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Over-Voltage Regulation of
Distribution Networks by Coordinated
Operation of PV Inverters and Demand
Side Management Program
Seyed Saeid Heidari Yazdi1, Tohid Rahimi2, Saeideh Khadem Haghighian3,
Gevork B. Gharehpetian4 and Mehdi Bagheri 1*

1Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University,
Nursultan, Kazakhstan, 2Department of Electronics, Carleton University, Ottawa, ON, Canada, 3Electrical Engineering
Department, California State University, Long Beach, CA, United States, 4Electrical Engineering Department, Amirkabir University
of Technology, Tehran, Iran

The increase of Photovoltaics (PV) units’ penetration factor in the power grids might create
overvoltage over the network buses. The active power curtailment (APC) and the reactive
power provision methods use inverters to regulate their output active and reactive powers
for high PV-penetrated grids. However, the mentioned solutions would reduce the
maximum injectable active solar power to the grid, not financially acceptable.
Continuous employment of the maximum apparent power capacity of the inverters will
practically decrease the inverters’ lifetime, require special design considerations, andmake
the control system complex. To overcome those issues, a feasible solution would be
increasing the load consumption within the time intervals in which the grid faces the over-
voltage problem. In this research, the demand response (DR) program is employed. Load
shifting techniques are exerted to move a portion of loads from the peak hours to when
further power consumption is expected for voltage level reduction purposes. A new long-
term strategy based on the coordinated operation of the PV inverters and load shifting
techniques is proposed to resolve the over-voltage issue in the network. Consequently, the
PV inverter’s contribution to voltage control is reduced; a new sight of DR potential is
implemented, and also the under-voltage level in peak times is decreased significantly.

Keywords: PV inverters, active power curtailment (APC), over-voltage, demand reposed (DR), high penetrance

INTRODUCTION

Over recent decades, the aim was to install more PV units, especially PV farms, to address the global
warming issue and come up with clean energy. The PV electricity generation cost has been
considerably reduced, and the PV units have been employed in a wide range of applications
(Wongsaichua et al., 2004). However, the high penetration factor of the PV systems leads to critical
challenges in power quality (e.g., over-voltage) (Yang et al., 2020).

In high PV-penetrated power systems, the PV generators may cause to flow reverse current in
grids’ lines, and then nodal overvoltage might appear. Researchers have used two general techniques,
namely the active power curtailment (APC) and reactive power control of PV inverters, to mitigate
the overvoltage challenge. Application of the APC techniques (which reduce the solar power
generation) and reactive power consumption by the inverters can decrease the nodal voltages
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down to the acceptable ranges. Many significant efforts have been
performed to address the over-voltage issue emerging from high
active power injection from renewable sources (Yeh et al., 2012;
Kryonidis et al., 2016; Molina-García et al., 2016; Li et al., 2017;
Ciocia et al., 2018;; Singhal et al., 2018; Couraud et al., 2019;
Fatama et al., 2020; Joseph et al., 2020). A study by (Singhal et al.,
2018), has focused on implementing an adaptive volt/Var control
system for the PV inverters to resolve the steady-state voltage
deviation and improve the system’s response to external faults. In
work done by (Ciocia et al., 2018), three different approaches
have been recommended and practiced to utilize the voltage
control devices and employ a static voltage controller (SVC)
instead of a On-Load Tap Changer (OLTC). The authors of
(Kryonidis et al., 2016) have proposed a decentralized control
strategy to minimize the power losses and provide a fast response
in the voltage regulation. Researchers have tried to earn revenue
from the participation of the PV inverters in the ancillary services
market (Karbouj et al., 2020). A three-level control system
consisting of power, voltage, and current control loops has
been recommended by (Molina-García et al., 2016) for the PV
inverters to overcome the over-voltage issues and the power flow
convergence problems. Also, a modified voltage-reactive power
curve and a power flow routine have been presented to prevent
time-consuming calculations for determining the nodes’ voltage
and lines’ current. The utilization of a transformer with tap
changing capability, switched capacitor banks, and distributed
generation units have also been discussed by (Joseph et al., 2020)
to improve the voltage quality. However, this method will reduce
the transformer’s lifetime and requires expensive switched
capacitors. The over-voltage and under-voltage challenges are
expected in high PV-penetrated power systems under cloudy
conditions. Therefore, solutions have been proposed by (Li et al.,
2017) to mitigate those challenges by regulating the active and
reactive power values of the PV inverters. Unbalanced grid
voltage conditions can be mitigated by the coordinated
operation of distributed inverters and other power quality
devices to improve voltage unbalance condition (Peng et al.,
2020).

A precise analysis of the literature shows that the APC
techniques and reactive power control of PV inverters have
been commonly practiced to overcome the over-voltage issue
in different conditions. However, relying on those methods will
reduce the voltage control freedom. Furthermore, they will
initiate other technical problems for the PV inverters and
impose a more economic burden on the owners. The reactive
power injection/absorption by PV inverters will increase the
required Volt-Ampere (VA) of the inverters. Therefore, the
size of the inverters would be increased, advanced cooling
systems would be required, and investment costs would be
increased. In addition, injection of the reactive power through
the inverters may potentially decrease their lifetime because of the
implied current stresses (Anurag et al., 2015). Employing APC
techniques would lead to solar power spillage and would reduce
the financial benefits. Also, the network operators should pay a
penalty cost to the PV units’ owners for their contribution to the
voltage regulation. Therefore, it is essential to reduce the PV
inverter’s contributions to improve voltage quality issues.

This study proposes a new technique considering DR program
to address the discussed challenges. This letter’s main
contribution is proposing simultaneous and coordinated
employment of the DR programs and reactive/active power
regulation of the PV inverters to improve the voltage quality
of the network. Nevertheless, DR techniques have been employed
by researchers (Aghaei et al., 2016; Dong et al., 2017; Yao et al.,
2019; Antonopoulos et al., 2020; Barik and Das 2020; Li et al.,
2020; Xie et al., 2020) to cover different objectives such as voltage
stability, short-term voltage stability, and long/short term voltage
quality. All mentioned works have been implemented without
considering Distributed Generators (DGs) and PV units’
contribution to the voltage support. Also, Electric Vehicles
(EVs) have been considered additional tools to improve the
voltage quality (Prabawa and Choi, 2021; Dutta et al., 2021;
Pournazarian et al., 2019). However, EVs can mainly address
dynamic voltage deviations quickly, while utility operators prefer
to adopt a long-term voltage control strategy. The literature has
not yet studied the DR potential for reducing the PV system’s
contribution to voltage control. To be more precise, the aim is to
overcome the over-voltage issues of distribution networks by
proposing a coordinated operation of DR of loads and APC and
reactive power regulation of PV farms. The effective performance
of the proposed methodology is examined over the IEEE 33 bus
distributed network.

The proposed strategy is introduced in section 2. The criteria,
fitness functions, and the case study with its characteristics are
presented in section 3. To assess the proposed strategy,
simulations are conducted and their results are discussed in
Section 4. Finally, section 5 is dedicated to highlighting the
main conclusion.

THE PROPOSED STRATEGY

The derivation steps of the proposed methodology are shown
in Figure 1. In Figure 1A, the over-voltage issue is clear
around noontime due to high PV power generation. In
consequence, a real power curtailment has been applied to
the PV farm inverters, and reactive power compensation has
been applied to mitigate the over-voltage issue, see Figure 1B.
Different reactive control methods can also be applied over the
PV inverters during the over-voltage conditions, such as
adjusting the reactive power considering IEEE 1547–2018. A
relatively high APC level has been applied, and the PV
inverters have regulated their reactive power generation to
mitigate the over-voltage issue.

The main challenges of the contribution of PV inverters in
voltage control without employing a suitable DR program can be
inferred from Figure 1B. In more detail:

• Increasing the reactive power generation of inverters will
increase the required VA rates for the PV inverters, and then
investment costs would be increased.

• The clipped active power, which is indicated by P1, is very
significant; considerable financial losses would be incurred
because of employing APC methods.
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In the proposed technique, shifting load from the peak times
to times in which the PV farm injects high power to the grid (in
our case: around noon time) would be an effective approach. It is
assumed that the customers allow the network operator to shift a
certain percentage of their power consumption from peak times
to off-peak times using DR programs. Hence, Figure 1C shows
the voltage profile of the grid employing the coordinated
operation of PV inverters and DR programs where the over-
voltage issue is eliminated. The load-shifting (LSH) technique is

selected to implement the DR program. As a result, the PV
inverters’ levels of active power curtailment and reactive power
generation are reduced. Another advantage would be decreasing
the under-voltage issue during peak times which this support is
highlighted in Figure 1C.

Considering the discussion above, reactive power support by
inverters is still needed in power grids, but its level can be
significantly reduced. In this context, a regulation loop should
be implemented in the control software of the PV inverters to

FIGURE 1 | The derivation steps of the proposed methodology: (A) Without voltage support by PV inverters and without implementing the DR program, (B)
conventional voltage support by PV inverters and without implementing the DR program, and (C) the proposed strategy for coordinated operation of PV inverters and DR
program.
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regulate its reactive power (Q) as a function of grid conditions
[voltage level (V)]. The IEEE Std. 1,547 has defined the required
Q-V function for the PV inverters, see Figure 1B.

In this part, the DR concept is discussed. Nowadays, loads’
behavior can be predicted with high accuracy. In DR programs,
customers contribute voluntarily, contract-based and
mandatory-based in some emergency conditions in power
consumption patterns. Therefore, there is little concern about
unpredictability and uncontrollability from users’ perspectives.
Figure 2 clearly shows the DR concept and Eqs 1–3 try to express
this concept. It is assumed that customers allow the network
operator to be able to shift certain percentages of their power
consumption from peak times to non-peak times. The final load
at each time after participation in DR programs may be more or
less than the base load. Figure 2; Eqs 1–3, Load(tp) and Load(ti)
indicate the final load in the peak and non-peak times,
respectively. Loadb(ti) and Loadb(tp) are the base-load in
non-peak and peak times, respectively. Idr (tp) indicates the
shifted load from a peak time to other off-peak times. On the
other hand, Idr (ti) factor shows the consumer participation level
in absorbing Idr (tp) at ith off-peak time. The loads’ values after
running the DR program at peak times and off-peak times could
be obtained via 2) and 3).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αp � Idr(tp)
Loadb(tp)p ∈ tpeak

αik � Idr(ti)
Loadb(ti) i ∈ tnon−peak

(1)

Load(tp) � (1 + αp) × Loadb(tp) (2)
Load(ti) � (1 + αi) × Loadb(ti) (3)

IMPLEMENTATION OF THE PROPOSED
STRATEGY

This section aims to clarify the implementation process of the
proposed strategy. As discussed in this paper, the contribution of
PV units in voltage control means owners of PV farms would lose
some revenue due to applying the APC technique, which must be
compensated by the grid owner. On the hand, the owner of the grid
must pay PV unit owners for their contribution to reactive power
control as an ancillary service. To reduce the mentioned costs, it is
proposed to employ DR programs in this research. Shifting the loads
from peak times to off-peak times is an incentive program and
induces costs. However, by implementing optimum schedules, an
optimum solution can be found in which the total penalty cost
allocated to the owner of the grid would be the lowest. In general,
different fitness functions, optimization algorithms, scenarios, and
load profiles can be considered to examine the performance of the
proposed strategy. But, this study tries to simply implement the
proposed strategy. In this context, three fitness functions are first
defined.

The costs of the contribution of the PV inverters in voltage
regulation can be expressed as:

RC � ∑
t�tend

t�1

∣∣∣∣QPV
t

∣∣∣∣ × Cq−t (4)

AC � ∑
t�tend

t�1

∣∣∣∣PPV
t

∣∣∣∣ × CP−t (5)

where, QPV
t and PPV

t are the exchanged reactive and active power
by a PV inverter. The allocated per unit reactive and active power
costs for each time interval are indicated by Cq-t and CP-t,

FIGURE 2 | The concept of the LSH technique.
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respectively. A penalty cost is also expressed by (6) to consider the
cost of load shifting from peak time to off-peak times. It is
assumed that the load change after applying the DR program is
ΔP (t). Thus, the allocated penalty cost can be obtained as,

CDR � ∑
t�tend

y�1
ΔP(t) × CPL−t (6)

where CPL-h is the daily price of electricity determined by the
distribution network owner for each time interval. In this step, a
multi-objective optimization problem is indicated. One of the
techniques to simplify multiple objective problems is aggregating
all objectives in one expression by assigning a certain weight
factor to each objective:

FT � ω1RC + ω2AC + ω3CDR (7)
where,ωi is the weighted factor for the ith fitness function It is worthy
of mentioning that, concerning the operator’s aims and priorities,
certain weight factors can be defined to realize the power quality
requirement and maximize the operator’s profit simultaneously.

CASE STUDY

The IEEE 33-bus, as a test platform, is selected to evaluate the
proposed technique. This system is a Medium Voltage (MV)

distribution and a suitable network for grid-connected large-scale
PV farms. It has a radial feature to enlarge the effect of high PV
penetration. The single-line diagram of the case study is
illustrated in Figure 3. Since the MW sized and GW sized and
grid-connected PV units have been developed around the world
(Trindade et al., 2016), it is assumed that the large-scale PV farm
is connected to the proposed network. In particular, a PV farm is
connected to bus#18 to highlight the operational effect of the PV
farm on the over-voltage phenomenon. To simplify the analyses,
all the parameters are expressed in Per Unit (p.u.) format for load
flow studies, the load types are P-Q, while the PV farm is modeled
as a load with the capability to inject and absorb reactive power.

The basic active and reactive power of the loads is reported in
the literature (Yuvaraj et al., 2021). However, the load profile is
not reported for different time intervals of a day. Thus, a time-
based factor (HBFt) should be applied to the base-load data to
create a daily load profile. This factor will be changed over a day,
see Figure 3, to model the load profile during peak and off-peak
times. However, different scenarios considering load and power
generation profiles can also be considered. The active (PL

i,t) and
reactive (QL

i,t) powers of ith bus at tth time interval are
calculated as,

PL
i,t � PL

i,base × HBFt (8)
QL

i,t � QL
i,base × HBFt (9)

FIGURE 3 | Single line diagram of IEEE 33 bus distribution network.
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where, PL
i,base and QL

i,base are the base active and reactive powers.
As demonstrated in Figure 3, a large-scale PV farm is

connected to the grid. Figure 3 also illustrates the forecasted
average power generation of the large-scale PV farm for the
day ahead.

RESULTS AND DISCUSSION

To assess the proposed methodology’s effectiveness, the case study
and its characteristics during a day aremodeled and simulated in the
MATLAB software environment. The power flow technique is based
on the matrix lines-nodes concept, which is discussed in detail by
(Sotkiewicz and Vignolo, 2006). In each step of the MATLAB code,
the loads and generation data are called, the reactive power is
adjusted, the voltage of nodes is checked, and PV power
generation is reduced in the case of over-voltage happening; this
process repeats until the requirements of stopping criteria met.

It should mention that the optimization algorithm, load and
generation profiles, and the studied test system are selected to
highlight this paper’s goals. Different scenarios considering load
and power generation profiles can be considered by researchers.

The simulation results are provided in Figure 4. Note that,
due to eliminating the slack bus in power flow, the remaining
bus numbers are 32 buses. Therefore, the nth bus in voltage

profile figures is that of (n+1)th bus over the examined
network. The active power profiles of the PV farms in
different scenarios are also shown in Figure 4A. The APC
level by applying the LSH method is lower than that in the case
of LSH absent. Therefore, employing the LSH method can
increase the benefits of the PV owners by selling more active
power. Moreover, the contribution of the PV farm in
consuming reactive power is reduced, which will decrease
the inverter power loss and consequently increase the
inverter’s lifetime. Considering the employed Q support, see
Figure 1, the PV unit should consume the reactive power
around noon times to reduce the over-voltage issue. On the
other hand, the PV unit is responsible for injecting reactive
power into the grid to support the profile voltage during the
night with respect to the IEEE 1547–2018 standard. The
mentioned contribution of the PV unit in Q support is
illustrated in Figure 4B.

The demand profile variation of all the grid buses after
implementing the LSH method is also provided in Figure 4C,
where the most demand variations occur during noontime. In
addition, the demand reduction occurs during hours 8 p.m. to 12
a.m. for all the buses. The resultant voltage profile is shown in
Figure 4D. The voltage value during the day and for all buses
remains under 1.05 p. u. Correspondingly, the under-voltage
issue is reduced during peak times.

FIGURE 4 | Profiles of output power with and without load LSH method: (A) active power generation and (B) reactive power compensation, (C) Demand profile
variation after performing the LSH method, and (D) Comparison of voltage profile concerning different voltage control strategies.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9206546

Heidari Yazdi et al. Over-Voltage Regulation of Distribution Networks

10

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


CONCLUSION

A novel strategy to coordinate the PV units’ active and reactive
power controllers and the demand response program is proposed.
The proposed strategymitigated the challenges of the contribution of
PV inverters in voltage control. Those challenges consist of high
mandatory APC levels and the increased cost and stresses of the PV
inverters in reactive power generation. The high contribution of PV
units in the voltage control is not cost-effective and may impose
complexity in the design and control of inverters. The proposed
strategy solved the over-voltage issue and the mentioned challenges
by proposing amethod for coordinated operation of the PV inverters
(considering their active and reactive power exchange) and DR
program. Three fitness functions were introduced and integrated
into a fitness function. The DR program coordinated the PV unit’s
operation to minimize the final fitness function simultaneously and
solve the over-voltage issue. The proposed strategy’s effectiveness has
been verified successfully on the IEEE 33 bus grid test.
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Research on Energy Management
Strategy of Pure Electric Vacuum
Vehicle Based on Fuzzy Control
Yujie Wang1, Yu Lei1, Licheng Zhang2 and Shengshi Zhong3*
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The current pure electric vacuum vehicle is equipped with main and auxiliary motors, and
the two motors work independently without affecting each other. The traditional auxiliary
motor usually operates with constant power while the main motor is only responsible for
the vehicle driving. The lack of cooperation between the two motors results in high energy
consumption. Therefore, formulating a reasonable strategy for the two motors has a
significant effect on the performance of the vacuum vehicle. This paper takes a pure
electric vacuum vehicle as an example to propose an energy management strategy based
on fuzzy control. First, for the working motor, a fuzzy controller is designed by taking the
vehicle speed and acceleration as input andmotor speed and torque as output. Therefore,
the vacuum vehicle can automatically adjust the operating power of the cleaning system
according to the real-time road conditions; the driving motor control strategy adopts a
closed-loop control strategy that combines driver input and vehicle state parameter
feedback based on considering the operating motor. Finally, the effectiveness of the
strategy is verified by simulation. The results show that the energy-saving control strategy
effectively reduces the power consumption per 100 km and increases the driving range,
which is of great significance to the development and design of the vacuum vehicle.

Keywords: pure electric vacuum vehicle, energy management strategy, fuzzy control, control strategy, energy-
saving

1 INTRODUCTION

As the country pays more and more attention to environmental issues, the traditional working
methods of road sanitation workers can no longer meet the current needs. As a road cleaning vehicle,
the vacuum cleaner effectively relieves the pressure on sanitation and plays an important role in
improving the environment. However, compared to the developed countries, domestic vacuum
vehicles have some disadvantages, such as noise, and have more power consumption (Zhang, 2020).
Different from the pure electric vehicle driven by dual motors (Ruan and Song, 2019; Wu et al., 2019;
Wu and Zhang, 2021), for the research object of this article, the main motor is equipped to drive the
car, and the auxiliary motor provides power for the bodywork system (Yang, 2016), so a reasonable
strategy is developed for the two motors. It has a great effect on the working performance of the
vacuum vehicle.

Lee (Lee et al., 2019), Wang (Wang et al., 2021), Kant (Kant et al., 2021) et al. have optimized the
structure of themotor tomake its performance more prominent, and the focus of this paper is mainly
on the control strategy. The drive motor in this paper is similar to the traditional car, and the research
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strategies to reduce energy consumption mainly focus on the
drive control strategy, the regenerative braking energy feedback
strategy, and the power limiting strategy (Zhang, 2014). At the
same time, different scholars have applied different control
methods to achieve the ideal effect. Luo et al. select the
corresponding drive mode to give appropriate torque
compensation according to the driver’s operation intention
and improves the power and economy of pure electric vehicles
(Luo and Niu, 2020). Ye et al. use a fuzzy control method to
determine the ratio of mechanical braking force and regenerative
braking force according to different braking intensities to
formulate energy recovery control strategies (Ye et al., 2021).
Justo et al. proposed a control strategy to predict torque using the
fuzzy model of the permanent magnet synchronous motor of an
electric vehicle, and the control is simple (Justo et al., 2017). At
the same time, the energy management strategy based on fuzzy
rules can realize the power distribution of the power system by
setting the logic threshold, thereby improving the economy of the
vehicle (Guo et al., 2021).

The working motor is only used in some special vehicles, and
scholars have not studied it much, Dong constructed a torque
control model of the multi-motor power system of an electric
sweeper based on a fuzzy control strategy (Dong, 2019). Wang
et al. developed and validate an efficiency model for electronically
commutated motor fan systems (Wang et al., 2020). Long
established the mathematical model of the control relationship
of the hydraulic motor tracking servo motor, and the PID
parameter setting combined control algorithm is adopted
(Long et al., 2018). Shao designed a digital throttle control
scheme for the speed of the disc brush motor using a fuzzy
control algorithm so that the speed of the disc brush can be
adjusted automatically, but the power consumption is not taken
into consideration (Shao, 2005).

In addition, the research on multi-motor systems mainly
considers the torque distribution between motors (Zhai et al.,
2016; Liu et al., 2019), which provides certain ideas for multi-
motor power systems. However, in general, there are few studies
on energy-saving strategies for multi-motor commercial vehicles
with large energy consumption. In this paper, for a certain pure
electric vacuum vehicle, comprehensively considering SOC,
vehicle speed, operating conditions, etc. an energy-saving
strategy for pure electric vacuum vehicle based on fuzzy

control is established. The torque output of the two motors is
controlled separately, and the Simulink-Cruise joint simulation
model verifies the economics of the strategy.

2 OBJECT DESCRIPTION

Pure electric vacuum vehicles use batteries as power sources to
drive motors to realize the vehicle’s walking and operating
functions. Therefore, they can be divided into two parts: the
driving system and the working system. According to the needs of
vacuum vehicles, they can be equipped with single or dual motors.
The research object of this paper is a dual-motor arrangement
type. The main motor (that is, the driving motor) drives the
vacuum vehicle to travel, and the auxiliary motor (that is, the
working motor) provides power for the working device. The
block diagram is shown in Figure 1. The vehicle and motor
parameters of the research vehicle are shown in Table 1.

3 MODEL ESTABLISHMENT

3.1 Driving Model
During the driving process, the vehicle is affected by driving
resistance, slope resistance, air resistance, and acceleration
resistance. The required torque of the driving motor can be
calculated by the dynamic equation of the driving system:

Tigi0ηt
r

� mgf cos α +mg sin α + CdAu2

21.15
+ δm

du

dt
(1)

where, T is the required torque, ig is the transmission ratio, i0 is
the main transmission ratio of the differential box, ηt is the
transmission efficiency, r is the wheel rolling radius,m is the mass
of the vehicle, g is the acceleration of gravity, f is the rolling
resistance coefficient and α is the slope angle. Cd is the coefficient
of air resistance, A is the windward area, u is the vehicle speed,
and δ is the conversion coefficient of the rotating mass.

3.2 Operating Model
In the operating system, the auxiliary motor mainly provides
power for the fan and hydraulic components. The fan generates
negative pressure and uses the force generated by the pressure to

TABLE 1 | Vehicle and motor parameters.

Project Parameter Project Parameter

Vehicle Parameter Vehicle size 7160 × 2200 × 2750 mm Wheelbase 3800 mm
Curb weight 6575 kg Total mass 8275 kg
Rolling radius 0.406 m Air resistance coefficient 0.35
Frontal Area 6.05 m2 Rolling resistance coefficient 0.012

Battery Capacity 90 A/h Nominal voltage 381.7 V
Driving motor Rated power 50 kW

Rated torque 280 Nm
Rated speed 1600 r/min

Working motor Rated power 30 kW
Rated torque 100 Nm
Rated speed 2950 r/min
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suck in garbage and dust. The hydraulic components are used to
achieve the lifting and moving of the suction cup (Zhang, 2019).
Since the power consumed by hydraulic components is much
lower than the fan. It is ignored and only the power consumed by
the fan is taken into consideration.

The needed torque of the working motor is:

Tfan � 9550QP × 130%
nfntρ

(2)

Where,Q is the air volume, P is the air pressure, ηf is the working
motor efficiency, nt is the working motor speed, and ρ is the
force rate.

3.3 Motor Model
The motor has complex structure and varies methods to establish
its model with different complexity. In this case, the model is part
of the vehicle, the performance of the components inside the
motor is ignored. Thus, a simplified model with the torque and
power characteristics is established (Tian et al., 2020). When the
motor speed is less than the base speed, the motor works in the
constant torque region, and the output power increases with the
increase of the speed. When the motor speed is greater than the

base speed, the motor works in the constant power area, and the
output torque decreases as the speed increases. The motor’s
operating characteristics are shown as the following equation.

Pm � Tmn

9550
ηm (3)

Where, Pm is the motor output power, Tm is the motor output
torque, n is the motor speed, and ηm is the motor efficiency.

The operating characteristic of the electrical motor is shown in
Figure 2. The motor efficiency changes with the output speed and
torque. The efficiency map of the driving motor is shown in
Figure 3.

4 ENERGY MANAGEMENT STRATEGY

4.1 Working Strategy
For traditional road vacuum vehicles, when the vacuum suction
system is operating, it will clean the road garbage with constant
power. Since the amount of garbage on the road does not always
remain in a large state, the bodywork system of the vacuum
vehicle always working at the same power will inevitably cause
unnecessary energy loss (Li, 2020).

At the same time, during the operation of the electric vacuum
vehicle, the relationship between the rotation speed, torque, and
vehicle speed of the working motor is non-linear, which makes it
impossible for us to establish an accurate mathematical model of
the operation system. Therefore, a fuzzy controller is designed. It
allows the vacuum vehicle to automatically adjust the operating
power of the auxiliary motor according to the real-time road
conditions, to achieve the goal of energy-saving.

During the operation, the driver adjusts the speed of the
vehicle based on the garbage and dust on the road. At the
same time, the cleaning efficiency decreases with the increase
of the vehicle speed (Li et al., 2019), so when the driver recognizes
that there is a lot of garbage on the road, he often reduces the
vehicle speed and improves the cleaning degree. With the change
of the vehicle speed, the rotation speed and torque of the working

FIGURE 1 | Block diagram of the main and auxiliary motor drive modes.

FIGURE 2 | External characteristic diagram of the motor.

FIGURE 3 | MAP diagram of motor efficiency.
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motor also varies. Therefore, this paper selects the vehicle speed v
and acceleration a as the input, and the rotation speed of the
working motor n, Torque q is the output, and a two-dimensional
fuzzy controller is designed.

In the fuzzy control module, the fuzzy subsets, domains, and
membership functions of input and output variables are defined.
The explanation is as follows: The domain of the vehicle speed
during the operation of the vacuum vehicle is set as (0, 20) km/h,
and the fuzzy subset is taken as (S, MS, M, MB, B), which indicate
that the vehicle speed is at low speed, low-to-medium speed,
medium speed, medium-to-high-speed, and high-speed state
respectively, the domain of the vacuum vehicle acceleration a
is determined as (−1,1) m/s2, and its fuzzy subset is taken as: (NB,
NS, ZO, PS, PB). It represents the acceleration is negatively large,
negatively small, zero, positively small, and positively large. For
output, the fuzzy domain of the operating motor speed n is
determined to be (1500, 3500) r/min, use (S, MS, M, MB, B) to
correspond to low speed, medium-low speed, medium speed,
medium high speed, high-speed, The fuzzy domain of torque q is
(50, 100) Nm, (S, MS,M,MB, B) indicates that the workingmotor

is in the state of the small, medium-small, medium, medium-
large, and large torque, respectively.

The membership function is often formulated based on
experience. This article refers to some related literature (Cui
et al., 2019; Luo et al., 2021). At the same time, according to the
simulation analysis and theory, the membership function is
adjusted to make it adapt to the energy control strategy. The
membership degrees of input and output variables are shown in
Figure 4:

The corresponding fuzzy rules follow the following principles:

1) Under the premise of ensuring the cleaning efficiency, when
the vehicle speed increases and the acceleration is relatively
large, cleaning the road with the same garbage level requires
greater power of the working motor, and the speed and torque
of the working motor should be increased;

2) When the vehicle decelerates and the acceleration is small, it is
less difficult to vacuum. To reduce energy consumption, the
rotation speed and torque of the working motor should be
reduced accordingly.

FIGURE 4 | Membership function of input and output variables.
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Based on the above rules, the fuzzy logic rules expressed by if-
then sentences are established, and the inference surface of fuzzy
control deduced is shown in Figure 5.

4.2 Driving Strategy
The driving strategy should meets the drivers’ intention while
maintain the motor works in the relatively high efficiency region.
The proper driving strategy could extend the mileage of the
electric vehicle (Asher et al., 2019). The drive motor torque
control strategy proposed in this paper adopts a closed-loop
control strategy that combines driver input and feedback of
the vehicle state parameter. It does not only reflect the driver’s
actual driving intentions but also considers the current vehicle
system state. Figure 6 illustrates the torque control architecture.
Among them, the output torque is defined as:

T � Teco + Tcom (4)

Tcom � { 0, Teco >Tact

ΔT, Teco <Tact
(5)

Where, Teco is the economic torque, Tcom is the compensation
torque, and Tact is the actual torque.

4.2.1 Economic Torque MAP
During the operation of the vacuum vehicle, the driver obtains
different required motor torques by controlling the position of
the accelerator pedal. The operating characteristics of the motor
can well meet the vehicle’s high torque at low speed and high
power demand at high speed. To make the torque output
corresponding to different accelerator pedal position more
uniform, this paper will adopt the following interval division:

Te �
⎧⎪⎨
⎪⎩

LTmax, n≤ ne
9550LTmaxne

n
, n> ne

(6)

Where, Te is the target demand torque, L is the torque load factor,
Tmax is the peak torque of the motor, ne is the base speed, and n is
the current speed of the motor.

It can be seen from Figure 3 that the working efficiency is the
highest when the motor speed n is within the range of
1700–4500 rpm, and the accelerator pedal position S is set as
40–80%. The relationship between them is shown in Table 2.
According to Eq. 7, the relationship between the vehicle speed
and rotation speed of the motor is established.

n � igi0u

0.377r
(7)

Where, ig is the transmission ratio, i0 is the main reducer
transmission ratio, u is the vehicle speed and r is the wheel
rolling radius.

In this case, the corresponding vehicle speed is around 34 km/
h-91 km/h. Assuming that the vehicle is driving at a constant
speed on the road without any slope, ignoring the gradient

FIGURE 5 | Fuzzy control reasoning surface.

FIGURE 6 | Torque control architecture.
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resistance and acceleration resistance, the following formula can
be obtained:

Tneed � (mgf + CdAu2

21.15
) u

3600ηt

9550
n

(8)

Where, Tneed is the demand torque.
Define the torque load factor L. The relationship between the

speed and torque load coefficients obtained is shown in Table 3.

L � Tneed

Tpmax
(9)

Where, Tpmax is the maximum torque, which can be obtained
from Figure 2.

Using the curve for fitting, the relationship between the
accelerator pedal position S and the torque load coefficient L
is shown in Figure 7.

It can be seen from Figure 7, that when the accelerator pedal
opening is small, the corresponding torque load coefficient is

small and at the same time torque difference is small, this makes the
maneuverability of the vehicle better. It is conducive to the long-term
stable driving of the pure electric vacuum vehicle. When the
accelerator pedal opening is increased, the torque difference
increases and the motor demand torque response is more
sensitive. The final economic torque MAP is shown in Figure 8.

4.2.2 Compensation Torque
From Formula 5, when the economic torque found by the actual
speed is less than the actual torque, a compensation torque is set,
otherwise, the compensation torque is 0. In this paper, a
compensation torque fuzzy controller is designed to obtain the
value of ΔT.

The acceleration pedal change rate, operating motor speed,
and battery SOC were selected as input variables to calculate the
compensation torque increment by fuzzy reasoning.

The fuzzy subsets of SOC are defined as: (S, M, B),
representing low, medium, and high respectively; The input
range of operating motor speed is defined as 1500–3500 r/min,
and (S, M, B) is used to correspond to low, medium and high-
speed states. The input of acceleration pedal opening change rate
is defined as −1 ~ 1, and it is defined as (S, MS, M, MB, B) in the
case of slow to urgent.

In the operation process, when the SOC is high, the operating
motor speed is low, and the acceleration pedal opening change
rate is large, it reflects that the driver has a high-power driving
demand, and relatively high compensation torque is given. When
the SOC is low, the operating motor speed is high, the
acceleration pedal change rate is small, the driver’s power
demand is relatively low and the compensation torque is small.

At the same time, considering that the sudden change of torque
during the driving process of the vehicle will cause a greater impact,
which will affect the ride comfort, it is necessary to consider the limit
of the impact degree when determining the compensation torque
increment (Wan, 2016), the expression of the impact degree:

TABLE 2 | The relationship between motor speed n and accelerator pedal
opening S.

n (rpm) 1700 2400 3100 3800 4500

S (%) 40 50 60 70 80

TABLE 3 | Relationship between speed n and torque load factor L.

n 1700 2400 3100 3800 4500

S 40% 50% 60% 70% 80%
Tneed 50.4 57.2 66.2 77.6 91.2
Tpmax 561.7 398 308 251.3 212.2
L 0.09 0.144 0.216 0.308 0.4309

FIGURE 7 | Relationship between accelerator pedal opening S and
torque load coefficient L.

FIGURE 8 | Economic torque MAP.
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j � d2u

dt2
≈

1
m
(iηt
r

dT

dt
) (10)

Where, j is the impact received while driving, also called the rate
of change in acceleration, ηt is the transmission efficiency.

From Formula 10, it can be obtained that the impact
degree of the vehicle during driving is proportional to the

rate of change of torque. The German shock degree standard
stipulates j ≤ 10 m/s3, substituting the vehicle parameters
and taking a 10% margin, the maximum value of the
compensation torque ΔT is 60.1 Nm. The membership
degrees of input and output variables are shown in
Figure 9. The fuzzy rules of torque compensation are shown
in Table 4.

FIGURE 9 | Membership function of input and output variables.

TABLE 4 | Torque compensation fuzzy rules.

SOC Operating motor speed Acceleration pedal opening change rate (%)

S MS M MB B

B S MS M MB B B
M MS MS M MB B
B S S MS M MB
S MS M MB B B

M M S MS MS M MB
B S MS M M MB
S MS MS M MB B

S M S S MS M MB
B S S MS M MB
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5 JOINT SIMULATION AND SIMULATION
RESULT ANALYSIS

This paper uses a pure electric vacuum vehicle as the research object
to verify the effectiveness and superiority of the strategy. AVLCruise
software is used to build a vehicle model, and the energy-saving
control model analyzed is built in MATLAB/Simulink software. In
the simulation process, the performance of the original strategy,
design strategy, and CRUISE strategy are compared. The original
strategy refers to the strategy that the bodywork system works with
the same power and there is no vehicle state feedback during driving.
The CRUISE strategy refers to the strategy that comes with the
CRUISE software and uses a linearmethod to adjust the power of the
bodywork. The results were analyzed by co-simulation.

5.1 Establishment of Operating Conditions
Setting the condition is an important step in AVL CRUISE
software simulation. The operating conditions of pure electric
vacuum vehicles include working conditions and transition
conditions, in which the working conditions account for more
than 75% (Ma et al., 2018). Referring to the establishment process
of NEDC, Tang et al. constructed a typical working condition of a
sweeping vehicle (Tang, 2020). In this paper, part of the working
conditions spectrum of CHTC is selected as the reference for
transition conditions. Where, CHTC condition is the driving
condition for Chinese automobiles used by the commercial
vehicles with a total mass greater than 5500 kg. It includes the
urban cycle (342 s), suburban cycle (988 s), and high-speed cycle
(470 s). And the working conditions of vacuum vehicles in a

FIGURE 10 | Road spectrum diagram of vacuum vehicle.

FIGURE 11 | SOC trend changes.

FIGURE 12 | Distribution of working efficiency points of the drive motor.

FIGURE 13 | Comparison of power consumption of operating motor.
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certain area are combined to build the spectrum of the operating
condition as shown in Figure 10.

5.2 Simulation Analysis
In the case of a vacuum vehicle running in AVL CRUISE software,
Figure 11 shows the comparison of SOC change trends under
three strategies. The SOC decreases at a lower rate when energy-
saving strategies are initiated. The original strategy has the
minimum SOC at the end of the simulation.

Figure 12 shows the distribution of the working efficiency
points of the driving motor. According to the simulation results,
although the control strategy requires the motor to work in the
optimal region, the driving motor must meet the requirements of
high-speed transition, while the vacuum vehicle has been operating
in the low-speed zone for a long time, most of the working
points are in the range of 78–88%. The proportion of efficiency
points in the high-efficiency area of motors with energy
management strategies has increased compared with the
original strategies.

Figure 13 is a comparison diagram of the power consumption
of the working motor. It can be seen that the energy-saving
strategy based on fuzzy control can automatically adjust the
working power of the bodywork system. Compared with the
other two strategies, the power consumption is smaller to achieve
the effect of energy-saving. At the same time, it can be seen from
the figure that the working motor of the vacuum vehicle is turned
on under the working condition, and after the 750s, it is the
transition condition, and the working motor does not work.

The energy consumption per 100 km and the driving range
obtained in the AVL CRUISE with the three strategies are
compared in Table 5.

According to the simulation results under the constructed
vacuum vehicle operating conditions, the energy consumption
per 100 km of the vehicle is reduced from 88.35 kWh/100 km in
the original strategy and 75.65 kWh/100 km in the Cruise strategy
to 70.09 kWh/100 km in the design strategy. With a lower energy
consumption, the charging and discharging time of the battery
can be decreased, which means its life cycle can be extended.

Overall, the energy management strategy of the vacuum
vehicle established in this paper reduces the power
consumption per 100 km by 20.66%, and the driving range
increases by 20.62%. In summary, the energy-saving strategy
of electric vacuum vehicles based on fuzzy control proposed in
this paper can effectively benefit the battery life cycle, reduce
battery energy consumption and increase driving range.

6 CONCLUSION

To reduce the energy consumption of pure electric vacuum
vehicles during operation, an energy management strategy
based on fuzzy control is proposed. To verify the feasibility
and superiority of the proposed control strategy, a vehicle
dynamics model was established by AVL CRUISE and
evaluated on the Simulink/CRUISE co-simulation platform.
The conclusions of the study are as follows:

1) Based on the current road condition and vehicle status, the
proposed fuzzy controller succeeds in managing the rotation
speed and torque of the operating motor in a relatively high-
efficiency region.

2) According to the simulation, compared with the original
strategic control, the energy-saving strategy proposed in
this paper reduces the economic performance index (power
consumption per 100 km) by 20.66% and extends the driving
range by 20.62%.

Since the energy consumption of the hydraulic system and
mechanical lifting system is much lower than the motors, they are
ignored. Therefore, the accuracy of the established model can be
further improved by considering these factors in the next stage.
Hence, the superiority of the proposed control strategy can be
enhanced.
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Designed Strategy 70.09 76.772
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Under the China’s ‘dual carbon’ national goal–reaching peak carbon emissions by 2030
and achieving carbon neutrality by 2060, one of the key issues in China is how to smoothly
transit from a fixed-price mode to a competitive market pricing mode for renewable energy
generation companies. Aiming at minimizing governmental subsidies and maximizing the
fairness among renewable energy generation companies, a multi-agent three-layer
transition mechanism with the transactions of green certificates considered is
proposed in this paper. Through adjusting subsidy policies, the developed transition
mechanism can stimulate the renewable energy generation companies to gradually
participate in the competitive electricity spot market. Specifically, a multi-market multi-
agent transaction framework in the transition mechanism is first established. Then, in order
to derive the important parameters of the transition mechanism, a method that decouples
the electricity market and the green certificate market is designed. Finally, the feasibility and
efficiency of the proposed transition mechanism are demonstrated through numerical
examples.

Keywords: carbon neutral, renewable energy generation, electricity spot market, tradable green certificate,
contract coverage

1 INTRODUCTION

The Renewable Energy Sources (RESs) in China have been developing rapidly with the goal of reaching
peak carbon emissions by 2030 and achieving carbon neutrality by 2060 (The State Council
Information Office of the People’s Republic of China, 2020). By the end of 2020, the total installed
capacity of RES-based generation in China reached 530 million kW, accounting for 25.5% of the total
generation installed capacity. The rapid development of RESs also results in the large amount of
subsidies to RES investors. In order to mitigate financial burdens on the government due to RES
subsidies, the energy administrative authorities have been continuously lowering the benchmark
electricity prices for photovoltaic and wind power generation. In June 2021, the National Development
and Reform Commission issued a relevant document (National Development and Reform
Commission of China, 2020), stipulating that the central government would no longer subsidize
the newly registered centralized photovoltaic power plants, industrial and commercial distributed
photovoltaic projects, and newly approved onshore wind power projects in 2021. This will help to
alleviate the financial burden, but it may lead to a sharp decline in the growth rate of RES installations.
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In order to alleviate the financial burden of subsidy while
promoting the development of renewable energy generation,
mature electricity markets have taken a number of measures. The
German Ministry of Energy adopted the policy of feed-in premium
in 2014, which guide RESs to participate in the competition in the
electricity spot market (Schallenberg-Rodriguez and Haas, 2012). It
is a transitional way for RESs to gradually shift from full acquisition
to full competition (Gawel and Purkus, 2013). In contrast, the
United States uses the renewable energy quota system to
promote the development of RESs (Barbose et al., 2016; Luo,
2016). At present, more than 30 states in the United States have
established a renewable energy quota system, which is conducive to
encouraging RESs to adjust its own output according to market
supply and demand, and reduce the pressure on system operation.
The United Kingdom has implemented a policy of renewable
obligation (RO) since 2002, which is similar to a quota system
(García-Alvarez et al., 2017). Since the implementation of the RO
policy, the RESs has developed rapidly in United Kingdom, and the
average annual growth rate of power generation has reached 12%. In
addition, both the United States and the United Kingdom allow RES
units to participate in the electricity spot market (Kilinc-Ata, 2016).

Overall, the combination of “financial contract + spot market”
and quota system is often adopted in practical electricity markets
around the world (Ren et al., 2022), in which RES units participate
in the electricity spot market equally with other types of generation
units, and the risks of spot market prices are hedged by signing
Contracts For Difference (CFD) between power supply
companies and RES generation companies. Meanwhile, the
establishment of a marketplace for Tradable Green Certificates
(TGCs) is also deployed as an important measure to encourage the
development of RES generation. The fixed-price procurement of
RES generation as a subsidy for RES generation can be gradually
replaced by governmental compensations to TGC transactions.
This will not only helpmitigate the governmental financial burdens
but also promote the participation of RES generation units in
competitive electricity spot markets, which is align with the
requirements of sustainable development.

Currently, there is still no effective market mechanism to
support the participation of RES generation units in electricity
spot markets in China. On the one hand, the income of RES-
based generation companies cannot be guaranteed after the
participation, which will damage the confidence of RES-based
generation investors, and is not conducive to the long-term RES
generation development. On the other hand, the participation of
RES generation units in the electricity spot market may increase
themarket volatility and lead to severe fluctuations in spot market
prices (Xu et al., 2020; Yang et al., 2020). Therefore, the
participation of RES generation units in electricity spot
markets requires an effective transition mechanism.

Some publications are availabe on the participationmechanism/
mode of RES generation units in electricity spot markets.
Specifically, the impacts of RESs on electricity spot market due
to the uncertainty are examined from both theoretical and
empirical perspectives in (Li and Xu, 2021; Zhao et al., 2021).
An electricity market transition model considering is proposed in
(Shinde et al., 2021) to represent a possible requirement to
undertake system balancing with increasing amounts of

Intermittent RESs. A bilateral transaction model based on the
Bayesian game is proposed in (Kong et al., 2021) to calculate the
Bayes-Nash equilibrium point of the electricity spot market with
high penetration RESs, thereby evaluating the smoothness of the
participation of RESs in the electricity spot market. It is pointed out
in (Gu, 2020) that the government-authorized contract system
needs to be adopted collaboratively to ensure the accommodation
of RES generation and external electricity, and the percentage of
electricity covered by government-authorized contracts should be
adjusted reasonably to achieve a smooth transition to the
competitive market is proposed. A transition mechanism for the
market participation of RESs based generation units, which can
gradually guide the transition of RES generation units to the
electricity spot market by adjusting the percentage of electricity
covered by medium- and long-term contracts is proposed in (Dai
and Chen, 2020). However, the specific method for determining
the percentage of electricity is not given.

In addition, none of the above publications considers the
impacts of TGC transactions on the spot electricity market
participation of RES generation units. Since 2017, a green
certificate voluntary subscription market has been in operation
in China, laying the foundation for the implementation of the
mandatory quota system. As an important measure to support
the quota system, TGC trading has a positive effect on reducing
the burdens on government financial subsidies and restructuring
the revenue of renewable energy generation. A system dynamic
model is established, and case studies are conducted in (Zhang
et al., 2021; Zhu et al., 2022), pointing out that compared with
fixed price purchases, the development efficiency and economic
benefits of RES generation units under the quota system are
higher. A study that analyzes the overall framework, core
elements and supporting measures of the quota system in
recent years together with China’s current national conditions,
and puts forward a dual-track system of “fixed electricity price +
quota system” is established in (Jiang et al., 2020). Another study
that shows the role of the penalty mechanism of the quota system
and points out that setting a reasonable penalty can support the
market mechanism to improve the income of RES generation
units, thereby reducing the financial burden of subsidies on the
government is proposed in (Zhang et al., 2017).

In order for the sustainable development of renewable energy
generation and the relief of the government financial burdens, it is
of great significance to explore and study the transition
mechanism for RES units to participate in the electricity spot
market. To fill this knowledge gap, the main contributions of this
paper are summarized as follows:

1) A new transition mechanism is proposed to reduce the
financial burden of governmental subsidies and guide the
participation of RES units in the electricity spot market.

2) A multi-agent three-layer optimal decision-making model is
established to calculate the contract coverage ratio (CCR).
CCR denotes the percentage of electricity traded via CFDs
over the total on-grid electricity and is an important
parameter in the transition mechanism. The method for
determining the CCR of RES units is proposed to
maximize the income of generators while taking into
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account the clearing results of the electricity spot market and
the green certificate market.

3) Extensive numerical experiments using practical electricity
market data are conducted to demonstrate the feasibility and
efficiency of the proposed transition mechanism and solving
methods. Both short-term and medium-long-term
simulations are carried out in the experiments.

The rest of paper is organized as follows: Section 2 introduces
the established transition mechanism for RES units to participate
in the electricity spot market. Section 3 presents the method for
determining the CCR. Extensive numerical experiments are
employed to illustrate the proposed model in Section 4, and
the simulation results are also analyzed. Finally, the paper is
concluded in Section 5.

2 TRANSITION MECHANISM FOR THE
PARTICIPATION OF RENEWABLE ENERGY
GENERATORS IN THE ELECTRICITY SPOT
MARKET

How to balance the financial burdens of government subsidies
and the incentives for renewable energy development is an

important issue in the electricity market reform. In the early
stage of market development, RES generators face difficulties due
to their weak market competitiveness, immature technologies,
and recovery of investment costs, thus government financial
subsidies are needed (Upton and Snyder, 2017). During this
period, the government can sign CFDs with the RES
generators to ensure their income and encourage their
continued development. With the continuous progress of the
electricity market reform, the number of RES generation
companies is increasing, and the total amount of government
subsidies will be increasing accordingly. In order to avoid such a
situation, it is necessary to gradually reduce the CFDs for RES
units, and guide RES units to participate in the electricity spot
market. Meanwhile, through cooperation with the TGC market,
the subsidies for RES units can be gradually shifted from
government financial subsidies to TGC transaction subsidies
(Ma et al., 2017), so as to encourage RES companies to carry
out technological innovation while ensuring the consumption of
green electricity. The market transaction framework of the
proposed transition mechanism is shown in Figure 1.

In the above framework, the income of RES units is divided
into three parts, namely the income from CFDs, the income of
selling electricity in the spot market, and the income of selling
TGCs. According to existing policy (National Development and
Reform Commission of China, 2020), depending on the number

FIGURE 1 | Framework of market transactions considering RES unit participation.
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of issued TGCs and the price of CFDs, the calculation rules for
RES units with different registered times are different, as shown in
Table 1. Therefore, this paper categorizes RES units into
two types.

The RES units in type I are those which was put into operation
before 2021, and their CFD price is higher than the local
benchmark price of coal-fired power generation. For these RES
units, the government will subsidize for the generation output
covered in the CFDs, and TGCs will be issued only for the
electricity traded in the spot market. It means that only the
RES generations traded in the spot market are compensated
through the TGC market.

The RES units in type II are those to be put into operation after
2021, whose contract purchase price is specified as the benchmark
price of local coal-fired power generation, and the CFDs of such
RES units do not receive governmental subsidies. For these RES
units, TGCs are issued for the electricity in both the CFDs and the
spot market, thus the RES generations traded in both the CFDs
and the spot market are compensated.

The CCR of RES units in the proposed transition mechanism
is defined as the percentage of electricity traded via CFDs over the
total on-grid electricity, as shown in Eq. 1.

γF � Qc
F/(Qc

F + Qsp
F ) (1)

where γF is the CCR (%); Qc
F is the electricity covered by CFDs

(MWh); Qsp
F is the amount of electricity allowed to be traded in

the electricity spot market (MWh).
The CCR stipulates the share of RES generations entering the

spot market, and also determines the amount of government
financial subsidies. The CCR is a key parameter and should be
determined carefully considering the system reliability
requirements, the reform process of the power market and
other factors. The determination of CFD coverage is also
related to the revenue of RES units and the number of TGCs
issued, and may affect the market strategies of fossil-fueled
generation units in the spot market and TGC market.
Therefore, designing an innovative method for determining
the contract coverage is the key to a smooth transition of the
reform.

It should be noted that the continuous development of
renewable energy generation will greatly increase the
uncertainty of the power system. Correspondingly, the
demand for ancillary market will also increase. This will
inevitably have an impact on the clearing results of the
electricity spot market and the market strategies of fossil-
fueled generation units. But the situation discussed in this
paper is in the early stage of RES development. In other
words, the impact of participation of RESs in the electricity

spot market on ancillary market is not fatal. Notably, the
focus of this paper is on the participation of RES in electricity
energy markets, and the extension of the proposed mechanism to
the ancillary market will be systematically studied in our
future work.

3 MATHEMATICAL FORMULATIONS OF
PROPOSED TRANSITION MECHANISM

The ratio of RES electricity generations covered by CFD contracts
directly affects the amount of government financial subsidies and
the income of RES units, and it is closely related to the clearing
results of the spot market and the TGC market. In the transition
mechanism, a three-layer optimization model is established,
where the objective is to maximize the revenues for both RES
units and fossil-fueled units while taking into account the
outcomes of the spot market and the TGC market. The
method for solving the optimal CCR is also presented.

Figure 2 illustrates the structure of decision-making model in
the proposed transition mechanism. Specifically, the input
parameters of the three-layer model include the predicted
generation output, typical load curve, elasticity of load
demand, generation constraints, network constraints, fuel costs
of fossil-fueled units, and assessment weights of the quota system.
In the upper-level model, the research object is the policymaker,
the decision variable is the contract coverage of RES units, and the
objective function is to minimize government financial subsidies
and to maximize the fairness of subsidies. The contract coverage
obtained in the upper model is passed to the middle-level model.
The middle-level model includes the clearing models of both the
electricity spot market and the green certificate market, which are
managed by the Independent System Operator (ISO). The
middle-level model feeds back the market clearing results to
the upper model via simulations of the electricity spot market
and the green certificate market. The lower-level model
formulates the bidding strategies of RES and fossil-fueled units
aiming at maximizing their income, and the optimal bidding
results will be fed back to the middle-level model to complete the
simulation of market operation.

3.1 Upper-Level: Decision-Making Model
for Policymaker
The decision-making model for policymaker is to solve the CCR.
The CCR not only determines the amount of financial subsidies,
but also affects the fairness among RES units. Therefore, the
upper-level model adopts a multi-objective optimization method

TABLE 1 | Comparison of the two types of RES units.

RES
units

Project registered
time

CFD price Number
of TGCs issued

Type I Before 2021 Including the governmental premium subsidy, which is higher than the local benchmark price of
coal-fired power generation

Issued for electricity traded in the spot
market

Type II In and after 2021 Local benchmark price of coal-fired power generation Issued for all of the RES output
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to minimize government financial subsidies while maximizing
the fairness. In this section, photovoltaic (PV) generators and
wind turbines are taken as examples to elaborate details of the
upper-level model.

3.1.1 Objective Function
3.1.1.1 Government Financial Subsidies
Alleviating the financial burdens of governmental subsidies is the
first objective of this model, which is measured by the premium
CFDs for RES units. It is modeled here that the difference between
the CFD price and the spot market price is the premium value of
government subsidies. Therefore, the objective function based on
the amount of government financial subsidies can be expressed as
follows.

minfp1 � ∑
T

t�1
(Pc

pI − Psp
t ) · Qen

pI,t · γp (2)

where fp1 is the amount of government financial subsidy to the
photovoltaic generation; Psp

t is the spot market price during the
trading period t; Pc

pI and Qen
pI,t are the CFD price of the type I

photovoltaic generators and the predicted output during the
trading period t, respectively; γp is the photovoltaic contract
coverage in the decision-making period T. As mentioned earlier,
based on existing policies, the government only subsidizes the
type-I RES generation units. For the type-II units, the government
financial subsidy is 0.

3.1.1.2 Fairness in the Benefits Among Renewable Energy
Sources Generation Units
The fairness of the governmental subsidy is crucial for the
policymaker. While maximizing the overall benefit of RES
units, it is necessary to ensure that each unit can benefit from

the transitionmechanism as much as possible. Therefore, another
goal of the upper-level model is to maximize the fairness of
income among the same type of units. The concept of unit power
generation profit as defined in Eq. 3 is introduced to measure the
fairness.

Kpi,td �
∑td
t�1
[Pc

piQ
en
pi,tγp + Psp

t Q
en
pi,t(1 − γp) + Pgr

t Q
gr
pi,t] − ϖpiCp

∑td
t�1

Qen
pi,t

(3)
where Kpi,td is the unit power generation profit of the ith

photovoltaic generator in trading period td; td is the time
period for calculating the unit power generation profit, which
can avoid the problem that the denominator of Eq. 3 is 0 when
there is no photovoltaic output at night, usually takes td � 24; Pc

pi
is the CFD price of the ith photovoltaic generator; Qen

pi,t and Qgr
pi,t

are the predicted output of the ith photovoltaic generator and the
amount of electricity traded in the TGC market in the trading
period t, respectively; Cp is the levelized cost of photovoltaic
generation; ϖpi is the efficiency coefficient of the ith photovoltaic
generator, which is assessed by professional organizations. When
the power generation efficiency is higher than the average level,
ϖpi > 1.

To ensure that the RES units of the same type have the smallest
variance in the unit power generation profit in all trading periods,
the objective function to measure the fairness of the RES profit
can be expressed by Eq. 4.

minfp2 � ∑
Np

i�1
∑
T

td�1
⎛⎝Kpi,td −

1
Np

∑
Np

i�1
Kpi,td

⎞⎠
2

(4)

FIGURE 2 | Illustration of the three-layer optimization model for determining the CCR.
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where fp2 is the fairness coefficient of photovoltaic generators,
i.e., the sum of squared difference of the unit power generation
profit of each unit in each trading period; Np is the number of
photovoltaic generators. The unit power generation profit
obtained by the same type of RES units in a certain trading
period through CFDs, the spot market, and the TGC market is
used as an indicator to measure the fairness, which reflects the
equal treatment of the same type of units.

Similarly, the objective functions for wind turbines can be
formulated by Eqs. 5, 6.

minfw1 � ∑
T

t�1
(Pc

wI − Psp
t ) · Qen

wI,t · γw (5)

minfw2 � ∑
Nw

i�1
∑
T

td�1
⎛⎝Kwi,td −

1
Nw

∑
Nw

i�1
Kwi,td

⎞⎠
2

(6)

where fw1 and fw2 are the amount of government financial
subsidy and fairness coefficient of the wind turbines,
respectively; Pc

wI and Qen
wI,t are the CFD price and the

predicted output of wind turbines during the trading period t;
γw is the contract coverage of the wind turbines in the decision-
making period T;Nw is the number of wind turbines;Kwi,td is the
unit power generation profit of the ith wind turbine in trading
period td, as calculated in Eq. 7.

Kwi,td �
∑td
t�1
[Pc

wiQ
en
wi,tγw + Psp

t Q
en
wi,t(1 − γw) + Pgr

t Q
gr
wi,t] − ϖwiCw

∑td
t�1

Qen
wi,t

(7)
where Pc

wi is the CFD price of the ith wind turbine; Qen
wi,t and Q

gr
wi,t

are the predicted output of the ith wind turbine and the amount of
electricity traded in the TGC market in the trading period t,
respectively; Cw is the levelized cost of wind power generation;
ϖwi is the efficiency coefficient of the ith wind turbine.

3.1.2 Constraints and Solution
The output constraints of RES generators are included in the
upper-level decision-making model, as shown in Eqs. 8, 9.

γpmin ≤ γp ≤ γpmax (8)
γwmin ≤ γw ≤ γwmax (9)

where γp min and γp max are the upper and lower limits of the CCR
of photovoltaic generators; γw min and γw max are the upper and
lower limits of the CCR of wind turbines.

With the above objective functions and constraints, a multi-
objective optimization model is obtained for solving the CCR of
photovoltaic generators and wind turbines. The original objective
functions are first normalized to [0,1] to get rid of the influence of
dimension and order. Then the weighting factors are added as in
Eq. 10.

minf(γp, γw) � ∑
2

i�1
⎛⎝api

fpi − fpi,min

fpi,max − fpi,min
+ awi

fwi − fwi,min

fwi,max − fwi,min

⎞⎠

(10)

where api and awi are the weighting factors of each part of the
objective function. They are determined according to factors such
as power supply reliability, environmental benefits, policy
support for RES development, financial subsidy burdens
during this period, etc.

3.2 Middle-Level: Market Clearing Model
3.2.1 Electricity Spot Market Clearing Model
The clearing results of the electricity spot market are required
when calculating the CCR. Therefore, the electricity spot market
clearing model is the first middle-level model to provide market
data for decision-making in the upper-level model. Participants
in the spot market can be divided into fossil-fueled generation
units and renewable energy units. For a trading session t, the spot
market clearing model is given as follows.

min∑
NF

i�1
rspFi,tp

sp
Fi,t +∑

NG

j�1
rspGj,tp

sp
Gj,t (11)

s.t. ∑
NF

i�1
psp
Fi,t +∑

NG

j�1
psp
Gj,t � ∑

ND

k�1
pDk,t (12)

psp
Fi,tmin ≤p

sp
Fi,t ≤p

sp
Fi,tmax ∀i ∈ [1, NF] (13)

psp
Gj,tmin ≤p

sp
Gj,t ≤p

sp
Gj,tmax ∀j ∈ [1, NG] (14)

∑
NF

i�1
psp
Fi,tρl,i +∑

NG

j�1
psp
Gj,tρl,j +∑

ND

k�1
pDk,tρl,k ≤P

max
l ∀l ∈ [1, Nl] (15)

∑
NG

j�1
rreserve_+j,t ≥Rreserve_+

t (16)

∑
NG

j�1
rreserve_−j,t ≥Rreserve_−

t (17)

where pDk,t is the power demand of the kth load in clearing period
t; rspFi,t and rspGj,t are the market quotations of the ith RES unit and
the jth fossil-fueled generation unit, respectively; psp

Fi,t and psp
Gj,t

are the bid-winning power of the ith RES unit and the jth fossil-
fueled generation unit, respectively; ρl,i, ρl,j, and ρl,k are the power
transmission distribution factors of the RES unit i, fossil-fueled
generation unit j, and load k, respectively; Pmax

l represents the
transmission capacity of line l;NF,NG andNl are number of RES
units, fossil-fueled generation units, and lines, respectively;
rreserve +
j,t and rreserve −

j,t represent the positive spinning reserve
and the negative spinning reserve provided by the jth fossil-fueled
generation unit, respectively; Rreserve +

t and Rreserve −
t represent

the positive spinning reserve requirement and the negative
spinning reserve requirement of the system, respectively;
psp
Gj,t max and psp

Gj,t min are the upper and lower limits of the
bid-winning power of the fossil-fueled generation unit;
psp
Fi,t max and psp

Fi,t min are the upper and lower limits of the bid-
winning power of the RES units.

For both the type I and type II RES units, psp
Fi,t max is the

generation output minus the power covered by CFDs, as shown in
Eq. 18.

psp
Fi,tmax �

Qen
Fi,t(1 − γ)

t
(18)
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where Qen
Fi,t is the predicted output of the RES unit in trading

period t; γ is the CCR corresponding to the RES unit, γ ≡ [γp, γw].

3.2.2 Green Certificate Market Clearing Model
The TGC market clearing model is the other middle-level model.
During a decision cycle, the TGC market clearing process is
repeated. After a market clearing, the winning participants can
conduct transactions, and the participants who have not reached
a transaction will requote and enter the next market clearing
process. Since the clearing results of the spot market and the TGC
market affect each other, it is assumed that the clearing cycle of
the TGC market is consistent with the spot market. For a trading
session t, the TGCmarket clearing model is shown in Eqs. 19–22.

max∑
NF

i�1
rgrFi,tq

gr
Fi,t −∑

NG

j�1
rgrGj,tq

gr
Gj,t (19)

s.t. ∑
NF

i�1
qgrFi,t � ∑

NG

j�1
qgrGj,t (20)

0≤ qgrFi,t ≤ q
gr
Fi,tmax ∀i ∈ [1, NF] (21)

0≤ qgrGj,t ≤ q
gr
Gj,tmax ∀j ∈ [1, NG] (22)

where rgrFi,t / r
gr
Gj,t is the market quotation of the ith RES/ jth fossil-

fueled generation unit; qgrFi,t and qgrFi,t max are the number and the
upper limit of TGCs offered by RES generation unit, respectively;
qgrGj,t and q

gr
Gj,t max are the number and the upper limit of TGCs bid

by the fossil-fueled generation unit, respectively. qgrFi,t and q
gr
Fi,t max

corresponds to the output of RES unitQgr
Fi,t andQ

gr
Fi,t max. For type

I and type II RES units, the upper limits on electricity
corresponding to the number of winning TGCs are different,
as shown in Eq. 23.

Qgr
FImax � Qen

FI · (1 − γ)
Qgr

FIImax � Qen
FII

(23)

where Qgr
FI max and Qgr

FII max represent the upper limits on
electricity corresponding to the number of winning TGCs for
the type I and type II RES units, respectively; Qen

FI and Qen
FII

represent the predicted output of the type I and type II RES units,
respectively. Eq. 23 corresponds to the definitions of the two
types of RES units.

3.3 Lower-Level: Bidding Model of
Participants
3.3.1 Bidding Model for Renewable Energy Units
RES units participate in both the electricity spotmarket and the TGC
market, so their income is made up of two parts as shown in Eq. 24.

maxEFi,t � Esp
Fi,t(rspFi,t) + Egr

Fi,t(rgrFi,t) (24)
where EFi,t is the total revenue of the ith RES unit at time t; Esp

Fi,t

and Egr
Fi,t are the spot market revenue and TGCmarket revenue of

the ith RES unit at time t, respectively.
The constraints in the bidding model of RES generation units

are shown in Eqs. 25–27.

rspFi,tmin ≤ r
sp
Fi,t ≤ r

sp
Fi,tmax (25)

rgrFi,tmin ≤ r
gr
Fi,t ≤ r

gr
Fi,tmax (26)

pFi,tmin ≤pFi,t ≤pFi,tmax (27)
where Eq. 25 and Eq. 26 are bidding price constraints, and Eq. 27
is the biding output constraint. rspFi,t max / rspFi,t min and rgrFi,t max /
rgrFi,t min are the maximum/minimum bidding prices of the ith RES
unit at time t in the electricity spot market and TGC market;
pFi,t max and pFi,t min are the maximum and minimum output of
the ith RES unit at time t, respectively.

Since the marginal cost of RES units is nearly zero, their
market strategies in the spot market is always bidding the lowest
price, so that they can win the bid as much as possible. In the TGC
market, the market strategies is affected by the historical clearing
results in the TGCmarket and the spot market as well as the CCR.
It is important to point out that changes in contract coverage will
only affect the number of TGCs issued for the type-I RES
generation units (i.e., the subsidized units). Therefore, in the
early stage of market reform when the type-I RES generation
units accounting for a larger proportion of the total generation,
the CCR has larger impacts on the supply and demand
relationship in the TGC market. As the electricity
marketization reform progresses, the proportion of the type-II
RES generation units (i.e., the unsubsidized units) will increase,
and the CCR will have less impacts on the TGC market clearing
results.

Notably, RESs are usually coupled with energy storage
resources (ESRs). Since this paper discusses the situation in
the early stage of RES participation in electricity markets, the
penalty mechanism for the generation output deviations of RES
units is not considered in this paper. The forecasting results of
RES generation outputs could be more accurate if ESRs are
modeled, but the attained conclusions will remain unchanged.
It is implicitly assumed that the predicted generation outputs of
RES units could be accurate enough, even without ESRs installed.

3.3.2 Bidding Model for Fossil-Fueled Generation
Units
When fossil-fueled generation units participate in the spot
market, they need to purchase TGCs in the TGC market, so
their income is also divided into two parts, as shown in Eq. 28.

maxEGj,t � Esp
Gj,t(rspGj,t) + Egr

Gj,t(rgrGj,t) (28)
where EGj,t is the total revenue of the jth fossil-fueled generation
unit at time t; Esp

Gj,t and Egr
Gj,t are the spot market revenue and

TGC market revenue of the jth fossil-fueled generation unit at
time t, respectively. Egr

Gj,t is usually negative.
The constraints of the bidding model for fossil-fueled generation

units are shown in Eqs. 29–31. Among them, Eqs. 29, 30 are the
bidding constraints, and Eq. 31 is the output constraints.

rspGj,tmin ≤ r
sp
Gj,t ≤ r

sp
Gj,tmax (29)

rgrGj,tmin ≤ r
gr
Gj,t ≤ r

gr
Gj,tmax (30)

pGj,tmin ≤pGj,t ≤pGj,tmax (31)
where Eq. 29 and Eq. 30 are the bidding price constraints, and
Eq. 31 is the bidding output constraint. rspGj,t max / rspGj,t min and

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 9118727

Wang et al. Spot Markets Transition for RES

29

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


rgrGj,t max, / r
gr
Gj,t min are the maximum/minimum bidding prices of

the jth fossil-fueled generation unit at time t in the electricity spot
market and TGCmarket; pGj,t max and pGj,t min are the maximum
and minimum output of the jth fossil-fueled generation unit at
time t, respectively.

In the spot market, the market strategies of fossil-fueled
generation units not only depends on its production
conditions, fuel prices and other factors, but also is affected by
the TGC market clearing results. When the TGC market clearing
price is high and fossil-fueled units cannot buy enough TGCs,
their risk of being punished for not meeting the quota will
increase, so they will tend to reduce the value of offering prices.

In the TGC market, the market strategies of fossil-fueled
generation units (i.e., TGC buyers) is affected by the clearing
results of the spot market. If the clearing electricity in the spot
market is low, or the clearing price is low, the incentive of
purchasing TGCs will drop. In the long run, the market
strategies of fossil-fueled units is also affected by factors such
as the approaching assessment date and the overall trend of TGC
prices throughout the assessment cycle.

3.4 Reformulation and Solution
Mathematical reformulations are conducted to solve the
proposed three-layer model. Since the lower-level model is a
linear programming problem, the Karush-Kuhn-Tucker (KKT)
condition is a necessary and sufficient condition of optimality.
Therefore, the two bidding models in the lower layer can be
replaced with their KKT conditions and incorporated into the
middle-level model, thereby transforming the original three-layer
model into a two-layer optimization model. Given Eq. 24 and Eq.
28, the Lagrangian functions of the bidding model for renewable
energy based generation units and the bidding model for fossil-
fueled generation units are formulated as follows.

ΓFi,t � −Esp
Fi,t(rspFi,t) − Egr

Fi,t(rgrFi,t) (32)
ΓGj,t � −Esp

Gj,t(rspGj,t) − Egr
Gj,t(rgrGj,t) (33)

Thus, the KKT conditions of the lower-level model are derived
as Eqs. 34–37.

zΓFi,t
zrspFi,t

� πsp
Fi,t (34)

zΓFi,t
zrgrFi,t

� πgr
Fi,t (35)

zΓGj,t
zrspGj,t

� πsp
Gj,t (36)

zΓGj,t
zrgrGj,t

� πgr
Gj,t (37)

Based on the above KKT conditions, the lower-level model is
transformed into linear constraints and incorporated into the
middle-level optimization model.

Similarly, since the two market clearing models in the middle
layer are both linear programming problems, the middle-level
model can also be replaced with its KKT condition, thereby

transforming the original problem into a single-level
optimization model. After substituting Eqs. 34–37 into Eqs.
11–17 and Eqs. 19–22, the Lagrangian functions of the spot
market clearing model and the TGC market clearing model are
constructed as below.

Γsp � ∑
T

t�1
⎛⎝∑

NF

i�1
rspFi,tp

sp
Fi,t +∑

NG

j�1
rspGj,tp

sp
Gj,t

⎞⎠ +∑
T

t�1
∑
NF

i�1
πsp
Fi,t

+∑
T

t�1
∑
NG

j�1
πsp
Gj,t +∑

T

t�1
λspt ⎛⎝∑

NF

i�1
psp
Fi,t +∑

NG

j�1
psp
Gj,t −∑

ND

k�1
pDk,t

⎞⎠

−∑
T

t�1
∑
NF

i�1
μ
�sp

Fi,t(psp
Fi,tmax − psp

Fi,t) −∑
T

t�1
∑
NF

i�1
μ
�sp

Fi,t(psp
Fi,t − psp

Fi,tmin)

−∑
T

t�1
∑
NG

j�1
μ
�sp

Gj,t(psp
Gj,tmax − psp

Gj,t) −∑
T

t�1
∑
NG

j�1
μ
�sp

Gj,t(psp
Gj,t − psp

Gj,tmin)

−∑
T

t�1
∑
Nl

l�1
]l,t⎛⎝Pmax

l −∑
NF

i�1
psp
Fi,tρl,i −∑

NG

j�1
psp
Gj,tρl,j −∑

ND

k�1
pDk,tρl,k⎞⎠

(38)

Γgr � ∑
T

t�1
⎛⎝ −∑

NF

i�1
rgrFi,tq

gr
Fi,t +∑

NG

j�1
rgrGj,tq

gr
Gj,t

⎞⎠ +∑
T

t�1
∑
NF

i�1
πgr
Fi,t

+∑
T

t�1
∑
NG

j�1
πgr
Gj,t +∑

T

t�1
λgrt ⎛⎝∑

NF

i�1
qgrFi,t −∑

NG

j�1
qgrGj,t⎞⎠

−∑
T

t�1
∑
NF

i�1
μ
�gr

Fi,t(qgrFi,tmax − qgrFi,t) −∑
T

t�1
∑
NF

i�1
μ
�gr

Fi,tq
gr
Fi,t

−∑
T

t�1
∑
NG

j�1
μ
�gr

Gj,t(qgrGj,tmax − qgrGj,t) −∑
T

t�1
∑
NG

j�1
μ
�gr

Gj,tq
gr
Gj,t

(39)

Therefore, the KKT conditions of the electricity spot market
clearing model and the TGC market clearing model can be
expressed by Eqs. 40–60.

3.4.1 Equality Constraints

zΓsp
zpsp

Fi,t

� rspFi,t + λspt + μ
�sp

Fi,t − μ
�sp

Fi,t + ]l,tρl,i +
zπsp

Fi,t

zpsp
Fi,t

� 0 (40)

zΓsp
zpsp

Gj,t

� rspGj,t + λspt + μ
�sp

Gj,t − μ
�sp

Gj,t + ]l,tρl,j +
zπsp

Gj,t

zpsp
Gj,t

� 0 (41)

zΓgr
zqgrFi,t

� −rgrFi,t + λgrt + μ
�gr

Fi,t − μ
�gr

Fi,t +
zπgr

Fi,t

zqgrFi,t
� 0 (42)

zΓgr
zqgrGj,t

� rgrGj,t − λgrt + μ
�gr

Gj,t − μ
�gr

Gj,t +
zπgr

Gj,t

zqgrGj,t
� 0 (43)

zΓsp
zλspt

� ∑
NF

i�1
psp
Fi,t +∑

NG

j�1
psp
Gj,t −∑

ND

k�1
pDk,t � 0 (44)

zΓgr
zλgrt

� ∑
NF

i�1
qgrFi,t −∑

NG

j�1
qgrGj,t � 0 (45)

πsp
Fi,t � πsp

Gj,t � πgr
Fi,t � πgr

Gj,t � 0 (46)
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3.4.2 Inequality Constraints

psp
Fi,tmin ≤p

sp
Fi,t ≤p

sp
Fi,tmax ∀i ∈ [1, NF],∀t ∈ [1, T] (47)

psp
Gj,tmin ≤p

sp
Gj,t ≤p

sp
Gj,tmax ∀j ∈ [1, NG],∀t ∈ [1, T] (48)

∑
NF

i�1
psp
Fi,tρl,i +∑

NG

j�1
psp
Gj,tρl,j

+∑
ND

k�1
pDk,tρl,k ≤P

max
l ∀l ∈ [1, Nl],∀t ∈ [1, T] (49)

0≤ qgrFi,t ≤ q
gr
Fi,tmax ∀i ∈ [1, NF],∀t ∈ [1, T] (50)

0≤ qgrGj,t ≤ q
gr
Gj,tmax ∀j ∈ [1, NG],∀t ∈ [1, T] (51)

3.4.3 Dual Complementary Constraints

0≤ μ�sp

Fi,t ⊥ (psp
Fi,tmax − psp

Fi,t)≥ 0 ∀i ∈ [1, NF],∀t ∈ [1, T] (52)
0≤ μ�sp

Fi,t ⊥ (psp
Fi,t − psp

Fi,tmin)≥ 0 ∀i ∈ [1, NF],∀t ∈ [1, T] (53)
0≤ μ�sp

Gj,t ⊥ (psp
Gj,tmax − psp

Gj,t)≥ 0 ∀j ∈ [1, NG], ∀t ∈ [1, T] (54)
0≤ μ�sp

Gj,t ⊥ (psp
Gj,t − psp

Gj,tmin)≥ 0 ∀j ∈ [1, NG],∀t ∈ [1, T] (55)

0≤ ]l,t ⊥ ⎛⎝Pmax
l −∑

NF

i�1
psp
Fi,tρl,i −∑

NG

j�1
psp
Gj,tρl,j

−∑
ND

k�1
pDk,tρl,k⎞⎠≥ 0 ∀l ∈ [1, Nl],∀t ∈ [1, T] (56)

0≤ μ�gr

Fi,t ⊥ (qgrFi,tmax − qgrFi,t)≥ 0 ∀i ∈ [1, NF],∀t ∈ [1, T] (57)
0≤ μ�gr

Gj,t ⊥ (qgrGj,tmax − qgrGj,t)≥ 0 ∀j ∈ [1, NG],∀t ∈ [1, T] (58)
0≤ μ�gr

Fi,t ⊥ qgrFi,t ≥ 0 ∀i ∈ [1, NF],∀t ∈ [1, T] (59)
0≤ μ�gr

Gj,t ⊥ qgrGj,t ≥ 0 ∀j ∈ [1, NG],∀t ∈ [1, T] (60)
where 0≤x ⊥ y≥ 0 means that at most one of the scalars x and y
can be strictly greater than 0.

For the dual complementary constraints in Eqs. 52–60, the big
M method can be used to convert them into linear constraints.
For example, a binary variable τ is introduced to transform Eq. 52
into Eq. 61 and Eq. 62.

0≤ μ�sp

Fi,t ≤MτspFi,t ∀i ∈ [1, NF],∀t ∈ [1, T] (61)
0≤ (psp

Fi,tmax − psp
Fi,t)≤M(1 − τspFi,t) ∀i ∈ [1, NF],∀t ∈ [1, T]

(62)
where M is a sufficiently large positive number.

With the above KKT conditions, the middle- and lower-level
models are transformed into linear constraints and incorporated
into the upper-level optimization model. At this point, the three-
layer optimization model to determine the contract coverage of
RES units has been transformed into a Mixed-Integer Linear
Programming (MILP) problem, which can be solved by the
GUROBI solver in MATLAB, and finally obtain the optimal
CCR for RES generation units.

4 NUMERICAL EXAMPLES AND RESULTS

4.1 Data Specifications
Numerical experiments are performed using the real-world data of
the electricity market in a province of eastern China. It is assumed
that the RES units begin to participate in the electricity spot market
in 2020. The fossil-fueled generation units are coal-fired units, and
the RES units include photovoltaics and wind turbines. The
parameters of each unit in 2020 are shown in Table 2. The RES
units in 2020 all belonged to type I; the number of type-II units
started increasing from 2021, and the annual growth rate is set
according to governmental policies (The State Council Information
Office of the People’s Republic of China, 2020). The CFD price for
the type-II RES units is the same as for coal-fired units. The RES
output is predicted based on the historical data, and the annual
load demand curve is obtained based on the load curve of that
province in 2020. The responsibility weight of the quota system for
coal-fired units is set according to governmental policies (National
Development and Reform Commission and National Energy
Administration Commission, 2021). The lower and upper limits
of the clearing price in the spot market are set to −200 yuan/MWh
and 1000 yuan/MWh respectively, and the lower and upper limits
of the clearing price in the TGCmarket are set to 0 yuan/MWh and
800 yuan/MWh respectively.

In this experiment, the CCR in the peak period, flat period, and
valley period of each day for photovoltaic generators and wind
turbines will be determined, respectively. Furthermore, the
comprehensive CCR is introduced to reflect the overall CCR
of RES units, which is a weighted average of the contract coverage
at different times, as shown in Eq. 63.

γc �
γpQ

en
F,p + γaQ

en
F,a + γbQ

en
F,b

Qen
F,p + Qen

F,a + Qen
F,b

(63)

where γc is the comprehensive CCR; γp, γa, and γb are the CCR of
RES generation units in the peak, flat, and valley periods, respectively;
Qen

F,p, Q
en
F,a, and Qen

F,b are the generation outputs of RES generation
units during the peak, flat and valley periods, respectively.

4.2 Analysis of Short-Term Simulation
Results
The changes in CCR in 2020 are simulated by adjusting the
weighting factors of the decision-making model, as shown in
Figure 3 and Figure 4. Changes in policy, load supply, and
demand are simulated by changing the ratio of ap2/ap1 and
aw2/aw1. The decrease of ap2/ap1 and aw2/aw1 indicates that
the determination of CCR is more inclined to ease the
financial burden of the government, and the increase indicates
that it is more inclined to the fairness of the RES units. Affected by
the epidemic, the load demand is at a low level from January to
April in 2020. At this time, the clearing price of the spot market is
relatively low. In order to protect the interests of RES units and
promote their development, ap2/ap1 and aw2/aw1 should increase.
From June to September, the load demand is at a high level, the
spot market clearing price is relatively high. In addition, due to
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seasonal factors, the output of RES units increases, meaning that
RES units can earn more from the spot market and the TGC
market, so ap2/ap1 and aw2/aw1 should be reduced to ease the
government’s financial burden.

It can be seen in Figure 3 and Figure 4 that the comprehensive
CCR of photovoltaics and wind turbines is consistent with the trend
of the weighting factors. This indicates that the CCR can achieve the
expected effect by adjusting the weighting factors. Specifically, at the
beginning of the year, the contract coverage of RES units remains at
a high level since the winter is the peak period, and then it decreases
significantly in the summer. This allows RES units to maintain a
high level of income through high-coverage CFDs in winter. When
the spot market price is higher in summer, the CCR of RES
generations is low and thus the remaining RES outputs can opt
to participate in the spotmarket. This is consistent with the intention
of setting the weighting factors. The output of photovoltaics mainly
concentrates in themiddle of the load, so it needs to bemaintained at
a high level to ensure the income. The output of wind turbines in
each load period fluctuates greatly due to the uncertainty of wind
power, so its CCR varies more. The contract coverage of
photovoltaics in the load valley period is extreme, because the
output of photovoltaics in the valley period is extremely small,
whose impact on the objective function is limited.

The results of income and fairness coefficients for RES units are
compared between proposedmethod and the fixed contract coverage
method, as shown inTable 3. For the income analysis,fixing the CCR
will increase the government’s financial subsidy but reduce the
income of RES units in the spot market and the TGC market.
For the fairness analysis, the fairness coefficient of fixing the contract
coverage is relatively large, meaning that the variance of unit power
generation income among the RES units is too high. Further analysis
shows that fixing the annual CCR is a solution to the proposedmodel,
but not the optimal solution. The decision-making cycle of optimal
contract coverage should be determined according to the changes of
generation output and load demand, while considering the policy
formulation and the implementation of RES units.

4.3AnalysisofMediumandLong-termResults
Based on the “14th Five-Year Plan”, the “carbon peaking” goal in
2030, and the outline of the long-term goal in 2035 (The State Council
Information Office of the People’s Republic of China, 2020; National
Development and Reform Commission of China, 2021), the
simulation of RES unit participation in the spot market from 2020
to 2035 is carried out, as shown in Figure 5.

TABLE 2 | Parameter settings of generation units in 2020.

Generator type Number of units Total
installed capacity (MW)

CFD price (yuan/MWh)

Coal-fired 18 8428 380
Photovoltaics 10 945 590
Wind turbines 6 760 570
Total 34 10133 /

FIGURE 3 | Changes in contract coverage of photovoltaics in 2020. (A)
Change of weight factors. (B) Change of contract coverage. FIGURE 4 | Changes in contract coverage of wind turbines in 2020. (A)

Change of weight factors. (B) Change in contract coverage.
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As can be seen from Figure 5, during the transition of electricity
market reform, due to the continuous development of renewable
energy generation technology, government subsidies decrease, and
the CCR of RES units and the proportion of CFD revenue also
decrease. The proportion of spot market revenue and TGCmarket
revenue increase, indicating that RES units gradually adapt to the
spot market during the transition, and the subsidy for RES units
changes smoothly from the financial subsidy to TGC subsidy. As
the number of type II RES units increases year by year, the impact
of contract coverage on the spotmarket and TGCmarket gradually
decreases. In this example, to 2035, the revenue composition of
RES units is relatively fixed, the change in contract coverage tends
to be stable, and the curve only fluctuates with changes in load
demand and generation output. When RES units have completed
the transition phase to participate in the spot market, the
determination of the contract coverage can be further adjusted
according to the development and policies of renewable energy.

4.4 Sensitivity Analysis of Contract
Coverage
Sensitivity analysis is carried out for the contract coverage against
market boundary conditions including the assessment weights of
the quota system and system load demand.

Firstly, the changes in CCR for RES units under different
assessment weights of the quota system for fossil-fueled units are
studied. Taking the simulation data in July 2025 as an example, the

results are shown in Figure 6 and Figure 7. It can be found that with
the increasing of the assessment weights, the CCR of RES units
shows a downward trend. The reason is that when the assessment

TABLE 3 | Comparisons between the results attained by the proposed method and the fixed contract coverage.

Unit type CFD income (yuan) Spot market income (yuan) TGC market income (yuan) Fairness coefficient

Proposed
method

Fixed contract
coverage

Proposed
method

Fixed contract
coverage

Proposed
method

Fixed contract
coverage

Proposed
method

Fixed contract
coverage

Photovoltaics 514318 k 568199 k 89089 k 57802 k 61488 k 38382 k 184.7 418.1
Wind turbines 672275 k 765772 k 126694 k 76212 k 85649 k 51911 k 340.3 610.4

FIGURE 5 | Changes in contract coverage and revenue share of RES
generation units from 2020 to 2035.

FIGURE 6 | Changes in CCR for photovoltaics under different
assessment weights of the quota system.

FIGURE 7 | Changes in CCR of wind turbines under different
assessment weights of the quota system.
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weights of the quota system for fossil-fueled units increase, their
demand for TGC increases, which then leads to an increase in the
clearing price of the TGCmarket. Under the same weighting factors,
the reduction in government subsidy burdens caused by the decrease
in contract coverage does not come at the expense of a sharp decline
in the RES generator revenue, because the number of TGCs sold by
type I RES units increases, making the RES generator revenue from
TGC market increase. As fossil-fueled units have a greater demand
for TGC during peak load periods, the contract coverage decreases
the most during peak periods. Changing the market strategies of
fossil-fueled units in the TGCmarket can effectively make up for the
difference in the degree of decline of RES units in peak, flat and
valley periods. Due to the output uncertainties of RES units and the
approaching deadline for assessment, this difference cannot be
eliminated. However, it is worth noting that due to the small
output of photovoltaics during the valley period, the CCR does
not change when adjusting the assessment weights.

Secondly, the changes in CCR for RES units under different load
levels are examined. Taking the simulation data in July 2025 as an
example, the results are shown in Figure 8 and Figure 9. The
results show that the contract coverage shows a downward trend as
the load demand increases. The reason is that the increase in load
will lead to an increase in the spot market price. Under the same
weighting factors, the reduction in government subsidy caused by
the decrease in contract coverage does not come at the expense of a
sharp drop in the revenue of RES units, because the spot market
revenue of RES units increases. Similar to when adjusting the
assessment weights, adjusting the load demand does not change the
CCR for photovoltaics during valley periods.

Figures 6–9 shows that the changes in the assessment weights
of the quota system and the system load level change the supply-
demand relationship in the TGC market and the spot market,
respectively. When the market demand exceeds the supply, the
contract coverage for RES unit tends to decline.

5 CONCLUSION

How to realize the smooth transition from a fixed-price
transaction mode to a full participation in the electricity spot
market is an important issue for RES generation in the electricity
market reform procedure of China. In this paper, a transition
mechanism for RES units to participate in the electricity spot
market considering the TGC market is presented. In this
transition mechanism, the adjustment of CFD coverage for
RES units is a key part of the design. By modeling the
decision-making of various agents participating in the
electricity spot market, a three-layer optimization model for
solving the CCR is proposed, which provides a scientific basis
for adjusting the CCR during the transition period. Extensive
numerical experiments are conducted to manifest the feasibility
and efficiency of proposed models and algorithms. The impact of
the transition mechanism on the RES development is analyzed
from the perspectives of short-term andmedium-/long-term. The
sensitivity analysis of CCR against the assessment weights and
system load level shows that when the market demand exceeds
supply, the CCR of RES units tends to decline.
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An approximate dynamic
programming method for
unit-based small hydropower
scheduling

Yueyang Ji and Hua Wei*

School of Electrical Engineering, Guangxi University, Nanning, China

Hydropower will become an important power source of China’s power grids

oriented to carbon neutral. In order to fully exploit the potential of water

resources and achieve low-carbon operation, this paper proposes an

approximate dynamic programming (ADP) algorithm for the unit-based

short-term small hydropower scheduling (STSHS) framework considering the

hydro unit commitment, which can accurately capture the physical and

operational characteristics of individual units. Both the non-convex and

non-linearization characteristics of the original STSHS model are retained

without any linearization to accurately describe the hydropower production

function and head effect, especially the dependence between the net head and

the water volume in the reservoir, thereby avoiding loss of the actual optimal

solution due to the large error introduced by the linearization process. An

approximate value function of the original problem is formulated via the

searching table model and approximate policy value iteration process to

address the “curse of dimensionally” in traditional dynamic programming,

which provides an approximate optimal strategy for the STSHS by

considering both algorithm accuracy and computational efficiency. The

model is then tested with a real-world instance of a hydropower plant with

three identical units to demonstrate the effectiveness of the proposed method.

KEYWORDS

water, small hydropower scheduling, hydropower unit commitment, approximate
dynamic programming, renewable energy sources

1 Introduction

With the high proportion of renewable energy penetration in power system,

hydropower is of great significance for achieving the “dual carbon” national goal as a

clean energy source with almost zero carbon emissions. Different from other countries’

energy structure, China has the richest hydropower resources in the world, which can be a

natural advantage to reduce the carbon dioxide emissions in daily operation of power grid.

Short-term hydropower scheduling (STHS), which aims to determine the optimal

hydropower generation strategy for each hydroelectric unit during a time horizon

from several minutes or hours to 1 day, plays an essential role in the daily or shorter
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operation of power systems to maximize the utilization of the

potential hydropower resources. STHS problems are generally

formulated for hydropower plants, i.e., aggregating all the

hydroelectric units in a plant and taking them as one

equivalent unit to significantly reduce the size of the STHS

problem (Zhao et al., 2021). However, these equivalent models

neglect the detailed characterization of the properties of the

hydroelectric units and thus are not suitable for the STSHS

problem, which requires a more accurate and detailed

representation of the nonlinear hydropower production

function (HPF) and head effect of each unit (Guisández and

Pérez-Díaz, 2021; Diniz and Maceira, 2008). Therefore, the

representation of more details, such as exact unit commitment

and nonconvex HPF, is needed to express the operating

characteristics of small hydropower in unit-based (“unit-

based” refers to “regarding each hydro-turbine generator unit

in a plant as an independent entity”) STSHS more accurately.

STHS considering hydro unit commitment (HUC) is a

combinatorial, non-convex and non-linear optimization

problem (Catalão et al., 2010; Postolov and Iliev, 2022; Wang

et al., 2022). The STHS problem has been extensively investigated

by researchers in recent years (Chen et al., 2016). For an

aggregated hydropower plant and a single hydropower unit,

the interior-point method (IPM) can effectively address non-

linear constraints in the STHS, but it cannot solve STHS

problems with 0–1 binary variables (Apostolopoulou and

McCulloch, 2019; Cheng et al., 2022). Mixed-integer linear

programming (MILP) is one of the most widespread methods

for STHS problems considering HUCs due to its modelling

flexibility, simple and efficient software environment, and

global search capability (Guedes et al., 2017). In (Cheng et al.,

2016), a MILP model for HUC is developed, and the unit

performance curves are discretized into a set of piecewise

curves based on a discretized net head such that the head

effect can be modelled. In (Zhao et al., 2021), a MILP-based

HUC framework is proposed to solve the irregular forbidden

zone-related constraints for very large hydropower plants. In

(Guisández and Pérez-Díaz, 2021), five MILP formulations for

piecewise linearization of the HPF equation are discussed: the

traditional method based on a single concave piecewise-linear

flow-power function (Conejo et al., 2002; Kong et al., 2020), the

rectangle method (Borghetti et al., 2008; D’Ambrosio et al.,

2010), the logarithmic independent branching 6-stencil

method (Huchette and Vielma, 2017), the quadrilateral

method (Keller and Karl, 2017), and the parallelogram

method (PAR) (Guisández and Pérez-Díaz, 2021). The above-

mentioned linearization methods can mitigate the computational

burden, and the errors caused by linearization can be accepted in

the economic dispatch of large hydropower stations with high

head-power dependency and large installed capacity (Shi et al.,

2017; Zhang et al., 2021). However, in the STHS of small

hydropower plants, the operating net head of hydroelectric

units is generally low, and the water volume of reservoirs and

the installed capacity of hydro plants are generally small;

therefore, the head effect is obvious. The effects of

linearization errors in both the net head and the output can

be ignored only if the breakpoints are sufficiently dense in the

piecewise linearization process (Skjelbred et al., 2020).

Nevertheless, with an increase in the density of breakpoints,

the advantage of MILP in improving the solution efficiency is

often lost with the sharp increase in the time cost.

To solve the above-mentioned large-scale, discrete non-

convex and non-linear optimization problem of the unit-based

STSHS (Marchand et al., 2018), dynamic programming (DP) has

been applied effectively in the hydro scheduling field due to its

superior performance in handling discrete variables and non-

convex and non-linear constraints in STSHS problems (Morillo

et al., 2020). DP decomposes a multi-stage decision problem into

a number of single-stage sub-problems and can obtain the global

optimal solution in most cases. However, DP is difficult to solve

even for medium-sized scheduling problems because the

computational burden increases exponentially with the

dimensionality of the state space. To alleviate the problem of

the curse of dimensionality, several variants of DP have been

proposed in recent years. In (Flamm et al., 2021), a two-stage dual

dynamic programming method is proposed to reconstruct the

nonlinear problem; the approach is notable for its calculation

accuracy and solving efficiency. In (Feng et al., 2017), an

orthogonal discrete differential dynamic programming

(ODDDP) method is introduced. The orthogonal

experimental design can select some small but representative

state combinations, thereby alleviating the curse of

dimensionality. Although these improved DP methods have

achieved various degrees of success in terms of alleviating the

curse of dimensionality, the computational burden may still be

intolerable when the problem scale reaches a certain degree. In

addition, to ensure computational efficiency, the nonlinear

expression of HPF in the literature is usually not sufficiently

accurate, and the impacts of power generation on the water head

are also not considered, so it is not suitable for STSHS. Thus,

there is an urgent need to develop new efficient algorithms to

improve the computational efficiency and convergence accuracy

for STSHS.

Approximate dynamic programming (ADP) is an important

and powerful artificial intelligence optimal method (Zeng et al.,

2019) that has attracted considerable attention in the fields of

power system scheduling (Lin et al., 2019; Zhu et al., 2019; Lin

et al., 2020; Zhu et al., 2020). The theory of ADP was proposed by

Powell W.B. (Powell, 2011), and its core idea is to avoid the

traversal of all states to reduce the computational burden of value

function approximation (VFA) while ensuring approximate

accuracy. ADP has been successfully applied to power system

optimization. In (Xue et al., 2022), an ADP algorithm proposed

for the real-time schedule of an integrated heat and power system

established the mapping relationship between the battery and

heat storage tank to approximate the value function through a
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table function model, thereby achieving the approximation of the

optimal value function by traversing discrete values with fewer

state variables. In (Shuai et al., 2019), an ADP algorithm based on

a piecewise-linear approximation strategy was employed to

address the fluctuations in renewable energy generation and

electricity prices in the real-time dispatching of microgrids. In

(Shuai et al., 2020), a hybrid approximate dynamic programming

method was proposed by combining model predictive control

and ADP. The model was then applied to the real-time

scheduling of gas-electricity integrated energy systems,

successfully addressing the tight coupling between time

periods caused by the material balance equation of natural gas

systems. ADP inherits all the advantages of DP and can efficiently

address discrete or continuous, linear or nonlinear, deterministic

or stochastic problems (Qiu et al., 2020). However, to the best of

our knowledge, few published studies have been conducted on

solving the unit-based STSHS framework, especially when the

HUC problem is non-convex and the HPF is a bivariate quadratic

equation.

This paper formulates the unit-based STSHS optimization

problem considering HUC as a mixed-integer nonlinear

programming (MINLP) model, which includes the constraints

that can describe the HPF and head effect of hydroelectric units

accurately. We propose the ADP algorithm to solve the STSHS

model without any approximation treatment of the nonlinear

constraints.

The contributions of this paper are summarized as follows:

1) An ADP algorithm is proposed to solve the STSHS model.

The intractable MINLP problem is reformulated into a

solvable NLP problem by decomposing the multi-period

optimization into multiple single-period optimizations for

the sake of computational tractability. The non-linear

expression of HPF and the head effect is retained to

ensure the optimality of the schedule strategy.

2) A table function model is developed to establish the mapping

relationship between the discrete states of the water volume of

the reservoir and the value function; by such means, the high-

dimensional state variables are aggregated to approximate the

value function, and the optimal value function is

approximated by the value iteration method. Thus,

schedule strategy optimality and a computationally efficient

policy are achieved.

3) A state space compression strategy, according to the

operation characteristics of small hydropower plants, is

proposed for the consideration of both the effectiveness

and optimization ability. This compression strategy can

remove the redundant states from the search space by

analyzing the variation in available water in each period,

which does not reduce the number of discrete states. This

strategy not only ensures the optimization ability but also

greatly reduces the scale of the problem and further improves

the computational efficiency.

The rest of this paper is organized as follows: Section 2

describes the STSHS framework, including the start-up and

shutdown of each hydro unit. Section 3 proposes the ADP

algorithm for the HUC, which is the main contribution of

this paper. In Section 4, we test the proposed ADP algorithm

on a realistic instance of a hydropower station with three

identical units to verify the effectiveness of our method.

Finally, Section 5 presents conclusions.

2 Description of short-term small
hydropower scheduling framework
considering hydro unit commitment

2.1 Objective function

The objective of the optimal operation of the STSHS is to find

the maximum power generation of all the small hydropower

units in the entire scheduling horizon, which can be expressed as

maxFp � ∑
T

t�1
∑
m

i�1
di,t · pi,t · Δt (1)

The output power pi,t is defined by the HPF, and it can

generally be expressed as

pi,t � G · ηGeni,t (pi,t) · ηTurbi,t (hi,t, qi,t) · hi,t · qi,t (2)

The hydro turbine efficiency ηTurbi,t is associated with

converting the water head potential energy in the reservoir

into mechanical energy in the hydro turbine; therefore, it

primarily depends on the water head and turbine flow. ηTurbi,t

decreases as turbine flow increases after reaching the optimum

efficiency point. Similarly, the hydropower generation efficiency

ηGeni,t is related to the conversion of mechanical energy into

electrical energy in the generator, which is usually higher than

95%, and it increases monotonically as the output power of the

generator increases.

Since the mathematical expression of the hydro unit

efficiency function is considerably complicated, a fixed

constant is typically used to replace the efficiency function

irrespective of the characteristics of the HPF, which will lead

to larger errors. To describe the input–output relationship of the

efficiency function implicitly in the HPF more accurately, this

paper conducts a polynomial fitting of the water head and water

flow in the HPF based on the Hill diagram of the hydropower

unit (Zhang et al., 2021; Zhao et al., 2021), which can be

expressed as

pi,t � aih
2
i,t + biq

2
i,t + cihi,tqi,t + dihi,t + eiqi,t + fi (3)

where ai, bi, ci, di, ei and fi are the quadratic fitting coefficients of

the HPF, which models the relationship between the power

output of hydroelectric unit i and the water discharge and

net head.
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2.2 Constraints

The STSHS problem is subject to a variety of constraints,

including water balance, water level, water head, and other

operating limits.

2.2.1 Water balance constraint
The volume change of the reservoir is affected by the inflow,

water discharge and spillage of the reservoir. The water balance

equation is denoted as

rt+1 � rt −⎛⎝∑
m

i�1
qi,t + st − jt⎞⎠Δt (4)

2.2.2 Water volume constraints
As the water volume of the reservoir at the end of the last

period is the initial volume of the next dispatch horizon, to

ensure the normal operation of the reservoir in the next dispatch

horizon, the water volume of the reservoir at the beginning and

the end of the dispatch horizon should be restricted as

{ r0 � rinit

rT � rfinal
(5)

2.2.3 Limit constraints of water volume

rmin ≤ rt ≤ rmax (6)

2.2.4 Net head balance constraint

ht � hupt − hdwt (7)

2.2.5 Net head effect constraints
The head effect has a direct impact on the unit’s efficiency

and operating limits, which is the crucial part of the formulation

of the STSHS problem. For a fixed-head hydropower plant, the

net head is relatively high; thus, the effect of water level changes

in the forebay and tailrace caused by power generation can be

ignored. However, for a low-head hydropower plant, the changes

in the water levels of the forebay and tailrace have relatively

obvious impacts on the net head. Therefore, the relationship

between the forebay level and the water volume, as well as the

tailrace level and the outflow, can be expressed as

hupt � aupr2t + buprt + cup (8)

hdwt � adw⎛⎝∑
m

i�1
qi,t + st⎞⎠

2

+ bdw⎛⎝∑
m

i�1
qi,t + st⎞⎠ + cdw (9)

where aup, bup and cup are the fitting coefficients of the relationship

between the forebay level and water volume. adw, bdw and cdw are

the fitting coefficients of the relationship between the tailrace level

and the total outflow of the hydropower plant, respectively.

2.2.6 Limits of net head

hmin ≤ ht ≤ hmax (10)

2.2.7 Output limits

di,tp
min
i ≤pi,t ≤di,tp

max
i (11)

2.2.8 Constraints of water discharge

di,tq
min
i ≤ qi,t ≤ di,tq

max
i (12)

3 Approximate dynamic
programming

3.1 Process of approximate dynamic
programming

ADP is an excellent method proposed by Powell to solve the

curse of dimensionality problem of dynamic programming (Xue

et al., 2022). A diagram of the use of ADP to solve the STSHS

problem is illustrated in Figure 1, in which the system state St
includes the reservoir volume of the water head and the on/off

status of the unit. The decision variables xt include the allocation

of power generation flow, water spillage, and the start-up/

shutdown action of units during each period. St+1 is the state

vector of the next period after decision xt is executed in state St.

g(St, xt) denotes the benefit generated by reaching state St+1 after
executing xt. The value function V(St) reflects the influence of
the current state on the revenue from period t to T, that is, the

maximum power generation during [t, T].

FIGURE 1
Diagram of ADP solution.
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According to the optimality principle, the above T stage

maximum profit problem can be transformed into T single-

period decision-making problems with the Bellman equation so

that the optimal solution can be obtained via step-by-step

recursion, which can be expressed as

V(St) � max[g(St, xt) + V(St+1)] (13)

The solution of the Bellman equation is based on the

calculation of the value functions of all states in the state

space. However, current computer technology is still

insufficient to traverse the combination of the enormous

state space and decision space. The key idea of ADP is to

use the approximate value function ~Vk(St+1) instead ofVk(St+1)
and to approximate the optimal value function in an iterative

manner, thereby avoiding direct calculation of the value

function.

The basic process of value function iteration is as follows:

First, set the initial value of the approximate value function of each

state. Then, calculate the approximate value function from period 0 to

periodT; the optimal solution of this iteration is determined based on

the rule that the function value of the last period is optimal. Next,

proceed to the next iteration according to the updated approximation

function. In this way, the approximate value function is gradually

approximated to the optimal value function through the iterative

process. In each iteration, instead of traversing the entire state space to

calculate the value function, only a small number of states participate

in the calculation in each period, so the computational complexity no

longer increases exponentially with an increase in the number of state

variables and the total number of periods, thereby overcoming the

curse of dimensionality.

The value function approximation (VFA) methods commonly

used in ADP include table function approximation, piecewise linear

function approximation and neural network approximation, among

which table function approximation is a basic but very effective

method that can accurately approximate the complex non-linear

value function in hydro economic dispatch. Hence, the look-up table

model is applied to approximate the value function, and the value

iteration method is employed to solve the Bellman equation.

3.2 Lookup table for the short-term small
hydropower scheduling problem

The optimization strategy based on the look-up table

establishes a mapping relationship between the discretized

system state variables and the sum of the power generation of

each time period. The table function is used to approximate the

real value function, and by means of variable decoupling between

time periods, the original MINLP problem can be decomposed

into multiple NLP sub-problems containing only continuous

variables to reduce the difficulty of solving.

FIGURE 2
Iteration flow chart of the approximate value table.

FIGURE 3
The operational zone of small hydropower units.
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The continuous variables in the state variables are

discretized as

ΔSi � (Smax
i − Smin

i )/(Ki − 1) (14)

where ΔSi represents the discretization step size of the

continuous variable. Smax
i and Smin

i are the upper and lower

limits of the variable, respectively. Ki is the number of

discrete variables. In this paper, the water volume of the

reservoir is discretized into Kr states, and the on/off status of

m units is 2m, so the size of the state space isM � 2m × Kr. After

the process of discretization, we can initialize an empty value

table to measure the value of being in a state, and the size of the

table is M × T.

3.3 Approximate value iteration

The value iteration of ADP forms a value function sequence

by continuously updating the value table to approximate the

optimal value function. In each iteration, the decision is

determined by the estimated value of the current value

function and the state variable, which can be expressed as

xk
t � argmax{gt(St, xt) + γ ~V

k−1
t (G(St))} (15)

where γ ∈ (0, 1) is the decay factor. When γ is 0, the value

function focuses on only the immediate benefits after the decision

is made in the current period, and the algorithm becomes a short-

sighted myopic algorithm. When γ approaches 1, the algorithm

pays more attention to the benefits in the future period, which is

more conducive to obtaining the optimal value table of the whole

period. G(St) � {rt, d1,t, . . . , dm,t} is the aggregated state variable.
After completing the decision for each period, the observed

value v̂kt of the value function of the current state is calculated as

v̂kt � min{gt(St, xt) + ~V
k−1
t (G(St))} (16)

Then, the value function of the previous period is updated as

~V
k

t−Δt(G(Skt−Δt)) � αkv̂kt + (1 − αk) ~Vk−1
t−Δt(G(Skt−Δt)) (17)

where αk ∈ (0, 1) is the step size in the k-th value iteration.

In the process of value iteration, only the value function

corresponding to the state accessed in each period is updated.

In other words, in the approximate value table, only the cells

corresponding to the current reservoir volume and the unit on/off

status are updated. In each iteration, the corresponding elements

accessed in the table function are updated in a forward manner

step by step until a converged approximation table is obtained. The

iterative process for updating the value table is shown in Figure 2.

3.4 Compression of state space

In the above ADP algorithm, for each time period t, all

discrete states are traversed when solving 15) to select the optimal

decision-making action, which makes the solution process highly

time-consuming. Therefore, to reduce the computational burden

caused by the increase in discrete states, considering the

operation mode of determining electricity-by-water of small

hydropower, we compress the existing state space to further

reduce the solution time.

First, the forecasting information of water inflow is

developed to compress the search space of discrete states of

water volume. For period t of the k-th iteration, the total available

water volume qavlk,t can be defined as

qavlk,t � jt · Δt − (rk,t+1 − rk,t) (18)

To ensure qavlk,t > 0, the upper bound of the search space of the

water volume rk,t+1 in the next period should not exceed

jt · Δt + rk,t. In addition, to avoid unreasonable water

abandonment, the total available water should not exceed the

upper limit of the power generation flow of the units; that is, the

lower bound of the search space of the water volume rk,t+1 in the

next period should not be lower than jt · Δt + rk,t −∑m
i�1qmax

i .

Therefore, the search space for discrete states of water volume

can be restricted to:

⎧⎪⎪⎨
⎪⎪⎩

rmin
k,t+1 � jt · Δt + rk,t −∑

m

i�1
qmax
i

rmax
k,t+1 � jt · Δt + rk,t

(19)

Similar strategies can be used to compress the on/off

status of units in the search space. For period t in the k-th

TABLE 1 Parameters of hydro units.

Parameter Value Parameter Value Parameter Value Parameter Value

rmax (Mm3) 14.4 qmin (m3/s) 14 cp 10.0971 br 0.0042

rmin (Mm3) 13.4 pmax (kW) 4200 dp 78.0492 cr 21.4179

hmax (m) 9.4 pmin (kW) 1,400 ep 9.4814 aq −1.2228e-7

hmin (m) 5.0 ap −8.4886 fp −427.0754 bq 0.0023

qmax (m3/s) 52 bp −0.1963 ar −3.1084e-7 cq 20.88
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iteration, if the difference between the total available water in

this period and the previous period satisfies

Δqavlk,t � qavlk,t − qavlk,t−1 > 0, unnecessary traversal of the state

that requires a shutdown action to reach should be

avoided. For instance, if the current unit status is [1,100],

then [0100] and [1,000] should be eliminated in the decision

space during this period. In contrast, if the available water

volume is reduced compared with that in the previous period,

the statuses that require a start-up action to reach should be

avoided. Therefore, [1,110], [1,101] and [1,111] should be

excluded from the search space.

The scale of the problem is greatly reduced by adopting the

above compression processing strategy of the search space.

For the hydro units of the identical model, their output

characteristics are exactly the same. For the objective of

maximum power generation, the exchange of on/off status

between units will not affect the optimization results, so the

optional states can be further compressed. For example, for

the same four hydro units, assuming that the state in a certain

period is [1,100], regardless of the trend of available water, the

five statuses [1,010], [1,001], [0110], [0101] and [0011] in the

state space can be represented by the original state [1,100], so

these five states can be eliminated from the search space.

When the number of units of the same model increases, the

proposed strategy makes the state space no longer grow

exponentially but increase linearly, further reducing the

decision space, thereby greatly reducing the computational

burden.

FIGURE 4
Approximate value function iteration process. (A) Full view; (B) Front view of iterations after 1200.

FIGURE 5
Convergence curves of ADP and IPM.

FIGURE 6
Changes in the water volume under different numbers of
discrete points.
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3.5 Description of non-convex operational
zone in approximate dynamic
programming process

The operational zone (OZ) of small hydropower units is

usually a non-convex polygon region, as shown in Figure 3.

The boundaries of the irregularly shaped OZ vary with the

net head and have several inflection points, such as points B and

E, as illustrated in Figure 3, which makes the OZ a non-convex

region. The mathematical representation of the irregularly

shaped OZ can be derived as follows:

{ kABi (hi,t − hAi ) + pA
i ≤pi,t ≤ kFEi (hi,t − hFi ) + pF

i , h
A
i ≤ hi,t ≤ hBi

pB
i ≤pi,t ≤pE

i , h
B
i ≤ hi,t ≤ h

C
i

(20)
where hAi , h

B
i , h

C
i and hFi represent the net head of points A, B,

C and F, respectively. pA
i , p

E
i and p

F
i indicate the unit output of

points A, E and F, respectively. kABi and kFEi denote the slopes

of AB
��→

and FE
��→

, respectively. If we employ a regularly shaped

rectangle to approximate OZ, such as the red dotted box

shown in Figure 3, the approximate OZ would not only

raise the lower limit of unit output under the lower net

head but also reduce the final generation. However, it will

fail to ensure the safety of unit operation when the water

discharge is large. Generally, such a non-convex region cannot

be perfectly represented with linear constraints in

programming models unless additional 0–1 variables are

introduced.

Under the ADP framework proposed in this paper, the

irregularly shaped OZ can be perfectly expressed. In each

single-period optimization process, the variation in water

volume is a constant. As a result, the optimal result of water

discharge for each unit is obtained before solving the single-

period sub-problem, which means the net head has already been

pre-designated. Thus, the upper and lower boundaries of the OZ

can be dynamically updated as the net head changes.

TABLE 2 Comparison of IPM and ADP optimization results.

Period Output power of IPM
(kW)

Output power of
ADP(Kr = 11) (kW)

Output power of
ADP(Kr = 51) (kW)

Output power of
ADP(Kr = 201) (kW)

1 1984.11 2,388.43 1986.91 1986.91

2 2058.92 1988.53 1990.15 2092.03

3 2,133.12 1991.77 1993.40 2095.03

4 2,206.78 1995.01 2,400.42 2,199.37

5 2,279.93 1998.25 2,402.42 2,302.68

6 2,352.36 2001.48 2,404.41 2,305.06

7 2,424.07 2,802.11 2,406.40 2,407.40

8 2,495.10 2,802.11 2,408.39 2,508.58

9 2,565.46 2,802.11 2,410.38 2,608.53

10 2,635.03 2,802.11 2,804.47 2,609.62

11 2,703.86 2,802.11 2,804.47 2,708.32

12 2,771.94 2,802.11 2,804.47 2,805.66

13 2,839.26 2,802.11 2,804.47 2,805.66

14 2,905.75 2,802.11 2,804.47 2,901.55

15 2,971.22 2,802.11 2,804.47 2,995.93

16 3,036.01 2,802.11 3,182.63 2,994.66

17 3,099.71 2,802.11 3,179.89 3,087.41

18 3,162.50 2,802.11 3,177.14 3,178.52

19 3,224.32 3,543.71 3,174.40 3,267.89

20 3,285.15 3,537.47 3,171.65 3,264.34

21 3,344.98 3,531.22 3,168.90 3,351.80

22 3,403.76 3,524.96 3,528.09 3,437.40

23 3,461.44 3,518.69 3,521.83 3,432.08

24 3,518.01 3,152.37 3,515.56 3,515.56

Total energy (kWh) 66,862.79 66,797.21 66,849.81 66,861.98

Error -- 0.0981% 0.0194% 0.0012%
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4 Case studies

A small hydropower plant in southern China is adopted as a

test system to verify the effectiveness of the proposed formulation

and methodology. The parameters of each unit are illustrated in

Table 1. All simulations are implemented with MATLAB R2021a

using a PC with a 3.6 GHz AMD R7 4700G processor and 16 GB

of RAM. The scheduling period is 24 h, and the time resolution

is 1 h.

4.1 Iterative process of the approximate
value function

To express the dynamic approximation process of the value

function, we define the change rate of the approximation

function as follows:

η( ~Vk,t) � ( ~Vk,t − ~Vopt,t)/( ~V0,t − ~Vopt,t) × 100% (21)

The indicator η( ~Vk,t) reflects the differences in the value

function of each period compared with the optimal value

function in the k-th iteration. The change in this difference

represents the adjustment of the state of the ADP algorithm

in the iterative process to achieve the maximum power

generation. For instance, if the initial value function ~V0,t of

period t is greater than the optimal value function ~Vopt,t, and

η( ~Vk,t)> 0 in the k-th iteration, then there is ~Vk,t > ~Vopt,t,

indicating that the value function of the state during the

current period is better than the optimal value function.

However, due to the significant impact on the state of t+1 and

subsequent periods, which restricts future power generation, it is

FIGURE 7
Approximate output surface using the PAR method (Mh = 6,
Mq = 11)

FIGURE 8
Comparison of unit output between ADP and PAR-MILP. (A) ADP; (B) MILP.
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discarded in the subsequent iteration process. In contrast, if

η( ~Vk,t)< 0, then ~Vk,t < ~Vopt,t, indicating that the approximation

of the value function in the current period is inferior to the

optimal value function. Therefore, a better strategy will be sought

in the subsequent iteration process.

Figure 4A shows the change rate of the approximate value

function of the three units in 24 time periods with the ADP

iteration process, and the change rate convergence curve for each

time period is shown in Figure 4B. Figure 4 shows that η( ~Vk,t)
oscillates positively and negatively with the value iteration

process and finally converges to 0, indicating that the

algorithm gradually updates the strategy in the iterative

process and approaches the optimal value function to achieve

the goal of maximum power generation.

4.2 Optimization results of single-unit
short-term small hydropower scheduling

To clarify the approximation process of the power generation

obtained by the proposed ADP algorithm to the optimal solution,

the discrete state number Kr of the water volume is taken as 51,

and the single-unit optimization convergence curve of the ADP

algorithm is obtained as depicted in Figure 5. The ADP algorithm

converges to the optimal generation of 66,849.81 kWh when the

number of iterations reaches 1,325, which is only 0.0194%

different from the optimal result of 66,862.79 kWh obtained

by IPM, thereby demonstrating the optimality of the proposed

ADP algorithm in solving the STSHS.

To illustrate the influence of Kr on the approximation of the

optimal solution of the non-linear problem by the ADP

algorithm, the number of discrete states Kr of water volume is

taken as 11, 51, and 201, and the optimization results of single-

unit STSHS by ADP and IPM are compared, as shown in

Figure 6. As Kr increases, the water volume of ADP gradually

approaches the optimal water volume of IPM. When Kr is 201,

the water volume curve of ADP almost overlaps with that of IPM,

which indicates that the decision made by ADP in each period

will gradually approach the optimal as the number of discrete

points of water volume increases.

To further illustrate the performance of the ADP algorithm,

Table 2 lists the unit output of the IPM and ADP algorithms in all

24 time periods. Table 2 shows that as the number of discrete

states of water volume increases, the approximate solution

obtained by ADP gradually approaches the optimal solution

obtained by IPM. When Kr = 11, the error compared to the

maximum power generation of IPM is reduced to 0.0982%, which

can fully meet the needs of engineering applications. When Kr is

increased to 201, the error compared to the maximum power

generation of IPM is only 0.0012%. The above results show that

FIGURE 9
Comparison of the output of each method under different inflows. (A) Case 1: Relatively smooth inflow; (B) Case 2: Inflow with a significant drop.

TABLE 3 Comparison of optimization results of each method.

Algorithms ADP(Kr = 21) Myopic PAR-MILP MINLP

Case 1 Generation (kWh) 67,205.43 64,860.89 63,740.5 67,071.40

Time (s) 2,129.8 209.4 7,685.2 43,200

Case 2 Generation (kWh) 61,910.67 57,591.58 58,545.69 61,989.52

Time (s) 1,589.6 41.4 3,687.1 2,800
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for the STSHS problem, the error between the solution of the ADP

algorithm and the optimal solution is extremely small, and the

quality of the solution can be significantly improved by increasing

the number of discrete states, further indicating that the proposed

algorithm has superior convergence performance and practical

engineering value.

4.3 Optimization results of multiple-unit
short-term small hydropower scheduling

When the STSHS model includes 0–1 variables

representing the on/off status of the units, it cannot be

solved by IPM. With the maturity of the solving technology

of the MILP problem, the MILP model of the STSHS problem

can be achieved via piecewise linearization and then using a

commercial solver to obtain the optimal solution. In this

paper, PAR is used to perform piecewise linearization of

the HPF function (3). The number of discrete points of net

head Mh = 6, the number of discrete points of water discharge

Mq = 11, and the obtained approximate output surface is

shown in Figure 7.

For the STSHS problem involving three units, the state

discrete number Kr of the water volume is set to 51, and the

TABLE 4 Comparison of optimization results before and after space compression.

Period Output power without state
compression (kW)

Output power with state compression (kW)

Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3

1 0.00 1784.41 0.00 1784.41 0.00 0.00

2 0.00 1788.02 0.00 1788.02 0.00 0.00

3 0.00 1791.62 0.00 1791.62 0.00 0.00

4 0.00 1795.21 0.00 1795.21 0.00 0.00

5 0.00 1798.79 0.00 1798.79 0.00 0.00

6 0.00 1802.37 0.00 1802.37 0.00 0.00

7 0.00 1805.93 0.00 1805.93 0.00 0.00

8 0.00 1809.49 0.00 1809.49 0.00 0.00

9 0.00 1813.04 0.00 1813.04 0.00 0.00

10 0.00 2,835.36 0.00 2,835.36 0.00 0.00

11 0.00 2,835.36 0.00 2,835.36 0.00 0.00

12 0.00 2,835.36 0.00 2,835.36 0.00 0.00

13 0.00 2,835.36 0.00 2,835.36 0.00 0.00

14 0.00 2,835.36 0.00 2,835.36 0.00 0.00

15 0.00 2,835.36 0.00 2,835.36 0.00 0.00

16 0.00 2,835.36 0.00 2,835.36 0.00 0.00

17 0.00 2,835.36 0.00 2,835.36 0.00 0.00

18 0.00 2,835.36 0.00 2,835.36 0.00 0.00

19 0.00 2,835.36 0.00 2,835.36 0.00 0.00

20 0.00 2,835.36 0.00 2,835.36 0.00 0.00

21 0.00 2,835.36 0.00 2,835.36 0.00 0.00

22 0.00 2,850.36 2,850.36 2,850.36 2,850.36 0.00

23 0.00 2,832.07 2,832.07 2,832.07 2,832.07 0.00

24 2,813.69 2,813.69 0.00 2,813.69 2,813.69 0.00

Total energy (kWh) 67,205.43 67,205.43

n 464 464

t(s) 4422.8 2,129.8

TABLE 5 Comparison of ADP optimization results with different value
table sizes.

Value table size Kr = 21 Kr = 51 Kr = 101

Generated energy(kWh) 67,205.43 67,254.17 67,262.80

Number of iterations 464 1,325 2,628

Time consuming (s) 2,129.8 11,764.1 47,941.7
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unit output optimization results obtained using ADP and PAR-

MILP are shown in Figure 8.

Figure 8 shows that the units start and stop frequently in the

MILP results. One reason is that the output characteristics of the

three hydropower units are the same. The second reason is that,

ignoring the start-up and shutdown costs of small-capacity

hydropower units, if the inflow is small, the reservoir tends to

store water to raise the net head, and the amount of water

available for power generation is limited, resulting in an

unnecessary start and stop. In comparison, the optimization

results of unit commitment obtained via ADP are more stable

and reasonable, among which unit 3 is not even turned on during

the whole scheduling period. The reason is that in the ADP

algorithm, the search space for the unit commitment decision is

compressed, and the redundant on/off state is eliminated from

the decision space. As a result, a relatively smooth unit

commitment scheme can be obtained without applying

additional constraints, such as unit start/stop costs.

Next, to further verify that the ADP algorithm proposed in

this paper more easily achieves a satisfactory trade-off between

solving efficiency and solution optimality compared with other

algorithms, we compare the optimization results of MILP,

MINLP and myopic methods with ADP. The Gurobi

9.1.2 commercial solver is used for MILP, and the LINGO

commercial solver is used for MINLP. The results of the

power outputs of each method under different reservoir

inflows are shown in Figure 9, and the time consumption and

total generation results are shown in Table 3.

As shown in Figure 9 and Table 3, regardless of the inflow

changes, the generation results of ADP andMINLP are extremely

close and larger than those of other methods because they

completely retain the nonlinearity of HPF and the head effect.

Although the myopic algorithm also completely retains the

original non-linearity, due to its short-sighted characteristics,

the impacts of the current strategy on the subsequent period

cannot be considered in the decision-making process, and the

power generation obtained is the lowest. Especially after rainfall,

when the water inflow gradually decreases, the disadvantages of

the myopic algorithm become more obvious. As shown in

Figure 9B, myopic tends to maximize the water discharge

during each time period, ignoring the reduction of net head

in the next time period, which causes the total generation to be

7.5% less than that of the ADP method. Using commercial

solvers directly to solve MINLP problems can also produce

high-quality solutions, which are only 0.2% different from the

ADP results, but the time consumption is 20 times greater than

that of ADP. Although PAR-MILP approximates the nonlinear

HPF surface by piecewise approximation, the energy generation

optimization result is not substantially different from that of

ADP, but the corresponding time cost is still much higher than

that of ADP. The comparison results indicate that the solution

quality of ADP is remarkable among the four algorithms on the

premise of ensuring the optimization accuracy level within 0.2%.

In terms of computational efficiency, ADP is superior to MILP

and MINLP.

4.4 Effect of state space compression

To further illustrate the effect of the proposed state space

compression strategy in improving the efficiency of ADP, the

number of discrete states Kr of the water volume is set to 21, and

the optimization results before and after state space

compression are obtained, as shown in Table 4, where n is

the number of ADP iterations and t is the time consumption

of ADP.

Table 4 shows that the optimal power generation obtained by the

ADP algorithm before and after state space compression is the same,

indicating that the states eliminated by the proposed compression

strategy are redundant states that do not need to be traversed and will

not affect the algorithm’s optimization ability. In addition, the

execution time of ADP after state compression is reduced by

51.84%, which demonstrates that the proposed compression

strategy significantly improves the solution efficiency and is

suitable for cases with multiple hydropower units, showing its

potential practicability and validity for solving the STSHS problem.

4.5 The effect of value table size on
approximate dynamic programming
optimization results

To clarify the relationship between the approximate

accuracy of ADP and the size of the value table, we set the

discrete number Kr of the water volume to 21, 51, and 101,

which means that the adjacent state intervals of the water

volume are 50,000 m3, 20,000 m3, and 10,000 m3,

respectively. To ensure that the reservoir can reach the

maximum water storage capacity, the initial volume of the

reservoir is set to 13.4 million m3. The simulation results of

ADP with different values are shown in Table 5.

Table 5 shows that as the size of the value table increases,

the power generation gradually increases, indicating that the

quality of the solution also improves. In addition, the

number of iterations and solution time increase linearly

with the size of the value table. A possible explanation for

this is that as the number of discrete states increases, the

value table must be updated more often to better

approximate the value function, so the number of

iterations required to converge increases. In addition,

since the state of the water volume is more discrete, in the

ADP algorithm, more sub-problems must be solved in each

period and in each iteration to make the optimal decision,

resulting in an increase in the time consumption of each

iteration. Therefore, when using ADP to solve the STSHS

problem with unit commitment, a trade-off should be made

Frontiers in Energy Research frontiersin.org12

Ji and Wei 10.3389/fenrg.2022.965669

47

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.965669


between approximation accuracy and calculation time

according to engineering requirements.

5 Conclusion

An ADP solution algorithm is proposed for the problem of

short-term economic dispatch of small hydropower. The

mapping relationship between the discrete state of the

water volume and the value function is established through

the table function model. Furthermore, the state space is

compressed, and the MINLP problem is transformed

into multiple NLP sub-problems to reduce the model

complexity.

A comparison with the IPM optimization results shows that

ADP and IPM tend to produce the same solution in the case of

single-unit operation, which proves that the proposed ADP

method can obtain high-quality solutions.

For the case of multi-unit optimal scheduling, comparison

with the results of myopic, MILP and MINLP shows that ADP

obtains better power generation results than myopic and MILP

because it retains the nonlinearity of the original model. In

addition, the solution time required to make MINLP obtain the

same level of optimization results as ADP will obviously exceed

that of ADP. This verifies that the proposed method can

consider both the quality of the solution and the

computational efficiency in solving the non-convex nonlinear

SHED problem.

The results of ADP optimization with space compression

show that the proposed space compression strategy can

effectively reduce the number of candidate decision-making

actions in the iterative process and significantly improve the

solution efficiency.

Simulation results with different table sizes show that the

proposed algorithm can achieve a balance between optimality

and solution efficiency by setting the discrete number of water

volumes.
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Nomenclature

Sets and indices

i index of hydro units

M set of units

t index of periods

T set of time periods

Parameters

hi,t net head of reservoir at period t

hmax maximum net head of the reservoir (m)

hmin minimum net head of the reservoir (m)

pmax i maximum production of unit i (kW)

pmin i minimum production of unit i (kW)

qmax i maximum water discharge of unit i (m3/s)

qmin i minimum water discharge of unit i (m3/s)

rfinal water volume of the reservoir at the end of the last

period (m3)

rinit water volume of the reservoir at the beginning of the initial

period (m3)

rmax maximum water volume of the reservoir (m3)

rmin minimum water volume of the reservoir (m3)

Δt length of each time period (h)

Variables

di,t binary variable, which is equal to 1 if hydro unit i is online at

period t and 0 otherwise

ht net head of reservoir at period t

hdw t tailrace level of the reservoir at period t (m)

hup t forebay level of the reservoir in period t (m)

jt inflow of reservoir at period t (m3/s)

pi,t power output of hydro unit i at period t

qi,t water discharge of unit i at period t

rt water volume of the reservoir at period t (m3)

st total reservoir spillage in period t (m3/s)
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A new dual-ferrite–assisted
hybrid reluctance machine with
two-stage excitation for starter
generator application
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Reluctancemachines with DC field coil in stator are a competitive candidate for

starter generation application, due to the elimination of rare-earth permanent

magnet (PM), robust structures, and controllable excitation. However, due to

the poor excitation ability of DC field coils, the torque density is

disadvantageous. Moreover, with the increase in the DC field current, it is

exposed to the risk of extra DC saturation in stator teeth. As a consequence, the

torque density and efficiency are both constrained. To solve the

aforementioned problems, based on the comprehensive consideration of

production cost and torque performance, this study proposed a novel type

of hybrid reluctance machine with dual-ferrite–assisted in stator slots. The

inner-layer ferrite PM is magnetized tangentially, which can effectively achieve

the DC-saturation–relieving effect, while the outer-layer ferrite PM is

magnetized radially to increase the machine torque density through the flux

modulation effect. Based on finite element analysis, themachine torque density

and efficiency can be improved by 20 and 5%, respectively. Furthermore, to

simplify the excitation system of the DC terminal, a two-stage excitation

method is proposed by splitting some turns of armature winding to feed DC

field winding with passive rectifier. No power switching devices are needed for

the excitation system in this way, making the system highly robust. The

effectiveness of the proposed design is verified by time-stepping finite

element analysis.

KEYWORDS

dual-ferrite magnets, DC-saturation-relieving, hybrid reluctance machine, starter
generator application, two-stage excitation
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Introduction

Due to high torque density and high efficiency, the rare-

earth permanent magnet (PM) machines have been widely

used in electrical vehicles and wind power generation systems

(Zhu and Howe, 2007; Chau et al., 2008; Pellegrino et al., 2012;

Sarlioglu and Morris, 2015; Zhao et al., 2018; Gong et al., 2019;

Zhao et al., 2020a; Zhao et al., 2021; Zhao et al., 2022a), which

enables the increasing penetration of renewable energy into

traditional power systems, driving to a carbon-free future.

However, the rare-earth PM is a non-renewable resource and

its supply status is unstable with a relatively high price, which

is desired to be reduced in electrical machine systems

(Polinder et al., 2006; Fasolo et al., 2014; Niu et al., 2019).

The switched reluctance motor (SRM) is a potential non-PM

solution (Polinder et al., 2006; Niu et al., 2019), but the core of

SRM can only operate in the first quadrant of the BH curve,

thus torque density is poorer than that of the PM machine. In

addition, the torque ripple is serious due to its half-cycle

conducting principle.

A doubly-fed doubly salient machine (DF-DSM) has a

similar stator and rotor structure with SRM. The difference

is that the space of the stator slot is shared by DC coils and AC

coils. This allows DF-DSM to operate in a whole electric period

and be driven by a universal inverter (Fasolo et al., 2014; Zhao

et al., 2020b; Zhao et al., 2022b). Nevertheless, its torque ripple

is severe due to rich even-order flux harmonics and asymmetric

magnetic circuits between phases. To address this issue, another

structure named as variable flux reluctance machine (VFRM) is

proposed, which can be designed with more flexible slot pole

combinations (Xue et al., 2010). In particular, with the design of

odd rotor pole pair, the even-order harmonics in flux linkage

can be canceled, and symmetrical magnetic circuits between

phases are obtained. Therefore, lower cogging torque and small

torque ripple can be acquired (Takeno et al., 2012; Hu et al.,

2020). Unfortunately, the torque density of VFRM is still lower

than that of SRM and quite lower than that of PM machines.

Two reasons behind this are, on one hand, the excitation ability

of DC field coils is much poor compared to rare-earth PMs. On

the other hand, DC field windings produce a DC flux bias in the

stator core, making it prone to magnetic saturation. This

problem is severe under heavy load conditions, which

degrades torque performance and increases core loss. To

solve this issue, tangential PMs can be embedded in slots to

create an opposite magnetic bias against that of DC field

winding (Liu and Zhu, 2013; Lee et al., 2014; Liu and Zhu,

2014; Wang et al., 2016; Zhu et al., 2016; Ullah et al., 2019; Zhao

et al., 2019; Zhao et al., 2020c), hence weakening the magnetic

saturation in the stator core.

This study proposed a new hybrid reluctance machine

(HRM) using dual-ferrite magnets in stator slots. The inner-

layer ferrite PMs are used to release the saturation of the

FIGURE 1
(A) Structure of the proposed HRM. (B) Armature winding connection.
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magnetic circuit due to extra DC bias generated by DC field

winding. The outer-layer ferrite PMs contribute to the effective

flux linkage and torque boost effect through the flux modulation

effect. In this way, the proposed HRM can achieve improved

torque density and efficiency at the same time compared to the

traditional non-PM design. The cost increase due to ferrite

magnets is acceptable as well. Moreover, to simplify the

excitation system of the DC current terminal, a two-stage

excitation method is proposed by splitting some turns of

armature winding to feed DC field winding with passive

rectifier. No power switching devices are needed for the

excitation system in this way, making the system highly

robust. The rest of the study is arranged as follows. In Section

2, the configuration and principle of the proposed HRM are

introduced. In Section 3, different pole pair combinations are

compared through finite element analysis, including magnetic

field distribution, cogging torque, and back electromotive force.

In Section 4, the electromagnetic performance of the optimal

design is analyzed, with emphasis on the effect of dual-layer

ferrite PMs on the magnetic saturation and torque generation. In

Section 5, the feasibility of a power device free two-stage

excitation system is verified by field-circuit co-simulation,

proving its potential for stater generator applications. Some

conclusions are drawn in Section 6.

FIGURE 2
Flux linkage distribution. (A) Inner-layer ferrite PMs and DC field coils. (B)Outer-layer ferrite PMs and DC field coils. The flux linkage excited by
DC field winding can be expanded by Fourier series.

FIGURE 3
Schematic coil flux with the increase in inner-layer
ferrite PMs.

TABLE 1 Dominant harmonics excited by outer-layer ferrite PMs.

i � 1, j � 0 i � 1, j � 1

vi,j 0 ns + nr |ns − nr|
PPNi,j ns

nr
ns+nrωr

nr
ns−nrωr

FIGURE 4
Winding configuration. (A) 12/10 and 12/14. (B) 12/11 and
12/13.
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The proposed hybrid reluctance
machine

The structure of the proposed dual-ferrite–assisted HRM is

shown in Figure 1. It uses a doubly salient structure. There are

two sets of windings in the stator, namely, DC field winding and

AC armature winding. The AC armature winding uses a single-

layer concentrated connection, thus the winding ends are short

and good isolation can be achieved. The rotor consists of an iron

core only, providing good mechanical robustness. Dual-ferrite

PMs are introduced in stator slots and play different roles in the

electromagnetic characteristics of the proposed HRM. Extra pole

shoes can be designed to enable the placement of slot PMs and

make sure the mechanical strength requirement. Considering the

winding ends are usually the hotpots in an electrical machine

system. The ferrite magnets are likely to be exposed to the

demagnetization risk. Some advanced natural/water/oil cooling

methods can be used to bring down the temperature rise and thus

ensure the working environment of magnets. As shown in

Figure 2A, the inner ferrite PMs are tangentially magnetized

to generate a magnetic bias opposite to that of DC field windings,

and in this way, the saturation of the magnetic circuit can be

reduced, namely, DC-saturation–relieving (DCSR) effect in this

study. It is worth noting that the inner-layer ferrite PMs only

adjust the offset of the flux linkage and have little influence on the

phase angle. The outer-layer radially magnetized ferrite PMs will

create extra flux that overlaps with that of DC field winding, as

shown in Figure 2B, and thus boost torque density. The working

principle of dual-layer ferrites is expanded as follows:

φcoil � φdc +∑φn sin(nωt + θn), n � 1, 2, 3 . . . , (1)

where φdc is the DC flux bias, φn is the magnitude of the nth flux

harmonics, ω is the electrical angle velocity, t is the time, and θn is

the initial phase angle. φdc can be further described using

permeance and magnetomotive force model as follows:

φdc � NdcidcΛaveθsdsol, (2)

where Ndc is the turns of DC coils, idc is the current of DC coils,

Λave is the average permeance, θs is the arc of stator teeth, dso is

the outer diameter of stator, and l is the stack length.

As shown, the DC flux bias in the stator core is determined

by the magnetomotive force of DC field winding and average

rotor permeance. To avoid the flux saturation in the stator

teeth, inner-layer ferrite PMs are introduced to achieve the

DCSR effect. As shown in Figure 3, without DCSR, the phase

flux linkage has a bias with φdc. With the help of the constant

flux generated by inner-layer ferrite PMs, the DC flux bias can

be regulated. With the increase in inner-layer ferrite PMs, the

DC flux bias can be adjusted to zero, which can be named as

the full DCSR effect. However, the overuse of ferrite PMs may

produce a negative offset for the phase flux as well, namely, an

over DCSR effect, and meanwhile reduce the slot space area

for windings Hence, the proper amount of ferrite is a very

important parameter, and the optimal usage of inner-layer

ferrite PMs can be designed by.

h � HcΛsθsdsol

φdc

, (3)

where h is the height of the inner-layer ferrite PMs, Hc is the

coercivity of ferrite PMs, Λs is the average permeance of inner-

layer ferrite PMmagnetic circuit, θs is the arc of stator teeth, dso is

the diameter of the stator teeth, and l is the stack length.

The outer-layer ferrite PMs and the adjacent stator tooth

form the magnetic poles, and the ferrite PM field is modulated by

rotor salient poles. At the same time, the redundant air-gap

harmonics are excited to boost the torque generation. The

rotational speed vi,j and the pole pair number PPNi,j can be

expressed as:

⎧⎪⎪⎨
⎪⎪⎩

vi,j � jnr
ins + jnr

ωr,

PPNi,j �
∣∣∣∣ins ± jnr

∣∣∣∣,
i � 1, 3, 5 . . . , j � 0, 1, 2, 3 . . . ,

(4)

TABLE 2 Design parameters for the proposed machine.

Symbol Parameter Unit Value

dso Outer diameter of stator mm 130

dsi Inner diameter of stator mm 90

dro Outer diameter of rotor mm 89

dri Inner diameter of stator mm 60

hry Height of rotor yoke mm 20

hsy Height of stator yoke mm 5

h1 Height of outer-layer ferrite PMs mm Variable

h2 Height of inner-layer ferrite PMs mm Variable

Δ Air-gap length mm 0.5

L Stack length mm 80

ws Width of stator teeth mm 6

wr Width of rotor salient pole mm 9

Turns of each DC coil 80

Turns of each AC coil 80

Slot factor 0.79

Rated speed rpm 2,500

Rated current density A/mm2 10

TABLE 3 Major parameters and specifications.

Ferrite
PM

Material remanence coercive force Y30H 0.4 T
300 kA/m

Steel Material saturated flux density mass density MG19_24 1.8 T
7,650 kg/m3
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where ns is the PPN of outer-layer ferrite PMs. nr is the pole pair

number of rotor poles andωr is the rotor mechanical angular

velocity. The dominant components of air-gap harmonics after

the modulation are summarized in Table 1.

When i � 1, j � 0, the rotational speed is 0, thus there are

no effective flux linkage and electromagnetic torque

produced. When i � 1, j � 1, two dominant harmonics of

outer-layer ferrite PMs are generated after rotor

modulation, and their rotating directions are opposite. To

transmit the maximum electromagnetic torque with ferrite

PMs harmonics, the pole pair number of AC armature

winding can be designed by.

na � |ns − nr|. (5)

FIGURE 5
Flux distribution generated by DC field coils and dual-layer ferrite PMs (A) 12/10. (B) 12/11. (C) 12/13. (D) 12/14.

FIGURE 6
(A) Phase flux linkage waveforms. (B) Harmonic distribution.

FIGURE 7
Cogging torque waveforms.
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The electromagnetic torque produced by outer-layer ferrite

PMs can be defined as:

T � 3
2
krlnr

Bp

Gr
NI, (6)

where k is the fundamental winding factor, r is the air-gap

radius, l is the stack length, Bp is the amplitude of harmonic flux

density, and NI is the winding ampere turns.

Design considerations

In the proposed HRM, the magnetic circuits between phases

are entirely symmetrical. Four slot pole combinations of 12/10,

12/11, 12/13, and 12/14 are selected to be analyzed in this study.

Since the proposed HRM should use a single-layer concentrated

connection, the vector diagram of winding connection for each

design is presented in Figure 4. In 12/10 and 12/14 cases, the

armature coils in opposite positions are positively cascaded as

they have the same phase of flux linkage, while the phase flux of

12/11 and 12/13 cases in opposite positions is delayed by the half

electrical period, and hence they are negatively cascaded. The

detailed design parameters and the specifications of major

machine materials are presented in Tables 2, 3,.

The flux distributions of the proposed HRM with four pole

pair combinations are illustrated in Figure 5, with a DC field

current of 5A. It is clear to see that the flux linkage circulates

into a loop according to the wounded stator tooth, aligned

rotor tooth, and the adjacent stator teeth. As shown in

Figure 5, the phase U is composed of coil A and coil D, the

flux of phase U of 12/10 and 12/14 can be derived by using

Fourier series as:

φU � 2φdc + 2∑φn sin(nωt + θn), n � 1, 2, 3 . . . (7)
For 12/11 and 12/13, the coil A and coil D are negatively

connected, and then the flux of phase U can be rewritten as:

φU � ∑φn sin(nωt + θn) +∑φn sin(nωt + nπ + θn),

n � 1, 2, 3 . . . (8)
φU � 2∑φn sin(nωt + θn), n � 1, 3, 5 . . . (9)

As demonstrated by equation (10), in 12/11 and 12/

13 cases, the DC flux bias and all even-order harmonics are

canceled in the combined phase. As the flux linkage and its

harmonic orders are compared in Figure 6, the 12/11 and 12/

13 cases can acquire more symmetrical flux linkage without

any even-order harmonics. In addition, the fundamental

components of flux linkage of 12/10 and 12/11 cases are

larger than the others. As shown in Figure 7, the cogging

torques of 12/11 and 12/13 are quite smaller than those of 12/

10 and 12/14. This is because a smaller or least common

FIGURE 8
Average torque with variable usage of dual-ferrite PMs under different current densities (A) 5 A/mm2. (B) 10 A/mm2. (C) 15 A/mm2.
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multiple of the stator teeth number and rotor pole pair may

cause bigger cogging torque. Based on the aforementioned

analysis, the 12/11 case is a suitable pole pair combination for

the proposed dual-ferrite HRM.

The usage of dual-layer ferrite PMs is a key parameter for

the proposed HRM. On one side, the over usage of ferrite

PMs may occupy the space of DC coils and AC coils, which

leads to a decrease in the torque density. On the other side,

insufficient ferrite PMs cannot produce enough flux

modulation and DCSR effect. Under different current

densities, the suitable usage of dual-layer ferrite magnets

is analyzed and the results are given in Figure 8. Under low

current densities, the outer-layer ferrite PM plays a

significant role, as shown in Figure 8A. With the increase

in outer-layer ferrite PMs, the average torque increases

distinctly. By contrast, the inner-layer ferrite magnets are

less important since flux saturation is not serious under low

current density. As shown in Figure 8C, the inner-layer

ferrite PMs start to show their effect. With the increase in

the usage, the average torque increases significantly.

Figure 8B describes the combined effect of dual-layer

ferrite PMs. With the increase in dual-layer ferrite PMs,

the average torque increases first and then shows a

downward trend, proving that the overuse of ferrite PMs

may cause a negative effect on torque generation.

Consequently, the usage of ferrite magnets is designed as

4 mm for inner-layer ferrite and 1 mm for outer-layer ferrite

to achieve the maximum average torque at a rated current

density of 15 A/mm2.

Electromagnetic performance

Figure 9 presents the harmonics excited by the DC field coils,

outer-layer ferrite PMs, and AC armature coils, respectively.

According to the flux modulation effect, if the harmonics

excited by DC coils and outer-layer ferrite PMs have the same

rotational speed and the same pole pair number as AC

FIGURE 9
Flux density in the air gap and its harmonic distribution. (A) Only DC 5A. (B) Only outer-layer ferrite PMs. (C) Only AC armature current 5A.
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harmonics, the torque density can be improved. Figure 9A shows

the air-gap flux density with only DC field excitation, and its

harmonics distribution obtained by the fast Fourier transform

(FFT). Figure 9B shows the flux density of outer-layer ferrite PMs

and its FFT of the main harmonic components. The orders of

dominant harmonic components of two excitation sources are

quite different. When compared the redundant harmonics

excited by armature excitation using a single-layer

concentrated winding connection as shown in Figure 9C, it

can be concluded that both DC excitation and outer-layer

ferrite excitation contribute to torque density improvement

effectively.

When the proposed HRM is excited by DC coils only, the

magnetic circuit distribution under the no-load condition is

shown in Figure 10A. The magnetic circuit in the stator teeth

is severely saturated, which will seriously affect the torque

performance and efficiency. With the help of inner-layer

ferrite PMs, the magnetic circuit saturation in the stator

slots and teeth is effectively released by the DCSR effect,

which is shown in Figure 10B. Meanwhile, as shown in

Figure 11, compared with the torque performance excited

by the DC field current only, the torque density of the

proposed dual-ferrite–assisted HRM has been improved by

more than 20%. Also, the efficiency can be increased by 5%

due to core loss mitigation, as indicated in the simulation data

in Table 4.

FIGURE 10
Magnetic field distribution at different excitation statuses. (A) DC field current only. (B) DC field current and dual-ferrite PMs.

FIGURE 11
Steady torque curves at different excitation statuses.

TABLE 4 Power, loss, and efficiency.

Parameter Unit With DC only With
dual-layer ferrite PMs

Rated power W 1,387 1831

Copper loss W 180 143

Core loss W 99 101

Eddy current loss W - 40

Rated efficiency - 79.9% 84.5%
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Two-stage excitation system

Figure 12 presents the two-stage excitation system for the

proposed HRM, based on the field-circuit co-simulation

(combined with the finite element electromagnetic field

analysis and circuit transition analysis). The key is to split a

few turns of the AC armature winding to function as an AC

supply winding to feed the DC field winding through the passive

diode rectifier. In this way, the extra exaction circuit for the DC

field terminal can be eliminated, including the switching devices

and related control systems, thereby making the system highly

robust. This two-stage excitation system is an ideal solution for

stable generation mode as a stater generator candidate.

Figure 13 shows the simulation results of the rectified

current and voltage excitation in the DC field terminal

through the AC supply winding and diode rectifier. It is

observed that the DC field voltage and current excitation

can naturally achieve a stable value after a certain time,

which verifies the system effectiveness.

Conclusion

A novel dual-ferrite–assisted HRM is proposed in this

study. The key is to apply the inner-layer ferrite PM to achieve

the DCSR effect and the outer-layer ferrite PM to help

modulate the air-gap flux and thus increase the torque

FIGURE 12
Two-stage excitation system for the proposed HRM.

FIGURE 13
Rectified voltage and current in the DC field terminal.
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density. Four pole pair combinations of the proposed machine

are compared in terms of flux harmonics and cogging torque,

and the optimal case is selected for further analysis. The effect

of ferrite PM usage on torque generation is evaluated. The

combined effects of dual-layer ferrite PMs are verified by FEA,

which reveals that, with the flux modulation effect and DCSR

effect, the torque density and efficiency can be increased by

20 and 5%, respectively. Furthermore, the two-stage excitation

system is verified by field-circuit co-simulation, which verifies

that the proposed solution is very suitable for a stater

generator application with enhanced electromagnetics

performance at the starting mode and simplified power

circuit at the generation mode.
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Integrated stability control for a
vehicle in the vehicle-to-grid
system on low adhesion
coefficient road

Yujie Wang1, Yu Lei2 and Peipei Wang2*
1School of International Education, Wuhan University of Technology, Hubei, China, 2School of
Automation, Wuhan University of Technology, Hubei, China

For the vehicle-to-grid system, the dynamic performance of the vehicle in the

transportation system is quite crucial. The stability of the vehicle is the basis of

thewhole system. Compared to the traditional vehicle, the vehicle with a torque

distribution system allows the vehicle to have a better dynamic performance.

The torque distribution method has attracted a lot of attention from

researchers. Most of the current work focuses on the vehicle on the

concrete road. To improve the vehicle lateral stability in the critical work

condition, the nonlinear reference model and vehicle dynamic model with

8 degrees of freedom are established based on the vehicle dynamic theory. An

integrated active front steering (AFS) and direct yaw control (DYC) controller are

designed based on LQR (Linear quadratic regulator) and vehicle stability phase

portrait. To evaluate the performance of the vehicle on the road with a relatively

low adhesion coefficient. The double lane-change and fishhook maneuver are

chosen as thework condition. The steering angle, wheel torque, vehicle routine,

phase portrait track, and yaw rate are calculated and compared. The simulation

result validates the effectiveness of the proposed integrated AFS and DYC

control method. The stability of the vehicle on the low adhesion coefficient

road can lay a good foundation of the vehicle-to-grid system.
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Introduction

The Electric vehicle (EV) shows a promising future due to its advantage in energy

conservation and environment protection. The EV with wheel motors has superior

performance in advanced chassis control algorithms because of its simplified chassis and

independent driving torque. The independent driving torque on the vehicle wheels allows

the vehicle to have a better ability on torque vectoring (TV) control. The TV control can

improve the dynamic performance of the vehicle according to the driver’s attention

without significantly damaging its speed.

Normally, the TV or differential braking control (DBC) is integrated with the

traditional steering system to improve vehicle performance (Soares et al., 2018) (Chen
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et al., 2017). Based on the coordination of active front steering

(AFS), direct yaw control (DYC), and TV control, an integrated

control algorithm is provided to maintain the vehicle stability

during extreme work conditions (Aouadj et al., 2020); (Li et al.,

2019). Besides lateral stability, some researchers also consider roll

stability, the TV control is combined with the AFS to enhance the

yaw and roll stability of a coach (Zheng et al., 2018). Usually, the

torque control distribution algorithm is made up of 2 or 3 layers

(Khalfaoui et al., 2018). The stability judgment, slip rate

calculation, torque allocation, and steering angle are

determined in the upper layer, while the lower layer conducts

the torque inverting. The plane phase method can represent the

nonlinear characteristics, therefore, it is widely used in vehicle

stability judgment. The plane phase method can be classified

according to the state variable used in the plane phase, including

sideslip angle-sideslip angular velocity (Inagaki et al., 1994), yaw

rate-sideslip angle (Ono et al., 1998), and front-rear tire sideslip

angle (Bobier and Gerdes, 2013). Different torque control

algorithms, such as fuzzy control (Boada et al., 2005), PID

(Liu et al., 2019), LQR (Linear quadratic regulator) (Dai et al.,

2019), MPC (Model predictive control) (Zhang and Wu, 2016),

and sliding-mode control (Truong et al., 2013) are initiated to

allocate the needed torque during the steering process. For the

torque distribution process, even distribution, generalized

inverse matrix, and least square are the commonly used

algorithms (Xu et al., 2019).

Plenty of works have been done in this area, most of the

current research focuses on vehicles running on the regular

road with an adhesion coefficient of around 0.8. With a lower

adhesion coefficient, lower friction force can be provided by the

road surface, thus, the easier the vehicle runs out of control. To

deal with the critical situation of the passenger car, an 8 DOFs

vehicle and 2 DOFs reference model are established and

validated by the result of Carsim. According to the stability

phase portrait and LQR method, an integrated AFS and DYC

controller is designed. The effectiveness of the controller is

proved by the simulation of two critical maneuvers on low

friction adhesion road. The results show the overall

improvement of the vehicle’s lateral stability.

Vehicle dynamic model

To investigate the differential torque steering control

algorithms, the vehicle dynamic model is established based on

the vehicle dynamic theory. For an operating vehicle, lots of

freedom exists in the whole system, the simplification must be

done based on the researchers’ focus. Normally, a 2 DOFmodel is

established as the reference model and the multiple DOF model

such as the 8, 10, or 14 DOF model is established to verify the

torque distribution algorithms (Jaafari and Shirazi, 2016);

(Goodarzi et al., 2011). In this case, 2 and 8 DOF vehicle

dynamic models are built. Since the 8 DOF model is much

more complicated than the 2 DOF model, the 8 DOF model is

introduced first. The 8 DOF model is combined with the vehicle

body, wheel, motor, and tire model.

Vehicle body model

For the vehicle dynamic model, the 4 out of 8 DOFs are for

the vehicle body and the remaining 4 DOFs are for the wheel

rotations. The 4 DOFs for the vehicle body model are the motion

of longitudinal, lateral, yaw, and roll (Figure 1). The four motions

can be identified as Eqs 1–4, the symbol and vehicle parameters

used in these equations are shown in Table 1.

m( _vx − vyγ) +mshsγ _ϕ � ∑4

i�1Fxi − 1
2
CdAρv

2
x −mgf (1)

m( _vy + vxγ) −mshs€ϕ � ∑4

i�1Fyi (2)
Ix€ϕ −mshs( _vy + γvx) − Ixz _γ � msghsϕ − (Kf +Kr)ϕ

− (Cf + Cr) _ϕ (3)
Iz _γ − Ixz€ϕ � M + (Fy1 + Fy2)Lf − (Fy3 + Fy4)Lr (4)

M � Lw

2
(Fx2 + Fx4 − Fx1 − Fx3) (5)

Where, vx and vy are the longitudinal and lateral speed of the

vehicle, γ means the yaw rate, ϕ is the roll angle, Fxi and Fyi are

the longitudinal and lateral force of the four wheels in the

coordinate system based on the vehicle body, i � 1, 2, 3, 4, θ is

steering angle. The force on the wheels, Fxi and Fyi, can be gained

by the wheel force in the coordinate system based on the wheel

itself, Fxwi and Fywi.

[Fxi

Fyi
] � [ cos θi −sin θi

sin θi cos θi
][Fxwi

Fywi
] (6)

In this case, only the front axle is the steering axle, therefore,

θ1 � θ2 � θ, θ3 � θ4 � 0.

Wheel model

The rotation motion of the four wheels is taken into

consideration in the wheel dynamic model. The dynamic of

each wheel can be demonstrated as follows:

Iw _ωi � Ti − FxiRw (7)

Where, Ti means the driving torque of the wheel. The slip rate of

the wheel, si, can be acquired by Eq. 8.

si � ωiRw − vwi
max(ωiRw, vwi) (8)

Where, vwi is the speed of the wheel. For the wheels on the

steering axle, the speed of the left and right wheel, vw1 and, vw2
can be expressed as:
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FIGURE 1
Diagram of the 8DOF model.

TABLE 1 Vehicle parameters.

Parameter Symbol Value Unit

Vehicle mass m 1704.70 kg

Sprung mass ms 1527 kg

Vehicle area A 2.1 m2

Roll inertial of the vehicle Ix 744.0 kg·m2

Yaw inertial of the vehicle Iz 3048.1 kg·m2

product of inertia of x, z axis Ixz 21.09 kg·m2

Height of the sprung mass hs 0.55 m

Distance between the vehicle gravity left to the front axle Lf 1.035 m

Distance between the vehicle gravity left to the rear axle Lr 1.675 m

Distance between the wheels Lw 1.39 m

Rolling stiffness of the front axle Kf 4728 Nm·rad−1
Rolling stiffness of the rear axle Kr 3731 Nm·rad−1
Rolling damper of the front axle Cf 2823 Nms·rad−1
Rolling damper of the rear axle Cr 2653 Nms·rad−1
Wheel radius Rw 0.313 m

Inertial of wheel Iw 2.5 kg·m2

Air drag coefficient Cd 3.2 —

Rolling resistance coefficient f 0.002 —
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vw1 � (vx − Lw

2
γ) cos θ + (vy + Lfγ)sinθ

vw2 � (vx + Lw

2
γ) cos θ + (vy + Lfγ)sinθ

(9)

For the wheels on the rear, the speed of the left and right

wheel, vw3 and, vw4 can be expressed as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vw3 � (vx − Lw

2
γ)

vw4 � (vx + Lw

2
γ)

(10)

Motor model

For the EV, as the driving unit, the motor is quite critical for

the vehicle dynamic model. There are kinds of methods to

establish the motor model (Adam, 2013). In this case, the

torque distribution algorithm is the concern of our work. The

mechanism inside the motor is not the priority. Thus, the model

is built with a simple method that can represent the torque

characteristic of the motor.

The motor model calculates the maximum torque in the

current rotation speed, based on the dynamic response

characteristic simulated by the first-order inertial response

unit, the output torque of the motor, T, can be acquired.

T � 1
1 + τt

max(Tmmax, Td) (11)

Where, τt is the constant time in a first-order system, Tmmax

means the maximum output of the motor in the current rotation

speed, Td represents the demand torque form the vehicle

control unit.

Tire model

The tire system contacts the vehicle to the road surface, all of

the vibration and forces are translated by it. To present the

characteristic of the tire accurately, lots of work have been done

to establish the tire model, the Fila tire model, UA tire model,

Gim tire model, Dugoff tire model, HRSI tire model, Uni-Tire

model, Magic Formula tire model (MF tire) are widely used in the

vehicle dynamic model. In this case, two tire models are used, MF

tire and brush tire.

For the MF tire model, its parameters are fit from the analysis

of the test. It can be expressed as (Pacejka and Besselink, 1997):

Y(X) � D sin[C arctan{BX − E(BX − arctan(BX))}] (12)

When Y is the longitudinal force, Fx, the variable, X is the

slip rate of the wheel, s. When Y is the lateral force, Fy, the

corresponding variable, X, is the sideslip angle the wheel, α. The

B,C,D, E are parameters fitted based on the test on different road

types, wheel load, camber angle, temperature, inflation, and tread

wear. Some of them are related to the tire load Fz, which can be

gained by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fz1 � mgLr

2(Lf + Lr) −
maxhs

2(Lf + Lr) +
mKf

Kf +Kr
(ayh + ghsϕ

Lw
)

Fz2 � mgLr

2(Lf + Lr) −
maxhs

2(Lf + Lr) −
mKf

Kf +Kr
(ayh + ghsϕ

Lw
)

Fz3 � mgLf

2(Lf + Lr) +
maxhs

2(Lf + Lr) +
mKr

Kf +Kr
(ayh + ghsϕ

Lw
)

Fz4 � mgLf

2(Lf + Lr) −
maxhs

2(Lf + Lr) −
mKr

Kf +Kr
(ayh + ghsϕ

Lw
)
(13)

In which, the longitudinal acceleration ax � _vx − ωvy, lateral

acceleration, ay � _vy + ωvx.

For the later force of the tire, Fy, on the road with the

adhesion coefficient, μ, can be determined by Eq. 14.

Fy � μDy sin[(54 −
μ

4
)Cy arctan{(2 − μ)Byα − Ey((2 − μ)Byα

− arctan((2 − μ)Byα))}]
(14)

2 DOF reference model

The 2DOF model (shown in Figure 2), also known as the

single-track model or bicycle model, is a classic model to analyze

the lateral stability of a vehicle. In this model, only the degree of

lateral and yaw motion is taken into consideration, the tire

sideslip angle of one axle is the same.

The 2 DOF model can be built based on the simplification of

Eqs 2, 4. The simplified equations to describe the lateral and yaw

motion of the vehicle are Eqs 15, 16:

m( _vy + vxγr) � Fyf cos θ + Fyr (15)
Iz _γ � Fyf cos θLf − FyrLr (16)

FIGURE 2
2 DOF reference model.
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The relationship between the lateral force and tire sideslip

angle is nonlinear. A nonlinear tire model is necessary to

calculate the lateral force. A brush tire model variant of the

Fiala nonlinear brush model, assuming one coefficient of friction

and parabolic force distribution, as described by Pacejka

(Pacejka, 2012). In the brush model, the lateral force, Fyi, can

be expressed as:

Fyi � Cαif(ξi) tan αi
ξi(1 + λi) (17)

f(ξ i) �
⎧⎪⎪⎨
⎪⎪⎩

ξ i − ξ2i
3μFzi

+ ξ3i
27μ2F2

zi

∣∣∣ξ i∣∣∣< 3μFzi

μFzi
∣∣∣ξ i∣∣∣≥ 3μFzi

(18)

ξ i �

�����������������������
C2

xi( λi
1 + λi

)
2

+ C2
αi(tan αi1 + λi

)
2

√√
(19)

λi � Rωωi − vx
max(Rωωi, vx) (20)

The footnote, i, stands front f and rear r, respectively. The

normal force of the front and rear axle, Fzf and Fzr, can be

defined as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fzf � mgLr

(Lf + Lr)
Fzr � mgLf

(Lf + Lr)
(21)

αsl is the sideslip angle corresponding to the full saturation of the

tire force.

αsl � arctan
3μFz

Cα
(22)

αf and αr are the sideslip angle of the front and rear tires,

respectively.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αf � vy + Lfγ

vx

αr � vy − Lrγ

vx

(23)

Model validation

To investigate the vehicle dynamics control algorithm, the

accuracy and efficiency of the model should be taken into

consideration. The model should be able to reflect the vehicle

dynamics but not too complicated. Normally, the vehicle field

test result or results are simulated by commercial platforms, such

as Adams/Car and Carsim. In this case, Carsim is chosen to

validate the established model.

The severe double lane-change maneuver is one of the most

common conditions to verify the accuracy of models. It is a

dynamic process consisting of rapidly driving a car from its

original lane to another parallel lane and returning to the initial

lane. During the process, the vehicle should not exceed the lane

boundaries. It is widely used in vehicle stability assessment

because its result is repeatable and discriminatory. In this

case, the double lane-change maneuver on the high adhesion

road with the speed of 80 km/h is chosen to verify the established

models.

The vehicle yaw rate, sideslip angle, and trajectory of the

established models and Carsim model in the double-lane change

condition on the road with the adhesion of 0.3 are compared in

Figures 3–5.

FIGURE 3
Comparison of yaw rate.

FIGURE 4
Comparison of vehicle sideslip angle.
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According to the comparison in Figures 3–5, the output of

the established 8 DOFs and 2 DOFsmodels is close to the Carsim.

Taking the result of Carsim as the baseline, the MAPE (mean

absolute percentage error) is listed in Table 2.

The MAPE of the 8 DOFs model is lower than the 2DOFs

model. The MAPE of the 2 DOFs model stays at a relatively low

level, the maximum MAPE is lower than 6%. Therefore, these

two models can be used in further analysis.

Design of control system

The structure of the proposed control strategy is shown in

Figure 6. The reference model is a 2 DOF model with a nonlinear

brush tire. The main goal of the control system is to make the

actual yaw rate, γ, to follow the ideal yaw rate, γr, generated by the

reference model and maintain the vehicle sideslip angle, β, in a

certain range to prevent the vehicle from spinning. According to

the comparison of the ideal and actual yaw rate and vehicle

sideslip angle, the controller generates the active steering angle,

Δθ, and yaw moment, ΔMz. The yaw moment is converted to

driving torque on the four wheel motors.

Integrated AFS and DYC controller

Based on Eqs 14–17, the state-space function of the 2 DOF

model can be expressed as:

_x(t) � Ax(t) + B1y(t) + B2u(t) (24)
x(t) � [ βr γr ]T (25)

A � [ 2(kf + kr)
mvx

−1 + 2(Lrkr − Lfkf)
mv2x

2(Lrkr − Lfkf)
Iz

2(L2
fkf + L2

rk)r
vx

] (26)

B1 � [− 2kf
mvx

−2Lfkf
Iz

]
T

(27)

y(t) � θ (28)

B2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2kf
mvx

0

2Lfkf
Iz

1
Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (29)

u(t) � [Δθ ΔMz ]T (30)

The lateral stiffness of the front tire can be gained based on

Eqs 16, 22.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kf � Fyf

αf

kr � Fyr

αr

(31)

According to the 2 DOFs model, the ideal vehicle yaw rate

and sideslip angle can be gained. The active steering angle and

torque are acquired according to the optimal solution of equation

(24). It can be expressed as:

J � ∫
∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt (32)

Where, matrixQ and R are symmetric positive definite weighting

matrix. The optimal controller u(t) can be written as:

FIGURE 5
Comparison of vehicle trajectory.

TABLE 2 MAPE of the established models.

Output 8 DOFs model (%) 2 DOFs model (%)

Yaw rate 1.36 3.66

Vehicle sideslip angle 1.91 5.71

Vehicle trajectory 2.44 4.29

FIGURE 6
Structure of control strategy.
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u(t) � −R−1BTPx(t) � −Kx(t) (33)

The matrix meets the Riccati equation.

PA + ATP − PBR−1BTP + Q � 0 (34)

Coordination of AFS and DYC

Once the steering angle and yawmoment are gained, the control

task should be determined. According to Aouadj’s work, the steering

angle will always be taken as the input, the yaw moment will be

initiated only when the vehicle is in a dangerous condition (Aouadj

et al., 2020). In this case, the _β − β phase portrait is used to determine

the stability state of the vehicle, as shown in Figure 7.

As shown in Figure 7, the phase portrait is divided into three parts,

one stable region, and two unstable regions. The boundary of the

stable and stable region can be described by Eq. 35 (He et al., 2006):

ℵ �
∣∣∣∣∣a _β + bβ

∣∣∣∣∣,ℵ< 1 (35)

The parameter a and b are acquired based on the _β − β phase

portrait boundary (dash lines in Figure 4).

_β � ay
vx

− γ (36)

Simulation and discussion

There are some classical work conditions to access the vehicle’s

lateral stability, such as steady steering, snake steering, fishhook,

and double lane change. Among them, the double lane-change and

fishhook are the most critical conditions. Therefore, they are

chosen to compare the lateral stability performance with two

different torque control algorithms. The double lane-change is

initiated based on the regulation in ISO-3888-1–2018 (ANSI,

2018)(Passenger cars-Test track for a severe lane-change

maneuver: Part 1 double-lane change), the fishhook test is based

on Laboratory test procedure for dynamic rollover, the fishhook

maneuver test procedure (New car assessment program, NCAP).

Double lane-change

Normally, the recommended speed on the snow or ice road is

within 30 km/h. However, some drivers run the vehicle at a

FIGURE 7
Stable region in the sideslip angle and angular velocity phase
portrait.

FIGURE 8
Comparison of steering angle.

FIGURE 9
Comparison of front wheel torque.
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higher speed based on their experience. Therefore, the speed of

36 km/h is chosen to initiate the simulation.

The steering angle and torque of each wheel are shown in

Figures 8–10, respectively.

In Figure 8, the steering angle with and without control is

compared. Without control, the steering angle is the same as the

reference. With the controller, the steering angle is different from

the reference, the maximum gap is 0.002 rad.

According to the comparison in Figures 9, 10, with the

control algorithm, the torque varies to maintain the stability

of the vehicle. The left and right wheel torque of the same axle

have the opposite variation trend.

The vehicle routine, phase portrait, and yaw rate are

calculated and compared in Figures 11–13.

In Figure 11, the red line represents the lane boundary

regulated in ISO 3888:2018. The box means the vehicle, the

blue and green dash line is the vehicle routine without and with

the control method. Without control, the vehicle fails to pass the

double lane-change test. The maximum offset distance is 1.41 m.

With the control algorithm, the vehicle can finish the test without

exceeding the boundaries.

In Figure 12, it is clear that the envelope with control is

smaller than the envelope without control. The envelope without

exceeds the stable boundaries a bit, which means the vehicle is at

the edge of stable and unstable. With the controller, both of the

vehicle sideslip angle and angular velocity are maintained in a

lower range.

Figure 13 shows the yaw rate variation of the reference

model, without and with control. With control, the maximum

FIGURE 10
Comparison of rear wheel torque.

FIGURE 11
Comparison of double lane-change routine.

FIGURE 12
Comparison of the phase portrait.

FIGURE 13
Comparison of yaw rate.
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error of the reference model is 0.01 rad/s. Without control, the

actual vehicle yaw rate is lag behind the reference model with

approximately 0.5 s, the maximum error is 0.1 rad/s if the effect

of the time delay is eliminated.

Fishhook maneuver

Fishhook maneuver is the test procedure of the New Car

Assessment Program (NCAP) used by the National Highway

Traffic Safety Administration (NHSTA) to evaluate light

vehicle dynamic rollover maneuver. This test procedure is

also used by the researchers to evaluate the lateral stability

(Jin et al., 2017). According to the test procedure, the steering

angle variation during the process is shown in Figure 14

(without control).

With the controller, the AFS makes the steering angle

varies from the reference angle. The gap occurs at the

sudden change of the steering angle, the maximum gap is

0.016 rad.

During the fishhook maneuver, the toque of the wheels is

shown in Figures 15, 16.

FIGURE 14
Steering angle variation during the fishhook maneuver.

FIGURE 15
Comparison of front wheel torque.

FIGURE 16
Comparison of rear wheel torque.

FIGURE 17
Comparison of double lane-change routine.
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The vehicle routine, phase portrait, and yaw rate during the

fishhook maneuver are calculated and compared in Figures

17–19.

Figure 17 illustrates the vehicle track of the reference model,

with and without the control algorithm. With the integrated

control, the gap between the reference model and the 8 DOF

model is relatively small. The difference between the track of the

model without control and the reference model occurs at the

beginning of the steering and gets bigger with time.

Figure 18 demonstrates the difference of the phase portrait

track. The track of the model without control exceeds the

boundary of stable boundaries. The variation range of the

vehicle sideslip angle is much higher than the vehicle

sideslip angular velocity. With the help of control method,

the AFS and DYC are coordinated and the track stays in the

stable region.

In Figure 19, the yaw rate of the three models is compared.

The yaw rate of the reference model varies strictly with the

steering input. The yaw rate of the model with control is close to

the yaw rate of the reference model, except for the two inflection

points 10.5 and 11.75 s, the error between the model with control

and reference model gets bigger. The maximum error is 0.03 rad/

s. For the yaw rate of the model without control, it takes more

time to eliminate the gap to the reference model, the maximum

error is 0.03 rad/s. However, the mean error is bigger than the

model with control.

Conclusion

The goal of this study is to design an integrated vehicle

dynamics controller to enhance the vehicle lateral stability.

To deal with the critical condition on a low adhesion

coefficient road, a 2 DOF nonlinear reference model and

8 DOFs model are built and validated by Carsim. The

integrated AFS and DYC controller is designed. Based on

the dynamic analysis, the effectiveness of the provided

algorithm in two typical conditions is proved by the

8 DOFs model.

Without the control method, the vehicle fails to pass the

double lane-change test at the speed of 36 km/h on the road with

a low adhesion coefficient of 0.3. The track on the _β − β phase

portrait exceeds the stable region in both the double lane-change

and fishhook maneuvers. With the integrated controller, the

vehicle yaw rate, the routine can follow the reference model

with a much smaller error, and the track on the _β − β phase

portrait stays in the stable region, which means the vehicle

stability is enhanced.

According to the comparison of lateral stability indicators of

double lane-change and fishhook maneuver, the goal is achieved,

the lateral stability and path tracking ability of the vehicle on the

low adhesion road is improved. The improvement of the vehicle

safety and path tracking ability lays a good foundation for the

whole vehicle-to-grid system.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

FIGURE 18
Comparison of the phase portrait.

FIGURE 19
Comparison of yaw rate.
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The penetration of photovoltaic (PV) power into modern power systems

brings enormous economic and environmental benefits due to its cleanness

and inexhaustibility. Therefore, accurate PV power forecasting is a pressing

and rigid demand to reduce the negative impact of its randomness and

intermittency on modern power systems. In this paper, we explore the

application of deep learning based hybrid technologies for ultra-short-term

PV power forecasting consisting of a feature engineering module, a deep

learning-based point prediction module, and an error correction module.

The isolated forest based feature preprocessing module is used to detect the

outliers in the original data. The non-pooling convolutional neural network

(NPCNN), as the deep learning based point prediction module, is developed

and trained using the processed data to identify non-linear features. The

historical forecasting errors between the forecasting and actual PV data are

further constructed and trained to correct the forecasting errors, by using an

error correction module based on a hybrid of wavelet transform (WT) and k-

nearest neighbor (KNN). In the simulations, the proposedmethod is extensively

evaluated on actual PV data in Limburg, Belgium. Experimental results show

that the proposed hybrid model is beneficial for improving the performance

of PV power forecasting compared with the benchmark methods.

KEYWORDS

photovoltaic (PV) power, deep learning, non-pooling convolutional neural network (NPCNN),

error correction, photovoltaic power forecasting

1 Introduction

Recently, photovoltaic (PV) power generation has been rapidly developed worldwide
due to its cleanness and inexhaustibility (Al-Dahidi et al., 2019). However, the typical
uncertainty and high volatility of PV power pose a big challenge to the stable operation
and economic dispatch of the modern power system (Nguyen et al., 2020). Inevitably,
the volatility of PV power directly aggravates the oscillatory instability of power system,
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thereby increasing the reserve capacity for the auxiliary service
market (Bu et al., 2019). The uncertainty of PV power also
increases the economic dispatch cost of the modern power
system, which deviates from the principle for maximizing the
welfare of market members (Singla et al., 2021). Facing these
challenges, it is imperative to use advanced predictive models to
mitigate these negative impacts of PV power generation access
on the entire power system.

So far, much of the literature about PV power forecasting has
been performed, which can fall into physical methods, statistical
methods, machine learning methods, and hybrid methods
(Wang et al., 2020b). Physical methods are based on numerical
weather prediction and PV cell physical principles, which
simulate the energy conversion process of PV power generation,
usually including Hottel and ASHRAE (Mayer and Gróf, 2021).
Although the physical methods do not require historical PV
power data, but they rely on the accurate physical model
and massive inputs, such as solar radiation intensity, battery
temperature, battery angle, solar incident angle, aging, dust,
inverter efficiency, etc (Perez et al., 2010; Inman et al., 2013).
Since it is difficult for physical methods to obtain sufficient
inputs and identify the principle of PV power generation,
thus resulting in poor interference ability and computational
complexity. Unlike the physical methods, statistical methods do
not require the principle of PV power generation, and have the
advantages of simple model, fast speed and convenience. The
statistical methods aim to establish the mapping relationship
between historical and predicted PV power time series data
by using linear fitting, e.g., autoregressive moving average
(ARMA) (Chang et al., 1984), regression analysis (Cleveland and
Devlin, 1988), Spatio-temporal correlation (Pillow et al., 2008),
and generalized autoregressive conditionally heteroskedastic
(GARCH) (Chen et al., 2019). However, statistical models
often rely on historical data and require strongly correlated
features, making it difficult to fit strong fluctuations and
high-dimensionality of PV power data.

Generally speaking, machine learning methods can be
roughly divided into shallow learning and deep learning
methods. Shallow learning methods are mainly designed
into smaller network structures to extract nonlinear
features by using error minimization principles and
certain optimization algorithms. Due to their remarkable
capacity in learning nonlinear features, shallow learning
methods have been widely used in PV power generation
forecasting compared to physical methods and statistical
methods. Commonly-used shallow learning methods
include decision tree (DT) (Massucco et al., 2019), k-nearest
neighbor (KNN) (Peterson, 2009), multilayer perceptron
(Kumar et al., 2019), back-propagation neural networks (BPNN)
(Mellit et al., 2013), radial basis function neural network
(RBFNN) (Madhiarasan, 2020), support vector regression
(SVR) (De Giorgi et al., 2016), and extreme learning machine

(ELM) (Bouzgou and Gueymard, 2017). In addition, ensemble
learning, as a kind of shallow learning, has received extensive
attention in recent years. Common ensemble learning includes
extreme gradient boosting (XGBoost) (Li et al., 2022), ensemble
trees (Alaraj et al., 2021), random forest (RF) (Kumar and
Thenmozhi, 2006), LGBM (Wang Y et al., 2020), and CatBoost
(Prokhorenkova et al., 2018). In(Li et al., 2022), the authors
propose a prediction model of solar irradiance based on
XGBoost. In (Alaraj et al., 2021), the ensemble trees based
machine learning approach considering various meteorological
parameters is proposed for PV power forecasting. However,
with the development of big data technology and intelligence
optimization theories in recent years, the drawback of shallow
learning models will be prone to the curse of dimensionality
and under-fitting, which makes it difficult to forecast PV power
data in a big data era (Soares et al., 2016). Therefore, one more
effective way is needed to address the drawback in shallow
learning models.

Deep learning, one of the most promising artificial
intelligence techniques, is easier to implement feature
extraction tasks, has been successfully applied in different
fields with powerful learning capabilities compared to
shallow learning models (Bai et al., 2021; Xie et al., 2021).
Common deep learning models usually include deep
neural network (DNN) (Kuremoto et al., 2014), deep belief
network (DBN) (Zhang et al., 2021), recurrent neural network
(RNN) (Li et al., 2019), long short-term memory (LSTM)
(Liu B. et al., 2020), and convolutional neural network
(CNN) (Wang et al., 2017), etc. Experimental results in
(Wang et al., 2017; Chang and Lu, 2018; Li et al., 2019) show
that the forecasting accuracy of deep learning based models
is superior to that of other shallow learning-based methods.
However, PV power forecasting based on deep learningmodels is
not always perfect, because it extremely depends on the selection
of hyperparameters and network structure (Hajirahimi and
Khashei, 2019a). Meanwhile, the improvement for model bias
and variance in a given dataset can also be a challenging task,
since the training results of deep learning may exhibit a small
model bias, which often leads to more significant model variance
(Geman et al., 1992). The deviation between the predicted and
true values for the training model is known as model bias, and
the generalization ability in the training unseen dataset is known
as model variance. To solve these problems, hybrid methods
focus on combining different methods to disassemble different
prediction tasks from the main task for the improvement of
both model bias and variance compared to deep learning models
(de Oliveira et al., 2021).

Hybrid forecasting methods can generally be divided into
three steps: point prediction, bias prediction, and combine
forecast results. Different hybrid methods are widely used in
many applications, such as traffic (Katris and Daskalaki, 2015),
health (Chakraborty et al., 2019), finance (Hajirahimi and
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Khashei, 2019b), and electric energy system forecasting
(Wu and Shahidehpour, 2010). For example, the authors in
(de Mattos Neto et al., 2020) propose a hybrid method based
on a nonlinear combination of the linear and nonlinear
models for monthly wind speed forecasting, and use a data-
driven intelligent model to find the appropriate combination
method, aiming to maximize the forecasting performance.
In (Wu et al., 2014), five types of shallow learning models
to predict the short-time PV power data are developed
as the first step using the historical PV power and NWP
data, and genetic algorithms are used to determine their
combinational models as the second step. Forecasting results
reported in (Wu and Shahidehpour, 2010; Wu et al., 2014;
de Mattos Neto et al., 2020) show the competitive performance
of the hybrid methods is better than shallow learning models
and statistical models. In these literatures, it is common to use
statistical methods or shallow learning models as the first and
second steps. To the authors’ knowledge, deep learning-based
hybrid methods for PV power forecasting in previous studies
have received little attention. As reported in (Zhang et al., 2020;
de Oliveira et al., 2021), the model selection at each step of
the hybrid forecasting method can have a large impact on
forecasting performance. However, the deep learning model
significantly improves the PV power prediction performance
compared to other benchmark models. Thus, the deep learning-
based hybrid forecasting PV power method that takes advantage
of the methodological advantages at each step becomes more
meaningful.

Therefore, a new deep-learning-based hybrid model is
proposed for ultra-short-term PV power forecasting. Compared
with existing literature on similar topics, the main contributions
of this work are as follows:

• In order to accurately predict PV power and its practical
application value, a hybrid model based on a feature
engineeringmodule, a deep learning-based point prediction
module, and an error correction module are proposed for
the first time.
• To exploit the maximum feature training potential of the
point prediction module during feature training, a new
feature engineering module based on isolation forest is
proposed.
• In order to efficiently extract features and minimize the
network structure, the non-pooling convolutional neural
network (NPCNN) based point prediction module, is
originally developed.
• Theresiduals between the predicted and actual PVpower are
initially trained by using an error correction module (ECM)
based on wavelet transform (WT) and KNN, which helps
to reduce the error of the point prediction module while
considering time efficiency.

Ourpreliminary numerical results demonstrate that the

proposed hybrid deep learning based forecasting model is
beneficial to improve the prediction accuracy of PV power. The
rest of this paper is organized as follows. In Section 2, we analysis
the historical data of PV power and describe the proposed hybrid
framework for PV power forecasting. Section 3 introduces each
module of proposed method in detail, i.e., outlier detection
in feature engineering, deep learning based point prediction
model, WT+KNN for error correction. Experiment results are
reported and discussed in Section 4, and we conclude this work
in Section 5.

2 The proposed hybrid framework
for PV power forecasting

2.1 Overview of the hybrid framework

The hybrid model proposed in this paper for PV power
forecasting consists of a feature engineering module, a point
predictionmodule and an error correctionmodule. An overview
of the proposed hybrid framework is described in Figure 1. It is
worth noting that PV power forecasting methods can be divided
into direct prediction and indirect prediction according to the
input properties of the forecasting model (Wang et al., 2017).
In the indirect prediction method, meteorological parameters
such as solar radiation intensity, battery temperature, and wind
speed are associated with the PV power forecasting model
to improve its prediction accuracy. In the direct method,
the input of the PV power prediction model is the historical
power data. The proposed hybrid model for ultra-short-time
in this paper is designed as a direct prediction method. There
are three main reasons for this. 1) The external explanatory
variables (meteorological parameters) for ultra-short-term PV
power forecasting fluctuate less than short-term/long-term
PV power forecasting, so meteorological parameters have less
impact on ultra-short-term PV power forecasting. 2) Ultra-
short-term PV power forecasting has high requirements for
the real-time transmission of meteorological parameters, which
may be difficult to obtain in time and high purchase cost in
practical engineering applications. 3) Since the workload of
feature selection is reduced, the PV power prediction model is
made simpler and more convenient. In addition, to train the
point prediction module and the error correction module, the
raw PV power dataset is grouped into three parts: a training
dataset, a validation dataset, and a testing dataset. First, feature
engineering module is used to process invalid/bad data points
in the raw PV power data, such as outliers or missing values.
Then, the point prediction module uses the data processed
by feature engineering module to further accurately predict
the PV power points. Error results based on point prediction
module are sent to the error correction module for error
prediction. Finally, we reconstruct the forecasting results by
combining the results of the point prediction module and
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FIGURE 1
The proposed hybrid framework for PV power forecasting.

error module. The proposed forecasting framework in this
paper is inspired by conventional hybrid forecasting models
(Wu and Shahidehpour, 2010; de Mattos Neto et al., 2020).
Comparatively, the proposed hybrid framework for PV power
forecasting has at least three advantages. The first is that the
feature engineering module is considered for the proposed
hybrid model to further exploit the potential of the feature
mining of NPCNN. The second advantage is that NPCNN can
effectively extract features of PV power data by reducing the
non-pooling operations of CNN. The last advantage is that the
WT is taken into account in the error correction module of the
prediction framework to better capture the trend of prediction
deviation. Next, we analyze and discuss the role of these modules
in the proposed hybrid model in detail.

2.2 Feature engineering module

Feature engineering aims to construct valuable training
samples to maximize the potential of feature extraction and
facilitate the training of point prediction modules. In general,
raw PV power datasets may have invalid/bad data points due
to PV power generation equipment failures or communication
delays. It is necessary to deal with these outliers to reduce
the overfitting of the feature training model to these values
(Wang et al., 2020a). Figure 2 plots the real-time measured PV
power for a historical day, wherein the black dots represent the
raw PV power data, and the red line represents the corrected PV
power curve. It is obvious that there are somemissing values and
outlier values in the raw PV power compared to the corrected
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FIGURE 2
The real-time measured PV power.

curve. Moreover, if these bad power points cannot be eliminated,
the training of the point prediction module suffers from data
jumps and irregularities, leading to performance degradation
(Wang et al., 2020a).Therefore, the raw PV generation data must
be pre-processed by the feature learningmodule to better achieve
the potential of the point prediction module. In this paper, the
feature engineeringmodule, based on IF and linear interpolation,
is used to detect these outliers andfillmissing values, respectively.
In addition, we perform normalization on the raw PV power
data to ensure parameter optimization of the point prediction
module, as neural network training requires a suitable format for
feature learning.

2.3 Point prediction module

The PV power forecasting based on point prediction module
is shown in Figure 3. The input window of the point prediction
module moves smoothly over the PV power sequence with time
t, e.g., the inputs is {xt−3,xt−2,xt−1,xt}, which corresponds to the
predicted output x̃t+1. As depict in Figure 1, the point prediction
module can be conventional machine learningmodels, ensemble
machine learning models, or deep learning models, such as

FIGURE 3
PV power forecasting based on point prediction module.

DT, KNN, SVR, XGBoost, categorical boosting (CatBoost), light
gradient boosting machine (LGBM), and CNN. In general, to
accurately predict PV power generation, the network structure
of the point prediction module needs to be designed considering
the number of features and nonlinearity of PV power generation
data. Specially, CNNs, as a class of deep learning architectures,
have been applied in the field of time series forecasting and
achieved good performance. Since there are few relevant features
for ultra-short-term PV generation prediction, they are not
sufficient to support the pooling operation of conventional CNN
model. In viewof this,NPCNNwithout pooling operation is used
to further extract features and learn the strong nonlinearity of the
PVdata in this paper. It needs to be noted thatNPCNN is suitable
for processing seasonal time-series data with trends, and can
reduce the negative impact of pooling layers (Liu S. et al., 2020).
Furthermore, The NPCNN-based point prediction module is
trained based on the training dataset, and the input of NPCNN
will be processed by the feature engineering module first.

2.4 Error correction module

Although different advanced forecasting methods have been
proposed to reduce the model bias, they always exist more
significant model variance (Geman et al., 1992). To address this
issue, an error correction module based on WT and KNN is
proposed in this paper to reduce the model variance of the
point prediction module. Here, WT is used to decompose the
raw forecasting error series into sub-frequency sequences with
better contours, while KNN is used to extract the features
of each frequency sequence. There are two main reasons for
this: First, since the original prediction error sequence may
contain nonlinear and spiky dynamic features, WT-based signal
decomposition can be used to reduce their impact on the
prediction performance. Each sub-frequency sequence needs to
be trained by an error correction method, and KNN can quickly
extract the nonlinear features of each sub-frequency sequence
while losing as little prediction as possible (Saâdaoui and
Rabbouch, 2019). Meanwhile, the inputs of the error correction
module (ECM) should also be considered with the validation
dataset errors, except for correlated features obtained from the
point prediction module, as shown in Figure 1.

3 Description of the deep learning
based hybrid model

3.1 Outlier detection in feature
engineering

Isolation forest (IF) in (Liu et al., 2008; Ahmed et al., 2019)
is an efficient unsupervised anomaly detection algorithm.
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Compared with traditional anomaly detection methods, such as
the mean-square error method and quartile method, IF provides
an abnormal probability for each sample instead of judging the
exception directly. IF can be divided into five processes: 1) Several
features randomly from the training dataset are selected as the
feature space; 2) A value is randomly selected in the feature space
as the each node of the tree; 3) Different trees are combined as the
isolated forest; 4) The distance between the root and leaf node of
each tree are calculated as its score; 5) If the score is low, it is an
outlier. The score-based IF can be expressed as below,

S (x,n) = 2
−E (h (x))c (n) (1)

where E(h(x)) denotes the average length of sample x from a set
of isolation trees. c(n) represents the average path length with n
samples obtained from a binary search tree, as below,

c (n) =
{{
{{
{

2H (n− 1) − 2 (n− 1)/n, n > 2
1, n = 2
0, n < 2

(2)

where H(i) = ln(i) + 0.5772156649(Euler′s constant), which is
the harmonic function. Once the scores for each sample x are
solved, lower values (outliers) can manually be excluded based
on the abnormal proportional coefficient ξ.

3.2 Deep learning based point prediction
model

Considering that the features of time-series historical PV
power data are highly uncorrelated, we proposes a two-
dimensional (2D) NPCNN (no pooling layer) model as a point
prediction module for PV power prediction. In this paper, the
NPCNN model consists of one input layer, two conventional
layers, one fully connected layer, and one output layer, as
presented in Figure 4. Each layer are summarized as follows:

FIGURE 4
The structure of NPCNN.

• Input layer provides the input parameters of NPCNN.
The historical PV power data and time attributes are
combined to generate a one-dimensional time series vector,
which is transformed into a two-dimensional correlation
featurematrix through correlation analysis and dimensional
transformation (Zhang et al., 2020).
• Convolutional layer contains several convolution kernels to
generate new feature maps, which convolves the network
weight with the receptive field of the feature map of
the previous layer, and uses the activation function to
form the feature map of the next convolutional layer
(Yamashita et al., 2018).
• Fully connected layer is often used for high-level inference,
whichmaps the features processed by the convolution layers
to the output layer (Desai and Makwana, 2021).
• Output layer is the final outputs of the NPCNN.

The network parameters of NPCNN, such as weights and
biases, are trained and optimized in mini-batch form using
the gradient descent method based on the backpropagation
algorithm to improve the forecasting performance of PV
power. Meanwhile, the root-mean-square-propagation method
(RMSProp) is introduced to optimize the error function of
NPCNN due to its faster convergence and high accuracy
(Zhang et al., 2020). Here, the mean squared error between the
predicted value and the actual value is used as the loss function
Loss, as follows,

Loss = 1
M
∑
m∈M
∑
d∈D
(rmd − p

m
d )

2 (3)

whereM andD denote the mini-batch size and the output vector
size for a training sample. rmd and pmd represent the actual value
and the predicted value for the dth output vector of the mth
sample in mini-batch.

3.3 WT+KNN for error correction

The raw PV power forecast error data may contain peak
characteristics and nonlinearities in the form of fluctuations,
which can affect the PV power forecast accuracy. Both high-
frequency and low-frequency signals are included in PV forecast
error data (Ahmed et al., 2019). The former is due to changes in
the uncertainty of the input data, and the latter is due to model
over-fitting. The WT can be used to decompose the behavior
of these frequencies for prediction. Therefore, the raw forecast
error series based on wavelet decomposition can be described as
follows,

Wavelet (p,q) = 2−(p/2)
T−1

∑
t=0

g (t)ϕ[(t− q2p)/2p] (4)
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FIGURE 5
The MAPE results of IF in different outlier ratios.

FIGURE 6
The MAPE results for different outlier detection methods.

where p and q are a scaling variable and a translation variable,
respectively. g(t) denotes the signal decomposed by the wavelet.
Daubechies function is used as the mother wavelet function ϕ(⋅)
in this paper.

After the prediction error sequence is decomposed by WT,
the KNN algorithm is designed to quickly extract forecast error

features of different frequencies due to the ability to solve fast
predictions. Each frequency error prediction based on KNN can
be divided into three steps: 1) Euclidean distance is used to
measure the similarity of all features in the validation and test
dataset in the forecasting error sequence for each frequency; 2)
Choose the k value based on the prediction error of the validation
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TABLE 1 Statistical results of daily MAPE result for the effect of ECM in
various seasons.

Season Methods Min Max Average Variance (E)

  Spring ECM 0.0172 0.0414 0.0280 7.63–5
Without ECM 0.0172 0.0512 0.0304 1.39–4

  Summer ECM 0.0070 0.0317 0.0158 9.54–5
Without ECM 0.0070 0.0364 0.0189 1.24–4

  Fall ECM 0.0231 0.0546 0.0337 1.57–4
Without ECM 0.0212 0.0555 0.0354 1.84–4

  Winter ECM 0.0200 0.0766 0.0354 4.32–4
Without ECM 0.0202 0.0844 0.0370 5.36–4

dataset; 3) A moving average value is performed by combining
the k-nearest Euclidean distance values of the training and test
sets.

3.4 Data normalization and performance
criterion

In the feature learning process, due to the different
dimensions of the collected data, the non-standardized features
may affect the parameter optimization of the model. Therefore,
data normalization is required to be performed out on these
features, as follows,

x̂t =
xt − xmin

xmax − xmin
(5)

where xt is the original PV power data, and xmax and xmin are the
maximum and minimum values of the PV power data.

Three metrics, including mean absolute percentage
error (MAPE), mean absolute error (MAE), and root mean
square error (RMSE), are typically employed to evaluate the
performance of forecasting models (Wang et al., 2017), as
follows,

MAE = 1
T
∑
t∈T
|rt − pt| (6)

RMSE = √ 1T
∑
t∈T
(rt − pt)

2 (7)

MAPE = 1
T
∑
t∈T

|rt − pt|
rt
× 100% (8)

wherein T is the number of the predicted value, rt is the real
value at the moment of t, and pt is the predicted value at the
moment of t. It is worth noting that the forecasting model has
higher accuracy when MAE, RMSE, and MAPE are smaller.

3.5 Main prediction steps of the
proposed hybrid model

Due to the chaotic nature of the weather system, PV power
data always exhibits volatility, variability and randomness. These
characteristics will affect the prediction accuracy of PV power,
which is greatly detrimental to the economic optimization and
stable operation of themodern power system.Therefore, in order
to mitigate the impact of these characteristics on prediction
accuracy, this paper presents a new hybridmodel for ultra-short-
term PV power forecasting consisting of a feature engineering
module, a deep learning-based point prediction module, and an
error correction module. The main steps of the proposed hybrid
model are presented as follows: 1) Historical PV power data are
collected and divided into training datasets, validation datasets
and test datasets according to different seasons. 2) IF method are
applied to detect outliers in training and testing datasets. Then,
these outliers are removed from the corresponding datasets,
and these vacancies are filled by applying linear interpolation.
3) Convert all data to values between 0 and 1 using the data
normalization method. 4) The loss function of NPCNN is
constructed, and the model parameters are trained using the
training dataset and the RMSProp back-propagation method.
5) The NPCNN error results of the validation set are sent to
the error correction module, and these errors are decomposed
into high and low frequency signals through wavelet transform,
while the error trend of each signal is quickly learned using
KNN. 6) The error correction prediction results are obtained
by wavelet reconstruction, and its results are combined with
the prediction results of the NPCNN model to obtain the final
PV power prediction data. 7) Calculate the prediction metrics
of the proposed hybrid model using the prediction results
from the test datasets. The main steps of the proposed hybrid
model for PV power forecasting are graphically presented in
Figure 1.

4 Numerical results and analysis

4.1 Experimental settings

The proposed PV power prediction model based on IF,
NPCNN and ECM is evaluated using historical PV power data
from Limburg, Belgium. This data range from June 2019 to May
2021 at a resolution of 15 min, and can be freely obtained from
the website (Elia, 2021). The PV power data is divided into a
training dataset, a validation dataset, and a testing dataset, and
each dataset corresponds to four parts: spring, summer, fall and
winter, because the solar irradiance and the physical information
of PV cell power generation vary greatly in different seasons
(Wang et al., 2020a). For these data sets, the monitored capacity
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FIGURE 7
15-minutes-ahead forecasting results in spring.

FIGURE 8
15-minutes-ahead forecasting results in summer.

FIGURE 9
15-minutes-ahead forecasting results in fall.

FIGURE 10
15-minutes-ahead forecasting results in winter.

is 4037.14 MW, and the minimum output power is 0 MW. The
NPCNN forecasting model using the training dataset is well-
trained to extract the nonlinear features, and the error correction
model using the validation dataset is well-trained to reduce
the forecasting error between predicted and actual PV power
data. The testing dataset is adopted to evaluate the forecasting

performance of the PV power prediction model. In addition,
CatBoost (Prokhorenkova et al., 2018), KNN (Peterson, 2009),
DT (Massucco et al., 2019), SVR (De Giorgi et al., 2016),
XGBoost (Zheng et al., 2017), and LGBM (Wang Y et al., 2020)
are used as the benchmark methods, which are simulated on the
Python platform.

Frontiers in Energy Research 09 frontiersin.org

80

https://doi.org/10.3389/fenrg.2022.948308
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2022.948308

TABLE 2 The seasonal 15-min ahead forecasting results for various contrast models.

Season Error Proposed CatBoost SVR DT KNN LGBM XGBoost

  Spring MAE 11.54 20.24 70.28 21.40 45.85 19.12 19.17
RMSE 23.69 40.52 125.37 44.86 87.12 37.29 38.26
MAPE 0.0280 0.0446 0.2533 0.0559 0.0818 0.0449 0.0427

  Summer MAE 9.82 17.55 93.46 22.29 61.75 44.04 18.47
RMSE 22.99 31.73 146.36 39.39 110.14 72.72 33.37
MAPE 0.0158 0.0256 0.0659 0.0343 0.0537 0.0369 0.0340

  Fall MAE 21.74 25.99 58.18 32.99 59.31 25.58 25.43
RMSE 42.01 50.62 102.82 60.70 108.09 49.27 49.39
MAPE 0.0337 0.0364 0.1009 0.0502 0.0767 0.0369 0.0365

  Winter MAE 7.33 9.13 58.82 11.66 52.67 9.89 8.94
RMSE 17.65 21.07 109.67 27.79 79.67 22.53 20.51
MAPE 0.0351 0.0417 0.594 0.0566 0.1056 0.0552 0.0477

  Average MAE 12.61 18.23 70.19 22.09 54.90 24.66 18.00
RMSE 26.59 35.99 121.06 43.19 96.26 45.45 35.38
MAPE 0.028 0.037 0.254 0.049 0.079 0.043 0.040

4.2 IF based outlier detection

In order to verify the feasibility and effectiveness of IF based
anomaly detection in feature engineering module, we evaluate
the impact of IF on the forecasting performance of the proposed
model. IF based outlier detection method is executed and
analyzed using the testing dataset of 15-min ahead forecasting
scenario. Three comparison algorithms, namely mean square
error method (MSE), the interquartile range method (IQR),
and K-means clustering method (K-means), are considered to
verify the validity of outlier detection based on IF. For a fair
comparison, other prediction procedures are consistent with
the proposed model except for the IF based outlier detection
method. The 15-min-ahead MAPE results of IF based anomaly
detection method under different outlier ratios are shown in
Figure 5. The mark points on the line in Figure 5 indicate the
minimum values in the MAPE results with various outlier ratios

in different seasons. It can be seen from Figure 5 that the optimal
predicted performance in the four different seasons corresponds
to the optimal anomaly ratios at 0.04, 0.03, 0.03, and 0.14,
respectively. The optimal anomaly ratios in four seasons are all
greater than 0, which means that IF is effective for improving
forecast accuracy in different seasons. In addition, the outlier
ratio corresponding to the smallest MAPE values in summer and
autumn is smaller than in spring and winter. This is because
the fluctuation of solar irradiance in summer and autumn is
stronger than that in winter and spring, the original features
during model training need to be preserved to reduce under-
fitting.

In Figure 6, we present the MAPE statistical results of
different outlier detection methods in different seasons. For
IF method, the MAPE values in the four seasons are 0.028,
0.0159, 0.0337, and 0.0354, respectively, with an average of
0.0452. Compared with the MSE, IQR, and K-means methods,

FIGURE 11
The MAE statistics for different forecasting horizons in summer.
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FIGURE 12
The RMSE statistics for different forecasting horizons in summer.

FIGURE 13
The MAPE statistics for different forecasting horizons in summer.

the average MAPE results of IF are reduced by 2.84,2.50, and
1.40%, respectively. From these results, IF method exhibits
high forecasting capability in different seasons compared with
the three benchmarks. This is because IF without making
any prior assumptions can efficiently process high-dimensional
continuous data.

4.3 ECM based post-prediction
correction

To further illustrate the advantages of ECM, we evaluate the
impact of ECM-based prediction post-correction on forecasting
performance. The proposed model with/without ECM is also
executed and analyzed using the testing dataset of 15-min ahead
forecasting scenario. The MAPE results in different seasons are
statistically presented in Table 1. It can be seen that the MAPE
results of the proposed model with ECM in spring vary from
a minimum value of 0.0172 to a maximum of 0.0414 with an
average of 0.0280 and a variance of 7.63E−5. While, the MAPE
results of the proposed model without ECM in spring vary
from a minimum value of 0.0172 to a maximum of 0.0512 with
an average of 0.0304 and a variance of 1.39E−4. Compared to
the benchmark method without ECM, the mean and variance
of the MAPE results for the proposed model in spring have

been reduced by 8.5 and 81.6%, respectively. Similarly, compared
with the benchmark method without ECM, the mean of the
MAPE results for the proposed model in the other three seasons
have been reduced by 19.2,5.0, and 4.6%, respectively. The
variance of the MAPE results for the proposed model in the
other three seasons have been reduced by 30.2,9.2, and 24.0%,
respectively. Apparently, these statistical results demonstrate that
the proposed model with ECM in various seasons shows better
forecasting performance and more stability.

4.4 15-minutes ahead prediction
performance

Then, the 15-min ahead forecast results for different
seasons are graphically displayed to demonstrate the forecasting
capability of the proposed model. To comprehensively test the
forecasting performance of the proposed model based on IF,
NPCNN and ECM, CatBoost, SVR, DT, KNN, LGBM and
XGBoost are selected as benchmark methods for performance
comparison. Figures 7–10 shows the forecasting results of the
six benchmarks and the proposed model in different seasons.
In Figures 7–10, the predicted power of the proposed model
and actual power curves are red and black lines, respectively,
and the predicted power curves of other benchmarks are dashed
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lines. It can be seen that the power curves have obvious seasonal
variation, which is mainly caused by ambient air temperature
and solar radiation. Figure 8 has a higher PV power, and the
curve will be relatively smoother compared with Figure 10.
Likewise, the PV power curves in Figure 7 and Figure 9 also
show better characteristics than those in Figure 10 (Winter).
From Figures 7–10, the proposed model has strong prediction
capabilities and outperforms other benchmarks, and its predicted
value is basically consistent with actual PV power. Furthermore,
CatBoost, LGBM, and XGBoost perform better than SVR, DT,
and KNN models because the ensemble learning network is
easier to handle nonlinear relationships than commonly-used
shallow learning models.

Table 2 shows the MAE, RMSE, and MAPE metrics in 15-
min ahead. It can be seen from Table 2 that the MAPE value
of the proposed model varies from 0.0158 to 0.0337, with an
average of 0.0282. While the average MAPE values of other
six benchmarks are 0.0371, 0.2535, 0.0493, 0.0794, 0.0435, and
0.0402, respectively. Compared with CatBoost, SVR, DT, KNN,
LGBM, and XGBoost, the average MAPE value of the proposed
model is decreased by 0.009, 0.226, 0.021, 0.051, 0.015, and 0.012,
respectively. Similarly, compared with CatBoost, SVR, DT, KNN,
LGBM, and XGBoost, the average MAE value of the proposed
model is reduced by 5.62, 57.58, 9.48, 42.29, 12.05, and 5.39,
respectively. And compared with CatBoost, SVR, DT, KNN,
LGBM, and XGBoost, the average RMSE value of the proposed
model is reduced by 9.40, 94.47, 16.60, 69.67, 18.86, and 8.79,
respectively. Apparently, these results show that the results of
the proposed model perform best in terms of the MAPE, MAE,
and RMSE, followed by XGBoost, CatBoost, LGBM, DT, KNN,
and SVR. This means that the predicted value of the proposed
model is closer to the actual value than other comparative
models. The reason may be that the proposed model, apart from
outlier detection and error correction methods, uses NPCNN
to identify changing trends and non-linear relationship of PV
data. The poor performance of the SVR model is mainly caused
by the abnormal distribution of the kernel and worsened by
the low feature extraction ability. Therefore, we can conclude
from these analysis results that the proposed model has the best
forecasting performance on 15-min ahead forecasting tasks in
different seasons.

4.5 Multi-step ahead prediction
performance

Furthermore, to fully verify the comprehensive prediction
performance of the proposed model, simulation experiments are
performed under different forecasting horizons in summer. The
forecasting horizons range from 30 min ahead to 2 h ahead with
15-min intervals. The training/validation/test dataset in each
forecasting horizons is acquired by time interval sampling of

the original PV power data series. The average MAE, RMSE,
andMAPE results over different forecasting horizons in summer
are presented in Figures 11–13, respectively. It can be seen that
the MAE, RMSE and MAPE indexes of the proposed model
usually increase with the longer prediction horizon. This is
because the lower feature correlation reduced by the longer
forecasting horizon will increase the uncertainty of PV power
forecasting. Obviously, at all prediction horizons, the proposed
model has the smallest MAE, RMSE, and MAPE metrics,
which outperforms other benchmarks and can provide excellent
forecasting performance. From these results, the proposedmodel
has more stable and robust performance compared to the
benchmark methods. It is appropriate to conclude that the
proposed hybrid model exhibits good generalization properties
for PV power forecasting.

5 Conclusion

In this paper, a new hybrid model based on a feature
engineering module, a point prediction module, and an error
correction module is firstly proposed for the ultra-short-term
PV power forecasting. In the proposed model, IF is used to
detect outliers for PV power data, NPCNN is used to extract the
nonlinear features of processed PV power data, andWT+KNN is
used to reduce the model variance. The proposed hybrid model
has been verified on actual PV power data from the PV plant
in Limberg. It has been demonstrated in the case studies that
the IF-based anomaly detection and ECM-based post-prediction
correction methods are significantly helpful in practical PV
power forecasting. Moreover, the proposed hybrid model has
been compared with six benchmarkmethods based onCatBoost,
KNN, DT, SVR, XGBoost, and LGBM in different seasons and
forecasting horizons. Experimental results have also proved that
the proposedmodel has a more stable and excellent performance
than the benchmark methods. Therefore, the proposed hybrid
model for PV power forecasting has a high potential for future
application in electric energy systems.
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Active power control from wind
farms for damping very
low-frequency oscillations

Connor Duggan*, Xueqin Amy Liu*, Robert Best, Paul Brogan
and John Morrow

School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast,
Belfast, United Kingdom

Timely remote activation of frequency response, provided by converter-based

generation, can improve the damping of very low-frequency (VLF) oscillations.

The research presented is based on both power systemmodels and actual data

from phasor measurement units (PMU) on the Irish power system. The

performance of active power control (APC) is investigated, and variations in

wind speed, droop, time lag and resource capacity demonstrate their

effectiveness at damping wide-spectrum VLF modes. PMU data that

captures the activation and deactivation of APC at wind farms is presented

and analyzed; it demonstrates howAPC control effectively dampens VLFmodes

on the Irish system. These observations are supported by sensitivity analysis

carried out a power system model in DIgSILENT PowerFactory. These results

demonstrate the improvement in VLF mode stability that APC can provide at

wind generation. It is demonstrated that minimal amounts of generation

curtailment and modest droop settings are sufficient to see substantial VLF

mode damping. Index Terms—Active Power Control, Oscillation damping, Very

Low-Frequency Oscillations, PMU.

KEYWORDS

active power control, oscillation damping, very low-frequency oscillations, PMU, wind
farm

1 Introduction

The increasing penetration of renewables and displacement of fossil-fuel-based

synchronous generation pose challenges to the security of supply, increasing the

likelihood and severity of extreme power system events (National Grid, 2019).

Converter Interfaced Generation (CIG) has displaced the synchronous inertia and

frequency regulation historically provided by governor controlled synchronous

generators (Milano et al., 2018). The reduction in inertia and frequency regulation

caused by high share of CIG increases the severity of the rate of change of frequency and

frequency deviation, following a generation load imbalance. If the rate of change of

frequency and frequency deviation exceeds certain parameters, fines may be levied on

power system operators, generators, or service providers, as they can result in catastrophic

cascade tripping.
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Another challenge is very low-frequency oscillations

(VLFOs), first observed on isolated or low inertia power

systems. On these systems, renewable generation displaces

synchronous generation, reduces power system inertia, and

alters inertia distribution. These oscillations were noted on

smaller islanded systems, such as Ireland (Wall et al., 2020),

(Wall et al., 2019), before being observed on the much larger,

islanded Great Britain power system (Clark et al., 2016) and the

geographically large Australian power system (AEMO, 2017).

Historically VLFOs have been observed on power systems with a

high concentration of hydro generation, such as Colombia

(Arango and Sanchez, 2010), where VLFO arose from hydro

governor parameters.

VLFO can be a background characteristic in power system

frequency, causing limited damage that may be classified as wear

and tear. However, in recent years on the Irish power system,

VLFO has occasionally, suddenly, and unexpectedly grown to

peak-to-peak magnitudes in the region of 450 mHz (Wall et al.,

2020) and have persisted for minutes as shown in Figure 1. The

sustained oscillations could cause increased probability of

equipment failure, degraded power quality and potentially

uncontrolled cascading blackout (Wall et al., 2020). These

events have threatened system security and required

emergency control center intervention to suppress, with

associated market costs.

The problem of displacement of governor control systems,

coupled with a greater need for more sensitive governor control

due to the integration of more stochastic generation, contributes

to the increase in the severity and occurrence of VLFOS. Hence,

new frequency response services, such as the dynamic frequency

regulation in Great Britain (Homan and Brown, 2021), will be

required tomanage VLFOs. This paper demonstrates the effect of

varying performance factors, such as droop, delay, and capacity,

on VLFO damping.

VLFOs commonly occur between 0.01-0.1 Hz and are often

related to governor frequency dynamics. VLFOs have a lower

oscillation frequency when compared to ‘low frequency’

electromechanical oscillation modes, usually 0.1–2 Hz (Clark

et al., 2016). VLFO, in contrast to electromechanical

oscillations, are also observed to have similar magnitude and

phase across large geographical areas and often entire power

systems. This similar mode shape characteristic has been referred

to as a coherent mode shape (Xie et al., 2018).

VLFOs are easily detected and monitored with Phasor

Measurement Units (PMU) due to the very low frequency

and long period; VLFOs are therefore visually evident to

control centers with modern monitoring infrastructure.

Although the relative changes in phase are small across a

network and difficult to interpret visually, it has been

demonstrated that variation in voltage phase angle between

PMU monitored locations can indicate the source region

(Clark et al., 2016).

2 Literature review

Previous mechanism analysis has attributed VLFOs to

negatively damped governors (Chen et al., 2017), backlash (De

Marco et al., 2018) and time delays (Duggan et al., 2021) within

governor control systems. Several mitigation measures have been

proposed to increase the damping of the VLFOs. Since governor

control systems provide the most substantial interaction with the

VLF mode, a method has been proposed to optimize governor

parameters to increase the damping of the VLF mode in hydro

governor control systems (Chen et al., 2018). In Colombia

(Arango and Sanchez, 2010), the authors found that the

integral component of a PI controller within a hydro based

governor was the most prominent participating feature with

the VLF mode. Another common approach for VLF damping

is using multi-band power system stabilizers tuned with

particular attention to VLF mode damping (Grondin et al.,

2000). While damping a VLF mode with CIG or another

technology may not remove the oscillation source, it reduces

the oscillation’s severity, buys time, and potentially prevents

operational parameters from being infringed or cascade tripping.

In (Xie et al., 2020) the authors proposed a wide area control

strategy based on distributed CIG resources to damp VLF and

electromechanical modes. (Zhu et al., 2018) analytically derives

how battery energy storage systems placed at generator buses can

damp a target oscillation mode of choice. (Chen et al., 2017)

FIGURE 1
(A) 454 mHz VLFO showing system frequency
measurements from four PMU locations on Ireland’s power grid
(B) Continuous Wavelet Transfrom (CWT) of system frequency
shown in (A).
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outlines an emergency control procedure where the governor

frequency response is switched off at governors that provided a

salient negative dissipating energy response, calculated through

the well-known energy flow theory for oscillation location in

power systems (Chen et al., 2013).

Renewable generation such as wind and solar can provide

damping of VLFO if power export can be curtailed. (Wilches-

Bernal et al., 2016) investigates the small-signal impact that

curtailing type-3 wind turbines have on primary frequency

response and VLFOs. Many authors (Singh et al., 2015; Lin

Zhou et al., 2017; Saadatmand et al., 2021) have studied non-

synchronous generation such as wind and solar for damping

electromechanical oscillations. (Wilches-Bernal et al., 2016)

provides a comprehensive survey using the Western Electricity

Coordinating Councils (WECC) model for small-signal stability

of electromechanical oscillations. Frequency response from wind

farms was investigated in (Ruttledge and Flynn, 2012), (Mele

et al., 2020), they outline frequency response on Ireland’s power

system. A data-based system study using power system metric

data and longitudinal power system frequency data found Active

Power Control (APC) activation highly correlated with a reduced

magnitude in VLFOs (Wall et al., 2020) on the Irish power

system. Narrowing the deadband, as shown in Figure 2 from

200 to 15 mHz at the APC controls increases the frequency

response interaction at wind farms and subsequently provides

power out of phase with the measured bus frequency. APC

control actively dissipates oscillation energy and reduces

oscillation magnitude (Xie et al., 2020).

This paper is organized as follows: Section 3 presents

background on APC control and the WECC models used for

dynamic analysis. In Section 4, the performance and effectiveness

of APC for damping VLFOs is presented, concerning wind speed,

time-lag, droop setting, and amount of APC enabled wind. In

Section 5 a case study employing PMU data from Ireland’s power

system demonstrates the real impact of APC on VLFO

magnitude.

The contributions of this paper are based on small-signal and

time domain simulations in DIgSILENT PowerFactory,

including generalized VLFO events observed in the Irish

power system. The contributions of this paper include

validation of 1) a comprehensive method for VLFO damping;

2) damping VLF mode amplitude during a recreated frequency

oscillation; 3) damping provided by APC at wind sites and the

associated reduction in VLF mode magnitude; and sensitivity

analysis of APC parameters for VLFO damping.

3 Background

APC is primarily used to provide an additional fast-acting

reserve for over-frequency events on Ireland’s power system.

During an over frequency event, wind farms with an active APC

system will ramp down their generation. Dangerous over

frequency events occur in Ireland when a trip occurs on a

high voltage direct current interconnection while exporting

power to Great Britain.

APC can only provide a positive power response during

under-frequency events if the CIG operates below its maximum

potential power output, as shown in Figure 3. This is available

when the system operator has curtailed generation and is an

expense to the asset owner, power system operator and ultimately

the consumer and the environment. It appears that curtailment is

automatically implemented once APC is initiated at wind farms

on the Irish power system.

The wind farms that can provide APC in Ireland are divided

into six groups of approximately equal capacity (SEMO, 2020).

Each of these groups can be turned on and off separately by the

control center. Usually, three of the six APC groups are available

for activation at any one point in time, spreading the potential

impact of lost revenue due to curtailment. The “odd”APC groups

(1,3 and 5) can be utilized on odd weeks, and groups (2, four and

6) can be utilized on even weeks. Curtailment for APC control is

not constantly in operation but is implemented when the TSO

deems it is necessary for system stability.

Figure 4 shows the dynamic response of the Irelands power

system following the loss of 460 MW when EWIC was exporting

power to Great Britain. This loss of load represented 12% of total

FIGURE 2
Power-Frequency response curve of APC in Ireland with
15 mHz deadband.

FIGURE 3
Droop curves for APC (A) first column shows uncurtailed
wind (B) second column shows wind when it is curtailed.

Frontiers in Energy Research frontiersin.org03

Duggan et al. 10.3389/fenrg.2022.962524

88

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.962524


system demand, and the high frequency event triggered the APC

control at the wind farms in Figure 4B, reducing its output in

response to the event.

Shown in Figure 5. is the overall design of the control system

for active power control for a wind farm participating in

frequency response. The APC control behaves as a single unit

and controls the active power production. The APC will default

to wind following mode, where the objective is maximum power

export, as dictated by wind speed. The control center at the TSO

can send power setpoints to the wind farm, remotely reducing

power output by a specified fraction below maximum power

output. In the simulations in this investigation, a value of 85% of

the maximum available generation was employed.

3.1 Dynamic modelling

3.1.1 System Generation Generic Model
representation

The lack of access to comprehensive and generic dynamic

models has been a problem when studying power system

dynamics and stability from the beginning of renewable power

plant development.

In response to a lack of resources, the Western Electricity

Coordinating Councils (WECC) developed renewable energy

models based on generic models proposed by a renewable energy

modelling task force. Since 2010 theWECChas developedmodels to

investigate a wide range of control strategies for wind generation,

photovoltaics, and battery energy storage systems. The result was a

second-generation generic model presented in 2012 that is well

suited to representing a large power park module with multiple

components coordinated through the complex remote-controlled

plant controller and the provision of frequency response (Ellis et al.,

2012).

The modular approach of renewable energy system models,

using the second generation WECC model, ensures that

individual models for various components are available. They

can be combined in different ways to model various renewable

energy and non-traditional power sources. The modular

structure is represented in Figure 7, and these models consist

of three essential components.

1. Renewable Energy Plant Control (REPC)

2. Renewable Energy Eclectic Control (REEC)

3. Renewable Energy Generator/Converter (REGC)

Since this paper is based on sensitivity analysis of active

power control systems, this paper will focus on variations of

(REPC) components.

3.1.2 REPC_A model for power control at wind
farms

The plant controller REPC_A is an essential part of active

power control at wind farms as the plant controller allows

FIGURE 4
High frequency event on the Ireland’s power system
following the loss -460 MW on the HVDC interconnector (A)
Presents the loss of 460 MW of load and the resulting frequency
deviation (B) Presents the dynamics response from a wind
farm reducing its power output.

FIGURE 5
Active power control of wind power plants modelling.

FIGURE 6
APC for plant controller configuration for REPC_A (Ellis et al.,
2012)
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frequency control functionality, as shown in Figure 6. The inputs

include plant reference for active power set remotely by the TSO

and Pbranch the measured power output from the wind farm.

Likewise, the frequency measurement includes a frequency

reference set to nominal frequency and the system frequency

measured at the bus terminal of the wind farm. The outputs of

this active power control path are then fed into the P control

block, shown in Figure 7.

4 Model development and
simulations

The Kundur 2-area system (Kundur et al., 1994) shown in

Figure 8 is used to conduct sensitivity analysis of APC at a wind

farm using a dynamic simulation of VLFOs. Simulations are

performed both using the time-domain and small-signal

capability within DIgSILENT PowerFactory.

The four synchronous generators are modelled using a

detailed sub-transient model with inertia constants of 5 s. All

generators are equipped with an IEESGO governor (IEEE

standard turbine-governor model), SEXS (Simplified excitation

system) automatic voltage regulator and PSS2A (IEEE Dual-

Input Stabilizer Model) Power System Stabilizer (Kundur et al.,

1994).

The wind farms are composed of type 4, 2 MW wind

turbines. The wind farms are added to transmission buses

6 and 15 with APC control functionality. The presence of

wind generation is offset by an increase in demand at LA and

LB at busses seven and 9. These loads are adjusted to match wind

generation resulting from variations in installed capacity and

wind speed. When APC is active, power export from the wind

farms is reduced to 85% of the available wind resource, allowing

similar symmetric droop provision in this study.

A negative load is attached to Bus eight and is used to initiate

a generation load imbalance in the time-domain simulations.

This negative or positive load is disconnected using the out of

service event in DIgSILENT, simulating a generation loss or loss

of load after 10 s. This disturbance is sufficient to trigger the VLF

mode that is identified in the small-signal analysis.

The simulations are used for sensitivity analysis of the

following parameters.

FIGURE 7
Modular representation of System Generation Generic Model.

FIGURE 8
Graph Layout of Kundur two Area system. G1, G2 and WF are
in area 1. G3 and G4 are in area 2. Blue dotted line signal
transformer. Square boxes are transmission buses. Inverse houses
are load buses.
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1. Gain/droop delay time

2. Gain/droop setting

3. wind speed

4. wind farm capacity (number of turbines)

4.1 Wind generation modelling

In this paper, multiple real wind farms are simulated by

aggregating them into an individual large wind farm; like the

APC control groups employed on the Irish system. Figure 9,

shows the power curve used for the wind farm. Three wind

speeds of 7 ms-1 (9% of total installed capacity), 12 ms-1 (70%)

and 16 ms-1 (100%) are used to simulate the effect different wind

speeds have on damping. These speeds are chosen to reflect the

damping at low and maximum wind speeds on the real power

system, as faced by power system operators.

The wind turbines that are added to the model have a

curtailment setpoint of 85% of maximum potential wind

power dispatch; therefore, each turbine will dispatch 1.7 MW

at full output, reduced from 2MW, it will then provide 300 kW of

under frequency response and effectively unconstrained over

frequency response. As wind speed drops the under-frequency

oscillation response of the turbines will drop to a minimum of

27 kW per turbine, with an output of 153 kW. This change in

power response magnitude will contribute to a general

improvement in oscillation damping at high wind speeds but

can be overcome with increased generation capacity.

4.2 Small-signal analysis

For small-signal analysis, the deadband on the controllers

that provide frequency response was set to zero. A deadband of

zero accurately models VLFO damping outside the deadband, as

demonstrated in Section 5 with PMU data from wind sites on the

Irish power system. At present a deadband of ±15 mHz is

employed on the Irish power system (also demonstrated in

Section 5), which is sufficiently small to be relatively well

approximated by a deadband of zero, especially when dealing

with high amplitude VLFO. It is argued that operators should

minimize deadbands for VLFO damping based on the simulation

work in this section and the PMU data.

Three different scenarios are examined to determine the

effect of parameters within the APC model on VLF mode

damping.

4.3 Base case

This base case is used as a benchmark for changes in damping

resulting from APC at the wind sites.

No wind generation is added for the base case, and the

standard load profile is employed. Table 1 shows the damping of

the critical modes. The damping ratio describes how oscillations

in a system decay after a disturbance. A negative damping ratio

means it is not damping but driving oscillations. The VLF mode

has negative damping of -6.70%, meaning the system is sensitized

to an oscillation of 0.0729 Hz or an oscillation with a period of

13.7 s. In the time domain simulations this VLFmode is triggered

with a generation/load imbalance, after which it is self-sustaining.

The electromechanical modes, such as the inter-area and

local mode, show relatively good damping of 5.13, 9.90 and

10.50%, respectively. Although these modes are not investigated

further, it was noted that APC consistently increased the

damping of these modes.

4.4 Scenario 1—Time lag

The sTlag time constant, shown in Figure 6, is varied at

different wind speeds to determine its sensitivity within the

control system. The droop settings for Dbn and Dup are set

FIGURE 9
(A)Wind Power curve used in study (B) Cumulative frequency
graph with the average of four wind sites recorded over the
calendar year of 2015 with a fitted Weibull distribution.

TABLE 1 Base case.

Oscillation mode Damping Ratio [%] Frequency [Hz]

VLF Mode −6.70 0.0729

Inter-Area 5.73 0.507

Local I 9.90 1.10

Local II 10.50 1.11
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to 25 to be consistent with the frequency response gain of 25 (4%

droop) that is standard on the Irish grid. Each conventional

generator in the Irish system has a governor droop setting of 4%,

meaning that a frequency deviation from 50 Hz of 4% (i.e. 48 Hz

or 52 Hz) would lead the generator to increase or decrease its

power output by 100% of its rated power. The number of turbines

at WF1 and WF2 was set at 50, operating at 85% of available

output for APC.

It can be inferred from Table 2 that VLF mode damping is

not sensitive to changes within the time lag (sTlag) parameter in

the control system. There is a small improvement in damping as

the time lag increases, but the improvement is minor and

counter-intuitive.

The damping times considered, 20–200 m s, covers the

spectrum of possible real-world delay times in APC systems.

However, these times are small compared to the period of the

specific VLFO (0.078 Hz or 12.8 s) or general VLFO that may

have a period in the region of 5–40 s. Consequently, the effect of

delay time is minor and has only been included in the analysis to

demonstrate that it is not a significant factor for the oscillations

under investigation. Moving forward a time delay of 0.1s is

employed for the forthcoming scenarios.

4.5 Scenario 2—Droop setting sensitivities

Table 3 summarizes the results for droop settings of 10–50

(equivalent to a 10–2% droop). The time lag was set at 0.1s with

50 wind turbines in total placed at WF1 andWF2, wind speeds of

7, 12 and 16 m/s are investigated, with curtailment of 15% for

APC. Substantial improvements in VLFO damping are observed

for increased gain; however, even a weak frequency response gain

of 10 (10% droop) still improves the damping ratio from -6.7% to

between -3.7% and -3.0%. A gain of 20 (5% droop) was sufficient

to achieve positive damping of the VLFO for all the wind speeds

considered. At a gain of 50 (2% droop), the VLF mode was no

longer apparent in the small-signal studies as it was so well

damped.

Increases in wind speed, resulting in increased wind

generation and therefore available power response, provides a

small improvement in damping. Damping VLFOs does not

require substantial amounts of power; consequently, even at a

low wind speed of 7 ms-1 (9% of capacity), sufficient droop

response is available. In this circumstance, only ±1.35 MW of

symmetric APC control was available. Judging from the relative

sensitivity to gain and insensitivity to wind speed, much less

than ±1.35 MW was required to achieve substantial damping of

the VLF modes.

It is noteworthy that improvements in damping observed in

Table 3 were also observed in all electromechanical modes; this is

consistent with previous studies on the frequency response

provided by wind generation.

4.6 Scenario 3—Number of turbines

Dup and Ddn shown in Figure 6 are set to (4% droop) for

this analysis, partially because it is in concordance with settings

on the Irish power system, making the results comparable to the

PMU data from APC enabled wind farms on the Irish power

system. As with wind speed variation, the loads LA and LB were

varied to match wind generation at WF1 and WF2, this prevents

generation dispatch from affecting the VLF mode.

The dampening power from the wind farms increases

linearly with the number of wind turbines with active APC;

therefore, a significant increase in dampening ratio is observed as

the number of turbines increases, as shown in Table 4. The

incremental increase in damping is not quite linear as the active

wind turbines reduce the VLF mode when positive damping in

excess of 10% is achieved.

These results are similar to observations from sensitivity

analysis for gain, whereby wind speed was not a significant

factor in mode dampening. A similar interpretation is made,

that even at low wind speeds sufficient power is available to

achieve substantial dampening. The damping improvement from

more wind turbines is evident; therefore, reductions in gain can

TABLE 2 Variation in delay time.

Wind Speed [m/s] Lag [s] Damping Ratio [%] Frequency [Hz]

7 0.02 2.04 0.079

0.1 2.11 0.079

0.2 2.21 0.079

12 0.02 2.84 0.078

0.1 2.92 0.078

0.2 3.02 0.078

16 0.02 2.96 0.078

0.1 3.04 0.078

0.2 3.13 0.078
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easily be offset by increases in the number of turbines

participating in APC. This type of operation may be more

acceptable to asset owners and system operators while

achieving the same VLF mode dampening.

4.7 Time domain analysis

Figure 10. shows time-domain simulations for a generation

load imbalance at load LC. A positive and negative 40 MW load is

disconnected at t = 10s, initiating the VLFO that the system is

sensitive to (Table 1, 0.0729 Hz, 13.7 s). As the load is positively

damped, it will grow if not sufficiently damped by the APC. A

total of 100 wind turbines were deployed at WF1 and WF2, the

time lag (sTlag) is set to 0.1s, and the gain is varied between 10

(10% droop) and 50 (2%). The results in this section can be

compared to the damping coefficients in Table 3 for a wind speed

of 16 ms-1.

The disconnection of negative load results in a VLFO below

nominal frequency (plots on the left, Figures 10A, C, E while the

disconnection of positive load results in a VLFO above nominal

frequency (plots on the right, Figures 9D, F. Curtailment is

required to provide under frequency response and dampen

oscillations below nominal frequency. Three curtailment

settings are investigated, no curtailment (Figures 10A, B),

1.5% curtailment (Figures 10B, C) and 15% curtailment

TABLE 3 Variation in grain/droop, delay time of 100 m s.

Wind Speed [m/s] Gain of Ddn and
Dup

Damping Ratio [%] Frequency [Hz]

7 10 -3.714 0.078

20 0.192 0.079

30 4.016 0.079

40 7.745 0.079

50 11.353 0.079

12 10 -3.087 0.078

20 0.950 0.078

30 4.853 0.078

40 8.602 0.078

50 12.171 0.078

16 10 -2.998 0.078

20 1.059 0.078

30 4.975 0.078

40 8.727 0.078

50 12.289 0.078

TABLE 4 Variation in number of turbines, delay time of 100 m s, gain of 25.

Wind Speed [m/s] No. Turbines Damping Ratio [%] Frequency [Hz]

7 50 2.115 0.079

100 11.320 0.079

150 19.535 0.077

200 26.374 0.075

12 50 2.920 0.078

100 12.651 0.077

150 20.824 0.074

200 28.147 0.071

16 50 3.036 0.078

100 12.851 0.077

150 21.236 0.074

200 28.451 0.071
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(Figures 10D, E). A curtailment of 15%, or 85% of potential

generation, is standard on the Irish system when APC is active, in

this scenario, 60 MW are provisioned for droop response. A

curtailment of 1.5% provisions 6 MW of power for damping, as

such a power response from such a large resource (200 MW) can

hardly be considered a droop response.

Figures 10A, B demonstrate that zero curtailments seriously

reduces damping potential, particularly in VLFO below nominal

frequency. In Figure 10A, APC cannot remove the VLFO as a

substantial proportion of the oscillation occurs below the

nominal frequency. Therefore APC can only reduce the VLFO

damping ratio to zero in this generation scenario, a frequency

response gain of greater than 30 (3.33% droop) is required.

Although APC does not eliminate the VLFO, the APC

response would still provide an incredibly valuable service to

system operators, preventing the onset of a catastrophic VLFO or

buying time for remedial action. Figure 10B demonstrates that

the same control strategy will move the system into positive

damping with a frequency response gain between 10 and 20

(10 and 5% droop).

Curtailment of power at renewable sites is undesirable as it

represents wasted energy, therefore a minimal curtailment of

1.5% was investigated. It can be noted from Figures 10A, D that

the VLFO is moved out of negative damping, even with the

lowest frequency gain investigated. Low gain settings of 10 and

20 appear to perform similarly in under and over frequency

VLFO scenarios. VLFO damping is more effective at higher gains

in over frequency conditions; this is because, under frequency

conditions, the power response is clipped as the availability from

curtailed power is used up. When APC is activated on the Irish

power system, a curtailment of 15% is initiated. Figures 10D, F

demonstrate little to no difference between APC performance

above or below the nominal frequency when damping VLFO. It

can be noted that even at a low gain setting of 10, the system is

moved from negative to positive dampening. The results in this

section demonstrate that a small provision of curtailed power is

sufficient to damp VLFO above and below nominal frequency

actively. It is also demonstrated that relatively modest frequency

response gains (>20 or >5%) are sufficient to achieve appreciable

VLFO damping. It is argued that curtailment for an under-

frequency APC droop response and curtailment for an APC

VLFO service could be separated. It would be anticipated that the

VLFO damping service could be in continual operation and

droop response enabled when necessary. This problem could be

overcome through centralized or local adjustment of frequency

setpoint, whereby the minimum frequency recorded over a

period of perhaps 100 s was targeted. This would provide a

full VLFO response, regardless of curtailment or ambient

frequency conditions.

5 Very low-frequency oscillations and
active power control on Ireland’s
power system

Wind farm APC is used on Ireland’s power system for

frequency regulation. The details of when APC is enabled are

not public and seem to be decided in the control room, however

some tendencies can be inferred. As a general guide, APC is on

when Ireland is exporting more than 300 MW to Great Britain,

and this provides additional security in the event of an over

frequency transient. Currently, there is no automated system in

place, and APC is turned on manually from the control center.

Three oscillatory events are presented in this section.

Measurements are from PMU data, this data is used to

qualitatively assess the damping effect of wind farms with

active APC. Damping is provided when the MW output of a

wind farm is in anti-phase to the system frequency. PMU data is

available from five wind farms with APC, data from two wind

farms are presented. APC response is remarkably consistent

between sites, and general performance can be inferred from

specific sites.

5.1 Variability of wind generation possibly
exciting VLFOs

In our research, CIG infrastructure has not been implicated

as a source for VLFO; however it can strongly influence system

parameters that appear to sensitize the power systems to VLF

modes, these parameters include generator dispatch, active

FIGURE 10
(A)Curtailment is 0% and loss of generation (B)Curtailment is
0% and loss of load (C) Curtailment is 1.5% and loss of generation
(D) Curtailment is 1.5% and loss of load (E) Curtailment is 15% and
loss of generation (F) Curtailment is 15% and loss of load.
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governor control systems, system configuration and line flows.

The purpose of installing renewable generation is to displace

conventional generators, which reduces synchronous inertia on a

power system, changing VLF modes and making the system

more sensitive to perturbations such as transient generation/load

imbalances and short circuits. Stochastic generation can also be a

trigger that exposes sensitized oscillatory modes (Adeen and

Milano, 2021).

Displayed in Figure 11 is a fluctuation that moved the system

frequency. While the observed 7.5 MW power perturbation was

small, a similar fluctuation at wind farms within the region could

have contributed to the deflection of system frequency. The exact

cause of the variation is unknown and may arise from wind gusts

or the control room releasing curtailments before turning them

back on. Similar frequency deviations in the following analysis

are observed due to curtailment being added or released as APC

is switched into and out of service.

Due to the lack of PMUmeasurements, it is hard to discount

possible causes and consequences of the minor transient event in

Figure 11. Whatever the cause, the wind farm fluctuation

coincides with an increase in the VLF mode magnitude to

50mHz, before being damped. Due to governors providing the

majority of pseudo steady-state frequency regulation,

interactions between governors and wind farms likely caused

an increase in mode magnitude.

5.2 APC activation to decrease oscillation
magnitude

Figure 12 captures the effect of activation of APC at wind

farms. Shown in Figure 12A is PMU data that recorded the 60-

70 mHz oscillation that took place as system frequency

transitions above 50 Hz, this persisted for approximately 250 s.

The activation of APC controls reduced power output from

multiple wind sites, reducing the power system frequency by

approximately 50 mHz. This curtailed power was then employed

by the APC to successfully dampen the oscillation to below

10 mHz. The dampening effect is seen in the continuous wavelet

transform in Figure 12B, with a clear generalized oscillation pre-

450s. Once APC is initiated, the period of the VLFO increases as

its magnitude drops to zero.

These data demonstrate that APC can be used in an

emergency control situation or ambient conditions to reduce

background oscillations. It is worth noting that the oscillation

magnitude of the power response at the wind farm will be

proportional to the oscillation magnitude of the system

frequency and that only a small proportion of the curtailed

power was required to dampen the VLFO. This observation

supports the findings in Section 4 that small power provision and

low droop settings can quickly and effectively move the power

system into positive damping. Therefore, TSOs may not need to

employ costly curtailment to achieve significant dampening of

VLFOs.

5.3 APC turned off and increase in
oscillation magnitude

Figure 13A shows the active power output of WF1, alongside

system frequency. Wind curtailment for APC was possibly

discontinued to increase system frequency. Switching off

curtailment resulted in a 15 MW rise in output from WF1;

presumably, similar increases would be observed at other

wind farms with active APC. The additional power resulted in

a frequency increase of approximately 12 mHz. The removal of

APC control also coincides with an immediate onset of a VLFO

apparent in the frequency trace in Figure 13A. The magnitude of

FIGURE 11
VLF Oscillation corresponding to 7.5 MW perturbation at a
wind farm on Ireland’s power system.

FIGURE 12
(A) System frequency and active power output from WF1 and
WF2 when APC is switched on after 450 s (B) continuous wavelet
transform showing the reduction in oscillation magnitude in
system frequency for oscillation frequencies between
0.02 and 0.1 Hz.
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background oscillations increased from approximately

10–50 mHz. The continuous wavelet transform plot of the

frequency data is presented in Figure 13B and decomposes the

VLFO into its constituent parts. It is noteworthy that VLFOs

operate across multiple bands and emerge and dissipate

multiple times. It is probable that the sources of the VLFO

were active while the APC was on but that they were so well

damped that they were virtually undetectable due to positive

dampening. This supposition is supported by the observation

from small-signal analysis in Section 4, where high positive

dampening made the study of VLFO almost impossible as they

did not emerge.

5.4 APC interaction with deadband

Figure 14 shows the active power output from WF1 as the

system frequency passes through the ±15 mHz APC deadband

typically set on the Irish power system.

During the time 0-200 s, the frequency is above the deadband,

and WF1 modulates its power output in anti-phase to frequency

oscillations. Similarly, from 650 s onwards, system frequency is below

the deadband, and the windfarm responds with a similar anti-phase

power/frequency response.However, while the frequency iswithin the

deadband the power output from the wind farm remains relatively

constant, with perturbations in power output arising primarily from

infringements of the deadband. It is noteworthy that themagnitude of

background frequency oscillations are markedly higher while system

frequency is in the deadband and wide-area APC is effectively

discontinued. In the simulations in Section 4 a deadband of zero

was employed, this allowed for analysis of fundamental oscillatory

interactions but also demonstrated the maximum potential for

oscillation damping. A deadband was historically employed in

control systems for a synchronous generator to reduce wear,

hunting and undesirable interactions between electromechanical

systems; however, CIG does not suffer as much from these issues.

Consequently, a deadband of zero might reduce wear,

hunting and oscillatory coupling on power systems. That said,

a deadband ±15 mHz is relatively small and VLFOmagnitudes of

30 mHz are tolerated on the Irish power system. Finally, a not

insignificant drop in power system frequency is observed around

the 650 s point in Figure 14, this results in an appreciable droop

response of 2 MW from WF1. This 2 MW power response

indicates the extent of the curtailment on WF1, which may be

carrying a reserve of 9.7 MW. Such a droop response is desirable

for frequency stability resulting from generation/load imbalance

but is unnecessary for VLFO dampening. Therefore, as

demonstrated in Section 3 a VLFO dampening service would

require vastly less curtailment than is currently implemented in

the APC control scheme.

FIGURE 13
(A) System frequency and active power output
fromWF2 when APC is switched off after 200 s (B) continuous
wavelet transform showing the increase in oscillationmagnitude in
system frequency for oscillation frequencies between
0.02 and 0.1 Hz.

FIGURE 14
Wind Farm power response and interaction with reduced +−15 mHz deadband.
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6 Conclusion

This work investigated the damping provided by APC

controls for VLFOs using small-signal and time-domain

simulations and PMU data from the Irish power system. It is

demonstrated that APC control is incredibly effective for

increasing the damping of VLFOs, often mitigating them

beyond the point of observation or study. APC time delays

were found to have minimal effect on APC performance;

while increased droop settings, wind speed, curtailment and

resource capacity can have a substantial impact when

damping the VLF mode. Simulations demonstrated that even

very conservative APC settings move the power system model

from negatively damped VLFO to positive damping. PMU data

from wind farms engaging in APC were investigated, and the

ameliorating effect of APC is particularly apparent when APC is

switched in or out of service or when power response stops while

in the deadband. While APC was damping VLFO, beyond the

point of observation, only a tiny proportion of the curtailed

power was being utilized. A major cost of APC operation is the

curtailment of active power generation from wind sites.

Observations from PMU data and simulations indicate that

very little curtailment is required for VLFO dampening. On

the Irish system, curtailment of 15% is initiated once APC is

activated, from the observations in this paper, curtailment of

1.5% should be sufficient for dampening VLFO. Alternatively,

adjusting the target frequency for APC would more efficiently

damp VLFmodes. APC is observed to be inhibited by deadbands.

The deadband on the Irish power system is small, at ±15 mHz,

but an objective of zero for improving performance should be

sought. There is no indication from power system models or

available PMU data that this would result in deleterious system

effects. While APC successfully eliminated VLFO in simulations

and from PMU data, it is not suspected that CIG was the cause.

Rather, it mitigated undesirable operation on conventional

assets, particularly poorly tuned governors at synchronous

generators. To summarize, effective VLFO damping can be

achieved with low curtailment, low droop, and low wind

speeds; system operators should continuously employ less

aggressive APC at CIG to dampen VLFO.
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and Battery Storage System in
Providing Fast-Frequency Regulation
and Extending the Cycle Life of Battery
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Fast-frequency regulation (FFR) is becoming a key measure to enhance the frequency
stability of power systems as the penetration of renewables and power electronics
continues to grow and the system inertia declines. Although different control methods
have been proposed to provide a wind turbine generator (WTG) with a limited
capability of virtual inertia and frequency support, the coordination between the
WTG and a battery energy storage system (BESS), as well as the potential
optimization benefits, have not been fully studied. This study proposes a
coordinated control of WTG and BESS that provides FFR to the AC system and at
the same time extends the cycle life of the battery. First, a cost effective and SOC-
based FFR strategy of BESS alone was proposed. Then, a coordinated FFR method
for the WTG–BESS hybrid system under all wind speeds was proposed by analyzing
the operational characteristics of WTG. The proposed coordinated strategy improves
the FFR performance with a longer cycle life and lower cost of battery under different
operating conditions. Simulation results based on varying wind speeds indicate that
the proposed FFR strategy raises the frequency nadir and avoids the frequency
secondary dip.

Keywords: fast-frequency regulation, wind turbine generator, battery energy storage, cycle life, frequency nadir,
frequency secondary dip

1 INTRODUCTION

A rapid development of renewable energy is becoming a global consensus. Over 10 countries have
set targets to increase the installed capacity of renewable energy to meet 50% of total energy
demands (Kurbatova and Perederii, 2020). At the same time, the increasing penetration of
converter-interfaced renewable power causes issues regarding frequency stability. Variable-
speed wind turbine generators (WTGs) normally operate under the maximum power point
tracking (MPPT) mode to obtain the maximum output at a certain wind speed; thus, their power
output is decoupled from the system frequency. As the WTGs gradually replace the conventional
synchronous generators (SG), the inertia reserve of the power system is further reduced, and the
frequency-regulation capability is thus weakened (Lin and Wu, 2020).

Nowadays, many countries have regulations in place for grid-connected WTG to
provide frequency regulation to the system. For instance, the United Kingdom National Grid
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requires onshore wind farms to provide short-term frequency
support and automatic generation control ability (Dallmer-Zerbe
et al., 2017). Hence, the methods of frequency support have
been proposed and can be divided into two categories: power
reserve control and kinetic energy control (Attya and
Dominguez-García, 2018). For kinetic energy control, WTGs
release the kinetic energy of the rotor to provide frequency
support. However, this method works only a very short period
of time (<5 s) and suffers the drawback of frequency secondary
dip (FSD) when the rotor speed recovers, especially under low-
speed conditions (Jin et al., 2018). For power reserve control,
overspeeding and pitch deloading methods allow WTGs to leave
a margin of active power to meet the frequency support
requirements (Li et al., 2016; Wang et al., 2018; Datta et al.,
2020). However, the significant cost of wind power curtailment
reduces the financial benefits and usually makes this method
infeasible (Motamed et al., 2013).

In the past few years, the development of battery energy
storage systems (BESSs) has also driven research on frequency
support (Zhang et al., 2014). The fast response and precise power-
tracking characteristics of BESSs make them attractive
solutions considering the technical difficulties encountered
by the frequency support using WTG, as discussed above (Sun
et al., 2020). Studies have discussed the inertia control and
frequency regulation based on WTG and BESS together (Xu
et al., 2013; Gao, 2014;Wu et al., 2015; Sato et al., 2020). However,
none of them considered potential benefits of coordinated
operations. The high cost of BESS investment remains an
obstacle to large-scale application. Considering the economic
feasibility of wind-storage hybrid systems, studies by Dang
et al. (2012) and Miao et al. (2015) proposed coordinated
frequency-regulation strategies based on the state of charge
(SOC) feedback to improve the battery efficiency and smooth
the frequency variations. However, simply setting the upper
and lower SOC limits cannot achieve desired performances
under changing network and wind conditions. Hao et al.
(2015) discussed a hybrid frequency-regulation strategy
using adaptive fuzzy control, which improves the frequency
regulation accuracy of wind farm and supercapacitor, while
optimizing the capacity of supercapacitor to reduce the
investment cost. Zhang et al. (2018) optimized the battery
capacity based on the frequency droop control with a fixed
droop coefficient to maintain a constant BESS power output.
A coordinated virtual synchronous generator control of
photovoltaic and battery systems for grid support was also
studied by Liu et al. (2022). Xiong et al. (2021) discussed a
frequency response strategy based on fast power compensation
in low-inertia power systems.

In this study, the coordination and optimal operation of
a hybrid system of WTG and BESS were examined to 1)
provide high-performance fast-frequency regulation (FFR) at
all wind speeds, and 2) optimize the SOC management to
extend the cycle life of battery, thus further decreasing the
lifecycle investment cost. The main contributions of this study
are as follows

1) Compared to the conventional method, the frequency nadir is
further raised under the proposed coordinated control of the
WTG–BESS hybrid system.

2) Compared to controlling the BESS alone, the proposed SOC-
based control optimizes the SOC management and extends
the cycle life of battery.

3) The technoeconomic feasibility of using BESS to support the
system frequency was analyzed and improved, with either
better performance of frequency regulation or lower cost
of BESS.

4) The proposed SOC-feedback droop control integrates real-
time battery SOC and conventional droop control to maintain
SOC, reducing the additional penalty costs and eliminating
the FSD.

The rest of this study is organized as follows. Section 2
discusses the selection of battery, BESS capacity dimensioning,
and the impacts of battery SOC on its cycle life. Section 3
proposes the SOC-based droop control of BESS and the
coordinated FFR method of the WTG–BESS hybrid system.
Section 4 presents case studies based on time domain
simulations to demonstrate the proposed method. At last,
Section 5 cconcludes the study.

2 TECHNOECONOMIC FEASIBILITY STUDY
OF BATTERY ENERGY STORAGE SYSTEM

In order to clarify the technical and economic benefits of the
proposed coordinated control method, it is necessary to analyze
the economic feasibility of using BESS to provide FFR under
certain technical conditions. Three aspects were discussed:

1) Technical characteristics of different types of battery
2) Dimensioning of the BESS capacity
3) Impacts of SOC on the cycle life of battery

Different Types of Battery
As for different types of battery, key factors of considerations
were investment cost, energy density, response time, cycle life,
efficiency, and safety. So far, the applications of battery storage
have been dominated by lithium-ion batteries. Table 1 shows the
dominant types of battery and their technical characteristics
(Wang and Liu, 2017; Zhao et al., 2019).

The investment costs of lead–acid and lead–carbon batteries
are low, but these batteries are being phased out due to low energy
density and pollution. Lithium-ion batteries dominate all
performance indicators, including high-energy density and
long cycle life. In particular, lithium–iron–phosphate has a
cycle efficiency of about 95%. Therefore, the rest of analysis in
this study is based on the lithium–iron–phosphate battery, for its
good balance between technical features, cost, and safety. With
the latest technical and craftsmanship progresses of the
lithium–iron–phosphate battery, it is believed that it makes a
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better option than ternary lithium for grid-connected applications
owing to upgraded energy density and superior safety.

Dimensioning of the Battery Energy Storage
System Capacity
Overdimensioned capacity of BESS leads to a higher investment
cost, while underdimensioned capacity leads to worse frequency-
regulation performance and FSD due to frequency support
interruptions. It is important to precisely design the BESS
capacity and make the best use of it.

So far, there is no consensus on how to dimension the capacity
for the purpose of FFR. One idea is to view the role played by FFR
as that similar to the inertia response of conventional SG. Both
share the same purpose to prevent the frequency nadir from being
too low before the primary frequency regulation kicks in. On this
basis, the principle of BESS dimensioning is to assume that it
releases the same energy as that released by an SG from a rated
grid frequency to the lower limit in a certain period of time.

As an example, in a severe underfrequency event, the system
frequency could drop from 50 to 48 Hz, and the corresponding
SG rotor speed ranges from 1.0 p. u. to 0.96 p. u. The maximum
kinetic energy released by the SG can be calculated as

ΔEk � 1
2
J(1ωn)2 − 1

2
J(0.96ωn)2 � 0.0392Jω2

n, (1)

where ωn is the rotor angular speed, and J is the rotational inertia.
When the generator is at the rated speed, the kinetic energy of the
rotor is

Ek � 1
2
Jω2

n � PnH, (2)

where Pn is the rated power of the SG, and H is the inertia time
constant. Assuming the energy released by the BESS in time t1
equals the maximum kinetic energy released by the SG as
calculated in (1), the power of BESS would be

EBESS � ΔEkmax. (3)
The left side is EBESS = PBESSt1. As to the right side, from (1)

and (2),△Ek = 0.0784·(1/2)Jωn
2 = 0.0784PnH. Therefore, we have

PBESSt1 � 0.0784PnH. (4)
It is reasonable to assume t1 � H. Although the per unit rotor

speed does not drop to zero, the net power applied on the rotor is
not the rated power, but the additional load disturbance, which is

much smaller. Assuming t1 � H and leaving a margin for the
battery SOC, the BESS capacity is dimensioned as

PBESS

Pn
� 7.84% ≈ 8%. (5)

The above calculation shows the dimensioning of BESS for the
requirements of FFR and its relationship with the lower limit of
the system frequency. Note that the calculated result of 8% Pn is
for a rather severe underfrequency situation. In practice, the
dimensioning of the BESS capacity would depend on the network
requirement. In reality, the system frequency can hardly
drop <49.5 Hz; therefore, the required battery capacity could
be even smaller.

Impacts of State of Charge to the Cycle Life
of Battery
SOC is the ratio of the real-time charge and the total charge in a
fully charged state. When participating in the frequency
regulation, BESS needs to consider not only the target power
demand, but also the frequency-regulation capacity that its own
SOC can provide. In addition, the penalty cost of SOC to be
beyond its upper and lower limits is also considered in the
economic impact of SOC on the battery life.

In practical applications, the more energy a battery exchanges
with the network before reaching the cycle life, the higher
efficiency is achieved and the more financial benefits it brings.
However, the rate of battery aging is closely related to the
operating conditions. One key factor is the depth of discharge
(DOD). The DOD of a complete discharge is 100%. Figure 1
shows the attenuation relationship between the DOD of a
lithium–iron–phosphate battery and its cycle life (Li et al., 2019).

As shown in Figure 1, the increasing DOD accelerates the rate
of battery aging, reaching a minimum cycle life at a DOD of 1.0.
The reduced cycle life of the battery increases its economic
investment. Therefore, discharging the battery at its maximum
DOD depth in every cycle is undesirable. From the above analysis,
the energy management of BESS first requires an analysis of the
SOC interval model.

As an electrochemical energy storage, the structure of the
lithium-ion battery shows that overcharging or discharging
would reduce the available capacity and shorten the cycle life
(Yan et al., 2020). More serious problems could happen when the
battery releases too much energy for frequency regulation and the
SOC drops to a very low level close to zero. Therefore, the BESS

TABLE 1 | Technical characteristics of different types of battery.

Type Energy Density (Wh/kg) Cost ($/kWh) Cycle Life Cycle Efficiency (%)

Lead-acid 30–200 10–150 500–1,500 65
Lead-carbon 30–200 10–200 2000–5,000 80
Sodium-sulphur 150 200–400 <2,500 70
Lithium iron phosphate 120–190 400–800 2000–5,000 95
Lithium iron titanate 100 400–700 10,000 90
Ternary lithium 200 250–400 2000–10,000 90
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needs to regulate the charge and discharge power based on real-
time SOC feedback. A reasonable upper and lower SOC limit for
the operation of BESS hence becomes significant in ensuring
satisfactory BESS participation in the frequency regulation. The
established SOC interval model is presented in Figure 2.

SOC is divided into four intervals by four thresholds:
overdischarge threshold SOCmin, critical overdischarge
threshold SOClow, critical overcharge threshold SOChigh and
overcharge threshold SOCmax.

1) When SOC ∈ [0, SOCmin], BESS is in overdischarge state.
2) When SOC ∈ [SOCmin, SOClow], BESS is in critical

overdischarge state.
3) When SOC ∈ [SOClow, SOChigh], BESS is in critical

overcharge state.
4) When SOC ∈ [SOCmax, 1], BESS is in critical overdischarge

state.

The above four intervals will be used for the proposed control
of BESS, allowing batteries to adjust their output power according
to SOC in a timely manner, which helps to extend the cycle life of
battery.

3 STATE OF CHARGE–BASED DROOP
CONTROL AND COORDINATED
FAST-FREQUENCY REGULATION
METHOD

State of Charge–Based Droop Control for
Battery Energy Storage System
Based on the conventional frequency droop control and the
technical–economic feasibility analysis of BESS in Section 2,
Figure 3 shows the proposed SOC-based droop control. The
control scheme consists of two modules: the p–f frequency droop
and SOC–p constraint.

FIGURE 1 | Relationship between the battery depth of discharge and its cycle life.

FIGURE 2 | State of charge (SOC) interval model.

FIGURE 3 | SOC-based frequency droop control for battery energy
storage system (BESS).

FIGURE 4 | Schematic for constraint.
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The conventional p–f droop control does not consider battery
SOC, and it has a fixed droop coefficient. When BESS is charged
and discharged to SOC limit, it shortens the BESS lifecycle and
brings FSD, hence increasing economic costs.

To avoid BESS being charged and discharged to the SOC limit,
the BESS SOC has been proposed as an input variable to constrain
the power reference Pp

bess ref for a BESS, by scaling the output
from the droop block Pbess ref using a coefficient Ks.

Hence, it has Pp
bess ref � Ks(SOC)pPbess ref, as shown in

Figure 3. The shape of Ks(SOC) is presented in Figure 4.
In Figure 4, the x- and y-axis are the BESS SOC and Ks. Based

on the SOC interval model in Figure 2,Section 2.3, design of the
constraint coefficient Ks can be divided into the following four
zones: very low (Zone I), low (Zone II), high (Zone III), and very
high (Zone IV). It is based on the principles of providing a
sufficient FFR when SOC is high, and protecting the battery when
SOC is low.

1) Zone I (0–10%):

When 0≤ SOC≤ 10% in Zone I, BESS is in overdischarge state.
Discharging BESS in this zone to provide frequency regulation
will shorten the battery cycle life and increase the penalty costs. In
addition, there is risk of FSD due to low SOC. Therefore, when
entering Zone I, BESS terminates its power output, and the
constraint coefficient decreases to 0, i.e., Ks1 � 0.

2) Zone II (10–50%):

In Zone II, 10%≤ SOC≤ 50%, and BESS presents a moderately
sufficient capability to provide frequency regulation. To avoid
entering the overdischarging Zone I (to slow down battery aging),
in Zone II the power output of BESS decreases with SOC at a
progressively slower rate. Hence the constraint coefficient is
designed as

Ks2 � 1

1 + e
SOC−SOCmid

SOCmin−SOCmid
·10
. (6)

3) Zone III (50–80%):

In Zone III, 50%≤ SOC≤ 80%, and BESS has sufficient
capacity to provide frequency support. Therefore, a BESS
provides a large power output when SOC is close to 80%, and
it decreases slowly when SOC decreases. When SOC reduces
closer to 50%, the decrease rate of BESS power output becomes
larger, which aligns with the power provision in Zone II. In Zone
III, BESS regulates the output power based on the following
constraint coefficient

Ks3 � 1

1 + e
SOC−SOCmid

SOCmax−SOCmid
·10

. (7)

4) Zone IV (80–100%)

In Zone IV, SOC≥ 80%SOC> 80%, and BESS has large a
capacity to provide frequency regulation. Hence, the BESS

power output remains maximum, and the constraint
coefficient is designed as 1.0:

Ks4 � 1 (8)
Equations 6 and 7 jointly were designed based on the

following principles: 1) Ks = 1 under SOC_max; 2) Ks =
0 under SOC_min; 3) Ks(SOC) should be a continuous
function; and 4) Ks should be larger than a linear selection in
Zone III when SOC is relatively high to effectively provide FFR,
while being smaller than a linear selection in Zone II when SOC is
relatively low to protect the battery. Equations 6 and 7 were
designed so that it meets these four principles. Other higher-level
function designs are possible as long as these principles are met,
yet the functions of Ks presented as above are straightforward in
math given the same principles. In Equations 6 and 7, the
coefficient 10 is simply an integer large enough to make
Ks− > 0 when SOC = SOC_min and Ks− > 1 when SOC =
SOC_high, while simultaneously not too large to avoid making
Ks(SOC) close to a step function. In a power system, the
frequency is not regulated only by one device, but a great
number of different devices together, and each has a different
real-time SOC. The power deficit from devices with low SOC
would be compensated by other devices with high SOC.

Coordinated Fast-Frequency Regulation
Method of the Hybrid System
The WTG has different levels of kinetic energy reserves that can
be provided at varying wind speeds. Therefore, the WTG–BESS
hybrid system needs to be coordinated to provide frequency
regulation under the following three wind speed conditions.

Low wind speed (6–9m/s): The WTG operates in the MPPT
mode in this wind speed range with insufficient kinetic energy
reserves.When aWTG releases its kinetic energy causing a fall of its
rotor speed to be below the lower speed limit (0.8 p. u.), the FSDwill
happen when restoring the rotor speed. To eliminate FSD, BESS will
participate in frequency regulation when the wind speed is low.

Medium wind speed (9–12 m/s): The WTG has sufficient
kinetic energy to support the system frequency. Under this
condition, the WTG and the BESS provide FFR jointly.

High wind speed (above 12 m/s): The WTG maintains its
maximum power output at rated values at high wind speeds by
regulating the pitch angle. If the WTG provides extra power to
regulate the system frequency drop, its power output will exceed
the rated value. Therefore, at high wind speeds, only BESS
participates in frequency regulation.

The above coordinated FFRmethod is summarized in Table 2.
The FFR control of the turbine alone is the classical proportional

TABLE 2 | Coordinated frequency support strategy.

Wind Speed Turbine BESS

Low (6–9 m/s) FFR off (MPPT only) SOC-based droop control
Medium (9–12 m/s) FFR on Priority in FFR
High (over 12 m/s)
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and differential frequency-feedback control, as shown in
Figure 5, which is not repeated in this study.

4 CASE STUDIES

To verify the effectiveness of the proposed method, aWTG–BESS
hybrid system was modeled in MATLAB/Simulink. The single-
line diagram of the system is presented in Figure 6.

The WTG is based on a turbine model with a rated power of
1.5 MW. It is connected to a 40-km 35–kV transmission line
parallel with a 12.5 kWh BESS. The SG is 30 MW. The load 1 in
the system is a constant power load with a rated power of 10MW.
The rated system frequency is 50 Hz. Appendix Table A1 shows
the parameters of the overall system. Appendix Tables A2 and
A3 show the parameters of the WTG (doubly-fed induction
generator [DFIG] in this case) and the transmission line,
respectively.

For the case studies, a step load change of 1.5 MW was
considered. Given the proposed method in this study, we are
particularly interested in how it works under different wind
speeds and SOC levels. In Cases 1–3, three different wind
speeds of 7, 11, and 13 m/s are simulated to verify and
compare the control performance of the coordinated FFR

method under low, medium, and high wind speed conditions.
The initial battery SOC is set as 85%. Case 4 is simulated under
different levels of battery SOC to verify the impacts.

Case 1: Low Wind Speed
The wind speed is set to 7 m/s, and an extra load of 1.5 MW is
added at 20 s. When the frequency drops, only BESS provides
frequency regulation. Figure 7 presents the simulation results.

Figure 7A shows that the frequency nadir is raised from
49.83 to 49.86 Hz with FFR provided by BESS. In the low
wind speed condition, the turbine does not participate in the
frequency regulation, and it follows the MPPT control only.
Figure 7D shows that the BESS releases energy to support
frequency with a response time of <20 ms. Figure 7C shows
the rotor speed of the WTG is 0.79 p. u. below the lower limit of
0.8 p. u. It validates the necessity and feasibility of the coordinated
strategy of only allowing BESS to provide frequency support at
low wind speeds.

In conclusion, BESS provides the full FFR in this case and has
shown good frequency control performances. The dimensioned
capacity BESS does not lead to excessive investment costs or the
penalty cost of inadequate frequency support. A reasonable
distribution of output power between the BESS and WTG
reduces wind energy losses and ensures the economic
feasibility of the hybrid system.

Case 2: Medium Wind Speed
In this case, the wind speed is set to 11 m/s, and the extra load of
1.5 MW is added at the 20 s. The simulation results are shown in
Figure 8.

Figure 8A shows the frequency-regulation performance using
the proposed method under medium wind speed. The highest
frequency nadir is 49.87 Hz, which is 0.05 Hz higher than
49.82 Hz in the without control mode. In the DFIG mode,
when only the DFIG-based WTG provides frequency support
via virtual inertia control, the nadir is raised by 0.3 Hz compared
to that without control. Furthermore, the system frequency
suffers less oscillation and reaches the steady state faster due

FIGURE 5 | Virtual inertia control scheme for doubly-fed induction
generator–based wind turbines.

FIGURE 6 | Single-line diagram of the wind turbine generator–BESS hybrid system.
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to the additional frequency support from BESS. Figure 8B shows
the output power of the turbine under different controls. It
increases to regulate the frequency and decreases to recover
the rotating speed of turbine afterwards. The output power of
DFIG decreases from 1.09 MW when it supports frequency alone
to 1.056 MW when BESS further assists the frequency support.
Figure 8C shows the rotor-speed variations. The rotor speed
drops during the underfrequency event, releasing power to
provide frequency support. The rotor-speed variation under
the DFIG + BESS mode is smaller than that under the
DFIG mode.

In conclusion, the coordinated control provides frequency
support improved performances. On the one hand, the hybrid

system shares the output energy of the BESS, while making
reasonable use of the kinetic energy to provide frequency
support. For a set DOD of 0.9, the aging rate of BESS is
slowed down, which reduces the operation and maintenance
costs of BESS.

Case 3: High Wind Speed
The wind speed is set to 13 m/s and other conditions remain the
same as in case 2. Figure 9 shows the simulation results for
different control modes.

Figure 9A shows the raised frequency nadir to a maximum
of 49.87 Hz under the proposed FFR method. As shown in
Figures 9B and 9C, the rotor speed decreases, releasing kinetic

FIGURE 7 | Results for case 1. (A) system frequency. (B) turbine output power. (C) rotor speed of turbine.
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energy to provide frequency support to the system. Therefore,
the output power is raised accordingly. However, compared to
case 2, the difference shown in Figure 9B is that the DFIG is
capable of increasing its output power by 0.16 MW, which is

0.02 MW greater than that at a medium wind speed in
Figure 8B. The rotor can store more kinetic energy at
higher wind speeds, allowing for better frequency-regulation
performance.

FIGURE 8 | Results for case 2. (A) system frequency. (B) turbine output power. (C) rotor speed. (D) output power of the BESS.
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Case 4: Impacts of State of Charge
In this case, the proposed coordinated control is demonstrated
with different levels of the SOC of battery to verify the proposed
SOC–p constraint.

As shown in Figures 10A and 10B, the BESS reaches a
maximum active output of 0.18 MW at 85% SOC, and the
frequency nadir is also the highest. When the SOC drops to
40%, the constraint coefficient Ks in the SOC–p module
constrains the power output of the BESS to 0.15 MW, and
when the SOC reaches the lower limit of 10%, the BESS enters
the charging state and thus it does not participate in frequency
support. Although the frequency-regulation performance
weakens as the BESS output decreases, slowing of the SOC
decline can further extend the battery life. For operators of the
hybrid system, a prolonged period of BESS output power at

maximum DOD raises the investment cost of battery. In
summary, the simulation results show that the proposed
SOC–p module can effectively limit the fall of SOC to prevent
FSD in the system. In addition, the hybrid system can achieve
more financial benefits using this method, balancing the safety of
the frequency-regulation service with its economic viability.

However, it is important to point out that batteries will
inevitably age over time. When faced with the same
frequency-regulation requirement, especially at low wind
speeds where the BESS is operating alone, the total number of
hours during which BESS provides frequency support is
decreased by the reduction in available capacity. In addition,
the weakening of the available power output due to battery aging
can have a significant impact on control performance, which can
threaten the grid safety and stability. Therefore, regular

FIGURE 9 | Results for case 3. (A) system frequency. (B) turbine power output. (C) rotor speed.
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maintenance and replacement of the battery units is a necessity
with BESS. A mix of energy storage devices can also be applied to
further reduce the rate of battery aging, for example, by using
supercapacitors to compensate for the frequency support of the
batteries at low SOC.

5 CONCLUSIONS

This study proposed a SOC-based droop control of BESS and a
coordinated FFR method of the WTG–BESS hybrid system. The
proposed control strategy can provide FFR to the power system
with satisfactory performances.

As to FFR by BESS, the battery type and capacity
dimensioning are determined based on the technical and
economic analysis of BESS, and a SOC-based droop control is
proposed based on the SOC interval model. By constraining the
BESS output and maintaining the SOC, the frequency-regulation

performance is guaranteed with limited capacity while extending
the battery life.

As for the coordinated FFR control of the WTG–BESS hybrid
system, the method allocates the output power between the
turbine and BESS at different wind speeds. Furthermore, it
brings additional frequency support from utilizing the kinetic
energy of DFIG.

The proposed control methods were demonstrated using
MATLAB/Simulink simulations under different wind speeds
and SOC conditions. Our results demonstrate the following
advantages:

1) The highest frequency nadir compared to no control, BESS
alone, and WTG alone conditions

2) Applicable to all wind speeds
3) Extending the cycle life of battery through SOC management

and improving the economic feasibility of the proposed
method
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APPENDIX

TABLE A1 | Parameters of the overall hybrid system.

Parameters Value Unit

SG 30 MVA
DFIG-based WTS 1.5 MW
BESS 12.5 kWh
Load1 10 MW
Extra load 1.5 MW
T1 110/35 KV
T2 0.575/35 KV
T3 0.38/35 KV

TABLE A2 | Parameters of the doubly-fed induction generator–based wind
turbines.

DFIG-based WTS Value Unit

Pn 1.5 MW
Vs 0.575 kV
fn 50 Hz
Rs 0.023 p.u
Ls 0.18 p.u
Rr 0.016 p.u
Lr 0.16 p.u
Lm 2.9 p.u
H 5.05 s

TABLE A3 | Parameters of the transmission line.

Line R (Ω/km) L (H/km) C (F/km) Length (km)

Line1 0.1153 0.00105 11.33*10−9 20
Line2 0.1153 0.00105 11.33*10−9 20
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Pumped storage power plant (PSPP) has the upper hand on economy and

cleanness. It also has the functions of frequency regulation, phase regulation,

and spare, which have been instrumental in maintaining the stability of power

system operation. But now the mechanism for PSPP to become involved in

electricity market transactions in China is imperfect. How to properly establish a

multi-time scale trading profit model and reasonably allocate the capacity of

PSPP has been instrumental in realizing the economic operation of the power

system. So, this article analyzes the mechanism for PSPP to become involved in

electricity market trading by providing combined electricity supply services and

ancillary services, and establishes an optimization model with respect to

economic optimization. At the same time, considering the volatility of

electricity prices in the spot market, the risk of PSPP becoming involved in

electricity market trading is measured by conditional Value at Risk (CVaR) to

achieve economic optimization while minimizing the risk. The case studies

demonstrate that the proposed profit model can enhance the revenue and

decrease the risk of PPSP.

KEYWORDS

cost-benefit analysis, power markets, risk analysis, energy storage, multi-time scale

1 Introduction

Since the transitional burning of fossil fuels has led to global warming, reducing

greenhouse gas emissions has become an urgent problem (Luka et al., 2017). However, at

present, power generation in China’s power industry is still dominated by thermal power,

it is particularly important to replace traditional thermal power with clean energy power

generation. And accelerating the construction of a new type of power system based on

clean energy, so as to achieve the objective of carbon peaking and carbon neutrality (Yang

et al., 2021). However, on the one hand, the prediction of the amount of clean energy

generation is difficult, such as wind power is severely affected by wind and is highly

random; on the other hand, when transmission lines are congested or underloaded,

excessive clean energy generation will be cut, leading to energy waste and low utilization
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(Guo et al., 2021). Therefore, energy storage is particularly

important for power systems containing clean energy, energy

storage not only can enhance the utilization of clean energy but

also increase the dependability of electricity supply (Pang et al.,

2021).

PSPP is considered to be a good solution for energy storage

units. Firstly, Pumped storage does not emit carbon dioxide when

generating electricity as a clean energy source. Secondly, the high

flexibility of PSPP dispatch has a significant effect on the constant

operation of the power system. Thus, with the further

advancement of green energy generation, the role of the PSPP

will become more important in the power system (Jahns et al.,

2020).

However, because China’s electricity market is not mature

enough, it is tough for PSPP to recover its costs by making profits

only based on the difference between peak and valley electricity

prices. Therefore, various scholars have studied the cost recovery

and benefits situation of PSPP. Masoumzadeh et al. (2018)

pointed out that the current cost of PSPP is comparatively

high, but government support and decreasing technology costs

could create conditions for full-scale adoption of PSPP in the

electricity market. Julian et al. (2020) proposed a combination of

long-term and short-term cycles for pumped storage power

plants, which greatly reduces the cost of pumped storage

power plants, but this combination requires strict

requirements for the construction location of pumped storage

power plants and the surrounding theoretical environment. Zhao

et al., 2021 used the cooperative game approach to share the cost

of auxiliary services of pumped storage power plants and develop

a compensation mechanism for auxiliary services, but in their

study, they mainly focused on peak-shaving auxiliary services

only, and the remaining several auxiliary services were not fully

considered. Sospiro et al. (2021) mainly consider the

environmental and social aspects of pumped storage plants

and focus on the environmental aspects of the auxiliary

services of pumped storage plants, but do not consider the

cost recovery of pumped storage itself. However, the cost

reclaim mechanism and revenue mechanism of PSPP studied

by most scholars nowadays are not perfect, and most of them

only share the cost for a single ancillary service, which cannot

give full play to the profitability of each ancillary service of PSPP,

making it difficult for PSPP to obtain considerable revenue.

Moreover, the current electricity price mechanism is not

sufficient and the fluctuation of electricity price is random, which

has a certain impact on the economic, stable and efficient

operation of PSPP. Li et al. (2022) proposed a two-part tariff

for pumped storage plants to promote wind power consumption,

but the pricing mechanism is not very different from the

traditional two-part tariff, and the role of the ancillary services

market is not considered in the trading process. Lazar et al.

(2020) analyze the role of peaking services of pumped storage

power plants on the power system and analyze the uncertain

relationship between tariff difference and revenue, but only the

time-of-use tariff of pumped storage power plants is considered,

so the tariff mechanism is single. He et al. (2022) designed a two-

part tariff mechanism for different stages of pumped storage

power plants to enable pumped storage plants to earn significant

revenues, but did not consider pumped storage as an

independent trading entity and considered only peaking

auxiliary services. AK et al. (2019) propose a situational

method to work out the return of PSPP by considering the

volatility of electricity prices and using historical electricity

prices. And Koko et al. (2018) improved the current time-of-

use Pricing (TOU) by dividing the TOU into a weekday TOU and

a weekend TOU. By treating weekday TOU and weekend TOU as

variables, the consumption cost of residential customers at

different times is effectively reduced. However, most of the

current studies on pumped storage electricity tariff

mechanisms only involve a single unit price, like TOU and

double-stage tariff, without combining different tariff

mechanisms.

PSPP not only faces the challenge of imperfect tariff

mechanisms but also the challenge of the imperfect electricity

market. Most studies have been conducted mainly for a single

electricity market. Zejneba et al. (2022) compared the benefits

between pumped storage plants and battery storage and

demonstrated that pumped storage is the most efficient energy

storage technology available. However, only energy arbitrage

returns were considered when comparing the two, without

diversifying to consider returns in other markets. Rodica and

Corentin, (2021)analyze the energy and capacity benefits of

pumped storage plants and propose the type of contract that

mixes capacity and energy, but it can only be applied to

competitive electricity markets and does not adequately

consider the ancillary service benefits of pumped storage

plants. Huang et al. (2022) introduced pumped storage into

the Midcontinent Independent System Operator (MISO) day-

ahead market in combination with other units to improve the

flexibility of MISO day-ahead market dispatch and to improve

the system economics through pumped storage. Luo et al. (2020)

considered the impact of the pollutant trading market on system

economics while considering the optimal economics of multi-

energy systems. The pollutant emissions are reduced while

achieving the optimal system economy. In addition to studies

considering only a single electricity market, some scholars have

also studied multiple electricity markets. Mosquera-Lopez and

Nursimulu (2019) contrasted the price drivers of the spot and

medium- and long-term market (MLTM), concluding that the

determinants of the spot market were renewable energy and

electricity demand, while the determinants of MLTM are the

prices of natural gas as well as coal. Zhu et al. (2021) researched

the mixed electricity market, extended the definition of the mixed

electricity market, and compared and analyzed two different

contract decision models of shared contract and wholesale price

contract to study the pricing strategy of clean energy grid

connection. Parinaz et al. (2022) transformed the terraced
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hydro plants into pumped storage plants to achieve enhanced

returns but did not consider the transformation costs and

medium- and long-term market transactions in the process.

Mou (2019) proposed to use the spot market to make up for

the defect of the two-sided market as well as combine different

ancillary service trading models to obtain more profitability for

PSPP. However, it did not consider the potential revenue of

ancillary services, which led to the underestimation of the

revenue of PSPP. In a summary, the current research on

multiple electricity markets is not sufficient, and most of them

only consider the research on the single spot market, and the

research on competitive bidding in the multi-time scale

electricity market is less. At the same time, there is less

research on the ancillary service market of PSPP, which does

not effectively leverage the ancillary services of PSPP to increase

revenue. Thus, there is a need to further improve the electricity

market mechanism to achieve a reasonable allocation of

resources for PSPP, to obtain higher revenue.

At the same time, with the gradual opening and improvement

of the electricity market, different bidding strategies will bring

different levels of risk, and the relationship between the balance of

risk and its economic benefits should also be addressed. Li et al.

(2021) proposed a p-robust algorithm to calculate the risk caused

by the uncertainty of electricity price on the revenue of pumped

storage power plants, but it needs to sacrifice part of the profit

while reducing the risk of pumped storage revenue. Luo et al.

(2021) considered the uncertainty of distributed energy sources

and the role of energy storage devices on multiple time scales to

optimize the operation of the electric grid. Yang et al. (2020)

proposed a demand response model of energy storage operators

to take part in the MLTM to reduce the uncertainty risk while

lowering the power purchase cost for operators through flexible

energy storage systems. Liu et al. (2021) considered the

randomness and volatility of wind power in multiple

microgrids and established a random planning model, which

provided a strategy for the balance of benefits and risks. Tian et al.

(2020) put forward a bidding method to avoid risks for PSPP,

which reduces the risk of participating in the market through

downside risk constraints. Gao et al. (2019) used the conditional

value at risk (CVaR) theory to study the uncertainty of virtual

power plant (VPP) market prices and proposed a bi-level model

to optimize the operating strategies in the day-ahead and real-

time markets. Canakoglu and Adiyeke, (2020) proposed a variety

of pricing models for power products based on price uncertainty.

The portfolio problem of mean-square optimization and

conditional Value at Risk was solved by combining price

forecasting and risk management. From above discussion, it

can be concluded that there are few studies on the balance

between return and risk for PSPP, and most of the studies on

PSPP only consider the maximization of power plant return and

ignore the risk caused by the volatility of electricity prices.

Therefore, how to balance the relationship between return and

risk is crucial for PSPP.

Considering the above problems, this article improves from

the following aspects:

1) In the study of spot market trading of PSPP, the actual called

rotating reserve capacity is considered to complement the

power revenue and increase the total revenue of PSPP

participating in the spot market, and the impact of different

called price factors on the revenue of PSPP is analyzed.

2) Combining the electricity supply services and ancillary

services, the trading mechanism of PSPP participating in

the MLTM and the spot market is proposed, and an

optimization model with respect to economic optimality is

established, and compared it with the current double-stage

tariff mechanism in my country to prove that ancillary

services are of great significance to the cost recovery of PSPP.

3) Considering the volatility of electrovalence in the spot market,

the risk of PSPP taking part in the electricity market is

measured by CVaR to achieve economic optimization

while minimizing the risk, and the validity of the model is

proved through comparative analysis.

The rest of the article is shown below. Section 2 discusses the

tariff mechanism of PSPP. Afterward, Section 3 proposes a profit

model for PSPP. Next, Section 4 verifies the validity of the model

through example analysis. Finally, Section 5 summarises this

article.

2 Electricity price mechanism of
pumped storage power plant

At present, the electricity price mechanism of PSPP in China

is mainly TOU and double-stage tariff.

2.1 Time-of-use

The TOU refers to the cost of charging electricity for each

period according to the average marginal cost of system

operation. The periods are from the division of a 24-h day

according to the system operation condition (Zhao et al.,

2022). Further improving the TOU, especially reasonably

widening the price difference between peak and valley

tariffs, is conducive to PSPP to obtain higher electric

energy returns, and to create more space for the

development of PSPP, thus further helping new energy

accommodation.

2.2 Double-stage tariff

The double-stage tariff is a method that combines the

basic tariff corresponding to the capacity and the electricity
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tariff corresponding to the electricity consumption to

determine the tariff (Tan et al., 2021). When the double-

stage tariff is applied, it can reflect the benefits of PSPP in all

aspects. On the one hand, the electricity tariff reflects the

basic operation mode of PSPP using the peak-to-valley price

difference, and on the other hand, the capacity tariff reflects

the multiple values of the ancillary services of PSPP such as

peak-shaving and backup, which has an important impact on

improving the benefits of PSPP.

3 Profit model of pumped storage
power plant

In the electricity market environment, PSPP can provide

multiple types of products inMLTM and spot market due to their

superior performance. For example, electric energy products and

ancillary service products include spinning reserve, black start,

and so on. PSPP can reveal the value of its own power and

capacity by taking part in the electricity market bidding and gain

considerable profits.

3.1 Profit of pumped storage power plant
taking part in the spot market

In this article, the profit of PSPP included electric energy

spot market profit and spot profit from ancillary services. In the

electric energy spot market, PSPP can earn revenue by

purchasing and selling electricity at different times using the

peak-to-valley difference. In the spot market for ancillary

services, PSPP can generate profits through rapid start-up or

rapid change in operating conditions and playing a

standby role.

The profit model of PSPP taking part in the spot market is

as (1).

F1 � ∑
24

i�1
∑
Nω

ω�1
πω · (δipe,s

i qe,si − (1 − δi)pbuy
i qbuyi + δi(pc,s

i qc,si + pc,s′
i qc,s′i ))

(1)

where, πω is the probability of various typical electricity price

scenarios; δi is the working state of the PSPP, including

pumping and power generation, the pumping state is

represented by 0, and the power generation state is

represented by 1; pe,s
i is the feed-in price of PSPP in the

ith time period; qe,si is the on-grid energy of PSPP in the ith

time period; pbuy
i is the purchased price of PSPP in the ith

time period, because PSPP purchases electricity from the

power grid as a large user, considering the usage fee of the

power grid, the purchased price of PSPP in the same period

should be higher than the on-grid electricity price, so the

purchased price of PSPP is 1.1 times the on-grid electricity

price.; qbuyi is the amount of electricity purchased of PSPP in

the ith time period; qc,si is the spinning reserve capacity; pc,s
i

is the electricity price of spinning reserve capacity in the ith

time period; qc,s′i is the actual called spinning reserve

capacity in the ith time period; pc,s′
i is the electricity price

of the actual called spinning reserve capacity in the ith time

period.

3.2 Price uncertainty in pumped storage
power plant market based on conditional
value at risk

Since the uncertainty of electricity prices in the spot

market effect on the bidding strategy of PSPP, this paper

measures the risk because of the uncertainty of

electrovalence in the spot market by applying the

conditional value at risk (CVaR) (do Prado and Chikezie,

2021). The specific expressions are as (2).

XCVaR � XVaR − 1
1 − α

∑
Nω

ω�1
πω[F1 −XVaR]+ (2)

where, XVaR denotes the VaR; [F1 −XVaR]+ is the difference

between the spot market return and the VaR; α is the confidence

level.

3.3 Profit of pumped storage participation
in medium- and long-term market

The profits of PSPP participating in MLTM are divided

into profits of electric energy and profits of ancillary services.

PSPP obtain profits of electric energy from signing MLTM

contracts for the provision of electricity, and obtain profits of

ancillary services from the black-start ancillary service

provided.

Since the time scale of MLTM and the spot market are

different, it is necessary to decompose MLTM electric

energy. In this paper, the daily power decomposition

curve is selected from the peak and flat curve model: the

day is divided into peak, flat and valley sections, which can

be negotiated by the historical load characteristics of PSPP

or other ways to determine the peak, flat and valley load

power.

The profit model of PSPP taking part in MLTM is as (3).

F2 � ∑
24

i�1
pe,f
i qe,fi + phth/365 (3)

where, pe,f
i is electricity prices of MLTM contracts, qe,fi is the

daily decomposition electricity of PSPP in the ith time period; ph

is the black start service fee provided by PSPP; th is the annual

black start service time of PSPP.
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3.4 Cost model of pumped storage power
plant

In addition to considering the power purchase cost of PSPP

in the spot market, this paper also considers the start-up and

stop-up cost of PSPP and the deviation cost of decomposing

electricity in MLTM.

The cost model of the PSPP is as (4).

C � Cs + Co (4)
where, Cs is the start-up and shutdown cost; Co is the deviation

cost of decomposing electricity in MLTM.

The start-up and shutdown cost Cs represents the total start-

up and shutdown cost of PSPP in 1 day.

Cs � ∑
24

i�1
Cqtn

qt
i (5)

where, Cqt refers to the start-up and shutdown cost of a single

unit; nqti is the number of units started/stopped in the ith time

period.

The deviation cost Co refers to the cost caused by the

difference between the actual decomposed electricity and the

planned decomposed electricity of PSPP.

Co � M∑
24

i�1
Δωi (6)

where, Δωi is the electricity deviation of MLTM electricity

decomposition in the ith time period; M is the electricity

deviation penalty factor.

3.5 Profit model of pumped storage power
plant

The objective function consists of four terms.

F� max(F1 + F2 − C + β ·XCVaR) (7)

where, the first term is the profit of PSPP in the spot market; the

second term is the profit of PSPP in MLTM; the third term is the

cost model of PSPP; the last term is the product of the conditional

VaR XCVaR and the risk preference coefficient β. The risk appetite
coefficient β indicates the degree of the risk.

3.6 Constraints

3.6.1 Output constraints

qmin ≤ qe,si ≤ qmax (8)
qmin ≤ qc,si ≤ qmax (9)

qmin ≤ q
buy
i ≤ qmax (10)

qmin ≤ qe,fi ≤ qmax (11)
qmin ≤ qe,si + qc,si + qbuyi + qe,fi ≤ qmax (12)

qc,s′i ≤ qc,si (13)

where, qmin is the minimum allowable generation/pumping

power for each time period; qmax is the maximum allowable

generation/pumping power for each time period.

3.6.2 Maximum continuous pumping and power
generation time constraints

T1 ≤Tp (14)
T2 ≤Tg (15)

where, T1 is the continuous pumping time variable and T2 is the

continuous power generation time variable; Tp is the maximum

allowable continuous pumping time; and Tg is the maximum

allowable continuous power generation time.

3.6.3 Reservoir capacity constraints

xmin ≤xi ≤ xmax (16)
xi � xi−1 + λ (1 − δi)qbuyi − δi(qe,si + qc,si ) (17)

where, xi is the reservoir capacity converted to power generation

in the ith time period; xmax is the equivalent power generation of

maximum reservoir capacity; xmin is the equivalent generating

capacity of minimum reservoir capacity; λ is the total efficiency of

PSPP power generation, taken as 75%.

3.6.4 Outbound flow constraints

Qi,min ≤Qi ≤Qi,max (18)

where, Qi,min is the minimum discharge flow allowed in the ith

time period of PSPP; Qi is the average discharge flow in the ith

time period of PSPP; Qi,max is the maximum discharge flow

allowed in the ith time period of PSPP.

3.6.5 Spinning reserve market constraints

qc,s′i � kc,sq
c,s
i (19)

pc,s′
i � kip

e,s
i (20)

The actual called spinning reserve capacity is only part of the

bidded spinning reserve capacity, and because the actually called

spinning reserve capacity cannot be accurately predicted. Thus, a

factor kc,s is set to indicate the proportion of the actual called

capacity to the bidded capacity. ki is the price factor of the called
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capacity in the spinning reserve market, indicating that the price of

the called capacity in the ith time period is ki times of the on-grid

electricity price in the same period.

3.6.6 The conditional value at risk correlation
constraints

CVaR represents the profit of PSPP in changes of the

electricity market under certain time and confidence

conditions. And the higher the value of CVaR, the lower the risk.

XVaR −∑
I

i�1
∑
Nω

ω�1
πω · F1 ≤ [F1 −XVaR]+ (21)

[F1 −XVaR]+ ≥ 0 (22)

where, XVaR denotes the VaR; [F1 −XVaR]+ is the difference

between the spot market return and the VaR.

3.6.7 Daily decomposition electricity constraints

qe,fi,min ≤ qe,fi ≤ qe,fi,max (23)
qi � qe,fi + qe,si + qc,si (24)

Ci � ∑
x∈X

cx,i, X � {p, f, v} (25)

cx,i � γxCi � ∑
t∈Tx

qciΔT (26)

where, qe,fi,max and qe,fi,min are the upper and lower limits of daily

decomposition electricity of the unit, which are determined

according to the technical parameters of the unit, contract

completion and maintenance plan; qi is the total output in the

ith time period of PSPP; Ci is the daily contracted electricity of

PSPP; p,f and v represent peak, flat, and valley hours, respectively;

cx,i is the contracted electricity in the ith time period of PSPP; Tx is

the set of time period indicators included in the ith time period; γx
is the proportion of the decomposition electricity in the ith time

period of PSPP to the contracted electricity. ΔT refers to a certain

time period in Tx; qci refers to the decomposition electricity of ΔT.

4 Case studies

This paper uses the CPLEX solver on the MATLAB software

platform to solve the established multi-time scale profit model

and derive the optimization results.

4.1 Pumped storage power plant taking
part in the spot electricity energy market
only

When PSPP only participates in the spot market bidding,

only the spot market part of the profit model is considered,

MLTM and ancillary service market parts are not considered,

and the offset cost of MLTM power decomposition is not

considered. The parameters of a typical PSPP are shown in

Table 1.

Two sets of electricity price scenarios are determined to

research the profits of PSPP under different electricity tariff

scenarios. The different electricity tariff scenarios are shown

in Figure 1.

Scenario 1: The market demand for electricity is large, the

electricity supply is insufficient, and the price difference

between peak and valley is large.

Scenario 2: A small market demand for electricity, with

sufficient power supply and a low peak-to-valley price

difference.

The profits of PSPP under the two scenarios are shown in

Table 2. The operation of PSPP under scenario 1 is shown in

Figure 2.

As can be seen in Figure 2, PSPP pump during the low tariff

hours of 0:00–8:00 and 13:00–14:00, and sell electricity online

during the peak tariff hours of 9:00–11:00, 15:00–16:00, and 21:

00–23:00, using the difference between peak and valley tariffs to

obtain the power revenue.

From Table 2 it can be obtained that there is a positive

correlation between the profit of PSPP and the peak-to-valley

electricity price difference. When the peak-to-valley electricity

price difference is high, the profit of PSPP is high, and vice versa.

This is because PSPP relies on the peak-to-valley electricity price

difference to earn the profit, purchasing electricity for pumping

at low prices and selling it at high prices.

According to the static investment of PSPP of 4,500 CNY/

kW per unit kilowatt and the capital internal rate of return of 8%,

the capacity tariff is 685 CNY/kW, which translates into a daily

capacity profit of 4,505,100 CNY. Therefore, PSPP cannot rely on

the spot market alone to recover costs and gain more profit, but

also need to participate in the ancillary service market bidding

and MLTM bidding.

TABLE 1 Actual parameters of PSPP.

Parameters qmin qmax T1 T2 xmin xmax x0 Conversion
efficiency

Number
of units

Numerical
value

0 2400 MW h 8 h 6 h 0 18400 MW h 0 0.75 4
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4.2 Pumped storage power plant taking
part in both the electric energy and
ancillary services spot market

The profit obtained when a PSPP taking part in the ancillary

services market is related to two aspects. On the one hand, the

capacity tariff in the ancillary services market and, on the other

hand, the tariff coefficient in the ancillary services market. This

section still takes the example of a domestic PSPP in Section 4.1,

and the specific parameters remain the same. Take kc,s � 0.1,

ki � 2, ci = 0.15 CNY/kWh.

Considering the uncertainty of electricity prices, ten

typical electricity price scenarios are generated as shown

in Figure 3. The corresponding probabilities of each

electricity price scenario are shown in Table 3. Scenario

1 and Scenario 2 are typical scenarios in Section 4.1. In

this section, three typical electricity price scenarios with the

highest probability are selected for comparative analysis. The

selected scenarios are scenario 1, scenario 2 and scenario 7,

the corresponding optimal daily operation mode is shown in

Figures 4, 5, 6.

It can be seen from Figures 4, 5, 6 that PSPP mainly

purchases electricity during the early morning valley hours of

1:00–7:00 and sell electricity during the peak hours of 9:00–11:00,

15:00–17:00 and 21:00–23:00 to recover costs through the peak-

to-valley tariff difference. Meanwhile, PSPP mainly provide

rotating backup services at 8:00–12:00 and 15:00–24:00 to

achieve PSPP cost recovery. The total returns of the three

typical scenarios were respectively 8,954,200 CNY,

7,635,100CNY and 8,126,410CNY. It can be seen that taking

part in both the ancillary service spot market bidding and the

electric energy spot market bidding can recover the cost of PSPP

and obtain more profits. And through comparison, it can be

found that the more PSPP participating in the auxiliary service

market, the higher the income will be.

4.3 Comparison with a single double-
stage tariff

Combined with the electricity consumption

characteristics of the provincial grid where PSPP is located,

the peak and valley hours on the power generation side are

divided as follows: peak hours: 9:00–16:00, flat hours: 17:

00–24:00, valley hours: 0:00–8:00; the tariff for flat hours is

0.44 CNY/kWh, the tariff for valley hours is 0.24 CNY/kWh,

and the tariff for peak hours is 0.59 CNY/kWh. The actual

capacity profit of PSPP is about 931 million CNY per year,

which translates into a capacity tariff of 388.73 CNY/kWh,

while the theoretical capacity tariff should reach 685 CNY/

kWh based on the capital internal rate of return of 8%.

Therefore, the current profit of PSPP is low, and the

specific double-stage tariff scheme is shown in Table 4.

The profit of pumped storage under the double-stage tariff is

compared with the profit of pumped storage under the multi-

electricity market environment in Section 4.2. To ensure the

accuracy of the comparison results, the tariff under the electricity

market conditions is set according to the TOU in the double-

stage tariff case, and the results are shown in Table 5.

As can be seen from Table 5, the market return on electricity

energy under the electricity market bidding is lower than the

return on electricity under the single double-stage tariff. In

contrast, the ancillary service profit under the electricity market

tariff is more than twice as high as the capacity profit under the

single double-stage tariff, making the total profit higher than

the total profit under the single double-stage tariff. The

comparison shows that the capacity cost recovery of PSPP in

the electricity market environment is not enough to rely on the

power profit alone, and the level of profit in the ancillary

services market has an important impact on the cost

recovery of PSPP.

FIGURE 1
Two scenarios of electricity tariff.

TABLE 2 Comparison of profit of PSPP under different scenarios.

Peak and valley
tariff difference (CNY/kWh)

Revenue (million CNY)

Scenario 1 0.7 399.5

Scenario 2 0.45 150.13
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4.4 Pumped storage power plant taking
part in medium- and long-term market
bidding and spot market bidding

When PSPP takes part in both MLTM and the spot market,

they need to break down MLTM power into the spot market and

reasonably allocate it with the spot market capacity to obtain

considerable profit. Firstly, the monthly contract of PSPP is

decomposed to each day, and then the 24-h decomposition is

adopted day ahead, and the contracted power corresponding to the

output in the whole optimization cycle can be provided to the

trading center as the result of contract decomposition.

Conventional medium- and long-term decomposition curves

include the following: Daily average decomposition, Peak-period

decomposition, Normal-period decomposition, Valley-period

decomposition, and Peak-valley-normal period decomposition

(Wu et al., 2022). The pumped storage plant in the example of

this paper adopts Peak-valley-normal period decomposition The

FIGURE 2
Optimal operation of PSPP that only participate in the electric
energy spot market in scenario 1.

FIGURE 3
Ten typical electricity price scenarios.

TABLE 3 Probability of ten electricity price scenarios.

Scenario 1 2 3 4 5 6 7 8 9 10

probability 0.151 0.127 0.098 0.089 0.067 0.097 0.119 0.070 0.087 0.095

FIGURE 4
Optimal operation of PSPP that both participate in electric
energy and ancillary services spot market in scenario 1.
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daily power decomposition is carried out by determining the ratio

of peak, flat and valley load segments according to the historical

load, and its typical daily decomposition curve is shown in

Figure 7.

From Figure 7, PSPP suppresses the volatility of spot

electricity prices by decomposing medium- and long-term

contracted electricity on a time-by-time basis and replacing

part of the spot electricity. Meanwhile, the profit of PSPP

included three components. The first component is the profit

from PSPP taking part in the spot market. The additional profit

of MLTM contracts to damp fluctuations in spot electricity prices

is expressed through MLTM contracted electricity prices minus

the product of the electricity prices for each period in the spot

market and MLTM decomposition to spot. The third component

is the benefit of PSPP providing black-start services in MLTM.

MLTM contract tariff for PSPP is 0.55CNY/kWh, the annual

black-start service of PSPP is shown in Table 6, and MLTM

decomposition of the power output is shown in Figure 8.

At this point, the total profit of PSPP is 13.625 million CNY,

which is significantly improved compared with the profit of

participation in the spot market alone, while also smoothing

out the risk caused by the randomness of the spot electricity price.

The joint bidding strategy of the MLTM and spot market is

obtained through the daily contract decomposition curve, which

verifies the rationality and effectiveness of the model.

4.5 Impact of risk preference coefficients
on returns

Because the risk in this paper only considers the risk

caused by the volatility of electricity prices in the spot

market, in order to compare the impact of different risk

preference coefficient settings on the profit of PSPP, this

section only uses the example in Section 4.2 as a reference

and does not consider the impact of MLTM on PSPP, and

calculates the expected profit and CVaR values of PSPP under

different risk preference coefficients. The results are shown in

Figure 9.

It can be seen that as the risk preference coefficient increases,

the expected total profit gradually decreases and the CVaR

gradually increases, at which time a higher capacity price and

FIGURE 5
Optimal operation of PSPP that both participate in electric
energy and ancillary services spot market in scenario 2.

FIGURE 6
Optimal operation of PSPP that both participate in electric
energy and ancillary services spot market in scenario 7.

TABLE 4 Scheme of double-stage tariff.

Capacity tariff Amount Unit

388.73 CNY/kWh

Energy price Peak hours 0.59 CNY/kWh

Flat hours 0.44 CNY/kWh

Valley hours 0.24 CNY/kWh
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price coefficient of the called electricity is required to complete

the cost-benefit recovery. When the risk preference coefficient is

small, the expected total profit decreases slowly with the increase

of CVaR. However, when the risk preference coefficient is large,

the expected total profit decreases significantly even if the CVaR

increases by a small value.

4.5.1 β = 10
When β � 10 , PSPP is extremely risk-averse and will adopt a

very conservative strategy at this time, and its most profitable

daily operation mode is shown in Figure 10.

Compared with the operation mode at β � 1, it can be seen that

at this time, for the purpose of reducing the risk and increasing the

profit expectation of the tail, PSPP tends to take part more in the

spinning reserve market to earn capacity profit for the power

extracted during the low period, so as to reduce the risk brought

by the uncertainty of electrovalence. At this time, the total profit is

8,315,000 CNY, which is slightly lower than that at β � 1 in Section

4.2. However, the risk is also relatively low. At the same time,

reducing the amount and frequency of pumping during the low

period reduces the losses of PSPP, which is beneficial to prolong the

life of the unit.

4.5.2 β = 0
When β � 0, PSPP only aims at the maximum expected profit

and will adopt a more aggressive strategy, which will have a greater

impact on the stable profit of PSPP. At this time, PSPP can

participate in the bidding of the day-ahead electricity market and

the spinning reserve market, respectively, with a fixed percentage all

the time, which can buffer the risk to a certain extent.

Assume that the percentage of pumped storage participating

in the day-ahead electricity market is in the range of 10%–90%,

TABLE 5 Profit of PSPP under different electricity tariff schemes.

Double-stage tariff Electricity market bidding

Electricity profit Capacity profit Electric
energy market profit

Ancillary services market
profit

Revenue (million CNY) 201.56 255.95 161.95 463.56

Total revenue (million CNY) 457.51 625.51

FIGURE 7
Time share power curve for daily contracts.

TABLE 6 Black-start service for PSPP.

Annual black-start time
of a PSPP
(min)

Black
start service cost

43200 60000 CNY/h

FIGURE 8
MLTM decomposition of PSPP output.
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and at the same time, assume that the price of the transferred

power in the spinning reserve capacity is fixed in the electricity

market environment, i.e., k is taken as 1.1. The profit of PSPP at

this time is shown in Figure 11.

From Figure 11, it can be seen that when PSPP participates in

the ancillary service market with a proportion of 80%, PSPP can

obtain a maximum profit. Because the electric energy income

obtained by PSPP only through a single peak-to-valley electricity

price difference is limited, and the provision of ancillary services

is the main way for PSPP to improve its own income. b. In the

actual electricity market environment, the price of the transferred

power in the spinning reserve capacity will also change with the

change of supply and demand. However, it will be greater than

the feed-in tariff in the day-ahead electricity market. Thus, the

price coefficient of the transferred power in the spinning reserve

market is chosen to range from 1 to 3, and the percentage of PSPP

participating in the spot market is tentatively set at 80%. The

change of PSPP profit with the change of price coefficient is

shown in Figure 12.

It can be seen from Figure 12 that theoretically, the greater

the price coefficient of the transferred electricity, the more profit

of the PSPP. However, in practice, it is necessary to consider the

real market situation, when the price of the ancillary services

provided by PSPP is higher, the capacity of the ancillary services

sold will be lower, and the profit of PSPP will also be lower. Thus,

it is necessary to set the price coefficient of the called electricity

reasonably.

FIGURE 10
Operation of PSPP (β � 10).

FIGURE 11
The profit of PSPP when the price coefficient of the
transferred power is 1.1.

FIGURE 12
PSPP revenue when participating in 80% of the ancillary
services market.

FIGURE 9
Expected profits of PSPP under different risk preferences.
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5 Conclusion

In this paper, the trading mechanism of PSPP in the MLTM

and spot market are analyzed. The participation of PSPP in the

multi-time scale electricity market is considered, by combining

energy and ancillary services. A profit model with respect to

optimal economy and lowest risk is established to achieve a

reasonable capacity allocation of PSPP in the multi-time scale

electricity market.

(1) When PSPP participates in the spot market, it gains energy

through the peak-to-valley price difference. The total profit is

3,995,000 CNY when the peak-to-valley price is 0.7 CNY/kWh

and 1,501,300 CNY when the peak-to-valley price is 0.45 CNY/

kWh. For every 1% decrease in peak-to-valley tariff difference, the

total profit from PSPP decreases by 2.5%. When PSPP takes part

in both the spot market and the ancillary service market, the total

profit is 8,954,200 CNY, which is more profitable than the single

participation in the spot market, and the recovery of the cost of

PSPP can be achieved through reasonable participation in the

ancillary service market.

(2) Since the volatility of real-time electricity prices can have an

impact on the profit of pumped storage, different PSPPs have

different risk preferences, and the expected total profit of PSPP

gradually decreases while the CVaR gradually increases, when the

risk preference coefficient increases. The profit of PSPPs under

different risk preference coefficients is analyzed to provide a power

allocation scheme for PSPPs with different risk preferences.

(3) This paper decomposes MLTM contract power into day-ahead

24-h power, and conducts market trading together with the spot

market, so that the volatility of real-time power prices in the spot

market can be smoothed out through the stable prices inMLTM.

Thus, greater profits can be obtained while reducing the profit

risks.

In this paper, the quotas in the ancillary services market

decomposition of MLTM contracts to the spot market are not

considered, which will be included in future studies.
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The increasing penetration of intermittent, non-synchronous generation has

led to a reduction in total power system inertia. Low inertia systems are

more sensitive to sudden changes and more susceptible to secondary issues

that can result in large-scale events. Due to the short time frames involved,

automatic methods for power system event detection and diagnosis are

required. Wide-areamonitoring systems (WAMS) can provide the data required

to detect and diagnose events. However, due to the increasing quantity

of data, it is almost impossible for power system operators to manually

process raw data. The important information is required to be extracted

and presented to system operators for real/near-time decision-making and

control. This study demonstrates an approach for the wide-area classification

of many power system events. A mixture of sequential feature selection and

linear discriminant analysis (LAD) is adopted to reduce the dimensionality of

PMU data. Successful event classification is obtained by employing quadratic

discriminant analysis (QDA) on wide-area synchronized frequency, phase

angle, and voltage measurements. The reliability of the proposed method

is evaluated using simulated case studies and benchmarked against other

classification methods.

KEYWORDS

event classification, dimensionality reduction, PMU data, machine learning, power system

monitoring

1 Introduction

Globally, electrical power systems are significantly changing, primarily driven by
the goal of reducing carbon emissions. In order to achieve renewable energy objectives,
generation from traditional synchronous power stations is being replaced with low
carbon alternatives. Renewable generation is often viewed as a supplement to traditional
generation, but as penetration increases, its effects need to be considered with regard
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to power system operation and protection. The renewable
generators being installed are typically small and decentralized
(compared to conventional plants). This, coupled with a
loss of control of dispatchable power (e.g., wind power
is considered highly intermittent and non-dispatchable) and
system services, means power system dynamics are changing
(Mukherjee et al., 2021).

Distributed generators (DG) can benefit power systems
(Morozovska et al., 2021). For example, when generating power
close to distributed loads, they can reduce transmission losses
and congestion and can defer investment in transmission
lines and substations. However, significant generation at the
peripheries of a network will lead to reverse power flows,
meaning traditional control and protection schemes can be
less effective. Another concern with the increasing installation
of DGs is the reduction of system inertia. The natural
inertia contributed by synchronous generators helps maintain
system frequency. Therefore, the reduction of synchronous
generation yields a system with increased sensitivity to sudden
changes. Coupling this with the requirement to operate power
systems close to their limit to meet demand increases its
susceptibility to the occurrence of system-wide events.Therefore,
schemes to detect, diagnose, and contain events in a timely
manner are required to minimize potential damage and
downtime.

Many countries have invested in smart grid technologies
to combat large-scale events, with an emphasis on installing a
network of PhasorMeasurement Units (PMUs) arranged to form
a wide-area monitoring system (WAMS). This improves legacy
SCADA systems by providing sub-second analysis of transient
behavior, with sub-second latency and granularity, which opens a
new window on power system dynamics. PMUs provide precise,
time-synchronized local measurements of system frequency and
rate of change of frequency (ROCOF) along with voltage and
current phasors for each bus bar and line measured. These data
are typically streamed to a central server, where it is combined
to give a wide-area perspective of the system. At this level, long-
standing power systemchallenges such as system-wide frequency
monitoring can quickly be solved (Liu et al., 2013). Our previous
work (Liu et al., 2015; Liu et al., 2016; Rafferty et al., 2016;
Rafferty et al., 2017) investigated the application of advanced
methods for rapid event detection on PMU data. Presently, these
methods are demonstrated on the historical and modeled PMU
data, but the intention is to utilize live PMU data in a control
room environment.

The volume of PMU data is to increase exponentially as the
number of PMUs and their reporting rates increase. Even at
present data streaming rates, it is a challenge to extract real-time
information. Consequently, tools from the field of “Big Data”
(Syed et al., 2021) are necessary to condense large amounts of
data into information useful to system operators. This motivates
the need to develop intelligent, automated techniques for the

wide-area monitoring and control (WAMC) of the system in real
time.

Building on our previous work (Liu et al., 2015;
Liu et al., 2016; Rafferty et al., 2016; Rafferty et al., 2017; Rafferty
and Liu, 2020), this study presents a novel method to address the
problem of distinguishing between several power system events
utilizing wide-area PMU data. A combination of dimensionality
reduction techniques is adopted to combat the high-dimensional
PMU data and reduce computation time.

To summarize, high event classification accuracy was
achieved through the following: 1) the development of a power
system event database, which was built on wide-area PMU
measurements of known event types; 2) utilizing the database
in conjunction with previously developed event detection tools
(Rafferty et al., 2016) to identify new events, data encapsulated
for analysis; 3) linear discriminant analysis (LDA) utilized as
a feature extraction technique to reduce the dimensionality of
the database while maximizing the discriminatory information
between the different event types; 4) a sequential forward
selection (SFS) technique employed to identify the most
important features necessary for the classification algorithms,
enabling the classifiers to train faster and making it easier to
interpret; 5) quadratic discriminant analysis (QDA) employed
in the event classification model due to its ability to efficiently
handle the nonlinear boundaries in the reduced event training
data set; and 6) the approach benchmarked against alternative
classification techniques, namely, decision trees (DT), k-nearest
neighbor (K-NN), LDA, and SVM.

2 Literature review

In machine learning, classification is the assignment of
data sets to categories, distinguished by some metric within
the data set or extrapolated from it. Many methods have
been investigated for the identification of power system
events, including DT (Bykhovsky and Chow, 2003; Dahal and
Brahma, 2012; Pandey et al., 2020), k-NN (Gaouda et al., 2002;
Biswal et al., 2016a; Biswal et al., 2016b; Brahma et al., 2017),
support vector machines (SVM) (Biswal et al., 2016a;
Brahma et al., 2017), neural networks (Gaouda et al., 2002;
Biswal et al., 2016b), unsupervised clustering methods
(Dahal et al., 2014; Klinginsmith et al., 2016), energy similarity
measure approach (Yadav et al., 2019), and Best Worth Method
(Vosughi et al., 1996).

Some methods focus exclusively on local measurements of
system frequency (Bykhovsky and Chow, 2003), whereas others
consider local voltage measurements (Gaouda et al., 2002).
Focusing on singular measurements is a method of reducing
dimensionality; however, using frequency and voltage
measurements can refine results (Dahal and Brahma, 2012;
Dahal et al., 2014; Biswal et al., 2016a; Biswal et al., 2016b;
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Brahma et al., 2017). Often, the use of current or power
measurements is avoided as these are either inapplicable to a
wide-area study or require very specific connections.

K-NN and SVM methods were compared by
Biswal et al. (2016a) and Brahma et al. (2017). This analysis
addressed testing accuracy but did not consider training speed
and prediction. When considering the suitability of a method
for on-line applications, training speed and prediction accuracy
are crucial. These studies also employed a strong signal-based
approach, which can be problematic during large disturbances.
This instability arises due to inaccuracies in PMUmeasurements
during transient conditions, especially those close to the source
of the event.

Although the method by Brahma et al. (2017) showed
excellent classification accuracy, only two classes were
considered; this accuracy dropped with the addition of
extra classes. The methods by Biswal et al. (2016a) and
Brahma et al. (2017) employed a defined 2 s window, 0.5
before and 1.5 s after event. A predefined event window is
not desirable for real-time event detection and classification.
Finally, a significant constraint of SVM-based methods is
computational inefficiency, leading to long training times
(Nalepa and Kawulok, 2018).

Bykhovsky and Chow (2003) used frequency data in a
rule-based decision tree to distinguish between different types
of events. Firstly, a historical data set was employed to
cluster events and determine decision tree rules. Secondly, the
decision tree was applied to pseudo-live data to test live event
classification performance. The magnitude of frequency change
and ROCOF were found to give the best event differentiation.
However, this study was limited as only a small selection
of disturbances were considered, and events that have a
small effect on frequency will go undetected or incorrectly
classified. Dahal and Brahma (2012) expanded the decision
tree approach to include voltage measurements. It was applied
to generation loss, line trip, and line to ground fault events;
however, only seven events were tested. Clustering takes a more
probabilistic approach than classification. Events can therefore
spread acrossmore than one cluster, often occurring during large
events with multiple consequences. The clustering methods by
Dahal et al. (2014), Klinginsmith et al. (2016), and Gharavi and
Hu (2018) observed the generation of unknown clusters. User
expertise was required to link a cluster of power system events to
the underlying causes and consequences. A further challenge is
that dimensionality increases with the number of event clusters.
More recently, deep learning-based methods involving long
short-term memory neural networks or convolutional neural
networks are employed for power system event classification
(Ahmed et al., 2021; Li et al., 2021; Ehsani et al., 2022).The deep
learning-based neural networks are excellent in dealing with
large data sets but suffer from significant computation costs due
to the large number of parameters turning at the training stage.

Because there is no theoretical conclusion on whichmachine
learning classifier method is superior, several methods are
required to be evaluated to determine which classification
algorithm is more appropriate in predicting the event types
from the obtained PMU event database. For the construction of
an on-line power system event classifier, utilizing a significant
number of PMU variables recorded from multiple locations
simultaneously, which can be trained (and retrained after
successful classification) in a timely manner with a low
misclassification rate, dimensionality reduction techniques are
required. Techniques for reducing dimensionality have many
benefits, such as reducing time and space complexity and
allowing more interpretable data by the removal of noise and
less important features. An optimal number of variables is
required for model construction, and a trade-off between speed
and accuracy is required. In contrast to existing literature,
the rejection of power system variables is not used as a
method to reduce the dimensionality of the problem. Systematic
consideration of the frequency, voltage, and phase angle signals
and the difference and rate of change to these variables
between buses is proposed. The desired computation efficiency
is achieved via a combination of LAD and sequential forward
selection to extract and select the variables contributing most
to classification accuracy. Also, in this investigation, the window
length is determined by the event detection algorithm in
Rafferty et al. (2016). The detection algorithm captures the
event data and separates them from those recorded under
normal operating conditions, providing a crucial step for event
classification.

3 Methodology

3.1 Dimensionality reduction

Construction of an on-line power system event
classifier, utilizing a significant number of PMU variables
recorded from multiple locations simultaneously, which
can be trained rapidly, requires dimensionality reduction
techniques to be implemented. Dimensionality reduction
(Van Der Maaten et al., 2009) is the process of using statistical
techniques to reduce the number of features (or variables) in
a data set by transforming the original data set into a lower
subspace.

Typical applications of dimensionality reduction include data
compression for storage purposes and as a pre-processing step to
machine learning algorithms. An optimal number of dimensions
is required formodel construction; the inclusion of toomany can
decrease performancewith respect to computation efficiency and
prediction accuracy. However, the inclusion of too few can also
result in lower accuracy.
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3.1.1 Feature extraction
LAD is a feature extraction technique whose objective

is to find a linear combination of features that preserves as
much of the class discriminatory information as possible. The
resultant combinations can be utilized for linear classification
(this application is presented in Section B) or dimensionality
reduction purposes. LDA is a supervised learning technique that
reduces the dimensionality in the data set to C− 1 dimensions,
where C = number of classes.

Denote amatrix of PMUdataX, whereX ∈ IRn×m, consisting
ofmmeasurement variables, with each row representing a sample
(n = number of samples), which is attributed to one of C-classes
of event type, whereC > 2.The objective of LDA is to obtainC− 1
projections of y bymeans ofmultiple projection vectorswi, where
i = 1…C− 1:

yi = w
T
i X, (1)

where wi can be arranged by columns into a projection matrix,
W. The distance, d, between the projected class means, is a good
starting point to maximize the difference between the centers of
both classes. However, this measurement does not consider the
variance of the data within each class and can cause overlapping
between classes.

Therefore, Fisher’s proposed method (McLachlan, 2004)
maximizes the distance,d, between the classes but alsominimizes
the variance v within them:

J (W) = d2

v1 + v2
=

wTSBw
wTSWw
, (2)

when C = 2, where SB and SW represent the between-class
scatter matrix and the within-class scatter matrix, respectively.
Therefore, a projection that maximizes SB while minimizing SW
is sought. When C > 2, the projection is now C− 1 dimensions,
and the determinant of the scatter matrices is used to obtain a
scalar objective function, transforming Eq. 2 to

J (W) =
∣WTSBW ∣
∣WTSWW ∣

, (3)

with SB and SW given, respectively, as

SB =
C

∑
i=1

ni (μi − μ)(μi − μ)
T (4)

and

SW =
C

∑
i=1
∑
i∈Ci

ni (xi − μi)(xi − μi)
T, (5)

where ni represents the total number of samples in the ith class,C
the number of classes, μi the mean of the samples in the ith class,
and μ the overall mean of the data.

The optimal projection matrixW* is given as the one whose
columns are the eigenvectors that correspond to the largest
eigenvalues of the generalized eigenvalue problem:

S−1WSBwi = λiwi (6)

or

S−1WSBW = λW, (7)

where λi = J(wi) and i = 1…C− 1.The optimal projectionmatrix,
W*, is given by

W∗ = argmax
W

J (W) . (8)

3.1.2 Feature selection
There are three different types of feature selection techniques:

filter methods (e.g., Euclidian distance, t-test), wrapper methods
(e.g., SFS, Genetic algorithms), and Embedded methods (e.g.,
DT and SVM) (Ladha and Deepa, 2011). Sequential forward
selection (Ladha and Deepa, 2011) is employed here as the
simplest greedy search algorithm compared tomachine learning-
based methods. This method starts with zero features selected
and tests each one individually against an objective function.This
process is repeated using the previously selected feature(s) and
the remaining unselected features in the data set until a stopping
criterion is reached. For this methodology, the stopping criteria
are based on the cross-validation error of the classifier.Therefore,
features are selected consecutively until the cross-validation error
ceases to decrease or increases again.

Cross-validation is a method used to evaluate the accuracy
of classifiers by employing the classifier on the training data
to allow the misclassification rate, E, to be determined. k-fold
cross-validation (Kohavi, 1995) is implemented to assess the
generalization performance of different classifier configurations.
The K-fold method works by dividing the training data set into
K subsets (folds) and uses all, bar 1, of the folds for training the
classifier, with the remaining fold used for testing. This process
is repeated until all the folds have been used for testing. The
cross-validation error, CVE, is calculated using

CVE =
1
K

K

∑
k=1

Ek, (9)

where Ek is the misclassification rate for each fold, and K are the
total number of folds. This method allows all samples in the data
set to be used for both training and validation, with each sample
used for validation only once. A common value for the number
of folds, K, is 10.

3.2 Classification: discriminant analysis

An on-line, adaptive event classifier consists of three main
stages: separation, allocation, and update. In the separation stage,
the objective is to find functions that maximize the difference
between the event type classes in the labeled training data set, X.
The focus of the allocation stage is to assign unclassified samples
(from newly detected events) into one of the known classes, C,
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based on the functions obtained in the separation stage. Finally,
the update stage adds the successfully classified event to the
training data set, X, and retrains the classifier for when it is
required again.

Discriminant analysis (DA) (Fisher, 1936) is a supervised
machine learning technique used to find linear combinations of
features in a data set that best discriminates between mutually
exclusive groups on the basis of predefined features. A common
method for generating the discriminant functions is by using
linear methods, such as LDA andQDA, presented in Section B.1
and Section B.2, respectively.

3.2.1 Linear discriminant analysis
The objective of LDA for classification is to determine the

maximum posterior probability (denoted as Ĝ) of a sample, xi,
belonging to each event type class, C = c1,c2,…cn (where n =
the number of classes in the data set). Let πc1 and πc2 denote
the prior probability that a randomly selected sample comes
from the c1− th and c2− th class, respectively, calculated from
π = No. samples in class

Total No. samples
, and denote fC(xi) as the density function of xi

belonging to classG = c1. From the Bayes theorem, the following
can be stated (Yan and Dai, 2011):

Pr(G = c1|X = xi) =
fc1 (xi)πc1
∑C

c2=1
fc2 (xi)πc2

, (10)

where X is the training data set, which is assumed to follow a
multivariate normal distribution (James et al., 2013). The class-
conditional density function, fc1(xi), is given as

fc1 (xi) =
1

(2π)
p
2 |Σc1|

1
2
exp(−1

2
(xi − μc1)

TΣ−1c1 (xi − μc1)) , (11)

where μc1 and Σc1 are the mean vector and covariance matrix for
class c1, respectively. An underlying assumption of LDA is that
all classes share a common covariance matrix, Σc1 = Σ∀C. Thus,
the linear discriminant function for each classC can be expressed
as (James et al., 2013)

δC (xi) = x
T
i Σ
−1μC −

1
2
μTC Σ
−1μC + log πC. (12)

Sample xi is determined as the class C, which maximizes Ĝ:

Ĝ(xi) = argmax
C

δC (C) . (13)

3.2.2 Quadratic discriminant analysis
QDA is an extension of LDA and again assumes multivariate

data, following a normal distribution. However, unlike LDA, it
is assumed that each class, c1,c2,…,cn, has a separate covariance
matrix. This yields the quadratic discriminant function for each
class C as (James et al., 2013)

δC (xi) = −
1
2
log |ΣC| −

1
2
(xi − μC)

TΣ−1C (xi − μC) + log πC, (14)

with classification determined by maximizing Ĝ (from Eq. 13).

3.3 Power system event classifier

The process for the proposed wide-area power system event
classifier (PSEC) scheme involves three main stages: off-line
classifier construction, on-line wide-area event classification,
and classifier retraining. A process flowchart of PSEC is
depicted in Figure 1. A fourth stage, on-line monitoring
(Rafferty et al., 2016; Rafferty et al., 2017), is also included in
Figure 1.

Theoff-line construction of the initial event classifier requires
a sample of historical data of past events, with corresponding
event type label recorded from a wide-area network consisting
of n PMUs. The labeled, historical event data are used to train
the initial PSEC model by determining the boundaries between
each event type class. The trained model is applied to newly
detected events to allow the event to be classified. Denoting
fi, ϕi, and vi as the current sample of frequency, phase angle
difference, and voltage recorded from a single PMU, respectively,
the change in each variable, Δf, Δϕ, and Δv can be calculated
by subtracting the i–th from its corresponding previous sample
(fi−1, ϕi−1, and vi−1). The rate of change (ROC) for each variable
over time, Δf

Δt
, Δϕ

Δt
, and Δv

Δt
, respectively, is also calculated.

ROC values were calculated over 100 ms and averaged over a
500 ms sliding window, as recommended for ROCOF (Energy, 
2013).

In order to compile the training data set, the event database
is split into smaller subsets relating to each variable recorded. In
the case of this investigation, there are nine subsets, as detailed
in the previous paragraph, including all the relevant samples,
m, from the n PMUs arranged to form a m× n matrix. LDA is
employed on each subset, reducing the dimensionality from n
to a C− 1 subspace while maximizing separability between each
event type. The calculated projection matrix,W, for each subset
is saved to allow newly detected events to be reduced to the same
space.The extracted features from the nine subsets are combined
before employing the CVE-based SFS technique to select the
features which best contribute to the accuracy of the classifier.
Finally, to conclude the off-line training process for PSEC, QDA
is employed on the reduced event training data set to calculate
the class boundaries.

Once trained, PSEC can be used to classify newly detected
events on the power system. During the on-line monitoring
process, the change and rate-of-change values for each
measurement variable are continuously calculated. Once an
event has been detected on the system, the data from all
connected PMUs are isolated from nonevent data and used
to classify the event type occurring. During training, the
same subset splitting is adhered to before dimensionality
reduction is conducted. In order to extract features that
will be in the same subspace as before, each subset is
reduced using its corresponding projection matrix, W. The
same selected features, SF, are again chosen to classify the
end.

Frontiers in Energy Research 05 frontiersin.org

128

https://doi.org/10.3389/fenrg.2022.957955
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Rafferty et al. 10.3389/fenrg.2022.957955

FIGURE 1
Power system event classification (PSEC) process flowchart.

Each sample in the event is classified iteratively by
maximizing Ĝ, from Eq. 13. This process is repeated until each
sample in the event has been assigned a class type,with the overall
event class determined by calculating the maximum occurrence
of each event class type in the event data as a percentage of total
event samples.

A confusion matrix is often utilized to evaluate a
classificationmodel’s performance, which leads to the calculation
of many metrics according to the values in the confusion matrix,
such as accuracy, precision, recall, Specificity, and F1 score. A
more detailed explanation can be found in Singh et al. (2021).
Accuracy as a measure of all the correctly identified events is
employed due to its simplicity. In order to reduce the likelihood
of misclassification, a threshold is implemented based on
the accuracy of the current classifier model, with accuracy
determined by

Accuracy (%) = TP+TN
Total
× 100%, (15)

whereTP,TN, andTotal represent the true positive, true negative,
and the total number of samples in the training data, respectively.
The initial threshold is calculated during the off-line classifier
construction phase and automatically recalculated during each
classifier retraining phase. If an event type achieves ≥ the
threshold, the event is automatically added to the database.
Otherwise, the event cannot be classified, and manual user

interaction is required to add the event to the database before
retraining occurs.

4 Evaluation with wide-area PMU
data

4.1 Data acquisition

In order to demonstrate the capability of PSEC, several
dynamically simulated case studies were conducted on the
standard IEEE-39 Bus Test System (Athay et al., 1979) using
DigSilent PowerFactory. This test system represents part of the
US power system and consists of 10 synchronous generators, 19
loads, and 36 transmission lines. In order to simulate capacitor
switching and motor start events, each was connected, via a
circuit breaker, to each bus in the system. A PMU was placed
at each bus in the system not directly connected to a generator,
equating to 29 PMUs in total. Each connected PMU has a
sampling rate of 100 Hz. For this investigation, it was assumed
that all connected PMUs in the system are on-line and do not
experience any noise or information loss.

Case studies consisted of 133 generation dip (GD), 114 loss
of load (LL), 33 line trip (LT), 78 capacitor switching (CS), and
39 synchronous motor start (MS) events, 397 events in total.
Of the simulated events, an 80%–20% split between training
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(322 events) and test (75 events) events was implemented
for each event type. Typical waveforms for each event type
under consideration are illustrated in Figure 2. As event locality
dictates severity on system measurements, it is important to
include data from each PMU for the duration of the event.

4.2 Construction and evaluation of PSEC

In order to construct the initial PSECmodel, 80%of the event
database consisting of the six aforementioned event types was
utilized as input data. The remaining 20% will be used to test the
accuracy of the PSEC model for data it does not have experience
with. In this study, the event database contains measurements

from each installed PMU, which equates to 261 features (29
installed PMUs × 9measurement variables per PMU). Following
the measurement subset creation procedure described in Section
C, each subset consists of 29 features. By employing LDA on each
individual subset, the dimensionality will be reduced from29 to 5
features (equating to C-1, where, in this study, C = 6). Therefore,
the dimensionality of the event database has been reduced from
261 to 45 features (5 extracted features per subset × 9 subsets).

To further reduce dimensionality, the k-fold cross-
validation-based SFS technique was utilized. This technique
selected the features that contribute the most information for
classification, thus yielding the lowest cross-validation error
CVE. The results for the SFS process are illustrated in Figure 3,
which highlights that the optimal number of features from the

FIGURE 2
PMU recordings for different event types.
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FIGURE 3
Cross-validation error for the number of features included in the classifier.

reduced event database to be used for PSEC training is 8, as,
beyond this,CVE begins to increase.The combined LDA and SFS
process reduces the dimensionality of the original event database
from 261 features to a smaller event training data set of eight
features.The eight selected features, SF, are presented in Table 1.
The subscript number relates to the feature extracted using LDA
for that variable. In other words, f3 relates to the third feature
extracted from the frequency subset. The features were chosen
in the following order: f1, Δϕ1, Δf1, Δf2, f3, Δv5,

Δϕ
Δt 4

, and Δf
Δt 1

.
The eight selected features were used as inputs to construct the
initial QDA-based PSEC model. To illustrate, conceptually, the
output of the initial PSECmodel, a two-dimensional scatter plot,
is presented in Figure 4. The scatter plot illustrates the reduced
event training data set for the first two features selected, f1 and
Δϕ1. The calculated event type class boundaries are illustrated
by the dashed black lines. It can be observed from Figure 4 that
each event type has it is own unique area. However, the three
inner event type classes (capacitor switching in/out and motor
start) have a small number of samples that overlap between
classes because these events have a limited effect on the f1 and
Δϕ1 variables and more on voltage variables, as illustrated in
Figure 2.

Numerical results for PSEC evaluation with regard to the
training time and accuracy are highlighted in bold typeface
in Table 2. Additionally, several different configurations of the
event training data set are presented, including the proposed
combination of LDA and SFS (eight features), the raw event
database (261 features), and LDA only (45 features). All
simulations were carried out in MATLAB 9.3 (R2017b) on a
third-generation Intel Core i5 processor with 12 GB RAM.

TABLE 1 Selected Features (SF) using CVE-based SFS method for
training data consisting of 80% of the data (322 events).

f Δf Δf
Δt

ϕ Δϕ Δϕ
Δt

v Δv Δv
Δt

SF f1 Δf1
Δf
Δt 1

Δϕ1
Δϕ
Δt 4

Δv5
f3 Δf2

From the results for the QDA-based PSEC presented in
Table 2, it can be observed that training time significantly
decreases from 32.8 s, using the raw event database, to
6.12 s, when solely LDA is employed. As expected, the fastest
configuration occurs when a combination of LDA and SFS is
employed on the event database, which yields a time of 3.06 s.
Regarding classification, it can be observed that there is a loss
of 0.02% in accuracy between using the raw event database and
the proposed combination of LDA and SFS, which is minimal.
Accuracy in this investigation is determined by the number of
correct classifications as a percentage of the total number of
classifications utilizing the training event data set.

As there is no theoretical conclusion on which classification
algorithm is superior, many algorithms are required to be
evaluated using the training data set. Therefore, Table 2 presents
a comparative study of numerical results for several classification
algorithms.These algorithms includeDT, LDA, SVM, andK-NN.

As the proposed method adopts an adaptive training
approach, which involves retraining after a successful
classification, the training speed is very important. Therefore,
as observed from Table 2, when using the raw event database,

Frontiers in Energy Research 08 frontiersin.org

131

https://doi.org/10.3389/fenrg.2022.957955
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Rafferty et al. 10.3389/fenrg.2022.957955

FIGURE 4
Conceptual two-dimensional results for the calculated event type class boundaries for the six event types included in the event database.

TABLE 2 Comparative study, evaluating the speed and accuracy ofmultiple classification techniques with different dimensionality reduction techniques
using 80% of the data (322 events) for training and 20% of the data (75 events) for testing.

Classifier Training Testing

Time (s) Accuracy (%) Accuracy (%)

Raw data LDA LDA + SFS Raw data LDA LDA + SFS Raw data LDA LDA + SFS

DT-100 Splits 29.62 10.40 5.12 100 99.98 99.96 100 98.67 100
DT-20 Splits 26.85 9.39 3.79 100 99.95 99.66 100 98.67 100
DT-4 Splits 27.86 7.75 3.39 97.8 94.83 94.83 90.67 77.33 77.33
LDA 33.40 6.28 2.96 100 99.95 99.48 100 97.33 97.33
QDA 32.80 6.12 3.06 100 99.92 99.98 90.67 98.67 100
SVM-Linear 235.16 124.61 108.2 99.99 99.99 99.98 100 96.0 97.33
SVM-Quadratic 213.09 118.13 95.3 100 100 100 100 96.0 97.33
1-NN 1568.66 247.42 4.67 100 100 100 97.33 96.0 93.33
10-NN 1559.73 236.63 9.52 99.98 99.95 99.96 97.33 96.0 90.67
100-NN 1388.81 235.21 32.97 98.92 99.23 99.45 96.0 94.67 84.0

The bold values represent the results of the proposed method.

all of the evaluated algorithms are too computationally expensive
but return highly accurate models (>97.8%). The DT and DA
approaches are comparable in computation speed and accuracy.
The computation cost for SVMandk-NNalgorithms is very high,
greater than 3.5 min for the SVM approaches and substantially
over 20 min for each k-NN approach. This reinforces the
requirement of dimensionality reduction techniques as a
pre-processing step for on-line PSEC.

When LDA was employed on the event database, it can
be observed from Table 2 that the computation time for each
classifier reduces significantly.However, in the case of theDAand

DT, this reduction in computation cost comeswith a reduction in
accuracy. This loss is minimal (<0.1%) except for a four-split DT
(2.97%decrease). It should be noted that the accuracy of the SVM
and k-NN either stay the same or increase slightly, but these still
experience high computation costs, ≈ 2 and 4 min, respectively,
and therefore could not update PSEC in a desirable time frame.

Finally, when a combination of LDA and SFS was
implemented, it can be observed that the discriminant
analysis techniques, LDA and QDA, are the fastest for model
construction, ≈ 3 s. Although these returned slightly lower
accuracy (0.02 and 0.52% for QDA and LDA, respectively)
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TABLE 3 PSEC results using 80% of the data (322 events) for training and 20% of the data (75 events) for testing.

Event No. events Event classification results (%)

CS-In CS-Out GD LT LL MS I

CS-In 7 100 0 0 0 0 0 0
CS-Out 7 0 100 0 0 0 0 0
GD 26 0 0 100 0 0 0 0
LT 6 0 0 0 100 0 0 0
LL 22 0 0 0 0 100 0 0
MS 7 0 0 0 0 0 100 0

FIGURE 5
PSEC classification results for six simulated case studies.

compared to quadratic SVM and 1-NN, the computation time
is less. The DT approaches all offer similar computation costs
to QDA and LDA. However, their accuracy has reduced. Finally,
althoughQDA ismarginally slower than LDA for training (0.1 s),
it has benefits over it with regard to its training accuracy (0.5%)
and was, therefore, chosen to be implemented in PSEC.

4.3 Classification of new events

After the construction of the initial PSEC model, it can now
be used to classify newly detected events in the power system.
Once an event has been detected in the system, the event data
are isolated at each PMU in the power system. During the
training stage, each sample from the newly detected event for
each PMU is arranged into measurement variable subsets. Using

the projectionmatrices,W, obtained in the training process, each
variable subset is reduced from 29 to 5 features. The features,
SF, selected in the training process using the SFS technique are
selected again and utilized as inputs to PSEC to predict the class
of each individual sample, xi, in the event, with each event sample
determined by the event type class whichmaximizes the function
Ĝ. Finally, the overall event is determined by the maximum
percentage of occurrence of each event type for the total samples
in the event, with a threshold of ≥99%, calculated based on the
accuracy of the QDA model, implemented to reduce the chance
of misclassification.

Full classification results achieved with PSEC for a number
of each simulated event type are displayed in Table 3. A
further column (I) has been added to the table to indicate the
percentage of events tested that returned inconclusive (i.e., the
max percentage of samples is <99% of all samples). Table 3
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FIGURE 6
PSEC results highlighting the effect of event severity.

concludes that the classification accuracy for each event type
implemented in the event database by the QDA-based PSEC
method is highly accurate (100%). Conceptual two-dimensional
results for an example of each event type considered in PSEC
are presented in Figure 5, presenting the previously calculated
event type class boundaries, calculated in Section B and depicted
in Figure 4. From Figure 5, it can be observed that, for each
of the six event types tested, PSEC could successfully be
classified, as all event samples are located within their respective
regions.

For completeness, the benchmarking evaluations on the
classification algorithmanddimensionality reduction techniques
conducted in Section B were also conducted to classify newly
detected events.This is provided in the testing column ofTable 2.
As dimensionality is reduced, the accuracy for newly detected
events experiences a decrease except forQDA,which experiences
an increase (from 90.67 to 98.67%).This rate is further increased
when incorporating SFS with LDA for dimensionality reduction.
Classification accuracy increases in an SVM, 100 and 20 split
decision tree-based approaches, when incorporating SFS with
LDA. LDA and a four-split decision tree classification approach
remain the same. Finally, as the dimensionality is reduced, all the
k-NN-based approaches decrease in accuracy.

The results in Table 2 show that when using a reduced
data set, QDA provides the greatest accuracy for testing (100%)
and can be trained in 3.06 s. This is 0.1 s slower than the
quickest classifier to be trained, LDA, but returns higher accuracy
using the training data set (0.5%) and testing data set (2.67%).

Considering computation cost and accuracy, QDA has the
potential to be improved and implemented in real time on live
PMU data.

5 Discussion

The proposed systematic approach for classifying
power system events has several advantages; namely, the
implementation of an adaptive method that allows the event
database to be updated and self-trained after the successful
classification of an event occurs. Also, the introduction of
dimensionality reduction techniques has been shown to reduce
the computational speed during the training of PSEC with a
minimal loss in classifier accuracy, 0.02%. It should be noted that
a detailed inspection of individual PMU signals would allow
the discrimination between each type of event. However, if
there are many PMUs to monitor, this becomes cumbersome.
Furthermore, determining an accurate threshold between each
of the events to allow automatic classification in real time is
not an easy task. The proposed automatic approach for event
classification has the potential to be used as input knowledge
for an intelligent control system to assist real-time decision-
making.

As mentioned previously, all PMUs in the system will
experience some disruption to power system measurements
during an event, with PMUs located closer to the event
experiencing greater change.Therefore, by using a representation
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of data from the whole system, local inaccuracies are smoothed,
making classification independent of PMU locations. Also, the
utilization of data frommultiple PMUs simultaneously increases
the reliability of the method compared to an individual PMU
approach. Additionally, as each event sample is determined,
PSEC allows automatic classification to begin as received at the
PDC, where the data transportation is in the sub-second range.
This could be beneficial as an early warning system to predict the
type of event occurring in the first number of samples before final
determination utilizing full event data.

An investigation into event severity on successful
classification is presented in Figure 6, where a large load loss
represents a loss of 993.6 MWof load; a small load loss represents
a loss of 112.4 MWof load; a large generation dip represents a loss
of 628 MW of generation; and a small generation dip represents
a loss of 98.7 MW of generation. Figure 6 shows that a small loss
leads to the power system measurements varying less and thus
being closer to other event-type classes. However, the larger the
loss, the easier the classification due to its location in relation
to the class boundaries. This makes the classification of smaller
events more challenging.

6 Conclusions and future work

This study presents a proposed methodology for classifying
wide-area power system events for several regularly occurring
power system events. The methodology was based on QDA and
utilized a statistically obtained subset of wide-area synchronized
measurements collected from a network of PMUs located on a
power system. The methodology is extensively tested for a large
number of simulated case studies. Results are presented and
compared with other classifiers, including SVM, k-NN, DT, and
LDA.

The proposed method utilizes a systematic consideration
of the frequency, voltage, and phase angle signals, as well as
the difference and rate of change to these variables between
buses, to achieve successful classification. In order to optimize
performance, with respect to speed and accuracy, a combination
of LDA (to maximize the discriminatory information between
event classes) and SFS (to select variables that contribute the
most information) techniques are utilized. By considering the
results for accuracy and training speed presented in Tables 2,3,
the QDA-based PSEC method has the potential to be improved
and implemented in real time in future work.

It is worth noting that the sequential forward selection
method can identify the most important features and buses
(eight features and five buses in this case) that are necessary

for the classification algorithms. These simulation results
demonstrated that there is no need to have PMU installed in
each bus in a practical power system for event classification
purposes.

More specifically, future work will look at enhancing some
aspects of the classifier. Firstly, the focus should be on improving
and expanding the simulated power system event database by
including other events, such as transformers energizing, BESS
charging/discharging, and the simulation of specific faults in the
power system. Secondly, the training time for the construction
of the initial PSEC model is presented in Table 2, illustrating
a training time of ≈3 seconds. However, this will increase
dramatically with retraining occurring after each event. One
possible solution for reducing this training time is implementing
a recursively trained classifier. This will allow the previously
trained classifier model to be used in retraining the new
classifier instead of beginning from the start each time.Therefore,
implementing recursive learning algorithms will be investigated
to further optimize PSEC. Finally, the proposed method can
be considered moderately theoretical due to its use of off-
line simulated PMU data only. Therefore, future work will
investigate the response of PSEC to live real-world PMU
data.
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Countries around the world are rapidly deploying renewable energy generation

to reduce carbon emissions. Countries in the Gulf Cooperation Council (GCC)

are investing heavily in PV generation due to their rich solar resources. As PV

technology becomesmoremature, future PV developments will largely depend

on the cost of the PV generation but there is currently very limited published

work that shows a detailed design and in particular the economic analysis of

large-scale PV farms. Therefore, this paper uses the Qatar’s first PV farm, the

800MWp Alkarsaah PV farm as a case study to explain the design considerations

and especially the economic benefits of large-scale PV farms. Economic

comparisons will be made with the most efficient CCGT (combined cycle

gas turbine) plants in the network to highlight the economic benefits of PV

farms. The results show that the Levelized cost of electricity (LCOE) for this PV

farm is 14.03$/MWh, much lower than the LCOE of 39.18$/MWh and 24.6$/

MWh from the most efficient CCGTs in the network, highlighting the significant

economic benefits of developing PV farms in a low carbon power networks in

the future.

KEYWORDS

LCOE, marginal cost, capital cost, fixed cost, PV solar project, renewable energy

Introduction

Reducing energy-related CO₂ emissions is at the heart of the energy transition and

developing renewable energy generation is one of the key measures. Moreover, it helps

improve the air quality (Akella et al., 2009; Hung, 2010; Petinrin and Petinrin, 2014;

IRENA, 2019) and energy security, especially during instability in the energy market (e.g.,

during sudden changes in the fossil fuel market (Franco et al., 2017; Chen et al., 2022)).

In the last decade, renewable energy (RE) witnessed a dramatic cost decrease. The

Levelized Cost of Electricity (LCOE) is commonly used to evaluate the generation assets

or the power system as well as to compare the cost of energy gained from different sources.

The LCOE estimates the income necessary to develop and run a generator over a

particular cost recovery time. The LCOE calculations include different costs: capital

costs, decommissioning, fuel costs, fixed and variable operations and maintenance costs,

finance costs, and an anticipated utilisation rate (McCulloch andMcCulloch, 2017; Wang
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et al., 2018a; U.S. Energy Information Administration, 2022;

Cucchiella et al., 2017; Kosmadakis et al., 2022; Heidari Yazdi

et al., 2022).

Figure 1A shows the LCOE comparison for diverse

generation technologies. It illustrates the significant fall in

solar power from around 359$/MWh in 2009 to approximate

36$/MWh in 2021, which means a 90% decline in the last decade.

In the same period, the LCOE of wind generation decreased from

135$/MWh to 38$/MWh, a 72% reduction. The considerable

declines in solar and wind are due to the drop in capital costs

(Mcelroy and Chen, 2017).

RE systems need significant upfront financial commitments

similar to thermal or nuclear power plants. However, the

marginal costs of operating the asset and generating electricity

are much lower, as illustrated in Figure 1B (e.g., this includes

replacing selected PV modules or inverters for solar PV projects

and periodic lubrication and general maintenance for wind

turbines (Wang et al., 2018b; Srinivasan, 2019; Tian et al.,

2020)). It can be seen from Figure 1B that the marginal cost

of wind and solar is almost negligible. In contrast, the marginal

cost of other generation types increases with increasing power

production. For example, it is around 75$/MWh for natural gas,

and around 140$/MWh for oil as shown in Figure 1B. It is mainly

because the marginal cost of generation for conventional

generators is dominated by fuel costs (coal, oil, and gas). On

the other hand, for renewable generation, the fuel from the sun

and wind is essentially free, and the operations and maintenance

(O&M) costs dominate the marginal costs.

These remarkable changes motivate countries to implement

renewable energy resources. For example, Figure 2 illustrates that

at the end of 2020, the total cumulative PV installations were at

710GWp (Bett, 2022), where China represents 36% of the PV

installations, Europe 23%, North America 12%, Japan 9%, India

6%, and the rest of the world 14%.

Many countries have started utilising deserted areas for

installing renewable energy sources (Shah et al., 2019).

However, each region around the world has unique

challenges. For example, India installed many large-scale PV

plants in tropical regions to benefit from the summer sunshine.

However, in a tropical climate, the rain caused by monsoon

seasons influences the performance of PV plants (gopi et al.,

2021). In addition, the paper (Shah et al., 2019) concludes that

during the southwest monsoon season, the energy generation

dropped by 36% compared to the annual average generation.

In Qatar, the weather plays a factor during summertime due

to the dust waves and high humidity. To reduce its impact, at

Alkarsaah PV farm, four flees of six robots in each fleet are used

to perform cleaning activities at night for 10 hours daily to

FIGURE 1
Comparison between different types of generation (A) LCOE
comparison, (B) Marginal cost comparison (Hartman, 2016; Ray,
2021).

FIGURE 2
PV installation worldwide by region.
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maintain the PV plant’s performance. There was a coupling

between water and power production in Qatar, which makes a

stumbling block in front of renewable integration, but with the

reverse osmosis (RO) system, the flexibility of integrating

renewable energy increases. Qatar focused on RO technologies

to decuple water and power production in the recent water

project.

Some research discusses small-scale PV farms with rated

capacity within 2 MW (Díez-Mediavilla et al., 2010; Chandel

et al., 2014; Shah, 2018; Brodziński et al., 2021). Most of these

researches focused on PV farms connected to the distribution

network and its techno-economic impacts. Other research

concentrated on analysing the economic impact of PV

installations at the residential level (Woodhouse et al., 2011),

(Kizito, 2017). Other research analysed the RE economy in the

electricity market framework (Liu et al., 2020) and showed that a

continued support policy is required to make wind and solar

energy competitive in the energy market (Okere and Iqbal, 2021).

compared various solar PV modules for utility-scale PV

installation in California and concluded that the bifacial

FIGURE 3
SLD of GCC interconnection.

TABLE 1 PV solar projects operated in the GCC region.

Project Country Year Total capacity (MW)

Mohammed bin Rashid Al Maktoum Solar Park UAE 2018 1,013

Noor Abu Dhabi, Sweihan UAE 2019 1,177

Sakaka KSA 2019 300

Askar Landfill Bahrain 2019 100

PDO Amin PV Plant Oman 2020 100

Shagaya Kuwait 2019 10

Ibri Oman 2021 500
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technology gives the best performance in terms of annual energy

production. So far, very limited published work on the

development and economic analysis of large-scale PV farms.

Therefore, this paper contributes to this aspect by presenting a

comprehensive analysis of Alkarsaah PV Farm in Qatar under

the context of PV developments in the Gulf Cooperation Council

(GCC) regions. The objective is to share the experience and

especially the economic rationale of large-scale PV farm

development with the research and industry community to

promote future PV farms’ development further.

Gulf cooperation council overview

This section discusses the motivations that lead GCC

countries to move toward renewable energy, the benefits of

the GCC interconnection, and the existing and agreed-upon

solar energy projects.

Renewable energy motivation

The GCC countries, namely the Kingdom of Saudi Arabia

(KSA), Kuwait, Bahrain, Qatar, United Arab Emirates

(UAE), and Oman, are in the top 25 globally in

CO2 emissions per capita. Concerns about global climate

and environmental challenges have been raised in the GCC

region, necessitating an integrated plan to take a more

proactive approach to ecological modernisation and energy

policies. The requirements for forming a strategic

partnership focused on the GCC region’s sustainability

FIGURE 4
The LCOE of the existing solar project in the GCC region.

FIGURE 5
Historical peak demand and annual energy consumption from 2000 to 2021.
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and well-being have been highlighted by regional authorities

(Csala and Csala, 2020).

Years ago, it may appear irrational to invest in renewable

energy technologies in a location where the oil and gas sectors

dominate (Ferroukhi et al., 2013). In addition, such investments

do not provide sufficient short-term financial returns and instead

create competitors for the region’s key exports. However, this

perspective has changed due to the enormous opportunities with

renewable generation, and the GCC’s reliance on oil and gas

earnings is decreasing.

Gulf cooperation council interconnection

The GCC Interconnection was established in 2009 by

connecting the member states in the GCC (Aljohani and

Alzahrani, 2014), (Al-Ebrahim and Jones, 2017). This

interconnection aims to share energy during emergencies,

reduce the spinning reserves and improve the efficiency of

the interconnected power system (Csala and Csala, 2020),

(Aljohani and Alzahrani, 2014). Figure 3 shows the GCC

interconnection’s single line diagram (SLD). It shows that

the member states are connected via a 400 kV extra-high

voltage (EHV) network, while the KSA (Kingdom of Saudi

Arabia, 60 Hz) is connecting to the GCCIA (50 Hz) through a

high-voltage direct-current (HVDC) back-to-back converter.

The strength and modernity of the Gulf connection

encouraged member states to launch renewable energy

projects.

PV solar projects in the gulf cooperation
council region

The region witnessed a rapid movement with the launch of

renewable energy projects, especially photovoltaic energy. For

instance, the KSA constructed a 300 MW PV project in Sakaka

province in 2019 (Alnaser et al., 2022), (Alharbi and Csala,

2021).

The United Arab Emirates (UAE) started earlier than other

GCC member states and built the first phase of the 13 MW

Mohammed bin Rashid Al Maktoum (MBR) solar park in 2013,

followed by the second phase rated at 200 MW in 2018, then in

2020, the third phase started operation with a rated capacity of

800 MW. The fourth phase combined three technologies of clean

energy: 100 MW from a concentrated solar tower, 250 MW from

photovoltaic panels, and 600 MW from a parabolic basin

complex (Saqib, 2018; Obaideen et al., 2021; Xiao et al., 2022).

The fifth phase started in stages from the second quarter of

2021 with a total capacity of 900 MW (Saqib, 2018). These

projects align with the plan to reach 5 GW production from

clean energy in 2030 with $13.6bn of investments. In addition, in

2019, a 1177 MW Sweihan solar plant was operated in Abu

Dhabi (Ramachandran, Mourad, Hamed). Moreover, the 2 GW

Al Dhafra solar project is under construction and expected to be

operated by 2022 (Apostoleris and Chiesa, 2019; Cheema et al.,

2021; Jim, 2021). As a result, these projects placed the UAE at the

top of the renewable energy deployment in the GCC region.

Bahrain comes into the picture with a 100 MW Askar

landfill solar project in 2019 (Apostoleris et al., 2021).

FIGURE 6
The installed capacity and system peak from 2000 up to 2021.
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Furthermore, in 2019, Kuwait commissioned 10 MW at

Shagaya renewable energy park (Wang et al., 2021a). Also,

Oman started implementing solar energy with 100 and

500 MW in 2020 and 2021, respectively (Wang et al.,

2021b). Likewise, in 2020, Qatar announced an 800 MW

AlKarsaah PV farm to be entirely operated in 2022. A

detailed economic analysis of this PV farm project will be

presented in the rest of this paper.

Table 1 shows the existing solar project in the GCC region,

and it can be observed that within 4 years, more than 3 GW

generation came from PV only, with more projects in the

pipeline. Figure 4 shows the LOCE of the existing solar

projects in the GCC member states. It can be seen from

Figure 4 that from 2018 to 2020, the LOCE of PV solar

project cost is decreased by 76.5%, resulting in more PV farm

deployment in the GCC countries.

FIGURE 7
(A) Qatar solar GHI (kWh/m2/yr). (B) Alkarsaah PV farm location.
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FIGURE 8
PV farm structure.

FIGURE 9
PV farm in detail.
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Qatar power system overview

Generation

Qatar General Electricity and Water Corporation

(KAHRAMAA) was established in July 2000 to manage and

maintain electricity and water supply to the consumers in Qatar.

Since its establishment, the electricity sector has witnessed

extraordinary growth due to many factors. For example, the

population in Qatar has increased by 378% from 2004 (744029)

to 2022 (2811774). This significantly increases peak demand and

annual energy consumption, as shown in Figure 5. It can be seen

from Figure 5 that in 2000, the maximum demand and energy

consumption were 1855 MW and 8332GWH, respectively; in

2021, they increased to 8875 MW (468% increase) and

48683 GWh (584% increase). This gives significant challenges

in developing generation capacities in Qatar.

Transmission and distribution network

To meet high demand growth as described above,

KAHRAMAA, in collaboration with Independent Power

Producers (IPP), expanded the generation capacity from

4032 MW in 2008–10575 MW by commissioning three large-

scale power plants in 2009, 2010 and 2017, with an installed

capacity of 1995, 2730, and 2520 MW respectively as shown in

Figure 6. All these power plants use natural gas to produce

electricity. Furthermore, the electricity demand rise has led to the

expansion of the transmission network with the commissioning

of a new voltage level at 400 kV. Accordingly, the primary

substations are increased from 87 in 2000 to 400 in 2021.

At the same time, the distribution network also witnessed a

colossal expansion where the number of substations increased to

18613 in 2020, with a 5% growth compared to 2019. This number

is planned to rise further to reach 23400 substations by the end of

2026 to serve the urban development, economic activities and

events hosted by Qatar. This expansion paralleled with the

specific crucial projects in the country, including but not

limited to Lusail City, Metro project, New Port, and

2022 World Cup Stadiums.

AlKarsaah PV farm

The project background

The project is planned to be connected to the grid in two

phases. The first phase is 350 MW which will be grid-connected

in June 2022, and the second phase is expected to be fully

operational in July 2022. The total cost of the project is

448.4$M for 800MWp including connection equipment

220 and 132 kV substations. With this capacity, Alkarsaah PV

farm is the third largest project in the GCC region of its kind.

FIGURE 10
Qatar power system SLD (A) without PV farm. (B) With PV
farm.

FIGURE 11
Q/P operation.
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The project is designed as build, own, operate, and transfer

(BOOT) for 25 years, then the ownership will be transferred to

KAHRAMAA. Consequently, KAHRAMAA signed a 25-years

Power Purchase Agreement (PPA) with Siraj 1 (the purpose

company that was established to build, operate and manage the

project) in January 2020 to acquire electricity from the power

plant. After the agreement of all relevant parties, AlKharsaah area

was chosen as the project site, which is located 80 km2 west of

Doha, as shown in Figure 7B. The location was chosen based on

several key criteria:

1) The high potential of Global Horizontal Irradiation (GHI)

with 2,145 kWh/m2/yr, as shown in Figure 7A, these figures

are based on the findings of solar radiation monitoring

stations at various locations in Qatar, including

AlKharsaah, which were conducted by the Qatar

meteorological department (QMD), Qatar Environment

and Energy Research Institute (QEERI), Total, Marubeni,

and Kahramaa.

2) The local environment impacts because it is located in a desert

environment where living creatures are scarce.

PV farm structure

The structure of the PV farm is shown in Figure 8, with the

detailed SLD of the system shown in Figure 9. It consists of

1,803,240 modules, where 1,357,920 modules of 445W and

445,320 modules of 440W. There are 108 blocks in the PV

plant. Each block is connected to 1 MV substation, and there

are 30 inverters connected to 17,280 PV modules that generate

7.5 MW. Hence there are in total 3,240 inverters for the project.

Capacitor banks are installed at the AC substation, as shown in

Figure 8, to meet the reactive power control requirement as

explained subsection D.

Keys benefits of the project

The overall capacity of the solar project will be able to cover

7.5% of the 2022 peak demand. Also, the project will contribute

to Qatar’s commitment in hosting a carbon-neutral FIFA World

Cup in 2022, which is a goal of the Qatar National Vision 2030. In

addition, the plant will save 26 million tonnes of CO2 throughout

its lifespan, contributing to the ambitious goal of reducing carbon

emissions by one million tonnes every year starting from 2022.

Furthermore, the project will help achieve sustainable

development by reducing the dependency on gas for energy

generation. AlKharsaah PV farm uses cutting-edge solar

energy technology such as twin panels to conserve space,

automated sun-tracking systems, and robotic solar panel

cleaning to enhance production efficiency and lower plant

operating costs. Additionally, more than two million bifacial

solar modules with trackers will maximise efficiency.

Qatar power system and PV connection

The power system of Qatar consists of eight power plants as

shown in Figure 10A with a 10.6 GW installed capacity. Three

combined cycle power plants with 2730, 2520, and 1992 MW are

connected to the 400 kV level, and another two combined cycle

power plants with 756 and 1025 MW are connected to the

220 kV level. In addition, three open cycle power plants are

connected to the 220 kV level. All power plants use gas as a fuel

supply. The GCCIA interconnector is connected to the grid at

400kV, as shown in Figure 10A as well.

The weakest point in the network is the western ring from

bus 7 and bus 8 in Figure 10A. This ring has double circuit

overhead lines of 205 km in length. Therefore, the ring suffers

from voltage stability in case of n-2 contingency, and during

normal operation, the voltage profile is poor because there is no

reactive power compensation. Consequently, due to the high

FIGURE 12
Active Power limitation during over frequency.

TABLE 2 Cost of modificationsin the network.

Items Cost (M$)

Cost of 220 KV—132 KV GIS s/s 44

Cost of 220 kV OHL [2 CCT’s] 35 km 19.2

Cost of 220 kV cables [2 CCT’s] 11 km 42.2

Cost of 132kVOHL [4 CCT’s] 6 km 5.8

Cost of modification at both ends of the LILO 0.5
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radiation in the Alkarsaah area and reactive power support ability

(explained below) from the PV farm, the preferred option is to

connect AlKarsaah PV farm to the 132 kV subnetwork as a loop-

in-loop-out (bus 18 in Figure 10B) between two existing

substations (bus 7 and 8) in the western ring. The length

between the existing substation and the PV farm is 6 km as

shown in Figure 10B. In addition, the substation will be

connected to the new Kahramaa substation (LILO substation),

bus 18 in Figure 10B, through five underground cables to meet

the n-2 criteria. Moreover, the PV farm will be connected to the

220 kV network via a double circuits overhead line for a 35 km

distance, then an 11 km cable portion to the existing substation,

bus 9 in the single line diagram (SLD), as shown in Figure 10B.

For reactive power control capability of the PV farm,

according to the PPA and the grid code, it must be able to

provide reactive power at the Point of interconnection (POI) at

FIGURE 13
(A) Typical daily generation profile. (B) Forecasted and actual generation profile for 1 day.
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any operating point inside the P-Q/Pmax profile as shown in

Figure 11.

To achieve that, the Power Plant Controller (PPC) of Al-

Kharsaah PV farm controls the inverters and capacitor banks to

change its reactive power generation/absorption to achieve a

reactive power setpoint imposed either by the on-site operator or

by the grid operator. Consequently, during the daytime, when the

load increases, the PV farm will inject up to 462.9MVAR to the

network to maintain the voltage at the POI within the operational

limits. Therefore, the inverters will operate with a power factor

between −0.95 and +0.95 (±252.9MVAr), and capacitor banks

(6 × 35MVar) will compensate for the remaining reactive power.

On the other hand, during nighttime, when the load decreases,

the inverters will absorb reactive power so that the KAHRAMAA

grid can deliver to the PV plant 359 MVAr at POI. The reactive

power capability analysis concluded that the PV farm with

additional reactive power support (capacitor banks 6 ×

35 MVA) is capable to meet the reactive power requirements

at POI and there is no need for reactors to absorb the reactive

power from the network during low load.

In addition, the PV farm will remain at the maximum

available power when the frequency range between 47.5≤ f ≤
50.5, then gradually curtail its output when the frequency hits

50.5 Hz to reach zero at a frequency equal to 51.5 Hz. Figure 12

FIGURE 14
Hourly active power generated from PV farm.

FIGURE 15
PV fluctuation due to partly cloudy weather conditions.
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shows This slope is programmed into the Active

Power—frequency function of the PPC, taking into

consideration the limitation during over frequency.

Table 2 shows the cost of network modifications (as shown

in Figure 10B) due to integrating the 800 MW Alkarsaah PV

farm. The cost of 220 and 132 kV Gas-insulated substations is

44M$, while the cost of both 220 and 132 kV overhead lines is

67.2M$, and the cost of modification at the existing

substations is 0.5M$.

Power generation of the PV farm

The PV farm generates power during the daytime. Due to

the stability of weather in summer in Qatar, the generated

power from the PV is predictable when there is no cloud.

Figure 13A shows a typical daily generation during June when

the electricity demand is at its peak. It can be seen that power

starts to be injected into the grid at around 4:30 a.m. at sunrise

and increases to reach the maximum at 9 a.m. because of the

maximum power point tracking. The maximum output power

remains for 6 hours, then declines to zero at 6 p.m. (sunset) due

to the drop in irradiance. This generation behaviour will allow

grid operators to stop the inefficient conventional generation

on the system. Figure 13B accentuates the generation forecasted

and actual PV generation profile throughout 1 day. It displays

the pattern of the PV generation from the sunrise to the sunset,

where it jumps in the actual profile because the system

operators allow the PV farm to generate more power than

the plan during peak to utilise the cheapest available energy

instead of synchronising conventional generation to pass the

peak time.

Figure 14 illustrates the active power produced from the PV

farm for 2 weeks since the date of commissioning and shows only

the 1st phase, while the 2nd phase has not yet operated because

the network upgrading under commissioning is expected by mid

of August.

After the first phase of commissioning, the PV fluctuations

occurred due to the partly cloudy weather. It was the first time

that system operators experienced this phenomenon, as shown in

Figure 15. However, these changes in generation output did not

affect the system frequency because it happened early morning

when the minimum demand and the spinning reserve were at the

highest and the automatic generation control (AGC) took action

to maintain the balance.

Figure 16 shows the power flow at the PV farm area and the

voltage at different buses during the peak time. In addition,

Figure 17A,B represent the voltage at the PV farm and POI buses

and the reactive power flow from the PV farm. It can be seen that

the inverters operate according to network requirements and

within the Q/P operation curve, as shown in Figure 11. It can be

seen that the voltage at each bus is close to the nominal value for

132 and 220 kV voltage levels.

The base case forecasted peak demand for summer 2022 is

9300MW, higher than the peak recorded in summer 2021,

8875 MW. However, the high forecast scenario is 9557MW,

and the PV farm will contribute positively because of its

availability during peak times. Figure 18 illustrates the

forecasted peak demand in 2022 and the generation

contributions to meet the demand on the designated date. It

FIGURE 16
Power flow at peak time.
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is also noticeable that solar power production remains at its peak

during the peak demand because of solar tracker usage.

Therefore, the thermal units reduce the output power to leave

the space for the cheapest energy in the grid. Also, when solar

power production decreases due to the low irradiance, the

conventional power plant ramps up to maintain the balance

between demand and generation.

The FIFA World Cup (FIFA WC) is planned to start on 18th

November 2022 and will continue for 1 month; it is considered the

most challenging tournament due to the considerable increase in

demand. Figure 19 explains the pattern of the electricity demand

during the FIFA WC. Also, it shows the peak demand is shifted to

the evening peak during winter compared to the afternoon peak

during summer in Figure 18; this is due to the considerable change

in weather and temperature reduction. In addition, Figure 19

clarifies the PV generation during the WC tournament, which

has slight variations that will be covered by the existing thermal

units or the GCCIA interconnector.

FIGURE 17
(A) Voltage at PV farm and POI buses for 3 days of operation. (B) Reactive power flow from the PV farm for 3 days of operation.
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Economic analysis

Table 3 shows that the most efficient existing plants in

Qatar power system, plant D and plant E, are compared with

the PV farm to highlight the economic benefits. These two

plants have the biggest generation in the system and use gas as

a fuel supply. Plant D has a 2730 MW capacity, and plant E

has a 2520 MW capacity. Table 3 shows the detailed

comparison of costs between these two plants and the PV

farm. First, the total capacity cost of $ per KW of the solar is

higher than the total capacity cost of both plant D and plant E,

considering the size of all plants. In addition, Solar’s fixed

operations and maintenance (O&M) costs are higher than

others.

However, the variable O&M of plants D and E are 0.096$/

MWh and 0.0137$/MWh, respectively, whereas the variable

O&M is not applicable for the solar project. Finally, the

FIGURE 18
The forecasted peak demand in 2022.

FIGURE 19
System demand and PV generation during the FIFA WC.

TABLE 3 Comparison between two newest conventionalgeneration
and PV farm.

Items Units Plant D Plant E PV Farm

Net Facility Output MW 2,730 2,520 800.15

Total Capital Cost $/KW 956.7 673.15 639.45

Fixed O&M $/KW 1.67 1.22 2.03

Variable O&M $/MWh 0.096 0.0137 N/A

Heat Rate MmBtu/MWh 8.82 8.82 N/A

Capacity Factor % 95.00 95.00 N/A

Fuel Price $/MMBtu 3.3 3.3 N/A

Construction Time Months 3 2 2

Facility life Years 25.00 25.00 25.00

LCOE $/MWh 39.18 24.6 14.47
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LCOE of the solar project is relatively low at 14.03$/MWh, while

Plant D is 39.18$/MWh and Plant E is 24.6$/MWh. The

calculation of the LCOE is based on the following equations

where the system’s lifetime, the amount of energy it will produce,

and the input costs are considered.

TLC � ∑
n

t�1

It +Mt + Ft

(1 + r)t (1)

TLO � ∑
n

t�1

Et

(1 + r)t (2)

LCOE � TLC

TLO
(3)

LCOE �
∑n
t�1

It+Mt+Ft
(1+r)t

∑n
t�1

Et

(1+r)t
(4)

where TLC represents the total lifetime cost, TLO represents the

total lifetime output, It represents the investment and

expenditures for the year (t), Mt represents the operational

and maintenance expenditures for the year (t), Ft represents

the fuel expenditures for the year (t), Et energy output for the

year (t), r represents the discount rate, and n represents the

(expected) lifetime of the power system.

The above calculations can be directly applied to other PV

farm projects as well by considering subsidies, tax rebates, tax

abatements, and other government initiatives that may further

decrease the LCOE of PV farm. For example, if the government

provides a subsidy for the capital investment in a solar system,

the initial cost of establishing the system falls, and the total cost

falls proportionally. In addition, the high solar irradiation

directly relates to the low LCOE of a project. For example,

building an 800 MW PV farm in a different country, e.g., the

UK, will require more PV panels to capture more solar

irradiation, which leads to an increase in the capital cost of

the project and the LCOE. Moreover, the effective daily

irradiation time is one of the most critical variables in

analysing the total lifetime energy production PV. For

example, Qatar has more GHI yearly than the UK, and the

weather throughout the year in Qatar is more stable than in the

UK. Therefore, increasing the energy production throughout the

lifetime of the PV farm will reduce the LCOE.

Another important financial consideration for utility

companies and LCOE is the capacity and output charges. For

a conventional power plant, the capacity charge is paid based on

the availability of the generation in $/MW/h, and the output

charge is based on the actual energy output in $/MWh. In Qatar,

only the output charge is considered for PV farm, but for thermal

units, the utility must pay the capacity charges for the units, as

long as they are available but not necessarily running. Table 4

shows the capacity and output charge rates for thermal units and

PV. It can be seen from Table 4 that the charges to the utility

company for the PV farm is much less than that for thermal

units.

From an environmental point of view, the use of RE saves the

use of fossil fuels and hence the associated costs. Table 5 shows a

detailed financial comparison between the Alkarsaah PV farm

TABLE 4 Capacity and output charge rates.

IPP Contract capacity Capacity
charge rate ($/MW/h)

Output
charge rate ($/MWh)

A 567 11.29 30

B 1,025.00 10.39 26.3

C 1995.00 13.9 25.16

D 2,730.00 13.45 22.5

E 2,520 6.18 21.68

PV 800 0 14.03

TABLE 5 Financial comparison between PV solar operation and
thermal operation.

Items Results

2022 Total Energy Forecast (MWH) 51,003,056

Solar Energy Dispatch (MWH) 1,971,542

Av. Gas Ratio (MMBTU/MWH) 9.5

Total Consumed Gas (MMBTU) 484,529,036

Gas Saving (MMBTU) 14,392,253

% Gas Saving 2.88%

Output Unit Cost of Plant E ($/MWH) 22.4

Operation Cost Saving ($)—1 year 44,100,697

Plant E Capacity Charge ($/MWH) 6.315

Plant E Annual Availability (MWH) 21,924,336

Plant E Annual Equivalent to Solar project (MWH) 6,090,093

Plant E 25 years Equivalent Capacity Cost ($) 961,431,232

Total Payment for Solar Project (25 years)—($) 750,000,000

Operation Cost Saving ($)—25 years 4,024,409,103

Total Equivalent Cost for 25 years of thermal Units ($) 2,063,948,656

Total Solar Project Saving Amount ($) 1,313,948,656
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and the most efficient gas power plant (i.e., plant E as mentioned

above) to highlight the benefits of PV generation. It can be seen

from Table 5 that the total energy forecasted from all generations

is around 51 TWh in 2022, and the energy forecasted from

Alkarsaah PV farm is around 2 TWh, representing 4% of the

total energy. Consequently, the total consumed gas is

484,529,036 MMBTU, and the average amount of gas saved in

2022 is around 14,400,000MMBTU, which saves 44M$. If

Alkarsaah PV farm is not installed, the most efficient CCGT

will be running with a total equivalent cost of around 2.063B$ for

25 years of operation, including the capacity and operating

charges. In contrast, the total payment of the solar project for

the 25-years contractual period will be 750M$ as shown in

Table 5. As a result; the total savings will be 1.313B$.

Conclusion

Many PV farm projects have been commissioned in the last

5 years in the GCC region due to the high potential of solar

irradiance. As a result, some GCC solar projects recorded the

lowest LCOE globally at that time. In order to share the

experience of large-scale PV farm development in the GCC

region and further promote the development of PV farms, the

800MWp Alkarsaah PV Farm in Qatar has been discussed in

detail in this paper. Its site selection and structure are explained,

and its financial benefits are discussed in detail. In particular,

detailed economic analysis has shown that this PV farm can

achieve a record low LCOE at 14.03$/MWh, much lower than the

39.18$/MWh and 24.6$/MWh of the most efficient CCGTs in the

network. Such analysis can provide useful information for the

research community and industry in developing future large-

scale PV farms.

As part of our future work, the impact of Alkarsaah PV farm

on the practical network operation will be analysed and reported

after the system is put into service.
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The inertia level is a significant indicator that guides operators to integrate

renewable power generation into the power system for safe operation. In this

study, a method that can estimate the effective inertia of power grids located in

different regions in the interconnected system is proposed by using the

synchronous measurement data. Based on the equivalent swing equation

formed as a second-order oscillator, the inertia is expressed as a ratio of the

time-evolution solution of this equation. To avoid a meaningless ratio, the

Hilbert transformation is leveraged to recast the inertia analytical expression,

which is composed of the time-independent characteristic parameters of the

oscillation signal. Furthermore, the signal identification technique is employed

to extract the characteristic parameters from the synchronized measurements

so that the proposed scheme can estimate the regional inertia by using only the

outputs measured by the synchorphasor measurement units. A comparison of

the simulation results and methods validate the effectiveness and robustness of

the proposed method.

KEYWORDS

inertia estimation, regional grid, electromechanical oscillation, synchrophasor
measurement, power system

1 Introduction

The increasing integration of converter-control-based renewable power generation

into power systems makes the system inertia a focus of widespread concern due to the

small amount of inertia they provide (Yang et al., 2022a; He et al., 2021; Lyu et al., 2022).

In addition to the perspective of the whole system, regional inertia has also attracted

attention because of the spatial distribution characteristics of the integration of renewable

power generation into the system (Pulgar-Painemal et al., 2018; Yang et al., 2022b). The

significance of regional inertia is that the island power grid formed by the disconnection of

tie lines in the interconnected power system can withstand a sudden interruption of the

transmission power to prevent the frequency collapse of the island. Similar to the blackout

accruing in South Australia in 2016 (Yan et al., 2018), insufficient regional inertia has no
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ability to prevent the frequency collapse caused by the

disconnection of the tie lies. Nevertheless, this blackout may

be foreseen and prevented once the transmission system operator

(TSO) can obtain the distance between the minimum

requirement inertia and operation inertia of the regional

power grids. The former can be determined by the frequency

stability constraint of a system (Golpira et al., 2016), while the

latter can be obtained by inertia estimation. To summarize,

estimating regional inertia can not only assist the TSO in

seeking out the low inertia region but also provide guidance

for the TSO to integrate renewable power generation into the

system from the local perspective.

Access to obtaining regional inertia based on a synchronous

measurement can be divided into two categories: online

calculation and online estimation. In online calculations, the

component inertia is taken as the basic unit to be estimated (Sun

et al., 2019), whereas the regional inertia can be obtained by

calculating the sum of inertia units in the regional power grids

(Arjona et al., 2012; Hajnoroozi et al., 2015; Huang et al., 2018).

However, a reduction in the efficiency of online calculations has

gradually become prominent with the increasing scale and

complexity of power systems.

To adapt to the large-scale interconnected power system,

online inertia estimation for regional grid is developed. The

regional inertia can be estimated by minimizing the difference

between the PMU measured signal and the simulated signal

based on the equivalent dynamic model (Sarić et al., 2019;

Vahidnia et al., 2013; Chavan et al., 2017). However, the

estimation methods based on optimization is model-

dependent. Instead of optimization, online estimation based

on the analytical expression of the inertia have been

developed (Ashton et al., 2017; Wilson et al., 2019; Tuttelberg

et al., 2018; Panda et al., 2020). In (Ashton et al., 2017), the

regional power grid is aggregated as an equivalent generator so

that the regional inertia can be estimated by the ratio of the

sudden step power and the rate of change of frequency (RoCoF)

at the disturbance moment. Although the accuracy of the RoCoF-

based method can be improved by integration calculation

(Wilson et al., 2019), the controller response and system

damping can also affect the estimation results. In (Tuttelberg

et al., 2018), the regional inertia is expressed as a unit impulse

response of an equivalent swing equation formed as a first-order

transfer function at time zero. The regional inertia estimation

based on the step response and impulse response of an equivalent

swing equation needs to measure the frequency response

trajectory at the moment of disturbance. Recently, the

relationship between the inertia and electromechanical

oscillation behaviour has been utilized to estimate the

equivalent inertia. In (Panda et al., 2020), the inertia of an

equivalent generator at the connected bus is expressed based

on the maximum point information during oscillation. However,

the time corresponding to the extreme point needs to be exactly

determined. Overall, these estimation methods highly depend on

the measurement of the single point value at the disturbance

moment or extreme point, so the robustness to distorted data

caused by measurement noise or missing data is poor. Moreover,

the estimation accuracy can also disturb by the calculation of

RoCoF.

The purpose of this study is to develop a method to estimate

the regional inertia of an interconnected power system using

wide-area measurements, which has a lower sensitivity to the

single point value. An inertia expression based on the swing

equation is first developed. Then, an online regional inertia

estimation scheme for the interconnected power system is

established. Specifically, the contributions of this study are as

follows:

1) An inertia explicit expression is developed by using the

Hilbert transformation on the time-domain solution of the

swing equation formed as a second-order oscillator. The

developed inertia expression consists of the characteristic

parameters of the oscillation signal with no relation to

time, exhibiting prominent differences from the inertia

expressions in (Ashton et al., 2017; Wilson et al., 2019;

Tuttelberg et al., 2018; Panda et al., 2020).

2) The online estimation scheme for the regional inertia of an

interconnected power system is established based on the

combination of the developed inertia expression and the

adaptive identification algorithm that has been applied in the

power system. Unlike the estimation method mentioned above,

whose estimation results have a strong sensitivity to single point

measurement, the proposed estimation scheme strengthens the

robustness of the estimation to noise interference by utilizing the

overall information carried by the PMU-measured data.

3) A comparative analysis between the proposed method and

commonly used RoCoF-based method is carried out with a

large-scale interconnected power system in the simulation

circumstance.

The remainder of the paper is structured as follows: Section 2

discusses the power system dynamic response based on the swing

equation. In Section 3 the inertia analytical expression is derived.

The online estimation scheme for regional inertia is presented in

Section 4. Section 5 demonstrates the effectiveness and

robustness of the proposed method through simulation data.

Section 6 presents the conclusions drawn and discusses future

studies.

2 Theoretical basis

The electromechanical dynamic behaviour of a synchronous

subsystem in a bulk power system can be equivalent to an

aggregated synchronous generator (ASG) (Panda et al., 2020),

whose dynamic is modelled as a second-order oscillator,

expressed as
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M€δ +KD
_δ +Ksδ � Pm (1)

where δ(t) is the rotor angle; M and D are the inertia constant

and damping coefficient, respectively; KD is the damping torque

coefficient; and Ks is the synchronous torque coefficient.

Considering Pm unchanged, and linearizing (1) around the

equilibrium point yields

MΔ€δ + KDΔ _δ +KsΔδ � 0 (2)
where Δ(·) represents the variable deviation.

If all variables in (Eq. 2) are in p. u, then the relationships

Δωr(t) � Δ _δ(t) and ΔP(t) � KDΔ _δ(t) +KSΔδ(t) exist

(Kundur, 1994), where P and ω represent the electrical power

and speed of the ASG, respectively. Then, the homogenous

differential Eq. 2 can be rewritten as

MΔ _ω � −ΔP (3)

Based on (Eq. 3), it is reasonable to directly express the inertia

by the ratio of Δ _ω(t) to ΔP(t). However, these functions are

sinusoidal. In other words, the responses of electric power and

speed during the transient period follow the form of an

exponentially decaying sinusoidal oscillation (EDSO), which is

proven in the Appendix. Thus, a situation in which Δ _ω(t) and
ΔP(t) simultaneously coincide at zero at a certain moment may

occur. Although in such a situation, the relationship depicted by

(Eq. 3) also exists, the ratio ofΔ _ω(t) to ΔP(t) is meaningless, so it

cannot express the inertia. A simple way to solve this problem is

to choose a point where Δ _ω(t) and ΔPe(t) are simultaneously

non-zero, such as the pick point of the oscillation. However, this

method has a strong sensitivity to the single point value. Instead

of directly utilizing the time evolution, the Hilbert

transformation is employed to avoid the meaningless situation.

3 Inertia quantification based on the
hilbert transformation

As seen from the comparison of (A.3) and (A.4), the

difference between Δ _ω(t) and ΔP(t) is the phase and

amplitude rather than the oscillation frequency and decay

coefficient. Since the amplitudes of Δ _ω(t) and ΔP(t) are not

zero, the main reason for the above problem is the periodic

feature of the oscillation, which is caused by the phase changing

with time. Thus, the Hilbert transformation is employed to

separate the phase information in the EDSO signal to derive

the analytical expression of the inertia.

3.1 Hilbert transformation

The time-domain response trajectory of a dynamic system

contains complex transient information. The Hilbert

transform is an advanced technique to analyse dynamic

information during the transient period (Michael, 1994).

The Hilbert transformation for the time-domain signal x(t)
is presented as follows:

HT[x(t)] � 1
π
C∫∞

−∞
x(τ)
t − τ

dτ (4)

where HT[·] represents the Hilbert transformation and C is the

Cauchy principal value integral.

Then, the analytical expression of x(t), recorded asX(t), can
be obtained through the sum of the original signal and the

production between imaginary j and the Hilbert transformed

signal, expressed as follows:

X(t) � x(t) + jHT[x(t)] � A(t)ejk(t) (5)
where A(t) �

�����������������
x2(t) + (HT[x(t)])2

√
and κ(t) �

tan−1(HT[x(t)]/x(t)) are the instantaneous amplitude and

instantaneous phase, respectively.

The Hilbert transformation can convert a real signal in the

one-dimensional axis into a complex signal in the two-

dimensional plane by representing the amplitude and phase of

the real signal as the module and angle of the complex signal,

respectively.

3.2 Analytic expression of inertia

The advantage of the instantaneous information extraction of

the Hilbert transformation provides the basis for the separation

of the phase information. Since the Hilbert transformation is

linear, performing it on (Eq. 3) leads to

HT[MΔω] � −HT[ΔP] (6)

Multiplying each term in the Hilbert transformed equation

by the unit imaginary j and adding each term in the imaginary

equation to each term in (Eq. 6), an analytical expression of (Eq.

3) is obtained; i.e.,

MA dω(t)ejkdω(t) � AP(t)ejkP(t) (7)

where Adw(t) and AP(t) are the instantaneous amplitudes of

Δ _ω(t) and ΔP(t), respectively; and kdw(t) and kp(t) are the

instantaneous phases of Δ _ω(t) and ΔP(t), respectively.
Since the inertia is the positive real number, its norm is itself.

The analytical term is complex; thus, its norm is equal to the

instantaneous amplitude of the analytical signal. Consequently,

the phase information can be eliminated by norm calculation on

both sides of (Eq. 7).

MAdω(t) � AP(t) (8)

According to the relationship between the instantaneous

amplitude of Δ _ω(t) and Δω(t), derived in the Appendix, a

further derivation of (Eq. 9) is
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MAω(t)
������
γ2 + η2

√
� AP(t) (9)

Since the instantaneous amplitudes of Δω(t) and ΔP(t) have
no zero points, the inertia calculated based on the ratio of Ape(t)
to Adw(t) is meaningful. Specifically, the instantaneous

amplitude of the time-evolution signal following the EDSO

form is equal to the product of the initial amplitude and the

exponential term (Kreyszig et al., 2011); i.e., A(t) � A0e−ηt. The
inertia thus can be analytically expressed as

M � AP0/Aω0

������
γ2 + η2

√
(10)

In (Eq. 10), the initial amplitude of the oscillation powerAP0,

the initial amplitude of the oscillation speed Aω0, the decaying

decay coefficient η, and the oscillation frequency γ are the

characteristic parameters of the electromechanical oscillation,

which are not a function of time. Therefore, the inertia can be

quantified once these oscillation characteristic parameters are

determined.

4 Scheme for regional inertia
estimation

The derived inertia analytical expression provides an

important basis for the online inertia estimation. It is feasible

to estimate the inertia by extracting these characteristic

parameters from the observed electromechanical oscillation

response. However, practical applications of the regional

inertia estimation for the interconnected power system based

on (Eq. 10) need further illustration, namely, the equivalent of

the multi-region interconnected system and the extraction of

oscillation characteristic parameters.

4.1 Equivalence of a multi-region
interconnected power system

The generation of the interconnected power system is

motivated by insufficient or excessive generation power in the

regional grid. Consequently, the partition of the system

consisting of multiple interconnected regional power grids can

be achieved by finding the boundary buses of each regional grid,

which is geographical in nature. A significant sign of the partition

an interconnected system is the tie-line connecting regional

power grids. In such partitions, each regional grid can be

referred to as an ASG whose electromechanical dynamic

behaviour is described by (Eq. 2) (Chavan et al., 2017), while

the interconnected structure is preserved. Then, the dynamic

behaviour of the interconnected power system can be represented

by the multiple ASGs model, expressed as

MΔ€δ + KDΔ _δ + KsΔδ � 0 (11)

where δ � ([δi]T, i ∈ R) is the rotor angle vector; ω �
([ωi]T, i ∈ R) is the rotor speed vector; M � diag({Mi}, i ∈ R)
is the inertia matrix; KD � ([KDi]T, i ∈ R) is the damping

matrix; KS � ([KS,ij], and i, j ∈ R) is the synchronous power

coefficient matrix. Simplifying (11) by Δω � Δ _δ and ΔP �
KDΔ _δ + KSΔδ yields

MΔ _ω � −ΔP (12)

where P � ([Pi]T, i ∈ R) is the electric power vector.

It can be seen that (Eq. 11) is the high-order extension of (Eq.

2). Although this extension cannot change the EDSO form that

the speed and electric power signals follow, it will make the time-

domain response of the speed and power complicated; that is, the

speed and power signal contain multiple components with

different oscillation frequencies due to increased order. The

complicated oscillation creates a barrier to directly calculating

the regional inertia by using the proposed inertia quantification

methodology because (10) is derived based on the speed and

power at a single oscillation frequency. Thus, the decomposition

of the signal consisting of the components with different

oscillation frequencies should be further considered.

4.2 Extraction of the oscillation
characteristic parameter

Considering the above situation, the extraction of the

oscillation characteristic parameters contains two phases:

decomposition and identification (Yang et al., 2017). Signal

processing technology based on intrinsic mode function (IMF)

sifting provides an effective way to decompose nonlinear, non-

stationary, multi-component coupling signals. An IMF satisfies

two conditions: 1) the number of local extreme points and zero-

crossing points must be equal or differ by at most one in the

whole-time window, and 2) the average of the upper envelope

and lower envelope is equal to zero at any time. After IMF sifting,

the original signal can be expressed as

m(t) � ∑
n

yi(t) + r(t) (13)

where yi(t) is the ith IMF and r(t) is the monotonic residue

component.

According to the IMF sifting conditions, the IMF in the

EDSO signal with multiple components corresponds to the

component with a single oscillation frequency. Fortunately,

many methods can be used to extract the IMFs of the multi-

component EDSO signal, such as the Prony method, the

empirical mode decomposition algorithm, and adaptive local

iterative filter decomposition (ALIFD). Among them, ALIFD is

utilized here due to its better performance than others and

robustness to the strong nonstationary behaviour of the

dynamic system.
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After decomposition, the component with a single oscillation

frequency is obtained. The amplitude, decay coefficient, and

oscillation frequency of each decomposed signal can then be

identified by linear fitting, which can be achieved by least squares

fitting (LSF).

4.3 Procedure for the online regional
inertia estimation

According to the above analysis, the speed and electric power

response of each ASG need to be obtained first. In the p. u, the

speed of the ASG can be approximately represented by the

average frequency of the regional power grid corresponding to

the ASG, which can be obtained by the weighted average of the

bus frequency captured by the PMU in the region (Tuttelberg

et al., 2018). The electrical power of the ASG can be obtained by

the sum of the measured transmission power in the tie lines. By

integrating the bus frequency and the transmission power

captured by the PMU, the data set for the regional inertia

estimation is generated.

As shown in Figure 1, the proposed online inertia estimation

method for the interconnected power system consists of five

steps, where the step 1 and step 2 are to prepare the input data,

step 3 and step 4 are to extract the oscillation parameters, and the

inertia of each region is finally estimated by step 5. Specifically,

the estimation procedure is as follows:

Step 1: Capture the time-domain response of the bus frequency

deviation in each regional grid and tie-line power

deviation during the electromechanical oscillation

process by using synchrophasor measurements.

Step 2: Integrate the PMU-measured response into the speed and

electrical power signal of the ASG corresponding to each

regional grid.

Step 3: Decompose the integrated speed and electric power

signals with multiple intrinsic modes coupled into the

signals with a single oscillation mode by using the ALIFD

algorithm.

Step 4: Identify the oscillation characteristic parameters of each

ALIFD decomposed signal by linear fitting.

Step 5: Estimate the inertia based on (Eq. 10), where the

oscillation characteristic parameters have been

determined by step 4.

5 Numerical simulation

This section tests the performance of the proposed method

based on the IEEE standard system, i.e., the 5-region, 16-

machine, 68-bus power system (Canizares et al., 2017). The

topology of the system is shown in Figure 2. According to the

interconnected structure, the test system is geographically

divided into five regional power grids, i.e., the New England

power grid (Region I), the New York power grid (Region II), and

the remaining three equivalent power grids (Region III, Region

IV, and Region V). Region I and Region II include generator

G1–G9 and generator G10–G13, respectively. Region III, Region

IV, and Region V are represented by three equivalent generators

G14, G15, and G16, respectively.

FIGURE 1
Flowchart for the data-driven regional inertia estimation.
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The test system is established on the

DIGSILENT numerical simulation software. The base

power, rate frequency, and simulation step are set as

1000 MW, 60 Hz, and 0.01 s, respectively. Moreover,

Gaussian noise is added to the simulated signals to imitate

the measurement noise.

The proposed regional inertia online estimation method

takes the measured signal as input. However, according to the

theory in Section 2, the estimation is based on the extraction of

oscillation characteristic parameters from the measured signal.

Thus, the exact electromechanical oscillation parameters should

be extracted before quantifying the inertia by (Eq. 10).

5.1 Oscillation parameter extraction

To stimulate the electromechanical response of the system, a

single-phase ground fault with a duration of 0.05 s is carried out

at the 31 Bus. Then, the ASG speed and power signals

corresponding to the regional grid are generated by the bus

frequency and tie-line power, respectively, which exhibit

decaying oscillations, as shown in Figure 3.

Meanwhile, a spectrum analysis based on a Fourier transform is

performed on the filtered speed and power signals to reveal the

oscillating components. Figure 4A shows that the ASG speed signal

contains three inherent components with a determined frequency.

Figure 4B shows that theWFT spectrumof theASGpower signal also

contains three inherent components whose oscillation frequencies are

the same as the inherent components in the ASG power signals.

To extract the oscillation parameters of the inherent

oscillation components in the speed and power signal, the

ALIFD algorithm is performed. The speed and power signal

of each ASG is decomposed by the ALIFD algorithm, generating

three components with a single oscillation frequency for each

signal. Then, the oscillation parameters of decomposed

components are identified by LSF. The identified oscillation

parameters are shown in Table 1 to Table 3 where Table 1,

Table 2 and Table 3 correspond to the oscillation parameters of

inherent component 1, inherent component 2, and inherent

FIGURE 2
Diagram of the IEEE five-region power system.

FIGURE 3
Simulated signal: (A) speed deviation signal of ASG I to ASG V
and (B) power deviation signal of ASG I to ASG V.
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component 3, respectively, in the power and speed signals. It can

be observed that the same inherent components of the different

signals have the same oscillation frequency and decay coefficient,

while the initial amplitudes are different.

Based on the identified oscillation parameters, the speed and

power signals are reconstructed, as shown in Figure 3. As can be

seen from the figure, the reconstructed signals also show the

decaying trend and have almost the same oscillation process as

the original signals, indicating that the parameters extracted by

ALIFD-LSF can quantitively represent the oscillation

characteristic.

5.2 Regional inertia estimation

After the oscillation characteristic parameters are extracted,

the regional inertia can be obtained by using (Eq. 10). This

subsection aims to verify the correctness of the proposed inertia

FIGURE 4
Spectrum analysis for the (A) speed signals and (B) power signals.

TABLE 1 Oscillation characteristic parameters of comp. One.

ASG fd (Hz) α (s) Af0 (10
–4 p.u.) Ape0 (p.u.)

I 0.384 0.241 0.830 0.012

II 0.382 0.249 0.291 0.009

III 0.381 0.246 0.479 0.007

IV 0.385 0.251 0.767 0.011

V 0.386 0.248 0.269 0.006

TABLE 2 Oscillation characteristic parameters of comp. Two.

ASG fd (Hz) α (s) Af0 (10
–4 p.u.) Ape0 (p.u.)

I 0.542 0.203 1.717 0.034

II 0.547 0.207 0.747 0.033

III 0.541 0.208 2.417 0.050

IV 0.539 0.205 0.193 0.004

V 0.545 0.204 3.024 0.092

TABLE 3 Oscillation characteristic parameters of comp. Three.

ASG fd (Hz) α (s) Af0 (10
–4 p.u.) Ape0 (p.u.)

I 0.685 0.182 0.086 0.002

II 0.683 0.180 0.179 0.009

III 0.688 0.179 0.867 0.020

IV 0.687 0.187 1.901 0.045

V 0.682 0.183 0.528 0.018

TABLE 4 Inertia Configuration of the test system based on 1000 MVA.

Region Generator index Inertia(s) Normal value (s)

Region I G1 8.40 58.8

G2 8.40

G3 7.16

G4 5.72

G5 5.20

G6 6.96

G7 5.20

G8 4.86

G9 6.90

Region II G10 6.10 129.4

G11 5.66

G12 18.44

G13 99.20

Region III G14 60.00 60.00

Region IV G15 60.00 60.00

Region V G16 90.00 90.00
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analytical expression by comparing the estimated inertia and

nominal inertia calculated directly from the system

data (Kundur, 1994), where the nominal inertia is shown in

Table 4.

To quantify the accuracy of the estimation results, the relative

error between the inertia obtained by the estimation method and

the calculated inertia at the same base power is employed and is

expressed as

E �
∣∣∣∣∣∣ ~M −M

∣∣∣∣∣∣
M

× 100% (14)

where ~M represents the estimated inertia.

According to the extracted oscillation characteristic

parameters, three sets of estimation results can be

obtained. We first estimate the regional inertia by using

the oscillation characteristic parameters in Table 1, which

correspond to inherent component 1. The estimated inertia

for the five regional power grids in the test system based on

inherent component 1 is shown in Figure 5 and Table 5. It can

be seen by comparing the estimated inertia marked as a pink

square and the real inertia marked as the red points in

Figure 5 that the estimated results have a slight deviation

from the real inertia. Table 5 shows that the numerical

deviation between the estimated inertia and real inertia of

Region I to Region V is {-0.8 s, 1.15 s, -0.7 s, 1.01 s, and -1.42 s,

respectively}.

The estimated inertia based on inherent component 2 and

inherent component 3, i.e., oscillation characteristic parameters

in Table 2 and Table 3 are subsequently obtained, which are also

presented in Figure 5. The estimation results based on the

parameters in Table 3 and Table 4 are marked as the green cross

and black cross, respectively. Apparently, both of them also

have a small deviation from the real inertia. As seen from

Table 5, the numerical deviation between the estimation and

reality of Region I to Region V based on the parameters of

component 2 and component 3 are {0.76 s, 1.07 s, -0.74 s, -1.06,

and 1.32 s} and {-0.73 s, -1.10 s, 0.65 s, -0.97 s, and 1.38 s},

respectively.

Furthermore, the estimation error is calculated based on

the estimation results to indicate the accuracy of the

proposed method. As shown in Table 5, the relative errors

for the estimation results based on these three inherent

components are all small, indicating the accuracy of the

proposed method. Moreover, an apparent situation can be

seen from Figure 5; that is, the estimation results are almost

coincident, which means that the estimated inertias based on

the oscillation characteristic parameters of the different

inherent components have no significant impact on the

estimation results. Moreover, such a situation can also be

seen by comparing the estimation error based on the

different inherent components in Table 5. This feature

means that there is no need to extract the oscillation

characteristic parameters of all inherent components

hiding in the ASG speed and power signal, which makes

the proposed method adaptable to large-scale interconnected

power systems.

5.3 Comparison with the RoCoF-based
method

To demonstrate the outperformance of the proposed

method, the RoCoF-based inertia estimation method, which

is based on the frequency events caused by sudden power

mismatch between generation and consumption, is carried out

FIGURE 5
Comparison of the estimation results based on the oscillation
parameters of the different components.

TABLE 5 Estimation results and error based on the oscillation parameter of the different components.

Region Estimation 1 Estimation 2 Estimation 3

Result Error (%) Result Error (%) Result Error (%)

I 59.60 1.36 58.04 1.29 59.53 1.24

II 128.25 0.89 128.33 0.83 130.50 0.85

III 60.70 1.17 60.74 1.23 59.35 1.08

IV 58.99 1.68 61.06 1.77 60.97 1.62

V 91.42 1.58 88.68 1.47 88.62 1.53
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with the test system. The frequency response trajectory of each

regional power grid caused by a sudden 0.228 p. u. load

increase at 1 s is shown in Figure 6A. The mismatched

power of each regional power grid can be calculated

through the deviation of the generation power after

disturbance, from Region I to Region V being 0.038 p. u,

0.072 p. u, 0.034 p. u, 0.034 p. u, and 0.05 p. u, respectively.

A lowpass Butterworth filter with a corner frequency of

0.5 Hz is utilized to filter out the slow network modes in the

frequency response trajectories, Then, the RoCoF of each

regional power grid can be calculated, as shown in

Figure 6B. Based on the RoCoF and mismatched power, the

inertia can be estimated by the method proposed in (Ashton

et al., 2017). The estimation results are shown in Table 6,

which is close to the real value. However, the numerical

deviation between the estimation and reality of Region I to

Region V based on the RoCoF is {-16.74 s, -24.12 s, -13.59 s, -

4.76 s, and -15.04 s}, respectively, which is larger than that of

the proposed method. Additionally, it can be seen by

comparing the ER of different methods that the inertia

based on the proposed method is more accurate than that

of the RoCoF-based method.

Theoretically, the inertia expression based on frequency

events is described as H � ΔP/ _f(t)|t�t0. According to this, the

results of the RoCoF-based method are highly sensitive to the

derivative of frequency at the disturbance moment. Although

the measurements of the frequency at the disturbance

moment can be achieved, the filter process for the noise

and slow network modes may distort the frequency

derivative at the disturbance moment due to boundary

effects, which cause a larger estimation error than the

proposed method based on the characteristic parameters

of the oscillation signal.

6 Conclusion

This paper presented a synchrophasor data-driven

method to estimate the regional inertia for an

interconnected power system. The estimation scheme is

based on the relationship between the regional inertia and

the characteristic parameters of the electromechanical

oscillation signal, which is developed by the Hilbert

transformation of the equivalent swing equation. Since the

developed inertia expression is time-independent, the

proposed method can accommodate the measurement data

under noise conditions. Additionally, there is no need to

determine the disturbance time, and the measured data is

directly used rather than further derivative calculation,

thereby improving accuracy.

The performance of the proposed method is demonstrated

on the simulated data of the five-region power system and then

compared with the RoCoF-based method. The simulation results

showed the outperformance of the proposed method. The

proposed method expands the application of the signal

identification technique in power systems. To further explore

this issue, our future work will include the application of random

signal processing technology to realize the real-time estimation of

the regional inertia.

FIGURE 6
Time-domain trajectories caused by a sudden load increase: (A) frequency signals and (B) RoCoF signals.

TABLE 6 Estimation results of the RoCoF-Based method.

Region Normality Estimation Error (%)

Reg. I 58.8 75.54 28.47

Reg. II 129.4 153.52 18.64

Reg. III 60.00 73.59 22.65

Reg. IV 60.00 64.76 7.93

Reg. V 90.00 105.04 16.71
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In order to help achieve the goal of carbon peak and carbon neutrality, the

large-scale development and application of clean renewable energy, like wind

generation and solar power, will become an important power source in the

future. Large-scale clean renewable energy generation has the uncertain

characteristics of intermittency, randomness, and volatility, which brings

great challenges to the balance regulation and flexible operation of the

power system. In addition, the rapid development of renewable energy has

led to strong fluctuations in electricity prices in the powermarket. To ensure the

safe, reliable, and economic operation of the power system, how to improve the

power system flexibility in an uncertain environment has become a research

hotspot. Considering the uncertainties, this article analyzes and summarizes the

research progress related to power system flexibility from the perspective of

power system planning, operation, and the electricity market. Aiming at the

modeling technology of uncertainty, the related modeling methods including

stochastic programming, robust optimization, and distributionally robust

optimization are summarized from the perspective of mathematics, and the

application of these methods in power system flexibility is discussed.

KEYWORDS

power system flexibility, uncertainty, robust, stochastic, distributionally robust

1 Introduction

In order to deal with energy depletion and environmental problems, many countries

have formulated carbon emission strategies. On 22 September 2020, Chairman Xi

announced to the world that China will strive to achieve peak carbon dioxide

emissions before 2030 and carbon neutrality by 2060. The United States and the

European Union have proposed a Zero Carbon Action Plan (ZCAP) and a net zero

emission target for 2050, respectively. Canada is expected to commit to a net zero

emission target by 2050 and develop a legally binding 5-year carbon budget. Sweden set a

net zero emission target in 2017. According to the Paris Agreement, it promised to achieve

carbon neutrality by 2045, with at least 85% of the emission reduction to be achieved

through domestic policies and the rest to be made up by international emission reduction.

Germany promises to “pursue” greenhouse gas neutrality by 2050. Singapore avoided

promising a clear decarbonization date but made it the ultimate goal of the long-term
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strategy submitted to the United Nations in March 2020. By

2040, diesel locomotives will be phased out and replaced by

electric vehicles. Therefore, a high proportion of renewable

energy power generation has become a future power system

scenario of widespread concern around the world. Under the new

scenario, the characteristics of the power system have changed

significantly. The randomly fluctuating wind and solar energy

have become the main power sources, the “base load” power

plants have been basically cancelled, the conventional thermal

power units are started and stopped within a day, and the

stochastic volatility of renewable energy is complemented

through the flexible resource regulation of hydropower plants,

gas-fired power plants, energy storage, etc.; flexibility has become

the core issue of planning and operation.

In China, guided by the goal of carbon peaking and carbon

neutrality, China has put forward the development strategy of

building a new power system with new energy as the main body.

The goal of “carbon peak and carbon neutrality” is a systematic

project, and the power industry shoulders an important historical

mission. According to the statistics of the International Energy

Agency (IEA) in 2019, the total carbon emission in China was

11.3 billion tons, and the carbon emission in the energy field was

9.8 billion tons, accounting for 87% of the national total. Among

them, the carbon emission in the power industry was 4.2 billion

tons, accounting for 37% of the national total (United Nations

Environment Programme, 2019). At present, China’s energy

consumption and carbon dioxide emissions per unit of GDP

have been reduced by 13.5 and 18%, respectively, which has been

written into the main objectives of economic and social

development during the 14th Five-Year Plan (Xinhuanet,

2021). According to EIA data, the carbon emission of the

United States in 2019 was 6.558 billion tons, down 11.96%

from 2007. In 2020, renewable energy accounted for 12.49%

of primary energy consumption in the United States. Biomass

energy accounts for the highest proportion of renewable energy,

accounting for 39%, followed by wind energy (26%), hydropower

(22%), light energy (11%), and geothermal energy (2%). In 2020,

the carbon emission of the EU was 2.551 billion tons, a decrease

of 32.05% compared with 1990.

Therefore, to achieve the goal of carbon peak and carbon

neutrality, the power industry has the heaviest task and the

greatest responsibility and will play an important role of the

main force. Therefore, the intermittent renewable energy power

generation represented by wind power and solar energy will enter

the fast lane of large-scale development and gradually form a

clean and sustainable power supply mode dominated by

renewable energy power generation. Also, the power system

will change from a high-carbon power system to a deep low-

carbon or zero-carbon power system.

However, due to the strong uncertainty and strong

fluctuation characteristics of intermittent renewable energy

power generation, realizing the status of the power subject

and responsibility subject of renewable energy power

generation faces complex technical challenges and needs a

long-term development process. In addition to continuing to

pay attention to safety, reliability, and economy, the flexibility of

the power system has become a new focus. Under this

background, it has become an urgent problem to explore the

flexibility mechanism, planning, and operation theory and

method of the new power system in a complex environment

and multi-space–time interaction (Xu et al., 2020).

Security, reliability, economy, and flexibility are the internal

requirements of modern power systems and are important

indexes to measure whether the operation mode of the power

system is reasonable or not (Telukunta et al., 2017). There is an

extremely close relationship between them. In order to analyze

the power system flexibility, we briefly introduce the other three

research statuses. The security of the power system represents the

ability of the power system to maintain a continuous power

supply in case of an accident in a short time. From the perspective

of security, aiming at the rapid development of power systems,

Shu and Tang (2017) analyzed the main standards of power

system security in China and discussed the development

direction in the future. Shahidehpour et al. (2005) discussed

the important role of security in power system planning and

operation, studied the challenges and problems faced by security

in different time- and space scales, and put forward the

corresponding solutions. Yorino et al. (2018) proposed a bi-

level robust optimization model to solve the problem of reserve

margin under the environment of uncertain renewable energy

output to ensure the safe operation of the whole system. From the

economic viewpoint, Wang et al. (2017) described the scheduling

problem containing a large amount of random wind power as a

chance-constrained economic scheduling problem. The joint

probability density function of multiple wind farms was

established by using the Gaussian mixture model, and the

results verify that the system can achieve a better economy. In

order to solve the problem of excess wind power generation,

power-to-gas technology was introduced into the integrated

electricity and natural gas system, and a stochastic dynamic

economic dispatching model based on the conditional value at

risk method security risk constraints was established in Chen

(2019). From the reliability side, AmandaSteele et al. (2021)

discussed the impact of the growth of renewable energy on power

system reliability. In order to maintain the safe operation of the

system in the short and medium term, considering the

uncertainty of wind power, a multi-state model of hybrid

power generation and standby suppliers was proposed in Ding

et al. (2014), and a time-varying reliability evaluation technology

was used for system reliability evaluation.

Under the background of zero-carbon transformation of

energy structure, building a new power system with renewable

energy as the main body will become an important means to

achieve the goals of carbon peaking and carbon neutrality. A high

proportion of renewable energy has become the main feature of

the power system. Different from conventional thermal power,
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renewable energy power generation is affected by meteorological

conditions and environmental factors, and its output shows the

characteristics of intermittence and fluctuation, which makes the

power system change from a deterministic system to a strong

uncertain system. The random variation characteristics of high-

proportion renewable power will bring unprecedented challenges

to the power system. However, due to the lack of flexibility in the

power system, it is difficult to absorb renewable energy efficiently.

Enhancing flexibility and improving system regulation capacity

are inevitable requirements for realizing power zero-carbon

transformation. However, the problem of insufficient flexibility

in the power system restricting the consumption of renewable

energy has not been fundamentally solved. Flexibility has become

one of the indispensable indexes of the power system. At present,

researchers have made relevant research and summary on the

aspects of flexibility resources and flexibility evaluation methods

(Brunner et al., 2020; Michael et al., 2020; Semich et al., 2020). Li

et al. (2018) summarized the flexibility indicators and evaluation

methods. Mohandes et al. (2019) analyzed the concept, indexes,

and related economic technologies of power system flexibility in

high penetration of the renewable energy environment and

focused on the impact of uncertain renewable energy on

storage and reserve. Taking the impact of renewable energy

growth on power systems as the starting point, Alireza et al.

(2019) analyzed the role of various flexibility resources in system

flexibility from the point of timescales. The existing review on

power system flexibility research mainly focuses on the

definitions of power system flexibility, flexibility resources,

and power balance mechanism in an uncertain environment,

but there is no discussion on the application of the uncertainty

modeling method in power system flexibility research. On this

basis, this article further discusses the modeling technology of

uncertainty factors in detail. Therefore, aiming at the planning

flexibility, operation flexibility, and electricity market flexibility

of power systems in an uncertain environment, this article

summarizes the main modeling methods of uncertainties and

analyzes the advantages and disadvantages of various methods.

In the following, Section 2 presents the concept and the

characteristics of power system flexibility. Section 3 summarizes

the uncertainty modeling methods from the perspective of

mathematics. Section 4 summarizes the related research on

power system flexibility under an uncertainty environment,

and Section 5 narrates the concluding remarks.

2 Power system flexibility

2.1 Definition of power system flexibility

Flexibility is the ability of a power system to use all resources

to respond to changes in net demand in a certain environment

(Lannoye et al., 2012). At present, the research on power system

flexibility is still in its infancy. The North American Electric

Reliability Council (NERC) and International Energy Agency

(IEA) define flexibility from different perspectives as follows: the

NERC believes that power system flexibility is the ability to use

system resources to meet load changes, which is mainly reflected

in operation flexibility, and it focuses on the methods to improve

power system flexibility (Milligan et al., 2010). IEA believes the

power system flexibility means that, under its boundary

constraints, the power system can quickly respond to large

fluctuations in supply or load demand and can quickly

respond to predictable changes (International Energy Agency,

2014). Hence, some researchers have declared their views on the

definition of power system flexibility from different perspectives.

In terms of power capacity and ramp rate, power system

flexibility is described as the ability to increase energy

production with a certain rate and ramp duration, that is, the

ability to sustain ramping for a given duration (Dvorkin et al.,

2014). Zhao et al. (2016) defined flexibility as the maximum

uncertainty range that the power system can cope with. Generally

speaking, the research on power system flexibility focuses more

on the dynamic response and adequacy of the generation side

and demand side.

2.2 Characteristics of power system
flexibility

Power system flexibility has three characteristics: inherent

characteristics of the power system, directionality, and spatio-

temporal characteristics (Lu et al., 2018).

Flexibility is an inherent characteristic of a power system

(Denholm and Hand, 2011). For the power system, it has the

ability to resist a certain risk, that is, the power system has an

internal tolerance that allows the power system to deviate from

the preset operating point to a certain extent without any change.

This tolerance is considered as the inherent flexibility of the

power system. From the perspective of power system active

power balance, the climbing capacity, output range, and load

characteristics of units are the inherent characteristics of power

system flexibility.

Directionality (Lannoye et al., 2010): the power system is

affected by many uncertain factors. The intermittent power

sources have changed the traditional power structure and

increased the randomness and uncertainty of power system

operation from the power generation side, resulting in a

power imbalance in the power system in a short time. Under

different operating conditions, the power system flexibility is

different. In view of this characteristic of flexibility, it can be

considered that power system flexibility has two directions:

upward and downward, that is, the flexibility is directional.

The upregulation ability and downregulation ability reflect the

flexibility of the system in different directions.

Spatio-temporal characteristic means the power system

flexibility needs to be described on a certain timescale
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(Thatte and Xie, 2016). The power change caused by uncertainty

in the power system rarely increases or decreases monotonically,

and the change duration is also different. Therefore, the

evaluation of power system flexibility is different in different

timescales. According to the timescales, it can be divided into the

flexibility of frequency modulation and unit climbing. On the

spatial scale, due to the influence of resource distribution and

transmission conditions, flexible resources cannot be dispatched

freely in the system (Chen et al., 2020).

2.3 Evaluation methods of power system
flexibility

In the research of power system flexibility, evaluation

methods are the key point (Semich et al., 2020). According to

the power system flexibility characteristics, many research

studies have put forward different flexibility evaluation

indexes. Velocity ramps (positive ramp and negative ramp)

and load duration (the duration of continuous maximum and

minimum loads) were presented as the evaluation indexes to

evaluate the flexibility of the system (Martin et al., 2019). From

the perspective of the attributes of the five flexible resources

(supply, demand, grid, storage, and markets), Papaefthymiou

et al. (2018) divided them into 14 flexibility index systems.

Similar to Papaefthymiou et al. (2018), the authors also adopt

the attribute classification method and put forward four

flexibility attribute indexes, namely: positive flexibility,

negative flexibility, production flexibility, and time-varying

flexibility in Zhou et al. (2021). Some other evaluation

indexes, such as upward and downward reserves (Ma et al.,

2013), optimal costs, time-dependent flexibility potentials, costs

of flexibility provision (Wanapinit et al., 2021), and flexibility

metrics (flexibility regulation range increase rate and flexibility

promotion cost) (Guo et al., 2020), were presented to evaluate

power system flexibility.

We briefly list several commonly used power system

flexibility evaluation indexes in Table 1.

3 Modeling methods of uncertainties

Renewable energy generation, load demand forecasting,

electricity price fluctuation, and other uncertain factors make

the power system in a strong uncertain environment. The

traditional deterministic method is no longer appropriate, and

it is necessary to consider the influence of uncertain factors. How

to optimize the problem under uncertainty becomes important.

To solve the problem of uncertainties in the power system, the

key is to accurately describe the impact of uncertain factors and

how to effectively use the information on uncertain variables to

provide theoretical data for power departments to make safe and

economic decision-making schemes.

For the traditional deterministic optimization problem, its

mathematical expression is generally as follows (Anthony Man,

2011):

minf(x)
s.t. h(x)≤ 0,

(1)

where x is the decision vector, f(x) is the objective function, and
h(x) is the constraint function. In model (1), the corresponding

parameters of both constraints and objective function are

determined.

However, due to the emergence of various uncertain factors,

the problems related to power systems have changed from

traditional certainty to uncertainty, and the general expression

of the uncertain optimization mathematical model is as

follows(Sun et al., 2022):

minf(x, ξ)
s.t. h(x, ξ)≤ 0
∀ξ ∈ U,

(2)

where ξ is an uncertain parameter, and U is an uncertain set.

According to the different modeling of uncertain factors, the

uncertain optimization methods mainly include stochastic

programming, robust optimization, and distributionally robust

optimization, and the comparisons of these methods are shown

in Appendix 1.

TABLE 1 Some power system flexibility evaluation indexes.

Evaluation object Directionality Probability index Expected index

Peak-shaving capacity shortage upward pt
UPCS,i Et

UPCS,i

downward pt
DPCS,i Et

DPCS,i

Ramp capacity shortage upward pt
URCS,i Et

URCS,i

downward pt
DRCS,i Et

DRCS,i

Flexibility shortage upward pt
UFS Et

UFS

downward pt
DFS Et

DFS
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3.1 Stochastic programming

In stochastic programming, random variables are often fitted

to obtain the probability density distribution through the

statistical analysis of historical data (Birge and Dempstert,

1996). The accurate acquisition of probability distribution and

the accuracy of sampling calculation optimal solution are the

main problems of stochastic programming methods (Jiang and

Li, 2021). At present, the common stochastic programming

methods mainly include the following.

3.1.1 Stochastic expectation model
In the stochastic expectation model, the distribution function

model of uncertain parameters is determined, and the uncertain

parameters are described by selecting a discrete or continuous

probability distribution function. The stochastic expectation

model is described as follows (Zhu et al., 2007):

{max E[f(x, ξ)],
s.t. E[g

j
(x, ξ)]≤ 0, j � 1, 2, . . . , p,

(3)

where ξ is an uncertain parameter, x is the decision vector,

f(x, ξ) is the objective function, and gj(x, ξ) is the constraint

condition function.

If there are random parameters in the objective function and

constraints, it is only necessary to take the expected value of the

corresponding function, and the uncertain model can be

transformed into a deterministic model and be solved.

3.1.2 Chance constrained
Chance constrained programming refers to the situation

where constraints contain random variables, and the decisions

must be made before the realization of random variables is

predicted. However, considering that the decision may not

meet the constraints when adverse circumstances occur, the

decision needs to meet the constraints to a certain extent, but

the decision should make the probability of the establishment of

the constraints not less than a certain confidence level (Guo et al.,

2021). The generalized chance-constrained programming model

is described as follows (Mohanty et al., 2020):

⎧⎪⎨
⎪⎩

min �f
s.t. P{f(x, ξ)≥ �f}≥ β
P{gi(x, ξ)≤ 0, i � 1, 2,/, p}≥ αi,

(4)

where �f is the objective value, x is the decision variable, ξ is the

uncertain variable, P{·} is the probability of event occurrence, β is
the confidence level that the objective function is not lower than

the threshold �f, and αi is the ith constraint that satisfies the given

confidence level.

There are two main solutions to chance-constrained

programming. The first one is to transform the chance

constrained into deterministic programming and then solve it

by the theory of deterministic programming (Huo et al., 2021).

The second one is an intelligent algorithm. The optimal value of

the objective function and the optimal solution set of decision

variables are obtained by stochastic simulation technology and

solving them by intelligent algorithms, such as the simulated

annealing algorithm (Özcan, 2010), genetic algorithm (Shing

Chih and Fu, 2014), and random hill climbing algorithm (Kaur

and Dhillon, 2021). The main disadvantage of these intelligent

algorithms is their low efficiency.

3.1.3 Conditional value at risk
The theory of conditional value at risk (CVaR) is derived

from the value at risk (VaR), which refers to the maximum

expected loss at a given confidence level (Fernández, 2016;

Belhajjam et al., 2017). The mathematical description of the

VaR method is as follows (Crespi and Mastrogiacomo, 2020):

VaRβ(x) � min{ξ ∈ R
∣∣∣∣φ(x, ξ)≥ β}, (5)

where x is the decision variable, ξ is the uncertain variable,

φ(x, ξ) is the function of the random variable ξ, andβ is the value

of the confidence level. φ(x, ξ) can be obtained by the following

formula (Belhajjam et al., 2017):

φ(x, ξ) � ∫
h(x,ξ)≤ α

p(ξ)dξ, (6)

wherep(ξ) is the probability density function of a random

variable, h(x, ξ) is the lost function, and α is the threshold.

The VaR method considers the probability density

characteristics of random variables and can describe the

minimum value of loss under a given value. However, the

defects of VaR, such as lack of convexity and subadditivity,

limit its further application in practical optimization problems

(Khodabakhsh and Sirouspour, 2016).

In view of the fact that VaR cannot describe the tail risk,

CVaR, which reflects the expected value of loss exceeding the

VaR threshold at a given confidence level, as an alternative risk

measure, is presented to avoid the problems of VaR. The

mathematical description of CVaR is as follows (Crespi and

Mastrogiacomo, 2020):

CVaRβ(x) � E[f(x, ξ)∣∣∣∣f(x, ξ)≥VaRβ(x)]
� 1
1 − β

∫
f(x,ξ)≥VaRβ(x)

f(x, ξ)p(x)dξ. (7)

To calculate the value of CVaR, Rockafellar and Uryasev

(2000) established a linear programming model by using the

sample average approximation method to avoid the calculation

of the VaR and get the CvaR directly:

CVaRβ(x) � min
⎧⎨
⎩z0 + 1

n(1 − β)∑
n

i�1
zi
⎫⎬
⎭

s.t. zi ≥f(x, ξ i) − z0

zi ≥ 0, i � 1, 2,/n.

(8)

Frontiers in Energy Research frontiersin.org05

Yang et al. 10.3389/fenrg.2022.967220

168

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.967220


The CVaR method can describe the impact of random

variables from the perspective of risk, solve the problem that

the VaR method cannot accurately describe the tail risk, and

provide rich decision-making information for decision-makers

(Ang et al., 2021). This method can use the constraints in the

optimization model as the risk index to describe its risk, simplify

the constraints in the model, obtain the risk decision

information, and has the same good characteristics as the VaR

method in mathematics.

3.1.4 Dependent-chance programming
Dependent-chance programming is a programming method

generated when decision-makers face multiple events and want

to maximize the probability of meeting these events. Dependent-

chance programming is a stochastic optimization theory to

optimize the chance function of events in an uncertain

environment. The general model is given as follows (Liu, 1997):

{max P{h(xi, ξ)≤ 0}
s.t. gj(xi, ξ)≤ 0, j � 1, 2, . . . , p,

(9)

where xi is the decision variable, andξ is the uncertain variable.

The dependent-chance programming model can be expressed as

maximizing the probability of a random event h(xi, ξ)≤ 0 under
an uncertain environment gj(xi, ξ)≤ 0.

At present, the genetic algorithm is mainly used to solve

the dependent-chance programming model. In Zhang and

Song (2017), the author proposed a Sugeno measure space-

based algorithm to solve the dependent-chance programming

model.

3.2 Robust optimization

The stochastic programming method requires the accurate

distribution of random variables, but this is very unrealistic in

practice. For example, incomplete data may lead to an inaccurate

probability distribution, which may affect the decision-making

results (Yang et al., 2019). The robust optimization method is

different from stochastic programming. When facing uncertain

parameters, the robust optimization method does not need to

know its accurate distribution but only its uncertain space (Ben-

Tal and Nemirovski, 2002). Robust optimization assumed that

the range of uncertain parameters is a specific uncertain set.

Within the range of the uncertain set, the objective function or

constraints in the worst-case scenario are constructed, which can

generally be expressed as a min-max-min optimization problem

(Gabrel et al., 2014):

min max min
x∈R,ξ∈U

f(x, ξ)
s.t. gi(x, ξ)≤ 0
∀ξ ∈ U
i � 1, 2,/m,

(10)

where x is the decision variable, ξ is the uncertain variable, and U
is the uncertain set.

By choosing a different uncertain set to describe the

uncertainties, robust optimization models with different

modeling characteristics and solving difficulties can be

obtained. According to different selection types of uncertainty

sets, robust optimization methods can generally be divided into

the box robust optimization method, ellipsoid robust

optimization method, polyhedron robust optimization

method, and budget robust optimization method. There are

mainly the following types of robust sets to characterize

uncertain variables.

3.2.1 Box robust set
The box uncertainty set is the simplest uncertainty set, also

known as an interval set. Because robust optimization is an

optimization solution method considering the worst case, it is

possible for some models to optimize all uncertain parameters in

the upper and lower bounds of the interval set. The generalized

box robust optimization model is described as follows (Xiao et al.,

2013):

U � {ξ∣∣∣∣∣ξ0 + ξ̂, eT ξ̂ � 0, ξ
−
≤ ξ̂ ≤ ξ

−}, (11)

where e is the column vector with element 1, and ξ
−
and ξ

−
are the

upper and lower bounds of the given set, respectively.

However, in practice, the probability of this situation may not

happen. Therefore, the results are easy to be excessively

conservative (Gu et al., 2016).

3.2.2 Ellipsoidal robust set
To reduce the aggressive conservatism in Xiao et al. (2013),

the ellipsoidal robust optimization method is presented as

follows (Ben-Tal and Nemirovski, 1998):

U � {ξ∣∣∣∣∣ξ0 + Aξ̂, eTAξ̂ � 0,
�����ξ̂
�����≤ 1}, (12)

where A is the control matrix of ellipsoidal size. Selecting

different matrices can effectively control the distribution of

uncertain parameters from the center of the sphere and the

radius from the center of the sphere. Different values of A can

realize the optimal decision of ellipsoid robust optimization with

the coordination of conservatism and optimality (Hanks et al.,

2017). Compared with the box robust optimization method, the

ellipsoidal robust optimization method can describe uncertain

parameters more accurately. However, the ellipsoidal robust

optimization method increases the complexity of problem-

solving, which limits the application of this method.

3.2.3 Polyhedral robust set
For robust uncertain optimization problems, not only the

robustness of the results needs to be considered but also the

trade-off between optimization performance and robustness. The
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polyhedral robust optimization method can meet such

requirements at the same time. The generalized polyhedral

robust optimization model is described as follows (Jalilvand-

Nejad et al., 2016):

U � {ξ∣∣∣‖ξ‖1 ≤ Γ, |ξ|≤ e}. (13)

The polyhedral uncertain set can be regarded as a special

form of the ellipsoidal uncertain set. Although the polyhedral

uncertainty set is difficult to characterize the correlation between

uncertain parameters, they are widely favored in practical

engineering problems because of their linear structure and

easy-to-control uncertainty (Saric and Stankovic, 2008).

3.2.4 Budget robust set
The budget robust optimization method builds the

uncertainty set based on the relative value of the offset of

uncertain parameters, which can more accurately describe the

fluctuation of uncertainties and is described as follows (Goerigk

et al., 2020):

U �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ i − ξ̂ i

ξ i
−

− ξ i
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ Γ, |ξ|≤ e

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (14)

where ξ̂i is the forecast value of an uncertain variable, and ξ
−
and ξ

−

are the upper and lower bounds of the given set, respectively.

3.2.5 Combined robust set
In addition to the aforementioned common uncertain sets, in

order to adapt to different situations and describe the

uncertainties more accurately, some researchers have also

derived many kinds of combined uncertain sets, such as the

“box + ellipsoidal” uncertain set and “box + polyhedral”

uncertain set (Papadimitriou and Fortz, 2015; Dong et al., 2020).

3.3 Distributionally robust optimization

In recent years, the distributionally robust optimization

(DRO) method has been proposed to overcome the

shortcomings of stochastic optimization and robust

optimization (Goh and Sim, 2010). Considering that in

practical problems, some statistical information of random

variables is often known, such as expectation and variance,

and historical sample data. By establishing the ambiguity set of

a random variable probability distribution based on some

statistical information, the DRO method seeks the minimum

expected value of system operation cost under the worst

probability distribution. Therefore, the DRO method not

only makes use of the statistical information of random

variables but also ensures the reliability of the scheduling

scheme to a certain extent (Wiesemann et al., 2014).

Constructing the ambiguity set is the basis and key of the

DRO method. At present, the ambiguous set construction

methods mainly include as followed.

3.3.1 Moment-determination ambiguity set
Although it is impossible to accurately obtain the distribution

of random variables through limited historical data, it can

determine the mean and variance of random variables.

Therefore, the DRO moment-determination method is

derived, and the ambiguity set is described as follows (Wei

et al., 2016):

D �
⎧⎪⎨
⎪⎩P(ξ)

∣∣∣∣∣∣∣∣∣∣∣∣
P(ξ ∈ Ξ) � 1
E(ξ) � μ

E((ξ − μ)2) � σ2

⎫⎪⎬
⎪⎭, (15)

where D is the ambiguity set, and μ and σ2 are the mean and

variance of random variables, respectively.

The uncertainty of the correlation moment is not considered

in the DRO moment-deterministic method, which has a great

impact on the decision results.

3.3.2 Moment-uncertainty ambiguity set
In practice, due to many reasons such as limited data and

missing data, the moment-determination ambiguity set obtained

from historical data statistics is not completely accurate and has

certain uncertainty. Therefore, the DRO method considering

moment uncertainty is particularly important. The moment-

uncertainty ambiguity set can be expressed as follows (Chang

et al., 2019):

D �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P ∈ Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P(ξ ∈ Ξ) � 1
(E[ξ] − μ0)Tσ−10 (E[ξ] − μ0)≤ γ1
E[(ξ − μ0)(ξ − μ0)T]≤ γ2σ0

γ1 ≥ 0, γ2 ≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (16)

where the second line assumes that the mean value of the random

variable is located in an ellipsoid with μ0 as the center and γ1 as

the size. The third line describes the possibility that the random

variable ξ is close to μ0 based on the correlation σ0. The

parameters γ1 and γ2 quantify the decision-making trust in μ0
and σ0, respectively.

3.3.3 Wasserstein distance-based ambiguity set
The Wasserstein distance-based method constructs the

initial empirical distribution based on the sampled data and

can make full use of the available historical data. Moreover,

this method uses the Wasserstein sphere to limit the

fluctuation range of probability distribution (Graf and

Luschgy, 2009; Zhou et al., 2020). The selection of sphere

radius has an important impact on the conservatism of

system decision-making results. The ambiguity set is defined

as a ball in the probability distribution space, which contains all

distributions close to the real distribution or the most likely

distribution in terms of probability distance. The decision-

maker can control the conservatism of the optimization
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problem by adjusting the radius of the ball. If the radius is zero,

the ambiguity set will be reduced to a single element set

containing only the real distribution. The Wasserstein

distance-based ambiguity set can be expressed as follows

(Zheng and Chen, 2020):

Mϵ(P~ S) � {P ∈ R(Ξ): W(P,P~ S)≤ ϵ}, (17)

where Mϵ(P
~

S) represents the Wasserstein ball with ϵ as the

radius and P
~

S as the center of the sphere.

The worst expectation of constructing an ambiguity set based

on first-order Wasserstein distance has the following form and

theorem (Mohajerin Esfahani and Kuhn, 2018):

Z(x) � maxPEP[Z(x, ξ)]. (18)

Through the strong duality theory, we can get the following

equation:

Z(x) � inf
λ∈R+ ϵλ +

1
I
∑
s∈S

supZ(x, ξ) − λd(ξ, ~ξ). (19)

Using Wasserstein distance to construct the ambiguity set

has two advantages: 1) the distribution constructed by this

method is more reasonable than that constructed by other

common methods; 2) the robust problem can be transformed

into finite convex programming or even linear programming,

which is easy to calculate (Duan et al., 2018).

3.3.4 Kullback–Leibler distance-based
ambiguity set

Different from the DRO method based on Wasserstein

distance, the DRO method based on the Kullback–Leibler

divergence assumes that the probability is discrete, and the

Kullback–Leibler divergence is defined as follows (Kullback,

1987):

DKL(p∣∣∣∣P0) � ∫
Ω
P(θ)log P(θ)

P0(θ) dθ, (20)

where p and p0 are probability distribution functions of the

random variable ξ, and DKL(p|P0) represents the

Kullback–Leibler divergence from p to p0.

The ambiguity set of a probability distribution based on

Kullback–Leibler divergence is as follows (Yang et al., 2019):

D : � {P ∈ D|DKL(p∣∣∣∣P0)≤ η}, (21)

where η is the divergence tolerance to control the size of the

ambiguity set.

This kind of model transforms the original problem through

simple dual derivation and the discrete probability scene value

technique, and the solution is relatively simple. However,

although the subproblem can be accelerated by solving each

discrete scene separately, the solution time of the whole model

is long.

4 Study on power system flexibility
considering uncertainties

Uncertainty affects the power system in many ways. The

current research mainly includes power system planning, power

system operation, electricity market, load forecasting, and

supply-demand balance.

The research on the uncertainty of power system load

forecasting is mainly divided into two aspects: probabilistic

load forecasting and the uncertainty of load forecasting

results. There are few studies on the uncertain supply-demand

balance of power systems, especially the system balance and

operation problems caused by renewable energy. From a certain

point of view, the purpose of power system load forecasting and

supply-demand balance is mainly to provide a scientific basis for

power system planning and operation. Therefore, aiming at the

problem of power system flexibility in an uncertain environment,

this study mainly summarizes the research progress of power

system planning, operation, and electricity market flexibility.

4.1 Planning flexibility

Generally, power system planning consists of generation

planning, capacity planning, and reserve planning (Dong and

Tong, 2020). In the uncertain environment, the uncertainties

increase the need for planning flexibility in electric power

systems, and great progress has been made in the research of

power system flexibility planning (Sun et al., 2021).

External flexibility resources, such as energy storage and

demand response, are exploited in generation expansion

planning for coping with renewable energy increases (Dai et al.,

2021).Duetovariablerenewableenergysourceintegration,apower-

based unit commitment generation expansion planningmodel was

presented to overcome the problem of overestimating the actual

flexibility of the system, and from the perspective of directional

characteristics, the indicators of insufficient flexibility of up- and

downregulation and their expression forms are defined (Tejada-

Arango et al., 2020). In Hua et al. (2018), from the viewpoint of

representing system flexibility, a unit commitment generation

expansion planning model was presented, and a convex

relaxation was used to solve the problem computationally

challenging of unit commitment, which is different from the

model in Tejada-Arango et al. (2020). Flexibility is rarely fully

considered in capacity planning models because of the

computational demands of including mixed integer unit

commitment within the capacity expansion; considering the

carbon emission constraints and the penetration of renewable

energy in power systems, the problems of generation of planning

flexibility (Palmintier and Webster, 2016) and capacity planning

flexibility (Hargreaves et al., 2015; Chen et al., 2018)were discussed,

respectively. Based on a computational efficient modeling

formulation, the chanced programming (Chen et al., 2018) and
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robust method (Hargreaves et al., 2015) were used to present the

uncertainty of the wind power output.

A flexible power system should have sufficient ramp capacity

and reserve capacity to meet the occurrence of uncertain

conditions. Therefore, traditional reserve planning is deemed

impeding to the system’s flexibility (Khoshjahan et al., 2019).

The concept of flexibility envelopes, which can capture reserve

requirements, was presented as an alternative approach to the

traditional reserve scheduling method (Nosair and Bouffard,

2015a; Nosair and Bouffard, 2015b). In Ghaemi and Salehi

(2021) and Yang and Sun (2022), flexibility constraints were

considered as a limit to reduce costs of the system, and MILP

expansion planningwas proposed, where an interval optimization

hasbeenutilized to address uncertainties due to the computational

efficiency. In Dehghan et al. (2020), (2020), and Pourahmadi et al.

(2020a), the problem of generation expansion planning was

studied by the robust method, stochastic method, and

distributionally robust method, respectively. Through different

uncertaintymodeling techniques, these literature reports analyzed

the flexibility improvement methods from different viewpoints,

and the flexibility of the system is evaluated from the time scale.

From the perspective of power system planning flexibility, the

aforementionedresearchconsiders theuncertain factors including

wind, transmission lines, and loaddemandbut rarely considers the

correlation between wind power. For power system planning, this

is an important factor worthy of consideration. Whether it can

effectively improve flexibility is worth discussing.

4.2 Operation flexibility

Compared with the problem of power system planning

flexibility, the problem of power system operational flexibility in

an uncertain environment, such as unit commitment and

economic dispatch, has changed more obviously (Li et al.,

2021). Operation flexibility is an important characteristic of the

power system. It is an importantmeans to reduce thepower supply

interruption caused by uncertainties in the power system.

Improving the availability of renewable energy is one of the

methods to meet the requirements of operational flexibility in

power systems (Huo et al., 2020). It is the most important link to

accurately model the uncertainties and describe their

characteristics with corresponding mathematical methods

(Pourahmadi et al., 2019; Pourahmadi et al., 2020b). The robust

method, as a mature uncertainty modeling technology, has been

widely used. To discuss the flexible unit commitment problem,

box-based, ellipsoidal-based and polyhedral-based approaches as

the uncertainties’ modeling have been used in Li et al. (2015),

Angulo Cárdenas et al. (2016), and Cho et al. (2019) to model the

uncertainty of renewable power and load demand, and the results

showed that a flexible scheduling strategy was obtained which

balances the economic and efficiency. From the perspective of the

model solving efficiency, these threemodelingmethods have good

performance. Demand response, as a flexible resource, its

uncertainty is characterized by the stochastic method, and the

role of improving system flexibility in multi-energy systems and

unit commitment problems was studied in Good andMancarella,

(2019) and Saeed Poorvaezi et al. (2019). In the research, the

difficult solution form of the problem is simplified by applying

methods such as random scene reduction.

In thepower system,with the rapiddevelopmentofdistributed

generation, user-side management has become an important way

to improve system flexibility (Rashidizadeh-Kermani et al., 2020).

To assess the operational flexibility capacity of the system, a fixed

robust uncertainty set and an adjustable uncertainty set were

constructed; the wind power model based on a two-stage robust

unit commitmentwas introduced inPourahmadi et al. (2022), and

the author adopts the improved method based on the CCG

algorithm to solve the adjustable robust model. Considering

energy storage and reserves, Zhang et al. (2016) presented a

flexibility-oriented unified scheduling model to study the

features required for flexibility assessment.

With the development of energy storage technology, much

attention has been paid to the research of power system reserve

flexibility from the perspective of the economy (Krad et al., 2017).

Flexibility reserve, both with the function of supplying the energy

imbalance in real-time operation and determining flexible

ramping requirements (Khatami et al., 2020), and a

continuous-time stochastic multi-fidelity model for co-

optimization of energy and flexibility reserve were proposed

by Khatami and Parvania (2020). Compared with these two

similar stochastic modeling forms, the solution is more

difficult and less efficient when considering the time scale.

4.3 Electricity market flexibility

Flexibilityisthekeytotheoperationofahighproportionrenewable

energy electricity market. Large power abandonment, frequent

occurrence of negative electricity prices, and price fluctuation are all

manifestations of inflexibility after the power system is connected to a

highproportionofrenewableenergy(Bistline,2019;Mamounakisetal.,

2019; Ordoudis et al., 2020; Zhang et al., 2020). In the uncertain

environment, how to improve the flexibility of the power market is

worthy of attention for the realization of a new power system and the

goal of dual carbon (Muñoz et al., 2021).

The flexibility of the electricity market can be improved by

strengthening transmission investment and improving generation

side flexibility and mechanism innovation (Papadaskalopoulos

and Strbac, 2013; Chen and Jing, 2022; Tu, 2022). In addition,

flexible rampingproducts, suchas traditional thermalpowerunits,

electric vehicles, energy storage, electricity-gas combined system,

and demand response, have made great progress as a method to

improvesystemflexibility inanuncertainenvironment (Wangand

Hodge, 2017;Wang et al., 2021). Considering the spatio-temporal

correlations of wind power and demand uncertainties, a
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distributionally robust chance constrained multi-interval model

was proposed to solve the deliverability issues of flexible ramping

products (Fang et al., 2020), and the Wasserstein distance

ambiguity set was transformed into a MILP problem. By

aggregating demand-side flexibility resources, Di Somma et al.

(2019) formulated a stochastic MILP problem, and the

uncertainties of day-ahead market price and intermittent

renewable energy generation were modeled through a set of

scenarios to improve the flexibility operation of the electricity

market. For the sameMILPmodel, the difference between the two

modeling methods leads to different difficulties and efficiency of

the solution. Due to a large number of random scenes, the solution

time is obviously long (Di Somma et al., 2019; Fang et al., 2020).

With the increasing proportion of renewable energy, energy

storage, and natural gas, the main body of electricity market

transactions is both an energy producer and energy consumer

(Iria et al., 2019). At the same time, a large number of uncertain

factors have challenged the effectiveness of various traditional

operation measures. In the multi-energy environment, how to

improve the flexibility of operation of the electricity market

under uncertainties has attracted great attention (Baringo et al.,

2019;Qin et al., 2021; Sayedet al., 2021; Yanget al., 2021). Byusinga

set of inexact distributions based on historical data to portray the

volatile market price, an electricity and heat market self-scheduling

model was modeled as a distributionally robust problem, and the

results validated that a more flexible electricity market can be

obtained by this method (Li et al., 2022). For market flexibility,

price and load demand are two major sources of uncertainty. The

robust method (Velloso et al., 2020; Liu et al., 2022) and stochastic

method(HartwigandKockar,2016;Dvorkin,2020;Jiangetal.,2022)

were used todescribe theuncertaintyofmarketprice and renewable

energygeneration, respectively.Numerical results showedthat these

methods have good performance in improving the flexibility of the

electricity market in an uncertain environment.

5 Conclusion

This article reviews the concepts and characteristics of power

system flexibility. Aiming at the problem of power system

flexibility in an uncertain environment, the uncertainty

modeling methods, including the robust method, stochastic

method, and distributionally robust method, are summarized,

and the corresponding mathematical modeling expressions are

given. From the perspective of economy and conservatism, the

advantages and disadvantages of these methods are compared

and analyzed. Furthermore, from the perspective of planning,

operation, and electricity market flexibility, the existing literature

reports are summarized and analyzed in detail, and the following

conclusions are obtained as follows:

1) Deepening the reform of the power system and building a new

power system with renewable energy as the main body are

important measures to achieve the goal of dual carbon. In this

context, various uncertain factors, such as the output

randomness and price instability of new energy, have a

great impact on the power system flexibility.

2) Theresearchonpowersystemflexibilityconsideringuncertainty

factors and the research on using stochastic programming and

robust optimization methods to solve such uncertain problems

are mature at present. The application of constrained

programming, value at risk method, conditional value at risk

method, and robust optimization method in the power system

will have further development. The newmethod combining the

characteristics of stochastic programming and the robust

optimization method can also be a way for subsequent related

research.Thedistributionallyrobustmethodisthemainresearch

field of power system operation and planning flexibility,

considering uncertainties, but there is little application

research in electricity market flexibility. In addition, the

random variable modeling method of distributionally robust

optimization can be deeply studied to describe the uncertainty

more accurately.

In recent years,with the improvementof computer computing

power and the development of artificial intelligence technology,

which has been gradually applied to power system uncertainty

modeling, combining probability prediction technology with the

optimal method, a decision-making method based on probability

predictionhasbeen constructed frommathematical theory so as to

improve the flexibility ability of the power system to deal with the

actual uncertainty factors in the future. For the research of power

systemflexibility in anuncertainty environment, the innovationof

themodelingmethod, the efficiency of the solution algorithm, and

the accurate combination of application scenarios are worth

considering.
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Appendix 1: Comparison of
uncertainty modeling methods

Characteristics of
uncertainty modeling

Modeling
method

Solution
transformation
method

Advantage Disadvantage

Stochastic method Describing uncertain information
based on accurate probability
distribution

Stochastic
expectation

Analog sampling There are many constraint
functions, which are
difficult to solve

Long solution time

Chance
constrained

Equivalent transformation Good performance Multiple random variable
model is difficult to be
solved

Conditional value
at risk

It is generally equivalent to a
linear problem

The constraint conditions
are simplified and easy to
solve

Difficult to characterize
the random correlation

Robust method The uncertainty set is used to
represent its variation range

Box robust Dual method transformation
and solved by decomposition
or CCG

The modeling method is
simple and easy to be
transformed

The results were
conservativeEllipsoidal robust

Polyhedral robust

Budget robust

Distributionally
robust method

The ambiguity set of the
probability distribution is
established based on the data to
describe the uncertainties

Moment-based Linear decision rule and dual
theory transformation, solved
by decomposition or CCG

The statistical moment is
easy to obtain

Underutilization of data
statistics, and the results
are slightly conservative

Wasserstein
distance

Make full use of statistical
information and can
generally be transformed
into a linear problem

The scale of the problem
increases with the increase
of the amount of data

Kullback–Leibler
divergence

Low requirements for data
information, and the
performance outside the
sample is good

Cannot be used to model
continuous random
variables
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of electric energy and reserve
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With the increasing of renewable energy penetration, adequate reserve capacity

is more important to modern power system facing with various uncertain

factors. Mobilizing the enthusiasm of units and demand response to

participate in reserve auxiliary service can reduce the reserve providing

pressure of conventional power supplies, which is conducive to the reliable

and economical operation of system. The uncertain factors such as system

random failure, prediction error of both load and renewable energy output are

considered, and taking unit reserve, demand response such as flexible loads as

system reserve resources, this paper establishes the risk cost models to

optimize system up and down reserve requirement and make optimal

allocation among units and flexible loads. A joint market clearing model of

day-ahead electric energy and reserve auxiliary service is established in which

both the units and flexible loads participate, and is solved by the robust

optimization theory. The joint market clearing model takes the reliability and

the economy of the system operation into account, and optimizes the clearing

scheme for market decisionmakers, which can provide a decision reference for

themarket to resist the risk of uncertainty. Finally, the effectiveness of themodel

andmethod proposed in this paper is verified by amodified 10-machine 39-bus

simulation example system.

KEYWORDS

renewable energy, electric energy market, reserve ancillary service, demand response,
uncertainty factors, joint clearing model

1 Introduction

In order to ensure the safe and reliable operation of the modern power system, it is

necessary to remain a certain reserve capacity to deal with uncertain factors such as

random system failures, prediction error of load and renewable energy output (Li et al.,

2022). The access of a large number of random renewable energy sources puts more

pressure on the system reserve. Thermal power units have better response capabilities and

usually account for a large proportion of installed capacity, therefore, they are easily
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selected as the main source of reserve capacity. However, thermal

power units operating at low output level usually have a higher

cost per unit electricity (Herranz et al., 2012). It is obviously

uneconomical or even unreliable whether generators do not

respond to the load demand for keeping reserve capacity

during periods of high load, or generators start up and

operate at a low load rate to provide reserve capacity for a

short period of time during periods of low load (Bompaard et

al., 2007).

Flexible load can provide reserve capacity for the system by

interrupting or transferring part of the load in time, improve the

elastic space of power dispatching and reduce the pressure on

thermal power units to provide reserve (Anuj et al., 2018). Wen

(Wen et al., 2019) has built a cost model of insufficient flexibility

to evaluate the risk cost caused by random fluctuation of load

demand and generator output for system reserve optimization.

Chen (Chen et al., 2017) has comprehensively considered the

wind power forecast error, load fluctuation, unplanned outage of

units and other uncertain factors, and has integrated the

interruptible load and wind curtailment as upper and lower

reserve into the day-ahead dispatching to optimize the reserve

capacity (Nikolaos et al., 2015). Has built a two-stage stochastic

programming model to obtain the system reserve requirement

from generation and load sides under the condition of high

proportion of wind power penetration.

With the continuous advancement of the electricity market

reform, the electricity market trading mechanism in China has

become more flexible (Liu et al., 2019). The trading products

have transitioned from a single electric energy market to a multi-

type market with parallel electricity energy and auxiliary services

(Yang et al., 2017). Trading entities have expanded from single

generation side resource to multi-type resources of load and

generation, and the operation mode has shifted from

independent operation in each market to joint operation in

multiple markets (Xun, 2010). Under the premise of

transparent market information, independent markets can

only achieve the best welfare of their respective markets

(Shan, 2021). A reserve ancillary market clearing model for

dealing with wind power and load uncertainty is established

for system operation reliability by (Reddy et al., 2015). The risk

cost of the unit failure and the interruptible load failure to

provide system required up reserve is considered in the

reserve market, meanwhile, a settlement scheme is proposed

to reasonably allocate reserve cost between units and

interruptible loads by (Luo and Xue, 2007), but it does not

take the risk cost caused by insufficient down reserve into

account. The reserve ancillary market can get the rational

distribution of reserve resources from both the generation and

load sides through flexible market forces (Wang et al., 2015), but

it cannot obtain the optimal total benefit of the electric energy

and reserve markets.

When the electric energy market and the reserve ancillary

market are jointly cleared day-ahead, the generation side can bid

the quantity and price based on its own generation cost, start-up

cost and reserve dispatch cost (Anthony and Oren, 2014). The

flexible load reports the adjustable quantity and price of different

time periods day-ahead based on the electricity consumption

income and reserve dispatch cost, and the transaction institution

will make clearing according to the principle of maximizing

social welfare and under certain system constraints (Shi et al.,

2019; Chen et al., 2021). The influence of the traditional unit

combination model on the utilization efficiency of flexible

resources is analyzed (Yang et al., 2020; Li et al., 2021), a

joint clearing model of day-ahead electric energy and reserve

ancillary market is proposed for system flexibility. Sun (2020) has

considered the quantity and price bidding of flexible load to

participate in the joint market clearing of electric energy and

reserve auxiliary service, but the impact of system uncertainty on

the clearing results is not considered. The method of iterative

game theory is used to consider the impact of wind power

uncertainty on the joint market of electric energy and reserve

(Xu et al., 2016). A model of the optimal supply strategy of

concentrated solar power plants in the joint market is established,

which takes the uncertainty of photovoltaic output into account

based on the robust optimization theory (Lazaros et al., 2017).

Chen (He et al., 2016) and He (2010) have considered the

problem that the generation outage may cause insufficient

power supply, and have established a power shortage

expectation evaluation model to analyze the impact of

interruptible loads on system reliability. Huang (Huang et al.,

2019) has proposed a joint operation mode of energy market and

multiple ancillary service markets. There are few studies on the

joint market of electric energy and reserve auxiliary service with

both units and flexible loads involving in system up and down

reserve. To sum up, a few studies consider joint clearing model of

electric energy and reserve auxiliary service with the participating

of both generation and demand response, but most of the existing

literatures fail to comprehensively consider the risk caused by

insufficient up and down reserve. How to build the risk cost

models to optimize the system up and down reserve requirement

and make optimal allocation among units and flexible loads

during market clearing is crucial. Besides, less joint clearing study

of electric energy and auxiliary service has considered the

uncertainty of both renewable energy and load. The

uncertainty of these forecasting value has a certain impact on

market clearing results, and comprehensive consideration of

them will greatly enhance the market’s ability to resist

uncertain risks.

Therefore, in this paper, the flexible load is introduced into the

market in the form of bidding quantity and price, and the

characteristics of flexible load, the uncertainty of net load and

the risk caused by insufficient up and down reserves are

comprehensively considered. A day-ahead joint clearing model of

electric energy and reserve auxiliary service with the participating of

both generation and demand response is established. A robust

optimization model considering the uncertainty of net load is
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further proposed, which can help market decision makers find out

the market clearing scheme under the worst scenario in the system

and provide a reference decision for the market to resist the risk of

uncertainty. Finally, the effectiveness of themethod proposed in this

paper is verified by example analyses.

2 Reserve risk model

2.1 Risk model for net load uncertainty

The uncertainty of load demand is an important factor in the

analysis of modern power system reserve requirement. Assume

that the load prediction errors of each period are independent of

each other. It is generally believed that the short-term load

prediction error follows the standard normal distribution:

δL,t: N(0, (σL,t)2) (1)
δL,t � PL,t − PF

L,t (2)

Where, δL,t is the load prediction error at time t, σL,t is the

standard deviation, PL,t is the actual load value at time t, PF
L,t is

the load prediction value at time t.

Assume that the prediction error δR,t of renewable energy

output at time t also follows the standard normal distribution

with standard deviation σR,t (Chen et al., 2017), that is:

δR,t: N(0, (σR,t)2) (3)
δR,t � PR,t − PF

R,t (4)

Where, PR,t is the actual output of the renewable energy at time t,

and PF
R,t is the forecasting output of the renewable energy at

time t.

System net load is defined as the difference between system

load and renewable energy output. Since the prediction errors of

load and renewable energy output are all subject to independent

normal distribution, it can be known from the nature of the

normal distribution that the net load forecast error δD,t also

follows the normal distribution with expectation of 0 and

standard deviation of σD,t (Chen et al., 2017), that is:

δD,t: N(0, (σD,t)2) (5)
δD,t � PD,t − PF

D,t (6)
σD,t �

��������
σ2L,t + σ2

R,t

√
(7)

Where, PD,t is the actual value of the net load at time t, and PF
D,t is

the forecasting value of the net load at time t.

2.2 Risk model for system failure

In order to ensure the safe and reliable operation of the

modern power system, it is necessary to reserve a certain reserve

capacity to deal with uncertain factors such as random system

failures, the load and renewable energy output forecast error

(Fang et al., 2019). Thermal power units have better response

capability, therefore, they are easily selected as the main source of

reserve capacity. If demand response is considered to provide

reserve capacity for the modern power system, it will be a

beneficial supplement to the reserve of thermal power units,

which will reduce the operation cost of the system. Therefore, this

paper considers reserve resources form both units and flexible

loads at the same time, and introduce risk cost to optimize the

system reserve capacity.

2.2.1 Model of flexible load providing reserve
In this paper, flexible load is considered as interruptible load

and transferable load. Considering the constraints of interruption

capacity and times, the model of interruptible load providing

reserve is as follows:

PIL,j ≤PIL,j,t + rUIL,j,t ≤ �PIL,j j ∈ ΩIL (8)
∑
t∈ΩT

uIL,j,t ≤NIL,j (9)

Where, PIL,j,t is the power of interruptible load j at time t, rUIL,j,t is

the winning bid up reserve capacity of interruptible load j at time

t, PIL,j and �PIL,j are the minimum and maximum values of

interruptible load j respectively, ΩIL is the set of interruptible

loads, uIL,j,t is the state variable of the interruptible load j at time

t, “1″ means that load j at time t can be interrupted, and “0″
means that it cannot be interrupted, ΩT is the set of statistical

time, NIL,j is the maximum allowable interruption numbers of

interruptible load j in the scheduling period.

The total electricity quantity consumption of transferable load

in a dispatching cycle remains fixed, but the electricity quantity in

each time interval can be flexibly adjusted. The model is as follows:

PSL,k ≤PSL,k,t ≤ �PSL,k k ∈ ΩSL (10)
PSL,k ≤PSL,k,t + uU

k,tr
U
SL,k,t + uD

k,tr
D
SL,k,t ≤ �PSL,k (11)

0≤ uU
k,t + uD

k,t < 2 (12)

Where, PSL,k,t is the power consumption of transferable load k at

time t, PSL,k and �PSL,k are the minimum and maximum values of

transferable load k respectively,ΩSL is the set of transferable load.

rUSL,k,t is the winning bid up reserve capacity of transferable load k

at time t, rDSL,k,t is the winning bid down reserve capacity of the

transferable load k at time t, uUk,t and uDk,t are the winning bid up

and down reserve states of transferable load kat time t,

respectively, “1” indicates winning the bid, and “0" means not

winning the bid.

2.2.2 Risk cost model of up reserve insufficiency
The risk cost caused by system insufficient up reserve is

reflected in the cost of load loss caused by unit failure and net

load prediction error.
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A(RU
t ) � CLE

U
t (13)

Where, CL is the unit loss of load cost. EU
t is the expected value of

system up reserve shortage at time t.

Combined with the random failure information of each unit,

EU
t of the system under different reserve capacities can be

analyzed. The probability of a single unit outage is:

PRG,i,t � PRi,t ∏
y≠i

(1 − PRy,t) i, y ∈ ΩG (14)

Where, PRG,i,t is the probability that only unit i fails at time t,

PRi,t is the probability that unit i fails at time t, and ΩG is the set

of all units.

In the above situation, the system reserve shortage PU
Loss,t is:

PU
Loss,t � max{Pi,t + δD,t − (RU

t − rUi,t), 0} (15)
∑
j∈ΩIL

rUIL,j,t + ∑
k∈ΩSL

rUSL,k,t + ∑
i∈ΩG

rUi,t � RU
t (16)

Where, PU
Loss,t is the system power shortage when only unit i is

out of service at time t, Pi,t is the winning bid output of unit i at

time t, RU
t is the system up reserve capacity at time t, rUi,t is the

winning bid up reserve capacity of conventional unit i at time t.

The formula for calculating EU
t is:

EU
t � ∑

i∈ΩG

PRG,i,tP
U
Loss,t (17)

2.2.3 Risk cost model of down reserve
insufficiency

Considering the unplanned out-of-operation of load and the

prediction error of net load, it is necessary for the system to

remain enough down reserve capacity. Due to the existence of

distributed or centralized power supply recovery equipment or

control systems, such as automatic reclosing, standby automatic

switching, and feeder automation, even if transformers, lines and

other equipment fail, the load may still get continuous power

supply. To model the loss due to excess power also needs to

consider the substitutability of the equipment and the reserve

capacity of the replacement system, which can make the model

too complex. For a certain power grid, the occurrence time of

load unplanned out-of-operation has certain regularity.

Therefore, according to the historical information of load

unplanned out-of-operation caused by the reasons other than

unit failure at each time interval in the historical observation

period, then the monthly average probability of load unplanned

out-of-operation at each time interval of a day can be obtained to

reflect the down reserve requirement of the system when the load

is unplanned out.

In this paper, in the historical observation period of the

month which time t belongs to, the ratio of cumulative load

outage by the reasons other than unit failure to the total load

demand is defined as the probability of load unplanned out-of-

operation:

PRL,t � qC
qC + qL

(18)

Where, PRL,t is the probability of load unplanned out-of-operation

at time t, qC is the accumulated electrical quantity of the outage load

in the historical observation period of the month which time t

belongs to, qL is the power supply quantity in the historical

observation period of the month which time t belongs to.

According to the load unplanned out-of-operation in the

historical observation period, when the load unplanned out-of-

operation occurs at the time t, the average proportion of the

outage load εL,t is defined as:

εL,t �
∑N
x�1

PC
L,t,x/PL,t,x

N
(19)

Where, PC
L,t,x, PL,t,x, and PC

L,t,x/PL,t,x(x � 1, 2, · · ·, N) are

respectively the load outage power, load demand, and load

unplanned outage ratio when the load occurs the x time

unplanned outage caused by reasons other than unit failure at

time t in the historical observation period, N is the cumulative

load outage times at time t in the historical observation period.

If the down reserve is not sufficient, the emergency control or

correction control will cut off one or more units to maintain the

safe and stable operation of system (Xue, 2002). In this paper, the

minimum unit cutting cost caused by the unplanned load outage

is used to evaluate the consequences of unplanned load outage,

and the risk cost A(RD
t ) is defined as:

A(RD
t ) � CGE

D
t (20)

Where, CG is the unit cutting cost per unit capacity, and ED
t is the

expected value of the system down reserve shortage at time t.

The system down reserve shortage PD
Loss,t is:

PD
Loss,t � max{PL,tεL,t + δD,t − (RD

t − εL,tr
D
SL,k,t), 0} (21)

∑
k∈ΩSL

rDSL,k,t + ∑
i∈ΩG

rDi,t � RD
t (22)

∑
t∈ΩT

(PSL,k,t + rUSL,k,t + rDSL,k,t)Δt � qSL,k (23)

Where, RD
t is the system down reserve capacity at time t, rDi,t is the

winning bid down reserve capacity of conventional unit i at time

t, Δtis the statistical time interval, qSL,k is the total power demand

of transferable load k in the scheduling period.

Combined with the information analysis of load unplanned

outage, the expected value of down reserve shortage is:

ED
t � PRL,tP

D
Loss,t (24)

3 Joint clearing model

3.1 Objective function

In the electric energy market, the income of flexible loads and

the generation cost of units are considered. Among them, wind
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power and photovoltaic units only participate in the electric

energy market, and their costs are ignored to ensure their priority

of clearing. In the reserve auxiliary service market, the reserve

cost, start-up and shutdown cost of conventional units, and the

reserve cost of flexible loads are considered, and the risk cost

caused by the shortage of system reserve is also taken into

account, a joint clearing model of electric energy and reserve

market with the goal of maximizing social welfare is established:

maxf � max ∑
t∈ΩT

⎛⎝⎛⎝ ∑
l∈ΩRL

F0(PRL,l,t) + ∑
j∈ΩIL

F1(PIL,j,t)

+ ∑
k∈ΩSL

F2(PSL,k,t) − ∑
i∈ΩG

C(Pi,t)⎞⎠ −⎛⎝ ∑
i∈ΩG

uU
i,tL1(rUi,t)

+ ∑
i∈ΩG

uD
i,tL2(rDi,t) + ∑

j∈ΩIL

L3(rUIL,j,t) + ∑
k∈ΩSL

uU
k,tL4(rUSL,k,t)

+ ∑
k∈ΩSL

uD
k,tL5(rDSL,k,t) + ∑

i∈ΩG

Siu
S
i,t(1 − uS

i,t−1)⎞⎠ − A⎛⎝Rt
⎞⎠⎞⎠

(25)

Where, PRL,l,t is the power consumption of rigid load l at time

t, F0(PRL,l,t) is the income function of rigid load l at time

t,l ∈ ΩRL, ΩRL is the set of rigid loads, F1(PIL,j,t) is the income

bidding function of interruptible load j at time t, F2(PSL,k,t) is
the income bidding function of transferable load k at time t ,

C(Pi,t) is the bidding function of power generation cost of

conventional unit i at time t, uUi,t and uDi,t are the winning bid

state variables of up and down reserve capacity for

conventional unit i at time t respectively, “1” indicates

winning the bid, and “0" means not winning the bid,

L1(rUi,t) is the bidding function of conventional unit i in the

up reserve market at time t,L2(rDi,t) is the bidding function of

conventional unit i in the down reserve market at time t,

L3(rUIL,j,t) is the bidding function of interruptible load j in the

up reserve market at time t, L4(rUSL,k,t) is the bidding function

of transferable load k in the up reserve market at time t,

L5(rDSL,k,t) is the bidding function of transferable load k in the

down reserve market at time t, Si is the start-up cost of

conventional unit i, uSi,t is the start-up and shutdown state

variable of conventional unit i at time t, “1" means start-up,

and “0" means shutdown.

Conventional units’ power generation cost bidding function

and up reserve bidding function are:

C(Pi,t) � (ai,1P2
i,t + ai,2Pi,t + ai,3)uS

i,t (26)
L1(rUi,t) � (mi,1r

2
i,t +mi,2ri,t +mi,3)uS

i,t (27)

Where, ai,1, ai,2, and ai,3 are the bidding coefficients of

conventional unit i in the electric energy market respectively,

mi,1, mi,2, and mi,3 are the bidding coefficients of conventional

unit i in the up reserve market respectively. And the same bidding

method is used in down reserve market.

Because the rigid load needs to be cleared and balanced

completely, its income function will not affect the clearing results

of neither the electricity energy market nor the reserve market, so

it is only a part of the overall social welfare in the objective

function and can be ignored in the optimization process.

Interruptible loads’ bidding functions in the electric energy

market and the reserve market are:

F1(PIL,j,t) � dj,1P
2
IL,j,t + dj,2PIL,j,t + dj,3 (28)

L3(rUIL,j,t) � gj,1(rUIL,j,t)2 + gj,2r
U
IL,j,t + gj,3 (29)

Where, dj,1, dj,2, and dj,3 are the bidding coefficients of

interruptible load j in the electric energy market respectively,

gj,1, gj,2, and gj,3 are the bidding coefficients of interruptible load

j in the reserve market respectively. The transferable loads’

bidding functions in the electric energy market and the up

and down reserve markets are the same as formulas Eq. (28)

and (29).

The risk cost A(Rt) caused by insufficient reserve is:

A(Rt) � A(RD
t ) + A(RU

t ) (30)

3.2 Constraint

3.2.1 System power balance constraint

∑
i∈ΩG

Pi,t + ∑
w∈ΩW

PF
w,t + ∑

n∈ΩPV

PF
n,t � ∑

e∈ΩE

PF
L,e,t + δD,t + PDC,t (31)

Where, ΩW is the set of wind turbines, PF
w,t is the forecasting

output of wind unit w at time t, ΩPV is the set of photovoltaic

units, PF
n,t is the forecasting output of photovoltaic unit n at time

t, ΩE is the set of system nodes, PF
L,e,t is the load forecasting of

node e at time t, PDC,t is the total power of all tie lines at time t,

the receiving power is negative, and the sending power is

positive.

3.2.2 Unit startup and shutdown time constraint

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
Ton
i −1

m�0
uS
i,t+m ≥Ton

i (uS
i,t − uS

i,t−1)

∑
Toff
i −1

m�0
(1 − uS

i,t+m)≥Toff
i (uS

i,t−1 − uS
i,t)

(32)

Where, Ton
i and Toff

i are the minimum time needed by

conventional unit i after startup and shutdown respectively, m

is the time.
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3.2.3 Conventional unit reserve capacity
constraint

rUi,t ≤min[Supi τ, ui,t
�Pi − Pi,t] (33)

rDi,t ≤min[Sdowni τ, Pi,t − ui,tPi] (34)

Where, Supi is the upward ramp rate of conventional unit i, τ is

the response time of the reserve capacity. Sdowni is the

downward ramp rate of conventional unit i, �Pi and Pi are

the upper and lower output limit of conventional unit i,

respectively.

3.2.4 Branch safety constraint

∣∣∣∣∣(KG
b )TPt − (KL

b)TPL,t −KDC
b PDC,t

∣∣∣∣∣≤ �Pb, b ∈ ΩB (35)

Where, ΩB is the set of system branches, (·)T is the matrix

transposition operation, KG
b and KL

b are the injection

and transfer distribution factor vectors of the unit nodes

and the load nodes to branch b respectively, KDC
b is the

injection and transfer distribution factor of the tie line

power exchange nodes to branch b, Pt is the output

vector of all units at time t, PL,t is the load vector of all

nodes at time t, �Pb is the upper limit of power transmission

of branch b.

3.2.5 Other constraint
At the same time, constraints such as the ramp rate, output

limits of all units need to be considered, which is not

repeated here.

3.3 Calculation of electricity price

Assuming that the electricity market adopts the locational

marginal price, and the reserve market adopts the regional

price. According to the Karush-Kuhn-Tucker condition, an

extended Lagrangian function is constructed to obtain the

dual multipliers of each constraint condition (Wang et al.,

2021), and the prices of electric energy market and reserve

market at time t are calculated:

Lt,e,1 � lt,1 + ∑
b∈ΩB

(�z t,b + z t,b)Ke,b (36)

Lt,2 � lt,2 (37)

Where, Lt,e,1 is the locational marginal price of node e at time t,

Lt,2 is the reserve price at time t, lt,1 and lt,2 are the dual

multipliers of the power balance constraint and the reserve

demand constraint respectively, �z t,b and z t,b are the dual

multipliers of the upper and lower safety constraints of

branch respectively, Ke,b is the power transfer factor of node e

to branch b.

4 Model solving based on robust
optimization

4.1 Construction of uncertainty set model

Considering the prediction error of uncertain variables,

the uncertainty set model is established. Define the

polyhedron uncertain variable set ΩU and the uncertain

error set ΩU:

ΩU � {Pt|Pt �PF
t + P^tzt, t ∈ ΩT} (38)

zt � Pt − PF
t

P̂t

∈ [−1, 1] (39)

Pt ∈ [PF
t − P^t, P

F
t + P^t], P^t > 0 (40)

ΩZ � ⎧⎨
⎩zt

∣∣∣∣∣∣∣∣∣∣ ∑t∈ΩT

|zt|≤ Γ
⎫⎬
⎭ (41)

Where, PF
t is the forecasting value of the uncertainty variable at

time t, P^t is the maximum prediction error of the uncertainty

variable at time t, ztindicates the deviation degree of the actual

value of uncertainty variable from the forecasting value, Γ is the

uncertainty parameter reflecting the influence of uncertainty on

decision making, Γ � 0 indicates the corresponding robust

optimization model is a deterministic model.

4.2 Construction of optimization model

The purpose of robust optimization is to find the scheduling

scheme with the best economy when the uncertain variables

change towards the worst scenario in the uncertain variable set

ΩU, and to find the optimal solution in the worst scenario.

Therefore, the day-ahead spot market clearing model is

established as formula Eq. 42. The decision variables are the

deviation degrees of the actual value of wind power output,

photovoltaic output and load demand from their respective

predicted values, the winning bid electric energy and reserve

capacity of units, and the winning bid reserve capacity of flexible

loads, etc.

min (maxf) (42)

Constraints are as follows:

∑
t∈ΩT

∣∣∣∣∣∣∣∣∣∣ ∑
w∈ΩW

zw,t + ∑
n∈ΩPV

zn,t + ∑
e∈ΩE

zL,e,t

∣∣∣∣∣∣∣∣∣∣≤ Γ (43)

∑
i∈ΩG

Pi,t + ∑
w∈ΩW

(PF
w,t + zw,tP

^
w,t) + ∑

n∈ΩPV

(PF
n,t + zn,tP

^
n,t)

� ∑
e∈ΩE

(PF
L,e,t + zL,e,tP

^
L,e,t) + PDC,t (44)

Where, zw,t, zn,t and zL,e,t are the deviation degrees of the

actual value of wind power output, photovoltaic output and

load demand from their respective predicted values
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respectively, P^w,t is the maximum output prediction error of

wind turbine w at time t, P^n,t is the maximum output

prediction error of photovoltaic unit n at time t, P^L,t is the

maximum prediction error of load at time t. See 3.2 for other

constraints.

4.3 Model solving process

A bilevel solving process is established for the min-max

model of Eq. 42, in which the Genetic Algorithm is used in

the upper-level for scenario enumerating with different

renewable energy output and load demand, and try to find

the worst scenario with the minimum maxf. In the lower-

level CPLEX is used to solve maxfwith a fixed scenario. The

upper-level and the lower-level iterate until convergence (Ma

et al., 2016). The specific process is as follows:

Step 1: set related parameters in the algorithm, such as

population size, cross mutation probability, iteration number

k, initial power flow, renewable energy output, load and unit

parameters, etc.

Step 2: encode and form an initial uncertain set population,

randomly generate x uncertain sets of renewable energy

output and load, and transmit the uncertain sets to the

lower-level.

Step 3: receive an uncertain set at the lower-level, use CPLEX

to solve maxf to obtain the winning bid quantity of each unit

and flexible load, and return the optimized social welfare f* to

the upper-level.

Step 4: in the upper-level replace the current optimal

solution with the smallest social benefit to obtain the current

worst scenario. If the calculated social welfare f* converges,

save the worst scenario of renewable energy output and load

demand and the optimization results in the lower-level

problem, end the loop (the convergence basis is that the

minimum social welfare difference obtained by two adjacent

iterations does not exceed 0.01); otherwise, use the selection and

mutation of Genetic Algorithm to generate a new uncertain set,

let k � k + 1.

Step 5: if the number of iterations reaches the maximum, exit

this process, otherwise, return to Step 3.

5 Case study

In this paper, a modified IEEE 10-machine 39-node

system as shown in Supplementary Appendix Figure SA1 is

established, in which the thermal power plant G10 and the

load of bus 39 are used as the equivalent sending power grid,

and the other receiving power grid get supply through tie line

39-1. Day-ahead clearing simulation of the receiver grid

verifies the effectiveness of the proposed method in this

paper. The power supply capacity in the receiving power

grid is 9610MW, including 4 thermal power plants G1-G4,

2 hydropower plants G5-G6, 1 wind power plant G7 and

2 photovoltaic power plants G8-G9, of which G5 is set as a

frequency modulation power plant. It is assumed that 5% of

the load capacity of each bus in the receiving grid is flexible

load, of which the interruptible and transferable loads are 3%

and 2% respectively. See Appendix A for the parameters of

unit, line and flexible load. The failure probability of each unit

in each period is assumed as 0.5%, the unplanned outage

probability of load is 0.5% and the load loss probability is 5%.

According to the historical prediction error, the maximum

prediction error of load is set to be 10%, the maximum

prediction error of renewable energy output is set to be

15%, and the uncertainty parameter is taken as 40. See

Appendix A for the forecasting values of tie line

exchanging power and load.

FIGURE 1
Winning bid power of plants in electric energy market.

FIGURE 2
Winning bid results of up reserve.
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5.1 Example of day-ahead clearing

According to the robust optimization method proposed in

this paper, the day-ahead calculation example is cleared, and the

electric energy clearing results of the power plant are further

obtained, which is shown in Figure 1. It can be seen from the

figure that since the operation cost of wind power and photovoltaic

is far lower than that of thermal power, and they do not participate

in the reserve market. Therefore, all renewable energy units have

priority to be cleared in the electric energy market at all times, and

the insufficient part is balanced by hydropower and thermal

power. The overall output level of thermal power plants

G1 and G2 is high, and the output level of G3 and G4 is low.

Among them, the power generation cost of thermal power plant

G4 is higher than that of thermal power plants G1-G3, so G4 has

the smallest winning bid power. Because hydropower has a better

price advantage in the reserve market, its clearing result in the

electric energy market is far lower than that of thermal power.

Figures 2, 3 show the winning bid power of plants and loads

in the reserve ancillary service market for the up and down

reserve, respectively. In the example, the equipment failure

probability and unplanned load outage probability are both

set as constant within a day. Therefore, the reason why the

system reserve capacity is large at 12:00 and 20:00 in Figure 2 is

that the fault during peak load will cause a larger loss of load,

resulting in a high risk of load loss. Because the reserve bidding

price of flexible load has certain advantages, flexible loads are

cleared as part of the system up reserve at all times. From 8:00 to

11:00 and 22:00 to 24:00, when more thermal power and

hydropower are cleared in the electric energy market, the

winning bid up reserve capacity of the load is even higher

than that of the unit. It can be seen that the participation of

interruptible load and transferable load in the reserve auxiliary

FIGURE 3
Winning bid results of down reserve.

FIGURE 4
Winning bid results of electric energy.
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service will reduce the bid-winning capacity of the unit in the

reserve market and reduce the pressure on the unit to provide

reserve capacity. Because the price of interruptible load set in this

paper is lower than that of transferable load in reserve market, the

bid-winning capacity of interruptible load in each period is

higher than that of transferable load.

It can be seen from Figure 3 that the down reserve capacity

cleared in the market at 12:00 and 21:00 is large, the reason is

that the load outage during peak load will cause greater risk of

unit tripping. The participation of transferable loads

effectively supplements the system’s demand for down

reserve from units. Since the transferable load accounts for

a small proportion in the system, the winning bid results of

down reserve capacity from the loads is smaller than that of the

units.

Through robust optimization, the winning bid results of the

wind power plant G7, photovoltaic power plant G8 and total load in

the worst scenario are shown in Figure 4. Thewinning bid results are

all between the upper and lower bounds of the prediction error.

After the flexible load participates in the joint market of

electric energy and reserve auxiliary service, the clearing prices of

electric energy and reserve capacity in each period are shown in

Figures 5, 6.

It can be seen fromFigure 5 that after the participation offlexible

load, the daily average price of electric energy market is reduced

from 321.6 yuan/MWh to 313.1 yuan/MWh. Especially from 8:00 to

11:00 and from 18:00 to 24:00, when the load demand is large and

the risk of insufficient reserve is high, the clearing of flexible load in

the reserve market reduces the load clearing in the electric energy

market, which will help to reduce the clearing price of the electric

energy market and reduce the fluctuation degree of electricity price

throughout the day when the bidding strategy of units and loads

remains unchanged. As the flexible loads which have lower prices

than thermal power units participate in the reserve market, the

average price of reserve market is also reduced from 80.7 yuan/

MWh to 67.6 yuan/MWh throughout the day.

In order to discuss the effectiveness of the method proposed

in this paper, three comparison scenarios are set up for joint

clearing optimization. Scenario 1: the proportion of flexible load

is 0, and the joint clearing model is calculated by robust

optimization; Scenario 2: the proportion of flexible load is 5%,

and the forecasting value of load and renewable energy is

determined with 95% confidence; Scenario 3: the proportion

of flexible load is 0, the forecasting value of load and renewable

energy is determined with 95% confidence. Figures 5, 6 show the

clearing prices of electric energy and reserve capacity in each

period of scenario 1, respectively. See Appendix B for the

optimization results of winning bid capacity, winning bid

reserve capacity of units and loads, and clearing electricity

FIGURE 5
Clearing price of electric energy market before and after
flexible load participating in joint market.

FIGURE 6
Clearing price of reserve market before and after flexible load
participating in joint market.

FIGURE 7
Comparison between scenario 2 and scenario 3 for providing
load reserve adjustment.
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prices for scenarios 2 and 3. Among them, after the flexible load

participates in providing the up and down reserve of the system,

the load reserve adjustment capability that scenario 2 can provide

compared to scenario 3 is shown in Figure 7, which fully shows

the flexibility of interruptible and transferable load to provide up

and down reserve for the system. The market clearing results

under the four scenarios are shown in Table 1.

According to Table 1, it can be seen that:

1) The participation of flexible load in the provision of up and

down reserve of the system can effectively avoid the need for

unit to operate in the range with higher production costs in

order to ensure system safety, thereby reducing the power

generation cost of the unit. Therefore, in the example, the

methods considering the flexible load, that are the proposed

method and scenario 2, have much lower generation cost than

those of scenarios 1 and 3 without considering flexible load,

and the proposed method in this paper has the lowest power

generation cost.

2) Since the flexible load with price advantage is introduced into

the reserve market to provide up and down reserve to the

system, the proposed method in this paper and scenario

2 both have lower reserve cost. Since the robust

optimization method in this paper considers the worst

scenario, the reserve cost is slightly higher than that of

scenario 2.

3) Since the price bidding strategy of flexible load of the method

in this paper is same as that of scenario 2 and all cleared, the

reserve cost and benefit of the flexible load of the two are

equal.

4) Since the worst scenario is considered, the risk cost of the

proposed method in this paper is lowest.

5) The total operation costs of the proposed method and

scenario 2 are lower than that of scenarios 1 and 3,

indicating that the participation of flexible load in reserve

will reduce the total cost of the system.

In the above example, the failure probability of each unit in

each period is assumed as a fixed unit failure probability value

0.5%. Here, assume that the failure probability of G1 increases

from 0.5% to 15% during 8:00 to 12:00 and the failure probability

of G3 increases from 0.5% to 20% during 15:00 to 20:00, here a

variable unit failure probability case is introduced. The clearing

results of the cases with fixed probability and variable unit failure

probability are shown in Table 2. The winning bid results in

electric energy market and reserve market are shown in Figures 8,

9 respectively.

Compared with winning bid results in Figures 1, 2, the risk

cost increases due to the increase of unit failure probability of

G1 from 8:00 to 12:00, leading to significant increase of winning

bid results of up reserve. Among them, the winning bid power of

G1 in electric energy market decreases and the winning bid up

reserve capacity of G1 increases obviously. When the failure

probability of G3 increases from 15:00 to 20:00, the winning

bid results of the system also has a similar rule.

In order to cope with the uncertainty of failure probability,

the system reserve capacity increases from 872.21 MW to

966.22 MW during 8:00 to 12:00, and increases from

1205.13 to 1254.13 MW during 15:00 to 20:00. The total

reserve capacity increases from 4107.79 WM to 4252.79 WM.

Unit reserve cost and risk cost have increased. The reserve

market price increases during 8:00 to 12:00 and during 15:00 to

20:00. The average daily reserve market price rises to

80.22 yuan/MWh.

5.2 Influence analysis of uncertain
parameters in robust optimization

In order to further discuss the influence of the robust

optimization model, the sensitivity analysis is carried out on

the uncertain parameter Γ, and the relationship between social

welfare and Γ in the interval of Γ ∈ [40, 56] is shown in

Figure 10. It can be seen from the figure that the social

welfare decreases with the increase of the uncertain

parameter Γ. The reason is that the increasing of Γ will

make the feasible region of the uncertain set continue to

increase, and the system optimization result will develop to

a worse scenario, therefore, the social welfare will continue to

decrease. When Γ is greater than 52, the continuous increase

of the feasible range of the uncertain set cannot generate worse

scenarios. Therefore, social welfare no longer changes with Γ.

TABLE 1 Clearing results under four scenarios (104 yuan).

Clearing results Proposed method Scenario 1 Scenario 2 Scenario 3

Unit generating cost 5497.93 5882.52 5688.47 6196.42

Unit reserve cost 1265.98 1505.42 1195.00 1358.32

Flexible load reserve cost 403.33 0 403.33 0

Flexible load income 306.68 0 306.68 0

Risk cost 28.77 38.13 48.71 49.46

Total cost 6889.33 7426.06 7028.83 7604. 20
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5.3 Influence analysis of flexible load
bidding

In order to further discuss the influence of flexible load bidding in

the joint market, define o1 and o2 as the price adjustment coefficients

of flexible load in the electric energy market and the reserve market,

changing the bidding price to o1F1 and o2L3 respectively. When o1
and o2 are fixed to 1, the benchmark bidding is set.

In order to prevent the abuse of market power, it is necessary

to limit the bidding range to monitor the behavior of individual

bidding. This paper mainly considers the upper and lower limit

constraints of the price adjustment coefficients:

o ≤ o1 ≤ �o (46)
o ≤ o2 ≤ �o (47)

Where, �o and o are the maximum and minimum values of the

price adjustment coefficients respectively. This paper sets

o1, o2 ∈ [0.5, 2].
The change of social welfare Δf is defined as the difference

between the social welfaref′after changing the bidding and that

under the benchmark biddingf. When o2 is fixed to 1, Δfwith o1
as 0.8, 0.9, 1.0, 1.1, and 1.2 is shown in Table 3. The table shows

that when o1 increases from 0.8 to 1.2, social welfare increases

gradually. When o1 is set to 1.2, the corresponding electric energy

bidding can obtain greater social welfare.

When o1 is fixed to 1, Δfwith o2 as 0.8, 0.9, 1.0, 1.1, and 1.2 is

shown in Table 4. The table shows that when o2 increases from

0.8 to 1.2, social welfare decreases gradually. When o2 is set to 0.8,

the corresponding electric energy bidding can obtain greater

social welfare.

TABLE 2 Total cost and income of system before and after failure probability increasing (104 yuan).

Clearing results Unit generating
cost

Unit reserve
cost

Risk cost Flexible load
income

Flexible load
reserve cost

Fixed failure probability 5497.93 1265.98 28.77 306.68 403.33

Variable failure probability 6596.41 1432.12 76.17 306.68 403.33

FIGURE 8
Winning bid power of plants in electric energy market and
clearing price.

FIGURE 9
Winning bid results of up reserve and clearing price.

FIGURE 10
Relationship between social welfare and Γ.
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From the above analysis, it can be seen that the bidding of

flexible load in the electric energy market and reserve market will

affect the optimal distribution of load in the electric energy market

and reserve capacity market, thereby affecting social welfare. In

this paper, the bidding strategy is optimized based on Genetic

Algorithm. The optimization iteration process is shown in

Figure 11. It can be seen from the figure that the social welfare

reaches the maximum after 6 iterations, and the optimal price

adjustment coefficients are 1.61 and 0.57 respectively.

5.4 Influence analysis of flexible load
proportion

Based on the optimal price adjustment coefficients of flexible

load, o1=1.61, o2=0.57, further analyze the impact of flexible load

proportion on the market clearing results. All load nodes are set

to have a fixed proportion throughout the period, and the impact

of different flexible load proportions on social welfare is studied,

as shown in Figure 12. It can be seen from Figure 12 that the

social welfare increases with the increase of the proportion of

flexible load, because the increase of the proportion of flexible

load will increase the flexibility of the system, thereby increasing

the social welfare. Because when the flexible load proportion is in

the range of 0.3–0.4, the change rate of social welfare is the

largest, so considering the efficiency and reliability of power

supply, it is reasonable to choose this interval to set flexible load.

6 Conclusion

The demand for system reserve due to uncertain factors such

as net load prediction error, random failure of units and

unplanned load shedding is considered in this paper, and the

risk cost model of insufficient up reserve and down reserve of the

system are established respectively. Two reserve resources from

demand response and generators are considered, and the reserve

capacity of the system is optimized through the risk cost. Aiming

at the maximization of social welfare, a joint clearing model of

electric energy and auxiliary service in the day-ahead spot market

is established. A robust optimization model which takes the

uncertainty of net load into account is then put forward,

which can help market decision makers find out the market

clearing scheme under the worst scenario of the system and

provide reference decisions for the market to resist the risk of

uncertainty. The research shows that the participation of the

flexible load in the joint market can reduce the costs of power

generation and reserve, avoiding the operation of units in the

high operating cost section, increasing the total welfare of the

power market, and improving the distribution of market-clearing

electricity prices within a day. By rationally setting the bidding

price and proportion of the flexible load, demand response can be

guided to use electricity more scientifically and rationally, which

can improve social welfare.

TABLE 3 Influence of electric energy market biding to Δf .

o1 0.8 0.9 1 1.1 1.2

Δf/ten thousand yuan −633.5 −311.4 0 306.7 613.3

TABLE 4 Influence of reserve market biding to Δf .

o2 0.8 0.9 1 1.1 1.2

Δf/ten thousand yuan 642.5 422.1 0 −403.3 −613.3

FIGURE 11
Iteration process.

FIGURE 12
Influence of flexible load proportion on social welfare.
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Small-signal oscillatory stability
of a grid-connected PV power
generation farm affected by the
increasing number of inverters in
daisy-chain connection

Yi Zhou*, Junzheng Cao and Jing Zhao

Central Research Institute, TBEA Science and Technology Investment Co., Ltd., Tianjin, China

The daisy-chain connection of inverters is one of the basic configurations of the

power collecting network in a grid-connected photovoltaic (PV) power

generation farm. In this study, the total impact of a cluster of M similar

inverters in daisy-chain connection in the PV farm is examined in the

following two aspects: 1) aggregated representation of the cluster of

inverters is derived for stability study based on the dynamic equivalence. The

derivation confirms the rationality of representing the cluster of inverters by an

aggregated inverter connected to the external system via an equivalent

reactance, which is the maximum eigenvalue of the matrix of daisy-chain

connection defined in the article. 2) Analysis is conducted to indicate that

the risk of oscillatory instability may be collectively induced by all the inverters in

the daisy-chain connection in the cluster. This explains why the increasing

number of inverters may imply the possible instability risk of a PV farm. An

example of a power systemwith a grid-connected PV power generation farm is

presented in the article to demonstrate and evaluate the analytical conclusion

obtained.

KEYWORDS

small-signal stability, photovoltaic power generation farm, dynamic equivalence,
linearized state-space model, modal analysis
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1 Introduction

In recent years, renewable power generation, such as wind

and photovoltaic (PV), has developed rapidly (Wang, 2020). In

contrast to traditional thermal and hydraulic power generation,

wind and PV power generation are connected to the grid through

power electronic devices such as inverters (Shah et al., 2021),

which affect the operation of an AC power system in a different

way than traditional generation.

PV power generation has attracted the attention of many

researchers, and a lot of studies have been carried out about its

maximum power point tracking (MPPT) strategy, inverter

control, stability analysis, and control. In order to eliminate

inter-harmonics in a PV generation system, Sangwongwanich

and Blaabjerg (2019) proposed an MPPT algorithm of a random

selection of sampling rate, and Pan et al. (2020) developed a

phase-shifting MPPT method. Ali et al. (2021) advocated an

efficient fuzzy logic-based variant-step incremental conductance

MPPT method to improve the efficiency of maximum power

tracking, which improves the static and dynamic response. As

one of the most important components of PV power generation,

the inverter directly affects the external dynamic characteristics

of PV power generation. Callegaro et al. (2022) proposed a

feedback linearization-based controller that eliminates the

instability of photovoltaic voltage. In order to reduce the

leakage current of a PV inverter, a five-level transformer-less

inverter and a three-phase Z-source three-level four-leg inverter

were developed (Zhu et al., 2020; Guo et al., 2018), respectively.

A grid-connected inverter may behave as an RLC circuit with

negative resistance in various frequency regions, thus

destabilizing the system (Harnefors, 2007; Harnefors et al.,

2007; Du et al., 2020a). Moradi-Shahrbabak and Tabesh

(2018) found that the damping of the oscillation mode may

decrease when the capacitance and reactance corresponding to

the DC link and the front-end inverter increase, bringing about

the instability risk. By using the eigenvalue analysis, Zhao et al.

(2017) found that the parameters of inverter control systems, tie

line length, and other factors in a grid-connected inverter system

may affect the damping of mid-low frequency oscillation mode.

The line length directly affected the power grid strength such that

the decrease in power grid strength would destabilize the system

(Huang et al., 2015; Xia et al., 2018; Du et al., 2019; Malik et al.,

2019; Du et al., 2021a).

Studies so far in the literature have indicated that the number

of inverters is an important factor affecting the oscillatory

stability of a grid-connected PV generation system. The

increase in the number of inverters may lead to system

instability (Agorreta et al., 2011; Majumder and Bag, 2014;

Shahnia, 2016; Du et al., 2020a; Fu et al., 2020; Du et al.,

2021b). Shahnia (2016) found that when the total power

generation capacity of a microgrid remained constant and the

number of converter-interfaced distributed energy resources

increased, the system stability decreased. A study by

Majumder and Bag (2014) indicated that if the control gains

of converters remained unchanged, the increase in the number of

parallel back-to-back converters may induce system instability.

However, the study about the impact of an increasing number of

grid-connected inverters relied on the results of numerical

computation/simulation of study cases.

Du et al. (2020b) analytically examined the impact of the

increasing number of parallel-connected PV generating units on

system stability and came to the conclusion that the increase in

the number can reduce system stability. The mechanism of

growing oscillations caused by the increased number of the

PV generating units in parallel connection was analytically

revealed by Du et al. (2020c). A study by Du et al. (2020a) is

the extension of their pioneering investigation of the oscillatory

stability of a grid-connected wind power generation system (Du

et al., 2019). Possible small-signal instability of a grid-connected

wind farm as being caused collectively by M similar wind turbine

generators in parallel connection was found and examined

analytically. The effect of the increasing number of wind

turbine generators in parallel connection to destabilize the

grid-connected wind farm was reported for the first time in

the literature, which is an important innovative contribution to

the field (Du et al., 2019).

The general topology of the power collecting network of a PV

farm is radial, which is the combination of two basic

configurations, that is, inverters in parallel connection and

inverters in daisy-chain connection (Wang et al., 2009; Liu

et al., 2016). Du only studied the basic configuration of PV

generating units in parallel connection. Investigation of the

second basic configuration of PV generating units in daisy-

chain connection is important for revealing the full picture of

the impact of the increasing number of inverters on the small-

signal stability of the grid-connected PV power generation form.

This has motivated the study in this article.

The article examines the total impact of a cluster of M similar

inverters in daisy-chain connection on the small-signal

oscillatory stability of a grid-connected PV power generation

farm. The organization of the article is as follows.

In the next section, the full-order model of a cluster of M

similar inverters in daisy-chain connection is derived first.

Afterward, state transformation is applied to the state matrix

of the full-order model. The result of state transformation proves

that the state matrix of the full-order model is approximately

similar to a block diagonal matrix with M elementary matrices.

Hence, the cluster of inverters in daisy-chain connection is

approximately equivalent to M dynamically independent

subsystems. Finally, analysis is carried out in the section to

indicate that for studying the instability risk, the cluster of

similar inverters in a daisy-chain connection can be

represented by an inverter being connected to the external

system via a lumped reactance, which is the maximum

eigenvalue of the matrix of daisy-chain connection defined in

the article. Hence, it is rational to represent the cluster of similar
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inverters in a daisy-chain connection by an aggregated inverter.

In addition, when the number of similar inverters in daisy-chain

connection increases, the possible instability risk may increase.

This confirms that similar inverters may collectively induce

poorly damped or even growing oscillations, and the risk of

the oscillation increases when the number of the inverters in the

cluster increases.

In Section 3, an example power system with a grid-connected

PV power generation farm is presented. In the PV farm, there is a

cluster of inverters in the daisy-chain connection. Analysis and

conclusions made in Section 2 are demonstrated and evaluated.

In the demonstration and evaluation, two study cases are

presented when the dynamics of inverters in daisy-chain

connection are either similar or considerably different. The

final section summarizes the main conclusions of the article

and future work.

The main contributions of the article, particularly as

compared with previous work by Du et al. (2020b), are as follows:

(1) Analysis is conducted to conclude that it is rational to

represent a cluster of similar inverters in daisy-chain

connection as an aggregated inverter for the stability

study. This extended the innovative work by Du et al.

(2020c) from the case of parallel connected inverters to

the case of the inverters in daisy-chain connection.

(2) Investigation reveals the mechanism of why and how similar

inverters in daisy-chain connection may collectively induce

the oscillations, that is, the increasing number of inverters

may likely increase the instability risk.

2 Impact analysis

2.1 Full-order model of a cluster of
inverters in daisy-chain connection

The structure of a cluster of M inverters in a daisy-chain

connection being connected to an external power system is

shown in Figure 1. The cluster of inverters can be a portion

of a PV power farm. Thus, the external system includes the AC

grid and the remainder of the grid-connected PV power

generation farm. Alternatively, the cluster of inverters can

constitute the complete PV power generation farm, and thus

the external system is the AC grid. In this study, analysis is

conducted and presented on the former case as the analytical

conclusions obtained are applicable to the latter case. In Figure 1,

xL denotes the reactance of the cable between the cluster of

inverters and the remainder of the grid-connected PV generation

power farm. The model of PV is shown in Supplementary

Appendix S1A.

The linearized state-space model of the ith inverter is

d

dt
ΔXwi � AiΔXwi + BiΔV i

ΔI i � CiΔXwi, i � 1, 2,/,M
, (1)

where Δ denotes the small increment of a vector of variables,

ΔXwi is the state variable vector of the ith inverter,

ΔIi � [ΔIix ΔIiy ]T, and ΔVi � [ΔVix ΔViy ]T. Iix + jIiy and

Vix + jViy are the output current and terminal voltage of the ith

inverter, respectively, expressed in the common x − y

coordinate. In this article, the linearized model of the ith

inverter described by Eq. 1 is denoted simply as (Ai, Bi, Ci).
Ignoring the resistance of the cable, linearized voltage

equations for each section of the cable connecting the

inverters are

ΔV i � xi∑
M

k�i
ΔIk + ΔV i−1, i � 2,/,M

ΔV1 � (x1 + xL)∑
M

k�1
ΔIk + ΔVp

, (2)

where ΔVp � [ΔVpx ΔVpy ]T, Vpx + jVpy is the voltage at the

terminal of the remainder of the PV power generation farm; xi �
xi[ 0 −1

1 0
] and xL � xL[ 0 −1

1 0
], and xi is the reactance of the

cable linking the ith and (i-1)th inverter. It should be noted that the

FIGURE 1
Cluster of M inverters in daisy-chain connection.
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dynamics of the cable affect are in the range of frequency much

higher than those of inverters and hence are neglected in Eq. 2.

Substituting Eq. 2 into Eq. 1, a linearized model of the cluster

of inverters can be gained as follows:

d

dt
ΔX � AXΔX + BXΔVp

ΔIp � CXΔX
, (3)

where ΔX � [ΔXT
w1 ΔXT

w2 / ΔXT
wM ]T;

AX �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 + At11 At12 . . . At1M

At21 A2 + At22 . . . At2M

..

. ..
.

1 ..
.

AtM1 AtM2 . . . AM + AtMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, when j≤ i,

Atij � Bi(xL + ∑j
k�1

xk)Cj and when j> i, Atij � Bi(xL + ∑i
k�1

xk)Cj,

(i, j � 1, 2, . . . ,M); BX � [BT
1 BT

2 . . . BT
M ]T ; CX � [C1 C2 / CM ].

Equation 3 is referred to as the full-order model of the cluster

of inverters in a daisy-chain connection.

2.2 State transformation

In practice, similar inverters in daisy-chain connection being

clustered in one group may often be in one area of the PV power

generation farm over which the illumination intensity does not

vary considerably. Often, similar inverters in the cluster are often

supplied by one manufacturer, who sets the parameters of

inverters with the same default values. Subsequently, the

dynamics (dynamic models) of similar inverters in the cluster

are similar. It is reasonable to assume that identical models of

inverters are the approximate description of the case where the

dynamics of inverters in daisy-chain connection, that is,

(Ai,Bi,Ci) � (Ap,Bp,Cp); i � 1, 2,/,M, (4)

where Ap ∈ RN×N, Bp ∈ RN×2, Cp ∈ R2×N; N is the order of the

linearized state-space model of a single inverter. Equation 4 is an

approximate description of similar dynamics of inverters in

daisy-chain connection.

Substituting Eq. 4 into Eq. 3, the state matrix of the cluster of

inverters to be aggregated is obtained as follows:

AX � diag[Ap] + AXL, (5)

where diag[Ap] denotes a diagonal block matrix;

AXL �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xL + x1)An (xL + x1)An / (xL + x1)An

(xL + x1)An
⎛⎝xL +∑

2

i�1
xi
⎞⎠An / ⎛⎝xL +∑

2

i�1
xi
⎞⎠An

..

. ..
.

1 ..
.

(xL + x1)An
⎛⎝xL +∑

2

i�1
xi
⎞⎠An / ⎛⎝xL +∑

M

i�1
xi
⎞⎠An

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

An � Bp[ 0 −1
1 0

]Cp ∈ RN×N.

The state matrix of a grid-connected PV power generation

farm with inverters in parallel connection is derived from Du

et al. (2020a). Due to the special structure of the state matrix

derived, a simple transformation of state variables is proposed

and applied to decompose the state matrix. State matrix of

inverters in daisy-chain connected as given in Eq. 5 is much

more complicated than and different to that derived from Du

et al. (2020b) because the configuration of a daisy-chain

connection is completely different to that of a parallel

connection.

Two main factors affecting the small-signal stability of PV

power generation farms are the dynamics of inverters and

dynamic interactions of inverters. The latter affecting factor is

determined partially by the configuration of the connecting

network of inverters. The difference of state matrix given in

Eq. 5 for the daisy-chain connection with that given in Du et al.

(2020c) for parallel connection indicates the impact of the

configuration of the connecting network of inverters on the

small-signal stability. Hence, it is expected that stability

analysis based on Eq. 5 is entirely different and more complex

than that conducted in Du et al. (2020a). To start with the

analysis, a new state transformation needs to be invented to

decompose the state matrix given in Eq. 5. For that, the following

matrix of daisy-chain connections is defined:

MM �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xL + x1 xL + x1 xL + x1 / xL + x1

xL + x1 xL +∑
2

i�1
xi xL +∑

2

i�1
xi / xL +∑

2

i�1
xi

..

. ..
. ..

.
1 ..

.

xL + x1 xL +∑
2

i�1
xi xL +∑

3

i�1
xi / xL +∑

M

i�1
xi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where MM ∈ RM×M.

Denote the ith eigenvalue and corresponding eigenvector

of MM to be ρi and vi � [ v1i v2i / vMi ]T (i � 1, 2,/, M),

respectively. It can be proved that the following state

transformation can be applied (for details, see Du et al.,

2021c):

ΔX � TΔZ. (7)

After the state transformation, the following equivalent state-

space representation of the cluster of inverters in the daisy-chain

connection is obtained:

d

dt
ΔZ � AZΔZ + BZΔVp

ΔIp � CZΔZ
, (8)

where AZ � diag[Ap + ρiAn],

BZ � [ v1BT
p v2BT

p . . . vMBT
p ]T,

CZ � [ v1Cp v2Cp / vMCp ], and vi � ∑
M

k�1
vki, i � 1, 2,/,M.
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The state-space representation in Eq. 8 can be seen as

comprising M subsystems, and the state-space model of the

ith subsystem is

d

dt
ΔZi � (Ap + ρiAn)ΔZi + viBpΔVp

ΔIpi � viCpΔZi

. (9)

Equations 8 and 9 indicate that under the assumed condition of

identical models of the inverters, the cluster of inverters can be

equivalently transformed to M dynamically independent

subsystems. Each subsystem consists of a grid-connected inverter.

The state-spacemodel of the inverter in the subsystem is the same as

that described by Eq. 1 and Eq. 4, that is,

d

dt
ΔZi � ApΔZi + BpΔV i

ΔIi � CpΔZi, i � 1, 2,/,M
. (10a)

Connection of the inverter in the subsystem with the external

system is depicted by the following equations:

ΔV i � ρi[ 0 −1
1 0

]ΔI i + viΔVp

ΔIpi � viΔIi, i � 1, 2,/,M
. (10b)

From Eqs 9 and 10, the configuration of the subsystems is

established, as shown in Figure 2. The linearized model of the

subsystem, as described by Eqs 9 and 10, is denoted as

(Ap, Bp, Cp, ρi).

2.3 Aggregated representation

State transformation conducted in the previous subsection

indicates that the cluster of M similar inverters in daisy-chain

connection is approximately equivalent to M dynamically

independent subsystems. In each independent subsystem, an

inverter is connected to the external system via an equivalent

reactance, which is an eigenvalue of matrix daisy-chain

connection, ρi, as shown in Figure 2.

For the case of M similar inverters in parallel connection

studied in Du et al. (2020b), M dynamically independent

subsystems are obtained after state transformation. Each of

the first (M − 1) subsystems is a standalone inverter. The Mth

subsystem comprised an inverter being connected to the external

system via an equivalent reactance, which is equal to the product

of the number of inverters and xL, that is,MxL. Subsequently, the

Mth subsystem can be used as themodel of aggregated inverter for

stability study (Du et al., 2020c). However, in the current case of

inverters in daisy-chain connection, each of the M subsystems

comprised an inverter being connected to the external system

after state transformation. Hence, further analysis is needed to

determine which subsystem can be used as the aggregated

inverter to represent the cluster of inverters in a daisy-chain

connection for stability study as follows.

Denote λi, i � 1, 2./M as the oscillation modes of the cluster

of similar inverters in daisy-chain connection, that is, the

conjugate complex eigenvalues of state matrix,

Ap + ρiAn, i � 1, 2,/M. A matrix with a variable ρ can be

defined as Ap + ρAn. Denote λ as a complex conjugate

eigenvalue of Ap + ρAn. Furthermore, the following sensitivity

index (SI) is defined:

SIi � zλ

zρ

∣∣∣∣∣∣∣∣ λ�λi
ρ�ρi

� wT
i Anvi
wT

i vi
. (11)

wherewi and vi are, respectively, the left and right eigenvectors of
the matrix Ap + ρiAn, i � 1, 2,/M for λi.

From Eq. 6, it can be seen that MM is a symmetrical real

matrix with positive elements. Thus, the eigenvalues of MM are

all real positive numbers. Denote ρmin and ρmax as the minimum

and maximum eigenvalues of MM. Denote λmin and λmax to be

the oscillation mode calculated from Ap + ρ minAn and

Ap + ρmaxAn, respectively. From Eq. 11, it can be seen that if

the real part of SIi is negative for ρ � ρi; ρmin ≤ ρi ≤ ρmax, real part

of eigenvalue of Ap + ρAn increases when ρ decreases. Thus,

when ρ is the smallest (i.e., ρ � ρmin), the real part of the

corresponding eigenvalue of Ap + ρAn, that is, λmin) is of the

least damping among λi, i � 1, 2./M. The possible smallest

value of ρi is zero, that is, ρmin � 0. Hence, the damping of

λmin could be equal to the damping of the same type of oscillation

mode of the standalone inverter, that is, the conjugate complex

eigenvalue of the matrix Ap. Because the standalone inverter is

FIGURE 2
Configuration of the ith subsystem.
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stable, λmin should be of sufficient damping and is thus not a

concern for oscillation stability analysis. Hence, if the real part of

SIi is negative, there is no instability risk of the cluster of inverters

in the daisy-chain connection.

However, if the real part of SIi is positive, λmax is of the

poorest damping among λi, i � 1, 2./M. Hence, for detecting

the instability risk of the cluster of inverters in daisy-chain

connection, only the complex conjugate eigenvalues of Ap +
ρmaxAn need to be calculated. This implies that if and only if

the subsystem displayed in Figure 2 with the state matrix of Ap +
ρmaxAn is stable, the cluster of inverters in the daisy-chain

connection is stable. Hence, the subsystem with the state

matrix Ap + ρ maxAn should be used as the aggregated

representation for the stability study. The subsystem is the

aggregated inverter of the cluster of similar inverters in the

daisy-chain connection, as shown in Figure 3. This aggregated

inverter in Figure 3 is referred to as the aggregated representation

of the cluster of similar inverters in daisy-chain connection for

studying the risk of oscillatory instability.

From Eqs 9 and 10 and Figure 3, the linearized model of the

proposed aggregated representation can be written as follows:

d

dt
ΔZm � (Ap + ρ maxAn)ΔZm + vmBpΔVp

ΔIpm � vmCpΔZm

, (12)

where vm is the sum of the eigenvector of MM for ρmax.

The linearized model of the external system can be expressed

as follows:

d

dt
ΔZe � AeΔZe + BeΔIpm

ΔVp � CeΔZe + DeΔIpm

. (13)

Thus, from Eqs 12 and 13, the linearized model of the entire

power system in Figure 1 can be established as

d

dt
ΔZ � AΔZ, (14)

where A � [Ap + ρ maxAn + v2mBpDeCp vmBpCe

vmBeCp Ae
].

The aggregated inverter in the case of inverters in daisy-chain

connection is different to that derived from Du et al. (2020a) for

the case of inverters in parallel connection as the lumped

reactance for the two cases is different. The difference is due

to the fact that two different forms of state transformation are

applied for two different cases of inverters’ connection. A further

examination of the difference is conducted as follows.

Assume that the cable that connects the cluster of inverters in

the daisy-chain connection to the external system in Figure 1 is

much longer than the cables inside the cluster, that is,

xL ≫∑N
i�1xi in Eq. 6. In this case, xi is ignored such that the

inverters in the daisy-chain connection become approximately

parallel connections as all the inverters are connected to a

common point at the terminal of a cluster in Figure 1. With

ignorance of xi, it can be seen from Eq. 6 that the matrix of daisy-

chain connection approximately becomes,

MM ≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xL xL / xL

xL xL / xL

..

.
. . . 1 ..

.

xL xL / xL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

.

It is easy to prove that ρi � 0, (i � 1, 2, ...,M − 1) and ρM �
MxL which is ρ max. Subsequently, the lumped reactance in the

aggregated inverter shown in Figure 3 is that for the inverters in

parallel connection.

Therefore, the analysis above indicates that the state

transformation and the aggregated inverter derived from Du et al.

(2020b) are just a special example of those in the current study about

similar inverters in daisy-chain connection. Analysis and conclusions

obtained from the special example in Du et al. (2020c) cannot be

simply extended to the case of inverters in daisy-chain connection.

Hence, the total impact of inverters in daisy-chain connection about

how the inverters may collectively cause instability risk needs to be

investigated as to be presented in the following subsection.

2.4 Impact of increasing number of
inverters

First, the following theorem is introduced:

the Cauchy interlace theorem (Mercer andMercer, 2000). Let

MM+1 be a Hermitian matrix of order M + 1, and MM be a

FIGURE 3
Aggregated representation for studying oscillatory stability of a cluster of similar inverters in a daisy-chain connection.
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principal submatrix of MM+1 of order M. If

μ1 ≤ μ2 ≤/≤ μM ≤ μM+1 are the eigenvalues of MM+1 and

ρ1 ≤ ρ2 ≤/≤ ρM−1 ≤ ρM are the eigenvalues of MM, then

μ1 ≤ ρ1 ≤ μ2 ≤ ρ2 ≤/≤ ρM−1 ≤ μM ≤ ρM ≤ μM+1. (16)

Second, consider that one more inverter is connected at the

end of the daisy chain in Figure 1. According to the definition of

the matrix of daisy-chain connection given in Eq. 6,

MM+1 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
MM bT

b xL + ∑
M+1

i�1
xi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where b � [ xL + x1 xL +∑
2

i�1
xi / xL +∑

M

i�1
xi ].

From Eqs 6 and 17, it can be seen that the matrix MM

defined in Eq. 6 is a principal submatrix of MM+1 in Eq. 17. In

addition,MM+1 is symmetrical and is thus a Hermitian matrix.

Hence, according to the Cauchy interlace theorem, the

maximum eigenvalue of the matrix of daisy-chain

connections increases when one more inverter is connected

in the daisy chain in Figure 1.

Finally, according to the analysis conducted in the previous

subsection, it is known that when ρ max increases, possible

instability risk as caused by the cluster of similar inverters in

a daisy-chain connection also increases. Hence, it can be

concluded that in the case of inverters in a daisy-chain

connection, it is possible that the oscillatory instability may be

induced collectively by the inverters.

3 An example power system with a
grid-connected photovoltaic power
generation farm

Figure 4 shows the configuration of an example power

system with a grid-connected PV power generation farm. In

the PV farm, a cluster of inverters is in a daisy-chain

connection. The AC power system consists of two

synchronous generators (SG1 and SG2) connected to an

infinite busbar. The 20th-order model recommended for

subsynchronous oscillation studies in Padiyar (1996) is

adopted for SG1 and SG2, with the parameters adjusted in

line with their capacities. On the basis of previous work (Du

et al., 2020a), the inverter adopts an 8th-order model, including

DC capacitance voltage (1-order), control system (3-order),

filter reactance (2-order), and PLL (2-order). The relevant

parameters are shown in Supplementary Appendix S1B. Pc
denotes the active power output from the cluster of inverters.

FIGURE 4
An example power system with a grid-connected PV power generation farm.

TABLE 1 Oscillation modes of the cluster of five inverters in daisy-chain connection (case study 1).

Type of mode Aggregated representation Full-order model CWMV model

d-axis CCIL −14.24 + 723.12j −14.25 + 723.11j −15.87 + 723.50j

q-axis CCIL −20.04 + 580.31j −20.04 + 580.29j −20.04 + 579.84j

VDC −9.37 + 232.78j −9.37 + 232.74j −10.57 + 236.62j

PLL −6.94 + 199.69j −6.94 + 199.64j −6.95 + 198.27j

(CCIL, current control inner loop of inverter; VDC, DC voltage control outer loop of inverter; PLL, phase-locked loop; CWMV model, aggregated model derived by using the capacity-

weighted mean value method).
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FIGURE 5
Computational results of participation factors (case study 1). (A) Oscillation modes associated with d-axis CCIL (Icx and xG id are, respectively,
the x-axis current output of the inverter and output of the integrator of d-axis CCIL of the inverter). (B)Oscillationmodes associated with q-axis CCIL
(Icy and xG iq are, respectively, the y-axis current output of the GSC and output of the integrator of q-axis CCIL of the inverter). (C)Oscillation modes
associated with DC voltage control (Vdc and xDC are, respectively, the voltage across the DC capacitor and output of integrator of VDC of the
inverter). (D)Oscillationmodes associated with PLL (xPLL and θPLL are, respectively, the output of integrator and phase of the terminal voltage tracked
by the PLL).
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3.1 Case study 1: Aggregated
representation

Initially, there are five inverters in the cluster of daisy-

chain connections, that is, M = 5. At steady state, the power

factor of each inverter is 0.98 with the active power output

being 0.1 p.u. The parameters of the inverters and the

converter control systems are the same. However, steady-

state terminal voltages of the inverters are different

(otherwise, there will be no load flow in the cluster).

Hence, linearized models of five inverters in the cluster are

slightly different instead of being identical. Analysis of the

aggregated representation of a cluster of inverters in a daisy-

chain connection is evaluated as follows.

First, the fifth inverter in the cluster, that is, inverter5 is

selected to represent the other four inverters in the cluster, that is,

(Ai,Bi,Ci) � (Ap,Bp,Cp) � (A5,B5,C5), i � 1, 2, 3, 4.

Second, the matrix of daisy-chain connections defined

by Eq. 6 is derived, and its eigenvalues are calculated to be

ρ1 � 0.0028, ρ2 � 0.0038, ρ3 � 0.0072, ρ4 � 0.025, and ρ5 � ρmax �
1.1112.

Thus, the aggregated representation of the cluster of five

inverters, shown in Figure 3, is obtained to be (Ap,Bp,Cp, ρmax).
Oscillation modes are computed from the state matrices of the

aggregated representation, Ap + ρ maxAn. The 12th-order model

of inverter is used, that is,N = 12, and hence there are twelve state

variables in the aggregated representation. According to the

results of the study reported in the literature, oscillatory

instability of inverter is often related to the oscillation modes

of the control system of the inverter and the PLL (Kroutikova

et al., 2007; Wen et al., 2015; Peng and Yang, 2020). Hence, in the

2nd column of Table 1, only four oscillation modes are listed,

which are associated with the d-axis and q-axis current control

inner loops, the DC voltage control outer loop of the inverter, and

the PLL of the inverter in the aggregated representation,

respectively. Those associations, referred to as the type of

oscillation mode in Table 1, can be identified by calculating

the participation factors of the oscillation modes. Hence, from

the right and left eigenvectors of Ap + ρmaxAn (state matrix of

aggregated representation) corresponding to the oscillation

modes, participation factors of each of the oscillation modes

are calculated to identify the types of oscillation modes. For

example, if the participation factors of state variables of the PLL

corresponding to one particular oscillation mode are the largest,

the oscillation mode is identified as being associated with

the PLL.

Third, for validation, a full-order model of the cluster of five

inverters, as described in Eq. 3, is established, in which

linearized models of the inverters are similar but slightly

different. Oscillation modes are computed from the state

matrix of the full-order model, AX given in Eq. 5. Of all the

computational results, the modes with the poorest damping for

each type of oscillation mode are identified and are listed in the

3rd column of Table 1. Again, types of oscillation modes are

identified by calculating the participation factors of oscillation

modes being computed by using AX. By comparing the

computational results in the 2nd and 3rd columns, it can be

seen that the aggregated representation obtained provides a

good approximation of the cluster of five inverters in the daisy-

chain connection in the example power system for stability

study, thus confirming the correctness of the analysis and

derivation of aggregated representation presented in the

previous section.

Participation factors of the oscillation modes are presented in

Figure 5.

TABLE 2 Computational results of sensitivity index.

ρi PLL mode DC mode

1.5 0.52–2.00j −0.26 + 1.35j

3.5 2.94–25.12j −2.15 + 10.13j

5.5 5.15–57.42j −3.72 + 22.41j

FIGURE 6
Trajectories of oscillation modes as M increased (case study
2, CWMVmodel, aggregated model derived by using the capacity-
weighted mean value method).
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Finally, for comparison, the capacity-weighted mean value

method (Zou et al., 2015; Zhou et al., 2018) is applied to derive an

aggregatedmodel of the cluster of five inverters in the daisy-chain

connection in the example power system. Oscillation modes are

computed by using the aggregated model derived by using the

capacity-weighted mean value method. Computational results

are listed in the 4th column of Table 1. From Table 1, it is obvious

that the aggregated representation proposed in the previous

section gives more accurate results in stability assessment than

the aggregated model derived by using the capacity-weighted

mean value method.

3.2 Case study 2: Increasing number of
inverters

By using the aggregated representation obtained earlier, the

sensitivity index defined by Eq. 11 is computed for the oscillation

modes with variation in the value of ρi. Due to the limitation of

space, only the computational results for the oscillation modes

associated with the PLLs (PLL mode) and DC voltage control

outer loops (DC mode) are given in Table 2. According to the

analysis described in the previous section and Table 2, it is

expected that with an increase in the number of inverters in

the daisy-chain connection, the PLL mode would move to the

right on the complex plane with reduced damping, and the DC

mode would move to the left with enhanced damping.

To evaluate this prediction, oscillation modes are computed

by using the aggregated representation shown in Figure 3, the

full-order model of Eq. 3, and the aggregated model derived by

using the capacity-weighted mean value method. Results of

modal computation with variation of the number of inverters

in daisy-chain connection in the example power system give the

trajectories of the PLL mode and DCmode presented in Figure 6.

When more inverters are connected in the daisy chain in the PV

farm, the same number of inverters in the other part of the PV

FIGURE 7
Computational results of participation factors (case study 2, M= 23). (A)Oscillationmodes associatedwith PLL. (B)Oscillationmodes associated
with DC voltage control.

FIGURE 8
Non-linear simulation results (case study 2, CWMV model,
aggregated model derived by using the capacity-weighted mean
value method).
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farm is withdrawn from the operation. In order to exclude the

impact of dynamics of the PVs in the other part of the PV farm,

the PVs in the other part are modeled as constant power sources.

Subsequently, the impact of a varied number of PVs is that

dynamic interactions between the PVs and the steady-state

power generation from the PV farm remain unchanged. The

following observations can be made from Figure 6.

1) The PLL mode moves toward the right on the complex plane

as the number of inverters in the daisy-chain connection

increases. When 23 inverters are in daisy-chain connection,

ρmax � 6.5821; the PLL mode moves into the right half of the

complex plane, resulting in oscillatory instability. Damping

of the DC mode is improved when the number of inverters

in the daisy-chain connection increases. This confirms the

abovementioned prediction and the correctness of the

analytical conclusion drawn in the previous section:

instability risk can be induced collectively by all the

inverters in the daisy-chain connection.

2) The computational results obtained using aggregated

representation are more accurate than those using the

aggregated model from the capacity-weighted mean

value method. The latter in fact fails to identify the

oscillatory instability when the number of inverters in

the daisy-chain connection is increased, indicating that

the aggregated model derived by using the capacity-

weighted mean value method is not applicable for the

stability assessment in this case study.

Participation factors of the oscillation modes are presented in

Figure 7.

Validation by non-linear simulation is given in Figure 8. At

0.5 s of simulation, the active power output over other parts of the

PV farm in the example power system decreases by 5% for 0.1 s.

From Figure 8, it can be seen that when 23 inverters are in a

daisy-chain connection, growing oscillations occur, confirming

the conclusion that inverters in a daisy-chain connection may

collectively cause oscillatory instability and the effectiveness of

the aggregated representation.

3.3 Case study 3: Dynamic models of the
inverters are different

In the two study cases presented earlier, the parameters of

inverters in daisy-chain connection are the same such that

dynamic models of inverters are similar. In this study case,

the parameters of inverters in daisy-chain connection are

different. Consequently, the dynamic models of inverters in

daisy-chain connection in the example power system are

different. Evaluation of the analysis and conclusions made in

the previous section is carried out as follows.

First, parameters of inverter5 are used as a base.

Parameters of the control systems and the PLLs of other

TABLE 3 Oscillation modes of the cluster of five inverters in daisy-chain connection (case study 3).

Type of mode Aggregated representation Full-order model CWMV model

d-axis CCIL −14.24 + 723.12j −13.19 + 695.99j −15.87 + 723.50j

q-axis CCIL −20.04 + 580.31j −17.76 + 547.30j −20.04 + 579.84j

VDC −9.37 + 232.78j −8.48 + 221.02j −10.57 + 236.62j

PLL −6.94 + 199.69j −6.26 + 188.14j −6.95 + 198.27j

FIGURE 9
Trajectories of oscillation modes as M increases (case
study 3).
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inverters in the daisy-chain connection in the example power

system are varied from the base within the limit of ±10%.

Subsequently, linearized models of the inverters in the daisy-

chain connection are different. Results of modal computation

are listed in Table 3. From Table 3, it can be noted that the

results from modal computation using the aggregated

representation are more accurate than those obtained using

the aggregated model derived using the capacity-weighted

mean value method, as compared with the results obtained

using the full-order model.

Second, the impact of the increasing number of inverters in

the daisy-chain connection is evaluated. Because the dynamic

model of inverter5 is the same as that in case studies 1 and 2,

computational results of the sensitivity index are the same as

those given in Table 2. Hence, it is expected that when the

number of inverters in the daisy-chain connection increases,

damping of PLL mode would decrease and damping of the DC

model would increase. Evaluation from modal computation and

non-linear simulation are presented in Figures 9, 10, and 11,

respectively. The results indicate that although the linearized

models of the inverters in the daisy-chain connection are

different in this case study, the analysis made under the

condition that the linearized models of the inverters are

similar is still valid. The small-signal oscillatory stability can

be approximately assessed by using the aggregated

representation. The increasing number of inverters in daisy-

chain connection results in oscillatory instability. This confirms

that multiple inverters in a daisy-chain connection may

collectively induce instability risk. In addition, the aggregated

representation proposed in the article provides more accurate

results in stability assessment than the aggregated model derived

by using the capacity-weighted mean value method.

Third, when the dynamics of the PVs are similar, the model

of any PV in the PV farm can be used as the aggregated model of

the PV farm. However, when the dynamics of the PVS are

considerably different, the error in assessing the stability by

using the aggregated model of the PV farm may be large. This

is demonstrated by the following study case.

Parameters of inverter5 remain unchanged. Deviation of values

of parameters of other inverters in daisy-chain connection in the

FIGURE 10
Computational results of participation factors (case study 1, M= 23). (A)Oscillationmodes associatedwith PLL. (A)Oscillationmodes associated
with DC voltage control.

FIGURE 11
Non-linear simulation results (case study 3 similar
parameters).
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example power system from those of inverter5 increases above the

limit of ±10%. Since inverter5 is used as the representative of

inverters to establish the aggregated model of the example power

system. Hence, the results of modal computation and simulation

using the aggregated representation of the inverters in the

daisy-chain connection are the same as those presented in the

second column of Table 3 and Figure 11. When the deviation of

parameters of inverters from those of inverter5
is ±20%, ±30%, ±40%, and ±50%, respectively, results of modal

computation using the full-order model are presented in Tables 4

and 5, where the error of modal computation is

error � |λ1 − λ2|
|λ1| , (18)

where λ1 and λ2 are, respectively, the oscillation mode obtained

from the full-order model and the aggregated representation.

VDC and PLL are, respectively, the DC mode and PLL mode.

Results of the simulation are given in Figure 12.

From Tables 4 and 5 and Figure 12, it can be seen that when the

deviation of parameters of inverters is within ±10%, the error to

assess the stability between using the aggregated representation and

using the full-order model is 1%~2%, which is acceptable. However,

when the deviation is over ±20% ormore, the error is more than 5%,

when the aggregated representation might not be acceptable.

3.4 Case study 4: External oscillation
stability

In the study cases presented earlier, oscillatory stability of

the cluster of inverters in a daisy-chain connection is

examined. In the examination, the cluster of inverters is

not connected to the external system. Hence, the

TABLE 4 Oscillation modes of the cluster of five inverters in daisy-chain connection with different parameter settings.

Parameter difference VDC Error (%) PLL Error (%)

±10% −9.02 + 228.98j 1.67 −7.32 + 203.01j 1.65

±20% −7.21 + 203.90j 14.19 −5.57 + 177.51j 12.51

±30% −6.12 + 186.88j 24.61 −4.88 + 166.19j 20.19

±40% −4.97 + 167.96j 38.66 −4.19 + 154.08j 29.64

±50% −3.90 + 147.47j 57.95 −3.51 + 141.24j 41.44

(VDC mode and PLL mode using the aggregated representation, respectively, are −9.37 + 232.78j and −6.94 + 199.69j).

TABLE 5 Oscillation modes of the cluster of twenty-three inverters in daisy-chain connection with different parameter settings.

Parameter difference VDC Error (%) PLL Error (%)

±10% −13.23 + 248.98j 1.54 0.39 + 115.25j 1.87

±20% −12.28 + 256.90j 4.60 0.36 + 110.94j 5.82

±30% −12.49 + 265.33j 7.61 0.32 + 110.70j 6.05

±40% −13.19 + 276.76j 11.42 0.24 + 110.15j 6.58

±50% −14.13 + 287.88j 14.84 0.15 + 106.30j 10.44

(VDC mode and PLL mode using the aggregated representation, respectively, are −13.05 + 245.12j and 0.32 + 117.40j).

FIGURE 12
Non-linear simulation results (case study 3 different
parameters).
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examination is about the stability of the cluster of inverters as

an open-loop subsystem. The examination is important

because the instability of the cluster of the inverters shall

cause the entire system to become unstable when the inverters

are connected to the external system.

In this subsection, oscillatory stability with the cluster of

inverters in the daisy-chain connection being connected to the

external system is assessed. The assessment is about the stability

of the entire system integrated with the cluster of the inverters. For

the assessment, aggregated representation proposed in the previous

section, the full-order model, and the aggregated model derived by

using the capacity-weighted mean value method for the cluster of

inverters in the daisy-chain connection are compared.

When the number of cluster of inverters in the cluster is

15, the cluster of inverters in the daisy-chain connection is

stable before being connected to the external system, as being

indicated by previous study cases. After the cluster of

15 inverters is connected to the external system, the

aggregated representation of the cluster of inverters shown

in Figure 3 is used to establish the state-space model of the

entire example power system depicted by Eq. 14. Afterward,

from the state matrix, A, oscillation modes of the example

power system are calculated. In Table 6, selected oscillation

modes of the example power system are presented in the 2nd

column of Table 6. It can be seen that one oscillation mode

associated with the torsional system of SG1 is unstable.

Hence, growing subsynchronous oscillations are expected

to occur in the example power system.

For confirmation, the full-order model of a cluster of

15 inverters in a daisy-chain connection is derived and

TABLE 6 External oscillation modes of the example power system (case study 4).

Aggregated representation Full-order model CWMV model

Torsional modes of SG1 −2.44 + 324.62j −2.44 + 324.62j −2.44 + 324.62j

−2.30 + 309.96j −2.30 + 309.96j −2.30 + 309.96j

−1.85 + 208.75j −1.85 + 208.75j −1.85 + 208.75j

1.12 + 158.13j 1.03 + 157.89j 0.35 + 156.99j

−1.59 + 111.95j −1.59 + 111.95j −1.58 + 111.96j

Torsional modes of SG2 −1.33 + 276.86j −1.33 + 276.86j −1.33 + 276.86j

−1.06 + 294.55j −1.06 + 294.55j −1.06 + 294.55j

−1.50 + 188.03j −1.50 + 188.03j −1.49 + 188.03j

−0.73 + 142.28j −0.73 + 142.28j −0.74 + 142.28j

−0.94 + 98.41j −0.94 + 98.41j −0.94 + 98.41j

Oscillation modes of inverters in daisy-chain connection −19.67 + 719.06j −14.84 + 725.20j −25.31 + 719.95j

−22.40 + 585.00j −21.23 + 593.56j −22.50 + 583.11j

−8.72 + 235.76j −9.08 + 230.04j −11.55 + 235.47j

−3.72 + 159.49j −3.77 + 159.00j −3.50 + 157.18j

Aggregated representation, model using the aggregated representation state matrices. Full-order model, model using a full-order state-space. CWMVmodel, aggregated model derived by

using the capacity-weighted mean value method.

TABLE 7 Torsional oscillation mode of SG1 when M decreases (case study 4).

M Aggregated representation Full-order model CWMV model

15 1.12 + 158.13j 1.03 + 157.89j 0.35 + 156.99j

14 0.43 + j158.88 0.43 + j158.88 −0.31 + j158.66

13 −0.08 + j158.87 −0.08 + j158.88 −0.36 + j158.64

FIGURE 13
Computational results of participation factors (case study 4).
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integrated with the model of the external system. Subsequently, a

full-order model of the entire example power system with the PV

power generation farm is established. Results of modal

computation are presented in the 3rd column of Table 6. It

can be seen that the example power system is unstable,

confirming the correctness of the assessment made by using

the aggregated representation proposed.

Furthermore, the participation factors of the unstable

torsional oscillation mode of SG1, 1.12 + 158.13j, are

computed. Computational results are presented in Figure 13.

It can be seen that the unstable torsional oscillation mode is

associated with all 15 inverters in the daisy-chain connection.

This confirms that the oscillatory instability is caused collectively

by the cluster of inverters in the daisy-chain connection.

For confirmation, the full-order model of a cluster of

15 inverters in a daisy-chain connection is derived and integrated

with the model of the external system. Subsequently, a full-order

model of the entire example power system with the PV power

generation farm is established. Results of modal computation are

presented in the 3rd column of Table 4. It can be seen that the

example power system is unstable, confirming the correctness of the

assessment made by using the aggregated representation proposed.

Furthermore, the participation factors of the unstable

torsional oscillation mode of SG1, 1.12 + 158.13j, are

computed. Computational results are presented in Figure 12.

It can be seen that the unstable torsional oscillation mode is

associated with all 15 inverters in the daisy-chain connection.

This confirms that the oscillatory instability is caused collectively

by the cluster of inverters in the daisy-chain connection.

Computational results of the unstable torsional oscillation

mode of SG1 with the change in the number of inverters in daisy-

chain connection (M) are presented in Table 7. It can be seen that

when M is reduced to 13, the example power system is stable.

However, when M = 14, the example power system is unstable.

The CWMV model fails to identify the danger of oscillation

instability of the example power system in this case.

Results of validation by non-linear simulation using the full-

order model are given in Figure 14.

4 Conclusion

This study examines the total impact of a cluster of similar

inverters in a daisy-chain connection, which is one of the most

common basic configurations of PV power collecting network on

the small-signal stability of a grid-connected PV power

generation farm. The main conclusions and contributions

made by the study are as follows:

1) An aggregated representation of the cluster of similar inverters

in daisy-chain connection is derived for the stability study

based on the dynamic equivalence. Hence, the derivation

confirms the rationality of representing the cluster of similar

inverters in daisy-chain connection by an aggregated inverter

connected to the external grid via a lumped reactance.

2) Analysis is carried out to indicate that the cluster of similar

inverters in the daisy-chain connection may collectively

induce the growing oscillations in the PV farm. The

analysis is carried out to indicate that the cluster of similar

inverters in the daisy-chain connection may collectively

induce the growing oscillations in the PV farm.

Subsequently, an increasing number of inverters in the

daisy-chain connection may increase the instability risk,

although the total steady-state active power output from

the grid-connected PV farm remains unchanged.

3) General topology of the power collecting network of a grid-

connected PV farm is radial, with a combination of two basic

configurations: daisy-chain connection and parallel

connection. The article extends the pioneering study by Du

et al. (2020c), which was about the total impact of inverters in

a parallel connection.

Further study on the total impact of the increasing number of

inverters on the small-signal stability of PV farms in the near

future may be in two folds. First, it is the extension of stability

analysis to the case of the general radial topology of the PV power

collecting network. Second, it is the total impact when the

dynamics of inverters are different.

FIGURE 14
Non-linear simulation results (case study 4, full-order model
used).
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There are two kinds of methods to tackle the instability

risk. The first one is to tune the parameters of the PVs in the

PV farm. The second is to assign damping controllers on the

PVs or/and the PV farm. Both methods have been

investigated in the literature. Hence, following-on work to

be carried out in the near future will be the examination of

applying those two methods to mitigate the instability risk

brought about by the daisy-chain connection of PVs in the

PV farm.
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Oscillation mode analysis for
multi-mode coupling power
systems with high renewables
penetration using improved blind
source separation

Zhiwei Wang1, Xiangyu Lyu2, Dexin Li2, Haifeng Zhang2 and
Lixin Wang3*
1State Grid Jilinsheng Electric Power Supply Company, Changchun, China, 2State Grid Jilinsheng
Electric Power Supply Company Electric Power Institute, Changchun, China, 3Northeast Electric
Power University, Jilin, China

The extensive application of power electronic equipment and the increasing

penetration of renewable energy generation gradually strengthen the

nonlinear and modal-coupling characteristics of electromechanical

oscillation of modern power systems. In this study, a data-driven method

based on improved blind source separation (IBSS) combined with sparse

component analysis (SCA) is proposed to extract electromechanical mode

(oscillation frequency, damping ratio and mode shape) from synchrophasor

measurements. First, short time Fourier transform is used to convert the

modal-coupling oscillation signal to sparse domain, then, on the basis of

time-frequency point clustering characteristics of source signals, the

mixture matrix A is estimated by frequency energy peak point algorithm,

and L1 norm is utilized to separate each mode frommixture matrix A. Finally,

the Hilbert identification algorithm is applied to extract the oscillation

parameters. The performance of the proposed IBSS method for the mode

extraction is verified using the test signal, the simulation signal, and the

measured data.

KEYWORDS

modal-coupling electromechanical oscillation, improved blind source separation,
sparse component analysis, synchrophasor measurement, mode extraction

1 Introduction

With the acceleration of power grid interconnection across the country and the

increasing scale of renewable energy, the power systems are being operated closer to their

limits and even reach the collapse point, resulting in obvious coupling and non-stationary

characteristics after a power system is disturbed. Low-frequency oscillation has become

one of the important factors affecting the stability of power system (Yang et al., 2020; Lv

et al., 2021; Xue et al., 2022). Therefore, accurate and timely extraction of
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electromechanical modal parame-ters after disturbance is

important for ensuring the stability and security of the power

system (Feng et al., 2019).

Traditionally, the power system oscillation modes can be

obtained through a model-based approach by linearizing the

non-linear differential algebraic equations of a power system at

the current operating point. However, this kind of approach is highly

dependent on the complete system structure and accurate

component parameters. The advent and deployment of phasor

measurement units (PMUs) builds a reliable data platform for

real-time monitoring, analysis and control of power systems,

which provides a new approach for low-frequency oscillation

mode identification (Khosravi-Charmi and Amraee,

2018)– (Kopse et al., 2015). Therefore, the measurement-based

approaches are alternatives to complement the model-based

approaches. In the early days, the single measurement channel

was used to extract electromechanical modal parameters, using

the advanced identification technique, such as Prony (Hauer,

2015) and its improved algorithm (Wadduwage et al., 2015),

Hilbert Huang transform (HHT) algorithm (Lauria and Pisani,

2014), etc., This kind of algorithm can identify oscillation

frequency, damping ratio and other oscillation characteristic

parameters by directly processing and analyzing the

synchrophasor measurement collected by PMUs. Recently, with

the advances in PMU configuration, dynamic feature extraction

methods based onmulti-channel sources were introduced to analyze

the dynamic behavior and estimate the dominant modes from the

global perspective, among which the representative algorithms

include stochastic subspace identification (SSI) (Jiang et al.,

2015), multivariate empirical mode decomposition (MEMD)

(You et al., 2016), etc. This kind of modal parameters extraction

method can analyze the dynamic behavior of each generator from a

global perspective, and the identification accuracy is high. However,

due to the large amount of input measurements, the calculation is

time-consuming and the analysis efficiency is low.

Moreover, the extensive application of power electronic

equipment gradually strengthens the nonlinear and coupling

characteristics of electromechanical oscillation of modern power

systems. Fast and effective identification of modal-coupling

oscillation is the focus of power system operators. Traditional

measurement-based methods are difficult to meet the needs of

security analysis of multi-modal coupled power systems. Blind

source separation method was first developed to extract the

modal parameters of the structures such as voice and image

processing, and the application of the method in the signal

processing field shows that it has good attribute of separating the

independent source signals, however, until so far, we have not seen

much application in electromechanical modal parameters in power

systems (Yi et al., 2017; Ye et al., 2018).

To address the deficiencies listed above, first, the measurement

input signals are filtered according to the rational inertia, which

effectively reduce the dimensionality of original data, then an

improved blind source separation method based on sparse

component analysis is introduced to extract the power system

oscillation modal parameters. Compared with the traditional low-

frequency oscillation mode identification method, the improved

blind source separation algorithm can accurately separate the

stationary source signal with single frequency from the nonlinear

and nonstationary multi-modal coupled oscillation signals, and

accurately extract the oscillation modal parameters such as mode

frequency and damping ratio. The case studies of test signal, the

simulation signal and the measured data confirm the superior

characteristics of the proposed IBSS based multi-modal coupled

modal parameter extraction.

The remainder of this paper is organized as follows: Section 2

introduces the theoretical foundation of the traditional BSS. Section

3 develops the IBSS method based on sparse component analysis.

Section 4 expands the IBSS to extract the oscillation modal

parameters. Section 5 presents three cases to evaluate the

performance of the proposedmethod. Section 6 concludes the paper.

2 Blind source separation

The term blind source separation (BSS) refers to a wide class

of problems in signal and image processing, in which one needs

to extract the underlying sources from a set of mixtures. The

mathematical model of BSS can be expressed as (Ye et al., 2018):

X(t) � AS(t) � ∑
n

i�1
aisi(t) (1)

where S(t) � [s1(t),/, sn(t)]T is an n-dimension unknown

source signals. X(t) � [x1(t),/, xm(t)]T is an m-dimension

observed vector. A is an unknown m × n mixing matrix, in

which ai is the mixing parameter of the source signal; si(t) is
discrete signals.

BSS algorithm is usually suitable for solving positive definite

problems, that is, the mixing matrix A is full rank, in which the

number of observed signals (m) is greater than or equal to the

number of source signals (n). The core of BSS is to solve the

mixture matrix A and its inverse matrix W, which is called the

separation matrix, moreover, the source signal can be separated

simultaneously, satisfying (Yang et al., 2018):

S(t) � WX(t) (2)

3 Improved blind source separation

3.1 Sparse component analysis

An attractive advantage of sparse component analysis (SCA)

is that it can transform the time-domain signal into the frequency

domain through appropriate linear transformation method, such

as short-time Fourier transform, wavelet transform, etc., making
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the observed measurement signals sparse in the frequency

domain. The sparsity of observation signal means that most

time-frequency points are zero, and only a few time-frequency

points have large values in the time-frequency domain (Ye et al.,

2018). In this paper, one-dimensional time-domain signal is

transformed into two-dimensional time-frequency-domain

signal by short-time Fourier transform, and the rectangular

window function is selected. And 1) could be further

expressed as (Yi et al., 2017):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t, f)
x2(t, f)

..

.

xp(t, f)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � [ a1 a2 / aQ ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(t, f)
s2(t, f)

..

.

sQ(t, f)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 / a1Q
a22 / a2Q
..
.

1 ..
.

aP1 / aPQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(t, f)
s2(t, f)

..

.

sQ(t, f)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where [ a1 a2 / aQ ] is the column vector of mixing matrix

A. aPQ is the attenuation factor for the Q-th source signal

reaching the P-th observation point.

When each source signal is sparse and disjoint, the observed

signal has at most one source signal at a certain time-frequency

point. Assuming that only the source signal sj(tv, fv) exists at the
time-frequency point (tv, fv), 3) can be expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(tv, fv)
x2(tv, fv)

..

.

xp(tv, fv)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � [ a1 a2 / aQ ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
..
.

sj(tv, fv)
..
.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 / a1Q
a22 / a2Q
..
.

1 ..
.

ap1 / aPQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
..
.

sj(tv, fv)
..
.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Then, (4) can be simplified as:

x1(tv, fv)
a1j

� x2(tv, fv)
a2j

� / � xP(tv, fv)
aPj

� sj(tv, fv) (5)

From a geometrical point of view, if the real part or

imaginary part of x1(t, f), x2(t, f) is used as the horizontal

axis and vertical axis to draw a scatter plot,

x1(tv, fv)/x2(tv, fv) � a1j/a2j is constant for the sampling

times belonging to the source signal sj. That is, the time-

frequency points belonging to the source signal sj will

determine a straight line. Similarly, the time-frequency

points of different source signals will be clustered into

corresponding clustering lines. The direction vector of these

clustering lines is the attenuation coefficient ratio of each source

signal mixed to the observation point, which is the column

vector aQ of the mixing matrix A. And the mixing matrix A can

be estimated by the direction of each clustering line in the

scatter diagram.

Based on the obtained mixing matrix A, the L1 norm is used

to solve the underdetermined equation, then the system source

signal is extracted.

3.2 Mixing matrix estimation

The premise of estimating the mixing matrix A is that the

time-frequency points of the mixed signal can form a clustering

line with certain directionality in the real or imaginary part

scatter diagram. In this paper, the fuzzy C-means method is used

to estimate the mixing matrix A by calculating the clustering

center of the clustering line, which is suitable for the blind source

decomposition problem with any number of measurement signal

channels. However, when there are too many time-frequency

points, the clustering direction in the scatter diagram is

complicated, resulting in much calculation time and poor

identification accuracy.

The source signal propagates outward in the energy form,

however, the energy will be attenuated during the propagation

process, the final energy of the same source signal reaching each

observation is a little different. Therefore, an algorithm combing

the frequency energy peak point method (Jin et al., 2021) and the

fuzzy C-means method is proposed to estimate the mixing

matrix A.
The main principle of the proposed method to estimate the

mixture matrix A is: since the energy of each source signal is the

largest near its own frequency point, the frequency value of each

source can be determined by using the frequency peak method.

The clustering straight line direction of the corresponding time-

frequency point at the maximum energy is the clustering

direction of each source signal. Then, the real part or

imaginary part time-frequency dispersion points

corresponding to each peak frequency point are normalized

and mapped to the unit circle. Finally, the clustering center is

calculated by using the fuzzy C-means algorithm, so as to obtain

the mixing matrix A.
In the time-frequency domain, the energy distribution of a

single measurement signal is firstly calculated, and then the

energy of multiple channels at the same frequency point is

added, which is:

E(f) � ∑
m

i�1
∫t2

t1

((Re(xi(t, f)))2 + (Im(xi(t, f)))2)dt (6)

where E(f) is the sum of the energy of all observation signals at

each frequency point; xi is the i-th time-frequency point;

Re(xi(t, f)) and Im(xi(t, f)) are the real part and imaginary

part of the time-frequency point respectively;m is the number of

the observation signals.
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3.3 Source signal recovery

SCA algorithm utilizes the sparsity of the source signal in time-

frequency domain to recover the source signal. The sparse solution is

obtained by establishing and solving the optimization problem (P1)

in (7):

(P1): { ~s(t, f) � min
∣∣∣∣s(t, f)∣∣∣∣l1

subject to As(t, f) � x(t, f) (7)

where ~s(t, f) is the estimation of the source signal s(t, f); (P1)
is a convex optimization problem. The solution of the

optimization problem is the L1 norm minimum solution

(Donoho, 2006).

4 Oscillation modal parameter
identification

4.1 Rotational inertia-based input
measurement selection

The power system requires accurate generator parameters and

mathematical models when performing small-signal stability

calculation and analysis. The kinetic energy of the generator is an

important parameter of the generator, which is determined by the

rotational inertia of the generator rotor. The rotational inertia refers

to the inertia of the generator rotor during the rotation process,

which affects the electromechanical transient process of each

FIGURE 1
Flow chart of SCA and the modal parameter identification.
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generator and is of great significance to the stability and safety of the

power system.When the system is disturbed, the generator rotor will

accelerate or decelerate due to the unbalanced torque, and the

rotational inertia can be expressed as the ability of the system to

return to the original stable operation. The smaller the rotational

inertia, the worse the generator’s resistance to disturbance.When the

proposed method is applied to the actual system, it is necessary to

use the rotational inertia of the generator in each region as a

quantitative index, and select the measurement signals of the

generator with the smallest rotational inertias as the input signals

of SCA algorithm, which can greatly reduce the number of the input

signals and effectively improve the calculation speed.

4.2 Estimation of modal matrix

The low-frequency oscillation signal of power system is

essentially the multimodal coupling response, which can be

expressed by (8). The oscillation frequency has a large

deviation in a period of time, which shows obvious nonlinear

characteristics:

x(t) � Φq(t) � ∑
n

i�1
φiqi(t) (8)

where Φ� [φ1,φ2,/φn] is the mode shape matrix, the mode

shape of the i-th column φi is related to the i-th modal response

vector qi(t), and can also be transformed into the form of (9)

(Yang and Satish, 2013):

q(t) � Φ−1x(t) (9)

Comparing (1) and (8), the viewpoints of characteristic

parameter identification of electromechanical oscillation mode

and blind source separation are consistent, that is, the perturbed

dynamic response of multi-modal coupling is regarded as a linear

group of multiple single-modal responses. The single-modal

response q(t) is equivalent to a special form of the source

signal s(t), and the mixing matrix A contains the information

of the modal matrix, satisfying Φ � A.

4.3 Oscillation frequency and damping
ratio identification based on hilbert
transform

In this paper, Hilbert transform (HT) is used to extract the

oscillation frequency and damping ratio (Gibbard and Vowles,

2010). Performing the HT on a single-mode oscillation

component qi(t), we can obtain:

FIGURE 2
Test signal waveforms and their WFT spectrum.

FIGURE 4
The peak plot in frequency domain.

FIGURE 3
Diagram of clustering characteristics.

Frontiers in Energy Research frontiersin.org05

Wang et al. 10.3389/fenrg.2022.998543

213

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.998543


h(t) � 1
π
∫+∞

−∞
q(t)
t − τ

dt (10)

Where τ is the integral variable.

Introduce an analytic function consisting of q(t) and h(t):

Z(t) � q(t) + jh(t) � A(t)e−jφ(t) (11)
Where A(t) is the envelope of the signal after Hilbert transform

and φ(t) is the instantaneous phase, namely:

⎧⎪⎪⎨
⎪⎪⎩

A(t) � [q2(t) + h2(t)]1/2

φ(t) � tan−1[h(t)
q(t)]

(12)

The instantaneous frequency can be obtained:

f(t) � 1
2π

×
dA(t)
dt

(13)

The system oscillation signal can be deduced from the

generator swing equation, which can be expressed as:

x(t) �� ∑
n

i�1
φiqi(t) � ∑

n

i�1
φiuie

−λi tcos(ωdit + θi) (14)

Where qi(t) is a cosine curve that decays exponentially; ui and θi
are the amplitude and phase respectively, which are determined

by the initial conditions; λi is the decay coefficient; ωdi is the

oscillation frequency.

For a damped oscillaion, the single-modal response signal

qi(t) can be expressed as:

qi(t) � uie
−ξω0tcos(ω0

�����
1 − ξ2

√
t + θi) (15)

By comparing 14) and (15), we can obtain:

FIGURE 5
The separated source signals and their WFT spectrum.

TABLE 1 Extracted modal parameters of test signal.

Mode Frequency (Hz) Damping ratio (%)

Identified value Theoretical value Identified value Theoretical value

1 0.1960 0.2 8.3913 6.3662

2 0.3972 0.4 8.1498 5.9683

3 0.6033 0.6 2.3319 2.6526

4 0.7699 0.8 3.8385 4.9736

5 1.0995 1.1 0.9751 0.7234
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{ ξω0 � λi

ωdi � ω0

�����
1 − ξ2

√
(16)

The damping ratio of the signal is calculated as:

ξ � − λi�������
ω2
di + λ2i

√ (17)

The modal parameter extraction of an electromechanical

oscillation based on the SCA algorithm is shown in Figure 1:

5 Case studies

The proposed method has been tested on test signal, test

system and real measurements. In this section, the experiments

are carried out on an Intel Core i7 3.7 GHz computer with 16 GB

of RAM. Additionally, our proposed method is coded by

MATLAB.

5.1 Test signal analysis

The five single-mode oscillation signals shown in Eq. 18 are

constructed with frequencies of 0.6 Hz, 1.1 Hz, 0.4 Hz, 0.8 Hz,

and 0.2 Hz, in that order:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 � e−0.1t sin(2π × 0.6t + π /

6)

S2 � e−0.05t sin(2π × 1.1t + 0)

S3 � e−0.15t cos(2π × 0.4t + π /

3)

S4 � e−0.25t sin(2π × 0.8t + π /

4)

S5 � e−0.08t sin(2π × 0.2t + π /

5)

(18)

FIGURE 6
Single line diagram of simplified 14-generator system.

FIGURE 7
The rotational inertias of 14-generator system.

TABLE 2 The characteristic results of simplified 14-generator system.

Mode Real Imaginary Frequency (Hz) Damping ratio (%)

1 −0.589 2.513 0.399 22.8

2 −0.563 3.322 0.529 16.7

3 −1.080 4.581 0.729 22.9
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Using a three-dimensional random mixing matrix

A � ⎡⎢⎢⎢⎢⎢⎣
0.6 0.4 0.53 0.45 0.41
0.44 0.65 0.5 0.68 0.48
0.5 0.45 0.35 0.67 0.61

⎤⎥⎥⎥⎥⎥⎦, it is mixed into three

coupled oscillating signals with non-smooth characteristics as

the test signals. The three test signals are sampled separately with

the sampling frequency of 0.01Hz, and the sampling time is 15s.

The spectrum analysis of the three test signals is performed using

window Fourier transform (WFT), as shown in Figure 2.

Short time Fourier transform (STFT) is used to transform the

three groups of test signals into time-frequency domain, and the

window function is chosen to be a rectangular window of length

10s, and the window was shifted by four points each time.

Figure 3 shows the scatter plot of the real part of the test

signal x. From Figure 3, we can know that there are five

obvious clustered straight lines, indicating that there are five

source signals in the test signal x.

According to (6), the total energy of the three groups of test

signals at each frequency point is calculated, and the frequency

corresponding to each energy peak is detected using the

frequency energy peak point method, as shown in Figure 4.

The normalized clustering center of the five straight lines is

calculated using the fuzzy C-mean algorithm, and the mixing

matrix A can finally be accurately estimated as:

A � ⎡⎢⎢⎢⎢⎢⎣
0.4826 0.6458 0.6662 −0.4350 0.4478
0.5492 0.6030 0.4770 −0.6257 0.7329
0.6777 0.4243 0.5484 −0.6230 0.5040

⎤⎥⎥⎥⎥⎥⎦.

The L1 norm minimization method was used to separate the

five source signal components, and the time domain and

frequency domain distribution of the five source signals is

shown in Figure 5. As shown in Figure5, each component has

the characteristics of periodic oscillation, and the calculated

frequencies are basically the same as the actual frequencies.

Meanwhile, the proposed algorithm decomposes the multi-

modal coupled oscillation signal into multiple source signals

with the single frequency, without modal aliasing. The detected

frequencies are arranged in the order from low to high, which

effectively solves the problem of uncertainty in the order of

source signals.

Hilbert transformwas utilized to extract modal parameters of

the separated components, and the oscillation frequencies and

damping ratios are obtained, as shown in Table 1. It can be seen

from Table 1 that the results of the extracted modal parameters

are quite close to their true values, indicating the effectiveness of

the proposed method.

5.2 Modified IEEE 14-genertor 5-area test
system

In this section, the modified IEEE 14-generater 5-area

simplified system is used as an example (Ding et al., 2019), as

shown in Figure 6. There are five areas in this system, but since

area one is strongly coupled with area 2, the system can be

considered to have four main areas, which are defined as Area 1,

Area 2, Area 3, and Area 4, respectively. Area one contains five

generators, namely G101, G201, G202, G203, and G204;

Area2 contains two generators, G301, G302; Area3 contains

four generators, namely G401, G402, G403, G404;

Area4 contains G501, G502, G503. And two aggregated

PMSG-based wind farms are connected to Buses 504 and 201,

respectively in Figure 6. Furthermore, the parameters of the two

wind farms are configured in accordance with Literature (Dejian

et al., 2022a; Dejian et al., 2022b). Moreover, the active outputs of

the SGs in the same area are reduced accordingly to keep the

operating point the same as that before the SG reduction.

Inter-area mode is more likely to excite a poorly damped

oscillation, which involves more generators and has a wide range

of influence, so it is usually considered the mode of most interest.

The 14-generator test system was linearized around an operating

point, and small-signal stability analysis (SSSA) results show that

the system has three inter-area modes. as shown in Table 2.

In this paper, the rotational inertia of the generators in each

area of the system is used as a quantitative index, and the angular

frequency of the generator with the smallest rotational inertia in

each area is selected as the input signal. Figure 7 shows the

rotational inertia of each generator. According to the signal

selection principle and the inertia results in Figure 7,

generator G203 is selected as the representative of Area1, in

which its inertia is lower than the other generators in the same

area. Similarly, the signal of generator G301 is selected as

representative of Area2, generator G401 is se-lected as

representative of Area3, and generator G501 is selected as

representative of Area4.

In order to verify the effectiveness of the proposed method

for identifying the interarea modes, a representative two-phase

grounded short circuit is applied at bus 506, the sampling

frequency of 100 Hz and the sampling time is 50 s. And the

simulation was carried out using power system toolbox (PST).

FIGURE 8
The waveforms of rotor speed of generators and their
frequency domain.
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The angular frequency of each generator within 10s after the fault

is used as the input signal in this paper. The input signals of

generator G203, generator G301, generator G401, and generator

G501 were first detrended, and the time domain angular

frequencies of these four generators were transformed into the

frequency domain using WFT. Three interarea oscillation modes

could be identified, with frequencies of 0.34 Hz, 0.51 Hz, and

0.68 Hz, respectively. Figure 8 shows the time-domain

distributions and the corresponding frequency-domain

distributions of the angular frequencies of the four generators.

The four input signals are decomposed using SCA algorithm,

and three single-mode oscillation components can be obtained.

The time-domain and frequency-domain distributions of each

single-mode component are shown in Figure 9. HT was used to

calculate the oscillation frequency and damping ratio, and the

obtained modal parameter results were compared with WFT

results and SSSA results, as shown in Table 3. From Figure3, we

can know that all the three inter-area modal parameters can be

extracted by using only four input signals of generator G203,

G301, G401 and G501, which effectively saves calculation time.

While identifying the oscillation frequency and damping

ratio of the system, SCA algorithm can also estimate the

modal matrix utilizing the clustering characteristics.

The modal matrix is estimated as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1902 0.4766 −0.6595 −0.0357
−0.1971 0.451 0.7167 −0.0124
0.5477 −0.4067 −0.0325 −0.0364
−0.7905 −0.6355 −0.2221 −0.9985

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The mode shape corresponding to the three inter-area

oscillation modes are shown in Figure 10. For Mode 1,

generator 401 oscillates against generator 501. In this paper,

the input signal is the representative of each region, so it can also

be considered that mode one is the inter-area oscillation mode,

with generator 401 in Area3 oscillates against generator 501 in

Area4. By the same token, the oscillation area clusters of mode

two is Area two and Area three against Area 4, the oscillation area

clusters of mode three is Area two against Area 3. The estimated

oscillation frequencies, damping ratios and mode shapes using

the proposed method in this paper are summarized in Table 4.

TABLE 3 Identified results with three different methods of simplified 14-generaror system.

Mode Frequency (Hz) Damping ratio (%)

Identified value WFT SSSA Identified value SSSA

1 0.336 0.34 0.399 12.22 22.8

2 0.504 0.51 0.529 9.09 16.7

3 0.679 0.68 0.729 6.19 22.9

FIGURE 9
The separated single-mode components and their WFT spectrum.
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5.3 Test on the real measurements

In this section, a set of real PMU measurements from

north power grid of China was used to further illustrate the

adaptability of the algorithm in practical system. The system

comprises two major areas connected through four 500-kV

transmission lines. When the maintenance schedule requires,

heavy power is delivered between the two areas, the

electromechanical oscillation is one of the major threats to

the power grid stability. The data are collected from four

PMUs located in the two areas. The input signals were

recorded for a duration of 15 s with the sampling frequency

of 30 Hz. The time-domain oscillation waveforms and the

corresponding frequency-domain distributions are shown in

Figure 11. As can be seen from Figure 11, the practical power

grid contains an inter-area oscillation mode with the

frequency of 0.28 Hz.

The SCA algorithm was used to extract oscillation features

from PMU measurement data, the decomposed time-domain

source signals and their spectrum are shown in Figure 12.

Then the HT algorithm was applied to the decomposed source

signals to extract oscillation frequencies and damping ratios,

as shown in Table 5. As can be seen from Table 5, the proposed

method identified the oscillation mode with the frequency of

0.28 Hz, which is consistent with the spectrum analysis, and

the corresponding mode shape is shown in Figure 13. From

Figure 13, it can be seen that PMU2 is mainly involved in the

oscillation of this mode.

To sum up, it can be seen that the proposed algorithm in this

paper can not only effectively extract the modal parameters from

the test signal and the simulated signal, but also has good

applicability to the real measured signal.

FIGURE 10
Normalized mode shapes.

TABLE 4 Identified results of the simplified 14-generator system.

Mode Frequency (Hz) Damping ratio (%) Mode shape

1 −0.589 0.399 22.8

2 −0.563 0.529 16.7

3 −1.080 0.729 22.9

FIGURE 11
Active power oscillation signal in time and frequency domain.
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6 Conclusion

In this paper, an improved blind source separation algorithm

based on sparse component analysis is proposed to extract

electromechanical modal parameters in power systems. Test cases

of simulation studies and PMU measured data can obtain the

following conclusions:

First, the proposed algorithm decomposes the multi-

modal coupled nonstationary oscillation signal into source

signals with single frequencies, and the source signals are

arranged in the order of oscillation frequency from small to

large, which effectively avoids the problem of modal

aliasing.

Second, the SCA algorithm reduces the original input

measurement data by using the rotational inertia of the generator

rotor in each area of the system as a quantitative index, which

effectively reduces the calculation time and improves the analysis

efficiency.

Third, the proposed method can extract the modal

parameters from the multi-mode coupled oscillation signal,

which can accurately reflect the inherent electromechanical

characteristics of power systems, and provide a new idea for

the analysis of the electromechanical oscillation.

The proposed algorithm is suitable for analyzing the mode-

coupled oscillation signal of the interconnected power system,

and provides a new idea for the extraction of electromechanical

oscillation parameters.
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FIGURE 12
The decomposed waveform of active power and its spectrum. (A) The decomposed source signal (B) Spectrum of the source signal.

TABLE 5 Identified oscillation mode of active power oscillation signal.

Mode Frequency (Hz) Damping ratio (%)

1 0.2653 0.3323

FIGURE 13
The identified mode shape of the actual power grid.
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A machine learning method for
locating subsynchronous
oscillation source of VSCs inwind
farm induced by open-loop
modal resonance based on
measurement
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Chenggen Wang1,2 and Xiaoming Zou1,2
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In recent years, sub-synchronous oscillation incidents have been reported to

happen globally, which seriously threatens the safe and stable operation of the

power system. It is difficult to locate the oscillation source in practice using the

parameterized model of open-loop modal resonance. Therefore, this paper

aims at the problem of oscillation instability caused by the interaction between

themultiple voltage source converters in thewind farm grid-connected system,

proposes a method for locating the oscillation source of a wind farm using

measurement data based on the transfer learning algorithm of transfer

component analysis. At the same time, in order to solve the problem of the

lack of oscillation data and the inability to label in the real system, a simplified

simulation system was proposed to generate large batches of labeled training

samples. Then, the common features of the samples from simulation system

and the real system were learned through the transfer component analysis

algorithm. Afterward, a classifier was trained to classify samples with common

features. Finally, two grid-connected wind farms with VSC access are used to

verify that the proposed method has good locating performance. This has

important reference value for the practical application of power grid

dispatching and operation using measurement to identify oscillation sources.

KEYWORDS

machine Learning, transfer component analysis (TCA), voltage source converter (VSC),
oscillation source localization, mode resonance
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1 Introduction

In recent years, as renewable energy has become more and

more dominant in the power grid, various new Flexible

Alternative Current Transmission Systems (FACTS) devices

including Voltage Sourced Converter (VSC) have been

continuously connected. Through flexible power flow, voltage

regulation and reactive power compensation technology, the

optimal allocation of resources in a wider range can be

realized (CHEN and JIANG, 2017; GAO et al., 2020; MA

et al., 2020).

However, some studies have shown that the interaction

between VSCs or between VSCs and the synchronous

generator shafting is easy to cause oscillation instability

(SONG et al., 2017; Chen et al., 2018). For example, in

(ZHOU et al., 2018), the static synchronous compensator

(STATCOM) is prone to strong dynamic interactions with the

control loop of the wind generator. (REN et al., 2020). discusses

the possible interaction between the Unified Power Flow

Controller (UPFC) and the synchronous generator shafting. It

can be found that the internal structures of UPFC and

STATCOM are both VSC-controlled devices. Therefore, when

wind farms use such VSC-controlled power conversion devices to

connect to the power grid, there is a risk of oscillation and

instability due to dynamic interaction. It has become a hot

research issue to locate the wind farm with improper control

parameters (the accidental wind farm, also known as the

oscillation source) and take targeted suppression measures

in time.

The research on the localization of oscillation sources mainly

based onmechanism analysis and damping control has been fully

developed in the past 10 years, but most of them are aimed at the

localization of low-frequency oscillation sources (WANG and

SUN, 2017;WU et al., 2018). However, in recent years, there have

beenmany reports on sub-synchronous oscillation (SSO) of wind

farms (WANG et al., 2020; XUE et al., 2020). In order to quickly

locate the SSO oscillation source, measurement-based methods

led by the energy method and the impedance method have

emerged (ZHENG et al., 2016; XU, 2018). Calculate the total

energy and amplitude of the system, and then judge the

contribution of the energy-consuming components to the

oscillation attenuation, so as to realize the method of locating

the SSO oscillation source; (Ma et al., 2021); adopts the method of

combining real-time monitoring data and aggregated impedance

model, and proposes sub-synchronization Oscillation stability

evaluation index and oscillation traceability method. Obviously,

the above methods are either numerical algorithms based on

parametric models, or nested numerical methods based on signal

parameter identification algorithms. The common point is that

they all need to derive numerical calculation models for specific

problems. Therefore, there will inevitably be time delays when

these methods are applied online. In addition, because the

concept of energy is not clearly defined in many components,

and the impedance method is greatly affected by noise, if the

resonant frequency point is inaccurate, the equivalent impedance

calculation will be inaccurate, which will further affect the

positioning accuracy of the model.

In recent years, artificial intelligence technology has become

an emerging effective method by virtue of the advantages of data

sample-based and weakened mechanism modeling (Zhu et al.,

2017; HUANG et al., 2019; YANG B et al., 2020), but the research

on the localization method of sub-synchronous oscillation

sources in wind farms is still insufficient (Yao et al., 2021).

For example, (Shuang et al., 2020), once proposed the method

of model transfer to transfer the VGG16 grid to the localization

of the forced power oscillation source, and obtained high

localization accuracy. Limited to the VGG16 model and

training samples, this model is not necessarily more suitable

for the SSO sub-synchronous oscillation source localization

problem. Therefore, the adaptability of the proposed method

and the generalization from the training system to the actual

system are still insufficient. However, based on the feature

transfer method in (CHEN et al., 2021), the characteristics of

the simulation system are transferred to the actual system, and

the sub-synchronous oscillation source induced by the resonance

of a single synchronous machine and a single fan in the wind-fire

baling system is located. However, considering that this method

requires measurement at the port of each wind turbine, and the

actual wind farm has hundreds or thousands of wind turbines,

the coverage of the measurement points is very high, and the

possibility of practical application needs to be further verified. In

addition, in engineering practice, the computer used for

computing usually does not have a computing GPU, so it is

difficult to meet the hardware conditions required for building a

complex deep learning grid.

In order to solve the above problems based on deep learning

methods, this paper proposes a method for locating sub-

synchronous oscillation sources of wind farms based on

transfer component analysis (TCA) based on the engineering

practice of wind farms. In this method, TCA is used to extract the

features of the measurement data, and a simple classifier is used

to locate the oscillation source. Compared with other deep

learning methods, this method has fast calculation speed, high

positioning accuracy, and low requirements on computer

hardware, which is more suitable for practical applications in

wind farm engineering.

2 Principle of interaction between
wind farm and FACTS

FACTS devices are often installed in the grid-connected

system of wind farms to adjust the system power flow or

provide reactive power compensation. However, studies have

demonstrated (ZHOU et al., 2018; REN et al., 2020) that such

VSC-type FACTS devices can interact dynamically with wind
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farms. In order to study the oscillation source in the actual wind

farm, as shown in Figure 1, two typical wind farm grid-connected

systems equipped with FACTS devices are given. Among them,

Figure 1A is a system equipped with a series-parallel combined

UPFC; Figure 1B is a system equipped with STATCOM, its

structure contains a single-ended VSC, so the connectionmethod

is usually connected in parallel; among them, the system of wind

farm is formed by the aggregation of N1 wind farms, through the

bus W Assemble and send.

The open-loop mode resonance modeling method (REN

et al., 2020) is to take the output power of the wind farm as a

node at a certain operating point, and divide the system in

Figure 1 into the open-loop subsystem of the wind farm to be

studied and the remaining systems (including other VSC-type

devices and All components of the AC main grid) are two parts,

and the transfer function can be expressed as:

ΔVθ � H s( )ΔEPQ (1)
ΔEPQ � G s( )ΔVθ (2)

Among them, H2×2(s) represents the feedforward subsystem

transfer function of the wind farm, G2×2(s) represents the

feedback subsystem transfer function matrix of the remaining

system, EPQ � [Pp, ΔQp]T represents the exchange power

between the wind farm and the system; Vθ � [Vw, θw]T
represents the node voltage amplitude and phase angle at the

connection point between the wind farm and the system. The

grid-connected system of the wind farm is represented as a

closed-loop interconnection model, as shown in Figure 2.

The wind farm system and the remaining system constitute

an interconnected system. According to the open-loop mode

resonance theory (WANG et al., 2019), the influence of the wind

farm on the system is mainly caused by the interaction between

its control system and the remaining control system, which

causes the mode change of the closed-loop system, that is,

The mode of H(s) interacts with the mode of G(s), which will

affect the changes of input and output variables EPQ and Vθ . At

the same time, since EPQ and Vθ can be measured, the above-

mentioned system state equation can be fitted by quantitative

measurement, and the relationship can be expressed as:

ΔEPQ,ΔVθ( ) ↔ H,G( ) ↔ AS (3)

The steps of calculating the system oscillation source

according to the parametric model can be summarized as

follows: first, calculate the oscillation mode li of the state

matrix As of the system, and the corresponding participation

factor PFki; secondly, calculate the element corresponding to the

mode with the largest participation factor |PFki|, which is the

participation interaction element to determine the element as an

oscillation source. Due to engineering practice, it is difficult to

measure at the grid-connected location of each wind turbine.

Usually, monitoring is performed in units of a line or a wind

farm. Therefore, the wind farm is used as a unit here, and a wind

farm is regarded as an element. Denote the oscillation source yn
as the number of the wind farm participating in the dynamic

interaction of the system, then there is a function g between the

oscillation source yn and the state matrixAs of the system, that is,

Eq. 3 can be further expressed as:

ΔEPQ,ΔVθ( ) ↔ H,G( ) ↔ AS → g yn( ) (4)

From this, it can be seen that the relationship between the

measurable measurement ΔEPQ and ΔVθ and the label of the

oscillation source can be expressed as:

FIGURE 1
Schematic of hybrid power system with VSC. (A) System
structure with UPFC access .(B) System structure with STATCOM
access

FIGURE 2
Closed-loop interconnected linearized models of multi-
wind-turbine power system with VSC.
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ΔEPQ,ΔVθ( ) → g yn( ) (5)

Therefore, the relational modeling of Eq. 5 can be extended to

machine learning problems, where the function g (·) is the

relational expression of the oscillation source localization

model, the input of the machine learning function g (·) is the
measurement data sample, and the output is the oscillation

source tag.

At the same time, based on the open-loop mode resonance

theory, it is easy to obtain the measurement data of the grid-

connected port of the wind farm under different operating

conditions by offline simulation. The nth sample measurement

data obtained is recorded as Xn � (EPQ,V∅) � (P,Q,V,V∅),
and calculate the participation factor and oscillation source label

of the sample according to the parametric model, recorded as Y =

{yn}, where yn = 0 indicates that the nth sample system is stable, and

yn = 1 indicates that wind farm one is an oscillation source, thus

constructing a labeled sample.

3 Oscillation source localization
method based on TCA

3.1 Introduction to TCA

The TCAmethod belongs to a feature-based transfer learning

method (Yang Q et al., 2020), which learns a pair of mapping

functions from the source domain and the target domain. The

classifier is retrained, and finally the prediction of the classifier is

performed. Therefore, measures of data distribution can be used

to narrow the distribution differences between different data

domains, enabling transfer learning, as shown in Figure 3.

In the power system, the data samples obtained by the simulated

system and the actual system are quite different because their

distributions are not the same. Therefore, the most critical step

in transfer learning is to reduce the distribution difference of the data

samples obtained by the simulated system and the actual system. Let

the simulation systembe the source domain and the actual system be

the target domain, where the source domain is a labeled system,

denoted as Ds = {(X1, Y1),. . ., (Xn, Yn)}; and the target domain is an

unlabeled system, Denoted asDt = {Xn+1, . . . , Xn+m}. Currently, the

most widely used measure of domain distribution discrepancy is the

Maximum Mean Discrepancy (MMD) (Yang Q et al., 2020)

measure. MMD is a non-parametric measure used to measure

the distance between distributions based on kernel embeddings

in the regenerated kernel HilBert space, the MMD distance formula

is as follows:

MMD Ps, Pt( ) � 1
ns
∑
n

i�1
ϕ xi( ) − 1

nt
∑
ns+nt

j�1
ϕ xj( )

����������

����������
2

H
(6)

Where, ϕ: x→H represents the infinite order non-linear feature map

in the kernel space, ns and nt represent the sample length

respectively; By using the kernel function, Eq. 6 can be simplified as:

MMD � tr KL( ) (7)

Among them, K is a composite kernel matrix composed of

kernel matrices in the source domain, target domain and

intersection domain, and k in each domain is the kernel function

corresponding to ϕ, satisfying< ϕ xi), ϕ (xj) ≥ k (xi, xj),<·> represents

the inner product of two functions. L represents the sample size

matrix, see (Yang B et al., 2020) for the detailed definition.

Since the kernel function k in Eq. 7 may be a highly non-

linear form of the mapping function, and the function ϕ x) is also
unknown, the TCA method decomposes the kernel matrix in the

equation to obtain the following optimization problem:

min
w tr ~KWWT ~KL( ) + λtr WT W( )

s.t.WT ~KH ~KW � I (8)

FIGURE 3
Schematic of feature-based transfer learning.
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Among them, H is a centering matrix, the first term of the

objective function is to minimize the MMD distance between the

mapped source and target domain data, the second term is the

regularization term for W, and the constraint is to maximize the

variance of the data after mapping.

TheW obtained by the final calculation contains the m main

feature vectors of ( ~KL ~K + λI)−1, that is, the extracted public

domain feature space. The above process can be obtained by

direct numerical calculation.

3.2 Oscillation source localization model
and implementation process based
on TCA

According to the above TCA algorithm, the data-driven wind

farm sub-synchronous oscillation source localization model in

the actual system is established, that is, the relationship between

the common features and the classification labels is fitted.

In this paper, the Softmax classifier is combinedwith the transfer

learning algorithm to construct a deep transfer learning framework

to establish a sub-synchronous oscillation source localization model.

Applying the Softmax classifier on the obtained new source domain

feature space realizes the relational modeling of Eq. 5. To sum up,

the transfer model learning framework form based on TCA metric

can be expressed as:

gsoft � arg min
fϵH ∑

n

i�1
L gsoft Wi( ), yi( ) (9)

where gsoft = wTϕ represents the predicted output classifier

function. In order to facilitate the function training, the CNN

structure is used for the classification and identification of the

common feature space, that is, the above gsoft representation

FIGURE 4
Single-machine equivalent model of the grid-connected wind farm.
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function is replaced by a CNN grid with weight parameters, and

the final location model of the wind farm sub-synchronous

oscillation source is a CNN grid model.

The specific scheme of model construction is mainly divided

into three parts: system construction and data sample

acquisition, offline model training, and online application

testing, as shown in Figure 4.

The details are as follows:

1) Simulation system construction and data sample generation:

The source domain training data required for offline learning

can be obtained from the following two aspects: First, based on the

power system equivalence theory (DONG et al., 2021), a simulation

system is built (the equivalent system is used to generate source

domain training samples). According to the open-loop mode

resonance theory, the control parameters of the open-loop

subsystem are set so that the system may have open-loop mode

resonance in the target range. Combined with various possible

topological structures, operation modes, fault types, fault

locations and disturbance accidents of the system, time-domain

simulation is carried out, and the power on the grid-connected

connection lines of all wind farms and the node voltage composition

data of the grid-connected ports of the wind farm are collected as

sample Xs, and according to the system parameterized state matrix,

the label set Ys is constructed by calculating the participation factor

labeling samples, and finally the source domain training sampleDs is

formed. Since the transfer learning training data not only comes

from the source domain, but also includes part of the data in the

target domain. Therefore, the measured data Xt of the actual

operation case records of the system in the past period of time

are widely collected from the historical operation records of the

system, and the data target domain is constructed as training

sample Dt.

2) Feature extraction and localization learning of sub-

synchronous oscillation source:

The obtained time series datasets Xs and Xt of the source and

target domains are used as input, and the aforementioned TCA-

based transfer learning method is used to extract the common

features of the source and target domains. On this basis, a simple

CNN with Softmax classifier is built. The grid is trained to perform

classification learning on the extracted common features. Among

them, the dimension of the input layer of the CNN model is

determined by the number of columns of common features, the

convolution pooling layer is set with two modules, the size of the

convolution kernel is 5 × 5, and the size of the pooling kernel is set to

2 × 2. Connected to the Softmax classifier, the dimension of the

output layer is determined by the label type. Themodel can combine

the comprehensive statistical characteristics of the representative

data samples to quickly establish a practical model for the location of

oscillation sources through CNN.

3) Online application test:

During the online monitoring process, when the system has

the risk of sub-synchronous oscillation, the measurement

information in the 2s time window is collected in real time by

the wind farm port of the system to form the target domain test

sample. The sub-synchronous oscillation source location model

is obtained through the above learning, and the feature extraction

and corresponding oscillation source location are performed on

the sample, and the current possible oscillation source wind farm

number is quickly given. If the number is 0, it is determined that

the system is stable, and the next monitoring is performed

through the sliding time window; otherwise, an early warning

signal is issued to facilitate the dispatcher to take control

measures in time to prevent further deterioration of the

oscillation. Considering that when the actual system is

running, the operating state of the system is constantly

changing. In order to improve the reliability of the model, in

practical application, new target domain samples can be collected

and constructed periodically, so as to repeat the above two steps

of offline learning, so as to update Maintain a sub-synchronous

oscillator source localization model.

4 Example 1—UPFC and wind turbine
resonance

This example analyzes the rationality of the training process

of the method in this paper by designing a simulation case of

open-loop mode resonance between the fan and the UPFC. The

computer hardware configuration used in the experiment is: Intel

core-i5-4570 CPU, 128G memory. Among them, the simulation

system construction and data preprocessing were completed on

Matlab 2019a, and the TCA and classifier models were built in

the CPU version of Python 3.7 using the CNN architecture.

FIGURE 5
Real system structure of numerical example one.
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4.1 Example system and test scenarios

A wind farm grid-connected system with UPFC, its system

structure is shown in Figure 5. Two of the wind farms each

contain 20 direct-drive fans of the same type, which are collected

through the bus W, and the power of the adjacent thermal power

units is collected on the PCC bus. A 3-machine 9-node system is

used to replace the AC main grid).

As shown in Figure 5, take the wind farm grid connected

system with UPFC system as an example, in which the

SG4 model of direct drive wind turbine and the model of

synchronous machine adopts the 15th order model and six

mass block model given in document (Ren, 2019), and the 3-

machine 9-node system adopts IEEE typical parameter settings.

Assuming that the wind turbine s in the wind farm 1 may

interact dynamically with the UPFC, according to the open-loop

mode resonance theory, the control parameters of the UPFC and

the wind farm one in the actual system are adjusted to a state that

is prone to interaction. Considering that different operating point

conditions will affect the stability of the system, set the rated

output of the wind farm and 80%–110% load to simulate the

typical power flow mode of steady-state operation; simulate the

disturbance with the sudden change of the wind turbine output

and load, and set the disturbance amount to the rated value 80%–

110% of the value/initial value, the duration of the disturbance is

100 m. The sampling window length and frequency are 2s and

1,000 Hz, respectively. Record the U/P/Q on the wind farm one

and wind farm two port lines. On the basis of these simulation

settings, Matlab is used for batch simulation, 200 cases are

generated, and unlabeled training samples in the target

domain are formed.

4.2 Training sample generation and model
training process

4.2.1 Training sample generation
According to the implementation process of the sub-

synchronous oscillation source location method introduced in

1.2, for the actual system in Figure 5, based on the system

equivalence theory, the wind farm is equivalent to a wind

turbine, and the AC power grid is equivalent to a single-

machine infinite system, and then a simulation system is built.

The open-loop mode resonance theory is used to analyze

the stability of the system under actual operating conditions in

the simulation system. The specific method is: according to

the operation mode in the actual system, set the operation

point in the simulation system as ± 20% of the actual system

operation point: The rated power of each unit is increased or

decreased by 0–20%, and the load on the line is 80%–120% of

the actual system operation. Then, according to the

disturbance and frequency settings in the actual system, the

time domain simulation is performed, and the measurement

data Xs of the wind farm port is recorded. The state space

equation of the parametric model of the simulation system is

used to calculate the participation factor, and the sample data

obtained by each simulation is marked to form the real label

set Ys of the simulation system. Thus, training samples with

labels are generated in large batches in the simulation system.

Therefore, some unlabeled samples obtained in the above-

mentioned actual system and the labeled samples obtained in

the simulation system are unified to form training samples,

and finally, 2,464 training samples of calculation example one

are obtained. Figure 6 presents the system training sample

feature representation obtained by t-SNE dimensionality

reduction.

From the characteristic roots of the system generated under

different oscillation sources in the example of Figure 6, the

different oscillation sources are non-linear, and it is difficult

to distinguish them by traditional methods.

4.2.2 Model training process
In order to establish a localization model with better

performance, it is hoped to clearly distinguish different

oscillation source samples in the same domain. The source

domain and the target domain are as similar as possible.

Therefore, the TCA algorithm is used to perform feature

learning on the training samples, so as to learn the common

features of the source domain and the target domain. Figure 7

presents the t-SNE feature representation of the training samples

after training using the TCA algorithm.

By comparing with Figure 6, it can be seen that the original

training sample source domain and target domain are clearly

demarcated, and different oscillation sources in the same domain

are non-linear and inseparable. After TCA transformation, the

source domain and the target domain appear common feature

FIGURE 6
Features representation of training samples.
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areas, and the boundaries of different oscillation sources in the

same domain are gradually clear. This shows that TCA can

realize feature learning for the training samples of oscillation

source localization.

Considering that the TCA-transformed training samples are

separable between different oscillation sources, as shown by the

purple dotted line (the periphery of oscillation source in wind

farm 2, shown as red dot in Figure 6) in Figure 7, the classification

boundary line shows that the relationship between different

oscillation sources is still non-linear, and the traditional linear

Classifiers are still intractable. Therefore, a simple CNN grid with

Softmax classifier needs to be adopted to achieve non-linear

classification.

In the training process, in order to evaluate the performance

of the model, the method of cross-validation is adopted, the

training data is divided into training set and validation set for

training, and the positioning accuracy index LAI is defined to

evaluate the oscillating source positioning performance of the

model:

LAI � TN1 + TN2 +/ + TNn

TO + TS + FO + FS
(10)

Among them, the number of samples of the true prediction of

wind farm 1 as an oscillation source is denoted as TN1; similarly,

the number of samples of true prediction of wind farm n as an

oscillation source is denoted as TNn. TO,FO,TS, FS represent the

number of samples in the classification confusion matrix,

respectively.

For the oscillation stability of the power system, both

“misjudgment stability” and “missing judgment instability”

will have a serious impact on the system. Therefore, this

paper defines the precision rate (PR) and recall rate (RR)

from the perspective of sample stability and instability. The

classification discriminant index SCAI expressed

comprehensively to evaluate the classification performance of

the model for unstable samples:

SCAI � 2PR · RR
PR + RR

(11)

PRrate � TN1 + TN2
TO + FO

, RRrate � TO

TO + FS
(12)

Taking the above positioning accuracy index and

classification discrimination index as the statistical indexes of

model performance, Table.1 summarizes the training results of

the model in the training process.

It can be seen from the results in Table.1 that because the

model is relatively simple, high positioning accuracy can be

achieved after 100 times of training. If the number of training

times is increased, the accuracy index of the model does not

change much, which indicates that the model is stable and can be

used for model migration testing. After 500 times of training, the

accuracy index of the model has reached about 95%. When the

training times continue to increase, the model accuracy index

does not increase but decreases, which indicates that the model

training has already reached saturation. Increasing the training

times may make the model over fit. Therefore, a model trained

500 times is selected for saving.

5 Example 2 - Wind farm system with
STATCOM

The computer hardware and software configuration used in

example one are the same. This example is simplified and

generated by an actual offshore wind power system, and is

mainly used to test the applicability of the method in this

paper in different scenarios.

5.1 Example system and test scenario

The structure of the example system is shown in Figure 8,

which includes 30 direct drive fans belonging to two wind

farms. Wind farm one is collected through bus B, and wind

farm two is collected through bus A. finally, it is connected to

the AC main grid with STATCOM through PCC bus. It is

assumed that in the system shown in Figure 8, there is a risk of

dynamic interaction between the wind turbines in the wind

farm two and STATCOM.

5.2 Simulation setup and training sample
generation

Same as Example 1, in the actual system shown in

Figure 8, the possible operating conditions in the system

FIGURE 7
Membership function of each variable.
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are comprehensively considered, and the output and load

level of the wind farm under typical power flow mode are

used as the basis for steady-state operation according to the

operation mode provided by the system operator. Data; take

the sudden change of the fan output and load as the

disturbance, also set the duration of the small disturbance

to 100 m, the sampling window length and frequency are 2s

and 1000 Hz respectively. Based on the above simulation

settings, time-domain simulations were performed at

different operating points, and measurements were made

at the grid-connected ports of two wind farms to generate

200 cases, which were recorded as unlabeled training

samples.

Then, according to the training process in 3.2, the simplified

simulation system of Figure 8 is used to generate a large batch of

labeled training samples, and TCA is used to extract and

transform the training samples, and train the classifier.

Finally, save the positioning model of Example 2.

5.3 Model comparison test analysis

In order to verify the generalization of the model

established by the method proposed in this paper, two sets

of scenarios are designed according to the following rules in

the actual system of the two examples to generate test

samples:

Scenario 1: Simulate the measurement samples with noise in

the actual system. The measurement data sampled in the actual

system randomly increases the noise with the signal-to-noise

ratio SNR = 10dB, and generates 200 samples for testing.

Scenario 2: Using the open-loop mode resonance theory,

adjust the control parameters of the wind farm in the two

examples (different from the parameters in the target domain

training sample generation process), so that the system resonates

between the wind farm and the UPFC (or STATCOM). A total of

200 samples are also obtained for testing.

In order to facilitate the calculation of the test accuracy of the

model, the linearization equation of the actual system is used to

label the samples in the process of generating the above test set.

During the test, the measurement data of the grid-connected port

of the wind farm is collected from each case by the method of

active time window to simulate the online evaluation. For the

models saved in the two examples, four groups of test sets were

used for testing, and the test results are shown in Table.2.

It can be seen from Table.2 that the trained model can still

achieve high positioning accuracy in different scenarios in the

same system, indicating that the model has a certain

generalization. However, from the perspective of the

positioning accuracy of the model for different systems,

although the model has a certain generalization ability, the

extracted common features cannot be well applied between

different systems, indicating that there are still differences in

the characteristics of wind farm oscillation sources between

different systems.

The test accuracy of samples containing noise decreases slightly,

but the positioning accuracy can also be above 95% in the same

system. It can be seen that even in the serious measurement error,

the method in this paper still has strong robustness. Judging from

the test time, the use of TCA algorithm for preprocessing does not

have a great impact on the test time. The computing speed under the

TABLE 1 Training results with different epochs.

Training times LAI (%) SCAI (%) Total training time/s

50 86.97 89.54 96.74

100 90.45 92.37 229.14

500 96.36 97.74 961.57

1,000 95.32 96.69 1928.15

FIGURE 8
Real system structure of numerical example two.
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CPU can complete the discriminative positioning of any sample

within 0.5 m, which proves that the method meets the requirements

of online applications.

6 Conclusion and outlook

Quickly locating the sub-synchronous oscillation source of

wind farm is very important to ensure the stability of wind farm

grid-connected system. Compared with the traditional

positioning method, the wind farm sub-synchronous

oscillation source positioning method has higher requirements

for rapidity and adaptability to different induced scenarios, and

for the positioning accuracy, positioning to the wind farm is

easier to operate in engineering practice. It can also meet the

control requirements of the load during operation. Therefore,

this paper presents a method for locating the oscillation source of

wind farms under open-loop mode resonance conditions based

on TCA transfer learning.

In this paper, the detailed implementation process of

applying the method in a practical system is given, and the

feasibility and applicability of the proposed method are

analyzed from the aspects of training process and

comparative test using two simplified wind farm system

examples. The results show that the method in this paper

can realize feature extraction and classification according to

the measurement of wind farm ports, and shows high

positioning accuracy and anti-noise ability when locating

the oscillation source of the grid-connected system of

multiple wind farms.

With the widespread access of new energy sources to the

power grid and the large-scale application of power electronic

devices in the power grid, the problem of sub-synchronous

oscillation of wind farms has been paid more and more

attention. The research results of this paper will lay the

foundation for the grid monitoring and location analysis

technology adapted to the stability of wind farms.
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TABLE 2 Test results with two models.

Model Test scenario LAI (%) SCAI (%) Test time/s

Example1 Example 1—scenario 1 95.78 96.45 12

Example 1—scenario 2 96.22 96.67 12

Example2—scenario 1 86.38 87.50 13

Example 2—scenario 1 89.26 90.86 12

Example2 Example 1—scenario 1 81.08 84.47 12

Example 1—scenario 2 83.54 85.32 12

Example 2—scenario 1 96.66 96.88 11

Example 2—scenario 2 98.24 98.63 11
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