocellular carcinoma. However, the role of DTYMK in human cancers is not studied. In this study, we studied the prognostic value, functional states, and correlations with immune infiltration of DTYMK in human cancers.
Methods: The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), UALCAN, Clinical Proteomic Tumor Analysis Consortium (CPTAC), the search tool for the retrieval of interacting genes (STRING), GeneMANIA, cBioPortal, Cancer Single-cell State Atlas (CancerSEA), and Tumor IMmune Estimation Resource (TIMER) databases were utilized to analyze DTYMK in cancers.
Results: In general, DTYMK is abnormally expressed between most human cancer and normal tissues from a pan-cancer perspective. DTYMK can be used as a diagnostic biomarker to differentiate tumor tissues from normal tissues in most tumors. Upregulation of DTYMK predicted poor survival status in most cancer types in TCGA. Moreover, DTYMK expression was correlated with the T stage in ACC, BRCA, KIRC, LIHC, and LUAD, with the N stage in BLCA, HNSC, KICH, KIRC, LUAD, LUSC, and THCA, with the M stage in ACC, KIRC, KIRP, and LUAD, with TNM stage in ACC, KIRC, LIHC, LUAD, and LUSC. In addition, based on single-cell sequencing data, we concluded that the expression of DTYMK was correlated with the functional status of the cell cycle, DNA damage, DNA repair, invasion, EMT, and proliferation. Finally, DTYMK expression was correlated with six infiltrating immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells by investigating TIMER.
Conclusion: Our findings suggested that abnormally expressed DTYMK was correlated with poor survival, malignant functional status, and immune infiltrates. DTYMK might be served as a potential biomarker for diagnosis and poor prognosis in various cancer types. DTYMK might act as a potential target for immune therapy.
Keywords: DTYMK, immunotherapy, TCGA, prognosis, immune infiltrates
1 INTRODUCTION
The global incidence of cancer is substantial and growing, and it is estimated that every year there are about 23.6 million new cancer cases and 10.0 million cancer deaths globally (Kocarnik et al., 2022). As a result, cancer is becoming an enormous disease burden globally for public health systems (Hwangbo et al., 2018). A previous study has reported that female breast cancer is the most commonly diagnosed cancer, followed by lung cancer and colorectal cancer. Lung cancer is the leading cause of cancer-related death, followed by colorectal cancer and liver cancer (Sung et al., 2021). Accordingly, given that the incidence and burden of cancer are rising globally, it is crucial to identify biomarkers for early diagnosis and prognosis prediction in various cancers.
Deoxythymidylate kinase (DTYMK) is a nuclear-encoded deoxythymidylate kinase and catalyzes the conversion of dTMP to dTDP. The expression of DTYMK can be detected in all tissues and is the key enzyme to catalyze the last reaction of the dTTP production (Caspi et al., 2016). Overexpression of DTYMK can promote tumor cells proliferation and division. For example, a paper from Zhou et al. (2021) reported that DTYMK can regulate the cell cycle to promote hepatocellular carcinoma proliferation. In addition, it is reported that upregulation of DTYMK is correlated with worse overall survival and disease-free survival (Wang et al., 2020; Zhou et al., 2021). In lung cancer, Liu et al. (2013) reported that depletion of DTYMK can lead to growth inhibition and metabolic disorder in LKB1 mutant related lung cancer. Despite these discoveries, however, these studies only focus the evaluation of DTYMK on a few cancer types, and litter is known regarding the prognostic and immunological role of DTYMK in various cancers.
In the present study, we determined the expression of DTYMK and its correlation with the clinicopathological characteristics and prognosis of patients from a pan-cancer perspective. We further evaluated the association between DTYMK and genetic alteration, functional states at a single-cell level, immune infiltrates. Our findings present novel insights into the functional status of DTYMK from a pan-cancer perspective, linking DTYMK expression with tumor prognosis and providing a potential therapeutic target for various cancers.
2 MATERIALS AND METHODS
2.1 Data collection
The RNA sequence data and corresponding clinical data of The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database and Genotype-Tissue Expression (GTEx) were downloaded from the UCSC Xena database (https://xenabrowser.net/datapages). The workflow type of mRNA data format was converted from Fragments Per Kilobase per Million (FPKM) into transcripts per million reads (TPM) for further analysis. DTYMK expression data in 22 tumor cell lines were downloaded from the Cancer Cell Line Encyclopedia (CCLE, (https://portals.broadinstitute.org/ccle/).
2.2 Promoter methylation and protein expression
UALCAN (http://ualcan.path.uab.edu/) is a user-friendly web resource for analyzing cancer OMICS data (Chandrashekar et al., 2017). In this study, we conducted UALCAN to explore the promoter methylation level of DTYMK with TCGA samples and protein expression with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) samples (Edwards et al., 2015).
2.3 Prediction of protein-protein interactions and genetic alteration
The search tool for the retrieval of interacting genes (STRING) database (http://string-db.org) is a precomputed online resource and can be used to explore and analyze all publicly available sources of PPI information (Szklarczyk et al., 2019). GeneMANIA (http://www.genemania.org) is a flexible website using available genomics and proteomics data to generate predictions about gene function (Franz et al., 2018). cBioPortal web (https://www.cbioportal.org/) can be used to study genetic alteration characteristics (Cerami et al., 2012; Gao et al., 2013). In this study, we conducted STRING, GeneMANIA, and cBioPortal to predict a PPI network and study the genetic alteration of DTYMK.
2.4 Diagnostic and prognostic value analysis
ROC curve was utilized to assess the diagnostic value of DTYMK to distinguish tumors from normal tissues in pan-cancer. Kaplan-Meier analysis was employed to capture the prognostic significance of DTYMK for overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI).
2.5 Cancer single-cell state atlas
CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) is the first dedicated resource to comprehensively decode the distinct functional states of cancer cells at the single-cell level (Yuan et al., 2019). CancerSEA can provide a cancer single-cell functional state atlas, including 14 functional states (stemness, invasion, metastasis, proliferation, EMT, angiogenesis, apoptosis, cell cycle, differentiation, DNA damage, DNA repair, hypoxia, inflammation, and quiescence) from 25 cancer types. In the present study, CancerSEA was used to explore the expression profile of DTYMK at a single-cell level and its potential functional status in pan-cancer.
2.6 Immune infiltrates analysis
Tumor Immune Estimation Resource (TIMER) is an online server for a comprehensive overview of immune infiltrates across multiple cancer types (Li et al., 2016; Li et al., 2017). The abundances of six infiltrating immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, are estimated by the TIMER algorithm. In this study, we first used the gene module to explore the correlation between DTYMK expression and the abundance of six infiltrating immune cells. Then we used the survival module to determine the association between clinical outcome and the abundance of six infiltrating immune cells or DTYMK expression. Kaplan-Meier curve parameter was set as split percentage of patients up to 50% percentile. Finally, we used the correlation module to explore correlations between DTYMK expression and gene markers of immune infiltrates.
2.7 Statistical analyses
Statistical analyses were performed using R (V 3.6.3) and visualized with R package ggplot2. Paired t-test and Mann-Whitney U test were used to explore DTYMK expression in paired and non-paired samples respectively. The survminer and pROC package (Robin et al., 2011) were used to elucidate the prognostic and diagnostic performance of DTYMK expression. R package survival was performed for multivariate Cox regression analyses.
3 RESULTS
3.1 Deoxythymidylate kinase mRNA expression in pan-cancer perspective
To elucidate DTYMK mRNA expression in human cancers, we first downloaded the pan-cancer RNA-seq data of DTYMK mRNA expression from TCGA and GTEx, and then eliminated these columns which contained only tumor samples. Abbreviations of tumor names were listed in Supplementary Table S1. As shown in Figure 1A, with only the TCGA database, Mann-Whitney U-test showed the mRNA expression of DTYMK was significantly upregulated in 18 cancer types, while only downregulated in KICH. Furthermore, given the lack of normal samples for some cancers in TCGA, we then integrated the GTEx database. The results in Figure 1B indicated that DTYMK expression was significantly upregulated in 26 cancer types, while only downregulated in KICH and LAML. We further validated DTYMK expression across cancer types with tumor tissues and paired normal tissues from the TCGA database. Paired t-test analysis suggested that DTYMK expression was significantly upregulated in 15 tumor tissues and only downregulated in KICH (Figure 1C). As shown in Figure 1D, DTYMK expression in different tumor cell lines from CCLE was in higher ranges than that of normal tissues in Figure 1B. Taken together, these results suggested that DTYMK was abnormally expressed in pan-cancer perspective.
[image: Figure 1]FIGURE 1 | DTYMK expression in Pan-Cancer perspective. (A) Differential analysis of DTYMK expression with data from TCGA. (B) TCGA and GTEx data indicated differential expression of DTYMK in the Pan-Cancer perspective. (C) Paired t-test with TCGA data. (D) DTYMK expression in different tumor cell lines from CCLE was in higher ranges. (ns, no significant; *, p < 0.05, **, p < 0.01, ***, p < 0.001).
3.2 Protein expression and promoter methylation level of deoxythymidylate kinase
To increase the reliability of the DTYMK expression level, we carried out UALCAN to analyze the protein expression of DTYMK between tumor and normal tissues in CPTAC. As shown in Figure 2, in accordance with mRNA expression level, the upregulated protein of DTYMK was detected in COAD, GBM, HNSC, LIHC, LUAD, OV, PAAD, and UCEC. However, the downregulated protein of DTYMK was detected in BRCA and KIRC, while no significant difference was found between different age groups in PRAD (Supplementary Figure S1). The RNA and protein expression of BRCA and KIRC was inconsistency. We speculated the reason for this was that protein was not only regulated at transcription level. Furthermore, in an attempt to compare the promoter methylation level of DTYMK between tumor and normal tissues, we performed UALCAN analysis with TCGA samples. From the data in Figure 3, it was apparent that the promoter methylation level of DTYMK was downregulated in BLCA, HNSC, KIRC, LIHC, LUAD, PRAD, and UCEC. However, no significant difference in promoter methylation level was found in other tumors (Supplementary Figure S2).
[image: Figure 2]FIGURE 2 | Protein expression of DTYMK. The upregulated protein of DTYMK was detected in COAD (A), GBM (B), HNSC (C), LIHC (D), LUAD (E), OV (F), PAAD (G), and UCEC (H). (***, p < 0.001).
[image: Figure 3]FIGURE 3 | Promoter methylation level of DTYMK. Promoter methylation level of DTYMK was downregulated in BLCA (A), HNSC (B), KIRC (C), LIHC (D), LUAD (E), PRAD (F), and UCEC (G). (**, p < 0.01, ***, p < 0.001).
3.3 Diagnostic value of deoxythymidylate kinase to distinguish tumor from normal tissues
Based on DTYMK being abnormally expressed from a pan-cancer perspective, we speculated that DTYMK can be used as a diagnostic marker. To validate this hypothesis, we conducted a ROC curve analysis with R package pROC. The results listed in Figure 4 suggested that the AUC value was more than 0.80 in most tumors. The cut-off value, sensitivity, specificity, positive predictive value, negative predictive value, and Youden index of DTYMK were shown in Supplementary Table S2. These results suggested that DTYMK can be used as a diagnostic biomarker to differentiate tumor tissues from normal tissues in most tumors.
[image: Figure 4]FIGURE 4 | Diagnostic value of DTYMK to distinguish tumor tissues from normal tissues. The AUC value was more than 0.8 in (A) BLCA, (B) BRCA, (C) CHOL, (D) COAD, (E) ESCA, (F) HNSC, (H) KIRP, (I) LIHC, (J) LUAD, (K) LUSC, (M) READ, (N) STAD, (P) UCEC, (Q) KICH, and less than 0.8 in (G) KIRC, (L) PRAD, (O) THCA.
3.4 Prognostic value of deoxythymidylate kinase in pan-cancer perspective
To study the relationship between DTYMK expression and OS, DSS, and PFI, patients with cancer were divided into high/low expression groups according to the median level of DTYMK expression, R package survminer and survival were performed. As shown in Figure 5, patients with high DTYMK expression had short OS than those of patients with low DTYMK expression in ACC (p = 0.006), KIRC (p = 0.02), LGG (p < 0.001), LIHC (p < 0.001), LUAD (p < 0.001), MESO (p < 0.001), PAAD (p = 0.011), SKCM (p = 0.002), and UVM (p = 0.001). And patients with high DTYMK expression in DLBC had better OS (p = 0.029). It was apparent from Figure 6 that patients with high DTYMK expression had short DSS than those of patients with low DTYMK expression in ACC (p = 0.007), KIRC (p = 0.001), KIRP (p = 0.004), LGG (p < 0.001), LIHC (p = 0.001), LUAD (p < 0.001), MESO (p = 0.002), PAAD (p = 0.007), SKCM (p = 0.002), and UVM (p = 0.001). The PFI analysis in Figure 7 revealed that DTYMK acted as a risk factor for patients with ACC (p < 0.001), KIRC (p = 0.004), LGG (p < 0.001), LIHC (p = 0.002), LUAD (p = 0.002), PAAD (p = 0.004), PRAD (p = 0.009), SKCM (p = 0.008), and UVM (p < 0.001). The results of Cox regression analyses were shown in Figure 8. The OS analysis indicated that DTYMK was a potential independent prognostic biomarker for patients with ACC, DLBC, LGG, LIHC, LUAD, MESO, SKCM, and UVM (Figure 8A). The DSS analysis suggested that DTYMK was a potential independent prognostic biomarker for patients with ACC, KIRP, LGG, LIHC, LUAD, MESO, SKCM, and UVM (Figure 8B). The PFI analysis revealed that DTYMK was a potential independent prognostic biomarker for patients with ACC, LGG, LIHC, LUAD, SKCM, and UVM (Figure 8C). These data suggested that DTYMK expression was correlated with clinical prognosis in most tumors.
[image: Figure 5]FIGURE 5 | Relationship between DTYMK expression and OS. High DTYMK expression was correlated with short OS in ACC (A), KIRC (C), LGG (D), LIHC (E), LUAD (F), MESO (G), PAAD (H), SKCM (I), and UVM (J). And patients with high DTYMK expression in DLBC had better overall survival (B).
[image: Figure 6]FIGURE 6 | Relationship between DTYMK expression and DSS. High DTYMK expression was correlated with short DSS in ACC (A), KIRC (B), KIRP (C), LGG (D), LIHC (E), LUAD (F), MESO (G), PAAD (H), SKCM (I) and UVM (J).
[image: Figure 7]FIGURE 7 | Relationship between DTYMK expression and PFI. DTYMK acted as a risk factor for patients with ACC (A), KIRC (B), LGG (C), LIHC (D), LUAD (E), PAAD (F), PRAD (G), SKCM (H), and UVM (I).
[image: Figure 8]FIGURE 8 | Cox regression analyses of DTYMK in TCGA pan-cancer. (A) Forest map indicated the Cox regression results of DTYMK for OS. (B) Forest map indicated the Cox regression results of DTYMK for DSS. (C) Forest map indicated the Cox regression results of DTYMK for PFI. Red colors mean significant results.
3.5 The correlation between deoxythymidylate kinase expression and clinicopathological characteristics
We analyzed the mRNA expression of DTYMK and associated clinical data from a pan-cancer perspective from TCGA. The results from Figure 9 indicated that DTYMK expression was correlated with the T stage in ACC, BRCA, KIRC, LIHC, and LUAD (Figures 9A–E), with the N stage in BLCA, HNSC, KICH, KIRC, LUAD, LUSC, and THCA (Figures 9F–L), with M stage in ACC, KIRC, KIRP, and LUAD (Figures 9M–P), with TNM stage in ACC, KIRC, LIHC, LUAD, and LUSC (Figures 9Q–U). Furthermore, DTYMK expression was correlated with age in ESCA, KIRP, LGG, OV, SARC, STAD, and THYM (Supplementary Figures S3A–G), with gender only in HNSC and LUAD (Supplementary Figures S3H,I). To sum up, the results suggested that DTYMK might play a crucial role in the development of tumor progression.
[image: Figure 9]FIGURE 9 | The correlation between DTYMK expression and clinicopathological characteristics. The correlation between DTYMK expression with the T stage in ACC, BRCA, KIRC, LIHC, and LUAD (A–E), the N stage in BLCA, HNSC, KICH, KIRC, LUAD, LUSC, and THCA (F–L), the M stage in ACC, KIRC, KIRP, and LUAD (M–P), and TNM stage in ACC, KIRC, LIHC, LUAD, and LUSC (Q–U). (ns, no significant; *, p < 0.05, **, p < 0.01, ***, p < 0.001)
3.6 PPI network and genetic alteration characteristics
To predict a PPI network, we conducted an analysis on STRING and GeneMANIA. Figure 10A from STRING showed 10 co-expression genes of DTYMK and a PPI network. As shown in Figure 10B, results from the GeneMANIA suggested that DTYMK and its co-expression genes were involved in pyrimidine–containing compound biosynthetic process and pyrimidine nucleotide biosynthetic/metabolic process. Furthermore, we studied the genetic alteration characteristics of DTYMK across different tumors of the TCGA cohorts with the cBioPortal web. The result in Figure 10C showed that the most alteration frequency of DTYMK appeared in sarcoma patients with “deep deletion” as the main type. The “amplification” type was the primary type in OV, UCS, PAAD, and LUAD.
[image: Figure 10]FIGURE 10 | PPI network and genetic alteration characteristics. (A) A network of DTYMK and its co-expression genes. (B) GeneMANIA indicated DTYMK and its co-expression genes were involved in pyrimidine–containing compound biosynthetic process and pyrimidine nucleotide biosynthetic/metabolic process. (C) The genetic alteration characteristics of DTYMK across different tumors.
3.7 Expression profile of deoxythymidylate kinase in a single-cell level and its potential functional status in pan-cancer
To explore the expression profile of DTYMK at a single-cell level and its potential functional status in pan-cancer, we performed an analysis on CancerSEA. As shown in Figure 11A, the expression of DTYMK was significantly positively correlated with cell cycle, DNA damage, DNA repair and invasion in ALL, GBM, HNSC, LUAD, and MEL, DTYMK expression was positively correlated with EMT in HNSC and MEL, with proliferation in GBM, HNSC, LUAD, and MEL. Figures 11B,C indicated the association between DTYMK expression and DNA repair, DNA damage, and cell cycle in ALL and HNSC. Figure 11D indicated the association between DTYMK expression and cell cycle, DNA repair, proliferation, DNA damage, and invasion in LUAD. Furthermore, the expression distribution of DTYMK was shown in single cells of ALL, HNSC, and LUAD by a T-SNE plot (Figures 11E–G). Taking together, these results indicated that DTYMK might play an important role in tumor progression.
[image: Figure 11]FIGURE 11 | DTYMK expression and cancer functional states at a single-cell level. (A) DTYMK expression was correlated with cancer functional states in pan-cancer. (B–D) The association between DTYMK expression and cancer function in ALL, HNSC, and LUAD. (E–G) The t-SNE plot indicated DTYMK expression profile in single cells of ALL, HNSC, and LUAD. (ns, no significant; *, p < 0.05, **, p < 0.01, ***, p < 0.001).
3.8 Relationship between deoxythymidylate kinase expression and immune infiltrates
Based on the expression of DTYMK was correlated with poor prognosis in LGG, LIHC, LUAD, MESO, SKCM, and UVM, we further assessed the relationship between DTYMK expression and immune infiltrates with TIMER in those tumors. As shown in Figure 12A, the “Gene” module suggested that DTYMK expression was positively correlated with infiltrating levels of B cells, CD4+ T cells, macrophage, neutrophil, and dendritic cells in LGG. DTYMK expression was positively correlated with tumor purity and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophage, neutrophil, and dendritic cells in LIHC (Figure 12B). From the data in Figure 12C, DTYMK expression was negatively correlated with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, and dendritic cells in LUAD. Figure 12D indicated that DTYMK expression was negatively correlated with tumor purity and infiltrating levels of CD8+ T cells, macrophages, and neutrophils, while positively correlated with infiltrating levels of CD4+ T cells and dendritic cells in MESO. As shown in Figure 12E, DTYMK expression was negatively correlated with infiltrating levels of CD4+ T cells in SKCM. In UVM, Figure 12F suggested that DTYMK expression was positively correlated with tumor purity and infiltrating levels of CD8+ T cells and macrophages, while negatively correlated with infiltrating levels of B cells and neutrophil cells in MESO. Moreover, to further confirm the impact of immune cell infiltration on the prognosis of those tumors, we drew Kaplan-Meier plots with the TIMER database. The “Survival” module analysis in Figure 13 indicated that patients with those tumors would share different prognoses according to the high/low expression of immune cell levels. Together these results showed that DTYMK had a potential role in regulating tumor-infiltrating immune cells level to further affect the prognosis of those tumors.
[image: Figure 12]FIGURE 12 | The relationship between DTYMK expression and immune infiltration levels. DTYMK expression was correlated with tumor-infiltrating immune cell levels in LGG (A), LIHC (B), LUAD (C), MESO (D), SKCM (E), and UVM (F).
[image: Figure 13]FIGURE 13 | DTYMK regulates tumor-infiltrating immune cells level to affect prognosis. (A) High expression of B cells, CD8+ T cells, CD4+ T cells, macrophage, neutrophil, and dendritic cell was correlated with poor prognosis in LGG. (B) High expression of macrophage and dendritic cell was correlated with poor prognosis in LIHC. (C) Low expression of B cell and dendritic cells was correlated with poor prognosis in LUAD. (D) Low expression of neutrophil cells predicted poor prognosis in MESO. (E) Low expression of B cells, CD8+ T cells, neutrophil, and dendritic cells predicted poor prognosis in SKCM. (F) High expression of CD8+ T cells and neutrophil cells was correlated with poor prognosis in UVM.
3.9 Correlation between deoxythymidylate kinase expression and gene markers of immune infiltrates
Finally, in order to further confirm the relationship between DTYMK expression and immune infiltrates, we used the TIMER database to explore the correlation between DTYMK expression and immunological markers in the above six tumors. We determined the correlation between the expression of DTYMK and immunological markers of immune infiltrates, including B cell, CD8+ T cell, T cell (general), macrophage (M1, M2), and dendritic cell. The correlation was adjusted by tumor purity. These results in Table 1 suggested that DTYMK expression was correlated with most immunological marker sets. In particular, DTYMK was significantly correlated with B cell markers (CD19, CD79A) in LGG, LIHC, LUAD, MESP, and SKCM, CD8+ T cell markers (CD8A, CD8B) in LIHC, SKCM, and UVM, T cell markers (CD3D, CD3E, CD2) in LGG, LIHC, SKCM, and UVM, Macrophage markers (NOS2, IRF5, PTGS2, CD163, VSIG4, MS4A4A) in LGG and UVM, Dendritic cell markers (HLA-DPB1, HLA-DPB1, HLA-DRA, HLA-DPA1, CD1C, NRP1, ITGAX) in LGG, LIHC, LUAD, and UVM. Our findings suggested that DTYMK expression was correlated with gene markers of immune infiltrates.
TABLE 1 | Correlation analysis between DTYMK and immune infiltration markers in TIMER.
[image: Table 1]4 DISCUSSION
With the advancement in immunotherapy in recent years, the prognosis of cancer patients has been significantly improved (Hu et al., 2020). However, immune checkpoint inhibitors are not useful for all tumors and most tumor patients will develop resistance after the initial benefit (von Loga et al., 2020). The potential mechanisms underlying immunotherapy resistance are still poorly understood. It is reported that tumor-infiltrating immune cells were correlated with the prognosis of cancer patients and the antitumor efficacy of immunotherapy (Shi et al., 2020). A Previous study reported that the upregulation of DTYMK was correlated with unfavorable prognosis and the immune microenvironment in hepatocellular carcinoma (Guo et al., 2021). However, the role of DTYMK in tumor progression remains to be elucidated. In the present study, we systematically explored the expression, diagnostic and prognostic value, and correlation with immune infiltrates in a pan-cancer perspective.
In this study, we first explored the mRNA expression of DTYMK in 33 different cancer types using RNA-seq data from TCGA and integrated it with GTEx. TCGA data suggested that DTYMK is upregulated in 18 cancer types relative to normal tissues, including BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and UCEC. In comparison, DTYMK is only downregulated in KICH. Our findings agree with those studies that suggested DTYMK was increased in hepatocellular carcinoma (Guo et al., 2021; Sun et al., 2021), and non-small cell lung cancer (Liu et al., 2013). Based on DTYMK being abnormally expressed in a pan-cancer perspective, we conducted a ROC curve analysis to speculate the diagnostic value of DTYMK. The result suggested that the AUC value is more than 0.80 in BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KIRP, LUAD, LUSC, READ, STAD, UCEC, and KICH, further suggesting DTYMK is a potential diagnostic biomarker to differentiate tumor tissues from normal tissues in these tumors.
Many studies reported that the upregulation of DTYMK was correlated with poor prognosis in various cancers. Zhou et al. (2021) reported that high expression of DTYMK significantly corresponded to the poor OS, DSS, and relapse-free survival (RFS) in hepatocellular carcinoma. Guo et al. (2021) suggested that increased DTYMK was correlated with poor OS and DFS in hepatocellular carcinoma. In the present study, our results indicated that DTYMK is a risk factor for poor OS in patients with ACC, KIRC, LGG, LIHC, LUAD, MESO, PAAD, SKCM, and UVM and a protective factor in patients with DLBC. For DSS, DTYMK expression is a risk factor for patients with ACC, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, SKCM, and UVM. The PFI analysis suggested that DTYMK acted as a risk factor for patients with ACC, KIRC, LGG, LIHC, LUAD, PAAD, PRAD, SKCM, and UVM. These findings suggest that upregulation of DTYMK might act as a potential biomarker to identify tumor patients with poor clinical outcomes. Our finding that the mRNA expression of DTYMK is correlated with the T stage, N stage, M stage, and TNM stage in most tumors suggests DTYMK might play a crucial role in the development of tumor progression. To further investigate the detailed underlying mechanisms of oncogenic role in tumor progression, we analyzed the expression profile of DTYMK at a single-cell level and its potential functional status in pan-cancer. Our results showed that DTYMK expression is significantly positively correlated with cell cycle, DNA damage, DNA repair, and invasion. Our findings are consistent with that report by Zhou et al. that DTYMK can promote the cell cycle to enhance tumor growth and proliferation. Based on our data, we conclude that DTYMK might regulate the cell cycle to play a crucial role in the development of tumor progression and further lead to poor prognosis. However, this should be tested in other experiments.
In most solid tumors, the efficacy of immunotherapy is correlated with the tumor immune microenvironment, especially with infiltrating immune cells (Zhang et al., 2020). It is reported that the expression level of immune infiltration has been associated with prognosis in many cancer types (Guey et al., 2020), one underlying mechanism may be host immune defense by tumor-infiltrating immune cells against tumor progression (Sun et al., 2015). Moreover, immune-related genes can regulate systemic immune responses and are involved in the immune function of the body (Li et al., 2020). A previous study suggested that DTYMK might play an inhibiting effect on the immune microenvironment in the tumorigenesis of hepatocellular carcinoma (Guo et al., 2021). However, the correlation between DTYMK expression and tumor-infiltrating immune cells in pan-cancer has not been studied. In our study, we found that DTYMK expression is correlated with tumor-infiltrating immune cell levels by TIMER in LGG, LIHC, LUAD, MESO, SKCM, and UVM. Furthermore, a previous study suggested that the expression of tumor-infiltrating immune cells can predict the prognosis of LUAD patients (Lu et al., 2021). In this study, our data are consistent with this study and suggest that the six tumor-infiltrating immune cell expressions are correlated with the prognosis of patients with LGG, LIHC, LUAD, MESO, SKCM, and UVM. These findings lead us to speculate that DTYMK has a potential role in regulating tumor-infiltrating immune cells level to further affect the prognosis of these tumors, further suggesting that DTYMK is a potential therapeutic target for these tumors.
In conclusion, we applied a comprehensive pan-cancer analysis of DTYMK and found that DTYMK can be used as a potential diagnostic biomarker in most tumors. Our findings suggested that DTYMK expression is correlated with clinical prognosis, tumor progression and immune infiltrate. DTYMK has a potential role in regulating tumor-infiltrating immune cells level and might act as a potential target for immune therapy.
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Background: Colorectal carcinoma (CRC) is one of the most prevalent malignancies globally. Ferroptosis, a novel type of cell death, is critical in the development and treatment of tumors.
Objective: This study was designed to establish a genetic signature for ferroptosis which has a predictive effect on the outcomes and immunotherapeutic response of CRC.
Methods: Data of CRC patients were retrieved from TCGA and GEO databases. The genes associated with ferroptosis were obtained from GeneCards. The genetic signature for ferroptosis was identified by performing Cox regression analysis. Kaplan–Meier and ROC analysis were performed to assess the prognosis role of the genetic signature. CIBERSORT tool was used to identify a potential association of the genetic signature with the immune cells. The potential immunotherapeutic signatures and drug sensitivity prediction targeting this signature were also discussed. Immunohistochemistry was used to detect expression of ferroptosis-associated genes in CRC tissues and adjacent tissues.
Results: A ferroptosis-associated gene signature comprised of three genes (CDKN2A, FDFT1, and ACSL6) was developed for prediction of prognosis and evaluation of immune responses in CRC. Patients in the high-risk group tended to have a poor prognosis. In CRC, the ferroptosis-associated gene signature may function as independent predictors. Additionally, the expressional levels of the immune checkpoint proteins PD-L1 and CTLA-4 were substantially increased in the high-risk group. Moreover, we can distinguish between patients based on their immunotherapeutic responses more effectively if we categorize them by this signature. Additionally, candidate compounds were identified for the differentiation of CRC subtypes.
Conclusion: The ferroptosis-associated gene signature identified in this study is effective in predicting the prognosis and evaluating immunotherapeutic response in CRC patients, and provides us with novel insights into the potential effect of ferroptosis targeted treatment on CRC.
Keywords: colorectal carcinoma, ferroptosis, gene signature, prognosis, immune response
INTRODUCTION
Colorectal carcinoma (CRC) is one of common gastrointestinal system malignancies, ranking second in terms of carcinoma-related mortality worldwide (Siegel et al., 2020). The increasing disease burden caused by CRC has become one of the major public health problems. According to the GLOBOCAN Project 2018 of the WHO Cancer Research Centre, about 1.8 million new cases of CRC and about 880,000 deaths were reported in 2018 (Bray et al., 2018). It is beneficial for CRC patients to receive comprehensive treatments such as surgical removal, chemoradiotherapy, radiotherapy, immunotherapy and targeted therapy, but the present clinical treatment remains far from achieving ideal results, and CRC patients have a variation in individual prognosis (Wu, 2018; Ganesh et al., 2019; Zhang et al., 2019). Meanwhile, the 5-year survival rate in patients with CRC is about 64%, but decreases to 12% in those with metastatic CRC (Xie et al., 2020). Due to the heterogeneity of CRC patients, existing prognostic markers such as carcinoembryonic antigen (CEA) and tumor, lymph node, and metastasis (TNM) staging systems are inaccurate in predicting prognosis. Therefore, it is imperative to search for more precise biomarkers, and it is emergent to establish a better prognosis prediction model for CRC patients, which can help clinicians formulate appropriate treatment strategies.
Ferroptosis, a recently recognized nonapoptotic cell death, characterized by iron-dependent lipid peroxidation, differs from traditional types of cell death such as apoptosis, necroptosis, and autophagy (Dixon et al., 2012; Stockwell et al., 2017; Hirschhorn and Stockwell, 2019). Several studies have shown that ferroptosis is implicated with multiple diseases, such as tissue ischemia, neurodegenerative disorder, and tumor (Shi et al., 2019; Tang et al., 2022), which has garnered the attention of tremendous academicians worldwide. Moreover, it has been reported that ferroptosis exerts a great effect on gastric, pancreatic, hepatocellular, and colorectal carcinoma in the gastrointestinal system (Nie et al., 2018; Lorenzato et al., 2020). Emerging researches have shown that ferroptosis-targeted treatment can be used as a new promising alternative for current anticancer treatment, especially for treatment of malignancies resistant to traditional treatments (Hassannia et al., 2019; Liang et al., 2019; Chen et al., 2020). Additionally, some ferroptosis-associated genes including p53, DPP4, SLC7A11, and GPX4 were closely correlated with genesis, progression, and prognosis of CRC (Xie et al., 2017; Chen et al., 2020; Xia et al., 2020; Hong et al., 2021). Recently, several studies have mined public databases in order to explore prognostic signatures based on ferroptosis-associated genes in a variety of tumors, such as uveal melanoma, glioma, HCC, and pancreatic carcinoma (Du and Zhang, 2020; Tang B. et al., 2020; Tang R. et al., 2020; Luo and Ma, 2021; Zheng et al., 2021). However, few study has yet confirm whether ferroptosis-associated genes are correlated with the outcomes of CRC patients.
This study was designed to carry out a systematical evaluation on the prognostic values and multiple effects of the ferroptosis-associated genes in the immune responses of CRC. The mRNA expression profiles and related clinical data of CRC patients were collected from available datasets. Furthermore, according to the ferroptosis-associated genes in the TCGA cohort, a prognostic risk signature was identified and verified in the GEO cohort. Thereafter, a nomogram incorporating the risk signature and clinicopathological features was created to enhance the present prognostic evaluation of CRC patients. Subsequently, the potential connections of the prognostic genes with immune cells were assessed. Finally, the gene set enrichment analysis (GSEA) was conducted to explore the mechanism of action. In years to come, the ferroptosis risk signature and nomogram might help clinicians identifying prognosis and making individualized therapy decisions for CRC patients.
MATERIALS AND METHODOLOGY
Datasets
The RNA-seq data and related clinical data of 453 CRC patients screened from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) were taken as a training set. Similarly, the survival information of 579 CRC patients collected from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database (GSE39582) were taken as a validation set. The detailed clinical data was shown in Supplementary Table S1. A list of 105 ferroptosis-associated genes detailed in Supplementary Table S2 was obtained from GeneCards.
Differentially expressed gene analysis
limma, a R software package was applied for detection of the differences in expressional levels of ferroptosis-associated genes between tumorous and adjacent non-tumorous tissues in the TCGA cohort. The filter criteria were set as follows: p value was less than 0.05 and logFC was more than 1. Heatmap and volcano plot were used to visualize differential genes. To explore the connections between the candidate prognostic ferroptosis-associated genes, a protein-protein interaction (PPI) network diagram was drawn by using STRING platform.
Establishment and evaluation of a ferroptosis-associated genetic signature for prognosis prediction
The correlation between ferroptosis-associated genes and the overall survival (OS) in CRC patients was assessed by using univariate Cox regression analysis. The coefficients were then determined using multivariable Cox regression analysis. The formula for calculating the risk score of each patient was displayed as follows: risk score = [image: image], of which, coef indicated coefficient. Based on the median value of risk score, total patients in TCGA and GEO cohorts were divided into low-risk group and high-risk group respectively.
Moreover, Kaplan–Meier (K-M) analysis was conducted for comparing the difference in OS between both groups. In addition, a received operating characteristic (ROC) curve was drawn to evaluate the predictive effect of the risk signature in predicting the survival of CRC patients. Subsquently, univariate and multivariate Cox regression analyses were used to detect whether the risk score could be utilized as an independent risk factor for survival prediction in CRC patients. A prognosis nomogram integrating age, stage and risk score was constructed to assess the prognoses of CRC at 1-, 3-, and 5-years.
Gene set enrichment analysis
GSEA was carried out to determine if the gene sets were obviously different between two groups. For each analysis, gene set permutation was performed for 1,000 times. The risk score was computed by using phenotype label. Important gene sets were classified as those with a normalized enrichment score (NES) more than one and a minimal p-value less than 0.05.
Assessment of fractions of different immune cell subtypes, and estimation of immune and stromal content
CIBERSORT (https://cibersort.stanford.edu/), an analytical tool created by Newman et al. (2015), was utilized to determine the abundances of member cell types in a mixed cell population by using gene expression data. A normalized mRNA expression matrix and a CIBERSORT tool in CRC cohorts were used to detect the fractions of 22 subtypes of immune cells in two groups. Moreover, we used the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm via the R package “estimate” to assess the degree of infiltration of tumor cells and various normal cells to determine the StromalScore, ImmuneScore, and EstimateScore (Yoshihara et al., 2013)(19).
Exploration of the model in the immunotherapeutic treatment
We used the R package maftools to evaluate and summarize the mutation data. The tumor mutation burden (TMB) was estimated according to tumor-specific mutated genes (Wu et al., 2020). The TIDE algorithm was performed to predict the potential of the immunotherapeutic response (Xu et al., 2020).
Exploration of potential compounds targeting ferroptosis-associated genetic signature in clinical treatment
To obtain potential compounds in the clinic for CRC treatment, we calculated the IC50 of compounds obtained from the GDSC website in the TCGA project of the CRC dataset. We used the R package pRRophetic to predict the IC50 of compounds obtained from the GDSC website in patients with CRC.
The human protein atlas and immunohistochemistry
HPA is an open-access online database (http://www.proteinatlas.org/) that contains various images of protein expressions in cancerous and normal tissues (Uhlen et al., 2015). The immunohistochemical images of 3 ferroptosis-associated genes were retrieved from HPA database to confirm the results of bioinformatical analysis in this study.
To verify the results of this study, we collected 42 paired adjacent tissues and tumor tissues from our hospital to carry out immunohistochemistry. Immunohistochemistry was performed as described previously using (Liu et al., 2019; Zhu et al., 2021)anti- CDKN2A (ab270058, abcam) and anti- ACSL6 (ab229958, abcam) antibodies.
RESULTS
Detection of different expression levels of ferroptosis-associated genes and assessment of their prognostic significance in the CRC TCGA cohort
In this study, we used several advanced computational methods to systematically analyse the critical roles and prognosis effects of ferroptosis-associated genes in CRC. Flow chart of this study was illustrated in Supplementary Figure S1. The RNA-seq and clinical data of CRC patients were collected by retrieving TCGA and GEO databases. Figure 1A compared 77 ferroptosis-associated genes of different expression levels between the normal people (n = 41) and the CRC patients (n = 480) from TCGA, and they were also illustrated in the volcano map (Figure 1B), including 26 up-regulated genes and 51 down-regulated genes. STRING database (http://string-db.org) was retrieved to conduct protein-protein interaction network analysis, so as to achieve a better understanding of the interactions among above-mentioned ferroptosis-associated genes (Figure 1C). Moreover, the univariate Cox regression analysis was carried out to explore the prognosis significance of these ferroptosis-associated genes, and six prognostic-associated candidate genes were identified (Figure 1D), which implicated that CDKN2A and MAP1LC3C were prognostic risk genes for CRC patients. Meanwhile, FDFT1, SLC39A14, HMGCR and ACSL6 were genes protecting against CRC. Thereafter, multivariate Cox regression analysis was carried out to assess effects of these six prognosis-associated candidate genes on survival time and clinical outcomes of patients, and 3 ferroptosis-associated genes were determined as independent predictors in CRC (Figure 1E). Thereafter, the predictive model was constructed using 3 ferroptosis-associated genes. The risk score was computed using the formula as follows: risk score= (0.12 × CDKN2A)—(0.45 × FDFT1)—(0.08 × ACSL6).
[image: Figure 1]FIGURE 1 | Identification of different expressional levels of ferroptosis-associated genes and their prognostic significance in CRC. (A) Different expressional levels of ferroptosis-associated genes in TCGA cohort were displayed in the heatmap and (B) the volcano map; (C) PPI network indicated the interactions among the candidate genes from the STRING; (D,E) a ferroptosis-associated gene signature was constructed by using univariate and multivariate Cox regression analyses to exert a predictive effect on the prognosis of CRC.
Prognosis effects of the three ferroptosis-associated gene signature in colorectal carcinoma patients
As shown in the heatmap, 2 of 3 ferroptosis-associated genes had lower expression in the high-risk group both in TCGA and GEO cohorts (Figure 2A). Individuals in TCGA and GEO cohorts were classified into low-risk group and high-risk group by referring to their corresponding median risk scores (Figure 2B). Our data indicated that the patients had a higher mortality rate in high-risk group than that in low-risk group (Figures 2C,D). Furthermore, Kaplan-Meier analysis was performed for assessing the prognosis effect of the ferroptosis-associated genetic signature in CRC. As illustrated in Figure 2E, an increased ferroptosis risk score had a correlation with a worse overall survival (OS) in the TCGA cohort (p = 0.001), which was further confirmed in the GEO cohort (p = 0.011).
[image: Figure 2]FIGURE 2 | Prognostic effect of the ferroptosis-associated gene signature in CRC patients. (A) Heatmaps showed the expressional levels of 3 ferroptosis-associated genes respectively in low-and high-risk groups of TCGA and GEO cohorts; (B) the patients were grouped according to the ferroptosis-associated risk score. (C) The scatter plot demonstrated a difference in the survival status of CRC patients between low- and high-risk groups. The dot indicates the survival status of CRC patient, which ranked according to risk score in ascending order. (D) Mortality rates of the low- and high-risk groups; (E) Kaplan-Meier curves revealed a survival difference between two risk groups in TCGA and GEO cohorts.
Effectiveness of ferroptosis-associated gene signature in prognostic evaluation
To assess the prognosis effect of ferroptosis-associated gene signature on 1-, 3-, and 5-year survival rates, the ROC curves were drawn by using the data respectively from TCGA and GEO cohorts. The area under the ROC curve (AUC) was 0.643 at 1-year, 0.663 at 3-years, and 0.728 at 5-years in TCGA cohort, suggesting that the ferroptosis-associated gene signature had a good predictive ability of the prognosis of CRC patients (Figure 3A). This was further confirmed in GEO cohort (Figure 3B).
[image: Figure 3]FIGURE 3 | Prognostic significance of the ferroptosis-associated gene signature in CRC patients from the TCGA and GEO cohorts. (A,B) ROC curves indicated the accuracy of the ferroptosis-associated gene signature in the prediction of survival rates at 1-, 3-, and 5-years; (C–F) The independent prognostic significance of the ferroptosis-associated gene signature in OS in CRC patients using univariate and multivariate Cox analyses.
The independent prognosis effect of ferroptosis-associated gene signature on OS of CRC patients was evaluated by performing univariate and multivariate cox regression analysis. The univariate cox regression analysis showed that age, stage, and risk score were independent prognostic predictors of OS (especially risk score, HR = 1.765, 95% CI = 1.308–2.382, p < 0.001) in TCGA cohort (Figure 3C). Furthermore, multivariate cox regression analysis indicated that age, stage and risk score had an independent association with significantly poorer OS in CRC patients (Figure 3E), suggesting that these variables could function as independent prognosis factors of CRC. These were confirmed in GEO cohort (Figures 3D,F).
The nomogram is a potent tool to quantify risk for patients in clinical environment through integration of many risk factors. Based on the above 3 variables (age, stage, and risk score), a prognostic nomogram was developed for predicting 1-, 3- and 5-year OS rates (Figures 4A,C). The calibration curves revealed that the actual survival rate was highly consistent with the predicted survival rate in both TCGA and GEO cohorts (Figures 4B,D), suggesting that this nomograph is accurate and dependable, and thus contributing to optimized clinical decision-making of clinicians for CRC patients.
[image: Figure 4]FIGURE 4 | Constructing and verifying a nomogram. (A,C) The prognostic nomogram developed according to the risk scores of ferroptosis-associated genes and clinicopathological features predicted the 1‐, 3‐, and 5-year OS of CRC patients in the TCGA and GEO cohorts. (B,D) Calibration curves of nomogram on consistency between predicted and observed 1‐, 3‐, and 5-year survival in the TCGA and GEO cohorts.
Relationship between ferroptosis-associated gene expression and clinicopathological features in colorectal carcinoma
Additionally, the correlation of 3 ferroptosis-associated genes with clinicopathological features in CRC patients was investigated. Heatmap indicated the expression levels of 3 ferroptosis-associated genes at various clinicopathological stages in TCGA and GEO cohorts (Figures 5A,B). As drawn in Figure 5C, the expressional level of FDFT1, a presumed protective gene, was generally decreased in CRC patients with advanced clinicopathological stage in TCGA cohort. Conversely, the level of the risk gene CDKN2A was increased in CRC patients with advanced clinicopathological stage in TCGA cohort. The results of the CEO cohort were shown in Figure 5D.
[image: Figure 5]FIGURE 5 | Correlation between ferroptosis-associated gene expressions and clinicopathological features in CRC patients. (A,B) Expression patterns of 3 ferroptosis-associated genes in different stages in TCGA and GEO cohorts; (C,D) Expression levels of 3 ferroptosis-associated genes in CRC at different stages in TCGA and GEO cohorts. *p < 0.05, **p < 0.01, and ***p < 0.001.
Relationship between ferroptosis-associated gene signature and immune cells
The presence of 22 immune cell types were assessed in both TCGA and CEO cohorts (Figures 6A,B). In the TCGA cohort, there was an obvious difference in the presence of 3 types of immune cells (resting memory CD4+ T cells, resting dendritic cells and eosinophils) between 227 patients in the low-risk group and 226 patients in the high-risk group. In the GEO cohort, there was an obvious difference in the presence of 9 types of immune cells (CD8+ T cells, resting memory CD4 + T cells, naive CD4 + T cells, follicular T-helper cells, γδ T cells, activated natural killer (NK) cells, resting NK cells, M1-type macrophages, and activated mast cells) between 268 patients in the low-risk group and 311 patients in the high-risk group. In conclusion, there was an obvious difference in immune status between low- and high-risk groups, this needs to be further investigated to enhance cancer immunotherapy in CRC.
[image: Figure 6]FIGURE 6 | A difference in immune cell landscape between low and high ferroptosis-associated risks in CRC patients. (A) Relative distribution of 22 immune cells in all samples from TCGA and GEO cohorts; (B) The contents of immune cells in low- and high-risk groups. The low-risk group is indicated in green, the high-risk group is indicated in red.
Immunosuppressive microenvironment indicated by high ferroptosis-associated risk score
Genes signatures were derived from Tracking Tumor Immunophenotype website (http://biocc.hrbmu.edu.cn/TIP/). Heatmaps revealed that the genes negatively regulating the cancer-immunity cycle were obviously increased in the high-risk group, suggesting that patients in this group had decreased immunological competence (Figure 7A). The common differential genes were extracted in the TCGA and GEO cohorts, indicating that there was an obvious difference in expressions of these genes between two groups (Figure 7B).
[image: Figure 7]FIGURE 7 | Correlation of ferroptosis-associated gene signature with immunity microenvironment. (A) Heatmaps of gene profiles of the cancer-immunity cycle in two risk groups in the TCGA and GEO cohorts; (B) comparison of the common differential immune gene expression between two risk groups in the TCGA and GEO cohorts; (C) comparison of immune checkpoint expression between two risk groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
In consideration of the important role of checkpoint inhibitor cancer immunotherapy, the difference in immune checkpoint expression was compared between low-and high-risk groups, and it was discovered that there was a substantial difference in the expressions of PD1, PDL-1 and CTLA4 between two groups (Figure 7C). These findings indicated that patients with increased ferroptosis-associated risk scores are prone to develop an immunosuppressive microenvironment due to increased immunosuppressive cytokines and immune checkpoints.
Gene set enrichment analysis for identification of ferroptosis-associated signaling pathways
GSEA was performed to comparatively analyse the biological signaling pathway between low- and high-risk groups. Notably, in both TCGA and GEO cohorts, the gene sets associated with cytokine-cytokine receptor interaction, cell adhesion molecules, T cell receptor signaling pathway and chemokine signaling pathway were greatly enriched in the high-risk group (Figures 8A,B).
[image: Figure 8]FIGURE 8 | GSEA for identification of ferroptosis-associated signaling pathways. (A) GSEA of related signaling pathways in the high-risk group in TCGA cohort. (B) GSEA of related signaling pathways in the high-risk group in GEO cohort.
Estimation of the tumor immune microenvironment and cancer immunotherapy response using the ferroptosis-associated gene signature
We next investigated the correlations between the ferroptosis-associated gene signature and immunotherapeutic biomarkers. Unsurprisingly, we discovered that the high-risk group was more likely to respond to immunotherapy than the low-risk group, indicating that this ferroptosis-based classifier index might serve as an indicator for predicting Tumor Immune Dysfunction and Exclusion (TIDE) (Figure 9A). Then, we used the R package maftools to analyse and sum the mutation data. Based on the variant effect predictor, the mutations were stratified. The top 15 driver genes with the highest alteration frequency between two groups are shown in Figures 9B,C. We then calculated TMB scores based on the TCGA somatic mutation data. The scores of TMB in the high-risk group exceeded that in the low-risk group (Figure 9D). Moreover, high score of TMB (H-TMB) is correlated with a worse survival and can be used as a prognostic marker in CRC (Figure 9E). Therefore, we tested whether the ferroptosis-associated gene signature could predict the OS outcome better than TMB scores. Patients with TMB in the high-risk groups (defined as “H-TMB + high risk” and “L-TMB + high risk”, respectively) presented a worse OS than patients with TMB in the low-risk groups (defined as “H-TMB + low risk” and “L-TMB + low risk”, respectively) (Figure 9F). Interestingly, patients with L-TMB in the high-risk group had worse survival outcomes than patients with H-TMB in the low-risk group. The survival curve of patients with H-TMB was similar to that of patients with L-TMB in the high-risk group, indicating that the TMB scores failed to distinguish the survival rate in the high-risk group. Thus, these findings indicate that the ferroptosis-associated gene signature may have greater prognostic significance than the TMB scores.
[image: Figure 9]FIGURE 9 | Estimation of the tumor immune microenvironment and cancer immunotherapy response using the ferroptosis-associated gene signature in the TCGA entire set. (A) TIDE prediction difference in the high- and low-risk patients. (B,C) Waterfall plot displays mutation information of the genes with high mutation frequencies in the high-risk group (B) and low-risk group (C). (D) TMB difference in the high- and low-risk patients. (E) Kaplan-Meier curve analysis of OS is shown for patients classified according to the TMB status. (F) Kaplan-Meier curve analysis of OS is shown for patients classified according to the TMB status and ferroptosis-associated gene signature. (G) Comparison of Stromal_score, Immune_score and ESTIMATE_Score between two groups.
According to the results of ESTIMATE, the tumor microenvironment characteristics between two groups were identified. We found that the high-risk group had higher levels of StromalScore, ImmuneScore, and ESTIMATEScore, whereas the low-risk group had lower levels of these scores (Wilcox test, p < 0.01) (Figure 9G).
Identification of novel candidate compounds targeting the ferroptosis-associated gene signature
To identify potential drugs targeting our ferroptosis-associated gene signature for treating CRC patients, we used the pRRophetic algorithmto estimate the therapeutic response based on the half-maximal inhibitory concentration (IC50) available in the Genomics of Drug Sensitivity in Cancer (GDSC) database for each sample. We found that 12 compounds were screened out for significant differences in the estimated IC50 between these two groups, and the high group was more sensitive to all of these compounds. Figure 10 shows the top 5 compounds that might be used for further analysis in patients with CRC.
[image: Figure 10]FIGURE 10 | (A–E) Identification of novel candidate compounds targeting the ferroptosis-associated gene signature.
Verification of the expressions of ferroptosis-associated genes in colorectal carcinoma and normal colorectal tissues
In order to determine the expressions of 3 ferroptosis-associated genes in CRC, the human protein atlas database was used. Immunohistochemical findings were consistent with the transcriptional levels. Expression of CDKN2A was obviously increased in CRC tissue as compared with normal colorectal tissue. However, protein expressions of ACSL6 and FDFT1 were relatively decreased in CRC tissue (Figure 11). We also performed immunohistochemistry against ACSL6 and CDKN2A in the adjacent tissues and CRC tissues. The representative images of immunohistochemistry were shown in Figures 12A,B.
[image: Figure 11]FIGURE 11 | Verification of the expressions of ferroptosis-associated genes in CRC and normal colorectal tissues using HPA database.
[image: Figure 12]FIGURE 12 | Verify the translational expression of ferroptosis-associated in CRC and normal tissues. (A) The representative images of ACSL6 in the adjacent tissues and tumor tissues. (B) The representative images of CDKN2A in the adjacent tissues and tumor tissues.
DISCUSSION
CRC is one of the deadliest carcinomas worldwide, and nearly one-third of patients present with metastasis (Xie et al., 2020). Although CRC patients, particularly those at an advanced stage, achieve significant benefits from new treatments according to individual genomic data, molecular markers and specific tumor location (Jackson and Chester, 2015; Abubakar and Gan, 2016), improving early detection can better reduce the incidence and mortality of CRC. In recent years, multiple gene signature-based risk assessment models have been increasingly used for predicting the prognosis of CRC patients (Yang et al., 2020; Yuan et al., 2021; Yue et al., 2021), which can provide more accurate prediction of prognosis and survival than single gene biomarker. Furthermore, the utilization of mRNA signatures based on tumor and microenvironment features has a better predictive effect on CRC (Zhu et al., 2020; Wang et al., 2021). However, few study has been concerned on the prognosis potential of ferroptosis-associated gene signatures in CRC. In this study, the relationships of 105 ferroptosis-associated genes with OS and the infiltration of immune cells were explored in CRC. A novel prognostic risk signature composed of only 3 ferroptosis-associated genes was built in CRC patients.
Ferroptosis is a new form of cell death, characterized by excessively accumulated iron-dependent lipid hydroperoxide, which was firstly reported in 2012 (Wang et al., 2020). More and more evidences suggest that ferroptosis exerts an important effect on carcinogenesis and treatment of CRC (Hassannia et al., 2019; Liang et al., 2019). Additionally, the expressional level of ferroptosis-associated genes such as GPX4 and SLC7A11 and their susceptibility to ferroptosis are sharply elevated in CRC patients, suggesting that CRC patients may be vulnerable to ferroptosis (Chen et al., 2020). In this study, a new risk signature of ferroptosis was developed, which outperformed other conventional prognostic factors such as age, sex and pathological stage in predicting the survival of CRC patients. The differential expression analysis, univariate and multivariate Cox regression analysis were combinedly used to identify the ferroptosis-associated genes that had been shown to have explicit prognostic value in CRC. Furthermore, our risk model containing just 3 genes was more convenient for clinicians to use in clinic than those models containing multiple genes. This signature was applied to establish a predictive prognostic nomogram model, which would facilitate developing a short-term treatment strategy for CRC patients. The risk signature included 3 ferroptosis-associated genes: FDFT1, ACSL6 and CDKN2A.
To further investigate the effects of above-mentioned three genes on CRC, their mRNA expression levels and major molecular functions were determined and analysed. Based on their hazard ratios, CDKN2A was identified as the risk associated gene, while FDFT1 and ACSL6 as the protective genes. Cyclin-dependent kinase inhibitor 2 (CDKN2A) gene located at chromosome 9p21 is an important cell cycle regulator, which encodes p16INK4a and inhibits CDK4/6 in the cellular cytoplasm (Bihl et al., 2012). Chen et al. reported that CDKN2A can trigger a cell cycle arrest at G1/G2 phase and contribute significantly to cancerigenesis through enhancement of p53-dependent transactivation and ferroptosis (Chen et al., 2017). Moreover, CDKN2A increases the cellular sensitivity to reactive oxygen species (ROS)-induced ferroptosis in a p53 independent fashion, and CDKN2A depletion reduces the risk of ROS-induced cell death (Chen et al., 2017). It has been demonstrated that CDKN2A is silenced in about 30% of CRC (Kohonen-Corish et al., 2014), and hypermethylation of CDKN2A may be correlated with a worse prognosis in CRC patients (Xing et al., 2013). Additionally, it has been reported that CDKN2A is linked to the CpG island methylator phenotype (CIMP) in colon carcinoma, which can promote methylation-mediated gene silencing (Shima et al., 2011). CDKN2A inhibition combined with transcatheter arterial embolization (TAE) treatment can facilitate cancer-cell necrosis in rats with hepatic carcinoma (Gade et al., 2017). It has been revealed that the farnesyl-diphosphate farnesyltransferase 1 (FDFT1) can encode a membrane associated enzyme, which exerts an important effect in cholesterol biosynthesis and ferroptosis (Shimada et al., 2016). In addition, accumulated evidence has revealed that FDFT1 has a key effect on carcinoma, especially in metabolic reprogramming, cell proliferation, and invasion. It has been confirmed by a study that downregulated FDFT1 is related to late tumor progression and worse prognosis in CRC, and FDFT1 suppresses the tumorigenesis through negative regulation of AKT/mTOR/HIF1α signaling pathway (Weng et al., 2020). Moreover, somatic variant analysis indicated that FDFT1 mutation only occurs constantly in the patients with hepatic metastasis, implying that FDFT1-targeted treatment in CRC, particularly in patients with hepatic metastasis, can be a viable strategy (Ma et al., 2019). Acyl-CoA synthetase long-chain family member 6 (ACSL6) is a form present in plasma membrane and displays a high activity with fatty acid (Lopes-Marques et al., 2013). Data analysis revealed that ACSL6 has emerged as a potential tumor suppressor gene in leukemia (Chen et al., 2016). In addition, downregulation of ACSL6 has been found in most carcinoma, except in CRC (Chen et al., 2016). It was detected that miRNAs Let-7c and let-7e targeting against ACSL6 mRNA are decreased in CRC tissue, thus leading to the fact that overexpressed ACSL6 promotes cancerous cells proliferation (Angius et al., 2019). Furthermore, overexpressed ACSL6 in CRC cells can promote fatty acid synthesis, suppress mitochondrial respiration, and increase glycolytic activity, which enhances cell proliferation through providing intermediate metabolites and energy. In general, 3 genes could be classified into 3 categories based on their molecular functions: iron metabolism (CDKN2A), energy metabolism (FDFT1), and lipid metabolism (ACSL6). Although there were few studies on the effects of the above 3 highly connected genes on CRC, we discovered a correlation of decreased FDFT1 and ACSL6 and increased CDKN2A with a worse OS in CRC patients in this study, and more studies are needed to investigate its underlying mechanism.
Immunotherapy, which plays a vital role in antitumor treatment, has been paid more and more attention. Recent studies indicated that ferroptosis may be critical in tumor immunotherapy (Lang et al., 2019; Stockwell and Jiang, 2019; Wang et al., 2019; Zeng et al., 2021). Under the presence of ferroptosis, the antitumor immunity can be regulated by the cells via releasing chemotaxis and interacting with immune cells such as CD8+ T cells and NK cells (Wang et al., 2019; Zitvogel and Kroemer, 2019; Chen et al., 2021). In this study, the fraction of resting NK cells, memory-resting CD4+ T cells were decreased, M0 and M1 macrophages were increased in high-risk group, indicating that ferroptosis has an obvious immune suppressive feature, which leads to a worse OS in CRC patients in high-risk group. Immune checkpoints such as PD1, PD-L1, CTLA-4, and LAG3 are important in tumorigenesis, which can promote tumor immunosuppressive effects. Whereas, tumor cells can defend themselves against attack by stimulating immune checkpoint targets. Therefore, immune checkpoint blockade therapy is a crucial for progression of antitumor immunotherapies, which activates the natural cancer-selective killing activity of T cells. According to recent studies, ferroptosis can regulate the anticancer activity of CD8+ T cells via increasing tumor cell sensitivity to PD-1/PD-L1 or CTLA-4 blocking therapy (Lang et al., 2019; Wang et al., 2019). Consistent with the above findings, immune checkpoints such as PD1, PD-L1 and CTLA-4 were increased in the high-risk group in this study. The above result suggests that patients in the high-risk group can be susceptible to immunotherapy or checkpoint inhibitor-based immunotherapy. Combined application of immunotherapy and ferroptosis-targeting therapy would be a viable treatment strategy.
The TMB is thought to be associated with the number of neoantigens in tumors and is important in predicting the efficacy of immune checkpoint inhibitors (Allgauer et al., 2018). Recent studies have shown that TMB is an important biomarker for predicting the response to PD-L1 therapy (Topalian et al., 2016). Our study showed that the TMB in the high-risk group exceeded that in the low-risk group, which proved that immune checkpoint inhibitors might be more effective in the high-risk group.
In summary, we develop a risk signature for CRC according to ferroptosis-associated genes, which has a good prognosis effect and reflects the link between immune microenvironment and the outcome of CRC patients. Importantly, this study provides novel insights into the molecular mechanism underlying ferroptosis in CRC patients, and also indicates that ferroptosis-targeted treatment will be a promising treatment for CRC patients. Nevertheless, this study has a few limitations. First of all, the data in this retrospective study were retrieved from public datasets, so a prospective study with more large-scale data need to be performed to testify its clinical utility of present findings. Secondly, the clinical data provided in public datasets is limited, which may decrease the reliability of nomogram we built in this study. Finally, the risk signature in this study was defined by bioinformatics analysis, further functional experiments are needed to verify the present findings and investigate their underlying mechanisms before clinical application.
DATA AVAILABILITY STATEMENT
RNA-seq data and clinical information applied to support the findings of this study were downloaded from the Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) andGene Expression Omnibus (GEO) repository (GSE39582).
ETHICS STATEMENT
The studies involving human participants were reviewed and approved by The First Affiliated Hospital of Nanjing Medical University. The patients/participants provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LY, XC, ZB, CG, LC, HX, and QT. The first draft of the manuscript was written by LY and HJ, and all authors had commented on the manuscript. All authors had read and approved the final manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.971364/full#supplementary-material
REFERENCES
 Abubakar, M. B., and Gan, S. H. (2016). Molecular targets in advanced therapeutics of cancers: the role of pharmacogenetics. Oncology 91, 3–12. doi:10.1159/000446437
 Allgauer, M., Budczies, J., Christopoulos, P., Endris, V., Lier, A., Rempel, E., et al. (2018). Implementing tumor mutational burden (TMB) analysis in routine diagnostics-a primer for molecular pathologists and clinicians. Transl. Lung Cancer Res. 7, 703–715. doi:10.21037/tlcr.2018.08.14
 Angius, A., Uva, P., Pira, G., Muroni, M. R., Sotgiu, G., Saderi, L., et al. (2019). Integrated analysis of miRNA and mRNA endorses a twenty miRNAs signature for colorectal carcinoma. Int. J. Mol. Sci. 20, E4067. doi:10.3390/ijms20164067
 Bihl, M. P., Foerster, A., Lugli, A., and Zlobec, I. (2012). Characterization of CDKN2A(p16) methylation and impact in colorectal cancer: systematic analysis using pyrosequencing. J. Transl. Med. 10, 173. doi:10.1186/1479-5876-10-173
 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 394–424. doi:10.3322/caac.21492
 Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., et al. (2017). NRF2 is a major target of ARF in p53-independent tumor suppression. Mol. Cell 68, 224–232. doi:10.1016/j.molcel.2017.09.009
 Chen, P., Li, X., Zhang, R., Liu, S., Xiang, Y., Zhang, M., et al. (2020). Combinative treatment of beta-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics 10, 5107–5119. doi:10.7150/thno.44705
 Chen, W. C., Wang, C. Y., Hung, Y. H., Weng, T. Y., Yen, M. C., and Lai, M. D. (2016). Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme A synthetase family in cancer. PLoS One 11, e0155660. doi:10.1371/journal.pone.0155660
 Chen, X., Yan, L., Jiang, F., Lu, Y., Zeng, N., Yang, S., et al. (2021). Identification of a ferroptosis-related signature associated with prognosis and immune infiltration in adrenocortical carcinoma. Int. J. Endocrinol. 2021, 4654302. doi:10.1155/2021/4654302
 Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072. doi:10.1016/j.cell.2012.03.042
 Du, X., and Zhang, Y. (2020). Integrated analysis of immunity- and ferroptosis-related biomarker signatures to improve the prognosis prediction of hepatocellular carcinoma. Front. Genet. 11, 614888. doi:10.3389/fgene.2020.614888
 Gade, T. P. F., Tucker, E., Nakazawa, M. S., Hunt, S. J., Wong, W., Krock, B., et al. (2017). Ischemia induces quiescence and autophagy dependence in hepatocellular carcinoma. Radiology 283, 702–710. doi:10.1148/radiol.2017160728
 Ganesh, K., Stadler, Z. K., Cercek, A., Mendelsohn, R. B., Shia, J., Segal, N. H., et al. (2019). Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 16, 361–375. doi:10.1038/s41575-019-0126-x
 Hassannia, B., Vandenabeele, P., and Vanden Berghe, T. (2019). Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849. doi:10.1016/j.ccell.2019.04.002
 Hirschhorn, T., and Stockwell, B. R. (2019). The development of the concept of ferroptosis. Free Radic. Biol. Med. 133, 130–143. doi:10.1016/j.freeradbiomed.2018.09.043
 Hong, Z., Tang, P., Liu, B., Ran, C., Yuan, C., Zhang, Y., et al. (2021). Ferroptosis-related genes for overall survival prediction in patients with colorectal cancer can be inhibited by gallic acid. Int. J. Biol. Sci. 17, 942–956. doi:10.7150/ijbs.57164
 Jackson, S. E., and Chester, J. D. (2015). Personalised cancer medicine. Int. J. Cancer 137, 262–266. doi:10.1002/ijc.28940
 Kohonen-Corish, M. R., Tseung, J., Chan, C., Currey, N., Dent, O. F., Clarke, S., et al. (2014). KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer. Int. J. Cancer 134, 2820–2828. doi:10.1002/ijc.28619
 Lang, X., Green, M. D., Wang, W., Yu, J., Choi, J. E., Jiang, L., et al. (2019). Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685. doi:10.1158/2159-8290.CD-19-0338
 Liang, C., Zhang, X., Yang, M., and Dong, X. (2019). Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater. 31, e1904197. doi:10.1002/adma.201904197
 Liu, R., Li, Y., Tian, L., Shi, H., Wang, J., Liang, Y., et al. (2019). Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating beta-catenin/c-Myc signaling in human hepatocellular carcinoma. Cancer Lett. 443, 34–46. doi:10.1016/j.canlet.2018.11.030
 Lopes-Marques, M., Cunha, I., Reis-Henriques, M. A., Santos, M. M., and Castro, L. F. (2013). Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. BMC Evol. Biol. 13, 271. doi:10.1186/1471-2148-13-271
 Lorenzato, A., Magri, A., Matafora, V., Audrito, V., Arcella, P., Lazzari, L., et al. (2020). Vitamin C restricts the emergence of acquired resistance to EGFR-targeted therapies in colorectal cancer. Cancers (Basel) 12, E685. doi:10.3390/cancers12030685
 Luo, H., and Ma, C. (2021). A novel ferroptosis-associated gene signature to predict prognosis in patients with uveal melanoma. Diagn. (Basel) 11, 219. doi:10.3390/diagnostics11020219
 Ma, Y. S., Wu, Z. J., Zhang, H. W., Cai, B., Huang, T., Long, H. D., et al. (2019). Dual regulatory mechanisms of expression and mutation involving metabolism-related genes FDFT1 and UQCR5 during CLM. Mol. Ther. Oncolytics 14, 172–178. doi:10.1016/j.omto.2019.04.008
 Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457. doi:10.1038/nmeth.3337
 Nie, J., Lin, B., Zhou, M., Wu, L., and Zheng, T. (2018). Role of ferroptosis in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 144, 2329–2337. doi:10.1007/s00432-018-2740-3
 Shi, Z. Z., Fan, Z. W., Chen, Y. X., Xie, X. F., Jiang, W., Wang, W. J., et al. (2019). Ferroptosis in carcinoma: Regulatory mechanisms and new method for cancer therapy. Onco. Targets. Ther. 12, 11291–11304. doi:10.2147/OTT.S232852
 Shima, K., Nosho, K., Baba, Y., Cantor, M., Meyerhardt, J. A., Giovannucci, E. L., et al. (2011). Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review. Int. J. Cancer 128, 1080–1094. doi:10.1002/ijc.25432
 Shimada, K., Skouta, R., Kaplan, A., Yang, W. S., Hayano, M., Dixon, S. J., et al. (2016). Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503. doi:10.1038/nchembio.2079
 Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., et al. (2020). Colorectal cancer statistics, 2020. CA. Cancer J. Clin. 70, 145–164. doi:10.3322/caac.21601
 Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., et al. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285. doi:10.1016/j.cell.2017.09.021
 Stockwell, B. R., and Jiang, X. (2019). A physiological function for ferroptosis in tumor suppression by the immune system. Cell Metab. 30, 14–15. doi:10.1016/j.cmet.2019.06.012
 Tang, B., Zhu, J., Li, J., Fan, K., Gao, Y., Cheng, S., et al. (2020). The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Commun. Signal. 18, 174. doi:10.1186/s12964-020-00663-1
 Tang, R., Hua, J., Xu, J., Liang, C., Meng, Q., Liu, J., et al. (2020). The role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ 8, e9602. doi:10.7717/peerj.9602
 Tang, X., Jiang, F., Wang, X., Xia, Y., Mao, Y., and Chen, Y. (2022). Identification of the ferroptosis-related long non-coding RNAs signature to improve the prognosis prediction in papillary renal cell carcinoma. Front. Surg. 9, 741726. doi:10.3389/fsurg.2022.741726
 Topalian, S. L., Taube, J. M., Anders, R. A., and Pardoll, D. M. (2016). Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287. doi:10.1038/nrc.2016.36
 Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347, 1260419. doi:10.1126/science.1260419
 Wang, W., Green, M., Choi, J. E., Gijon, M., Kennedy, P. D., Johnson, J. K., et al. (2019). CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274. doi:10.1038/s41586-019-1170-y
 Wang, Y., Li, W., Jin, X., Jiang, X., Guo, S., Xu, F., et al. (2021). Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer. BMC Cancer 21, 905. doi:10.1186/s12885-021-08629-3
 Wang, Y., Wei, Z., Pan, K., Li, J., and Chen, Q. (2020). The function and mechanism of ferroptosis in cancer. Apoptosis 25, 786–798. doi:10.1007/s10495-020-01638-w
 Weng, M. L., Chen, W. K., Chen, X. Y., Lu, H., Sun, Z. R., Yu, Q., et al. (2020). Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat. Commun. 11, 1869. doi:10.1038/s41467-020-15795-8
 Wu, C. (2018). Systemic therapy for colon cancer. Surg. Oncol. Clin. N. Am. 27, 235–242. doi:10.1016/j.soc.2017.11.001
 Wu, Z., Wang, M., Liu, Q., Liu, Y., Zhu, K., Chen, L., et al. (2020). Identification of gene expression profiles and immune cell infiltration signatures between low and high tumor mutation burden groups in bladder cancer. Int. J. Med. Sci. 17, 89–96. doi:10.7150/ijms.39056
 Xia, Y., Liu, S., Li, C., Ai, Z., Shen, W., Ren, W., et al. (2020). Discovery of a novel ferroptosis inducer-talaroconvolutin A-killing colorectal cancer cells in vitro and in vivo. Cell Death Dis. 11, 988. doi:10.1038/s41419-020-03194-2
 Xie, Y. H., Chen, Y. X., and Fang, J. Y. (2020). Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22. doi:10.1038/s41392-020-0116-z
 Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., et al. (2017). The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704. doi:10.1016/j.celrep.2017.07.055
 Xing, X., Cai, W., Shi, H., Wang, Y., Li, M., Jiao, J., et al. (2013). The prognostic value of CDKN2A hypermethylation in colorectal cancer: a meta-analysis. Br. J. Cancer 108, 2542–2548. doi:10.1038/bjc.2013.251
 Xu, F., Zhan, X., Zheng, X., Xu, H., Li, Y., Huang, X., et al. (2020). A signature of immune-related gene pairs predicts oncologic outcomes and response to immunotherapy in lung adenocarcinoma. Genomics 112, 4675–4683. doi:10.1016/j.ygeno.2020.08.014
 Yang, Y., Qu, A., Wu, Q., Zhang, X., Wang, L., Li, C., et al. (2020). Prognostic value of a hypoxia-related microRNA signature in patients with colorectal cancer. Aging (Albany NY) 12, 35–52. doi:10.18632/aging.102228
 Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612
 Yuan, Y., Liu, M., Hou, P., Liang, L., Sun, X., Gan, L., et al. (2021). Identification of a metabolic signature to predict overall survival for colorectal cancer. Scand. J. Gastroenterol. 56, 1078–1087. doi:10.1080/00365521.2021.1948605
 Yue, T., Chen, S., Zhu, J., Guo, S., Huang, Z., Wang, P., et al. (2021). The aging-related risk signature in colorectal cancer. Aging (Albany NY) 13, 7330–7349. doi:10.18632/aging.202589
 Zeng, N., Ma, L., Cheng, Y., Xia, Q., Li, Y., Chen, Y., et al. (2021). Construction of a ferroptosis-related gene signature for predicting survival and immune microenvironment in melanoma patients. Int. J. Gen. Med. 14, 6423–6438. doi:10.2147/IJGM.S327348
 Zhang, L., Cao, F., Zhang, G., Shi, L., Chen, S., Zhang, Z., et al. (2019). Trends in and predictions of colorectal cancer incidence and mortality in China from 1990 to 2025. Front. Oncol. 9, 98. doi:10.3389/fonc.2019.00098
 Zheng, Y., Ji, Q., Xie, L., Wang, C., Yu, C. N., Wang, Y. L., et al. (2021). Ferroptosis-related gene signature as a prognostic marker for lower-grade gliomas. J. Cell. Mol. Med. 25, 3080–3090. doi:10.1111/jcmm.16368
 Zhu, L., Wang, H., and Wang, Z. (2020). A five-immune-related genes-based prognostic signature for colorectal cancer. Int. Immunopharmacol. 88, 106866. doi:10.1016/j.intimp.2020.106866
 Zhu, L., Yang, F., Wang, L., Dong, L., Huang, Z., Wang, G., et al. (2021). Identification the ferroptosis-related gene signature in patients with esophageal adenocarcinoma. Cancer Cell Int. 21 (1), 124. doi:10.1186/s12935-021-01821-2
 Zitvogel, L., and Kroemer, G. (2019). Interferon-gamma induces cancer cell ferroptosis. Cell Res. 29, 692–693. doi:10.1038/s41422-019-0186-z
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Yan, Chen, Bian, Gu, Ji, Chen, Xu and Tang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 12 September 2022
doi: 10.3389/fgene.2022.983943


[image: image2]
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Objective: To reveal the potential mechanisms of curcumin for the treatment of skin cutaneous melanoma (SKCM) and its identify novel prognostic biomarkers.
Methods: We searched the Cancer Genome Atlas and Traditional Chinese Medicine Systems Pharmacology database for the data on SKCM and curcumin. We conducted data analysis using R and online tools. The propagation and migration of SKCM cells were assessed with CCK-8 and scratch wound assays, respectively. We assessed apoptosis by TUNEL assay and western blot.
Results: The survival analysis revealed that the mRNA expressions of DPYD, DPYS, LYN, PRKCQ, and TLR1 were significantly related to a favorable overall survival in SKCM patients. Additionally, the mRNA expression level of DPYD was associated with GPI, LYN, PCSK9, PRKCQ, and TLR1 mRNAs. GSEA results showed that the prognostic hub genes were augmented with ultraviolet, apoptosis, and metastasis. Curcumin expressed proliferation and migration of SK-MEL-1 cells (p < 0.05), and induced apoptosis (p < 0.05) significantly.
Conclusion: Curcumin may have potential therapeutic effects in SKCM by inhibiting cell proliferation and migration and inducing apoptosis by regulating oxygen-related signaling pathways. The hub genes might be identified as novel biomarkers for SKCM.
Keywords: curcumin, skin cutaneous melanoma, biomarker, proliferation, apoptosis, migration
1 INTRODUCTION
Skin cutaneous melanoma (SKCM) is one of the most vigorous and fatal skin cancer types. The worldwide incidence of SKCM increases faster annually than any other cancer (Ali et al., 2013). The latest research shows that about 95,830 new cases of SKCM in situ have been reported in the United States in 2019 (Siegel et al., 2019). Ultraviolet (UV) radiation may be the main environmental risk factor (Gilchrest et al., 1999). Although the pathogenesis and diagnostic methods of diseases have shown great progress, the morbidity and mortality of SKCM have increased over the past 50 years in developed countries (Lu et al., 2018). Moreover, the treatment strategies that are currently available for metastatic melanoma have shown a relatively poor rate of success, and most newly developed anti-melanoma treatments are associated with severe adverse reactions (Kalal et al., 2017; Kozar et al., 2019; Luther et al., 2019). For these reasons, people have started to gain interest in natural compounds. It has been found that phytochemicals have demonstrated anti-proliferation, apoptosis promoting, anti-invasion, and anti-angiogenesis properties in mouse models and melanoma cell lines, without obvious toxicity (Fontana et al., 2019).
Curcumin is a polyphenolic compound, and curcumin is derived from turmeric (Curcuma longa), as its primary bioactive component (Pisano et al., 2010). It is a dietary spice made from the rhizome of Curcuma longa and is commonly used in curry powder as well as for centuries in traditional Chinese medicine (Maheshwari et al., 2006; Yu et al., 2010). Research has identified that curcumin has various therapeutic properties via different biological functions and pharmacological effects. These therapeutic properties include anti-inflammatory, antioxidant, immunomodulatory, antimicrobial, anti-ischemic, anti-cancer, and antirheumatic activities (Sahebkar, 2010, 2013; Mirzaei et al., 2016; Momtazi et al., 2016; Pulido-Moran et al., 2016; Kunnumakkara et al., 2017). Curcumin can induce endoplasmic reticulum stress in SKCM by inhibiting classic signaling pathways, which included nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), Akt/Mtor, and Wnt/β-catenin, the expression of reactive oxygen species (ROS)thus the enhancement of oxidative stress injury has been increased (Bakhshi et al., 2008; Liao et al., 2017; Siwak et al., 2005; Zhang et al., 2015; Zheng et al., 2004). However, no systematic study on the mechanism, target, and effect of curcumin in the course of SKCM has been published thus far.
Therefore, we used the resources in traditional Chinese medicine and tumor databases to analyze what role curcumin plays in the treatment of SKCM. Specifically, we aimed to identify the target genes of curcumin acting on SKCM and analyze whether these genes are related to pathogenesis, staging, and prognosis. Furthermore, the effects of varying concentrations of curcumin on proliferation, migration, and apoptosis of SKCM cells were assessed in vitro. The results of this study were the basis for future studies on the effects of curcumin on SKCM.
2 MATERIALS AND METHODS
2.1 Detection of potential target genes
We obtained the molecular formula of curcumin from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, https://old.tcmsp-e.com/tcmsp.php, accessed on 25 June 2021) (Ru et al., 2014). The effectiveness of target genes was identified from the PharmMapper Server (http://www.lilab-ecust.cn/pharmmapper/, accessed on 25 June 2021) (Liu et al., 2010; Wang et al., 2016; Wang et al., 2017) through Druggable Pharmacophore Models. Besides, we obtained the SKCM-related target genes and all of the protein-coding genes from the GeneCards Human gene database (https://www.genecards.org/, accessed on 25 June 2021) (Harel et al., 2009; Stelzer et al., 2016). Thus, the common target genes of curcumin and SKCM were identified.
2.2 Gene ontology and kyoto encyclopedia of genes and genomes analyses
We conducted the GO and KEGG analyses based on these common target genes. Providing data about the gene expression of common target genes. The GO and KEGG analyses were conducted to elucidate which mechanisms were applied by curcumin in the treatment of SKCM using the KOBAS 3.0 web server (http://kobas.cbi.pku.edu.cn/index.php, accessed on 30 June 2021) (Wu et al., 2006; Xie et al., 2011) and STRING v11.0 (https://string-db.org/, accessed on 30 June 2021) (Szklarczyk et al., 2019). Additionally, the Biological Networks Gene Ontology (BiNGO) (Maere et al., 2005), a GO function analysis tool, was applied to predict the functionality of common target genes.
2.3 Establishing the Protein-Protein Interaction network
A PPI network provides systematic visual data on the relationships between drugs, target genes, and proteins. We obtained the data from the STRING protein query and utilized data to construct the PPI network. Medium confidence of 0.400 was selected as the threshold in the analysis. Some nodes that were disconnected from each other were not displayed. Cytoscape software 3.6.1 was used to visualize the PPI network.
2.4 The construction of Genetic Interaction network
A GI network shows the complex interaction between genes of interest, and it was generated in GeneMANIA (https://genemania.org/, accessed on 30 June 2021) (Warde-Farley et al., 2010). The common target genes were used as query terms and then the predicted ones were shown simultaneously.
2.5 Survival data preparation
We obtained the Cancer Genome Atlas (TCGA) data and survival rate/time data, including clinical information (ID, age at index, gender, race, vital status, tumor stage, treatment, and the mRNA expression of common target genes of SKCM patients) from OncoLnc (http://www.oncolnc.org/, accessed on 25 June 2021) (Anaya, 2016) and TCGA (https://cancergenome.nih.gov/, accessed on 1 July 2021). Briefly, all common target genes were registered in the database, then the patients with SKCM were categorized half based on the expression of every gene, and as a result, the survival data of these SKCM patients was obtained. Ultimately, the common target genes related to overall survival (OS) were identified as hub genes.
2.6 Survival analysis
We used the 50% limitation as standard for each hub gene’s mRNA to divide the patients into groups with high- or low expression. Based on OS, the log-rank test and Kaplan-Meier estimator were applied in the survival analysis to calculate the log-rank p-value and identify the OS of hub genes. Subsequently, a Cox regression analysis was conducted to identify any associations between clinical information and the risk score, for which a nomogram was produced. R v3.6 was used to create the survival curves and nomogram.
2.7 mRNA expression levels and correlation analyses
The Gene Expression Profiling Interactive Analysis (GEPIA: http://gepia.cancer-pku.cn/, accessed on 1 July 2021) dataset (Tang et al., 2017) was applied to create a boxplot in which the hub gene mRNA’s expression levels were demonstrated. We calculated the mRNA expression levels through the retrieved TCGA data. Furthermore, we defined the expression of hub genes as high and low based on the median value. The high expression group referred to patients with expression values that were higher than the median values of the specific hub genes. Besides, the low expression group referred to patients with expression values that were lower than the median values of the specific hub genes. R v3.6 was used to perform Pearson correlation coefficient analysis by which the co-expression relationship among hub genes was assessed.
2.8 Gene Set Enrichment Analysis
GSEA (http://software.broadinstitute.org/gsea/index.jsp; accessed on 1 July 2021) (Subramanian et al., 2005) was conducted to identify which potential mechanisms were responsible for the effect that the risk score has on SKCM prognosis. The Molecular Signatures Databases (MSigDB) c2 (c2. cp.kegg.v6.1. symbols.GMT) and c5 (c5. all.v6.1. symbols.GMT) were used to investigate the crucial functions and pathways that could affect SKCM on the basis of prognosis-related hub gene mRNAs. We defined the significance as a nominal p-value < 0.01 and false discovery rate (FDR) < 0.25 for the sets of enrichment genes in the GSEA. The nine most significant gene sets were selected for this study and six of the eight prognosis-related genes (DPYD, GPI, LYN, MMP2, PRKCQ, and TLR1) were included in the GSEA due to the limitation of the dataset.
2.9 Cell line and drugs
The human SKCM cell line (SK-MEL-1) was retrieved from Procell Life Science & Technology (Wuhan, China). The curcumin was obtained from Solarbio Life Sciences (Beijing, China). The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) added with 20% FBS and then incubated at 37°C.
2.10 Cell proliferation assay
We used a Cell Counting Kit-8 (CCK-8) assay (Beyotime Biotechnology, Shanghai, China) to measure the spectrophotometric absorbance, with which the proliferation of cells at 24 h was estimated. The SK-MEL-1 cells were cultured on plastic 96-well culture plates at a concentration of 5 × 103 cells/well. All experiments were performed as instructed by the manufacturer.
2.11 Cell migration assay
Cell migration was detected through a scratch wound assay. The SK-MEL-1 cells confluence in culture plates was scratched with a sterile pipette tip to produce a space free of cells. Serum-free DMEM was used to first rinse all the cells and then they were photographed to document the width of the wound at 0 h. Then, we used the serum-free medium to culture the negative control group of cells for up to 24 h, and the other two groups were treated with 20 and 30 μM curcumin, respectively. Photographs of the marked wound location were taken again at 6, 16, and 24 h to measure the migration of cells.
2.12 TUNEL assay
The rate of apoptosis in cultured SK-MEL-1 cells was measured with the One Step TUNEL Apoptosis Assay Kit (Dalian Meilun Biotechnology, Dalian, China) as described by the manufacturer’s instructions. SK-MEL-1 cells cultured in plastic 6-well culture plates were treated with proteinase K (20 μg/ml) and stained as recommended. The apoptotic index of cells was calculated by observing the TUNEL-positive cells in six fields that did not overlap under ×200 magnification.
2.13 Western blot
Cell apoptosis was also evaluated on protein level by western blot. The primary antibodies (GAPDH, Bcl-2, Cleaved Caspase 3, and Bax) were obtained from Cell Signaling Technology Inc. (MA, United States). The extracts of protein were stored at −80°C until use. Identical quantities of denatured protein were exposed to 10% SDS-PAGE and the separated proteins were placed on polyvinylidene difluoride (PVDF) membranes (Solarbio Life Sciences, Beijing, China). An LI-COR automatic chemiluminescence image analysis system was used to visualize the protein bands. The Odyssey Fc Imaging System was used to quantify the Western blot signals.
2.14 Statistical analyses
We used R v3.6 to obtain the correlation plot, survival curves, nomogram, and visualization of data. A p-value < 0.05 was deemed statistically significant. A workflow diagram is shown in Figure 1. GraphPad Prism (GraphPad Software, San Diego, United States) was used to perform one-way and two-way ANOVA.
[image: Figure 1]FIGURE 1 | A workflow diagram. TCMSP, Traditional Chinese Medicine Systems Pharmacology Database, and Analysis Platform; KEGG, Kyoto encyclopedia of genes and genomes; PPI, Protein-Protein Interaction; GI, Genetic Interaction; TCGA, The Cancer Genome Atlas; GSEA, Gene Set Enrichment Analysis.
3 RESULTS
3.1 The identification and functional analyses of target genes
The molecular formula of curcumin was obtained from TCMSP and 158 human target genes were collected (Figure 2A), of which 36 were identified as common targets (Figure 2B). The significant (the cut-off criterion for statistic difference was corrected to p < 0.0001) GO categories are shown in Supplementary Table S1. The common target genes were mainly enriched in the cytoplasm (GO:0005737), catabolic process (GO:0009056), response to endogenous stimulus (GO:0009719), and other terms. The KEGG analysis showed that the hub genes were mainly enriched in carbon metabolism (hsa01200), metabolic pathways (hsa01100), and NF-κB signaling pathway (hsa04064), and other associated pathways (Supplementary Figure S1). These results were consistent with the BiNGO outcomes (Supplementary Figure S2).
[image: Figure 2]FIGURE 2 | (A) Targets for curcumin. (B) Venn diagram summarizing differentially expressed targets for SKCM and curcumin. SKCM, skin cutaneous melanoma. The data are derived from PharmMapper.
3.2 The construction of PPI and GI network
The PPI network was constructed using the STRING online tool, and the Cytoscape 3.6.1 software was used for visualization. Identification of the most significant genes using a network constructed from common target genes (Supplementary Figure S3A). As shown in Supplementary Figure S3A, the tumor protein 53 (TP53), catalase (CAT), and enolase 1 (ENO1) were evidently at the PPI network’s center. The GeneMANIA online tool was used to construct the GI network, which shows the interaction among the 36 common target genes and predicted genes (Supplementary Figure S3B).
3.3 Survival analysis
The results of the log-rank test and Kaplan-Meier estimator indicated that the following eight out of 36 common target genes were significantly associated to the OS of SKCM patients: matrix metallopeptidase 2 (MMP2, p = 0.001), toll like receptor 1 (TLR1, p = 0.00052), dihydropyrimidine dehydrogenase (DPYD, p < 0.0001), proprotein convertase subtilisin/kexin type 9 (PCSK9, p = 0.011), protein kinase C theta (PRKCQ, p = 0.0013), glucose-6-phosphate isomerase (GPI, p = 0.0032), dihydropyrimidinase (DPYS, p = 0.00047), and the LYN proto-oncogene, Src family tyrosine kinase (LYN, p = 0.0061) (Figure 3). Based on the clinical information of SKCM patients, race (p = 0.0072), age at index (p < 0.0001), and tumor stage (p < 0.0001) were all correlated to OS. Figure 4 shows the generated nomogram and the c-index of this model was 0.669.
[image: Figure 3]FIGURE 3 | The prognostic significance of common targets for the OS of SKCM patients (A–H) Kaplan-Meier survival curves for all SKCM patients based on DPYD (A), DPYS (B), GPI (C), LYN (D), MMP2 (E), PCSK9 (F) PRKCQ (G), and TLR1 (H) expression (n = 458). OS, overall survival; SKCM, skin cutaneous melanoma.
[image: Figure 4]FIGURE 4 | Nomogram for the relationship between clinical data and risk score. Stage 1 for I/II nos, 2 for 0, 3 for I, 4 for I a, 5 for I b, 6 for II, 7 for II a, 8 for II b, 9 for II c, 10 for III, 11 for III a, 12 for III b, 13 for III c, and 14 for IV.
3.4 mRNA expression levels and correlation analyses
As shown in boxplots, significant differences were discovered between the mRNA expression levels of hub genes found in normal tissues and SKCM tissues. Furthermore, the mRNA expression of DPYS, GPI, TLR1, PRKCQ, and LYN (Supplementary Figures S4B–D,G,H) in SKCM tissues were greater compared to those of normal tissues, of which the difference was statistically significant in GPI, PRKCQ, and LYN (all p-value < 0.01, Supplementary Figures S4C,G,H). In contrast, the mRNA expression of DPYD, MMP2, and PCSK9 in SKCM tissues was lower in comparison to that of normal tissues (Supplementary Figures S4A,E,F), of which the difference was only statistically significant in MMP2 (p-value < 0.01, Supplementary Figure S4F).
The correlation between the mRNA expression levels of hub genes was determined by Pearson correlation coefficient analysis. The results have shown that the mRNA expression level of DPYD was correlated with most of the hub gene mRNAs (GPI, LYN, PCSK9, PRKCQ, and TLR1) (all p-value < 0.01, Supplementary Figure S5 ; Supplementary Table S2).
3.5 GSEA analysis
GSEA was performed to calculate an enrichment score (ES) by going through the list of genes. The green line, representing a running-sum statistic, was enhanced when a gene was part of the gene set and decreased when it was not. A positive ES indicated enrichment of the gene set at the top of the ranking list and a negative ES indicated enrichment at the bottom. The horizontal bar’s red part and blue part represented positive and negative ES, respectively.
The results of the GSEA indicated that DPYD was primarily enriched in apoptosis, the JAK/STAT and MAPK signaling pathways, and the response to UV and cell adhesion functions (Supplementary Figure S6). For GPI, the AKT1 signaling pathway and the response to ultraviolet, glucose metabolism, oxidative phosphorylation, and electron transport chain were mainly enriched (Supplementary Figure S7). LYN was enriched in MAPK, JAK/STAT, and apoptotic-related signaling pathways. Additionally, LYN was also associated with DNA damage by UV and cell adhesion (Supplementary Figure S8). According to the results, MMP2 was highly related to cell migration and adhesion, apoptosis, and skin cancer progression (Supplementary Figure S9). As demonstrated, PRKCQ was mainly enriched in the JAK/STAT and MAPK signaling pathways, as well as apoptosis, DNA damage by UV, and cell adhesion (Supplementary Figure S10). TLR1 was mainly associated with the Toll-like receptor, JAK/STAT and AKT1 signaling pathways, and UV-induced apoptosis and DNA damage (Supplementary Figure S11).
Overall, the hub prognosis-related genes were mainly associated with cell adhesion and UV-related functions and participated in JAK/STAT and MAPK signaling pathways. Notably, MMP2 was associated with skin cancer progression.
3.6Curcumin inhibits SK-MEL-1 proliferation
The anti-proliferative effect of curcumin on SK-MEL-1 cells was evaluated in vitro by a CCK-8 assay. SK-MEL-1 cells were treated with different concentrations of curcumin, and the results showed that the inhibition of cell proliferation was more pronounced at 30 than at 20 μM (p < 0.001, Figure 5). Curcumin showed potential antiproliferative effects in SK-MEL-1 cells.
[image: Figure 5]FIGURE 5 | Study of cytotoxicity by using CCK-8 assay. The SK-MEL-1 cells were treated with curcumin in different concentrations. The cell proliferation was significantly decreased under the stimulation of 20 and 30 μM curcumin compared to that of 10 μM ***p < 0.001 and ****p < 0.0001, one-way ANOVA.
3.7 Curcumin inhibits SK-MEL-1 cell migration
The anti-migration effect of curcumin on SK-MEL-1 cells was measured in vitro by performing the scratch wound assay. The results (Figure 6) showed that there was no significant difference at 6 h (p > 0.05) in terms of migration distance observed among the 3 groups. A concentration of 100 μM curcumin significantly suppresses the migration of SK-MEL-1 cells at 16 h (p < 0.01) and 24 h (p < 0.001) in comparison to the control group. In addition, compared with the control group, curcumin at a concentration of 50 μM significantly inhibited the migration of SK-MEL-1 cells at 24 h (p < 0.01). The results indicated that curcumin had a potential anti-migratory effect in SK-MEL-1 cells.
[image: Figure 6]FIGURE 6 | Cell migration evaluation by scratch wound assay. The SK-MEL-1 cells were treated with curcumin in concentrations of 0, 20, and 30 μM. Cell migration was significantly suppressed in curcumin-treated groups in comparison to that of the control group. **p < 0.01 and ***p < 0.001, two-way ANOVA.
3.8 Curcumin promotes apoptosis in SK-MEL-1 cells
We conducted a TUNEL assay to evaluate the pro-apoptosis effect of curcumin on SK-MEL-1 cells. The results of TUNEL (Figure 7) showed that the apoptosis rate and the apoptosis rate of SK-MEL-1 cells in the curcumin-treated group were significantly higher than those in the control group (p < 0.0001). The results of the western blot were consistent with that of the TUNEL assay (Figure 8).
[image: Figure 7]FIGURE 7 | Evaluation of cell apoptosis by TUNEL assay. The SK-MEL-1 cells were treated with curcumin in concentrations of 0, 20, and 30 μM. Cell apoptosis was significantly promoted in curcumin-treated groups in comparison to that of the control group. TUNEL-positive cells were stained in red color, and the nucleus stained by DAPI was in blue. *p < 0.05 and ****p < 0.0001, one-way ANOVA.
[image: Figure 8]FIGURE 8 | Evaluation of cell apoptosis by western blot. Blots showing proteins in the SK-MEL-1 cells treated with curcumin in different concentrations (A) and quantification (B). **p < 0.01, ***p < 0.001 and ****p < 0.0001, one-way ANOVA.
4 DISCUSSION
From the point of view of molecular biological networks, traditional Chinese medicine network pharmacology provides a systematic research method in which the application of available traditional Chinese medicine compounds in various diseases can be evaluated. Previous research has shown that curcumin has great potential in preventing and treating various cancers (Ghalaut et al., 2012; Golombick et al., 2012; Ryan et al., 2013). In this study, we demonstrated that the molecular targets of curcumin on SKCM cells can be used as biomarkers of diagnosis and prognosis. In addition, the possible targets and concentrations of curcumin on SKCM were also analyzed. Analysis of clinical survival data has indicated that the survival rate was higher in SKCM patients with a high expression of DYPD, DYPS, LYN, PRKCQ, and TLR1, while the survival rate was lower in patients with a high expression of GPI, MMP2, and PCSK9. In the detection of tumor tissue and normal tissue, it was shown that the expression of GPI, LYN, and TLR1 was enhanced, whereas the expression of MMP2 was reduced. The targets of curcumin in the treatment of SKCM discovered in this study can be used as prognostic features and provide a theoretical basis for curcumin in the treatment of SKCM.
Co-expression analysis has indicated that these genes were not highly co-expressed with one another at the gene as well as protein levels. However, the regulation of these genes can influence the expression of TP53 at both gene and protein levels. TP53 has an important role as a tumor suppressor gene in humans, associated with the induction or inhibition of the cell cycle regulation, apoptosis regulation, DNA repair, and cell senescence-related gene expression after activation (Giaccia and Kastan, 1998). In subsequent in vitro experiments, we found that curcumin could upregulate the expression of Caspase3 and Bax in SK-MEL-1 cells and significantly reduce Bcl-2’s expression. Thus, TP53 may serve as the therapeutic target of curcumin in SKCM treatment. In addition, the GO analysis showed that these target genes were significantly enriched in the regulation of the apoptotic process, positive regulation of cell death, and regulation of the macromolecule metabolic process. The results of the KEGG analysis indicated that curcumin may play a role in SKCM by regulating metabolic pathways in tumor-related signaling pathways and the biosynthesis of amino acids and proteoglycans.
Based on GSEA analysis and literature review, we believe that these important genes/proteins are closely related to the occurrence of SKCM. DYPD can affect SKCM by regulating the cell response to UV, MAPK signaling pathway, JAK-STAT signaling pathway, apoptosis signaling pathway, and affecting cell-to-cell adhesion. DPYD is a vital enzyme in the metabolic pathway and is related to the drug response to 5-fluorouracil chemotherapy (Kristensen et al., 2010; Kimura et al., 2011). In addition, GPI function by regulating UV, tumor metastasis, and NF-κB signaling pathways. GPI is a glycolysis enzyme that plays a biological role through cell secretion. Its overexpression has been related to increased invasive phenotypes and mortality in many types of cancer (Lyu et al., 2016; Ma et al., 2018). Therefore, the survival rate of patients with elevated GPI is decreased, which was also observed in our study. Moreover, LYN, MMP2, PRKCQ, and TLR1 can affect SKCM by influencing tumor cell metastasis, UV-induced cell injury, the NF-κB signaling pathway, and apoptosis. LYN can regulate proliferation, differentiation, migration, and apoptosis, and over-expression of LYN plays a vital role in solid tumors (Tabariès et al., 2015; Q. Zhang et al., 2019). Previous research has indicated that MMP2 can produce the key pre-invasion factor induced by carcinogenic inflammation, and promotes tumor growth and invasion (Winerdal et al., 2018; W. Zhang et al., 2006). PRKCQ is widely expressed in the entire hematopoietic system and can induce the production and migration of breast tumors (Vyas et al., 2001; Byerly et al., 2016). TLR1 mediates local inflammation by affecting NF-κB. In pancreatic ductal carcinoma, the strong expression of TLR1 indicates a good prognosis, while the negative expression of TLR1 is a sign of poor prognosis (Lanki et al., 2019). We further investigated the effects of curcumin on the proliferation and apoptosis of human SKCM cells in vitro.
The cell wound assay demonstrated inhibited SK-MEL-1 cell growth by curcumin in a dose-dependent manner, and TUNEL staining showed that apoptosis increased significantly. In addition, after treatment with curcumin, the western blot demonstrated that curcumin could stimulate the activation of Caspase3 and downregulate the ratio of BCL2 and Bax. These findings are consistent with previously reported results of curcumin-induced apoptosis in osteosarcoma cells (Khodaei et al., 2022). Living cells possess higher levels of Bcl-2, which leads to the inhibition of apoptosis. Bcl-2 regulates the cellular activities of proteins related to cell proliferation or apoptosis, such as Caspase3 and Bax36. The first stage of the intrinsic apoptotic pathway relies on the activity of Bax, which modulates cellular fidelity to the pathway by altering mitochondrial physiology. Therefore, the effect of apoptosis induction by curcumin in SK-MEL-1 cells can be elucidated by detecting the expression of Caspase3 and the ratio of Bcl-2 to Bax. Thus, these target genes may act together on SKCM and may be potential therapeutic targets in SKCM.
5 CONCLUSION
We applied a network pharmacology method to identify the potential mechanisms of curcumin for the SKCM treatment methods. The common target genes might participate in the regulation of the inflammatory microenvironment of the tumor, thereby affecting the occurrence and metastasis of the tumor and improving the prognosis of SKCM patients. The in vitro experiments have indicated that curcumin has anti-proliferative and pro-apoptotic effects in SK-MEL-1 cells. Based on the functions that these hub genes occupy in cell proliferation and apoptosis; further in vitro research is necessary to clarify the specific anti-SKCM effect of curcumin.
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Chronic lymphocytic leukemia (CLL) is a type of highly heterogeneous mature B-cell malignancy with various disease courses. Although a multitude of prognostic markers in CLL have been reported, insights into the role of super-enhancer (SE)–related risk indicators in the occurrence and development of CLL are still lacking. A super-enhancer (SE) is a cluster of enhancers involved in cell differentiation and tumorigenesis, and is one of the promising therapeutic targets for cancer therapy in recent years. In our study, the CLL-related super-enhancers in the training database were processed by LASSO-penalized Cox regression analysis to screen a nine-gene prognostic model including TCF7, VEGFA, MNT, GMIP, SLAMF1, TNFRSF25, GRWD1, SLC6AC, and LAG3. The SE-related risk score was further constructed and it was found that the predictive performance with overall survival and time-to-treatment (TTT) was satisfactory. Moreover, a high correlation was found between the risk score and already known prognostic markers of CLL. In the meantime, we noticed that the expressions of TCF7, GMIP, SLAMF1, TNFRSF25, and LAG3 in CLL were different from those of healthy donors (p < 0.01). Moreover, the risk score and LAG3 level of matched pairs before and after treatment samples varied significantly. Finally, an interactive nomogram consisting of the nine-gene risk group and four clinical traits was established. The inhibitors of mTOR and cyclin-dependent kinases (CDKs) were considered effective in patients in the high-risk group according to the pRRophetic algorithm. Collectively, the SE-associated nine-gene prognostic model developed here may be used to predict the prognosis and assist in the risk stratification and treatment of CLL patients in the future.
Keywords: chronic lymphocytic leukemia, super-enhancer, prognostic model, overall survival, CLL
INTRODUCTION
Chronic lymphocytic leukemia (CLL), a mature and monoclonal CD5+ CD23+ B cell malignancy, proliferates and accumulates in the bone marrow, blood, and lymphoid nodes (Hallek et al., 2018). It is often asymptomatic in the early stage. It is often found that painless lymphadenopathy or the absolute value of lymphocytes is increased for unknown reasons. Patients have mild fatigue, fatigue, and other non-specific manifestations. Once they enter the advanced stage, they can present with weight loss, repeated infection, bleeding, and anemia in addition to systemic lymph nodes and splenomegaly. CLL cases are fewer in Asia than those in the Western world, and it is reasonable to assume that genetic and environmental factors play roles in pathogenesis (Burger, 2020). During 2014–2018, the rate of new cases of CLL was 4.9 per 100,000 per year and the median age at diagnosis is 72 years, the death rate was 1.1 according to the aforementioned survey [The Surveillance Epidemiology and End Results (SEER) Program of the National Cancer Institute. Cancer fact sheets: chronic lymphocytic leukemia (CLL). https://seer.cancer.gov/statfacts/html/clyl.html (accessed 22 September 2021)].
CLL is widely known as a heterogeneous disease that exhibits variable clinical symptoms, time-to-treatment (TTT), easily progression and difficult prognosis. CLL patients are often diagnosed with incidental findings, and the clinical course ranges from an asymptomatic, indolent disease that requires no treatment to a rapidly progressive and chemotherapy-resistant disease until death within a short period (Burger, 2020). The indications for treatment mainly include the clinical stage and symptoms of patients, and the standard therapy is chemoimmunotherapy. Unfortunately, the majority of CLL patients are too old to tolerate intensive standard chemotherapy; therefore, an effective prognostic model is needed to predict the individual clinical courses and to improve the outcome. Over the past few decades, great advances have been made in figuring out the molecular and genetic biology of CLL to identify the indicators of progression and survival. These indicators include cytogenetics, age, IGHV gene mutation status, β2-microglobulin (β2-MG), clinical-stage (RAI/BINET stage), and so forth (Bosch and Dalla-Favera, 2019). In CLL, 13q14, 11q22-23, trisomy of 12q, and 17p deletions are found in 80% of the cases. 11q22-23 and 17p deletions are associated with poor survival, whereas 13q14 deletions and trisomy of 12q have a longer TTT and survival time (Dohner et al., 2000). TP53 aberrations (Zenz et al., 2010) indicate a more aggressive disease progression and extensive drug-resistant and worse outcome, and the same role applies to IGHV genes (Damle et al., 1999) and ZAP-70 (Crespo et al., 2003). Unmutated IGHV and high-expression of ZAP-70 have a comparatively aggressive disease course too, and other relevant risk markers include expression of CD38 (Rassenti et al., 2008), CD49d (Bulian et al., 2014), lipoprotein lipase (LPL) (Prieto and Oppezzo, 2017), serum concentrations of thymidine kinase (Hallek et al., 1999), and β2-microglobulin (Hallek et al., 1996).
In this article, a SE-associated gene list was used to carry out LASSO-penalized Cox regression analysis, and construct a nine SE-associated gene prognostic model, namely, TCF7, VEGFA, MNT, GMIP, SLAMF1, TNFRSF25, GRWD1, SLC6AC, and LAG3. Meanwhile, this model was verified by testing GEO datasets and the ICGC-CLL dataset, respectively. Univariate and multivariate Cox regression analyses, and the ROC curve were analyzed to evaluate the prognostic accuracy of this nine-gene model. Moreover, the aforementioned validated steps, the role of the nine-gene prognostic model, and the nine hub genes were further explored in CLL genesis and the relationship between this prognostic model and other known risk markers, such as IGHV status, FISH abnormality, and ZAP70 expression level. It was indicated that the model demonstrated predictive power and had an expected relationship with known risk markers. In addition, an interactive nomogram based on the nine-gene risk score and clinical traits was constructed. Finally, paired pre- and post-treatment datasets were used to examine the effects of treatments on the risk score or each of the nine hub genes’ expression, and we predicted 25 clinical drugs that may be more sensitive to high-risk patients. The improved nine-gene prognostic model of this work provided a bright future for the diagnosis, disease stratification, and therapy of patients with CLL.
RESULTS
Construction of a nine-gene LASSO-penalized cox regression model and validation of independent prognostic factors
The flowchart featured the construction and validation of the SE-associated gene-based prognostic model of CLL and the correlation with other known risk markers (Figure 1). An 831 primary B-CLL cell-related SE list was downloaded from the website and the 18,887 gene matrix in CLL patients was provided in the GSE22762 column, and a 587 SE-associated gene matrix for CLL was gained via overlapping the aforementioned two gene sets. Immediately after, the gene matrix was done by LASSO-penalized Cox regression to screen the prognosis-related genes with potential. Figure 2A shows the coefficient values for each at various penalty levels as long as genes with non-zero coefficients had prognostic value in the LASSO-penalized regression model. Ten-fold cross-validation obtained the maximum lambda value, and we selected one model which produced a group of nine genes (Figure 2B). Principal component analysis (PCA) showed high-risk patients separate from low-risk ones evidently (Figure 2C). Also, the obvious distinction between survival and death was calculated by using the nine gene–based prognostic model, implying that the prognostic model functioned smoothly in the prediction on the OS of patients with CLL (Figure 2D).
[image: Figure 1]FIGURE 1 | A flowchart of the overall procedure used to establish and verify the SE-associated gene-based prognostic model in CLL patients.
[image: Figure 2]FIGURE 2 | Construction of the SE-related prognostic model. (A) The LASSO coefficient values at various levels of penalty; each curve represents an SE-gene. (B) The confirmation of the best lambda value by LASSO Cox regression analysis. (C) Principal component analysis (PCA), red dots correspond to high-risk patients, and blue dots correspond to low-risk patients. (D) The scatter plot of the survival status of CLL patients based on the 9-gene model using the t-test. ***p < 0.001.
To validate the LASSO-penalized Cox regression model, univariate Cox proportional hazard regression analysis determined that these genes affected the OS of patients with CLL independently, and all log-rank p-values of the nine genes were < 0.01 (Supplementary Figure S1A). Multivariate Cox proportional hazard regression analysis was also performed, and the global p-value of our model was only 2.64e-16 (Supplementary Figure S1B), with an AIC of 124.96 and a C-index of 0.95. These indexes suggest that the nine genes are possibly prognostic markers for OS in CLL patients. Meanwhile, the results of K–M survival analysis showed that GRWD1, SLC6A3, and MNT had no significant association with survival (Supplementary Figure S2). Furthermore, we concluded that SLAMF1, TCF7, TNFRSF25, MNT, and VEGFA were protective factors, whereas GRWD1, SLC6A3, GMIP, and LAG3 appeared to be harmful factors in CLL, based on the aforementioned hazard ratios of univariate and multivariate regression analyses. Thus, the nine-gene SE-associated model by LASSO-penalized Cox regression possibly predicted the OS of CLL patients.
Establishment and validation of the nine gene-based risk score model
A total of 107 patients in the training dataset of GSE22762 (HGU-133plus2) were divided into high-risk (risk score > 0.7) and low-risk groups (risk score < 0.7) (Figure 3A). Figure 3B shows that death was more frequently observed in the high-risk group than in the low-risk group. The K–M survival analysis presented a much worse outcome in the high-risk group than that of the low-risk group (log-rank test, p = 3.561e-09) (Figure 3C). Also, the AUCs of a time-dependent ROC curve of 1, 3, and 5 years calculated by the nine gene–based risk score model were 0.997, 0.958, and 0.996, respectively (Figure 3D), suggesting that the prediction was highly sensitive and specific. The testing column (GSE22762, N = 44, HGU-133A) verified the predictive values of the nine gene–based risk scores. The K–M curves of the high- and low-risk groups were noticeably different (log-rank test, p < 0.05) and the AUCs of 1-, 3-, and 5-year ROC curves were 0.738, 0.679, and 0.628, respectively; these results showed that this prognostic model might be a potential predictor to judge the OS of patients with CLL (Supplementary Figure S3).
[image: Figure 3]FIGURE 3 | Nine-gene prognostic model for the GSE22762 dataset (N = 107, HG-U133_Plus_2). (A) Dot plots comparing the outcomes of subjects in the high- and low-risk cohorts. (B) The survival status and time in the high- and low-risk groups. (C) K–M survival curves showing the differences between the high- and low-risk groups. (D) Time-dependent ROC curve analysis for the prediction survival using the nine-gene model. K–M, Kaplan–Meier; ROC, receiver operating characteristic; AUC, area under the curve.
GSEA was carried out in two datasets on exploring enriched KEGG pathways in which the analysis suggested that vital enrichment was concentrated in the high-risk cohort, including base and nucleotide excision repair, DNA replication, and valine–leucine and isoleucine degradation (Supplementary Figures S4A,B). Other pathways including homologous recombination, oxidative phosphorylation, mismatch repair, RNA degradation, RNA polymerase, and one carbon pool by folate and lysine degradation were enriched in the high-risk group of the two cohorts.
The prediction of the nine-gene model on time-to-treatment
In addition to survival, we also investigated the nine-gene prognostic model on TTT, and the results demonstrated that the nine-gene risk model performed well on predicting TTT in the training dataset (GSE22762). Low-risk patients showed a longer TTT than high-risk patients, and the p-value < 0.001 (Figure 4A). Additionally, the time-dependent ROC curve analysis prompted that the AUCs of 1-, 3-, and 5-year TTT were 0.818, 0.840, and 1.000, respectively (Figure 4B). These results were in accordance with testing datasets (GSE39671) (Figures 4C,D), and it indicated that the prognostic model was equally effective in predicting TTT.
[image: Figure 4]FIGURE 4 | The prediction of TTT on CLL patients. (A,C) K–M survival curves showing the different TTT on two datasets and (B,D) ROC analysis for the prediction of TTT.
Identification of SE-related hub genes in chronic lymphocytic leukemia using weighted gene co-expression network analysis
In addition to the prognostic value, we also expected a relationship between the nine-gene model and tumorigenesis. WGCNA was another statistical method for the analysis of finding the different genes between normal and CLL patients. As shown in Figure 5A, the best soft-thresholding value via prediction of the scale independence was β = 6. Then, genes were divided into 9 different modules with 9 different colors, and a heatmap was developed according to Pearson’s correlation coefficient (Figure 5B). An intersection between the SE matrix and the nine modules which presented a higher correlation with CLL showed that TCF7 and LAG3 appeared in the interaction genes between module purple, yellow, and SE-associated genes (Figure 5C). Simultaneously, TCF7, GMIP, SLAMF1, TNFRSF25, and LAG3 were found to express differently in normal and CLL patients when we compared the individual expression of nine SE-related hub genes in CLL (Figure 5D). The data indicated that the five genes may play a vital role in regulating the genesis of CLL.
[image: Figure 5]FIGURE 5 | Identification of SE-related hub gene in CLL based on GSE50006 dataset through WGCNA analysis. (A) Analysis of the scale independence and mean connectivity (vertical axis) for various soft-thresholding powers (β value of horizontal axis). (B,C) Heatmap of the correlation between modules and CLL. The yellow and purple module had a high correlation with CLL patients, and the p-value in the table specified the correlation. TCF7 and LAG3 appeared in the intersection of SE-related genes and the two modules, respectively. (D) The nine hub genes’ expression was significantly different between normal and CLL patients in the GSE50006 dataset. **p < 0.01; ***p < 0.001.
The validated nine-gene prognostic model and other risk factors
The performance of the nine-gene prognostic model was additionally evaluated in different subgroups defined by confirmed risk factors. Patients with mutated IGVH genes, 13q14 or single deletion or trisomy 12 on FISH analysis, presented a favorable outcome, whereas patients with unmutated IGVH status, 17p13 or a 11q23 deletions, had an unfavorable prognosis. Unmutated IGHV patients had a higher risk score than mutated IGHV patients in three independent datasets (GSE9992, GSE16746, and GSE28654) (Figures 6A–C). Simultaneously, we analyzed the correlation between IGHV mutation status and each gene in the nine-gene prognostic model. The results reported that the expression of TCF7 and SLAMF1 had a strong positive correlation, and LAG3 showed a negative correlation with IGHV mutation (Figure 6D). Similarly, patients with del17p13 had a higher risk score compared to other chromosome types (p < 0.001, Figure 6E). The risk score of ZAP70-high patients was higher than that of ZAP70-low patients; the expression of MNT and SLAMF1 had a negative association, and LAG3 had a positive association with ZAP70, respectively (Figures 6F,G). Additionally, the variation of risk score and each gene expression before and after treatment was provided in Supplementary Figure S5A. The risk score was downregulated after processing with HDAC inhibitory in vitro, and VEGFA and MNT were upregulated accompanied by downregulated GMIP and TGFRSF25. In the other two in vivo treatment experiments, no significant change was found except LAG3, the LAG3 gene was upregulated consistently after lenalidomide and thalidomide treatment respectively (Supplementary Figures S5B,C).
[image: Figure 6]FIGURE 6 | Correlation and variances between the risk score or each gene expression and well-established prognostic markers of CLL. (A–C) The risk score of patients with IGHV mutation was significantly lower than that of patients without mutation in GSE9992, GSE16746, and GSE28654. Nor, normal; Mut, mutation. (D) The correlation analysis of nine hub genes’ expression and IGHV mutation statue. The p-value in red box < 0.001, respectively. (E) The risk score of patients with del17p13 was significantly higher than that of other chromosome abnormalities. ***p < 0.001. (F,G) The different level of risk score in high- and low-ZAP70 patients and the correlation between nine hub genes’ expression and ZAP70 level.
Validation of nine-gene prognostic model in ICGC and construction of a nomogram to predict OS
International Cancer Genome Consortium (ICGC, http://daco.icgc.org/), which collected multiple genetic mutations, copy number variants, epigenetic modifications, and clinical data covering 50 tumor types, and we extracted 255 CLL patient data for following analysis. Again, high risk scores were significantly associated with shorter survival time, p < 0.001 (Supplementary Figure S6A), and the AUCs of ROC curves of the 3-, 5-, and 10-year survival were 0.731, 0.718, and 0.800, respectively (Supplementary Figure S6B). CLL patients could be divided into two molecular subtypes according to the mutational status of the IGHV, with cases carrying unmutated IGHV (U-CLL) having more aggressive behavior than patients with mutated IGHV (M-CLL). Consistent with the most accepted view, the nine-gene risk score median value was obviously lower in the indolent CLL subtype (M-CLL) compared to the aggressive one (U-CLL) (Supplementary Figure S6D). The nine-gene risk score was associated with the evolution of M-CLL with a median OS of 6.57 versus 8.87 years for patients with high and low risk scores, respectively (p = 0.005, Supplementary Figure S6C), while no differences were seen in U-CLL patients in relation to high- and low-risk scores (data not shown). Moreover, on the basis of the obtained sample clinical characteristics, we performed univariate as well as multivariate Cox survival analyses. Age, IGHV mutated status, and risk were identified to be independent prognostic factors for patients with CLL (p < 0.05; Figures 7A,B). Based on the nine-gene risk score and clinical traits, a nomogram was constructed to accurately predict CLL patients’ 1-, 3-, 5-, and 10-year survival rates by the using aforementioned clinical indicators and the nine-gene risk score. The C-index of this model was 0.82 (Figure 7C).
[image: Figure 7]FIGURE 7 | Univariate, multivariate Cox regression analyses and construction of nomograms. (A) (B) Univariate and multivariate Cox regression analyses of clinical traits (age, sex, IGHV mutated status, Binet) and nine-gene risk score. (C) Nomogram predicting the probability of 1-, 3-, 5-, and 10-year overall survival rates of ICGC-CLL patients. Add the points from these 5 variables together to find the location of the total points. The total points projected on the bottom scales indicate the probability of 1-, 3-, 5-, and 10-year overall survival.
Response of high- and low-risk patients to chemotherapeutic compounds
According to the pRRophetic algorithm, we predicted the IC50 of 130 chemotherapeutic agents and pathway inhibitors in both of high- and low-risk patients and found that 25 drugs had lower IC50 in high-risk patients (p < 0.05, additional file 1), which indicated that the high-risk patients were more sensitive to these 25 drugs. Among these compounds, some have been reported to have pre-clinical anti-tumor activity in CLL, such as thapsigargin, which was found to be a potent cytotoxin that induced apoptosis by inhibiting the sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase (SERCA) pump, which was necessary for cellular viability. Some have not been reported in CLL before, and therefore the therapeutic effect is still unknown. Interestingly, there were three kinds of compounds which could inhibit the mTOR pathway and CDKs in CLL, respectively, and these have been researched in CLL before and CDK inhibitors have entered clinical trials in patients with relapsed or refractory chronic lymphocytic leukemia. These results could be helpful for the precise treatment of CLL (Figure 8).
[image: Figure 8]FIGURE 8 | The chemotherapeutic responses of two prognostic subtypes to two kinds of pathway inhibitors. (A–C) Inhibitors of mTOR (temsirolimus, rapamycin, and AZD8055). (D–F) Inhibitors of CDKs (roscovitine, RO.3306, CGP.082996).
DISCUSSION
CLL is considered to have a highly heterogeneous clinical course, with time to first treatment varying from months to years and many patients eventually progressing and requiring chemotherapy, although initially, CLL is reported as an indolent malignancy. A review of the data so far, disease stratification, IGHV mutation status, 17p, and ZAP70 expression are the validated predictors of overall survival. Beyond that, gene expression analysis was carried out on various surrogate markers for genetic features and prognosis. A total of six surface antigens (CD62L, CD54, CD49c, CD49d, CD38, and CD79b) and prognostic risk models were put in place to diagnose and predict the OS for CLL (Zucchetto et al., 2006). Moreover, some large-scale gene expression profiling analyses generate different prognostic factors (Kienle et al., 2010; Herold et al., 2011a; Schweighofer et al., 2011). But the previous studies constructed no prognostic model according to SE-associated genes which regulate the expression of hub genes related to CLL tumorigenesis.
A super-enhancer is a new concept developed in recent years; a growing body of evidence indicates an explicit relationship between increasing tumorigenesis and malignancy of cancer and SEs. SEs drive not only the expression of genes but also non-coding RNA that regulates biological functions directly and indirectly. LASSO-penalized Cox regression has become popular in recent years because it could minimize overfitting (Ma et al., 2019). Hence, in our article, we use this novel bioinformatic strategy and the Cox proportional hazard regression models to screen and optimize hub genes related to survival.
In our research, the LASSO-penalized Cox regression analysis was carried out by filtering out the potential SE-associated genes and yielding a nine-gene prognostic model to foresee the OS of CLL patients. All of the individual markers in the nine-gene model associated with OS of CLL by Cox regression analysis were identical. K–M survival analysis also indicated that the majority of the nine genes correlated to OS. Beyond that, the nine-gene prognostic model was highly significant in the multivariate analysis of patients without treatment. The AUCs and C-index showed that our model performed well in the prediction of survival. The effectiveness of this prognostic model could be validated by an independent patient cohort. Moreover , this risk model was another indicator of TTT. We utilized the nine-gene risk score in the GSE22762 and GSE39671 datasets, and the results also indicated that the nine-gene model could be applied to predict TTT. The high-risk patients had less time-to-treatment than the low-risk patients. These data strongly indicated that the nine-gene prognostic model was a significant and valid risk forecaster.
We not only evaluated the data by a rigorous training and validation design, but also concentrated on the connection between individual genes and selected disease characteristics, such as IGHV mutation status, FISH abnormality, and ZAP70 expression level. The results of three of the markers (TCF7, SLAMF1, and LAG3) detected according to the association with IGHV status were expected. The lack of a public database that included both survival data and mutation information limited further research on a correlation between the nine-gene model and ZAP70, a FISH abnormality. But in the poor prognosis groups, like ZAP70-high and 17q-patients, the nine-gene risk score was significantly higher than that in the low-risk group, and we found that the low expression of SLAMF1 in CLL was associated with ZAP70-high expression. The quantitative relationship between TCF7, LAG3, and SLAMF1 expression and inferior overall survival was an accurate finding and indicated that these genes had a pathogenic role in CLL. Additionally, the nine-gene prognostic model also played an important role in CLL etiopathogenesis. The WGCNA of the GSE50006 dataset revealed that TCF7 and LAG3 belonged to two gene modules, respectively. In addition to this, the expression of GMIP, SLAMF1, and TNFRSF25 were also significantly different in normal and CLL patients. Therefore, the five genes contained in our model were possibly functionally vital in the pathogenesis of CLL. In the present study, SLAMF1, TCF7, TNFRSF25, MNT, and VEGFA were protective factors, whereas GRWD1, SLC6A3, GMIP, and LAG3 appeared to be harmful factors in CLL; we subsequently discussed each gene in the prognostic model.
Transcription factor 7 (TCF7), the T-cell–specific transcription factor required for T-cell development in animal models, suggests that it probably functions as a tumor suppressor (Roose et al., 1999). TCF7 over-expression in mice led to a disease resembling CLL, indicating that it was probably involved in the CLL transformation in a direct way (Bichi et al., 2002). In CLL, TCF7 expression provided a high rate (74%) of correct assignment of patients at genetic risk (IGHV unmutated, V3-21 usage, 11q-, or 17p-) (Kienle et al., 2010). The aforementioned results are consistent with ours, and this indicates TCF7 plays an important role in CLL.
Signaling lymphocytic activation molecule family member 1 (SLAMF1), also known as CD150, regulates hematopoietic stem cell differentiation, leukocyte adhesion and activation, and humoral immune responses. SLAMF1 comparatively over-express in normal peripheral blood B cells according to the meta-analysis of three gene expression profiling studies. Recently, researchers found lower levels of SLAMF1 expression in cases with ZAP70-high (p < 0.001), IGHV-unmutated (p < 0.001), and 17q- (p = 0.003). In past studies, we believed that loss of SLAMF1 expression in CLL modulates genetic pathways regulating chemotaxis and autophagy and that potentially affects drug responses, suggesting that the effects underlie unfavorable clinical outcomes experienced by SLAMF1-low patients (Bologna et al., 2016). Together, SLAMF receptors, the vital modulators of the BCR signaling axis, improve immune control in CLL by potentially interfering with NK cells (von Wenserski et al., 2021). In our research, the univariate and multivariate analyses presented that downregulated SLAMF1 levels had an independent negative prognostic impact on overall survival (p < 0.05). We subsequently discovered that SLAMF1 is relatively overexpressed in IGHV-mutated and ZAP70-low CLL patients. The strict correlation among low levels of it and high-risk genetic features indicated that it probably represented a marker of surrogate genomic complexity; however, the mechanism of this correlation is still unknown.
Lymphocyte activating 3 (LAG3), the immune inhibitory checkpoint receptor, is one of the immunoglobulin superfamily with about 20% amino acid homology with CD4. The expression of it activates and exhausts T, NK cells, B cells, dendritic cells, and regulatory T (Treg) cells. LAG3 high expression in CLL cells correlates with unmutated IGHV (p < 0.0001) and decreased treatment-free survival (p = 0.0087) (Kotaskova et al., 2010). Increased LAG-3 expression on leukemic cells correlates with shorter time-to-treatment and poor outcome in CLL; moreover, treatment with relatlimab, a novel anti-LAG-3 blocking monoclonal antibody currently under clinical trial for different solid and hematological malignancies including CLL, restored, at least in part, NK and T-cell–mediated anti-tumor responses (Sordo-Bahamonde et al., 2021). CART cell generation with the showing of ibrutinib created enhanced cell viability and expansion of CLL patient-derived CART cells. Also, ibrutinib enriched the mentioned cells with the less-differentiated naïve-like phenotype and declined expression of exhaustion markers (PD-1, TIM-3, and LAG-3) (Fan et al., 2021).
Vascular endothelial growth factor A (VEGFA) is a member of the PDGF/VEGF growth factor family. The angiogenesis process makes a significant contribution to the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL), the levels of VEGFA and bFGF being higher in patients than in healthy people (Ballester et al., 2020). Whereas, in our research, VEGFA has a protective role in CLL. The high expression of VEGFA indicated a good prognosis by the K–M survival analysis, and in normal samples, the level of VEGFA was higher even though it was not statistically significant.
The TNF receptor superfamily member 25 (TNFRSF25), the receptor expressed preferentially in the tissues of lymphocytes, possibly plays functions vital to the regulation of lymphocyte homeostasis. The receptor stimulates sNF-kappa B activity and regulates cell apoptosis. TNFRSF25 was differentially expressed, activating CLL cells and predominantly detected in those with early clinical stage disease (Cavallini et al., 2015) and probably alters the balance between cell proliferation and death, influencing CLL physiopathology and results in the clinic.
A total of three genes (GRWD1, GMIP, and SLC6A3) have not been described in the context of CLL before, and all of them were upregulated in high-risk CLL patients. The results of the univariate and K–M survival curves were not completely consistent with multivariate analysis. Glutamate-rich WD repeat containing 1 (GRWD1) was identified as one of the ribosomal/nucleolar proteins that promote tumorigenesis (Takafuji et al., 2017). Meanwhile, GRWD1 was also viewed as having histone-binding activity and regulating chromatin openness to specific chromatin locations (Sugimoto et al., 2015). Overexpression in colon carcinoma tissues was related to pathological grading, tumor size, N stage, TNM stage, and poor survival; knockdown of GRWD1 function as an inhibitor on cell proliferation and colony formation, and induced cell cycle arrest and more drug susceptibility, and suppressed the migration and invasion (Zhou et al., 2021). GEM interacting protein (GMIP), a RhoA-specific GAP, in a proteomics screen for proteins interacting with Girdin (Girders of actin), an actin-binding protein critical for neuronal migration to the olfactory bulbs, is identified as one of the major regulators of neuronal migration in the postnatal brain (Ota et al., 2014). Solute carrier family 6 member 3 (SLC6A3) involving in the metabolism of dopamine and catecholamine is the potential gene for Parkinson’s disease and alcoholism. The significance of the aforementioned three genes in CLL remains to be further studied.
In GSE14973, the risk score was significantly downregulated after the valproic acid (VPA) treatment in vitro; meantime, protective factors (VEGFA and MNT) were highly expressed, and pathogenic genes (GMIP) were less expressed than in the previous treatment, except TNFRSF25, and these results were almost consistent with our previous conclusion. VPA is a well-tolerated anti-epileptic drug with HDAC inhibitory activity. HDAC1 and HDAC3 inhibition or knockdown results could be figured out in HDAC7 downregulation, which was related to a decline in histone 3 lysine 27 acetylation (H3K27ac) at transcription start sites (TSS) and super-enhancers (SEs) prominently in stem-like BrCa cells. In GSE112953 and GSE15913, the only upregulated gene was LAG3, and it may suggest that combination drug treatment with an anti-LAG3 monoclonal antibody would have a better outcome.
In the present study, a nomogram based on the nine-gene risk score and other clinical traits was constructed, and to determine the predictive effect, we applied the nomogram to a specific patient in the ICGC project; moreover, the predictive model containing the nine-gene risk score was more accurate than the nomogram model containing only four clinical traits. Meanwhile, the risk score was strongly correlated with some known prognostic indicators, such as IGHV mutation state and chromosomal abnormalities. While, a further dissection of the nine-gene risk score on OS in the IGHV mutation state could identify that the nine-gene risk score value was apparent only in the less aggressive M-IGHV subtype, and this predicted trait corresponded to what has been reported in an article which studied the relationship between the ENDOG expression and prognostic study of CLL. The reason why this situation occurred needed further exploration.
The introduction of fludarabine, fludarabine/cyclophosphamide, and either of these combined with rituximab has improved the outcome for younger patients with CLL. Treatment options available for patients in the setting of relapsed disease following receipt of chemoimmunotherapy are limited where most patients have high-risk genomic findings including IgVH un-mutated disease, del (17p13.1) and del (11q22.3) associated with poor treatment response (reviewed in Rassenti et al., 2008). Identifying therapies with novel mechanisms of action for this patient group is important (Johnson et al., 2012). In our research study, all patients were divided into two risk subtypes based on the nine-gene prognostic model, and we endeavored to estimate the drug response of each patient based on IC50 according to the activation of different pathways. ADZ8055 was a dual mTOR kinase inhibitor with inhibition of both mTORC1 and mTORC2 that preferentially decreased cell viability of poor prognostic CLL subsets like with del (11q) or del (17p). One class of drugs that has promise for the treatment of relapsed CLL is the cyclin-dependent kinase (CDK) inhibitors (Seftel et al., 2017). Interestingly, one research study has described that the pan-CDK inhibitor dinaciclib has potent pre-clinical in vitro activity against CLL cells independent of high-risk genomic features (Johnson et al., 2012). In our drug sensitivity prediction, there are three kinds of CDK inhibitors which seemed to be more effective for high-risk CLL patients. The reasons that could account for this difference may include: 1) Different drugs have different mechanisms of action, although they are all one class of inhibitor. 2) The criteria of stratifying patients into “High-risk” and “Low-risk” were not consistent. 3) The most important point is the lack of experimental validation in our research.
CONCLUSION
To sum up, it was the initial study using the LASSO model to screen prognostic indicators from the profile of SE-associated genes in CLL. A useful prognostic score for OS in untreated CLL patients was presented, and the determination of the score can be achieved via the measurement of the expression levels of nine genes. It also could be done easily in a routine diagnosis. These nine SE-associated genes in this model were not only vital in the development and progression of CLL, but also could assist in guiding the development of alternative treatments.
MATERIALS AND METHODS
Data source and microarray analysis
The microarray data and clinical data of GSE22762 (Herold et al., 2011a) and GSE39671 (Chuang et al., 2012), which contain 107 and 130 CLL patients, respectively, were downloaded from the Gene Expression Omnibus (GEO) database. These data were conducted by GPL570 and GPL96/GPL97. Here, 9 other datasets were also analyzed for different purposes, and the details were presented in Table 1 (Fabris et al., 2008; Stamatopoulos et al., 2009a; Stamatopoulos et al., 2009b; Giannopoulos et al., 2009; Mosca et al., 2010; Herold et al., 2011b; Trojani et al., 2011). In the meantime, the International Cancer Genome Consortium (ICGC) CLL sequencing data were extracted from the European Genome-Phenome Database (EGA).
TABLE 1 | Details of databases used in this research study.
[image: Table 1]LASSO-penalized cox regression analysis
Super-enhancer–related genes list figured from the primary B-CLL cell was downloaded from SEA version 3.0, which was enriched with a post-translational modification histone mark, H3K27ac ChIP-seq signal. The gene matrix for subsequent analysis was obtained from the overlapping set of genes in the GSE22762 dataset and the SE-associated genes in the primary B-CLL cell. For narrowing and selecting the prognostic genes with potential, the overlapping gene matrix was weighted by the relative coefficients through the LASSO-penalized Cox regression. Ten-fold cross-validation derived the best-fit lambda value to decrease the mean cross-validated error as much as possible via the R package “glmnet”. We chose one median parameter to establish an ideal prognosis model. Then, we measured time-dependent ROC curves and calculated the area under the ROC (AUC).
Risk score model establishment on predicting patient overall survival
After LASSO-penalized Cox regression analysis was carried out, a risk score model was built using the aforementioned nine genes and could calculate a risk score for each sample through this formula: Risk score = [image: image][image: image][image: image]. Patients were separated into high- and low-risk cohorts (median risk score) using the R software “survival” and “survminer” packages, and a t-test was used to distinguish death and survival events according to the risk score.
Cox proportional hazard regression model
Univariate Cox hazard regression analysis validated the correlation among the expression levels of nine genes and OS of each patient by the R package “survival” and “survminer”. At the same time, multivariate Cox hazard regression analyses were performed too. We foresaw the regression coefficient (β-value) and HR. The K–M survival curve and log-rank test of every single gene were also performed by the R package referred previously .
Weighted gene co-expression network analysis
Weighted gene co-expression network analysis (WGCNA) screened SE-associated hub genes differentially expressed between healthy donors and CLL patients. We counted out the optimal soft-threshold value under the scale independence and mean connectivity analyses. CLL-related genes were clustered into various modules and gained an intersection of significant models and SE-related gene lists via Venn diagrams.
Gene set enrichment analysis
Under the standard of risk score, we separated the participants into high- and low-risk group sets. Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis revealed a potential signaling pathway underlying the two sets via gene set enrichment analysis (GSEA v4.1.0 software). p < 0.05 and a false discovery rate q < 0.25 were thought to be vital in the statistic.
Predictive nomogram for prognostic prediction
A nomogram based on independent prognostic factors of clinical traits and the polygenic risk score was constructed to predict the probability of 1-, 3-, 5-, and 10-year OS of patients with CLL. Subsequently, the discrimination of the nomogram was verified using the C-index obtained through a bootstrap method with 1,000 resamples.
Evaluation of the sensitivity of chemotherapeutic agents
To predict the half-maximal inhibitory concentration (IC50) of chemotherapy drugs in the high- and low-risk groups of CLL patients and to infer the sensitivity of the different patients, we used the “pRRophetic” package in R.
Statistical analysis
SPSS software vision 25.0 (SPSS, Inc., Chicago, IL, United States) and R software vision 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) were used to analyze the data in statistics. A two-sided p < 0.05 was thought vital in a statistic.
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Prostate cancer is the third leading cause of new cancer cases and the second most common tumor type in men globally. LMO3 has been stated to play a vital role in some cancers; however, the prognostic value of LMO3 in PCa remains vague. Here, we utilized various web databases to elucidate in detail the prognostic value and molecular functions of LMO3 in PCa. LMO3 expression was significantly decreased in PCa. Low LMO3 expression was associated with gender, age, and TNM grade and predicted a poor prognosis in PCa patients. Functional enrichment analysis suggested that LMO3 is engaged in the extracellular matrix and immune response. Moreover, LMO3 was positively correlated with immune infiltration levels and numerous immune markers. LMO3 may function as a prospective biomarker of immune infiltration in PCa.
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1 INTRODUCTION
Prostate cancer (PCa) is the third leading cause of new cancer cases and the second most common tumor type in men around the world (Sung et al., 2021). Due to refractoriness to androgen deprivation therapy, the burden of PCa on health and the economy remains critical (Moreira et al., 2017; Force, 2018). PCa is characterized by a remarkable heterogeneity, in which some patients experience an indolent course and only need active surveillance, whereas others progress rapidly and require early comprehensive treatment (Sternberg et al., 2020). Therefore, this raises an urgent need for identifying reliable prognostic biomarkers that can refine the risk evaluation for long-term survival (Bhanvadia et al., 2018). However, the pathogenesis of PCa is understudied, and contributing mechanisms are unclear (Haffner et al., 2020). Therefore, the identification of novel significant markers is critical for the diagnosis and prognosis of PCa.
The LIM-domain-only (LMO) protein family, which comprises LMO1, LMO2, LMO3, and LMO4, is involved in cell differentiation and fate during animal development (Matthews et al., 2013). Also, it is reported that LMO proteins are associated with the adhesion plaque and actin microfilament organization (Dawid et al., 1998). Although LMO proteins in the nucleus lack a DNA-binding domain, they collaborate with other transcription factors to form a complex to modulate the transcription of target genes. Wagner et al. (2021) reported that LMO3 promoted the development of human adipose tissue by modulating the transcriptional activity of PPARγ, which is a key adipogenic master switch. Moreover, LMO3 overexpression enhanced human adipose-derived stem cell osteogenesis through PI3K/Akt signaling (Kang and Pei, 2022). Recently, LMO proteins have been emerging as key molecules in a wide variety of human cancers. Specifically, some reported that LMO3 contributes to the progression of human neuroblastoma via interacting with helix–loop–helix protein 2 (HEN2) (Aoyama et al., 2005). Moreover, LMO3 directly interacts with LATS1 and suppresses Hippo signaling to promote hepatocellular carcinoma invasion and metastasis (Cheng et al., 2018). But limited results have delineated the clinical implications and molecular functions of LMO3 in PCa. Due to their structural similarity, LMO proteins unsurprisingly share some common biological functions, suggesting that LMO3 could show functions similar to those of other LMO proteins. Gu et al. (2015) found that LMO1 appears to be a coactivator of the androgen receptor (AR) involved in the progression of PCa and could be an undeveloped molecular biomarker of prognosis. LMO2, another LMO protein, is reported to regulate cell fate and control cell growth and differentiation via repression of E-cadherin expression in PCa (Ma et al., 2007). Thus, whether LMO3 owns its unique cellular features, such as interacting proteins, gene targets, and prognostic value in PCa, needs to be investigated.
In recent years, increasing evidence has addressed the importance of the tumor microenvironment (TME) in the development and progression of PCa (Sfanos, 2022; Wang et al., 2022). In fact, the PCa microenvironment is thought to have fewer tumor-infiltrating immune cells than immunologically ‘hot’ cancers, such as melanoma, bladder, and lung cancers (Stultz and Fong, 2021). Even so, the infiltration of specific immune cells in PCa has a link with prognosis and response to immunotherapy (Hempel Sullivan et al., 2021; Weiner et al., 2021). These results suggested that the interaction between the tumor cells and TME might be of much importance in PCa. Therefore, there is urgency in precisely indicating the dynamic modulation of the TME.
In this study, we visualized the expression of LMO3 using multiple databases including TIMER, GEPIA2, UALCAN, GEO, and Kaplan–Meier plotter. We then integrated several bioinformatics analyses to explore the correlation between LMO3 and PCa progression and immune infiltration to review its molecular function.
2 METHODS
2.1 LMO3 expression in TIMER, GEPIA2, UALCAN, TCGA, and GEO
In this study, LMO3 expression in pan-cancer was assessed in TIMER (https://cistrome.shinyapps.io/timer/) (Li et al., 2017), GEPIA2 (http://gepia2.cancer-pku.cn/) (Tang et al., 2019), and UALCAN (http://ualcan.path.uab.edu/) (Chandrashekar et al., 2017). GEPIA2 is based on TCGA and GTEx projects, while UALCAN is based on TCGA and MET500 data. We also downloaded and analyzed RNA sequencing data on PCa from TCGA (https://portal.gdc.cancer.gov/) by the “DESeq2” package (Love et al., 2014) in R software (version 3.6.3). To illustrate the expression of LMO3, GSE30994 and GSE70769 were re-analyzed from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) by using the “limma” package (Ritchie et al., 2015).
To further validate the relationship between LMO3 expression and different clinical parameters, we compared their expression profiles regarding age, race, PSA, TNM stage, primary therapy outcomes, residual tumor, and Gleason score by the Kruskal–Wallis test. p-values < 0.05 were considered statistically significant.
2.2 The correlation between LMO3 and survival
To identify the prognostic value of LMO3 in PCa, we performed a log-rank test and univariate Cox regression for survival analysis with clinical data from TCGA and GSE70769 by using the “survival” package. Moreover, survival maps and Kaplan–Meier survival curves in other cancer types were performed to prove that LMO3 may be a promising prognostic biomarker by GEPIA2 and Kaplan–Meier plotter (http://kmplot.com/analysis/). Specifically, the patients were separated into two groups (high- and low-LMO3 groups) by median expression to analyze the progression-free survival (PFS), disease-free survival (DFS), or overall survival (OS).
To better apprehend the prognostic value of LMO3 in PCa, we divided patients in TCGA database into subgroups based on clinical parameters. In each subgroup, the correlation between LMO3 expression and PFS in patients with PCa was analyzed using the Kaplan–Meier curves. The hazard ratio (HR) with 95% confidence interval and log-rank p-values were calculated. p-values < 0.05 were considered statistically significant.
2.3 Functional enrichment analysis and analysis of the LMO3-interacting network
GO and KEGG analyses were conducted to explore molecular functions of LMO3 in PCa. The potential mechanisms of LMO3 on PCa were investigated by GSEA (Subramanian et al., 2005). All these were performed by using the “clusterProfiler” package (Yu et al., 2012). To analyze LMO3-interacting genes and proteins, we used GeneMANIA (http://www.genemania.org) and STRING (https://string-db.org/) to construct an interaction network of LMO3. Adjusted p-values < 0.05 were considered statistically significant.
2.4 Correlation analysis between LMO3 expression and the tumor microenvironment
The correlation between LMO3 and immune cell infiltration in PRAD was analyzed in the “Gene” module of TIMER. We also investigated the correlation between LMO3 expression and various immune cells’ gene markers with the “Correlation” module with purity or age-adjusted Spearman’s correlation.
To further illustrate the relationship between LMO3 expression and the TME, a single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm was applied to comprehensively evaluate the immunological characteristics of each sample with the “GSVA” package (Hänzelmann et al., 2013). Moreover, we also calculated the StromalScore, ImmuneScore, and ESTIMATEScore with the “estimate” package (Yoshihara et al., 2013). p-values < 0.05 were considered statistically significant.
2.5 Drug response of chemotherapy, endocrine therapy, and immunotherapy
To explore the drug sensitivity of chemotherapy, endocrine therapy, and immunotherapy, the clinical responses of two groups stratified based on the expression of LMO3 were predicted and analyzed. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict the response to some chemotherapeutic and endocrine therapy drugs with the “pRRophetic” R package (Yang et al., 2012). To cover more drugs, Cancer Therapeutics Response Portal (CTRP) data, which were prepackaged into the “oncoPredict” R package, were used (Maeser et al., 2021).
As for immunotherapy, the Tumor Immune Dysfunction and Exclusion (TIDE) score was calculated online (http://tide.dfci. harvard.edu/) to evaluate the potential clinical efficacy of immunotherapy (Fu et al., 2020). Subsequently, we used immunophenoscore (IPS) to detect the characteristics of the tumor immune landscape (Charoentong et al., 2017). IPS was used to detect the efficacy of anti-CTLA-4 and anti-PD-1 treatment regimens.
2.6 Cell culture, RNA isolation, and qPCR
The human prostate epithelial cell line RWPE-1 and PCa cell lines PC-3, DU145, and VCaP were cultured in 1640 medium (Gibco, CA, United States) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin, incubated with 5% CO2 at 37°C. Total RNA was extracted as previously described (Gao et al., 2021). qPCR was applied to measure RNA levels with three independent experiments. Primers for LMO3 (forward, 5′-GAC​ACC​AAG​CCG​AAA​GGT​TG-3′, reverse, 5′-ATG​CCA​GTA​TTT​GTC​CAG​TGC-3′) and β-actin (forward, 5′-AGC​GGG​AAA​TCG​TGC​GTG​AC-3′, reverse, 5-AGG​AAG​GAA​GGC​TGG​AAG​AGT​G-3′) were used for qPCR. p-values < 0.05 were regarded as statistically significant.
2.6 Western blot
Total proteins were extracted as previously described (Li et al., 2021). Then, 20 μg protein lysate was subjected to sodium dodecyl sulfate–polyacrylamide gel for electrophoresis and then transferred to a polyvinylidene difluoride membrane. After blocking in 5% bovine serum albumin for 1 h, the membranes were incubated overnight at 4°C with primary antibodies against β-actin (ABclonal, AC026, Wuhan, China) and LMO3 (Servicebio, GB113144, Wuhan, China). After hybridization with secondary antibodies (Boster, BA1056, Wuhan, China) at room temperature, the protein bands were detected with ECL substrate (Servicebio, G2014, Wuhan, China). Three independent experiments were performed.
2.7 Immunohistochemistry
We obtained patients’ consent and approval from the Institutional Research Ethics Committee, then collected PCa tissues, and matched adjacent normal tissues from Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. Then, immunohistochemistry (IHC) staining was performed using the VECTASTAIN EliteABC kit (Vector Laboratories, Burlingame, CA, United States), and its procedures were presented, as previously described (Gao et al., 2021). Briefly, the sections of three pairs of prostate cancer and adjacent normal prostate tissues were used, and a pathologist ensured the typicality of the selected tissues.
3 RESULTS
3.1 LMO3 expression is decreased in PCa
The mRNA expression of LMO3 in pan-cancer was first analyzed by the TIMER database. Lower expression of LMO3 was observed in various cancer types, including prostate adenocarcinoma (PRAD), compared with normal tissues (Figure 1A). The results from GEPIA2 and UALCAN showed that the expression of LMO3 was lower in PCa than in normal prostate tissues (Figures 1B,C). A similar result was observed in PCa tissues from GSE30994 (Figure 1D). In addition, re-analysis with data directly obtained from TCGA showed that LMO3 expression was significantly reduced in PCa tissues (Figure 1E). Furthermore, 52 paired samples in PRAD displayed a marked decrease in LMO3 expression in PCa (Figure 1F). In conclusion, these results demonstrate that LMO3 expression is downregulated in PCa and denote that LMO3 may play an essential role in PCa progression. Furthermore, we found that LMO3 expression was significantly downregulated in PCa cell lines compared with nonmalignant ones (Figures 1G–I). The protein expression of LMO3 was further investigated by IHC, and we found that LMO3 was obviously decreased in prostate cancer tissues compared with normal prostate tissues (Figure 1J). To investigate whether other LMO genes are changed in Pan-cancer, the mRNA expression levels of LMO1, LMO2, and LMO3 were significantly observed. Moreover, similar to LMO3, the three LMO genes were downregulated in PRAD (Supplementary Figure S1).
[image: Figure 1]FIGURE 1 | Expression of LMO3 in prostate cancer. (A) LMO3 expression in different types of cancer was investigated with the TIMER database. (B) Decreased expression of LMO3 in prostate cancer compared to normal tissues in the GEPIA database. (C) LMO3 expression in prostate cancer was examined by using the UALCAN database. (D) LMO3 expression in prostate cancer was examined by GSE30994. (E) Analysis of LMO3 expression in prostate cancer and adjacent normal tissues in TCGA database. (F) TCGA database and statistical analyses of LMO3 expression in 52 pairs of PRAD tissues and adjacent normal tissues. (G) LMO3 expression in four different cell lines was examined by qPCR. The mean ± s.d. is shown. (H) Representatve immunoblot and (I) semi-quantification of LMO3 protein expression in four different cell lines (J) Immunohistochemical staining of LMO3 was performed in prostate cancer and normal prostate tissues. Representative images are shown. Statistical significance was determined using one-way ANOVA with the post hoc Tukey test. *p < 0.05, **p < 0.01, and ***p < 0.001.
3.2 LMO3 expression and clinical characteristics of PCa patients
We then investigated LMO3 expression on the basis of clinical characteristics. Regarding tumor stage, decreased LMO3 expression was observed in PCa patients in stages 2, 3, and 4 (Figure 2A). LMO3 expression was lower, regardless of whether there is lymph node invasion and metastasis or not (Figures 2B,C). In terms of age, the LMO3 level was significantly reduced in the PCa tissues from different groups (Figure 2D). According to PSA, LMO3 expression was significantly downregulated in PCa samples from both <4 and >=4 ng/ml compared to the corresponding normal controls (Figure 2E). In addition, LMO3 expression was dramatically decreased in Asian PCa patients (Figure 2F). According to primary therapy outcomes and residual tumor, LMO3 expression was reduced in PRAD patients (Figures 2G,H). Moreover, downregulation of LMO3 expression was observed in PRAD cancer patients with Gleason scores of 6, 7, 8, and 9 compared to normal controls (Figure 2I). These findings imply that LMO3 expression is inseparably correlated with tumor progression.
[image: Figure 2]FIGURE 2 | Box plots evaluating LMO3 expression among different groups of patients based on clinical parameters. Analysis is shown for tumor stage (A), cancer stage (B), metastasis (C), age (D), PSA (E), Race (F), primary therapy outcomes (G), residual tumor (H) Representatve immunoblot and (I) semi-quantification of LMO3 protein expression in four different cell lines. (J) Immunohistochemical staining of LMO3 was performed in prostate cancer and normal prostate tissues. Representative images are shown.
3.3 Decreased LMO3 expression correlates with unfavorable prognosis
Since the LMO3 expression is closely related to PCa progression, we examined the prognostic value of LMO3. Lower LMO3 expression exhibited unfavorable progression-free survival (PFS) in PCa (Figure 3A). Moreover, decreased expression of LMO3 was significantly associated with unfavorable disease-free survival (DFS) in the GSE70769 cohort (Figure 3B). These findings indicate that LMO3 is considerably related to the prognosis of PCa. To further prove that LMO3 may be a prospective prognostic biomarker, we performed survival maps and Kaplan–Meier survival curves in other cancer types. As the figures demonstrated, LMO3 was significantly associated with the prognosis of kidney renal papillary cell carcinoma and sarcoma based on DFS (Supplementary Figure S2). Regarding overall survival (OS), LMO3 was related to the prognosis of kidney renal clear cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, and uterine corpus endometrial carcinoma (Supplementary Figure S3).
[image: Figure 3]FIGURE 3 | Survival curve evaluating the prognostic value of LMO3. (A) Survival curves are shown for PFS. (B) Survival curves using the GSE70769 cohort are shown for DFS. (C) Forest plot showing the correlation between LMO3 expression and clinical parameters in PRAD patients.
To better apprehend the prognostic value of LMO3 in PCa, we evaluated the relationship between LMO3 mRNA expression and clinical parameters (Figure 3C). Regarding TNM grade, low LMO3 expression was correlated with unfavorable PFS in T2 and N0 PCa patients. For PCa patients under 60 years of age, LMO3 downregulation was associated with unfavorable PFS. The correlation between LMO3 expression and poor PFS was significantly observed in PCa patients with PSA <4 ng/ml. Moreover, we found a significant association between LMO3 expression and poor PFS in white patients. Low LMO3 expression was correlated with unfavorable PFS in patients with complete response (CR) and R0 (no residual tumor). In addition, downregulated LMO3 corresponded with unfavorable PFS in patients with Gleason scores of 6 and 7. These findings implicate that LMO3 expression exhibits a good prognostic value in PCa.
3.4 LMO3-interacting gene and functional enrichment analysis
We generated the gene–gene interaction and protein–protein interaction (PPI) network for LMO3 by GeneMANIA and STRING. The results demonstrated that NHLH2, HES1, LHX9, and CARF most frequently interact with LMO3 (Figure 4A). The PPI network of LMO3 showed 11 nodes, including NHLH2, LHX9, and LDB2 (Figure 4B). To further confirm whether LMO3 influences these genes in PCa, we compared the expression between normal and tumor samples (Supplementary Figure S4). The results showed that many of them were altered, suggesting that LMO3 might mediate their expression and function in PCa.
[image: Figure 4]FIGURE 4 | (A) Gene–gene interaction network of LMO3 was constructed using GeneMANIA. (B) PPI network of LMO3 was generated using STRING. (C) Top 10 genes correlated with LMO3 in PRAD. (D) and (F) show top 20 enrichment terms in GO. (E) and (G) show top 20 KEGG enrichment pathways. *p < 0.05, **p < 0.01, and ***p < 0.001.
Based on data from TCGA, the top 10 genes that are most relevant to LMO3 in PRAD are shown in Figure 4C. To depict LMO3-involved pathways and molecular functions, 300 positively correlated genes were used for functional enrichment analysis. (Figures 4D–G).
3.5 GSEA marked LMO3-involved pathways
To check out the molecular mechanisms of LMO3 in PCa, we conducted a GSEA analysis. Epithelial–mesenchymal transition (EMT), hypoxia, inflammatory response, interferon-gamma response, and TNFα signaling were the top five LMO3-involved pathways in hallmark gene sets defined by MSigDB (Figure 5A). Among the GO terms, negative regulation of the immune system process, cell–cell junction, and enzyme inhibitor activity were enriched (Figures 5B–D). For the C7 collection, the immunologic gene sets and multiple immune functional gene sets were enriched (Figure 5E). Among the KEGG terms, GSEA-revealed pathways in cancer, extracellular matrix organization, and ECM regulators were enriched (Figure 5F). To further investigate the function of LMO3 in PCa, we stratify PRAD patients into two groups based on the expression of LMO3 to dig out what pathways are getting differentially enriched. Similarly, GO and KEGG analyses showed that the ECM–receptor interaction, inflammatory mediator regulation of TRP channels, extracellular structure organization, extracellular matrix structural constituent, and collagen-containing extracellular matrix were enriched (Supplementary Figure S5). These findings firmly implicate that LMO3 regulates the extracellular matrix and immune response in PCa.
[image: Figure 5]FIGURE 5 | Enrichment plots from GSEA. The pathways associated with LMO3 expression based on hallmark gene sets (A), GO terms (B–D), C7 collection (E), and KEGG terms (F).
3.6 Correlation analysis between LMO3 expression and the TME
We explored the correlation between LMO3 expression and immune cell infiltration in TIMER. The results demonstrated that LMO3 expression is positively correlated with the infiltration of six types of immune cells in PRAD (Figure 6A). To further evaluate the influence of LMO3 on the TME, we assessed the correlation between LMO3 and immune infiltration by “ssGSEA” and “estimate.” Notably, LMO3 was positively related to the infiltration levels of mast cells, NK cells, Tem, Th1 cells, and macrophages (Figure 6B). Moreover, LMO3 was positively correlated with the stromal score, estimate score, and immune score (Figure 6C). Subgroup analyses demonstrated that 11 kinds of immune cells were positively correlated with the expression of LMO3 (Figure 6D).
[image: Figure 6]FIGURE 6 | Correlation of LMO3 expression with the immune infiltration level. (A) LMO3 is positively correlated with the infiltration of different immune cells using the TIMER database. LMO3 expression has a significant correlation with the infiltration of immune cells in prostate cancer by ssGSEA (B) and ESTIMATE (C). (D) Subgroup analyses demonstrated that 11 kinds of immune cells were positively correlated with the expression of LMO3. (E–G) Scatterplots of the correlations between LMO3 expression and PD-1, PD-L1, and CTLA-4 in PRAD.
In addition, we estimated the relationship between LMO3 expression and T-cell checkpoints, including PD-1, PD-L1, and CTLA-4. LMO3 expression was notably correlated with these markers in PRAD (Figures 6E–G). These results validate that LMO3 expression is significantly correlated with immune infiltration and imply that LMO3 plays an essential role in immune escape in the TME of PCa.
3.7 LMO3 expression and immune cell markers
To strengthen our comprehension of the LMO3 interaction with the immune response, the correlation between LMO3 and various immune markers in PRAD was assessed in TIMER. We listed the genes characterizing immune cells, including mast cells, natural killer (NK) cells, macrophages, dendritic cells (DC), neutrophils, B cells, T cells, and monocytes in Table1. Tumor purity and age are two important factors influencing the analysis of immune infiltration in tumor samples. After adjusting for tumor age or purity, LMO3 expression was markedly correlated with most markers of immune cells in PRAD (Table 1).
TABLE 1 | Correlation analysis between LMO3 and gene markers of immune cells in TIMER.
[image: Table 1]We also validated the connection between LMO3 and different functional T cells, including Th1, Th1-like, Th2, Treg, effector T cells, naïve T cells, and exhausted T cells (Table 2). These results in TIMER showed that the LMO3 expression level was significantly associated with 19 or 22 of 22 T-cell markers after respectively adjusting for tumor purity or age (Table 2).
TABLE 2 | Correlation analysis between LMO3 and gene markers of different types of T cells in TIMER.
[image: Table 2]3.8 Effect of LMO3 on drug sensitivity
We evaluated the efficacy of chemotherapy and endocrine therapy in different subgroups by IC50 values (Figures 7A–H). These results showed that the IC50 value of methotrexate and vinblastine was significantly higher in the high-expression group. Cisplatin was more suitable for low-expression patients. Moreover, the efficacy of gemcitabine and docetaxel was comparable between the two groups (Figures 7A–E). As endocrine therapy is currently the main treatment for PCa, we chose bicalutamide, abiraterone, and tamoxifen to predict the drug response of endocrine therapy. As shown in Figures 7F–H, the low-expression group was likely to benefit from bicalutamide, while less from tamoxifen, and got a similar response to abiraterone. To further dig out the relationship between the LMO3 expression and response to immunotherapy, we calculated the relevance between LMO3 and more checkpoints. As shown in Figure 7I, LMO3 had significantly positive relevance with seven immune checkpoints (PDCD1, CD274, PDCD1LG2, LAG3, TIGIT, IDO1, and CTLA4). Consequently, we speculated that the high-expression group tends to respond effectively to immunotherapy. So we then used TIDE and IPS to assess the potential clinical efficacy of immunotherapy in different subgroups. Higher scores of TIDE, MSI, dysfunction, and exclusion represented a higher potential for immune evasion. The results of TIDE demonstrated that the LMO3 low-expression group had a lower score, implying that the LMO3 low-expression patients could benefit more from immunotherapy (Figure 7J). In addition, IPS results showed that LMO3 high-expression patients were more likely to respond effectively to anti-PD-1 immunotherapy (Figure 7K). The prediction method may account for the subtle difference between TIDE and IPS. Therefore, more functional experiments and clinical data are urgent.
[image: Figure 7]FIGURE 7 | Relationship between LMO3 expression and drug sensitivity. (A–H) IC50 of LMO3 expression-defined subgroups to drugs, including (A) methotrexate, (B) vinblastine, (C) cisplatin, (D) gemcitabine, (E) docetaxel, (F) bicalutamide, (G) abiraterone, and (H) tamoxifen. (I) Correlation between LMO3 and immune checkpoint expression. (J) TIDE, MSI, and T-cell exclusion and dysfunction scores in different subgroups. (K) Differential analysis for different subgroups in immunophenoscore (IPS) with CTLA4 (+)/PD1 (+). *p < 0.05, **p < 0.01, and ***p < 0.001.
4 DISCUSSION
PCa is one of the most commonly diagnosed malignancies worldwide (Løvf et al., 2019; Sung et al., 2021). This rise in prevalence has been compounded by population growth and aging (Tseng, 2011). Prostate-specific antigen (PSA), TNM stage, and Gleason score are widely used as prognostic markers of PCa in a clinic. However, none of them alone or in combination can meet the needs of clinical prognostic assessment of PCa. In this study, we attempted to identify LMO3 as a perspective prognostic maker in PRAD. These results showed that the LMO3 expression was significantly decreased and associated with age, clinical stage, histological grade, and metastasis in PCa patients. Furthermore, low LMO3 expression exhibited a markedly unfavorable prognosis. Overall, a series of bioinformatics analyses confirmed that LMO3 may have a chance to be an independent prognostic biomarker of PCa and promote the precision oncology of PCa.
In recent years, research about molecular typing of cancer has been widely carried out in many kinds of tumors. It has made tumor classification change from traditional morphology to molecular typing based on molecular characteristics (Blattner et al., 2017; Moreira et al., 2018; Reimers et al., 2020). Molecular typing of tumors plays an important role in guiding clinical decision-making, in which the key step is to find more effective molecular markers related to tumor prognosis. Human LMO3 is highly expressed in the brain. In addition to the brain, LMO3 is also detected in other tissues and organs, such as the colon, bladder, lungs, and prostate. Several studies have reported that LMO3 is involved in neuroblastoma (Aoyama et al., 2005) and hepatocellular carcinoma (HCC) (Cheng et al., 2018). For example, LMO3 expression is significantly upregulated in HCC. It interacts with LATS1 to suppress the Hippo pathway, acting as an oncogene to promote HCC cell proliferation, invasion, and metastasis (Cheng et al., 2018). In this study, we found that LMO3 was abnormally expressed and associated with the prognosis of many cancers, suggesting that it may be involved in tumorigenesis and development. In addition, we also verified that LMO3 was downregulated in PCa tissues and cell lines. These results imply that LMO3 may function as a promising marker and a tumor suppressor gene in PCa, and functional LMO3 is decomposed to promote PCa proliferation. This is obviously different from the cancer-promoting function of LMO3 in other types of tumors (Aoyama et al., 2005; Cheng et al., 2018). Therefore, the precise molecular mechanisms of LMO3 in PCa still need to be further explored.
In the process of tumorigenesis and development, the TME interacts with tumor cells to mediate the immune tolerance of the tumor, thus affecting the clinical effect of immunotherapy (Strasner and Karin, 2015; Kwon et al., 2021). Removing the immunosuppression of the TME is beneficial to the recovery and reconstruction of the normal anti-tumor immune defense ability of the human body, thus enhancing the comprehensive efficacy of various tumor treatment methods, including immunotherapy (Wang et al., 2022). It is of much importance to identify the prospective therapeutic targets resulting in remodeling of the TME and transition of the TME from being tumor-friendly to tumor-suppressing (Bi et al., 2020). So far, the association between LMO3 and immune cell infiltration in PCa has not been explored. Here, we first found that LMO3 expression is correlated with the immune components in the TME. In other words, the proportion of immune components in the TME is significantly correlated with the progression of PCa (Wu et al., 2020). In particular, high M1 macrophages and neutrophils are associated with patients’ prognosis, suggesting that these two immune cells might be potential targets in PCa (Wu et al., 2020). These results imply that LMO3 could be a potential immunotherapy target in PCa. However, the exact role of LMO3 in the TME still requires in-depth investigation.
This study enhances our understanding of the connection between LMO3 and PCa; however, a few constraints still exist. First, in spite of the fact that we observed that LMO3 was rarely expressed in PCa cell lines, the molecular mechanisms of LMO3 in tumor progression, metastasis, and immune infiltration should be investigated in future studies. In addition, although LMO3 was abnormally expressed and associated with the prognosis of many cancers, we need to answer whether the abnormal effect of LMO3 on tumorigenesis is direct or indirect. When LMO3 gets downregulated in PCa, we indeed should confirm its tumor-friendly or tumor-suppressing role with more functional experiments in the near future. Furthermore, these bioinformatics analyses mainly relied on LMO3’s mRNA levels. Additional analysis in view of protein levels might aggravate the determination of additional convincing.
Overall, these findings imply that LMO3 regulates immune cell infiltration and could function as a prospective biomarker for PCa. Therefore, the present study may advance our comprehension of not only the role of LMO3 on the development and progression of PCa but also its clinical applications in predicting PCa prognosis and guiding suitable immunotherapy.
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Background: Single nucleotide polymorphisms (SNPs) of essential enzymes for alcohol metabolism ADH1B, ADH1C, and ALDH2 are commonly regarded as genetic biomarkers for esophageal squamous cell carcinoma (ESCC) susceptibility. However, there have not been any reports on relations between SNPs of these genes and the prognosis of postoperative radiotherapy in ESCC. The current study aimed to understand the associations between gene variants of alcohol metabolism and adjuvant radiotherapy’s prognosis in ESCC.
Methods: This study retrospectively analyzed 110 ESCC patients from our institution who received adjuvant radiotherapy after surgery. The SNPs of ADH1B rs1229984, ADH1C rs1789924, and ALDH2 rs671 were detected by Sanger sequencing using formalin-fixed paraffin-embedded tumor samples. A nomogram was drawn based on prognostic factors associated with overall survival (OS).
Results: ADH1C rs1789924 (C>T) was associated with poor DFS and OS in ESCC patients undergoing adjuvant radiotherapy. Multivariate analysis showed that ADH1C rs1789924 (C>T) was one of the independent prognosis factors of DFS and OS. However, the genotypes of ADH1B SNP rs1229984 and ALDH2 rs671 were not associated with differences in the PFS and OS of these patients. Compared with the AJCC staging system, the nomogram containing the ADH1C genotype can more effectively and accurately predict the survival time of ESCC after surgery and adjuvant radiotherapy.
Conclusion: ADH1C rs1789924 might be a prognostic genetic biomarker for ESCC patients undergoing surgery and postoperative radiotherapy.
Keywords: esophageal squamous cell cancer, adjuvant radiotherapy, ADH1C, nomogram, rs1789924
1 INTRODUCTION
Esophageal cancer is known as the eighth most common cancer worldwide and is the sixth leading cause of cancer-related deaths (Sung et al., 2021). Domestically, it is the fifth most common cancer and the fourth most common cause of cancer death, with approximately 346,633 new cases and 323,600 deaths in 2022 (Xia et al., 2022). China is one of the countries showing the highest incidence rate of ESCC, a primary histological type of esophageal cancer (Smyth et al., 2017). Alcohol consumption, smoking, poor nutrition, and some dietary factors like consumption of very hot beverages are considered risk factors for ESCC. Genetic factors may also play a vital role in susceptibility to ESCC (Smyth et al., 2017). A controlled study of Chinese patients concluded that single nucleotide polymorphisms (SNPs) of important enzymes for alcohol metabolism ADH1B, ADH1C, and ALDH2 are commonly regarded as genetic biomarkers of ESCC susceptibility (Gao et al., 2013). In Liu’s study, ALDH2 rs671 affected not only the susceptibility to ESCC but also its poor prognosis (Liu et al., 2018). The ADH gene was also associated with the prognosis of some other solid tumors (Wang et al., 2018; Shen et al., 2019; Chen et al., 2020; Liu et al., 2020) and response to chemotherapy (Khrunin et al., 2014; Le Morvan et al., 2015). However, there have not been any reports on relations between SNPs of these genes and the prognosis of postoperative radiotherapy in ESCC.
For resectable local advanced esophageal cancer, although neoadjuvant chemoradiotherapy followed by surgery was recommended, the vast majority of patients in China initially choose surgery. Relevant studies have shown that treatment failure is mainly due to local recurrence. Therefore, postoperative adjuvant therapy has a significant effect. According to Xiao’s research conclusion, postoperative radiotherapy can effectively reduce the probability of locoregional recurrence for all patients and can improve the survival of stage III or positive lymph node metastatic esophageal carcinoma (Xiao et al., 2003; Xiao et al., 2005). A randomized controlled trial of phase III suggested that postoperative radiotherapy, especially postoperative chemoradiotherapy, significantly improved DFS and OS in stage IIB–III esophageal squamous cell carcinoma (Ni et al., 2021). Even for patients with relatively early-stage T2–3N0M0, it was also well documented that postoperative radiotherapy significantly increased the patients’ DFS and reduced the likelihood of the local regional recurrence rate (Deng et al., 2020). Moreover, significant variability in disease response is observed for patients who underwent adjuvant radiotherapy. Several studies have demonstrated a correlation between clinical factors and prognosis. However, because such individual differences are difficult to predict precisely, biomarkers must be identified to screen patients for whom adjuvant therapy is not beneficial. Therefore, the purpose of our study is to more comprehensively and accurately understand the correlation between the variations of alcohol metabolism genes and the prognosis of adjuvant radiotherapy in ESCC.
2 MATERIALS AND METHODS
2.1 Patients
By sorting out and summarizing the relevant data on ESCC patients who were selected for postoperative radiotherapy in the Radiation Oncology Department of Renji Hospital from April 2008 to October 2018, 110 patients were retrospectively analyzed. The main inclusion criteria were as follows: 1) the age of the patients must be between 18 and 80 years; 2) according to the eighth edition staging system promulgated by the American Joint Committee on Cancer (AJCC), the patients must meet the diagnostic criteria for stage II–IVa thoracic esophageal squamous cell carcinoma; 3) the overall condition of the patients must be good, that is, the Eastern Cooperative Oncology Group performance status of 0 or 1; 4) there should be no abnormality in liver, kidney, and bone marrow functions; 5) all the patients should have undergone radical surgery in the Department of Thoracic Surgery of Renji hospital and received adjuvant radiotherapy in 3 months after surgery; 6) formalin-fixed, paraffin-embedded tumor tissue of the patients should be available; and 7) the patients should be under a regular follow-up after treatment. The exclusion criteria were as follows: 1) Patients with palliative resection and tumor residual; 2) tumor tissue should be unavailable; 3) radiation dose should be less than 40 Gy; 4) loss of follow-up after treatment; and 5) concurrent malignancy or previous malignancy within the past 5 years. This study was approved by the ethics committee of Renji Hospital.
2.2 Treatment
2.2.1 Surgery
All patients underwent esophagectomy and lymph node dissection. The surgical plan was chosen according to the different locations of the tumor. For example, esophageal cancers in the upper and middle thoracic segments were generally suitable for Ivor Lewis or McKeown surgery, while those located in the lower thoracic segment were more suitable for Sweet esophagectomy. All patients were R0 resectioned.
2.2.2 Adjuvant radiotherapy
The optimal time to receive adjuvant radiation therapy is 4–12 weeks after surgery. All patients before 2011 were treated with three-dimensional conformal radiotherapy; after 2011, most of the patients received intensity-modulated radiotherapy (IMRT). The median radiation dose was 50 Gy, ranging from 40 to 60 Gy in 20–30 fractions (2 Gy per fraction). The clinical target volume (CTV) was determined by the location of the primary tumor and the positive nodes found during pathological examination or surgery. For upper thoracic tumors, the boundary of the CTV was at the superior border of the cricothyroid membrane, whereas for midthoracic tumors, the border was at the superior border of the first thoracic vertebra. The lower border was located 3.0 cm below the carina and may also be at the lower border of the tumor bed, combined with the location of the tumor. The CTV includes the bilateral supraclavicular region and mediastinal stations 2R/L, 4R/L, 7, and 8, according to the tumor location. The planning target volume (PTV) was formed by a uniform 0.5 cm expansion around the CTV. Chemotherapy (sequential or concurrent with radiotherapy) was given if necessary.
2.3 Follow-up
Follow-up is required after the treatment. The frequency of follow-up is quarterly for the first 2 years after surgery, semi-annually for the second 2 years, and can be extended to yearly thereafter. Diagnostic imaging and endoscopic biopsy are mainly used to check for esophageal recurrence. Enhanced CT, MRI, or PET-CT is used to check whether there is local recurrence and distant metastasis, and fine needle aspiration is also required if necessary.
2.4 Genotyping assays
DNA was extracted from paraffin block sections of tumor samples during surgery with the aid of Qiagen kits. The SNPs of ADH1B rs1229984, ADH1C rs1789924, and ALDH2 rs671 were detected by Sanger sequencing. The primers used for PCR are listed as follow: rs1229984-F: 5′-CTT​TCG​TCT​CTC​ATT​GCC​T-3′, rs1229984-R: 5′-TAA​CCT​TGG​GGA​TAA​ACT​GA-3’; rs1789924-F: 5′-TAA​AGA​AAT​GGG​CAC​CGA-3′, rs1789924-R 5′-CCC​CTT​TGC​TGT​GAC​TGA-3’; and rs671-F: 5′-CCC​ATA​ACC​CCC​AAG​AGT-3′, rs671-R: 5′-CAG​AGC​AGA​GGC​TGG​GTC-3’. The PCR product was sequenced on an ABI 3100 DNA analyzer (Applied Biosystems, Foster City, CA, United States), and the data were analyzed by Sequencer 4.9 software.
2.5 Statistical analyses
Further statistical analyses were carried out with the help of SPSS 22.0 software (SPSS Inc., Chicago, IL, United States). Categorical variables were compared using Pearson’s chi-squared or Fisher’s exact tests. Survival analysis was performed by the Kaplan–Meier method, followed by log-rank tests. Univariable and multivariable Cox regression analyses were then used to identify risk factors for disease-free survival (DFS) and overall survival (OS). OS time was the interval from the date of surgery to death or the most recent follow-up time, which was 31 December 2021. DFS is defined as survival time without disease progression from the date of surgery. All p-values were two-sided; values of p < 0.05 were considered statistically significant. R 3.4.4 software (Institute for Statistics and Mathematics, Vienna, Austria) was used to draw a nomogram of potential prognostic factors significantly associated with OS, and the calibration curve and the concordance index (C-index) were used to judge its accuracy.
3 RESULTS
3.1 Patient characteristics
In the study, the relevant data on 110 ESCC patients who received adjuvant radiotherapy were selected as the research sample. The clinical characteristics of these patients are detailed in Table 1. The selected patients ranged in age from 44 to 80 years, with an average age of 61 years. In the overall sample, 75 patients had stage III, 31 had stage II, and 4 had stage IVa disease. Only 78 patients were evaluable for rs1229984 genotypes, including 38 patients with genotype TT, 35 patients with genotype TC, and 5 patients with genotype CC. All 110 patients were evaluated for rs1229984 SNP status, including 100 patients with wild-type CC and 10 patients with variant-type CT; 100 patients were evaluable for rs671 genotypes, including 49 patients with genotype GG, 48 with genotype GA, and 3 with genotype AA.
TABLE 1 | Clinical features and genotypes of all the patients.
[image: Table 1]3.2 Comparing DFS and OS of patients in different genotypes
During follow-up, 67 patients died and 69 patients were with disease progression. For the surviving patients, the median follow-up time was 70 months. The mean DFS was 22.2 months (95% CI: 15.2–29.1 months), and the mean OS was 32.0 months (95% CI: 20.3–43.7 months) for the whole group of patients. The genotypes of ADH1C SNP rs1789924 were significantly associated with differences in the PFS and OS. The patients with variant-type CT had much worse DFS and OS than those with wild-type CC (Figure 1). The mean DFS was 22.8 months in patients with rs1789924 CC type and 12.8 months in patients with rs1789924 CT type (p = 0.01), and the mean OS was 33.0 and 19.0 months, respectively (p = 0.01). However, the genotypes of ADH1B SNP rs1229984 and ALDH2 rs671 were not associated with differences in the PFS and OS of these patients. The clinical characteristics of different rs1229984 genotypes are shown in Supplementary Table S1. There were no significant differences between the two groups in all clinical features except tumor length. More patients in the mutant group had tumors longer than 5 cm.
[image: Figure 1]FIGURE 1 | Disease-free survival (A) and overall survival (B) curves of the patients with different ADH1C rs1789924 genotypes. CC: wild type; CT: variant type.
3.3 Univariate and multivariate analyses for DFS and OS
In the univariate analysis of clinical characteristics and genotypes, as shown in Table 2, TNM stage, N stage, tumor length, and ADH1C were significantly correlated with DFS. The variables with p < 0.2 in univariate analysis were subjected to multivariate analysis. In addition, independent associations between TNM stage, tumor length, and ADH1C and DFS were confirmed by multivariate analysis. In the analysis of the variables associated with the OS, age, TNM stage, N stage, tumor length, and ADH1C were significantly associated with OS. In addition, in multivariate analysis, age, TNM stage, tumor length, and ADH1C were independently associated with OS (Table 3). Therefore, we considered that ADH1C SNP rs1789924 might be one of the independent prognostic factors for ESCC patients who underwent surgery and adjuvant radiotherapy.
TABLE 2 | Univariate analysis of clinical parameters and rs1789924 genotypes in predicting DFS.
[image: Table 2]TABLE 3 | Univariate analysis of clinical parameters and rs1789924 genotypes in predicting OS.
[image: Table 3]3.4 Nomogram for predicting OS
Based on the five prognostic factors screened in the multivariate Cox regression analysis, a nomogram was drawn for predicting 1-year, 3-year, and 5-year survival probabilities (Figure 2A). The 5-year OS probability calibration curve showed that the predicted values of the nomogram had a high agreement with the actual observed values of OS (Figure 2B). In addition, the calculated C-index result for the predicted nomogram was 0.662 (95% CI: 0.625–0.700). Afterward, the accuracy of the predicted results of the nomogram and the AJCC staging system was compared in detail with the help of ROC analysis. The calculation found that the AUC values of the OS of the predicted nomogram in the aforementioned three different periods were 0.662, 0.731, and 0.767, which were obviously higher than 0.564, 0.626, and 0.625 of the staging system. The nomogram has a better discriminative ability than the AJCC staging system (Figure 3). These results suggested that the nomogram, including the ADH1C genotype and other clinical characteristics, is better at predicting survival for ESCC after surgery and adjuvant radiotherapy.
[image: F2]FIGURE2 | Prediction nomogram for overall survival. (A) Nomogram predicts OS based on age, TNM stage, N stage, tumor length, and ADH1C genotype. (B) Calibration curve of the nomogram.
[image: F3]FIGURE3 | ROC curves present the predictive power for 1-year, 3-year, and 5-year OS. (A) AJCC stage. (B) Nomogram. ROC: receiver operator characteristic; AJCC: American Joint Committee on Cancer.
4 DISCUSSION
This study focuses on analyzing associations between SNPs of essential enzymes for alcohol metabolism ADH1B, ADH1C, and ALDH2 and survival in esophageal cancer patients receiving postoperative radiotherapy. We had shown a significant association between ADH1C rs1789924 genotypes with DFS and OS. The patients with variant-type rs1789924 had much worse DFS and OS than those with wild-type rs1789924.
Alcohol metabolism mainly depends on alcohol dehydrogenases (ADH), which oxidize ethanol to acetaldehyde or ketones (Zhang, Mai, and Huang 2010). ADH1B and ADH1C are the most common ADH genes and encode the most critical components of the ADH enzyme subunit. Alcohol metabolism also requires another enzyme, encoded by ALDH2. It has a high affinity to acetaldehyde and is able to facilitate the conversion of acetaldehyde to non-toxic acetate (Seitz and Stickel 2007). There are three SNPs, rs1229984 in ADH1B at 4q23, rs1789924 near ADH1C at 4q23, and rs671 in ALDH2 at 12q24, significantly associated with the risk of ESCC in the Chinese population (Gao et al., 2013). The SNP rs1229984 is a missense polymorphism (A>G, His48Arg) within the ADH1B gene, which encodes a more active ADH enzyme. The SNP rs1789924, located at 5′ near the gene region of ADH1C, may affect transcription factor binding. The SNP rs1789924 has a significant relationship with another SNP, rs698, at 4q23. The variant A allele of rs671 (G>A, Glu504Lys) was able to significantly reduce the metabolic activity of the ALDH2 enzyme for acetaldehyde (Yuan et al., 2013). Gao and other related scholars selected 2,139 ESCC cases and 2,273 control cases as samples and found that minor alleles of rs1229984 and rs1789924 could significantly increase the risk of ESCC. On the contrary, the minor allele of rs671 could significantly reduce its risk (Gao et al., 2013). This study explored the correlation between these genetic biomarkers for ESCC prognosis. We only found that the variant T allele of rs1789924 in ADH1C was associated with the prognosis of ESCC patients electing for surgery and receiving adjuvant radiotherapy.
Some analyses found that ADH1C plays a vital role in developing breast, liver, colorectal, and lung cancers. Some studies found that the expression of ADH1C was significantly downregulated in hepatocellular carcinoma tumor samples compared with normal liver samples and whose high expression of ADH1C was significantly associated with a good survival rate in liver cancer patients (Chen et al., 2020; Liu et al., 2020). It has also been concluded that with the continuous reduction of ADH1C expression levels, the prognosis of colorectal cancer patients can gradually worsen (Li et al., 2022). The conclusion of the study by Kumamoto et al., (2019) showed that ADH1C could also be used to predict the recurrence rate of stage III colorectal cancer patients after chemotherapy. For lung cancer patients, high expression of ADH1B, ADH1C, ADH4, and ADH5 genes can achieve a better prognosis. In addition, the expression of ADH family members was associated with smoking status, clinical stage, and chemotherapy status (Wang et al., 2018). Feng’s study showed that the upregulated expression of ADH1C enhances cisplatin resistance of lung adenocarcinoma cells (Jiang et al., 2022). Some studies have shown the correlation between SNPs of ADH1C and cancer prognosis. The SNP rs698 in ADH1C significantly affects complete tumor response in ovarian cancer patients receiving cisplatin for chemotherapy (Khrunin et al., 2014). A randomized phase III trial found that another SNP rs1693482 in ADH1C significantly affected OS in breast cancer patients undergoing neoadjuvant chemotherapy and without the need to achieve PCR (Le Morvan et al., 2015). Through a study in Xinjiang Han and Kazakh populations in China, it was found that ALDH2 rs671 (G>A) is not only closely related to the susceptibility to ESCC in Kazak populations but also significantly correlated with poor prognosis of EC in both Kazak and Han ethnic groups (Liu et al., 2018).
It is understood that this study is the first to show that SNP rs1789924 near ADH1C significantly affected the DFS and OS of ESCC patients undergoing surgery and adjuvant radiotherapy. In our multivariate analysis, the rs1789924 genotype was the independent prognostic factor for both DFS and OS. In the multivariate analysis, we also demonstrated that some clinical characteristics were correlated with survival. For these patients, the TNM stage and tumor length were independently associated with PFS, and the TNM stage, tumor length, and age were independently associated with OS. This result was consistent with our previous study (Xu et al., 2016) and some other scholars’ studies (Zou et al., 2020). For ESCC patients undergoing surgery, the pathological stage is the most critical prognostic factor and the key basis for adjuvant therapy after surgery. Although postoperative adjuvant therapy is not recommended for patients with R0 resection according to the NCCN guidelines, for stage IIb–III patients, especially those with positive lymph nodes, adjuvant radiotherapy can effectively reduce the local relapse and improve survival. A phase III randomized controlled trial in China has demonstrated that postoperative treatment (PORT/POCRT) may significantly prolong the survival in these patients. The pathological TNM stage and treatment regimen can significantly affect the DFS and OS (Ni et al., 2021). In our study, the TNM stage was also found as an independent prognostic factor for OS and DFS, but the predictive capability for survival was poor. Therefore, it is necessary to explore a better predictive survival model that can provide counseling and treatment guidance services to patients. The nomogram (including the rs1789924 genotype) based on the multivariate analysis results during this study can be used to predict OS accurately in ESCC patients.
In our study, rs1789924 variant-type CT was identified only in 9.1% (10/110) of patients, which was lower than the frequency reported in the former research (Gao et al., 2013). This may be due to the small sample size of our research, which was the first limitation to the study. Second, this was a retrospective, single-center study that might limit the results’ universality. The result should be validated in a larger population in the future study. Third, as it was a retrospective study, we could not obtain information on the drinking history of all patients, so we did not concern about this aspect. Finally, the mechanism of action of ADH1C in cancer has not been clearly understood, and more extensive and in-depth mechanism studies are needed to better understand the role of rs1789924 in ESCC. Therefore, extensive sample collection and molecular mechanism studies are needed to expand the study to validate these preliminary results and explore the mechanisms of impact.
5 CONCLUSION
Our study first reported a significant association between ADH1C rs1789924 genotypes with DFS and OS for ESCC patients undergoing surgery and postoperative radiotherapy. The SNP of rs1789924 was an independent prognostic factor for these patients. The developed nomogram integrating clinical features and the rs1789924 genotype showed superior prediction ability for OS, which might help us develop individualized postoperative adjuvant therapy strategies.
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In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Keywords: tertiary lymphoid structures, antigen presentations, immunotherapy, tumor-infiltrating immune cells, tumor microenvironment
INTRODUCTION
Immunotherapies have become increasingly important for tumor patients, particularly those with advanced tumors (Tarantino et al., 2022). It is well known that using immune checkpoint blockades (ICBs) has yielded a beneficial effect in patients with advanced melanoma and lung cancer (Mehdizadeh et al., 2021); adoptive cell therapies (ACT) and chimeric antigen receptor (CAR)-T cells therapy have also improved the prognosis of patients with hematologic tumors (Martinez and Moon, 2019). However, immunotherapy resistance occurs in some tumors, and a possible explanation for this condition is the complication of the tumor microenvironment (TME) (Whiteside, 2012). TME, which is created by various cells and soluble molecules including immune cells and cytokines, exerts significant effects on tumor development and progression (Duhan and Smyth, 2021). In TME, the crosstalk of immune cells and tumor cells significantly controls tumor growth, namely, cancer immunoediting (Burnet, 1970). Cancer immunoediting involves three phases: elimination, equilibrium, and escape (Dunn et al., 2002; Wilczyński and Nowak, 2012). In the elimination phase, various effector cells and molecules destroy tumor cells and dampen tumor progression. For instance, dendritic cells (DCs) can present tumor antigens to T cells, and subsequently, T cells release perforin and granzyme to inhibit tumor cell growth or kill tumor cells through the Fas/FasL signal pathway. However, if immune cells can not eliminate tumor cells, cancer immunoediting might proceed into the equilibrium or escape phase. In the equilibrium phase, tumor cells could not be detectable and are deemed to be in a dormant status in the clinical. However, when the balance between tumor proliferation and apoptosis is disturbed by various signaling pathways, like the Wnt/β-catenin pathway, tumor cells start to proliferate dramatically and result in tumor metastasis, namely, the escape phase (Wilczyński and Nowak, 2012). In the escape phase, the anti-tumor immune response is weakened or suppressed via multiple mechanisms which mainly disturb the cancer immunity cycle (Wilczyński and Nowak, 2012; Wada et al., 2022). The cancer immunity cycle also consists of three phases: priming, migration, and effector. In the priming phase, the process of antigen-presenting is hampered by inhibitory signaling pathways, which impairs the activation of effector cells. In the migration phase, tumor cells release inhibitory molecules to restrain immune cell infiltration. In the effector phase, these mechanisms are even more complex. Immune cells infiltrating into the tumor sites perform diverse functions, thus, they influence tumor progression in various ways. The function of these immune cells will be discussed below (Wada et al., 2022). Importantly, immune checkpoints (ICs) are essential for tumor progression in every phase. Over the past decades, attention given to ICs has increasingly grown. The ICs can be produced by various cells, including immune cells and tumor cells infiltrating the TME. They could cause the dysfunction of effector cells and inhibit the apoptosis of tumor cells (Mehdizadeh et al., 2021; Munari et al., 2021). Apart from the immune cell components, cancer-associated fibroblasts (CAFs) and tumor endothelial cells (ECs) are associated with an aberrant vascular system that can transport nutrition to tumor cells and disturb the therapeutic delivery of T cells into the tumor sites (Nagarsheth et al., 2017; Lamplugh and Fan, 2021). It is well known that high demands for nutrients in tumor cells lead to the formation of abnormal vascular networks which promote tumor growth. Due to the intense competition for nutrients between tumor cells and immune cells, the nutrients and oxygen are insufficient in TME, causing a hypoxic and acidic status. Hypoxia-inducible factor 1-alpha (HIF1α) is a key factor in upregulating the level of vascular endothelial growth factor (VEGF) that arms the aberrant vasculature and fosters the epithelial-–mesenchymal transition (EMT) in the hypoxic microenvironment (Lamplugh and Fan, 2021). Under the hypoxic condition, tumor cells could escape immunosurveillance depending on activated HIF1α signaling which promotes CTL apoptosis. Besides, in TME, tumor cells and other immunosuppressive cells could express indoleamine 2,3-dioxygenase (IDO), which depletes tryptophan and results in the impairment of CD8+T cell cytotoxicity (Lamplugh and Fan, 2021). Other substances metabolized by tumor cells, including hyper glycolysis, lactate, and lipid, can impede the antigen-presenting process of DCs, recruit regulatory T cells (Tregs), and help tumor cells eventually escape from immune surveillance (Davis et al., 2015). Additionally, soluble factors also deliver signals to control tumor development. For example, upon the high levels of tumor-derived lactate, high-expressed PD-L1 on the surface of tumor cells, or IL-4, IL-10, and TGF-β are present in TME, tumor-associated macrophages (TAMs) would polarize into the M2 phenotype, which plays a pro-tumor role (Goossens et al., 2019; Petty et al., 2019). The presence of TGF-β in TME also stimulates TAMs to produce arginase-1 (Arg-1) and inhibit T cell immune response. Hereby, since the complex TME controls the benefits of immunotherapy, a comprehensive understanding of the complex components of tumor-infiltrating immune cells is required for tumor immunotherapy. In this review, we discussed the role of tumor-infiltrating immune cells in the process of tumor elimination in TME, as well as current immunotherapeutic strategies. In addition, we described the function and predictive value of tertiary lymphoid structures in TME.
PRIMING PHASE
Tumor antigens could be recognized by DCs, which present antigens to T cells and activate T cells. This process is a pivotal step in the priming phase (Eryn and Ott, 2021). Tumor antigens include tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs). Tumor antigens include mutant and viral antigens. Genomic aberrations of tumor cells result in mutant antigens, which affects antigens recognition and presentation (Lu et al., 2014). Therefore, a comprehensive understanding of the antigen-presenting cells (APCs) is extremely critical.
Dendritic cells
DC subsets are specialized in antigen recognition and presentation and induce a tumor-specific immune response in patients. DC subsets are divided into conventional dendritic cells (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs), according to different functions and phenotypes (Kvedaraite and Ginhoux, 2022). Notably, cDCs include are of two types: type 1 (cDC1s) and type 2 (cDC2s). cDC1s are critical for anti-tumor response and are associated with patient survival. cDC1 infiltration apparently improved prognosis in solid tumors, such as head and neck squamous cell carcinomas (HNSCC) , lung adenocarcinoma, melanoma, and triple-negative breast cancer (TNBC) (Bogunovic et al., 2009; Roberts et al., 2016; Barry et al., 2018; Böttcher et al., 2018). cDC1s express XC-chemokine receptor 1 (XCR1), which is used to make a distinction between cDC1 and other DC subsets (Villani et al., 2017). XCR1 expressed by cDC1s could bind to the CD8+T cell phenotype XC-chemokine ligand 1 (XCL1), which activates T cell function. XCL1 is also expressed by tumor cells, which boosts this process by activating T cells (Matsuo et al., 2018; Sánchez-Paulete et al., 2018; Ferris et al., 2020). CD103+ cDCs1 can prime CD8+ T cells and CD4+T cells by cross-presenting antigen (Cancel et al., 2019). CD40 expressed by cDCs1 binds to the CD40 ligand, which is produced by CD4+T cells, which activates CD8+T cells (Schoenberger et al., 1998). cDC1s also express CXC-chemokine ligand 9(CXCL9) and CXCL10 to activate CXCR3+ T and NK cells, recruit CD8+ T cells into the tumor sites, and foster the efficacy of anti-PD-1 or anti-TIM-3 therapy (de Mingo Pulido et al., 2018; Chow et al., 2019). Moreover, after the use of PD-1 blockade, CD8+T cells release IFN-γ, which promotes cDC1 to secrete IL-12 by using the non-canonical NFκB-dependent mechanism. In turn, IL-12 augments CD8+T cell functions (Stratikos et al., 2014; Garris et al., 2018). As a side note, the primary source of the CXCL9 and CXCL10 seems to be expressed by CD103+cDC1s in TME (Mikucki et al., 2015). Additionally, CCL5 and Fms-related tyrosine kinase 3 (FLT3) produced by NK cells or CCL4 produced by tumor cells could attract cDC1s into the tumor sites (Barry et al., 2018; Böttcher et al., 2018), but the activation of the WNT/ β-catenin signaling pathway and the accumulation of prostanoidprostaglandinE-2(PGE2) in TME could deduce the production of CCL4/CCL5, respectively (Spranger et al., 2017; Böttcher and Reis e Sousa, 2018; Ruiz de Galarreta et al., 2019).
cDC2s are specialized in priming CD4+T cells through MHC-II molecules and secreting IL-12 (Mittag et al., 1950; Segura et al., 2013; Jhunjhunwala et al., 2021). When Tregs are depleted, cDC2s could potently activate CD4+T cells to kill tumor cells and are associated with a favorable prognosis in HNSCC and melanoma (Binnewies et al., 2019). However, the functions of cDC2 in TME are less clear. The function of pDCs is complicated for controlling tumor progression. pDCs may promote tumor growth, foster angiogenesis, and promote metastasis in TME by triggering Tregs and releasing inducible co-stimulator (ICOS)-L, PD-L1, and IDO (Aspord et al., 2013). Some studies have shown that higher pDC frequencies are correlated with worse outcomes (Kvedaraite and Ginhoux, 2022). Conversely, pDCs also play the anti-tumor role by producing type I interferons (IFN-Is), which enhances the cytotoxicity of T cells and NK cells, or releasing Granzyme B that kills tumor cells directly. In TME, some inhibitory factors, like TGF-β, could also impair toll-like receptor (TLR)–induced IFN-α secretion by pDCs and promote tumor growth (Kvedaraite and Ginhoux, 2022). Notably, the pDC functions in cross-priming CD8+T cells remain currently unclear and need to be further dissected (Fu et al., 2022). At this juncture, it is well documented that moDCs are the inflammation subsets and produce various inflammatory cytokines to induce tumor growth (O'Keeffe et al., 2015). On the contrary, moDCs loading tumor antigens inhibit tumor progression by cross-presenting antigens, and this property has been considered as a therapeutic agent (Ma et al., 2013). However, the function of moDCs is still thoroughly unclear in tumor settings (Duhan and Smyth, 2021; O'Keeffe et al., 2015). Lastly, several factors in the tumor microenvironment have been implicated in the evolution of DCs into a tolerogenic phenotype, including TGF-β, IL- 10, and VEGF. This tolerogenic property of DCs might help tumor cells escape from immune surveillance, limit effector T cells functions, boost the production and expansion of Tregs, and even induce DC apoptosis (Mahnke et al., 2003; Chen et al., 2017; Castenmiller et al., 2021).
Furthermore, antigen presentation can also be influenced by tumor cells. During tumor development, tumor antigens can be lost or mutated, leading to the formation of neoantigens. Even with the assistance of HSP90, neoantigens are hidden by the tumor and result in the dysfunction of DCs (Jaeger et al., 2019). A study has shown that tumor antigen loss was associated with resistance to ICB in non-small small-cell lung cancer (NSCLC) (Anagnostou et al., 2017). Expression of the HLA-I complex is reduced by genetic alterations and the modulation of transcription, failing to recognize antigens (Jhunjhunwala et al., 2021). Cytokines also affect the expression of the HLA-​I complex. For instance, the inhibition of IFN-γ signaling pathways decreases the level of the HLA-I complex and leads to resistance to anti-CTLA-4 therapy in melanoma (Gao et al., 2016). However, while the deficiency is tumor-specific, how does an immune response recognize antigens? This issue requires an in-depth research (Jhunjhunwala et al., 2021).
DC-based immunotherapies: Given the properties of DCs and tumor antigens, using the cDC1-based vaccine in mice tumor can enhance infiltration of T cells and halt tumor progression (Wculek et al., 2019). It was discovered that targeting XCR1 is crucial for the delivery of tumor antigen to cDC1 and, subsequently, CD8+T cell priming (de Mingo Pulido et al., 2021). The cDC2-based vaccine may also potently inhibit tumor growth and prolong the survival (Saito et al., 2022). Treatment with antibodies against the CD47-SIRPα axis could activate cDC2s, enhancing the cytotoxicity of CD8+ T cells (Saito et al., 2022). FLT3 is a key factor for the differentiation and maturation of cDCs; thus, FLT3 agonist, CDX-301 (FLT3L), has been developed (Kvedaraite and Ginhoux, 2022). A study has reported that FLT3L boosts the efficacy of DC-targeting vaccines in melanoma (Bhardwaj et al., 2020). Besides, some studies for other tumors are under the clinical trials (NCT04491084, NCT05029999, and NCT05010200). In recent years, pDCs-based treatment has been developed and has acquired benefits. For instance, using vaccination based on pDCs could enhance CD8+ T functions and improve the prognosis of patients (Tel et al., 2013; Westdorp et al., 2019) (NCT01863108). Additionally, the TLR7/TLR8 agonists used to activate pDCs are currently in preclinical models (Zhou et al., 2022) and are under clinical trials (NCT04588324, and NCT03906526). MoDCs-based vaccines have been generated, which loads tumor (neo)antigens for presentation to T cells. MoDCs-based vaccines can overcome the “silence” of DCs caused by neoantigens to restore and enhance the presentation functions of DCs, and improve the prognosis in melanoma patients (Carreno et al., 2015). It is well documented that using autologous monocyte-derived DC vaccination could facilitate the cytotoxicity of CD8+ T cells (Baek et al., 2015) (NCT02285413). Researchers have also shown autologous DC-based vaccines in which tumor antigens are loaded could also be considered as a potential therapeutic strategy through delivering the antigen presenting cells (Yewdall et al., 2010). Another study has shown that small interfering RNA (siRNA) reduces cDC1-immunosuppressive signals to delete PD-L1 and PD-L2 from moDCs (Hobo et al., 2010). A DCs-based vaccine combined with CTLA-4 inhibitor enhanced anti-tumor response (Ribas et al., 2009). Treatment with TLR9 agonists and anti-PD-1 was also associated with a high infiltration of DCs (Ribas et al., 2018). Furthermore, nanomaterials with autophagy regulation have been developed, which is important for DC function and facilitates its anti-tumor activity (Guan et al., 2022). Engineered exosomes to activate DCs have also been proposed and are considered as a promising method to develop (Huang et al., 2022a; Fu et al., 2022). For instance, HELA-Exos play an anti-tumor role by activating cDC1 and then enhancing the function of CD8+ T in breast cancer (Huang et al., 2022a). Despite the fact that DC vaccines have acquired good efficacy in mouse models and clinical trials, they still face huge challenges as a treatment strategy, as DC vaccines could not be appropriate for a wide range of cancers.
B cells
B cells could also take up antigens and process antigens by MHC class molecules to T cells (Avalos and Ploegh, 2014; Bruno et al., 2017). Extensive infiltration of B cells promotes tumor antigens to stimulate T cells potently and is associated with longer progression-free survival (PFS) and overall survival (OS) in NSCLC (Germain et al., 2014). B cells exert an important influence which activates CD4+T cells and induces CD4+T cell differentiation into follicular helper T (Tfh) cells (Hong et al., 2018). CD40L on activated T helper cells binds to CD40 on B cells to promote proliferation and development of B cells, and B cells and Tfh cells are involved in the formation of germinal centers (GCs) (He et al., 2013; Crotty, 2019). Intratumoral B cells could differentiate into plasma cells that express CD38, CD138, and CD79a. In high-grade serious ovarian cancer, the presence of high-level CXCL-13 +B cells, T cells, and PCs signified a better survival (Kroeger et al., 2016; Montfort et al., 2017; Moran et al., 2021). Intratumoral B cells switch isotypes and produce IgG or IgA antibodies, which is contradictory in influencing tumor growth (Lauss et al., 2021). Lastly, regulatory B (Breg) cells have been proposed in TME (Saze et al., 2013). Breg cells could produce TGF-β, IL-10, and IL-35, facilitate Treg polarization and help M2 macrophages and myeloid-derived suppressor cells (MDSCs), leading to disturbing tumor antigen presentation and promoting tumor proliferation. CD39 and CD73 on the surface of Breg cells could hydrolyze ATP to adenosine and suppress the tumor death in TME (Brossart, 2022; Flores-Borja and Blair, 2022). Therefore, the role of B cells is a double-edged sword (Fridman et al., 2020).
B-based immunotherapies
Some studies have proved that the fusion of antigen peptides loading on B cells can further enhance anti-tumor immune efficacy. The CD40/CD40L pathway is also critical to adoptive cell therapies with tumor antigen peptide-loaded B cells (Evans et al., 1950; Wennhold et al., 2017). Furthermore, ACT with CD40-activated B cells loaded with RNA encoding tumor antigen or DNA encoding tumor antigen inhibited the progression of melanoma and colorectal cancer (Gerloni et al., 2004; Colluru and McNeel, 2016). B-cell receptor (BCR) on the surface of B cells can directly process antigens and activate T cells. Thus, researchers exploited this trait to edit a specific BCR toward tumor antigens in vitro. The editing BCR strategies are attractive, but they have are yet to be applied to treat tumors (Page et al., 2021). Antibodies, targeting B cells, are mainly used to treat hematological malignancy, such as anti-CD19 and anti-CD20, which results in a conducive prognosis (NCT04160195), and currently, relevant trials are on the way.
MIGRATION PHASE
Activated T cells primarily eliminate tumor cells in TME. Hence, activated T cells need to migrate from blood vessels to the microenvironment with the influence of various molecules and constructions. Vascular endothelial growth factor expressed by tumor cells can promote tumor angiogenesis and inhibit the migration of activated T cells (Nagarsheth et al., 2017). Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), could help T cells to adhere to the vessel wall and migrate into TME (Lamplugh and Fan, 2021). Recently, ectopic lymphoid aggregation has been discovered in the tumor sites, which resembles secondary lymphoid organs (SLOs), termed tertiary lymphoid structures (TLSs) (Dieu-Nosjean et al., 2008). High endothelial venules (HEVs), one of the components of TLS, can facilitate the migration of immune cells into the tumor sites and accelerate tumor cell destruction (Sautès-Fridman et al., 2019). Lymphoid tissue-inducer cells (LTi), initiating SLOs formation, may enhance the expression of adhesion molecules like VCAM1 and ICAM1, and then stimulate HEV formation of TLS by expressing LTα1β2, which could combine with LTβ. However, it is still unclear whether LTi cells drive TLS formation (Jacquelot et al., 2021a; Schumacher and Thommen, 2022).
Consequently, promoting immune cell migration into the TME could be a usable strategy to enhance anti-tumor immunity. Several studies have demonstrated that the combination of anti-PD-L1 and antiangiogenic therapy can facilitate intratumoral HEV formation and augment the efficacy of immunotherapies (Allen et al., 2017; Johansson-Percival et al., 2017). In addition, LTβR agonistic antibodies, which binds LTα1β1 to induce HEVs, have been shown to boost the efficacy of anti-VEGFR2 and anti-PD-L1 combination therapy in a recalcitrant glioblastoma model (Allen et al., 2017; Schumacher and Thommen, 2022). Targeting LIGHT directly to tumor vasculature with vascular targeting peptides (VTP) induced HEVs in various tumors, improved response to ICB, and facilitated lymphocyte infiltration (Johansson-Percival et al., 2017; He et al., 2018; He et al., 2020). Intriguingly, this study has shown the depletion of Treg cells could drive HEV formation (Colbeck et al., 2017). Therapeutic induction of HEVs with ACT immunotherapy promotes lymphocyte trafficking and enhances anti-tumor response, which is a promising strategy (Lucas and Girard, 2021).
EFFECTOR PHASE
Activated T cells recognize tumor cancer antigens on tumor cells by T-cell receptor (TCR) and release effector molecules to eliminate tumor cells. In TME, immune cells and tumor cells secrete and express various molecules to regulate tumor progression and metastasis. Herein, we discussed how immune cells affected tumor progression.
T cells
According to their phenotypes, T cells are primarily classified into CD8+T cells and CD4+T cells. They play significant roles in tumor immunotherapy by releasing a variety of molecules to hamper tumor growth.
CD8+ T cells
When stimulated by tumor-specific antigen, CD8 + T cells can secrete perforin and granzyme which can directly kill tumor cells, or mediate the apoptosis of tumor cells by the Fas/FasL signaling pathway (Hamann et al., 1997). After the initial antigen stimulation is removed, CD8 + T cells can generate a series of memory subsets under physiological conditions. Memory T- cells are divided into four categories: T memory stem cell-like (TSCM) (Gattinoni et al., 2017), central memory T (TCM), effector memory T (TEM), and tissue-resident memory (TRM) (Sallusto et al., 1999; Schenkel and Masopust, 2014). TSCM cells mostly localize in the lymph nodes and have the capacity for self-renewal. TCM cells can express the lymph node homing molecules such as CCR7 and CD62L. TEM cells produce integrins and chemokine receptors and traffic them into various tissues (Masopust et al., 2001; Sallusto et al., 2004). TCM cells and TEM cells could trigger immune activity in different tissues, but TRM cells provide a more advanced immune response (Yang and Kallies, 2021). In a mouse model, the finding suggested that TRM cell deficiency resulted in uncontrolled tumor growth with no change in the number of CD8 effector cells. Researchers further found that their anti-tumor capacity enhanced from 40% to more than 80% by increasing the number of TRM cells in TME (Nizard et al., 2017). Consequently, TRM cells are focused on gradually.
CD8+ TRM cells
CD8+ TRM cells were initially defined in infected tissues such as the skin, lung, and intestine (Gebhardt et al., 2009; Masopust et al., 2010; Purwar et al., 2011). Gradually, CD8+ TRM cells were found in TME and were associated with the prognosis of tumor patients (Edwards et al., 2018; Savas et al., 2018; Abdeljaoued et al., 2022; Anadon et al., 2022; Jin et al., 2022; Smith, 2022). Different phenotypes are expressed by CD8+ TRM cells to destroy tumor cells effectively. First, CD103 is a characteristic marker for CD8+ TRM cells (Okla et al., 2021). CD103+ TRM-like cells possess a cytotoxic characteristic and secrete inflammatory cytokines such as GZMB, TNF-α, IL-2, and IFN-γ (Ganesan et al., 2017). They could also combine with E-cadherin on the surface of tumor cells to retain TRM in the tissue (Zhang and Bevan, 2013; Ganesan et al., 2017; Gauthier et al., 2017; Hoffmann and Schon, 2021). The expression of CD103 is highly heterogeneous. For instance, CD103 is essential in the skin, lung, and intestine (Gebhardt et al., 2009; Ganesan et al., 2017; Dumauthioz et al., 2018), but it is dispensable for the liver (Ghilas et al., 2020). CD103+ CD8+ TRM cells were associated with improved survival in cancer patients (Edwards et al., 2018; Savas et al., 2018; Hewavisenti et al., 2020; Shen et al., 2021; Huang et al., 2022b; Jin et al., 2022). For example, CD103+ CD8+ TRM cells infiltrating into TME were associated with a better adjuvant therapeutic benefit and were considered as an ideal prognostic biomarker in muscle-invasive bladder cancer. Second, CD8+ TRM cells are anchored in the tumor lesions by CD49a (VLA-1 ), which binds to collagen in the extracellular matrix (Roberts et al., 1999; Cheuk et al., 2017). When anti-VLA-1 antibodies were applied to treat patients with tumors, the number of TRM cells declined in TME (Sandoval et al., 2013). CD49a+CD8+ TRM cells produce IFN-γ to inhibit tumor progression in a melanoma mouse model, and alleviate inflammatory diseases (Cheuk et al., 2017; Le Floc’h et al., 2007; Murray et al., 2016). Moreover, CD49a also enhances the frequency of antigen encounters (Bromley et al., 2020). Third, CD69, a C-type lectin, effectively limits CD8+ TRM cell circulation by reducing the expression of sphingosine-1 phosphate receptor-1 (S1PR1), which facilitates the migration of TRM cells (Mackay et al., 1950; Bankovich et al., 2010; Skon et al., 2013). By the way, CD69 once was presumed as a marker of TRM cells, but CD69− TRM cells have also been reported (Steinert et al., 2015). CD8+ TRM cells also express chemokines like CXCR6, which promotes cell retention in the tumor sites and unleash effector functions in ovarian cancer (Muthuswamy et al., 2021a; Muthuswamy et al., 2021b). Interestingly, the level of TGF-β in TEM is required for the expression of CD103 and CD49a on the surface of CD8+ TRM cells in the lung, skin, and intestine (Zhang and Bevan, 2013; Boutet et al., 2016; Nath et al., 2019; Qiu et al., 2021a; Barros et al., 2022). TGF-β also inhibits the expression of S1PR1 through downregulating the transcription factor Krüppel-like factor 2 (KLF2) (Skon et al., 2013). Moreover, the heterogeneity of TRM cells depends on the regulation of TGF-β signaling. These findings suggested that TGF-β signaling might impact the production of TRM cells and the cytotoxicity of CD8+T cells (Mackay et al., 2013; Christo et al., 2021; Yang and Kallies, 2021). However, it is well known that TGF-β is a typical inhibitory cytokine to suppress the anti-tumor immune response. Thus, more research into the TGF-β signal pathway is required (Qiu et al., 2021b). In addition, CD8+ TRM cells express various immune checkpoint proteins, such as CTLA-4, PD-1, and PD-L1. These molecules are linked to CD8+T cell exhaustion (Gabriely et al., 2017; Philip and Schietinger, 2022). CD39 on the surface of CD8+ TRM cells also promotes tumor growth (Guo et al., 2022).
For heterogeneity of CD8+ TRM cells, researchers hypothesized several models of its differentiation, which included a separate lineage, self-maintenance, “one cell, one fate,”, and “one cell, multiple fates”. However, a plethora of studies have manifested that phenotypes of CD8+ TRM cells were specific to different tumor types, and CD8+ TRM cells were regarded as tissue-tailored (Amsen et al., 2018; Enamorado et al., 2018; Okla et al., 2021; Konjar et al., 2022). Furthermore, phenotypes of CD8+ TRM cells are inconsistent between lung cancers and healthy lung tissues (Marceaux et al., 2021). These findings have a significant impact on immunotherapy for various tumors. We also concluded the function of different phenotypes of CD8+ TRM cells (Table1). Of note, although TRM cells play a crucial role in autoimmune diseases and viral infections, they are still in infancy in human tumors.
TABLE 1 | The rRole of TRM cells in cancer patients.
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According to the known functions of TRM cells, researchers have proposed some approaches to fortify the function of TRM cells and enhance anti-tumor response. First, the treatment with PD-1 inhibitors enhanced the capacity of CD8+ TRM cells in melanoma, lung cancer, and esophageal cancer (Edwards et al., 2018; Han et al., 2020; Abdeljaoued et al., 2022). Furthermore, in the preclinical melanoma model, using the combination of CD39 inhibitor and ICB made tumor growth retardation (Sade-Feldman et al., 2018). Recently, a bispecific CD28H/PD-L1 antibody has been developed, which could increase the number of TRM cells and enhance anti-tumor immunity (Ramaswamy et al., 2022). Second, vaccines have been designed to treat tumors. In a preclinical cervical cancer model, the HPV vaccine promoted CD103 expression on the surface of TRM cells and effectively prolonged the survival (Sandoval et al., 2013; Komdeur et al., 2017). By the same token, using STxB-E7 vaccination enhanced the number of TRM cells and delayed tumor growth in HNSCC (Mondini et al., 2015). After using Polypoly-ICLC-assisted tumor lysate vaccine to treat patients with low-grade gliomas, the drugs acquired a good efficacy and the number of CD8+ TRM cells increased in TME (NCT02549833). Treatment with cervicovaginal vaccination with HPV16 E7aa4362 peptide/CPG-1826 could induce the production of CD103+ CD8+ TRM cells, and; subsequently, the number of CD8+ T cells increased, resulting in suppressing tumor progression in the genital tract (Huang et al., 2022b). Vaccines were also applied to generate TRM cells in mouse models of various infections (Zens et al., 2016; Yang and Kallies, 2021; Zheng and Wakim, 2021). Researchers also attempted to utilize ACT to hinder tumor growth (Lim and June 2017). Using the adoptive transfer of expanded CXCR6+ TRM cells has acquired the benefits in gastrointestinal cancer (Abdeljaoued et al., 2022). Reprogramming DCs to induce CD103 expression of CD8+ TRM cells has acquired obvious efficacy in a preclinical model of breast cancer (Wu et al., 2014). In a melanoma mouse model, short-term depletion of CD11c+ cells not only facilitated TRM cell trafficking but also was favorable for long-term TRM cell maintenance (Vella et al., 2021). Of note, few clinical trials have been performed to dissect TRM cell functions in different tumors (Craig et al., 2020). In a nutshell, CD8+ TRM cells potentially serve as a critical role, but some challenges remain. For instance, what are the mechanisms by which TRM cells enhance anti-tumor immunity? Are the phenotypes consistent between normal tissues and tumor cells? Which phenotypes could define TRM? How are the TRM cells maintained and replenished in TME? Therefore, these problems will trigger intense research.
CD4+ T cells
CD4+ T cells play a pivotal role in mediating adaptive immunity by various mechanisms. Over the past decades, extensive research suggested that CD4 +T cells could be mainly divided into T-helper 1 (Th1) cells, T-helper 2 (Th2) cells, T-helper 17 (Th17) cells, follicular helper T cells, and regulatory T cells. Th1 cells secrete IL-2 and IFN-γ. IL-2 promotes CD8+ T cell proliferation and activation, as well as the development of CD8+ memory cells (Kim et al., 2006; Williams et al., 2006). IFN-γ facilitates the process of antigen presentation (Dong, 2021). Th2 cells produce IL-4, IL-5, and IL-10 to exert their function. For example, after pathogens have been cleared, IL-10 inhibits innate immunity and function of Th1 cells, which could maintain host immune homeostasis (Couper et al., 1950). Th17 cells principally facilitate the death of extracellular bacteria and fungi (Luckheeram et al., 2012). Because of the complicated function of Tfh cells and Treg cells in anti-tumor immunity, thus, we mainly discussed the roles of Tfh cells and Treg cells.
Follicular helper T cells
Tfh cells, accumulated in the GCs of SLO and TLS, express a variety of phenotypes which are essential for the formation and maturation of the GCs (Asrir et al., 2017; Ribeiro et al., 2022; Schmidleithner and Feuerer, 2022) and improve the prognosis in breast cancer, colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC) (Yamaguchi et al., 2020; Lin et al., 2021; Noël et al., 2021). IL-21 secreted by Tfh cells activates the STAT3 signaling pathway to induce the expression of transcription factor B cell lymphoma 6 (BCL6) and participate in the differentiation of Tfh cells (Nurieva et al., 2008; Linterman et al., 2010; Lüthje et al., 2012). IL-21 also plays a pivotal role in triggering CD8+T cell function and tumor regression in the lung adenocarcinoma model (Cui et al., 2021). BCL6 is the main transcription factor which upregulates the expression of CD28 and CXCR5, promotes the differentiation of Tfh cells through repressing Blimp1, and is important for GC to respond to tumor antigens (Nurieva et al., 2009; Yu et al., 2009; Ciucci et al., 2022). Of note, CD28 is required for the differentiation of Tfh cells. If CD28 was deficient in T cells or reduced by its inhibitor, the differentiation of Tfh cells was blocked. Tfh cells could express CTLA-4, which binds to CD80/CD86 and leads to the inhibition of CD28 (Hart and Laufer, 2022). Tfh cells are recruited into the B cell zone to form GC by expressing CXCR5, which combines with CXCL13 + B cells (Kim et al., 2001). CD40L on the surface of Tfh cells activates B cells and sustains the survival of GC B cells by binding CD40 (Vinuesa et al., 2016). Tfh cells also express ICOS. ICOS binding to its ligand ICOSL is essential for the survival of GC B cells and the maintenance of Tfh cell phenotypes by reducing the Kruppel-like factor 2 (Liu et al., 2015; Weber et al., 2015). In addition, other cytokines have different roles to affect Tfh functions. High-level IL-2 secreted by Th1 cells mediates the impairment of Tfh function through activating STAT5 signaling, whereas IL-6 secreted by DCs inversely prevents STAT5 from the combination of the IL-2rb locus (Hart and Laufer, 2022). Astoundingly, TGF-β in humans plays a protective role for Tfh cells, which activates STAT3 and STAT4 by interacting with IL-12 and IL-23, and silences genomic organizer SATB1 to aid Tfh cell differentiation (Kurata et al., 2021; Chaurio et al., 2022; Schmidleithner and Feuerer, 2022). However, it is a negative regulator in mice, and using TGF-β inhibitors reduces Tfh accumulation in the tumor sites (McCarron and Marie, 2014; Niogret et al., 2021). Although Tfh cells have been explored, it is deficient for the mechanism of Tfh differentiation and the function of GCs in various tumors.
Tfh-related immunotherapies
Recently, studies have found that the presence of Tfh cells is important for upregulating CD8-dependent anti-tumor immunity and improving the benefit of anti-PD-L1 therapy in tumors (Chen et al., 2021; Niogret et al., 2021). Immune checkpoint inhibitors also facilitated Tfh cells to activate B cells and further improved the anti-tumor response in specific breast models (Hollern et al., 2019). In addition, anti-CXCR5 CAR-T cells were applied to treat B cell Nonnon-Hodgkin’s lymphoma (B-NHLs), which eliminated B-NHL cells and lymphoma-supportive Tfh cells (Bunse et al., 2021). In a study, targeting Bcl6 – Blimp1 axis has been proposed to facilitate T cell differentiation, but the drug has not been generated (Ciucci et al., 2022). These data provide a treatment strategy for Tfh cells, but it is required to further investigation for the role of Tfh cells in human tumors.
Treg cells
Treg cells, another subset of CD4+ T cells, are responsible for immunosuppression and help tumor cells avoid immune surveillance. Tregs can be divided into three populations: naïve Tregs (FOXP3low, CD25low, and CD45RA+), eTregs (FOXP3high, CD25high, and CD45RA-), non-Tregs (FOXP3low, CD25low, and CD45RA-) based on themselves their phenotypes. The eTreg acts as a vigorous suppressor, whereas non-Tregs are immunostimulatory and secrete IFN-γ (Miyara et al., 2009). Emerging evidence indicated that eTregs resulted in a poor prognosis, but non-Tregs infiltration in colorectal cancer (CRC) was associated with a favorable outcome (Saito et al., 2016). Thus, a challenge was posed that distinguished the types of FOXP3+ Tregs in tumors (Kim et al., 2020). Further analysis found that the prognostic value of intratumoral Tregs in various tumors is inconsistent (Shan et al., 2022). In order to identify Tregs and dissect their functions, we must understand the phenotypes and cytokines expressed by Tregs. FOXP3 is a credible marker of Treg cells, and is essential for maintaining the function of Treg cells. It is reported that loss of FOXP3 expression could impair the stability of Tregs and transform Tregs into effector cells (Qu et al., 2022). It is intriguing that CD25 binding to IL-2 could activate STAT5 signaling and then induce expression of FOXP3 to inhibit CD8+ T cell response (Chinen et al., 2016). A study has also shown that CD45RA + Tregs play a suppressive role and are associated with an unfavorable prognosis in CRC (Saito et al., 2016). Cytokines secreted by Tregs, such as IL-10, IL-35, and TGF-β, are key factors in inhibiting the function of NK cells and effector T cells and promoting tumor progression (Qu et al., 2022). Increased IL-10 and IL-35 have been associated with worse outcomes in cancer patients (Zhao et al., 2015; Turnis et al., 2016). IL-35 also elicits the expression of inhibitory molecules on Teffs like TIM-3 and CTLA-4, which induces Teffs into the exhaustion status (Turnis et al., 2016; Sawant et al., 2019). IL-10 impairs CD8+ T cell function, and inhibits the expression of MHC II molecules and APCs activation (Wang et al., 2019). TGF-β is a crucial mediator for immunosuppression in the TME, which fosters the expression of FOXP3 on Tregs (Turnis et al., 2016; Colak and Ten Dijke, 2017), and induces the conversion of Th17 cells into Tregs, resulting in immune tolerance (Gagliani et al., 2015). Notably, Tregs could release GZMB and perforin to directly kill effector T cells and NK cells in TME (Cao et al., 2007). Furthermore, antigen-specific Tregs could disturb the combination of the effector T cells and cognate antigen by interacting with APC (Qu et al., 2022). Tregs also express CD39 and CD73, resulting in adenosine aggregation in TME (Allard et al., 2020). Additionally, CCR4 is the most studied receptor that can recruit Tregs into TME and promote tumor growth by binding to CCL22 or CCL17 (Gobert et al., 2009). Tregs express immune checkpoint molecules to bolster their function, such as TIM-3 and CTLA-4 (Dixon et al., 2021).
Treg-based targeted therapies
Based on these immunosuppressive mechanisms of Tregs, researchers have proposed numerous noteworthy therapeutic strategies. First, the depletion of Tregs via anti-CD25 mAb (daclizumab) and toxin conjugated anti-IL-2 (denileukin diftitox) induced tumor regression and prolonged disease-free survival (DFS) in tumors (Solomon et al., 2020; Nishikawa and Koyama, 2021). Despite the fact that anti-CD25 mAb could deplete Tregs in melanoma, it did not elicit an anti-tumor immune response (Luke et al., 2016). The anti-CD25 antibody, RG6292, designed to deplete Tregs without disturbing IL-2 signaling on effector T cells, has been applied in a mouse model (Solomon et al., 2020) and is currently being tested in human tumors (NCT04158583). Furthermore, immune checkpoint inhibitors (ICIs) like anti-CTLA-4 antibody or anti-TIGIT antibody combined with the blockade of CD25 potently resulted in the depletion of Tregs and enhanced anti-tumor responses in a mouse model (Arce Vargas et al., 2017). Near-infrared photoimmunotherapy (NIR) was also used to precisely deplete Tregs in TME (Sato et al., 2016). Second, It has been reported that using AZD8701, which targets FOXP3 on Tregs, reduces the number of FOXP3 expression in mouse models (Sinclair et al., 2019), and its clinical trial is ongoing (NCT04504669). Epigenetic modifiers have been designed to target genes that regulates FOXP3 expression on Tregs, leading to the depletion of Tregs. For instance, targeting Treg-specific demethylated region (TSDR) and histone deacetylation reduced FOXP3 expression on Tregs (Ma et al., 2018; Nagai et al., 2019). Third, CCR4 blockade may reduce the accumulation of Tregs in the tumor sites and improve therapeutic benefits in different types of cancers. Mogamulizumab, a defucosylated anti-CCR4 mAb, has been approved to treat patients with Sézary syndrome, a cutaneous T cell lymphoma. It has been tested for the clinical response in phase 1 clinical trials in various solid tumors (Shan et al., 2022). FLX475, another CCR4 inhibitor, is currently being evaluated alone or in combination with anti-PD-1 and anti-CTLA-4 for the treatment of advanced tumors (Shan et al., 2022). TNFR2-expressing Tregs play a potently immunosuppressive role in human tumors, so targeting TNFR2 has been generated such as APX601, which is tested and resulted in reducing Treg frequency and hindering Treg function in tumors (Hariyanto et al., 2022). Moreover, TGF-β receptor inhibitors have been investigated. TGF-β-R inhibitors (Galunisertib) suppress Treg function and control tumor growth (Holmgaard et al., 2018). The combination therapy of galunisertib and ICIs further reduced Treg numbers in a mouse melanoma model, and this approach is being investigated in human tumor (Ravi et al., 2018). Glycoprotein-A repetitions predominant (GARP) could facilitate the secretion of TGF-β and Treg function in preclinical models. Using the anti-GARP antibody, S1055a, could lead to the depletion of Tregs and activate effector T cells in preclinical models, and this drug is being investigated in a clinical trial (Shan et al., 2022). Besides, TGF-β-responsive CAR-T cells could prevent naïve T cells from differentiating into Tregs and promote anti-tumor immunity (Zhang et al., 1950). DC/4T1Adv-TGF-β-R fusion vaccine could inhibit tumor-derived TGF-β, which leads to the reduction of Tregs and favor anti-tumor immunity in the mouse model (Hou et al., 2018). In HPV positive cancers, a clinical trial, treatment with HPV vaccination alone or in combination with anti-PD-L1/TGF-β Trap (M7824), is underway (NCT04432597). Another clinical trial, using a TGF-β receptor ectodomain-IgG Fc fusion protein inhibitor of TGF-β in solid tumors, also is being investigated (NCT03834662). In brief, targeting T subsets is important for cancer immunotherapy. Despite enormous progress in the field, a further analysis needs to be conducted.
Tertiary lymphoid structures
Tertiary lymphoid structures which have been already mentioned are defined by an inner B-cell zone and an outer T-cell zone. B cells are indispensable for TLSs. Currently, activation of B cells in infections and autoimmune diseases has been studied, but little research has been performed in different cancers (Cogné et al., 2022). Naïve B cells could be activated through the interactions between BCR and tumor antigens, upon activated CD40 signaling (Cancro and Tomayko, 2021). In PDAC, immature B cells present in TLS only express IgD, and mature B cells express IgG and IgM (Andrew et al., 2021)). Likewise, in lung cancer, naive B cells express IgD, but mature B cells express IgD-CD38+ CD138+ (plasma cell) (Germain et al., 2014). These findings indicate B cell activation maybe undergo class-switch recombination (CSR). The activated induced deaminase (AID) expressed by B cells is required for CSR and could promote somatic hypermutation (SHM) (Dieu-Nosjean et al., 2016; Lehmann-Horn et al., 2016). Isotype class switching depends on different cytokines released by Tfh cells. For instance, upon the presence of IFN-γ in GC, IgG2a and IgG3 were expressed by B cells, but IgG2a and IgG3 were also converted to IgE mediated by IL-4 (Kinker et al., 2021). IgG and IgA antibodies secreted by plasma cells could recognize tumor antigens and control tumor cell growth. It is reported that high-level IgG antibody in vitro was correlated with a worse prognosis in breast cancer patients, but IgA antibody in vitro that reacts to tumor antigens is associated with TLS presence in TME (Garaud et al., 2018). In another study, a high-level IgG antibody is associated with a better immune response. Moreover, supernatants (SNs), including IgG and IgA antibodies, were used to evaluate the immune responses to 33 tumor antigens, and the results were different (Germain et al., 2014). Thus, the role of antibodies produced by GC B cells must be further explored. For the TLS formation, it is currently being explored, but researchers have demonstrated that the combination of 5-Aminoleuvulinic aminoleuvulinic acid-photodynamic therapy (ALA-PDT) and anti-PD-L1 mAb could promote the TLS formation and then enhance the clinical outcome in cutaneous squamous cell carcinoma (Zeng et al., 2022). Another study has also reported that TGFB1 mRNA expression was also associated with TLS formation in ccRCC (Takahara et al., 2022). However, the research has shown that tumor-associated sensory neurons are negatively correlated with mature tertiary lymphoid-like structures and HEVs (Vats et al., 2022).
Growing evidence showed that TLSs were associated with clinical outcomes of cancer patients (Schumacher and Thommen, 2022). Although TLSs were frequently correlated with a favorable prognosis in human tumors, but some studied have reported that TLSs were also linked to a negative correlation with clinical outcomes in hepatocellular carcinoma (HCC) and clear-cell renal carcinoma (ccRCC) (Finkin et al., 2015; Jacquelot et al., 2021a) or no impact on OS in melanoma and prostate cancer (Ladányi et al., 2014; García-Hernández et al., 2017). Moreover, the prognostic value of TLSs is inconsistent with the same tumor types, such as HCC and breast cancer (Liu et al., 2017; Calderaro et al., 2019). These inconsistencies might be explained by TLS heterogeneity, including TLS maturation state, location or detected phenotypes in tumors (Jacquelot et al., 2021a) (Figure 1). With respect to TLS location, the prognostic values differ from tumor types. The location and maturity of TLS contribute to the difference in HCC prognosis. Compared to TLS situated in stromal tumor, the intratumoral and peritumoral mature TLSs were associated with a favorable prognosis (Calderaro et al., 2019). Pancreatic cancer with intratumoral TLS signified a better prognostic value and exhibited a lower infiltration of immunosuppressive cells and higher infiltration of T and B cells compared to peritumoral TLS (Hiraoka et al., 2015). TLSs could also predict the prognosis of patients with tumor metastases. In melanoma and breast cancer, no representative phenotypes of TLS was observed in brain metastases (Cipponi et al., 2012; Lee et al., 2019). Besides, TLS density was related to primary tumor types in metastatic organs (Remark et al., 2013; Schweiger et al., 2016; Montfort et al., 2017; Lee et al., 2019). For example, TLS levels were found to be high in patients with lung metastases from colorectal and breast cancers. With regard to TLS maturation, TLS maturation were divided into three types: early, primary-, and secondary follicle–like TLS (Posch et al., 2018). The different degrees of maturation of TLS denoted inconsistent prognostic values in CRC, because early TLS without GCs had almost no impact on clinical outcome compared to mature TLS which signified a better outcome (Di Caro et al., 2014; Posch et al., 2018). In patients with lung squamous cell carcinoma, both early and primary TLSs did not affect patient survival, and only secondary TLSs exerted a favorable role in the prognosis (Siliņa et al., 2018). In preneoplastic hepatic lesions, immature TLSs did not effectively inhibit tumor cell growth (Meylan et al., 2020). Immature TLS without dendritic cell lysosome-associated membrane protein (DC-LAMP) exhibited a worse prognosis than existing TLS with DC-LAMP in NSCLC and ccRCC (Giraldo et al., 2015) 243). However, whether TLS is mature or not, its presence is associated with positive outcomes in oral squamous cell carcinoma (Li et al., 2020a). Remarkably, the most important factor should be the components of TLSs in various tumors. Tfh cells and B cells could express various chemokines to promote TLS formation. The presence of HEVs aids immune cells migration. These components have the potential to improve clinical outcomes. However, Tregs, the component of TLSs, play an immunosuppressive role and result in tumor growth (Martinet et al., 2012; Gu-Trantien et al., 2017; Ishigami et al., 2019). As a side note, a study has supposed that follicular Treg (Tfr) cells might be a key factor to reduce the number of CD8+T cells in adenocarcinoma (Wang et al., 2022). Moreover, it was reported that the plasma cells are crucial for the efficacy of ICB in the presence of TLS, but the molecular and cellular mechanisms for promoting plasma cells to response ICB are still unclear. Thus, the role of plasma cells in presence of TLS needs to be further explored (Teillaud and Dieu-Nosjean, 2022). TLS with high levels of M2 macrophages and CD4+THC cells (CD3+CD8−Bcl6− ) correlates with tumor progression and a higher recurrence rate in patients with CRC (Yamaguchi et al., 2020). In NSCLC, the subgroup with low-level DC-LAMP + DCs and high-level CD8+T cells reduced the likelihood of survival, suggesting the importance of DC-LAMP + DCs in TLS (Goc et al., 2014). Noteworthily, researchers have also reported that TRM could promote TLS maturation, and the number of TRM was more abundant in mature TLS in patients with lung adenocarcinoma. Furthermore, high-level TRM within TLS, especially CD103+ TRM, was associated with a better prognosis (Yang et al., 2022; Zhao et al., 2022). However, the components still need to be explored in the future. Some studies also proposed that the density of TLSs varied at different stages of the tumor. TLSs were less abundant in T3 and T4 stages compared to T1 and T2 stages of oral squamous cell carcinoma, but TLSs were more abundant in advanced stages (II-IV) than in stage I gastric cancer and high-grade breast cancer (Sautès-Fridman et al., 2019). Another study also reported that the number of TLS might be associated with the prognosis and could be considered as a target for treating patients with urachal carcinoma (Zhang et al., 2022a). Based on these conclusions, it is urgent to precisely understand the formation, components, and mechanism of TLS. Researchers have hypothesized the formation and maturation process of TLS in CRC and NSCLC, respectively, but there is a lack of evidence to support it (Meng et al., 2021). Hence, a comprehensive analysis of TLS is an area of immense interest.
[image: Figure 1]FIGURE 1 | Patients with cancer have different prognosis due to TLS heterogeneity. Compared to stromal TLS, intratumoral or both intratumoral and peritumoral mature TLSs were associated with a better prognosis in different tumors. TLSs with GCs have been shown to kill tumor cells more effectively than immature TLS. PDAC: pancreatic ductal adenocarcinoma; HCC: hepatocellular carcinoma; CRC: colorectal cancer; ccRCC: clear cell renal cell carcinomas; DC-LAMP: Dendritic dendritic Cell cell Lysosomelysosome-–Associated associated Membrane membrane Proteinprotein; FDC: follicular dendritic cells; HEV: high endothelial venules.
Inducing or improving TLS function not only enhances anti-tumor responses, but also promotes the expansion of autoreactive T and B cells. First, the presence of intratumoral TLS has been regarded as a favorable marker of the responsiveness of ICB therapy in lung cancer, ccRCC, bladder cancer, urothelial carcinoma, melanoma and soft-tissue sarcoma (Groeneveld et al., 1990; Petitprez et al., 2020; van Dijk et al., 2020; Voabil et al., 2021). Accordingly, ICB increased the density of TLS or induced TLS formation in the tumor sites (Rita et al., 2020). Besides, ICB therapy combined with CXCL13 facilitated immune cell infiltration and TLS formation (Hsieh et al., 2022). Second, therapeutic vaccination also induced TLS formation in specific tumors. For instance, therapeutic vaccination targeting HPV16 and HPV18 induced TLS formation compared to non-vaccinated patients in high-grade cervical intraepithelial neoplasia (CIN2/3) (Maldonado et al., 2014). In PDAC, a specific vaccine, an irradiated, allogeneic granulocyte–macrophage colony-stimulating factor–secreting pancreatic tumor vaccine (GVAX), in combination with cyclophosphamide, was used to elicit TLS formation via suppressing the Treg pathway and activating the Th17 cell pathway. Lastly, the induction of HEV has already been elaborated (Lutz et al., 2014). To sum up, the role of TLS has been stated above. Thus, it is worthy of a comprehensive investigation of TLS, including the formation of TLS, the mechanisms of controlling tumor progression, and the interactions of TLS and immunotherapies, even the strategies for targeting TLS in TME.
Innate lymphoid cells
Innate lymphoid cells (ILCs) are an important part of the immune system to defend against tumor cells on the front line. ILCs are divided into five categories on the basis of cytokines and specific transcription factors, including natural killer (NK) cells, lymphoid tissue inducers, helper ILC1s, helper ILC2s, and helper ILC3s (Spits et al., 2013; Vivier et al., 2018). These cells, which lacks antigen-specific receptors, have different functions through secreting cytokines or activating specific signaling pathways.
Natural killer cells
NK cells have the potential to mediate anti-tumor immunity via directly or indirectly killing tumor cells. NK cells can be defined by the expression of CD16 and CD56 markers, but somatically rearranged antigen receptors like TCR is scarce (Myers and Miller, 2021; Stefania et al., 2021). Accordingly, NK cells are categorized into two subsets: CD56brightCD16- and CD56dimCD16+ NK cells. CD56bright NK cells not only release a variety of cytokines, but also interact with various molecules secreted by other immune cells (Fehniger et al., 1950; Cooper et al., 2001; Wagner et al., 2017a). CD56dimCD16+ NK cells rapidly mediate antibody-dependent cellular cytotoxicity (ADCC) through secreting granzyme and perforin (Bryceson et al., 2006; Stabile et al., 2015; Voskoboinik et al., 2015; Freud et al., 2017; Bald et al., 2019; Prager et al., 2019). With respect to the cytotoxicity of NK cells, the cytotoxicity receptors exert a powerful influence, including CD16 and the natural cytotoxicity receptor family, such as NKp30, NKp40, NKp44, and NKp46. CD16 is the strongest activating receptor and a trigger to ADCC without the assistance of other receptors (Bournazos et al., 2017). The natural cytotoxicity receptor family combined with tumor-associated ligands to remove malignant cells (Kruse et al., 2014; Barrow et al., 2019; Karagiannis and Kim, 2021). NKG2D is another important activating receptor, which recognizes MHC class I chain–related proteins sequence A (MICA) and MICB and then promotes the production of IFN-γ (Zompi et al., 2003; Raulet et al., 2013). NKG2D also interacts with transmembrane adaptor protein DAP10 to enhance the cell cytotoxicity (Sivori et al., 2021). Of note, soluble NKG2D ligands released by tumor cells have been reported to correlate with poor outcomes (Lanier, 2015; Ferrari de Andrade et al., 2018). Likewise, soluble NKp30 ligand from tumor cells promoted tumor progression and metastasis (Semeraro et al., 2015). On the surface of NK cells, inhibitory receptors also are expressed, which contains immunoreceptor tyrosine-based inhibitory motifs (ITIMs) (Myers and Miller, 2021). The inhibitory KIRs (iKIRs) recognize and bind to class I HLA molecules to hinder activating signals and impair NK cell functions (Guillerey et al., 2016; Chiossone et al., 2018). NKG2A/CD94 heterodimers combine with HLA-E molecules to impede their cytolytic activity and might assist tumor cells to evade immune surveillance. NKG2C/CD94 heterodimers, on the other hand, activate NK cells by binding to HLA-E, and their activation is dependent on NKG2A (Shifrin et al., 2014; Sivori et al., 2019; Myers and Miller, 2021). As a side note, the KIRs have both activating and inhibitory functions (Sivori et al., 2021). As mentioned previously, NK cells promote anti-tumor immunity through releasing IFN-γ, TNF-α, granzymes and perforins, but they could transdifferentiate into helper ILC1s (hILC1s ) under activated TGF-β signaling, resulting in impairing NK cell-mediated tumor control (Cortez et al., 2017; Gao et al., 2017; Cuff et al., 2019; Jacquelot et al., 2022). Besides, IL-15 signaling also triggers NK cells to convert into hILC1-like cells in head and neck cancer, but whether hILC1 cells can differentiate into NK cells is still unclear (Jacquelot et al., 2022). NK cell cytotoxicity was associated with clinical outcomes of cancer patients. Some studies have demonstrated an enhanced prognosis with tumor‐associated NK cells in CRC (Tartter et al., 1960), renal cancer (Eckl et al., 2012; Chiossone et al., 2018), melanoma (Messaoudene et al., 2016; Cursons et al., 2019), gastric cancer (Du and Wei, 2018), and HCC (Zhang et al., 2017a). However, NK cell infiltration exerts a negative influence on the prognosis in NSCLC (Platonova et al., 2011), breast cancer (Mamessier et al., 2011; Liu et al., 2021a), and renal cell carcinoma (Schleypen et al., 2003). These paradoxical observations are mainly based on the level expression of receptors or production of functional molecules.
Helper ILC1
Both hILC1s and NK cells express secrete IFN-γ, TNF-α, and transcription factor T-bet, but hILC1s do not depend on Eomes and have lower cytotoxicity (Bernink et al., 2013; Kim et al., 2021). Based on these features, NK cells and hILC1s mirror CD8+T cells and CD4+T, respectively (Gordon et al., 2012). In the context of cancer, hILC1s have both a tumoricidal function and an immunosuppressive function. When the presence of TGF-β in TME, hILC1s induced the development, growth and metastasis of tumors (Tumino et al., 2020). Although the hILC1s secrete IFN-γ to kill tumor cells (Castro et al., 2018; Verma et al., 2020), the IFN-γ can drive EMT leading to carcinogenesis (Wang et al., 2020a), and tumor cells escape (Zaidi and Merlino, 2011). When the function of hILC1s was impaired, TNF-α production decreased, resulting in a pro-tumor effect in patients with tumor (de Weerdt et al., 2016; Gao et al., 2017). Several studies have shown that the presence of hILC1s has a paradoxical prognosis in various tumors (Dadi et al., 2016; Salimi et al., 2018; Qi et al., 2021). Intriguingly, one study found that hILC1s predominantly expressed activating receptors in the early stage of CRC, but they converted to expressing inhibitory receptors in the advanced stage (Qi et al., 2021).
Helper ILC2
The hILC2s could release various cytokines and express transcription factors, including IL-4, IL-5, IL-13, IL-33 receptor, GATA3, and RORα (Entwistle et al., 2019). IL-33 is a major activator of hILC2s by binding to the IL-33 receptor. Some studies have shown that a large number of hILC2s infiltrate and exert an anti-tumor effect in IL-33 enriched the tumor sites (Kim et al., 1950; Jacquelot et al., 2021b). For instance, IL-33 activated hILC2s, which released granulocyte-–macrophage colony-stimulating factor (GM-CSF) and eosinophils were attracted to the tumor location. These activities eradicated tumor cells in melanoma (Jacquelot et al., 2021b). However, IL-33 also promotes tumor development and angiogenesis by various mechanisms (Maggi et al., 2020). For instance, IL-33 could raise the number of CD4+FOXP3+Tregs to suppress immune activity. Accordingly, hILC2s have played both pro-tumor and anti-tumor roles. The hILC2–MDSC regulatory axis has been discovered in various tumors (Chevalier et al., 2017; Trabanelli et al., 2017; Maggi et al., 2020). The hILC2s secret IL-13 to activate MDSCs which could inhibit anti-tumor immunity, and MDSCs, in turn, produce IL-13 to enhance immunosuppressive activity further (Maggi et al., 2020). Besides, the anti-tumor function of hILC2s also has been reported in HCC (Xu et al., 2021a; Heinrich et al., 2022), CRC (Ercolano et al., 2021; Huang et al., 2021; Qi et al., 2021), pancreatic cancer (Moral et al., 2020), and melanoma (Wagner et al., 2020; Peng et al., 2021a; Jacquelot et al., 2021b).
Helper ILC3
The roles of hILC3s in cancer prognosis are controversial, which expresses IL-17, IL-22, IL-23 receptor, GM-CSF, and the RORγt (Penny et al., 2018; Meininger et al., 2020). In NSCLC, hILC3s produce IL-22, and TNF-α, recruit Teff cells, and promote TLS formation to prolong the survival (Carrega et al., 2015; Goc et al., 2016). In contrast, in breast cancer, IL-22 produced by hILC3s impelled tumor proliferation and metastasis (Irshad et al., 2017). In CRC, ILC3s produced IL-22 which activated STAT3 phosphorylation signaling to promote the development and invasion of tumor (Kirchberger et al., 2013). Additionally, IL-22 is important to maintain and repair the epithelial barrier (Goc et al., 2016; Mao et al., 2018). GM‐CSF produced by hILC3s could attract macrophages in the gut and induce the generation of FOXP3+Treg cells to counteract the immune response (Mortha et al., 2014). IL-17 released by hILC3 played a role in tumorigenesis of the liver with infection of Helicobacter hepaticus and CRC (Wang and Karin, 2015; Han et al., 2019). In human squamous cervical carcinoma and breast cancer, high-level IL-17 played a pro-tumor role (Punt et al., 2015; Irshad et al., 2017). IL-12 secreted by hILC3s inhibited tumor development in melanoma (Eisenring et al., 2010; Wu et al., 2020). In breast cancer, RORγt + hILC3s could also enhance the likelihood of lymph node metastasis (Irshad et al., 2017). Recently, a new subset of ILCs, regulatory ILCs, has been reported, which releases IL-10 following TGF-β signaling to play a tumor-promoting role (Wang et al., 2017; Bald et al., 2019; Wang et al., 2020b). High levels of IL-23 in TME binding to IL-23 receptors expressed by hILC3s were associated with gut tumorigenesis (Man, 2018; An et al., 2019). LTi cells are important components to assist the formation of Peyer’'s patches and lymphoid neogenesis and inhibit tumor growth (Tumino et al., 2020).
The interactions of hILCs
The phenotypes and functions of hILC subsets changed under different microenvironments. For example, hILC2s converted to hILC1s by expressing the receptors for IL-1β, IL-12, and IL-18, and further expressed hILC1 phenotypes, such as T-bet, IFN-γ. Additionally, under the presence of IL-4, hILC2s were reversed (Bald et al., 2019; Salvo et al., 2020). Under the influence of cytokines like IL-12, IL-23, and IL-1β, hILC3s exhibited the characteristics of hILC1s as well as cytotoxic activity against tumor growth in melanoma (Nussbaum et al., 2017; Cella et al., 2019). In pulmonary squamous cell carcinomas (SqCC), hILC3s derived from hILC1s conversion suppressed anti-tumor immunity and thus shortened patient survival (Koh et al., 2019). Besides, in the presence of TGF-β, hILC2s were converted into hILC3-like cells and hILC3s were converted into ILCregs (Koh et al., 2019). However, the conversion masochisms are still not a comprehensive explanation and are necessary to be explored.
NK-related therapies
With the advent of cancer immunotherapy, targeting innate lymphoid cells has been reported. First, targeting inhibitory and activated NK cell receptors have been developed. Anti-KIR2D antibody (Ab) (Lirilumab; IPH2102) or combined with ICBs has been used to treat patients with hematological malignancies (Benson et al., 2012; Benson et al., 2015; Yalniz et al., 2018). An anti-NKG2A mAb (omalizumab; IPH2201) has been applied in chronic lymphocytic leukemia (André et al., 2018; Kamiya et al., 2019) and could unleash the cytotoxicity of NK by combining with anti-PD-L1 mAb (André et al., 2018). Besides, anti-NKG2A mAb is being evaluated in a clinical trial by combining an anti-EGFR Ab (cetuximab) in advanced solid cancers (NCT02643550). However, a study has shown that NKG2A blockade could promote CD8+T cell functions, but were ineffective for NK cells in mouse tumor model with HPV16 induction (van Montfoort et al., 2018). Additionally, CAR-NK cells have been engineered to have a chimeric receptor (NKG2D), which improves their cytotoxic capacity against tumor cells (Chang et al., 2013; Parihar et al., 2019). Second, a novel approach, using pluripotent stem cells (iPSC) to elicit NK cells, has been designed. Treatment with iPSC-derived NK cells or combined with anti-PD-1 Ab made cancer cell growth arrest (Li et al., 2018; Cichocki et al., 2020). Third, CAR-NK cell-based therapeutic regimens are considered as a promising therapeutic method, and increasing evidence has been shown in the preclinical models. The therapeutic strategy using CAR-NK cells has been proven to improve the anti-tumor efficacy in preclinical models of CRC and acute myeloid leukemia (AML) (Hayes, 2021). HER-2-specific CAR-NK cells were injected into ovarian cancer mice also ameliorated NK cytotoxicity (Han et al., 2015). CXCR1-modified NK cells enhanced anti-tumor activity in ovarian cancer mice with peritoneal xenografts (Ng et al., 2020). CAR-NK cells with targeting EGFR increased anti-tumor efficacy in a mouse model of glioblastoma (Han et al., 2015). CAR-NK cells with targeting CD19 can the cytotoxic activity of NK cells in acute lymphoblastic leukemia (ALL) (Quintarelli et al., 2020). Noteworthily, Cytomegalovirus (CMV), the most potent stimulator of NK cells, has been adopted to treat pediatric ALL and it could prolong the survival (Sivori et al., 2021). DAP10, when added to the CAR-NK cells, has been reported to enhance NK cell cytotoxicity potently through facilitating and maintaining the expression of NKG2D (Morvan and Lanier, 2016). Additionally, it is intriguing that cytokines also are considered to add to the frame of CAR-NK cells. For example, IL-15 incorporated into the CAR construct enhanced NK cell cytotoxicity and eliminated tumor cells (Daher and Rezvani, 2021). Although CAR-NK cells have been designed to combat tumor cells, there are few relevant studies. In recent years, in order to find out beneficial approaches, researchers have registered relevant clinical trials (NCT03415100, NCT03940820, NCT03692637, NCT02839954, NCT03383978, and NCT03941457). Of note, two clinical trials have been withdrawn and suspended, respectively (NCT03579927, NCT01974479).
Moreover, because cytokines are important for ILCs, cytokine-based therapy could affect the functions of ILCs. Pre-activated NK cells ex vivo by several cytokines, primarily including IL-12, IL-15, and IL-18, could be endowed with memory-like features, termed cytokine-induced memory-like NK cells (CIML-NK), and then last to exert an anti-tumor function (Romee et al., 2016). At present, this strategy has been investigated for hematological malignancies (NCT01898793, NCT03068819, and NCT02782546). TGF-β is a potently immunosuppressive factor. A study has been conducted that deleting TGFβR2 from NK cells using CRISPR-Cas9 technology could suppress the function of TGF-β and maintain their cytotoxicity in AML. Therefore, NK cells have been engineered to express a non-functional TGFβR2-like receptor in order to inhibit the function of TGF-β (Daher and Rezvani, 2021). High doses of IL-2 have been applied to the clinical practice to treat a small part of patients with advanced tumors (Marabondo and Kaufman, 2017), but IL-2 could increase the number of Tregs (Ghiringhelli et al., 2005; Adotevi et al., 2018). Furthermore, researchers found utilizing IL-15 did not result in Tregs expansion in patients with neuroblastoma (Nguyen et al., 2019). Consequently, IL-15 which increases the number and function of NK cells, is considered as a therapeutic strategy. Therapy with IL‐15 superagonist, ALT-803, has been reported to boost anti-tumor activity of NK and T cells and prolong patient survival (Hosseini et al., 2020; Sivori et al., 2021). It is surprising that ALT-803 can attach to other molecular structures in order to generate a pleiotropic compound and obtain benefits (Sivori et al., 2021). Recently, treatment with IL-15 has been investigated and the results of several clinical trials have been published (NCT01572493, NCT03759184, NCT03905135, NCT04185220, and NCT02689453). Treatment with the combination of human IL-15 (rhIL-15) and monoclonal antibody, including alemtuzumab, obinutuzumab, avelumab, or mogamulizumab, has been reported to boost the cytotoxicity of NK cells and enhance the efficacy of these monoclonal antibodies in small population patients with advanced chronic lymphocytic leukemia (Dubois et al., 2021). However, these studies have found that systemic IL-15 (N-803) impacted the presence of infused NK cells in AML, although it improved the function of CD8+ T cells (Berrien-Elliott et al., 2022; Pende and Meazza, 2022). Therefore, N-803 is still being investigated in the clinical trials (NCT03050216 and NCT01898793). Another cytokine, IL-12, is of a similar anti-tumor function to IL-15. The injection of membrane-bound interleukin 21 (mbIL-21) after haploidentical HSCT of patients with leukemia reduced the risk of relapse (Ciurea et al., 2017). Additionally, the combination therapy of IL-15 and IL-21 was used in rhabdomyosarcoma to enhance anti-tumor response (Wagner et al., 2017b).
Lastly, novel polyfunctional antibodies, termed natural killer cell engagers (NKCEs), have been generated. NKCEs have been proposed to generate a more effective benefit against tumor cells (Davis et al., 2015). The CD16 x CD33 NK cell engager was the first bispecific killer engager (BiKE) which are used to treat patients with AML (Wiernik et al., 2013). Furthermore, new tri-specific killer cell engagers (TriKE) have been designed. Anti-CD16 x IL-15 x anti-CD33 TriKE played an anti-tumor role through eliciting NK cell functions in mouse models of tumors (Vallera et al., 2016; Vallera et al., 2020), and its efficacy was reported in a terminated clinical trial (NCT03214666). Anti-CD16 x anti- CD19 x IL-15 TriKE promoted NK cells to perform tumoricidal functions in chronic lymphoid leukemia (Felices et al., 2019). Similarly, another tri-specific NK cell (1615133TriKE) also could eliminate tumor cells by the mechanism of ADCC (JU et al., 2017). Besides, human EGFR3 x NKp30 NK cell engagers have been developed, which is modified based on the affinity of B7-H6. They induced NK cells to secret cytokines and eliminate tumor cells (Demaria et al., 2021). NKp46-NKCEs fused with a tumor antigen and an Fc fragment could kill tumor cells by the mechanism of ADCC (Demaria et al., 2021). Intriguingly, adaptive NK cells with potent ADCC capacity were able to not only ablate the immunosuppressive response of MDSCs and Tregs, but also amplify the efficacy of BiKE and TriKE (Sivori et al., 2021). The various NKCE strategies are promising therapeutic tactics and are necessary to be further explored.
The hILC-related therapies
At present, harnessing helper ILCs is relatively rare and mainly targets cytokines that influence the cytotoxicity of these cells. Treatment with IL-33 alone or the combination of IL-33 with PD-1 blockade boosted the cytotoxicity of hILC2s and anti-tumor activity in a mouse model of melanoma (Maggi et al., 2020; Jacquelot et al., 2021b). However, IL-33 may stimulate hILC2s to produce the immunosuppressive ectoenzyme CD73, thereby promoting tumor growth (Maggi et al., 2020). Targeting the hILC2–MDSC axis should be promising in APL. IL-13 is a key molecule in this axis. Targeting the IL-13 receptor on tumor cells has shown a good efficacy in glioma mouse model. Anti-IL-13R mAb was also used to treat patients with glioblastoma (Maggi et al., 2020). In a completed clinical trial, treatment with IL-4 PE38KDEL cytotoxin in patients with relapsed gliomas has shown to have a good prognosis (NCT00014677). The high levels of IL-4R also promote tumor growth, so targeting IL-4R has been designed. It is well known that using anti-IL-4R antibodies had a significant impact on a variety of tumors (Yang et al., 2012a; Seto et al., 2014). In patients with AML treated by allogeneic HSCT, IL‐22 secreted by ILC3s might forestall graft versus host disease (GVHD), and thus IL‐22 could be a feasible treatment option (Munneke et al., 2014). The function and plasticity of helper ILCs are important for tumor therapy. Thus, increasing research into helper ILCs should be conducted in the future.
Other tumor-infiltrating immune cells
Myeloid-derived suppressor cells
Myeloid-derived suppressor cells have been reported as inhibitors of anti-tumor immunity by antigen-specific and non-specific patterns (Serafini et al., 2006). Some researchers have shown that MDSCs are negatively associated with the prognosis of tumor patients (Serafini et al., 2006; Tian et al., 2019). MDSCs can be devided into two subtypes, monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). M-MDSCs could promote the maturation of DCs, differentiate into M2-TAM, produce nitric oxide (NO), Arg-1 which could deplete arginine, and secrete inhibitory cytokines including IL-10 and TGF-β (Wilczyński and Nowak, 2012; Tie et al., 2022a). PMN-MDSCs mainly induce antigen-specific T-cell tolerance and hinder T-cell migration by producing reactive oxygen species (ROS) (Gabrilovich, 2017; Li et al., 2020b). PMN-MDSCs also secrete some cytokines to facilitate angiogenesis in TME (12). Moreover, tumor cells could secrete various molecules to attract MDSCs into TME like GM-CSF and IL-6, in turn, MDSCs induce the mutations of tumor cells and express some proteins like SA100A8/9 to avoid immune surveillance (Sinha et al., 1950a; Bresnick et al., 2015; Li et al., 2020b). IL-6 also promotes MDSC accumulation and inhibits anti-tumor immunity by activating the JAK/STAT3 signaling pathway, which results in increased production of ROS, NO, and PD-L1 (Ostrand-Rosenberg and Fenselau, 1950; Weber et al., 2021). Other molecules such as CCR2 or CCR5 are important for the migration of MDSCs. MDSCs also induce the production of Tregs and Th17 cells (Sinha et al., 1950b; Messmer et al., 2015).
MDSC-based therapies
According to MDSC functions, targeting MDSCs has been developed. First, depletion of MDSCs has been carried out in mouse models. It is reported that tyrosine kinase inhibitors (TKIs) could deplete MDSCs. For instance, Sunitinib was used to eliminate MDSCs by interfering with VEGF and STAT3 signaling pathways in renal cell carcinoma (Peng et al., 2021b). Using ibrutinib could restrain the production MDSCs in melanoma (Stiff et al., 2016). Another novel therapeutic strategy has been proposed. Targeting S100A family proteins, “peptibodies” adjoined to antibody Fc fragments could selectively eliminate MDSCs (Qin et al., 2014). The TNF-related apoptosis-induced ligand (TRAIL) receptors are also considered as a target for the depletion of MDSCs (Condamine et al., 2014; Dominguez et al., 2017; Hartwig et al., 2017). Targeting TRAIL-R2, DS-8273a, is ongoing in advanced solid tumors and lymphoma (NCT02076451). Second, it is a practical strategy that MDSCs are blocked to migrate to the tumor sites. Targeting chemokines or its receptors which help MDSC migration could inhibit MDSC recruitment and trafficking. Targeting CCR5 secreted by MDSCs has been reported to reduce the number of tumor-infiltrating MDSCs, and improve the survival in melanoma and breast cancer (Velasco-Velázquez et al., 2012; Zhang et al., 2013; Blattner et al., 2018). Targeting CXCL13 or its receptor CXCR5 could decrease the accumulation of MDSCs in TME in preclinical models (Ding et al., 2015; Garg et al., 2017). CXCR2 antagonists have been reported to make MDSCs range from overt infiltration to subtle infiltration and T-cell infiltration increase in the tumor sites. Targeting CXCR2 also augments the therapeutic efficacy of PD-1 blockade (Highfill et al., 2014; Zhang et al., 2020). Additionally, CXCR2 antagonists (Reparixin and AZD5069) are currently in the clinical trial phase for locally advanced or metastatic breast cancer metastatic (NCT05212701) and castration-resistant prostate cancer (NCT03177187), respectively. Targeting CCL2–CCR2 axis has shown a good outcome in mouse models (Li et al., 2017; Xu et al., 2021b), but anti-CCL2 mAbs or CCR2 antagonists are mainly used to treat immune diseases in the clinical trials. Only a CCR2/CCR5 Dual Antagonist (BMS-813160) is being used to try to treat patients with locally advanced PDAC, which is in the clinical trial phase (NCT03767582). Targeting colony-stimulating factor 1 receptor (CSF1R) or its ligand CSF-1 could prevent myeloid cell differentiation into MDSC and impede tumor progression (Cannarile et al., 2017; Yeung et al., 2021). Other studies have demonstrated that CSF-1R blockades combined with CXCR2 antagonists, ICB or anti-VEGFR mAbs have better efficacy in tumor patients (Tie et al., 2022b). Third, the downregulation of immunosuppressive functions of MDSCs is a promising approach. The inhibition of COX-2/ PGE2 signaling could suppress MDSC functions, which leads to impairing the production of Arg-1 and ROS, improves CD8+ T cytotoxicity, and delays tumor growth (Eruslanov et al., 2010; Obermajer et al., 2012; Zelenay et al., 2015). In preclinical models of glioma, targeting COX2 combined with acetylsalicylic acid downregulated the levels of PGE2 and inhibited glioma progression (Fujita et al., 2011). Phosphodiesterase-5 (PDE-5) inhibitors could also impair the level of Arg-1 produced by MDSCs. Using PDE-5 inhibitors has been shown to boost the anti-tumor immune activity of T cells and NK cells, reduce the accumulation of MDSCs and Tregs, and promote cancer cell growth arrest in patients with HNSCC and metastatic melanoma (Weed et al., 2015; Hassel et al., 2017). The inhibition of the STAT3 pathway is another therapeutic strategy to impair the function of MDSCs. The STAT3 inhibitor, AZD9150, combined with ICB, has been utilized to treat patients with diffuse large B‐cell lymphoma in a clinical trial (NCT01563302). In localized and metastatic castration-resistant prostate cancer patients, treatment with TLR9-targeted STAT3 siRNA delivery to abrogate the immunosuppressive function of MDSCs diminished the enzymatic activity of Arg-1, inhibited STAT3 target gene and T cell function (Hossain et al., 2015). IL-6 inhibitors also impacted the STAT3 signaling by reducing STAT3 phosphorylation and the expression of STAT3 downstream anti-apoptotic genes in ovarian cancer (Guo et al., 2010a; Guo et al., 2010b). Lastly, another credible strategy is to reduce the production of MDSC populations. All-trans-retinoic acid (ATRA) binding to the retinoid receptor could induce the immature myeloid cell (IMC) population to differentiate into macrophages and dendritic cells, neutralize high ROS production and increase glutathione synthase (Liu et al., 2021b; Bi et al., 2022). ATRA administration or combined with other immunotherapies increased the number of T cells, enhanced dendritic cell functions, and downregulated the ROS generation in MDSCs, resulting in improving anti-tumor immunity (Li et al., 2014; Bauer et al., 2018; Tobin et al., 2018). The combination of ATRA and ipilimumab are more effective than using ipilimumab monotherapy alone in metastatic melanoma and cervical cancer patients (Tobin et al., 2018; Liang et al., 2022). ATRA administration is an extremely promising therapeutic option for restraining the immunosuppressive functions of MDSCs, thus, its application needs to be further explored in other tumors. Additionally, some studies have reported that histone deacetylase inhibitors (HDACs) also control the differentiation of MDSCs and inhibit MDSC functions in tumor mouse models (Orillion et al., 2017; Briere et al., 2018; Christmas et al., 2018). The low-dose HDACi trichostatin-A could impair the suppressive activity of MDSCs and prevent MDSCs from trafficking, but the off-target effects that is the upregulation of PD-L1 should be tackled in further research (Li et al., 2021; Adeshakin et al., 2022). Other approaches to impact the differentiation and function of MDSCs, such as promoting the expression of interferon regulatory factor (IRF)-8, and inhibiting casein kinase 2 (CK2) signaling, are promising strategies (Valanparambil et al., 2017; Hashimoto et al., 2018; De Cicco et al., 2020; Xia et al., 2020).
In summary, targeting MDSCs have been developed and acquired good outcomes in preclinical models. However, due to the MDSC heterogeneity in various tumor types, the drugs targeting MDSCs could not be applied broadly. Thus, further studies are indispensable in the different tumor types. Secondly, the plasticity of MDSCs has been mentioned previously. Thus, the factors which reshape the differentiation of MDSCs are essential for future treatment strategies. In addition, even if the depletion of MDSC and the inhibition of MDSC trafficking are favorable options, the complicated mechanisms to reduce the number of MDSCs have not been revealed, so complementary researches are cardinal to develop new options and improve the prognosis.
Tumor-associated macrophages
Macrophages have been traditionally divided into two types: inflammatory M1-macrophages (anti-tumoral phenotypes) and immunosuppressive M2-macrophages (pro-tumoral phenotypes) (Cassetta and Pollard, 2020; Christofides et al., 2022). Macrophages are recruited into the tumor sites and play different functions, termed tumor-associated macrophages. CSF1 is a key factor for the recruitment of macrophages and polarizes macrophages to express the M2 phenotype (De et al., 2016; Christofides et al., 2022). It is reported that the inhibition of CSF-1 could decrease the accumulation of TAM and transform the M2 phenotype into the M1 phenotype (Ramesh et al., 2019). CCL2 also attracts macrophages into the tumor sites and mediates macrophage polarization (Korbecki et al., 2020; Yang et al., 2020). TAMs have a dual function, pro-tumoral and anti-tumoral functions. TAMs promote tumor progression by following pathways. First, TAMs release various molecules to assist tumor cell proliferation and metastasis. Growth factors expressed by TAMs such as epidermal growth factor (EGF) aid tumor cell proliferation. NF-kB-mediated factors like IL-6 and CCL2 prevent tumor cell apoptosis (Xiang et al., 2021). TAMs also induce and activate the Wnt/β-catenin signaling, resulting in the proliferation of tumor progenitor cells in liver cancer (He and Tang, 2020). TAMs secrete CCL5 to activate the STAT3β-catenin pathway and favor the metastasis of tumor cells (Huang et al., 2020). The proangiogenic growth factors released by TAMs like VEGF, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) also facilitate tumor cell migration (Kumari and Choi, 2022). Second, TAMs play an immunosuppressive role by expressing various small molecules. TMAs facilitate the ICs expression on tumor cells or produce IL-10, TGF-β, Arg-1, and IDO to impede T cell function (Arlauckas et al., 2018; Xiang et al., 2021; Kumari and Choi, 2022). Finally, TAMs also upregulate the level of inhibitory receptors to inhibit T cell and NKcell activity and recruit Tregs into TME (Yang et al., 2012b; Wu et al., 2019; Tie et al., 2022a). Conversely, TAMs could inhibit tumor progression by increasing their phagocytic capacity and enhancing the function of antigen presentation. TAMs also produce cytokines to activate Th1 and CD8+T cells and improve anti-tumor immunity (Moeini and Niedźwiedzka-Rystwej, 2021). Of note, the polarization of macrophages could be reshaped in the complex TME. For instance, activated mTOR signaling pathways facilitated the polarization of M2 macrophages (Mazzone et al., 2018; Chen et al., 2022).
The TAMs-based immunotherapies
Targeting TAMs mainly inhibits its pro-tumoral functions, and several studies have been conducted. First, depleting TAMs and arresting the recruitment of TAMs have been reported. Targeting the CSF-1/CSF-1R axis has been tested in preclinical models and is a significant therapeutic option to decrease the production and aggregation of TAMs. Inhibiting the CCL2/CCR2 axis is another reasonable treatment strategy for preventing TAMs from migrating into tumor sites. The efficacy of CSF-1 and CCL2 inhibitors has been comprehensively reviewed, therefore, we will not be covered here (reviewed in refs (Rasmussen and Etzerodt, 2021)). Second, inhibition of the immunosuppressive function of TAMs could boost anti-tumor immunity by polarizing M2 TAMs into anti-tumor phenotypes. The TLR7/8 influences the TAM polarization to skew toward M1 TAM, thus, its agonist, R848-Ad, has been used to treat tumors in the mouse models and then improves the anti-tumor activity (Rodell et al., 2018; Rodell et al., 2019). Upon a TLR agonist, targeted delivery of a long peptide antigen to TAMs via using a nano-sized hydrogel (nanogel) activated TAMs to promote tumor apoptosis and activate anti-tumor immune responses, including antigen-presenting activity and altering tumor immune responses from resistance to responsiveness (Muraoka et al., 2019; Tie et al., 2022a; Zhang et al., 2022b). Activated TLR3 ligands also shift the M2 phenotype to the M1 phenotype by upregulating the expression of MHC-II molecule (Vidyarthi et al., 2018). The PI3K/AKT pathway is responsible for the recruitment of M2-TAM, thus, PI3Kα inhibitors could impede tumor cell growth and invasion (Khan et al., 2013). PI3Kγ upregulates the immunosuppressive properties and downregulates the anti-tumor properties of TAMs (Vergadi et al., 1950; Zhang et al., 2017b; Kaneda et al., 2017), thus, targeting PI3Kγ would be necessary. Activation of the CD40 receptor on TAMs could convert TAMs into M1 macrophages (Wiehagen et al., 2017; Hoves et al., 2018). Using the combination of CD40 agonists and anti-CSF1R antibodies enhanced the cytotoxicity of T cells (Xiang et al., 2021). The inhibition of the NF-κB pathway by the siRNA pathway could transform TAM into M1 macrophages (Ortega et al., 2016). Other molecules also impact the polarization of TAMs, such as HDAC, and the microRNA processing enzyme DICER, because blocking HDAC or DICER could produce M1 phenotypes (Tie et al., 2022a; Tajaldini et al., 2022). Third, restoring phagocytic capacity is crucial for TAMs. The activated SIRPα–CD47 axis could limit the TAM phagocytic capacity for cancer cells. Therefore, targeting SIRPα has been proposed and tested in pancreatic cancer and breast cancer, where it strengthens the phagocytosis ability of macrophages and promotes tumor cell death (Jaiswal et al., 2009; Theocharides et al., 2012; Hu et al., 2020; Jia et al., 2021). Anti-CD47 antibodies have also been reported to strengthen the anti-tumor activity of macrophages (Brierley et al., 2019; Sikic et al., 2019; Jia et al., 2021), and some anti-CD47 mAbs in different tumors are in the clinical trials (NCT02953509, NCT04751383). Inhibition of leukocyte immunoglobulin-like receptor subfamily B (LILRB)- MHCI pathway axis could recover the phagocytic capacity of TAMs (Barkal et al., 2018). Finally, CAR expressed by TAMs has been reported to improve phagocytosis, transform TAMs to the M1 phenotype, and enhance anti-tumor immunity (Christofides et al., 2022). CAR for phagocytosis (CAR-P) could improve the phagocytic capacity of TAMs and hinder tumor cell growth in solid tumors (Morrissey et al., 2018; Kumari and Choi, 2022). CAR-macrophages (CAR-M) have also been developed, which inhibits tumor progression in a mouse model (Klichinsky et al., 2020; Villanueva, 2020; Sloas et al., 2021). Furthermore, a recent study proposed another tactic, anti-CCR7 CAR-M cells, which induces macrophages toward CCR7-positive cells and then deletes CCR7-positive cells by a series of activities (Kumari and Choi, 2022). At present, a novel method, targeting TAMs with nanomaterials, has been reported. The use of nanomaterials to inhibit tumor growth not only promotes anti-tumor immunity, but it also reduces the off-target effects and adverse events. The details of nanoimmunotherapies for TAMs have been concluded in this review (Kumari and Choi, 2022). Therefore, targeting nanoimmunotherapies is a promising option. Thus, more research is needed in the future.
In brief, although these therapeutic strategies have been successfully applied in mouse models and even in the clinical trials, targeting TAMs is still limited. At present, targeting all macrophage populations is less effective than targeting pro-tumor TAMs, so researchers want to further focus on targeting a specific macrophage population to reach maximal efficacy. Additionally, though the blockade of recruitment of TAMs is a potential option, it is a better strategy that converts TAMs from M2 to M1. Thus, further exploration needs to dissect the mechanisms of TAM polarization from top to bottom and develop novel treatment agents. Moreover, some inhibitory molecules have not been thoroughly discussed, including CD163, CD206, and TREM2. Thus, extensive investigations about targeting these molecules needs to be performed. Finally, the combination therapy of based-TAM and other ways like radiotherapy are also worthy of research.
CONCLUSION AND PERSPECTIVES
With the advancement of immunotherapies, it is well revealed that tumor-infiltrating immune cells play increasingly important roles and interact with the efficacy of targeting these immune cells. Therefore, the dissection of these cell properties in TME is indispensable for improving the clinical response of immunotherapies. In this review, we have dissected the characteristics of mainly tumor-infiltrating immune cells, including their phenotypes, their recruitment, their activation, and immune-based therapies (Figure 2). The interactions with these cells in TME are complicated due to the presence of anti-tumor and pro-tumor activities, which is associated with the clinical outcome of cancer patients. In addition, these cells also form a special structure which impacts the clinical outcome of tumor patients, but it remains in its infancy for TLS properties. Correspondingly, according to the characteristics of these immune cells, various immunotherapy approaches have been developed and are successful in preclinical tumor models and human tumors, including targeting cytokines and chemokines, targeting various phenotypes, and CAR-T. Recently, nanoimmunotherapies have been generated and acquired a better efficacy, which provides a novel approach to target tumor cells and is worthy of emulation. However, due to the conspicuously complex TME, the clinical response of some strategies is limited, even ineffective and resistant. Consequently, extensive complementary researches on tumor-infiltrating immune cells are necessary to overcome these shortcomings and further develop curative tactics for a conducive prognosis.
[image: Figure 2]FIGURE 2 | Tumor-infiltrating immune cells are important. Different cells play different roles. CD8+ T cell, CD8 TRM, and NK could kill tumor cells. Bregs, Tregs, MDSCs, and M2-TAM promote tumor cell growth. Tumor cells also secrete various molecules to disturb immune cell function. These molecules can convert cell phenotype and change their function, like NK cells. Specially, TGF-β derived from tumor cells could promote the function of CD8 TRM and Tfh cells. The crosstalk of these immune cells are is important for their function. Inhibitory cells secrete various immunosuppressive molecules to impair the cytotoxicity of effector cells. CD8 TRM: CD8 tissue resident memory; DC: dendritic cell; cDCs: conventional dendritic cells; pDCs: plasmacytoid DCs; Tfh: T follicular cell; NK: natural killer; hILC: helper innate lymphoid cells; Bregs: regulatory B cells; Tregs: regulatory T cells; MDSC: myeloid-derived suppressor cell; M2-TAM: M2 macrophages; EMT: epithelial mesenchymal transition.
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Renal clear cell carcinoma (KIRC) is one malignancy whose development and prognosis have been associated with aberrant DHRS7 expression. However, the catalytic activity and pathophysiology of KIRC are poorly understood, and no sensitive tumor biomarkers have yet been discovered. In our study, we examined the significant influence of DHRS7 on the tumor microenvironment (TME) and tumor progression using an overall predictable and prognostic evaluation approach. We found novel cancer staging, particularly in KIRC, as well as potential therapeutic drugs out of 27 drug sensitivity tests. Using Perl scripts, it was possible to determine the number of somatic mutations present in 33 tumors, as well as the relative scores of 22 immune cells using CIBERSORT, the relationship between immune infiltration and differential expression using TCGA data, and the immune microenvironment score using the estimate technique. Our results show that DHRS7 is abnormally expressed in pan-cancer patients, which influences their survival. Low DHRS7 expression was associated with late clinical stages and a low survival rate in KIRC patients, suggesting a poor prognosis and course of treatment, in HNSG, MESO, and KIRC patients. We also found that DHRS7 was associated with TMB and MSI in certain tumors. Using KIRC as an example, we discovered a negative correlation between DHRS7 expression and immunological assessments, suggesting that this substance might be used as a tumor biomarker.
Keywords: DHRS7, pan-cancer, TCGA, KIRC, prognostic biomarker
1 INTRODUCTION
DHRS7 is a member of a large family of short-chain dehydrogenases/reductases (SDR), which has at least 75 members in the human genome and is involved in a variety of physiological tasks (Persson et al., 2009; Kallberg et al., 2010). The public database of the SDR family contains about 679,000 sequences (Jörnvall et al., 2015), with extremely low sequence similarity and just a tiny number of conservative sequence regions. Alcohols, sugars, steroids, lipids, and xenobiotics are only a few of the substrate-specificities of SDRs. As a result, they carry out several cellular tasks, such as intermediate metabolic processes, detoxification, and signaling modulation (Zemanová et al., 2017). DHRS7 was first discovered in retinal epithelial cells (Haeseleer and Palczewski, 2000), but it is classified as an “orphan” SDR since little is known about its catalytic activity and physiological implications (Jacob and Jothi, 1989). The DHRS7 gene codes for two subtypes and is found on chromosome 14. Isotype 1 (38 kDa) has 339 amino acids, while isotype 2 (32 kDa) contains 289 amino acids (Stambergova et al., 2014). The human SDR enzyme DHRS7 is found in the endoplasmic reticulum membrane of the adrenal gland, prostate, gut, liver, thyroid, and other tissues. The colon, stomach, kidney, brain, and spleen are all places where it can be discovered (Keating, 1989). The mechanism of its catalytic activity, however, is still unknown.
The most frequent malignant tumor of renal cells and renal tubular epithelial cells is renal cell carcinoma (RCC). The most common subtype of RCC is renal clear cell carcinoma (KIRC) (Zhang et al., 2020). Patients with KIRC account for 80–90% of RCC patients and have a dismal prognosis (Motzer et al., 2015; Miller et al., 2019). Clinicopathologic risk variables are insufficient to identify KIRC at high risk of disease development (Majer et al., 2015). Under most circumstances, KIRC is resistant to chemotherapy and radiotherapy, and it has a greater rate of recurrence and metastasis than other RCC subtypes (Jonasch et al., 2014; Escudier et al., 2019). Although surgical resection is the most successful treatment for KIRC patients (Porta et al., 2019), 30 percent of those who have undergone surgery have developed metastases (Motzer et al., 2013). Little is known about the pathogenesis of KIRC, and no sensitive tumor biomarkers have been discovered yet (Yin et al., 2019).
2 METHODS
2.1 Differential, expression analysis, and data processing
Data from RNAseq data in TPM format from TCGA and GTEx were uniformly processed in UCSC xena (https://xenabrowser.net/datapages/) using the Toil method. The TPM (transcripts per million reads) formatted RNAseq data were log2 transformed before being examined and compared. ACC; BRCA; CESC; CHOL; COAD; DLBC; ESCA; GBM; HNSC; KICH; KIRC; KIRP; LAML; LGG; LIHC; LUAD; LUSC; MESO; OV; PAAD; PCPG; PRAD; READ; SARC; SKCM; STAD; TGCT; THCA; THYM; UCEC; UCS; UVM; UCEC; U DHRS7 [ENSG00000100612] was the molecule we intended to investigate using R software (version 3.6.3) (statistical analysis and visualization), and the R package we used was primarily GGPLOT 2 [version 3.3.3.3]. (for visualization).
2.2 Source of mutation data
cBioPortal (http://www.cBioPortal.org/index.do) is a comprehensive open network platform that includes data mining, data integration, and visualization, and is based on the TCGA database. This website provided information on DHRS7 mutations in various cancers, including structural variation, mutation, and CNA data.
2.3 Relationships between DHRS7, clinical phenotype, and prognosis
Survival and clinical phenotypic data were retrieved for each sample obtained from TCGA. Overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) were utilized to evaluate the connection between DHRS7 expression and patient prognosis (PFI). The Kaplan-Meier method and the log-rank test were used to undertake survival analyses (p 0.05) of each cancer type. Survival curves were created using the R packages “survival” and “survminer.” The survival package [version 3.2-10] and the rms package [version 6.2-0] were used to create the nomogram diagram. The “ggplot2” software displays the difference in DHRS7 in each tumor’s pathological stage.
2.4 The link between DHRS7 expression and tumor mutation burden
The number of somatic mutations in 33 tumors was calculated using Perl scripts, and the value was corrected by dividing it by the exon length. Spearman’s approach and the “cor.test” command were used to evaluate the relationship between DHRS7 expression and TMB. The two measures were illustrated using radar plots made with the R tool “fmsb."
2.5 DHRS7 expression and tumor microenvironment association coefficients in cancers
The ESTIMATE algorithm was used to calculate immune and stromal scores for each tumor sample, and the relationship between DHRS7 expression and these two scores was assessed according to the degree of immune infiltration using the R software packages “estimate” and “limma.” We also used CIBERSORT, a metagene technique that may predict immunocyte phenotype, to obtain relative scores for 22 immune cells in 33 cancers.
2.6 The importance of DHRS7 expression in tumors from a biological perspective
Gene Set Enrichment Analysis (GSEA) was used to study TREM2’s biological activity in cancers. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) comprise gene sets, according to the official GSEA website (https://www.gsea-msigdb.org/gsea/downloads.jsp). Functional analysis was carried out using the R packages “limma,” “org.Hs.eg.db,” “clusterProfiler,” and “enrichplot.”
2.7 DHRS7 expression variation and clinical value in KIRC
Differential expression of DHRS7 in tumor and normal tissues was extracted using the TCGA database, which contained paired and unpaired samples. We used clinical data to map the risk variables in TCGA patients using the matching Rickscore, and to investigate the clinical relevance of DHRS7. Simultaneously, the Kaplan-Meier Plotter database (http://kmplot.com/analysis/) was utilized to investigate the DHRS7 survival curve in KIRC.
2.8 DHRS7 effect on biological functions, pathways, and the immune microenvironment in KIRC
In KIRC, we looked at single-gene enrichment, including Biological Process (BP), Molecular Function (MF), Cell Component (CC), and gene set enrichment (GSEA). Using TCGA data, we also looked at the relationship between the immune infiltration of 22 immune cells and DHRS7 expression, as well as the relationship between the immune microenvironment score and DHRS7 expression using the estimate technique. Meanwhile, the heat map highlighted the relationship between various immune-related indicators.
2.9 Tumor progression effect by DHRS7
The relationship between DHRS7 and differential expression among immune subgroups was investigated using the TISIDB database (http://cis.hku.hk/TISIDB/index.php) to investigate the correlation between TXNDC9 expression and immune or molecular subtypes of different cancer types. The researchers looked at the relationship between the degree of DHRS7 expression in KIRC and the drug sensitivity of 27 different anticancer medicines. At the same time, we looked into the link between DHRS7 and several routes.
3 RESULTS
3.1 DHRS7 expression differences in tumor and normal tissue samples
We examined physiologic TREM2 gene expression levels across tissues using the TCGA data set. Tumor expression levels were higher than normal tissue in BRCA, CHOL, GBM, HNSC, KICH, and LIHC. DHRS7 levels were downregulated in tumor tissues COAD, KIRC, KIRP, LUSC, READ, STAD, THCA, UCEC as compared to normal tissues COAD, KIRC, KIRP, LUSC, READ, STAD, THCA, UCEC (Figure 1A). We used the normal data in GTEx as a supplement because many tumors in TCGA lacked equivalent normal tissue data. We discovered that the expression levels of DHRS7 in ACC, ESCA, LAML, LGG, LUAD, PAAD, PRAD, SKCM, and TGCT were considerably greater than those in normal tissues (Figure 1B). The cBioPortal database was utilized to look at DHRS7 mutation data in various malignancies, which included structural variant data, MUTATION, CNV data, and DHRS7. Endometrial Carcinoma was the tumor with the most mutations, followed by esophagogastric Adenocarcinoma, while Liver Cancer had the fewest mutations (Figure 1C).
[image: Figure 1]FIGURE 1 | The expression level of DHRS7 gene in different tumors in multiple databases. (A) The gene expression of DHRS7 in different cancers in TCGA database was analyzed. *p < 0.05; **p < 0.01; ***p < 0.001. (B) For the absent types of cancers in TCGA, the corresponding normal tissues of the GTEx database were included as controls. The box plots were supplied. *p < 0.05. (C) Mutation feature of DHRS7 in different tumors of TCGA. We analyzed the mutation features of DHRS7 for the TCGA tumors using the cBioPortal tool.
3.2 The effects of four DHRS7 prognostic types in different tumors
The low-expression group of HNSG, MESO, and KIRC tumors had a poor prognosis in terms of overall survival (Figures 2A–C). At the same time, as seen in the forest plots, DHRS7 expression was linked with BRCA, COAD, HNSC, KIRC, LAML, LUAD, MESO, PCPG, and STAD in overall survival (Figure 2D). The forest map reveals that HR of DHRS7 in HNSC, KIRC, MESO, and THYM is statistically significant; DHRS7 shows a risk factor in HNSC, but a protection factor in KIRC, MESO, and THYM; DHRS7 shows a risk factor in HNSC, but a protective factor in KIRC, MESO, and THYM; (Figure 3). The high-expression group of DHRS7 in DFI had a poor prognosis, whereas the opposite was true in THCA. DHRS7 was a statistically significant risk factor for both ESCA and PCPG, according to the forest map (Figure 4). The DHRS7 low-expression group in PFI had a poor prognosis in KIRC, but a better prognosis in HNSC and UVM. DHRS7 is a risk factor in HNSC, PCPG, and UVM, but a protective factor in KIRC and PRAD, according to the forest map. DHRS7 was shown to be low in KIRC in a previous examination of expression differences, and among numerous other prognostic types, DHRS7 indicated a poor prognosis in patients with low expression in KIRC (Figure 5). This suggests that DHRS7 will be a stable and reliable KIRC prognostic molecule.
[image: Figure 2]FIGURE 2 | Correlation of TXNDC9 with Overall Survival in pan-cancer. (A–C) Kaplan-Meier curves (OS). (D) Forest plots showing the relationship between DHRS7 expression and OS in 33 tumor types.
[image: Figure 3]FIGURE 3 | Correlation of DHRS7 with Disease-specific survival (DSS) in pan-cancer. (A–C) Kaplan-Meier curves (DSS). (D) Cox regression model analysis of the correlation between DHRS7 expression and DSS in various tumors.
[image: Figure 4]FIGURE 4 | Correlation of DHRS7 with Disease-free survival (DFI) in pan-cancer. (A,B) Kaplan-Meier curves (DFI). (C) Cox regression model analysis of the correlation between DHRS7 expression and DFI in various.
[image: Figure 5]FIGURE 5 | Correlation of DHRS7 with Progression-free survival (PFS) in pan-cancer. (A–C) Kaplan-Meier curves (PFS). (D) Cox regression model analysis of the correlation between DHRS7 expression and PFS in various tumors.
3.3 DHRS7 expression and clinicopathology in pan-cancer patients
Following that, we looked into the association between DHRS7 expression and tumor stage and discovered that ASF1B expression was substantially correlated with tumor stage in seven malignancies, including KIRC, KIRP, LUSC, READ, SKCM, STAD, and THCA. We could see that the expression level of DHRS7 was lower in stage III than in stages I and II (p = 0.014, p = 0.0012) and that the expression level of stage IV was lower than that of stage II (p = 0.027) as the tumor advanced and decreased. As a result, we postulated that reduced DHRS7 expression was directly linked to a worse survival rate in KIRC patients. While the changes in DHRS7 expression between tumor stages were apparent, the differences between tumors of other stages were minimal (Supplementary Figure S1), and no statistically significant differences were found.
3.4 Correlation between DHRS7 expression and TMB or microsatellite instability in cancers
The relationship between DHRS7 expression and TMB and MSI, which are both substantially related to ICI sensitivity across malignancies, was next investigated. DHRS7 expression was associated with TMB in a range of malignancies, according to the data. Overall, TMB expression was negatively connected with BRCA, GBM, LGG, LUAD, LUSC, OV, and SARC in 21 cancer types, but positively correlated with TMB in KIRP (Figure 6A). In addition, DHRS7 expression was found to be positively correlated with MSI in seven cancer types, including UCEC, THYM, and LGG, and negatively correlated with MSI in SARC, LUAD, BRCA, and THCA (Figure 6B).
[image: Figure 6]FIGURE 6 | Correlation of DHRS7 expression with MSI/TMB. (A) Correlation between DHRS7 expression and MSI. (B) Correlation between DHRS7 expression and TMB.
3.5 TME expression and DHRS7 expression in different cancers
Many studies have demonstrated that TME plays an important role in the occurrence and progression of malignancies. The Warburg effect is a genetic change in tumor cells that results in uncontrollable proliferation, apoptosis resistance, and a metabolic shift to anaerobic glycolysis. These activities caused hypoxia, acidosis, and oxidative stress in TME, triggered ECM regulation, triggered the response of adjacent immune cells (lymphocytes and macrophages) and stromal cells (fibroblasts), aided angiogenesis, and ultimately led to cancer growth and spread. As a result, uncovering the pan-cancer relationships between DHRS7 expression and the TME is crucial. The link between DHRS7 expression and stromal and immune score in 33 cancers was investigated using the ESTIMATE method. In PAAD, PRAD, and THCA, DHRS7 expression was found to be inversely linked with stromal scores. In ACC, KIRC, PAAD, PRAD, and THCA, DHRS7 expression was found to be significantly adversely linked with immunological ratings. There are considerable distinctions between cancer kinds, according to research (Supplementary Figure S2).
3.6 DHRS7 expression and immune cell infiltration in cancers
The immunological prognostic value and immune association of DHRS7 were also investigated. We discovered a high negative link between DHRS7 expression and aDC, M0 macrophage, CD4 memory activated T cell, and T cells follicular helper, but a substantial positive correlation with M2 macrophage and Masting cells resting. DHRS7 expression was inversely proportional to B cells naive, plasma cells, and T cell regulation (Tregs) in HNSC, but positively proportional to Dendritic cells resting, Neutrophils, and activated NK cells. Meanwhile, in LAML, DHRS7 displayed a high positive connection with resting mast cells, but in LGG, the converse was true. All four immune cells are favorably linked with DHRS7 in lung cancer. M2 macrophages, M1 macrophages, and Tregs all have a positive correlation with DHRS7 in THCA, but aDC, Masting cells resting, and Dendritic cells resting have a negative correlation (Supplementary Figure S3). Hence, as well as DHRS7, all have a role in the formation of the immune milieu in various malignancies.
3.7 GSEA’s findings
The biological importance of DHRS7 expression in various tumor tissues was investigated using GESA. The results of GO functional annotation and KEGG pathway analysis are shown in Supplementary Figure S4. DHRS7 affects cell adhesion as well as many immune-related processes including apoptosis, angiogenesis, immunological responses, and immune regulation and signaling pathways, according to the findings. Some biological entries, such as GO positive regulation of cellular amide metabolic process, GO positive regulation of translation, GO regulation of sprouting angiogenesis, GO RNA polymerase binding, and GO sprouting angiogenesis, were considerably down-regulated in KIRC. The same was true of the other two renal malignancies, KICH and KIRP, in which apoptotic pathways were shown to be down-regulated. Some biochemical pathways, such as GO odorant binding, GO olfactory receptor activity, GO positive regulation of cell cycle G1 S phase transition, GO positive regulation of mitotic cell cycle G1 S phase transition, and GO sensory perception of smell, are highly up-regulated in DLBC (Supplementary Figure S4).
3.8 Details of clinical correlation with DHRS7 expression differences in KIRC
We then conducted a more in-depth investigation of KIRC. When compared to normal tissue in KIRC, both unpaired and paired samples demonstrated lower expression of DHRS7 in tumor tissue (Figure 7). We have noticed a significant rise in the number of individuals with a Dead outcome with lower expression of DHRS7 based on the risk factor profile of DHRS7 (Figure 8A). Using the KM survival database, we also looked at the survival curves of DHRS7 in different prognostic categories of KIRC and discovered that the DHRS7 low-expression group had poor prognostic results, both in terms of OS and PFI (Figures 8B,C). More clinical correlations were investigated, and we discovered that DHRS7 expression was unaffected by age or gender (Figures 9A,B). G4 was substantially less expressed in distinct tumor grades than G2 and G3 (P<0.05), but GX was much greater than other grades (Figure 9C). Furthermore, TNM and DHRS7 have a clinical association with pathological staging. It was clear that as the tumor progressed, the expression of DHRS7 decreased, regardless of the M0&M1, N0&N1, T1&T3, T1&2, or pathological stage (Figures 9D–G). The expression levels of DHRS7 are clustered in the heat map, and both the pathological stage and TNM staging have a statistically significant clinical association, as can be shown (Figure 9H).
[image: Figure 7]FIGURE 7 | Expression of DHRS7 in renal clear cell carcinoma. (A) Expression of DHRS7 in KIRC in TCAG dataset. (B) Paired expression of DHRS7 in KIRC.
[image: Figure 8]FIGURE 8 | Relationship between DHRS7 expression and survival time and survival status in TCGA data. (A) Where the topmost scatter plot of DHRS7 expression from low to high, with different colors representing different expression groups; the middle represents the scatter plot distribution of survival time and survival status corresponding to DHRS7 expression in different samples; the bottom graph DHRS7 expression heat map. (B,C) Kaplan–Meier survival analysis of GXYLT2 in STAD (above: overall survival; below: progression-free survival).
[image: Figure 9]FIGURE 9 | Relationship between DHRS7 expression and clinicopathology in KIRC cancer. (A–G) Relationship between DHRS7 expression and age, gender, primary tumor, and metastasis in KIRC. (H) Heatmap of age, gender, grade, stage, T, M, N in low- and high- GXYLT2 expression group.
3.9 DHRS7 is required in the KIRC immune microenvironment
Using TCGA data, we undertook an immune infiltration study to investigate the particular biological function of DHRS7 in the immunological microenvironment of KIRC. 14 of the 22 immune cells were strongly correlated with DHRS7 expression levels, as indicated in the lollipop graph. Tregs had the strongest positive association with DHRS7 expression, as in prior investigations, while M2 macrophages had the strongest negative correlation (Figure 10A). Regulatory T cells are a crucial part of immunological tolerance maintenance. They are created by the thymus and exported to the periphery, where they actively regulate the immune system by inhibiting the activation and proliferation of potential self-reactive T cells in the normal body. Many malignant disorders, such as lung, pancreas, and breast cancer, have been reported to have a considerable increase in regulatory T cells. Tumor-infiltrating macrophages (TAM) tend to polarize into the M2 type during the incidence and progression of malignancies. TAM secretes very little IL-12 after polarizing to M2, instead of producing IL-10 and TGF-, which decreases TAM’s antigen-presenting ability, inhibits T cell proliferation and killing ability, and promotes Treg and Th2 recruitment, all intending to assist tumor immune escape. When Eosinophils correlated positively with DHRS7, T cell follicular helper correlated negatively (Figures 10B–E). In the grouping comparison diagram, the Tregs infiltration score of the DHRS7 low expression group was higher than that of the DHRS7 high expression group. Furthermore, in the TME scores obtained by the estimate method, including StromalScore, ImmuneScore, and ESTIMATEScore, each TME score of the DHRS7 high expression group was significantly lower than that of the DHRS7 low expression group (Figures 10F,G). At the same time, a heat map was created to show the link between each immunological marker (Figure 11).
[image: Figure 10]FIGURE 10 | DHRS7 and immune relevance. (A–E) DHRS7 and immune cell correlation. (F) Differential expression between immune cells in high- and low-risk groups. (G) Differential analysis of immune microenvironment.
[image: Figure 11]FIGURE 11 | Correlation between immune genes.
3.10 Drug sensitivity, and pathway correlation with DHRS7 expression
We looked at the expression of DHRS7 in molecular subtypes and discovered that the expression of DHRS7 varied greatly between immune subtypes, ranging from C1 to C5, with the highest expression in C5, while the expression level of DHRS7 in C6 was equivalent to that of C3 (Figure 12). C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte deficient); C5 (immunologically quiet); C6 (immunologically active) (TGF-b dominant). Furthermore, we investigated DHRS7’s sensitivity to 27 different medications for the treatment of KIRC. It's worth noting that the drug sensitivity in the DHRS7 low expression group was much lower than in the DHRS7 high expression group across the board (Supplementary Figure S5). Since DHRS7 is expressed at a very low level in KIRC, these guidelines suggest that decreased expression of DHRS7 will impair KIRC’s sensitivity to therapeutic medicines, resulting in a poor treatment effect and, ultimately, a poor prognosis for patients. After that, we looked into the relationship between different pathways and DHRS7 expression and found that 19 different biological pathways, including tumor inflammation signature, EMT, Cellular Response to Hypoxia, and Tumor Proliferative Signature, all had significant negative correlations with DHRS7 expression. Other immune-related pathways, such as MYC targets and Li 10 anti-infectious signaling pathway, also had significant negative correlations with DHRS7 expression (Supplementary Figure S6). All of these suggest that DHRS7 expression is lowered, which reduces immune function, enhances immune escape, and promotes tumor progression.
[image: Figure 12]FIGURE 12 | Association between KIF23 expression immune subtypes in KIRC.
4 DISCUSSION
DHRS7, a member of the short-chain dehydrogenase/reductase superfamily, is found in a variety of organs and tissues throughout the human body and may identify and catalyze the action of signaling chemicals such as steroids and retinoic acid (Persson et al., 2009; Štambergová et al., 2016). Previous research has shown that this enzyme can act on in vitro substrates (Stambergova et al., 2014), but nothing is known about how it works in the human body. Several studies have found that DHRS7 activity is reduced in prostate cancer patients (Araya et al., 2017); nonetheless, the expression of DHRS7 has been linked to cell proliferation and adhesion, suggesting that this molecule may operate as a tumor suppressor (Seibert et al., 2015). In a recent study, Diao et al. (2022) found that knocking down DHRS7 with a multi-targeted therapeutic strategy helped trigger apoptosis, indicating its potential significance in prostate cancer treatment. In the case of gastrointestinal malignancies, increased DHRS7 expression is linked to a poor prognosis in individuals with gastric cancer (Yin et al., 2021). DHRS7 is also implicated in the signaling and trafficking of cannabinoid receptors, impacting the neurological course of many malignancies, according to research (Sharaf et al., 2019). These findings suggest that DHRS7 could be used as a tumor prognostic biomarker. The TME also plays a vital role in immune evasion and treatment resistance as a significant influence linked with tumor start, development, and metastasis (Deepak et al., 2020). However, the aberrant expression of DHRS7 in cancer and the relationship between DHRS7 and TME are not well understood, which calls for more research and could lead to novel clinical targets for tumor prognosis and treatment.
KIRC is the most frequent subtype of renal cell carcinoma, accounting for over 75% of all kidney malignancies (Rini et al., 2009), with significant rates of metastasis and death (Hsieh et al., 2017). Early stages of KIPC can be treated with limited treatments such as surgical resection or physical therapy, but if it progresses, traditional medication is no longer effective, and the prognosis is poor (Hu et al., 2020). Targeted immunotherapy approaches based on gene mutation sites have increasingly been implemented in clinical practice as research on the molecular level of cancer genes has progressed. Previous research has found that the expression of many loci in KIRC is strongly linked to MSI and TMB(Liu et al., 2020; Hu et al., 2021; Zhang et al., 2021), implying that improperly expressed genes may have therapeutic potential. Meanwhile, we realized that the DHRS7-KIRC study is quite modest, which drew our attention and gave us a new perspective on cancer research.
We conducted an overall predictable and prognostic evaluation system based on the above features to analyze the strong impact of DHRS7 on TME and tumor progression, and we presented novel cancer staging, especially in KIRC, and promising medicines for clinical treatment.
In our research, we discovered that DHRS7 is abnormally expressed in pan-cancer patients and has an impact on their survival. The expression of DHRS7 was dramatically reduced in HNSG, MESO, and KIRC patients; low DHRS7 expression was directly linked to advanced clinical stages and a worse survival rate in KIRC patients, implying a poor prognosis and treatment. In addition, we found that DHRS7 was related to TMB and MSI in a variety of malignancies. Using KIRC as an example, we discovered a negative connection between DHRS7 expression and TMB, as well as immunological ratings, implying that this chemical could be used as a tumor biomarker.
We looked at the association between KIRC and TME in addition to clinicopathology and TMB perspectives. TME has an important role in the development of kidney carcinoma, according to several studies. Xiong et al. (2020), for example, looked at immune infiltration in KIRC patients and found that Tregs were down-regulated and linked with poor survival and treatment outcomes. Treg cells, on the other hand, are key regulators of inflammation and essential for immune tolerance and homeostasis (Göschl et al., 2019); Tregs are the hallmark of tumor immune infiltration and provide new therapeutic implications for cancers (Shi and Chi, 2019). Furthermore, studies have shown that M2 macrophages are linked to the KIRC tumor microbiome and can predict the prognosis of KIRC patients (Wang et al., 2021). Cancer-promoting proteins such as IL-4, IL-10, and TGF- polarize M2 macrophages, which play a vital role in anti-inflammation, angiogenesis stimulation, and tumor growth metastasis (Ngabire and Kim, 2017). Tregs had the strongest positive correlation with DHRS7 expression in our study, while M2 macrophages had a substantial negative correlation with DHRS7 expression. This shows that DHRS7 has a role in immune function and is associated with tumor occurrence and treatment. Of course, more research is needed to clarify the chemical process that connects them and corroborate our findings.
We acknowledge that our study has some limitations, given that it is a bioinformatic analysis. To begin, new animal or cell research is required to confirm our findings, as this analysis method has certain inherent flaws. Second, because the data we got from the database may be biased, some age and sex conditions that could influence the results are not taken into account. Furthermore, sample bias would be another problem we couldn’t control, however, more large-scale research could help to alleviate this issue.
Finally, abnormal DHRS7 expression has been associated with the development and prognosis of a variety of malignancies, including KIRC. As a result, we used a comprehensive evaluation model to examine the critical role of DHRS7 in pathology, clinical staging, and immune infiltration, and we confirmed that DHRS7 could be used as a biomarker for predicting tumor development and, as a result, a potential therapeutic target that needs to be investigated further.
DATA AVAILABILITY STATEMENT
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS
ZZ, YH, and ST planned the research concept and designed it, made provision of study material, collected data and analyzed them, wrote and approved the manuscript. ME, ZT, and DL searched for data, wrote programming code. GC and HL collected pictures and graphs as well as edited them. ZZ, YH, and ST collected data and analyzed them, wrote and approved and helped correct the manuscript.
ACKNOWLEDGMENTS
The authors of the GSEA public datasets are highly appreciated.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.1015844/full#supplementary-material
REFERENCES
 Araya, S., Kratschmar, D. V., Tsachaki, M., Stucheli, S., Beck, K. R., and Odermatt, A. (2017). DHRS7 (SDR34C1) - a new player in the regulation of androgen receptor function by inactivation of 5α-dihydrotestosterone?J. Steroid Biochem. Mol. Biol. 171, 288–295. doi:10.1016/j.jsbmb.2017.04.013
 Deepak, K. G. K., Vempati, R., Nagaraju, G. P., Dasari, V. R., S, N., Rao, D. N., et al. (2020). Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 153, 104683. doi:10.1016/j.phrs.2020.104683
 Diao, Y., Wang, G., Zhu, B., Li, Z., Wang, S., Yu, L., et al. (2022). Loading of "cocktail siRNAs" into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer. Cancer Biol. Ther. 23 (1), 163–172. doi:10.1080/15384047.2021.2024040
 Escudier, B., Porta, C., SchMidingerM.,, , Rioux-LeclercqN.,, , Bex, A., Khoo, V., et al. (2019). Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30 (5), 706–720. doi:10.1093/annonc/mdz056
 Göschl, L., Scheinecker, C., and Bonelli, M. (2019). Treg cells in autoimmunity: From identification to treg-based therapies. Semin. Immunopathol. 41 (3), 301–314. doi:10.1007/s00281-019-00741-8
 Haeseleer, F., and Palczewski, K. (2000). Short-chain dehydrogenases/reductases in retina. Methods Enzymol. 316, 372–383. doi:10.1016/s0076-6879(00)16736-9
 Hsieh, J. J., Purdue, M. P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger, M., et al. (2017). Renal cell carcinoma. Nat. Rev. Dis. Prim. 3, 17009. doi:10.1038/nrdp.2017.9
 Hu, J., Chen, Z., Bao, L., Zhou, L., Hou, Y., Liu, L., et al. (2020). Single-cell transcriptome analysis reveals intratumoral heterogeneity in ccRCC, which results in different clinical outcomes. Mol. Ther. 28 (7), 1658–1672. doi:10.1016/j.ymthe.2020.04.023
 Hu, J., Xu, J., Feng, X., Li, Y., Hua, F., and Xu, G. (2021). Differential expression of the TLR4 gene in pan-cancer and its related mechanism. Front. Cell. Dev. Biol. 9, 700661. doi:10.3389/fcell.2021.700661
 Jacob, A., and Jothi, V. (1989). Occupational health nursing: A symposium. Nurs. J. India 80 (12), 321–322.
 Jonasch, E., Gao, J., and Rathmell, W. K. (2014). Renal cell carcinoma. Bmj 349, g4797. doi:10.1136/bmj.g4797
 Jörnvall, H., Landreh, M., and Östberg, L. J. (2015). Alcohol dehydrogenase, SDR and MDR structural stages, present update and altered era. Chem. Biol. Interact. 234, 75–79. doi:10.1016/j.cbi.2014.10.017
 Kallberg, Y., Oppermann, U., and Persson, B. (2010). Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. Febs J. 277 (10), 2375–2386. doi:10.1111/j.1742-4658.2010.07656.x
 Keating, L. J. (1989). Controversies in transfusion medicine. Should donor hemoglobin standards be lowered?Transfusion 29 (3), 259–260. doi:10.1046/j.1537-2995.1989.29389162733.x
 Liu, J., Pan, Y., Cao, Z., and Zhao, S. (2020). Comprehensive analysis of prognostic value and immune infiltration of chromobox family members in colorectal cancer.Front. Oncol. 10, 582667. doi:10.3389/fonc.2020.582667
 Majer, W., Kluzek, K., Bluyssen, H., and Wesoly, J. (2015). Potential approaches and recent advances in biomarker discovery in clear-cell renal cell carcinoma. J. Cancer 6 (11), 1105–1113. doi:10.7150/jca.12145
 Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019.Ca. Cancer J. Clin. 69 (5), 363–385. doi:10.3322/caac.21565
 Motzer, R. J., Hutson, T. E., Cella, D., Reeves, J., Hawkins, R., Guo, J., et al. (2013). Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369 (8), 722–731. doi:10.1056/NEJMoa1303989
 Motzer, R. J., Jonasch, E., Agarwal, N., Beard, C., Bhayani, S., Bolger, G. B., et al. (2015). Kidney cancer, version 3.2015. J. Natl. Compr. Canc. Netw. 13 (2), 151–159. doi:10.6004/jnccn.2015.0022
 Ngabire, D., and Kim, G. D. (2017). Autophagy and inflammatory response in the tumor microenvironment. Int. J. Mol. Sci. 18 (9), E2016. doi:10.3390/ijms18092016
 Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., et al. (2009). The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact. 178 (1-3), 94–98. doi:10.1016/j.cbi.2008.10.040
 Porta, C., Cosmai, L., Leibovich, B. C., Powles, T., Gallieni, M., and Bex, A. (2019). The adjuvant treatment of kidney cancer: A multidisciplinary outlook. Nat. Rev. Nephrol. 15 (7), 423–433. doi:10.1038/s41581-019-0131-x
 Rini, B. I., Campbell, S. C., and Escudier, B. (2009). Renal cell carcinoma. Lancet 373 (9669), 1119–1132. doi:10.1016/S0140-6736(09)60229-4
 Seibert, J. K., Quagliata, L., Quintavalle, C., Hammond, T. G., Terracciano, L., and Odermatt, A. (2015). A role for the dehydrogenase DHRS7 (SDR34C1) in prostate cancer. Cancer Med. 4 (11), 1717–1729. doi:10.1002/cam4.517
 Sharaf, A., Mensching, L., Keller, C., Rading, S., Scheffold, M., Palkowitsch, L., et al. (2019). Systematic affinity purification coupled to mass spectrometry identified p62 as part of the cannabinoid receptor CB2 interactome. Front. Mol. Neurosci. 12, 224. doi:10.3389/fnmol.2019.00224
 Shi, H., and Chi, H. (2019). Metabolic control of Treg cell stability, plasticity, and tissue-specific heterogeneity. Front. Immunol. 10, 2716. doi:10.3389/fimmu.2019.02716
 Stambergova, H., Skarydova, L., Dunford, J. E., and Wsol, V. (2014). Biochemical properties of human dehydrogenase/reductase (SDR family) member 7. Chem. Biol. Interact. 207, 52–57. doi:10.1016/j.cbi.2013.11.003
 Štambergová, H., Zemanova, L., Lundova, T., Malcekova, B., Skarka, A., Safr, M., et al. (2016). Human DHRS7, promising enzyme in metabolism of steroids and retinoids?J. Steroid Biochem. Mol. Biol. 155, 112–119. doi:10.1016/j.jsbmb.2015.09.041
 Wang, Y., Yan, K., Lin, J., Li, J., and Bi, J. (2021). Macrophage M2 Co-expression factors correlate with the immune microenvironment and predict outcome of renal clear cell carcinoma. Front. Genet. 12, 615655. doi:10.3389/fgene.2021.615655
 Xiong, Y., Wang, Z., Zhou, Q., Zeng, H., Zhang, H., Liu, Z., et al. (2020). Identification and validation of dichotomous immune subtypes based on intratumoral immune cells infiltration in clear cell renal cell carcinoma patients. J. Immunother. Cancer 8 (1), e000447. doi:10.1136/jitc-2019-000447
 Yin, H. M., He, Q., Chen, J., Li, Z., Yang, W., and Hu, X. (2021). Drug metabolism-related eight-gene signature can predict the prognosis of gastric adenocarcinoma. J. Clin. Lab. Anal. 35 (12), e24085. doi:10.1002/jcla.24085
 Yin, L., Li, W., Wang, G., Shi, H., Wang, K., Yang, H., et al. (2019). NR1B2 suppress kidney renal clear cell carcinoma (KIRC) progression by regulation of LATS 1/2-YAP signaling. J. Exp. Clin. Cancer Res. 38 (1), 343. doi:10.1186/s13046-019-1344-3
 Zemanová, L., Kirubakaran, P., Pato, I. H., Stambergova, H., and Vondrasek, J. (2017). The identification of new substrates of human DHRS7 by molecular modeling and in vitro testing. Int. J. Biol. Macromol. 105, 171–182. doi:10.1016/j.ijbiomac.2017.07.012
 Zhang, D., Zeng, S., and Hu, X. (2020). Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell. Int. 20, 319. doi:10.1186/s12935-020-01423-4
 Zhang, X., Wang, Y., A, G., Qu, C., and Chen, J. (2021). Pan-cancer analysis of PARP1 alterations as biomarkers in the prediction of immunotherapeutic effects and the association of its expression levels and immunotherapy signatures. Front. Immunol. 12, 721030. doi:10.3389/fimmu.2021.721030
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Tang, Zhao, Wang, El Akkawi, Tan, Liu, Chen and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 12 October 2022
doi: 10.3389/fgene.2022.989565


[image: image2]
A genomic and transcriptomic study toward breast cancer
Shan Wang1,2†, Pei Shang1†, Guangyu Yao1, Changsheng Ye1, Lujia Chen1 and Xiaolei Hu1*
1Department of Breast Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
2Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
Edited by:
Fu Wang, Xi’an Jiaotong University, China
Reviewed by:
ChuanGui Song, Fujian Medical University Union Hospital, China
Xinglong Fan, Qilu Hospital of Shandong University, China
* Correspondence: Xiaolei Hu, xlhu@smu.edu.cn
†These authors have contributed equally to this work
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 08 July 2022
Accepted: 16 September 2022
Published: 12 October 2022
Citation: Wang S, Shang P, Yao G, Ye C, Chen L and Hu X (2022) A genomic and transcriptomic study toward breast cancer. Front. Genet. 13:989565. doi: 10.3389/fgene.2022.989565

Background: Breast carcinoma is well recognized to be having the highest global occurrence rate among all cancers, being the leading cause of cancer mortality in females. The aim of this study was to elucidate breast cancer at the genomic and transcriptomic levels in different subtypes so that we can develop more personalized treatments and precision medicine to obtain better outcomes.
Method: In this study, an expression profiling dataset downloaded from the Gene Expression Omnibus database, GSE45827, was re-analyzed to compare the expression profiles of breast cancer samples in the different subtypes. Using the GEO2R tool, different expression genes were identified. Using the STRING online tool, the protein–protein interaction networks were conducted. Using the Cytoscape software, we found modules, seed genes, and hub genes and performed pathway enrichment analysis. The Kaplan–Meier plotter was used to analyze the overall survival. MicroRNAs and transcription factors targeted different expression genes and were predicted by the Enrichr web server.
Result: The analysis of these elements implied that the carcinogenesis and development of triple-negative breast cancer were the most important and complicated in breast carcinoma, occupying the most different expression genes, modules, seed genes, hub genes, and the most complex protein–protein interaction network and signal pathway. In addition, the luminal A subtype might occur in a completely different way from the other three subtypes as the pathways enriched in the luminal A subtype did not overlap with the others. We identified 16 hub genes that were related to good prognosis in triple-negative breast cancer. Moreover, SRSF1 was negatively correlated with overall survival in the Her2 subtype, while in the luminal A subtype, it showed the opposite relationship. Also, in the luminal B subtype, CCNB1 and KIF23 were associated with poor prognosis. Furthermore, new transcription factors and microRNAs were introduced to breast cancer which would shed light upon breast cancer in a new way and provide a novel therapeutic strategy.
Conclusion: We preliminarily delved into the potentially comprehensive molecular mechanisms of breast cancer by creating a holistic view at the genomic and transcriptomic levels in different subtypes using computational tools. We also introduced new prognosis-related genes and novel therapeutic strategies and cast new light upon breast cancer.
Keywords: breast cancer, protein–protein interaction, signal pathway, microarray, survival
INTRODUCTION
Breast carcinoma is well recognized to be having the highest global occurrence rate among all types of cancers, being the leading cause of cancer mortality in females worldwide (Ferlay et al., 2021). In the United States, it is estimated that approximately 281550 new female cases were diagnosed in 2021, and it accounted for 15% of estimated deaths due to cancer among women (Siegel et al., 2021). It is well known that breast cancer, which harbors high biological heterogeneity both between and within tumors, is not a single disease and can be classified into four subtypes according to the molecular types, such as luminal A, luminal B, Her2-overexpressed, and triple-negative breast cancer (TNBC) (Perou et al., 2000). Luminal A and luminal B subtypes express the hormone receptors and have a better prognosis than the other two subtypes (Harbeck et al., 2019). The Her2-overexpressed subtype only has Her2 expression and lacks expression of the estrogen receptor (ER) and progesterone receptor (PR), and this subtype has achieved tremendous clinical success because of effective therapy targeting Her2 (Cancer Genome Atlas Network, 2012; Harbeck et al., 2019). TNBC is characterized by the absence of ER, PR, and Her2 expression, which possesses distinct molecular traits and unique recurrence and metastatic patterns (Sørlie et al., 2001; Nielsen et al., 2004; Harbeck et al., 2019).
Currently, the clinical approach to treating breast cancer has been mainly composed of surgery, radiotherapy, chemotherapy, endocrine treatment, and targeted therapy (Harbeck et al., 2019). Although the treatment has been relatively perfect, the reduction of decline in the death rate for breast cancer slowed in females over the past decade, which suggests that we should elucidate the pathogenesis, occurrence, and development of cancer more accurately and find new potential prognostic biomarkers so that we can ensure early diagnosis and develop more personalized treatments and precision medicine to obtain better outcomes (Ferlay et al., 2021). For this to be possible, we think that it is sensible to get a holistic view of the mechanism of breast cancer with system biology approaches. By analyzing high-throughput data extracted from omics data, these approaches present an opportunity to depict the behavior of networks and offer novel therapeutics.
Previous studies have mostly analyzed the molecular mechanisms by comparing the difference between tumor and normal tissues of the breast or focused only on one subtype of breast cancer (Yang et al., 2019; Lin et al., 2020; Liu S. et al., 2020). Actually, during clinical treatment, different measures will be performed according to their subtype, so it is inappropriate to consider different subtypes as a whole to analyze. Also, focusing only on a single subtype cannot help us identify the difference and similarities among different subtypes. In addition, most studies are limited to exploring biomarkers and do not combine the genome with the transcriptome for further exploration.
In this study, we preliminarily delved into the potentially comprehensive molecular mechanisms of breast cancer by creating a holistic view at the genomic and transcriptomic level in four different subtypes using computational tools. To the best of our knowledge, this is the first time such a systematic biological study was performed on breast cancer according to its subtypes and at the genomic and transcriptomic level. We also first explored genes such as SRSF1, BUB1B, KIF23, HNRNPF, and ELAVL1 and obtained an exact result in our study. We re-analyzed the dataset deposited by Gruosso et al, (2016) and exhibited considerable protein–protein interaction networks. In addition, we performed network, clustering, and functional analysis so that we could have a deep understanding of the central genes of each subtype. Otherwise, pathways of different subtypes were identified with enrichment analysis, and new micro-RNAs (miRNAs) and transcription factors (TFs) were introduced to assay the regulatory mechanisms of differential expression genes (DEGs).
MATERIALS AND METHODS
Microarray data and DEG screening
A microarray dataset with accession number “GSE45827” from the GEO database was downloaded (Gruosso et al., 2016). This dataset includes 14 cell line samples, 41 TNBC cancer samples, 30 Her2 cancer samples, 29 luminal A cancer samples, 30 luminal B cancer samples, and 11 normal breast tissue samples, and we only used the cancer samples and normal breast tissue samples to analyze. GEO2R (RRID:SCR_016569, http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an online tool that can be used to screen DEGs across different groups. Using GEO2R of GEO, groups (TNBC vs. normal, Her2 vs. normal, luminal A vs. normal, and luminal B vs. normal) were compared to identify DEGs of the four subtypes. Benjamini–Hochberg false discovery was used for p-value adjustment. Genes were declared as DEGs when |lgFC|≥3 and the adjusted p-value (adj.p) < 0.01. The heat map was performed by SangerBox online tool version 3.0 (http://www.sangerbox.com/tool), and the volcano plot was drawn by GraphPad Prism for Windows (v9.2.0, RRID:SCR_002798, GraphPad Software, San Diego, California United States, www.graphpad.com).
PPI network construction
The PPI networks of DEGs were built with the STRING online tool (v11.0, RRID:SCR_005223, https://string-db.org/) (Szklarczyk et al., 2019). DEGs were mapped to the STRING database to estimate the interactive relationships, setting the confidence cutoff to 0.95. Then, Cytoscape (v3.8.2, RRID:SCR_003032) software was used to visualize the PPI network. For network analysis, the MCODE plugin (v2.0.0, RRID:SCR_015828) of Cytoscape software was used to investigate modules, highly connected sub-networks, and seed genes based on default settings (Bader and Hogue, 2003; Shannon et al., 2003). CytoHubba plugin version 0.1 of Cytoscape (v3.8.2, RRID:SCR_003032) was applied to detect hub genes (Chin et al., 2014). The criteria of hub genes were as follows: MCC cutoff =1000, degree cutoff = 10, closeness cutoff = 50, and betweenness cutoff = 1000. In addition, Venn diagrams were drawn by FunRich software (v3.1.3, RRID:SCR_014467).
Pathway enrichment analysis
Genes clustered with MCODE were analyzed by the Cytoscape ClueGO plugin (v2.5.8, RRID:SCR_005748), choosing Reactome and KEGG databases to retrieve pathways (Kanehisa and Goto, 2000; Bindea et al., 2009; Jassal et al., 2020). Bonferroni step down was used to adjust the p-value, and signal pathways with adj.p ≤ 0.05 were recognized.
Survival analysis
The Kaplan–Meier plotter mRNA breast cancer database (RRID:SCR_018753, https://kmplot.com/analysis/), an online database, was used to analyze the overall survival (OS) with hazard ratios (HRs), 95% confidence intervals (95% CIs), and logrank p-value. The JetSet best probe set was selected as gene probes. During the prognosis analysis, patients were split into two groups in accord with the auto-select best cutoff. The logrank p-value <0.05 was considered to show a statistical significance. The forest plot was drawn using Xiantao scholar (https://www.xiantao.love/), another online platform for data analysis.
Expression analysis of prognosis-related hub genes
The differential expression of prognosis-related hub genes was analyzed in the GSE45827 dataset and validated in TCGA dataset using the ggplot2 package of R software. During the analysis, the Mann–Whitney U test, Welch’s t-test, and Student’s t-test were used, respectively, depending on the normality and homogeneity of variance. Similarly the p-value < 0.05 was considered to show a statistical significance.
Functional exploration of each prognosis-related hub gene
GeneMANIA (http://www.genemania.org) was used to evaluate the functions of prognosis-related hub genes according to several bioinformatics methods, such as co-expression, physical interaction, prediction, co-localization, and shared protein domains and pathways (Warde-Farley et al., 2010).
miRNA and TF enrichment analysis
The microRNAs and TFs were predicted using the Enrichr online server (RRID:SCR_001575) (Kuleshov et al., 2016). MiRNAs were predicted by the TargetScan microRNA 2017 database, while TFs were predicted by the ChEA2016 database. Adj.p ≤ 0.01 was considered to show statistical significance. The miRNAs with higher combined scores were selected.
RESULTS
By analyzing the GEO database, DEGs were identified
The microarray dataset “GSE45827” which includes primary invasive breast carcinoma (41 TNBC, 30 Her2, 29 luminal A, and 30 luminal B) and 11 normal tissues has been analyzed. Using the GEO2R tool, we found 1170, 1058, 733, and 854 DEGs which are significantly variably expressed between TNBC vs. normal, Her2 vs normal, luminal A vs. normal, and luminal B vs. normal, respectively. Most of the DEGs overlapped between the four molecular subtypes (Figure 1A). The heat map and volcano plot are shown in Figure 2.
[image: Figure 1]FIGURE 1 | Overlapping of (A)DEGs, (B)hub genes, and (C)seed genes.
[image: Figure 2]FIGURE 2 | Heat map and volcano plot analysis of DEGs. In the volcano plot, blue dots on the left indicate the downregulated genes, gray dots in the middle indicate genes that are not differentially expressed, and red dots in the right indicate the upregulated genes. [(A): TNBC vs. normal, (B) Her2 vs. normal, (C) luminal A vs. normal, and (D) luminal B vs. normal.]
Protein–protein interaction networks were constructed
The PPI networks with DEGs were conducted using the STRING online tool. The edges indicate both functional and physical protein associations. The TNBC subtype has the most nodes and edges. A total of 501, 429, 245, and 316 nodes (genes) are in PPI networks TNBC vs. normal, Her2 vs. normal, luminal A vs. normal, and luminal B vs. normal, respectively (Figures 3A–D). The topological clusters also called modules found in MCODE identified groups of genes with a similar function, and each module has the most effective genes, called seed genes. Similarly, the TNBC subtype has the most modules and seed genes. Interestingly, these sets of seed genes in different subtypes exhibited few overlaps (Figure 1C). Network topology was measured based on the graph theory concepts such as MCC, degree, closeness, and betweenness. Seed genes such as CDC6 and RFC3 were hub genes in the TNBC. In the Her2 subtype, AURKB was identified as both a seed gene and a hub gene. Only SRSF1 which coincided with the TNBC and Her2 subtype was introduced as a hub gene in the luminal A subtype. All the hub genes in the luminal B subtype overlapped with the TNBC and Her2 subtype (Figure 1B). The hub genes are represented in Table 1.
[image: Figure 3]FIGURE 3 | Protein–protein interaction networks were built with differentially expressed genes. [(A): TNBC vs. normal, (B) Her2 vs. normal, (C) luminal A vs. normal, and (D) luminal B vs. normal.]
TABLE 1 | Hub genes in the PPI network.
[image: Table 1]Pathway enrichment analysis was performed
The pathway enrichment analysis was executed based on genes identified by MCODE. We reached 51, 25, 10, and 15 pathways by performing the pathway enrichment analysis from 163, 112, 53, and 88 genes, respectively (Figure 4). The genes used to analyze pathways were those that were included in PPI modules. The pathways involved in TNBC were mainly about DNA replication, DNA repair, and mitosis, while in the Her2 and luminal B types, they were mitosis, and most of the pathways involved in Her2 and luminal B subtypes were included in the TNBC subtype. In addition, the pathways that play a role in luminal A were totally different from the other three subtypes, especially associated with extracellular matrix organization and collagen formation. In the TNBC subtype, the top three pathways that contain the most genes are a condensation of prometaphase chromosomes, Chk1/Chk2(Cds1)-mediated inactivation of cyclin, and activation of ATR in response to replication stress. In the Her2 subtype, condensation of prometaphase chromosomes, resolution of sister chromatid cohesion, and amplification of signals from the kinetochores are the top three pathways. Syndecan interactions, MET-activated PTK2 signaling, and MET-promoted cell motility are the top three pathways in the luminal A subtype. In the luminal B subtype, the top three pathways are an amplification of the signal from the kinetochores, amplification of the signal from unattached kinetochores via a MAD2 inhibitory signal, and resolution of sister chromatid cohesion. Furthermore, there were also some pathways that are unique to specific subtypes, for example, the ERBB4 pathway in TNBC and the NOTCH4 pathway in luminal B.
[image: Figure 4]FIGURE 4 | Pathway enrichment analysis of clustered genes. Interconnected and informative pathways mainly are indicated by identical colors. The most significant pathway in each network is labeled. [(A): TNBC vs. normal, (B) Her2 vs. normal, (C) luminal A vs. normal, and (D) luminal B vs. normal].
Survival analysis of hub genes in different subtypes was carried out
We then considered whether the hub genes in the different subtypes of breast cancer were associated with prognosis. The relationship between hub gene expression and survival rates was evaluated using the Kaplan Meier plotter. The prognostic analysis demonstrated that hub genes such as CDC6, NDC80, BUB1B, FOXM1, NUF2, MCM4, CDC20, BUB1, MCM2, CCNB2, ASPM, PRC1, PLK1, HNRNPF, CCNA2, and KIF2C were related to good prognosis in TNBC (Figure 5A). In addition, SRSF1 was negatively correlated with overall survival (OS) in the Her2 subtype, while in the luminal A subtype, it showed the opposite relationship (Figures 5B,C). In the luminal B subtype, CCNB1 and KIF23 were associated with poor prognosis (Figure 5D).
[image: Figure 5]FIGURE 5 | Prognostic value of hub genes. Forest plots show the correlation between hub gene expression and prognosis in different subtypes of breast cancer. [(A): TNBC, (B) Her2, (C) luminal A, and (D) luminal (B).]
The expression of prognosis-related hub genes in each subtype was analyzed in the GSE45827 dataset and validated in another independent dataset
The expression of hub genes that were related to prognosis in GSE45827 was analyzed using ggplot2 of R software. All the hub genes that were analyzed in TNBC were upregulated, including ASPM, BUB1, BUB1B, CCNA2, CCNB2, CDC6, CDC20, FOXM1, HNRNPF, KIF2C, MCM2, MCM4, NDC80, NUF2, PLK1, and PRC1 (Figure 6A–P). SRSF1 was a hub gene that was related to prognosis in both Her2 and Luminal A subtypes, and its expression profiles in the two subtypes were similar—it had a higher expression level in the normal tissues than in the tumor tissue (Figure6Q–6R). The two hub genes that were associated with prognosis in the luminal B subtype were also upregulated (Figure 6S–6T). Then, we validated the expression of prognosis-related hub genes in TCGA dataset. The expression of SRSF1 in Her2 and luminal A subtypes is not consistent with the result of the GEO profile analysis, and it was highly expressed in tumor tissues rather than normal tissues (Figure 7Q–7R). The expression levels of the rest hub genes were in accordance with the GEO profile analysis (Figure 7A–P, Figure 7S,T).
[image: Figure 6]FIGURE 6 | Expression of hub genes in GSE45827. (A–P) ASPM, BUB1, BUB1B, CCNA2, CCNB2, CDC6, CDC20, FOXM1, HNRNPF, KIF2C, MCM2, MCM4, NDC80, NUF2, PLK1, PRC1 expression in TNBC subtype. (Q) SRSF1 expression in Her2 subtype. (R) SRSF1 expression in Luminal A subtype. (S,T) CCNB1, KIF 23 expression in Luminal B subtype.
[image: Figure 7]FIGURE 7 | Validation of hub genes in TCGA dataset. (A–P) ASPM, BUB1, BUB1B, CCNA2, CCNB2, CDC6, CDC20, FOXM1, HNRNPF, KIF2C, MCM2, MCM4, NDC80, NUF2, PLK1, PRC1 expression in TNBC subtype. (Q) SRSF1 expression in Her2 subtype. (R) SRSF1 expression in Luminal A subtype. (S,T) CCNB1, KIF 23 expression in Luminal B subtype.
Potential functions for each prognosis-related hub gene were explored
We then investigated the functions of the prognosis-related hub genes using GeneMANIA. It showed that these genes were correlated with mitotic nuclear division (FDR=2.13e-33), chromosome segregation (FDR=1.68e-24), microtubule cytoskeleton organization involved in mitosis (FDR=8.79e-20), spindle (FDR=8.94e-18), mitotic cell cycle checkpoint (FDR=9.00e-17), negative regulation of the mitotic cell cycle (FDR=3.42e-14), and metaphase/anaphase transition of the mitotic cell cycle (FDR=3.00e-17) (Figure 8).
[image: Figure 8]FIGURE 8 | Protein–protein interaction network (GeneMANIA) of prognosis-related hub genes.
miRNAs and TFs enriched with DEGs were determined
The miRNAs and TFs, as important regulators of DEGs, were predicted using the Enrichr web server. It is worth noting that the luminal A subtype had the most TFs, while it had the least hub genes among the four molecular subtypes. Seven TFs exerted their function in all four subtypes (Figure 9). TFs that were meaningful in breast cancer development are shown in Table 2. The top 10 miRNAs enriched with DEGs in each subtype are also shown (Figure 10).
[image: Figure 9]FIGURE 9 | Overlapping of TFs.
TABLE 2 | Transcription factor enrichment analysis.
[image: Table 2][image: Figure 10]FIGURE 10 | miRNA enrichment analysis results.
DISCUSSION
In the present study, bioinformatic approaches were carried out to show the DEGs, modules, seed genes, PPI, and hub genes in each subtype (TNBC, Her2, luminal A, and luminal B). The topological clusters which have high-density regions in the network, also called modules, find in MCODE-identified groups of genes with a similar function. Genes in the highly interconnected subnetwork modules are expected to be involved in the same pathways or in roles with related biological functions. Each module has a most effective gene which has high centrality, named seed genes. The nodes in the PPI network represent genes, while the edges indicate both functional and physical protein associations. Nodes with high degree, betweenness, closeness, and MCC are significant for the network and are called hub genes which can serve as targets. The analysis of these elements implied that the carcinogenesis and development of TNBC were the most important and complicated processes in breast carcinoma, occupying the most DEGs, modules, seed genes, hub genes, and the most complex PPI network.
The role of some of those hub genes that we identified in our study has been verified in breast cancer, such as UBE2C whose overexpression plays a critical role in the incidence and development of breast cancer, and such a therapeutic strategy that combines palbociclib with tamoxifen might be promising in patients with HR+/HER2-breast cancer overexpressing UBE2C (Mo et al., 2017; Kim et al., 2019). Otherwise, it is reported that MCM2 and MCM4, which have a higher expression in high histological grade breast cancer, may be used as useful parameters to distinguish luminal A and luminal B subtypes instead of ki-67 and are related to poor prognosis (Issac et al., 2019), which is partly consistent with our results in the TNBC subtype. Also, high expression of RACGAP1 is supposed to be not only a strong poor prognostic marker in luminal-like breast cancer but might also be a predictor of response to treatment with tamoxifen and adjuvant chemotherapy (Milde-Langosch et al., 2013). In addition, the expression levels of CDK1 and CCNA2 have been previously revealed to be considerably higher in breast cancer tissues than those in normal tissues, and these genes lead to breast cancer development and are related to poor prognosis (Xing et al., 2021); however, compared with their study, we found that CDK1 had an independent association with prognosis, and the discrepancy may be due to different analysis methods, as we analyzed according to the subtype while they did not. Others have shown that overexpression of CDC20 indicates unfavorable prognosis and poor response to endocrine therapy in ER + breast cancer (Alfarsi et al., 2019; Tang et al., 2019); in contrast, we discovered that CDC20 was related to worse prognosis only in the TNBC subtype, and we think that the different datasets that we analyzed result in the inconsistency. Other genes such as BUB1, NUF2, CDC20, ASPM, KIF2C, and PRC1 have biological relevance to breast cancer progression, and PLK1, NDC80, and CCNB2 only to TNBC progression, and these genes predict worse prognosis (Wang et al., 2015; Tang et al., 2019; Yang et al., 2019; Lv et al., 2020; Ren et al., 2020; Chen et al., 2021; Jiang et al., 2021; Koyuncu et al., 2021); likewise, we also found that these genes correlated negatively with prognosis in the TNBC subtype. Moreover, it is also reported that high expression levels of AURKB, CDC6, and ECT2 suggest a poor prognosis for breast cancer (Mahadevappa et al., 2017; Daulat et al., 2019; Huang et al., 2019; Xiu et al., 2019), whereas we only found that CDC6 was negatively positively related to overall survival, and we consider that it is also the different datasets and analysis methods that cause the disparity. Furthermore, it is previously revealed that it might be an efficient therapeutic method to target FOXM1 to impede advanced relapse and treat endocrine resistance (Roßwag et al., 2021). In addition, genes such as SRSF1, BUB1B, KIF23, and HNRNPF also play an important role in breast cancer, but so far, there is few reports on the association between these genes and the treatment or prognosis of breast cancer in the previous studies (Tyson-Capper and Gautrey, 2018; Du et al., 2021; Jian et al., 2021; Koyuncu et al., 2021); inspiringly, we performed it and obtained an exact result in our study. Also, we newly introduced applicant genes such as RPA1 and CDC5L in TNBC, but their mechanism remains to be discovered with exploratory studies.
In terms of the pathway enrichment analysis, the nodes represent the pathway, while the edges mean that there is a functional similarity between the two pathways. As was consistent with the abovementioned analysis, the pathway enrichment analysis also showed that TNBC is the most complex subtype in breast cancer. In addition, there is an overlap of the pathways in the TNBC, Her2, and luminal B subtypes, while the pathways enriched in the luminal A subtype were unique. This suggested that the luminal A subtype occurs in a completely different way. If so, the treatment of the luminal A subtype should be different from the other three subtypes, especially the postsurgical adjuvant therapy, or in other words, there should be a specific treatment strategy to be formulated just for the luminal A subtype compared with the others. Of course, pathways about DNA replication and DNA repair are only included in TNBC, which means studies focused on these pathways can help shed light upon TNBC and develop treatments that are only indicated for TNBC. Also, for the same reason, patients of TNBC, Her2, and luminal B subtypes may benefit from studies on mitosis in the future. Otherwise, in addition to pathways related to DNA replication, DNA repair, and mitosis, the ERBB4 signal was only enriched in TNBC, while the NOTCH4 signal was only in the Her2 subtype, and chemokine and kinesins in both of them, compared with the luminal B subtype. ERBB4, a member of the human epidermal growth factor receptor family, has been previously reported to be a valuable prognostic marker when united with the pathologic stage in TNBC and may be helpful in predicting the therapeutic efficacy for TNBC (Kim et al., 2016). However, the biological function of ERBB4 and its potential as a cancer drug target have not been explicitly described, and we also hope that patients suffering from TNBC with ERBB4 overexpression would benefit from further clinical trials on receptor tyrosine kinase (RTKs). NOTCH4 has been identified to hinder differentiation, functional development, and branching morphogenesis of the mammary epithelium (Uyttendaele et al., 1998). In breast cancer, NOTCH4 is predominantly expressed in the Her2 subtype, and the expression is also discovered to be associated with bad prognostic factors (Wang et al., 2018). As the NOTCH4 signal pathway is found to be enriched in the Her2 subtype in our study, using NOTCH4 antagonists to suppress NOTCH4 signaling may be a novel and individually distinct strategy to treat Her2 subtype breast cancer.
According to the result of TF analysis, although most of the TFs have been reported to be associated with breast cancer, there were still TFs such as EOMES, POU3F2, NR3C1, and RUNX1 that were less reported in breast cancer. Studies focused on these TFs may shed light upon breast cancer in a new way and provide a novel therapeutic strategy. For microRNA analysis, the miR-875 family has been reported to serve as a marker for detection and prognosis in breast cancer (Liu et al., 2021). Others, such as miR-1284, miR-3613, and miR-208a families play a role in the progression of breast cancer (Zhang et al., 2019; Zou et al., 2019; Liu Y. et al., 2020). It is valuable to investigate other miRNAs in experimental studies.
The present research also includes some limitations. First, our study only looks at data in one dataset, and the GPL platform used in the dataset is now not universally applicable. Second, most of the clinicopathologic features are not included in the dataset, and we cannot rule out that these factors might have influenced our results. Third, we just predicted the TFs and miRNAs through DEGs and did not calculate the relationship between them or carry out experiments to validate it, but this is just what we are doing now.
CONCLUSION
In this study, we preliminarily delved into the potentially comprehensive molecular mechanisms of breast cancer by creating a holistic view at the genomic and transcriptomic levels in different subtypes using computational tools. Our study introduced a network of genes, pathways, prognosis-related genes, TFs, and miRNAs which are possibly associated with a different subtype of breast cancer, and they can be good candidates for further analysis and provide novel approaches to treat breast cancer.
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Background: Immunogenic cell death (ICD) plays an important role in several malignancies. However, the role of ICD-mediated patterns in bladder cancer (BCA) remains unknown.
Methods: For assessing the ICD-mediated patterns based on the expression of IRGs, 4 large BCA cohorts were obtained. The ICD-mediated patterns of individual samples were quantified as an ICD score by principal component analysis. The correlations of the ICD-mediated patterns with the tumor immune microenvironment (TIME) and responses to immunotherapy were comprehensively evaluated. The IRGs with predictive prognostic values were further validated by in vitro loss of function assays.
Results: Two distinct ICD-mediated patterns were established, showing distinct clinical features and immune microenvironment features. Although ICD cluster A was associated with a poor prognosis with a high ICD score, it showed an immune activation state with a more favorable response to immunotherapy and treatment that induced ICD. The ICD-related gene, CALR, was significantly upregulated in the T24 BCA cell line relative to the control SV-HUC-1 cells. Knocking down CALR suppressed T24 cell viability and caused ER stress.
Conclusion: We identified the existence of distinct ICD-mediated patterns in BCA closely associated with the remodeling of the TIME. Further in-depth examination of ICD-related features is warranted to obtain a broader prospect for therapeutic innovations and improved prognosis of BCA.
Keywords: bladder cancer, immunogenic cell death, immunotherapy, tumor immune microenvironment, immune checkpoint inhibitors
1 INTRODUCTION
Bladder cancer (BCA) is the ninth most frequently diagnosed cancer worldwide with high morbidity and mortality (Antoni et al., 2017). Bladder urothelial carcinoma is categorized as non-muscle invasive BCA (NMIBC) and muscle-invasive BCA (MIBC), with the former accounting for 80% of initial BCA cases, showing better prognoses with surgical resection as the primary treatment (Berdik, 2017). However, the challenge of recurrence remains (Abdollah et al., 2013). The mainstay of treatment for MIBC is platinum-based neoadjuvant chemotherapy combined with radical resection surgery (Witjes et al., 2021). Nevertheless, MIBC patients have a high chance of recurrence and metastasis and therefore a poor prognosis. Immunotherapy, especially immune checkpoint inhibitors (ICIs), is a research hot spot in cancer treatment. Several anti-PD-1/PD-L1 agents have been used in the clinic with definitive efficacy (Powles et al., 2014; Feld et al., 2019). Avelumab and various anti-PD-1/PD-L1 agents have been approved as second-line therapies for advanced/metastatic BCA (Katz et al., 2017). However, notably, the levels of PD-1/PD-L1 expression are closely related to the response rate to therapy, and less than half of MIBC patients achieve a satisfactory prognosis (Gómez de Liaño Lista et al., 2020). Although ICIs are promising for patients with MIBC, the discovery of potential predictors of treatment responses is necessary.
Immunogenic cell death (ICD) is a form of regulated cell death that, wherein a class of signaling molecules called damage-associated molecular patterns (DAMPs) are released when cells undergo death in response to an external stimulus; DAMPs are recognized by antigen-presenting cells and thereby activate an adaptive immune response, ultimately triggering cell death (Galluzzi et al., 2020; Kroemer et al., 2022). Previous studies suggest that chemotherapy, radiotherapy and some targeted anticancer drugs can induce ICD (Rodriguez-Ruiz et al., 2020). Restoring or reinforcing the ICD of tumors for the treatment of cancer has attracted increasing attention and some attempts have been made in this direction. For example, assisting the treatment of BCA by inducing ICD is a promising avenue (Oresta et al., 2021; Nikolos et al., 2022). Additionally, several studies confirm that combination therapy of chemotherapy with ICIs by inducing ICD shows better efficacy (Rodriguez-Ruiz et al., 2020). The reason may be that ICD induced by chemotherapy is mediated by integrated stress response (ISR), which can upregulate the PD-L1 expression (Suresh et al., 2020). Therefore, the synergistic effects of ICD with immunotherapy also deserve further in-depth elucidation. To date, no study has yet revealed the different expression signatures of ICD-related genes (IRGs), if any, in BCA and their association with prognosis and treatment responses.
Our overall analysis of IRGs in BCA establishes two distinct ICD-mediated patterns, which were found to be associated with the tumor immune microenvironment (TIME) and could predict the efficacy of immunotherapy and induction of ICD therapy. The findings highlight the key role of ICD in the TIME of BCA and provide new ideas for further elucidating the mechanism of ICD in BCA and developing innovative intervention strategies.
2 METHODS
2.1 Public datasets and preprocessing
The BCA transcriptome data and corresponding clinical information were obtained from two databases, namely The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Four different BCA cohorts, including TCGA-BLCA, GSE13507, GSE31684 and GSE32894, were analyzed in the study. Background adjustment for data matrix from affymetrix platforms was performed using the R packages “Affy” and “simpleaffy”. For data matrices from other platforms, normalized sources were downloaded. To ensure the consistency and comparability of TCGA and GEO datasets, transcriptome data of TCGA-BLCA were converted from FPKM to TPM format before data analysis. Additionally, somatic mutation and copy number variation (CNV) data for TCGA-BLCA were downloaded from the TCGA database.
2.2 Merging datasets
The “normalizeBetweenArrays” function of the R package “limma” was executed to normalize the expression data for non-uniform matrix distribution. When multiple probes represented the same gene symbol, the mean value was considered as the level of expression. To improve the reliability, the four datasets were merged and batch effects removed using the “combat” function of the R package “sva”.
2.3 Unsupervised clustering of IRGs in the merged dataset
A total of 28 IRGs were identified in the merged dataset, including ATG5, BAX, CASP8, ENTPD1, FOXP3, IL10, NT5E, CALR, CASP1, CD4, CD8A, CXCR3, EIF2AK3, HSP90AA1, IFNG, IFNGR1, IL17RA, IL1B, IL1R1, IL6, LY96, MYD88, NLRP3, P2RX7, PIK3CA, PRF1, and TLR4 and TNF. Subsequently, the potential significant prognosis-related genes (p < 0.05) were selected by univariate Cox regression analysis, and subjected to unsupervised cluster analysis using the R package “consensusclusterplus”. To ensure the reliability of ICD clustering, the process was iterated 1,000 times. Finally, Kaplan Meier survival curves for different ICD clusters were plotted using the “ggsurvplot” function in the R package “survminer” to in turn validate the predictive value of the prognostic ICD clusters.
2.4 Gene set variation analysis, gene ontology annotation and kyoto encyclopedia of genes and genomes analysis
Gene Set Variation Analysis (GSVA) was performed between the ICD clusters using the R package “gsva” to identify the biological differences between the ICD mediation patterns. “c5.go.v7.5.1.symbols” and “c2.cp.kegg.v7.5.1.symbols” served as the reference; the adjusted p-value threshold was set at 0.05. Differentially expressed genes (DEGs) between different ICD Mediated Patterns were identified using the R package, “clusterprofiler” (adjusted p-value < 0.001 and | logFC | > 1). Gene ontology (GO) annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed using the R package “clusterprofiler” for significant DEGs between different ICD mediation patterns.
2.5 Evaluation and classification of the ICD signature
The prognostic value of DEGs between different ICD-mediated patterns was assessed by univariate Cox regression analysis (p < 0.05) with the R package “survival”. Unsupervised cluster analysis of genes with significant prognostic values was then performed using the R package “ConsensusClusterPlus”. Next, Kaplan Meier survival analysis for different gene clusters was performed using the “ggsurvplot” function of the R package “survminer”. All DEGs with significant prognostic values were further subjected to PCA to develop an ICD-mediated signature. An ICD score was assigned to each sample using the formula: ICD score = ∑ (principal element 1e + principal element 2e), where e is defined as the expression of IRGs. The assignment of the sample to the high- or low-risk ICD group was based on the median ICD score.
2.6 Multiomic features of the ICD signature
The R packages “limma” and “ggpubr” were used to compare the differences between ICD scores of ICD and gene clusters. Kaplan-Meier survival analysis for high- and low-risk ICD score groups was performed to evaluate the predictive value of the ICD score for survival. The correlation of the ICD signature with tumor mutation burden (TMB) and oncogenic mutations was analyzed using the R packages “ggplot2” and “ggpubr”. The utility of the ICD signature for different clinical features (gender, age and T stage) was also performed using the R package “ggplot2”.
2.7 Predictive value of ICD signature for immunotherapeutic responses
Based on the natural association of ICD with immune function, the relevance of tumor cell ICD signature with immune function and microenvironment was examined and the predictive value of ICD signature for immunotherapeutic efficacy was analyzed. First, the stromal, immune and ESTIMATE scores were calculated for each sample using the R package “ESTIMATE”, and the survival differences between low- and high-ESTIMATE score groups and low- and high-ICD score groups were simultaneously compared. Moreover, the differences in the degree of immune cell infiltration based on the different ICD-mediated patterns were evaluated by single sample gene set enrichment analysis (ssGSEA). The differences in the expressions of immune checkpoint blockade genes (CTLA-4, PD-1 and PD-L1) and immune suppressive cytokines (IL-10, TGF- β2 and TGF- β3) between the high- and low-ICD score groups were evaluated using the R package “limma”. Sensitivity analyses for traditional chemotherapeutic agents and molecular targets were performed using the R package “pRRophetic” according to the gene expression in different ICD clusters to predict pharmacotherapeutic responses. Further, the relationship of the ICD score with the immunotherapy score was predicted based on immunotherapy cohort data from The Cancer Immunome Atlas (TCIA) database (https://www.tcia.at/home) and the correlations of the four immunotherapy strategies (anti-CTLA-4, anti-PD1, anti-CTLA-4 + anti-PD1 and no medication) with different ICD score groups were analyzed.
2.8 Cell culture
The SV-HUC-1 (CL-0222) and T24 (CL-0227) cell lines were purchased from Procell Life Science & Technology Co., Ltd. SV-HUC-1 and T24 cells were cultured in Ham’s F-12K medium (Gibco) and RPMI-1640 medium (Gibco), respectively. The media were supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin-streptomycin solution (Gibco). Cells were maintained in an incubator at 37°C with 5% carbon dioxide and 95% relative humidity. Passages were performed when cell confluency reached 80%. Cells in the logarithmic growth phase were used for experiments.
2.9 Real-time quantitative reverse transcription PCR
Total cellular RNA was extracted with TRIzol reagent (Invitrogen)and cDNA synthesis was performed with HiScript® II Q RT SuperMix (Vazyme). The relative mRNA levels were quantified via real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) using the 2 × RealStar Fast SYBR qPCR Mix kit (GenStar) on the 7,500 real-time PCR system (Applied Biosystems). β-Actin was used as the reference gene. Primer sequences used in this study were listed in Table 1.
TABLE 1 | Primers.
[image: Table 1]2.10 Cell transfection protocol
The siRNA for CALR was synthesized by Genepharma Biotechnology (Shanghai, China). T24 cells were cultured in a complete medium without antibiotics. Cells were transfected with lipofectamine-2000 following the manufacturer’s instructions, and the gene expression of CALR was determined by qRT-PCR analysis 48 h after transfection.
2.11 CCK-8 assay
CCK-8 assay was performed to detect cell viability. T24 cells were incubated in 96-well plates for 72 h after transfection and the culture was continued for another 24 h. Each well was incubated after the addition of CCK-8 solution (10 μl) for 1 h. Finally, the OD at 450 nm was measured using a multifunctional microplate reader (Thermo).
2.12 Statistical analysis
DEGs between different groups were compared using the R package “limma”. Categorical variables were compared using the chi-square test. Differences between the groups were analyzed using the student t-test. Differences between three or more groups were compared using a one-way analysis of variance (ANOVA). All statistical analyses were performed on R (version 4.1.3, Vienna, Austria) or IBM SPSS (version 22.0, NY, United States). All graphic representations were on GraphPad Prism (version 8.0). Data for all in vitro tests were the results of three independent replicates.
3 RESULTS
3.1 Genetic alterations in IRGs in BCA
A total of 34 IRGs were analyzed (Garg ad et al., 2015) and the gene list is provided in Supplementary Table S1. Preliminary analyses were performed for CNV and somatic mutation data of IRGs in the TCGA-BLCA cohort (Supplementary Table S2, S3). Among the IRGs, the majority (22/34) were characterized by copy number amplification, while a small proportion (12/34) showed copy number deletions (Figure 1A). Moreover, most IRGs showed significant differences in expression between normal and bladder tumor issues (Figure 1B). Additionally, some IRGs with copy number amplification (HMGB1, IL17RA, and BAX) showed increased expression in tumor tissues, while some IRGs with copy number deletions (IL10, NT5E, and ENTPD1) showed decreased expression in tumor tissues. CNV locations on chromosomes of IRGs are annotated in Figure 1C. Somatic mutations in the TCGA-BLCA cohort indicated that 35.44% of the samples harbored mutations in IRGs (Figure 1D). The heterogeneity in CNV and somatic mutations in the TCGA-BLCA cohort suggested that BCA may exhibit heterogeneous expression features of IRGs.
[image: Figure 1]FIGURE 1 | Landscape of genetic variations in IRGs in bladder cancer. (A) CNV distributions of IRGs in bladder cancer. (B) Different expressions of IRGs in tumour and normal tissues. (C) CNV locations of IRGs on 23 human chromosomes. (D) Waterfall plot demonstrating the somatic mutation status of IRGs in bladder cancer. Each column represents a single sample and the upper bar graph represents the TMB value. The number on the right represents the frequency of somatic mutations.
3.2 ICD-mediated patterns based on 28 IRGs
Three GEO BCA datasets (GSE13507, GSE31684, and GSE32894) were merged with the TCGA-BLCA cohort (Supplementary Table S4). Expression data for the 28 IRGs were extracted from the merged dataset (Supplementary Table S5). Significant correlations were found among the 28 IRGs (Figure 2A). CALR, TLR4, LY96 and CASP8 could be the key factors at the core of the interactions. Kaplan-Meier survival analysis for the IRGs revealed that the vast majority of genes (23/28) had significant predictive prognostic value (Figures 2B–X). The R package “ConsensusClusterPlus” was utilized to classify the samples of the merged dataset into two different ICD clusters based on the levels of expression of 28 IRGs (Supplementary Figures S1A, Supplementary Table S6). Moreover, the two ICD clusters showed significantly different prognostic predictive outcomes (Supplementary Figure S1B). Supplementary Figure S1C demonstrated the correspondence between ICD clusters and clinical features. Additionally, ICD cluster A could be ideally distinguished from ICD cluster B based on PCA (Supplementary Figure S1D).
[image: Figure 2]FIGURE 2 | The prognostic role of IRGs in the merged cohort. (A) A network illustrating interactions between 28 IRGs. (B–X) Kaplan-Meier analysis of 23 IRGs with prognostic roles in bladder cancer in the merged cohort.
3.3 GSVA and ssGSEA for ICD clusters
To fully probe the biological differences between the ICD clusters, GSVA and ssGSEA were performed. First, the R package “GSVA” was used to identify the KEGG pathways and GO terms related to the ICD characteristics in the merged dataset. These results showed that signaling pathways associated with EMT and migratory abilities of malignant tumors were significantly enriched in ICD cluster A, including ECM receptor interaction, focal adhesion, cytokine receptor interaction and cell adhesion molecules (CAM). Moreover, key signaling pathways involved in inflammation and cancer, NOD-like receptor and JAK-STAT signaling pathways, were also highly enriched in ICD cluster A. Chemokine signaling pathways and leukocyte trans-endothelial migration pathways that regulate the TME by coordinating immune cell trafficking tropism were also enriched in ICD cluster A (Supplementary Figure S2A; Supplementary Table S7). Similarly, almost all GO terms enriched in ICD cluster A corresponded to various immune cell functions, including chemotaxis, activation and migration (Supplementary Figure S2B; Supplementary Table S8). The results of GSVA revealed that the remodeling of tumor inflammatory microenvironment and TIME may be responsible for the poorer prognosis in ICD cluster A. ssGSEA revealed significant differences between the ICD clusters for all 22 immune cell types except monocytes (Figure 3A). Only three immune cell types showed increased infiltration in the ICD cluster B, including CD56bright/CD56dim NK cells that dominate the direct tumor-killing effects and T helper 17 T cells, exerting an indirect tumor clearance effect by recruiting the killer cells (Bowers et al., 2017). These three cell types may be involved in enhancing the survival of patients in the ICD cluster B. The vast majority of immune cells showed increased infiltration in ICD cluster A, including not only immune cells (macrophages and mast cells) associated with poorer prognosis in BLCA but also those associated with better prognosis (type 1 T helper cells, regulatory T cells and activated CD8 T cells). A total of 551 DEGs were identified between the ICD clusters (Supplementary Table S9). The results of GO enrichment analysis for DEGs showed that biological processes related to TIME remodeling were significantly enriched, including activation, chemotaxis, migration and adhesion processes of various immune cells, as well as remodeling of the extracellular matrix (Figure 3B). Similarly, KEGG pathway enrichment analysis for DEGs also suggested the overrepresentation of various pathways related to the regulation of immune functions, including cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor, chemokine signaling pathway, phagosome, NF-kappa B signaling pathway, TNF signaling pathway and leukocyte transendothelial migration (Figure 3C).
[image: Figure 3]FIGURE 3 | GO, KEGG and ssGSEA analyses based on DEGs in distinct ICD clusters. (A) ssGSEA analysis of two distinct ICD clusters. (B) Bubble chart presenting KEGG enrichment analysis. (C) Bubble chart presenting GO enrichment analysis. The asterisk symbol indicated the statistical p-value. (*p < 0.05; **p < 0.01; ***p < 0.001).
3.4 ICD genetic identification
The results of survival analysis based on DEGs from different ICD clusters indicated that most of them (63.9%) had significant prognostic values (Supplementary Tables S10, S11). To decipher the genetic differences mediated by different ICD clusters, an unsupervised clustering analysis was performed based on the prognostic DEGs. Gene cluster A and B were found in different ICD clusters (Figure 4A; Supplementary Table S12). The ICD cluster A and B corresponded well to gene cluster A and B respectively, and showed significantly different prognoses and correlations with various clinical parameters (Figures 4B,C). Similarly, almost all IRGs showed differences in expressions between gene cluster A and B (Figure 4D). ICD scores were assigned to the samples according to the levels of expression of prognostic DEGs (Supplementary Table S13). Results of the survival curve analysis indicated that the low ICD score group showed significantly better survival relative to the high ICD score group (Figure 5A). The Sankey diagram presents the correspondence between ICD score, ICD clusters and ICD gene clusters (Figure 5B). The correlation between ICD cluster B and ICD gene cluster B with low ICD score showed a good prognosis as shown in Figures 5C,D; Supplementary Figure S1B. Additionally, as shown in Figure 5E, the ICD score was positively correlated with the infiltration of the vast majority of immune cells and negatively correlated with the infiltration of CD56 bright natural killer cells, CD56 dim natural killer cells, monocytes and type 17 T helper cells.
[image: Figure 4]FIGURE 4 | ICD gene clusters in the merged cohort. (A) Consensus clustering matrix for k = 2. (B) Kaplan–Meier curve survival analysis among two distinct gene clusters. (C) Heatmap demonstrating various clinicopathological features of two distinct gene clusters. (D) Different expression levels of 28 IRGs in distinct gene clusters. The asterisk symbol indicated the statistical p-value. (*p < 0.05; **p < 0.01; ***p < 0.001).
[image: Figure 5]FIGURE 5 | ICD score is a quantification indicator of individual samples in the merged cohort. (A) Kaplan–Meier curve analysis of different ICD score groups. (B) Sankey diagram demonstrating correlations among ICD clusters, ICD score and ICD gene clusters. (C) Differences in ICD scores among two ICD clusters in the merged cohort. (D) Differences in ICD scores among two gene clusters in the merged cohort. (E) ssGSEA analysis showing a correlation between ICD score and the infiltration abundance of various immune cell.
3.5 Relationship between the ICD score and TMB
No correlation was found between TMB and ICD score (Figures 6A,B), suggesting that the mechanism linking the ICD patterns to BCA did not affect TMB. Moreover, as there was a correlation between TMB and prognosis (Figure 6C), the TMB group was integrated with the ICD score group and this combination was found to help predict survival probability; low TMB and high ICD score groups showed the worst prognosis, while high TMB and low ICD score group had the best prognosis (Figure 6D).
[image: Figure 6]FIGURE 6 | Relationship between ICD score and tumour mutation burden. (A) Correlation between ICD score and TMB in bladder cancer. (B) Differences in the TMB value between the different ICD score groups. (C) Kaplan–Meier curve analysis showing prognosis benefits of high TMB. (D) Kaplan–Meier curve analysis concerning the combination of ICD score and TMB.
3.6 Correlation of ICD score with clinicopathological information
We further examined the potential prognostic value of the ICD score by investigating its correlation with clinicopathological information (Supplementary Table S14). The results indicated that the ICD score was higher in patients in “Dead state”, “T2-T4”, “> 65 years” and “female” subgroups (Figures 7A–D). Furthermore, survival analysis confirmed that the ICD score could predict survival differences in multiple subgroups, including male, female, age ≤ 65 years, age > 65 years and T2-T4 subgroups (Figures 7E–J). These results demonstrated the prognostic predictive value of the ICD score for BCA patients with different clinicopathological conditions while elucidating the value of the ICD patterns for BCA.
[image: Figure 7]FIGURE 7 | Relationship between ICD score and different clinical parameters and Kaplan–Meier survival analysis of different ICD scores in different subgroups of the merged cohort. (A) Relationships between ICD score and age. (B) Relationship between ICD score and tumour T stage. (C) Relationship between ICD score and alive/dead status. (D) Relationship between ICD score and gender. (E) Kaplan–Meier survival analysis in male patients. (F) Kaplan–Meier survival analysis in female patients. (G) Kaplan–Meier survival analysis in patients aged ≤ 65 years. (H) Kaplan–Meier survival analysis in patients aged > 65 years. (I) Kaplan–Meier survival analysis in patients with Ta–T1 stage disease. (J) Kaplan–Meier survival analysis in patients with T2–T4 stage disease.
3.7 Predictive value of the ICD score for immunotherapeutic responses
We examined the relationship of the ICD score with the immune microenvironment using the R package “ESTIMATE”. In BCA, the immune, stromal and ESTIMATE scores were significantly different between patients with different clinicopathological features, and high stromal and ESTIMATE scores were associated with a poor prognosis (Supplementary Figure S3). The low ICD score group had lower immune, stromal and ESTIMATE scores relative to the high ICD score group (Figures 8A–C; Supplementary Table S15). These findings suggested that different ICD characteristics may affect the survival of patients by regulating the immune microenvironment. Further, we investigated whether the ICD score was a good indicator of the immunotherapeutic responses of patients with BCA. PD-1, PD-L1 and CTLA-4 expression levels in the high ICD score group were all significantly higher than those in the low ICD score group (Figures 8D–F), suggesting that the ICD score may be correlated with immunotherapeutic responses. To distinguish the therapeutic responses of different immunotherapy targets, the immunophenoscore (IPS) in the TCIA database (https://www.tcia.at/home; Supplementary Table S16) was analyzed. Interestingly, in CTLA-4_ pos + PD-1_ pos and PD-1_ pos + CTLA-4_ neg group, the high ICD score group showed a higher IPS than the low ICD score group, whereas in PD-1_ neg + CTLA-4_ neg and PD-1_ neg + CTLA-4_ pos group, the IPS results showed opposite trends (Figures 8J–M). These results suggested that patients in the low ICD score group may exhibit better responses to anti-CTLA-4 treatment, whereas those in the high ICD score group may show better responses to anti-PD-1/PD-L1 treatment or a combination treatment of anti-PD-1/PD-L1 and anti-CTLA-4. The above results suggested that the correlation between ICD and response to immunotherapy may be target specific. We also examined the differences in sensitivity towards traditional chemotherapeutic agents and molecular targets in different ICD score groups and ICD clusters. A total of 139 agents exhibited differential sensitivities (Supplementary Table S17), including tyrosine kinase inhibitors, epigenetic modifiers and traditional chemotherapeutic agents (Supplementary Figure S4).
[image: Figure 8]FIGURE 8 | The indication of ICD score on immune microenvironment and prediction of immunotherapy response in bladder cancer. (A–C) ESTIMATE immune score between different ICD score groups. (D–F) Differences in the expression of IL10, TGFβ2 and TGFβ3 between different ICD score groups. (G–I) Differences in the expression of PD-1, PD-L1 and CTLA-4 between different ICD score groups. (J–M) Differences in the immunotherapeutic effects of four different strategies between the different ICD score groups.
3.8 Expression and functional analysis for CALR in BCA cell lines
The expression profile of CALR in BCA cells was queried on the CCLE database and the T24 cell line, highly expressed CALR in multiple datasets, was selected to examine the expression and function of CALR (Figure 9A). The normal human urothelial cell line, SV-HUC-1, was the control group. Results of the qRT-PCR analysis indicated that the T24 cells expressed higher mRNA levels of CALR than SV-HUC-1 cells (Figure 9B). CALR gene expression in si-CALR T24 cells was significantly lower than that in si-NC T24 cells, suggesting a successful CALR knockdown (Figure 9C). CCK8 assays showed that the viability of si-CALR T24 cells was significantly lower than that of si-NC cells (Figure 9D). Finally, the mechanisms of CALR knockdown that evoked inhibition of BCA cell viability were preliminarily investigated. Interestingly, the relative levels of CALR and CD47 determine the ultimate course of ICD; the mRNA expression of CD47 was upregulated to some extent after knocking down CALR. Additionally, CALR was involved in the proper functioning of the endoplasmic reticulum (ER). ER stress-related apoptotic pathways, BIP, CHOP and BAX/BCL-2 ratio were all significantly upregulated after knocking down CALR (Figure 9E).
[image: Figure 9]FIGURE 9 | CALR expression in bladder cancer cell lines. (A) CALR expression of bladder cancer cell lines in different data sets in CCLE database. (B) Evaluation of the relative CALR/β-Actin mRNA expression levels, normalized with the SV-HUC-1 cell group. (C) Evaluation of the mRNA expression levels of CALR in si-NC, si-CALR-1 and si-CALR-2 T24 cells using quantitative PCR, with the expression levels normalized to those of β-ACTIN. (D) CCK8 assay was used for cell viability of si-NC, si-CALR-1 and si-CALR-2 T24 cells and normalized with the si-NC group. (E) Evaluation of the mRNA expression levels of CD47, HSPA5, DDIT3, BAX and BCL-2 in T24 cells treated with si-NC, si-CALR-1, or si-CALR-2. Experiments were performed in triplicates. All data are expressed as mean ± standard error (SE). The asterisk symbol indicated the statistical p-value. (*p < 0.05; **p < 0.01; ***p < 0.001).
4 DISCUSSION
In the urinary tract, BCA is the second most common malignancy, second only to prostate cancer (Antoni et al., 2017). Although patients with early BCA have better outcomes with surgical treatment, recurrence is not uncommon and patients with advanced BCA often face tumor recurrence and metastasis even after treatment with a combination of chemotherapy and surgery (Berdik, 2017). Immunotherapy, as a new treatment modality for BCA, is currently considered a reliable second-line treatment; however, individual differences in efficacy limit its applications (Gómez de Liaño Lista et al., 2020). Previous studies showed that certain radiotherapeutic and chemotherapeutic measures were able to induce ICD in tumor cells, thus altering the TIME (Zhou et al., 2019). Moreover, chemotherapy-induced ICD has a synergistic effect with immunotherapeutic outcomes (Suresh et al., 2020). Therefore, it is of great value to reveal the correlation between ICD-related signatures and immunotherapy in BCA.
In the present study, IRGs were found to be closely related to the prognosis and TIME of BCA. Further, the BCA cohort was divided into two ICD clusters based on the expression profiles of IRGs. Patients in ICD cluster A showed higher ICD scores and more defined immune cell infiltrate profile and better responsiveness to immunotherapy; it was thus identified as an immune-hot tumor subtype despite the overall prognosis being slightly worse than ICD cluster B.
We combined four large BCA cohorts and examined the correlation between BCA and ICD-mediated patterns. The significant differences in the expression of IRGs between normal and tumor tissues and the higher CNV frequency for IRGs suggested their importance in BCA (Figures 1A,B). Twenty-eight IRGs were successfully identified in the combined cohort and 23 genes were found to be associated with the prognosis (Figures 2B–X). Further analysis of these IRGs also suggested that different ICD-mediated patterns did exist in BCA and these had better predictive significance for both prognosis and response to different immunotherapies and deserved further investigation. The two distinct ICD-mediated patterns had substantially different manifestations in BCA. The ICD cluster A patients had a slightly worse prognosis and the possible mechanisms were further elucidated by GSVA and ssGSEA. Results of the GSVA indicated that the ICD cluster A-enriched upregulated pathways mainly included three major classes (Supplementary Figure S3A). The first category was the pathways related to EMT and tumor migration ability, whereby their upregulation was closely related to the invasive capacity of tumors. The second category was the key signaling pathways involved in inflammation and cancer progression, represented by the nod-like receptor and the JAK-STAT signaling pathways, which could promote “uncontrollable inflammation” (Zhao et al., 2021) and contribute to a suppressive TIME. The third class was the chemokine signaling and leukocyte trans-endothelial migration pathways, which could coordinate immune cell trafficking to the tumor site, thereby remodeling the TIME and were generally responsible for the infiltration of tumor-promoting immune cells (Nagarsheth et al., 2017). That was, changes in invasive capacity and activation of uncontrollable inflammation with alterations in the TIME may contribute to the poor prognosis in patients of ICD cluster A. Two features of ICD cluster A-enriched GO terms (Supplementary Figure S3B) were: first, almost all of the terms were associated with immune cells; second, it was possible to both promote immunostimulation and induce immunosuppression. The contribution of enriched dendritic cells, neutrophils, monocytes, macrophages and other tumor-associated myeloid cells (TAMCs) to the TIME is uncertain (Dou and Fang, 2021). In particular, the two enriched pathways, negative regulation of lymphocyte migration and chemotaxis of lymphocyte migration acted in opposite directions. Given the aforementioned changes in immune cell function to ICD and the TIME, we performed GSEA for immune cell infiltration (Figure 3A). Except for monocytes, all 22 immune cell types showed significantly different abundances between the two ICD clusters and the vast majority of immune cells were enriched in ICD cluster A. High ICD scores corresponding to ICD cluster A were associated with higher immune and stromal scores (Figures 8A–C). We, therefore, reasoned that ICD cluster A was a class of “immune hot tumors”, wherein the TIME was more active, with abundant immune cell and TAMCs infiltration in the TIME. Despite that the tumor cells could attract a large number of CD8+T cells mediating ICD due to their immunogenic nature, the tumor cells could also recruit immune suppressive Treg cells to combat ICD. Thus, the complex TIME may contribute to the poorer prognosis of patients in the ICD cluster A.
As shown in Figure 2A, CALR, CASP8, TLR4 and LY96 were the four core genes most significantly associated with the prognosis of BCA patients (p < 0.01), with CALR and LY96 as risk factors while CASP8 and TLR4 as protective factors. Among these four IRGs, only CALR and TLR4 showed consistency between the expression and prognostic influence. For example, CALR was more highly-expressed in BCA patients than controls, meanwhile survival analysis showed CALR was a risk factor. So far, the role of TLR4 in BCA has been extensively explored (Lu et al., 2021), consistent with our results showing TLR4 was a protective factor. However, the correlation between BCA and CALR has been rarely reported. During ICD, CALR is exposed on the surface of the cell membrane and acts as an “eat me” signal that promotes the engulfment of dying tumor cells by dendritic cells or their precursors and CALR is normally localized in the endoplasmic reticulum (ER), although it would translocate to the surface of the cell membrane under stress (Gardai et al., 2005; Fucikova et al., 2020). Interestingly, the mRNA of CALR was not consistently expressed in different tumor cells. Increased CALR levels may imply a better or worse prognosis (Fucikova et al., 2021). We found increased CALR expression in BCA which correlated with poor prognosis (Figure 2B). This is consistent with all reported findings (Liu et al., 2020; Zhu et al., 2021). The results of our in vitro experiments validated that the mRNA expression of CALR was higher in BCA cells T24 than in normal urothelial cells SV-HUC-1 (Figure 9B); upon knocking down the gene expression of CALR in T24 cells, the viability of tumor cells reduced significantly (Figure 9D), a phenomenon consistent with the clinical outcomes. With regard to increased expression of CALR in BCA being associated with poor prognosis, we did the following to examine. First, the reason why the high expression of CALR results in poor prognosis of some tumors may stem from the compensatory overexpression of CD47, as this integrin-associated protein actively inhibits phagocytosis of dying cells. The relative levels of surface exposed CALR and CD47 together determine the ultimate course of ICD (Fucikova et al., 2021). However, the expression of CD47 increased slightly after knocking down CALR (Figure 9E), indicating that the above speculation did not apply to BCA. It has also been proposed that CALR acts as a key regulator of ER homeostasis and this may be partially required for tumor progression (Lu et al., 2015). Therefore, we detected the changes in ER stress-related pathways. Results of qRT-PCR analysis suggested that CALR knockdown caused a significant upregulation of ER stress markers (DDIT3 and HSPA5) and apoptotic markers (BAX/BCL-2). Similar findings have been reported in ovarian cancer previously (Kasikova et al., 2019). The above results suggested that elevated CALR levels in BCA may promote tumorigenesis by maintaining ER homeostasis in tumor cells. Increased CALR expression may suppress ER stress in tumor cells, thereby exerting an inhibitory effect on induced ICD.
To further examine the intrinsic features of different ICD clusters, two distinct gene clusters in the two ICD clusters were identified. These two gene clusters showed distinct survival outcomes and IRG expression profiles (Figures 4B,D). A clear difference was observed in the survival status, T stage, gender and ICD cluster distribution between the gene clusters (Figure 4C). Thus, differences between these gene clusters may help further screen for genetic differences in different ICD-mediated patterns of BCA. Correspondingly, we developed an ICD score to quantify the ICD-mediated pattern in individual samples. The results confirmed that patients in the high ICD score group had a worse prognosis (Figure 5A). Further analysis showed that a high ICD score was a common feature of both ICD cluster A and gene cluster A; there was a consistency in the poor prognostic outcomes of the three (Figures 5B–D). Lower ICD scores were obtained in BCA patients of the following subgroups: alive with disease, Ta-T1, age ≤ 65 and male (Figures 7A–D). The ICD score was valuable in predicting survival outcomes in the following groups: age ≤ 65 years (p < 0.001), age > 65 years (p < 0.001), female (p = 0.001), male (p < 0.001) group, Ta-T1 (p = 0.051) and T2-T4 (p = 0.003) (Figures 5E–J). The above results further validated the value of the ICD score for prognostic prediction. Additionally, although we did not find a correlation between the ICD score and TMB, ICD score combined with the TMB grouping helped make a better prognostic judgment (Figure 6).
Most importantly, we analyzed the correlation of the ICD score with TIME and immunotherapeutic responses. First, we analyzed the correlation of the ICD score with the ESTIMATE score and found that the high ICD score group showed higher levels of stromal and immune cell infiltration (Figures 8A–C), corroborating that the high ICD score group corresponds to the “immune hot tumors”. The detailed characteristics of TIME for different ICD score groups were further analyzed. Currently, research holds that immunosuppressive cytokines such as IL-10 can directly act on natural killer (NK) cells and inhibit their function and proliferation (Mirlekar, 2022). The high ICD score group correlated positively with the infiltration of most immune cells, while negatively with NK cells and monocytes responsible for tumor killing (Figure 5E). We simultaneously found that cytokines involved in the immunosuppressive processes (IL-10, TGF-β2 and TGF-β3) were also elevated in the high ICD score group (Figures 8D–F). Immune checkpoint genes (PD-1, PD-L1 and CTLA-4) were also elevated in the high ICD score group (Figures 8G–I). The above results indicated that the high ICD score group had the property of inhibiting or evading immune responses. And alterations in this type of TIME were able to influence the efficacy of multiple immunotherapies including chimeric antigen receptor T cell therapy (Titov et al., 2022).
Previous studies confirm that enrichment of CD4+ and CD8+ T cells and high expression of immune checkpoint genes in tumor tissues are generally associated with a good response to anti-PD-1/PD-L1 therapy (Chen and Mellman, 2017; Morad et al., 2021). The IPS prediction results were consistent with this view: patients in the high ICD score group may show a better response to anti-PD-1/PD-L1 treatment or the combination of anti-PD-1/PD-L1 and anti-CTLA-4 (Figures 8J,K). This is in close agreement with the characteristic high expression of immune checkpoint genes and “immune hot tumors” in the high ICD score group. Interestingly, patients in the low ICD score group may show a better response to anti-CTLA-4 treatment (Figure 8L). Similarly, it was confirmed that baseline tumor immune cell infiltration status could not predict responses to anti-CTLA-4 therapy for the following reasons: unlike anti-PD-1/PD-L1 therapy, which mainly acted on the tumor cells, anti-CTLA-4 therapy acts on T cells of the body, and the immune microenvironment in the tumor region might not be the best predictor of responses to anti-CTLA-4 therapy (Huang et al., 2011). Taken together, the ICD score was a good indicator for predicting the efficacy of ICIs. As a new cancer adjuvant therapy, the induced ICD therapy is not a stand-alone option; radiotherapy, chemotherapy, epigenetic modifiers, targeted therapies and oncolytic viral therapy, all have the potential to induce ICD to exert anticancer effects, especially partial tyrosine kinase inhibitors, epigenetic modifiers and traditional chemotherapy drugs (Fucikova et al., 2020). We, therefore, examined differences in sensitivity between traditional chemotherapeutic agents and molecular targets across different ICD score groups and ICD clusters. A total of 139 drugs showed varying sensitivity among different ICD score groups and ICD clusters. The ICD cluster A and high ICD score groups showed greater infiltration of CD8+ T cells (Figure 3A, Figure 5A), thus, we hypothesized that there was a greater potential for benefiting from induced ICD therapies. The results were also indeed consistent with our notion that patients in the high ICD score group and ICD cluster A group were more sensitive to most of these drugs (Supplementary Figure S4).
Our study has the following limitations: we conducted an initial examination using TCGA and three GEO cohorts and further inclusion of more multicenter cohorts for external validation was warranted. We only performed in vitro experiments and further complementing these results with in vivo experiments could help elucidate the pathogenic mechanisms of key ICD genes in BCA. Additionally, the reasons why ICD scores differed in predicting the efficacy of anti-CTLA-4 versus anti-PD-1/PD-L1 also deserved further investigation.
5 CONCLUSION
In summary, we identified the existence of distinct ICD-mediated patterns in BCA, which were closely associated with the remodeling of the TIME. By concordance clustering analysis, ICD cluster A, with a high ICD score, belonged to the “immune hot tumor” subtype and these patients were more likely to benefit from ICIs and therapies that induce ICD. Further in-depth examination of ICD-related signatures was warranted to provide a broader outlook for therapeutic innovation and improved prognosis for BCA.
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Background: Bladder cancer (BLCA) is the sixth most common cancer in men, with an increasing incidence of morbidity and mortality. Necroptosis is a type of programmed cell death and plays a critical role in the biological processes of bladder cancer (BLCA). However, current studies focusing on long noncoding RNA (lncRNA) and necroptosis in cancer are limited, and there is no research about necroptosis-related lncRNAs (NRLs) in BLCA.
Methods: We obtained the RNA-seq data and corresponding clinical information of BLCA from The Cancer Genome Atlas (TCGA) database. The seven determined prognostic NLRs were analyzed by several methods and verified by RT-qPCR. Then, a risk signature was established based on the aforementioned prognostic NLRs. To identify it, we evaluated its prognostic value by Kaplan–Meier (K-M) survival curve and receiver operating characteristics (ROC) curve analysis. Moreover, the relationships between risk signature and clinical features, functional enrichment, immune landscape, and drug resistance were explored as well.
Results: We constructed a signature based on seven defined NLRs (HMGA2-AS1, LINC02489, ETV7-AS1, EMSLR, AC005954.1, STAG3L5P-PVRIG2P-PILRB, and LINC02178). Patients in the low-risk cohort had longer survival times than those in the high-risk cohort, and the area under the ROC curve (AUC) value of risk signature was higher than other clinical variables. Functional analyses, the infiltrating level of immune cells and functions, ESTIMATE score, and immune checkpoint analysis all indicated that the high-risk group was in a relatively immune-activated state. In terms of treatments, patients in the high-risk group were more sensitive to immunotherapy, especially anti-PD1/PD-L1 immunotherapy and conventional chemotherapy.
Conclusion: The novel NLR signature acts as an invaluable tool for predicting prognosis, immune microenvironment, and drug resistance in muscle-invasive bladder cancer (MIBC) patients.
Keywords: necroptosis, lncRNAs, muscle-invasive bladder cancer, prognosis, immune microenvironment, drug resistance
INTRODUCTION
Bladder cancer (BLCA) is the sixth most common cancer in men, with an increasing incidence of morbidity and mortality. The most common malignant tumor of the urinary system, more than 570,000 patients were diagnosed with BLCA in 2021 (Sung et al., 2021; Siegel et al., 2022). BLCA is usually divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) according to the depth of tumor invasion. Approximately 75% of patients have NMIBC, while roughly 25% of patients have MIBC on account of invasion beyond the muscularis propria (Witjes et al., 2021). Unfortunately, a quarter of NMIBC patients with high-risk features will eventually relapse and evolve into MIBC patients (Babjuk et al., 2019). Although intensive treatment of neoadjuvant chemotherapy and immunotherapy combined with radical cystectomy is effective for MIBC, the 5-year overall survival (OS) rate of MIBC is still less than 50% (Hermans et al., 2018). To overcome it, many efforts had been made for the treatment of MIBC, but there has been no well-accepted therapeutic biomarker to prolong the survival time apart from some immune checkpoints. In addition, it is also crucial to determine which therapeutic strategies can benefit patients, such as immunotherapy. Hence, there is evident clinical significance in identification and validation of novel biomarkers to predict prognosis and therapeutic response of MIBC patients.
Necroptosis is a form of regulated necrotic cell death regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and performed by mixed lineage kinase domain-like pseudokinase (MLKL) (Holler et al., 2000; Cho et al., 2009; Christofferson and Yuan, 2010). It was discovered that necroptosis bears a mechanistic resemblance to apoptosis and a morphological similarity to necrosis. Necroptosis is characterized by early loss of plasma membrane integrity, leakage of intracellular contents, and organelle swelling (Gong et al., 2019). Increasing evidence suggested that necroptosis plays a critical role in multiple cancer biological processes, including pathogenesis, cancer metastasis, cancer immunity, and treatment resistance (Su et al., 2015; Negroni et al., 2020; Sprooten et al., 2020; Park et al., 2021). Some researchers also identified the indispensable role of necroptosis in BLCA. ABT-737, a Bcl-2 inhibitor, can directly induce necroptosis by upregulating RIPK3 in BLCA (Cheng et al., 2021). It was also reported that inhibition of CK1δ activity can trigger necroptosis in BLCA cells, which can be proposed as a novel strategy for antitumor treatment (Lin et al., 2020). Referring to the treatments, a study found that inducing necroptosis was an alternative approach to overcome cisplatin resistance in BLCA therapy (Wang et al., 2018). Unfortunately, only few research studies were carried out on necroptosis in BLCA.
Long noncoding RNAs (lncRNAs), a type of RNA that is more than 200 nucleotides in length, mostly cannot code for proteins (Bhan et al., 2017). Over the last decades, accumulated evidence revealed that lncRNAs were involved in various biological functions and disease processes, including cancers. It is well-recognized that lncRNAs regulate biological mechanisms such as proliferation, energy metabolism, cancer metastasis, immune escape, and drug resistance in BLCA (Robertson et al., 2017; He et al., 2020; Chen et al., 2021a; Tang et al., 2022; Wu et al., 2022). For instance, lncRNA BLACAT2 interacted with WDR5 directly, inducing intratumoral/peritumoral lymphangiogenesis and invasion of BLCA (He et al., 2018). LncRNA LNMAT1 can modulate the tumor microenvironment (TME) in lymphatic metastasis of BLCA by upregulating the expression of CCL2 and recruiting macrophages into the tumor (Chen et al., 2018). Moreover, some lncRNAs possess good capacity of prognostic value. Decreased expression of lncRNA MIR31HG may inhibit cell proliferation and migration and was associated with better OS and disease-free survival (DFS) in MIBC (Wu et al., 2020). However, current studies focusing on lncRNA and necroptosis in cancer are limited, and there are few research studies about necroptosis-related lncRNAs (NRLs) in BLCA. Consequently, it is vital for us to identify key NRLs which can predict the therapeutic response and prognosis of MIBC patients.
In this study, we obtained different NRLs in MIBC from The Cancer Genome Atlas (TCGA) database (http://portal.gdc.cancer.gov/). Then, we classified the MIBC patients and constructed a novel signature based on significant NRLs. Furthermore, the value of this model in predicting prognosis, immune microenvironment, chemotherapy, and immunotherapy response was estimated as well.
MATERIALS AND METHODS
Data acquisition and processing
The processed fragments per kilobase of transcript per million mapped reads (FPKM)-standardized RNA-seq data and corresponding clinical information for the BLCA were extracted from the TCGA website. As a result, a total of 411 BLCA samples and 19 normal samples were considered in our study. We first converted the ensemble gene id into gene symbol using Strawberry Perl. During this process, we averaged expression levels of the same gene in multiple lines and filtered through genes that were not expressed in all samples. Then, we obtained the clinical data by excluding patients with unknown survival times. As the targets of our study were MIBC patients, four patients with T1 stage who were deemed to be NMIBC were excluded.
Identification of prognostic NLRs
Based on previous studies (Zhao et al., 2021), 67 genes were examined to be associated with necroptosis. We acquired the correlation between necroptosis-related genes (NRGs) and lncRNAs through the “limma” R package. As a result, 1,139 lncRNAs, with correlation coefficient > 0.4 and p < 0.001, were obtained as NLRs. The “limma” R package was also applied to screen out differentially expressed NRGs and NLRs between tumor and normal samples. (log2fold change (FC) > 1, false discovery rate (FDR) < 0.05, and p < 0.05). After collating the overall survival (OS) of each sample, univariate Cox proportional hazard regression analysis was used to analyze NLRs related to the prognosis of MIBC patients (p < 0.01). Then, we screened out the candidate NLRs through the least absolute shrinkage and selection operator (LASSO) analysis to avoid overfitting. Finally, the determined prognostic NLRs were obtained by stepwise multivariate Cox proportional hazard regression analysis.
Cell lines and RT-qPCR analysis
The cells in our study, including normal human bladder epithelial cell lines (SV-HUC1) and MIBC cell lines (T24, TSSCUP, UMUC-3, and EJ), were acquired from the American Type Culture Collection (ATCC; Manassas, VA, United States). The cells were cultured in RPMI 1640 medium (BD) supplemented with 10% FBS and 100 IU/ml penicillin–streptomycin solution at 37°C in 5% CO2. Total RNAs were extracted from the cells using a Trizol Kit (Invitrogen, Carlsbad, CA, United States). cDNA was synthesized by reverse transcription using qPCR RT Master Mix (Takara, Japan). The relative expression levels of lncRNAs were determined by the △Ct method using the SYBR Green qPCR Kit (Takara, Japan). Primer sequences are given in Supplementary Table S1.
Consensus clustering
For exploring potential molecular subtypes in MIBC patients, the “ConsensusClusterPlus” R package was used to sort out the optimal cluster value based on determined prognostic NLRs. After that, we used the “Rtsne” R package to accomplish principal component analysis (PCA).
Establishment of the necroptosis-related risk model
We established the risk model based on the aforementioned prognostic NLRs, and the computational formula of the risk model is as follows:
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Here, Coef represents the coefficient value, and exp represents the expression level of the corresponding NLR. In addition, the Sankey diagram, which visualized the relationship between NRGs and lncRNAs, was constructed using Cytoscape and the “ggalluvial” R package.
Evaluation of prognostic value of the risk model
We divided all MIBC patients from the TCGA cohort into high-risk and low-risk subgroups according to the median risk score. The Kaplan–Meier method of “survival” R package was carried out to evaluate OS between the two subgroups. To further identify whether the risk model was an independent factor of prognosis, we developed univariate Cox and multivariate Cox proportional hazard regression analyses to affirm it. At the same time, time-dependent receiver operating characteristics (ROC) curves were carried out to compare the different prognostic values of these variables. We also used the chi-square test to analyze the correlation between the risk model and clinical features.
Construction of nomogram
The clinical features including age, stage, gender, grade, and risk model were applied to the construction of a nomogram for the 1-, 2-, and 3-year OS through the “rms” R package, and we also used a calibration curve to illustrate whether the prediction was consistent with practice.
Functional and mutation landscape analyses
Based on the distinction of patients in low- and high-risk groups, gene set enrichment analyses (GSEA) software (http://www.gsea-msigdb.org/gsea/login.jsp) was applied to discover the pathways that were mainly enriched in each group. The criterion of normal p < 0.05 and FDR < 0.25 was considered statistically significant. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using the “ClusterProfiler” R package, and FDR < 0.05 was considered statistically significant. The R package “maftools” was used to process somatic mutation data in each group. The first 30 mutated genes from the different groups were then shown.
Estimation of the tumor immune microenvironment
The correlation between risk score and immune infiltrating level of immune cells was conducted using “scales”, “ggplot2”, “ggtext”, “tidyverse”, “ggpubr”, and “limma” R packages. During this process, the immune infiltration statuses in MIBC patients were obtained from XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and CIBERSORT on TIMER 2.0 (http://timer.cistrome.org/). The corrected infiltration scores of related immune cells and pathways were calculated using the “GSVA” R package through the single-sample gene set enrichment analysis (ssGSEA). Meanwhile, the ESTIMATE score, including stromal score and immune score, was achieved using the “ESTIMATE” R package, which may represent the tumor immune infiltration level of each sample.
The potential therapeutic value of the model
In order to evaluate the potential therapeutic value of this model in MIBC patients, we compared the half-maximal inhibitory concentration (IC50) of specified chemotherapy drugs that were applied to MIBC between low- and high-risk groups through the “pRRophetic” R package. The data on transcriptional expression and drug response were retrieved from the Genomics of Drug Sensitivity in Cancer database (GDSC, http://www.cancerrxgene.org/downloads).
RESULTS
NLRs in muscle-invasive bladder cancer patients
The flow chart of this study is shown in Figure 1. By eliminating tumor samples with T0-1 grade, which were defined as NMIBC, a total of 407 MIBC and 19 normal samples were eventually considered in our research. We first evaluated the expression differences of NRGs between tumor and normal tissues (Supplementary Figure S1A). In addition, we also evaluated the mutation frequency of NRGs in MIBC, and the top 30 mutated genes are presented in Supplementary Figure S1B. Then, according to the correlation to NRGs, 1,139 lncRNAs were screened as NLRs. The figure of the network between NRGs and NLRs is exhibited in Figure2A (correlation coefficient > 0.4 and p < 0.001). Finally, 689 NLRs were found differentially expressed between tumor and normal samples (Figure 2B), of which 579 were upregulated and 110 were downregulated (Figure 2C).
[image: Figure 1]FIGURE 1 | Flow chart.
[image: Figure 2]FIGURE 2 | Identification of prognostic necroptosis-related lncRNAs (NLRs) in muscle-invasive bladder cancer (MIBC). (A) The network figure of necroptosis-related genes (NRGs) and NLRs (correlation coefficient > 0.4 and p < 0.001). (B) The heat map of different NLRs between tumor and normal samples. (C) The volcano plot of 689 differentially expressed NLRs. (D) The cross-validation for variable selection in the least absolute shrinkage and selection operator (LASSO) model. (E) The LASSO coefficient profile of 12 NLRs. (F) The Sankey diagram of the relationship between necroptosis-related genes (NRGs) and NLRs. (G,H) The forest plot and heat map of determined prognostic NLRs that executed by multivariate Cox proportional hazard regression analysis. (I) The qRT-PCR results of seven prognostic NLRs in bladder cancer cells. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.
Identification of prognostic necroptosis-related differentially expressed lncRNAs
After univariate Cox proportional hazard regression analysis (p < 0.01), 15 lncRNAs were found to be associated with the prognosis of MIBC patients. The forest plot and heat map of these lncRNAs are displayed in Supplementary Figures S2A,B. Then, in order to overfit the prognostic signature, 12 lncRNAs were identified as candidate NLRs through the LASSO-penalized Cox analysis with minimum lambda value (Figures 2D,E). Eventually, we executed the stepwise multivariate Cox proportional hazard regression analysis (Figure 2G) to sort out seven defined NLRs (HMGA2-AS1, LINC02489, ETV7-AS1, EMSLR, AC005954.1, STAG3L5P-PVRIG2P-PILRB, and LINC02178) that can be identified as prognostic NLRs (Supplementary Table S2). The heat map exhibited the different expression of these seven NLRs between normal and tumor samples (Figure 2H). Meanwhile, we visualized the relationship between NRGs and these NLRs with the Sankey diagram (Figure 2F). To further confirm the differential expression in MIBC, qPCR analysis was carried out in four BLCA cells (UMUC-3, TCCSUP, T24, and EJ) and a normal bladder epithelial cell (SV-HUC1). It is evident that HMGA2-AS1, EMSLR, LINC02178, ETV7-AS1, AC005954.1, and STAG3L5P-PVRIG2P-PILRB were upregulated in BLCA cells, while LINC02489 was significantly lower in BLCA cells (Figure 2I).
The molecular subtype based on prognostic NLRs
To identify the clinical value of these prognostic NLRs in the classification of MIBC patients, we divided all MIBC patients into several molecular subtypes by consensus clustering analysis based on the seven aforementioned NLRs. As a result, all MIBC patients were regrouped into two clusters (k = 2) on account of the highest intragroup relationships and the lowest intergroup relationships (Supplementary Figure S3A). The Kaplan–Meier curve showed that MIBC patients in cluster 1 had a notably improved survival rate than those in cluster 2 (p = 0.006, Supplementary Figure S3B). Previous studies suggested that necroptosis in cancer cells can mediate immune response by facilitating interaction between dying cancer cells and immune cells (Sprooten et al., 2020; Tang et al., 2020). Therefore, we compared the immune function of the two clusters to determine whether this classification has the predictive value of distinguishing immune response. Unfortunately, we found no difference in stromal score, immune score, and ESTIMATE score between the two clusters (Supplementary Figures S3C–E). In summary, we believe that this molecular subtype is not suitable for subsequent analysis.
Construction and evaluation of prognostic value of necroptosis-related risk model
Due to the poor clinical value of classification into two clusters, we decided to construct a risk model same as previous studies (Chen et al., 2021c; Tang et al., 2021). According to the aforementioned prognostic NLRs and corresponding coefficient value, the risk score was calculated as follows: risk score = (0.9220 × HMGA2-AS1 expression) + (0.5187 × LINC02489 expression) + (−0.8027×ETV7-AS1 expression) + (0.2899 × EMSLR expression) + (−1.7005 × AC005954.1 expression) + (−0.5790 × STAG3L5P-PVRIG2P-PILRB expression) + (0.1412 × LINC02178 expression). Then, patients were categorized into two groups, termed as high-risk and low-risk, based on the median value of the risk score.
In the beginning, PCA was used to display the distribution of patients in two clusters and risk groups (Supplementary Figure S4). After removing patients without prognostic information, all MIBC samples (n = 393) were randomly divided into test (n = 196) and train (n = 197), two cohorts to certify the prognostic value of this risk model. The characteristics of patients in the two cohorts are shown in Table 1. First, Kaplan–Meier analysis was used to analyze the OS of each group. Consistent with the results demonstrated in the entire cohort (p < 0.001, Figure 3A), it showed that the survival time of the low-risk cohort was significantly longer than that of the high-risk cohort in the test and train groups (p = 0.002, p < 0.001; Figures 3B,C). The risk scores of each group are exhibited in Figures 3D–F. Significantly, as the risk score increased, more and more patients died (Figures 3G–I). At last, the heat map visualized the expression of NLRs in each risk group. We found that the expressions of HMGA2-AS1, LINC02489, EMSLR, and LINC02178 were higher in the high-risk group, while ETV7-AS1, AC005954.1, and STAG3L5P-PVRIG2P-PILRB were expressed higher in the low-risk group (Figures 3J–L).
TABLE 1 | Clinical characteristics of patients in different cohorts.
[image: Table 1][image: Figure 3]FIGURE 3 | Prognostic value of the necroptosis-related risk model. (A–C) Kaplan–Meier survival curves of overall survival (OS) between high- and low-risk groups in the entire, test, and train cohort. (D–F) The distribution of risk score among muscle-invasive bladder cancer (MIBC) patients in the entire, test, and train cohort. (G–I) Exhibition of survival time and status between high- and low-risk groups in the entire, test, and train cohort. (J–L) The heat map of seven prognostic necroptosis-related lncRNAs (NLRs) expression in the entire, test, and train cohort.
Owing to the fact that patients in our study had different clinical features, we separated all patients into diverse groups to further proofread the prognostic value of this signature according to age, gender, stage, T stage, and N stage. As we expected, patients in the high-risk group showed worse OS than those in the low-risk group in each different classification, which was consistent with former analysis (Figures 4A–E).
[image: Figure 4]FIGURE 4 | Further confirmation of prognostic value of the risk model combined with clinical features. Kaplan–Meier survival curves of high- and low-risk groups among muscle-invasive bladder cancer (MIBC) patients sorted based on different clinical features, including (A) age, (B) gender, (C) stage, (D) T stage, and (E) N stage. (F,G) Risk model was an independent factor of prognosis by using univariate Cox and multivariate Cox proportional hazard regression analyses. (H) The 1-, 2-, and 3-year receiver operating characteristics (ROC) curves of all MIBC patients. (I) The 1-year ROC curves of risk score and other clinical features. (J) The heat map of distinctions in clinical features between high- and low-risk groups. (K,L) The histogram showing the difference of risk scores in MIBC patients stratified by grade and stage. *p < 0.05, **p < 0.01.
To further identify whether the risk model was an independent factor of prognosis in MIBC patients, univariate Cox and multivariate Cox proportional hazard regression analyses were performed. As we can see, age (p < 0.001), stage (p < 0.001), and risk score (p < 0.001) were significantly associated with OS of MIBC patients through univariate Cox proportional hazard regression analysis (Figure 4F). Then, with the multivariate Cox proportional hazard regression analysis, age (p = 0.002), stage (p < 0.001), and risk score (p < 0.001) were defined as independent prognostic factors (Figure 4G).
The area under the ROC curve (AUC) was defined as the outcomes of ROC. The 1-, 3-, and 5-year AUC value of all MIBC patients were 0.698, 0.690, and 0.704, respectively (Figure 4H). In terms of the 1-year ROC of the risk model, it is evident that the AUC of the risk score was 0.698, which was better than other clinical variables in predicting the prognosis of MIBC patients (Figure 4I). The AUC values of 2 years and 3 years were also higher than those of other variables (Supplementary Figure S5). In general, all these indicated the remarkable ability of the risk model in predicting prognosis.
Analysis of prognostic risk model and different clinical features
We presented the correlation between risk scores and clinical features from two aspects. On the one hand, the heat map displayed that stage and T stage of patients were different between high- and low-risk groups (Figure 4J). From another point of view, when MIBC patients were stratified by grade, stage, and T stage, a significant difference of risk score was observed from the histogram (Figures 4K,L; Supplementary Figure S6A). However, no distinction of risk score was observed in patients classified by age, gender, N stage, and M stage (Supplementary Figures S6B–E).
Construction and calibration of nomogram
Referring to the findings mentioned earlier, in order to further predict the prognosis of MIBC patients, the nomogram was constructed as a consequential tool to predict 1-, 3-, and 5-year OS based on clinicopathological variables and risk model (Figure 5A). The calibration curve gave eloquent proof of consistency between the practical survival time and the predicted OS at 1, 3, and 5 years (Figure 5B). The C-index value of the risk model is 0.711.
[image: Figure 5]FIGURE 5 | Construction and calibration of the nomogram, followed by functional and tumor burden analyses. (A) Nomogram integrated age, gender, grade, stage, T stage, N stage, M stage, and risk score. (B) Calibration curves test consistency of the nomogram at 1, 3, and 5 years. (C) Activated pathways analyzed by gene set enrichment analyses (GSEA) in the high-risk group. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differential genes between high- and low-risk groups. (E,F) The gene mutations between high- and low-risk groups.
Functional analyses and tumor mutation landscape
To investigate the distinction of signaling pathways in different risk score groups, GSEA was performed. Patients in the low-risk group were mainly enriched in metabolism-related pathways (Supplementary Figure S7A). At the same time, the WNT signaling pathway, TGF-β signaling pathway, and MAPK signaling pathway were enriched in the high-risk group. In addition to these, the other pathways, including ECM receptor, focal adhesion, regulation of actin cytoskeleton, chemokine signaling pathways, and cytokine–cytokine receptor interaction, were highly concerned with immunity (Figure 5C). GO and KEGG analysis of different genes between high- and low-risk groups also showed that there are several immune-related pathways enriched (Supplementary Figure S7B; Figure 5D). Referring to the difference in cancer-related gene mutations between the high-risk and low-risk groups, we presented the most frequent somatic mutations in each group. The waterfall plot showed that the low-risk group acquired a higher gene mutation rate than the high-risk group (Figures 5E,F). We also calculated the tumor mutation burden (TMB) value for each patient and compared the difference between the high-risk and low-risk groups (p = 0.00031, Supplementary Figure S7C).
Infiltration of related immune cells and pathways
On account of immune-related pathways enriched in the high-risk group, we further explored the immune cells and functions in MIBC patients. First, we presented the correlation between risk score and infiltrating level of immune cells from different platforms at the bubble chart (Figure 6A). It is evident that the correlation coefficient of most immune cells was greater than 0. In other words, infiltrating levels of most immune cells such as macrophage, CD4+ T cell (Th2) at XCELL, T-cell CD8+, macrophage at TIMER, T-cell regulatory (Tregs) at QUANTISEQ, and NK cell at EPIC were positively correlated with the risk scores in MIBC patients. Then, the boxplot showed a significant distinction of immune cells and functions between low- and high-risk groups. In terms of immune-related cells (Figure 6B), MIBC patients in the high-risk group contained a higher percentage of activated dendritic cells (aDCs), B cells, dendritic cells (DCs), macrophages, mast cells, neutrophils, plasmacytoid dendritic cells (pDCs), T helper cells, T follicular helper (Tfh) cells, T helper type 1 (Th1) cells, tumor-infiltrating lymphocyte (TIL), and T regulatory cells (Tregs). Also, referring to immune functions (Figure 6C), there was significant distribution in antigen-presenting cell (APC) co-inhibition, APC co-stimulation, chemokine receptor (CCR), checkpoint, cytolytic activity, inflammation promotion, parainflammation, T-cell co-inhibition, T-cell co-stimulation, and type I IFN response between the two groups. Furthermore, MIBC patients with a higher risk score emerged with pronounced elevation of stromal score, immune score, and ESTIMATE score (Figure 6D). At last, we compared the immune checkpoint between the two groups and found that almost all checkpoints such as PD-L1 (CD274) were expressed higher in the high-risk group (Figure 7A). In summary, the aforementioned findings indicated that the high-risk group had a relative immune-activated state.
[image: Figure 6]FIGURE 6 | Immune infiltration of muscle-invasive bladder cancer (MIBC) patients between high- and low-risk groups. (A) The bubble chart presented a correlation between risk score and infiltrating level of immune cells. (B,C) The distinction of immune infiltrating cells and immune-related functions between low- and high-risk groups. (D) The stromal score, immune score, and ESTIMATE score of the two groups.
[image: Figure 7]FIGURE 7 | Checkpoint and drug response between high- and low-risk groups. (A) The significant distinction of checkpoint between high- and low-risk groups. (B–H) IC50 of cisplatin, methotrexate, vinblastine, doxorubicin, docetaxel, gemcitabine, and paclitaxel between high- and low-risk groups.
Potential drug resistance in risk groups
As mentioned earlier, expression of PD-L1 was higher in the high-risk group, which suggested that patients in these two groups may show different sensitivities to immunotherapy, especially anti-PD-1/L1 immunotherapy. Chemotherapy is one of the most important treatments for MIBC patients in addition to immunotherapy. Therefore, for validating the potential therapeutic value of this risk model, we compared the IC50 of specified chemotherapy drugs between the two groups. We found that patients in the high-risk group were more sensitive to cisplatin, gemcitabine, vinblastine, paclitaxel, and docetaxel than those in the low-risk group, while patients in the low-risk group were more sensitive to methotrexate (Figures 7B–H).
DISCUSSION
Recently, it is widely accepted that nonapoptotic regulated cell death (RCD) is involved in the pathogenesis and therapeutic responses of various types of cancers (Stockwell et al., 2020; Hsu et al., 2021; Koren and Fuchs, 2021). Necroptosis is one of the nonapoptotic regulated cell death which differs from autophagy, ferroptosis, and pyroptosis. To our knowledge, there have been abundant studies that explored the role of autophagy, ferroptosis, pyroptosis, and other RCDs in MIBC (Chen et al., 2021b; Luo et al., 2021; Yan et al., 2021; Zhang et al., 2021). However, only a few studies have investigated the position of necroptosis in MIBC patients, and all of them focused on a single necroptosis-related gene (Yan et al., 2014; Nie et al., 2021). Our research is a comprehensive analysis of NLRs in MIBC, which can provide a reference for further studies to some extent.
In this study, we obtained seven prognostic NLRs from the TCGA database step by step, and a risk model was constructed based on the seven NLRs in MIBC patients. Then, according to the risk signature which was identified as an independent prognostic factor and other corresponding clinical features, a novel nomogram was established for predicting the prognosis for each patient. Specifically, we further verified that the risk model exhibits a splendid ability of predicting prognosis, immune microenvironment, and drug resistance.
To begin with, HMGA2-AS1, LINC02489, ETV7-AS1, EMSLR, AC005954.1, STAG3L5P-PVRIG2P-PILRB, and LINC02178 were sorted out as determined NLRs in MIBC patients for subsequent analyses. Among these selected NLRs, previous studies confirmed that some of them played crucial roles in cancers. For instance, a previous study discovered that HMGA2-AS1 was involved in positively mediating tumorigenesis of pancreatic cancer, and patients with a high level of HMGA2-AS1 may have relatively poor prognosis (Ros et al., 2019). Also, HMGA2-AS1 was found to be upregulated in osteosarcoma and laryngeal squamous cell carcinoma compared to their corresponding normal samples (Jing et al., 2020; Rothzerg et al., 2021). A study by Sun et al. (2020) showed that LINC02178 can predict the prognosis of BLCA patients, and Yan et al. (Li et al., 2018) confirmed its prognostic value for lung adenocarcinoma (LUAD) as well. With reference to EMSLR, it was proved to be essential for tumor-related phenotype. Cell-cycle phase distribution and proliferation reduction can be observed in lung cancer and colon cancer when depleting it (Hegre et al., 2021; Priyanka et al., 2022). Additionally, we estimated the expression of these several prognostic NLRs and found that it was basically consistent with the former bioinformatic analysis.
Instead of classifying all patients into two clusters, we establish a risk model based on seven prognostic NLRs like most studies. All MIBC patients were regrouped into high- and low-risk groups, and it is evident that patients in the low-risk group revealed a significant survival advantage. The first and foremost is to identify the prognostic value of the risk model. Not only did we demonstrate a significant difference in prognosis between the high- and low-risk groups, but this predictive signature can accurately predict prognosis without considering clinical features. We further recognized the risk model was an independent prognostic factor of OS by univariate Cox and multivariate Cox proportional hazard regression analyses. The AUC value of the risk model is the largest of all the variables we discussed, which means it is more effective than other current clinical features in predicting the OS of MIBC patients. Meanwhile, the relationship between clinical features and the risk model was explored in two ways. Thus, a nomogram integrating this risk model and other clinical characteristics was constructed for a more precise prediction of prognosis.
After evaluating the prognostic value of the risk model, GSEA was carried out to compare the signaling pathways between high- and low-risk groups. The results showed that the WNT signaling pathway, TGF-β signaling pathway, and MAPK signaling pathway were enriched in the high-risk group, which suggested that these NLRs may have an impact on the development and prognosis of MIBC through the aforementioned pathways. An increasing number of studies have proved the significance of these pathways in BLCA. For instance, lncRNA CASC9 can positively downregulate the expression of miR-497-5 as a microRNA sponge and subsequently activate the Wnt/β-catenin pathway, thus playing an oncogenic role in BLCA pathogenesis (Zhan et al., 2020). The TGF-β signaling pathway has been regarded as a potential mechanism for immunotherapy resistance resulting from its effects on TME in BLCA. It is exciting that several clinical studies combining immunotherapy with inhibitors of the TGF-β signaling pathway have achieved promising results in BLCA (Benjamin and Lyou, 2021). In addition, a previous study identified MAPK signaling as the core signaling pathway in MIBC (Schulz et al., 2021). The higher the MAPK activity in BLCA, the more malignant the traits of tumor progression, including tumor cell stemness, invasion, and epithelial–mesenchymal transition (EMT) (Kumar et al., 2009). Apart from these three signaling pathways, most other involved pathways were related to immunity. We speculate that the lncRNAs discussed in our study were related to necroptosis, and a series of emerging discovered evidence proved that necroptosis in cancer cells can be immunogenic. Not only can it interact directly with immune cells, but it can also initiate adaptive immune responses by releasing damage-associated molecular patterns (DAMPs), cytokines, and chemokines into the tumor microenvironment (Sprooten et al., 2020). The results of GO and KEGG analyses were consistent with the pathways during the process of necroptosis. However, the role of necroptosis in the induction and amplification of cancer immunity is complicated (Philipp et al., 2016; Gong et al., 2019). Combined with the key role of immunotherapy in the clinical treatment of MIBC, we further made an immunity analysis of the risk model.
Referring to immune cells, the results indicated that there was a positive correlation between risk score and infiltrating levels of most immune cells. Also, diverse risk groups were associated with significantly different levels of immune cell infiltration. Nowadays, it is widely believed that CD8+ T cells are the main focus in antitumor immunity. However, a groundbreaking study found that CD4+ T cell is the key point that influences the efficacy of immunotherapy in BLCA instead of CD8+ T cells (Oh et al., 2020). In our research, there was no difference in CD8+ T cells between the high- and low-risk groups, which is consistent with the study. At the same time, patients in the high-risk group had a higher abundance of CD4+ T cells, including helper T cells, Th1 cells, Tfh, and Tregs. Some researchers suggested that CD4+ T cells can predict clinical response to anti-PD-L1 (Oh et al., 2020) and are involved with better prognosis (Ahlen Bergman et al., 2018), but others found that CD4+ T cells can promote cancer metastasis in BLCA (Tao et al., 2018). Treg has been considered a suppressor of antitumor immunity for a long time (Tanaka and Sakaguchi, 2017). Interestingly, a study found that it has a positive effect on BLCA. Our study indicated that patients in the high-risk group have a higher infiltrating level of Tregs. Tumor-associated macrophage (TAMs) was another crucial factor in cancer growth, metastasis, and resistance to immunotherapy. In MIBC, a higher percentage of galectin 9-positive (Gal-9+) TAMs, a subtype of macrophages, was related to poorer prognosis accompanied by higher tumor stage and grade (Qi et al., 2019). Although there are no specific subtypes of macrophages in our study, the MIBC patients in the high-risk group showed higher infiltrating levels of macrophages with poorer outcomes and higher stages. Other immune cells, including mast cells, B cells, and neutrophils, were investigated to check whether they affected the balance between antitumor immunity and immune evasion in MIBC as well (Zhou et al., 2017; Liu et al., 2018; Jiang et al., 2019). In addition to the immune cells involved in our study, the immune responses were also compared between high- and low-risk groups. Multiple types of evidence identified the important role of necroptosis in the induction and amplification of cancer immunity. It has been found that RIPK3 was involved in the regulation of cytokine expression in DCs, which regulate immune homeostasis through modulating cytokines (Moriwaki et al., 2014). Some research studies also indicated that immunotherapeutic treatment should be customized according to the RIPK3 level (Gong et al., 2019). The significant immune responses between high- and low-risk groups demonstrate this point to a certain extent. Compared with the low-risk group, the expression of NLRs in the high-risk group was higher, thus inducing a stronger immune response. The estimate analysis further suggested that the patients in the high-risk group were more likely to benefit from immunotherapy. Altogether, this model may provide insights into individualized therapies by determining the response to immunotherapy.
Immune checkpoint was the key molecular target of immunotherapy, and recently, several immune checkpoint inhibitors have been approved for the treatment of MIBC. We found that the expression of almost all distinctive immune checkpoints was higher in the high-risk group. Nowadays, all approved immune checkpoint inhibitors for MIBC are PD1/PD-L1 inhibitors. Specifically, the expression of PD-L1 in the high-risk group was higher than that in the low-risk group, which was consistent with the higher abundance of immune cells in the high-risk group. Apart from immunotherapy, cisplatin-based chemotherapy remains the standard therapy of MIBC. Drug resistance is a critical reason for treatment failure and cancer-related death. Our research showed that patients in the high-risk group were sensitive to conventional chemotherapy drugs, including cisplatin, gemcitabine, vinblastine, paclitaxel, and docetaxel. All these indicated that patients in the high-risk group were more sensitive to immunotherapy, especially anti-PD1/PD-L1 immunotherapy and conventional chemotherapy. Taken together, this model may have important implications for the clinical translation of drug candidates, allowing adequate treatment in each case.
However, the study still had some limitations. First, the data used for constructing and validating the prognostic signature in our study were from a single source: TCGA. We did not use other data, such as the GEO database, for external verification to make the risk model more reliable. Second, the mechanism of involved NLRs in MIBC should be further discussed.
In conclusion, necroptosis is closely related to the development of MIBC. The novel risk signature based on seven significant NLRs act as an invaluable tool in predicting prognosis, immune microenvironment, and drug resistance, which may offer a basis for future studies.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
KJ and SY contributed to the conception and design of the study; KJ, LW, and XY collected the data; KJ, LW, and HY performed the statistical analysis; KJ wrote the first draft of the manuscript; QT, JY, and ZZ revised the manuscript; SY gave the final approval of the version to be submitted. All authors contributed to the manuscript and approved the submitted version.
FUNDING
This study was supported by grants from the Fundamental Research Funds for the Central Universities (Grant No. 2021FZZX005-32), the Natural Science Foundation of Zhejiang Province of China (Grant No. LSY19H160004, Grant No. Q23H160082), and the Key Research and Development Projects of Zhejiang Provincial Science and Technology Department (2021C03122).
ACKNOWLEDGMENTS
The authors thank Xiaoying Liu and Yucheng Shen for their professional assistance in the R project.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.1036098/full#supplementary-material
SUPPLEMENTARY FIGURE S1 | Expression and gene mutation of necroptosis-related genes (NRGs). (A) The expression differences of NRGs between tumor and normal tissues. (B) The gene mutations of NRGs in muscle-invasive bladder cancer.
SUPPLEMENTARY FIGURE S2 | Identification of prognostic necroptosis-related lncRNAs (NLRs) by univariate Cox regression analysis. (A) The forest plot of prognostic NLRs acquired through univariate Cox regression analysis. (B) The heat map of prognostic NLRs extracted by univariate Cox regression analysis.
SUPPLEMENTARY FIGURE S3 | Survival and immune functions of two clusters based on prognostic NLRs. (A) MIBC patients were divided into two clusters by consensus clustering analysis. (B) Kaplan–Meier curve of OS in clusters. (C–E) The comparison of stromal score, immune score, and ESTIMATE score in two clusters.
SUPPLEMENTARY FIGURE S4 | PCA analysis of patients in two clusters and risk groups. (A) Cluster. (B) Risk.
SUPPLEMENTARY FIGURE S5 | ROC curves of risk score and other clinical features. (A) 2 years. (B) 3 years.
SUPPLEMENTARY FIGURE S6 | Histogram showing the difference of risk scores in muscle-invasive bladder cancer (MIBC) patients stratified by clinical features. (A) T stage. (B) N stage. (C) M stage. (D) Age. (E) Gender.
SUPPLEMENTARY FIGURE S7 | Functional analyses and tumor mutation burden (TMB). (A) Activated pathways analyzed by gene set enrichment analyses (GSEA) in the low-risk group. (B) Gene Ontology (GO) analysis of differential genes between high- and low-risk groups. (C) The differences in TMB between high- and low-risk groups.
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8106206
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
47892
8932
9062
3.82E+11
1.25E+10
1845
6622
2406
1648
1826
6673
367926
1729
1693

Degree

89
77
64
62
57
57
56
55
52
51
48
47
42
35
34
31
27
26
25
24
24
23
20
18
15
15
13
11
1
11

Closeness

192.19008
192.6067

17827341
165.25675
17285675
171.69008
16054008
161.05675
16852341
168.02341
167.77341
165.22341
163.02341
155.40317
14535913
14933095
140.84127
14143889
141.10556
14162341
159.54762
13958889
14845317
138.29603
14613651
13152937
132.69881
13858095
128.79603
128.62937

Betweenness

22078.67341
69392.04571
750497904
3752.95365
3211.85824
4346.90413
2061.86361
4757.15522
5703.00881
2567.01982
2555.27954
1237.29857
1465.60477
1007.52523
1083.30296
1115580535
123215458
3024.46868
1725.51468
1039.07441
1726172834
2598.0432
8464.48184
2279.10647
1025.54515
1327.95608
3099.92655
4860.54991
2045.45414
1102.88098

ID

Her2 vs. normal
NDC80

KIF2C

KIF11

CDK1

CDC20

CCNB2

CCNBI

CCNA2

BUBIB

BUBI

AURKB*

KIF23

UBE2C

CDC5L
RACGAPI
ECT2

SRSF1

Luminal A vs. normal
SRSF1

Luminal B vs. normal
CDK1

CDC20

BUBI

BUBIB

CCNBI
RACGAPI
KIF11

KIF23

CDC5L

McCC

9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
9.22E+13
5.50E+12
107E+12
822688
8.86E+07
41048
1082

1034

L57E+11
157E+11
L57E+11
1.27E+11
7.79E+10
987987
1.56E+11
2.62E+09
26009

Degree

40
34
43
73
52
47
50
44
45
49
46
27
31
65
2
11
12

1

57
45
42
38
40
19
37
23
47

Closeness

140.9357
139.8357
145.0857
163.2691
138.8952
136.4191
149.0857
134.2286
145.3357
148.6691
145.8357
131.3333
123.4036
163.5071
1412333
123

1123119

51.00238

1102952
96.84524
102.3786
992119
100.7119
94.56667
98.87857
90.05
109.5952

Betweenness

1013.13909
124099518
283658396
20555.50241
2567.19563
1209.68801
363178964
2002.89489
4540.65528
3185.181
3137.25928
9398.7775
292873296
5331602571
18065.07384
4077.48928
207132644

10448

6869.988
1313656
1944.034
1242.749
130347

4407.43

1629572
3930.105
21827.75
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Characteristic Level Low expression of LATS2 High P
expression of LATS2

N 81 81

T stage, n (%) T 15 (20.5%) 2 (16.7%) 0268
T2 19 (26%) 18 (25%)
T3 39 (53.4%) 38 (52.8%)
T4 0 (0%) 4 (5.6%)

N stage, n (%) No 36 (49.3%) 30 (42.3%) 0701
N1 30 (41.1%) 33 (46.5%)
N2 5 (6.8%) 4 (5.6%)
N3 2 (2.7%) 4 (5.6%)

M stage, n (%) Mo 61 (93.8%) 0 (93.8%) 1.000
M1 4(6.2%) 4 (62%)

Pathologic stage, n (%) Stage [ 9 (125%) 7 (10%) 0599
Stage 11 38 (52.8%) 31 (44.3%)
Stage 11 21 (29.2%) 28 (40%)
Stage IV 4 (5.6%) 4(57%)

Radiation therapy, n (%) No 52 (70.3%) 55 (78.6%) 0343
Yes 22 (29.7%) 15 (21.4%)

Primary therapy outcome, n (%) PD 5 (9.4%) 5 (12.2%) 0836
sD 3 (5.7%) 4.(98%)
PR 2(3.8%) 1 (24%)
CR 43 (81.1%) 31 (75.6%)

Gender, n (%) Female 10 (12.3%) 13 (16%) 0653
Male 71 (87.7%) 68 (84%)

Race, n (%) Asian 22 (28.9%) 16 (23.5%) 0.035
Black or African American 6 (7.9%) 0 (0%)
White 48 (63.2%) 52 (76.5%)

Age, n (%) <60 41 (50.6%) 42 (519%) 1.000
>60 40 (49.4%) 39 (48.1%)

BMI, n (%) <25 44 (56.4%) 40 (533%) 0826
>25 34 (43.6%) 35 (46.7%)

Histological type, n (%) Adenocarcinoma 26 (32.1%) 54 (66.7%) <0.001
Squamous cell carcinoma 55 (67.9%) 27 (33.3%)

Histologic grade, n (%) Gl 11 (167%) 5 (8.3%) 0346
G2 34 (51.5%) 32 (53.3%)
G3 21 (31.8%) 23 (383%)

Smoker, n (%) No 25 (34.2%) 22 (31%) 0811
Yes 48 (65.8%) 49 (69%)

Alcohol history, n (%) No 19 (24.4%) 27 (33.3%) 0283
Yes 59 (75.6%) 54 (66.7%)

Barrett’s esophagus, n (%) No 52 (82.5%) 54 (783%) 0690
Yes 11 (17.5%) 15 (21.7%)

Tumor central location, n (%) Distal 51 (63.7%) 62 (76.5%) 0196
Mid 25 (31.2%) 17 (21%)
Proximal 4(5%) 2 (25%)

Age, median (IQR) 60 (54, 70) 60 (53, 75) 0519
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Variable

Age (years)

<65

>65
Gender

Male

Female
Grade

Low-grade

High-grade

Unknown
Stage

Stage 1T

Stage 111

Stage IV

Unknown
T stage

T2

T

T4

Tx + unknown
N stage

No

NI

N2

N3

Nx + unknown
M stage

Mo

M1

Mx + unknown

Entire (n = 393)

158 (40.2%)
235 (59.8%)

291 (74.0%)
102 (26.0%)

18 (4.6%)
372 (94.7%)
3 (0.7%)

125 (31.8%)
136 (34.6%)
130 (33.1%)
2 (0.5%)

117 (29.8%)
188 (47.8%)
57 (14.5%)
31 (7.9%)

227 (57.8%)
44 (112%)
75 (19.1%)
7 (1.8%)

40 (102%)

187 (47.6%)
10 (25%)
196 (49.9%)

Test (n = 196)

85 (43.4%)
111 (56.6%)

146 (74.5%)
50 (25.5%)

9 (4.6%)
187 (95.4%)
0 (0%)

66 (33.7%)
72 (36.7%)
58 (2.96%)
0 (0%)

62 (31.6%)
91 (46.4%)
28 (14.3%)
15 (7.7%)

116 (59.2%)
21 (10.7%)
31 (15.8%)
4(2.0%)

24 (122%)

92 (46.9%)
4.(20%)
100 (51.0%)

Train (n = 197)

73 (37.1%)
124 (62.9%)

145 (73.6%)
52 (26.4%)

9 (4.6%)
185 (93.9%)
3 (15%)

59 (30.0%)
64 (325%)
72 (36.5%)
2 (1%)

55 (27.9%)
97 (49.2%)
29 (14.7%)
16 (8.1%)

111 (56.3%)
23 (1.7%)
44 (22.3%)
3 (1.5%)

16 (8.1%)

95 (48.2%)
6 (3.0%)
96 (48.7%)
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Gene(human)

B-Actin
CALR
HSPAS
DDIT3
BAX
BCL-2
CD47

Forward primer

CTACCTTCAACTCCATCA
CTCTGTCGGCCAGTTTCGAG
CTCTGCCTCACCTCGCTCCA
ACCAGGAAACGGAAACAG
TTTTGCTTCAGGGTTTCATC
GCCTTCTTTGAGTTCGGTGG
TCCGGTGGTATGGATGAGAAA

Reverse primer

GAGCAATGATCTTGATCTTC
TGTATTCTGAGTCTCCGTGCAT
TCGCAATAGCAATGCCAATC
TCACCATTCGGTCAATCA
GACACTCGCTCAGCTTCTTG
GAAATCAAACAGAGGCCGCA
TCCGGTGGTATGGATGAGAAA
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Description

B cell

CD8" T cell

T cell (general)

M1 Macrophage

M2 Macrophage

Dendritic cell

Gene
markers

cp19

CD79A

CD8A

CDSB

CD3D

CD3E

cp2

INOS (NOS2)
IRF5

COX2 (PTGS2)
CD163

VSIG4

MS4A4A
HLA-DPB1
HLA-DQBI
HLA-DRA
HLA-DPAI
BDCA-1 (CDIC)
BDCA-4 (NRP1)
CDllc (ITGAX)

LGG

Cor

0212
0.186
-0.026
-0.039
0284
0.246
0272
-0.078
0357
-0.184
0.156
0.173
0219
037
0304
0326
031
0.123
0.153
0.354

P

5.77e-01
3.90e-01

8.88¢-02

LIAC

Cor

0.234
0.166
0.226
0.286
0.395
0.258
0.281
~0.096
031
0.034
0.064
0.146
0.136
0.255
0.242
0.196
0.184
0.134
0.087
0.336

7.41e-02
5.28¢01
2.33e-01

1.12e-02

1.31e-02
1.09-01

LUAD

Cor

-0.117
-0.125
0.04
0.106
-0.03
-0.163
-0.129
0.001
-0.019
001
-0.105
-0.102
-0.111
~0.389
-0312
-0.32
-0.378
~0.43
-0.163
=0.139

P

9.85e-01
6.73e-01
8.28¢-01
2.00e-02
2.37e-02
1.39-02

MESO

Cor

-0.384
-0375
-0.096
0015
0018
-0.049
0.046
0.129
-0.107
-0312
-0.037
0042
0011
~0.074
-0.089
-0.15
-0.18
~0.157
0153
-0.021

3.85€-01
8.92e-01
8.69€-01
6.58¢-01
6.78-01
2.40e-01
3.28e-01
7.35¢-01
7.01e-01
9.23¢-01
4.99-01
4.19e-01
1.70e-01
9.84¢-02
1.51e-01
1.62e-01
8.51e-01

SKCM

Cor

-0.126
-0.165
-0.123
-0.141
-0.155
-0.178
-0.148
0.065
0018
0.069
-0.057
-0.06
-0.122
-0.15
-0.093
-0.16
-0211
~0.045
0.007
-0.014

1.63e-01
6.93e-01
1.40e-01
2.27e-01
2.01e-01

4.68¢-02

3.34e-01
8.90e-01
7.71e-01

Cor

0023
~0.059
0507
0475
0453
0456
0456
0293
0586
0544
0525
0.481
0541
0557
0512
0535
0568
0.166
0569
0658

8.41e-01
6.09€-01

1.49¢-01

Cor. correlation of Spearman’s R value; * p < 0.01; **p < 0.001; ***p < 0.0001, NA, no data.
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Case Threshold mPFS or mOS mPFS or mOS p-value Response Prob for TMB_L  Response Prob for TMB_H p-value

(months) for TMB_L  for (months) TMB_H (%) (%)
NSCLC Joint model 203 433 0.022 9.375 2439 0.100
Median 213 433 0.046 1.1 2431 0.145
Top third 217 4.43 0.023 1412 2295 0.171
75th 217 443 0010 16.55 2000 0522
NPC Joint model 177 257 0.543 6.25 1875 0.437
Median 177 257 0.543 6.25 1875 0.137
Top third 193 257 0.970 9.33 1698 0.200
7sth 193 257 0.927 1057 1594 0.282
NSCLG_ 240  Joint model 29 42 0.016 13.39 2656 0.011
Median 31 377 0.264 175 2333 0.140
Top third 307 4.7 0.061 175 245 0.094
75th 307 427 0013 17.61 2538 0.023
Mel_64 Joint model 1851 inf 0.204 16.13 3333 0.12
Median 1851 inf 0.259 18.75 3125 0.257
Top third 312 inf 0.207 22,67 2830 0472
75th 324 inf 0.262 23.58 2754 0546
Mel_105 Joint model 27 33 0.019 4.65 2419 0.007
Median 28 327 0.835 15.38 1698 0.829
Top third 28 327 0.693 15.57 17.05 0777

75th 28 327 0.584 15.5 17.39 0.662
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Case Threshold mPFS or mOS mPFS or mOS p-value Response Prob for TMB_L  Response Prob for TMB_H p-value

(months) for TMB_L ~ for (months) TMB_H (%) (%)
NSCLC Joint model 203 433 0017 1143 2368 0.089
Median 203 433 0.028 N 2432 0.073
Top third 247 537 0.023 16.33 2083 0323
75th 227 433 0.713 20.75 10.00 0.146
NPC Joint model 177 257 0.791 7.40 16.22 0.151
Median Wy 257 0.791 7.40 16.22 0.151
Top third 193 257 0755 12.20 1304 0.466
75th 193 257 0.755 12.20 13.04 0.466
Bladder Joint model 16.71 16.55 0.243 36.36 100.00 0.009
Median 1671 16.55 0535 23,08 7143 0012
Top third 16.71 16.12 0.806 33.33 77.78 0.038
75th 16.71 16.12 0437 35.00 85.71 0023
RCC Joint model 570 270 0.335 62.79 76.92 0178
Median 680 360 0955 67.86 6429 0394
Top third 577 397 0982 62.16 7368 0.199
75th 5.60 430 0.808 64.29 7143 0318
NSCLC_35  Joint model 1.80 4.00 0.040 435 4167 0.003
Median 200 320 0.137 000 2857 0016
Top third 1.80 4.00 0024 435 4167 0003
75t 1.80 400 0015 7.69 44.44 0.007
NSCLC_57  Joint model 1039 1461 <0.001 1250 7059 <0.001
Median 10.39 14.61 0001 3214 4138 <0001
Top third 1039 14,61 <0.001 4474 2105 <0.001
75th 1039 14.61 0.002 40.47 2667 <0.001
NSCLC_75  Joint model 378 214 0.006 1220 55.90 <0.001
Median 378 8.12 0012 13.51 5000 0.002
Top third 394 22.14 0.003 20.00 56,00 0.001
75th 5.10 230 0019 2321 57.89 0.004
NSCLC_240  Joint model 3.10 447 0.062 1429 26.45 0.052
Median 3.10 447 0.062 14.29 2645 0.052
Top third 303 420 0235 17.83 2530 0.108
75th 273 5.47 0.030 17.22 3000 0.002
Mel_37 Joint model 27.40 32.10 0,055 40.00 6364 0.084
Median 27.40 312 0.044 50.00 57.89 0.324
Top third 31.00 32.10 0.151 48.00 6667 0.151
75th 31.00 32.10 0.561 48.15 7000 0.125
Mel_52 Joint model 580 40.000 0.121 32.26 76.19 <0.001
Median 6.80 15.20 0.250 3077 69.23 0.003
Top third 790 15.20 0554 40.00 7059 0.021
75th 920 40.00 0927 4359 69.23 0.088
Mel_64 Joint model 1851 94.60 0.037 2222 26.09 0.379
Median 1979 inf 0933 21.88 28.12 0.286
Top third 324 44.40 0.868 25.58 2381 0.443
75th 3284 inf 0636 25.00 2500 0.500
Mel_105 Joint model 280 3.00 0.200 12.90 2093 0.083
Median 2.80 3.00 0.622 11.54 2075 0.129
Top third 280 3.00 0.851 17.14 1429 0.484
75t 280 330 0606 15.39 1852 0237
Mel_195 Joint model 373 6.06 0.607 20,07 3889 0077
Median 373 490 0640 28.87 4021 0.049
Top third 463 380 0730 3488 3385 0.444
75th 5.10 333 0.000 35.86 3061 0253

Bold values represent the results of the proposed joint model.
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Experiment cohort

NPC
NSCLC

Validation cohort

NSCLC_240
Mel_64
Mel_105

AUC based on ORR

0.568
0.579

AUC based on ORR

0.582
0.462
0.578

095 Cl

0.341-0.776
0.421-0.737

0.95 Cl

0.487-0.677
0.307-0.617
0.436-0.720

AUC based on joint model

0.873
0.778

AUC based on joint model

0.886
0.898
0.798

095 Cl

0.783-0.963
0.665-0.890

0.95Cl

0.845-0.928
0.817-0.979
0.712-0.884
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Experiment cohort

NPC
NSCLC

Validation cohort

Bladder
RCC
NSCLC_35
NSCLC_57
NSCLC_240
Mel_37
Mel_52
Mel_64
Mel_105

AUC based on ORR

0.546
0.564

AUC based on ORR

0.750
0.527
0.819
0.857
0.609
0.576
0.726
0.523
0.596

0.95ClI

0.321-0.77
0.398-0.730

0.95 Cl

0.564-0.946
0.370-0.684
0.668-0.970
0.756-0.959
0.517-0.701
0.389-0.764
0.585-0.866
0.375-0.671
0.466-0.726

AUC based on joint model

0.902
0.895

AUC based on joint model

0.921
0.756
0.833
0.972
0.947
0.663
0.777
0.851
0.863

0.95 ClI

0.793-1.000
0.826-0.964

0.95Cl

0.807-1.000
0.594-0.918
0.683-0.983
0.928-1.000
0.922-0.973
0.467-0.859
0.646-0.909
0.757-0.943
0.789-0.937
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Cancer type Num. Sequencing platform TMB threshold Case
NSCLC 35 F1CDx 220 mutMb Goodman et al. (2017)
57 WES No definttion Miao et al. (2018)
75 WES Median Hellmann et al. (2018a)
240 MSK-IMPACT Median Rizvi et al. (2018)
Melanoma 37 WES Top third Hugo et al. (2016)
52 F1CDx 220 mutMb Goodman et al. (2017)
64 WES 2100 mutMb Snyder et al. (2014)
105 WES 2100 mutMb Van Allen et al. (2015)
195 (58)° WES(MC3) 75th percenties Wood et al. (2020)
RCC 56 WES(MC3) 75th percenties Wood et al. (2020)
Bladder 27 WES No definition Miao et al. (2018)

SWood2020 study is a poolng mela-analysis on several existing datasets, where 58 patients of the 195 were patients not included in the above sfuckes.
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Characteristic for NSCLC
patients

Median age (range)
Sex—No. (%)
Male
Female
ORR—No. (%)
CRIPR
sD
PD
Stage—No. (%)
i
v
immunotherapy—No. (%)
Anti-PD-1
Anti-PD-L1
Smoking status—No. (%)
Current or former smoker
Never smoker
Pathological type—No. (%)
Adenocarcinoma
Squamous carcinoma
Others

Characteristic for NPC patients

Median age (range)
Sex—No. (%)
Male
Female
ORR—No. (%)
CRIPR
sD
PD
Stage—No. (%)
v
immunotherapy—No. (%)
Camrelizumab
Nivolumab
Ipiimumab
Smoking status—No. (%)
Current or former smoker
Never smoker
Therapy fine—No. (%)
2
>2
NA

Al patients (N = 73)

5 (28-73)

51 (70%)
2 (30%)

14 (19%)
20 (27%)
39 (54%)

1(1%)
72 (99%)

68 (93%)
5 (7%)

36 (49%)
47 (51%)

44 (60%)
23 (32%)
6(8%)

All patients (N = 64)

46 (23-73)

51 (80%)
3 (20%)

8 (12%)
19 (30%)
37 (58%)

64 (100%)

42 (66%)
18 (28%)
4 (6%)

6 (25%)
8 (75%)

15 (23%)
42 (66%)
7 (11%)
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Model and estimator

Joint Model True-data estimator

Joint Mode! Correct-score estimator dr = 0.5

Joint Mode! Correct-score estimator gy, = 0.75

Joint Model Correct-score estimator g = 1.0

Joint Mode! Naive estimator o, = 0.5

Joint Mode! Naive estimator o, = 0.75

Joint Mode! Naive estimator o, = 1.0

Logistic regression true data
Cox regression true data
Logistic regression der = 0.5
CoX regression g, = 0.5
Logistic regression ag, = 0.75
Cox regression g, = 0.75
Logistic regression a, = 1.0

Cox regression d; = 1.0

Bold value represents the TMB effect.

Coef

m

B

a

L

Fm

a

m

Bn

9

am

B

Bn

a

an

am

B

m

B

m

B

Fitted value

~1.857
0.277
0.995
2109
-0.427
0.981
-1.864
0.278
0.989
2117
-0.425
0.956
-1.798
0271
0.979
2108
-0.418
0.922
-1.790
0.274
0972
2.027
-0.390
0.893
~1685
0.257
0.947
1.757
-0.344
0.854
-1.591
0.246
0.924
1.436
-0.268
0.788
-1.585
0.224
0.947
1.335
-0.260
0.885
-1.072
0.188
1.99%6
-0.329
-1.047
0.180
2019
-0.297
-0.965
0.166
1.992
-0.221
-0.926
0.150
1.973
-0177

Average Bias

0.057
0.023
0.005
0.091
0.027
0.019
0.064
0.022
0.011
0.083
0.025
0.044
0.002
0.029
0.021
0.002
0.018
0.078
0.010
0.026
0.028
0173
0.010
0.107
0.115
0.043
0.083
0.443
0.056
0.146
0.209
0.054
0.076
0.764
0.132
0212
0215
0.076
0.053
0.865
0.140
0.115
0.728
0.112
0.204
0.071
0.75253
0.120
0.181
0.103
0.835
0.134
0.208
0.179
0.874
0.150
0.227
0.223

SD

0.547
0.099
0.084
0315
0.068
0.167
0.495
0.091
0.083
0.373
0.081
0.148
0.477
0.090
0.075
0.370
0.076
0.124
0.444
0.081
0074
0.362
0.074
0.106
0.409
0.069
0.072
0.326
0.060
0.105
0.403
0.066
0.064
0.296
0.047
0070
0.483
0.078
0.078
0376
0.082
0.165

SE

0.508
0.093
0.066
0.302
0.060
0.064
0.503
0.092
0.066
0.296
0.060
0.064
0.502
0.091
0.066
0.293

0.062
0.498

0.065
0.288

0.061
0.482
0.087
0.064
0.281

0.059
0.465

0.063
0.264
0.051
0.056
0.456
0.079
0.064
0.256

0.060
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Characteristic Total N = 110 (%)

Age (years)

265 35 (318)

<65 75 (68.2)
Gender

Male 90 (81.8)

Female 20 (18.2)
Location

Upper 18 (16.4)

Middle 50 (45.5)

Lower 42 (382)
Length (cm)

<5em 60 (54.5)

25cm 50 (45.5)
pT stage

T2 20 (18.2)

T3 66 (60.0)

T4 24 (218)
PN stage

No 39 (35.5)

N1 47 (42.7)

N2 18 (16.4)

N3 6(5.5)
TNM stage

i 31(282)

1 75 (68.2)

Va 4(3.6)
Adjuvant chemotherapy

Yes 60 (54.5)

No 50 (45.5)
51229984 genotypes

T 38 (34.5)

e 35 (31.8)

cc 5(45)

Unknown 32(29.1)
151789924 genotypes

cc 100 (90.9)

cr 10 (9.1)
15671 genotypes

GG 49 (445)

GA 48 (43.6)

AA 327

Unknown 10 (9.1)
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Description

Th1

Th1-like

Th2

Treg

Effector T cells

Naive T cells

Exhausted T cells

Gene marker

TBX21
STAT4
STATI
TNF
IENG
HAVCR2
CXCR3
BHLHE40
CDh4
STAT6
STAT5A
FOXP3
CCR8
TGFBL
CX3CR1
FGFBP2
FCGR3A
CCR7
SELL
LAG3
CXCL13
LAYN

p < 0.05, **p < 0.01, and ***p < 0.001.

None

Cor

0258
0289
0.149
0.181
0.153
0322
0253
0213
0381
0304
0.488
0.190
0.182
0455
0371
0230
0287
0276
0368
0278
0374
0.606

Purity
Cor

0.148
0.149
0.058
0.060
0.063
0.200
0.131
0.155
0257
0233
0.388
0.121
0.108
0385
0284
0.149
0216
0.124
0257
0.183
0294
0.541

0237
0225
0.197

Age
Cor

0.245
0.281
0143
0173
0.146
0311
0242
0.208
0372
0299
0479
0.186
0178
0445
0.362
0225
0273
0275
0.362
0273
0378
0.601
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Description Gene marker None Purity Age
Cor P Cor P Cor P
Mast cells KIT 0546 0453 e 0.548 g
ENPP3 -0.132 - -0.114 N -0.13 "
Nk cells NCAMI 0795 0.756 0.785
FCGR3A 0287 0216 0273
KLRD1 0315 0.163 b 0310
Macrophages cp14 0364 0271 0354
CD68 0290 0.187 0278
CSFIR 0477 0370 0469
M1 IRFS 0141 " 0114 - 0128 .
PTGS2 0244 0.149 * 0239
NOS2 0.103 % 0.001 0981 0.100 %
M2 CD163 0336 0237 0327
VSIG4 0384 0278 0374
MS4A4A 0372 0268 0.365
DC HLA-DPB1 0380 e 0256 0.368
HLA-DQB1 0255 0.155 “ 0249
HLA-DRA 0339 0.193 0327
HLA-DPAL 0415 0280 0404
cpIC 0328 0178 0322
NRP1 0076 0091 0.054 0.268 0.064 0.162
ITGAX 0245 0.139 % 0233
Neutrophils FCGR3B 0277 ol 0.186 0273
CEACAMS 0008 0855 0018 0714 0.009 0837
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Chinese pinyin name

baizhi
Baizhu
banxia
Banzhilian
chenpi
Chuanxiong
Danshen
Fuling
Gancao
Gouteng
Yanhusuo

Baihuasheshecao

Latin name

A. Dahurica (Fisch.) Benth. Et Hook
Atractylodes Macrocephala Koidz
Arum Ternatum Thunb
Scutellariae Barbatae Herba
Citrus Reticulata

Chuanxiong Rhizoma

Radix Salviae

Poria Cocos (Schw.) Wolf
licorice

Uncariae Ramulus Cumuncis
Corydalis Rhizoma

Hedyotis Diffusae Herba
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GEO accession

GSE22762 (Herold et al.,
2011a)

GSE39671 (Chuang et al,,
2012)

GSES0006
GSE9992 (Fabris et al., 2008)

GSE16746 (Mosca et al.,
2010)

GSE28654 (Trojani et al.,
2011)

GSE25571 (Herold et al.,
2011b)

GSE12734 (Stamatopoulos
et al,, 20092)

GSE14973 (Stamatopoulos
et al., 2009b)

GSE112953

GSE15913 (Giannopoulos
et al,, 2009)

Number Subgroup of sample

151

130

210

151 CLL

130 CLL

188 CLL 32 healthy donors

24 M-CLL 36 U-CLL

23 M-CLL 37 U-CLL

61 M-CLL 28 U-CLL

FISH abnormality

7 high-ZAP70 7 low-ZAP70
14 CLL with and without VPA
11 CLL before and after

lenalidomide treatment

20 CLL before and after
thalidomide treatment

Sample type
PBMC

PBMC

CD19+ B cells
CD5+ CD19+

CD23+ B cells
CD5+ CD19+

CD23+ B cells
CD19+ cells
PBMC
CD19+ cells
B cells

CD19+ cells

PBMC

Application in article

Establishment of a survival model by LASSO and survival analysis
of OS and TTT by a nine-gene model

Survival analysis of TTT by a nine-gene model

Validation of expression difference of hub genes between CLL and
healthy donors

Validation of the correlation of hub gene expression and risk score
with IGHV status

Validation of the correlation of hub gene expression and risk score
with IGHV status

Validation of the correlation of hub gene expression and risk score
with IGHV status

Validation of the correlation of hub gene expression and risk score
with genotypic abnormality

Validation of the correlation of hub gene expression and risk score
with ZAP70 expression level

Validation of the correlation of hub gene expression and risk score
with before and after treatment

Validation of the correlation of hub gene expression and risk score
with before and after treatment

Validation of the correlation of hub gene expression and risk score
with before and after treatment

CLL, chronic lymphocytic leukemia; PBMC, peripheral blood mononuclear cells; M-CLL, IGHV mutated CLL; U-CLL, IGHV un-mutated CLL; OS, overall survival; TTT, time-to-

A ——
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Variable Univariate analysis Multivariate
analysis
HR p-value HR p-value

Risk score 10464 0.0003 1.0489 0.0004
Age 10129 0.0659 1.0196 00120
Gender 1.3037 0.1674 1.2572 0.2364
T 13004 0.0006 12674 00023
N 13263 00109 12162 0.1035
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The function of TRM
cell

Cancer types Phenotype

References

Lung cancer CD103, and CD8 High CD103+ CD8+ TRM tumor infiltration boosts

anti-tumor activity

CD103, and CD8 CD8+TRM tumor infiltration reduces the risk of

‘metastasis
CD103, and CD8

CD8, CD103, CD69, and
CD49a

CD8+TRM in TLS prolongs the survival (p < 0.05)

CD8+ TRM cell infiltration is positively associated with a
better prognosis

Melanoma CD69, CD8, and CXCR6  Tumor-specific TRMs have a role in limiting the

invasion of the tumor into the other tissues

CD39, CD103, and PD-1  High CD39+ TRM infiltration is associated with a better

outcome
CD8, CD103, and CD69

CD8, CD103, CD69,
CD49a, PD-1, and LAG-3

CD103, and CD8

CD8+ TRMs enhance anti-tumor response

A high proportion of CD8+ TRMs are positively
associated with the clinical outcome

High-level CD103+CD8+TRM cell infiltration enhances
the efficacy of immunotherapy

Bladder cancer

CD103, and CD8 TRM cells infiltrating the tumors are linked to lower

tumor stage

CD103, CD8, CD69, and  The high density of CD8+ TRMs is positively associated

CD49%a with a good prognosis
Ovarian cancer CD3, CD8 CD103, and CD103+ CD8+ TRMs in tumor site enhance anti-tumor
CD69 immunity
CD103, CD8, PD-1, High proportions of CD8+ TRMs have a positive
and CD3 correlation with the prognosis

Breast cancer CD103, and CD8 CD8+ TRM infiltration reduces the release rate (RFS; p =

0.002)

CD8+CD103+ TRM infiltration is associated with a
favorable prognosis

CD8, CD103, CD69, and
PD-1

CD8, and CD103 PD-1 Increased numbers of CD8+ TRMs are associated a

better prognosis (DFS: p = 0.22, OS: p = 0.009)

‘The number of CD8+ TRMs is positively correlated with
the prognosis (OS: p < 0.0001)

Low levels of CD8+ CD103+ TRM cells are associated
with a worse prognosis

Pancreatic ductal
adenocarcinoma

Liver cancer CD8, and CD103

Gastric cancer CD8, and CD103

CD103, CD69, PD-1,
TIGIT, and CD39

CD8, and CD103

CD8+ TRMs amplify anti-tumor response

cutaneous squamous
cell carcinoma

CD8+ CD103+ TRM cells are negatively associated
with 0

Head and neck cancer ~ CD8, and CD103 High CD103+ cell infiltration is associated with a good

=0.0014, DSS: p = 0.0015, DES: p =

0.0018)

DFS, disease-free su

i e i

Gl Bl RS lboie b sbal:

Tarantino et al. (2022)

Mehdizadeh et al. (2021)

Martinez and Moon, (2019)

Burnet. (1970); Dunn et al. (2002); Whiteside. (2012);
Wilczynski and Nowak. (2012); Duhan and Smyth.
(2021); Wada et al. (2022)

Munari et al. (2021)

Nagarsheth et al. (2017)

Lamplugh and Fan, (2021)

Davis et al. (2015); Goossens et al. (2019); Petty et al.
(2019)

Eryn and Ott. (2021); Tarantino et al. (2022)

Lu et al. (2014)

Kvedaraite and Ginhoux, (2022)

Bogunovic et al. (2009); Bttcher et al. (2018)
Roberts et al. (2016); Villani et al. (2017); Barry et al.
(2018)

Matsuo et al. (2018)

(Sanchez-Paulete et al., 2018; Cancel et al, 2019; Ferris
et al, 2020)

Schoenberger et al. (1998)

de Mingo Pulido et al. (2018)

Chow et al. (2019)

Stratikos et al. (2014)
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IncRNA

Coefficient

ITFG1-AS1
ATP2B1-AS1
LINC02257
SEPTIN7-DT
LINC02593
NSMCEI-DT
LINCO1011
PRKARI1B-AS2
ALMSI-IT1
ALKBH3-AS1
LENG8-AS1
NDUFB2-AS1
LINC01909
LINC02428

1.141371803
0.865146021
0.795554824
1.573247835
0.276013057
1.632161275
0.08737383

1.092034967
0.349485749
~5.84063052
0.049777684
0.650094369
~1.06225964
0.019695671
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Covariates

Age

Gender

Stage

Type

<65

>65

Female
Male

Stage 11
Stage NIV
Unknown

Complete set

183 (41.03%)
263 (58.97%)
212 (47.53%)
234 (52.47%)
250 (56.05%)
185 (41.48%)
11 (247%)

Development set

95 (42.41%)
129 (57.59%)
110 (49.11%)
114 (50.89%)
116 (51.79%)
103 (45.98%)
5 (223%)

Validation set

88 (39.64%)
134 (60.36%)
102 (45.95%)
120 (54.05%)
134 (60.36%)
82 (36.94%)
6(27%)
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Univariate analysis Multivariate analysis

Parameter Comparison p-value HR 95% CI p-value HR 95% CI

Age <65 vs 265 0.028* 1732 1.060-2.829 0.008* 1979 1.199-3.268
Stage Il vs. 11 & IVa 0.029% 1934 1.070-3.494 0.024* 2106 1.105-4.016
N stage NO-1 vs. N2-3 0011 1999 1.173-3.405 0.083 1662 0936-2.951
Tumor length <5.cm vs. 25 cm 0017+ 1.798 1.109-2.915 0.018* 1836 1.109-3.038
ADHIC CCvs. CT 0.014° 2339 1.191-4.595 0.03* 2196 1.079-4.470

p < 0.
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Univariate analysis Multivariate analysis

Parameter Comparison p-value HR 95% CI p-value HR 95% CI

Age <65 vs 265 0.150 1.423 0.880-2.303 0057 1609 0.986-2.625
Stage I vs 1T & IVa 0.037* 1811 1.035-3.170 0.030* 1.965 1.066-3.622
N stage NO-1vs N2-3 0.016* 1.915 1.127-3.253 0079 1664 0943-2.936
Tumor length <5cm vs 25 cm 0.033* 1.663 1.041-2.655 0.031* 1718 1.051-2.809
ADHIC CCvs CT 0.011* 2392 1.219-4.694 0.022* 2289 1.125-4.658

p < 0.
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