

[image: image]





FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual articles in this ebook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers. 

The compilation of articles constituting this ebook is the property of Frontiers. 

Each article within this ebook, and the ebook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this ebook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version. 

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or ebook, as applicable. 

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with. 

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question. 

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-8325-2765-8
DOI 10.3389/978-2-8325-2765-8

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers journal series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers journals series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area.


Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers editorial office: frontiersin.org/about/contact





Genes, diseases, immunity and immunogenomics

Topic editors

Hifzur R. Siddique – Aligarh Muslim University, India

Shahnawaz Imam – University of Toledo, United States

Citation

Siddique, H. R., Imam, S., eds. (2023). Genes, diseases, immunity and immunogenomics. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-2765-8





Table of Contents




Editorial: Genes, diseases, immunity and immunogenomics

Hifzur R. Siddique

Prediction of Prognosis and Immunotherapy of Osteosarcoma Based on Necroptosis-Related lncRNAs

Guowei Wang, Xiaobo Zhang, Wanjiang Feng and Jianlong Wang

Characterization of Necroptosis-Related Molecular Subtypes and Therapeutic Response in Lung Adenocarcinoma

Jingchen Zhang, Xujian He, Jia Hu and Tong Li

Identification of NAD+ Metabolism-Derived Gene Signatures in Ovarian Cancer Prognosis and Immunotherapy

Liang Lin, Li Chen, Zuolian Xie, Jian Chen, Ling Li and An Lin

Cuproptosis-Related lncRNAs are Biomarkers of Prognosis and Immune Microenvironment in Head and Neck Squamous Cell Carcinoma

Liuqing Yang, Jinling Yu, Lu Tao, Handan Huang, Ying Gao, Jingjing Yao and Zhihui Liu

Structural-Guided Identification of Small Molecule Inhibitor of UHRF1 Methyltransferase Activity

Md Abdul Awal, Suza Mohammad Nur, Ali Khalaf Al Khalaf, Mohd Rehan, Aamir Ahmad, Salman Bakr I. Hosawi, Hani Choudhry and Mohammad Imran Khan

RNA-Seq Comprehensive Analysis Reveals the Long Noncoding RNA Expression Profile and Coexpressed mRNA in Adult Degenerative Scoliosis

Xin Shi, Panpan Li, Xiang Wu, Zhihua Wang, Gang Zhao and Jun Shu

RNA sequencing and integrative analysis reveal pathways and hub genes associated with TGFβ1 stimulation on prostatic stromal cells

Peng Xiang, Zhen Du, Mingdong Wang, Dan Liu, Wei Yan, Yongxiu Hao, Yutong Liu, Di Guan and Hao Ping

LncRNA DUXAP8 as a prognostic biomarker for various cancers: A meta-analysis and bioinformatics analysis

Yongfeng Wang, Xianglai Jiang, Dongzhi Zhang, Yuanbin Zhao, Xiaoyong Han, Lihui Zhu, Jingyao Ren, Yubin Liu, Jiarong You, Haolan Wang and Hui Cai

Expression profiles and functions of ferroptosis-related genes in intimal hyperplasia induced by carotid artery ligation in mice

Lina Zhang, Wei Li, Bo Shi, Xiaoqing Zhang and Kaizheng Gong

A prognostic signature of pyroptosis-related lncRNAs verified in gastric cancer samples to predict the immunotherapy and chemotherapy drug sensitivity

Yanan Wang, Xiaowei Chen, Fei Jiang, Yan Shen, Fujin Fang, Qiong Li, Chuanli Yang, Yu Dong and Xiaobing Shen

N1-methyladenosine methylation-related metabolic genes signature and subtypes for predicting prognosis and immune microenvironment in osteosarcoma

Guowei Wang, Hongyi Wang, Sha Cheng, Xiaobo Zhang, Wanjiang Feng, Pan Zhang and Jianlong Wang

Predicting prognosis and immunotherapy response among colorectal cancer patients based on a tumor immune microenvironment-related lncRNA signature

Chuling Hu, Du Cai, Min-Er Zhong, Dejun Fan, Cheng-Hang Li, Min-Yi Lv, Ze-Ping Huang, Wei Wang, Xiao-Jian Wu and Feng Gao

Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular disease: A network based meta-analysis

Li-Da Wu, Feng Xiao, Jin-Yu Sun, Feng Li, Yu-Jia Chen, Jia-Yi Chen, Jie Zhang, Ling-Ling Qian and Ru-Xing Wang

Revealing prognostic and tumor microenvironment characteristics of cuproptosis in bladder cancer by genomic analysis

Shun Zhang, Shenggen Yu, Huangqi Duan, Weimin Xia, Chen Wang and Haibo Shen

Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases

Jinyu Xu, Weitie Wang, Yong Wang, Zhicheng Zhu, Dan Li, Tiance Wang and Kexiang Liu

Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease

Songyun Zhao, Li Zhang, Wei Ji, Yachen Shi, Guichuan Lai, Hao Chi, Weiyi Huang and Chao Cheng

A novel anoikis-related prognostic signature associated with prognosis and immune infiltration landscape in clear cell renal cell carcinoma

Zhuo Chen, Xiao Liu, Zhengjie Zhu, Jinchao Chen, Chen Wang, Xi Chen, Shaoxing Zhu and Aiqin Zhang

Exosome-encapsulated ncRNAs: Emerging yin and yang of tumor hallmarks

Nazoora Khan, Mohd Saad Umar, Mohamed Haq, Talha Rauf, Swaleha Zubair and Mohammad Owais

Identification and validation of neurotrophic factor-related genes signature in HNSCC to predict survival and immune landscapes

Gaoge Peng, Hao Chi, Xinrui Gao, Jinhao Zhang, Guobin Song, Xixi Xie, Ke Su, Binyu Song, Jinyan Yang, Tao Gu, Yunyue Li, Ke Xu, Han Li, Yunfei Liu and Gang Tian

Association between autophagy and acute pancreatitis

Tao Zhang, Yu Gan and Shuai Zhu

Integrative analysis of the expression profiles of whole coding and non-coding RNA transcriptomes and construction of the competing endogenous RNA networks for chronic obstructive pulmonary disease

Xueyan Feng, Hui Dong, Beibei Li, Liang Yu, Jinyuan Zhu, Caili Lou and Jin Zhang

Integrated genomic analysis defines molecular subgroups in dilated cardiomyopathy and identifies novel biomarkers based on machine learning methods

Ling-Fang Ye, Jia-Yi Weng and Li-Da Wu



		EDITORIAL
published: 06 June 2023
doi: 10.3389/fgene.2023.1218084


[image: image2]
Editorial: Genes, diseases, immunity and immunogenomics
Hifzur R. Siddique*
Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
Edited by:
William C. Cho, QEH, Hong Kong SAR, China
Reviewed by:
Karla Meza, National Autonomous University of Mexico, Mexico
Fatemeh Rezaei-Tazangi, Fasa University of Medical Sciences, Iran
* Correspondence: Hifzur R. Siddique, hrsiddique@gmail.com
Received: 06 May 2023
Accepted: 31 May 2023
Published: 06 June 2023
Citation: Siddique HR (2023) Editorial: Genes, diseases, immunity and immunogenomics. Front. Genet. 14:1218084. doi: 10.3389/fgene.2023.1218084

Keywords: genes, diseases, immunity, lncRNA, cell death
Editorial on the Research Topic 
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Genes transcribe both coding and non-coding RNA and are involved in regulating several biological processes, such as cell division, differentiation, cell death, and multiple signaling pathways (Statello et al., 2021). Non-coding RNAs (ncRNAs) modulate expression patterns of various genes, which play important roles in different diseases. Several studies have unraveled associations between aberrant ncRNA expressions and pathologies of human diseases (Singh et al., 2020; Yeh et al., 2023). Like other ncRNAs, recently discovered ncRNAs, circular RNAs (circRNAs) have also been found to play an important role in gene regulation via interaction with other biomolecules like nucleic acids, proteins, and microRNAs (miRNAs). In this context, they are good candidates for diagnosing multiple human diseases, including cancers, neurological diseases, and inflammatory diseases (Singh et al., 2022). In recent decades, several discoveries have been made with genome-wide or candidate gene approaches that have revealed significant insights into ncRNAs and immune interactions in different diseases. As a result, there is a growing interest in this field to know more about interconnected relationship between ncRNAs and immune environment (Yosef and Regev, 2016; Houck et al., 2018; Furman et al., 2019). On the other side, specific human coding gene variants that contribute to enhanced susceptibility or resistance against several diseases have been identified. These genes also profoundly affect other gene expressions in disease onset or/and progression (Choi et al., 2020; Fatma and Siddique, 2021; Fatma et al., 2022). Transforming growth factor beta-1 (TGFβ1) plays an important role in proliferation and differentiation of benign prostatic hyperplasia (BPH) stroma, but key downstream genes of TGFβ1 is yet to be explored more. Xiang et al. reported upregulations of TGFβ1 in BPH stroma compared to normal prostate stroma. They reported a total of 497 differentially expressed genes in primary prostatic stromal cells (PrSCs) with and without TGFβ1 stimulation. Their study reported some new insights into the role of TGFβ1 in BPH stroma and provided clues for identifying potential downstream mechanisms and targets. Feng et al. reported the expression profiles of whole coding and non-coding RNA transcriptomes for chronic obstructive pulmonary disease (COPD). They constructed lncRNA/circRNA -miRNA-mRNA ceRNA networks which may regulate TNF-α/NF-κB, IL6/JAK/STAT3 signaling pathways. This paper is important for further research on mechanism of post-transcriptional regulation of COPD, identifying novel targets for diagnosis and prognosis. Lastly, epigenetic changes in DNA and RNA are crucial in multiple diseases. Histone modifications or N1-methyladenosine methylation (m1A)-an important RNA methylation modification, regulates the development of many tumors.
LncRNAs remodel tumor immune microenvironment (TIME) by regulating the functions of tumor-infiltrating immune cells. It remains uncertain how TIME-related lncRNAs (TRLs) influence different immunotherapy in different cancers (Park et al., 2022). Khan et al. summarized the role of various ncRNAs on microcirculation, invasiveness, altered metabolism, microenvironment, and modulation of immunological environment. Hu et al. reported the signature of lncRNAs which influence TIME by regulating the functions of tumor-infiltrating immune cells in colorectal cancer (CRC). They reported how TRLs affect prognosis and immunotherapy response of CRC and are helpful in prognosis and immunotherapy response predictions. Wang et al. reported a lncRNA (DUXAP8) that has been shown to function as an oncogene in various human cancers. Their study revealed that DUXAP8 might serve as a prognostic biomarker and potential therapeutic target for different cancers.
Different types of cell death play a crucial role in various diseases (Li et al., 2020; Xie et al., 2023). Zhang et al. reviewed association between autophagy and acute pancreatitis. They highlight regulatory function of different genes in progression or suppression of diseases and target these genes as a potential therapeutic approach for disease management. Zhang et al. reported prognostic and tumor microenvironment characteristics of cuproptosis in bladder cancer by genomic analysis and might be helpful to personalized medicine. Yang et al. reported eight cuprotosis-related lncRNAs signature of head and neck squamous cell carcinoma (HNSCC) as prognostic predictors, which may be promising biomarkers for prognosis of HNSCC during immunotherapy. A recently identified programmed inflammatory cell death mode called pyroptosis plays a crucial role in different inflammatory diseases (Wu et al., 2022). Wang et al. reported a signature of pyroptosis-related lncRNAs (PRlncRNAs) in gastric cancer and their role in immunotherapy and chemotherapy. They identified 3 PRlncRNAs which may also be a potential therapeutic target in gastric cancer therapy. Another type of cell death, necroptosis, is a novel caspase-independent, programmed necrotic cell death distinct from other genetically controlled cell death types. Recent investigations reported that necroptosis is associated with multiple diseases’ pathogenesis, progression, and prognosis, including cancers (Rosenbaum et al., 2010; Khoury et al., 2020). However, molecular mechanisms have not been completely explored in different diseases. Zhang et al. identified necroptosis-related molecular subtypes directly linked to lung adenocarcinoma (LUAD) therapeutic response. They reported 67 necroptosis-related genes from 522 LUAD samples and reported importance of predicting overall survival and therapeutic benefits for LUAD patients. Wang et al. reported necroptosis-related lncRNAs, which are useful for predicting prognosis and immunotherapy of osteosarcoma. They also validated three 3 lncRNAs (AL391121.1, AL354919.2, and AP000851.2) which may be helpful in predicting the prognosis of overall survivability and guidance for immunotherapy.
Cardiomyopathy is a major concern nowadays, often leading to progressive heart failure and sudden cardiac death. Based on machine learning, Ye et al. reported molecular subgroups in dilated cardiomyopathy and identified novel biomarkers. Further, they observed that patients from different molecular subgroups have unique gene expression patterns and clinical characteristics. This study is an important addition to precision medicine. Xu et al. discussed the role of exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and other diseases. Further, they explained the characteristics and aspects of exosome separation, extraction, and identification. Intimal hyperplasia (IH) is a prominent pathological event during in-stent restenosis and atherosclerosis in coronary heart disease. Zhang et al. reported ferroptosis-related genes’ expression profiles and functions in IH induced by carotid artery ligation in mice. Thirty-one ferroptosis-related genes (FRGs) showing significantly different expression were identified from 1,556 differentially expressed genes (DEGs) 14 days after ligation. They reported DEGs related to ferroptosis and IH and provided more evidence about ferroptosis’s role in IH.
Several specific genes regulate immunomodulatory molecules, such as IL2, IL3, miR-34a, and miR-17-92 (Olive et al., 2013; Taheri et al., 2020; Sarsenova et al., 2022). Besides, some molecules regulate immune responses by interacting with molecules related to immune response either directly or via regulating other molecules. Thus, these genes connect immunomodulatory pathways and shift pro-inflammatory balance towards pro-disease condition. Peng et al. identified and validated neurotrophic factor-related genes (NFRGs) signature in HNSCC to predict survival and immune landscapes. Due to heterogeneous nature and complex tumor microenvironment, outcome of immunotherapeutic of HNSCC patients is not so successful. They reported that 18 NFRGs are closely associated with HNSCC prognosis and could be good predictors of HNSCC. A nomogram based on this model can help clinicians classify HNSCC patients prognostically and identify specific subgroups of patients who may have better outcomes with immunotherapy and chemotherapy, and helpful for personalized treatment for HNSCC patients. Role of anoikis in clear cell renal cell carcinoma (ccRCC) remains unclear. Chen et al. reported a prognostic signature associated with immune infiltration landscape in ccRCC. They integrated multiple anoikis-related genes to establish a risk-predictive model which might be helpful for personalized treatment of ccRCC patients. Lin et al. investigated whether circulating NAD+ metabolism-related genes could be used to predict immunotherapy response in ovarian cancer (OC) patients. They found three different subgroups based on NMRGs expression patterns. Their prognostic signature has potential predictive value for OC prognosis and immunotherapy response.
Research on immunogenomics in different diseases has been gaining particular attention in recent decades. Recently, advances in immunogenetics have made reprogramming specificity and function of innate/adaptive immune cells possible, which leads to the promise of generating “pharmacological targets” that can respond to reprogrammed immune cells in disease conditions like inflammatory diseases or cancer. Calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis, insufficiency, and the most prevalent valvular heart disease. By meta-analysis, Wu et al. reported key immune-related genes (IRGs) and immune infiltration patterns in CAVD. A total of 220 differentially expressed IRGs were identified, and enrichment analysis of differentially expressed IRGs showed that they were significantly enriched in inflammatory responses. This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key differentially expressed IRGs associated with immune cell infiltration and might play a role in CAVD.
The prevalence of adult degenerative diseases is increasing at an alarming rate. However, molecular research related to these diseases is in an infant stage. Zhao et al. described the recently developed machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease (PD). Three PD datasets from GEO database were combined after eliminating batch effects and identified 03 cuprotosis-related genes, ATP7A, SLC31A1, and DBT, associated with immune cells or immune function in PD and more accurate for diagnosis of PD course. The study reveals that several newly identified cuprotosis-related genes intervene in progression of PD through immune cell infiltration. Shi et al. investigated degenerative scoliosis (ADS)-associated mRNAs and lncRNAs by RNA-seq and performed comprehensive bioinformatics analysis based on lncRNA-mRNA co-expression network and protein-protein interaction (PPI) network. A total of 1,651 upregulated and 1,524 downregulated mRNAs and 147 upregulated and 83 downregulated lncRNAs were screened out from RNA-Seq data. This study provides insight into the altered transcriptome profile of long-stranded non-coding RNAs associated with ADS, which paves the way for further exploration of clinical biomarkers and molecular regulatory mechanisms for this poorly understood degenerative disease.
Wang et al. reported N1-methyladenosine methylation-related metabolic genes signature and subtypes for predicting prognosis and immune microenvironment in osteosarcoma. Also, to better guide individualized treatment, they analyzed immune checkpoint expression differences and drug sensitivity in different risk groups and clusters. They reported a prognostic signature, which may help to assess patient prognosis and immunotherapy response. Awal et al. reported a structural-guided identification of a small molecule inhibitor of ubiquitin-like containing plant homeodomain ring finger 1 (UHRF1) methyltransferase activity-a cell-cycle-regulated multidomain protein. Through molecular docking, they screened a dataset of 709 natural compounds where chicoric acid and nystose show higher binding affinities to the SRA domain. The study reported that chicoric acid could become a possible epidrug-like inhibitor against SRA domain of UHRF1 protein.
In conclusion, this Research Topic is a Research Topic of informative research articles, excellent reviews, and meta-analyses. I anticipate that this Research Topic contributes to expanding research community’s knowledge about this recent and rapidly growing field of genes, ncRNAs diseases, and immunity for a further thorough investigation, which will surely help to manage multiple deadly diseases.
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Background: Osteosarcoma (OS) is the most common primary tumor of bone in adolescents, and its survival rate is generally less than 20% when metastases occur. Necroptosis, a novel form of programmed necrotic cell death distinct from apoptosis, has been increasingly recognized as a promising therapeutic strategy. This study sought to identify long non-coding RNAs (lncRNAs) associated with necrotizing apoptosis to predict prognosis and target drug use to improve patient survival.
Methods: Transcriptomic data and clinical data from 85 OS patients with survival time data and expression profiles from 85 random normal adipose tissue samples were extracted from the UCSC Xena website (http://xena.ucsc.edu/). Nine necroptosis-associated differential prognostic lncRNAs were then identified by analysis of variance, correlation analysis, univariate Cox (uni-Cox) regression, and Kaplan–Meier analysis. Then, patients were randomized into training or testing groups. According to uni-Cox, we obtained prognostic lncRNAs in the training group and intersected them with the abovementioned nine lncRNAs to obtain the final necrotizing apoptosis–related differential prognostic lncRNAs (NRlncRNAs). Next, we performed the least absolute shrinkage and selection operator (LASSO) to construct a risk model of NRlncRNAs. Kaplan–Meier analysis, ROC curves, nomograms, calibration curves, and PCA were used to validate and evaluate the models and grouping. We also analyzed the differences in tumor immunity and drugs between risk groups.
Results: We constructed a model containing three NRlncRNAs (AL391121.1, AL354919.2, and AP000851.2) and validated its prognostic predictive power. The value of the AUC curve of 1-, 3-, and 5-year survival probability was 0.806, 0.728, and 0.731, respectively. Moreover, we found that the overall survival time of patients in the high-risk group was shorter than that in the low-risk group. GSEA and ssGSEA showed that immune-related pathways were mainly abundant in the low-risk group. We also validated the differential prediction of immune checkpoint expression, tumor immunity, and therapeutic compounds in the two risk groups.
Conclusion: Overall, NRlncRNAs have important functions in OS, and these three NRlncRNAs can predict the prognosis of OS and provide guidance for immunotherapy in OS.
Keywords: osteosarcoma, necroptosis, lncRNA, bioinformatics, prognosis
INTRODUCTION
Osteosarcoma (OS) is the most common primary malignant tumor of bone in adolescents. Currently, treatment for osteosarcoma is mainly neoadjuvant chemotherapy and surgery (Gill and Gorlick, 2021). Over the past three decades, limited progress has been made in improving survival outcomes for patients with osteosarcoma. Particularly, the survival rate of patients with metastasis is only 20% (Meltzer and Helman, 2021). Therefore, it is crucial to search for a liable and specific biomarker for the diagnosis and prognosis of OS.
Long non-coding RNAs (lncRNAs) are a kind of transcriptional RNAs with a length of more than 200 nucleotides and are not translated into proteins (Bridges et al., 2021). The expression and mutations of lncRNAs can affect the occurrence and metastasis of tumors. The functions of lncRNAs may be to inhibit or promote carcinogenic processes (Bhan et al., 2017). McCabe et al. reported that lncRNAs can affect cancer stem cell function and epithelial–mesenchymal transition (McCabe and Rasmussen, 2021). Moreover, lncRNAs can regulate the transcription and translation of metabolism-related genes or the modification of metabolism-related proteins to influence energy metabolism and cancer progression (Tan et al., 2021). Zhang et al. described the mechanism of lncRNA resistance to chemotherapy and radiotherapy (Xinyi Zhang et al., 2020). Thus, lncRNAs can be used as biomarkers of cancer progression and potential therapeutic targets.
Necroptosis, a novel form of programmed necrotic cell death distinct from apoptosis, is dependent on receptor interacting protein kinase 1/3 (RIPK1/RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) (Galluzzi et al., 2017). In recent years, necroptosis has been suggested to play a major role in tumor regulation, and targeting necroptosis has been suggested as a potential tool for novel cancer therapies (Gong et al., 2019; Yan et al., 2022). The complex role of necroptosis in tumor progression, tumor metastasis, tumor prognosis, tumor immune regulation, tumor subtype determination, and tumor therapy has been summarized by Gong et al (2019). However, the mechanism of the role of necroptosis in tumor regulation is unclear, and studies on the role of necroptosis-associated lncRNAs in OS are inconclusive.
In this study, we analyzed the expression of lncRNAs in OS and normal adipose tissue from the UCSC Xena website and screened for necrotizing apoptosis–related lncRNAs.
MATERIALS AND METHODS
Data Collection
RNA-sequencing (RNA-seq) data and clinical features were obtained from the UCSC Xena website (http://xena.ucsc.edu/) on 1 April 2022, including 85 tumor datasets and 85 random adipose tissue datasets (Chandrashekar et al., 2017). Data for 67 necroptosis-associated genes were obtained from a previous report (Zhao et al., 2021).
Screening and Differential Expression Analysis of Necrotizing Apoptosis–Related lncRNAs
The packages of “limma” (Wettenhall and Smyth, 2004) and “igraph” were used to plot the Sankey relationship between necroptosis genes and necroptosis-associated lncRNAs by Pearson’s correlation analysis (|Pearson R| >0.4 and p < 0.001). The Kaplan–Meier analysis and univariate Cox regression analysis (uni-Cox) were used to select necroptosis-associated lncRNAs with prognostic relevance. Differentially expressed lncRNAs were explored by the package “limma”. Differential necroptosis-related prognostic lncRNAs were mapped by the package “pheatmap”.
Risk Modeling
To investigate the prognostic sensitivity of prognostic necrotizing apoptosis–associated lncRNAs using expression and clinical data from the UCSC Xena website, Kaplan–Meier analysis, univariate Cox regression analysis, correlation analysis, and differential expression analysis were used to screen for nine prognostically relevant necroptosis-related lncRNAs (p < 0.05). Next, we randomly divided all samples into training and testing groups in a ratio of 8:2 and performed univariate Cox regression analysis in the training group to screen out seven of the abovementioned nine lncRNAs. To prevent overfitting, we used the least absolute shrinkage and selection operator (LASSO) regression analysis risk score = Ʃ [Exp (lncRNA) × coef (lncRNA)] and ran 1000 cycles to create the final predictive model for necroptosis-associated lncRNAs (NRlncRNAs) (Bunea et al., 2011). We divided all samples into two groups based on median risk scores: the high-risk group and low-risk group. We used principal component analysis (PCA) to validate the credibility of the model. In addition, the predictive power of the model was evaluated by receiver operating characteristic (ROC) analysis. Kaplan–Meier curve analysis was performed to assess the significance of overall survival differences between high-risk and low-risk groups.
Independent Prognostic Analysis
We explored whether clinical characteristics (age, gender, and tumor metastasis) could be used as independent prognostic factors by using univariate and multivariate independent prognostic analyses of Cox regression.
Construction of the Nomogram
We used clinical factors (age, gender, and tumor metastasis) and the risk score of our model to build a prognostic nomogram to predict 1-, 3-, and 5-year overall survival in OS patients. The model was calibrated by the calibration plot.
Functional Analysis
We investigated the enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) in high-risk and low-risk populations by packages “enrichplot” and “clusterProfiler” (Damian and Gorfine, 2004; Yu et al., 2012).
Tumor Immune Assessment
We used the CIBERSORT algorithm to investigate the relationship between immune cells and risk groups and predict the correlation between risk scores and immune cells (Newman et al., 2015). Differential expression of immune checkpoints and tumor microenvironment (TME) scores (including ESTIMATE scores, stromal scores, and immune scores) between risk groups was also investigated.
Predicting Potential Compounds for the Treatment of Osteosarcoma
In order to predict potential drugs that could be used for OS treatment, we calculated IC50 values for drugs obtained from the GDSC website (https://www.cancerrxgene.org/). The therapeutic effect of drugs on high-risk and low-risk groups was explored by the package “pRRophetic” (Geeleher et al., 2014).
RESULTS
Prognosis-Related lncRNAs Co-expressed With Necroptosis
We identified 3,343 lncRNAs (|Coefficient| > 0.4 and p < 0.001) that were co-expressed in OS (Figure 1A). By Kaplan–Meier analysis and univariate Cox analysis, 243 prognosis-related lncRNAs (surlnc) were identified (p < 0.05) (Supplementary Table S1). We obtained 641 differential lncRNAs (diflnc) (|Log ₂ FC| > 1 and p < 0.05) by differential analysis of combining 85 patients with OS and 85 random normal adipose tissue samples in GTEx (Supplementary Table S2). Then, nine differentially expressed prognostic lncRNAs for necroptosis were identified by taking the intersection of the aforementioned three sets (Figure 1B). We drew their pheatmap and survival curve by packages of “pheatmap” and “survival” (van Dijk et al., 2008) (Figures 1C, D).
[image: Figure 1]FIGURE 1 |  Screening of necroptosis-related lncRNAs. (A) Necroptosis-related lncRNA–mRNA co-expression network diagram. (B) Venn diagram of necroptosis-related lncRNA, prognosis-related lncRNAs, and differential lncRNAs. (C) Expression profiles of nine prognostic lncRNAs. (D) Survival curve of nine prognostic lncRNAs.
Model Construction and Validation
First, 85 tumor samples were randomly divided into two groups in a ratio of 8:2. We constructed a univariate Cox regression analysis in the training group and further found that seven of the aforementioned nine lncRNAs were associated with prognosis (Figure 2A). Subsequently, a model was constructed by performing LASSO regression analysis to predict OS prognosis (Figures 2B,C). Then, three lncRNAs (AL391121.1, AL354919.2, and AP000851.2) were identified. The risk score was calculated as follows: risk score = (0.316737556966157 * AL391121.1 exp.) + (-0.905740574364951 * AL354919.2 exp.) + (0.205992179621899 * AP000851.2 exp.). The sample was divided into high-risk and low-risk groups based on the median risk score. We could find that AL391121.1 and AL354919.2 were positively regulated by the necroptosis gene in the Sankey diagram of the training group (Figure 2D).
[image: Figure 2]FIGURE 2 |  Extraction of the prognostic signature of final necroptosis-related lncRNAs. (A) Univariate Cox regression analysis of prognostic lncRNAs in the training group. (B) LASSO coefficient profiles of necroptosis-related lncRNAs in the training group. (C) Partial likelihood deviance of prognostic signature. (D) Sankey diagram of necroptosis genes and related lncRNAs in the training group.
To assess the prognostic power of the risk model, we compared the correlated expression, distribution of risk scores, and survival status of the three NRlncRNAs between risk groups in the whole group, training group, and test group (Figures 3A–L). Obviously, the lower the risk score, the higher the survival rate. According to the survival analysis, the prognosis of the low-risk group was better than that of the high-risk group, with a statistically significant difference. Similarly, this result was validated in the tumor metastasis group or tumor non-metastasis group (Figures 3M, N).
[image: Figure 3]FIGURE 3 | Prognosis of the risk model in the entire, training, and testing sets. (A–C) Heatmap of the expression of three lncRNAs in the entire, training, and testing sets, respectively. (D–F) Risk model of the entire, training, and testing sets, respectively. (G–I) Survival time and survival status in the entire, training, and testing sets, respectively. (J–L) Kaplan–Meier survival curves of patients with OS in the entire, training, and testing sets, respectively. (M–N) Kaplan–Meier survival curves of patients with tumor metastasis and tumor non-metastasis.
The AUCs of 1-, 3-, and 5-year survival were 0.806, 0.728, and 0.731, respectively, which indicated the NRlncRNA signature is a good predictive value (Figure 4A). The hazard ratio (HR) and 95% confidence intervals (CI) for the risk scores were 1.320 and 1.136–1.534 for the uni-Cox regressions (p < 0.001), and 1.426 and 1.209–1.681 for the multi-Cox regressions (p < 0.001), respectively. In addition, we identified metastasis as an independent prognostic factor by uni-Cox regressions (HR = 4.764, CI = 2.221–10.221, p < 0.001) and multi-Cox (HR = 6.261, CI = 2.736–14.330, p < 0.001) (Figures 4B,C). Also constructed were clinical-pathological variables and risk scores to predict the prognosis of OS patients at 1, 3, and 5 years (Figure 4D). The calibration curves showed good agreement between actual overall survival rates and predicted survival rates at 1, 3, and 5 years (Figure 4E). In addition, principal component analysis (PCA) showed that patients with different risks were divided into two clusters (Figure 4F).
[image: Figure 4]FIGURE 4 |  Assessment and nomogram of the necroptosis-related lncRNA signature. (A) 1-, 3-, and 5-year ROC curves of the entire sets. (B–C) Uni-Cox and multi-Cox analyses of clinicopathologic factors and risk score with overall survival. (D) Nomogram for predicting overall survival. € 1-, 3-, and 5-year overall survival of calibration curves. (F) PCA scatterplot of the sample distribution.
GSEA Enrichment Analysis
GSEA was performed for KEGG pathway enrichment analysis to clarify the differences of enrichment pathways between low-risk and high-risk groups. The results showed that a number of cancer and metabolism-related pathways were enriched, including the sphingolipid metabolism signaling pathway and tight junction signaling pathway, which were significantly associated with the high-risk group (Figure 5A). In the low-risk group, the primary immunodeficiency signaling pathway, hematopoietic cell lineage signaling pathway, B cell receptor signaling pathway, antigen processing and presentation signaling pathway, and natural killer cell–mediated cytotoxicity signaling pathway were significantly enriched (Figure 5B). Therefore, we hypothesized that necroptosis may be involved in the occurrence and development of OS through immune-related pathways.
[image: Figure 5]FIGURE 5 |  Immune signature in the high-risk and low-risk groups. (A, B) GSEA analysis in the high-risk and low-risk groups, respectively. (C) Expression of immune cells between two groups. (D) Relationship between risk score and T cell CD4 memory activation. (E) Relationship between risk score and plasma cells. (F–H) Differential expression of TME scores (immune scores, ESTIMATE scores, and stromal scores) between risk groups. (I) Differential expression of cell infiltration between risk groups is based on the ssGSEA scores. (J) Immune functional differences between risk groups are based on the ssGSEA scores. (K) Differential expression of immune checkpoints between risk groups. (L) Sensitivity performance of 30 drugs in the high-risk and low-risk groups.
Investigation of Immunological Factors and Drug Efficacy in the High-Risk Group
Differential expression of 22 immune cell infiltration fractions [naive B cells, memory B cells, plasma cells, CD8 T cells, naive CD4 T cells, memory resting CD4 T cells, memory activated CD4 T cells, T follicular helper cells, T cells regulation (Tregs), gamma-delta T cells, resting NK cells, activated NK cells, monocytes, macrophages M0, macrophages M1, macrophages M2, resting dendritic cells, activated dendritic cells, resting mast cells, activated mast cells, eosinophils, and neutrophils] showed that T cell CD4 memory activation was significantly different between the high-risk group and low-risk group (Figure 5C). In addition, we found that lower risk scores correlated more with T cell CD4 memory activation and plasma cells (Figures 5D,E). All of these suggest that the low-risk group has a higher immune infiltration status. Furthermore, we found that the low-risk group had a higher immune score, ESTIMATE score, and stromal score (Figures 5F–H). Subsequently, ssGSEA was performed to assess the level of immune cell infiltration (p < 0.05). The results showed that the infiltration level of aDCs, macrophages, neutrophils, T helper cells, and TIL was significantly different between risk groups (Figure 5I). Moreover, the relationship between the risk score and immune pathways in OS was investigated. The boxplot of the results showed that cytolytic activity was correlated with risk score (Figure 5J).
The expression of immune checkpoints (CD44, CD40, and LAIR1) was higher in the low-risk group than in the high-risk group, while the opposite result was observed for ADORA2A (Figure 5K). In addition, drug sensitivity analysis was performed between risk groups by the “pRRophetic” algorithm to find the best therapeutic drugs for different risk groups. The IC50 of the 30 drugs applied to the treatment of OS treatment was different between the high-risk group and low-risk group (Figure 5L). This means that we can select the appropriate checkpoint inhibitors and drugs for patients with different risk values according to the NRlncRNAs signature.
DISCUSSION
Osteosarcoma is a primary malignant tumor of bone in adolescents, which originates from mesenchymal tissue. Currently, the main treatment for osteosarcoma is neoadjuvant chemotherapy and surgery. However, limited progress has been made in the last 30 years to improve survival outcomes for patients with osteosarcoma, particularly, and the survival rate of patients with metastasis is less than 20%. Identifying a specific and reliable prognostic marker for OS is essential in improving the prognosis. Many lncRNAs play regulatory roles in the development and progression of OS. Yan et al. demonstrated that the lncRNA CCAT2 acts as an oncogene in osteosarcoma, promoting osteosarcoma cell proliferation, cell cycle, and invasion (Yan et al., 2018). Zheng et al. suggested that the lncRNA SNHG3 regulates osteosarcoma invasion and migration through the miRNA-151a-3p/RAB22A axis (Zheng et al., 2019).
Necroptosis has been shown to play an important role in the progression of many tumors, including osteosarcoma. Xiao et al. reported that graphene oxide–associated anti-HER2 antibodies have the ability to kill osteosarcoma cells via the necroptotic pathway (Xiao et al., 2019). Li et al. demonstrated that the nano-drug delivery system modified by polypeptide nanomaterials could kill osteosarcoma cells in vitro by inducing RIP1- and RIP3-dependent necroptosis (Li et al., 2018). After several studies asserted that necroptosis plays an important role in tumors, but the mechanisms involved are still not fully understood. Herein, to investigate the correlation between the tumor microenvironment, immune cell infiltration, immune checkpoints, and necroptosis-associated lncRNAs, this study constructed an NRlncRNA signature in patients with OS for the first time.
In this study, we initially obtained nine differentially expressed and prognostically relevant NRlncRNAs (AC124798.1, EPB41L4A-AS1, LINC01549, LINC01060, AP000851.2, SNHG1, AL354919.2, PVT1, and AL391121.1). Among these lncRNAs, SNHG1 promotes osteosarcoma progression via miR-493-5p as an oncogenic factor (Liu et al., 2022). PVT1 promotes osteosarcoma metastasis via miR-484 (Yan et al., 2020). Subsequently, we used three NRlncRNAs (AL391121.1, AL354919.2, and AP000851.2) to model risk through random grouping, univariate Cox regression score, and lasso regression analysis.
Apparently, AL391121.1 and AL354919.2 are positively regulated by TRIM11 and CD40, respectively. In addition, Wang et al. reported that TRIM11 was an oncogene gene in the growth of OS cells (Wang et al., 2019). CD40 plays an important role in tumor immunotherapy (Elgueta et al., 2009). In other words, TRIM11 may play a carcinogenic role through AL391121.1 and AL354919.2 may be involved in CD40-mediated immunotherapy. These lie just in line with the risk scoring formula. Then, based on the median risk score, patients were divided into a high-risk group and a low-risk group. The results showed that the low-risk group had better prognosis than the high-risk group and that the risk score was an independent predictor of OS patients. Similarly, the creation of predictive nomograms including clinicopathological variables and risk scores showed perfect agreement between observed and predicted rates for 1-, 3-, and 5-year overall survival.
Researchers demonstrated that necroptosis and lncRNAs are closely associated with tumorigenesis, tumor immune response, and prognosis, but the specific roles in these processes remain unclear (Xiao et al., 2019; Li and Wang, 2021). Therefore, we continued to explore potential mechanisms for the lncRNA signature associated with necroptosis between risk groups. GSEA showed that the high-risk group was significantly associated with the sphingolipid metabolism signaling pathway and the tight junction signaling pathway. The low-risk group was significantly associated with the primary immunodeficiency signaling pathway, hematopoietic cell lineage signaling pathway, B cell receptor signaling pathway, antigen processing and presentation signaling pathway, and natural killer cell pathway. Cortini et al. found that inhibition of the sphingolipid pathway impaired the survival and migration of osteosarcoma cells (Cortini et al., 2021). In addition, claudin1, as a tight junction protein, is increased in metastatic OS cells compared to primary tumor cells (Jian et al., 2015).
Due to the abundance of immune-related pathways in the low-risk population, we used ssGSEA to explore the immune status between risk groups. Immune cells (macrophages, neutrophils, T helper cells, and tumor infiltrating lymphocytes) and immune function (cytolytic activity) were predominantly active in the low-risk group. We also found that T cell CD4 memory activation and plasma cells were negatively associated with risk scores. In previous reports, macrophages and neutrophils were able to induce RIPK1-, RIPK3-, and MLKL-mediated necroptosis in cells (Shi et al., 2019; Wang et al., 2020). These results further suggest that necroptosis may be involved in the progression of OS by regulating tumor immunity. Although most reported immune checkpoints could help cancer cells evade immune destruction, some researchers claim that the expression levels of immune checkpoints positively correlate with the efficacy of immunotherapy (Marin-Acevedo et al., 2021; Lu et al., 2022). Therefore, we analyzed the correlation between the expression level of the immune checkpoint and NRlncRNA signature. Our results showed that the majority of immune checkpoint expression was elevated in patients in the low-risk group compared to those in the high-risk group. Kong et al. demonstrated that inhibiting the expression of CD44 can inhibit proliferation, migration, and invasion of osteosarcoma cells (Kong et al., 2022). Zhang et al. verified that the over-expression of LAIR-1 inhibited epithelial-mesenchymal transition in osteosarcoma (Jinxue Zhang et al., 2020). Thus, immunotherapy would be more beneficial for patients at a low risk of OS. Finally, we predicted some potentially suitable drugs for high-risk or low-risk patients, which may be useful for future treatment.
However, there are some limitations and shortcomings in our study. First, the potential mechanisms of NRlncRNAs in OS still need to be explored. Next, although we had internally validated by the whole group, training group, and testing group, external validation was not performed by other data.
In summary, the NRncRNA, as an independently prognostic marker of OS, could help forecast the procession of OS and provide guidance on immunotherapy for OS, but further validation is still needed.
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Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality and is usually associated with therapeutic resistance and poor prognosis because of individual biological heterogeneity. There is an unmet need to screen for reliable parameters, especially immunotherapy-related biomarkers to predict the patient’s outcomes. Necroptosis is a special caspase-independent form of necrotic cell death associated with the pathogenesis, progression, and prognosis of multiple tumors but the potential connection between necroptosis-related genes (NRGs) and LUAD still remains unclear. In this study, we expounded mutational and transcriptional alterations of 67 NRGs in 522 LUAD samples and proposed a consensus-clustering subtype of these patients into two cohorts with distinct immunological and clinical prognosis characteristics. Cluster B patients were associated with a better prognosis and characterized by relatively lower expression of NRGs, higher immune scores in the tumor microenvironment (TME), more mild clinical stages, and downregulated expression of immunotherapy checkpoints. Subsequently, the NRG score was further established to predict the overall survival (OS) of LUAD patients using univariate Cox, LASSO, and multivariate Cox regression analyses. The immunological characteristics and potential predictive capability of NRG scores were further validated by 583 LUAD patients in external datasets. In addition to better survival and immune-activated conditions, low-NRG-score cohorts exhibited a significant positive correlation with the mRNA stem index (mRNAsi) and tumor mutation burden (TMB) levels. Combined with classical clinical characteristics and NRG scores, we successfully defined a novel necroptosis-related nomogram to accurately predict the 1/3/5-year survival rate of individual LUAD patients, and the potential predictive capability was further estimated and validated in multiple test datasets with high AUC values. Integrated transcriptomic analysis helps us seek vital NRGs and supplements a novel clinical application of NRG scores in predicting the overall survival and therapeutic benefits for LUAD patients.
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INTRODUCTION
Worldwide, lung cancer is one of the most common malignant tumors with high morbidity and mortality and has a poor prognosis with critical social burdens (Herbst et al., 2018). Non-small cell lung cancer (NSCLC) makes up approximately 85% of all lung cancers, and lung adenocarcinoma (LUAD) is the most common pathological subtype of NSCLC (Chen F. et al., 2022). Notably, more than 50% of LUAD patients were at advanced stages when they were clinically diagnosed and the prognosis was relatively poor with only 11–15% 5-year overall survival (OS) rate (Bade and Dela Cruz, 2020). Despite the treatment of LUAD being improved remarkably, including surgery, chemotherapy, and radiotherapy based on the clinical stages of LUAD, there is still a lack of effective curative effects for advanced LUAD treatment (Denisenko et al., 2018). At present, the clinical progress of PD-1/PD-L1 immunotherapy has brought a promising therapeutic potential for LUAD patients, especially for those resistant to conventional surgery, radiation, or chemotherapy (Saito et al., 2018). Nevertheless, in our clinical practice, even if LUAD patients were at the same pathological stages, their therapeutical response to immunotherapy might still be completely different (Skoulidis and Heymach, 2019). Therefore, there is an unmet need for screening reliable biomarkers, especially the PD-1/PD-L1 immunotherapy-related index, which could predict outcomes of LUAD patients.
Necroptosis is a special caspase-independent form of necrotic cell death characterized by cell membrane rupture and inflammatory response activation regulated by receptor-interacting protein kinase1/3 (RIPK1/3) and mixed lineage kinase domain-like pseudokinase (MLKL) (Pasparakis and Vandenabeele, 2015). Increasing pieces of evidence have indicated the double-edged sword role of necroptosis in multiple tumors. For example, necrotic tumor cells would release their contents and further activate the inflammatory and immunological response of surrounding immune cells (Krysko et al., 2017; Wang et al., 2020). On the other hand, necroptosis might also promote tumor progression and metastasis by killing normal paraneoplastic cells and leading to severe inflammatory disorders (Ando et al., 2020). Moreover, recent studies have indicated that necroptosis could create an inflammatory environment to enhance the tumor susceptibility to immune checkpoint inhibitors in drug-resistant tumors (Workenhe et al., 2020). These studies indicated the complex connection between necroptosis and LUAD, but the concrete mechanism of necroptosis in LUAD still remains unclear.
The subtype stratification of LUAD patients based on transcriptome sequencing profiles has been recognized as a novel methodology that can quickly obtain biological characteristics of subtypes and help us further identify the optimal treatment strategies for patients (Jang et al., 2020). In addition, multiple biological signatures have also been applied to explore novel molecular subtypes for the prognosis of LUAD, such as immune cell infiltration (ICI) (Li et al., 2021), autophagy (Zhang M.-Y. et al., 2021), pyroptosis (Dong et al., 2021), m6A RNA methylation (Zhou et al., 2021), and so on. However, there is still no study focusing on the role of necroptosis in the subtypes of LUAD patients. In this study, we comprehensively investigated the genetic and biological characteristics of NRGs in LUAD patients and first divided the cohorts into different subtypes based on the expression of NRGs. The clinical prognostic signatures and immunological landscape of necroptosis-related subtypes were further interpreted through survival analysis, tumor microenvironment (TME) assessments, immune cell infiltration (ICI) analysis, and immune checkpoint comparison. Subsequently, a novel parameter called NRG-score was further defined based on vital NRGs, and a valuable nomogram, combined NRG scores with some classical clinical stages, was successfully established and validated to ameliorate the prognostic stratification and promote making an appropriate therapeutic decision for LUAD patients.
MATERIAL AND METHODS
Preparation of Lung Adenocarcinoma Datasets
The public RNA-seq transcriptome datasets of 522 LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) with their corresponding clinical data. In addition, three external datasets of 583 LUAD patients with their prognostic information were obtained from the Gene Expression Omnibus (GEO) datasets (https://www.ncbi.nlm.nih.gov/geo/), including 176 samples in GSE42127, 226 samples in GSE31210, and 181 samples in GSE58001. The detailed information of the aforementioned datasets is shown in Supplementary Table S1. Then, all the datasets were normalized as the FPKM form for subsequent analysis and the “ComBat” algorithm of the “sva” package was applied to remove the technical biases between different datasets (Leek et al., 2012).
Mutational Characteristics of Necroptosis-Related Signatures in Lung Adenocarcinoma
Based on the necroptosis-related dataset M24779. gmt and previous studies, a total of 67 NRGs were chosen in this study such as mixed lineage kinase domain-like pseudokinase (MLKL), receptor-interacting protein kinase 1 (RIPK1), RIPK3, and so on (Zhao Z. et al., 2021; Chen F. et al., 2022). Subsequently, we also obtained their corresponding mutation annotation format (MAF) from the UCSC Xena online platform including copy number variants (CNVs) and somatic mutation data. The “maftools” package (Mayakonda et al., 2018) was used to display the somatic mutation of NRGs, and the “RCircos” package (Zhang et al., 2013) was applied to exhibit their CNVs and locations on the respective chromosomes.
Identification of Consensus Clusters for Lung Adenocarcinoma
Based on the expression of these NRGs, we applied the “ConsensuClusterPlus” R package (Wilkerson and Hayes, 2010) to perform the unsupervised hierarchical clustering analysis using the Euclidean distance and Ward’s linkage algorithm 1,000 repeated times. Moreover, the LUAD patients were divided into different subtypes from two to nine, and the optimal clustering subtype was further decided with the optimal consensus cumulative distribution function (CDF) curve. In addition, we conducted various comparisons among different clusters including the clinical-pathological stages, prognostic characteristics, and tumor microenvironment (TME) analysis to explore their disease characteristics. The Kaplan–Meier survival analysis was performed using the “survival” package (Therneau and Lumley, 2015) and survival curves between necroptosis subtypes were drawn by the “survminer” package (Kassambara et al., 2017).
Immunological Characteristics of Different Clusters in Lung Adenocarcinoma
To explore the immunological characteristics of necroptosis-related clustering, we further performed a comprehensive analysis according to different immunological aspects, including immune cell infiltration (ICI) analysis, tumor microenvironment (TME) analysis, and immune checkpoint analysis. For the TME analysis, we used the ESTIMATE algorithm to calculate the stromal scores, immune scores, and tumor purity of each LUAD patient (Yoshihara et al., 2013). To quantitatively estimate the infiltration levels of immune cells in lung tissues, we applied the deconvolution algorithm of the “CIBERSORT” package with 22 different immune cells and 1,000 random permutations (Chen et al., 2018). In addition, the expression of routine immune checkpoints was compared between necroptosis-related subtypes to evaluate the potential therapeutic responses, including CTLA4, PD1/CD274, HAVCR2, PD-L1/PDCD1, and LAG3. Based on the “c2. cp.kegg.v7.5.1. symbols.gmt” datasets obtained from the MSigDB database, we further performed the gene set variation analysis (GSVA) using the “GSVA” package, and the results of immunogenic pathways were displayed in the heatmap (Hanzelmann et al., 2013).
Establishment of the Necroptosis-Related Gene Score
To further establish a novel index reflecting the prognostic features of necroptosis-related subtypes, we performed the univariate Cox regression analysis for the overall survival (OS) of LUAD patients through the “coxph” function in the “survival” package. After filtration with the p-value < 0.05, the remaining NRGs were further put into the LASSO regression and multivariate Cox regression (stepwise model) in turn to obtain the corresponding regressive coefficients. The NRG score was identified based on the following formula:[image: image] where [image: image] denotes the FPKM value of each gene and [image: image] is their corresponding regression coefficient. The NRG scores of each patient were calculated separately and the subjects were divided into high and low-NRG-score subtypes according to the optimal cut-off value by the “surv_cutpoint” function of the “survminer” package (Kassambara et al., 2017). In addition, we also performed a similar comparison between high and low NRG groups including the Kaplan–Meier survival analysis, clinical stages, ICI, TME, and immune checkpoint analysis. Moreover, two external datasets, GSE126044 and GSE135222, were applied to further evaluate the therapeutic response to immunotherapy, including 16 and 27 NSCLC patients receiving anti-PD-1 therapy. Some anti-tumor drugs have been widely recommended for the chemotherapy of LUAD including Etoposide, Cisplatin, Gemcitabine, and Docetaxel, and the half-maximal inhibitory concentration (IC50) values of these drugs were calculated based on the Genomics of Drug Sensitivity in Cancer (GDSC) datasets (Yang et al., 2013). Then, we compared the levels of IC50 values between high- and low-NRG score patients, and the box diagram was drawn via the “ggpubr” package (Whitehead et al., 2019).
Relationship Between the mRNA Stem Index, Tumor Mutation Burden, and NRG Scores
To investigate the potential prognostic characteristics of LUAD, we obtained the mRNAsi score from Tathiane’s study (Malta et al., 2018) and gained the TMB score based on the mutation data from TCGA datasets. Subsequently, we performed Spearman’s correlation analysis of NRG scores with mRNAsi and TMB scores. In addition, the stratified survival analysis was further applied to evaluate the independent prognostic capacity of NRG and TMB scores in LUAD and the mutational analysis was conducted in high- and low-NRG score subgroups, respectively.
Identification and Validation of a Novel NRG-Related Nomogram
To validate the prognostic value of NRG scores, other three external GEO datasets were included to perform survival and ROC analyses with 1/3/5-year survival rates for LUAD patients. Then, we applied the multivariate Cox regression models (stepwise model) to construct a novel prognostic nomogram system for LUAD patients combined with NRG scores and other important clinical phenotypes, including age, clinical stages, and TNM stages. Selected variables were screened with a p value < 0.05 or saved based on clinical experiences, and the nomogram system was further constructed to determine the probability of 1/3/5-year survival in LUAD patients via the “rms” package. To assess and validate the prediction value of the nomogram scoring system, we further made the calibration curves with the corresponding 1-, 3-, and 5-year survival through a bootstrapping method. Moreover, time-dependent ROC and calibration curves from the other three external GEO datasets were used to estimate the nomogram for 1-, 3-, and 5-year survivals.
RESULTS
Genetic Mutation and Prognostic Characteristics of NRGs in Lung Adenocarcinoma
The whole workflow of this study is given in Supplementary Figure S1. A total of 67 reported NRGs were chosen to perform the genetic mutation analysis, including somatic mutation and copy number variant analyses (Supplementary Table S1). Of all 561 LUAD patients, about 52.76% samples were detected with somatic mutations and the top three genes with the most mutations were EGFR, HDAC9, and BRAF (Figure 1A). The CNV analysis revealed that most NRGs occurred due to copy number amplification (TERT and MYT) and some copy number deficiency was also identified in partial NRGs (CDKN2A) (Figure 1B; Supplementary Table S2). In addition, we also observed that the CNV of NRGs was widely distributed into multiple chromosomes with amplification or deficiency (Figure 1C), and the mutual correlation and prognostic values of NRGs in LUAD patients were displayed in a comprehensive network (Figure 1E, Supplementary Tables S4, 5). Interestingly, we also compared their expression levels between tumor and normal tissues and found that the expressional changes were complex, especially significantly upregulated genes (CDKN2A, MYCN, PLK1, and TERT) and some downregulated signatures (AXL, ID1, and TLR3) (Figure 1D, Supplementary Table S3).
[image: Figure 1]FIGURE 1 | Mutational and expressional characteristics of NRGs in LUAD patients. (A) Waterfall figure showing the somatic mutation of 67 NRGs in LUAD; (B–C) Situation of CNV gain and loss of the PRGs on 23 chromosomes. (D) Expression of these NRGs between LUAD and the control. (E). Prognostic characteristics and expressional relationship among PRGs in LUAD.
Identification of Necroptosis-Related Subtypes and Characteristics in Lung Adenocarcinoma
Based on the expression of the aforementioned 67 NRGs, an unsupervised clustering method was applied to identify the necroptosis-related subtypes of LUAD patients, and k = 2 was further identified as the optimal clustering model from k = 2 to 9 clustering according to the consensus CDF curve, for 168 patients in cluster A and 300 patients in cluster B subtypes (Figures 2A, B). The survival analysis indicated that patients from cluster B had a longer median survival time than those in cluster A subgroups (Figure 2C) and the PCA revealed that the expression of these NRGs could clearly divide the LUAD samples into two distinct clusters (Figure 2D). In addition, the clinical correlation analysis also demonstrated that cluster B patients were positively associated with mild clinical stages including integrated pathological and TMN stages (Figure 2E, Supplementary Table S6) and most of these patients accepted locoregional surgical treatment rather than metastatic surgery or radiation therapy (Figure 2F). All these results suggested that cluster B might be considered as beneficial subtypes with a better prognosis for LUAD patients.
[image: Figure 2]FIGURE 2 | Identification of necroptosis-related molecular subtypes and immunological characteristics in LUAD. (A,B) Patients could be well divided into two subtypes based on CDF curves. (C) K–M survival analysis exhibited a better prognosis for cluster B patients than that of cluster A groups. (D) PCA analysis showed significant differences in the necroptosis-related transcription profiles between the two subgroups. (E) Cluster B patients manifested more proportion of mild clinical stages than cluster A patients. (F) Compared with cluster A patients, most cluster B patients accepted locoregional surgical treatment rather than metastatic surgery or radiation therapy. (G) GSVA demonstrated that the immune-related pathways were significantly activated in cluster B patients compared with cluster A groups. (H) Comparison of immune cell infiltration between the two clusters. (I) Higher stromal and immune scores with lower tumor purity were detected in cluster B patients based on the TME analysis. (J) Cluster A patients exhibited higher expression of immune checkpoints, including CD274/PD1, PDCD1/PD-L1, CTLA4, HAVCR2, and LAG3.
GSVA demonstrated that the immune-related pathways were significantly activated in cluster B patients compared with cluster A groups, including the chemokine signaling pathway, natural killer cell-mediated cytotoxicity, JAK-STAT signaling pathway, and T/B cell receptor signaling pathway (Figure 2G, Supplementary Tables S7, 8). To further explore the immunological characteristics of different subtypes, we performed a series of immune-related analyses including TME, ICI, and immune check-point analyses. For the immune infiltration scores, adaptive immune response-associated lymphocytes (including activated memory CD4+ T cells, CD8+ T cells, plasma cells, and M1 macrophages) were significantly increased in tissues from cluster B patients than those of cluster A cohorts while regulatory T cells (Tregs) were increased in cluster A patients (Figure 2H, Supplementary Table S10). In terms of TME scores, higher immune scores and stromal scores with lower tumor purity were also observed in patients of cluster B than in the cluster A subtype (Figure 2I, Supplementary Table S9). Interestingly, higher expression levels of immune check-points were detected in cluster A patients than in the other cluster, suggesting its potential therapeutic response to immunotherapies although with severe clinical phenotypes and poor prognosis (Figure 2J).
Construction and Development of NRG Scores for the Prognosis of Lung Adenocarcinoma
After including the 67 NRGs into the univariate Cox regression, 21 signatures were screened as candidate prognosis-associated genes for the subsequent LASSO and multivariate Cox regression analysis (Figures 3A–C). A total of seven NRGs (FADD, MLKL, TNFRSF1A, CYLD, AXL, CDKN2A, and HSPA4) were successfully identified to construct a novel index representing the characteristics of necroptosis, based on their expression and corresponding β coefficients. The NRG score was defined by the following formula: [image: image]. Subsequently, those LUAD patients were divided into a low- and high-NRG-score subgroup with the optimal cut-off value (0.557) using the “surv_cutpoint” function. Notably, of these hub genes, only CYLD was the protective signature and the high-NRG-score patients exhibited a worse survival state than that of low-score cohorts in TCGA datasets (Figures 3D, E). In addition, we also detected that cluster B groups had lower NRG scores and these low-score patients exhibited a better clinical stage than in the high-NRGscore patients (Figures 3F, G). From both GSE126044 and GSE135222 datasets, those LUAD patients with effective therapeutic responses to anti-PD-L1 therapy exhibited higher NRG scores than those who lacked responses (Figure 3H, Supplementary Table S11). Notably, all these anti-tumor drugs exhibited lower IC50 values in the high-NRG-score subgroups, implying that patients with higher NRG scores might gain a better curative effect from classical chemotherapy treatments (Figure 3I, Supplementary Table S12).
[image: Figure 3]FIGURE 3 | Identification of NRG scores and clinical characteristics in LUAD. (A) After univariate Cox regression, 21 signatures were screened as candidate prognosis-associated genes. (B,C) Ten NRGs were chosen with the LASSO regression analysis. (D) NRG score was defined by seven PRGs (FADD, MLKL, TNFRSF1A, CYLD, AXL, CDKN2A, and HSPA4) with multivariate Cox regression analysis. (E) Low-NRG-score patients exhibited a longer survival time than patients with high NRG scores. (F) Cluster B patients possessed a lower NRG score than that of cluster A cohorts. (G) Low-NRG-score patients exhibited more mild clinical stages than high-score groups. (H) NRG scores were significantly increased in patients with an effective response rate to immunotherapy. (I) Comparison of IC50 value between high- and low-NRG-score patients for common chemotherapeutic drugs including Etoposide, Cisplatin, Gemcitabine, and Docetaxel.
Correlation of Immunological Characteristics and NRG Scores
To investigate the biological characteristics of the NRG scores, we also performed the aforementioned immunological analysis. It revealed that NRG scores were significantly negative-correlated with the abundance of multiple immune cells, including plasma cells, CD8+ T cells, Tfh cells, and activated NK cells (Figure 4A). Moreover, the expression of hub necroptosis-related signatures was also associated with the infiltration of immune cells, especially AXL, CDKN2A, and CYLD (Figure 4B, Supplementary Table S13). As expected, the patients with low NRG scores exhibited higher immune scores and stromal scores with lower tumor purity than the high-NRG-score cohorts in the TME analysis (Figure 4C). The expressions of immune check-points were also congruously decreased in the low-NRG score patients, suggesting the consistency between NRG scores and cluster subtypes (Figure 4D). The alluvial diagram clearly visualized that patients’ status varied with different characteristics and we found that most Cluster B patients were divided into the low-NRG-score cohorts with better clinical stages and prognosis (Figure 4E). All these pieces of evidence conformably indicated that the low-NRG-score patients, consistent with cluster B subtypes, possessed an immune-activated status and better prognosis for LUAD. The ROC analysis further indicated that the NRG scores could well predict the survival prognosis with high AUC values (1/3/5-year: 0.663/0.640/0.598, respectively) and the risk of death was also increased with the increasing of NRG scores in TCGA datasets (Figures 4F, G).
[image: Figure 4]FIGURE 4 | Relationship between immunological characteristics and NRG scores. (A) Correlation analysis showed a significant negative correlation between immune cell infiltration and NRG scores. (B) Correlation analysis of immune cells infiltration and necroptosis-related signatures of NRG scores. (C) TME analysis showed higher stromal and immune scores with lower tumor purity in patients with low NRG scores. (D) High-NRG-score patients exhibited higher expression of immune checkpoints. (E) The alluvial diagram visualized the status variability of LUAD patients with different subtypes. (F) ROC analysis showing the NRG scores could well predict the survival prognosis with high AUC values (1/3/5-year 0.663/0.640/0.598). (G) The risk of death was increased with the increase of NRG scores in LUAD.
Relationship Among mRNA Stem Index, Tumor Mutation Burden, and NRG Scores
As a novel prognosis indicator in oncological studies, the mRNAsi score was obtained from Tathiane’s article (Malta et al., 2018), and the TMB score was calculated based on the mutation data of LUAD patients from TCGA datasets, which represent their correlation with curative effects and prognosis multiple tumors. To further investigate their potential relationships with NRG scores, we compared the TMB and mRNAsi levels between different NRG score subgroups and conducted the correlation analysis with Spearman’s methods (Supplementary Tables S14, 15). The results revealed that the low-NRG score patients exhibited lower mRNAsi and TMB scores than that of high-NRG-score cohorts (Wilcox test, p = 2.3e−06, p = 0.0017, Figures 5A, C) and the NRG scores were positively associated with mRNAsi and the TMB index (Spearman coefficient: R = 0.34, p < 0.001; R = 0.20, p = 1.5e−05, Figures 5B, D). Notably, the survival analysis detected a longer median survival time in high-TMB-score patients than those in low-score patients, contradictory with the better prognosis in low-NRG-score patients (Figure 5E). To interpret this conflict, we performed stratified survival analysis and observed that patients with high-TMB and low-NRG scores exhibited the best prognosis status and NRG scores played a more effective role in predicting the prognosis than TMB scores, suggesting the independent effects of NRG and TMB scores for the prognostic stratification of LUAD (Figure 5F). Moreover, we also evaluated the distribution of somatic variants between the high- and low-NRG-score cohorts using TCGA datasets and multiple mutation patterns were detected in both subgroups including missense mutation and frame shift ins. Interestingly, there was no significant difference in the mutation frequency between the two subgroups (58.21% in high-NRG vs. 52.13% in low-NRG patients) but CDKN2A, HDAC9, and ALK were the top three NRGs with the most mutation frequency in high-NRG patients while EGFR, BRAF, and ATRX were the top three NRGs in low NRG cohorts (Figures 5G, H).
[image: Figure 5]FIGURE 5 | Evaluation of potential therapeutical susceptibility and prognostic value of NRG scores in LUAD. (A,B) Low-NRG-score patients exhibited lower levels and a significant positive correlation with the mRNAsi index (R = 0.34). (C,D) Low-NRG-score patients exhibited lower levels and a significant positive correlation with TMB values (R = 0.20). (E) Survival analysis shows that the high-TMB patients exhibited a better prognosis for LUAD patients. (F) Stratified survival analysis revealed that patients with low NRG scores and high TMB values had the best prognosis status for LUAD. (G,H) Condition of somatic mutation of NRGs in high- and low-TMB patients. (I–K) Low-NRG-scores patients displayed a better prognosis and NRG scores could accurately estimate the OS for LUAD in external datasets (1- /3- /5-year AUC values: 0.829/0.604/0.600 in GSE31210; 0.695/0.571/0.556 in GSE58001; and 0.748/0.639/0.635 in GSE42127).
Evaluation and Validation of the Prognostic Model for Lung Adenocarcinoma
To validate the prognostic value of NRG scores in LUAD, other three external GEO datasets were applied to perform the survival and ROC analyses. Notably, it revealed that low-NRG-score patients displayed a better prognosis, and NRG scores could accurately estimate the overall survival for LUAD in all datasets (1- /3- /5-year AUC values: 0.829/0.604/0.600 in GSE31210; 0.695/0.571/0.556 in GSE58001; and 0.748/0.639/0.635 in GSE42127, respectively) (Figures 5I–K, Supplementary Tables S16). Subsequently, based on the NRG scores and other important clinical features, the nomogram was successfully constructed using the multivariate Cox model to predict 1/3/5-year survival rates for LUAD patients. Age, clinical stages, TNM stages, and NRG scores were included in the nomogram (Figure 6A), and the calibration curve showed a good prediction capacity for LUAD patients with high mean AUC values (0.716/0.706/0.702) in TCGA datasets (Figures 6B, F). In addition, the external datasets further demonstrated the predictive capability of the nomogram for the prognosis in LUAD patients, including 0.790/0.704/0.687 in GSE42127, 0.912/0.821/0.674 in GSE31210, and 0.684/0.662/0.657 in GSE58001 datasets (Figures 6C–E, G–I).
[image: Figure 6]FIGURE 6 | Development and validation of a prognostic model for LUAD patients. (A) Combined nomogram for predicting the probability of 1/3/5-year survival for LUAD patients, based on age, clinical stages, TNM stages, and NRG scores. (B–E) ROC analysis showed a good prediction capacity for LUAD patients with high mean AUC values: (0.716/0.706/0.702) in TCGA datasets, 0.790/0.704/0.687 in GSE42127, 0.912/0.821/0.674 in GSE31210, and 0.684/0.662/0.657 in GSE58001 datasets. (F–I) Calibration curve of the established nomogram with 1/3/5-year survival, respectively.
DISCUSSION
As one of the malignant tumors with high mortality, the outcome of LUAD patients remains poor because of the lack of effective therapeutical responses to chemotherapy and immunotherapy due to inner biological heterogeneity (Yuan et al., 2021). Over the past decades, the identification of histological subtypes with an especial genic mutation has brought dramatic amelioration in disease outcomes of LUAD patients. In particular, massive molecularly targeted anticancer agents, including EGFR and ALK inhibitors, have been approved as the preferred treatments for LUAD patients with corresponding genetic alterations (Gridelli et al., 2014). Moreover, immune checkpoint genes (such as PD1/PD-L1, LAG-3, CTLA-4, and HAVCR2) have been certified to participate in the immune suppression process of multiple tumors and targeted inhibitors have also been applied to specific immunotherapy for cancers (Zhang H. et al., 2021). However, in our clinical practice, even if the LUAD patients were at the same pathological stages, their therapeutical response to the targeted immunotherapy might still be completely different (Skoulidis and Heymach, 2019). Therefore, it is urgently required to identify a novel molecular subtype and reliable prognostic model for predicting the outcomes of LUAD patients.
Different from cellular apoptosis, necroptosis has been recognized as a specially programmed cell death with an essential role in maintaining the stabilization of the internal environment and participating in the pathogenesis of multiple diseases including various infections, tumor formation, and autoimmune diseases (Schreiber et al., 2017; Wang et al., 2019; Xia et al., 2020). Increasing studies have identified necroptosis-related gene signatures and subtypes to predict the prognosis and therapeutic response of multiple tumors including breast cancer (Chen W. et al., 2022), kidney renal clear cell carcinoma (Chen W. et al., 2022), and pancreatic adenocarcinoma (Wu et al., 2022), but there is no research focusing on the relationships between NRGs and LUAD.
Various molecular genetic alterations have provided valuable information for predicting the risk and prognosis of LUAD patients, especially based on copy number variations (CNVs) and somatic mutation analysis (Zhao Y. et al., 2021). In this study, we also explored the genetic characteristics of NRGs in LUAD patients and it revealed that a high somatic mutation frequency (52.76% samples) was detected and most NRGs possessed copy number amplification, suggesting that necroptosis might be closely associated with a genetic mutation in LUAD patients. The classification of LUAD patients based on various biological signatures has been considered a promising method and applied to various studies including immune cell infiltration (ICI) (Li et al., 2021), autophagy (Zhang M.-Y. et al., 2021), pyroptosis (Dong et al., 2021), and m6A RNA methylation (Zhou et al., 2021). Therefore, this study first proposed a necroptosis-related subtype for LUAD based on the clustering expression of NRGs with distinct prognostic and immunological features including TME, ICI, GSVA, and immune checkpoints. Notably, cluster B patients exhibited a longer median survival time than cluster A cohorts, and the prognostic clusters were consistent with clinical TNM stages, indicating that these NRGs were significantly related to survival status in LUAD patients. In addition, the TME analysis detected higher immune and stromal scores in cluster B than in cluster A and GSVA also detected the activation of immune-related pathways in cluster B cohorts, suggesting that the anticancer immune response was significantly activated in cluster B patients. Immune checkpoint genes (including PD1, PD-L1, CTLA4, HAVCR2, and LAG3) have been demonstrated to play an essential role in the immune suppression of multiple cancers and several targeted inhibitors, especially PD1/PD-L1, and have also been widely applied to clinical immunotherapy for tumors (Kim and Choi, 2020). Interestingly, the expression of these immune checkpoints was significantly decreased in cluster A patients suggesting a significant immune exhaustion status and a possible better therapeutical response in LUAD. All these results indicated that cluster B was an immune-activated subtype with a better prognosis and potential curative response for LUAD cohorts.
Furthermore, a novel necroptosis-related tool (NRG score) was successfully identified to estimate the prognostic risk of LUAD patients based on the stepwise model of multivariate Cox regression. Interestingly, a better survival status with lower TNM stages, higher TME scores, and a significant negative correlation with ICI scores were also detected in low-NRG score subgroups, consistent with the characteristics of cluster B patients. Patients with high NRG scores also exhibited a higher expression of immune checkpoints than low-NRG-score patients, indicating their potential therapeutic sensitiveness to immunotherapy for LUAD. Interestingly, the NRG score was calculated based on the expression of hub NRGs, especially MLKL, HSP4A, and CYLD, all associated with the pathogenesis and prognosis of LUAD by previously published works. As the executor of necrotic apoptosis, MLKL had been reported to be activated by RIPK1 or RIPK3 with phosphorylation to mediate necrosis signaling and play an important role in various non-necroptotic processes including receptor internalization, ligand-receptor degradation, axonal repair, and necroptotic inhibition (Brault and Oberst, 2017; Martens et al., 2021). In vitro, Tan et al. (2020) further demonstrated that the activation of RIP3/MLKL-dependent necroptosis could increase the therapeutic sensitivity to gefitinib in NSCLC patients. Heat-shock protein family A (Hsp70) member 4 (HSPA4) was involved in the functional stabilization of mutated or aberrantly expressed genes in multiple tumors (Lv et al., 2012) and had been identified to have a significant correlation with immune regulation and prognosis of hepatocellular carcinoma (Shang et al., 2021). Notably, as the sole protective NRG for LUAD, CYLD Lysine 63 Deubiquitinase (CYLD) had been considered as the tumor suppressor and further demonstrated to be regulated by miR-96-5p and LncRNA GMDS-AS1 to inhibit the development of LUAD via a cellular assay and mouse tumor models (Zhao et al., 2020). These results indicate the NRG’s potential relationship with the prognosis of LUAD and the specific mechanism of these vital signatures in LUAD remains to be further explored by functional experiments in vivo or in vitro.
Cancer stem cells (CSCs) are characterized by unlimited proliferation and self-renewal and have participated in the therapeutic resistance of lung cancers. As the most representative parameter of CSCs, the mRNA stem index (mRNAsi) has been widely applied to evaluate the characteristics of CSCs and prognosis in a variety of tumors including LUAD (Zhang et al., 2020). The TMB value has been identified as a novel biomarker of response to immune checkpoint treatment and reported to predict the survival status of LUAD patients (Nan et al., 2021). Therefore, the mRNAsi index and TMB value could serve as sensitive indexes to the response of immunotherapy. In this study, we also performed the correlation analysis of the mRNAsi index, TMB value, and NRG scores, and our results exhibited that there was a significant positive relationship among the mRNAsi index, TMB value, and NRG scores, consistent with the aforementioned finding of immune checkpoint expression. Moreover, the stratified survival analysis demonstrated that the prognosis capability of NRG scores was independent of the TMB value and those patients with low NRG and high TMB possessed an optimal survival status. It was worth noting that patients with low-NRG scores could still exhibit favorable survival regardless of different TMB conditions, suggesting that NRG scores might be a more effective predictor than TMB values. More importantly, based on the datasets with immunotherapy, we successfully validated the potential relationship between NRG scores and clinical response to immunotherapy in LUAD patients. Common chemotherapeutic drugs also exhibited lower IC50 values in high-NRG-score patients, including Etoposide, Cisplatin, Gemcitabine, and Docetaxel, indicating a more effective role in LUAD patients with high NRG scores.
Furthermore, to validate the significance of NRG scores in predicting the prognosis of LUAD, other external GEO datasets including 561 patients were used to perform the ROC analysis and we found that NRG scores actually predicted 1/3/5-year survival outcomes of LUAD with high mean AUC values. Combined with age, clinical stages, TNM stages, and NRG scores, we successfully constructed a novel nomogram tool to accurately predict the 1-, 3-, and 5-year OS probability of individual LUAD patients. More importantly, the predictive capability of the nomogram was successfully validated through the external GEO datasets based on calibration curves and ROC curves, implying the stabilization of the model in LUAD.
However, there are still several ineluctable limitations in our study. On the one hand, the integrated analysis based on the transcriptomic profiles was only obtained from public open-source databases and the size of LUAD cohorts in the databases was relatively small and limited. Therefore, some corresponding results, such as necroptosis-related subtypes, remain to be further validated via more external self-sequencing datasets or experiments in vivo and in vitro. On the other hand, further application of NRG scores still needs other fundamental studies and even clinical practices to be reduplicatively validated and ameliorated. Finally, the complicated mechanism of NRGs in the development of LUAD was still unclear and needed to be further deeply explored through experiments in vivo or in vitro.
CONCLUSION
In conclusion, this study first identified a necroptosis-related disease subtype based on the unsupervised clustering of NRGs with different clinical and immunological signatures in LUAD patients. Furthermore, we also defined a promising tool called the “NRG score” to predict the OS status and potential therapeutic response to immunotherapy for LUAD. Finally, combined with age, clinical stages, TNM stages, and NRG scores, we successfully constructed a novel nomogram tool to accurately predict the 1-, 3-, and 5-year OS probability of individual LUAD patients, and this model was favorably validated in multiple external GEO datasets with concordant calibration curves and high AUC values. Integrated transcriptomic analysis helps us seek vital necroptosis-related genes and supplements a novel clinical application of NRG scores in predicting the overall survival and therapeutic benefits for LUAD patients.
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Background: Nicotinamide adenine dinucleotide (NAD+) has emerged as a critical regulator of cell signaling and survival pathways, affecting tumor initiation and progression. In this study it was investigated whether circulating NAD+ metabolism-related genes (NMRGs) could be used to predict immunotherapy response in ovarian cancer (OC) patients.
Method: In this study, NMRGs were comprehensively examined in OC patients, three distinct NMRGs subtypes were identified through unsupervised clustering, and an NAD+-related prognostic model was generated based on LASSO Cox regression analysis and generated a risk score (RS). ROC curves and an independent validation cohort were used to assess the model’s accuracy. A GSEA enrichment analysis was performed to investigate possible functional pathways. Furthermore, the role of RS in the tumor microenvironment, immunotherapy, and chemotherapy was also investigated.
Result: We found three different subgroups based on NMRGs expression patterns. Twelve genes were selected by LASSO regression to create a prognostic risk signature. High-RS was founded to be linked to a worse prognosis. In Ovarian Cancer Patients, RS is an independent prognostic marker. Immune infiltrating cells were considerably overexpressed in the low-RS group, as immune-related functional pathways were significantly enriched. Furthermore, immunotherapy prediction reveal that patients with low-RS are more sensitive to immunotherapy.
Conclusion: For a patient with OC, NMRGs are promising biomarkers. Our prognostic signature has potential predictive value for OC prognosis and immunotherapy response. The results of this study may help improve our understanding of NMRG in OCs.
Keywords: NAD+, ovarian cancer, prognostic signature, biomarker, immunotherapy
BACKGROUND
Ovarian cancer (OC) is the deadliest gynecological cancer with few initial symptoms and a poor prognosis (Webb and Jordan, 2017; Kossaï et al., 2018; Matulonis, 2018). It is the fifth leading cause of cancer-related death in women, and fewer than 50% of women survive beyond 5 years after diagnosis due to the rapid emergence of chemoresistance coupled with the lack of effective early detection strategies. A number of cancers, including OC, have recently been treated with immunotherapy, although OC patients are highly heterogeneous and some are immune to immunotherapy (Roett and Evans, 2009; Ottevanger, 2017). Furthermore, OC has a high probability of recurrence and medication resistance (Tew, 2016; Sipos et al., 2021). Therefore, a great deal of research is required to advance understanding of disease etiology, identify risk factors, and develop early detection methods and effective molecular biomarkers.
It is believed that metabolic reprogramming plays a role in the genesis of tumors. NAD+ plays a key role in maintaining cellular homeostasis, genome stability, cell growth, cell death, and immune responses (Newman and Maddocks, 2017; Pramono et al., 2020; Navas and Carnero, 2021). In cells, NAD exists in two states: oxidized (NAD+) and reduced (NADH). NAD+ stimulates cancer cell growth by enhancing anaerobic glycolysis via glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). Most of exhibit increased ratios of NAD+/NADH and NADP+/NADPH, implying that NAD+ plays a significant role in cancer (Nacarelli et al., 2020; Ghanem et al., 2021; Wang et al., 2022). In addition, NAD+ acts as a substrate of sirtuins, PARPs, and cADPRSs in many different signaling pathways, including DNA repair, inflammatory responses, posttranslational modifications, senescence, and apoptosis (Sultani et al., 2017; Rajman et al., 2018; Zapata-Pérez et al., 2021). Due to the ineffectiveness of traditional anticancer therapies, researchers are seeking new therapeutic targets. In this context, NMRGs could be a potential new target. By investigating the role of NMRGs in OC, new treatments can be developed and a better understanding of the disease can be gained.
Bioinformatics techniques have made it possible for researchers to study OC in greater detail in recent years. The primary objective of this study is to create NMRG signals that could provide insights into clinical treatment and prognosis for patients with OC. Based on the expression levels of NMRGs, we divided OC patients into two subgroups using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Furthermore, we constructed a prognostic model of OC patients based on NMRGs and generated an RS. We also examined the model’s stability and the significance of RS in clinical therapy. In summary, we successfully developed a risk model for NAD+ that could be used in clinical therapy and diagnostics.
MATERIALS AND METHODS
Ovarian Cancer Data Source and Preprocessing
We retrieved RNA expression and clinical data from ovarian cancer patients (Supplementary Table S1) in The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. Normal tissue/paracancerous tissue of OC in GTEx was used as control. Tissues from patients with GSE26193 (Supplementary Table S2) were used as the validation dataset. The GSE26193 annotation file is available at Affymetrix Human Genome U133 Plus 2.0 Array (HG-U133_Plus_2). We converted Fragments per kilobase (FPKM) values to transcripts per million (TPM) for the TCGA cohort. Patients with missing survival information were excluded from the study. The SVA package of the R software is used to correct for the effects of batch processing on data. We used the KEGG database (Pathway: hsa00760) and the Reactome database (R-HSA-196807) (Supplementary Table S3) to obtain NMRGs (Li C. et al., 2022). The Immune Checkpoint Immunophenoscore (IPS) is a good predictor of patient response to CTLA-4 and PD-1 immunotherapy. The Cancer Immunome Atlas (TCIA) provided immunophenotyping score files for immune checkpoint inhibitor (ICI) patients.
Ovarian Cancer Analysis Based on Online Database
Metascape (http://metascape.org/gp/) is a gene-annotation and analysis tool commonly used in genetic research. (Zhou et al., 2019; Han et al., 2021; Ye et al., 2021). The Metascape database was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses NMRGs.
The Cancer Genome Project (CGP, https://cancer.sanger.ac.uk/cosmic) is one of the most comprehensive databases exploring the impact of somatic mutations in human cancer. We analyzed the tumor mutational status of Ovarian Cancer based on COSMIC (Jubb et al., 2018; Sondka et al., 2018).
Construction and Verification of NAD+ Metabolism-Related Genes Signatures
We performed unsupervised consensus clustering to elucidate the relationship between NAD+ metabolic subtypes and prognosis. We used the R package “ConsensuClusterPlus” and repeated 1,000 times to guarantee the stability of the clustering (Wang et al., 2020; Wu et al., 2021a). Using the consensus clustering approach, determine the optimal numbers of clusters. Significant DEGs are present in several subtypes, and they were subjected to univariate Cox regression analysis to further screen DEGs linked with OC prognosis. After that, these genes were subjected to LASSO regression analysis to find more useful prognostic factors. Finally, 12 genes strongly connected to OS, and an RS was generated for each OC patient based on the expression levels of these genes and the Cox regression coefficient (Cao et al., 2020; Liang et al., 2020; Zhao et al., 2021). According to the median risk score, OC patients were divided into high-risk and low-risk subgroups. The prognostic prediction performance can evaluate using Kaplan-Meier survival analysis and time-dependent ROC curves. The validation cohort for the model was GSE26193. Cox regression analysis, both univariate and multivariate, was used to see if RS may be an independent prognostic factor in OC patients.
GSVA Enrichment Analysis
We used the “GSVA” R software tool to perform GSVA enrichment analysis to learn more about the differences in functional pathways and biological processes between distinct subtypes and high- and low-RS groups. For functional annotation, the R package “cluster profile” was used, and the gene set file (c2. cp.kegg.v7.2. symbols.gmt) was obtained from the MSigDB database (https://www.gsea-msigdb.org) (Sun et al., 2020; Chen L. et al., 2021; Wu et al., 2021b).
Tumor Microenvironment Analysis
The “ESTIMATE” package was used to predict the composition of the immune stroma in the tumor microenvironment (TME) of Ovarian Cancer patients, as well as to calculate Immune Score, Stromal Score and ESTIMATE Score (Fan et al., 2021; Li Y. et al., 2022). The ssGSEA algorithm was used to quantify dissimilarities in immune cell infiltration subsets and immune function enrichment between high- and low-RS groups. ssGSEA is a popular enrichment algorithm extensively utilized in medical studies (Liu et al., 2021; Liu et al., 2022a; Liu et al., 2022b; Liu et al., 2022c).
Statistical Analysis
All statistical analyses are performed by the use of R version 4.1.2. ifferentially expressed genes (DEGs) were identified using the R package “limma,” and survival analysis was performed using the “survival” and “survminer” packages (Ritchie et al., 2015). The “ggplots” software was used to create the volcano and heatmaps. The IC50 of chemotherapeutic medicines was predicted using the “pRRophetic” software (Geeleher et al., 2014; Wang et al., 2021). All statistical studies used two-sided, and p < 0.05 was considered to be significant.
RESULTS
Identification and Functional Enrichment Analysis of NAD+ Metabolism-Related Genes
Figure 1 depicts the study’s analysis process. The prognostic research revealed that most NMRGs were strongly linked with OC prognosis, implying that NMRGs play a key role in OC (Supplementary Figure S1). We performed a functional enrichment analysis of NMRGs using the Metascape database and found that they were significantly enriched in metabolism-related available pathways, including columns Nicotinate and nicotinamide metabolism, Nicotinate metabolism, NAD+ metabolism, NAD metabolic process, regulation of small molecule metabolic process, regulation of cellular ketone metabolic process, Pyrimidine metabolism, and regulation of reactive oxygen species metabolic activities (Figure 2A). Figure 2B illustrates the link between enrichment pathways. In addition, we identified the regulatory networks of crucial proteins in NMRGs using protein interaction enrichment analysis, and we discovered that they were mainly connected with nicotinate and nicotinamide metabolism, nicotinate metabolism, metabolism of water-soluble vitamins and cofactors, nicotinate and nicotinamide metabolism, pyridine-containing compound metabolic process, and nucleotide biosynthetic process (Figure 2C). Another important finding was that most NMRGs were dysregulated in OC. NAXE, RNLS, PNP, NT5DC4, PARP9, NMNAT2, RDH14, CD38 were significantly higher expressed in OC compared to normal tissues, while NAXD, AOX1, PAPR6, SLC5A8, NT5C, ENPP1, NADSYN1, SIRT2, PTGIS, NT5C2, NMRK1, NMNAT3 were significantly lower expressed in OC (Supplementary Figure S2).
[image: Figure 1]FIGURE 1 | Flowchart of this study.
[image: Figure 2]FIGURE 2 | Functional enrichment of NMRGs and visualization of interactome analysis results. (A) Metascape enrichment analysis for the NMRGs. (B) Metascape enrichment network visualization showing the intra-cluster and inter-cluster similarities of enriched terms. (C) Metascape visualization of the interactome network formed by NMRGs candidates, where the MCODE complexes are colored according to their identities.
Analysis of the Relationship Between TP53 and NAD+ Metabolism-Related Genes
Based on the COSMIC database, we looked at the mutation status of OC (Figure 3A) and discovered that missense substitution and G > A mutations were most common (Figures 3B,C). We also provide a lollipop plot of the distribution of mutations in the TP53 gene based on the TCGA data, as TP53 is the gene with the highest mutation frequency in OC (Figure 3D). TP53 was also strongly expressed in OC tissues (Figure 3E) and had a significant positive link with several immune-infiltrating cells such as NK cells, TCM, and Eosinophils (Figure 3F). Furthermore, we analyzed the relationship between TP53 and NMRGs, we found that TP53 was positively correlated with NADK, NAXD, NMRK2, NT5C2, NT5C1B, PARP16, PARP4, PARP8, QPRT, RNLS, SIRT1, SIRT3, SIRT5, and with NAXE, NNMT has a negative correlation (Figure 3G). Further study found that the TP53 mutant group tended to have higher NADK2 (Figure 3H), PARP14 (Figure 3J), NT5DC4 (Figure 3K) expression, and lower ENPP3 (Figure 3I) expression.
[image: Figure 3]FIGURE 3 | Analysis of the relationship between TP53 and NMRGs. COSMIC database analysis of OC mutation distributions (A) and its types (B, C). (D) Lollipop charts of the mutated TP53 gene, the figure caption shows the somatic mutation rate, and the subheadings shows the name of somatic mutation. (E) TP53 was significantly overexpressed in the tumor group. (F) The relationship between TP53 and immune infiltrating cells. (G) Relationship between TP53 and NMRGs. (H–K) Differences in the expression levels of NMRGs between the TP53 mutant group and the wild-type group. *p < 0.05, **p < 0.01, ***p < 0.001.
Identification of NAD+ Metabolism-Related Genes-Related Subtypes in Ovarian Cancer Patients
NMRGs have long been thought to have a crucial function in OC. For further analysis, we created NMRG’s risk network by combining the OC patient data from the TCGA and GEO databases into one cohort with the batch correction to remove differences between the data. Findings revealed that most NMRGs show positive correlation relationships and may be risk factors for OC (Figure 4A). The “Consensus Cluster Plus” R software was used to classify OC patients based on NMRG expression level (Figures 4B–D). The best stable clustering result came from this analysis when k = 3. We discovered three distinct subgroups: NMRG cluster A, NMRG cluster B, and NMRG cluster C, respectively. According to the predictive analysis results, patients with NMRG cluster C had a considerably worse outcome (p = 0.017; Figure 4E). PCA analysis revealed that the NMRG clusters were divided into three discrete clusters (Figure 4F). The heatmap also depicts the clinical characteristics of several subgroups of TCGA (Figure 4G) and GEO (Figure 4H) patients (Supplementary Table S4). Furthermore, we found that patients with NMRG cluster C had higher TP53 mutation frequencies and lower TP53 expression levels (Supplementary Figure S3).
[image: Figure 4]FIGURE 4 | Identification of NMRGs-related subtypes in OC patients. (A) A risk network for NMRGs. (B) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (C) Relative change in area under the CDF curve for k = 2 to 9. (D) K = 3 was a relatively stable distinction of the samples in the OC dataset. (E) Kaplan-Meier survival curve showing the relationship between NMRGs-related subtypes and overall survival. (F) Principal component analysis (PCA) analysis of NMRGcluster. The heatmap shows the clinical characteristics of different subtypes of TCGA (G) and GEO (H) patients.
Identification of Functional Pathway Enrichment and Immune Cell Infiltration Between Different Subtypes
Results of GSVA enrichment analysis (Figure 5A) depicted that NMRGcluster B was mainly enriched in apoptosis and signaling related pathways, such as RIG I like receptor signaling pathway, Cytosolic DNA sensing pathway, Apoptosis, Antigen processing and presentation, T cell receptor signaling pathway, B cell receptor signaling pathway, JAK STAT signaling pathway, NOD like receptor signaling pathway, and Toll-like receptor signaling pathway. According to Figures 5B,C, TGF beta signaling route, Wnt signaling pathway, Melanoma, Glioma, Cancer pathways, Focal adhesion, JAK STAT signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Mark signaling pathway were prominent in NMRG Cluster C. Furthermore, the intricacy of immune cell infiltration among the three species subtypes was revealed by ssGSEA enrichment analysis. Immune cell infiltration was lowest in NMRG cluster A. Most of the immune cells, such as activated B cells, activated dendritic cell, CD56dim natural killer cell, Eosinophilia, Gamma delta T cell, Immature B cell, and Immature dendritic cell, were abundant in NMRG cluster C (Figure 5D).
[image: Figure 5]FIGURE 5 | Identification of functional pathway enrichment and immune cell infiltration between different subtypes. (A–C) GSVA enrichment analysis shows the activation states of biological pathways in different subtypes. The heat map was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways. (D) Tumor microenvironment analysis of NMRGcluster subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
Development and Verification of Risk Signatures Associated With NAD+ Metabolism-Related Genes in Ovarian Cancer
We discovered 91 shared genes across the 3 categories to further investigate the association between NMRGs-related subtypes and prognosis (Supplementary Figure S4; Supplementary Table S5). Univariate COX analysis was performed on TCGA data to screen genes associated with prognosis. The LASSO regression method was used to further develop the OC prognostic model and establish a risk score (RS). Finally, risk signatures for 12 genes were discovered (Figures 6A,B). The risk score is calculated as follows: RS = (−0.083 * CXCL11 exp.) + (0.070 * VSIG4 exp.) + (0.009 * MS4A7 exp.) + (0.002 * SULF1 exp.) + (0.052 * SIRPA exp.) + (0.069 * RARRES1 exp.) + (−0.059 * IGHG1 exp.) + (−0.047 * PIGR exp.) + (0.063 * ZFP36 exp.) + (0.029 * OGN exp.) + (0.001 * MXRA8 exp.) + (−0.070 * FBLN2 exp.).
[image: Figure 6]FIGURE 6 | Development and verification of risk signatures associated with NMRGs in OC. (A) Cross‐validation for tuning parameter selection in the lasso regression. (B) Validation was performed for tuning parameter selection through the least absolute shrinkage and selection operator (LASSO) regression model for overall survival (OS). (C) Training cohort, Kaplan-Meier survival analysis of high and low RS subgroups. (D) Validation cohort, Kaplan-Meier survival analysis of high and low RS subgroups. (E) Training cohort, patient’s survival status. (F) Training cohort-RS distribution of patients. (G) Training cohort-PCA analysis. (H) Training cohort-plots of the AUC for time-dependent ROC performance. (I) Validation cohort, patient’s survival status. (J) Validation cohort-RS distribution of patients. (K) Validation cohort-PCA analysis. (L) Validation cohort-plots of the AUC for time-dependent ROC performance.
According to the median value of RS, OC patients were divided into low-risk group and high-risk group, and the cut-off value was 1.102, that is, patients with RS greater than 1.102 were in the high-risk group, and those with RS less than 1.102 were in the low-risk group. The GSE26193 cohort was used as the validation cohort and its RS was evaluated in the same way. The training cohort (p < 0.001; Figure 6C) and the validation cohort (p = 0.044; Figure 6D) showed that patients with high RS had a significantly worse prognosis. The patient’s survival status (Figures 6E,I) and risk distribution were also explored (Figures 6F,J). The PCA analysis revealed that RS has a more remarkable ability to separate patients into two classes (Figures 6G,K). The AUCs of the training cohort at years 1, 3, and 5 were 0.715, 0.672, and 0.733, respectively (Figure 6H), and the AUCs of the validation cohort at years 1, 3, and 5 were 0.624, 0.683, and 0.653, respectively, confirming the model’s stability (Figure 6L). The prognostic Nomogram plot analysis results revealed that RS was a good predictor of OC patient’s prognosis (Supplementary Figure S5). The results of univariate and multivariate COX analysis of TCGA and GEO data further indicated that RS was an independent prognostic factor in patients with OC (Supplementary Figure S6).
The Relationship Between Risk Score and Tumor Microenvironment
We discovered enhanced functional pathways between high- and low-RS groups to investigate further the applicability usefulness of our created RS in Ovarian Cancer. The high-RS group was found to be significantly associated with several cancer-related pathways, including colorectal cancer, endometrial cancer, non-small cell lung cancer, pathways in cancer, prostate cancer, small cell lung cancer, chronic myeloid leukemia, erbb signaling pathway, renal cell carcinoma, glioma, wnt signaling pathway, notch signaling pathway (Figure 7A). This result further revealed that patients in the high-risk group had a poor prognosis, multiple cancer-regulated pathways were enriched in the high-risk group, and different cancers may have crosstalk between NMRGs. The high-RS group had a higher stromal score and estimate score (Figure 7B), and was adversely connected with tumor stemness, according to study (Figure 7C). Furthermore, the results of immune cell infiltration analysis revealed that the high RS group had lower immune infiltrating cell enrichment and immune function pathways, such as aDCs, B cells, CD8+ T cells, DCs, NK cells, APC co inhibition, Checkpoint, Cytolytic activity, HLA, and Inflammation promoting gene (Figures 7D,E).
[image: Figure 7]FIGURE 7 | The relationship between RS and tumor microenvironment. (A) GSVA enrichment analysis shows the activation states of biological pathways in different subtypes. The heat map was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways. (B) Comparison of TME scores between low- and high-risk groups. (C) The relationship between RS and RNAss. (D) Comparison of the infiltration of 16 immune cells between low- and high-risk group. (E) Comparison of the immune functions between low- and high-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
Application of Risk Score in Immunotherapy and Chemotherapy of Ovarian Cancer Patients
The potential NMRGs-related RS to predict the prognosis of OC patients has been demonstrated. We gathered immunotherapy data of OC patients from the TCIA database to further enhance the clinical application value of RS, and we discovered that patients with low-RS tend to have higher IPS scores, are more responsive to immune checkpoint blockade therapy (PD1/CTLA4), and may have superior efficacy (Figures 8A–D). The TIDE algorithm further validated our conclusion that patients in the low-risk group were more sensitive to immunotherapy (Supplementary Figure S7). In addition, we compared the IC50 of common chemotherapeutic drugs in high and low-RS patients, and found that, except for Metformin (Figure 8O), most drugs had lower IC50 scores in high-RS patients, indicating high-RS patients were more susceptible to these drugs (Figure 8E–N), except for Metformin (Figure 8O), Gefitinib (Figure 8P).
[image: Figure 8]FIGURE 8 | Application of RS in immunotherapy and chemotherapy of OC patients. Immunotherapy in patients with high- and low-RS groups (A) CTLA4− PD1−; (B) CTLA4+ PD1+; (C) CTLA4+ PD1−; (D) CTLA4− PD1+. Analysis of drug sensitivity in high- and low-RS groups (E–P).
DISCUSSION
OC is one of the most dangerous gynecological cancers, with a significant mortality rate. Despite improvements in OS survival rates over the past 30 years, the 10-year survival rate for most patients remains low (Wu et al., 2020; Yang et al., 2020; Morand et al., 2021). Early symptoms of OC are subtle, and there are no reliable prognostic markers. As a coenzyme of redox reaction in the cytoplasm and mitochondria, NAD+ is essential for most basic biological functions in the cell (Li et al., 2019; Sharif et al., 2019; Palavalli Parsons et al., 2021). Although there is growing evidence that individuals with OC have altered NAD+ metabolism-related molecules or chemicals, no research on the NAD+ metabolic signature of OC prognosis have been reported (Fang et al., 2015; Chen J. et al., 2021; Challa et al., 2021; Valabrega et al., 2021).
In this study, we used public databases to gather OC expression profile data and comprehensively examined the involvement of NMRGs in OC. The majority of the NMRGs were show to be significantly linked with the prognosis of OC. TP53 is a well-known tumor suppressor that plays a critical function in cell cycle regulation (Schuijer and Berns, 2003; Vitale et al., 2020). We discovered that TP53 has a high mutation frequency in OC that TP53 expression levels were connected with the expression levels of multiple NMRGs, highlighting the necessity of investigating NMRGs even more. We divided OC patients into three subtypes based on NMRG expression levels, with the NMRGcluster C subtype having the highest chance of survival. In addition, using the LASSO regression analysis method, we built a predictive model combining 12 genes based on the differential genes between the three subtypes, which was confirmed in the GEO dataset. RS was an independent predictor of OC patients in both univariate and multivariate Cox regression analyses. The tumor microenvironment study revealed that RS may be used to characterize the tumor microenvironment of OC patients, with patients with high-RS having poor prognosis and decreased immune-infiltrating cells enrichment. We also discovered that RS might be used to guide clinical treatment and patients with low-RS are more likely to respond to immunotherapy. The results of the medication sensitivity study between high- and low-RS groups were also helpful in treating OC patients.
In this study, we developed a model that contains 12 NMRG signatures, which could help in the prognosis and clinical treatment of OC patients. We acknowledge, however, that our research has some limitations. The ROC results of the validation cohort were low, and the model may have certain errors in predicting the prognosis of some OC patients. In addition, further in vitro and in vivo experiments are required to validate our results, especially the model’s prediction of response to immunotherapy and chemotherapy.
CONCLUSION
Overall, we identified a new prognostic NMRGs signature of OC patients. This signature may help to develop new OC molecular targets and explore more effective immunotherapy strategies.
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Background: Cuproptosis is a new type of cell death that induces protein toxic stress and eventually leads to cell death. Hence, regulating cuproptosis in tumor cells is a new therapeutic approach. However, studies on cuproptosis-related long noncoding RNA (lncRNA) in head and neck squamous cell carcinoma (HNSC) have not been found. This study aimed to explore the cuproptosis-related lncRNAs prognostic marker and their relationship to immune microenvironment in HNSC by using bioinformatics methods.
Methods: RNA sequencing, genomic mutations, and clinical data of TCGA_HNSC were downloaded from The Cancer Genome Atlas. HNSC patients were randomly assigned to either a training group or a validation cohort. The least absolute shrinkage and selection operator Cox regression and multivariate Cox regression models were used to determine the prognostic model in the training cohort, and its independent prognostic effect was further confirmed in the validation and entire cohorts.
Results: Based on previous literature, we collected 19 genes associated with cuproptosis. Afterward, 783 cuproptosis-related lncRNAs were obtained through coexpression. Cox model revealed and constructed eight cuproptosis-related lncRNAs prognostic marker (AL132800.1, AC090587.1, AC079160.1, AC011462.4, AL157888.1, GRHL3-AS1, SNHG16, and AC021148.2). Patients were divided into high- and low-risk groups based on the median risk score. The Kaplan–Meier survival curve revealed that the overall survival between the high- and low-risk groups was statistically significant. The receiver operating characteristic curve and principal component analysis demonstrated the accurate prognostic ability of the model. Univariate and multivariate Cox regression analysis showed that risk score was an independent prognostic factor. In addition, we used multivariate Cox regression to establish a nomogram of the predictive power of prognostic markers. The tumor mutation burden showed significant differences between the high- and low-risk groups. HNSC patients in the high-risk group responded better to immunotherapy than those in the low-risk group. We also found that risk scores were significantly associated with drug sensitivity in HNSC.
Conclusion: In summary, our study identified eight cuprotosis-related lncRNAs signature of HNSC as the prognostic predictor, which may be promising biomarkers for predicting the benefit of HNSC immunotherapy as well as drug sensitivity.
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INTRODUCTION
Head and neck squamous cell carcinoma (HNSC) is a malignant tumor that affects different tissues and organs of the head and neck and poses a serious threat to human health (Siegel et al., 2018). HNSC is a complex disease. Typical risk factors are smoking, excessive alcohol consumption, and human papillomavirus (Jamal et al., 2016; Rooper et al., 2020). Although the current treatment methods for HNSC include surgery and chemoradiotherapy, the recurrence rate and metastasis risk of HNSC are still very high (Camisasca et al., 2011). In addition, the 5-year survival rate is less than 50% (Amit et al., 2013). An emerging approach to the treatment of HNSC is urgently needed. Hence, it is of great clinical significance to identify reliable biomarkers for predicting treatment response and prognosis and to develop effective treatment strategies for HNSC patients.
Cuproptosis is a new type of cell death that is different from the known cell death mechanism such as apoptosis, autophagy, and ferroptosis. When the known cell death mechanism is blocked, copper ions can still induce cell death. Cuproptosis occurs through the direct binding of copper ions to lipoacylated components of the tricarboxylic acid cycle in mitochondrial respiration, resulting in the aggregation of lipoacylated proteins. In addition, copper ions can reduce the protein level of the Fe–S cluster. They both induce protein toxic stress response and eventually lead to death (Tsvetkov et al., 2022). Based on this novel approach to cell death, we are developing new therapies for HNSC patients. Therefore, identifying the key regulators of cuproptosis is an important step toward further understanding.
Long noncoding RNA (lncRNA) are single-stranded RNAs with over 200 nucleotides in length, most of which do not have protein-coding capabilities (Gao et al., 2020). LncRNA regulates a variety of physiological and biochemical cellular processes by mediating chromosomal modification, transcriptional activation, and interference (Statello et al., 2021). Studies have shown that lncRNA is abnormally expressed and regulated in a variety of tumors (Castro-Oropeza et al., 2018). It has been reported that abnormal lncRNAs can be used as prognostic indicators of various cancers (Ai et al., 2020; Gai et al., 2020; Jiang et al., 2021). At present, there are few studies on cuproptosis-related lncRNAs and their association with the prognosis of HNSC patients. Therefore, this study aims to explore prognostic cuproptosis-related lncRNAs markers, to improve current strategies for diagnosis, treatment, follow-up, and prevention of HNSC.
In this study, we obtained HNSC RNA sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA) database and randomly assigned patients to a training and test datasets. We identified the cuproptosis-related lncRNAs prognostic marker (CRLPM) and developed an lncRNA signature prognostic model, which might represent potential therapeutic targets and provide valuable clinical utility for prognostic prediction of patients with HNSC. Last, we verified the predictive capacity of the model in order to provide a basis for the development of appropriate clinical strategies and revealed its potential to predict immunotherapy and drug sensitivity of HNSC.
MATERIALS AND METHODS
Download and Processing of Transcriptomic Data, Mutation Data, and Clinical Information
The RNA-seq transcriptome profiling dataset comprised 44 normal tissues and 504 HNSC samples, which were downloaded from TCGA (https://portal.gdc.cancer.gov/) database on April 20, 2022. The tumor somatic mutation data and clinical information including survival time, survival status, age, gender, grade, stage, and tumor-node-metastasis classification were also obtained from TCGA. The annotations for lncRNAs were obtained from the GENCODE website (https://www.gencodegenes.org/). Furthermore, cuproptosis-related genes were obtained based on previous literature (Tsvetkov et al., 2022).
Generation and Assessment of the Cuproptosis-Related Long Noncoding RNA
The coexpression analysis between cuproptosis-related genes and lncRNAs was performed by the “limma” package in R to obtain the cuproptosis-related lncRNAs. Meeting the |Cor|>0.4 and p < 0.001 criteria indicated an association. According to the results of the coexpression analysis, we used R “ggplot2,” “ggalluvial,” and “dply” packages to generate the Sankey plot.
Prognostic Model Construction
The samples were randomly divided into training and validation groups through the R package “caret.” Univariate Cox proportional risk regression was performed for each cuproptosis-related lncRNAs with survival data using the survival R package. We performed the least absolute shrinkage and selection operator (Lasso)-penalized Cox regression by using the “glmnet” package in R software to avoid overfitting. The optimal and minimum criteria for the penalty (λ) using 10 times cross-validation were selected. Next, multiple stepwise COX regression analyses were performed to identify the CRLPM. Afterward, the formula of the risk scoring model was established as follows: [image: image], where [image: image] represents the coefficients and [image: image] represents the normalized count of each cuproptosis-related lncRNAs. Based on the Lasso prognostic model, patients can get a risk score.
Validation of Risk Models
Patients in the training and validation groups were categorized into the high- and low-risk groups based on the median risk score and the corresponding coefficient of the training group. The Kaplan–Meier method was then conducted to display the prognostic performance of the risk score model in both the training and validation groups. In addition, the receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to evaluate the accuracy and diagnostic value of the CRLPM through the use of the survival ROC and time ROC packages in R. The principal component analysis (PCA) was also conducted to validate risk models, and the results were visualized using “scatterplot3D” packages in R software. The progression-free survival (PFS) was performed through “survival” and “survminer” packages in R. We used the C-index to predict the accuracy of risk models by using the R package “rms,” “dplyr,” “survival,” and “pec.” The validation and entire cohorts were performed to validate this model.
Establish and Evaluate a Nomogram
We used univariate and multivariate Cox regression to investigate the independent prognostic role of the risk model. Based on the results of univariate and multivariate COX regression, we developed a nomogram by employing the R package “rms,” “regplot,” and “survival.” The accuracy of the nomogram was evaluated using a calibration curve.
Exploration of the Relationship Between the Prognostic Risk Score and Clinical Stage
To verify whether the model is suitable for patients with different clinical stages, we explore the relationships between risk score and clinical stage to reveal their possible roles in HNSC using univariate and multivariate Cox regression analyses.
Pathway Enrichment Analysis and Gene set Enrichment Analysis
The differentially expressed genes (DEGs) between the high- and low-risk groups were identified using the R package “limma,” with the limited condition set to log2 |fold change| >1 and false discovery rate < 0.05. Based on the R package “clusterProfiler,” “org.Hs.eg.db,” and “enrichplot,” we explored the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways to clarify the molecular functions and key signaling pathways.
Estimation of Intratumoural Immune Cell Infiltration and Immunotherapy
To investigate the relationship between the CRLPM risk score and immune cell infiltration, the single-sample gene set enrichment analysis (ssGSEA) algorithms function package in the R software genome variation analysis package was used to evaluate the infiltration and function of tumor-infiltrating immune cells. The related heat map was utilized to drawn. Next, based on the simulation of the tumor immune escape mechanism, the tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict the response to immunotherapy (http://tide.dfci.harvard.edu) (Jiang et al., 2018). Therefore, we observed the effect of immunotherapy in the high- and low-risk groups based on the TIDE algorithm.
Evaluation of Drug Sensitivity
IC50 represented the semiinhibitory concentration of the measured antagonist. To evaluate CRLPM in the clinic for HNSC treatment, we calculated the IC50 of the chemotherapeutic drugs through the “pRRophetic” R package and its dependencies including “car, ridge preprocessCore, genefilter and sva.” A total of 138 drugs were included such as midostaurin, temsirolimus, tipifarnib, and imatinib. The Wilcoxon sign rank test was used to compare IC50 differences between common antineoplastic agents in the high- and low-risk groups. The boxplot was presented using the R package “ggplot2.”
Calculation of Tumor Mutation Burden Scores
Tumor mutational burden (TMB) reflects the number of mutations in cancer mutation. The mutation data of HNSC samples downloaded from TCGA were analyzed using the R package “maftools.” The waterfall diagram showed the relationship between risk scores and TMB in HNSC patients.
Statistical Analysis
All statistical analyses were processed by the R programming language (Version 4.0.3) on R studio. RNA-seq transcriptome data and somatic mutation data downloaded from TCGA were combined using the “limma” package in R. Pearson correlation test was used to analyze the correlations between cuproptosis-related genes and cuproptosis-related lncRNAs. CRLPM were screened for differential genes using the “limma” R package. Cox regression and survival analysis were performed through “survival” and “survminer” packages in R. Cox proportional risk regression model was used to calculate the hazard ratios of univariate and multivariate analyses. The GO terms and KEGG pathways were analyzed by using “clusterProfiler” in the R package. The “Pheatmap” R package was used to draw heat maps in cluster analysis. We applied the Wilcoxon rank-sum test to compare the difference between two groups of quantitative data. The overall survival (OS) time of the different groups was evaluated using the Kaplan–Meier analysis with a log-rank test. The chi-square test was used to compare categorical data between different groups. A p value of <0.05 was considered statistically significant.
RESULTS
Data Processing
We removed the genes encoding proteins and identified 16876 lncRNAs in the TCGA_HNSC dataset through the “GENCODE” database. In total, we collected 19 cuproptosis-related genes. Based on Pearson analysis, 783 cuprotosis-related lncRNAs were obtained. The Sankey plot showed the association between cuproptosis-related genes and cuproptosis-related lncRNAs (Figure 1A). Thenceforth, univariate COX regression analysis was applied to explore cuproptosis-related lncRNAs (p < 0.05). The 501 patients were divided into the training group (n = 251) and the validation group (n = 250), and the clinical information on HNSC was presented in Table 1. The results showed that there was no difference between the training and validation groups in all clinical traits.
[image: Figure 1]FIGURE 1 | Sankey diagram and heat map. (A) Sankey diagram of coexpression between 19 cuproptosis-related genes and 783 cuproptosis-related long noncoding RNA (lncRNAs). (B) correlation 19 cuproptosis-related genes and 8 prognostic cuproptosis-related lncRNAs. *p < 0.05, **p < 0.01, and ***p < 0.001.
TABLE 1 | Characteristic of head and neck squamous cell carcinoma patients.
[image: Table 1]Construction and Validation of the Cuproptosis-Related Long Noncoding RNAs Prognostic Marker
 The univariate COX analysis of 21 cuproptosis-related lncRNAs was shown in Figure 2A. We further screened 17 lncRNAs using Lasso–Cox regression. We identified trajectory changes in regression coefficients of lncRNAs and cross-validation results of model construction (Figure 2B, C). Afterward, multiple stepwise Cox regression analysis was performed, and we screened out eight CRLPM with survival to establish the risk score models. In conclusion, we generated a total of eight CRLPMs to participate in the construction of a prognostic model to predict the OS of patients with HNSC. Afterward, we obtained a heat map of the correlation between cuproptosis-related genes and CRLPM (Figure 1B). Risk score = (0.351771323*ExpressionAL132800.1) + (−0.378321346*ExpressionAC090587.1) + (0.404882025*ExpressionAC079160.1) + (−0.314303555*ExpressionAC011462.4) + (0.716547372* ExpressionAL157888.1) + (−0.593212656*ExpressionGRHL3-AS1) + (0.390726744*ExpressionSNHG16) + (−0.892732753*ExpressionAC021148.2). Based on the median risk score, we divided the patients in the training group into the high- and low-risk groups for survival analysis. The KM method was used to analyze the OS of patients in the two groups, and the results showed that the OS of patients in the high-risk group was significantly poorer than that in the low-risk group (p < 0.05; Figure 2D). The distribution of risk scores and the survival status of patients were shown in Figure 2E. The expression level of eight cuproptosis-related lncRNAs involved in the high- and low-risk groups was shown in a heatmap (Figure 2F). It can be observed that with the increase in risk score, the survival time was shortened and the number of deaths increased. We also observed statistically significant differences in OS between the high- and low-risk groups in the validation and entire cohorts (p < 0.05; Figure 2G–I, Figure 3A–C). The PCA revealed a high degree of differentiation between the high- and low-risk groups. Based on the risk model of cuproptosis-related lncRNAs, we intuitively observed that HNSC patients were effectively divided into two clusters (Figure 3D–G).
[image: Figure 2]FIGURE 2 | Construction of the prognostic cuproptosis-related long noncoding RNA (lncRNAs) risk model in head and neck squamous cell carcinoma (HNSC). (A) univariate Cox regression analysis for identifying the prognostic cuproptosis-related lncRNAs. (B–C) Lasso–Cox regression analysis was performed to construct prognostic prediction models. (D) Kaplan–Meier curves for survival analysis in the high- and low-risk groups. (E) risk score distribution and survival status in patients with HNSC. (F) heatmap of the prognostic markers and overall survival. (G) Kaplan–Meier curves for survival analysis in the validation cohort. (H) risk score distribution and survival status in the validation cohort. (I) heatmap of the prognostic markers and overall survival in the validation cohort.
[image: Figure 3]FIGURE 3 | Validation of the risk model in the entire cohort and principal component analysis. (A) Kaplan–Meier curves for survival analysis in the entire cohort. (B) risk score distribution and survival status in the entire cohort. (C) heatmap of the prognostic markers and overall survival in the entire cohort. PCA between the high- and low-risk groups based on the (D) all genes, (E) cuproptosis-related genes, (F) cuproptosis-related long noncoding RNA (lncRNAs), and (G) cuproptosis-related lncRNAs prognostic marker.
Independence of the Cuproptosis-related lncRNAs Prognostic Marker in Predicting Overall Survival
Univariate and multivariate Cox regression analyses were performed to assess the predictive value of the prognostic model. In univariate Cox analysis, there were statistically significant differences among age, stage, and risk score (Figure 4A). In multivariate Cox regression analysis, they remained prognostic value for OS (Figure 4B). The PFS indicated significant differences in progression-free survival between the high- and low-risk groups (p < 0.05, Figure 4C). The ROC curves demonstrated the accuracy and diagnostic value of the cuproptosis-related lncRNAs for OS, and the AUC reached 0.690 at 1 year, 0.701 at 2 years, and 0.668 at 3 years (Figure 4D). Both C-index and ROC curve indicated the predictive accuracy of the prognostic model was superior to other clinical including age, gender, grade, and stage (Figures 4E, F). A nomogram plot is a predictive tool for quantitative analysis of clinical outcomes in patients with HNSC. Thus, we initiated a prognostic nomogram based on the risk score and other clinical characteristics (Figure 5A). The calibration plots showed good conformity with the prediction of this nomogram (Figure 5B).
[image: Figure 4]FIGURE 4 | Independent prognostic analysis of head and neck squamous cell carcinoma (HNSC) overall survival (OS). (A) univariate Cox analysis. Age, stage, and risk score were statistically significant. (B) multivariate Cox analysis. Age, stage, and risk score were statistically significant. (C) Kaplan–Meier curves of progression-free survival (PFS). (D) TimeROC curve predicted 1, 3, and 5 years of OS for HNSC patients. (E) ROC demonstrated the predictive accuracy of the risk model was superior to other clinical parameters. (F) C-index showed the predictive accuracy of the risk model was superior to other clinical parameters.
[image: Figure 5]FIGURE 5 | Construction and evaluation of a nomogram based on CRLPM. (A) nomogram used to predict prognosis was constructed based on CRLPM. (B) calibration curves are used to predict 1-, 3-, and 5-year overall survival. (C) Kaplan–Meier curves of patients with stage I-II. (D) Kaplan–Meier curves of patients with stage III–IV.
Relationship Between the Marker and the Clinical Features in Head and Neck Squamous Cell Carcinoma
Next, to investigate the clinical utility of the CRLPM, we explored the relationship of the CRLPM with clinical features. The results indicated that there were significant differences between the distribution of risk scores and clinical stages. In specific, stages I–II and III–IV were statistically significant (p < 0.05, Figure 5C, D).
Pathway Enrichment Analysis and Gene Set Enrichment Analysis
To explore the biological functions and pathway analysis of DEGs between the high- and low-risk groups, we further performed the GO and KEGG enrichment analyses. A total of 359 DEGs were identified. In the biological process category, the genes were primarily concentrated in response to humoral immune response, immune response-activating cell surface receptor signaling pathway, and adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains. In the cellular component category, it was mainly enriched in the immunoglobulin complex, external side of plasma membrane and apical part of cell. In the molecule function category, it was antigen binding, immunoglobulin receptor binding, and receptor ligand activity (Figure 6A, C, E). Genes in the KEGG category were enriched in the IL-17 signaling pathway, hematopoietic cell lineage, and amoebiasis (Figure 6B, D, F).
[image: Figure 6]FIGURE 6 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. (A) barplot of the top 10 GO enrichment terms. (B) barplot of the top 30 KEGG enrichment terms. (C) bubble chart of the top 10 GO enrichment terms. (D) bubble chart of the top 30 KEGG enrichment terms. (E) circle diagram of GO enrichment analysis. (F) circle diagram of KEGG enrichment analysis. Biological process, cellular component, and molecular function.
Estimation of Intratumoural Immune Cell Infiltration and Immunotherapy
Figure 7A shows the heatmap of immune response based on the ssGSEA algorithm. Based on ssGSEA of TCGA-HNSC data, correlation analysis between immune cell populations and related functions revealed that T cell functions including regulation of inflammation, HLA, checkpoint (inhibition), and costimulation and coinhibition were significantly different between the high- and low-risk groups. These results indicated that GRLPM was associated with immune cell infiltration in HNSC. Based on the TIDE algorithm, we predicted the effect of patients receiving immunotherapy. Figure 7B shows significant differences in TIDE scores between the high- and low-risk groups and the lower TIDE scores in the high-risk group. This further proves that patients in the high-risk group have a low potential for immune escape and may receive better results from immunotherapy.
[image: Figure 7]FIGURE 7 | Immunological landscape in head and neck squamous cell carcinoma (HNSC) patients and relationship between tumor mutation burden (TMB) and risk score. (A) heatmap of the tumor-infiltrating lymphocytes based on single-sample gene set enrichment analysis algorithms among the high- and low-risk groups in HNSC. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) comparison of TIDE prediction score between the high- and low-risk groups. (C) Analysis of TMB differences between the high- and low-risk groups in HNSC. (D) survival analysis curves of the high- and low-TMB groups. (E) TMB risk combined with survival curve in HNSC. (F) waterfall plot of top 15 mutant genes in the high-risk group in HNSC. (G) waterfall plot of top 15 mutant genes in the low-risk group in HNSC.
Tumor Mutational Burden of the Cuproptosis-related lncRNAs Prognostic Marker in Head and Neck Squamous Cell Carcinoma Samples
We collected data on somatic mutation in HNSC and calculated corresponding TMB scores in order to investigate the potential role of tumor mutation load in HNSC. As shown in Figure 7C, the high-risk group had a higher mutation load than the low-risk group in HNSC. We divided patients into “Hight-TMB” and “Low-TMB” by median cutoff points and performed survival analyses. The results showed that the high-risk group had a lower survival rate than the low-risk group in HNSC (Figure 7D). A combined survival analysis of tumor mutation load and risk scores can obtain the combined survival curve. It revealed that the TMB and risk scores had significant effects on the OS of HNSC patients (Figure 7E). The mutation landscapes in the CRLPM high- and low-risk groups were compared. Waterfall plots visualized the 15 genes with the highest mutation frequency in the high- and low-risk groups. The results showed that more mutation events occurred in the high-risk group (Figures 7F, G). TP53 was the gene with the highest mutation frequency.
Drug Sensitivity
To explore the possible use of CRLPM in the individualized treatment of HNSC, we investigated the relationship between risk scores and IC50 of drugs in HNSC treatment. To this end, we compared the sensitivity of 30 common anticancer drugs between the high- and low-risk groups. As shown in Figure 8, the sensitivity of 12 of the 30 anticancer drugs was significantly different in the high- and low-risk groups (p <0.05). Meanwhile, 11 of the drugs had lower IC50s in the high-risk group, further proving that the high-risk group was more sensitive to drug treatment. This means that these drugs have a potential role in the treatment of HNSC in the future. However, the IC50s of temsirolimus were higher in the high-risk group, which suggests that the low-risk group had a high sensitivity to this drug. Results showed that in HNSC patients, except for temsirolimus, the risk score was inversely associated with IC50 (Supplementary Figure S1).
[image: Figure 8]FIGURE 8 | Drug sensitivity (IC50) correlated with high- and low-risk patients in head and neck squamous cell carcinoma.
DISCUSSION
Despite advances in surgery and chemotherapy in recent years, the prognosis for patients with advanced and metastatic HNSC remains poor (Miyauchi et al., 2019; Johnson et al., 2020). Cuproptosis overcomes the resistance of malignant cells to chemotherapy and helps remove defective cells. Therefore, cuproptosis may be an effective way to treat many types of cancer in the future. In addition, lncRNA affects the development and treatment of cancer through biological means (Gao et al., 2021; Tan et al., 2021). LncRNAs have been found to play an important role in the prognosis of HNSC and may be a potential effective molecular target for the treatment of HNSC (Ban et al., 2020; Tang et al., 2021; Zhu et al., 2021). However, the regulatory mechanisms of cuproptosis remain largely unknown, especially in the field of lncRNA. Therefore, we should focus on the potential interaction between lncRNA and cuproptosis to uncover potential prognostic markers.
In the current study, we identified 21 prognostic cuproptosis-related lncRNAs, eight of which were selected for prognostic construction to predict OS in patients with HNSC. First, 19 cuproptosis-related genes and 783 cuproptosis-related lncRNAs were obtained. Then, we used Lasso regression and COX regression to identify the prognostic cuproptosis-related lncRNAs. In addition, we further explored the CRLPM and common clinical variables, upstream regulatory mechanisms, immune cell infiltration and immunotherapy, and drug sensitivity of HNSC.
Based on Cox, Lasso, and multivariate Cox regression analyses, we identified eight lncRNAs associated with prognosis, including AL132800.1, AC090587.1, AC079160.1, AC011462.4, AL157888.1, GRHL3-AS1, SNHG16, and AC021148.2. Guo et al. (2021) found that AC079160.1 is a prognostic biomarker for gastric cancer, and AC079160.1 was found to be overexpressed. In general, high expression of AC079160.1 was associated with better survival in gastric cancer. AC011462.4 has been reported to play an important oncogenic role in tumors. Li et al. (2021) revealed that the high expression level of AC011462.4 was associated with longer OS. The expression level of AC011462.4 increased with the increase of risk score in colon cancer. GRHL3-AS1 expression was upregulated in patients with primary HNSC, and its expression was associated with the survival of patients with HNSC (Feng et al., 2021). Small nucleolar RNA host gene 16 (SNHG16) is considered to be a cancer-associated lncRNA that promotes tumor development primarily by acting as a competing endogenous RNA (ceRNA) (Grüll and Massé, 2019). There is evidence that SNHG16 acts as a ceRNA in various cancer by sponging corresponding miRNA to regulate mRNA (Zhao et al., 2018). In addition to the ceRNA mechanism, SNHG16 plays a role in promoting cancer through other mechanisms. SNHG16 can promote the proliferation and inhibit apoptosis of bladder cancer by inhibiting the expression of P21 (Cao et al., 2018). SNHG16 was found to be significantly upregulated in a variety of tumor tissues and cell lines, such as hepatocellular carcinoma, lung cancer, colorectal cancer, glioma, and other tumor types (Christensen et al., 2016; Yang et al., 2018; Chen et al., 2019; Su et al., 2019). In addition, high SNHG16 expression was associated with a poor prognosis. One study showed that in oral squamous cell carcinoma, the expression of SNHG16 was upregulated by c-Myc (Li et al., 2019). However, there are few reports on AL132800.1, AC090587.1, AL157888.1, and AC021148.2. Thus, it is necessary to further determine their mechanisms during cuproptosis through experiments in our future studies.
Afterward, we verify the accuracy of the risk model. The Kaplan-Meier method showed that the OS of the high-risk group was lower than that of the low-risk group. The ROC curves showed that CRLPM had high accuracy in predicting 1-, 3-, and 5-year survival, and AUC were all greater than 0.65. PCA intuitively showed differences between the high- and low-risk groups. PFS, C-index combining CRLPM with clinical information, a new nomogram was created to predict prognosis, lymph node metastasis, and distant metastasis in HNSC patients.
In addition, functional enrichment analyses revealed the potential biological mechanism of the involved CRLPM. We explored the key signaling pathways of eight cuproptosis-related lncRNAs. GO and KEGG analysis indicated that this differentially expressed CRLPM was mainly enriched in the IL-17 signaling pathway, hematopoietic cell lineage, and amoebiasis.
Our results found that the TMB was statistically higher in the high-risk group than in the low-risk group, suggesting that patients at high risk of HNSC have a better response to immunotherapy. Among the first 15 mutated genes, TP53 was mutated more frequently in HNSC patients. Moreover, the drug sensitivity of these CRPLM was analyzed to guide clinical treatment. There were significant differences in IC50 between high-risk and low-risk patients for all 12 drugs.
Cuproptosis is a new form of cell death that may play an important role in future cancer treatments. On the other hand, some lncRNAs influence cancer progression and treatment in a variety of biological ways. However, there is still a lot of unexplored territory between cuproptosis and lncRNA. Overall, this study provides new insights into the tumorigenesis and progression of HNSC from the perspective of cuproptosis. Biomarkers of cuproptosis that can be used for the prognosis of HNSC were explored, which could inform the treatment of the disease. We inevitably used only the TCGA validation and entire cohorts, and additional patients could improve the reliability of the model; thus, further validation is needed through preclinical studies. In the meantime, our study needs further validation in vivo and in vitro soon.
CONCLUSION
To sum up, we identified a risk model based on seven cuproptosis-related lncRNAs that accurately predicted the prognosis of HNSC. Hence, our study provided a new therapeutic strategy for individualized therapy and immunotherapy response in HNSC patients. These eight cuproptosis-related lncRNAs may be therapeutic targets for HNSC.
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Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the maintenance of DNA methylation mediated by the interaction between its SRA (SET and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor has been studied against the SRA domain. Therefore, this study focused on identifying the active natural drug-like candidates against the SRA domain. A comprehensive set of in silico approaches including molecular docking, molecular dynamics (MD) simulation, and toxicity analysis was performed to identify potential candidates. A dataset of 709 natural compounds was screened through molecular docking where chicoric acid and nystose have been found showing higher binding affinities to the SRA domain. The MD simulations also showed the protein ligand interaction stability of and in silico toxicity analysis has also showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation level (%5 mC) has been assessed after chicoric acid treatment was in the colorectal cancer cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment reduced methylation levels significantly. Thus, the study found chicoric acid can become a possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.
Keywords: UHRF1, SRA domain, chicoric acid, global methylation (5 mC), molecular docking, molecular dynamics simulation
INTRODUCTION
The DNA methylation like epigenetic modification in the CpG island manifests a crucial role in mammalian genomic architecture, genomes expression, and genome stability (Chen et al., 1998; Bird and Wolffe, 1999). Moreover, diverse biological responses including tumorigenesis are associated with multiple patterns of DNA methylation (Arita et al., 2008). Among several epigenetic modulators, the DNA methyltransferase family (DNMT) is one of the key components that play with epigenetic modification. It is well established that DNMT1 acts as a canonical epigenetic ‘writer’ (Patnaik et al., 2018) in the DNA methylation mechanism (Moore et al., 2012). Additionally, DNMT1 incorporates methyl group at the fifth position of cytosine in CpG islands and synthesizes 5-methylcytosine (5 mC). Moreover, DNMT1 maintains DNA methylation during the DNA replication phase (Pradhan and Esteve, 2003). In contrast, aberrant DNA hypomethylation and hypermethylation are associated with transcriptional activation and repression of gene expression, respectively (Baylin et al., 2001; Patnaik et al., 2018).
Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) is an essential partner protein of DNA methyltransferase and is also known as Np95 (Nuclear Protein 95 KDa) and ICBP90 (Inverted CCAAT box-binding Protein of 90 KDa) in mouse and human, respectively (Veland and Chen, 2017). Structurally, UHRF1 is a complex of distinct domains that include-SRA (SET and RING-associated) domain, a ubiquitin-like (UBL) domain, a plant homeodomain (PHD) domain, and a RING domain (Bostick et al., 2007; Bronner et al., 2007; Sharif et al., 2007; Zhang et al., 2011; Cheng et al., 2013). Moreover, UHRF1 belonging SRA domain recognizes the hemimethylated sequence in DNA and facilitates the DNMT1 binding, thus the maintenance of DNA methylation dynamics (Bostick et al., 2007).
The genomic abundance of DNA methylation disturbs normal cell division and complies with the pathogenic responses (Kong et al., 2019). It has been revealed that UHRF1 can regulate the DNA methylation in both normal and tumor cells by providing accompanying to the epigenetic writer- DNMT1 (Bostick et al., 2007; Sharif et al., 2007; Liao et al., 2015; Cai et al., 2017). Moreover, aberrant DNA methylation leads the alteration of the gene expression and has been considered as a fundamental regulator of tumor progression (Baylin and Jones, 2016). Moreover, global hypermethylation dictates cell proliferation in tumorigenesis through silencing tumor suppressor genes (TSGs) and its promoter (Shen and Laird, 2013; Baylin and Jones, 2016). Previous studies also revealed that UHRF1 protein is expressed during cellular propagation and can regulate the cell cycle (Bonapace et al., 2002; Patnaik, Estève and Pradhan, 2018). Moreover, another study also revealed that the expression of UHRF1 is required by the cell during for S-phase (Bonapace et al., 2002). However, G0/G1 phases may not notably require the UHRF1 (Uemura et al., 2000; Miura et al., 2001). UHRF1 protein is also found to be highly expressed in cancer cells across the cell cycle. For example, the overexpression of UHRF1 has been reported in several cancer-cell like-gastric, bladder, breast, lung, prostate, pancreatic, and colorectal cancer (Crnogorac-Jurcevic et al., 2005; Unoki et al., 2010; Jazirehi, Arle and Wenn, 2012; Kofunato et al., 2012; Li et al., 2012; Yang et al., 2012; Zhou et al., 2013).
Moreover, the study also revealed that overexpression of UHRF1 is associated with the DNA methylation-mediated silencing of tumor suppressor genes (Beck et al., 2018). A study also showed that by recruiting several repressor enzymes, such as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone lysine methyltransferases, i.e., G9a and Suv39H1, UHRF1 mediates the gene silencing mechanism (Alhosin et al., 2016). Additionally, UHRF1 has been substantially justified for chemotherapeutic targets (Unoki, 2011).
Chemotherapeutic resistance is a bottleneck problem in modern cancer therapies. The chemo-resistance is influenced through several mechanisms such as chemo target alterations, signaling pathway diversion, and the inactivation of cell death (Holohan et al., 2013; Ahamed et al., 2022). The chemoresistance is explored either by the innate response which is raised through pre-existing factors in tumor cells or by the adaptive response due to mutated expression of molecular target and therapeutic insensitivity to the target (Longley and Johnston, 2005; Ahamed et al., 2021). Likewise, epigenetic modifications of histone, such as acetylation and methylation, generate a range of drug insensitivity (Housman et al., 2014). For instance, aberrant methylation of the MDR1 promoter is related to structural variations of chromatin and transcriptional repression (Baker and El-Osta, 2003). Similarly, long-term use of 5-Azacytidine (AZA) like DNMTi acquires resistance (Singh and Yu, 2018). However, small inhibitors targeting UHRF1, promote the sensitivity of therapeutics and elevate cancer inhibition (Abdullah et al., 2021).
Hemimethylated CpG sites are target sequences for the maintenance of DNA methylation and become completely methylated by UHRF1. Among other domains, The SET and RING-associated (SRA) domain of UHRF1 identifies the 5-methylcytosine (5 mC) in hemimethylated CpG sequences (Arita et al., 2008; Avvakumov et al., 2008; Hashimoto et al., 2008; Qian et al., 2008; Frauer et al., 2011). The SRA domain recognizes the presence of methylated cytosine and regulates the recruitment of DNMT1 (Arita et al., 2008; Hashimoto et al., 2008; Qian et al., 2008; Frauer et al., 2011; Bronner, Krifa and Mousli, 2013). Indeed, the SRA domain shows direct interaction with DNMT1 and catalyzes the methylation function (Berkyurek et al., 2014). It has been shown that the activity of DNMT1 has been accelerated by 1.9-fold due to the SRA domain and 5-fold because of UHRF1 (Bashtrykov et al., 2014). Therefore, the SRA domain has been identified as a potential target for inhibiting the aberrant global DNA methylation (Bashtrykov et al., 2014). Natural small molecules would not only a promising therapeutics against the SRA domain but also can possess the least side effects as anti-cancer drugs (Das and Singal, 2004).
Beyond the traditional drug discovery strategy, in-silico drug design has gained the attraction of concern due to time and cost management (Lin, Li and Lin, 2020). In contrast, natural chemical extraction and characterization for anticancer drug development are frequently time-consuming and include several inevitable barriers (Fang et al., 2018). Computer-aided drug design (CADD) solves this constraint by making it simple to screen, identify, and describe novel drug candidates within a short amount of time (Ahammad et al., 2019). CADD-mediated therapeutic development against lung and prostate cancer, for example, has been previously reported (Cui et al., 2020). Molecular docking and molecular dynamics (MD) simulation-based approaches are used in the CADD study to find viable therapies for various diseases (Lu et al., 2018; Shukla et al., 2021). Molecular docking analysis aids in the first screening of medication candidates for favorable binding capacity to drug-like ligands to the intended target (Kitchen et al., 2004). Similarly, MD simulations aid in understanding the stability of protein-ligand interactions in a synthetic environment that mimics the human body’s environment (Singh and Bharadvaja, 2021). As a result, computational drug design methodologies were used in this investigation to help screen out possible therapeutic candidates against the SRA domain of the UHRF1 protein.
Previously, chicoric acid-a phenolic compound derived from various plants (Lee and Scagel, 2013) has been reported as it may useful in NASH and liver fibrosis treatment (Kim et al., 2017; Pan et al., 2020). Chicoric acid as a bioactive anticancer drug in colorectal cancer has been also reported (Tsai et al., 2012). However, as an epi-drug the role of chicoric acid was overlooked. Hence, the present study is aimed to investigate the role of chicoric acid in targeting UHRF1.
MATERIALS AND METHODS
Preparation of PDB Structures
The crystal structure of the SRA domain of E3 ubiquitin-protein ligase UHRF1 (c) was downloaded from the Protein Data Bank [ RCSB PDB: Homepage. Available online: https://www.rcsb.org/(Accessed on 25 March 2022).], the protein is then prepared and optimized by using the “Protein preparation wizard” tool of Schrödinger suite (Schrödinger, L. Schrödinger Release 2021-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021). The hydrogen bonds were added, metal bonds were deleted, zero-order bonds were added between metals and nearby atoms, and correction of the formal charges to metals and neighboring atoms was done. Then add and optimize the missing side chain by running a prime job, then generate protonation and metal charge for states for the ligands, cofactors, and metals at 7.0 ± 2.0 pH. Finally, H-bonds of hydroxyl, Asn, Gln, and His are optimized at pH 7.0 using PROPKA (Olsson et al., 2011), removal of water molecules beyond 3 Å from HET groups and OPLS4 force field has been used for minimization.
Data Retrieval and Ligand Preparations
The natural organic compound library was retrieved from Selleckchem (https://www.selleckchem.com) as an SDF file’ 20210416-L7600-Natural-Organic-Compound-Library.sdf’ on 25 April 2021. The sdf file contained 1,126 natural organic compounds; of these, only 774 were found to have 3D structures when searched in PubChem. The 774 compounds were further filtered based on molecular weight (<500), and finally, 709 compounds were obtained and selected for virtual screening. The selected compounds were prepared using LigPrep (Schrödinger Release 2021-4: LigPrep, Schrödinger, LLC, New York, NY, 2021), 2D structures were converted to 3D, and their tautomeric forms and ionization states were generated.
Receptor Grid Generation and Docking
Glide (Schrödinger, L. Schrödinger Release 2021-4: Glide, Schrödinger, LLC, New York, NY, 2021) was utilized for both grid generation and ligands docking. The grid was generated using the PDB: 3BI7. The binding region was specified by picking the entry identified using the SiteMap program (Schrödinger Release 2021-4: SiteMap, Schrödinger, LLC, New York, NY, 2021). The partial charge cut-off and non-polar atoms (VdW radii scaling factor) like parameters were set as 0.25 and 0.1, respectively. Molecular docking simulation has been performed by using the “ligand docking” tool in the Schrödinger suite. The selected protocol was Extra precision (XP), the ligand sampling method was flexible, and all the other settings were kept as default.
Molecular Dynamics Simulations
Molecular dynamics (MD) simulation has been performed by using were Schrödinger suite (Schrödinger, L. Schrödinger Release 2021-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2021. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2021), the systems of Chicoric acid (CID: 5281764) in complex with 3BI7 and Nystose (CID: 166775) were retrieved from the results of docking and first tuned through the “System Builder” tool. The orthorhombic-shaped box and TIP3P as the solvent model has been chosen. The neutralization of the system has been done with Na+ ions additions. Also, the slide distances box was fixed at 10 Aº. 100 ns/trajectory has been set up for the MD calculation while constantly maintaining pressure, temperature, and the number of atoms. The pressure and temperature have been set at1.01325 bar and 300.0 K, with the OPLS4 force field.
In Silico Toxicity Analysis
To investigate the toxicity of chicoric acid through in silico analysis we availed the ProtoxII web server (https://tox-new.charite.de/protox_II/) (65). The ProTox-II web server integrates several criteria like molecular similarity, pharmacophores, fragment propensities, and machine-learning models to predict various toxicity endpoints like-cytotoxicity, hepatotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways, etc.
Cell Culture and Dose Determination
The HCT116 cell line was collected by Dr. Imran’s Lab, Dept. of Biochemistry, KAU, Jeddah. The cell culture was performed in Dulbecco’s modified Eagle’s medium (UFS Biotech, Riyadh, KSA) supplemented with 10% FBS and 1% penicillin (Invitrogen) and incubated at 37°C. The cells were maintained up to 80–90% confluence and checked regularly to avoid any Mycoplasma contamination (Shait Mohammed et al., 2021). Upon confluence, cells were trypsinized and seeded in 6-well plates and incubated overnight to ensure that cells were healthy without any contamination. The next day the seeded cells were randomly treated with chicoric acid at 2.5, 5 and 7.5 µM concentrations.
Extraction of Genomic DNA
The genomic DNA was isolated from both control (untreated) and treated HCT116 cells line by utilizing DNAbler kit (https://havensci.com/; Lot no. DE95050). 200 µL of digestion buffer was added to each sample. 20 µL of RNase A and Proteinase K were added. Afterward, the samples were vortexed and incubated in a heat block (∼60°C). Then 200 µL of lysis buffer was added followed by vortexing and centrifugation. 99% ethanol was added to aliquots. Next, ethanol-lysis buffer mix samples were collected in a spin column (nuclease-free) for further centrifugation at 10,000 g speed. After centrifugation, the samples were washed by wash buffer by following the supplied protocol of the manufacturer. 50 µL elution buffer was added to the center of the column and incubated the column at room temperature for 2 min. Then centrifugation was done to elute the genomic DNA at a speed of 8000 g for 2 min (Khan et al., 2022).
Global Methylation (5 mC%) Level Determination
The global methylation (5 mC) level of the targeted HCT116 cell line was determined by using MethylFlash™ global DNA methylation (5-mC) ELISA Easy Kit (Catalog no. P-1030) in both treated and untreated conditions. 200 ng of DNA from each sample was collected and used for the experimental analysis. The binding solution was added to the extracted DNA samples in wells. After that, 5 mC antibody, developer solution, and stop solution were added as per manufacturer protocol. The optical density (OD) was determined at the end at 450 nm wavelength by using BioTek ELISA microplate reader (Khan et al., 2022).
RESULTS
Molecular Docking Studies
Since the crystal structure of the SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7) doesn’t contain ligands/inhibitors, and to define the Grid box, we decided to perform site mapping to identify the potential binding sites on the protein. The SiteMap program [Schrödinger Release 2021-4: SiteMap, Schrödinger, LLC, New York, NY, 2021.] detect only one site, as shown in Figure 1. Then, a grid box is generated around the detected protein’s binding site of the minimized protein by using a receptor-Grid-Generation tool in Maestro. The obtained Ligiprep file that contains 3D molecular structures of the selected compounds was docked into the protein binding site. Table 1 showed the docked ligands’ results that were selected due to their most negative docking scores, and these scores demonstrated the best-bonded ligand with relative binding affinities and conformations. Chicoric acid (CID: 5281764) and Nystose (CID: 166775) displayed the highest negative docking scores of -13.041 and -12.962 kcal/mol in complex with 3BI7, respectively. The molecular docking results showed that the chicoric acid bound well within the binding site (Figures 2A,B) with the highest negative docking scores of -13.041 and inter-acted within 3Å with 14 residues: Ala-463, Gly-464, Gly-465, Tyr-466, Asp-469, Ser-571, Val-575, Gln-499, Gly-483, Gly-482, Ser-481, Gly-480, Thr-479, Tyr-478, (Figures 2C,D). Chicoric acid form charged negative interaction with Asp-469; polar interaction with Ser-571, Gln 499, Ser 481, Thr-479; hydrophobic interaction with Ala 463, Tyr-466, Val-575, Tyr-478; Also form hydrogen bond donor interaction with Gly-464 Asp-469, Gly-482, Thr-479; and hydrogen bond acceptor interaction with Tyr-466, Gln 482.
[image: Figure 1]FIGURE 1 | The crystal structure of the SRA domain of E3 ubiquitin-protein ligase UHRF1. SiteMap surface “red, blue and yellow colour” of the SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7) “Green colour".
TABLE 1 | In silico screening/docking results of the docked ligands that were selected owing to their most negative docking scores, with SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7).
[image: Table 1][image: Figure 2]FIGURE 2 | Molecular Docking of chicoric acid with UHRF1. (A) Molecular surface display with an electrostatic potential color scheme for UHRF1-Chicoric acid complex and the close-up view presented. (B) Putative binding mode of Chicoric acid in the bindin site of UHRF1(PDB: 3BI7) (C) Chicoric acid was displayed as green ball-and-sticks. And the amino acid residues of the are represented as grey sticks, and H-bonds are described in yellow dotted lines. (D) 2D depiction of the ligand-protein interactions.
Since the molecular docking results showed that the Nystose bound well within the binding site (Figures 3A,B) with second-highest negative docking scores of -12.962 and interacted within 3Å with 16 residues: Arg-433, Gly-448, Val-446, Val-461, Leu-462, Ala-463, Gly-464, Gly-465, Tyr-466, Asp-469, Tyr-478, Thr-479, Gly-480, Ser-481, Gly-482, Gln-499 (Figures 3C,D). Nystose form charged negative interaction with Asp-469; charged positive interaction with Arg-433; polar interaction with Gln 499, Ser 481, Thr-479; hydrophobic interaction with Ala 463, Tyr-466, Val-446, Val-461, Leu-462, Tyr-478; Also form hydrogen bond donor interaction with Val-446, Val-461, Asp-469, Thr-479, Gly-480, Gly-482; and hydrogen bond acceptor interaction with Ala-463, Tyr-466.
[image: Figure 3]FIGURE 3 | Molecular Docking of nytose with UHRF1. (A) Molecular surface display with an electrostatic potential color scheme for UHRF1- Nystose complex and the close-up view presented. (B) Putative binding mode of Nystose in the binding site of UHRF1(PDB: 3BI7). (C) Nystose was displayed as green ball-and-sticks. And the amino acid residues of the binding site are represented as grey sticks, and H-bonds are expressed in yellow dotted lines. (D) 2D depiction of the lig-and-protein interactions.
Molecular Dynamics Simulation
The MD simulations are performed to simulate the aqueous physiological environment to assess the changes in protein conformation and binding affinity during the simulation time, compared to the original affinity and confirmation of the crystal structure (Hollingsworth and Dror, 2018). Therefore, the MD study was performed using Desmond software [Schrödinger Release 2021-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2021.] to evaluate the binding affinity and stability of the protein-ligand complexes at pH 7.0 ± 0.2 over 100 ns. Only the two top-scoring compounds in the docking study, i.e., Chicoric acid (CID: 5281764) and Nystose (CID: 166775), were analyzed by MD. The RMSD maps of the selected compounds complexed with the SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7) measure the average change in the positions of the atoms of the protein and ligand inside. For compound Chicoric acid, the RMSD of the protein and Chicoric acid laid over each other, indicating increased stability of the UHRF1-Chicoric acid complex (Figure 4A). Additionally, the fluctuation seen for both over the 100 ns was within the range. A similar RMSD pattern was observed for Nystose and UHRF1 complex, despite the sudden, non-significant fluctuation of Nystose at around 80 ns (Figure 5A).
[image: Figure 4]FIGURE 4 | Molecular dynamics simulation analysis of chicoric acid. (A) The RMSD plot was obtained for compound Chicoric acid complexed with SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7). The 100 ns simulation time reaffirmed the stability of the complex without any significant changes in the structure. (B) Stability of the secondary structure UHRF1 over the 100 ns of MD simulation when complexed with Chicoric acid. Protein secondary structure elements (SSE) like alpha-helices and beta-strands were monitored throughout the simulation. The top plot reported SSE distribution by residue index throughout the protein structure. The middle plot summarized the SSE composition for each trajectory frame throughout the simulation, and the plot at the bottom monitored each residue and its SSE assignment over time.
[image: Figure 5]FIGURE 5 | Molecular dynamics simulation analysis of nytose. (A) The RMSD plot was obtained for compound Nystose complexed with SRA domain of E3 ubiquitin-protein ligase UHRF1(PDB: 3BI7). The 100 ns simulation time reaffirmed the stability of the complex without any significant changes in the structure. (B) Stability of the secondary structure UHRF1 over the 100 ns of MD simulation when complexed with Nystose. Protein secondary structure elements (SSE) like alpha-helices and beta-strands were monitored throughout the simulation. The top plot reported SSE distribution by residue index throughout the protein structure. The middle plot summarized the SSE composition for each trajectory frame throughout the simulation, and the plot at the bottom monitored each residue and its SSE assignment over time.
The secondary structure of UHRF1(PDB: 3BI7) was also evaluated throughout the simulation while complexed with each ligand. Figures 4B, Figure 5B represented the protein evaluation while complexed with Chicoric acid and Nystose. The top plot showed the distribution of the SSE (α-helices and β-sheets) throughout the protein, represented by the residue index. The middle plot monitored the overall %SSE, while the bottom plot evaluated each SSE throughout the simulation. Both plots indicated that the overall %SSE of the protein was maintained, and each SSE was stable over the simulation.
The MD study also evaluated the binding interactions of a protein-ligand complex. For the ligand Chicoric acid, the bar graph represented what type(s) of interactions the amino acid residues in the binding pocket made with the ligand and for how long the interaction was maintained throughout the simulation. The interactions were color-coded in the stacked bar graph, as indicated in Figure 6A. Asp-467 made direct H-bonding and through water bridges with Chicoric acid and had a normalized value of ∼1.2. The value > 1 represented the combined value of >1 type of interaction, indicating that these interactions were maintained for ∼120% of the simulation time. The other vital interactions were Gly-464, Glu-467, Tyr-478, Thr-479, Gly-480, and Ser-571, with value of ∼0.7, ∼0.76, ∼0.8, ∼0.82, ∼0.95, and ∼0.6, respectively. Figure 6B showed only the interactions between Chicoric acid and the protein that occurred ≥30% of the simulation time. Figure 6C displayed the specific interactions between ligand Chicoric acid and the protein (top plot). At the same time, the bottom panel demonstrated the protein residues that interacted with the ligand at each time point/trajectory. If a residue makes more than one specific interaction with the ligand, it appears as darker orange color in the plot. As mentioned earlier, Asp-469 made >1 interaction with the ligand, represented by the dark orange color in the plot throughout the trajectory.
[image: Figure 6]FIGURE 6 | The interaction analysis of chicoric acid with UHRF1. (A) UHRF1 interactions with Chicoric acid throughout the simulation. The interactions between the ligand and protein were classified into hydrophobic, ionic, hydrogen bonds, and water bridges. Each classification can be further sub-grouped and noticed in the “Simulation Interactions Diagram” panel. The stacked bar charts were normalized over the trajectory’s course: for example, a value of 0.7 suggested that the specific interaction was maintained 70% of the simulation time. Values over 1.0 were possible, as some protein residue may make multiple contacts of the same subtype with the ligand. (B) The schematic diagram showed the detailed atomic interaction of Chicoric acid with UHRF1. Interactions occurred more than 30.0% of the simulation time in the selected trajectory (0.00 through 100.00 ns). It is possible to have interactions with >100% as some residues may have multiple interactions of a single type with the same ligand atom. (C) A timeline representation of UHRF1- Chicoric acid interactions is presented in (A). The top panel showed the number of specific contacts that the protein made with the ligand throughout the trajectory. The bottom panel showed which residues interacted with the ligand in each trajectory frame. According to the scale of the plot, some residues made more than one specific contact with the ligand, which was represented by a darker shade of orange.
Figure 7 shows the amino acid residues of the protein binding pocket that interacted with Nystose. Val-446, Ala-463, and Thr-479 made direct H-bonding, and through water, bridges with Nystose had a normalized value of ∼0.94, ∼1.50, and ∼1.63. The other vital interactions were with Arg-433, Gly-464, Asp-469, Gly-480, and Gly-482, with values of ∼0.82, ∼0.96, ∼1.38, ∼0.77 ∼0.82, respectively.
[image: Figure 7]FIGURE 7 | The interaction analysis of nytose with UHRF1. (A) UHRF1 interactions with Nystose throughout the simulation. (B) The schematic diagram showed the detailed atomic interaction of Nystose with UHRF1. (C) A timeline representation of UHRF1- Nystose interactions is presented in (A).
Analysis of In Silico Toxicity
Our in-silico toxicity results for chicoric acid nystose showed that the compounds belong to the toxicity class 5 with LD50 of 5000 mg/kg and 3000 mg/kg respectively. The various toxicity model reports that include hepatotoxicity, carcinogenicity, stress response pathways, etc, were depicted and represented in Table 2.
TABLE 2 | Toxicity analysis of chicoric acid with different parameters such as, organ toxicity, toxicity endpoints, and signaling and response pathways.
[image: Table 2]Global Methylation Level Reduced by Chicoric Acid
The level of global methylation (5mC) in HCT116 cell line was determined by using the computationally identified chicoric acid. Based on a previous study (Sun et al., 2019), the methylation level was calculated at three different doses of chicoric acid, such as 2.5, 5 and 7.5 µM. Moreover, 5Azacytidine (as a positive control of DNMTi) treatment was also performed for assessing the %5 mC level (Nur et al., 2022). The data illustrated that a 2.5 µM dose had a very low effect on the 5 mC level reduction relative to the control sample. Moreover, the methylation (5mC) level was moderately decreased by 5 µM chicoric acid treatment. However, 7.5 µM chicoric acid treatment significantly reduced the 5 mC level by around 0.6% compared to the control (Figure 8).
[image: Figure 8]FIGURE 8 | The global genomic methylation level study in chicoric acid treated HCT116 cell line. The percentage of global methylation (5mC) of HCT116 cell line treating with chicoric acid. The concentration of 7.5 µm showed the lowest percentage of methylation (5mC) level. 5Azadc; 5Azacytidine.
DISCUSSION
DNMTs have profound epigenetic effects on various tumorigenic and non-tumorigenic cells (Robertson, 2001). Besides a coordinating protein like UHRF1 interact with DNMTs through SAR domain. Previously, it has been shown that targeting the SRA domain of UHRF1 with various natural compounds provide a promising strategy for chemotherapeutic purpose in cancer cell lines (Patnaik et al., 2018). However, the study of targeting the SRA domain of UHRF1 by chicoric acid has been overlooked previously. Hence, in our present study, we aimed to investigate this gap. First, we retrieved the natural compounds library followed by virtual screening through molecular docking simulation. In molecular docking simulation, we virtually screened 709 natural organic compounds against the SRA domain of UHRF1. After molecular docking simulations, we selected the top two compounds based on the docking score which include chicoric acid and nystose. The molecular docking simulation result of chicoric acid showed that the chicoric acid interacted with 14 amino acids of SRA domain UHRF1 whereas nystose interacted with 16 residues including Asp469 residue. Asp469 of SRA domain is studied as an active residue that recognizes methylcytosine (Patnaik, 2020). The study showed that chicoric acid formed significant interactions with Asp469 while the interaction with nystose is very low. Furthermore, the study utilized molecular dynamics simulation to analyze the protein-ligand complex stability (Islam et al., 2022). Also, MD simulation calculates the RMSD values to confirm the interaction stability and rigidity of the compounds with the target protein (Liu et al., 2017). The RMSD value of the SRA domain-chicoric acid complex showed more stable considerably. Besides the interaction mapping also chicoric acid confirmed more stable and durable H-bonding with Asp469 residue throughout 100ns simulation. Moreover, we also investigated the in-silico toxicity test that showed both chicoric acid and nystose meet all the safety parameters and belong to toxicity class 5. However, chicoric acid has been characterized as a more selective candidate with a higher LD50 value of 5000 mg/kg. Previously, chemoinformatics study of chicoric acid has been studied targeting various proteins (Healy et al., 2009; Baskaran et al., 2012; Li et al., 2021). Till now no chemoinformatics study of chicoric acid-targeting SRA domain of UHRF1 has been elucidated.
Additionally, the global methylation level (5mC%) was measured to validate our in-silico results (De Oliveira et al., 2020). We tested the chicoric acid on the HCT116 cell line at 2.5, 5 and 7.5 µM doses. From the treated sample we have extracted the genomic DNA to measure the global methylation level of the genome (5mC%). Our results showed that at 7.5 µM treatment chicoric acid reduced the highest level of 5mC. No previous study showed the effect of chicoric acid on global methylation levels.
CONCLUSION
DNA methylation is necessary to control the mammalian genome expression and stability. However, aberrant DNA methylation leads to carcinogenesis. UHRF1 is found as a crucial target for facilitating uncontrolled methylation. Particularly, SRA domain of UHRF1 is highly responsive to incorporating other epigenetic writers including DNMT1. Therefore, our study utilized diverse in-silico approaches and virtually screened 709 natural compounds that showed chicoric acid and nytose as prominent interactors with or without the SRA domain of UHRF1 protein and finally identified chicoric acid as a promising drug candidate against the SRA domain. Finally, chicoric acid justified the epi-drug-like effect of chicoric acid on HCT116 cancer cell line by measuring the global methylation level (5mC%). Chicoric acid was substantially effective in reducing DNA methylation levels suggesting that chicoric acid may become a new epigenetic inhibitory drug for chemotherapeutic purposes in cancer treatment.
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Objective: Owing to the intensification of the aging process worldwide, the prevalence of adult degenerative scoliosis (ADS) is increasing at an alarming rate. However, genomic research related to the etiology of ADS is rarely reported worldwide. Since long noncoding RNAs (lncRNAs) play a pivotal role in the progression of human diseases, this study aimed to investigate ADS-associated messenger RNAs (mRNAs) and lncRNAs by RNA sequencing (RNA-seq), as well as performed comprehensive bioinformatics analysis based on the lncRNA–mRNA coexpression network and protein–protein interaction (PPI) network.
Methods: Initially, six whole blood (WB) samples were obtained from three ADS and three nondegenerative lumbar trauma patients who underwent surgical operation for RNA-seq exploration to construct differential mRNA and lncRNA expression profiles. Subsequently, quantitative RT-PCR (qRT-PCR) was performed to validate three randomly selected differentially expressed mRNAs and lncRNAs derived from the nucleus pulposus (NP) tissue of 14 other subjects (seven ADS patients and seven nondegenerative lumbar trauma patients), respectively.
Results: A total of 1,651 upregulated and 1,524 downregulated mRNAs and 147 upregulated and 83 downregulated lncRNAs were screened out from the RNA-Seq data, which constructed coexpression networks to investigate their regulatory interactions further. GO gene function prediction revealed that lncRNA-targeted genes might play a vital role in ADS via participation in multiple biological processes such as the AMPK signaling pathway, lysosomes, and ubiquitin-mediated proteolysis, as well as cellular metabolic processes. Moreover, the expression levels of three selected lncRNAs and mRNAs were validated by qRT-PCR, respectively, demonstrating that the relative expression levels were consistent with the RNA-seq data. Notably, the dysregulated RNAs, AKT1, UBA52, PTPN12, and CLEC16A, were significantly differentially expressed in ADS WB samples and might serve as potentially regulated genes for research in the future.
Conclusions: This study provides the first insight into the altered transcriptome profile of long-stranded noncoding RNAs associated with ADS, which paves the way for further exploration of the clinical biomarkers and molecular regulatory mechanisms for this poorly understood degenerative disease. However, the detailed biological mechanisms underlying these candidate lncRNAs in ADS necessitate further elucidation in future studies.
Keywords: adult degenerative scoliosis, long noncoding RNA, messenger RNA, whole blood, nucleus pulposus tissue, gene ontology, pathway analysis
INTRODUCTION
Adult degenerative scoliosis (ADS) is defined as a three-dimensional spinal deformity with a Cobb angle >10° in the coronal plane (Aebi, 2005), which refers to the structural curve formed by the previously normal spine after skeleton maturity; hence, it is also described as new-onset adult scoliosis (Grubb et al., 1988). Because of the increase in age and the aggravation of degeneration, up to 90% of patients with ADS may develop central spinal stenosis with neurogenic claudication, and 60%–80% suffer low back pain (Grubb et al., 1994; Silva and Lenke, 2010; Cho et al., 2014), even it is possible to cause complications such as syringomyelia and Charcot arthropathy of the lower limbs (Shi et al., 2021), which seriously affects the patient’s physical and mental health. According to current statistics, approximately 8.9% of people have been found to have ADS among the 40-year-old age group, with a significantly increased risk of scoliosis from 50 to 60 years. However, due to the complicated pathogenesis of ADS, its etiology is not completely clear. Comprehensive studies suggest that ADS is the consequence of a complex interaction between asymmetric intervertebral disc degeneration (IDD), intervertebral facet joint overload, lifestyle factors (smoking, obesity, etc.), and genetic factors (Vernon-Roberts et al., 2008; Silva and Lenke, 2010; York and Kim, 2017). It is estimated that by 2050, the proportion of the world’s population over 60 years old will nearly double (Schwab et al., 2005). At the same time, coupled with the acceleration of age-related spinal degeneration, the prevalence of ADS is increasing at an alarming rate (Ploumis et al., 2007), which is bound to substantially increase the economic burden on individuals and society from a public health perspective.
Long noncoding RNAs (lncRNAs) refer to RNA transcripts with a length of more than 200 nucleotides and lack protein-coding capabilities (Ponting et al., 2009; Li et al., 2016; Ren et al., 2018). An increasing body of evidence suggests that lncRNAs are involved in various processes of cellular activities, such as adipogenesis, apoptosis, pyrolysis, cell differentiation, epigenetic modification, and tumorigenesis and regulation (Fang and Fullwood, 2016; Geng and Tan, 2016; Bach and Lee, 2018; Ma et al., 2018; Tang et al., 2019). lncRNAs are implicated in the onset and development of various multifactorial diseases such as cancer, cardiovascular diseases, autoimmune diseases, and neurodegenerative diseases (Huang et al., 2013). Furthermore, lncRNAs can exist as a stable form in tissues and body fluids as immunity to endogenous RNase activity (Huang et al., 2016). Recently, some studies have illustrated that lncRNAs can facilitate autophagy and apoptosis of nucleus pulposus (NP) cells involving IDD. Chen et al. identified that overexpression of lncRNA XIST inactivates the PI3k/Akt signaling pathway to regulate autophagy of NP cells in IDD (Chen et al., 2021). Sun et al. demonstrated that lncRNA H19 promotes autophagy and apoptosis of NP cells through miR-139-3p/CXCR4/NF-kappa B axis to exacerbate IDD (Sun et al., 2021). Currently, the genomic studies related to the etiological mechanism of ADS have been reported rarely worldwide. We chose whole blood(WB) for the analysis because it has proven to be a useful surrogate of gene expression in the peripheral and central nervous system and can be collected in a minimally invasive manner that is amenable for potential future diagnostic test development (Parisien et al., 2017). Therefore, in this study, high-throughput sequencing was carried out to examine the lncRNA and mRNA expression profiles in WB samples collected from ADS patients and nondegenerative lumbar trauma patients, and verified in the NP tissues, which will fill in the gaps in the etiology of ADS and provide a research basis for the identification of causative genes and the selection of targeted therapeutic candidates in the future.
MATERIALS AND METHODS
Ethical Approval and Patient Consent
This study was approved by the Ethics Review Committee of the Second Affiliated Hospital of Kunming Medical University. The study was complied with the “Declaration of Helsinki” (revised in 2013). All human tissues were obtained and utilized with the informed consent of the participants. All samples were collected at the Second Affiliated Hospital of Kunming Medical University from January 2017 to December 2018.
Participants and Sample Collection
WB sample and NP tissue was obtained from 10 patients with ADS who underwent surgical operation (ADS group). The inclusion and exclusion criteria for the ADS group are illustrated in Table 1, Table 2: age range: 45–59 years (mean age: 53.4 ± 4.84 years) and body mass index (BMI)18.5 ≤ BMI<24. The patient was finally diagnosed as ADS upon a comprehensive assessment based on the medical history, clinical physical examination, and radiographic examination (X-rays show that the lumbar vertebrae as the apex with a Cobb angle range of coronal scoliosis are ≥15°; MRI indicates varying degrees of degeneration of the IVD, intervertebral facet joints, and ligamentum flavum).
TABLE 1 | Inclusion criteria of the ADS group.
[image: Table 1]TABLE 2 | Exclusion criteria of the ADS group.
[image: Table 2]Meanwhile, we recruited 10 lumbar spine trauma patients without disc degeneration (Normal group) who underwent the lumbar surgical operation (the inclusion criteria and exclusion criteria of the Normal group are shown in Table 3 and Table 4), and obtained normal NP tissues and WB samples, age between 18 and 35 years (mean age: 24 ± 3.94 years), 18.5 ≤ body mass index (BMI) < 24.
TABLE 3 | Inclusion criteria of the normal group.
[image: Table 3]TABLE 4 | Exclusion criteria of the normal group.
[image: Table 4]Five milliliters of fasting WB samples were collected from the median cubital vein of each participant between 9:00 and 9:30 AM. All WB samples were incubated in a PAXgene Blood RNA tube (BD, USA) for 24 h at −20 °C and then transfer it to a −80°C refrigerator for preservation. Then transfer it to a −80°C refrigerator for storage. After collecting all samples, place whole blood RNA tubes on a metal rack and thaw at room temperature (18°C-25°C) for two hours. After thawing, carefully invert the whole blood RNA tube ten times. Finally, total RNA extraction, detection, lncRNA library construction, and sequencing were performed on six samples. Eventually, the NP tissues were isolated from each participant during the operation and temporarily stored in cold phosphate-buffered saline (PBS) and then quickly transferred to the laboratory. After, the samples were washed in PBS to remove all blood and annulus fibrous tissue and then frozen at −80°C for further examination.
RNA Extraction and Quality Control
According to the manufacturer’s instructions, the total RNA was extracted from each WB sample employing TRIzol reagent (Invitrogen, Carlsbad, CA, United States). RNA purity was determined by using a spectrophotometer (NanoDrop-1000, Thermo Fisher Scientific) with OD260/OD280 readings (10mM Tris, pH 7.5) between 1.8 and 2.1. The temperature was maintained at −80°C, while the RNA quality was measured by the Agilent 2,100 TapeStation (Agilent Technologies, United States) Biochip Analysis System. Eventually, samples were selected with RNA integrity values > 7.0 to construct cDNA libraries. The RNA-seq bioinformatics pipeline is illustrated in Figure 1A, and the workflow for this study is schematically shown in Figure 1B.
[image: Figure 1]FIGURE 1 | (A) RNA-seq bioinformatic pipeline. (B) Schematic diagram of the workflow of this study.
Construction of cDNA Libraries
The Illumina® NEBNext® Ultra™ Directed RNA Library Preparation Kit is utilized to construct Illumina True-Seq strand lncRNA libraries. In brief, the lncRNA library is constructed as a strand-specific library. The first strand of cDNA is synthesized by reverse transcription in the same method as the conventional NEB library build. Distinctively, the dTTP in the dNTPs was substituted by dUTP when the second strand was synthesized, which was followed by cDNA end repair, the addition of A-tails, ligation of sequencing junctions, and length screening in the same manner. Then, the second strand of the U-containing cDNA was preferentially degraded using USERase, as well as purification and enrichment of the product by PCR to create the final cDNA library, which was quantified via Agilent 2,200. Ultimately, six cDNA libraries were constructed for this study.
RNA Sequencing
Mapping of paired-end reads: prior to reading the mapping, clean reads, reads with >5% ambiguous bases (denoted as N), and low-quality reads containing >20% of bases with mass <20 are obtained from the original read by removing the splice sequence. The filtered reads were aligned to the human genome [version: GRCh38 National Center for Biotechnology Information (NCBI)] by applying HISAT2. Typically, the percentage of reads generated by sequencing should be above 70% (Total Mapped Reads or Fragments), as long as the reference genome is selected appropriately and the experiment is free from contamination. Then, the HTSeq software was utilized to obtain gene count, which was quantitatively analyzed for each sample of the species based on the known genotype. Finally, the RPKM method was employed to determine gene expression, which was obtained from the samples based on expression statistics for various gene types.
Identification of Differentially Expressed lncRNAs and mRNAs
Sequence reads were matched by the TopHat 2.0 program (Vernon-Roberts et al., 2008) to obtain comparison files. Annotated references for mRNA and lncRNA analysis were derived from the RefSeq and Ensembl transcriptional databases. Reference genomes of reads were filtered through HISAT2 alignment analysis. Cuffmerge software was applied to screen lncRNAs. The gene expression data of six samples were obtained through the fragments per kilobase of exon model per mapped reads (FPKM), the methods for standardization of gene expression levels. In this analysis, to enhance the reliability of the analytical algorithm results, differentially expressed (DE) mRNAs and DE lncRNAs were identified based on the FPKM value of the individual gene in each sample by edgeR (Robinson et al., 2010). The absolute logarithmic fold change (LFC) ≥ 1 (|log2 fold change|≥ 1) and p-value <0.05 were adopted as the screening criteria. Principal component analysis (PCA), implemented in the prcomp function of R, was conducted to abstract the main characteristics of the data, which served as an indicator of the overall state of the data.
Construction of the lncRNA–mRNA Weighted Coexpression Network
LncRNAs play a biological role by regulating mRNAs. A coexpression network of lncRNA/mRNA was constructed to investigate the potential interactions between lncRNA and mRNA, which could identify the key lncRNAs involved in ADS and their potential functional. This study analyzed the correlation between lncRNA and mRNA in the samples using the Pearson correlation coefficient method. The absolute values of correlation coefficients >0.95 and p < 0.001 were specified as screening criteria. Then, the biological functions of lncRNAs were predicted by performing a functional enrichment analysis on mRNAs.
GO and KEGG Pathway Enrichment Analyses
All DE mRNAs were subjected to GO and KEGG pathway analysis, which could investigate the potential role of lncRNAs coexpressed with the related mRNAs. GO analysis (http://www.geneontology.org) is commonly employed in large-scale gene function enrichment studies (York and Kim, 2017) to construct gene annotations. The p-values for DE genes are measured and corrected. Then multiple hypothesis testing is performed so that the probability of GO term being enriched by differential genes could be calculated more accurately. Typically, GO analysis covers three domains: cellular composition (CC), molecular function (MF), and biological process (BP). The Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.genome.jp/kegg/) is a biological system database that integrates genome, chemistry, and system function information. KEGG can be used to link genomes and biological functions through PATHWAY tracking. In living organisms, different genes coordinate with each other to perform specific biological functions. The significant enrichment of pathways allows the identification of the dominant biochemical metabolic pathways and signal transduction pathways involved in a particular gene. The false discovery rate (FDR) was used to denote the significance of the p-value (an FDR value of <0.05 was recommended).
Protein–Protein Interaction Network Construction and Module Selection
The target genome sequences are aligned with the protein sequences of close relatives or model species from the STRING protein interaction database (http://string-db.org/) utilizing Blastx, whereby interaction networks are constructed from the protein interaction relationships of selected close relatives or model species. Thus, the differential gene–protein interaction network data files can be imported directly into Cytoscape software for visual editing.
Quantitative Real-Time PCR Validation
The RNA was extracted from the NP samples of additional ADS group (n = 7) and Normal group (n = 7), respectively, in which cDNA was subsequently synthesized by reverse transcription reactions. Add 1 μg of total RNA to an enzyme-free PCR tube on ice; add 5×iScript Reaction Mix (4 μl) and iScript Reverse Transcriptase (1 μl) to each well, then make up 20 μl with nuclease-free water, and mix well and centrifuge briefly (5s); Reverse transcription conditions: 37°C (60 min) −85°C (5°min) −4°C (stop); after the reaction was stopped, the cDNA was placed in a refrigerator at −20°C for PCR, and the primer was diluted with DEPC water according to the instructions; prepared to conform to the following systematic procedure: 2×iTaqTM universal SYBR Green supermix (10 μl), forward and reverse primers (1.8 μl), DNA template (1 μl), and DEPC (7.2 μl). Centrifuge briefly (5 s) after mixing. The PCR procedure is as follows: 1) 95°C (5 min); 2) 95°C (15 s) −60°C (30 s), 40 cycles; 3) termination at 4°C. The 2-ΔΔCt method was employed to calculate the relative RNA expression level. This value is represented as mean ± SD. A student t-test was conducted, and when p-value < 0.05, the results were considered to be significantly different.
Statistical Analysis
Statistical analyses were performed by the Statistical Package for the Social Sciences (SPSS) version 25.0 software (SPSS Inc., Chicago, IL, United States). Data are presented as the mean ± SD of the results of at least three independent experiments. Appropriately, Student t-tests and Mann–Whitney U-tests were applied to determine significant differences between groups. The Pearson correlation coefficient was applied to inspect the correlation of expression between samples. A p-value < 0.05 was considered statistically significant for all tests. Moreover, in order to correct the batch effect, the RUVseq package for the R language was applied for batch correction. In addition, heatmaps and volcano maps were exported from the R language Heatmap package 2, scatter maps, and PCA results from the ggplot2 package.
RESULTS
Overview of Differentially Expressed lncRNAs and mRNAs
In order to determine whether there was clustering or outliers in the sample set, the differences between the clustering of the mRNA (Figure 2A), lncRNA (Figure 2B) expression matrixes of the ADS, and Normal samples in different datasets were examined using three-dimensional principal component analysis (PCA). The results showed that ADS was well distinguished from the Normal samples. The expression levels of lncRNAs and mRNAs in WB samples from 3 ADS patients and 3 normal patients were analyzed comparatively through RNA-seq. DE lncRNAs and mRNAs were screened following the criteria |log2 (fold change)| > 1, p-value < 0.05. LNC_000044 (log2 (fold change):15.093, p = 2.56E-07) and ENST00000424684.2 (log2 (fold change): 10.144, p = 9.61E-05) were the most upregulated and downregulated lncRNAs among the identified lncRNAs. We constructed volcano maps to visualize the differential expressions of mRNAs and lncRNAs between samples (Figures 3A,B). The results showed that a total of 230 lncRNAs (147 upregulated and 83 downregulated) and 3,175 mRNAs (1,651 upregulated and 1,524 downregulated) produced significant changes. EPB41 (log2 (fold change):18.16001835, p = 2.23E-07) and MYADM (log2 (fold change): 14.67313747, p = 0.000185825) were the most upregulated and downregulated mRNAs among the identified mRNAs. The top 10 most DE mRNAs and lncRNAs (five upregulated and five downregulated) are displayed, respectively, in Table 5 and Table 6. Furthermore, heatmaps were created to group lncRNAs and mRNAs at the expression level between samples (Figures 4A,B).
[image: Figure 2]FIGURE 2 | Principal component analysis (PCA) shows the clustering of mRNA and long noncoding RNA (lncRNA) expression matrices in different samples. (A) PCA of mRNA expression between the ADS cluster and normal cluster. The red dots represent the ADS samples, and the blue dots represent the normal tissue (Normal) samples. (B) PCA of the lncRNA expression between the ADS cluster and normal cluster. The red dots represent the ADS samples, and the blue dots represent Normal samples.
[image: Figure 3]FIGURE 3 | Analysis of differentially expressed mRNAs and lncRNAs. Volcano plot showing differentially expressed (A) mRNAs and (B) lncRNA in ADS and normal groups.
TABLE 5 | Top 10 differentially expressed mRNAs.
[image: Table 5]TABLE 6 | Top 10 differentially expressed lncRNAs.
[image: Table 6][image: Figure 4]FIGURE 4 | Clustering analysis. Hierarchical clustering illustrates distinguished expression difference of (A) mRNAs and (B) lncRNAs between the two groups and homogeneity between groups.
Functional Analysis of Differentially Expressed mRNAs
DAVID (a database of annotation, visualization, and integrated discovery) was applied to perform GO and KEGG pathway analyses, which was carried out to figure out the function of DE mRNAs. The enrichment results of GO indicated that the most abundant biological processes of upregulated mRNA include primarily cellular process or metabolic process and cellular metabolic process; the most significant enriched cellular component was the cell, cell part, and intracellular; the most plentiful molecular function was binding and protein binding (as shown in Figure 5A). The most abundant biological processes of the downregulated mRNAs mainly include metabolic processes, cellular metabolic process, and cellular macromolecule metabolic processes; the most significantly enriched cellular components include intracellular, intracellular part, and organelle; the most enriched molecular functions consist of combinations of organic cyclic and heterocyclic compounds (Figure 5B). Moreover, the results of the KEGG analysis revealed that upregulated mRNAs were associated with endometrial cancer, colorectal cancer, and adherens junctions (Figure 5C). In contrast, downregulated mRNAs were involved in base excision repair and MAPK signaling pathways (Figure 5D).
[image: Figure 5]FIGURE 5 | Comparison of functional annotations for differentially expressed mRNAs. The 20 most enriched Gene Ontology (GO) terms for the parental genes of (A) the upregulated differentially expressed mRNA and (B) the downregulated differentially expressed mRNA. Enriched GO terms are on the vertical axis, and the number of annotated differentially expressed genes associated with each GO term is indicated on the horizontal axis. The 20 most enriched KEGG pathways for (C) the upregulated differentially expressed mRNA and (D) the downregulated differentially expressed mRNA. The size of the symbol represents the number of genes, and the colors represent the p-value.
Functional Analysis of Differentially Expressed lncRNAs
Since lncRNAs have been reported to achieve the function by modulating mRNAs, we performed an extra-screen for DE lncRNAs associated with mRNAs. In brief, the coexpressed mRNAs of each DE lncRNA were identified by the correlation with protein-coding gene expression, which was used for functional enrichment analysis. Figure 6A–C displays the 20 most significantly enriched GO terms and the KEGG pathway in the upregulated lncRNAs; conversely, Figure 6B–D shows the 20 most enriched GO terms and the KEGG pathway in the downregulated lncRNAs. Enrichment analysis of the KEGG pathway indicated that the DE lncRNAs were associated with a multitude of molecular pathways, including endocytosis, lysosomes, adhesion junctions, mismatch repair, ubiquitin mediated proteolysis, and the AMPK signaling pathway.
[image: Figure 6]FIGURE 6 | Comparison of functional annotations of the target gene of upregulated and downregulated differentially expressed lncRNAs. The 20 most enriched Gene Ontology (GO) terms for the parental genes of (A) the upregulated differentially expressed lncRNA and (B) the downregulated differentially expressed lncRNA. (B) Twenty most enriched KEGG pathways for (C) the upregulated differentially expressed lncRNA and (D) the downregulated differentially expressed lncRNA. The enriched GO terms are on the vertical axis, and the number of annotated target genes in each GO term is indicated on the horizontal axis. The size of the symbol represents the number of genes, and the colors represent the p-value.
lncRNA–mRNA Coexpression Networks
We were able to anticipate the target gene of lncRNA through intersample coexpression analysis of lncRNA and mRNA, explore the synergistic effect of lncRNA and its differential expression targets, and identify the pairing that may be relevant to the pathogenesis of ADS. Ultimately, eight interested lncRNAs were generated in the analysis, and a lncRNA-mRNA coexpression network was constructed for visualization (Figure 7).
[image: Figure 7]FIGURE 7 | LncRNA–mRNA coexpression network. Differentially expressed lncRNA–mRNA regulatory networks consist of eight lncRNAs and 26 mRNAs. The blue circles represent mRNAs, and the red diamond represents lncRNAs. The Pearson correlation coefficient was limited to an absolute value > 0.95 and p-value <0.001.
Validation by Quantitative RT-PCR
When screening genes for PCR validation, the following three factors were considered: 1. high fold of expression difference between samples (log 2 (fold change)); 2. high gene expression (FPKM); and 3. relatively high gene sequencing depth readcount. Upon comprehensive analysis of the RNA-seq results, three DE mRNAs (HK1, CD44, and NFIX) and DE lncRNAs (XLOC_005,209, LINC01002, and XLOC_03,374) were selected for performing qRT-PCR to validate their expression levels further.
Eventually, the qRT-PCR data results showed consistency with the RNA-seq results (Figure 8), which further confirmed the reliability of the RNA-seq data.
[image: Figure 8]FIGURE 8 | Validation for the expression of significant transcripts by quantitative RT-PCR. (A) Relative expression levels of qRT-PCR validation of three lncRNAs (XLOC_005209, XLOC_033746, and LINC01002) and (B) three mRNAs (HK1, NFIX, and CD44) are shown comparing ADS and normal groups. (C–D) Comparing qPCR results and RNA-seq data reveals a good correlation between such two methods. The heights of the columns represent the fold changes (log2 transformed) computed from the qPCR and RNA-seq data. Data are presented as mean ± SD, n = 7. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value <0.0001.
PPI Network
In order to construct a visual network map, interaction relationships for the list of differential genes were extracted from the STRING protein interaction database (https://www.string-db.org/). The network data files were imported directly into Cytoscape software for visual editing. The size of a node in a PPI map is proportional to the degree of the node. Among them, PPI nodes with relatively high connectivity include UBA52, AKT1, SUPT20H, RPL19, EGF, and MYC (Figure 9).
[image: Figure 9]FIGURE 9 | Protein–protein interaction network of significant differentially expressed genes. PPI nodes with relatively high connectivity include UBA52, AKT1, SUPT20H, RPL19, EGF, and MYC. The size of a node in a PPI map is proportional to the degree of the node.
DISCUSSION
ADS is a progressive, relentless, and special complex three-dimensional deformity of the spine (Kelly et al., 2020), characterized by occurrence in the lumbar spine with occasional compensatory thoracic curvature, rotation usually limited to the apex of the deformity, which has the potential to cause radiculopathy or spinal stenosis (Farfan, 1980; Bradford et al., 1999; Murata et al., 2002; Ploumis et al., 2007), and spondylolisthesis (Cho et al., 2014). The pathogenesis of ADS is similar to the starting point of degenerative spinal disease, namely, age-related disc degeneration (Kelly et al., 2020). The universally accepted theory is that age-related disc degeneration occurs in the general population, which is characterized by relatively symmetrical spinal degeneration without the onset of deformities. However, what confuses us is why some geriatric populations suffer from ADS? While degenerative processes are seen in a vast majority of the population with normal aging, what varies are the mechanical, nutritional, and inherited factors that can lead to more rapid progression, potentially resulting in significant pathology. In 2006, Kobayashi et al. (2006) found that osteophytes on the lateral endplate exceeding 5 mm or asymmetrical inclination of the IVD space exceeding 3 mm are essential risks factors for ADS. The asymmetric degenerative changes will result in a progressive imbalance of axial load. In contrast, an accelerating axial rotation will stretch the surrounding ligaments, which could aggravate degenerative changes and produce subsequent deformities, such as spinal instability, scoliosis, and/or kyphosis (Benner and Ehni, 1979). Therefore, ADS can be considered as the result of asymmetric degeneration and progressive coupling of the IVD and facet joint complex (Ploumis et al., 2007). The IVD is composed of three anatomical components: the central gelatinous NP, the outer annulus fibrosus (AF), and the cartilaginous endplate (CEP) that anchor onto the vertebral body. The NP is the core of the IVD and is surrounded by a lamella of AF. NP cells play a crucial role in maintaining the integrity of intervertebral discs via producing extracellular matrix (ECM) components, such as aggrecan alongside type II and type X collagen (Roughley, 2004). A growing body of evidence now suggests that aberrant NP cell functions, including altered cell proliferation, apoptosis, ECM production/degradation, and cytokine secretion, are key to IDD pathogenesis. It has been suggested that nucleus pulposus (NP) cells can activate the immune response once the blood-NP barrier is damaged, which is a crucial factor of IDD degeneration and can result in multiple pathological processes (Bridgen et al., 2017). Thus, WB samples can reflect the microenvironment and cytokines, which might be a breakthrough in discovering the pathogenesis of ADS.
According to reports, lncRNAs play an essential role in a wide-range of functional bioactivities. In recent years, many scholars have performed RNA sequencing on IDD and constructed a differential expression profile of RNA, which confirms that lncRNA plays a vital role in the development of IDD. A recent genetic study revealed a correlation between COL2A1 polymorphism and ADS in Korean patients, suggesting a genetic component but failing to claim that this single nucleotide polymorphism (SNP) is a solitary genetic factor associated with ADS (Hwang et al., 2014). The significance of that study lies in the fact that it is the first study that the genetic factor should be considered as one of the multiple factors related to ADS, despite additional studies being warranted. Although several studies on molecular levels have addressed spinal degeneration, no such study has yet addressed the etiology of the ADS. Currently, considering that the molecular mechanisms of ADS are still poorly understood, few studies have focused on the differential RNA expression profile in ADS. Therefore, a comprehensive analysis of the DE lncRNAs and mRNAs and the identification of the candidate genes associated with ADS development may potentially be used to identify individuals at risk.
RNA-seq, a high-throughput technology, could provide a comprehensive view of the entire transcriptome, including subtype and gene fusion detection, gene expression profiling, targeted sequencing, and single-cell analysis (Hrdlickova et al., 2017). RNA-seq could facilitate the identification of novel genes, allele-specific expression, fusion genes, disease-associated single nucleotide polymorphisms (SNPs), post-transcriptional modifications, noncoding RNA (ncRNA), and differential gene expression between different groups or treatments (Byron et al., 2016). Adopting a novel RNA-seq analysis technique, this study demonstrated that the expression of lncRNAs and mRNAs in ADS patients differed from healthy patients. A total of 230 lncRNAs (147 upregulated and 83 downregulated) and 3,175 mRNAs (1,651 upregulated and 1,524 downregulated) were differentially expressed between ADS patients and healthy volunteers. LNC_000044 and ENST00000424684.2 were the most upregulated and downregulated lncRNAs. EPB41 and MYADM were the most upregulated and downregulated mRNAs.
With the aim of better understanding the regulatory role of DE lncRNAs and the function of DE mRNAs, this study revealed differentially expressed genes associated with the WB samples of ADS and normal group through GO and KEGG pathway analysis. The results show that a substantial number of DE lncRNAs and mRNAs were discovered to be associated with inflammation, autophagy (mitochondrial autophagy, endothelial autophagy, and cellular autophagy), apoptosis, and angiogenesis, which are consistent with the recognized pathogenesis of ADS. Asymmetric disc degeneration is a multifactorial process, including mechanical stress, oxidative stress, aging, inflammation, genetic factors, the biological changes of IVD cells, extracellular matrix (ECM) degeneration, etc. (Hwang et al., 2016; Liu et al., 2016; Chen et al., 2017).
The most distinguishing feature of lncRNAs is the lack of ability to encode proteins, which means it is necessary to explain the biological function in other ways. For each DE lncRNA, the role of the lncRNA was inferred from the function of the corresponding mRNA by screening its corresponding coexpressed coding gene and finding the associated RNA-mRNA pair. In this study, we have selected eight interested lncRNAs to interact with 26 mRNAs, which performed lncRNA-mRNA coexpression network analysis. PTPN12 plays a role as a modulator of hypoxia-induced AMPK activation and endothelial autophagy to facilitate angiogenesis, whereas endothelial autophagy is the prerequisite for angiogenesis (Chandel et al., 2021). Meanwhile, in the GO results, we found that AKT1 is also involved in cell migration and germinal angiogenesis. However, the IVD is a special organ without vascular and immune privileges (Tabana et al., 2016). Previous studies have shown that the development of disc degeneration is associated with angiogenesis (Ma et al., 2015). The degradation of ECM leads to the migration of endothelial cells, which in turn results in the formation of new blood vessels. The formation of new blood vessels exposes the NP to the immune system, which causes an immune response that leads to degenerative disease (Sun et al., 2013). Endothelial autophagy and angiogenesis may play a role in asymmetric disc degeneration of ADS, although more research is necessary to elucidate the underlying mechanisms in the future.
Subcellular localization studies have shown that CLEC16A, a membrane-associated endosomal protein, interacts with the E3 ubiquitin ligase Nrdp1, which is discovered in cytoplasmic vesicles and the Golgi apparatus. The deletion of CLEC16A induces the increase of Nrdp1 target Parkin, which is a principal regulator of mitochondrial autophagy (Soleimanpour et al., 2014). These findings suggest that Golgi-associated CLEC16A negatively regulates autophagy by modulating mTOR activity, as well as binding to Vps16A, a subunit of the class C Vps-HOPS complex, which could regulate receptor expression through autophagy (Tam et al., 2017; Pandey et al., 2019). Notably, UBA52 had the highest connectivity in the PPI network in our study. UBA52, ubiquitin A-52 residue ribosomal protein fusion product 1, known as a protein-coding gene, encodes a protein composed of N-terminal ubiquitin and C-terminal ribosomal protein L40, a C-terminal elongation protein (CEP) (Lund et al., 1985). Ubiquitin is a highly conserved nuclear and cytoplasmic protein which is also involved in the maintenance of chromatin structure, regulation of gene expression, and stress responses. UBA52 regulates the ubiquitination of ribosomes, while knockdown of UBA52 always induces cell cycle arrest (Kobayashi et al., 2016). Ubiquitination can modulate the formation and nucleation of autophagosomes, which means that ubiquitination can control the autophagic process in response to various stress conditions. Autophagy plays a critical role in maintaining normal physiological processes, and dysregulation of ubiquitin-mediated autophagy has been associated with many diseases. A potential link may exist between ADS and disorders of the ubiquitin-mediated autophagic pathway (as shown in Figure 10).
[image: Figure 10]FIGURE 10 | Key genes and molecular mechanisms that may be related to ADS. ADS, adult degenerative scoliosis; lncRNAs, long noncoding RNAs; mRNAs, messenger RNAs; RNA-seq, RNA sequencing; PPI, protein–protein interaction; NP: nucleus pulposus; IDD, intervertebral disc degeneration; qRT-PCR: quantitative RT-PCR; IVD, intervertebral disc; DE, differentially expressed; BMI, body mass index; PBS, phosphate-buffered saline; FPKM, fragments per kilobase of exon model per mapped reads; CC, cellular composition; MF, molecular function; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate; SNPs, single nucleotide polymorphisms; AF, annulus fibrosus; CEP, cartilaginous endplate; ECM, extracellular matrix; CEP, C-terminal elongation protein.
To the best of our knowledge, this is the first report to conduct a genetic study on lncRNA-mRNA differential expression profiling performed on WB samples derived from ADS patients. Notably, the coexpression network of coding–noncoding genes provides valuable insights into the pathogenesis of ADS. Nowadays, the number of identified lncRNAs is multiplying. Therefore, further studies are necessary to explore their molecular and biological functions. Moreover, this study suffers from the following limitations. First, the samples that identified the cellular origin and tissue expression patterns of lncRNA were obtained from the WB of the ADS, which exclusively reflects local variations. Second, the sample size is relatively insufficient, which may limit the validity of the results. Third, the results were exclusively derived from bioinformatics analysis and high-throughput sequencing analysis, but without any animal experiments to further confirm these results. Furthermore, all the participants we enrolled in this study were Han Chinese from China. However, it is well known that ethnicity is also a factor affecting gene expression (Li et al., 2017). Since no other studies concerning the ADS have yet been reported, more studies will be needed to confirm the possible role of DE genes in the development of ADS.
CONCLUSION
RNA-seq analysis provides a novel paradigm for investigating dysregulated lncRNAs and mRNAs. The differentially expressed genes may be involved in the regulation of the occurrence and development of ADS. This study provides a crucial biological basis and reference for exploring molecular markers or new gene targets for the diagnosis and treatment of adult degenerative scoliosis.
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RNA sequencing and integrative analysis reveal pathways and hub genes associated with TGFβ1 stimulation on prostatic stromal cells
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Objective: Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men. The transforming growth factor beta 1 (TGFβ1) plays an important role in the proliferation and differentiation of BPH stroma. However, it is not clear yet which important pathways and key genes are the downstream of TGFβ1 acting on prostatic stromal cells.
Methods: GSE132714 is currently the newer, available, and best high-throughput sequencing data set for BPH disease and includes the largest number of BPH cases. We examined the TGFβ1 expression level in BPH and normal prostate (NP) by analyzing the GSE132714 data set as well as carrying out immunohistochemistry of 15 BPH and 15 NP samples. Primary prostatic stromal cells (PrSCs) were isolated from five fresh BPH tissues. RNA sequencing and bioinformatics analysis were used to reveal important pathways and hub genes associated with TGFβ1 stimulation on PrSCs.
Results: TGFβ1 was upregulated in BPH stroma compared to NP stroma. A total of 497 genes (244 upregulated and 253 downregulated) were differentially expressed in PrSCs with and without TGFβ1 stimulation. The Gene Ontology revealed that differentially expressed genes (DEGs) were mainly enriched in progesterone secretion, interleukin-7 receptor binding, and CSF1-CSF1R complex. The Wnt signaling pathway, PI3K−Akt signaling pathway, JAK−STAT signaling pathway, and Hippo signaling pathway were screened based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. FN1, SMAD3, CXCL12, VCAM1, and ICAM1 were selected as hub genes according to the degree of connection from the protein–protein interaction (PPI) network.
Conclusion: This study sheds some new insights into the role of TGFβ1 in BPH stroma and provides some clues for the identification of potential downstream mechanisms and targets.
Keywords: benign prostatic hyperplasia, TGFβ1, prostatic stromal cells, RNA sequencing, bioinformatics analysis
1 INTRODUCTION
Benign prostatic hyperplasia (BPH) is the most common urological disease in aging men, affecting approximately 50% of men at the age of 50 years (Chughtai et al., 2016). Thereafter, its prevalence increases about 10% each subsequent decade (Egan, 2016). Although the underlying etiology of BPH is still not fully understood, hormonal alterations, chronic inflammation, metabolic syndrome, and tissue remodeling related to aging have been suggested as key cofactors in the dysregulation of prostatic homeostasis (De Nunzio et al., 2016). The development of BPH is characterized by nonmalignant proliferation of the epithelial and stromal compartment in the prostate transition zone (Zhang et al., 2016). Regardless of the exact ratio of epithelial to stromal cells in the hyperplastic prostate, there is no doubt that the prostatic stromal compartment represents a significant volume of the gland.
The transforming growth factor beta (TGFβ) family plays an important role in the proliferation and differentiation of BPH stroma, as well as being a key factor for androgen-controlled prostate growth (Schauer and Rowley, 2011; De Nunzio et al., 2016). The upregulation of TGF-β1 (which is produced by prostatic stromal cells) during BPH would facilitate expansion of the stromal compartment, epithelial to mesenchymal transition, down-regulation of claudin-1, and epithelial barrier damage (Schauer and Rowley, 2011; De Nunzio et al., 2016; Wang et al., 2020; Chen et al., 2021). Moreover, TGFβ1 is one of the critical cytokines that induce fibroblasts to transform into myofibroblasts and promotes fibrosis, during which the expression of COL1A1, COL3A1, and α-SMA is increased (Sheng et al., 2018; Wang et al., 2019). The TGFβ1 expression is increased with age in the prostate (Wang et al., 2020), and the overexpression of TGF‐β1 in the murine prostate induces inflammation and fibrosis (Barron et al., 2010). Although TGFβ1 can promote proliferation and fibrosis of prostatic stromal cells, it is not very clear which important pathways and key genes are the possible downstream of TGFβ1.
RNA sequencing (RNA-seq) is a promising and widely used technology that can be used to analyze the complete characterization of RNA transcripts, including transcription start site mapping and gene fusion detection (Wang et al., 2018). In this study, we used the RNA-seq method to study primary prostatic stromal cells with or without TGFβ1 treatment, in order to reveal important pathways and hub genes related to the downstream of TGFβ1. Therefore, this study will improve our understanding of the mechanism of TGFβ1 on PrSCs, which may gain more insights into the potential therapeutic targets during the progression of BPH.
2 MATERIALS AND METHODS
2.1 Patient specimens and ethics statement
A total of fifteen BPH samples were derived from patients undergoing the transurethral resection of prostate (TURP). Also, fifteen normal prostate (NP) samples were acquired from patients (aged ≤50 years) undergoing cystoprostatectomy for infiltrating bladder cancer without prostate infiltration. We excluded patients with prostate cancer and prostatitis, as well as patients receiving alpha-adrenergic receptor antagonists or 5α-reductase inhibitors. All procedures performed in the research involving human participants were conducted in accordance with the principles of the Declaration of Helsinki. The study was approved by the Ethics Committee at Beijing Tongren Hospital.
2.2 Immunohistochemistry
The prostate tissues were fixed in 4% formalin buffer at 4°C overnight, then dehydrated in ascending ethanol series, embedded in paraffin, and cut into 5-μm sections. After conventional deparaffinization, hydration, and antigen retrieval, the endogenous peroxidase was inactivated by 3% hydrogen peroxide. The primary antibodies of rabbit anti-TGFβ1 (1: 500, Abcam) were used for incubation at 4°C overnight. The primary antibody was recognized by the biotinylated secondary antibody at room temperature for 30 min and visualized by the VECTASTAIN ABC peroxidase system and peroxidase substrate DAB kit. The TGFβ1 expression level was blindly determined via the pathological review based on the staining score (0–9) that is defined by multiplying the staining intensity score (0–3) with the staining extent score (0–3) in prostate tissues.
2.3 Isolation and culture of primary prostatic stromal cells
A total of five human primary prostatic stromal cells (PrSCs) were obtained from five different BPH tissues. Briefly, fresh prostatic tissues were dissected into small fragments, and primary prostatic stromal cells were isolated and cultured as described previously (Sheng et al., 2018; Chen et al., 2021). The stromal cells were cultured with RPMI 1640 (Gibco, Rockville, MD, United States) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, United States) and 1% penicillin–streptomycin solution (Gibco) at 37°C under 5% CO2 and humidified atmosphere. The stromal cells were used at passages 3–5. According to the previous literature, the commonly used dose of TGFβ1 in the study of benign prostatic hyperplasia ranges from 1 ng/ml to 10 ng/ml (Sheng et al., 2018; Wang et al., 2020; Wang Z. et al., 2021). Therefore, cells in our study were treated with 10 ng/ml TGFβ1 (R&D Systems, MN, United States) for 72 h.
2.4 RNA sequencing
RNA sequencing was performed on PrSCs with or without TGFβ1 treatment. Profiling of transcriptome analysis was performed with 2 μg high-quality total RNA per sample by RNA-seq at Annoroad Gene Technology Corporation (Beijing, China) according to the procedures described previously (Hu et al., 2018; Li et al., 2020). Briefly, total RNA was isolated using TRIzol reagent (Thermo Fisher Scientific). RNA samples were rRNA depleted, and RNA libraries were constructed using the TruSeq RNA Library Prep Kit v2 (Illumina) and sequenced as 150 bp paired-end reads using the Illumina HiSeq 2000 (Beijing Annoroad Co. Ltd.). We filtered RNA-seq next-generation sequencing (NGS) reads to obtain clean reads for further evaluation and analysis, including quality inspection of reads according to the Phred score, in comparison to the human genome reference assembly (hg19) using HiSAT2 and merger of transcripts in StringTie. We used fragments per kilobase of transcript per million mapped reads (FPKM) to assess mRNA expression. Finally, the heatmap was generated using R software with differentially expressed genes (|logFC|>1, q-value<0.05). Gene-enrichment and Gene Ontology-based functional annotation were performed with DAVID Bioinformatics Resources 6.8. A hypergeometric distribution test was carried out to identify GO (Gene Ontology) functions and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways in which DEGs were significantly enriched (q-value <0.05) compared with total background expressed genes. Next, we performed the analyses of protein–protein interaction (PPI) networks using STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape to take aim at potential targets.
2.5 Statistical analysis
Statistical analyses were performed using GraphPad Prism software, version 7. Significant differences in statistical analyses were calculated using a two-tailed Student’s t-test for two groups. p-values <0.05 were considered to be statistically significant.
3 RESULTS
3.1 TGFβ1 was upregulated in BPH stroma compared to NP stroma
GSE132714 is currently the newer, available, and best high-throughput sequencing data set for BPH disease and includes the largest number of BPH cases. To determine the role of TGFβ1 in BPH, we first examined the relative mRNA expression level of TGFβ1 in BPH and normal prostate using this GSE132714 data set. Among 18 BPH and 4 NP tissues being analyzed, the TGFβ1 mRNA expression level was higher in BPH (p = 0.0054, Figure 1A). In order to determine whether the TGFβ1 protein level showed the same increasing trend in BPH, we used immunohistochemistry staining to compare the TGFβ1 protein expression in 15 BPH samples and 15 NP samples. As shown in Figures 1B,C, TGFβ1 was primarily expressed in the prostatic stroma, and the TGFβ1 protein expression was higher in BPH than the normal prostate (p = 0.0025).
[image: Figure 1]FIGURE 1 | TGFβ1 is strongly upregulated in benign prostatic hyperplasia (BPH) compared with normal prostate (NP). (A) Expression levels of TGFβ1 mRNA between BPH and NP in the GSE132714 data set. **p < 0.01. (B) Expression levels of TGFβ1 protein in BPH and NP tissues. Protein expression of TGFβ1 was assayed by immunohistochemical staining in prostatic tissues. **p < 0.01. (C) Representative TGFβ1 immunohistochemical staining images in BPH and NP tissues at different magnification levels.
3.2 Differential gene expression of TGFβ1 treatment on PrSCs
To examine the effect of TGFβ1 on prostatic stromal cells, we first isolated primary prostatic stromal cells from five BPH samples, and Supplementary Figure S1 showed the microscopic morphology of PrSCs. Then, we performed RNA sequencing on PrSCs treated with and without TGFβ1. The results indicated that a total of 497 genes (244 upregulated and 253 downregulated) were differentially expressed between TGFβ1 treatment and control (Figure 2A). In the meantime, the volcano diagram results showed significantly DEGs between TGFβ1 treatment and control (Figure 2B). The heatmap plot of 497 DEGs is shown in Figure 2C; the top 10 significantly upregulated DEGs included COL10A1, COMP, IL11, NOX4, UCN2, SLC19A2, CALB2, TNFSF15, COL7A1, and BHLHE40, as well as the top 10 significantly downregulated DEGs included CSF1, VAMP5, SECTM1, APOL1, APOL3, GBP2, CD47, GMPR, UBA7, and FZD4. Moreover, we verified the top 10 significantly upregulated and downregulated DEGs in two primary prostate stromal cells (PrSCs) using quantitative PCR, and the results were basically consistent with the corresponding RNA-sequencing results (Supplementary Figure S2). In addition, all data of DEGs are shown in Supplementary Table S1.
[image: Figure 2]FIGURE 2 | Analysis of differential gene expression in PrSCs stimulated with and without TGFβ1. (A) Results of differentially expressed genes (DEGs) were counted according to the screening criteria of |log2 Fold change|≥1 and q < 0.05. Of the 497 differential genes detected in PrSCs with TGFβ1 stimulation, 244 genes were upregulated and 253 genes were downregulated. T_C means TGFβ1 treatment versus control. (B) Volcano diagram showed significantly DEGs in PrSCs stimulated with and without TGFβ1. Yellow spots represented upregulated genes, and blue spots represented downregulated genes. Gray spots indicated genes that were not differentially expressed. (C) Heatmap plot of all 497 DEGs in five PrSCs with and without TGFβ1 treatment. The legend color bar on the right side indicated the relation between FPKM-scaled expression values and colors, and the colors were balanced to ensure that the white color represented a zero value. C1, C2, C3, C4, and C5 in the heatmap mean PrSCs without TGFβ1 treatment (control). T1, T2, T3, T4, and T5 in the heatmap mean PrSCs with TGFβ1 treatment.
3.3 GO classification and enrichment analysis of DEGs
In order to determine the function of DEGs, all DEGs were mapped to terms in the GO database. This list of 497 DEGs was divided into three main categories of GO classification (e.g., biological process, cellular component, and molecular function). For biological processes, most of those were classified into cellular process, biological regulation, and metabolic process. For the molecular function category, binding, catalytic activity, and molecular function regulator were the top abundant subcategories. Under the cellular component category, a large number of upregulated, as well as downregulated DEGs were categorized as cell part, organelle, and organelle part (Figure 3A). Moreover, the cell component indicated enrichment predominantly at the CSF1-CSF1R complex, spermatoproteasome complex, apolipoprotein B mRNA editing enzyme complex, SMAD protein complex, and collagen type IV trimer (Figure 3B). DEGs were mainly enriched in biological processes of progesterone secretion, tendon development, trehalose catabolic process, branchiomeric skeletal muscle development, and osteoblast proliferation (Figure 3C). As for molecular function, these genes showed enrichment in interleukin-7 receptor binding, alpha,alpha-trehalase activity, macrophage colony-stimulating factor receptor activity, trehalase activity and transforming growth factor beta receptor, and pathway-specific cytoplasmic mediator activity (Figure 3D).
[image: Figure 3]FIGURE 3 | GO classification and enrichment analyses of DEGs (A). GO classification of DEGs. The x-axis indicated the subcategories, the left y-axis represented the percentage of a specific category of DEGs, and the right y-axis indicated the number of DEGs (B). Top 10 cellular component (CC) terms in the enrichment analysis (C). Top 10 biological process (BP) terms in the enrichment analysis. (D) Top 10 molecular function (MF) terms in the enrichment analysis.
3.4 KEGG pathway analysis of DEGs
We performed KEGG pathway analysis of DEGs between control and TGFβ1 treatment. The results indicated that Wnt signaling pathway (p = 0.0039), TNF signaling pathway (p = 0.0002), Th17 cell differentiation (p = 0.0006), signaling pathways regulating pluripotency of stem cells (p < 0.0001), PI3K−Akt signaling pathway (p = 0.0017), osteoclast differentiation (p < 0.0001), JAK−STAT signaling pathway (p = 0.0003), Hippo signaling pathway (p = 0.0012), glycerophospholipid metabolism (p = 0.0001), and cytokine−cytokine receptor interaction (p < 0.0001) may be involved in the regulation of TGFβ1 on primary prostatic stromal cells. The KEGG results of the enrichment of 29 pathways are shown in Supplementary Figure S3. In addition, the details related to KEGG pathways are also shown in Supplementary Table S2.
3.5 PPI network construction and hub gene selection
Proteins related to DEGs were selected on the basis of STRING database, and the pairs whose combined score >0.7 were extracted for visualization by Cytoscape (Supplementary Figure S4). Each node displays different depth colors according to its degree score. From the inside to the outside, the degree decreases and the color changes from dark to light. Furthermore, hub genes were selected with connection degree ≥10. In this network, the top 13 genes with the highest degree scores were selected as hub genes, including FN1, SMAD3, CXCL12, VCAM1, ICAM1, PSMB8, SOCS3, CCL2, IRF1, TNFRSF1B, SOCS1, PPARG, and LPAR3. The details of hub genes are shown in Supplementary Table S3.
4 DISCUSSION
In the current study, we first used the GSE132714 data set and immunostaining method to determine that TGFβ1 is highly expressed in the BPH stroma compared with the NP stroma. Then, we used RNA-seq and bioinformatics analysis to reveal important pathways and hub genes associated with TGFβ1 stimulation on primary prostatic stromal cells. This study provided evidence that the inflammatory cytokine TGF-β1 can cause a series of significant pathways and gene changes in prostatic stromal cells.
The TGFβ1 pathway is activated in BPH and contributes to increased stromal proliferation and fibrosis. However, it is not very clear about the potential significant pathways and hub genes related to TGFβ1 stimulation on PrSCs. In this study, a total of 497 DEGs were identified in PrSCs with and without TGFβ1 treatment. Then, GO and pathway enrichment analyses of DEGs were performed. Moreover, the Wnt signaling pathway, PI3K−Akt signaling pathway, JAK−STAT signaling pathway, and Hippo signaling pathway were screened based on the KEGG analysis. Additionally, we constructed the PPI network and selected FN1, SMAD3, CXCL12, VCAM1, and ICAM1 as hub genes according to the degree of connection.
All of the aforementioned hub genes play a vital role in cell cycle, proliferation, and fibrosis, which may contribute to the pathogenesis of BPH. Fibronectin (FN1) is an essential extracellular matrix glycoprotein involved in both physiological and pathological processes. Fibronectin could stimulate the proliferation of growth-arrested polarized mammary epithelial cells, induce an EMT response, disturb the hollow acinar structure, and promote tumor-like behavior (Park and Schwarzbauer, 2014; Konac et al., 2017). At the same time, FN1 is likely to play a pivotal role in fibrosis (Cardoso et al., 2018; Chen et al., 2021). It was reported that the phosphorylation of SMAD3 can promote the differentiation of fibroblasts into myofibroblasts, fibrosis, and EMT during the progression of BPH (Sheng et al., 2018; Tang et al., 2019; Chen et al., 2021). CXCL12 overexpression and secretion by aging fibroblasts could enhance human prostate epithelial proliferation in vitro (Begley et al., 2005). Moreover, CXCL12/CXCR4 axis activation induces prostate myofibroblast phenoconversion through non-canonical EGFR/MEK/ERK signaling (Rodriguez-Nieves et al., 2016). High vascular cell adhesion molecule (VCAM-1) expression is significantly associated with clinical stage and distant metastasis in prostate cancer (Duzagac et al., 2015; Chang et al., 2018). The JAK/STAT pathway interacts with intercellular cell adhesion molecules (ICAM-1) and VCAM-1 to promote tumor progression (Duzagac et al., 2015). However, the role of ICAM-1 and VCAM-1 in BPH has not been fully elucidated.
Wnt signaling regulates cell proliferation and cell differentiation as well as migration and polarity during development (Brunt et al., 2021). Wnt/β-catenin and AR signaling contribute to the proliferative growth of many cell types and benefit from the cross-talk within the prostate (Kypta and Waxman, 2012; Koirala et al., 2020). The status of the Wnt/β-catenin pathway in the prostate stroma may serve as a marker at various stages of BPH pathogenesis (Koirala et al., 2020). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway promotes cell proliferation and fibrosis, as well as plays an important role in promoting the occurrence of BPH (Sheng et al., 2018; Wang S. S. et al., 2021). In addition, aerobic exercise may alleviate BPH in obese mice through regulation of the AR/androgen/PI3K/AKT signaling pathway (Wang S. S. et al., 2021). M2 macrophage-derived IL4 induced the myofibroblast phenotype through the JAK/STAT6 and PI3K/AKT signaling pathways in the early-progressed BPH prostate fibroblasts (Sheng et al., 2018). It has been demonstrated that febuxostat could ameliorate testosterone-induced BPH rats via suppressing the XO/JAK/STAT axis (Abo-Youssef et al., 2020). Furthermore, STAT-3 signaling is negatively regulated by labda-8 (17),12,14-trien19-oic acid to prevent proliferation of BPH stromal cells (Verma et al., 2014). One of the important signaling pathways that control cell growth/proliferation, cellular homeostasis, and organ development is the Hippo pathway (Park et al., 2018). In advanced prostate cancer, IKBKE activity enhances AR levels via modulation of the Hippo pathway (Bainbridge et al., 2020). Alginate oligosaccharide could attenuate α2,6-sialylation modification to inhibit prostate cancer cell growth via the Hippo/YAP pathway (Han et al., 2019). However, there is currently no research on the role of Hippo signaling pathway in BPH. Finally, our research indicated that these hub genes and differentially significant pathways may be the key for studying downstream mechanisms of TGFβ1 in PrSCs.
In conclusion, our study demonstrated a series of differentially expressed genes and pathways by bioinformatics analysis, which may contribute to the finding of molecular downstream mechanisms of TGFβ1 in the BPH stroma. Hub genes such as FN1, SMAD3, CXCL12, VCAM1, and ICAM1 may serve as the central downstream genes of TGFβ1 in BPH stromal cells. The Wnt signaling pathway, PI3K−Akt signaling pathway, JAK−STAT signaling pathway, and Hippo signaling pathway may be the key downstream pathways for TGFβ1 to exert its effect on the BPH stroma. Further molecular experiments are required to confirm the findings of this study.
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Background: Dual homeoboxes A pseudogene 8 (DUXAP8) is a newly discovered long noncoding RNA that has been shown to function as an oncogene in a variety of human malignant cancers. By integrating available data, this meta-analysis sought to determine the relationship between clinical prognosis and DUXAP8 expression levels in diverse malignancies.
Materials and methods: A systematic search was performed to identify eligible studies from several electronic databases from their inception to 25 October 2021. Pooled odds ratios and hazard ratios with 95% CI were used to estimate the association between DUXAP8 expression and survival. For survival analysis, the Kaplan-Meier method and COX analysis were used. Furthermore, we utilized Spearman’s correlation analysis to explore the correlation between DUXAP8 and tumor mutational burden (TMB), microsatellite instability (MSI), the related genes of mismatch repair (MMR), DNA methyltransferases (DNMTs), and immune checkpoint biomarkers.
Results: Our findings indicated that overexpression of DUXAP8 was related to poor overall survival (OS) (HR = 1.63, 95% CI, 1.49–1.77, p < 0.001). In addition, elevated DUXAP8 expression was closely related to poor OS in several cancers in the TCGA database. Moreover, DUXAP8 expression has been associated with TMB, MSI, and MMR in a variety of malignancies.
Conclusion: This study revealed that DUXAP8 might serve as a prognostic biomarker and potential therapeutic target for cancer. It can be used to improve cancer diagnosis, discover potential treatment targets, and improve prognosis.
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INTRODUCTION
Cancer-related deaths have risen dramatically in recent years. Progress in anticancer drug delivery has resulted in tremendous improvements in cancer treatment outcomes, yet cancer survivors’ quality of life and prognosis remains dismal (Bahrami et al., 2018). In part, this is due to the lack of reliable biomarkers for the early identification of the majority of malignancies. In recent years, molecular biomarkers for multiple carcinomas have become more prevalent and may provide further clues for following the disease’s progression (Ilie et al., 2018). Consequently, it is imperative to seek new cancer markers to better characterize the clinical stage, metastasis, and prognosis of most malignancies at an earlier and more accurate point in time (Wang et al., 2021a, 2021b).
An RNA molecule that is more than 200 nucleotides in length but lacks an open reading frame is referred to as Long non-coding RNA (lncRNA) (Johnsson et al., 2014). It has emerged that lncRNAs have a role in a wide range of physiological and pathological processes. Epigenetic regulation, transcriptional and posttranscriptional regulation are only a few of the roles of lncRNAs in diseases (Fan et al., 2017). LncRNAs may play a critical role in the progression of cancer, as evidenced by recent research (Wang et al., 2021a). Collectively, lncRNAs serve as promising markers for cancer patients (Ma et al., 2017a).
Double homeobox A pseudogene 8 (DUXAP8) is a recently discovered lncRNA on 22q11.1. DUXAP8 has a length of around 2,307 bp. DUXAP8 is significantly overexpressed in cancer tissues compared to nearby non-tumor tissues, according to observations (Ma et al., 2017b; Du et al., 2019; Chen et al., 2020a; Chen et al., 2020b; He et al., 2020; Yin et al., 2020; Chen et al., 2021a). DUXAP8 exerts an essential role in tumorigenesis, proliferation, migration, invasion, and inhibition of apoptosis, which means that DUXAP8 acts as an oncogene in the occurrence and development of various malignant tumors (Jiang et al., 2019; Hu et al., 2020; Wang et al., 2020; Wei et al., 2020; Zhang et al., 2020; Guan et al., 2021). In addition, high-quality meta-analysis has been increasingly considered one of the keys and significant tools for achieving evidence (Yao et al., 2016; Tian et al., 2017; Li et al., 2018; Yang, 2018; Yang et al., 2018; Yan et al., 2019).
Thus, we performed this meta-analysis for the first time to explore the clinical prognostic role and functions of DUXAP8 in human cancers. In addition, we employed data mining to investigate the prognostic value of DUXAP8 in a range of tumor types to further validate our results. This study included an in-depth analysis of DUXAP8 expression levels, as well as the relationship with tumor mutational burden (TMB), microsatellite instability (MSI), DNA methyltransferases (DNMTs), and mismatch repair (MMR).
MATERIALS AND METHODS
Literature Search and Selection
We conducted a systematic search to identify relevant literature from its inception to 25 October 2021, including PubMed (Medline), Embase, and Cochrane Library. The retrieval words include: (“LINC DUXAP8” OR “LincRNA DUXAP8” OR “long non-coding RNA DUXAP8” OR “long noncoding RNA DUXAP8” OR “DUXAP8 lncRNA”) and (“cancer” OR “carcinoma” OR “tumor” OR “tumor” OR “neoplasm” OR “adenoma” OR “sarcoma” OR “melanoma”). Additionally, we searched the reference lists of the primary literature and reviews to find pertinent supplementary literature.
Inclusion and Exclusion Criteria
The inclusion criteria were: 1) articles to study the clinical functions of DUXAP8 in different cancer tissues; 2) clinical trials in which patients were separated into two groups based on their DUXAP8 expression levels; 3) studies that provided OS; 4) studies with sufficient data to generate HR and 95% confidence intervals (CI) or Kaplan-Meier curves; 5) case-control studies. The eliminated criteria included the following content: 1) studies on DUXAP8’s structure and functions; 2) nonhuman studies, reviews, editorials, specialist opinions, letters along with case reports; 3) studies having insufficient original data for survival analysis.
Data Extraction and Quality Assessment
Two researchers independently assessed and obtained all the necessary data from the selected literature. The data extracted from each selected study are shown in Supplementary Table S1. If the relevant data were not directly accessible and only the Kaplan–Meier curves had been provided, we extracted the survival rates from the survival plot graphs and computed the HR, and the 95% CI indirectly (Parmar et al., 1998a; Parmar et al., 1998b). The Newcastle Ottawa Score (NOS) was used to evaluate the quality of the included studies (Stang, 2010). A NOS score of ≥6 indicates a high-quality study.
Analysis of DUXAP8 Expression in Cancer
UCSC Xena, derived from the TCGA database (https://xena.ucsc.edu/), provided us with data on 33 tumors, including RNA sequences, somatic mutations, clinicopathological characteristics, and survival rates. The cell line expression matrix was obtained from the CCLE dataset (https://portals.broadinstitute.org/ccle/about). We use the “Wilcox. test” to determine the difference in DUXAP8 expression levels between tumor and normal tissues in various cancer types. Adrenocortical Carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid Leukemia (LAML), Brain Lower Grade Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO), Ovarian serous cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Testicular Germ Cell Tumors (TGCT), Thyroid carcinoma (THCA), Thymoma (THYM), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Uveal Melanoma (UVM).
Survival Analysis
We analyzed the relationships between DUXAP8 expression and OS, disease-free interval (DFI), disease-specific survival (DSS), progression-free interval (PFI), age, and clinical stage. For survival analysis, the Kaplan-Meier method and COX analysis were used.
Correlation of DUXAP8 Expression With Tumor Mutational Burden, Microsatellite Instability, DNA Methyltransferases, and Mismatch Repair
TMB is defined as the total number of mutations per megabase of DNA. MSI is the spontaneous loss or gain of nucleotides from short tandem repeat DNA tracts. We utilized Spearman’s correlation analysis to explore the correlation between DUXAP8 and TMB, MSI, the related genes of MMR, DNMTs, and immune checkpoint biomarkers. The resulting heatmap was implemented by using the R-packages “reshape2” and “RColorBrewer”.
Pathway Analysis of DUXAP8
Downloaded gene sets from the Gene Set Enrichment Analysis (GSEA) website (https://www.gsea-msigdb.org/gsea/downloads.jsp) were used in the study. R-package “limma,” “org.Hs.eg.db,” “clusterProfiler,” and “enrichplot” were used to perform both Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of DUXAP8 respectively.
Data Synthesis and Statistical Analysis
The survival result was produced by employing information from the HR and the standard error (SE). During this meta-analysis, HRs were pooled by employing I2 statistics to examine the heterogeneity of the applicable studies. The random-effects model was then used only if there was significant statistical heterogeneity between the studies (chi-squared test, p < 0.1, I2 > 50%). We utilized the fixed-effects model (chi-squared test, p > 0.1, I2 < 50%) where it was not applicable (Zhai et al., 2021). To show the meta-analysis outcomes, we employed forest plots. We used Begg’s test to see if there was any publication bias, and sensitivity analysis to see if the results were consistent. We applied STATA12.0, the R software to integrate and analyze the data. p < 0.05 was considered statistically significant.
RESULTS
Studies Characteristics
Supplementary Figure S1 demonstrates the details concerning the screening process. A systematic search of the databases identified 114 studies published up to 25 October 2021. We excluded duplicate studies, studies irrelevant to the research subject, and studies that did not provide sufficient data. Therefore, there are a total of 25 studies that meet the final analysis conditions (Ma et al., 2017b; Xu et al., 2017; Lian et al., 2018; Lin et al., 2018; Du et al., 2019; Jiang et al., 2019; Chen et al., 2020a; Chen et al., 2020b; He et al., 2020; Hu et al., 2020; Nie et al., 2020; Wang et al., 2020; Wei et al., 2020; Yin et al., 2020; Zhang et al., 2020; Zhao et al., 2020; Chen et al., 2021a; Li et al., 2021a; Arabpour et al., 2021; Yang et al., 2021a; Chen et al., 2021b; Guan et al., 2021; Pang and Yang, 2021; Xing et al., 2021; Zhai et al., 2021). Moreover, the main features of the included studies have been summarized in Supplementary Table S1. The sample size of the 25 studies ranged between 31 and 522, with an average of 198.
All the included studies from 2016 to 2021 have been implemented and published in China except one study carried out in America. In total, 17 cancer types were included in our study: gastric cancer (GC) (Ma et al., 2017b), non-small cell lung cancer (NSCLC) (Yin et al., 2020; Chen et al., 2021a), cervical cancer (CC) (Chen et al., 2020b), oral cancer (OC) (Chen et al., 2020a), colorectal cancer (CRC) (Du et al., 2019; He et al., 2020), papillary thyroid carcinoma (PTC) (Pang and Yang, 2021), LGG (Zhao et al., 2020), PAAD (Lian et al., 2018), hepatocellular carcinoma (HCC) (Jiang et al., 2019; Hu et al., 2020; Wang et al., 2020; Wei et al., 2020; Zhang et al., 2020; Guan et al., 2021), acute myeloid Leukemia (AML) (Zhai et al., 2021), BLCA (Lin et al., 2018), KIRC (Xing et al., 2021), neuroblastoma (Nie et al., 2020), ovarian cancer (Li et al., 2021a), osteosarcoma (Yang et al., 2021a), renal cell carcinoma (RCC) (Xu et al., 2017), melanoma (Chen et al., 2021b), breast cancer (BC) (Arabpour et al., 2021).
Correlation of the DUXAP8 Expression Level With the Overall Survival
There were 25 studies (Ma et al., 2017b; Xu et al., 2017; Lian et al., 2018; Lin et al., 2018; Du et al., 2019; Jiang et al., 2019; Chen et al., 2020a; Chen et al., 2020b; He et al., 2020; Hu et al., 2020; Nie et al., 2020; Wang et al., 2020; Wei et al., 2020; Yin et al., 2020; Zhang et al., 2020; Zhao et al., 2020; Chen et al., 2021a; Li et al., 2021a; Arabpour et al., 2021; Yang et al., 2021a; Chen et al., 2021b; Guan et al., 2021; Pang and Yang, 2021; Xing et al., 2021; Zhai et al., 2021), consisting of 4,757 patients, included for OS analysis. A correlation analysis has been performed to explore between DUXAP8 and the poor OS in patients diagnosed with cancer. It applied the fixed effect model to the studies (I2 = 15.1%, PQ= 0.248). As illustrated in Figure 1A, there was a pooled HR = 1.63 between DUXAP8 and the OS (95% CI, 1.49–1.77, p < 0.001), revealing significantly worse OS in the cancer patients with high expression of DUXAP8.
[image: Figure 1]FIGURE 1 | (A) Forest plot reflecting the association between OS and DUXAP8 expression level in cancer. (B) Sensitivity analysis for studies about OS. (C): Begg’s funnel plot of DUXAP8 for overall survival.
Publication Bias and Sensitivity Analysis
We constructed Begg’s funnel plot to assess publication bias among the reviews. There was no indication of noticeable OS disparity (p>|t| = 0.164; Figure 1C). In addition, we ran a sensitivity analysis after discarding each paper to confirm the validity of the relationship between DUXAP8 expression and OS. This analysis showed no significant change in the results. Therefore, the meta-analysis results were trustworthy. (Figure 1B).
Subgroup Analysis of the Relationship Between DUXAP8 Expression Level and Overall Survival
Based on the following factors, subgroup analysis was done to evaluate the relationship between DUXAP8 expression levels and OS: follow-up time (<60 or ≥60 months) (Figure 2A), the system of cancer (digestive system, urogenital system, respiratory system, hematologic system or other) (Figure 2B), sample size (<100 or ≥100 tissues) (Figure 2C), sample source (clinical samples or database) (Figure 2D), the quality of included literature (NOS scores) (Figure 2E), and type of cancer (Figure 2F). In these malignancies, the outcomes of the subgroup analysis didn’t change the predictive value of DUXAP8 for OS.
[image: Figure 2]FIGURE 2 | Forest plot reflecting the association between OS and lncRNA DUXAP8 expression level in cancer. (A): Subgroup analysis stratified by follow-up time. (B): Subgroup analysis stratified by the system of cancer. (C): Subgroup analysis stratified by sample size. (D): Subgroup analysis stratified by sample source. (E): Subgroup analysis stratified by NOS score. (F): Subgroup analysis stratified by type of cancer.
Multifaceted Prognostic Value of DUXAP8 in Pan-Cancers
To assess DUXAP8’s ability to predict pan-cancer, we evaluated multiple datasets. We used COX analysis to evaluated the DUXAP8-related survival (OS, DSS, DFI, and PFI) (Figure 3). Thus, we discovered that DUXAP8 was a detrimental factor in ACC (OS: HR = 1.910; DSS: HR = 2.037; DFI: HR = 7.031; PFI: HR = 3.228), LIHC (OS: HR = 2.418; DSS: HR = 1.946; DFI: HR = 1.728; PFI:HR = 1.656), KIRP (OS: HR = 5.479; DSS: HR = 6.402; DFI: HR = 6.074; PFI:HR = 4.307), KIRC (OS: HR = 2.459; DSS: HR = 2.808; PFI:HR = 1.919), UCEC (OS: HR = 1.496; DFI: HR = 1.686, p < 0.001; PFI:HR = 1.453), KICH (OS: HR = 18.962; DSS: HR = 21.605; PFI:HR = 7.195), MESO (OS: HR = 1.776; DSS: HR = 1.844; PFI:HR = 2.016), COAD (OS: HR = 1.489; DFI: HR = 2.725; PFI:HR = 1.407), THCA (OS: HR = 3.028; DSS: HR = 3.566), STAD (DSS: HR = 1.395; PFI: HR = 1.301), PRAD (DFI: HR = 2.007; PFI: HR = 1.435), DLBC (OS: HR = 9.983), and HNSC (OS: HR = 1.244).
[image: Figure 3]FIGURE 3 | Correlation analysis of DUXAP8 expression with survival using the COX method for different types of cancers in TCGA. (A): OS. (B): DSS. (C): DFI. (D): PFI.
We next used Kaplan-Meier method to investigate the DUXAP8-related survival in the TCGA (Supplementary Figure S2). We discovered that low levels of DUXAP8 expression were associated with a poor prognosis, which included SKCM (OS: p = 0.003; DSS: p = 0.033; PFI: p = 0.002), READ (DSS: p = 0.041), LGG (PFI: p = 0.036). Conversely, high levels of DUXAP8 expression were associated with a poor prognosis in KIRC (OS: p < 0.001; DSS: p < 0.001; PFI: p = 0.001), KIRP (OS: p < 0.001; DSS: p = 0.001; PFI: p = 0.015), LIHC (OS: p = 0.001; DFI: p = 0.041; PFI: p = 0.020), UCEC (OS: p = 0.007; DSS: p = 0.022; PFI: p = 0.034), ACC (DSS: p = 0.028; PFI: p < 0.001), BRCA (DSS: p = 0.048), STAD (DSS: p = 0.033, COAD (DFI: p = 0.019), PRAD (DFI: p = 0.019), and MESO (PFI: p = 0.034).
We next used Kaplan-Meier plotter (https://kmplot.com/analysis) to evaluate DUXAP8-related survival (OS and RFS). Interestingly, we were able to verify that DUXAP8 had a protective prognostic role in ESCA (OS: HR = 0.39; RFS, HR = 0.38) (Figures 4A,B), and READ (OS: HR = 0.35) (Figure 4T). In contrast, DUXAP8 expression had a detrimental effect in HNSC (OS: HR = 1.38) (Figure 4C), KIRP (OS: HR = 3.4; RFS, HR = 2.47) (Figures 4E,F), LIHC (OS: HR = 2.15; RFS, HR = 1.54) (Figures 4G,H), LUAD (OS: HR = 1.38; RFS, HR = 1.61) (Figures 4I,J), UCEC (OS: HR = 2.31; RFS, HR = 199) (Figures 4K–L), BRCA (OS: HR = 1.52) (Figure 4Q), ESC (OS: HR = 1.98) (Figure 4R), KIRC (OS: HR = 2.56) (Figure 4S), SARC (OS: HR = 1.57) (Figure 4U). DUXAP8 expression was significantly correlated with patients’ RFS in LUSC, EAC, TGCT, HNSC, and THCA.
[image: Figure 4]FIGURE 4 | Kaplan-Meier survival curves comparing the high and low expression of DUXAP8 gene in various cancer types in Kaplan-Meier Plotter. OS and RFS of (A,B) ESCA, (C,D) HNSC, (E,F) KIRP, (G,H) LIHC, (I,J) LUAD, (K,L) UCEC. RFS of (M) EAC, (N) LUSC, (O) TGCT, and (P) THCA. OS of (Q) BRCA, (R) ESC, (S) KIRC, (T) READ, and (U) SARC. OS, overall survival; RFS, relapse-free survival.
Correlation Analysis of DUXAP8 Expression and Clinicopathology
DUXAP8 expression has been linked to numerous malignancies’ clinicopathological characteristics (Figure 5). Concerning COAD, HNSC, KICH, KIRC, KIRP, and THCA (Figures 5A–F), DUXAP8 was highly expressed in stages III-IV. In particular, patients over the age of 65 had greater DUXAP8 expression in OV, PCPG, SARC, THCA, THYM, and UCEC (Figures 5H–M). DUXAP8 was, on the other hand, highly expressed in individuals under the age of 65, notably in ESCA patients (Figure 5G).
[image: Figure 5]FIGURE 5 | Relationship between the DUXAP8 gene expression and clinicopathological features of Pan-cancer. DUXAP8 gene expression is related to the stage in COAD (A), HNSC (B), KICH (C), KIRC (D), KIRP (E), and YHCA (F). DUXAP8 gene expression is associated with age in ESCA (G), OV (H), PCPG (I), SARC (J), THCA (K), THYM (L), and UCEC (M).
Expression of DUXAP8 in Pan-Cancers
We first used GEPIA to investigate DUXAP8 expression in pan-cancer from the TCGA and GTEx databases. DUXAP8 was shown to be highly expressed in BLCA, CHOL, ESCA, HNSC, KIRC, LIHC, UAD, LUSC, OV, SKCM, STAD, THYM, UCEC, and UCS, except for TGCT and LAML, where it was found to be weakly expressed (Figure 6A). Data from the TCGA showed that DUXAP8 was significantly higher in BLCA, CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and UCEC (Figure 6B). Figure 6C represents the relative amounts of DUXAP8 expression in several cell lines based on CCLE data.
[image: Figure 6]FIGURE 6 | (A) DUXAP8 expression levels in different cancer types from TCGA data by Gene Expression Profiling Interactive Analysis (GEPIA). (B) DUXAP8 expression levels in different cancer types from TCGA data. The red fusiformis represents tumor tissue and the blue fusiformis represents normal tissue. p < 0.05, <0.01, <0.001 are represented by “*”, “**”, “***” respectively. (C) The expression distribution of DUXAP8 in different tumor tissues. (D) The radar chart illustrated the association between TMB and DUXAP8 expression in different cancers. (E) The radar chart illustrated the relationship between MSI and DUXAP8 expression in different cancers. The blue curve represents the correlation coefficient, and the green value represents the range.
Correlation of DUXAP8 Expression With Tumor Mutational Burden, Microsatellite Instability, DNA Methyltransferases, and Mismatch Repair
We found that DUXAP8 expression was positively correlated with the TMB in THYM, BLCA, LUAD, SKCM, BRCA, HNSC, SARC, LIHC, LUSC, ACC, CESC, KIRC, PRAD, OV, while negatively correlated with the TMB in UCEC, COAD (Figure 6D). Moreover, DUXAP8 expression was found to be positively correlated to the MSI in LIHC, SARC, TGCT, LGG, BRCA, PRAD, and CESC (Figure 6E). In 29 of the 33 cancer types, TIGIT was correlated with the expression of at least one MMR-related gene (Figure 7A). DUXAP8 expression was positively correlated with DNMTs expression level in most tumors (Figure 7B). DUXAP8 expression was correlated with immune checkpoint biomarkers in most tumors, especially in BRCA, COAD, KRCH, KIRC, KIRP, LIHC, STAD, TGCT, THCA, and THYM (Figure 7C).
[image: Figure 7]FIGURE 7 | Co-expression analysis between DUXAP8 expression and five mismatch repair genes (A), DNA methyltransferase (B) and immune genes (C) in cancers. *p < 0.05; **p < 0.01; ***p < 0.001. Cor, correlation coefficient. The horizontal axis represents cancer types, the vertical axis represents immune genes, and each small rectangular module represents the co-expression of the gene and DUXAP8 in cancer, during them, the upper left corner asterisk and color represent the P-value, and the lower right corner color represents the Cor. *p < 0.05; **p < 0.01; ***p < 0.001. Cor, correlation coefficient.
Pathway Analysis in Pan-Cancers
To investigate the biological function and KEGG pathway of DUXAP8 expression in pan-cancers, we conducted GESA (Figure 8). The results of GO indicated that DUXAP8 was able to regulate the cell cycle, cell junction, cell recognition, cell growth, negative regulation of cellular amide metabolic process, gene silencing, and mRNA binding. The results demonstrate that DUXAP8 expression is associated with several pathways: pentose and glucuronate interconversions, porphyrin and chlorophyll metabolism, retinol metabolism, cytokine receptor interaction, RNA degradation, and regulation of autophagy.
[image: Figure 8]FIGURE 8 | (A–J) GO functional annotation of DUXAP8 gene in ACC, BLCA, HNSC, LUSC, OV, PAAD, PCPG, TGCT, THCA, and UVM. (K–T) KEGG pathway analysis of DUXAP8 gene ACC, BLCA, HNSC, LUSC, OV, PAAD, PCPG, TGCT, THCA, and UVM. Different color curves indicate that the DUXAP8 gene regulated different functions or pathways of different cancers, with peaks of curves upward indicating positive regulation and peaks of curves downward representing negative regulation.
DISCUSSION
Great improvements have been achieved in cancer detection and treatment. However, the 5-year survival rate remains relatively low for most cancers. Human health is seriously threatened by cancer. Some lncRNAs have the potential to serve as biomarkers for diagnosing and monitoring tumors due to their specific expression during tumor occurrence and development (Qi and Du, 2013). DUXAP8 is significantly overexpressed in cancer tissues compared to nearby non-tumor tissues, according to observations (Ma et al., 2017b; Du et al., 2019; Chen et al., 2020a; Chen et al., 2020b; He et al., 2020; Yin et al., 2020; Chen et al., 2021a). Thus, we first conducted this meta-analysis to examine if there was a correlation between lncRNA DUXAP8 expression and overall survival in order to better evaluate its predictive potential. Our study revealed a significantly worse OS in cancer patients with high expression of DUXAP8. For this, we concluded that high levels of DUXAP8 expression are associated with a poor prognosis for cancer patients and that DUXAP8 may be a predictor of poor prognosis in cancer patients.
In addition, we employed data mining to investigate the prognostic value of DUXAP8 in a range of tumor types to further validate our results. To assess DUXAP8’s ability to predict pan-cancer, we evaluated multiple datasets. Cox regression model discovered that DUXAP8 was a detrimental factor in ACC, COAD, DLBC, HNSC, KICH, KIRC, KIRP, LIHC, MESO, THCA, and UCEC in the TCGA. Even more, we discovered that high levels of DUXAP8 expression were associated with a poor prognosis in ESCA, HNSC, KIRP, LIHC, LUAD, UCEC, BRCA, ESC, KIRC, READ, and SARC, but with a good prognosis in ESCA, SKCM and READ by Kaplan-Meier method.
We found that DUXAP8 expression was positively correlated with the TMB in THYM, BLCA, LUAD, SKCM, BRCA, HNSC, SARC, LIHC, LUSC, ACC, CESC, KIRC, PRAD, OV, while negatively correlated with the TMB in UCEC, COAD (Figure 6D). Moreover, DUXAP8 expression was found to be positively correlated to the MSI in LIHC, SARC, TGCT, LGG, BRCA, PRAD, and CESC (Figure 6E). DUXAP8 expression was correlated with immune checkpoint biomarkers in most tumors, especially in BRCA, COAD, KRCH, KIRC, KIRP, LIHC, STAD, TGCT, THCA, and THYM. DUXAP8 expression was positively correlated with MMR-related genes level in most tumors.
This study included an in-depth analysis of DUXAP8 expression levels, as well as the relationship with TMB, MSI, MMR, DNMTs, and immune checkpoint biomarkers in 33 cancer types. This study found that the expression of DUXAP8 is significantly correlated with TMB in seven cancer types and MSI in seven cancer types. DUXAP8 expression was positively correlated with MMR-related genes level in most tumors. The research suggested that DUXAP8 expression may have an effect on cancer patients’ response to immune checkpoint therapy, which will benefit the further understanding of immunotherapy’s molecular mechanism in cancer treatment.
DUXAP8 was significantly higher in BLCA, CHOL, ESCA, HNSC, KIRC, LIHC, UAD, LUSC, OV, SKCM, STAD, THYM, UCEC, and UCS, except for TGCT and LAML, where it was found to be weakly expressed. DUXAP8 was significantly higher in BLCA, CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and UCEC in the TCGA and GTEx databases. There is accumulating evidence to reveal that DUXAP8 is aberrantly expressed in several malignancies and appears to contribute to the development and progression of multiple cancers, including GC (Ma et al., 2017b), NSCLC (Yang et al., 2019; Ji et al., 2020; Yin et al., 2020; Chen et al., 2021a; Liu et al., 2021a), CC (Chen et al., 2020b), OC (Chen et al., 2020a), CRC (Du et al., 2019; Gong et al., 2019; He et al., 2020; Liang et al., 2021), PTC (Liu et al., 2021b; Pang and Yang, 2021), LGG (Zhao et al., 2020), PC (Lian et al., 2018; Li et al., 2021b), HCC (Jiang et al., 2019; Hu et al., 2020; Wang et al., 2020; Wei et al., 2020; Zhang et al., 2020; Guan et al., 2021), AML (Zhai et al., 2021), BLCA (Jiang et al., 2018; Lin et al., 2018), NB (Nie et al., 2020), ovarian cancer (Meng et al., 2020; Li et al., 2021a), osteosarcoma (Yang et al., 2021a), RCC (Xu et al., 2017; Huang et al., 2018; Xing et al., 2021), melanoma (Chen et al., 2021b), BC (Arabpour et al., 2021; Yang et al., 2021b), esophageal carcinoma (Liu et al., 2018). This is basically consistent with this study.
Although many studies found that lncRNA DUXAP8 serves as an important prognostic factor for patients with a variety of tumors, the underlying systems of how the lncRNA DUXAP8 impacts cancer are still unknown. DUXAP8-related molecular targets, proteins, pathways, and noncoding RNA (microRNAs and circRNAs) were methodically described in this meta-analysis to provide a reference for mechanistic exploration into the carcinogenesis function of DUXAP8 in various cancers (Supplementary Table S2). DUXAP8 induced an EMT phenotype transition and epigenetic alteration via various signaling pathways covering pathways of Wnt/β-catenin (Zhai et al., 2021)in the AML, miR-126-5p/PTEN/PI3K/AKT (Jiang et al., 2018; Lin et al., 2018) in the BLCA, miR-130a-3p (Arabpour et al., 2021; Yang et al., 2021b) in the BC, EZH2 (Ma et al., 2017b; Lian et al., 2018; Du et al., 2019; Gong et al., 2019; Chen et al., 2020a; He et al., 2020) in the CRC, OC and GC, miR-590-5p (Jiang et al., 2019; Hu et al., 2020; Meng et al., 2020; Wang et al., 2020; Wei et al., 2020; Zhang et al., 2020; Li et al., 2021a; Guan et al., 2021) in the ovarian cancer and HCC, miR-126 (Xu et al., 2017; Huang et al., 2018; Xing et al., 2021) in the RCC, miR-3182/NUPR1 (Chen et al., 2021b) in the melanoma, miR-409-3p/HK2/LDHA (Yang et al., 2019; Ji et al., 2020; Yin et al., 2020; Chen et al., 2021a; Liu et al., 2021a) in the NSCLC, miR-448/WTAP/Fak (Lian et al., 2018; Li et al., 2021b) in the PC, miR-223-3p (Liu et al., 2021b; Pang and Yang, 2021) in the PTC, miR-29 (Nie et al., 2020) in the neuroblastoma, miR-635/TOP2A (Yang et al., 2021a) in the osteosarcoma.
Nonetheless, there were several limitations to this meta-analysis. First, only 25 studies with several types of tumors were included in the meta-analysis, so the results need to be further confirmed in a large cohort in the future. Second, it might not be precise enough to calculate HRs and corresponding 95% CIs through survival curves in the place of precisely obtaining them from the primary publications. Third, all included studies divided the cut-off values for high and low lncRNA DUXAP8 expression by inconsistent methods, which made the data less accurate. Fourth, patients from China made up the majority of the eligible trials, which means that they may not accurately represent all cancer patients worldwide. For future clinical trials, it is imperative that high-quality, multi-center studies with a larger sample size be done to confirm and reinforce our preliminary findings.
CONCLUSION
This study revealed that DUXAP8 might serve as a prognostic biomarker and potential therapeutic target for cancer. It can be used to improve cancer diagnosis, discover potential treatment targets, and improve prognosis. Therefore, combining regular clinical examinations with an evaluation of DUXAP8 expression provides individuals with a targeted prognosis and more treatment options.
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Intimal hyperplasia (IH) is a prominent pathological event that occurs during in-stent restenosis and atherosclerosis. Ferroptosis, characterized by iron-dependent and lipid peroxidation, has become the recent focus of studies on the occurrence and progress of cardiovascular diseases. However, there are few studies on ferroptosis and IH. Therefore, we aimed to identify and validate ferroptosis-related markers in IH to explore new possibilities for IH diagnosis and treatment. The IH microarray dataset (GSE182291) was downloaded from the Gene Expression Omnibus (GEO) database and ferroptosis-related genes (FRGs) were obtained from the FerrDb databases. The differentially expressed genes (DEGs) were analyzed using the GEO2R. Overlapping was performed to identify the ferroptosis-related DEGs among the DEGs and FRGs. Then, clustering, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein–protein interaction (PPI) analyses were performed. Subsequently, the hub genes were identified using Cytoscape and hub gene–transcription factors and hub gene–microRNA networks were constructed. Finally, real-time qPCR (RT-qPCR) and immunohistochemistry (IHC) were used to verify the mRNA and protein levels of the hub FRGs in IH. Thirty-four FRGs showing significantly different expression were identified from a total of 1,197 DEGs 2 days after ligation; 31 FRGs were selected from a total of 1,556 DEGs 14 days after ligation. The GO and KEGG analyses revealed that these 34 ferroptosis-related DEGs identified 2 days after ligation were mainly enriched in the basolateral plasma membrane, ferroptosis, lipid and atherosclerosis, and IL-17 signaling pathways. The 31 ferroptosis-related DEGs in endometrial hyperplasia identified 14 days after ligation were mainly enriched in response to oxidative stress, ferroptosis, tumor necrosis factor signaling pathway, and lipid and atherosclerosis. Five hub FRGs (Il1b, Ptgs2, Cybb, Cd44, and Tfrc) were identified using PPI networks; four hub FRGs (Il1b, Ptgs2, Cybb, and Cd44) were validated to be upregulated 2 and 14 days after ligation using RT-qPCR and show significantly different expression 14 days after ligation via IHC. Our findings verify the expression of hub DEGs related to ferroptosis in IH and elucidate the potential relationship between ferroptosis and IH, providing more evidence about the vital role of ferroptosis in IH.
Keywords: intimal hyperplasia, ferroptosis, in-stent restenois, atheroclerosis, biological analyses
1 INTRODUCTION
Intimal hyperplasia (IH) is a principal pathophysiological process of early atherosclerosis, in-stent restenosis, and vein bypass graft failure (Dzau and Braun-Dullaeus 2002). It is triggered by endothelial damage and leads to progressively increasing luminal narrowing or restenosis, which sometimes proves fatal. Previous studies have shown that the occurrence and development of IH is regulated by various biological mechanisms, such as autophagy, epigenetics, oxidative stress, and endoplasmic reticulum stress (Xue and Chen, 2019). To date, studies on IH have focused primarily on the vascular smooth muscle cell (VSMC) proliferation pathway of IH development. Limitations, such as unclear pathogenesis and few biological datasets, have spurred the search for new target genes and efficient approaches to control IH.
Ferroptosis is a new type of cell death that is distinct from apoptosis, autophagy, and necrosis in morphology and function, and is characterized by iron overload and lipid peroxidation (Dixon and Lemberg 2012). Previous studies have shown that ferroptosis is involved in many diseases, including tumors and neurodegenerative disorders (e.g., Alzheimer’s disease and Parkinson’s disease) (Do and Gouel, 2016; Hao and Yu, 2017; Lane and Ayton, 2018). Recent studies have also shown that ferroptosis is involved in most cardiovascular diseases (CVDs), such as cardiomyopathy (Fang and Wang, 2019), myocardial infarction (Baba and Higa, 2018), ischemia/reperfusion injury (Stamenkovic and O'Hara, 2021), heart failure (Fang and Cai, 2020), and atherosclerosis (Bai and Li, 2020). Several studies have found that targeting ferroptosis can serve as a feasible approach for preventing cardiomyocyte death and managing cardiac pathologies (Ravingerova and Kindernay, 2020; Wu and Li, 2021).
However, to the best of our knowledge, there are only few studies on the function of ferroptosis in the pathological process of IH, which highlights the novelty of our study. Therefore, in the present study, we aimed to identify and validate ferroptosis-related markers in IH to explore new possibilities for IH diagnosis and treatment.
2 MATERIALS AND METHODS
2.1 Microarray data
The microarray expression dataset (GSE182291) was downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Five groups of tissue samples from the right and left carotid arteries were analyzed 2 and 14 days after ligation, respectively. The data were based on the GPL11180 platforms (Affymetrix HT MG-430 p.m. Array Plate).
Identification of differentially expressed genes (DEGs) related to ferroptosis
DEGs were identified using the GEO2R online analysis tool. The classical Bayesian test in the limma package was used to perform differential expression analysis on the two groups of samples. Genes with a |log2FC| ≥1 (FC: fold change) and adjusted p-value of <0.05 were defined as DEGs. Ferroptosis-related gene (FRG) sets were acquired from FerrDb (http://www.zhounan.org/ferrdb/index.html). The overlap was performed to differentiate the ferroptosis-related DEGs from the DEGs and FRGs.
Gene ontology (GO) terms and pathway enrichment analysis for ferroptosis-related DEGs
Based on DAVID v.6.8 (the Database for Annotation, Visualization, Integrated Discovery), GO (including biological processes, cellular components, and molecular functions) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the functions and related pathways of ferroptosis-related DEGs. A p-value < 0.05 was set as statistically significant.
2.2 Protein–protein interaction (PPI) establishment and identification of hub genes
The PPI networks of ferroptosis-related DEGs 2 and 14 days after ligation were assessed using the PPI network analysis on the STRING online tool (https://cn.string-db.org/) and visualized using Cytoscape.
2.3 Construction of microRNA (miRNA)-mRNA and TF-mRNA networks
MiRNAs and transcription factors (TFs) exert their biological functions by regulating the expression of target mRNA. Hence, we used the intersection between three databases, namely miRWALK (http://mirwalk.umm.uni-heidelberg.de), miRDB (http://www.mirdb.org/), and Targetscan (http://www.targetscan.org), to predict the potential target miRNAs of hub FRGs. The TF of hub FRGs were predicted using the TRRUST2.0 online tool (https://www.grnpedia.org/trrust/). In addition, miRNA-mRNA and TF-mRNA networks were visualized using Cytoscape. The hub genes in the miRNA-mRNA network were obtained using the cytoHubba plugin.
2.4 Carotid artery ligation model
Male, specific pathogen free C57BL/6 mice (8–12 weeks, 20–25 g) were purchased from the Yangzhou University (China). To exclude the effects of estrogen on vascular damage, only adult male mice were used in the study following a 7-days acclimatization period to the preoperative environment. Briefly, the samples were divided into two groups, the ligation group included the left carotid arteries (LCAs) whereas the intra animal control group included the contralateral right carotid arteries (RCAs) on which a sham operation was performed. For carotid artery ligation, ketamine (80 mg/kg intraperitoneal) and xylazine (5 mg/kg intraperitoneal) were combined to anesthetize mice and the LCA was exposed through a midline cervical incision and ligated with a 5–0 silk suture just proximal to the bifurcation. A similar procedure was performed but without ligation on the RCA. Total vascular tissue samples were obtained from the LCAs and RCAs of mice sacrificed at 2 and 14 days post-ligation. Then, the mice were processed for morphological and biochemical studies at specific time points after surgery, as described previously (Zhang and Gu, 2022). All protocols in this study were approved by the Institutional Animal Care and Use Committee of the Affiliated Hospital of Yangzhou University, and followed the Guide for the Care and Use of Laboratory Animals.
2.5 Real-time qPCR(RT-qPCR)
The mRNA expression levels of the FRGs were measured using RT-qPCR; the primers were designed by the NCBI website and synthesized through the Tsingke Biotechnology Company of China. At 2 and 14 days after ligation, total RNA from vascular tissues was extracted using the TRIzol universal Reagent (Tiangen), which was then reverse-transcribed into cDNA using HiScript® Ⅲ RT SuperMix for qPCR (+gDNA wiper) (NOVIZAN). Synthesized cDNA was amplified through quantitative RT-PCR analysis using ChamQ universal SYBR qPCR Master Mix (NOVIZAN) in a CFX96 Real-Time System (Bio-Rad). Accordingly, the relative abundance of each transcript was determined using the ΔΔCT method. The forward and reverse primer pairs used for quantitative RT-qPCR are shown in Table 1.
TABLE 1 | Forward and reverse primer pairs.
[image: Table 1]2.6 Immunohistochemistry (IHC)
IHC was performed as previously described (Zhang and Gu, 2022). Briefly, 5-µm thick formalin-fixed paraffin-embedded carotid tissue of mice sections were stained with anti-Cd44 (Servicebio), anti-Il1b (Servicebio), anti-Ptgs2 (Servicebio), and anti-Cybb (Servicebio) antibodies according to the manufacturer’s instructions. All positive cells were counted from three sections of each artery sample and evaluated by an investigator who was blinded to the identities of the treatment protocols at ×100 magnification.
2.7 Statistical analysis
The data were expressed as the mean ± SD in GraphPad Prism 7 (GraphPad Software). A two-sample, unpaired Student’s t-test was used to analyze the differences between the two groups of data with normally distributed variables and the probability level was set at p < 0.05.
3 RESULTS
To perform an in-depth analysis of ferroptosis-associated genes in IH, gene expression and FRG datasets from GEO and FerrDb were used, respectively. An overview of the datasets analyzed and compared in this study is shown in Figure 1 (study protocol).
[image: Figure 1]FIGURE 1 | Study protocol. (A) The overall protocol of this study.
3.1 Ferroptosis-related DEGs in IH
We found that the expression of a larger number of genes were altered in the endothelium of the LCA than the RCA. A total of 1,197 and 1,556 DEGs were identified 2 and 14 days after ligation, respectively, as shown in Figures 2A,B. There were 388 FRGs in FerrDb; however, after intersection with FRGs, 34 ferroptosis-related DEGs were identified 2 days after ligation and 31 ferroptosis-related DEGs were identified 14 days after ligation, as shown in Figure 2C. The clustering analysis of significantly different FRGs 2 and 14 days after ligation showed that the samples were closely related, as shown in Figures 2D,E.
[image: Figure 2]FIGURE 2 | Differentially expressed ferroptosis-related genes (FRGs) in early and late intimal hyperplasia (IH). (A) The volcano plot of differentially expressed genes 2 days after ligation. (B) The volcano plot of differentially expressed genes 14 days after ligation. The abscissa represents the difference in the fold change of gene expression in different treatment groups, and the ordinate represents the adj. p-value of the expression difference. Blank dots represent unchanged genes. Red dots represent upregulated genes, and blue dots represent downregulated genes. (C)The overlapping genes between FRGs and DEGs 2 and 14 days after ligation. (D) The heatmap of differentially expressed FRGs in the carotid artery samples 2 days after ligation based on the clustering analysis. (E) The heatmap of differentially expressed FRGs in the carotid artery samples 14 days after ligation based on the clustering analysis.
3.2 Functional enrichment analysis of ferroptosis-related DEGs
To investigate the biological functions and pathways of ferroptosis-related DEGs 2 and 14 days after ligation, GO and KEGG enrichment analyses were performed, respectively. The GO analysis showed that differentially expressed FRGs were mainly enriched in basolateral plasma membrane, organic anion transmembrane transporter, and carboxylic acid transmembrane transport 2 days after ligation (Figure 3A). In addition, the KEGG results showed that the differentially expressed FRGs were closely enriched in ferroptosis, leishmaniasis, and lipid and atherosclerosis (Figure 3C). The GO analysis 14 days after ligation showed that differentially expressed FRGs were mainly enriched in the negative regulation of apoptotic signaling pathway, cellular response to iron ion, and response to oxidative stress (Figure 3B). Furthermore, the KEGG results showed that the differentially expressed FRGs were mainly enriched in ferroptosis, IL-17 signaling pathway, TNF-signaling pathway, and lipid and atherosclerosis (Figure 3D).
[image: Figure 3]FIGURE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of FRGs. (A) GO enrichment analysis of FRGs 2 days after ligation. (B) GO enrichment analysis of FRGs 14 days after ligation. (C) Relationship among the top 10 enriched KEGG pathway terms and targets is represented in a chord plot 2 days after ligation. (D) Relationship among the top 10 enriched KEGG pathway terms and targets is represented in a chord plot 14 days after ligation. BP, biological processes; CC, cellular component. MF, molecular function.
3.3 PPI networks and prediction of TFs for DEGs in mouse
The differentially expressed FRGs 2 and 14 days after ligation were analyzed using the STRING online database and a PPI network was obtained (Supplementary Figure S1A, B). To identify hub FRGs, the CytoHubba plugin was used. The top 10 hub FRGs 2 days after ligation included Slc7a5, Il1b, Slc7a11, Slcla5, Asns, Ptgs2, Cybb, Slc2al, Cd44, and Tfrc (Figure 4A). However, 14 days after ligation, the top 10 hub FRGs included Il1b, Hmox1, Cybb, Ptgs2, Cd44, Cxcl2, Mmp13, Tfrc, Tgfbr1, and Map3k5 (Figure 4B). Moreover, we found that Il1b, Cybb, Tfrc, Cd44, and Ptgs2 co-existed and were upregulated in the LCA compared to the RCA at 2 and 14 days after ligation. To determine target-regulated FRG TFs, we used the TRRUST2.0 database and found that 4, 10, and 40 TFs regulate the expression of Cd44, Il1b, and Ptgs2, respectively, however, there were no TFs regulating Cybb and Tfrc (Figure 4C).
[image: Figure 4]FIGURE 4 | Major protein–protein interaction (PPI) networks and predicted transcription factors (TFs) of FRGs. (A) The major PPI network analysis of FRGs 2 days after ligation. (B) The major PPI network analysis of FRGs at 14 days after ligation. The color gradation represents the expression; red represents a higher expression. (C) The prediction of mouse DEGs TFs.
3.4 Construction of miRNA-mRNA networks
To ensure the accuracy and reliability of the results, the intersection of three databases (miRDB, Targetscan, and miRWALK) was selected to identify target-regulated hub gene miRNAs. By analyzing the miRNA–mRNA networks, we found that 8, 50, 79, 42, and 48 miRNA targets regulate the expression of Il1b, Cd44, Tfrc, Ptgs2, and Cybb, respectively (Figure 5A). Furthermore, miRNA-mRNA networks showed that miR-335-3p simultaneously regulates the expression of Ptgs2, Tfrc, and Cd44, miR-882 and miR-185-5p regulate the expression of Cd44 and Tfrc, miR-22-5p and miR-215-3p regulate the expression of Tfrc and Cybb (Figure 5B).
[image: Figure 5]FIGURE 5 | miRNA-mRNA network construction of hub genes. (A)miRNA-mRNA network construction. (B) The hub genes in the miRNA-mRNA network.
3.5 Hub gene validation
To further validate the results of the hub DEGs related to ferroptosis analyzed from bioinformatics analysis, a model of IH was established by performing a carotid artery ligation in mice. Quantitative RT-PCR analysis showed that the mRNA levels of Il1b, Cybb, Ptgs2, Tfrc, and Cd44 were significantly higher (p < 0.05) in the LCA than in the RCA group 2 days after ligation. However, with the exception of Tfrc, the expression of Il1b, Cybb, Ptgs2, and Cd44 was significantly higher in the LCA than in the RCA group 14 days after ligation (Figure 6). Subsequently, we validated the presence of Il1b, Cybb, Ptgs2, and Cd44 using IHC (Figure 7) and found that the expression levels of these FRGs protein were elevated in LCA mice 14 days after ligation, compared with RCA mice. In addition, the quantification table of mRNA and IHC showed that the rising trend of Il-1b in LCA was more evident than that in RCA, which supported the findings of the bioinformatics analysis.
[image: Figure 6]FIGURE 6 | Validation of mRNA levels. (A) The mRNA levels of Il1b, Ptgs2, Cybb, and Tfrc 2 days after ligation in the right carotid artery (RCA) and left carotid artery (LCA) groups in mice. (B) The mRNA levels of Il1b, Ptgs2, Cybb, Cd44, and Tfrc 14 days after ligation in the RCA and LCA groups in mice. All values have been standardized using the expression levels of GAPDH. A two-tailed unpaired Student’s t-test was used to compare two groups. Data are expressed as the means ± SD, n = 6, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
[image: Figure 7]FIGURE 7 | Validation of protein levels. (A) Immunohistochemistry staining of Il1b, Ptgs2, Cybb, and Cd44 proteins 14 days after ligation in the RCA and LCA groups in mice. (B) Quantitative analysis of Il1b, Ptgs2, Cybb, and Cd44 proteins 14 days after ligation in the RCA and LCA groups in mice. The arteries were harvested from uninjured RCA (that underwent a sham operation) and injured LCA 14 days after ligation. The red arrows represent positive cells. A two-tailed unpaired Student’s t-test was used to compare the two groups. Data are expressed as the means ± SD, n = 3. **p < 0.01; ***p < 0.001; ****p < 0.0001; compared with the RCA group. Original magnification, ×100. Scale bar: 50 μm.
4 DISCUSSION
Studies have shown that endothelial cell injury activation, monocyte/macrophage adhesion, and infiltration, are the main pathological bases of IH (Morrell and Adnot, 2009; Weber and Noels, 2011; Nazari-Jahantigh and Wei, 2012; Andueza and Kumar, 2020). When endothelial cells are injured, lipid metabolism is disordered, and lipids are gradually deposited in the intima. Oxidized lipids and lipid aggregation lead to the activation of macrophages, thus promoting the formation of foam tissue cells, which is the core process of atherosclerosis. Ferroptosis, an iron-dependent, non-apoptotic mode of cell death, is characterized by the accumulation of lipid reactive oxygen species (ROS) (Dixon and Lemberg, 2012). Recent studies revealed that ferroptosis plays a key role in the progression of atherosclerosis (Guo and Lu, 2022). Thus, elucidating the potential relationship between ferroptosis and IH may provide new ideas and targets for the in-depth study of IH. Kumar et al. mainly investigated the effects of atorvastatin at two time points on global endothelial gene expression by performing microarray studies using their mouse partial carotid ligation model (Kumar and Sur, 2021). In our study, there were four time points in the dataset; however, a comprehensive analysis found no intersection across these, and FRGs were very few at 12 and 24 h, which not enough to support the following functional enrichment and pathway analysis. Therefore, we systematically analyzed the expression of FRGs in the carotid artery samples 2 and 14 days post-ligation. It was found that 34 significantly different FRGs were identified 2 days after ligation, and 31 FRGs were identified 14 days after ligation. Then, GO enrichment analysis and KEGG separately revealed the diversity of functions and pathways of FRGs. Although, the specific role of these FRGs in IH requires further study, we speculated that these genes may play key roles in the pathophysiological processes of IH. Thus, carotid artery ligation altered the gene expression profile of endothelial cells, and although not many FRGs were obtained at days 2 and 14, their effects were mainly reflected in ferroptosis, immune inflammation, and lipid and atherosclerosis. Furthermore, to identify potential ferroptosis-related candidate target genes to enrich potential targets, we analyzed these genes through PPI network and identified five ferroptosis-related DEGs, including Il1b, Ptgs2, Cybb, Cd44, and Tfrc.
Inflammation is an important driver of atherosclerosis and the underlying pathology of CVDs. The NLRP3 inflammasome and IL-1 family of cytokines are central to the pathologic response to injury and represent a key pathogenetic mechanism in the formation, progression, and complication of atherosclerosis and the myocardial response to ischemic and non-ischemic injuries. IL-1-targeted therapies have been shown to improve cardiovascular outcomes in clinical trials in patients with or at risk for acute myocardial infarction, heart failure, and recurrent pericarditis (Ridker and Everett, 2017; Grebe and Hoss, 2018; Abbate and Toldo, 2020). Recent studies have revealed that NLRP3 inflammasome activation contributes to not only pyroptosis but also other types of cell death, including apoptosis, necroptosis, and ferroptosis (Huang and Xu, 2021). In addition, GPX4, as an important negative effector of ferroptosis, has recently been shown to inhibit caspase-11-dependent pyroptosis and IL-1β release (Kang and Zeng, 2018). Furthermore, a recent study showed that when ox-LDL and ferric ammonium citrate (FAC) were added to THP-1 macrophages, FAC, as an iron additive, increased the levels of lipid ROS, ferroptosis, IL-1β, and IL-18 in foam cells but decreased GPX4 expression (Su and Yang, 2021). These findings suggested that IL-1β may reflect the severity of ferroptosis. It has been previously reported that the expression of prostaglandin endoperoxide synthase 2 (Ptgs2) encoding cyclooxygenase-2 is significantly upregulated in ferroptosis (Xie and Hou, 2016). Previously, Li et al. investigated the role and underlying mechanisms of ferroptosis in lipopolysaccharide (LPS)-induced cardiac injury. They found that LPS increased levels of ferroptosis markers, including Ptgs2, malondialdehyde (MDA), and lipid ROS in mice injected with LPS (10 mg/kg) after 12 h (Li and Wang, 2020). Upregulation-trends of Ptgs2 in ferroptosis was further demonstrated in the study by Zhou et al. In this study, they found that the expression of PTGS2, ACSL4, caspase-1, and NLRP3 were upregulated at the late stages of atherosclerosis, and these proteins could be used as biomarkers of atherosclerosis severity (Zhou and Zhou, 2021). High oxidative stress has been shown to impair cellular function and angiogenesis (Yin and Xu, 2011; Hu and Wang, 2018). NADPH oxidase 2 (Nox2), as part of the NADPH oxidase complex, also known as Cybb, is a major source of ROS in endothelial cells, a pro-inflammatory factor related to interactions between neutrophils and macrophages, and plays a crucial role in angiogenesis (Hahner and Moll, 2020; Chen and Sun, 2021). Previous studies have shown that Cd44 plays an important role in atherosclerotic lesions characterized by VSMC proliferation, which is mainly involved in angiogenesis, endothelial cell proliferation, and migration (Schultz and Rasmussen, 2005; Zhao and Lee, 2008). In our previous study, we analyzed the dataset uploaded by Dunn et al. using bioinformatic analyses and found that the expression of Cd44 was significantly upregulated after 7 days of carotid artery ligation (Zhang and Gu, 2022). Moreover, it is closely related to ferroptosis and has been studied in ulcerative colitis (Cui and Chen, 2021) and various cancers (Liu and Jiang, 2019; Deng and Zheng, 2021; Kozawa and Sekai, 2021). However, the role of Cd44 in ferroptosis and IH remains unknown, this is the innovation of our research. Furthermore, as a cell surface receptor necessary for cellular iron uptake, transferrin receptor (Tfrc) is an essential component of ferroptotic cell death (Luo and Gao, 2020). In a study by Guo, they identified the role of TRIB2 in mitigating oxidative damage by reducing ubiquitination and the availability of Ub, which is necessary for the subsequent degradation of glutathione peroxidase 4 (GPX4). Thus, they elucidated a novel role for TRIB2 in desensitizing ferroptosis via E3 βTrCP, by which it promotes Tfrc ubiquitination and ultimately reduces labile iron in hepatoma cells (Guo and Chen, 2021).
Hub genes are considered to play key roles in many biological processes. Previous studies have confirmed that TFs and miRNAs participate in the pathological process of IH by regulating various target genes. To gain insight into the mechanism of FRGs in IH, we systematically analyzed the hub gene-miRNA and hub gene-TF networks of five hub FRGs 2 and 14 days after ligation. Previous studies have confirmed that TFs can drive cell differentiation (Fong and Tapscott, 2013), as well as dedifferentiation and transdifferentiation (Takahashi and Yamanaka, 2016). Moreover, TFs also control specific pathways, such as the immune response (Singh and Khan, 2014). We first performed TF network analysis on five hub FRGs and found that only Ptgs2, Cd44, and Il1b could be regulated by some or several TFs. Furthermore, we found that NF-κB1 and SP1 played a significant regulatory role. Previous studies have confirmed that NF-κB1, as an important part of TFs, is involved in the regulation of many biological processes. It is also involved in the formation of neointima after vascular injury, mainly by regulating the expression of inflammation-related genes (Yoshimura and Morishita, 2001; Cartwright and Perkins, 2016). In addition, SP1, as a common TF, has been shown to be involved in IH (Yang and Kim, 2013). Whether NF-κB1 and SP1 are involved and how ferroptosis is regulated in IH still needs further exploration. The five hub FRGs can be regulated by different miRNAs using the miRNA network analysis. It is evident that miRNA-335-3p plays an important role because it regulates the expression of three important genes simultaneously. The available literature indicates that there are few studies on miR-335-3p, especially in the cardiovascular field, which mainly focus on cardiac development (Kay and Soltani, 2019), pulmonary hypertension (Fan and Fan, 2020), and atherosclerosis (Hildebrandt and Kirchner, 2021). Moreover, Sun et al. found that the overexpression of miR-185-5p could suppress the proliferation and migration of VSMCs by targeting FRS2 (Sun and Li, 2021). During VSMC phenotype switching, it was demonstrated that miR-221-3P enhanced VSMC growth in vitro and aggravated IH in balloon-injured carotid arteries (Davis and Hilyard, 2009; Liu and Cheng, 2009). Following miR-222-5p knockdown, the proliferative and migratory abilities were inhibited in VSMCs induced by ox-LDL (Liu and Jiang, 2022). To further verify the accuracy of our bioinformatic analysis results, we verified the mRNA and protein levels of the hub FRGs using RT-qPCR and IHC, respectively, and we found that there were only four hub FRGs, including Il1b, Ptgs2, Cybb, and Cd44 that were significantly differentiated in IH induced by carotid artery ligation.
To the best of our knowledge, there are only a few studies on ferroptosis in the context of IH. In the present study, we provided a stepping stone for research regarding this aspect by unveiling the link between ferroptosis and IH. Taken together, our findings provided molecular-level evidence that FRGs at 2 and 14 days after ligation rely on similar and different molecular mechanisms, respectively. Importantly, key ferroptosis-related DEGs were identified during the development of IH; this indicates the existence of common targets and pathways between ferroptosis and IH. However, the limitation of this study was that the regulatory aspect of some signaling pathways was underemphasized, most likely because we only used microarrays, qPCR, and in silico tools for analyses. In the present study, we provide some new insights about the underlying mechanism of IH by exploring the key FRGs in the development of IH. Importantly, our results have good novelty and provide key clue to further study the potential target in the next work. The future study will focus on the role of the key FRGs at the cellular and animal levels, to further study the role and mechanism of ferroptosis in the occurrence and development of IH, it is necessary to determine the functions of FRGs and the pathways involved in ferroptosis, as well as the functions and mechanisms underlying the actions of FRGs in this disease.
5 CONCLUSION
To the best of our knowledge, the present study is the first to explore the role of ferroptosis in vascular IH. Our results suggest that these hub FRGs are involved in the occurrence and development of intimal formation. Importantly, our study provides a rich source of targets and pathways that can be further explored to obtain an in-depth picture of the role of ferroptosis in IH.
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Background: Pyroptosis is a recently identified mode of programmed inflammatory cell death that has remarkable implications for cancer development. lncRNAs can be involved in cellular regulation through various pathways and play a critical role in gastric cancer (GC). However, pyroptosis -related lncRNAs (PRlncRNAs) have been rarely studied in GC.
Methods: Pyroptosis-related gene were abstracted from the literature and GSEA Molecular Signatures data resource. PRlncRNAs were obtained using co-expression analysis. LASSO Cox regression assessment was employed to build a risk model. Kaplan-Meier (KM), univariate along with multivariate Cox regression analysis were adopted to verify the predictive efficiency of the risk model in terms of prognosis. qRT-PCR was adopted to validate the expression of PRlncRNAs in GC tissues. In addition, immune cell infiltration assessment and ESTIMATE score evaluation were adopted for assessing the relationship of the risk model with the tumor immune microenvironment (TME). Finally, immune checkpoint gene association analysis and chemotherapy drug sensitivity analysis were implemented to assess the worthiness of our risk model in immunotherapy and chemotherapy of GC.
Results: We identified 3 key PRlncRNAs (PVT1, CYMP-AS1 and AC017076.1) and testified the difference of their expression levels in GC tumor tissues and neighboring non-malignant tissues (p < 0.05). PRlncRNAs risk model was able to successfully estimate the prognosis of GC patients, and lower rate of survival was seen in the high-GC risk group relative to the low-GC risk group (p < 0.001). Other digestive system tumors such as pancreatic cancer further validated our risk model. There was a dramatic difference in TMB level between high-GC and low-GC risk groups (p < 0.001). Immune cell infiltration analysis and ESTIMATE score evaluation demonstrated that the risk model can be adopted as an indicator of TME status. Besides, the expressions of immunodetection site genes in different risk groups were remarkably different (CTLA-4 (r = −0.14, p = 0.010), VISTA (r = 0.15, p = 0.005), and B7-H3 (r = 0.14, p = 0.009)). PRlncRNAs risk model was able to effectively establish a connection with the sensitivity of chemotherapeutic agents.
Conclusion: The 3 PRlncRNAs identified in this study could be utilized to predict disease outcome in GC patients. It may also be a potential therapeutic target in GC therapy, including immunotherapy and chemotherapy.
Keywords: gastric cancer, lncRNA, immunotherapy, TCGA, LASSO regression, pyroptosis, prognosis
INTRODUCTION
Gastric cancer (GC) is a critical public health issue that should not be underestimated (Smyth et al., 2020). According to the latest estimates of the International Agency for Research on Cancer 2020, the number of new cases of GC reached 1,089,000 worldwide in 2020, and GC has become the fifth most frequent cancer and the fourth most frequent cause of cancer death globally, seriously threatening human health. There are many factors that affect the development of GC including H. pylori infection, age, gender, and dietary-behavior, etc., (Gonzalez et al., 2013; Oliveira et al., 2015; Praud et al., 2018; Kumar et al., 2020; Poorolajal et al., 2020). Therefore, there is still a long way to go in terms of GC prevention. Besides, the prognosis of GC, particularly at the advanced stage, is poor, and there is no reliable approach for estimating the prognosis of GC subjects.
Pyroptosis, which triggers strong inflammation by releasing dangerous molecules and inflammatory cytokines consisting of interleukin (IL) -18, IL-1β, etc., (Zhou and Fang, 2019), is a kind of necrotic and inflammatory programmed cell death resulting from facilitating caspase-1 activation (Broz and Dixit, 2016; Man et al., 2017; Rathinam et al., 2019; Wang et al., 2020). Pyroptosis is mainly mediated by inflammatory vesicles and excessive pyroptosis can lead to various inflammatory diseases. Pyroptosis and inflammation are important in mediating infectious diseases, immune disorders, etc. Numerous investigations in recent years have established that pyroptosis is remarkably linked to tumorigenesis (Ma et al., 2018; Wang et al., 2019; Zhou and Fang, 2019; Fang et al., 2020).
Long non-coding RNAs (lncRNAs) are a subclass of RNA molecules whose transcripts exceed 200 nucleotides in length (Ponting et al., 2009). Generally, they do not encode proteins, but can participate in protein-coding gene modulation as RNAs at various levels, consisting of epigenetic modulation, transcriptional modulation, and post-transcriptional modulation. Most lncRNAs have a conserved secondary structure, sheared form, and subcellular localization, which are important for lncRNAs to perform their functions. Although the majority of lncRNAs are expressed at a low level compared to messenger RNA (mRNA), many lncRNAs are of great importance in regulating cellular homeostasis and gene expression and have a central role in cellular processes, biological development and disease progression (Chen et al., 2018). Because lncRNA expression is very tissue-specific, it has the potential to be utilized as diagnostic along with prognostic biomarkers as well as therapeutic targets for some cancers (Deng et al., 2017; Chen et al., 2018; Li Y. et al., 2021).
Recently, it has been shown that lncRNAs can be involved in modulating the process and progress of GC. Some lncRNAs can promote cancer, and conversely, some lncRNAs can suppress cancer, but the detailed mechanism is not clear (Sun et al., 2016; Wei and Wang, 2017; Ren et al., 2020). Similarly, the role of pyroptosis in cancer also has some duality (Kolb et al., 2014). LncRNA plays an important role in pyroptosis, which can unbalance the inflammasome and lead to cell pyroptosis. It can also regulate pyroptosis through mediating different signaling pathways (Wan et al., 2020; Xu et al., 2020). Some studies have demonstrated the predictive value of pyroptosis-related long noncoding RNAs (PRlncRNAs) for the prognosis of cancer patients. This indicated a possible important role of PRlncRNAs in tumors (Lu et al., 2022). Given the limited amount of research on PRlncRNAs in GC, we started investigating whether PRlncRNAs may be employed as diagnostic, as well as prognostic indicators for the prevention along with treatment of GC.
Based on the TCGA database and quantitative real-time polymerase chain reaction (qRT-PCR), we screened for PRlncRNAs that play an important role in GC prognosis. We then constructed a risk model to further predict the prognosis of GC patients, and explored the predictive significance of the model in immunotherapy and chemotherapy, thereby providing a more reliable scientific basis for its use as a prognostic marker as well as an indicator of treatment response for GC patients.
MATERIALS AND METHODS
Data collection
The original gene expression data (375 samples of GC tissues along with 32 samples of para-cancerous tissues) were obtained from the TCGA data resource (https://portal.gdc.cancer.gov). The original clinical data of the GC subjects were also abstracted from the TCGA data resource. Corresponding clinical information consisted of age, family history, gender, grade, pathological stage, along with vital status. The clinical characteristics of the subjects are shown in Supplementary Table S1. All our data were abstracted from TCGA, thus, approval from the Ethics Committee was not required. This research work was in full compliance with the guidelines for the NIH TCGA human subject protection and data access policies. The flowchart of this study was shown in Figure 1.
[image: Figure 1]FIGURE 1 | Flowchart of this study.
PRlncRNAs co-expressed with pyrophosis-related encoding genes
A total of 50 pyrophosis-linked encoding genes (mRNAs) were abstracted from literature and the Molecular Signatures Database of Gene Set Enrichment Analysis (GSEA, http://www.gsea-msigdb.org/). Firstly, we screened out the differentially expressed lncRNAs in the tumor group and the adjacent normal group by the limma R package. Then co-expressed lncRNAs were assessed via creating a pyrophosis-linked mRNA-lncRNA co-expression network on the basis of the criteria of |Correlation Coefficient| > 0.4 and p < 0.001 through Pearson correlation analysis by the cor. test function. Finally, lncRNAs that are both differentially expressed and significantly co-expressed with pyroptosis-related genes are PRLncRNAs.
LASSO cox regression analysis
Herein, the prognostic worthiness of these PRlncRNAs were screened by univariate along with multivariate Cox regression assessment firstly. Then, we created an efficient Risk Assessment Model by the least absolute shrinkage and selection operator (LASSO) Cox regression assessment via the glmnet package in R for modeling. We adopted the Glmnet package to explore the penalty parameter lambda through the cross-verification and uncovered the optimal lambda value. The optimal values of the penalty parameter were assessed by 1000-round cross-verification. We chose the most suitable lncRNA group to create a risk model. The median value of the risk score was adopted as the cut-off point. Herein, the patients were stratified into high-GC and low-GC risk groups. The risk score was calculated on the basis of a linear combination of the coefficients resulting from the LASSO regression model multiplied with the expression value of each selected lncRNA (coef: coefficient; expr: expression; lncRNAn: The nth lncRNAs): Risk score = coef (lncRNA1) *expr (lncRNA1) +coef (lncRNA2) *expr (lncRNA2) +…+coef (lncRNAn) *expr (lncRNAn).
Evaluation of the risk model
The area under the curve (AUC) for two-year, three-year, as well as five-year overall survival was estimated via the time-dependent receiver operating characteristic (ROC) curve, and the accuracy for survival estimation of the risk model was assessed with the survival package in R. To assess the effect of the risk model on patients’ rates of survival, we used univariate along with multivariate independent prognostic analysis.
We utilized independent prognostic criteria to create a prognosis nomogram via the R “rms” package in order to provide a quantitative tool for forecasting the rate of survival in the TCGA GC data set. Afterwards, a calibration curve was generated to check if the estimated survival outcome (two-year, three-year, and five-year survival) matched the observed outcome.
GSEA analysis of prognostic lncRNAs and risk groups in the model
Gene Set Enrichment Analysis (GSEA) is a very powerful enrichment analysis method that can perform GSEA analysis against data from a variety of databases, including common Gene Ontology (GO) databases, Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, etc., (Powers et al., 2018). Herein, we assessed the potential molecular mechanisms of prognostic lncRNAs, the cellular processes enriched in high-GC and low-GC risk groups on the basis of the KEGG library in GSEA software 4.1.0. The visualization of the results was carried out by R.
Correlation analysis between the model and TMB
The total number of non-synonymous mutations in every coding region of the tumor genome was characterized as Tumor mutation load (TMB), which included the total number of gene coding errors, base substitution insertions, and deletions (Lv et al., 2020; Zhang et al., 2020). In this work, we abstracted the somatic mutation information via a Perl script, after which TMB value was determined via dividing the number of somatic mutations. R was utilized to merge the patient’s TMB information with the risk scores. We investigated the TMB levels of patients in different risk categories and the association between TMB and riskscore. Then we assessed the rates of survival of patients with varied TMB levels.
Immune cell infiltration analysis and ESTIMATE score evaluation
Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) is a deconvolving algorithm-based analytical resource for estimating the composition and number of immune cells in mixed cell (Newman et al., 2015). To accurately assess the composition of immune cells in the tumor microenvironment, we utilized the CIBERSORT algorithm to calculate and quantify tumor-infiltrating immune cells from RNA sequencing data to analyze whether different types of immune cells infiltrate differently in the high-GC risk and low-GC risk groups.
In this research work, the immunoscore for every patient was computed with the ESTIMATE approach utilizing the “estimate” R package. ESTIMATE is a popular enrichment algorithm, which was extensively utilized in medical studies (Liu et al., 2021a; Liu et al., 2021b; Liu et al., 2021c). The abundance ratio matrix of 22 immune cells for each sample was acquired by cell type identification by estimating relative sub-sets of RNA transcripts (CIBERSORT: https://cibersort.stanford.edu/). The algorithm of 1,000 permutations was employed. Only samples having a CIBERSORT p of < 0.05 were incorporated in the subsequent analysis of comparing differential immune invasion levels between the sub-groups categorized by risk scores.
Correlation analysis between the model and immunotherapy
The immune checkpoint is a key regulator of the immune system’s ability to suppress or stimulate systemic function (Gibney et al., 2016; Topalian et al., 2016). Immune checkpoint blockade (ICB) therapy is used to unblock the suppressive effect of tumor cells on immune cells by blocking the interaction between immune checkpoint expressing tumor cells and immune cells, thus restoring effective T cell function (Pardoll, 2012; Patel and Minn, 2018; Wei et al., 2018). We adopted the limma package to analyze whether the expression of common immune checkpoint genes (CTLA-4, B7-H3, VISTA, PD1, PD-L1, etc.) differed in high-GC and low-GC risk group, and thus to assess the significance of this risk model in assessing the benefits of immunotherapy.
To further assess the relationship of the risk scores with clinical chemotherapy, we predicted the sensitivity of chemotherapeutic agents and analyzed the differences in chemotherapy drug sensitivity between high-GC and low-GC risk groups. We utilized the “pRRophetic” R package to predict the drugs’ half-maximal inhibitory concentration (IC50) on the basis of the Cancer Cell Line Encyclopedia (CCLE) by ridge regression.
GC samples collection and quantitative real-time polymerase chain reaction
A total of 40 pairs of GC tissues and Para cancerous tissues were acquired from Zhongda Hospital, Southeast University, and authorized by the Ethics Committee of Zhongda Hospital, Southeast University. All subjects signed an informed consent form. All the tissues were collected following surgical excision from individuals who had never undergone prior radiotherapy or chemotherapy. Then, we stored these samples at −80°C for further use.
We extensively assessed the expression of predictive lncRNAs in GC tissues and neighboring non-tumorous tissues via qRT-PCR. Isolation of total RNA from GC tissues was done with the TRIzol reagent (Invitrogen, Carlsbad, United States). After that, generation of cDNA was done with the PrimeScriptTM RT reagent kit (TAKARA). The qPCR reaction constituted a 20 μL mixture, comprising diluent cDNA 1 μL, 2x RealStar Power SYBR Mixture (GenStar, China) 10 μL, DEPC water 8.2 μL, forward primers (FP) and reverse primers (RP) 0.4 μL, respectively. The reaction was carried on the StepOnePlus PCR System (Applied Biosystems, United States) for 40 cycles (95°C for 15 s, 60°C for 30 s, and 72°C for 30 s) following a 2 min pre-denaturation at 95°C. Relative transcript expression was computed with the 2−ΔΔCt approach and standardized to GAPDH. All primers were synthesized by Sangon Biotech (Shanghai, China). The sequence of the primers is as follows: GAPDH FP: TCA​AGA​TCA​TTG​CTC​CTC​CTG​AG; RP: ACA​TCT​GCT​GGA​AGG​TGG​ACA, PVT1 FP: TCC​ACT​CAC​TTT​GGC​CTT​TC; RP: AGG​TGA​ACA​CAG​AGC​ACC​AA, CYMP-AS1 FP: GAG​GTG​GTC​CTG​AGG​TTC​AA; RP: ACC​TTT​GTC​GGT​GCT​AGT​GC, AC017076.1 FP: AAG​TTG​AGG​TGG​CCC​TGA​AT; RP: TTT​AGC​TCA​CAT​CTG​TCC​AGT​CA.
Statistical analysis
All statistical analyses and visualization were impelemented in R software 4.1.1 (https://www.r-project.org/), including R packages limma, pheatmap, igraph, reshape2, ggpubr, glmnet, forestplot, survival, survminer, timeROC, rms, foreign, utils, org. Hs.eg.db, clusterProfiler, enrichplot, vioplot, ggExtra, plyr, grid, gridExtra, pRRophetic, etc. Wilcoxon test was adopted for the comparisons between two groups. Survival analysis was done with the survival along with survminer R packages. The limma package was adopted to estimate the mean and variance of gene expression, immune cell infiltration levels, drug sensitivity, etc. in different subgroups to perform a variance analysis through a linear model. The Kaplan Meier method and the log-rank test were adopted for survival analysis and survival distribution comparisons. Logistic LASSO regression, univariate along with the multivariate Cox regression analysis were implemented to screening for effective prognosis-linked genes. Forest map was drawn by the R language ggforest package. p-value less than 0.05 was regarded as statistical significance.
RESULTS
Identification and screening of pyrophosis-related lncRNAs
We have obtained 50 pyrophosis-related genes through searching literature and GSEA database (Supplementary Table S2). Based on the transcriptome dataset of GC cohort downloaded from TCGA database, we performed co-expressed analysis and constructed pyrophosis-related mRNA-lncRNA co-expression network. There were 29 lncRNAs strongly associated with pyrophosis-related genes (Figure 2A). Then, univariate Cox regression analysis was conducted on these 29 lncRNAs. A total of 8 lncRNAs were identified according to the criterion of p < 0.05 (Figure 2B). Subsequent multivariate Cox regression analysis indicated that only 3 lncRNAs (PVT1, p = 0.004; CYMP. AS1, p < 0.001; AC017076.1, p = 0.020) exhibited significant prognostic value for GC. In addition, the boxplot and heatmap showed that the expressions of these 3 lncRNAs were all higher in tumor samples than in adjacent normal samples (Figures 2C–E).
[image: Figure 2]FIGURE 2 | (A) Co-expression network of the pyroptosis-related mRNAs-lncRNAs was constructed and visualized using R. (B) The forest showed the HR (95% CI) and p-value of selected lncRNAs by univariate Cox regression analysis. (C–E) Visualization of the expression levels of lncRNAs with prognostic value expressed in human GC tumor tissues and adjacent normal tissues. (F–H) Represents the significantly enriched KEGG pathways of lncRNA PVT1, CYMP-AS1, and AC017076.1 in different expression level, respectively. GC, gastric cancer.
Functional and pathway enrichment assessment of the 3 pyrophosis-related lncRNAs signature
To further clarify the possible biological processes involved in the 3 lncRNAs, we analyzed the pathways in which they were enriched by GSEA. The result showed that the low expression of PVT1 was mainly associated with these signaling pathways, including ECM receptor interaction, calcium signaling pathway, drug metabolism cytochrome p450, focal adhesion etc.; its high expression mainly focused on RNA polymerase, pyrimidine metabolism, spliceosome and so on (Figure 2F). Notably, CYMP. AS1 and AC017076.1 had no significant enrichment pathways corresponding to its high expression, while at low expression CYMP-AS1 affected N_glycan biosynthesis, base excision repair, selenoamino acid metabolism, pyrimidine metabolism, etc. (Figure 2G). Similarly, the low expression of AC017076.1 was related to these basic cellular metabolic processes (Figure 2H).
The establishment of prognostic risk score model
We applied Lasso Cox regression to the 3 lncRNAs and found they are all highly related to survival time of GC patients (Figures 3A,B). We calculated the risk scores of each GC patient with the LASSO Cox regression model based on the expression levels and the coefficients of these 3 lncRNAs. Risk score = (-0.0820120141988985*expression level of PVT1) + (0.717013150171401*expression level of CYMP-AS1) + (0.834152964623546*expression level of AC017076.1). According to the median risk score, All GC patients were divided into the high-risk (high risk score) or the low-risk (low risk score) group.
[image: Figure 3]FIGURE 3 | Construction of a 3-PRlncRNAs risk model and its predictive worthiness for GC subjects on the basis of TCGA data resource. (A) Logistic LASSO regression analisis on the optimum lncRNAs to create the final estimation model. The total number of lncRNAs is provided at the top of the figure. The deviation in partial likelihood is displayed versus log lambda. Dotted vertical lines designate the optimal values. (B) Profiles of the core lncRNA’s LASSO coefficients. The total number of lncRNAs is indicated at the top of the figure. Each curve corresponds to a certain key lncRNA, and the number next to it indicates the lncRNA’s serial number. (C) Kaplan-Meier survival analysis of the high-GC risk and low-GC risk groups based on the risk model and median risk score in GC patients. (D) The receiver operating characteristic (ROC) curve of the risk model for two-year, three-year, and five-year survival prediction. (E) The risk curve for each sample was on the basis of the risk score. (F) The scatterplot depicting each sample’s survival status. The green and red dots, respectively, signify survival and death. GC, gastric cancer; OS, overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.
In addition, Kaplan-Meier survival curve was constructed to assess the associations between the expression levels of the 3-PRlncRNAs signature and overall survival (OS), As the Kaplan-Meier survival curve shows in Figure 3C, samples of high-risk group exhibited poorer OS than those of low-risk group (p < 0.001), suggesting that the prognostic signature of risk score is effective. Time dependent ROC analysis demonstrated that the prognostic accuracy of the 3-PRlncRNAs signature was 0.601 at 2-year, 0.613 at 3-year, and 0.706 at 5-year (Figure 3D). The risk curve and scatterplot were drawn to show the risk score and survival status of each GC patient. The risk coefficient and mortality of patients in the high-risk group were higher than those in the low-risk group (Figures 3E,F).
Univariate and multivariate cox regression analyses of the prognostic ability of the risk model
Univariate and multivariate Cox regression analysis were employed to estimate whether our model was a clinically independent prognostic factor for GC patients. The risk scores of the 3-PRlncRNAs signature and clinicopathological characteristics, including age, gender, grade, pathological tumor stage, were used as variables. Based on the GC cohort, univariate analysis indicated that the risk score (p < 0.001), age (p = 0.023), and pathological tumor stage (p = 0.008) were significantly associated with OS (Figure 4A). Subsequent multivariate analysis displayed that the risk score (p < 0.001), age (p = 0.004), pathological tumor stage (p = 0.008), gender (p = 0.048), and grade (p = 0.033) were significantly correlated with OS (Figure 4B). The results demonstrated that the risk score, pathological tumor stage and age were the optimal independent prognostic factors that could be used to predict the survival rate in GC patients. Especially, the prognostic 3-PRlncRNAs signature showed a higher significance in being an independent prognostic predictor for GC patients.
[image: Figure 4]FIGURE 4 | (A,B) Forest plot for the univariate (A) and multivariate (B) Model of the risk score along with clinicopathological variables on the basis of the Cox proportional hazard regression. Kaplan-Meier curve (C) and the receiver operating characteristic (ROC) curve (D) of the relationship between risk score and OS of PANC patients. (E) Nomogram for prognosis in subjects with GC based on risk score along with the clinical data. (F–H) The nomogram’s calibration curve. Perfect prediction is represented by a dashed line at 45°. GC, gastric cancer; PANC, pancreatic cancer; OS, overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.
External verification of the 3-PRlncRNAs signature in other cancers of digestive system
To estimate whether the prognostic 3-PRlncRNA signature had similar predictive values in different cohorts, we calculated the risk score for each sample according to the coefficients of these 3 PRlncRNAs to predict OS in other digestive system tumors from TCGA. A total of 177 pancreatic cancer (PC) patients were divided into a low-risk group and a high-risk group by the optimal cutoff value, and the OS of the PC patients in the low-risk group was significantly higher than that of the patients in the high-risk group (log-rank p < 0.05; Figure 4C). The 3-PRlncRNA signature constructed with the PC cohort also displayed a pretty accuracy in predicting the 2- year, 3- year, and 5-year OS, with AUC values of 0.584, 0.649 and 0.724 (Figure 4D).
Construction of a nomogram for predicting survival
To offer a clinically applicable and quantitative tool for predicting the prognosis of GC patients, we further constructed a prognostic nomogram to predict the survival probability at 2-year, 3-year, and 5-year based on the TCGA GC cohort. Six independent prognostic parameters, including age, gender, grade, stage, family history and risk score, were enrolled in the prediction model (Figure 4E). The calibration curve of the prognostic nomogram showed good agreement between prediction and observation (Figures 4F–H).
Functional and pathway enrichment assessment of high and low risk groups
To investigate whether biological processes and pathways differed between the high and low risk groups, we performed GO and KEGG enrichment analysis. The results showed that the high and low risk groups exhibited differences in some basic cellular biological activities, including DNA replication, nucleotide metabolism, primary immunodeficiency, nucleosome assembly, protein−DNA complex assembly, etc. (Figures 5A,B).
[image: Figure 5]FIGURE 5 | (A,B) Functional enrichment analysis of the two risk groups by GSEA. (C,D) Assessment of the correlation between the risk score of the GC patients and the complex immune infiltration level. (C) Violin plot displayed the distribution of diverse immune cell invasions in the high-GC risk and low-GC risk groups. (D) The ESTIMATE Score in different risk groups. The red group designates the high-GC risk group, whilst the blue group represents the low-GC risk group. GC, gastric cancer.
Correlation of the 3-PRlncRNA signature with immune cell infiltration
Considering the close relationship between pyroptosis and immunity, we explored the difference in immune cell infiltration between the two groups. Based on the ESTIMATE algorithm, we calculated the stromal score, immune score and ESTIMATEscore of each GC sample. Higher ESTIMATEscore (p = 0.003) were observed in the high-risk group compared with the low-risk group (Figure 5D), illustrating the different composition of tumor microenvironment in different risk groups. We further analyzed the abundance of 22 immune cells in the tumor microenvironment in the two groups. As the results shown in Figure 5C, in the high-risk group, the proportions of B cells memory (p = 0.044), T cells follicular helper (p = 0.013), Macrophages M1 (p < 0.001) and T cells CD4 memory activated (p = 0.019) were decreased, while the proportions of Monocytes (p = 0.006) and Neutrophils (p = 0.030) were increased compared with those in the low-risk group. High and low risk groups showed differential immune cells expression, which suggested that the 3-PRlncRNAs signature may be associated with prognosis by influencing the infiltration of immune cells in GC.
Potential of the 3-PRlncRNAs signature as a predictor of response to immunotherapy
We selected six immune checkpoint genes that are clinically popular to assess the potential of risk models as indicators of immunotherapy response. The results showed that the risk score was significantly correlated with the expression of CTLA-4 (r = -0.140, p = 0.010), VISTA (r = 0.150, p = 0.005), and B7-H3 (r = 0.140, p = 0.009) (Figures 6A–H). These observed associations between our 3-PRlncRNAs signature and immunotherapy-related biomarkers indicated that GC patients in different group may have different sensitivity to immune checkpoint inhibitors.
[image: Figure 6]FIGURE 6 | Correlation assessment of the immune checkpoint genes with GC patients’ risk score. (A–E) Exhibited the expression level of immune checkpoint genes in high- and low-GC risk groups. (F–H) Exhibited the correlation between the expression level of immune checkpoint genes and the risk score of GC patients. (I) A boxplot demonstrated the different TMB level in high-GC and low-GC risk groups. (J) The correlation of TMB with risk score. (K) Kaplan-Meier survival analysis of the high-GC and low-GC TMB groups in GC patients. GC, gastric cancer.
TMB was negatively associated with risk score and may predict patients’ survival probability
We analyzed the correlation of the 3-PRlncRNAs signature with TMB. Our result presented a markedly higher level of TMB in the low-risk group than the high-risk group (p < 0.001) (Figure 6I). Consistently, correlation analysis showed that patients with high TMB levels had lower risk scores than those with low TMB levels (r = -0.230, p < 0.001) (Figure 6J). Moreover, in Kaplan-Meier survival analysis, GC patients with high TMB levels had significantly higher survival rates than those with low TMB levels (p = 0.003) (Figure 6K).
3-PRlncRNAs signature was predictive to chemotherapy
In addition to exploring the relationship between risk models and immunotherapy, we further investigated whether risk models could be applied to the clinical use of drugs, especially chemotherapeutic drugs. Thus, we analyzed the differences in the sensitivity of ten chemotherapeutic agents, which have been widely used in the clinical treatment of tumors in recent years, in high and low risk groups. The results demonstrated a significant difference in the sensitivity of Tipifarnib (p < 0.001), Mitomycin (p < 0.001), Methotrexate (p < 0.001), Lenalidomide (p = 0.026), Lapatinib (p = 0.044), Embelin (p = 0.009), Doxorubicin (p = 0.003), Dasatinib (p = 0.039), Cytarabine (p = 0.040), Gemcitabine (p < 0.001) and Camptothecin (p < 0.001) in the high and low risk groups, which may be of critical use in the treatment of tumors, especially GC (Figures 7A–K).
[image: Figure 7]FIGURE 7 | The correlation analysis of the sensitivity of chemotherapeutic agents with GC patients’ risk score. (A–K) Represented eleven chemotherapeutic agents’ IC50 in different risk groups. The green and red boxes represent low-GC risk and high-GC risk group, respectively. GC, gastric cancer.
Quantitative real-time polymerase chain reaction of GC samples
We compared the expression levels of these 3 lncRNAs in 40 pairs of GC tumor tissue and normal para cancerous tissue samples. qRT-PCR was conducted to validate the expression level of these lncRNAs in frozen tissues. Expectedly, all the 3 lncRNAs were upregulated in GC tumor tissues than in normal para cancerous tissues (n = 40, PVT1, p < 0.001; CYMP. AS1, p < 0.001; AC017076.1, p < 0.001) (Figures 8A–C).
[image: Figure 8]FIGURE 8 | (A–C) The expression of lncRNA PVT1, CYMP-AS1, and AC017076.1 in tumor tissues and normal para cancerous tissues of GC patients, respectively. GC, gastric cancer.
DISCUSSION
As one of the most frequent malignant tumors in the world, GC seriously affects people’s health. Although the growth in the incidence of GC has slowed in recent years, it still poses a significant disease burden, due in large part to the poor treatment outcomes as well as poor prognosis and low overall cure rate (Pinheiro et al., 2014; Luo et al., 2017; Machlowska et al., 2020; Sexton et al., 2020). Pyroptosis constitutes an inflammatory programmed cell death mediated by multiple inflammatory vesicles that play a pivotal role in a variety of diseases, for instance atherosclerosis (Xu et al., 2018), inflammation-related diseases (Crusz and Balkwill, 2015), tumors (Wang et al., 2019; Ruan et al., 2020), etc. . Some pyroptosis related genes, including the well-known gasdermin (GSDM), have been found can remarkably regulate the gastric carcinogenesis (Zhang et al., 2019; Li et al., 2020). lncRNAs have been widely studied in tumors, and different lncRNAs play different biological roles in tumors and can regulate its development and progression through multiple pathways (Sun et al., 2016; Wei and Wang, 2017; Wei et al., 2020). It has been shown that lncRNAs can mediate cellular pyroptosis through certain mechanisms and further act on cancer cells. Many investigations have been conducted to establish the signature of PRlncRNAs to predict the prognosis of tumor patients in breast (Lv et al., 2021; Ping et al., 2021), ovarian (Tan et al., 2021), melanoma (Wu L. et al., 2021), lung (Lin et al., 2021), endometrial (Chen et al., 2021), liver cancers (Wu Z. H. et al., 2021) etc., but they have rarely been found in GC. Therefore, we started to establish a validated PRlncRNAs biomarker to predict the survival status and treatment outcome of GC patients.
A total of 50 pyroptosis genes were obtained by reviewing literature and searching the GSEA pyroptosis gene set (Zhou and Fang, 2019; Ren et al., 2020; Xiang et al., 2021). Then we performed the co-expression correlation analysis of these 50 pyroptosis genes based on the TCGA GC transcriptome data, and after the strict screening criteria, we obtained PRlncRNAs significantly associated with pyroptosis related genes. Based on these PRlncRNAs and TCGA GC cohort, we built an effective risk model by logistic LASSO regression. Logistics LASSO regression is a technique for selecting variables while fitting a high-dimensional generalized linear model (Wang et al., 2007; Lee et al., 2016). It was undertaken to reduce the number of variables and effectively avoid overfitting, as well as to choose the most appropriate lncRNAs for modeling. Cross-verification was adopted to establish the ideal lambda value for the penalty parameter. We obtained a risk model for three PRlncRNAs by creating a penalty function via logistic LASSO regression (PVT1, CYMP-AS1, and AC017076.1). The model separated the GC cohort into high-GC and low-GC risk groups. The low-GC risk group had a much greater survival rate. Cox analysis, univariate along with multivariate, validated that the 3-PRlncRNAs risk model is an independent predictor of disease outcomes in GC subjects. It is of interest that there is already a study on the lasso model of PRlncRNAs construction (Xu et al., 2022). However, we found that the component lncRNAs of this model were different from the lncRNAs we used. Our obtained pyroptosis related genes were comprehensive and pyroptosis related lncRNAs were screened by stricter criteria. Furthermore, we did not exclude the GC data in the TCGA data resource to ensure the integrity and randomization of the clinical data as much as possible. What`s more, we examined the expression of prognostic lncRNAs in pairs of GC tissues from hospital using qRT-PCR to initially validate our model. In addition, we tried to find other tumor cohorts in the TCGA database to validate the reliability as well as the applicability of our risk model. PC, like GC, is a cancer of the digestive system. PC is severely lethal and poses a very high threat to human health (Morrison et al., 2018). Similarly, when we placed PC patients into our risk model, patients in the low-risk group showed a longer survival time. These consistent results further make our model more convincing.
Plasmacytoma variant translocation 1 (PVT1) is a common lncRNA located in a cancer-related region chr8q24.21 region, consisting of 1716 nucleotides (Lu et al., 2017; Onagoruwa et al., 2020). Many reports have confirmed that PVT1 plays an indispensable role in GC (Li et al., 2016; Xu et al., 2017). The expression level of PVT1 is remarkably elevated and may promote the proliferation as well as migration of GC cells by activating STAT3-mediated signaling pathways (Zhao et al., 2018; Niu et al., 2020). Herein, we established that PVT1 expression was remarkably increased in GC tissues, which is consistent with previous studies. Wu et al. demonstrated that CYMP-AS1 can be used as a biomarker for GC (Wu H. et al., 2021), which further makes our model more convincing. However, AC017076.1 was less studied. We found the potential of AC017076.1 as a survival signature by using lasso algorithm. The value of AC017076.1 as an indicator needs to be further explored and verified.
The tumor microenvironment (TME) is a complex and integrated system. It consists of tumor cells, the surrounding immune cells, inflammatory cells, stromal cells, nearby mesenchymal tissue, microvasculature, various cytokines, and chemokines (Lei et al., 2020). Tumors are remarkably linked to TME, which can influence its microenvironment through releasing cell signaling molecules, enhancing tumor angiogenesis, as well as inducing immune tolerance. Interestingly, immune cells infiltrating in the microenvironment can influence the development, growth and even progression of tumor (Cassim and Pouyssegur, 2019; Hinshaw and Shevde, 2019). Pyroptosis plays a pivotal role in TME and thus may affect tumor progression. Cytokines produced by pyroptosis can regulate immune cells and thus affect the immune system (Li L. et al., 2021). In GC, immune cell infiltration is also critical for tumor immune microenvironment (Perrone et al., 2008). Consistently, we found that in the GC cohort of TCGA, the infiltration of B cells memory, T cells CD4 memory activated, T cells follicular helper, Monocytes, Macrophages M1, and Neutrophils had significant differences in the high- and low-GC risk groups. The ESTIMATE algorithm was adopted to estimate the stromal score and immune score of tumor samples based on transcriptomic data. The stromal score along with immune score represented the abundance of stromal and immune cells, respectively. These two scores were summed to obtain the ESTIMATE score, which can be used to estimate tumor purity (Yoshihara et al., 2013). In our study, the ESTIMATE score was remarkably higher in the high-GC risk group than in the low-GC risk group, indicating that tumor purity was higher in the high-GC risk group.
Therapeutic strategies of tumor include traditional surgery, radiotherapy, and chemotherapy, as well as targeted therapy, tumor vaccine and immunotherapy, which have emerged in recent years (Smyth et al., 2020). Immunotherapy of tumor is a treatment method that applies immunological principles and methods to specifically remove tumor lesions and inhibit tumor growth by activating immune cells in the body and enhancing the body’s anti-tumor immune response. Immunotherapy can break the tumor immune tolerance and overcome the immune escape mechanism (Petitprez et al., 2020). In recent years, immunotherapy has shown great development potential in antitumor clinical applications and is gradually becoming the future direction of tumor therapy. Common immune checkpoint genes, including PD-1 (Peng et al., 2020), PD-L1 (Topalian et al., 2020), CTLA-4 (Rowshanravan et al., 2018), VISTA(Rowshanravan et al., 2018), and B7-H3 (Du et al., 2019), are targets of immune checkpoint inhibitors. They are widely used in antitumor therapy and have produced good clinical effects. In our study, the expression levels of CTLA-4, VISTA, and B7-H3 were significantly different in the high and low risk groups, suggesting that our risk model may be closely related to immunotherapy for GC, and that patients with high expression of immune checkpoint genes may be more sensitive to these checkpoint inhibitors. Studies have shown that the efficiency of mono-immunotherapy is just 15–20% (Gettinger et al., 2018). And the combination of immune checkpoint inhibitors is a trend in the future, as it is more effective in overcoming resistance to immunotherapy and significantly enhances efficacy (Pollack et al., 2018; Heinhuis et al., 2019). PD-1 and PD-L1 showed no statistical significance in the high and low risk groups. We built a hypothesis that potential synergistic effects may emerge when PD-1 and PD-L1 were combined with CTLA-4, VISTA, or B7-H3, etc. Certainly, this hypothesis requires more research to prove it.
TMB represents the total number of mutations per megabase (Mut/Mb) in DNA sequenced in a given cancer. TMB is an indicator of the efficacy of immunotherapy and higher TMB may be associated with better outcomes with immune checkpoint inhibitor therapy (Topalian et al., 2016; Chan et al., 2019; Negrao et al., 2021). Many studies have found that the expression of common immune checkpoint genes PD-1, PD-L1, and CTLA-4 is synchronized with TMB, and high PD-1 expression levels corresponds to high TMB (Cristescu et al., 2018; Hellmann et al., 2018; Samstein et al., 2019). Similarly, in this study, the expression level of TMB was consistent with that of CTLA-4, so we think that the level of TMB could be fully considered when designing immunotherapy, which may be more beneficial to improve the clinical outcome. Pyroptosis modulates immune cells in TME. LncRNAs can regulate immune genes and play important roles in immune cell growth, differentiation, migration, and immune responses. Both pyroptosis and lncRNAs have important effects on the immune microenvironment in tumors and may contribute to the effects of immunotherapy. Therefore, we tried to investigate whether immunotherapy-related PRlncRNAs could be linked to TMB. We found a significant difference of TMB in different risk groups, suggesting that the 3-PRlncRNAs model might be effective in identifying different levels of TMB. Then, we explored the correlation between TMB and risk scores, which were negatively correlated. TMB can be used as an indicator to predict survival rate of tumor patients, a higher TMB often predicts a better prognosis (Samstein et al., 2019). This may be due to the higher sensitivity of patients with high TMB to immunotherapy, which in turn improves prognosis. The strong link between TMB and immunotherapy and prognosis, once proven, will be very beneficial for clinical interventions outcomes and the OS of cancer patients. Our study initially verified this, but more in-depth theoretical and clinical studies are needed to confirm the feasibility of this conjecture.
We have already mentioned that chemotherapy is one of the most basic and traditional treatments for tumors, and it is widely used in clinical practice. However, there is a major problem of resistance in chemotherapeutic drugs, which makes the therapeutic effect much less effective (Wu et al., 2014; Dallavalle et al., 2020). We therefore analyzed the role of the risk model in differentiating chemosensitivity. The IC50 of several common chemotherapeutic agents showed a significant difference in different risk groups, including Camptothecin, Gemcitabine, Methotrexate, Mitomycin. C etc.
However, our study also has some limitations. Firstly, the clinical data downloaded from the TCGA database for GC patients was not perfect. For example, some clinical information had lots of censored values, which made our analysis possibly biased to some extent. Secondly, some crucial clinical information was not provided, especially treatment measures the patient has received, which is important to the prognosis of patients. Above all, most of our study is database mining and analysis, with only a few clinical samples to initially validate our results, we need more clinical prognostic data to support our conclusions.
CONCLUSION
In conclusion, we obtained 29 lncRNAs co-expressed by 50 pyroptosis genes. Then by univariate and multivariate Cox regression analysis and lasso algorithm, we finally constructed a risk model of 3-PRlncRNAs, which can effectively predict the survival rate of GC patients. We constructed a prognostic Nomogram based on the 3-PRlncRNAs model and clinicopathological parameters, which provides an accurate and effective means to assess the prognosis of GC patients. In addition, the 3-PRlncRNAs model was expected to be an emerging tool for immunotherapy effect assessment, which will bring great benefits to individualized treatment and medical decision making. Although we applied qRT-PCR for preliminary validation, further studies are needed to explore the prognostic value of the 3-PRlncRNAs signature and to confirm our conclusions, as most of our study was based on bioinformatics analysis carried out on retrospective data.
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N1-methyladenosine methylation (m1A), as an important RNA methylation modification, regulates the development of many tumours. Metabolic reprogramming is one of the important features of tumour cells, and it plays a crucial role in tumour development and metastasis. The role of RNA methylation and metabolic reprogramming in osteosarcoma has been widely reported. However, the potential roles and mechanisms of m1A-related metabolic genes (MRmetabolism) in osteosarcoma have not been currently described. All of MRmetabolism were screened, then selected two MRmetabolism by least absolute shrinkage and selection operator and multifactorial regression analysis to construct a prognostic signature. Patients were divided into high-risk and low-risk groups based on the median riskscore of all patients. After randomizing patients into train and test cohorts, the reliability of the prognostic signature was validated in the whole, train and test cohort, respectively. Subsequently, based on the expression profiles of the two MRmetabolism, we performed consensus clustering to classify patients into two clusters. In addition, we explored the immune infiltration status of different risk groups and different clusters by CIBERSORT and single sample gene set enrichment analysis. Also, to better guide individualized treatment, we analyzed the immune checkpoint expression differences and drug sensitivity in the different risk groups and clusters. In conclusion, we constructed a MRmetabolism prognostic signature, which may help to assess patient prognosis, immunotherapy response.
Keywords: N1-methyladenosine methylation, metabolism, osteosarcoma, immune infiltration, immunotherapy
INTRODUCTION
Osteosarcoma (OS) is a primary malignant bone tumour, which derived from mesenchymal cells and occurred mostly in adolescents. Currently, the treatment of osteosarcoma is mainly combined with neoadjuvant chemotherapy before and after surgery. However, over the past three decades, there has been limited improvement in the prognosis of OS (Gianferante et al., 2017). Therefore, the search for biomarkers that allow early diagnosis of OS has become a hot research topic and an imperative in the field of oncology.
Chemical modification of RNA is an important branch of epigenetics, and more than 100 chemical modifications of RNA have been identified (Boccaletto et al., 2018). The common internal modifications in mRNA include N6-adenylation (m6A), N1-adenylation (m1A), and cytosine hydroxylation (m5C) (Han et al., 2021). RNA methylation plays an essential role in almost all steps of mRNA metabolism, and it’s dysregulation is highly correlated with the occurrence and progression of tumours. Aberrant methylation of oncogenes in tumour cells has great potential for early tumour diagnosis.
Metabolic reprogramming, an important feature of tumour cell, is an adaptive change of tumour cells to meet their proliferation and metastasis. Inhibition of tumour cell metabolic processes, including inhibition of glycolysis and amino acid metabolism, is an emerging starvation therapy in recent years (Kerk et al., 2021; Stine et al., 2022). Khodaei et al. (2022) systematically described the generation of effective immunotherapies by regulating the energy metabolism of immune cells. In addition, Lee U. et al. (2022) found that the interaction between metabolic pathways and Hippo signaling pathways could affect the effect of antitumour drugs and drug resistance. A few of studies had reported the potential value of RNA methylation and metabolism-related genes in predicting the prognosis of OS (Liu et al., 2021; Wu Y. et al., 2022; Li et al., 2022). However, it remains to be elucidated whether and how m1A regulates metabolism in OS, and the relationship between m1A-related metabolic genes (MRmetabolism) and survival in OS has never been explored.
In this study, we analyzed the mRNA expression matrix of OS and normal adipose tissue from the UCSC Xena website to develop a prognosis signature based on two MRmetabolism. We also investigated the correlation of the signature with clinical characteristics, tumour immune microenvironment (TIM) and drug sensitivity.
MATERIALS AND METHODS
Data collection
The mRNA expression matrix and clinical data were obtained from the UCSC Xena website (http://xena.ucsc.edu/), including 85 tumour samples and 85 randomized adipose tissue samples. m1A methylation genes were obtained from a previous report (Zhang and Jia, 2018). Metabolism-related genes were obtained by c2. cp.kegg.v7.5.1. symbols.gmt, which was downloaded from the GSEA website (http://www.gsea-msigdb.org/gsea/index.jsp).
Screening m1A methylation-related metabolic genes
The “limma” (Wettenhall and Smyth, 2004) and “survival” (van Dijk et al., 2008) packages were used to obtain differentially expressed and prognosis-related metabolic genes and to analyze their correlation with m1A methylation genes (|Pearson R| > 0.4 and p < 0.05).
Construction and validation of m1A-related metabolic gene signature
Based on the expression profile of MRmetabolism and clinical information, the least absolute shrinkage and selection operator (LASSO) and multivariate Cox (multi-Cox) regression analysis were used to develop a prognostic signature (Bunea et al., 2011). The LASSO regression model was as follows: risk Score = Ʃ [Exp (mRNA) × coef (mRNA)].
Subsequently, we divided all patients into high-risk and low-risk groups with the median value of riskscore in the entire cohort. Next, we randomized all patients into training and test group in a ratio of 3:1. Then, to verify the prognostic ability of the riskscore, Kaplan-Meier (K-M) survival analysis and the time-dependent receiver operating characteristic (ROC) analysis were performed in the whole cohort, training cohort and test cohort, respectively.
Functional analysis
The curated gene set (kegg.v7.4. symbols.gmt and c5. all.v7.5.1. symbols.gmt) and “clusterProfiler” (Yu et al., 2012) were used to identify significantly enriched pathways between the low-risk and high-risk groups.
Evaluation of immune cell infiltration and immune checkpoints
We investigated the relationship between riskscore and tumour-infiltrating immune cells (TIIC) by the CIBERSORT algorithm and TIMER2.0 (http://timer.cistrome.org/). The ESTIMATE, immune and stromal scores for the two risk groups were also analyzed. We also investigated the expression levels of immune checkpoints in high-risk and low-risk groups. In addition, the drug sensitivity was calculated in the two risk groups by “pRRophetic” package (Geeleher et al., 2014).
Consensus clustering based on MRmetabolism
Using the “ConsensusClusterPlus” (Geeleher et al., 2014) package, K-means was applied to cluster patients into two clusters and to further investigate the differences of prognosis, TIIC, immune checkpoint expression and drug sensitivity in the two clusters.
RESULTS
Identification m1A methylation-related metabolic gene
The difference between OS samples and adipose tissue samples was analyzed, we obtained 5,390 differentially expressed mRNAs (|Log ₂ FC| > 1 and p < 0.05). Meanwhile, through the survival analysis, we found 809 mRNAs associated with prognosis. Subsequently, through the GSEA website, 941 mRNAs were obtained to be associated with metabolic pathways in OS. By Venn diagram, 18 metabolism-related genes are differentially expressed and correlated with prognosis (Figure 1A). Subsequently, correlation analysis was performed, four MRmetabolism (ACAT1, TDO2, PHOSPHO1, and CHST13) were obtained (|Pearson R| > 0.4 and p < 0.05) (Figure 1B). The four MRmetabolism were performed univariate Cox (uni-Cox) regression analysis and the differential expression was visualized as a heatmap (Figures 1C,D).
[image: Figure 1]FIGURE 1 | Identification of m1A methylation-related metabolic genes. (A) The intersection among clusters metabolism-related genes, survival-related genes, and differentially expressed genes. (B) The Sankey diagram of m1A methylation-related genes and metabolism-related genes. (C) The forest plot of four MRmetabolism was plotted by univariate Cox regression analysis. (D) The heatmap of differential expressions of four MRmetabolism.
Construction and validation of the MRmetabolism signature
Based on the expression of four MRmetabolism in the whole cohort, the following equation was established by LASSO and multi-COX regression analysis (Figures 2A,B): riskscore = (−0.654436269446519* TDO2) + (0.259855036675258* CHST13). We calculated the riskscore for each patient. Then, 85 patients were randomized into the train group (65 samples) and the text group (20 samples) in a ratio of 3:1. Based on the median value of riskscore in the whole cohort, we divided the patients into high-risk and low-risk groups. Principal component analysis (PCA) showed that patients with different riskscore were divided into two parts (Figure 2C). The survival status and riskscore were assessed in the whole, train and text cohort, respectively, (Figures 2D–I). We also analysis the expression of two MRmetabolism in the whole, train and text cohort, respectively, (Figure 2J-L).
[image: Figure 2]FIGURE 2 | Establishment of prognosis signature. (A,B) The LASSO regression model was constructed. (C) PCA of OS samples according to the riskscore. (D–I) The distribution of the riskscore and survival status of patients in the whole, train and text cohort, respectively. (J–L) The heatmap of differential expressions of two MRmetabolism between high-risk and low-risk groups.
Subsequently, we found that the prognosis of low-risk group is better than that of high-risk group by K-M survival in the whole, train and text cohort (Figures 3A–C). The AUCs for 2-, 4-, and 6-year survival were 0.783, 0.766, and 0.712 in the whole cohort, respectively, (Figure 3D). The AUCs for 2-, 4-, and 6-year survival were 0.739, 0.722, and 0.717 in the train cohort, respectively, (Figure 3E). The AUCs for 2-, 4-, and 6-year survival were 0.960, 1.000, and 0.624 in the text cohort, respectively, (Figure 3F). We performed uni-Cox and multi-Cox regression analyses, implying that riskscore, as a high-risk factor, was significantly correlated with overall survival (Figures 3G,H). A nomogram, including clinicopathological variables and riskscore, was also constructed to predict the prognosis of patients at 2, 4, and 6 years (Figure 3I). Calibration curve showed that predicted survival times at 2, 4, and 6 years were consistent (Figure 3J).
[image: Figure 3]FIGURE 3 | Evaluate the prognostic ability of the signature. (A–C) Kaplan–Meier survival estimates of overall survival of patients by the signature in the entire, train and cohorts, respectively. (D–F) The entire, train and cohorts of ROC curve analysis, respectively. (G,H) Univariate and multivariate analyses the signature. (I) A nomogram included clinical features and riskscore for predicting the overall survival of patients with OS at 2-, 4-, and 6-years. (J) Calibration curves for 2-, 4-, and 6-years forecasts of nomogram.
GSEA enrichment analysis
GSEA was used to conduct Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. ABC transporters signaling pathway, oxidative phosphorylation, ribosome, and steroid biosynthesis were significantly associated with the high-risk group (Figures 4A, B). Cytokine-cytokine receptor interaction, immune effector process, adaptive immune response based on somatic recombination of immune receptors built, adaptive immune response and activation of immune responses were significantly associated with the low-risk group (Figures 4C, D). Thus. we hypothesize that m1A may be involved in OS development and progression through immune-related pathways.
[image: Figure 4]FIGURE 4 | GSEA analysis. (A,B) KEGG analysis in the high-risk and low-risk groups. (C,D) GO analysis in the high-risk and low-risk groups.
The role of MRmetabolism in tumour immune microenvironment and immunotherapy
IIC in each sample obtained by “CIBERSORT” algorithm, and then analyze the differences of TIIC in the two risk groups (Figure 5A). We also found that riskscore was positively correlated with B cells naive, macrophages M0 and T cells gamma delta, while was negatively correlated with mast cells resting, monocytes and CD8 T cells (Figures 5B–G). We further analyzed by different immune filtration platforms. Although the algorithms of each platform are different, we can conclude that a large number of immune cells are concentrated in low-risk group (Figure 5H). Then, we explored the relationship between riskscore and immune status by ssGSEA. The results showed that CD8 T cells, neutrophils, Tfh, Th2 cells, B cells, and NK cells were associated with a high degree of infiltration in low-risk group (Figure 5I). APC co inhibition, CCR, check-point, HLA, inflammation-promoting, parainflammation, T cell co inhibition, and Type II IFN reponse were enriched in the low-risk group (Figure 5J). In addition, the low-risk group had higher ESTIMAT, immune and stromal score. All of these indicated that the low-risk group had a higher immune infiltration status (Figure 5K-M). Therefore, we hypothesized that the low-risk group was in an immune activation state relative to the high-risk group.
[image: Figure 5]FIGURE 5 | Difference of tumour immune microenvironment between high-risk and low-risk groups. (A) The differential infiltration of tumour immune cells between high-risk and low-risk groups. (B–G) The correlation between riskscore with immune cell types, including B cells naive, macrophages M0 and T cells gamma delta, mast cell resting, monocyte and CD8 T cell. (H) The immune cell bubble of risk groups. (I,J) Single-sample gene set enrichment analysis of immune status between low-risk and high-risk groups. (K–M) The difference of tumor immune microenvironment (ESTMATE, immune, and stromal score) between high-risk and low-risk groups.
Immune checkpoint inhibitors (ICIs) are an emerging and effective therapeutic strategy for a variety of tumours. While most studies suggest that immune checkpoints are used by tumour cells to evade immune destruction, others suggest that immune checkpoint expression positively correlates with the efficacy of immunotherapy (Marin-Acevedo et al., 2021; Lu et al., 2022). Therefore, we aimed to verify the ability of MRmetabolism in predicting the effective of immunotherapy. The expression of CD44, NRP1, TNFSF14, CD200R1, and LAIR1 was higher in the low-risk group than in the high-risk group (Figure 6A). And BTNL2 and TNFRSF25 were highly expressed in the high-risk group. In addition, we could find that the IC50 of the 40 drugs applied to OS treatment was different between the high and low risk groups (p < 0.05) (Figure 6B). This implies that we can select the appropriate immune checkpoint inhibitors and drugs for patients.
[image: Figure 6]FIGURE 6 | Predict the best immune checkpoint inhibitors and drugs for two risk groups. (A) The expression of immune checkpoints in the two risk groups. (B) The difference of sensitivity of drugs between high-risk and low-risk groups.
Identification of molecular phenotypes related to MRmetabolism
Based on the expression profiles of the two MRmetabolisms, we performed consensus clustering. By increasing the clustering variable (k) from 2 to 9, we found that the intra-group correlation is highest and the inter-group correlation is lowest when k = 2 (Figure 7A). Consensus cumulative distribution function (CDF) plots show that the CDF reaches an approximate maximum when k = 2 and the classification is robust (Figures 7B–D). Principal component analysis (PCA) was performed to verify that the two clusters were well differentiated (Figure 7E). K-M survival curve showed that Cluster one patients had a better overall survival than Cluster 2 (Figure 7F). The Sankey diagram showed that most patients with low-risk were Cluster 1, while most patients with high-risk group were Cluster 2 (Figure 7G). The differences of immune cell infiltration in the two clusters showed that B cells naïve, macrophages M0 and T cells gamma delta were highly infiltrated in Cluster 2, while CD8 T cells, monocytes, and dendritic cells activated had a high degree of infiltration in Cluster 1 (Figure 7H). In addition, we found that Cluster 2 had a high ESTIMAT and stromal score. CD44 and VTCN1 were highly expressed in Cluster 1. CD200, CD276, ADORA2A, TNFRSF14, and TNFSF15 were highly expressed in Cluster 2. In addition, we could find that the IC50 of the 28 drugs applied to OS treatment was differential between Cluster one and Cluster 2 (Figure 7I).
[image: Figure 7]FIGURE 7 | Consensus clustering of two MRmetabolism. (A) Consensus clustering matrix for k = 2. (B) Consensus clustering CDF with k = 2–9. (C) The tracking plot for different k. (D) The area under the CDF curve for different k. (E) PCA of OS samples according to the clustering. (F) The survival estimates of the two clusters. (G) The Sankey diagram of the two risk groups and the two clusters. (H) The differential infiltration of tumour immune cells in the two clusters. (I) The difference of sensitivity of drugs in the two clusters.
DISCUSSION
Osteosarcoma is the most common primary malignant bone tumour in adolescents. With the rapid changes in science and technology, medical technology is constantly being updated. However, the prognosis of patients with OS has not been greatly improved (Gill and Gorlick, 2021). Untimely early diagnosis and lack of individualized treatment are mainly responsible for the high mortality rate of patients. The identification of reliable biomarkers of sensitivity is essential to improve the prognosis of patients with osteosarcoma.
To maintain the proliferation and metastasis, tumour cells usually undergo metabolic reprogramming (Holbert et al., 2022). In addition, dysregulation between metabolize and immune cells can lead to immune escape of tumour cells (DePeaux and Delgoffe, 2021). Tumour cells preferentially consume glucose and produce lactate through aerobic glycolysis, the latter causing a decrease in the pH of the tumour microenvironment, which in turn hinders cytokine production and T-cell lytic activity (Judge and Dodd, 2020). In addition, lactate can polarize macrophages to a tolerogenic M2-like phenotype (DePeaux and Delgoffe, 2021). Targeting metabolic pathways has been reported to enhance the efficacy of tumour immunotherapy (Wu H. L. et al., 2022b; Khodaei et al., 2022).
m1A methylation can affect tumour progression. m1A demethylation induced by ALKBH3 can promote protein synthesis in tumour cells (Ueda et al., 2017). The prognosis of breast or ovarian tumour could be affected by the stability of macrophage colony-stimulating factor 1, which was regulated through m1A demethylation (Woo and Chambers, 2019). There are few reports about the effects of m1A on metabolism-related pathways and tumours. Therefore, we propose to explore the role of metabolism-related genes regulated by m1A in OS, which may be a new direction for its treatment.
In our study, we identified the regulatory relationships of three m1A genes and four metabolism-related genes in OS. Among them, ACAT1 can promote epithelial mesenchymal transition of tumour cells and sensitivity to chemotherapeutic drugs (Han et al., 2022; Ueno et al., 2022). TDO2 increases glycolysis through activation of the Kyn-AhR pathway to promote tumour cell growth (Lee R. et al., 2022). The migration and invasion of hepatoma cells could be regulated through the Wnt5a pathway (Liu et al., 2022). Subsequently, we screened two RMmetabolism (TDO2 and CHST13) to structure the prognosis signature after LASSO and multi-Cox regression analysis. The results of survival analysis showed that the low-risk group had a better prognosis than the high-risk group, and the riskscore was an independent predictor of OS.
GSEA results showed that the high-risk group was closely associated with ABC transporters, oxidative phosphorylation, ribosome, and steroid biosynthesis. As the upregulation of oxidative metabolism in tumour cells could cause hypoxia and consequently immunosuppression, it has been proposed to improve immune efficacy by inhibiting oxidative phosphorylation (Liu and Curran, 2020; Boreel et al., 2021). Kang et al. (2021) systematically described the mechanism and treatment of ribosomes in tumour and disease. Many malignant and autoimmune diseases can be treated with small molecule inhibitors and monoclonal antibodies by targeting sphingolipid metabolism (Kang et al., 2021). The signaling pathways that inhibit steroid synthesis are potential drug targets for the development of novel tumour immunotherapies (Mahata et al., 2020). What is more, the enrichment function of low-risk group is closely related to immune function.
It has been shown that tumour cells and immune cells have common metabolic requirements and nutritional deficiencies in the tumour microenvironment (Scharping et al., 2016; Renner et al., 2017). Next, we assessed the immune status of the two risk populations. We assessed the immune cell infiltration status of each patient by the CIBERSORT algorithm and ssGSEA. The result showed that the low-risk group could be described as immune activated, while the high-risk group could be described as immunosuppression.
Molecular subtypes have been previously reported to be associated with tumour immunosuppression and microenvironment. Different subtypes have different immune status, resulting in different prognosis and immunotherapeutic response. Therefore, we divided the patients into two groups by the two RMmetabolism. Then, performed K-M survival analysis and immune status assessment, we found that Cluster 1 was in an immune activated state and had a better prognosis compared to Cluster 2.
Finally, we found that the high-risk population was highly sensitive to AZD8055, Camptothecin, Elesclomol, GW.441756, MS.275, S. Trityl.L.cysteine, SB590885, and Sorafenib. Low-risk populations had high sensitivity to AP.24534, Bexarotene, CHIR.99021, GSK269962A, JNJ.26854165, JNK. Inhibitor.VIII, Lapatinib, Midostaurin, Pazopanib, SB.216763, and Shikonin. These findings can be applied in the clinic to improve guidance for individualized treatment.
In summary, we constructed a prognostic model for OS patients based on two RMmetabolism to provide prognostic assessment and immune analysis for OS patients and provide new directions for targeted therapy for OS.
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Long non-coding RNAs (lncRNAs) remodel the tumor immune microenvironment (TIME) by regulating the functions of tumor-infiltrating immune cells. It remains uncertain the way that TIME-related lncRNAs (TRLs) influence the prognosis and immunotherapy response of colorectal cancer (CRC). Aiming at providing survival and immunotherapy response predictions, a CRC TIME-related lncRNA signature (TRLs signature) was developed and the related potential regulatory mechanisms were explored with a comprehensive analysis on gene expression profiles from 97 immune cell lines, 61 CRC cell lines and 1807 CRC patients. Stratifying CRC patients with the TRLs signature, prolonged survival was observed in the low-risk group, while the patients in the high-risk group had significantly higher pro-tumor immune cells infiltration and higher immunotherapy response rate. Through the complex TRLs-mRNA regulation network, immunoregulation pathways and immunotherapy response pathways were found to be differently activated between the groups. In conclusion, the CRC TRLs signature is capable of making prognosis and immunotherapy response predictions, which may find application in stratifying patients for immunotherapy in the bedside.
Keywords: colorectal cancer, tumor microenvironment, tumor immune microenvironment, long non-coding RNA, immunotherapy
INTRODUCTION
Colorectal cancer (CRC) ranks as the third most common cancers and the second most common cause of cancer-related deaths worldwide (Siegel et al., 2019), and the overall 5-years relative survival rate for CRC patients is approximately 64% (Miller et al., 2019). Though significant advances have been made in the treatment of CRC, the recurrence rate remains high in patients received standard chemotherapy and surgery (Ahiko et al., 2021; Fang et al., 2021; Kim et al., 2021). Recently, immunotherapy has emerged as a novel treatment approach and achieved exciting results in some cancer types (Doki et al., 2022; Makker et al., 2022; Schmid et al., 2022). For CRC, anti-programmed death 1 (anti-PD-1) antibodies, such as pembrolizumab and nivolumab, and CTLA-4 inhibitor ipilimumab were approved by FDA (Pan et al., 2021). Though a subset of patients with mismatch repair deficiency or high microsatellite instability CRC benefit a lot from immune checkpoint blockade therapy (Pan et al., 2021), the overall response rate of immunotherapy remains low in all cases of CRC and there were difficulties in stratifying suitable patients for immunotherapy (Chen et al., 2021). Widely used biomarkers for immunotherapy response prediction, such as impaired DNA mismatch repair deficiency and microsatellite instability (MSI) (Cortes-Ciriano et al., 2017), only have moderate accuracy, and there are still a portion of CRC patients with MSI/mismatch repair deficiency tumors do not respond to the treatment (Gibney et al., 2016; Cohen et al., 2020). Therefore, it is of vital importance to develop effective methods to predict CRC prognosis and immunotherapy response.
In recent years, tumor microenvironment (TME) was identified to have an huge impact on the behavior and characteristics of cancer (Li et al., 2007). TME is made up of noncellular components, such as extracellular matrix and types of signaling molecules, and non-tumor cellular components, including epithelial, smooth muscle, immune cells and other types of cells in the tumor niche (Li et al., 2007; Valkenburg et al., 2018). The crosstalk between tumor cells and non-tumor cells was found taking an active part in regulating the development and therapeutic responses of cancer (Zhang et al., 2020a). Among cells of TME, different types of tumor infiltrating immune cells build up tumor immune microenvironment (TIME). Tumor infiltrating lymphocytes, such as B cells, CD4 positive T helper cells, CD8 positive cytotoxic T lymphocytes and regulatory T cells (Tregs), are communicating and cooperating with other tumor infiltrating immune cells including macrophages, natural killer cells and dendritic cells (Zhang et al., 2020b). Significantly influencing the survival and the immunotherapy response of patients (Zhang et al., 2020b), TIME is essential in the progress and the treatment of CRC.
Defined to be non-coding RNAs longer than 200 nucleotides in length (Cao, 2014), long non-coding RNA (lncRNAs) are important regulators of multiple biological processes, including cell proliferation (Xiong et al., 2019), apoptosis (Huang et al., 2019), differentiation, tumorigenesis (Bhan and Mandal, 2014), metastasis (Tian et al., 2019), cell cycle regulation (Wu et al., 2018), epithelial-mesenchymal transition (Wang et al., 2019a) and drug resistance (Wei et al., 2019) by forming RNA-RNA, RNA-DNA, RNA-protein interactions and serving as competing endogenous RNAs (ceRNA) in a variety of regulatory mechanisms (Yao et al., 2019). Actually, emerging evidence has implicated that lncRNAs are key coordinators and regulators within tumor infiltrating immune cells that build up the complex “ecosystem” of TIME, associating with recruitment, infiltration, differentiation, activation and pro-/anti-tumor function in those infiltrating immune cells (Sage et al., 2018; Xu et al., 2019; Zhang et al., 2020b; Zhang et al., 2021). By mediating and regulating important mechanisms and processes of immune response in the microenvironment (Bhan and Mandal, 2014; Zhou et al., 2019), lncRNAs within the tumor infiltrating immune cells occupy a central role in immunity regulation of the TIME, as well as in the development, progression and maintenance of many human tumors (Denaro et al., 2019), suggesting that TIME related lncRNAs (TRLs) could be potential diagnostic markers and therapeutic targets in CRC.
In this study, we developed a prognostic TRLs signature for prognosis and immunotherapy response predictions. The performance of model was validated with multiple independent cohorts, proving its potential to serve as a reliable predictor for patient survival and an indicator for immunotherapy.
MATERIALS AND METHODS
Data collection
Datasets of colorectal cancer cases
Transcriptome and clinical data of CRC cases were obtained from the Gene Expression Omnibus (GEO database, https://www.ncbi.nlm.nih.gov/geo/). Data collected from GEO was analyzed by Affymetrix Human Genome U133 2.0 Plus GeneChip Set platform. Clinical information and transcriptional profiles were downloaded from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). Finally, excluding cases with incomplete clinical information, 519 cases of GSE39582 (Marisa et al., 2013) served as training cohort, 595 cases of TCGA CRC and 693 cases of GSE14333 (Jorissen et al., 2009), GSE17538 (Smith et al., 2010; Freeman et al., 2012; Williams et al., 2015; Chen et al., 2019), GSE33113 (de Sousa et al., 2011; Kemper et al., 2012), GSE37892 (Laibe et al., 2012) and GSE39084 (Kirzin et al., 2014) were used as two independent testing cohorts. The summary of clinical information of the three cohorts was shown in Table 1.
TABLE 1 | Clinical characteristics of training and testing cohorts.
[image: Table 1]Datasets of immune cell lines and colorectal cancer cell lines
Representing 17 different immune cell types, transcriptional profiles of 97 non-treated immune cell lines of healthy volunteers are collected from GEO database (Supplementary Table S1). Transcriptional profiles of 61 CRC cell lines were obtained from Cancer Cell Line Encyclopedia (CCLE, https://sites.broadinstitute.org/ccle/datasets) project. The downloaded transcription profiles of immune cell lines and CRC cell lines were all originally analyzed by Affymetrix Human Genome U133 2.0 Plus GeneChip Set platform.
Data preprocessing
The downloaded GEO and CCLE transcriptional profiles were based on the Affymetrix Human Genome U133 2.0 Plus GeneChip Set. Probe information of the chip was reannotated by NetAffx Annotation Files (HG-U133_Plus_2 Annotations release 36, https://www.affymetrix.com/support/technical/byproduct.affx?product=hg-u133-plus), Gencode files (Long non-coding RNA gene annotation release 38, https://www.gencodegenes.org/human/) and Refseq files (Refseq H_sapiens annotation, https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/) to find out probes that matched long non-coding RNAs, which were labeled as “lncRNA” in Gencode or “long non-coding RNA” in Refseq. Among 50,000 probes of the gene chip, only 2,287 probes had Ensembl ID or Refseq ID annotated as “lncRNA” or “long non-coding RNA”, which corresponded to 1892 unique lncRNA Ensembl IDs. Similar methods were also applied on the transcriptional profiles of TCGA to obtain the lncRNAs and their expression profiles. Finally, the shared 1724 lncRNAs were identified and the corresponding lncRNA expression matrixes were therefore established (Figure 1).
[image: Figure 1]FIGURE 1 | Flow chart of this study. First, TRLs of the CRC were identified. Second, TRLs signature was established utilizing Lasso regression. Third, TRLs signature was assessed on independent datasets and the related biological mechanisms were explored.
Prognostic TRLs signature development
Identification of TRLs
The following three steps built up a workflow for identifying TRLs. First, utilizing the gene transcription profiles of immune cells, the top 10% expressed lncRNAs in each immune cell type were identified as immune-related lncRNAs. Second, tissue specificity index (TSI) (Yanai et al., 2005) was calculated across 17 immune cell types to identify universally expressed immune-related lncRNAs in all the immune cells of TIME. Ranging from 0 to 1, the smaller the TSI is, the more consistent the particular lncRNA expressing across all types of immune cells. Here, lncRNAs with TSI smaller than 0.3 were selected, so that universally high-expressed lncRNAs in all types of immune cells were identified. Third, using limma package (Ritchie et al., 2015), lncRNAs upregulated in immune cell lines and downregulated in CRC cell lines (logFoldChange >1.0 and adjusted p < 0.05) were recognized as lncRNAs expressing in immune cells rather than in the tumor cells. In other words, these lncRNAs were mainly expressed in the TIME, which were regarded as TIME related lncRNAs. Step by step, universally high-expressed lncRNAs in the immune cells of TIME were identified, namely TRLs in this study (Figure 1).
Development and validation of the TRLs signature
The prognostic value of each TRL was evaluated by univariate Cox proportional hazards regression analysis with the training set. TRLs with p < 0.1 were selected as candidates for the construction of the signature. Utilizing the LASSO regression analysis (Supplementary Figure S1), the TRLs signature was established based on the training cohort, and the risk score formula was generated as follows [image: image] Considering their risk scores, patients were divided into low-risk group and high-risk group with a cutoff value calculated by Youden index. Using the survival package (Terry, 2022) and survminer package (Kassambara et al., 2021), the Kaplan-Meier survival curve combined with log-rank test was used to compare the survival difference between the two groups. Using the same cutoff value, the prognostic value of the lncRNA signature was further investigated in two independent testing cohorts (Figure 1).
Independent prognostic role of the TRLs signature
To investigate whether the signature could be independent of other clinical parameters, including risk group, age, sex, stage, location of the tumor, microsatellite stability (MSS) or microsatellite instability (MSI) status and consensus molecular subtypes (CMS) (Guinney et al., 2015), univariate and multivariate Cox regression analyses were performed, and p < 0.05 were considered as statistically significant.
Differentially expressed gene (DEG) analys and gene set enrichment analysis (GSEA)
DEGs between the low-risk group and high-risk group were identified using the Limma package with age, sex and TNM stage factors adjusted (Ritchie et al., 2015). DEGs were visualized with pheatmap package in R. Log-fold-change > 0.5 and adjusted p-value < 0.05 were cutoff value for DEG analysis. Based on the results of DEG analysis and gene set collections of Molecular Signatures Database (MSigDB), GSEA was performed with clusterProfiler package (Yu et al., 2012) and HTSanalyzeR2 package (Wang et al., 2011). Pathways and gene sets from “curated gene sets” collection (C2), “ontology gene sets” collection (C5) and “immunologic signature gene sets” collection (C7) are used to perform the GSEA.
The TRLs signature lncRNA-mRNA regulation network
LncRNAs associated RNA interactions, which included information about lncRNAs and their target mRNAs in the regulatory network, were collected from four different manually-curated and experimentally-supported RNA databases, including starBase v2.0 (Li et al., 2014), LncACTdb 2.0 (Wang et al., 2019b), LncTarD (Zhao et al., 2020) and LnCeCell (Wang et al., 2021). Over 1,000 pairs of lncRNA–target mRNA involving lncRNAs in the TRLs signature were selected. Spearman correlation analysis were applied to calculate the correlation coefficients between the expression of 10 lncRNAs of the signature and the expression of their target mRNAs based on transcription profiles of immune cell lines. Selecting the top 30 most correlated target mRNAs for each lncRNA, a regulatory network of the TRLs signature was constructed and visualized with Cytoscape software (version 3.8.2). The correlated target mRNAs were analyzed with GSEA to find out the targeted pathways, process of which was the same as above.
Tumor immune infiltration analysis
Tumor purity and the infiltration level of stromal cells (StromalScore) and immune cells (ImmuneScore) were estimated by ESTIMATE package (Yoshihara et al., 2013). The fraction of tumor infiltrating immune cells in each sample, such as B cells, T cells, dendritic cells, macrophages, neutrophils and so on, were estimated by CIBERSORT algorithm (Newman et al., 2019). The fractions of 22 types of tumor infiltrating immune cells were calculated by Cibersort algorithm. Among them, nine types of immune cells playing important roles in the effect and regulation of the tumor immunology, including different types of T cells, NK cells and macrophages, were chosen to displayed in the figure. The correlations between risk score and StromalScore, ImmuneScore, tumor purity, fractions of immune cells were explored to identify whether the TRLs signature could be a reliable indicator in the CRC TIME.
TRLs signature in immunotherapy response prediction
The expression level of immune checkpoint blockade therapy associated genes, such as PD-1 (PDCD1), PD-L1 (CD274), PD-L2 (PDCD1LG2), are closely related to the response of immunotherapy. The correlations between risk score and the expression of those key genes were investigated (p < 0.05). GSE165252, a dataset containing immunotherapy response information and transcriptional profiles of pre-treatment CRC tissues, was download from GEO and served as an external dataset to verify the TRLs signature’s capacity of predicting immunotherapy treatment response. Receiver operating characteristic (ROC) curve was therefore performed and the area under the ROC curve (AUC) was also calculated by pROC package.
Statistical analysis
All statistical analyses were performed with R (version 4.1.0). T tests and Wilcoxon tests were performed for differential gene expression analyses and differential immune cell infiltration analysis. The Kaplan-Meier survival curve with log-rank test was used to compare the survival difference between the two groups. Univariate and multivariate Cox regression models were utilized to validate the prognosis value of the TRLs signature and other clinical parameters in patients of CRC. Pearson correlation analysis were applied to perform the correlation analyses of the study. DeLong test was employed to calculate the confidence intervals for the AUC values of the ROC curves.
RESULTS
The construction of prognostic TRLs signature
Clinical data and gene expression data of 1807 CRC patients from multiple datasets were collected and divided into three cohorts (Table 1). A total of 1724 unique lncRNAs were identified from downloaded transcription profiles, and 60 lncRNAs were found to be universally high-expressed in the immune cells of TIME. Among the 60 TRLs, 18 lncRNAs were found to be prognostic markers for the survival of CRC patients and were selected for the construction of the signature. Using LASSO regression analysis (Supplementary Figure S1), a 10 TRLs signature was established, and the risk score of each patient was calculated. The corresponding coefficients of the TRLs were listed in the Supplementary Table S2. The flowchart of the whole study was showed in Figure 1.
The prognostic value of the TRLs signature
Based on the cut‐off value calculated by Youden index and the risk score of each patient, patients were divided into a high-risk group and a low-risk group in both training cohort and independent testing cohorts (Figures 2A,C,E). Kaplan-Meier curves with log-rank test (Figures 2B,D,F) and the univariate Cox regression analysis (Table 2) showed that the high‐risk patients had significant shorter disease-free survival (DFS) than the low‐risk patients in both training cohort (hazard ratio (HR) = 2.63, 95% confidence interval (CI) = 1.9–3.63, p < 0.001) and testing cohorts (testing cohort 1: HR = 1.6, 95% CI = 1.19–2.16, p = 0.002; testing cohort 2: HR = 1.64, 95% CI = 1.19–2.26, p = 0.002). Additionally, multivariate Cox regression analysis were also performed in the training and testing cohorts to examine whether the TRLs signature was an independent prognostic factor in CRC. Taking into consideration the risk group and other clinical or pathological parameters which were found significant in the previous univariate Cox regression, the results of multivariate Cox regression (Table 2) showed that risk group was an independent prognostic factor for DFS prediction in both training cohort (HR = 2.18, 95% CI = 1.53–3.12; p < 0.001) and testing cohorts (testing cohort 1: HR = 1.40, 95% CI = 1.04–1.91, p < 0.05; testing cohort 2: HR = 1.58, 95% CI = 1.14–2.18, p < 0.0001). It indicated that the TRLs signature was a promising predictor of prognosis for CRC patients, which had the potential to find clinical application.
[image: Figure 2]FIGURE 2 | The prognostic value of the TRLs signature for colorectal cancer. Waterfall plots showed the distribution of survival status for patients of different TRLs signature risk groups in the training cohort (A), testing cohort 1 (C) and testing cohort 2 (E). Kaplan–Meier curves of DFS according to risk groups in the training cohort (B), testing cohort 1 (D) and testing cohort 2 (F). DFS: disease-free survival.
TABLE 2 | Univariate and multivariate Cox regression analyses.
[image: Table 2]The relationship between TRLs signature and immune pathways
Between the low-risk group and high-risk group, 56 DEGs were identified. The expression of 56 DEGs, score group and corresponding clinical, molecular and pathological features of each patient were visualized with a heatmap and a volcano plot (Figure 3A; Supplementary Figure S2). Based on DEGs and the clusterProfiler package, the top 20 enriched pathways were shown in (Figure 3B). It showed that immune-related pathways involving CD8 positive T cells, CD4 positive T cells and T lymphocytes were among the top ones, suggesting that the TRLs signature risk score correlated closely with immune cells and immunity-related regulation. High-risk group were enriched in the pathway of tumor immune escape (Figure 3C), implying that immune escape might be one of the reasons contributing to the worse prognosis of the high-risk group. It was also found that low-risk group were enriched in genes sets that down-regulated in CTLA4 expressing CD4 positive cells and exhausted CD8 positive T cells, suggesting that patients of the low-risk group were not the potential target of immunotherapy (Figures 3D,E).
[image: Figure 3]FIGURE 3 | Identification and gene enrichment analysis of 56 DEGs between two risk groups. (A) A heatmap of 56 DEGs. (B) Bubble chart of the top 20 enriched MSigDB pathways of the DEGs. (C–E) Gene set enrichment plots of cancer immune escape related pathways and cancer immunotherapy related pathways. MSigDB pathways: C2, C5 and C7 pathways collection of the Molecular Signatures Database.
The complex LncRNA-mRNA regulation network
Providing an insight into the complex regulatory mechanism of 10 TRLs of the signature, the most correlated lncRNA-target mRNA in the immune cells of the TIME were visualized with a network based on four manually-curated and experimentally-supported lncRNA-target mRNA interaction databases (Figure 4). Analyzing target mRNAs with GSEA, multiple pathways related to immunoregulatory mechanisms and immune cells were enriched, indicating that TRLs of the signature exerted a great impact on the TIME and tumor-related immune response (Table 3).
[image: Figure 4]FIGURE 4 | LncRNA-mRNA regulation network. The relationship between 10 TRLs of the signature (orange node) and their most correlated target mRNAs (blue nodes) was shown. The size of the nodes represented the average expression of lncRNAs and mRNAs in the immune cells, and the width of the lines represented the correlation between the expression of the lncRNAs and the expression of their targets.
TABLE 3 | Gene set enrichment analysis of TRLs targets.
[image: Table 3]Tumor immune environment characterization
Assessed with ESTIMATE algorithm, the infiltration level of stromal cells (StromalScore) and immune cells (ImmuneScore) were significantly higher in high-risk group (p < 0.05 and p < 0.001, respectively), while significant lower tumor purity was observed in the low-risk group (p < 0.001, Figures 5A–C). The results of CIBERSORT immune infiltration analysis showed that the fraction of M2 macrophages and Tregs was significantly higher in the TIME in both training and testing cohorts (Figures 5D–F). In summary, the tumor tissue of the high-risk group was associated with pro-tumor TIME and greater degree of pro-tumor immune cells infiltration.
[image: Figure 5]FIGURE 5 | Evaluation of tumor immune infiltration in both risk groups. (A–C) Comparisons of tumor purity, immune score and stromal score between low-/high-risk groups. (D–F) Difference of tumor infiltrating immune cells in two risk groups among three cohorts. p < 0.0001 ****, p < 0.001 ***, p < 0.01 **, p < 0.05 *, not significant: ns.
The TRLs signature prediction in colorectal cancer immunotherapy
The expression of immunotherapy targets, such as PD‐1 (PDCD-1), PD‐L1 (CD274) and PD‐L2 (PDCD1LG2), were evaluated in both risk groups. Both PD‐1 and PD‐L2 were significantly upregulated in high-risk group (Figures 6A,B), suggesting the potential role of the TRLs signature in stratifying CRC patients for immune checkpoint inhibitor therapy. Meanwhile, immunotherapy dataset GSE165252, which was originally about atezolizumab (a PD-L1 inhibitor) treating esophageal adenocarcinoma, was used as an external dataset to verified the signature’s ability of making immunotherapy response predictions. As a result, an AUC value of 0.70 (95% CI = 0.51–0.88) was achieved (Figure 6C), and higher proportion of responders was also observed in the high-risk group (Figure 6D). The TRLs signature was capable of predicting immunotherapy response, suggesting that patients of the high-risk group would get more rewards from the anti-PD-1/PD-L1 therapy.
[image: Figure 6]FIGURE 6 | TRLs signature predicting immunotherapy response. (A,B) Difference of crucial immune checkpoint genes expression levels between low-/high-risk group. (C) The ROC curve for predicting anti‐PD-L1 immune checkpoint blockade therapy response of the TRLs signature. (D) Difference of anti‐PD-L1 immune checkpoint blockade therapy response rates between low-/high-risk groups. PDCD1: PD-1. CD274: PD-L1. PDCD1LG2: PD-L2. p < 0.001 ***, p < 0.01 **, p < 0.05 *, not significant: ns.
DISCUSSION
In recent years, lncRNAs have attracted extensive attention and there are a great number of studies about the relationship between lncRNAs of the TIME and characteristics of the tumor, including the prognosis, TME and anti-tumor immunity. A large number of lncRNAs are expressing different patterns in types of cancer including CRC (Bhan et al., 2017; Deng et al., 2017) and regarded as a vital player in tumorigenesis, anti-cancer immune response and immunotherapy (Yu et al., 2018). The TIME and its regulation are sculpted by tumor infiltrating immune cells, and lncRNAs of the tumor infiltrating immune cells plays an important role in this procedure (Denaro et al., 2019), indicating that the lncRNAs of CRC TIME has an unique value in prognostic and guiding patient stratification for immunotherapy. Here, a TRLs signature of CRC was established and verified in independent cohorts, providing distinct survival and immunotherapy response prediction for low and high-risk groups.
By forming a complex regulation network, TRLs of the signature modified the expression patterns of multiple target genes in the tumor infiltrating immune cells of TIME, especially genes related to immunoregulatory mechanisms and pathways. A previous study reported that lncRNA MALAT1 (ENSG00000251562 of the TRLs signature) promotes tumor angiogenesis in thyroid cancer by regulating functions of macrophage in the TIME (Huang et al., 2017). Due to the difference in the gene expression pattern between the high and low-risk groups controlled by multiple TIME lncRNA-based mechanisms, the infiltration, activation, function and fate of tumor infiltrating immune cells differ between the risk groups (Huarte and Rinn, 2010; Batista and Chang, 2013; Uthaya Kumar and Williams, 2020). Here, a significantly greater degree of pro-tumor immune infiltration was found in the high-risk group, especially M2 macrophage cells and Tregs, which impaired anti-tumor immunity, promoted tumor progression and contributed to tumor immune escape and poor prognosis (Bader et al., 2020; Zeng et al., 2020). As a result, profound changes in the niche the led to significant alterations in the gene expression profiles and behaviors of the tumor, bringing about different courses and outcomes of disease between low-risk group and high-risk group.
Having the power to rewrite the regulation network in the tumor-infiltrating immune cells and the TIME (Uthaya Kumar and Williams, 2020; Wells et al., 2020), lncRNAs also take part in controlling the immune surveillance, drug resistance and the efficacy of immunotherapy (Pi et al., 2021). Many studies have shown that immune-related lncRNAs were capable of predicting the response for immune checkpoint inhibitor therapy (Jiang et al., 2020; Sun et al., 2020; Ma et al., 2021; Xu et al., 2021; Zhou et al., 2021). Consistent with the reported findings, the CRC TRLs signature provided us with immunotherapy treatment indications, showing that patients of the high-risk group were associated with higher expression of cellular receptors targeted by immune checkpoint inhibitor therapy and favorable response towards immunotherapy, which is of great help to stratify CRC patients for immunotherapy (Bateman, 2021).
There are some limitations that should be acknowledged. First, as a retrospective study, the model was trained and validated on existing datasets, indicating that TRLs signature needs to be further validate on large prospective cohorts. Second, the major limitation of the study was the lack of experimental validation. Although the model performed well in survival and immunotherapy response prediction, the underlying biological functions of the signature’s TRLs and the complicated regulation mechanisms between TRLs and their target mRNAs the in the TME were not fully understood, which should be further studied with cellular and molecular experiments.
In summary, not only provides distinct survival prediction and insights into the TIME for the two risk groups, our TRLs signature also gives doctors with immunotherapy treatment indications, suggesting that the patients of low-risk group may have a chance to live longer and patients of high-risk group could benefit more from the immunotherapy.
DATA AVAILABILITY STATEMENT
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS
Study design and conception were proposed by FG and X-JW; writing and revision of paper were done by CH, DC, FG, and X-JW; data analyses and interpretation was conducted by CH and DC; data management was done by CH, M-EZ, DF, and C-L; data acquisition was done by M-YL, Z-PH, and WW. All authors interpreted the results and revised the manuscript. All authors read and approved the final manuscript.
FUNDING
This study was supported by the National Key Clinical Discipline, the National Natural Science Foundation of China (No. 82002221, FG), The Sixth Affiliated Hospital of Sun Yat sen University Start-up Fund for Returnees (No. R20210217202501975, FG), Guangzhou Basic and Applied Basic Research Fund (No. 202102020820, FG), the Sun Yat-sen University 100 Top Talent Scholars Program–China (No. P20190217202203617, FG), National Natural Science Foundation of China (No. 81972212, XW), Natural Science Foundation of Guangdong Province, China (No. 2019A1515010063, XW), the program of Guangdong Provincial Clinical Research Center for Digestive Diseases (2020B1111170004, XW), Guangzhou Key Research and Development Project (No. 202206080008, XW).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.993714/full#supplementary-material
REFERENCES
 Ahiko, Y., Shida, D., Kudose, Y., Nakamura, Y., Moritani, K., Yamauchi, S., et al. (2021). Recurrence hazard of rectal cancer compared with colon cancer by adjuvant chemotherapy status: A nationwide study in Japan. J. Gastroenterol. 56 (4), 371–381. Epub 20210221. doi:10.1007/s00535-021-01771-6
 Bader, J. E., Voss, K., and Rathmell, J. C. (2020). Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78 (6), 1019–1033. Epub 2020/06/20. doi:10.1016/j.molcel.2020.05.034
 Bateman, A. C. (2021). Immune checkpoint inhibitor therapy in colorectal cancer-the role of cellular pathology. Int. J. Surg. Pathol. 29 (6), 584–591. Epub 20210618. doi:10.1177/10668969211025844
 Batista, P. J., and Chang, H. Y. (2013). Long noncoding rnas: Cellular address codes in development and disease. Cell 152 (6), 1298–1307. doi:10.1016/j.cell.2013.02.012
 Bhan, A., and Mandal, S. S. (2014). Long noncoding rnas: Emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 9 (9), 1932–1956. Epub 2014/03/29. doi:10.1002/cmdc.201300534
 Bhan, A., Soleimani, M., and Mandal, S. S. (2017). Long noncoding rna and cancer: A new paradigm. Cancer Res. 77 (15), 3965–3981. Epub 2017/07/14. doi:10.1158/0008-5472.CAN-16-2634
 Cao, J. (2014). The functional role of long non-coding rnas and epigenetics. Biol. Proced. Online 16, 11. Epub 2014/10/03. doi:10.1186/1480-9222-16-11
 Chen, M. S., Lo, Y. H., Chen, X., Williams, C. S., Donnelly, J. M., Criss, Z. K., et al. (2019). Growth factor-independent 1 is a tumor suppressor gene in colorectal cancer. Mol. Cancer Res. 17 (3), 697–708. Epub 20190103. doi:10.1158/1541-7786.MCR-18-0666
 Chen, S. J., Wang, S. C., and Chen, Y. C. (2021). The immunotherapy for colorectal cancer, lung cancer and pancreatic cancer. Int. J. Mol. Sci. 22 (23), 12836. Epub 20211127. doi:10.3390/ijms222312836
 Cohen, R., Rousseau, B., Vidal, J., Colle, R., Diaz, L. A., and Andre, T. (2020). Immune checkpoint inhibition in colorectal cancer: Microsatellite instability and beyond. Target. Oncol. 15 (1), 11–24. doi:10.1007/s11523-019-00690-0
 Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M., and Park, P. J. (2017). A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 8, 15180. Epub 20170606. doi:10.1038/ncomms15180
 de Sousa, E. M. F., Colak, S., Buikhuisen, J., Koster, J., Cameron, K., de Jong, J. H., et al. (2011). Methylation of cancer-stem-cell-associated wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9 (5), 476–485. doi:10.1016/j.stem.2011.10.008
 Denaro, N., Merlano, M. C., and Lo Nigro, C. (2019). Long noncoding rnas as regulators of cancer immunity. Mol. Oncol. 13 (1), 61–73. Epub 2018/12/01. doi:10.1002/1878-0261.12413
 Deng, H., Wang, J. M., Li, M., Tang, R., Tang, K., Su, Y., et al. (2017). Long non-coding rnas: New biomarkers for prognosis and diagnosis of colon cancer. Tumour Biol. 39 (6), 1010428317706332. Epub 2017/06/24. doi:10.1177/1010428317706332
 Doki, Y., Ajani, J. A., Kato, K., Xu, J., Wyrwicz, L., Motoyama, S., et al. (2022). Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N. Engl. J. Med. 386 (5), 449–462. doi:10.1056/NEJMoa2111380
 Fang, L., Yang, Z., Zhang, M., Meng, M., Feng, J., and Chen, C. (2021). Clinical characteristics and survival analysis of colorectal cancer in China: A retrospective cohort study with 13, 328 patients from southern China. Gastroenterol. Rep. 9 (6), 571–582. Epub 20211117. doi:10.1093/gastro/goab048
 Freeman, T. J., Smith, J. J., Chen, X., Washington, M. K., Roland, J. T., Means, A. L., et al. (2012). Smad4-Mediated signaling inhibits intestinal neoplasia by inhibiting expression of beta-catenin. Gastroenterology 142 (3), 562–571.e2. Epub 20111122. doi:10.1053/j.gastro.2011.11.026
 Gibney, G. T., Weiner, L. M., and Atkins, M. B. (2016). Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet. Oncol. 17 (12), e542–e551. doi:10.1016/S1470-2045(16)30406-5
 Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med. 21 (11), 1350–1356. Epub 2015/10/13. doi:10.1038/nm.3967
 Huang, J. K., Ma, L., Song, W. H., Lu, B. Y., Huang, Y. B., Dong, H. M., et al. (2017). Lncrna-Malat1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage Fgf2 protein secretion. J. Cell. Biochem. 118 (12), 4821–4830. Epub 20170613. doi:10.1002/jcb.26153
 Huang, W., Su, G., Huang, X., Zou, A., Wu, J., Yang, Y., et al. (2019). Long noncoding rna Pcat6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein arc expression via Ezh2. Cell Cycle 18 (1), 69–83. Epub 2018/12/21. doi:10.1080/15384101.2018.1558872
 Huarte, M., and Rinn, J. L. (2010). Large non-coding rnas: Missing links in cancer?Hum. Mol. Genet. 19 (R2), R152–R161. Epub 20100820. doi:10.1093/hmg/ddq353
 Jiang, W., Zhu, D., Wang, C., and Zhu, Y. (2020). An immune relevant signature for predicting prognoses and immunotherapeutic responses in patients with muscle-invasive bladder cancer (mibc). Cancer Med. 9 (8), 2774–2790. Epub 20200225. doi:10.1002/cam4.2942
 Jorissen, R. N., Gibbs, P., Christie, M., Prakash, S., Lipton, L., Desai, J., et al. (2009). Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer. Clin. Cancer Res. 15 (24), 7642–7651. doi:10.1158/1078-0432.CCR-09-1431
 Kassambara, A., Kosinski, M., and Biecek, P. (2021). Survminer: Drawing survival curves using “Ggplot2”. R package version 0.4.9. https://CRAN.R-project.org/package=survminer. 
 Kemper, K., Versloot, M., Cameron, K., Colak, S., de Sousa e Melo, F., de Jong, J. H., et al. (2012). Mutations in the ras-raf Axis underlie the prognostic value of Cd133 in colorectal cancer. Clin. Cancer Res. 18 (11), 3132–3141. Epub 20120410. doi:10.1158/1078-0432.CCR-11-3066
 Kim, H. G., Kim, H. S., Yang, S. Y., Han, Y. D., Cho, M. S., Hur, H., et al. (2021). Early recurrence after neoadjuvant chemoradiation therapy for locally advanced rectal cancer: Characteristics and risk factors. Asian J. Surg. 44 (1), 298–302. Epub 20200725. doi:10.1016/j.asjsur.2020.07.014
 Kirzin, S., Marisa, L., Guimbaud, R., De Reynies, A., Legrain, M., Laurent-Puig, P., et al. (2014). Sporadic early-onset colorectal cancer is a specific sub-type of cancer: A morphological, molecular and Genetics study. PLoS One 9 (8), e103159. Epub 20140801. doi:10.1371/journal.pone.0103159
 Laibe, S., Lagarde, A., Ferrari, A., Monges, G., Birnbaum, D., Olschwang, S., et al. (2012). A seven-gene signature aggregates a subgroup of stage ii colon cancers with stage iii. OMICS 16 (10), 560–565. Epub 20120823. doi:10.1089/omi.2012.0039
 Li, H., Fan, X., and Houghton, J. (2007). Tumor microenvironment: The role of the tumor stroma in cancer. J. Cell. Biochem. 101 (4), 805–815. Epub 2007/01/18. doi:10.1002/jcb.21159
 Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014). Starbase V2.0: Decoding mirna-cerna, mirna-ncrna and protein-rna interaction networks from large-scale clip-seq data. Nucleic Acids Res. 42, D92–D97. Database issueEpub 2013/12/04. doi:10.1093/nar/gkt1248
 Ma, B., Jiang, H., Luo, Y., Liao, T., Xu, W., Wang, X., et al. (2021). Tumor-infiltrating immune-related long non-coding rnas indicate prognoses and response to Pd-1 blockade in head and neck squamous cell carcinoma. Front. Immunol. 12, 692079. Epub 20211019. doi:10.3389/fimmu.2021.692079
 Makker, V., Colombo, N., Casado Herraez, A., Santin, A. D., Colomba, E., Miller, D. S., et al. (2022). Lenvatinib Plus pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 386 (5), 437–448. Epub 20220119. doi:10.1056/NEJMoa2108330
 Marisa, L., de Reynies, A., Duval, A., Selves, J., Gaub, M. P., Vescovo, L., et al. (2013). Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med. 10 (5), e1001453. Epub 20130521. doi:10.1371/journal.pmed.1001453
 Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., et al. (2019). Cancer treatment and survivorship statistics, 2019.Ca. Cancer J. Clin. 69 (5), 363–385. Epub 2019/06/12. doi:10.3322/caac.21565
 Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F., et al. (2019). Determining cell type Abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37 (7), 773–782. Epub 2019/05/08. doi:10.1038/s41587-019-0114-2
 Pan, W., Zhao, J., Zhang, S., Chen, X., Liang, W., and Li, Q. (2021). Towards exertion of immunotherapeutics in the treatment of colorectal cancer; adverse sides, challenges, and future directions. Int. Immunopharmacol. 101, 108337. Epub 20211111. doi:10.1016/j.intimp.2021.108337
 Pi, Y. N., Qi, W. C., Xia, B. R., Lou, G., and Jin, W. L. (2021). Long non-coding rnas in the tumor immune microenvironment: Biological properties and therapeutic potential. Front. Immunol. 12, 697083. doi:10.3389/fimmu.2021.697083
 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Res. 43 (7), e47. Epub 2015/01/22. doi:10.1093/nar/gkv007
 Sage, A., Ng, K., Marshall, E., Enfield, K., Stewart, G., Martin, S., et al. (2018). Ma24.06 long non-coding rna expression patterns delineate infiltrating immune cells in the lung tumour microenvironment. J. Thorac. Oncol. 13 (10), S443–S444. doi:10.1016/j.jtho.2018.08.524
 Schmid, P., Cortes, J., Dent, R., Pusztai, L., McArthur, H., Kummel, S., et al. (2022). Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 386 (6), 556–567. doi:10.1056/NEJMoa2112651
 Siegel, R. L., Miller, K. D., and Jemal, A. (2019). Cancer statistics, 2019.Ca. Cancer J. Clin. 69 (1), 7–34. Epub 2019/01/09. doi:10.3322/caac.21551
 Smith, J. J., Deane, N. G., Wu, F., Merchant, N. B., Zhang, B., Jiang, A., et al. (2010). Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138 (3), 958–968. Epub 20091113. doi:10.1053/j.gastro.2009.11.005
 Sun, J., Zhang, Z., Bao, S., Yan, C., Hou, P., Wu, N., et al. (2020). Identification of tumor immune infiltration-associated lncrnas for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J. Immunother. Cancer 8 (1), e000110. doi:10.1136/jitc-2019-000110
 Terry, T. (2022). A package for survival analysis in R. R package version 3, 3
 Tian, L., Zhao, Z. F., Xie, L., and Zhu, J. P. (2019). Taurine up-regulated 1 accelerates tumorigenesis of colon cancer by regulating mir-26a-5p/mmp14/P38 mapk/hsp27 Axis in vitro and in vivo. Life Sci. 239, 117035. Epub 2019/11/08. doi:10.1016/j.lfs.2019.117035
 Uthaya Kumar, D. B., and Williams, A. (2020). Long non-coding rnas in immune regulation and their potential as therapeutic targets. Int. Immunopharmacol. 81, 106279. Epub 20200212. doi:10.1016/j.intimp.2020.106279
 Valkenburg, K. C., de Groot, A. E., and Pienta, K. J. (2018). Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15 (6), 366–381. Epub 2018/04/14. doi:10.1038/s41571-018-0007-1
 Wang, L., Cho, K. B., Li, Y., Tao, G., Xie, Z., and Guo, B. (2019). Long noncoding rna (Lncrna)-Mediated competing endogenous rna networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci. 20 (22), E5758. Epub 2019/11/21. doi:10.3390/ijms20225758
 Wang, P., Guo, Q., Hao, Y., Liu, Q., Gao, Y., Zhi, H., et al. (2021). Lncecell: A comprehensive database of predicted lncrna-associated cerna networks at single-cell resolution. Nucleic Acids Res. 49 (D1), D125–D133. Epub 2020/11/22. doi:10.1093/nar/gkaa1017
 Wang, P., Li, X., Gao, Y., Guo, Q., Wang, Y., Fang, Y., et al. (2019). Lncactdb 2.0: An updated database of experimentally supported cerna interactions curated from low- and high-throughput experiments. Nucleic Acids Res. 47 (D1), D121–D127. Epub 2018/11/27. doi:10.1093/nar/gky1144
 Wang, X., Terfve, C., Rose, J. C., and Markowetz, F. (2011). Htsanalyzer: An R/bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics 27 (6), 879–880. Epub 2011/01/25. doi:10.1093/bioinformatics/btr028
 Wei, L., Wang, X., Lv, L., Zheng, Y., Zhang, N., and Yang, M. (2019). The emerging role of noncoding rnas in colorectal cancer chemoresistance. Cell. Oncol. 42 (6), 757–768. Epub 2019/07/31. doi:10.1007/s13402-019-00466-8
 Wells, A. C., Pobezinskaya, E. L., and Pobezinsky, L. A. (2020). Non-coding rnas in Cd8 T cell biology. Mol. Immunol. 120, 67–73. Epub 20200218. doi:10.1016/j.molimm.2020.01.023
 Williams, C. S., Bernard, J. K., Demory Beckler, M., Almohazey, D., Washington, M. K., Smith, J. J., et al. (2015). Erbb4 is over-expressed in human colon cancer and enhances cellular transformation. Carcinogenesis 36 (7), 710–718. Epub 20150427. doi:10.1093/carcin/bgv049
 Wu, K., Xu, K., Liu, K., Huang, J., Chen, J., Zhang, J., et al. (2018). Long noncoding rna Bc200 regulates cell growth and invasion in colon cancer. Int. J. Biochem. Cell Biol. 99, 219–225. doi:10.1016/j.biocel.2018.04.001
 Xiong, W., Qin, J., Cai, X., Xiong, W., Liu, Q., Li, C., et al. (2019). Overexpression Linc01082 suppresses the proliferation, migration and invasion of colon cancer. Mol. Cell. Biochem. 462 (1-2), 33–40. doi:10.1007/s11010-019-03607-7
 Xu, M., Xu, X., Pan, B., Chen, X., Lin, K., Zeng, K., et al. (2019). Lncrna satb2-as1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating Satb2. Mol. Cancer 18 (1), 135. Epub 2019/09/08. doi:10.1186/s12943-019-1063-6
 Xu, Q., Wang, Y., and Huang, W. (2021). Identification of immune-related lncrna signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int. Immunopharmacol. 92, 107333. Epub 20210121. doi:10.1016/j.intimp.2020.107333
 Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., et al. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21 (5), 650–659. Epub 2004/09/25. doi:10.1093/bioinformatics/bti042
 Yao, R. W., Wang, Y., and Chen, L. L. (2019). Cellular functions of long noncoding rnas. Nat. Cell Biol. 21 (5), 542–551. Epub 2019/05/03. doi:10.1038/s41556-019-0311-8
 Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. Epub 2013/10/12. doi:10.1038/ncomms3612
 Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS 16 (5), 284–287. Epub 2012/03/30. doi:10.1089/omi.2011.0118
 Yu, W. D., Wang, H., He, Q. F., Xu, Y., and Wang, X. C. (2018). Long noncoding rnas in cancer-immunity cycle. J. Cell. Physiol. 233 (9), 6518–6523. Epub 2018/03/27. doi:10.1002/jcp.26568
 Zeng, D., Ye, Z., Wu, J., Zhou, R., Fan, X., Wang, G., et al. (2020). Macrophage correlates with immunophenotype and predicts anti-Pd-L1 response of urothelial cancer. Theranostics 10 (15), 7002–7014. Epub 2020/06/20. doi:10.7150/thno.46176
 Zhang, W. L., Liu, Y., Jiang, J., Tang, Y. J., Tang, Y. L., and Liang, X. H. (2020). Extracellular vesicle long non-coding rna-mediated crosstalk in the tumor microenvironment: Tiny molecules, huge roles. Cancer Sci. 111 (8), 2726–2735. Epub 2020/05/22. doi:10.1111/cas.14494
 Zhang, Y., Liu, Q., and Liao, Q. (2020). Long noncoding rna: A dazzling dancer in tumor immune microenvironment. J. Exp. Clin. Cancer Res. 39 (1), 231. Epub 2020/11/06. doi:10.1186/s13046-020-01727-3
 Zhang, Z., Yan, C., Li, K., Bao, S., Li, L., Chen, L., et al. (2021). Pan-cancer characterization of lncrna modifiers of immune microenvironment reveals clinically distinct de novo tumor subtypes. NPJ Genom. Med. 6 (1), 52. Epub 20210617. doi:10.1038/s41525-021-00215-7
 Zhao, H., Shi, J., Zhang, Y., Xie, A., Yu, L., Zhang, C., et al. (2020). Lnctard: A manually-curated database of experimentally-supported functional lncrna-target regulations in human diseases. Nucleic Acids Res. 48 (D1), D118–D126. Epub 2019/11/13. doi:10.1093/nar/gkz985
 Zhou, M., Zhang, Z., Bao, S., Hou, P., Yan, C., Su, J., et al. (2021). Computational recognition of lncrna signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Brief. Bioinform. 22 (3), bbaa047. doi:10.1093/bib/bbaa047
 Zhou, Y., Zhu, Y., Xie, Y., and Ma, X. (2019). The role of long non-coding rnas in immunotherapy resistance. Front. Oncol. 9, 1292. Epub 2019/12/19. doi:10.3389/fonc.2019.01292
GLOSSARY
lncRNA long non-coding RNA
TIME tumor immune microenvironment
CRC colorectal cancer
TRL tumor immune microenvironment related long non-coding RNA
LASSO Least absolute shrinkage and selection operator
HR hazard ratio;
CI confidence interval
PD-L1 programmed cell death 1 ligand 1
PD-L2 programmed cell death 1 ligand 2
PD-1 programmed cell death 1
TME tumor microenvironment
Treg regulatory T cell
ceRNA competing endogenous RNA
GEO Gene Expression Omnibus
TCGA The Cancer Genome Atlas
COAD colon adenocarcinoma
READ rectum adenocarcinoma
CCLE Cancer Cell Line Encyclopedia
TSI tissue specificity index
MMR mismatch repair
MSS microsatellite stability
MSI microsatellite instability
CMS consensus molecular subtypes
DEG differentially expressed gene
GSEA gene set enrichment analysis
MSigDB Molecular Signatures Database
ROC receiver operating characteristic
AUC area under the curve
DFS disease-free survival
CTLA4 cytotoxic T-lymphocyte associated protein 4.
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Background: As the most prevalent valvular heart disease, calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis and insufficiency. We aim to illustrate the roles of immune related genes (IRGs) and immune cells infiltration in the occurrence of CAVD.
Methods: Integrative meta-analysis of expression data (INMEX) was adopted to incorporate multiple gene expression datasets of CAVD from Gene Expression Omnibus (GEO) database. By matching the differentially expressed genes (DEGs) to IRGs from “ImmPort” database, differentially expressed immune related genes (DEIRGs) were screened out. We performed enrichment analysis and found that DEIRGs in CAVD were closely related to inflammatory response and immune cells infiltration. We also constructed protein–protein interaction (PPI) network of DEIRGs and identified 5 key DEIRGs in CAVD according to the mixed character calculation results. Moreover, CIBERSORT algorithm was used to explore the profile of infiltrating immune cells in CAVD. Based on Spearman’s rank correlation method, correlation analysis between key DEIRGs and infiltrating immune cells was performed.
Results: A total of 220 DEIRGs were identified and the enrichment analysis of DEIRGs showed that they were significantly enriched in inflammatory responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as key DEIRGs. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was elevated in calcified aortic valves tissue samples, as well as reduced infiltration of macrophages M2 and NK cells activated. Furthermore, key DEIRGs identified in the present study, including PTPN11, GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of various immune cells.
Conclusion: This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key DEIRGs associated with immune cells infiltration, which play a pivotal role in pathogenesis of CAVD.
Keywords: immune-related genes, calcific aortic valve disease, immune cells, immune infiltration, CIBERSORT
INTRODUCTION
Calcific aortic valve disease (CAVD), the most common cardiovascular valve disease, has become a major reason for aortic valve stenosis and insufficiency, especially in the elderly (Tsimikas et al., 2018). It is reported that over 30% of individuals beyond the age of 65 have echocardiography evidence of CAVD (Otto and Prendergast, 2014). With the progression of CAVD, aortic valve stenosis affects almost 3% of people over 65 years of age and in nearly 8% of people over 75 years of age. Considering the prolonged life expectancy, the worldwide CAVD burden is projected to be 4.5 million dollars in 2030 (Vahanian et al., 2012). Currently, surgical therapy remains the only effective therapeutic method against CAVD, which is limited in terms of high costs, perioperative complications, and the complications of life-long anticoagulation therapy (Myasoedova et al., 2018).
CAVD is a progressive disease, including three stages. Valve endothelial cells injury, lipid deposition, and inflammation constitute an initiation stage. In the next stage, valve interstitial cells differentiation and microcalcification are promoted by collagens and bone-matrix proteins deposition. Finally, valvular osteogenesis occurs through activation of various specific molecular signals (Liu and Xu, 2016). Recently, inflammation and immunity has been found to be important to the progression of CAVD. In the aortic valve, nearly 15% of the cells come from hematopoietic sources. With the infiltration of T lymphocytes, B lymphocytes and macrophages into the aortic valve after inflammation, this number increases greatly, so as to promote further inflammation response (Bartoli-Leonard et al., 2021). It is of great value to evaluate immune cells infiltration and find key immune related genes (IRGs) that regulate the infiltration of immune cells for elucidating the molecular mechanism of CAVD.
Integrative meta-analysis of expression data (INMEX) has been widely used in integrating gene expression profiles (Xia et al., 2013). In the present meta-analysis, INMEX was adopted to integrate all datasets of CAVD from Gene Expression Omnibus (GEO) database (GSE12644, GSE83453, and GSE51472) and identify differentially expressed genes (DEGs) in CAVD. Subsequently, we screened out differentially expressed immune related genes (DEIRGs) through matching 2,484 IRGs from ImmPort database to DEGs (Fu et al., 2021). Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis was conducted to explore the biological meaning of the DEIRGs and the immune-related molecular mechanisms underlying CAVD. CIBERSORT, a widely used algorithm, can assess infiltrating immune cells according to different gene expression patterns (Newman et al., 2015). Accumulating studies have adopted CIBERSORT to evaluate immune cells infiltration in many different diseases (Zhang et al., 2019; Deng et al., 2020; Liu et al., 2020). CIBERSORT was firstly used to investigate the infiltration of 22 immune cells in aortic valve tissue samples from patients with CAVD in this meta-analysis. In addition, we constructed protein-protein interaction (PPI) network and identified key DEIRGs of CAVD. The correlation between each key DEIRGs and infiltrating immune cells was studied respectively to explore its role in CAVD.
MATERIALS AND METHODS
Inclusion of eligible datasets
We conducted literature search in GEO database. Search keywords were “CAVD” or “calcific aortic valve disease” or “aortic valve calcification” containing in all fields. A total of 68 researches were screened out. Two independent researchers (Jia-Yi Chen and Li-Da Wu) searched and reviewed the titles, abstracts, and full texts to determine the inclusion. The inclusion criteria are as follows: 1) adult patients with CAVD; 2) at least 6 samples included in each group; 3) genomic data of patients with CAVD and normal individuals were detected by microarray or next generation sequencing. As shown in Table 1, all of the datasets of CAVD in GEO database were included in our meta-analysis, including GSE12644 (Bossé et al., 2009), GSE51472 (Ohukainen et al., 2015), and GSE83453 (Guauque-Olarte et al., 2016). The CAVD microarray datasets in GEO database (Barrett et al., 2013) were downloaded via “GEO query” package in R 3.6.3 software (Davis and Meltzer, 2007). Stenotic aortic valve tissue samples without calcification were excluded for the accuracy of the present meta-analysis focusing on CAVD. GSE12644, based on GPL570 platform, includes 10 aortic valve samples from normal individuals and 10 aortic valve samples from patients with CAVD (Bossé et al., 2009). GSE51472, also performed by GPL570 platform, includes 5 aortic valve samples from normal individuals and 5 aortic valve samples from patients with CAVD (Ohukainen et al., 2015). GSE83453, based on GPL10558, includes 8 aortic valve samples from normal individuals and 10 aortic valve samples from patients with CAVD (Guauque-Olarte et al., 2016). The basic information of the patients included in this meta-analysis was also downloaded from the GEO database. Considering the difficulty of obtaining aortic valve samples in the clinic and the age-dependent and gender-dependent clinical features of CAVD, all of the aortic valve samples included in this meta-analysis were derived from elderly male individuals. The mean age of patients in the control group was 58.8 ± 2.01 years, and that in the CAVD group was 62.8 ± 1.48 years, the difference was not statistically significant.
TABLE 1 | Characteristics of the datasets included in the integrated analysis.
[image: Table 1]Quality assessment and removal of batch effects among different datasets
Log2-transformation and background correction were performed on the gene expression profiles using the “linear models for microarray data (limma)” package (Ritchie et al., 2015). After the normalization process, all of the microarray probes were translated to official gene names in INMEX. For multiple probes that detected a single gene, we use their average expression values. In the era of omics and big data, the integration of data (the same disease or condition) tested in different batches, platforms, using different techniques, and under different laboratory conditions will become the norm. However, different batches of datasets may have batch effects due to abiotic factors, which may have a serious impact on the test results and even lead to wrong conclusions. There are several methods for removing the batch effect of gene expression data, including ComBat method, surrogate variable analysis method, distance weighted discriminant method and ratio-based method. Considering the datasets included in the present meta-analysis were based on different platforms and different experimental conditions, ComBat option was used to remove batch effect and visualize the results of principal component analysis (PCA). Moreover, each gene expression value from different batches were adjusted by the normalization procedure of “central standardization,” also known as “mean centering.” The specific method of “central standardization” is to subtract from the mean value of each gene so that the mean value of each gene expression value in the transformed dataset was 0. Through the normalization procedure of “central standardization,” gene expression values were transformed to the appropriate range so as to avoid the fluctuation of small value variables being masked by large value variables.
Network based meta-analysis and identification of differentially expressed immune related genes
Following the PRISMA guidelines (Moher et al., 2009), INMEX was used to integrate gene expression datasets of CAVD through network-based meta-analysis (Xia et al., 2013). Moreover, the random effect model was selected in this study considering the heterogeneity among different datasets (Xia et al., 2013). Pattern extractor tool in INMEX was used to construct a heatmap of the top 100 DEGs. By matching 2,484 IRGs from the ImmPort database to DEGs, we screened out DEIRGs in aortic valve tissue samples from patients with CAVD (Li et al., 2014).
Assessment of immune cells infiltration
In this meta-analysis, CIBERSORT algorithm was firstly used to assess the infiltration of 22 types of immune cells in aortic valve tissue samples from patients with CAVD (Newman et al., 2015). Actually, CIBERSORT algorithm has been employed to evaluate immune cells infiltration in many different diseases, such as osteoarthritis (Deng et al., 2020), high-grade serous ovarian cancer (Liu et al., 2020), and breast ductal and lobular carcinoma (Zhang et al., 2019). For the accuracy of evaluation, the p value of CIBERSORT results adopted in the present study are less than 0.05. In each sample, the proportions of various immune cells were visualized using R software. Moreover, we also carried out PCA analysis based on the dataset of relative fractions of immune cells infiltration in each sample calculated by CIBERSORT (rows: the relative fractions of immune cells infiltration; columns: aortic valve tissue samples). PCA analysis adopted the method of multivariate statistical distribution analysis with characteristic quantities. Generally, this operation can be regarded as a method to expose the internal structure of data so as to better explain the variables of data. Of note, principal component analysis used orthogonal transformation to linearly transform the specific data values of immune cell infiltration, and then projected them into the values of multiple linearly uncorrelated variables. Samples were clustered according to the values of the first two linearly uncorrelated variables. “ggplot2” package in R software was adopted to perform PCA analysis based on immune cells infiltration and draw a PCA clustering plot. A correlation heatmap was created by “corrplot” package, also based on the dataset of relative fractions of immune cells infiltration in each sample calculate by CIBERSORT, to describe the correlation between 22 types of immune cells, correlation coefficient and p value were used to evaluate the strength and significance of correlation. For a specific type of immune cell, the difference in immune cells infiltration levels between aortic valve samples from patients with CAVD and normal individuals were represented by a violin plot established by “vioplot” package.
Enrichment analysis of differentially expressed immune related genes
To explore the biological functions of DEIRGs and roles of DEIRGs in immune cells infiltration in CAVD, the “clusterProfler” package (Wu et al., 2021) was adopted to conduct GO and KEGG pathway enrichment analysis. The enrichment terms were rendered as a network plot and visualized by Metascape software for elucidating the correlation among them (Zhou et al., 2019). Enrichment analysis was also performed based on DisGeNET (Pinero et al., 2017) and TRRUST (Han et al., 2018) database to further explore roles of DIREGs in CAVD. DisGeNET is a database of gene-disease associations, which collects one of the largest publicly available collections of genes and human diseases-related variants. TRRUST is a visual and manually annotated transcriptional regulatory network database. TRRUST not only contains target genes corresponding to transcription factors, but also contains regulatory relationships among transcription factors.
Protein–protein interaction network and identification of key differentially expressed immune related genes
The STRING database is a widely used database for protein-protein interactions (PPIs). This database can be applied to 2031 species, containing 9.6 million proteins and 13.8 million PPIs. At present, STRING database is widely used to study the interaction network between proteins, which helps to find the core regulatory genes in PPIs network (Zhao et al., 2018; Bajpai et al., 2020; Liu et al., 2021). The STRING software (Szklarczyk et al., 2019) was adopted to construct PPI network of DEIRGs, which was visualized by Cytoscape software 3.8.1 (Shannon et al., 2003). According to previously published studies, we chose the confidence value of 0.9 and the maximum number of connections of 3 to screen out relatively reliable protein interaction relationships on the basis of preserving protein correlations as much as possible (Wang et al., 2021; Ramadhani et al., 2022; Yadalam et al., 2022). Cytohubba is a plug-in of Cytoscape software for identifying hub gene nodes (Chin et al., 2014). It provides multiple analysis algorithms to calculate hub genes in protein interaction network diagrams. Among them, the mixed character calculation algorithm is a relatively accurate method that has been proved to predict important targets (Chin et al., 2014). Mixed character calculation algorithm is a method to judge the importance of hub genes by evaluating the node degree, betweenness centrality in the PPI network. The specific calculation method of MCC is as follows: given a node v, the MCC of v is defined as [image: image], where S(v) is the collection of maxima l cliques which contain v, and (|C|-1)! is the product of all positive integers less than |C|. If there is no edge between the neighbors of the node v, then MCC(v) is equal to its degree (Chin et al., 2014). Furthermore, using Cytoscape plugin software “cytoHubba,” the top 5 hub DEIRGs were screened out based on mixed character numeration.
Correlation analysis between key differentially expressed immune related genes and infiltrating immune cells
The correlation between the expression values of key DEIRGs and the relative fractions of immune cells infiltration was analyzed using spearman method in R software, and the package of “ggplot2” was employed to visualize the correlation analysis results Figure 1.
[image: Figure 1]FIGURE 1 | Workflow of the present systematic review and meta-analysis. PPI, protein–protein interaction; GO, gene ontology; CAVD, calcific aortic valve disease; DEIRGs, differentially expressed immune related genes; KEGG, kyoto encyclopedia of genes and genomes.
RESULTS
Differentially expressed genes and differentially expressed immune related genes screening between calcified and normal aortic valves
We performed principal component analysis (PCA) to evaluate whether the batch effects were successfully removed among different datasets included in the present meta-analysis. In Figure 2B, the PCA plot demonstrated that batch effect among GSE12644, GSE83453 and GSE20681 was successfully removed. In INMEX, random effect model was used to identify DEGs according to the adjusted p value < 0.05. A total of 2,465 DEGs were screened out, including 1306 up-regulated genes and 1159 down-regulated genes in aortic valve tissues from patients with CAVD. The top 50 up-regulated DEIRGs and top 50 down regulated DEIRGs across different datasets are shown in a heatmap, hierarchal clustering is applied based on complete linkage method (Figure 2A). A total of 220 DEIRGs were finally selected after matching the DEGs to the IRGs from ImmPort database (Figure 2C).
[image: Figure 2]FIGURE 2 | Identification of DEIRGs between aortic valve samples from patients with CAVD and normal individuals through network-based meta-analysis. (A) Heatmap of top 50 up-regulated DEIRGs and top 50 down regulated DEIRGs across different datasets (according to fold changes), hierarchal clustering is applied based on complete linkage method. (B) PCA plot after removing batch effect between GSE12644, GSE51472 and GSE83453. (C) Venn plot of screening DEIRGs by matching the 2,484 IRGs from ImmPort database to the 2,465 DEGs. CAVD, calcific aortic valve disease; IRGs, immune related genes; DEGs, differentially expressed genes; DEIRGs, differentially expressed immune related genes.
Immune cells infiltration analysis
Based on CIBERSORT algorithm, we firstly investigated the infiltration of 22 types of immune cells in aortic valve tissues from normal individuals and patients with CAVD. Figure 3A and Figure 3B vividly illustrate the proportion of infiltrating immune cells in aortic valve tissue samples from 23 normal individuals and 25 patients with CAVD. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was significantly elevated in the calcified aortic valves tissues, as well as reduced infiltration of macrophages M2 and NK cells activated in the calcified aortic valves tissues (Figure 4A). Because of the high proportion of macrophages M2, we have created a separate heatmap and a separate violin plot in supplementary materials excluding macrophages M2 to better visualize the differences in CAVD versus normal samples observed for the other immune cells (Supplementary Figure S3). The results of correlation analysis of different infiltrating immune cells showed that NK cells resting and T cells CD8 have the strongest positive correlation (r = 0.62; Figure 4B). However, mast cells resting and NK cells resting have the most intensive negative correlation (r = -0.66). According to the proportion of infiltrating immune cells, PCA diagram revealed distinct group bias clustering, indicating that immune cells infiltration of patients with CAVD and normal individuals are significantly different (Supplementary Figure S1).
[image: Figure 3]FIGURE 3 | Summary of immune cells infiltration in calcified and normal aortic valve samples. (A) Barplot shows the relative fractions of 22 types of immune cells in each sample. (B) Heatmap of the relative fractions of 22 subpopulations of infiltrating immune cells in each sample, green to red indicates an increase in relative fractions of immune cells infiltration. CAVD, calcific aortic valve disease.
[image: Figure 4]FIGURE 4 | Evaluation of the difference in immune cells infiltration between aortic valve samples from patients with CAVD and normal individuals. (A) The difference in the relative fractions of 22 subpopulations of immune cells between calcified and normal aortic valve samples. (B) Correlation heatmap based on the Spearman’s rank correlation method shows the correlation between the relative fractions of 22 immune cells subpopulations, blue to red indicates an increase in correlation coefficient. CAVD, calcific aortic valve disease; PCA: principal component analysis.
Enrichment analysis of differentially expressed immune related genes
We performed enrichment analysis of DEIRGs of CAVD based on GO and KEGG databases. Figure 5A shows that the biological processes were mainly enriched in positive regulation of leukocyte migration, T cell activation, response to external stimulus, cytokine production and cell chemotaxis. And the most enriched cellular components included vesicle lumen, membrane region, the external side of plasma membrane, membrane raft, and membrane microdomain. The molecular functions were mainly enriched in cytokine activity, cytokine binding, cytokine receptor binding, receptor-ligand activity and cytokine receptor activity. In Figure 5B, KEGG analysis shows that NK cell mediated cytotoxicity and cytokine to cytokine receptor interaction were most enriched, followed by JAK-STAT pathway, chemokine, tuberculosis. The top 20 pathways in KEGG enrichment analysis were shown in Figure 5C, including leukocyte migration, cytokine signaling in the immune system, lymphocyte activation, myeloid lymphocyte activation and T cell receptor signaling pathway. In addition, DisGeNET enrichment analysis also revealed that the DEIRGs were significantly associated with inflammation, periodontitis, infection, dermatitis and pneumonitis (Figure 5D). Then, we screened out transcription factors associated with DEIRGs based on the TRRUST database, including RELA, NFKB1, SP1, STAT3, and JUN (Figure 5E).
[image: Figure 5]FIGURE 5 | Enrichment analysis of DEIRGs in CAVD. (A) GO enrichment analysis. (B) KEGG pathway enrichment analysis. (C) The network of enriched terms and each node represents an enriched term. (D) Summary of enrichment analysis based on DisGeNET database. (E) Summary of enrichment analysis based on TRRUST database. The light brown to dark brown gradient indicates an increase in -log10(P). Count: the number of genes enriched in each term; DEIRGs, differentially expressed immune related genes; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes.
Protein–protein interaction network analysis
Figure 6A is the PPI network of DEIRGs, all of the 220 DEIRGs were included in the PPI network, and there are 384 direct interactions. We also carried out an analysis of our PPI network in the STRING database, the results were as followed: number of nodes in the PPI network: 220; number of edges in the PPI network (not the direct interactions but the number of evidence supporting the interactions): 1931; expected number of edges out of a set of randomly selected degree-matched genes: 500; PPI enrichment p value: < 0.001. Thus, the interactions among the 220 DEIRGs in this study were more significant than the interactions among a randomly selected set of genes that were matched in degree. In addition, the high interconnectivity between nodes in the PPI network indicates functional cohesion among proteins. Therefore, there are a large number of interactions among the 220 DEIRGs, which may play important roles in various biological processes leading to the development of CAVD. CytoHubba software was adopted to identify the top 5 key DEIRGs according to the core PPI network, including PTPN11, GRB2, SYK, PTPN6, and SHC1 (Figure 6B). As can be seen in Figure 6C, PTPN11 was statistically down-regulated in the aortic valve tissues from patients with CAVD. Whereas GRB2, SYK, PTPN6 and SHC1 were statistically up-regulated in aortic valve tissues from patients with CAVD (Figures 6D–G).
[image: Figure 6]FIGURE 6 | PPI network and identification of hub genes. (A) PPI network of DEIRGs in CAVD created by STRING website. The number of edges between different proteins represents the number of evidences supporting the interaction relationship in STRING database. (B) Top 5 hub genes identified by “cytoHubba” according to mixed character calculation and its core network. The essentiality of hub genes increases from yellow to red. (C–G) The expression of PTPN11, GRB2, SYK, PTPN6 and SHC1 in calcified and normal aortic valve. PPI: protein-protein interaction; DEIRGs: differentially expressed immune related genes; CAVD, calcific aortic valve disease.
Correlation analysis of key differentially expressed immune related genes and immune cells infiltration
Results of the correlation analysis between the key DEIRGs and infiltrating immune cells in aortic valve tissues indicated that PTPN11 was intensively correlated with T cells CD4 naive (r = 0.394, p = 0.017), dendritic cells resting (r = 0.376, p = 0.024), macrophages M1 (r = 0.367, p = 0.028) and negatively correlated with T cells gamma delta (r = −0.406, p = 0.014), mast cells resting (r = -0.354, p = 0.034). GRB2 had positive correlation with mast cells activated (r = 0.487, p = 0.003), neutrophils (r = 0.418, p = 0.011), plasma cells (r = 0.380, p = 0.022), macrophages M0 (r = 0.379, p = 0.023), B cells memory (r = 0.329, p = 0.049), dendritic cells resting (r = 0.349, p = 0.037) and negative correlation with NK cells activated (r = −0.354, p = 0.034), macrophages M2 (r = -0.453, p = 0.005), mast cells resting (r = -0.515, p = 0.001). Of note, out of all the gene-immune cell infiltration correlations, the one between GRB2 and resting mast cells seems to be more important. SYK had positive correlation with T cells CD4 memory activated (r = 0.450, p = 0.006), T cells gamma delta (r = 0.441, p = 0.007), macrophages M0 (r = 0.358, p = 0.032) and negative correlation with NK cells resting (r = -0.369, p = 0.026), Tregs (r = -0.383, p = 0.021). PTPN6 was positively correlated with T cells CD4 memory activated (r = 0.403, p = 0.014), neutrophils (r = 0.353, p = 0.034), macrophages M0 (r = 0.674, p < 0.001) and correlated negatively with T cells follicular helper (r = −0.339, p = 0.042), monocytes (r = −0.423, p = 0.009). SHC1 had positive correlation with plasma cells (r = 0.452, p = 0.006), macrophages M0 (r = 10.398, p = 0.016) and negative correlation with T cells CD4 naive (r = −0.335, p = 0.046) (Figure 7).
[image: Figure 7]FIGURE 7 | Correlations between the expression values of key DEIRGs and the relative fractions of immune cells infiltration. (A–E) Correlation analysis of the association between the expression values of PTPN11, GRB2, SYK, PTPN6, SHC1 and the relative fractions of immune cells infiltration based on Spearman’s rank correlation method.
DISCUSSION
CAVD, a chronic progressive disease, develops gradually from valvular sclerosis to valvular calcification, eventually leads to stenosis of left ventricular outflow and severely disrupts hemodynamics (Büttner et al., 2021). CAVD has become a major health problem due to its high prevalence, high morbidity and mortality rate. Due to the lack of effective drugs, aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI) are the only available treatments for patients with CAVD (Myasoedova et al., 2018). AVR is the traditional treatment for aortic valve disease. However, AVR alone has a high in-hospital mortality rate, approximately 3.4%. Despite TAVI becoming increasingly useful, even for patients at low risk, most patients who undergo it are elderly and frail and have a number of comorbid conditions. The perioperative management of TAVI still presents great challenges. More and more proofs verified that the pathological process involved in CAVD is multifactorial, including aortic valve endothelial cells damage, aortic valve fibrosis and aortic valve calcification. Studies have demonstrated that inflammatory response plays a pivotal role in development of CAVD (Cho et al., 2018; Sikura et al., 2020).
One promising and rapidly evolving tactic to CAVD is the application of multi-omics approaches to fully define disease pathogenesis (Blaser et al., 2021). More and more researchers have focused on changes in gene expression profiles in patients with CAVD. Qiao et al. and Teng et al. investigated the potential DEGs and pathways related to CAVD based on traditional bioinformatic analysis (Teng et al., 2020; Qiao et al., 2022). In addition, based on the WGCNA method, Sun et al. screened out different functional gene modules related to CAVD. However, roles of DEGs in the occurrence and development of CAVD has not been further discussed, especially the relationship between DEIRGs and immune cells infiltration (Sun et al., 2021). In the present study, we aim to screen out key DEIRGs of CAVD based on network bioinformatic analysis and explore the profile of infiltrating immune cells in aortic valve tissues from patients with CAVD in detail.
A total of 220 DEIRGs were identified in aortic valve tissue samples from patients with CAVD after a detailed analysis of all relevant datasets of CAVD in GEO database. GO analysis of the DEIRGs revealed that leukocyte migration, receptor-ligand activity, leukocyte cell-cell adhesion, myeloid leukocyte migration and membrane raft and membrane microdomain were significantly enriched. These biological processes and molecular functions were closely related to immune cells infiltration (Cho et al., 2018). Infiltrating immune cells could release inflammatory and fibrotic cytokines and further aggravate inflammatory response. DEIRGs are also involved in the regulation of cytokine receptor activity, cytokine activity and cytokine production in KEGG analysis. The inflammatory factors secreted by invading inflammatory cells, such as IL-1β and NF-κB, can promote extracellular matrix remodeling, lipid deposition, fibrosis, ossification and calcification (Liu and Pravia, 2010). These findings indicate that DEIRGs in CAVD are involved in the inflammatory processes. In the “cytoHubba” plugin, PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as top 5 key DEIRGs according to the results of mixed character calculation.
Protein tyrosine phosphatase (PTP) is a kind of protein phosphatases, including PTPN1, PTPN2, PTPN6, PTP11 and PTPN22. PTPs function in various important biological processes, including cell cycle and cell differentiation, by carrying out phosphorylation and dephosphorylation of tyrosine residues (Pulido et al., 2013). The role of PTPs in inflammatory response and immune cells infiltration was gradually revealed (Zhao et al., 2016; Xiao et al., 2019). In the present study, PTPN11 was significantly down-regulated, whereas PTPN6 was up-regulated in aortic valves from patients with CAVD. PTPN11 have already been linked to inflammation response, which can reduce the level of Th1 cytokine through inhibiting the combination of STAT1 and IFN-γ receptor (Tseng et al., 2012). Moreover, studies have already demonstrated that PTPN11 gene variants are closely associated ulcerative colitis (UC) but not Crohn’s disease (CD) (Spalinger et al., 2015). Moreover, PTPN11 is an important component in growth factor signaling pathway, closely related to Egfr signaling and formation of valve endothelial cells (Chen et al., 2000). Interestingly, patients with PTPN11 mutation present significantly higher prevalence of pulmonary valve stenosis, named Noonan syndrome (Brasil et al., 2010). In addition, PTPN11 mutation has also been demonstrated to be harmful to myocardial hypertrophy and cardiac fibrotic remodeling through crosstalking with NF-κB pathway and mTOR signaling (Schramm et al., 2012; Zhou et al., 2020a). PTPN6, another phosphatase of PTPs, specially expressed in the cytoplasm and prevented excessive autoimmunity in IL-1 dependent inflammatory diseases and pyroptosis dependent inflammatory diseases (Speir et al., 2020). Studies have also demonstrated that PTPN6 significantly ameliorates inflammatory disease by decreasing TNF-α, TGF-β and IL-6 (Lin et al., 2020). In addition, PTPN6 is important in preventing the harmful effects of pathogens on the host, which is crucial for successful defense mechanisms against invading microorganisms (Kanwal et al., 2013). PTPN6 is known as an important negative regulator of inflammatory response and significantly down regulated in aortic valve tissues from patients with CAVD Table 2.
TABLE 2 | Summary of the functions and known contributions of key DEIRGs in CAVD and other inflammatory diseases.
[image: Table 2]GRB2 is a 25kD adaptor protein that functions in modulating and integrating signals from cell membrane surface receptors to intracellular effector proteins (Dharmawardana et al., 2006). Studies have demonstrated that GRB2 was up-regulated in aortic valve tissues from patients with CAVD (Abazyan et al., 2010). GRB2 is best known in the cardiovascular field for activating Egfr tyrosine kinase and its downstream renin-angiotensin system (Tari and Lopez-Berestein, 2001). Recent studies also revealed that GRB2 was involved in the process of development of T cells and Th cells. GRB2-knockout animals have reduced T cells and more prone to inflammatory diseases (Radtke et al., 2016).
Spleen-associated tyrosine kinase (SYK), a member of the none receptor type tyrosine kinase family (Alhazmi, 2018). SYK was also involved in numerous biological functions, including cellular adhesion, vascular development, platelet activation and relaying adaptive immune receptor signaling related to immune cells infiltration (Kurosaki, 2000; Correll et al., 2006; Mocsai et al., 2010). As a proinflammatory molecule, SYK has received increasing attention in some diseases. Liang et al. demonstrated that SYK was a crucial biomarker and closely related to the occurrence of coronary heart disease (CHD) as an proinflammatory factor (Liang et al., 2019). Researches on the specific role of SYK in CAVD is helpful to better understand the role of inflammatory response and immune cells infiltration in patients with CAVD.
SHC1, a member of SHC family of adaptor proteins, and the role of SHC1 in reactive oxygen species (ROS) production is known to be related to development of atherosclerosis (Tomilov et al., 2010; Miao et al., 2015). Recent evidence suggests that ROS also plays an important role in the pathophysiology of CAVD by inducing the differentiation of valvular stromal cells into myofibroblasts and osteoblasts (Liu et al., 2019).
In this meta-analysis, CIBERSORT algorithm was firstly performed to evaluate the profile of immune cells infiltration in aortic valve tissues from patients with CAVD. We found reduced infiltration of macrophages M2 and NK cells activated, as well as increased infiltration of neutrophils, T cells CD4 memory activated and macrophages M0. Imbalance of M1 and M2 polarization in macrophages is known to be critical in regulating the intensity of inflammatory responses. Our results are identical to previous studies, showing that calcified aortic valves have fewer macrophages M2 compared with aortic valves from normal individuals (Zhou et al., 2020b). In addition, our study has also shown that the macrophages M0 population were significantly elevated in CAVD. Neutrophils and C-reactive protein (CRP) are indirect blood markers that roughly reflect the level of inflammation, which were elevated in calcified aortic valves (Song et al., 2019). Moreover, T cells CD4 memory activated and Tregs was also significantly elevated in patients with CAVD. These results are consistent with previous studies suggesting that calcified aortic stenosis is characterized by chronic inflammation with infiltration of immune cells (Steiner et al., 2012). We also studied the correlation between key DEIRGs and infiltrating immune cells, and found that PTPN1, GRB2, PTPN6, SYK and SHC1 may play a key role in CAVD by modulating immune cells infiltration.
There are several limitations of the present meta-analysis that should be mentioned. Given the age-dependent and gender-dependent clinical features of CAVD, all of the aortic valve samples included in this meta-analysis were derived from elderly male individuals. More aortic valve samples from patients of different regions and ages are needed to investigate the changes in gene expression profile of patients with CAVD. Although 25 aortic valve samples from patients with CAVD and 23 aortic valve samples from normal individuals were included for analysis, it might still be insufficient to identify the key DEGs in CAVD. In addition, the paucity of confirmatory experiments is another significant limitation. It is difficult to obtain aortic valve tissue samples in clinic, especially the aortic valve tissue samples in the control group from normal individuals. We are now trying to overcome the current difficulties in obtaining aortic valve tissue samples. In the near future, we will conduct Next Generation Sequencing (NGS) in the collected aortic valve tissue samples and further study the molecular mechanisms of the occurrence and development of CAVD.
CONCLUSION
Above all, we found that PTPN11, GRB2, SYK, PTPN6 and SHC1 are key immune related biomarkers of CAVD. Reduced infiltration of macrophages M2 and NK cells activated, as well as increased infiltration of neutrophils, T cells CD4 memory activated and macrophages M0 were found in aortic valve samples from patients with CAVD. Moreover, regulation of PTPN11, GRB2, SYK, PTPN6 and SHC1 on immune cells infiltration may play an important role in the occurrence and development of CAVD. Further researches on roles of PTPN11, GRB2, SYK, PTPN6, SHC1 and immune cells infiltration in CAVD are needed whether it might be a new molecular targeted therapy for patients with CAVD.
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Objectives: Bladder cancer (BLCA) is the most common malignant tumor in the urinary system, while the prognosis of muscle-invasive bladder cancer (MIBC) is poor. Cuproptosis might be a promising therapeutic approach to trigger tumor cell death. This study aimed to figure out the role of cuproptosis in BLCA and constructed a new cuproptosis scoring system to guide clinical diagnosis and individualize treatments.
Methods: Consensus clustering was used to classify 490 patients with BLCA from TCGA and GEO cohorts. Survival outcomes and functional enrichment analyses were performed between the different subtypes. The cuproptosis scoring system was constructed by LASSO-Cox analysis. ESTIMATE, CIBERSORT, and ssGSEA were used to investigate the tumor microenvironment (TME). Drug sensitivity was evaluated with pRRophetic. An immunotherapy cohort was used to investigate the treatment response. The cuproptosis scoring system was verified in our own cohort with quantitative real-time PCR.
Results: An overview of 12 cuproptosis genes (CuGs) in the TCGA database was depicted. Based on the mRNA expression profiles of CuGs, patients were classified into two cuproptosis molecular patterns. Based on the differential genes between the two cuproptosis patterns, the patients were classified into two cuproptosis gene clusters. There were distinct survival outcomes, signaling pathways, and TME between the two subtypes. A 7-gene cuproptosis scoring system was constructed. Patients with high cuproptosis scores showed worse OS and more immunosuppressing TME than those with low cuproptosis scores. The two cuproptosis score groups had distinct mutation profiles. Patients with high cuproptosis scores tended to be sensitive to chemotherapy drugs, but insensitive to immune checkpoint inhibitors (ICIs) treatment.
Conclusion: This study depicted the landscape of cuproptosis in BLCA. We constructed a cuproptosis scoring system to predict the prognosis of BLCA patients. There were significant differences in survival outcomes, TME, mutation profiles, and drug sensitivities in high and low cuproptosis score patients. The cuproptosis scoring system could help oncologists comprehensively understand the tumor characteristic of BLCA and make individualized treatment strategies.
Keywords: bladder cancer, cuproptosis, prognosis, tumor microenvironment, risk score
INTRODUCTION
Bladder cancer (BLCA) is the most common malignant tumor in the urinary system, with 573,278 new cases and 212,536 new deaths in 2020 worldwide (Sung et al., 2021). According to the statistics, there will be about 81,180 estimated new cases and 17,100 estimated deaths of both sexes in the United States in 2022 (Siegel et al., 2022). For over 4 decades, adjuvant cisplatin-based combination chemotherapy after radical surgery (RC) remains the primary curative treatment choice for muscle-invasive bladder cancer (MIBC) (Witjes et al., 2021), however, the 5-year survival of regional and distant metastatic BLCA is only 28–39% and 5–6% respectively (Siegel et al., 2022). Based on the results of some clinical trials, immune checkpoint inhibitors (ICIs) were investigated in advanced bladder cancer. Currently, 5 ICIs (atezolizumab, pembrolizumab, nivolumab, durvalumab, and avelumab) are approved by the US Food and Drug Administration (FDA) for the treatment of patients with advanced BLCA (Lobo et al., 2017). In addition, understanding of molecular profiling of BLCA helped to develop targeted therapies, such as fibroblast growth factor receptor (FGFR) inhibitors. Erdafitinib, a pan-FGFR inhibitor, is the most extensively studied and is currently the only FDA-approved FGFR inhibitor to treat advanced BLCA (Patel et al., 2020). However, only a small portion of patients can benefit from immunotherapy and targeted therapy. Existing prognostic predictive markers like Tumor-Node-Metastasis (TNM) stage and biomarkers like programmed cell death-Ligand 1 (PD-L1) expression level did not perform as well as expected (Powles et al., 2018). So, it is urgent to find out a new predictive system to guide clinical diagnosis and individualize treatments.
Copper is an essential cofactor for all organisms, but it becomes toxic if concentrations exceed a threshold. Tsvetkov et al. found that copper binds to lipoylated components of the tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and ultimately leading to a novel form of cell death termed cuproptosis (Tsvetkov et al., 2022). The researchers performed a whole-genome CRISPR–Cas9 screen and identified several key genes involved in copper-induced cell death, including the ferredoxin1 (FDX1), lipoyl synthase (LIAS), lipolytransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), dihydrolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), pyruvate dehydrogenase E1 subunit beta (PDHB), ATPase copper transporting alpha (ATP7A), ATPase copper transporting beta (ATP7B), solute carrier family 31 member 1 (SLC31A1), and dihydrolipoamide branched chain transacylase E2 (DBT). The researcher observed that cells undergoing mitochondrial respiration are particularly sensitive to copper ionophores. Furthermore, FDX1 and lipoylated proteins are highly correlated across a diversity of human tumors, suggesting that cuproptosis could play an important role in tumors with such a metabolic profile and induction of cuproptosis might be a promising therapeutic approach to trigger tumor cell death. However, the expression profile of the little-known cuproptosis-related genes in tumors and their association with patients’ prognosis remains unknown. The tumor characteristics, tumor microenvironment (TME), and drug sensitivity of patients with different cuproptosis genes (CuGs) expression levels are still elusive.
In the present study, we depicted an overview of the CuGs in BLCA patients in the TCGA database. Then cuproptosis molecular patterns and cuproptosis gene clusters with distinct survival and TME features were identified. We further constructed a cuproptosis risk score system to predict survival for each BLCA patient and evaluated the tumor characteristics, TME features, and drug sensitivity of the patient with different cuproptosis scores. The scoring system may give oncologists guidance for prognosis prediction and clinical treatments.
METHODS
Datasets
The RNA-seq and clinicopathological data were downloaded from The Cancer Genome Atlas database (TCGA, https://portal.gdc.cancer.gov) up to 20 April 2022, and the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo). The external validation cohort to evaluate the response of ICI was from the IMvigor210 study, a cohort of platinum-treated locally advanced or metastatic urothelial carcinoma (mUC) patients receiving anti-PD-L1 immunotherapy. The gene expression profiles were normalized using the “limma” R package. After excluding those without complete clinical data, a total of 490 patients in the TCGA and GEO cohorts and 298 patients in the IMvigor210 cohort were included in this study. The clinicopathological characteristics of the samples were provided in Supplementary Data S1. CNV and somatic mutation data were obtained from the TCGA database.
Differential analysis
The differentially expressed genes (DEGs) between tumor tissues and para-carcinoma tissues or between two cuproptosis patterns was identified by using the “limma” R package with a false discovery rate (FDR) < 0.05 in the cohorts and |logFC| > 1.
Consensus clustering analysis
Consensus clustering was applied to identify distinct cuproptosis-related molecular patterns based on the expression of cuproptosis genes and cuproptosis-related gene clusters based on differential genes between the two cuproptosis patterns. The number of unsupervised clusters, and their stability, were determined by the consensus clustering algorithm using the “ConsensuClusterPlus” package (Wilkerson and Hayes, 2010). PCA was applied to verify the subtype assignments.
Function analysis
Gene set variation analysis (GSVA) was performed in heatmap by using “GSVA” R package. “c2.cp.kegg.v7.4.symbols” was chosen as reference. An adjusted p < 0.05 was considered to be significantly enriched. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the “clusterProfiler” R package.
Cuproptosis score model
LASSO algorithm was applied to construct cuproptosis score models with the “glmnet” R package. Risk scores of the patients were calculated according to the normalized expression level of each gene and its corresponding regression coefficient. Then the patients were divided into the high-risk group and low-risk group based on the median values of the risk score. The receiver operating characteristic (ROC) curve was used to evaluate the predictive power of our models using the “survival”, “survminer”, and “timeROC” R packages. “Survival” package was used to perform the univariate and multivariate Cox regression analyses. Based on the risk score and different clinical features (gender, age, T stage), a nomogram model was established to predict the 1-,3-, and 5-years survival for the patients using the “rms” and “survival” packages (Fu and Song, 2021).
Estimation of the tumor microenvironment
Single sample gene set enrichment analysis (ssGSEA) was used to evaluate the infiltrated levels of 16 immune cell subtypes between the two groups with “gsva” R package (Yoshihara et al., 2013). Immune checkpoints were extracted from previous studies and their expressions between the two groups were compared by Wilcoxon test (Morad et al., 2021). The CIBERSORT algorithm (https://cibersort.stanford.edu/) was used to estimate the correlation of the relative abundances of distinct immune cell types and risk scores based on gene expression in tumor tissues (Gentles et al., 2015).
Estimate
Stromal and immune scores of each sample were generated by ESTIMATE algorithm (Yoshihara et al., 2013). The ESTIMATE score was calculated based on the stromal and immune scores, which was negatively correlated with tumor purity.
Molecular classifier, tumor neoantigen burden, microsatellite instability score, and tumor mutation burden
Molecular subtypes and TNB data of the TCGA dataset were extracted from supplementary data of a previous study (Robertson et al., 2017). MSI score was obtained from the TCGA database. TMB of the TCGA dataset was obtained from UCSC Xena (http://xena.ucsc.edu/) and calculated by (total count of variants)/(the whole lengths of exons).
Drug sensitivity evaluation
The sensitivity (relative IC50) of each patient to chemotherapy drugs was estimated by the “pRRophetic” R package based on Cancer Genome Project (CGP) data (Geeleher et al., 2014). The response of each patient to ICI was evaluated in the IMVigor210 cohort.
RNA extraction and quantitative real-time PCR
Total RNA was extracted from patients’ tumor samples using TRIzol (ThermoFisher, 15596026), then reversely transcribed to cDNA by using PrimeScript RT Reagent Kit (TaKaRa, RR014A). Quantitative real-time PCR (qPCR) was performed using Universal Blue SYBR Green qPCR Master Mix (Servicebio, G3326-15). The 2-△CT method was used for data analyses. Primers for qRT-PCR were synthesized by Biosune (Shanghai) and were shown in Supplementary Table S1.
Statistical analysis
Statistical analysis was conducted using R (version 4.0.3). Comparisons between two groups were performed using Wilcoxon rank-sum test. Kaplan- Meier curves were used for OS analysis by log-rank test. Correlation coefficients were computed by Spearman’s distance correlation analyses. All statistical p values were two-sided and p < 0.05 was considered statistically significant.
Patients and specimens
A total of ten pairs of normal and bladder cancer tumor samples and 20 tumor tissues were collected from patients in Xinhua hospital affiliated to Shanghai Jiao Tong university school of medicine. The detailed clinicopathological characteristics of the patients were in Supplementary Data S2.
RESULTS
An overview of cuproptosis genes in the TCGA database
The diagram of this study was shown in Figure 1A. For clustering and developing a scoring system, BLCA patients from the TCGA cohort and the GEO cohort (GSE31684) were enrolled. Detailed clinical data could be found in Supplementary Data S1. 12 cuproptosis-related genes (CuGs) were chosen according to the previous studies (Tang et al., 2022). Figure 1B showed their distribution among normal and tumor samples in the TCGA cohort. DLST and ATP7A had a higher expression in normal tissues, while SLC31A1 had a higher expression in tumor tissues (Figure 1C). 42 of the 407 samples (about 10.32%) showed cuproptosis-related gene mutations. Of these, ATP7B showed the highest frequency of mutations. Most of the mutations were missense mutations (Figure 1D). The copy number variation (CNV) frequency of these CuGs and their locations on chromosomes were shown in Figure 1E. 4 of the CuGs (DLST, DLAT, PDHB, SLC31A1) were associated with overall survival (OS) by the univariate Cox regression analysis (p < 0.05) (Figure 1F). Figure 1G showed that the CuGs all had positive expression correlation. Except for LIPT1, all the CuGs were risk factors of OS in BLCA.
[image: Figure 1]FIGURE 1 | An Overview of Cuproptosis genes in the TCGA database. (A) The diagram of the study. (B) Heatmap of 12 CuGs expressions among normal and tumor samples in the TCGA cohort. (C) Differential CuGs among normal and tumor samples in the TCGA cohort. (D) The landscape of mutation profiles of the CuGs in 407 patients from the TCGA cohort. (E) The CNV frequency and location of the CuGs on chromosomes. (F) Forest plots showing the results of the univariate Cox regression analysis of CuGs that were correlated with OS. (G) Expression correlation network of the CuGs. Positive correlations were shown in red lines. Negative correlations were shown in blue lines. The risk factors were shown in purple circles, while the favorable factors were shown in green circles. *p < 0.05, **p < 0.01. Abbreviations: TCGA, The cancer genome atlas; CuGs, cuproptosis genes; CNV, copy number variation; OS, overall survival.
Cuproptosis molecular patterns with distinct survival and TME features in BLCA
Based on the mRNA expression profiles of 12 CuGs in TCGA and GSE31684, patients were classified into two molecular patterns (A: n = 162, B: n = 328) by unsupervised clustering analysis (Figure 2A, Supplementary Figure S1, Supplementary Data S3). Patients in cuproptosis pattern A had a significant better overall survival than those in pattern B (Figure 2B). Principal component analysis (PCA) enabled us to visualize that the patient in different molecular patterns could be distinguished well (Figure 2C). Different clinical features and expression of CuGs of the two patterns were shown in Figure 2D. Patients with longer survival time in pattern A had lower expression of CuGs, confirming that most CuGs were risk factors of OS in BLCA. The correlation between the molecular patterns and tumor immune microenvironment was also evaluated. ssGSEA analysis showed significant difference in immune cell infiltration between the two patterns. Natural killer cell (NK), monocytes, Type 17 T helper cell (Th17) showed higher infiltration in pattern A. However, immune-suppressing cells like immature dendritic cell (DC), regulatory T cell (Treg) and type 2 T helper cell (Th2) showed higher abundance in pattern B, which might contribute to the poor outcome of patients in pattern B (Figure 2E). To further explore the immune statuses, we compared the expression of the immune checkpoints between the two patterns. Surprisingly, all the immune checkpoints including CD274 (also named PD-L1), Programmed Cell Death Protein 1 Ligand 2 (PDCD1LG2, also named PD-L2), Programmed Cell Death Protein 1 (PDCD1, also named PD1), Cytotoxic T lymphocyte antigen-4 (CTLA4), T cell immunoglobulin and mucin domain-3 protein (Tim-3, also named HAVCR2), Lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and ITIM domain (TIGIT), CD28, Inducible T cell costimulatory (ICOS), B- and T-lymphocyte attenuator (BTLA), TNF receptor super-family member 18 (TNFRSF18, also named GITR), TNF receptor super-family member 4 (TNFRSF4, also named OX40), TNF receptor super-family member 9 (TNFRSF9, also named 4-1BB), CD40 ligand (CD40LG) showed higher expression in pattern B (Figure 2F).
[image: Figure 2]FIGURE 2 | Cuproptosis-related molecular patterns with distinct survival and TME features. (A) The consensus score matrix of all the samples by unsupervised clustering analysis based on the mRNA expression profiles of 12 CuGs. (B) Kaplan-Meier curves for the two cuproptosis molecular patterns. (C) PCA of the two cuproptosis molecular patterns: pattern A (blue) and pattern B (orange). (D) Heatmap showed the clinical features and expression of CuGs of the two patterns. (E) Boxplot showed different immune cell infiltration between the two patterns by ssGSEA analysis. (F) Boxplot showed different immune checkpoints expression between the two patterns. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: TME, tumor microenvironment; CuGs, cuproptosis genes; PCA, principal component analysis; ssGSEA, single sample gene set enrichment analysis.
Enrichment analysis of differential genes between cuproptosis-related molecular patterns
To further understand the biological behaviors between the two cuproptosis patterns, differential expression analysis was conducted. 10 down-regulated genes and 369 up-regulated genes were identified (|logFC| >1, fdr <0.05) (Figure 3A). Then the differential genes were sent to gene set variation analysis (GSVA) enrichment analysis (Figure 3B). Pattern A showed higher activities of lipid biosynthesis and metabolism, like arachidonic acid metabolism, linoleic acid metabolism, and steroid hormone biosynthesis. While pattern B showed higher activities on the TCA cycle, Lysine degradation, and cell cycle. Consistently, GO and KEGG analysis also showed enrichment in nuclear division and cell cycle, which might be a possible target for patients who had high expression of CuGs (Figures 3C,D).
[image: Figure 3]FIGURE 3 | Enrichment analysis of differential genes between cuproptosis-related molecular patterns. (A) Volcano plot showed the differential genes between cuproptosis-related molecular patterns. Up-regulated genes in pattern B were shown in red and down-regulated genes were shown in green. Genes of no significance were shown in black. (B) GSVA enrichment analysis of the differential genes. (C) GO enrichment analysis of BP, CC, and MF results ranked by gene ratio. (D) KEGG pathway analysis of the differential genes. Abbreviations: GSVA, gene set variation analysis; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes.
Prognostic and TME characteristics between two cuproptosis gene clusters in BLCA
Based on the differential genes between the two cuproptosis patterns, unsupervised clustering was performed, and the patients were newly classified into two gene clusters (A: n = 313 B: n = 177) (Figure 4A, Supplementary Figure S2, Supplementary Data S4). The heatmap visualized the expression of the differential genes between two gene clusters and two cuproptosis patterns (Figure 4B). PCA confirmed that the two gene clusters could be completely distinguished (Figure 4C). Patients in cluster A had significant longer overall survival time than those in cluster B (Figure 4D). Figure 4E exhibited the expression of CuGs between the two gene clusters. Most CuGs were expressed lower in cluster A. To further assess the TME difference between the two gene clusters, the expression of immune checkpoints was also analyzed. In cluster B, all the immune checkpoints showed higher expression, indicating a more immuno-suppressing TME (Figure 4F).
[image: Figure 4]FIGURE 4 | Prognostic and TME characteristics between two cuproptosis gene clusters in BLCA. (A) The consensus score matrix of all the samples by unsupervised clustering analysis based on the differential genes between the two cuproptosis patterns. (B) Heatmap depicted the clinical features and expression of differential genes between the two gene clusters. (C) PCA of the two gene clusters: cluster A (blue) and cluster B (orange). (D) Kaplan-Meier curves for the two gene clusters. (E,F) Boxplots showed different CuGs (E) and immune checkpoints (F) expression between the two gene clusters. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: TME, tumor microenvironment; BLCA, bladder cancer; PCA, principal component analysis; CuGs, cuproptosis genes.
Generation of the cuproptosis scoring system to predict survival of BLCA patients
To better apply these subtypes to clinical outcome prediction and treatments, we established a prognostic model to calculate a specific score for every patient. Univariate Cox regression and multi-variate cox regression analysis identified 7 differential genes associated with OS between the two cuproptosis patterns. Then the patients were randomly assigned to two groups, i.e., the training group (n = 245) and the validation group (n = 245) (Supplementary Data S5). LASSO Cox regression analysis was applied to establish the prognostic model using the expression profile of the 7 genes. The cuproptosis risk score was calculated by the following formula for each patient: 0.199 * expression level of PRMT5 + 0.147 * expression level of CNN3 + 0.143 * expression level of TM4SF1 + 0.099 * expression level of DSC3 + 0.082 * expression level of ALDH1A1 - 0.161 *expression level of CXCL11–0.065 * expression level of HMGCS2. Then the patients in the training group were divided into a high-risk group (n = 122) or a low-risk group (n = 123) according to the median cut-off value of the cuproptosis risk score. Figure 5A showed the interaction of cuproptosis score and the survival outcomes in the cuproptosis patterns and the gene clusters. Patients in cuproptosis pattern B and gene cluster B had higher cuproptosis scores (Figures 5B,C). In the high cuproptosis risk group, CuGs showed higher expression (Figure 5D). The Kaplan-Meier curve indicated that patients in the high-risk group had significantly worse overall survival (Figure 5E), which was consistent with the CuGs expression and the former molecular cluster and gene cluster results. The higher cuproptosis score was associated with the poor outcome (Figure 5F). The area under the curve (AUC) of the prognostic model was 0.728 at 1 year, 0.707 at 3 years, and 0.736 at 5 years, suggesting that the cuproptosis risk score had a reliable capacity for predicting the prognosis of BLCA patients (Figure 5G). In univariate Cox regression analyses, the cuproptosis score was significantly associated with OS (HR = 1.728, 95% CI = 1.506–1.982, p < 0.001) (Figure 5H). After adjusting for other confounding factors, the cuproptosis score was confirmed to be an independent predictor for OS in multivariate Cox regression analyses (adjusted HR = 1.681, 95% CI = 1.459–1.938, p < 0.001) (Figure 5I).
[image: Figure 5]FIGURE 5 | Generation of the cuproptosis scoring system to predict survival of BLCA patients. (A) Alluvial diagram of two cuproptosis patterns, two gene clusters, cuproptosis scores, and survival status. (B,C) Boxplot depicted the differences in cuproptosis scores between the cuproptosis patterns (B) and gene clusters (C). (D) Boxplot showed the different CuGs expression in the two risk groups. (E) Kaplan-Meier survival analysis for patients in high- and low-risk groups in the training cohort. (F) The distribution of the risk scores, OS statues, and the correlations between OS and risk scores. (G) ROC curve of the cuproptosis risk scoring system for prediction of OS in the training cohort. (H) Results of the univariate Cox regression analyses regarding OS in the training cohort. The risk score was significantly associated with the OS. (I) Results of the multivariate Cox regression analyses regarding OS in the training cohort. The risk score was an independent prognostic factor. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: CuG, cuproptosis genes; OS, overall survival; ROC, receiver operating characteristic.
Validation of the cuproptosis scoring system for BLCA
To validate the cuproptosis scoring system, the same strategy was applied in the validation cohort. The Kaplan-Meier curve also indicated a worse OS in the high-risk group (Figures 6A,B). The AUC at 1-, 3-, 5- years were 0.665, 0.607, and 0.585, suggesting the reliability of the model (Figure 6C). In univariate Cox regression analyses, the risk score was significantly associated with OS (HR = 1.268, 95% CI = 1.076–1.494, p = 0.005) (Figure 6D). The risk score was still proved to be an independent predictor for OS in multivariate Cox regression analyses (adjusted HR = 1.232, 95% CI = 1.040–1.458, p = 0.015) (Figure 6E). After combined with the other three indexes, a novel nomogram was constructed. For a specific bladder cancer patient in clinical practice, the 1-, 3-, and 5-years survival probability could be predicted based on his/her age, gender, tumor grade, and risk score (Figure 6F). As shown in Figure 6G, the nomogram-predicted OS was very close to the observed OS, suggesting the accuracy of the nomogram. AUC of the nomogram at 1-, 3-, 5- years was 0.756, 0.746, and 0.745 in all the patients, which was better than only using the T stage (AUC at 1-, 3-, 5- years was 0.653, 0.670, 0.672) (Supplementary Figure S3).
[image: Figure 6]FIGURE 6 | Validation of the cuproptosis scoring system for BLCA. (A) Kaplan-Meier survival analysis for patients in high- and low-risk groups in the validation cohort. (B)The distribution of the risk scores, OS statues, and the correlations between OS and risk scores. (C) ROC curve of the cuproptosis risk scoring system for prediction of OS in the validation cohort. (D) Results of the univariate Cox regression analyses regarding OS in the validation cohort. The risk score was significantly associated with the OS. (E) Results of the multivariate Cox regression analyses regarding OS in the validation cohort. The risk score was an independent prognostic factor. (F) Nomogram for the prediction of 1-,3-, 5-years survival probability in patients with BLCA. The red line showed the score of one patient as an example. (G) Calibration curves of nomograms in terms of the agreement between predicted and observed 1-, 3-, and 5- years OS. Abbreviations: OS, overall survival; ROC, receiver operating characteristic; BLCA, bladder cancer.
High cuproptosis score was associated with immunosuppressing TME in BLCA
We further probed into the TME and other tumor characteristics of the patients in high and low-risk groups to find out what caused the poor outcome of patients with high cuproptosis scores. Using CYBERSORT analysis, we found that cuproptosis score was positively correlated with eosinophils, neutrophils, and macrophage M2, while it was negatively correlated with plasma cells, activated CD4 memory T cells, and CD8 cells (Figures 7A–F). Furthermore, ESTIMATE was used to analyze the abundance of immune cells and stromal cells. Patients in the high cuproptosis score group had distinct higher stromal (p < 0.001) and immune scores (p < 0.05) than those in the low cuproptosis score group. The ESTIMATE score was significantly higher in the high-risk group (p < 0.001), which suggested a lower tumor purity in the high-risk group (Figure 7G). Immune checkpoints showed higher expression in the high-risk group (Figure 7H). MSI scores showed no difference between the two groups (Figure 7I). However, the high-risk group had lower neoantigen load (Figure 7J), and patients with high-risk scores had lower tumor mutation burden (Figure 7I). Taken together, the high-risk group had a more immunosuppressing TME.
[image: Figure 7]FIGURE 7 | High cuproptosis score is associated with immunosuppressing TME in BLCA. (A–F) Correlation of risk score with immune cell infiltration analyzed by CYBERSORT. (G) Violin plots showed the difference in stromal score, immune score, and ESTIMATE score in high- and low-risk groups. (H) Boxplots exhibited the expression of the immune checkpoint in high- and low-risk groups. (I,J) Violin plots showed the MSI score (I) and neoantigen load (J) in high- and low-risk groups. (K) Correlation of risk score with tumor mutation burden. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: TME, tumor microenvironment; BLCA, bladder cancer.
Different mutation profiles between cuproptosis risk groups
The waterfall plot showed the mutations of most-concerned genes in BLCA according to the previous research between the high-risk group and low-risk group (Figures 8A,B). Mutations of these genes are closely related to the tumor character and final outcome. In the low-risk group, KDM6A, ELF3, TP53, ERCC2, and FGFR3 showed higher mutation frequency, which was more like the luminal, luminal infiltrated, and luminal papillary subtypes according to the 2017 TCGA clustering, which had a relatively better outcome. While in the high-risk group, TP53 and RB1 showed higher mutation frequency, which was more similar to the basal squamous subtype, which had higher immune-checkpoints expression but poor immune response (Robertson et al., 2017). The risk score distribution of TCGA patients in five TCGA subtypes was shown in Figure 8C. The consistency of the cuproptosis risk groups with the TCGA subtypes proved the reliability of the cuproptosis scoring system.
[image: Figure 8]FIGURE 8 | Mutation difference between cuproptosis risk groups. (A,B) The waterfall plot showed the mutations of most-concerned genes in BLCA according to the previous research in the low-risk group (A) and high-risk group (B). The characteristic genes in each group were emphasized in red. (C) The alluvial diagram showed the relationship of cuproptosis risk groups and 2017 TCGA clustering. Abbreviations: BLCA, bladder cancer; TCGA, The cancer genome atlas.
The roles of the cuproptosis scoring system on response to chemotherapy, targeted therapy, and immunotherapy
To give guidance for clinical treatment, we next compared the differences in the estimated relative half maximal inhibitory concentration (IC50) levels of several commonly used targeted-therapy drugs and chemotherapy drugs using pRRophetic package. As shown in Figure 9A, among the tyrosine kinase inhibitors (TKIs), the low-risk group tended to be more sensitive to Axitinib and Gefitinib. Although patients in the high-risk group had poor survival, they tended to be more sensitive to the chemotherapy drugs that are frequently used in BLCA except for Methotrexate. Since former GO and KEGG analysis showed that TCA cycle and cell cycle might be possible targets for patients who had high expression of CuGs, other cell cycle targeted drugs and TCA cycle targeted drugs were also evaluated, and proved to be more sensitive in high-risk group (Figures 9A–I). Since the tumor immune microenvironment showed a distinct difference between the two risk groups, the response of ICI was also predicted using the IMvigor210 cohort, a cohort of platinum-treated locally advanced or metastatic urothelial carcinoma (mUC) patients receiving anti-PD-L1 immunotherapy. Using the same grouping strategy, the high-risk group patients in the IMvigor210 cohort showed a significantly higher proportion of non-response (Figure 9J). The Kaplan-Meier curve indicated that patients in the high-risk group had significantly worse overall survival, which was an external validation of the cuproptosis scoring system (Figure 9K). These data proved that the cuproptosis scoring system could successfully estimate drug sensitivity and guide clinical practice.
[image: Figure 9]FIGURE 9 | Drug sensitivity evaluation in cuproptosis risk groups. (A) An overview of roles of the cuproptosis scoring system on response to chemotherapy, targeted therapy, and immunotherapy. Drugs with lower IC50 in the low-risk group were shown in red. Drugs with lower IC50 in the high-risk group were shown in black. Except for ICI, the drug sensitivities were evaluated by the pRRophetic package. (B–I) Boxplots showed the drug sensitivities of chemotherapy drugs that are frequently used in BLCA treatment in high- and low-risk groups. (J) Boxplot showed the response of ICI evaluated in high- and low cuproptosis risk patients in the IMvigor210 cohort. (K) Kaplan-Meier curves for high and low cuproptosis risk group patients in IMvigor210 cohort. **p < 0.01. Abbreviations: IC50, half maximal inhibitory concentration; BLCA, bladder cancer; ICI, immune checkpoint inhibitor.
Detection of mRNA expression of the CuGs by qPCR
To further verify the results, we detected the mRNA relative expression of the differentially expressed CuGs in 10 pairs of normal and tumor tissues by qPCR. Consistently, the results showed that DLST and SLC31A1 were expressed differentially between normal tissues and tumor tissues (Figures 10A,B). While the expression of ATP7A did not show any difference (Figure 10C). We also detected the CuGs which were correlated with OS (p < 0.05 in univariate Cox regression) in another 20 tumor tissue from BLAC patients. As shown in Figures 10D–F, patients with an OS longer than 5 years had lower expression of DLST, SLC31A1, and PDHB compared with those who had an OS less than 5 years. Although the expression of DLAT did not show a significant difference, the trend can still be seen (Figure 10G). More samples may be required for further validation.
[image: Figure 10]FIGURE 10 | Verification of mRNA relative expression of the CuGs by qPCR (A–C) mRNA relative expression of DLST, SLC31A1, and ATP7A in 10 pairs of normal and tumor tissues of BLCA. (D–G) mRNA relative expression of DLST, SLC31A1, PDHB, and DLAT in 20 tumor tissues of BLCA. ns no significance, *p < 0.05, **p < 0.01. Abbreviations: CuGs, cuproptosis genes; qPCR, quantitative real-time PCR; BLCA, bladder cancer.
DISCUSSION
In this study, we revealed the expression profile, mutation frequency of the CuGs, and their correlation with OS in BLCA patients. Besides, we comprehensively analyzed the survival outcomes, signaling pathways, and TME features of different cuproptosis molecular patterns and cuproptosis gene clusters. Furthermore, the cuproptosis score system was established to assess the prognosis, tumor characteristics, TME feature, and drug sensitivity of every patient, which could help oncologists make more individualized treatment strategies.
In BLAC TCGA datasets, we could see DLST, encoding the essential component of the PDH complex, and ATP7A, encoding the important copper exporter showed a higher expression in normal tissues. While SLC31A1, which encodes the copper importer had a higher expression in tumor tissues. The results pointed out that copper is more likely to accumulate in tumor tissues and induce cuproptosis. However, except for LIPT1, all the CuGs were risk factors of OS in BLCA. Higher SLC31A1 was not correlated with better OS, which implied that the OS of patients could not be simply predicted depending on the expression of the single CuG. Further clusters are needed to predict the prognosis of patients more accurately.
Based on the mRNA expression profiles of 12 CuGs, we developed two cuproptosis molecular patterns for BLCA. Patients in cuproptosis pattern A had a significantly better overall survival than those in pattern B. There were significant differences in immune cell infiltration and immune statuses between the two patterns. Pattern B showed a more immunosuppressing TME. Function analysis of the differential genes between the cuproptosis molecular patterns revealed that pattern B showed higher activities on the TCA cycle and cell cycle, implying that inducing cuproptosis and targeting the cell cycle might be effective for these patients.
According to the DEGs between the two cuproptosis patterns, two gene clusters with unique prognostic and TME characteristics were constructed. Patients in cluster A who had lower CuGs expression observed a significant longer overall survival time than those in cluster B.
By using LASSO Cox regression, a cuproptosis scoring system was generated to calculate a specific cuproptosis score for every patient. Patients with high cuproptosis scores had higher CuGs expression and exhibited worse overall survival. ROCs proved its reliability for predicting the 1-, 3-, and 5-years survival rates of BLCA patients. After adjusting for other confounding factors, the cuproptosis score was confirmed to be an independent predictor for OS in BLCA patients. Since the cuproptosis score was correlated to the prognosis of BLCA, a nomogram was constructed combined with other clinicopathological characteristics to predict survival for every patient. ROCs showed that the prediction efficiency of the nomogram was better than using only traditional prediction markers, such as T stage or tumor grade.
TME has been increasingly accepted to play an integral and indispensable role in tumor anatomy and physiology. TME consists of stromal cells, immune cells, and the factors that they release around tumor cells (Cao et al., 2021). The relationship of cuproptosis with TME has not been studied yet. Our data revealed that a higher cuproptosis score was associated with immunosuppressing TME in BLCA, featured by higher infiltration levels of eosinophils, neutrophils, and M2, while lower infiltration levels of plasma cells, activated CD4 memory T cells, and CD8 cells. ESTIMATE algorithm showed that patients in the high cuproptosis score group had distinct higher stromal and immune scores than those in the low cuproptosis score group. Immune checkpoints also showed higher expression in the high cuproptosis score group. These indicated that CuGs could be correlated to the reconstruction of TME, hence influencing tumor growth and prognosis. Patients with high TMB and neoantigen burden tend to have better responses to immune therapies. Our data also revealed that patients with high cuproptosis scores had lower neoantigen load and TMB, which might be associated with their lower response to ICIs and worse overall survival.
An unbiased consensus clustering identified five MIBC molecular subtypes according to the mRNA expression profile based on the TCGA database. The molecular subgroup classes included luminal, luminal-infiltrated, basal-squamous, neuronal, and luminal-papillary, each having a distinct mutation profile and clinical outcomes (Robertson et al., 2017). So, we further probed into the mutation profile of patients with different cuproptosis scores to explore the relationship between the cuproptosis scoring system and TCGA molecular subtypes. Intriguingly, there were distinct mutation profiles in high and low cuproptosis score groups. In the low score group, the mutation profile was more similar to the luminal, luminal infiltrated, and luminal papillary subtypes, while in the high score group was more similar to the basal squamous subtype according to the 2017 TCGA clustering. To prove this, the risk score distribution of TCGA patients in five TCGA subtypes was applied according to the previous study. The results showed the consistency of the cuproptosis scoring system and the TCGA subtypes.
Since the TME was distinct, patients in different cuproptosis score groups might have different drug sensitivity. Despite the unfavorable survival outcome. Our data showed that patients with high cuproptosis scores tended to be more sensitive to the chemotherapy drugs that are frequently used in BLCA except for Methotrexate. Other cell cycle targeted drugs and TCA cycle targeted drugs could also be efficient in patients with high cuproptosis scores. A combination of these chemotherapy drugs and targeting cuproptosis might improve the prognosis of these patients. Response to ICIs was also evaluated. We found that patients with high cuproptosis scores showed significantly poorer response to ICIs treatments and worse overall survival. This indicated that the cuproptosis score could successfully predict drug sensitivity, thus helping oncologists make treatment decisions.
The prognostic values of the cuproptosis score have been validated in both internal and external datasets. The cuproptosis score system also worked in cohorts from our hospital. However, the current study still had some limitations. The prognosis prediction potency of the cuproptosis scoring system needed to be validated in a larger BLCA cohort in the real world. Although the drug sensitivities of frequently used chemotherapy drugs were evaluated, potential drugs such as cuproptosis targeted drugs and TCA cycle targeted drugs, which were not included in the pRRophetic package could not be assessed. The response of ICI was only evaluated in UC patients receiving PD-L1 immunotherapy. More validations in BLCA cohorts experiencing PD-1 immunotherapies are required.
CONCLUSION
Taken together, this study depicted the landscape of cuproptosis in BLCA. We identified two cuproptosis molecular patterns and two cuproptosis gene clusters, with distinct survival outcomes, signaling pathways, and TME. We constructed a cuproptosis scoring system to predict the prognosis of BLCA patients. There were significant differences in TME, mutation profile, and drug sensitivities in high and low cuproptosis score patients. The cuproptosis scoring system could help oncologists comprehensively understand the tumor characteristic of BLCA and make individualized treatment strategies.
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Cardiovascular diseases are the most common diseases threatening the health of the elderly, and the incidence and mortality rates associated with cardiovascular diseases remain high and are increasing gradually. Studies on the treatment and prevention of cardiovascular diseases are underway. Currently, several research groups are studying the role of exosomes and biomolecules incorporated by exosomes in the prevention, diagnosis, and treatment of clinical diseases, including cardiovascular diseases. Now, based on the results of published studies, this review discusses the characteristics, separation, extraction, and identification of exosomes, specifically the role of exosomal miRNAs in atherosclerosis, myocardial injury and infarction, heart failure, aortic dissection, myocardial fibrosis, ischemic reperfusion, atrial fibrillation, and other diseases. We believe that the observations noted in this article will aid in the prevention, diagnosis, and treatment of cardiovascular diseases.
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1 INTRODUCTION
Cardiovascular diseases affect the quality of life of the affected patients and are associated with a high mortality rate. Recently, many studies have reported that the incidence and mortality rate associated with cardiovascular diseases is increasing annually and that they are the most common diseases that affect adults, in particular, middle-aged adults. The annual mortality percentage due to cardiovascular diseases has reached 30–40% (Ragusa et al., 2015), which surpasses that caused by cancer, and is expected to increase in the next decade. Therefore, treatment of cardiovascular diseases has always been the focus of clinical research. Recent studies have revealed that exosomes contribute to the physiological and pathological mechanisms of cardiovascular diseases (Wang Y. et al., 2019; Mashouri et al., 2019) by transmitting signals between cells; in particular, the exosomal miRNAs regulated the expression of various signaling pathway members. We have reviewed the role of exosomes and exosomal miRNAs in cardiovascular diseases (Zheng et al., 2021), but there was lack of relevant reports at that time. Therefore, we have reviewed the progress in the research on the role of exosomal miRNAs in the pathogenesis, diagnosis, treatment, and other aspects of cardiovascular diseases in this article.
2 OVERVIEW OF EXOSOMES
Exosomes are a subpopulation of cell-secreted extracellular vesicles; the process begins with cell membrane invagination, and exosomes are then secreted by the cell after incorporating active factors such as proteins and nucleic acid fragments. The earliest exosomes were called small extracellular vesicles, which were found by Johnstone et al. (1987) while studying reticulocytes. In 1987, they were renamed as exosomes, and in 2018, the international scientific community uniformly defined the size of the exosomes to be about 30–100 nm. Exosomes are enclosed by a relatively stable lipid bilayer, and they appear as flat cup-shaped balls under the electron microscope (Edgar, 2016; Pathan et al., 2019; Tschuschke et al., 2020). The formation of exosomes (Figure 1) includes three steps: initially, the cytoplasmic membrane is found in the early inner body, which is again formed in the advanced inner body to the inner bud, and finally secreted out of the cells. This process relies on the endosomal sorting complex required for transport (ESCRT). Most types of cells, such as smooth muscle cells, stem cells, lymphocytes, platelets, and fat cells, secrete exosomes. Exosomes contain biomolecules such as nucleic acids (mRNA, miRNA, and DNA), lipids, and proteins (heat shock proteins such as HSP60, transmembrane 4 superfamily (TM4SF), and CD63) depending on the type and state of the cells secreting them. They are extensively distributed in various body fluids, such as blood, cerebrospinal fluid, and pleural effusion, and circulate in the body, participating in the exchange of cytochemical information (Wang X. et al., 2019). The biomolecular cargo in the exosomes changes under different pathological conditions, such as hypoxia and inflammation (Vizoso et al., 2017). The lipid bilayer membrane structure of the exosome is relatively stable, protecting itself and its labile cargo of proteins and RNAs from the body fluid. In summary, exosomes have a wide range of characteristics (Wang X et al., 2018) and play important roles in the exchange of cellular information (Wei et al., 2021). As they reflect the pathophysiological state of source cells, they may be used for the prevention, diagnosis, and even treatment of cardiovascular diseases.
[image: Figure 1]FIGURE 1 | Formation of exosomes. Initially, the cytoplasmic membrane is in the early inner body, which is again formed in the advanced inner body to the inner bud and finally secreted out of the cells.
3 SEPARATION AND EXTRACTION OF EXOSOMES
The settling factors in a solution vary with substances, which determine the centrifugal speed at which they can be precipitated. Differential centrifugation is commonly used for obtaining exosomes. Centrifugal speeds of 300 × g, 2,000 × g, and 10,000 × g are used to remove cells and debris, while apoptotic bodies and large vesicles are eventually obtained at 100,000 × g; combining this with a 0.22-μm or 0.45-μm aperture filter can increase purity, if necessary, and the pellet obtained can be resuspended in phosphate-buffered saline to obtain pure exosomes (Jeppesen et al., 2014; Momen-Heravi, 2017) (Figure 2). The advantage of this method is that highly pure preparations of lipoprotein particles and proteins can be obtained at a low cost; however, the method is time-consuming. In addition, the structure of the exosomes is destroyed by the centrifugal shear. Purification of exosomes requires appropriate sample viscosity, rotor, and rotation radius (O'Brien et al., 2018). Therefore, density gradient centrifugation is now used for purifying exosomes. The density gradient is gradually increased from the top to the bottom of the centrifuge tube using a common medium such as iodixanol. The specific operation is divided into the equivalent gradient centrifugal method and rate zone centrifugal method based on the density of particles in each of the density gradient zones and the settlement rate of different particles, respectively (Doyle and Wang, 2019).
[image: Figure 2]FIGURE 2 | Separation and extraction of exosomes. Centrifugal speeds of 300 × g, 2,000 × g, and 10,000 × g are used to remove cells and debris, while apoptotic bodies and large vesicles are eventually obtained at 100,000 × g.
Polymers such as polyethylene glycol are used to form a mesh structure in the solution, which increases the binding force of the hydrophobic protein and lipid molecules and disengages them from the solution. As lectins of exosomal glycoproteins combine with sugar chains, the dispersibility and solubility of the exosomes may change, and they can be obtained via centrifugation at low speed (Ramirez et al., 2018; Wang et al., 2021). This method is simple and time-saving, and the exosomes are less damaged. However, the purity of the exosomes is low; in particular, when the exosomal fluid component is complex, the proteins present in the liquid, such as fibrinogen, and lipoprotein particles, and part of the bubble precipitate together, rendering separation challenging, which may affect the results of the study (Helwa et al., 2017). Therefore, samples are pretreated with protease K to increase the purity of exosomes (Moon et al., 2019). Nonetheless, this method is not preferred for extracting exosomes.
Ultracentrifugation and pressure ultrafiltration are time-saving and efficient methods for extracting exosomes (Figure 3). The principle is based on the size of the exosomes, and the sample is separated using a special aperture filter, which removes molecules such as proteins, while retaining the exosomes (Li et al., 2017). Low purity of the exosomes obtained is also the disadvantage of this method because substances with a diameter similar to that of the exosomes are also intercepted at the same time; in addition, the ultrafiltration efficiency may be affected if the ultrafiltration membrane is blocked or cracked (Ding et al., 2021). Therefore, the non-symmetric flow field separation method is used, in which the force field is applied in different directions, and the filtrate, flowing at different speeds, is formed at an angle with the filter membrane during the flow. This considerably reduces the chances of filter membrane blockage. In addition, a combination of different detection methods can achieve sub-selected sorting of different vesicles (Zhang and Lyden, 2019; Lin et al., 2020; Yang et al., 2020). However, improvements in the amount of time required for the procedure and yield are still required.
[image: Figure 3]FIGURE 3 | Ultrafiltration. The principle is based on the size of the exosomes, and the sample is separated using a special aperture filter, which removes molecules such as proteins, while retaining the exosomes.
Exosomes possess a special membrane protein, which can be used to extract exosomes using an immune-affinity membrane (Li et al., 2017). This method works on the principle of antigen–antibody recognition, in which the specific antigen is attached to the membrane via magnetic beads. However, this method is expensive and low-yielding and has hence not been used widely. Exosomes can be extracted using various other methods, such as chromatography, molecular sieve analysis, and the emerging microfluidic technique, each of which has its own characteristics, advantages, and disadvantages. In the clinic, we always use a combination of multiple methods to improve the efficiency and purity of the exosomes.
4 IDENTIFICATION OF EXOSOMES
After extraction, the exosomes have to be identified for downstream experiments. The identification methods vary depending on the physical and chemical properties of the exosomes (including size, morphology, concentration, and protein markers present).
We have mentioned that exosomes are cup-shaped and 30–100 nm in diameter. This feature can be used in nanoparticle tracking analysis, dynamic light scattering, and adjustable resistance pulse sensing. The exosomes in the sample move according to the principle of particle Brownian movement, as well as their size and of the surrounding medium on the exosomes (Tang et al., 2021). The advantage of this method is that it is time-saving, although the specificity is poor. Thus, proteins and exosomes of similar sizes cannot be distinguished. A transmission electron microscope or scanning electron microscope can also be used to identify the “cup” structure of the exosomes (Jung and Mun, 2018).
The most common method involves identification of specific protein markers harbored by exosomes using nano-fluorescent activated cell sorting (FACS) and Western blotting. In nano-FACS, because of fluorescent antigen–antibody reactions, exosome vesicles linked to beads can be sorted using flow cytometry. Previously, we have mentioned that exosomes harbor HSP60, TM4SF, CD63, CD9, CD81, and other specific protein markers. Thus, they can be identified by detecting the expression of specific proteins using Western blotting (Huang L. H et al., 2021). The disadvantage of this method is that it is time-consuming; however, impurities in the preparation can be avoided, and the exosomes can be identified accurately. At the same time, the concentration of the exosomes can be determined.
5 FUNCTION AND APPLICATION OF EXOSOMES
As mentioned previously, exosomes are formed as a result of cytoplasmic invagination and efflux. Previously, scientists believed that exosomes cleared cellular debris such as biomolecules that are not required by the cells. Currently, exosomes are known to regulate apoptosis and participate in immune response via the nuclear factor kappa-B (NF-κB) signaling pathway (Lindenbergh et al., 2018; Lu et al., 2018; Aghabozorgi et al., 2019; Lindenbergh et al., 2019; Li and Wang, 2021; Lindenbergh et al., 2020).
Exosomes can also mediate pathological processes, which is why they are being actively researched. Exosomes contribute to the pathogenesis of many diseases. Currently, their role in cancer is being extensively studied. Tumor-derived exosomes carry information such as nucleic acids and proteins and play important roles in the development and metastasis of tumors (Ruivo et al., 2017; Kogure et al., 2020). Exosomes were used clinically based on their functions and characteristics. First, exosomes can protect their cargo (miRNAs and proteins) (Kumar et al., 2020) because of their phospholipid bilayer structure. At the same time, they are widely distributed in the body and have long half-lives (Nam et al., 2020). In addition, exosomes are small; hence, they have strong penetration power (Szabo and Momen-Heravi, 2017) and can freely shuttle between cells and evade phagocytic effects (Figure 4). Second, the specific protein markers incorporated by the exosomes play an important role in the diagnosis of diseases. For example, Taylor and Gercel-Taylor (2008) first proposed that exosomal miRNA-21 can act as a marker of ovarian cancer and even determine the progress of the disease. The therapeutic effects of exosomes vary with their type and concentration (Beltrami et al., 2017; Chuppa et al., 2018; Powers et al., 2020).
[image: Figure 4]FIGURE 4 | Pathway and mechanism of exosomal miRNAs. In ECs, miRNA genes are transcribed into primary miRNAs (pri-miRNAs) initially and then form precursor miRNAs (pre-miRNAs) processed by the Drosha complex. Because of the exportin5 complex, the pre-miRNAs are exported into the cytoplasm. Finally, through the digestion of the Dicer complex, the pre-miRNAs become mature. Mature miRNAs are sorted into exosomes depending on the nSMase2-dependent pathway, the hnRNP pathway, etc.
As exosomes can regulate apoptosis, they can be used for therapy. The biomolecules (nucleic acid information and proteins) incorporated by the exosomes can be suppressed or promoted for treating diseases. For example, Rong et al. (2016) have shown that the inhibition of T lymphocyte proliferation can be reduced by suppressing the expression of exosomal TGF-β, thereby inhibiting tumor metastasis. In summary, the application prospects of exosomes are broad, and the application of miRNAs in cardiovascular diseases has been discussed subsequently.
6 ROLE OF EXOSOMAL MIRNAS IN CARDIOVASCULAR DISEASES
Since their discovery, various signaling molecules have been found in exosomes. In particular, exosomal miRNAs transmit information between cardiac cells via endocytosis and fusion. The exosomal miRNAs participate in transcriptional regulation and affect the occurrence and development of various diseases, especially cardiovascular diseases (Figure 5). The high incidence and mortality associated with cardiovascular diseases have boosted research on their treatment and prognosis. Many studies have reported the involvement of exosomal miRNAs in cardiovascular diseases (Table 1), such as atherosclerosis and heart failure.
[image: Figure 5]FIGURE 5 | Exosomal miRNAs which are related to cardiovascular diseases. There are various miRNAs in the exosomes, and they depend on the special pathway to affect the diseases.
TABLE 1 | Exosomal miRNAs related to cardiovascular diseases.
[image: Table 1]6.1 Role of exosomal miRNAs in atherosclerosis
Atherosclerosis is the most common and important cardiovascular disease. It is a chronic progressive inflammatory reaction with no symptoms in the early stage. With deterioration of symptoms, lipids are deposited inside the blood vessels and the vascular wall stiffens, which reduces vascular compliance, resulting in vascular wall damage (Heo and Kang, 2022). Recent studies have shown that exosomes participate in vascular calcification by enabling information exchange between cells and play an important role in vascular atherosclerosis (Zhang and Huang, 2021). In particular, the miRNAs present in exosomes are one of the main agents that regulate atherosclerosis. The main pathological process of vascular calcification involves an increase in the expression of osteogenesis-related genes (Yang et al., 2019). According to a report, miR-146a in macrophages can promote the calcification of vascular smooth muscles by inducing oxidative stress, promoting the wrap of macrophages up the vascular wall and reducing cell migration (Nguyen et al., 2018; Zhang YG. et al., 2019). The exosomes produced by bone marrow mesenchymal stem cells transfected with miR-146a lowered the expression of the gene encoding thioredoxin-interacting protein, thereby partially inhibiting calcification (Wang Y. et al., 2018). Another study showed that the exosomes harboring miR-223 were released by platelets (Lazar et al., 2021). After entering smooth muscle cells, the exosomes regulated the proliferation and migration of cells, affecting the progress of endothelial inflammation and atherosclerosis. The use of indophenol can reduce the expression of miR-223, limiting the development of atherosclerosis (Shi et al., 2020).
In addition, several reports show that exosomes influence the expression of anti-inflammatory and proinflammatory factors via the NF-κB pathway, which can affect atherosclerosis. Lu et al. (2019) found that exosomes transmit inflammatory cytokines and miRNAs to the receptor cells and activate the NF-κB pathway, which can cause endothelial inflammation and atherosclerosis. Shi et al. (2019) found that exosomes containing serum HSP27 and NF-κB were activated by the receptor, promoting the release of IL-10, thereby inhibiting atherosclerosis. Gao et al. (2016) found that the exosomes from bone marrow dendritic cells increased endothelial inflammation by mediating tumor necrosis factor (TNF-α) release via the NF-κB pathway. Exosomes harboring miR-16 and miR-21 can inhibit the NF-κB pathway, thereby inhibiting the endothelial inflammatory reaction induced by TNF-α, which can retard the progress of atherosclerosis (Li et al., 2019). Therefore, exosomal miR-146a and miR-223 may be the molecular targets for treatment of atherosclerosis, and regulation of the NF-κB pathway may be potentially used for retarding atherosclerosis.
6.2 Role of exosomal miRNAs in myocardial injury and infarction
As atherosclerosis aggravates, the coronary artery narrows, and the coronary blood flow is suddenly interrupted. As a result, the downstream blood flow is blocked and the myocardial supply and demand balance is disrupted. The inflammatory substances from the atherosclerotic plaque destroy the integrity of fiber caps. Blocking causes myocardial damage, which in turn induces cardiomyocyte apoptosis. Myocardial infarction is one of the main causes of heart remodeling and failure and is associated with high incidence and death rates (Lazar et al., 2018). Coronary angioplasty can repair the damaged myocardium after myocardial infarction to only a certain extent. Recently, many reports have shown that exosomal miRNAs can regulate the damage and apoptosis of cardiomyocytes, participating in the process of myocardial infarction and finally promoting intercellular communication between cells (Cheng et al., 2020). Thus, they play important roles in the pathophysiology of myocardial infarction and affect the diagnosis and treatment of the disease.
During acute myocardial infarction, the cardiomyocyte-derived exosomes are in an oxygen-deficient state and contain miRNAs, such as miR-17 and miR-324. Li et al. (2019) found that miR-17 can activate the PI3K/Akt and TIMP1/2→MMP9 pathways. This reduces the lesion area of myocardial infarction and enhances the cardiac response to a certain extent. At the same time, they can affect metalloprotease expression, induce the formation of capillaries, and enhance repair and tolerance to hypoxia (Hu et al., 2019; Pan et al., 2019; Sun et al., 2019). Han et al. (2020) found that miR-324 induced apoptosis and inhibited cell proliferation by regulating the expression of caspase-3 and p-P38-MAPK. In addition, by regulating the TNF-α and NF-κB signaling pathways and the protein levels of TNF-α, miR-324 can alleviate the damage caused by cardiomyocyte hypoxia (Huang S et al., 2021). Furthermore, some exosomes can improve cardiac function after cardiomyocyte infarction, while some may also increase myocardial injury after myocardial infarction (Mao et al., 2019). In mouse models of myocardial infarction, Wang et al. (2017) observed that the exosomal miR-155 derived from macrophages was significantly upregulated. The exosomal form of this miRNA inhibits fibroblast proliferation and promotes cardiac inflammatory response during myocardial infarction. In experiments where exosomal miR-155 was inhibited or knocked out, the progression of myocardial infarction was studied more deeply.
Studies have shown that exosomal miRNAs are highly related to the progression of myocardial infarction. The number of molecules incorporated by the exosomes released by cardiomyocytes varies with the changes in cell culture conditions. Currently, troponin is the commonly used index of cardiomyocyte damage; however, for acute patients, the troponin level peaks 12 h after the attack (Youn et al., 2019). In contrast, some highly specific miRNAs, such as miR-1, miR-208a, and miR-192, appear rapidly in the blood after the attack (Li et al., 2018). In particular, the expression of miR-1 decreases after myocardial infarction, while the area of myocardial infarction increases. At the same time, the level of miR-1 in the patient’s serum decreases significantly (Wang S. et al., 2019). Moreover, the levels of miR-208a change significantly 4 h after acute myocardial infarction (Vanni et al., 2017). Therefore, considering the specific expression of the exosomes after myocardial infarction, as well as their ability to repair the damaged myocardium after myocardial infarction, the prospects of using exosomes in the diagnosis, treatment, and prognosis of myocardial infarction appear promising.
6.3 Role of exosomal miRNAs in heart failure
Heart failure is a complex which is the final outcome of cardiovascular diseases, and the incidence and death rate associated with which are higher in the elderly. Despite the current treatment regimen, the 5-year survival rate is still less than 50% (Snipelisky et al., 2019). Hence, the treatment of heart failure is a global public health issue. Ventricular remodeling, which includes cardiomyocyte hypertrophy, interstitial fibrosis, and activation of the renin–angiotensin system, is the basic pathological manifestation of heart failure. The compensation performance of cardiac hypertrophy leads to cardiac blood filling and discharge. Clinical symptoms may be absent or may manifest as asthma, edema, and other obvious dysfunctions in severe cases. Several studies have shown that exosomes play an important part in the diagnosis and treatment of heart failure, especially in those without any symptoms (Xue et al., 2020). At the same time, miRNAs in the exosomes can affect the pathological process to mediate ventricular remodeling. In particular, miRNAs can modulate cell proliferation and participate in cardiomyocyte stress. In addition, they can change the local microenvironment and promote vascular regeneration and reformation of damaged myocardial tissue. Hence, exosomes and miRNAs may affect the treatment of heart failure.
Exosomes secrete many types of miRNAs, among which, miR-21 has been studied in cases of heart failure. Activation of the renin–angiotensin system is one of the mechanisms of heart failure. Angiotensin IIS is significantly upregulated, which can lead to heart failure. Changes in the level of miR-21 can inhibit myocardial hypertrophy and simultaneously delay the myocardial hypertrophy caused by angiotensin II (Cheng et al., 2022). Qiao et al. (2019) compared the matrix cells of healthy cardiac tissue with those from the cardiac tissue of patients with heart failure and found that the level of miR-21 in the healthy cardiac tissue was higher than that in the diseased tissue. miR-21 regulates the procedural cell deaths caused by apoptosis in cardiomyocytes. Further studies have confirmed that miR-21 can promote angiogenesis and cardiomyocyte survival by inhibiting the activity of phosphatase tension protein (PTEN) and enhancing the activity of the protein kinase B (PKB) in vivo (Zhu et al., 2019). Therefore, it was believed that an increase in the expression of miR-21 in patients with heart failure may indicate conduciveness to the treatment of patients with heart failure. However, we found that excessive exosomes may also promote cardiac hypertrophy (Nie et al., 2018). Therefore, the therapeutic effect of exosomes and miRNAs has to be extensively assessed via detailed experimental verification.
Methods of diagnosing heart failure are also constantly improving. Currently, the most popular biomarkers of heart failure include BNP and N-terminal proBNP (NT-proBNP), which have higher sensitivity (Rørth et al., 2020). However, the specificity of these markers is limited, and age, default state of an individual, and other diseases such as right ventricular lesions and myocardial infarction may affect interpretation based on these markers, as a result of which diagnosis of heart failure may be influenced or even delayed to some extent. Studies have shown differences in expression levels of exosomes and miRNAs in the plasma of patients with heart failure. For example, the miR-146a level increased, while miR-21, miR-425, and miR-744 levels decreased. In addition, the exosomal miRNAs in vascular endothelial fibroblasts are inhibited; hence, the expression levels of miRNAs in the circulatory system can reflect the condition of cardiac fibroblasts (Ma et al., 2018). Emanuel et al. (2016) have shown that the expression of miR-146a in the exosomes of patients with heart failure correlated well with the level of cardiac troponin I (cTn-I). Wu et al. (2018) have observed a correlation between the miR92b-5p level and cardiac atrioventricular size in echocardiography. This suggested that the level of miR92b-5p increased with a decrease in left ventricle function. Therefore, use of the combination of miRNAs and other diagnostic methods, such as echocardiography or laboratory tests, may be one of the directions in translational research on exosomes.
6.4 Role of exosomal miRNAs in aortic dissection
Aortic dissection is one of the most dangerous cardiovascular diseases. Its rapid onset, high mortality rate, and poor prognosis severely affect the quality of life of the patients. Currently, in addition to symptom-based diagnosis, diagnosis of aortic dissection relies on the inspection of the aorta computed tomography angiography, although it is time-consuming, expensive, and associated with risk of kidney damage. At the same time, because of fluctuation in blood pressure during transportation, the risk of aortic dissection or rupture increases. Therefore, a highly sensitive, specific, and time- and effort-saving diagnostic method is required.
Phenotypic transformation of vascular smooth muscle cells in the middle aortic layer and its role in the pathogenesis of aortic dissection are being investigated. In addition, how the miRNAs incorporated by exosomes affect the phenotypic transformation of vascular smooth muscle cells is being actively researched. At present, the expression of at least five miRNAs, including miR-155, has been found to be significantly reduced in patient serum. Hsa-miR-155–5p regulates the expression of target genes and those related to the smooth muscle cells via the NF-κB signaling pathway. In this way, it induces phenotypic transformation and changes cell morphology, proliferation, and migration (Choi et al., 2018). Hsa-miR-26a-5p regulates BMP/SMAD1 signaling to targeted genes via receptor activation factors and tissue growth factors (Aschacher et al., 2022). Another study found that the miR-320 series was also involved in the migration and proliferation of cells, which in turn affected the function of endothelial cells and smooth muscle cells in the aorta (Liao et al., 2018). In the presence of high shear stress, hsa-miR-320d promotes apoptosis of cells by inhibiting the proliferation and migration of smooth muscle cells and endothelial cells, thereby maintaining the tension of the blood vessel wall (Ji et al., 2019). The research found that the level of miR-146a-5p in the plasma of patients with aortic dissection was significantly higher than that in healthy blood vessels (Xue et al., 2019). Furthermore, miR-134–5p is a key regulator that controls the phenotypic conversion and migration of smooth muscle cells and simultaneously participates in the progression of aortic dissection (Wang ZF. et al., 2019). In addition, miR-223–3p derived from the platelets acts as an endocrine genetic signal that reduces the blood vessel density after it enters the endothelium and vascular smooth muscle cells (Wang H. et al., 2019; Aschacher et al., 2021). Studies have shown that TGFB2 is the target of miR-599 in smooth muscle cells, while SEMA and TWIST2 are the target genes of hsa-miR-182–5p in smooth muscle cells. They prevent intima formation by inhibiting proliferation and migration during aortic dissection, (Mimler et al., 2019; Wu et al., 2019). In addition, miR-145, which is mainly expressed in vascular smooth muscle cells, is one of the core factors regulating vascular phenotype conversion. Therefore, if exosomal miRNAs that are specifically expressed in the aortic dissection are identified, there will be a breakthrough in the diagnosis, treatment, and prevention of aortic dissection.
6.5 Role of exosomal miRNAs in myocardial fibrosis
Myocardial fibrosis involves alterations in normal tissue structure due to changes in myocardial collagen fiber dynamics, including excessive accumulation and increase in the concentration of the fiber, or changes in the fiber components. Normal cardiac fiber cells secrete the extracellular matrix that provides a stable stent structure for the heart. Myocardial cells undergo necrosis during myocardial infarction. The myocardial fibroblasts are activated to cardiac fibroblasts, which then increase fiber synthesis. Fiber synthesis results in the formation of scar tissue, which replaces the original myocardial cells. Studies have shown that the inflammatory factors activated by the death of cardiomyocytes are closely related to the necrosis of activated myocardial fibroblasts. Some exosomal miRNAs may be associated with the activity of inflammatory factors, and they may affect the activation and hyperplasia of myocardial fibroblasts (Hohn et al., 2021). Furthermore, some of the exosomal miRNAs can perform biological functions such as resistance to cardiac apoptosis and reduction in collagen production, thereby reducing myocardial fibrosis to some extent (Ferguson et al., 2018).
The level of miR-21 can affect the hypertrophic growth of cardiomyocytes. Possibly, the exosomes that contain miR-21 can reduce apoptosis of myocardial cells and endothelial cells to a certain extent, thereby reducing the activation of myocardial fibroblasts into cardiac fibroblasts. While some cardiomyocytes undergo necrosis, the exosomes expressing low levels of miR-21–5p are released, following which they relay information via the phosphatase and tensin homolog/threonine kinase 1 (PTEN/AKT) and phosphatase pathways to induce near-normal cardiomyocyte apoptosis. At the same time, cardiomyocytes are constantly activating and proliferating into cardiac fibroblasts (Frangogiannis, 2019). In addition, apoptosis of cardiomyocytes was reduced when exosomes rich in miR-21–5p were co-cultured with cardiomyocytes, and the activation and hyperplasia of myocardial fibroblasts also declined accordingly. At the same time, the content of caspase-3 in cardiomyocytes also decreased. A study found that miR-19a-3p present in exosomes derived from endothelial cells can activate the AKT and extracellular-signal-regulated kinase (ERK) pathway, which can significantly reduce myocardial fibrosis (Gollmann-Tepeköylü et al., 2020). A similar function has been observed for other exosomal miRNAs, such as miR-294, miR-24, and miR-125b-5p (Moghaddam et al., 2019). A recent study showed that scar formation and inhibition of fibrosis after injecting exosomes rich in miR-146a or miR-21 into a mouse model differed considerably from those in the control group. Therefore, the inhibitory and therapeutic effects of exosomes and miRNAs on myocardial fibrosis require more in-depth investigations.
6.6 Role of exosomal miRNAs in ischemia–reperfusion
Ischemia–reperfusion injury refers to the injury after reperfusion treatment using balloon, stent, and coronary artery bypass grafting. As a result of these procedures, certain events such as reperfusion arrhythmia, myocardial stunning, and microvascular dysfunction occur in the ischemic myocardium. These may further aggravate to myocardial injury. A large number of studies have shown that the miRNAs present in exosomes can play a positive protective role by regulating various processes, such as apoptosis, inflammation, autophagy, and oxidative stress, to reduce ischemia–reperfusion injury (Bei et al., 2017; Zhang M. et al., 2019).
The most fundamental way of improving ischemia–reperfusion injury is to reduce cardiomyocyte death and cardiac dysfunction. Hou Z. et al. (2019) found that in the hypoxia reoxygenation model, the expression of caspase-9 and protein JNK2 decreased significantly because of the upregulation of miR-342–5p. Release of lactate dehydrogenase was inhibited, which increased cell viability. At the same time, Chen et al. (2017) have shown that the level of miR-30a in the exosomes increased after ischemia–reperfusion due to induction of hypoxia-inducible factor-1α (HIF-1α), whereas the activity of autophagy-associated proteins, Atg12 and beclin-1, and cardiomyocyte death decreased accordingly.
In addition to reducing cardiomyocyte death, the inflammatory response also plays an important role in ameliorating ischemia–reperfusion injury. In the presence of ischemia–reperfusion, monocytes in peripheral blood and blood circulation gradually gathered at the damaged myocardium and transformed into M1 and M2 macrophages under the effect of differentiation promoting factors to promote inflammation or anti-inflammation (Shiraishi et al., 2016; Li et al., 2019). During the repair of myocardial injury in ischemia–reperfusion, Jia et al. (2017) found that completely inhibiting the formation of M1 macrophages was not ideal, while reducing the number of the M1 type and increasing that of M2 macrophages effectively alleviated ischemia–reperfusion injury. Hence, regulating the level of M2 macrophages is critical for reducing ischemia–reperfusion injury. At the same time, Wen et al. (2018) showed that injecting exosomes derived from stem cells highly expressing miRNA-181a into the ischemia–reperfusion animal models promoted TREG polarization of peripheral blood mononuclear cells because of reduction in c-Fos protein level. Therefore, the targeting ability of exosomes and the immunosuppressive effect of the miRNAs harbored by the exosomes can be utilized for alleviating ischemic reperfusion injury. In addition, studies have shown that miR-148a can inhibit the activation of the NLRP3 inflammasome, mainly by lowering the expression of thioredoxin and its interacting protein and intervening in the TLR4/NF-κB signal pathway.
Furthermore, studies have shown that oxidative stress also contributes to ischemia–reperfusion injury and that oxidation stress is closely related to the exosomal miRNAs. Multiple reports have shown that miR-150, miR-21, miR-126, and other exosomal miRNAs, which participate in the ischemia–reperfusion injury procession, were induced by oxidation stress (Kura et al., 2020). In summary, exosomes are important carriers of information that can be exchanged between cells because of their good biocompatibility and high stability. The miRNAs secreted from the stem cells’ exosomes can be absorbed by the cardiac cells directly and can be used for the treatment of ischemia–reperfusion injury. Thus, exosomal miRNAs will be the next generation of therapeutics in the future (Zhou H et al., 2019; He et al., 2020).
6.7 Role of exosomal miRNAs in atrial fibrillation
The onset of atrial fibrillation is closely related to changes in electrophysiology and the function of ion channels, especially the calcium and kalium channels. Mutations in genes related to the potassium ion channel and occurrence of ectopic excitatory focus contribute to atrial fibrillation (Yao et al., 2021). Furthermore, atrial fibrillation is related to the size of the atrioventricular block and the degree of fibrosis. As mentioned previously, miRNAs present in exosomes regulate myocardial fibrosis; therefore, miRNAs are also necessarily related to atrial fibrillation.
Terentyev et al. (2009) have shown that miR-1 present in the exosomes is related to the opening of the atrial muscle voltage-gated calcium and kalium. The kalium opens when miR-1 expression decreases, which may promote the occurrence of atrial fibrillation. However, when the expression of miR-1 increases, more calcium ions flow into the atrial cells and promote atrial fibrillation. Park et al. (2017) observed that exosomes expressing miR-1 can reduce myocardial systolic dysfunction caused by atrial fibrillation in experimental models. Atrial fibrillation can shorten the duration of the action potential and lead to loss of the L-type calcium ion channel and calcium ion transient amplitude, whereas the modified exosomes effectively prevented this change. Lu et al. (2010) demonstrated that miR-328 was significantly upregulated in patients with atrial fibrillation, which caused electrical remodeling by the calcium ion channel encoded by the L-type genes, CACNAIC and CACNBI, to promote atrial fibrillation. Knocking down the expression of this miRNA reduced the occurrence of atrial fibrillation. Zhao et al. (2016) found that miR-29a-3p and the CACNA1C pathway were negatively regulated. As miR-29a-3p exerts strong and direct inhibitory effects on atrial muscles, modified exosomes expressing miR-29a-3p may be used as a therapeutic for atrial fibrillation.
Using microarray analysis, Mun et al. (2019) found that the serum levels of exosomal miRNAs, such as miR-320d, miR-486–5p, miR-107, and miR-103a-3p, were significantly increased in cases of atrial fibrillation. Results of the multivariable analysis revealed an independent correlation between certain miRNAs present in exosomes and atrial fibrillation. In addition, Wang J. et al. (2019) and Liu et al. (2020) found that the expression of more than 39 miRNAs in the exosomes of patients with atrial fibrillation differed from that in healthy controls, including 21 significantly upregulated miRNAs, two of them are miR-223–5p and miR-223–3p, which are related to the heart, and the expression was verified using qPCR. At the same time, two miRNAs were significantly downregulated, namely, miR-3126–5p and miR-27b-3p. A study showed that the expression of miR-320d in cardiomyocytes of patients with atrial fibrillation increases apoptosis and inhibits cell viability via the STAT3 pathway. Transmission of miR-320d mimics via stem cells can change their effects on cardiomyocytes. Another study showed that injection of exosomes that expressed miR-27b-3p into experimental models reduced the activity of the Wnt/β-catenin pathway to control atrial fibrillation (Lv et al., 2019).
In addition, studies have revealed that exosomal miRNAs are associated with the severity of atrial fibrillation. Comparison of patients with paroxysmal atrial fibrillation, persistent atrial fibrillation, and permanent atrial fibrillation indicated that the increase and decrease in the expression of miRNAs were inconsistent. In patients with persistent atrial fibrillation, the expression of some miRNAs such as miRNA-103a, miRNA-107, miRNA-320d, and miRNA-486 increased. However, their expression in patients with paroxysmal atrial fibrillation decreased. In summary, these studies provide insights regarding the prevention, mechanism of action, and severity of atrial fibrillation, as well as its prognosis and therapy (Huang Z et al., 2021). Gradually, as more miRNAs are discovered, the potential of therapeutic intervention with exosomes as carriers will amplify.
7 ROLE OF EXOSOMAL MIRNAS IN OTHER VASCULAR DISEASES
In addition, the application of exosomal miRNA in other vascular diseases is also the international research highlights, which includes vascular Alzheimer’s disease (AD). At present, a large number of studies showed that one of the typical pathological changes of AD is the deposition of amyloid beta (Aβ). Aβ is produced during the amyloid precursor protein (APP) hydrolysis by β-secretory enzymes and γ-secretory enzymes (Yuyama and Igarashi, 2017). Research showed that the exosomal miRNAs are sensitive to the hydrolysis of Aβ. At the same time, it can penetrate blood barriers freely and directly act on the central nervous system. In AD patients, dysregulated miRNAs such as miR-101–3p and miR-106b could affect the expression of APP and other proteins. Then, they produced Aβ to aggravate the progress of AD (Iwata et al., 2014; Lin et al., 2018; Liu et al., 2014). In addition, dysregulated miR-132 and miR-212 could affect the synthesis and phosphorylation of tau protein, which affected the pathological process of AD. Smith et al. (2015) showed that miR-132 deficiency was relevant to autophagy dysfunction and long-term memory loss. After miR-132 is transferred into the neuron through exosomes, it could significantly improve memory impairment. In summary, many studies found that exosomal miRNA played an active role during the treatment of AD. In addition, exosomes and their miRNAs are stable, which could freely penetrate blood barriers and exist in the peripheral blood. They are simpler and more sensitive to the diagnosis of AD than MRI or cerebrospinal fluid markers, which have great potential in the early diagnosis and prevention of AD.
8 EXPECTATIONS
The role of exosomal miRNAs in the development of cardiovascular diseases is beginning to be understood. In future, exosomes will have extensive application prospects in the diagnosis, treatment, and prevention of cardiovascular diseases. At the same time, research on exosomes is still in the preliminary stage, and the limitations of such studies are also obvious. The complex and expensive purification technology of exosomes hinders their universal application. For certain diseases, the role of exosomal miRNAs remains a double-edged sword, which can aggravate the progress of the diseases if not properly controlled. Targeted transport of exosomal miRNAs also has to be developed. With advancements in medical development and research, we believe that exosomal miRNAs will be used for improving public health and that they will play critical roles in the prevention, diagnosis, and treatment of diseases.
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Background: Parkinson’s disease (PD) is a neurodegenerative disease commonly seen in the elderly. On the other hand, cuprotosis is a new copper-dependent type of cell death that can be observed in various diseases.
Methods: This study aimed to identify potential novel biomarkers of Parkinson’s disease by biomarker analysis and to explore immune cell infiltration during the onset of cuprotosis. Gene expression profiles were retrieved from the GEO database for the GSE8397, GSE7621, GSE20163, and GSE20186 datasets. Three machine learning algorithms: the least absolute shrinkage and selection operator (LASSO), random forest, and support vector machine-recursive feature elimination (SVM-RFE) were used to screen for signature genes for Parkinson’s disease onset and cuprotosis-related genes (CRG). Immune cell infiltration was estimated by ssGSEA, and cuprotosis-related genes associated with immune cells and immune function were examined using spearman correlation analysis. Nomogram was created to validate the accuracy of these cuprotosis-related genes in predicting PD disease progression. Classification of Parkinson’s specimens using consensus clustering methods.
Result: Three PD datasets from the Gene Expression Omnibus (GEO) database were combined after eliminating batch effects. By ssGSEA, we identified three cuprotosis-related genes ATP7A, SLC31A1, and DBT associated with immune cells or immune function in PD and more accurate for the diagnosis of Parkinson’s disease course. Patients could benefit clinically from a characteristic line graph based on these genes. Consistent clustering analysis identified two subtypes, with the C2 subtype exhibiting higher immune cell infiltration and immune function.
Conclusion: In conclusion, our study reveals that several newly identified cuprotosis-related genes intervene in the progression of Parkinson’s disease through immune cell infiltration.
Keywords: PD, cuprotosis, immune cell infiltration, consensus clustering, bioinformatics analysis
INTRODUCTION
Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease, affecting 1.2% of individuals over the age of 65 (Hickman et al., 2018). It is more common in older adults, with an average age of onset of about 60 years, and aging is the greatest risk factor for the development of Parkinson’s disease (Collier et al., 2011). Parkinson’s disease (PD) is a debilitating motor coordination disorder caused by the degeneration of dopamine neurons in the substantia nigra (SN) (Ballance et al., 2019). The main clinical manifestations are resting tremors, bradykinesia, myotonia, and postural gait disturbances (Hammond et al., 2019). Other motor dysfunctions include gait and postural changes, speech and swallowing difficulties, and changes in expression (Zhang et al., 2021). In recent years it has been increasingly noted that non-motor symptoms such as depression, constipation, and sleep disturbances are also common complaints in patients with Parkinson’s disease, and they can have an even greater impact on a patient’s quality of life than motor symptoms (Cederroth et al., 2019). More research is needed on how to prevent motor complications. The exact cause of Parkinson’s disease remains unclear, and genetic factors, environmental factors, aging, and oxidative stress may all be involved in the degenerative death process of PD dopaminergic neurons (Fung et al., 2017). Therefore, early identification of molecular biomarkers of PD is crucial to initiate timely treatment before the onset of motor symptoms.
Copper is an essential trace element that plays an important role in maintaining human life activities, and mechanisms involving copper may represent potential therapeutic targets for different pathologies, and significant changes in its levels in the body may be a potential pathogenic factor in Parkinson’s disease (Atrian-Blasco et al., 2017). Reduced binding of copper to ceruloplasmin in PD patients, resulting in elevated free copper levels, has been shown to be associated with oxidative stress and neurodegeneration (Ajsuvakova et al., 2020). A recent study identified a new mode of cell death that is dependent on and regulated by copper ions in the cell body: cuprotosis. By directly binding to the lipid acylated components of the tricarboxylic acid cycle pathway, copper ions lead to abnormal aggregation of lipid acylated proteins and loss of iron-sulfur cluster proteins, resulting in proteotoxic stress and ultimately cell death (Tsvetkov et al., 2022). Dysregulation of copper homeostasis may trigger cytotoxicity, and changes in intracellular copper levels can ultimately affect the development and progression of neurological diseases (Genoud et al., 2020; Li et al., 2020). In contrast, inhibition of copper transporter protein attenuated α-synuclein-mediated pathological changes in Parkinson’s patients and reduced the increase in proteogenic fibrillation and oxidative stress (Davies et al., 2014; Gou et al., 2021). Also, abnormal tricarboxylic acid cycle function is closely associated with the development of Parkinson’s disease, especially dopamine neurons are much more dependent on mitochondrial metabolism than other cell types (Supandi and van Beek, 2018; Cai et al., 2019). This suggests that inhibiting the occurrence of cuprotosis in neurons through drugs may be a strategy to combat Parkinson’s disease.
In addition, there is growing evidence that the immune system is allied to neuronal death and PD pathogenesis. Recent studies have demonstrated that early stages of Parkinson’s disease progression can be confirmed by detecting immune cell components in the blood, leading to earlier detection and confirmation of the disease (Farmen et al., 2021). Microglia are the brain’s resident immune cells, and activated microglia correlate directly with the clinical and pathological severity of Parkinson’s disease (Lanskey et al., 2018). Current research also includes the function of various immune cells, such as NK cells (Earls and Lee, 2020) and T cells (Yeapuri et al., 2022), but there is still a gap in how these cells play a role in the progression of cuprotosis in PD.
Currently, microarray technology and integrated bioinformatics analysis have been widely used to identify potential novel biomarkers and their roles in various diseases to further explore the pathogenesis and develop potential therapeutic approaches (Zhao et al., 2021). In contrast, there have not been any studies on cuprotosis-related forms of Parkinson’s disease. In this study, four datasets (GSE8397, GSE7621, GSE20163, and GSE20186) were combined into one integrated dataset by the SVA method to eliminate batch differences. To explore the immune cell or immune function correlation of CRGs with PD, ssGSEA was used to study immune infiltration in PD, and consistency clustering analysis was performed to identify pathway differences in cuprotosis-related gene groupings. We believe our findings will provide greater insight into the characterization of cuprotosis progression in PD and provide potential prognostic biomarkers to design rational therapeutic regimens.
MATERIALS AND METHODS
Raw data acquisition
Five PD datasets (GSE8397, GSE7621, GSE20163, GSE20186, and GSE42966) were downloaded from the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The above five datasets are all gene expression arrays, GSE7621 generated using GPL570 (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array. GSE8397, GSE20164, and GSE20186 generated via GPL96 (HG-U133A) Affymetrix Human Genome U133A Array was generated. GSE42966 was generated by GPL4133 Agilent-014850 Whole Human Genome Microarray 4 × 44K G4112F. The dataset of GSE8397 included 24 nigrostriatal (SN) samples from PD patients and 15 nigrostriatal samples from normal subjects; GSE20163 contained nine nigrostriatal samples from PD and eight nigrostriatal samples from control subjects; GSE7621 used nine normal nigrostriatal samples from controls and 16 nigrostriatal samples from 16 Parkinson’s disease patients; GSE20186 contained 14 PD nigrostriatal samples and five control samples. GSE42966 served as the validation group and included four Braak3 nigrostriatal samples from patients and five Braak4 patient samples.
Selection of characteristic genes
Three machine learning algorithms: LASSO regression analysis, random forest, and SVM-RFE (Sanz et al., 2018) were used to screen for eigengenes. LASSO was implemented as a dimensionality reduction method to perform variable screening and complexity adjustment while fitting a generalized linear model. LASSO analysis was implemented with a penalty parameter utilizing a 10-fold cross-verification via the “glmnet” package (Engebretsen and Bohlin, 2019). Recursive feature elimination (RFE) in the random forest algorithm is a supervised machine learning method for ranking cuprotosis-associated genes in Parkinson’s disease. Predictive performance is estimated by tenfold cross-validation and genes with relative importance >0.25 are identified as feature genes. SVM-RFE is a small-sample learning method that essentially bypasses the traditional process of induction to deduction and enables efficient “transductive inference” from training to prediction samples, simplifying the usual classification and regression problems.
Data processing and identification of differentially expressed genes
The four raw datasets were pre-processed by affy in R, including background calibration, normalization, and log2 transformation (Irizarry et al., 2003). When multiple probes correspond to a common gene, their average values were taken as their expression values. In addition, the R package “sva” was used to eliminate batch effects (Buus et al., 2017). The limma package was applied to the four GEO cohorts as a way to screen for differentially expressed cuprotosis-related genes. p-values < 0.05 and |log2 Fold change (FC)|>0.2 were set as cut-off points for DEGs (Ritchie et al., 2015). When performing differential analysis of the two PD subtypes, FDR values <0.05 and |logFC|>1 of DEGs were considered to be significantly different.
Functional enrichment analysis
Functional enrichment analysis, including both Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, was performed by the “clusterProfiler” package in R software. The BH method was utilized to adjust the p-value. Single-sample gene set enrichment analysis (ssGSEA) was used to calculate the infiltration score of 16 immune cells and 13 immune-related pathways by the “gsva” package in R software (Rooney et al., 2015). Finally, we also examined the correlation between cuprotosis-related genes and immune cells and immune function in Parkinson’s disease samples.
Gene set enrichment analysis
Gene set enrichment analysis is a computational method used to test whether genes show statistically significant and consistent changes between two biological states. The most significant relevant signaling pathways are identified by 10,000 alignment tests. A corrected p-value of less than 0.05 and a false discovery rate (FDR) of less than 0.05 was used as criteria. Finally, we selected the top 5 KEGG pathways for statistical analysis and ridge mapping using the R package “clusterPro”.
Consensus clustering
Consensus clustering is used to calculate how many unsupervised classes there are in a dataset. The consensus clustering (CC) method was used. Based on the ICI characteristics, we used the R package “ConsensusClusterPlus” (Wilkerson and Hayes, 2010) to classify Parkinson’s patients in GSE8397, GSE7621, GSE20163, and GSE20186 into different ICI clusters. These results are displayed after being run 1,000 times to verify the accuracy and reproducibility of the program, and we use the heat map function of the R language. Consensus matrix plots, consensus cumulative distribution function (CDF) plots, the relative change in area under the CDF curve, and trace plots were used to find the optimal number of clusters.
Gene set variation analysis
GSVA is a non-parametric unsupervised analysis method that is mainly used to assess the results of gene set enrichment in microarrays and transcriptomes. It is mainly used to assess whether different metabolic pathways are enriched between samples by converting the gene expression matrix between samples into the expression matrix of gene sets between samples (Hoang et al., 2019). Fifty signature gene sets were selected from MSigDB as reference sets. The GSVA package and its ssGSEA function were used to obtain the GSVA score for each gene set. The GSVA score indicates the absolute enrichment of each gene set. The Limma package was used to compare the differences in GSVA scores per genome between subtypes.
Statistical analysis
All analyses were performed using R version 4.1.1, 64-bit6, and its support package. The nonparametric Wilcoxon rank sum test was used to test the relationship between two groups of continuous variables. Correlation coefficients were examined using spearman correlation analysis. In all statistical investigations, p < 0.05 was considered statistically significant. The “rms” package was used to merge the characteristic genes to create a nomogram. Calibration curves were used to assess the accuracy of the nomogram. The clinical utility of the column line graphs was evaluated by decision curve analysis. PCA plots were described using the ggplot2 package.
RESULTS
Identification of CRGs
First, using the limma package to perform differential analysis of CRGs in the four GEO cohorts PD and control, respectively (Figures 1A–D), we found that DLD, DLAT, and DBT were differentially expressed in GSE7621, NFE2L2, DLD, MTF1, GLS, DLAT, PDHA1, PDHA1, and LIPT1 were differentially expressed in GSE8397. SLC31A1, FDX1, and ATP7A were differentially expressed in GSE20163, while NLRP3, LIAS, and DBT were differentially expressed in GSE20186. To investigate the role of cuprotosis-related genes in the progression of Parkinson’s disease, we combined the expression profiles of 38 normal brain substantia nigra and 62 brain substantia nigra specimens from the GSE8397, GSE7621, GSE20163, and GSE20186 cohorts of Parkinson’s patients (Figure 1E), which were batch processed for subsequent analysis (Figure 1F).
[image: Figure 1]FIGURE 1 | Identification of Parkinson’s onset and cuprotosis-related genes in the combined expression profile of the GEO cohort. (A–D) Heat map showing differentially expressed CRGs for the GSE8397, GSE7621, GSE20163, and GSE20186 cohorts. (E) PCA plot showing the combinatorial expression profile of the GEO cohort. (F) PCA plot showing the combined expression profile of the GEO cohort after batch effect.
Assessment of the microenvironment in Parkinson’s disease
We quantified the ssGSEA enrichment scores for different immune cell subpopulations, related functions or pathways in PD, and normal controls. The abundance of immune cells and immune functions in each sample is shown in the heat map (Figure 2A). Figures 2B,C show the correlation heat map between immune cells and immune function, with the darker red color representing a larger association between the two. We compared ssGSEA scores between PD and normal groups and showed that B cells, mast cells, NK cells, and regulatory T cells were more abundant in normal brain substantia nigra tissue, while macrophages, pDCs, and Tfh were more abundant in PD substantia nigra (Figure 2D). Human leukocyte antigen, MHC class_I, and type II interferon responses were higher in the PD group (Figure 2E), while APC_co_inhibition, APC_co_stimulation, and T_cell_co-stimulation were enriched in the normal group.
[image: Figure 2]FIGURE 2 | Immune cell infiltration analysis. (A) Heat map of immune cells and immune function in PD group and normal control group. (B,C) Correlation matrix of immune cells and immune function. The red color indicates a positive correlation, the blue color indicates a negative correlation, and the darker color indicates a stronger correlation. (D,E) Comparison of the degree of immune cell infiltration and immune function between the PD group and normal control group. (F) Correlation analysis of cuprotosis-related genes and immune cells as well as immune function. *p < 0.05, **p < 0.01, ***p < 0.001, ns no significance.
We then collected 17 reported cuprotosis-related genes, and we showed the correlation between these genes and immune pathways in ssGSEA results using a heat map (Figure 2F). We found that the vast majority of CRGs act in the immune microenvironment of PD.
Selection of characteristic genes via least absolute shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination algorithms
Three machine learning algorithms were applied to select signature genes among genes associated with Parkinson’s disease onset and cuprotosis. Five variables, ATP7A, SLC31A1, DLAT, PDHB, and DBT, were identified as diagnostic markers for PD by the LASSO regression operation (Figures 3A,B). Figure 3C represents the effect of the number of decision trees on the error rate. The x-axis represents the number of decision trees, while the y-axis represents the error rate. The error rate is usually stable when we use about 104 decision trees. For the random forest algorithm, 11 signature genes with relative importance scores greater than two were identified, including DBT, ATP7A, NLRP3, LIAS, DLAT, SLC31A1, DLST, PDHA1, ATP7B, LIPT1, and FDX1 (Figure 3D). For the SVM-RFE algorithm, the error was minimized when the number of features was 10, including DBT, ATP7A, LIAS, NLRP3, DLST, SLC31A1, DLAT, ATP7B, MTF1, and PDHA1 (Figure 3E). After the intersection, four common signature genes, ATP7A, SLC31A1, DLAT, and DBT, were finally identified (Figure 3F).
[image: Figure 3]FIGURE 3 | Selection of signature genes among genes associated with Parkinson’s onset and cuprotosis. (A) Ten cross-validations of adjusted parameter selection in the LASSO model. Each curve corresponds to one gene. (B) LASSO coefficient analysis. Vertical dashed lines are plotted at the best lambda. (C) Relationship between the number of random forest trees and error rates. (D) Ranking of the relative importance of genes. (E) SVM-RFE algorithm for feature gene selection. (F) Venn diagram showing the feature genes shared by LASSO, random forest, and SVM-RFE algorithms.
Diagnostic efficacy of characteristic genes
In the four combined GEO cohorts, the expression of the three characteristic genes ATP7A, SLC31A1, and DBT was lower in PD than in normal controls (Figure 4A, p < 0.05), while DLAT was not significantly different in the two groups. In contrast, in the comparison between stage IV and V Parkinson’s disease patients, probably due to the small sample size, only ATP7A was significantly different in the two groups (Figure 4B, p < 0.05), suggesting what seems to indicate their potential role in Parkinson’s onset and progression. Based on the results of the analysis of variance, we estimated the diagnostic performance of the three signature genes. The AUC values of the ROC curves for the signature genes were 0.683 for ATP7A (Figure 4C), 0.717 for DBT (Figure 4D), and 0.811 for SLC31A1 (Figure 4E), respectively. With GSEA, we evaluated the signaling pathways involved in the signature genes. Our results show that ATP7A (Figure 4F) is associated with steroid hormones, DBT is mainly associated with Alzheimer’s disease (Figure 4G), and SLC31A1 (Figure 4H) is associated with axon guidance, calcium signaling pathways, and Long-term potentiation.
[image: Figure 4]FIGURE 4 | Characterized gene expression, diagnostic efficacy, and enrichment analysis. (A) Box line plot depicting trait gene expression in Parkinson’s disease and normal controls. (B) Box line plot depicting trait gene expression in braak3 and braak4 phases. (C–E) ROC curves for estimating the diagnostic performance of the signature genes. (F–H) GSEA identifies the major signaling pathways involved in signature genes. *p < 0.05, **p < 0.01, ***p < 0.001.
Establishment of nomogram for predicting Parkinson’s disease
When these three variables were integrated into one variable, the AUC of the ROC curve was 0.752 (Figure 5A). This suggests that the three characteristic CRGs have good diagnostic efficiency in predicting Parkinson’s disease progression. Columnar line graphs were constructed to diagnose Parkinson’s disease by integrating trait genes and clinical traits (Figure 5B). In the column line graph, each trait gene corresponds to a score, and the total score is obtained by summing the scores of all trait genes. The total score corresponds to the different risks of Parkinson’s. The calibration curves showed that the column line plot was able to accurately estimate the prediction of Parkinson’s onset (Figure 5C). As shown in the decision curve analysis, patients with Parkinson’s can benefit from the column line graph (Figure 5D).
[image: Figure 5]FIGURE 5 | Construction of column line graph based on Characteristic CRGs. (A)The ROC curves estimating the diagnostic performance of characteristic genes. (B) Construction of column line graph integrating Characteristic CRGs for PD. in the column line graph, each variable corresponds to a score, and the total score can be calculated by summing the scores of all variables. (C) Calibration curves to estimate the prediction accuracy of the column line graphs. (D) Decision curve analysis showing the clinical benefit of column line graphs.
Identification of immune-associated cuprotosis genes subtypes in parkinson’s disease
PD samples were clustered by the consensus clustering method based on the expression profiles of three cuprotosis signature genes. The optimal number of subtypes was 2 as determined by consensus matrix plots, CDF plots, relative changes in regions under the CDF curve, and trace plots (Figures 6A–D). The two immune subtypes were named C1 and C2. PCA demonstrated significant differences between the subtypes (Figure 6E). The heat map (Figure 6F) shows the differential gene expression in the two immune subtypes.
[image: Figure 6]FIGURE 6 | Construction of two subpopulations based on cuprotosis-related genes in the GEO cohort. (A) Heat map of the consensus matrix at k = 2. (B) Consensus CDF at k = 2–9. (C) Relative change in area under the CDF curve. (D) Trace plot of sample classification when k = 2–9. (E) 3DPCA plot showing that cuprotosis-associated genes effectively classify Parkinson’s patients into two subgroups (C1 and C2). (F) Heat map showing differential gene expression in the two immune subtypes.
Different immunological characteristics of the two subtypes
As shown in Figures 7A,B, the C2 subtype had higher immune functions such as B_cells, DCS, Neutrophils, TIL and Treg, APC_co_stimulation, CCR, and Check-point than the C1 subtype. Most of the immune checkpoint genes such as CTLA4 and CD28 were also expressed more in the C2 subtype than in the C1 subtype (Figure 7C). GSVA results showed that TNFA_SIGNALING signals, G2/M cell cycle checkpoints, and E2F transcriptional genes (Figure 7D) were higher in the C2 subtype than in the C1 subtype. Overall, C2 could be identified as an immune subtype and C1 as a non-immune subtype.
[image: Figure 7]FIGURE 7 | The two subtypes have different immunological features and molecular mechanisms. (A,B) Comparison of the degree of immune cell infiltration and immune function between the two subtypes. (C) Box plot showing the mRNA expression of signature genes in the two subtypes. (D) Heat map showing the level of enrichment of the set of signature genes in the two subtypes. *p < 0.05; **p < 0.01 and ***p < 0.001.
DISCUSSION
Parkinson’s disease is a severe neurodegenerative disorder. The typical pathology of Parkinson’s disease is characterized by the loss of dopaminergic neurons in the dense substantia nigra and the aggregation of alpha-synuclein, forming Lewy vesicles and Lewy synapses. However, the exact pathogenesis of PD is currently unknown. To our knowledge, no previous studies have examined the correlation between CRG and the development of Parkinson’s disease. Surprisingly, many CRGs are differentially expressed between the nigrostriatal and normal brain tissue in Parkinson’s disease, and most of these genes are significantly associated with immune function and likely influence the staging of Parkinson’s disease, suggesting a potential role of cuprotosis in Parkinson’s disease.
Investigations have found a higher incidence of Parkinson’s disease in areas with higher copper emissions. But the role of copper in Parkinson’s disease is controversial, as some evidence suggests the need to increase copper levels, while other results suggest the opposite (Baldari et al., 2020). The main role of copper is mediated by its ability to trigger, maintain and even enhance free radical production. In general copper binding to α-synuclein triggers increased proteogenic fibrillation and oxidative stress (Gou et al., 2021). However, under the influence of copper cyanobactin (Prohaska, 2011), the reduction of copper may be associated with iron accumulation, while iron deposition and consequent ferroptosis may be an important mechanism of dopaminergic neuronal death in PD (Wang et al., 2022). In an interesting in vitro study (Spencer et al., 2011), complexes formed by dopamine oxidation products with copper caused severe damage to DNA. By injecting copper sulfate directly into the substantia nigra of mice, a decrease in dopamine, an increase in oxidative stress, and a loss of immune response were directly induced (Yu et al., 2008). This also suggests that the inhibition of cuprotosis combined with immunotherapy will be the focus of treatment for Parkinson’s patients.
An investigation pointed out that the enrichment of senescent cells in tissues is associated with disorders of tissue homeostasis, including Alzheimer’s and Parkinson’s, and that copper accumulation is a common feature of senescent cells in vitro (Masaldan et al., 2018). In addition to this, ferroptosis inhibitors (iron chelators) have demonstrated good clinical relief of PD symptoms, whereas the clinical translation of copper chelators in PD has not progressed (Nunez and Chana-Cuevas, 2018). Treatment strategies for Parkinson’s disease must be adopted with caution due to the delicate balance of copper homeostasis.
Among the 38 PD and 62 normal samples in the GSE8397, GSE7621, GSE20163, and GSE20186 datasets, we selected three signature genes (ATP7A, SLC31A1, and DBT) based on three machine learning algorithms. These three genes were differentially expressed in the PD and control groups and most likely influenced the Braak staging of PD. All this evidence can indicate the role of the signature genes in Parkinson’s disease. The signature genes involved in this study include ATP7A, SLC31A1, and DBT. ATP7A is widely recognized as a copper-transporting ATPase due to mutations in its gene that cause impaired copper transport and further cause the neurological genetic disorder Menkes disease (Li et al., 2018). ATP7A is involved in axonal growth, synaptic integrity, and neuronal activation and has an important role in the root of stability for neurological function (Kaler, 2011). The SLC31A1 (solute carrier family 31 member 1) gene, also known as CTR1 (copper transporter protein 1), encodes a high-affinity copper transporter protein in cell membranes that act as a homotrimer to influence dietary copper uptake. Its more studied in tumors, such as pancreatic cancer (Yu et al., 2019), colorectal cancer (Barresi et al., 2016), and lung cancer (Barresi et al., 2016), as a means of copper depletion affecting the prognosis of cancer patients. DBT is a component of the branched-chain α-keto acid dehydrogenase complex, and its deficiency allows the accumulation of branched-chain amino acids and their harmful derivatives in the body (Podebrad et al., 1999). An association between Alzheimer’s disease and Parkinson’s disease and the 2-oxoglutamate dehydrogenase gene has been reported (Hengeveld et al., 2002).
We constructed two isoforms from three cuprotosis genes based on machine learning and immune expression profiles. The C2 subtype exhibited higher immune cell infiltration and immune function compared to the C1 subtype. Therefore, our classification reflects the immune status of Parkinson’s disease, which may help in the diagnosis and treatment of PD. Although machine learning algorithms can identify cuprotosis-related genes in the characterization of Parkinson’s immune progression, experiments are still needed to further elucidate the mechanisms of the characterized genes.
CONCLUSION
Our results identified three characteristic cuprotosis-related genes ATP7A, SLC31A1, and DBT involved in the immune process of Parkinson’s disease. In addition, Parkinson’s disease samples were classified into immune and non-immune subtypes by a new molecular classification. However, little is known about the relationship between specific genes and PD, and must be performed in vitro and in vivo to verify our conjectures. This study provides important information to elucidate the physiological and pathological processes of cuprotosis in PD. Overall, our findings may contribute to the design of better immunotherapies for Parkinson’s disease based on the mechanisms of cuprotosis.
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A novel anoikis-related prognostic signature associated with prognosis and immune infiltration landscape in clear cell renal cell carcinoma
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Background: Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). Anoikis plays an essential function in tumourigenesis, whereas the role of anoikis in ccRCC remains unclear.
Methods: Anoikis-related genes (ARGs) were collected from the MSigDB database. According to univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to select the ARGs associated with the overall rate (OS). Multivariate Cox regression analysis was conducted to identify 5 prognostic ARGs, and a risk model was established. The Kaplan-Meier survival analysis was used to evaluate the OS rate of ccRCC patients. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Gene set enrichment analysis (GSVA) were utilized to investigate the molecular mechanism of patients in the low- and high-risk group. ESTIMATE, CIBERSOT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape. Consensus clustering analysis was performed to divide the patients into different subgroups.
Results: A fresh risk model was constructed based on the 5 prognostic ARGs (CHEK2, PDK4, ZNF304, SNAI2, SRC). The Kaplan-Meier survival analysis indicated that the OS rate of patients with a low-risk score was significantly higher than those with a high-risk score. Consensus clustering analysis successfully clustered the patients into two subgroups, with a remarkable difference in immune infiltration landscape and prognosis. The ESTIMATE, CIBERSORT, and ssGSEA results illustrated a significant gap in immune infiltration landscape of patients in the low- and high-risk group. Enrichment analysis and GSVA revealed that immune-related signaling pathways might mediate the role of ARGs in ccRCC. The nomogram results illustrated that the ARGs prognostic signature was an independent prognostic predictor that distinguished it from other clinical characteristics. TIDE score showed a promising immunotherapy response of ccRCC patients in different risk subgroups and cluster subgroups.
Conclusion: Our study revealed that ARGs play a carcinogenic role in ccRCC. Additionally, we firstly integrated multiple ARGs to establish a risk-predictive model. This study highlights that ARGs could be implemented as a stratification factor for individualized and precise treatment in ccRCC patients.
Keywords: clear cell renal cell carcinoma, anoikis-related genes, risk model, immune infiltration landscape, prognosis, consensus clustering
INTRODUCTION
Renal cell carcinoma (RCC) is the most common malignancy in the urinary system, affecting over 430,000 newly diagnosed cases and 170,000 deaths in 2020 worldwide (Sung et al., 2021). Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype, occurring in approximately 75% of RCC (Choueiri and Motzer, 2017). Although new strategies have greatly improved life expectancy and quality of life in patients with advanced ccRCC, the prognosis of metastatic RCC patients is still unsatisfactory, with the 5-year survival rate remaining less than 15% (Klatte et al., 2018). Therefore, investigating novel diagnostic biomarkers and prognostic model is vital for the clinical management of ccRCC.
Disruption of cell-cell attachment or cell-ECM attachment leads to a form of apoptosis called “anoikis” (Raeisi et al., 2022). This process can eliminate misaligned or shed cells under physiological or pathological conditions, contributing to the realization of tissue homeostasis. Anoikis is involved in several pathological processes, including carcinogenesis. After a continuous separation process from each other or the ECM, cancer cells metastasize, migrate to remote endpoints, reattach, and proliferate in new sites, resulting in tumor spread and loss of surgical opportunities (Guan, 2015). Cancer cells employ several mechanisms to eliminate anoikis, promoting their invasiveness and metastasis. By promoting oncogenic signals that induce pro-survival pathways, or changes in the acidic environment in the tumor microenvironment and reactive oxygen species (ROS) generation, cancer cells have a great impact on promoting anti-anoikis (Wang C. et al., 2019; Hu et al., 2019; Vander Linden and Corbet, 2019). Anoikis also has potential therapeutic value in RCC. In ccRCC, interference with TIM-3 protein expression can attenuate the invasion ability by aggravating anoikis (Yu et al., 2017). Knockdown of anoikis-related protein Tryptophan 2,3-dioxygenase (TDO2) inhibits the proliferation and invasion of RCC cells and may be a promising marker for RCC targeted therapy (Pham et al., 2021). Quinazolines trigger anoikis in RCC by targeting the focal adhesion survival signaling, resulting in potent antitumor effects (Sakamoto et al., 2011). Recent studies have shown that the ECM deprivation system (EDS) based on Fibronectin (FN) -targeted self-assembling peptide can effectively inhibit renal cell carcinoma by reversing anoikis resistance (Wang et al., 2022). However, there is no effective RCC risk prediction model based on anoikis to reflect the impact of anoikis-related genes on prognosis comprehensively.
In this study, following the exploration of The Cancer Genome Atlas database (TCGA) database, the correlation between ARGs and clinicopathological characteristics of ccRCC patients was systematically investigated. A novel risk model was established based on 5 prognostic ARGs, and the capability of ARGs in predicting the prognosis of patients with ccRCC was further evaluated. Moreover, the immune infiltration of ccRCC patients and the possible signaling pathways involved were comprehensively explored in this study. This study aimed to provide novel insights and perspectives into a new potential therapeutic strategy and antitumor targets for ccRCC.
MATERIALS AND METHODS
Data collection
The transcriptome matrix and clinical materials were downloaded from The Cancer Genome Atlas database (TCGA) (https://portal.gdc.cancer.gov/). The samples without survival time or the survival time less than 0 were excluded, and a total of 525 ccRCC samples were included for the subsequent analysis in this study. Perl scripts were utilized to extract the transcriptome matrix of each ccRCC sample and merged for further analysis. The symbol of mRNAs was annotated using the ensembles human genome browser GRCh38. p13 (http://asia.ensembl.org/index.html). Clinical materials, including age, gender, grade, stage, and TMN stage were collected from the TCGA database via Perl scripts. All information and clinical matrix involved were downloaded from the public database. Approval from the ethics committee and written informed consent from patients were not required.
Identification of anoikis-related genes and risk model construction
The anoikis-related genes (ARGs) were collected from the Molecular Signatures Database (MSigDB database) (https://www.gsea-msigdb.org/gsea/). A total of 34 ARGs were identified to evaluate the prognosis value for ccRCC (Supplementary Table S1). According to the univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to select the ARGs associated with the overall survival (OS) rate via the R package “glmnet”. Next, a multivariate Cox regression analysis was conducted to select the ARGs which could independently predict the prognosis for ccRCC, and a risk model was established based on the prognostic ARGs. The risk model was constructed according to the ARGs prognostic signature using the formula: (0.719 x the expression of CHEK2) + (−0.171 x the expression of PDK4) + (−0.725 x the expression of ZNF304) + (0.413 x the expression of SNAI2) + (0.479 x the expression of SRC). Based on the median risk score, the samples with ccRCC were divided into low-risk and high-risk groups. The Kaplan-Meier survival curve was employed to evaluate the OS rate of ccRCC patients in the low- and high-risk group using a log-rank algorithm via R package “survival”. Principal component analysis (PCA) score plot was used to investigate the distribution pattern of the patients in the low- and high-risk group via the R package “ggplot2”.
Internal validation of risk model
Based on the ARGs, 525 ccRCC samples in the TCGA database were classified into the training cohort and test cohort with a ratio of 7:3 based on R package “caret” (Tsiliki et al., 2015). A total of 368 samples were divided into training cohort and 157 samples were divided into test cohort. The risk score of each sample was calculated according to the formula, and the samples were divided into low- and high-risk group according to the median risk score in the both cohorts.
Independent prognosis analysis of risk model
Univariate and multivariate Cox regression analysis were utilized to evaluate the independence of the risk model via the R package “survival”. The nomogram model was established of the clinicopathological characteristics and risk score via the R package “rms”. Based on the Cox regression analysis, all variates were calculated and evaluated the 1-. 3-, and 5-year survival probability of ccRCC. Calibration diagram was a common parameter to assess the accuracy of nomograms. R package “pROC” was used to evaluate the diagnostic accuracy of the risk score and clinicopathological characteristics for ccRCC. The prognostic capability of the risk model at 1-, 3-, and 5- years was validated using time-dependent receiver operating characteristic (ROC) analysis via R package “timeROC”.
Consensus clustering analysis
Based on the 5 prognostic ARGs, the consensus clustering was performed with max K = 9 via R package “ConsensusClusterPlus.” The clustering was established on the grounds of partitioning around medoids with “euclidean” distances, and 1000 verifications were performed. Next, according to the optimal classification of K = 2–9, the patients with ccRCC were cluster into different molecular subtypes for further analysis.
Immune microenvironment landscape and drug sensitivity analysis
The estimation of stromal and immune cells was evaluated using the ESTIMATE algorithm. The stromal, immune, and ESTIMATE scores of ccRCC were estimated using the R package “estimate”. CIBERSORT algorithm was utilized to estimate the fraction of 22-type immune cells based on “CIBERSORT R script v1.03”. A single sample gene set enrichment analysis (ssGSEA) algorithm was performed to assess the proportion of 23-types of immune cells via the “GSVA” R package. The immune function score of each patient was estimated via the “GSVA” R package. Tumor Immune Dysfunction and Exclusion (TIDE) scores of each ccRCC sample were analyzed via the TIDE database (http://tide.dfci.harvard.edu/login/). Drug sensitivity (IC50) was a vital indicator for evaluating drug response to treatment. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) database, the antineoplastic drugs response of each ccRCC sample in the low- and high-risk was predicted via R package “pRRophetic.” All statistical analyses were visualized via the “ggplot2” R package.
Differential expression analysis and functional enrichment analysis
The R package “limma” was conducted to identify the differential expression genes (DEGs) in low- and high-risk group with the threshold set at |Fold Change| ≥ 2 and P-value < 0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were utilized to enrich the DEGs into the biological process and signaling pathways using the “clusterProfiler” R package (Yu et al., 2012). The activity of Hallmark terms of each ccRCC sample was conducted using R package “GSVA”.
Statistical analysis
In this study, all statistical analysis were performed using the R software (version 4.1.0) and Perl scripts. Spearman-ranked correlation analysis was used to evaluate the association of the prognostic ARGs and immune cells, with P-value < 0.05 was considered significantly different. Differential functions were analyzed using the Wilcoxon rank-sum test between the two groups, and statistical significance was set at P-value < 0.05.
RESULTS
Risk model construction based on the anoikis-related genes prognostic signature in clear cell renal cell carcinoma
A novel risk model was developed to evaluate the prognostic value of ARGs in ccRCC. As shown in Figures 1A,B, according to the univariate Cox regression analysis, 9 ARGs associated with the OS rate were identified via the least absolute shrinkage and selection operator (LASSO) analysis. Based on the multivariate Cox regression analysis, 5 ARGs which could independently predict the prognosis for ccRCC were selected to establish the risk model. The ccRCC patients were ranked according to the median risk score and divided into the low- and high-risk group. The scatter dot plot suggested that the risk score was inversely correlated with the survival time for ccRCC (Figure 1C). Kaplan-Meier survival curve analysis illustrated that the OS rate of patients with the low-risk score was significantly higher compared to those of patients with high-risk score (Figure 1D). Principal component analysis (PCA) result illustrated a remarkable separation of patients in the low- and high-risk group based on the ARGs prognostic signature (Figure 1E). The expression of the 5 prognostic ARGs in the low- and the high-risk group were visualized in a heatmap diagram, and the results showed that the patients with high-risk score had higher expression of CHEK2, SRC, and SNAI2, whereas the expression of PDK4 and ZNF304 were higher in the low-risk group (Figure 1F).
[image: Figure 1]FIGURE 1 | Risk model construction based on the ARGs prognostic signature in ccRCC. (A) Univariate Cox regression analysis of the ARGs. (B) LASSO regression analysis shows the minimum lambda and optimal coefficients of the prognostic ARGs. (C) Distribution of the ARGs prognostic signature and the scatter dot plots shows the correlation of the risk score and survival time. (D) The Kaplan-Meier survival curve analysis shows the OS rate of patients in the low- and high-risk group. (E) Principal component analysis shows a significant distribution of patients in the low- and high-risk group based on the ARGs prognostic signature. (F) Heatmap diagram displays the expression of the prognostic ARGs in the low- and high-risk group.
Validation of the anoikis-related genes prognostic signature in training cohort and test cohort
An internal validation was conducted to evaluate the accuracy and independence of the ARGs prognostic signature in predicting the prognosis for patients with ccRCC. The patients with ccRCC were randomly classified into the training cohort and test cohort with a ratio was 7:3. According to the ARGs prognostic signature, the patients were ranked and classified into the low- and high-risk group in both cohorts. As shown in Figures 2A,C, the scatter dot plot illustrated that the risk score was inversely associated with survival time for patients in the training cohort and test cohort. Kaplan-Meier survival curve results indicated that the patients with low-risk score had higher OS rate compared to those with high-risk score in both cohorts (Figures 2B,D). The results of PCA suggested that the ARGs prognostic signature could clearly distinguish the patients ccRCC in the low- and high-risk group based on the ARGs prognostic signature in both cohorts (Figures 2E,G). The heatmap diagram suggested that the expression of CHEK2, SRC, and SNAI2 were significantly higher in the high-risk group, but the expression of PDK4 and ZNF304 were lower in the high-risk group in both cohorts (Figures 2F,H). These results demonstrate that the risk model construction based on the ARGs prognostic signature could accurately evaluate the prognosis of patients with ccRCC.
[image: Figure 2]FIGURE 2 | Risk model construction based on the 5 prognostic ARGs of ccRCC patients in the training cohort and test cohort. (A) Distribution of the ARGs prognostic signature and the correlation analysis between the survival time and prognostic signature in training cohort. (B) Kaplan-Meier survival cure analysis of patients with low- and high-risk score in training cohort. (C) Distribution of the ARGs prognostic signature and the correlation analysis between the survival time and prognostic signature in test cohort. (D) Kaplan-Meier survival cure analysis of patients with low- and high-risk score in test cohort. (E) PCA analysis of patients with ccRCC in training cohort based on the ARGs prognostic signature. (F) Heatmap diagram shows the expression of the 5 prognostic ARGs in training cohort. (G) PCA analysis of patients with ccRCC in test cohort based on the ARGs prognostic signature. (H) Heatmap diagram shows the expression of the 5 prognostic ARGs in test cohort.
Kaplan-Meier survival analysis of anoikis-related genes prognostic signature in different clinicopathological characteristics
A classification subgroup analysis was performed to investigate the prognostic value of the ARGs prognostic signature in different clinicopathological characteristics. According to the ARGs prognostic signature, the patients with ccRCC were classified into the low- and high-risk group among the different clinicopathological characteristics. As shown in Figure 3, the Kaplan-Meier survival curve analysis suggested that the OS rate of patients with the low-risk score was significantly higher compared to those patients with high-risk group in gender (female vs. male), age (age <65 vs. age ≥65), stage III-IV, grade (grade I-II vs. grade III-IV), N 0, M (M 0 vs. M1), T (TI-II vs. T III-IV), whereas due to the sample size of patients in stage I-II and N1, the OS rate in stage I-II and N 1 was similar of the patients. These results demonstrate that the risk score based on the ARGs could accurately evaluate the prognosis of ccRCC patients relative to clinicopathological characteristics.
[image: Figure 3]FIGURE 3 | Correlation analysis of the ARGs prognostic signature and different clinicopathological characteristics. The OS rate of patients with ccRCC in the low- and high-risk group among the (A) Female; (B) Male; (C) Age <65; (D) Age ≥65; (E) Stage I-II; (F) Stage III-IV; (G) Grade I-II; (H) Grade III-IV; (I) N 0; (J) N 1; (K) M 0; (L) M 1; (M) T I-II; (N) T III-IV.
Risk model based on the anoikis-related genes prognostic signature was an independent prognosis indicator
Univariate and multivariate Cox regression analyses were utilized to evaluate the risk score based on the ARGs as an independent prognosis predictor for ccRCC. Univariate Cox regression analysis showed that age (hazard ratio (HR) = 1.021, p = 0.023), grade (HR = 2.299, p < 0.001), stage (HR = 1.898, p < 0.001), T (HR = 1.989, p < 0.001), M (HR = 4.166, p < 0.001), N (HR = 2.982, p = 0.001), and risk score (HR = 1.215, p < 0.001) were closely correlated with OS rate in ccRCC (Figure 4A). Multivariate Cox regression analysis result indicated that age (HR = 1.032, p = 0.002) and risk score (HR = 1.130, p = 0.003) were an independent prognosis indicator for ccRCC (Figure 4B). The time-dependent ROC curve showed that the AUC of 1-, 3-, and 5- years was 0.765, 0.718, and 0.736, respectively (Figure 4C). A novel nomogram model was established to accurately predict the 1-, 3-, and 5-year survival probability of ccRCC based on the ARGs signature and clinicopathological characteristics (Figure 4D). The ROC curve showed that the AUC of risk score was 0.765, suggesting a satisfactory stability of the ARGs prognostic signature (Figure 4E). The calibration curve indicated that the 1-, 3-, and 5-year’s OS rate predicted by nomogram was consisted with the actual OS rate (Figure 4F). These results demonstrate that the risk score based on the ARGs is an independent prognosis predictor and could accurately evaluate the survival probability of ccRCC patients relative to clinicopathological characteristics.
[image: Figure 4]FIGURE 4 | Independent prognosis analysis of the ARGs prognostic signature. (A) Univariate Cox regression analysis and (B) multivariate Cox regression analysis shows the correlation of the OS rate and risk score, and clinicopathological characteristics. (C) Time-dependent ROC curve shows the AUC at 1-, 3-, and 5-year (D) Nomogram construction based on the ARGs prognostic signature and clinicopathological characteristics. (E) ROC curve shows the accuracy of the risk score and clinicopathological characteristics. (F) Calibration curve shows the accuracy of the nomogram-predicted OS and actual OS.
Functional enrichment analysis of the differential expression genes
Multiple enrichment methods were utilized to investigate the potential molecular mechanism of DEGs in the low- and high-risk group. The DEGs in the low- and high-risk groups were illustrated in a volcano diagram, and the result showed that most of DEGs were upregulated in the high-risk group (Figure 5A). GSVA analysis results illustrated the hallmark signaling pathways of the DEGs for each patient in the low- and high-risk group (Figure 5B). GO enrichment analysis revealed that the DEGs were enriched in immune-related biological processes, such as defense response to bacterium, humoral immune response, and immunoglobulin production (Figure 5C). KEGG analysis result suggested that cytokine-cytokine receptor interaction was significantly enriched of the DEGs (Figure 5D). These findings demonstrate that immune-related signaling pathways may mediate the role of the ARGs in tumourigenesis of ccRCC.
[image: Figure 5]FIGURE 5 | Functional enrichment analysis of DEGs in the low- and high-risk group. (A) Volcano diagram shows the DEGs with the threshold set at |FC| ≥ 2 and P-value < 0.05. (B) GSVA analysis of hallmark signaling pathway for each ccRCC patient in the low- and high-risk group. (C) GO enrichment analysis shows the biological process of DEGs. (D) KEGG enrichment analysis shows the enrichment signaling pathways of DEGs.
Consensus clustering and immune microenvironment landscape analysis
Consensus clustering analysis was employed to cluster the ccRCC patients into different subgroups based on the 5 prognostic ARGs. The heatmap showed an optimal classification of the ccRCC patients with the K = 2, with 275 samples in Cluster A and 250 samples in Cluster B (Figure 6A). The PCA score plot illustrated a remarkable separation between Cluster A and Cluster B based on the 5 prognostic ARGs (Figure 6B). The Kaplan-Meier survival curve indicated that the patients in Cluster A had a lower OS rate than those patients in Cluster B (Figure 6C). The ESTIMATE algorithm was utilized to investigate the immune microenvironment landscape in Cluster A and Cluster B, and the results showed that the patients in the Cluster had higher ESTIMATE, immune scores, but lower tumor purity (Figures 6D–G). TIDE result revealed that the patients in Cluster B had lower TIDE score, suggesting a better potential immunotherapy response for ccRCC patients in the Cluster B (Figure 6H). Moreover, ssGSEA and CIBERSORT algorithms were performed to evaluate the immune infiltration landscape of patients with ccRCC in Cluster A and Cluster B. As shown in Figure 6I, the CIBERSORT algorithm showed that the proportion of T cells CD8, Plasma cells, T cells follicular helper, T cells regulatory (Tregs), NK cells activated, and macrophages M0 were higher in patients in Cluster A, whereas the fraction of T cells CD4 memory resting, NK cells resting, monocytes, macrophages M1, and mast cells resting were higher of patients in Cluster B. The result of ssGSEA suggested that the proportion of most immune cells were significantly higher in patients in Cluster a, but the proportion of eosinophil and neutrophil were lower in patients in Cluster A (Figure 6J). Collectively, these results illustrate that the ARGs are associated with prognosis and could indicate the immune response and immune infiltration landscape in ccRCC.
[image: Figure 6]FIGURE 6 | Consensus clustering of ccRCC patients and immune microenvironment landscape analysis. (A) Consensus clustering heatmap shows the optimal classification of ccRCC samples with K = 2. (B) PCA analysis shows a significant distribution pattern of patients in Cluster A and Cluster B. (C) The Kaplan-Meier survival curve shows the OS rate of patients in Cluster A and Cluster B. (D) ESTIMATE score. (E) Immune score. (F) Tumor purity. (G) Stromal score. (H) TIDE score. (I) The fraction of 22-type immune cells in low- and high-risk group. (J) The proportion of 23-type immune cells in low- and high-risk group.
Correlation analysis of the anoikis-related genes prognostic signature and immune infiltration landscape
Multiple immune assessment algorithms were employed to estimate the immune infiltration landscape of patients in the low- and high-risk group. The ESTIMATE results showed higher stromal, immune, and ESTIMATE scores, and lower tumor purity of patients in the low-risk group (Figures 7A–D). ssGSEA algorithm result suggested that the fraction of most immune cells was significantly higher in the high-risk group, whereas the fraction of eosinophil, immature dendritic cell, and neutrophil were higher in the low-risk group (Figure 7E). The CIBERSORT result revealed that the patients with low-risk score had higher proportion of T cells CD4 memory resting, NK cells resting, monocytes, macrophages M1, macrophages M2, dendritic cells activated, and mast cells resting, but lower proportion of B cells memory, plasma cells, T cells CD8, T cells CD4 memory activated, T cells follicular helper, T cells regulatory (Tregs), and macrophages M0 (Figure 7F).
[image: Figure 7]FIGURE 7 | Immune infiltration landscape of patients in the low- and high-risk group. (A–D) Stromal, immune, ESTIMATE scores and tumor purity. (E) The fraction of 23-type immune cells of patients in the low- and high-risk group. (F) The proportion of 22-type immune cells of patients in the low- and high-risk group.
Correlation analysis was conducted to investigate the association between prognostic ARGs and immune infiltration landscape. The correlation analysis result showed a remarkable association between prognostic ARGs and 22-type immune cells as calculated by CIBERSORT, such as CHEK2 and SRC were positively correlated with T cells follicular helper, T cells CD8, and macrophages M0 (Figure 8A). Moreover, ZNF304 was negatively correlated with most of the 23-type immune cells, but positively correlated with neutrophil, eosinophil, and mast cell; SNAI2 was positively associated with the 23-type immune cells; CHEK2 and SRC were positively correlated with most of the 23-type immune cells (Figure 8B). Considering the remarkable difference in immune infiltration landscape for ccRCC patients, the response to immunotherapy was further evaluated of patients in the low- and high-risk group. TIDE result revealed that the patients with low-risk score had lower TIDE score, suggesting a better response to immunotherapy of patients in the low-risk group (Figure 8C). The immune function score result showed that the patients with high-risk score had higher immune function score, such as cytolytic activity, check point, and HLA (Figure 8D). Taken together, these results demonstrate that the risk model based on the ARGs prognostic signature is correlated with the immune infiltration landscape and immunotherapy response of patients with ccRCC.
[image: Figure 8]FIGURE 8 | Correlation analysis of the prognostic ARGs and immune infiltration landscape. (A,B) The heatmap shows the correlation of the prognostic ARGs and immune cells. (C) TIDE score. (D) Immune function score.
Drug sensitivity analysis
Targeted therapy is a vital strategy in the clinical management of ccRCC. In the subsequent analysis, several potential antineoplastic drugs were identified which may benefit the treatment of ccRCC. As shown in Figure 9, the drug sensitivity analysis results suggested that the IC50 of Cisplatin, Vinblastine, Tivozanib, Linifanib, and Masitinib were significantly higher in the low-risk group, whereas the IC50 of Rapamycin, Ruxolitinib, Saracatinib, and Parthenolide were higher in the high-risk group. These above results demonstrate a promising response to the antineoplastic drug of patients with ccRCC in different risk subgroups, providing a novel insight into the precisely targeted therapy for ccRCC patients.
[image: Figure 9]FIGURE 9 | Drug sensitivity analysis of patients in the low- and high-risk group. Distribution of IC50 values in the low- and high-risk group among (A) Cisplatin, (B) Vinblastine, (C) Tivozanib, (D) Rapamycin, (E) Ruxolitinib, (F) Linifanib, (G) Saracatinib, (H) Parthenolide, and (I) Masitinib.
DISCUSSION
Since the prognosis for metastatic or advanced ccRCC patients remains unsatisfactory, early diagnosis and risk stratification for improving the survival time of patients with ccRCC is essential. Here, 5 ARGs were identified as being associated with OS rate for ccRCC, and a novel risk model was established to successfully evaluate the prognosis of ccRCC. Involved immune infiltration landscape and drug sensitivity analysis were further evaluated.
As a tumor suppressor protein that plays a role in the p53 signaling pathway, CHEK2 has been reported to be associated with carcinogenesis in several tumor types, including RCC (Boonen et al., 2022). Several studies have demonstrated an association between CHEK2 germline mutations and RCC. In a NGS sequencing study of 254 patients with advanced RCC, 41 carriers of pathogenic germline mutations in kidney cancer or other cancer-related genes were identified (Carlo et al., 2018). Of these, the CHEK2 germline mutation found in 9 patients (3.4%) exceeded the most common change in RCC-related mutations. Similar results were obtained in another study, which identified 7 out of 229 (3.1%) mutation carriers with germline CHEK2 variants in patients with metastatic ccRCC (Ged et al., 2020). In patients with early-onset RCC, CHEK2 germline mutation was also the most common change found before the age of 60 years (19/844) (Hartman et al., 2020). Although there is now increasing evidence that CHEK2 germline mutations are associated with an increased risk of RCC, larger case-control studies in patients with RCC are needed to confirm and refine the magnitude of the associated risk (Stolarova et al., 2020).
SRC encodes a tyrosine-protein kinase and has shown its impact on the regulation of embryonic development and cell growth. In RCC, SRC leads to distal lung metastasis through glycolytic reprogramming (Zhang et al., 2021). Furthermore, SRC contributes to the emergence of malignant phenotypes in renal cancer cells, particularly due to the resistance of BCL-XL to apoptosis and angiogenesis stimulated by SRC-STAT3-VEGF signaling (Chatterjee et al., 2022). These results suggest that SRC contributes to the emergence of malignant phenotypes in renal cancer cells, which are in line with our data that SRC is highly-expressed in high-risk group. Concerning the protein encoded by this gene is a tyrosine-protein kinase, further research on SRC has the potential for clinical application.
SNAI2 encodes a member of the Snail family of C2H2-type zinc finger transcription factors, which is involved in epithelial-mesenchymal transitions (EMT) and has antiapoptotic activity (Shang et al., 2022). Our data showed SNAI2 high expression was correlated with worse outcomes in RCC patients. In the carcinogenesis process, SNAI2 has been reported to take active part in metastasis, progression, differentiation, and drug sensitivity in multiple cancer types (Jin et al., 2022; Mazzu et al., 2022; Sorin et al., 2022). In ccRCC, by facilitates the EMT, SNAI2 promotes cancer cell migration and invasion (Jiang et al., 2019). Since EMT has been shown to be an important factor in tumor progression, its facilitator SNAI2 may have an even more important role in RCC carcinogenesis (Fiori et al., 2019).
PDK is the enzyme responsible for phosphorylating pyruvate dehydrogenase and the metabolic switch from mitochondrial respiration to cytoplasmic glycolysis (Heinemann-Yerushalmi et al., 2021; Querfurth et al., 2022). PDK4 is decreased in a variety of cancers, such as gastric cancer, prostate cancer, breast cancer, lung cancer and liver cancer, and may be associated with the inhibition of cell proliferation and induction of apoptosis (Liu et al., 2021). The function of PDK4 has not been previously reported in RCC. Our data show similar results in RCC. More recently, it has been suggested that this switch plays a key role in increasing drug resistance. By reprogramming drug metabolism, PDK4 has been reported to modulate chemoresistance, including 5-fu and cisplatin (Woolbright et al., 2018; Wang J. et al., 2019; Yu et al., 2021). The differences in drug resistance between subgroups we demonstrated may be related to metabolic differences due to differences in PDK4 expression levels.
ZNF304 plays a key role in the regulation of cell survival, proliferation, apoptosis, and differentiation during development by transcriptional silencing of genes. As one of the key anoikis players, ZNF304-integrin axis has been shown to fight against anoikis during tumor development and promote a variety of proto-cancer pathways important for cell survival, migration, and invasion in ovarian cancer (Aslan et al., 2015). However, in contrast, our data showed the expression of ZNF304 was relatively low in high-risk ccRCC patients. Lower levels of ZNF304 were associated with poorer survival. In vitro experiments also showed that down-regulation of ZNF304 affected mir-183-5p/FOXO4 axis and further inhibited cell growth in ccRCC, while overexpression of ZNF304 inhibited growth (Ren et al., 2021). Given the contradictory roles of its target, mir-183-5p, in different tumor types, this may depend on the biological function differences of the targets in different cancer species.
RCC is considered to be an immunogenic tumor, and a large number of immune cells, such as tumor-infiltrating lymphocytes, can be detected in the tumor tissue (Nakayama et al., 2018). Therefore, the use of immunotherapy to produce an effective immune response to the tumor to delay the development of cancer is considered to be effective in RCC (Sendur, 2022). According to our immune infiltration analysis results, high-risk RCC had an immune microenvironment consisting of higher levels of CD8+ T cells, CD4+ T cells, and lower M2 macrophages. It is also suggested that immunotherapy is more beneficial in high-risk RCC patients. In addition, in our results, immunosuppressive cells (MDSC and Treg) were significantly elevated in the high-risk group. Multiple therapeutic approaches have provided evidence of immune priming in RCC by reducing Treg levels and have been used in the clinical. Antiangiogenic agents have been shown to delay tumor progression not only by impounding angiogenesis in the tumor microenvironment, but also by suppressing the immune response of immunosuppressive cytokines and cells, such as Treg cells (Tartour et al., 2011; Doleschel et al., 2021). TKI also causes the immune initiation of Treg decline through the regulation of VEGF (Tallima et al., 2021). Therefore, our results support that patients in the high-risk group may benefit more from immunotherapy.
Extracellular matrix (ECM) is essential for various biological functions during tumor progression, including the induction of anoikis resistance and cell adhesion- mediated drug resistance (Wang et al., 2022). Our data show significant differences in susceptibility to chemotherapeutic agents in different risk stratifications after risk modeling with anoikis-associated genes. Additionally, in this study, TIDE analysis was used to test the interaction between candidate genes and cytotoxic T cell function and the extent to which it affects the risk of death. The high-risk group had higher TIDE levels. Higher tumor TIDE prediction scores were associated not only with poor immune checkpoint suppression therapy but also with poor patient survival under anti-PD1 and anti-CTLA4 therapy (Chen et al., 2021). In patients with advanced RCC, the combination of ipilimumab (anti-CTLA-4 antibody) and nivolumab (anti-PD-1 antibody) was compared with the previous sunitinib (VEGF-TKI), resulting in a significant improvement in treatment. However, more than half of the patients could not achieve the long-term response to PD-1-related treatment (Motzer et al., 2018). Therefore, it is important to further screen suitable RCC patients for PD-1 treatment. In this study we have provided preliminary evidence for anoikis future in vivo and in vitro experiments will be necessary to further verify the efficacy of anoikis against immune checkpoint inhibitors.
In the present study, we established a novel model based on prognostic ARGs and preliminarily evaluated the efficacy of risk model in predicting the prognosis of ccRCC patients. We also preliminarily describe the guiding significance of the model for chemoresistance and immune-related therapy. In addition, immune infiltration landscape analysis and functional enrichment analysis were evaluated, which preliminarily demonstrated the association between the risk model and the immunosuppressive microenvironment. However, there are still some shortcomings in this study. The results based on bioinformatics in this paper are not verified by in vitro experiments. In the next step, we will experimentally verify the significance of anoikis in RCC. In conclusion, our findings provide novel insights and perspectives into a new potential therapeutic strategy and antitumor targets for ccRCC.
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Tumorigenesis is a multifaceted process, where multiple physiological traits serving as cancer’s distinctive characteristics are acquired. “Hallmarks of cancer” is a set of cognitive abilities acquired by human cells that are pivotal to their tumor-forming potential. With limited or no protein-coding ability, non-coding RNAs (ncRNAs) interact with their target molecules and yield significant regulatory effects on several cell cycle processes. They play a “yin” and “yang” role, thereby functioning both as oncogenic and tumor suppressor and considered important in the management of various types of cancer entities. ncRNAs serve as important post-transcriptional and translational regulators of not only unrestricted expansion and metastasis of tumor cells but also of various biological processes, such as genomic mutation, DNA damage, immune escape, and metabolic disorder. Dynamical attributes such as increased proliferative signaling, migration, invasion, and epithelial–mesenchymal transition are considered to be significant determinants of tumor malignancy, metastatic dissemination, and therapeutic resistance. Furthermore, these biological attributes engage tumor cells with immune cells within the tumor microenvironment to promote tumor formation. We elaborate the interaction of ncRNAs with various factors in order to regulate cancer intra/intercellular signaling in a specific tumor microenvironment, which facilitates the cancer cells in acquiring malignant hallmarks. Exosomes represent a means of intercellular communication and participate in the maintenance of the tumor hallmarks, adding depth to the intricate, multifactorial character of malignant neoplasia. To summarize, ncRNAs have a profound impact on tumors, affecting their microcirculation, invasiveness, altered metabolism, microenvironment, and the capacity to modify the host immunological environment. Though the significance of ncRNAs in crosstalk between the tumor and its microenvironment is being extensively explored, we intend to review the hallmarks in the light of exosome-derived non-coding RNAs and their impact on the tumor microenvironment.
Keywords: exosome, non-coding RNA, tumor-hallmarks, tumor promoter, tumor suppressor
INTRODUCTION
A continuous physiochemical balance between various parts of the body is sought after by all living organisms. The body maintains homeostasis by the release of a variety of vesicles, including apoptotic bodies, shed microvilli, microparticles, ectosomes, and exosomes, comprising a wide variety of components (Mathieu et al., 2019). Exosomes are produced within multi-vesicular bodies (MVBs) or multi-vesicular endosomes and are secreted upon their fusion with the plasma membrane (McKelvey et al., 2015). The majority of “normal cell” types, such as mast cells, dendritic cells, reticulocytes, epithelial cells, B-cells, trophoblastic cells, and neural cells and a variety of malignant cell types produce exosomes (40–150 nm diameters) (Kalluri and LeBleu, 2020). Exosomes were initially considered conduits for evacuation of waste products from cell, but recent scientific investigations consistently show their involvement in a myriad of critical physiologic processes (Rajagopal and Harikumar, 2018). Upon budding off from the cell, the exosomal contents are guarded from the detrimental extracellular conditions by their sturdy lipid membrane (Steinbichler et al., 2017). Exosomes as nomadic vesicles alter the function and phenotype of the recipient cell via trafficking to distant and proximal sites and can target recipient cells owing to the molecules on their surface (Brinton et al., 2015). Exosomes can be internalized by cells through endocytosis and/or phagocytosis once they are in close proximity to a cell, in addition to triggering signaling through receptor–ligand interaction. Additionally, upon fusion of the exosome with the recipient’s membrane, their payload is released into the cytosol of the recipient cell (Horibe et al., 2018).
Exosomes can either be a part of tumor cell secretions or stromal cell secretions, depending on their origination in the tumor microenvironment (Penfornis et al., 2016). They are erratically released in large quantities by cancer cells, which serve as a reflection of the stromal cells’ phenotypic condition. The content of exosomes changes dynamically as the tumor progresses (Tzaferi et al., 2021). Within the tumor microenvironment, the secretion of exosomes by tumors promotes crosstalk or communication between tumor cells and cells like fibroblasts, endothelial cells, mesenchymal stromal cells, cancer stem cells, and immune cells (López de Andrés et al., 2020). Exosome internalization by recipient cells appears to be a cell-type-specific process, and the degree of internalization is likely dependent on the recipient cell’s phagocytic capacity (Milane et al., 2015). Exosomes can trigger target cells in the following ways—1) direct stimulation mediated by surface-expressed ligands, 2) through transfer of receptors from tumor cells to target cells, 3) through horizontal transfer of genetic material to target cells, and 4) through direct stimulation mediated by receptor-mediated endocytosis (Teng and Fussenegger, 2021). Exosomal movement between cells and the tumor microenvironment may exert a profound biological effect, accelerating the development of tumors and metastatic spread via the release of growth factors, cytokines, proteins, lipids, and non-coding RNAs (ncRNAs) (Steinbichler et al., 2017).
Hanahan and Weinberg codified the concept that normal cells transform progressively to the neoplastic stage via acquiring particular hallmarks eventually (Hanahan and Weinberg, 2011). Recent reports suggest about the eight different hallmarks acquired during tumorigenesis, namely, proliferation (evading), growth suppression, viability, immortality, angiogenesis, motility, energy metabolism, and immune evasion (Gutschner and Diederichs, 2012). The anomalous state of neoplasia, which offers a mechanism for cancer cells and tumors to adopt these functional properties, has led to the addition of a new concept, portrayed as “enabling characteristics.” In this way, along with the aforementioned eight hallmarks, genomic instability and tumor-promoting inflammation considered enabling characteristics, reflected upon molecular and cellular pathways through which the hallmarks are acquired (Hanahan, 2022). A deeper insight of cancer propagation and acquirement hallmarks suggests the role of cancer cell-derived exosome-based payloads (Meehan and Vella, 2016). For the scope of this review, we have assessed the potential of non-coding RNA-loaded exosomes in modulation of cancer hallmarks (Figure 1).
[image: Figure 1]FIGURE 1 | Exosomal ncRNAs are involved in the hallmarks of cancer. Perturbed ncRNAs may act as oncogenes by promoting hallmarks of cancer or as tumor suppressors by constraining them.
EXOSOMAL BIOGENESIS AND COMPOSITION
Within multi-vesicular bodies, inward budding of the late endosomal membrane produces intraluminal vesicles (exosomes) with varied payloads, which are emancipated into the extracellular environment upon fusion with the cellular membrane (Théry et al., 2002).
Exosomal biogenesis primarily entails three phases: initially, invagination of the plasma membrane forms an early endosome, enclosing endocytic payloads like soluble and cell surface proteins (Barile and Vassalli, 2017) (Figure 2). To foster the development of endosomes, the endosomal sorting complex required for transport (ESCRT) mechanism is considered a critical circuitry for the formation of MVEs and release of exosomes (Baietti et al., 2012). The ESCRT comprises four complexes, namely, ESCRT-0, I, II, and III. While ESCRT-I and ESCRT-II are in control of squishing the membrane to generate a stable membrane neck, ESCRT-0 assembles ubiquitin cargo proteins into lipid domains. Vesicular neck segmentation and ESCRT-III severance and salvaging are triggered by association of the VPS4 complex into ESCRT-III. An activated ALIX protein may recruit ESCRT-III proteins to endosomes, while TSG101 has been associated to exosome release (Vella et al., 2008). Numerous publications have also established that lipids and related proteins are used during exosome synthesis and cargo loading in an ESCRT-independent mechanism (Hessvik and Llorente, 2018).
[image: Figure 2]FIGURE 2 | Release of exosomes from donor cells and uptake by recipient cells, with an enlarged view of the exosomal content. Exosomes released from donor cells carry cargos of proteins, lipids, and genetic materials and can be taken up by recipient cells, reprogramming the recipient cells upon transfer of their bioactive compounds.
The process of RNA loading inside exosomes is believed to be lipid-dependent and necessitates the presence of a set of independent lipids and cargo domains. Particular sequences of nucleotides, like those found in lipid rafts, hydrophobic modifications, or sphingosine, have an increased affinity for the phospholipid bilayer (Wei et al., 2021). The binding of proteins or other molecules to lipid rafts, which are rich in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins, may increase their secretion through exosomes (de Gassart et al., 2003). Intraluminal vesicle (ILV) production also takes place due to the presence of ceramide, lysophosphatidic, and glycosphingolipid molecules on the limiting membrane. Stimulation of S1P receptors promotes the conciliation of tetraspanin sorting into ILVs (Yue et al., 2020; He et al., 2022). Ceramide kinase and ceramidase could metabolize ceramide into sphingosine and sphingosine-1-phosphate (S1P). Tetraspanin-enriched micro-domains, which are membrane micro-domains, abundant in transmembrane and cytoplasmic signal proteins, are organized by the tetraspanin superfamily, comprising membrane proteins with transmembrane domains (Ogretmen, 2018). Lack of ESCRT machinery may cause the sorting of cargo into ILVs and variation in the amount and size of ILVs (Raiborg and Stenmark, 2009), thus implying that exosome biogenesis may involve both ESCRT-dependent and -independent processes in a cohesive way.
Exosomes are usually characterized by electron microscopy (SEM/TEM/CryoEM), atomic force microscopy (AFM), dynamic light scattering (DLS), nanoparticle tracking analysis technology (NTA), fluorescence correlation spectroscopy (FCS), resistive pulse sensing, western-blot, enzyme-linked immunosorbent analysis (ELISA), and flow cytometry. The vesicular constituent of exosomes includes proteins, DNA (mtDNA, ssDNA, and dsDNA), and RNA (mRNA, miRNA, lncRNA, and circRNA) of the host origin and even genetic material of malignant cells and pathogens. Of these, the encapsulated proteins can be classified into two broad categories, namely, specific and non-specific proteins (Patil and Rhee., 2019). The majority of non-specific proteins (like, annexins, flotillins, MHC I and II, and heat shock proteins 70/90) arise from parental cell cytoplasmic and conserved membrane proteins essential for the formation and functioning of exosomes. Specific proteins have been found to be correlated with their origin; for example, exosomes derived from the T lymphocyte possess granular enzymes and perforin proteins on their surface (Mashouri et al., 2019). Notably, exosomes possess a wide array of RNAs that are responsible for execution of various biological functions. Among these, the non-coding RNAs, once regarded as junk, regulate the gene expression of the critical biological processes at the genomic and transcriptomic levels (Yue et al., 2020). The ESCRT proteins recruit several non-coding RNAs to be encapsulated into the exosomes. With the advent of NGS technologies, the exosomes derived from different biological fluids like saliva, CSF, plasma cells, serum, and urine were found to possess snRNAs, circRNAs, snoRNAs, piRNAs, miRNAs, lncRNAs, transfer RNAs, and ribosomal RNAs (Cheng J. et al., 2020). In contrast to the free form of ncRNAs, exosomes safeguard the encapsulated ncRNAs from enzymatic degradation, facilitating the execution of their biological functions. Some ncRNAs integrate functionally into a variety of important cell growth pathways. Their context-dependent deregulation in cancer suggests that ncRNAs play both oncogenic and tumor suppressive roles. (Fan et al., 2018) (as shown in Table 1).
TABLE 1 | Tumor-promoting and tumor-suppressing roles of exosomal ncRNAs in hallmarks of cancer.
[image: Table 1]NCRNA BIOGENESIS
ncRNAs are a class of functional regulatory RNA molecules lacking the ability to code for proteins (Ferreira and Esteller, 2018). They are classified according to length (small: 18–200 nt; long: more than 200 nt) or by function (housekeeping ncRNAs, including rRNAs and tRNAs) and regulatory transcripts like miRNA, lncRNA, and circRNA. Substantial mounting evidences suggest that non-coding RNAs, considered ‘dark matter of the genome,’ control several critical biological processes through careful manipulation of key biochemical pathways (Diederichs et al., 2016).
miRNA biogenesis initiates with transcription of genes into large primary transcripts mediated by RNA polymerase II/III during or post-transcription. The discovered miRNAs until now are categorized broadly into three types, namely, intragenic, intergenic, and exonic (Liu et al., 2019). The regulation of intra and exo-genic miRNA is dependent on the host promoter and is processed from introns and exons, while for intragenic miRNAs, the transcription process is independent of the host and regulated by their own promoters. Canonically, miRNAs are transcribed by introns of coding or non-coding transcripts, and few miRNAs are transcribed by exonic regions. Initially, transcription of miRNA genes leads to generation of 5′ capped and 3′ polyadenylated pri-miRNA transcripts. Subsequent processing of pri-miRNA is orchestrated by the microprocessor complex [comprising DiGeorge syndrome critical region 8 (DGCR8—an RNA binding protein) and DROSHA (a ribonuclease III enzyme] inside the nucleus. DGCR8 mediates recognition of GGAC and other specific motifs within the pri-miRNA, and DROSHA mediates the digestion of pri-miRNAs, consequently generating stem-loop-like structures termed as pre-miRNAs (O'Brien et al., 2018). The export of pre-miRNA from the nucleus to cytosol is mediated by the exportin5/RAN/GTP complex and is cleaved by the DICER/TRBP/PACT complex favoring the formation of an miRNA duplex. The miRNA duplex is then loaded into the RISC complex in order to unwind the duplex structure with the incorporation of argonaute protein. After unwinding of the duplex, the mature miRNA is incorporated into RNA-induced silencing complex and guides the complex toward target mRNA for gene silencing or translation repression (Rani and Sengar, 2022).
Non-canonically, miRNA biogenesis falls into two categories, namely, Drosha/DGCR8-independent and Dicer-independent process. Within these groups, different plausible combinations of the proteins, namely, Drosha, Dicer, Exportins, and Argonaute involved in canonical pathways are utilized for the transcription. In the Drosha/DGCR8-independent pathway, the miRNAs termed as mirtrons are generated via the splicing-dependent process, replacing the microprocessor step from the introns of host mRNA (Titov and Vorozheykin, 2018). Post splicing, the lariat is de-branched and refolds into a stem-loop-like structure, resembling a pre-miRNA. These are transported to the cytoplasm via exportin 5 without the cleavage by Drosha. In the Dicer-independent mechanism, Drosha processes miRNAs from endogenous short-hairpin RNA transcripts. Owing to the fact that these pre-miRNAs lack the requisite length to serve as dicer substrates, the maturation process within the cytoplasm requires the presence of AGO2. As a result, the subsequent loading of pre-miRNA into AGO2 and splicing of the 3p strand is facilitated. The maturation step is accomplished by the 3′–5′, shortening of the 5p strand (Stavast and Erkeland, 2019; Treiber et al., 2019).
Long non-coding RNAs (lncRNAs) are quintessential RNA-like molecules with 3′ poly(A) tail and 5’methyl cytosine capping that are transcribed by RNA Pol II (Quinn and Chang, 2016). They are classified according to their wide range of features. Based on chromosomal position—sense, antisense, bidirectional, intronic, and intergenic; based on their function—signals, decoys, guides, and scaffolds, and based on their subcellular localization, lncRNAs are categorized into nuclear, cytoplasmic, and mitochondrial lncRNAs (Wu et al., 2017; Dahariya et al., 2019).
The biosynthesis of lncRNAs is akin to that of mRNA, along with some mechanical differences. The lncRNA transcriptional process includes 5’-capping, 3’-polyadenylation, RNA-editing processes, regular and alternative splicing mechanisms, and patterns of transcriptional activation. It has been shown that the vast majority of lncRNAs adhere to the canonical structure, implying that they are all capped, polyadenylated, and spliced (Chen, 2016). Some non-canonical mechanisms may also play a role, such as the formation of circular structures, capping by snoRNA-protein (snoRNP) complexes, and cleavage by ribonuclease P (RNase P), which results in mature 3′ ends (Xing and Chen, 2018). The production of lncRNAs is controlled by a wide variety of epigenetic changes and a variety of different regulators.
circRNAs can stem from either the exons or the introns of a gene, which then leads to the production of distinct categories of circRNAs: exonic, intronic, and exon–intronic. Exonic circRNAs are produced following a process called pre-mRNA splicing. During this process, the 3′ splice donor is joined to the 5′ splice acceptor, which results in the development of an exonic circRNA (Lu, 2020). Under certain conditions, it will merely consist of a single exon, while in others, the beginnings of an upstream exon will be spliced onto the end of a downstream exon. Afterward, the interceding RNA is circularized, leading to the generation of circRNAs from multiple exons (Ragan et al., 2019). On the other hand, if the intron that is located between the exons is preserved, the circular transcript that results is called exon–intron circRNA. The last possibility is that intronic circRNAs are generated from intron lariats that are degradation-resistant by de-branching enzymes. Intronic circRNAs are distinguished from exonic circRNAs by the presence of a singular characteristic 2′–5′ linkage within their structure (Barrett et al., 2015). The generation of intronic circRNAs is dependent on the presence of GU-rich sequences in close proximity to the 5′ splice site and C-rich sequences in close proximity to the branch point in the gene. During back-splicing, the two segments will initially come together to form a circle. Subsequently, the exonic and intronic sequences found in the binding region will be removed by the spliceosome, and the trailing introns will be brought together to produce intronic circRNA (Qu et al., 2015).
EXOSOMAL NCRNAS IN REGULATING CANCER HALLMARKS
Evading growth suppressors and sustaining proliferative signaling
Aberrant cell proliferation is the most crucial hallmark of cancer. Any abnormality in the cell cycle of the given cell population is the prominent cause of tumorigenesis (Fouad and Aanei, 2017). Mechanistically, cell cycle progression is regulated by both intracellular and extracellular signal molecules, in order to achieve the balance between cell proliferation and cell cycle arrest (Liu et al., 2021). The cells become cancerous when cell growth or division becomes uncontrolled.
miRNAs
miRNAs are often stable within exosomes because they are not degraded by RNAse enzymes. miRNAs transported by exosomes can influence tumor growth and participate in different processes of tumorigenesis and tumor development. Exosomal miR-1246 induces a tumor-promoting phenotype, positively correlated with enhanced cell proliferation by directly targeting CCNG2 expression via binding to its 3′UTR (Li et al., 2017). miR-96 is increased in lung tissues and serum exosomes isolated from lung cancer patients and is positively correlated with cancer risk, promoting its progression. LMO7 is the direct target of miR-96, whose overexpression reverses the promoting effect of miR-96 in lung cancer (Wu et al., 2017). Exosomal hsa-miR 199-3p has the ability to enhance the proliferative nature of cancer by downregulating the NEDD4 level in neuroblastoma, indicating that exosomal hsa-miR199a-3p might be associated in the future development of novel therapeutic strategies for neuroblastoma (Ma et al., 2019). Granulocytic myeloid-derived suppressor cells (G-MDSCs) profusely secrete exosomes in the lung cancer tissues, which promotes cell proliferation ensuing in cancer progression. G-MDSC-derived exosomes, loaded with miR-143-3p, targets the 3ʹ-untranslated region (UTR) of integral membrane protein 2B (ITM2B), and hence, overexpression of miR-143-3p induces cell proliferation by suppressing ITM2B transcription and activating the PI3K/Akt signaling pathway (Zhou et al., 2020).
Along with the oncogenic miRNAs, certain exosomal miRNAs have been found to exert tumor-suppressive effects. The potential regulatory role of miR-9-3p in bladder cancer has been deciphered, and miR-9-3p delivered from bone marrow-derived mesenchymal stem cell (BMSC)-secreted exosomes is found to exert antitumor effects by suppressing a tumor promoter gene ESM1 (Cai et al., 2019). The exosomal miR-133b targets DUSP1 and, thereby, inhibits bladder cancer (BC) proliferation (Cai et al., 2020). miR-144 derived from bone marrow mesenchymal stem cell (BMMSC) exosomes can decrease the levels of CCNE1 and CCNE2, hence repressing the proliferation of NSCLC (Liang et al., 2020). miR-744 has downregulated exosomal expression in hepatocellular carcinoma (HCC). Moreover, PAX2, an overexpressed gene, is directly targeted by miR-744 and downregulated miR-744, aids in the propagation of HCC cells. Specifically, the propagation of HCC cells got substantially suppressed upon treatment with miR-744-loaded exosomes (Wang et al., 2019). The miRNA profile of BC-derived exosomes validated the aberrant expression of exosomal miRNAs. In a recent study, miR-375-3p was notably downregulated and suppressed in BC by blocking the Wnt/β-catenin pathway and the level of the downstream molecules like cyclin D1 and c-Myc, thereby repressing BC cell growth by targeting FZD8 (Li et al., 2020). miR-204-5p is suggested to be a powerful pan-cancer suppressor, and reestablishing its levels may be a potential cancer treatment strategy (Yao et al., 2020).
lncRNAs
lncRNAs have been linked to human cancers and may function in carcinogenesis and cancer progression (Wei et al., 2017). The mechanism of action of lncRNAs varies depending on the circumstances; nevertheless, recent research suggests the importance of the interaction between lncRNAs and microRNAs. The exosomal lncRNA HOTAIR has been postulated to be a putative target treatment for lung cancer. It promotes proliferation of lung cells through sponging miR-203 (Zhang et al., 2020). The lncRNA UFC1, transmitted via exosomes, possibly binds to EZH2 to inhibit PTEN levels and stimulate the PI3K/Akt signaling pathway, hence promoting the tumorigenesis of non-small cell lung cancer (NSCLC) (Zhang et al., 2020). The exosome-delivered lncRNA ZFAS1 can promote gastric cancer (GC) progression. It indicates that ZFAS1 is a potent diagnostic and prognostic biomarker for GC (Pan et al., 2017). lncRNA FAL1 functions as an oncogenic lncRNA and enhances cancer progression by acting as a ceRNA of miR-1236 in HCC cells (Li et al., 2018).
Accumulating evidence has shown that lncRNAs could function as either an oncogenic or a tumor suppressor gene. The exosomal LBX1-AS1 has been reported as a tumor suppressor. It suppresses oral squamous cell carcinoma (OSCC) cells by invading through the miR-182-5p/FOXO3 pathway. RBPJ, a recombination signal binding protein, is frequently exploited as an activation marker of Notch signaling. The LBX1-AS1/miR-182-5p/FOXO3 pathway is stimulated and tumor growth is inhibited by macrophage-derived exosomes with overexpressed RBPJ (Ai et al., 2021). lncRNA HAND2-AS1 suppresses the progression of triple-negative breast cancer by regulating the release of MSC-derived exosomes, which have encapsulated miR-106a-5p (Xing et al., 2021). Exosomes derived from normal cells transfer PTENP1 that inhibits bladder cancer progression. It suggests that exosome-derived PTENP1 mediates normal cell-to-bladder cell communication during BC tumorigenesis (Zheng et al., 2018).
circRNAs
circRNAs belong to a class of covalent circular endogenous RNAs formed by the 3′ splice donor of pre-mRNA covalently linked to the 5’ splice acceptor in the reverse order. The circRNAs play a crucial role in the progression of a diverse range of cancers. They interact with miRNAs by stable complementary binding and serve as efficient miRNA sponges, thereby modulating post-transcriptional expression of downstream target genes. Moreover, circRNA could be delivered to tumor cells or normal cells by exosomes and have a regulatory role in tumor progression. Through the expression profile of HCC tissues, circMAN2B2 was shown to be highly expressed and closely related with the prognosis of HCC patients. Furthermore, circMAN2B2 sponges miR-217, which will be able to overexpress the MAPK1 signaling pathway and enhance HCC progression (Fu et al., 2021). circARHGAP10 has been shown to be elevated in both NSCLC cells and serum-derived exosomes. Exosomal transfer of circARHGAP10 promotes the proliferation of NSCLC via the miR-638/FAM83F axis (Fang et al., 2022). In another study, circNRIP1 has been shown to function as a sponge for miR-149-5p in order to regulate the level of AKT1 and subsequently play a tumor-promoting role in GC (Zhang et al., 2019).
Numerous circRNAs have been discovered to have tumor-suppressive properties against a number of cancers. For example, exosomal circ-0051443 has been reported to sponge miR-331-3p in order to suppress BAK1 and halt HCC progression (Chen et al., 2020). The circular RNA, namely, hsa_circ_0072309 prevents progression of GC cells by inhibiting PI3K/AKT signaling via activating PPARγ/PTEN signaling (Guo et al., 2022).
Resisting cell death
Apoptosis, the programmed cell death, can be provoked by both intrinsic and non-cell autonomous signals that sense abnormality in various cell cycle processes (Hersey and Zhang, 2003). It involves the regulated deterioration of the chromosomes and other crucial cellular organelles by specialized enzymes (like caspases), the shriveling and disintegration of the cell, and its endocytosis by surrounding cells or tissue-surveilling phagocytes (Hanahan and Weinberg, 2016). Necroptosis, conceptualized as the gradual breakdown of a dying cell, could be triggered under different conditions, like oxygen and energy distress, viral infection, and inflammation (Gong et al., 2019). During necroptosis rupture, the dying cells release their contents and their remains which are left behind, which act as immunogenic debris that is able to attract (or aggravate) an immune inflammatory response (Najafov et al., 2017). The cell death program operative during autophagy functions as an organelle recycling system that helps cells cope with challenges such as nutrition destitution (White, 2015). These three distinct cell death-triggering mechanisms must be variably evaded or dampened by cancer cells in order to continue their proliferative expansion and phenotypic evolution to states of intense malignancy. Oncogenic and tumor-suppressive exosomal ncRNAs may act as both a promoter and inhibitor of these cell death mechanisms.
miRNAs
miR-205 might function as a proto-oncogene in ovarian cancer progression. Ovarian cancer cell SKOV3 cell-derived exosome shuttle miR-205 could attenuate the apoptosis of receptor SKOV3 cells via regulating VEGFA (Wang et al., 2019). Melanoma stem cells deliver their exosomal miR-4535 to melanoma parental cells (MPCs), where it amplifies metastatic colonization of MPCs by inhibiting the autophagy pathway (Liu et al., 2022). Human umbilical cord mesenchymal stem cells (hUCMSC)-derived exosomal miR-224-5p modulates breast cancer autophagy in cells by involving HOXA5 (Wang et al., 2021). Silencing of exosomal miR-25 released from cancer cells targets SIK1 and promotes the apoptotic sensitivity of liver cancer stem cells in order to promote HCC tumorigenesis (Fu et al., 2022). Exosomes released from cancer-associated fibroblasts (CAFs) loaded with miR-181d-5p could be taken up by breast cancer cells and impair apoptosis via downregulating CDX2 and HOXA5 (Wang et al., 2020). CAF-exosomal miR-148b-3p has been reported to reduce apoptosis in bladder cancer cells. This effect can be reverted by PTEN overexpression by downregulation of the Wnt/β-catenin pathway (Shan et al., 2021).
miR-1910-3p has a tumor-suppressive role as it could be transported via exosomes to mammary epithelial cells and breast cancer cells, where it results in suppression of the MTMR3 level, and activates the NF-κB and wnt/β-catenin signaling pathway, hence promoting autophagy in cancer cells (Wang et al., 2020). Ectopic expression of miR-451a is able to perturb HCC growth and tumor angiogenesis via apoptosis, both in vitro and in vivo, with LPIN1 being its target gene (Zhao et al., 2019).
lncRNAs
Exosome-encapsulated lncRNA CEBPA-AS1 could inhibit tumor apoptosis and works as a non-invasive biomarker in GC (Piao et al., 2020). Mesenchymal stromal cell (MSC)-secreted extracellular vesicles promote multiple myeloma carcinogenesis via lncRNA LINC00461, that has substantially enhanced levels in patients with multiple myeloma. LINC00461 enhances progression and inhibits apoptosis of multiple myeloma cell lines. It exerts its effect via modulating miR-15a/16 and BCL-2 (Deng et al., 2019). Knockdown of lncRNA SBF2-AS1 in exosomes produced by M2 macrophages promotes miR-122-5p expression and decreases XIAP levels, indicating lncRNA SBF2-AS1 could inhibit apoptosis by modulating XIAP via miR-122-5p in pancreatic cancer (Yin et al., 2020). LINC00470 plays an oncogenic role in glioblastoma multiforme (GBM)-derived exosome by binding to miR-580-3p, regulating the levels of WEE1 and activating the PI3K/AKT/mTOR pathway. Hence, it inhibits autophagy and enhances the progression of glioma cells (Ma et al., 2021).
Certain lncRNAs could promote cell death of tumor cells by inducing autophagy, apoptosis, or/and necrosis and, hence, play a tumor-suppressive role. SNHG9 is overexpressed lncRNA in papillary thyroid cancer (PTC) cell-derived exosome, where it enhances cell apoptosis, while, on the other hand, it inhibits cell autophagy of normal thyroid epithelial cell nthy-ori-3 via the YBOX3/P21 pathway (Wen et al., 2021). Tumor-associated macrophages (TAM)-exosomes consist of high levels of lncRNA H19, which significantly enhances autophagy in bladder cancer cells when treated with TAM-exosomes (Guo et al., 2022). In osteosarcoma, exosomal lncRNA OIP5-AS1 could promote autophagy via miR-153 and ATG5 (Li et al., 2021).
circRNAs
Exosomal circRNA_400068 exerts an oncogenic effect via inhibiting apoptosis and, thereby, boosting the progression of renal cell carcinoma through the miR-210-5p/SOCS1 axis (Xiao and Shi, 2020). Exosomal circ-PVT1 functions in cisplatin resistance by regulating apoptosis and autophagy through the miR-30a-5p/YAP1 axis in GC (Yao et al., 2021). Similarly, circRNA UBE2Q2 enhances the malignancy of GC through negative regulation of STAT3-mediated autophagy and glycolysis (Yang et al., 2021). Decreased circRELL1 is related with an advanced tumor node metastasis (TNM) stage and a bleak outcome while elevated circRELL1 promotes EPHB3 to suppress GC autophagy by acting as a sponge of miR-637 in vitro and in vivo (Sang et al., 2022).
Enabling replicative immortality
Cellular senescence, which restricts the cell division number, functions as a barrier to cancer progression. This natural process, known as the Hayflick phenomenon, is associated with aging, resulting in telomere shortening (Calcinotto et al., 2019). Cancer cells are widely believed to have circumvented this brake and, hence, have unlimited replicative potential. Telomerase, which inserts telomeric repeats to the termini of telomeric DNA, is overexpressed in most of human malignancies and results in an unlimited replication potential (Loaiza and Demaria., 2016).
miRNAs
Human telomerase reverse transcriptase (hTERT), a c-Myc target gene, facilitates cancer cell immortality by promoting the generation of telomeric DNA. miR-185, a newly discovered pro-senescence miRNA present in human serum, when secreted via exosomes, targets POT1 to promote telomere dysfunction and cellular senescence. Moreover, the enhanced expression of miR-185 causes telomere dysfunction in cancer cells and primary human somatic cells (Li et al., 2020). In cervical cancer cells, telomerase is found to be linked with the regulation of radio-sensitivity by downregulating hTERT. Cervical cancer cells may be radio-sensitized by administration of exosomal miR-22. Overexpressing miR-22 expression via transfection results in the reduction of the MYCBP gene expression and consequent suppression of hTERT, and hence, enhancement of radio-sensitivity in cervical cancer cells (Konishi et al., 2020). Upon administration of exosomal miR-22 to the SKG-II cells, the expression of MYCB and hTERT is markedly reduced and is correlated with increased radio-sensitivity.
lncRNAs
A known lncRNA, TERRA (telomeric repeat-containing RNA) regulates replicative immortality by inhibiting telomerase. TERRA is transcribed from telomeric ends and serves as a tumor suppressor, which can negatively regulate the activity of telomerase. A cell-free form of TERRA (cfTERRA) composed of a nucleoprotein component of extracellular microvesicular exosomes in cancer cell culture and human blood plasma has been reported. These cfTERRA-harboring exosomes were found to induce inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) (Wang et al., 2015).
circRNAs
circWHSC1, a highly expressed exosomal circular RNA in ovarian cancer, can act as a pro-tumorigenic circular RNA. It is capable of adsorbing miR-145 and miR-1182 and, thereby, upregulating the levels of downstream targets MUC1 and hTERT, enhancing cancer cell proliferation and invasion. Furthermore, peritoneal mesothelial cells serve as recipient cells and take up circWHSC1-rich exosomes (Zong et al., 2019).
Inducing angiogenesis
Tumor cells acquire the trait to induce angiogenesis to fulfill their elevated need for nutrients and oxygen, which would otherwise be limited by the intrinsic diffusion limit of oxygen and nutrients (Aguilar-Cazares, et al., 2019). By producing new blood vessels, tumor cells not only ensure they get oxygen and nutrients but also eliminate toxic metabolic waste and initiate the hematogenous metastatic process (Zuazo-Gaztelu and Casanovas, 2018). Angiogenesis induction is a crucial step in tumor development and progression and is fueled by a variety of cancer cell-derived signaling molecules. Exosomes impart both pro- and anti-angiogenic characteristics by modulating cellular contents and acting as cancer cell disposal units (Ludwig and Whiteside, 2018).
miRNAs
As a member of the miR-200 family, miR-141 governs a number of biological processes in both healthy and diseased situations. It does so by binding to specific targets and controlling distinct signaling pathways, particularly in areas like angiogenesis and tumorigenesis. Tumor exosome-encapsulated miR-141 facilitates angiogenesis and malignant development of lung cancer, with its target being GAX (Wang et al., 2021). Exosome-encapsulated miR-23a inhibited PTEN, accelerating the growth of GC by increasing angiogenesis (Du et al., 2020). miR-619-5p loaded in NSCLC-derived exosomes enhances angiogenesis and malignancy by inhibiting RCAN1 (Kim et al., 2020). miR-1290 packaged in exosomes can be transferred to endothelial cells and downregulate SMEK1, which in turn, results in increased tumor angiogenesis via a VEGFR2-mediated action (Wang et al., 2021). miR-210, encapsulated in hepatoma cell exosomes, may be delivered to endothelial cells and induce pro-angiogenesis effects via targeting SMAD4 and STAT6 (Lin et al., 2018).
In contrast, certain exosomal miRNAs are known to be negatively associated with angiogenesis and exert an antitumor effect. In nasopharyngeal carcinoma (NPC) carcinogenesis, tumor exosome-associated miR-9 possesses an extracellular anti-angiogenic function. Exosomal miR-9 suppresses angiogenesis in NPC via targeting MDK and modulating the PDK/AKT pathway (Lu et al., 2018).
lncRNAs
lncRNA RAMP2-AS1 participates in the genesis and proliferation of malignant tumors. Chondrosarcoma cell-derived exosomal lncRNA RAMP2-AS1 is shown to facilitate angiogenesis through the miR-2355-5p/VEGFR2 axis (Cheng et al., 2020). The hypoxic microenvironment drives tumor cells to generate exosomes and enhance tumor angiogenesis. In the hypoxic tumor microenvironment, the expression of lncRNAs varies, and some of them can be contained in exosomes. lncRNA UCA1 is elevated in exosomes released by hypoxic pancreatic cells and can be delivered to HUVECs, boosting angiogenesis by modulating the miR-96-5p/AMOTL2/ERK1/2 axis (Guo et al., 2020). Exosome-derived FAM225A has been suggested to be a therapeutic target for esophageal squamous cell carcinoma (ESCC) patients. It upregulates the NETO2 and FOXP1 levels by acting as a sponge of miR-206 and accelerating ESCC progression and angiogenesis (Zhang et al., 2020).
circRNAs
Exosomal circRNA-100338 is elevated in highly malignant hepatocellular carcinoma (HCC) cells compared with low metastatic ones. It improved the metastatic capability of HCC cells and promoted angiogenesis of human umbilical vein endothelial cells (HUVECs) (Huang et al., 2020). Internalized circRNA-100338 interacts with NOVA2, an RNA-binding protein that regulates vascular formation, in HUVECs transfected with biotin-labeled circRNA-100338. The plasma levels of circ-29 in GC patients are elevated as compared to those of normal humans. The elevated circ29 acts as a competitive endogenous RNA (ceRNA) by combining with miR-29a to enhance the highly malignant phenotypes of HUVEC cells by the VEGF pathway, while downregulated circ29 is found to have the opposite effect (Li et al., 2021).
Activating invasion and metastasis
Invasion and metastasis is a multi-stage process, involving neoplastic cell ingression into the vasculature, persistence in the circulation, subsequent invasion, and eventually colonization of remote organs, cancer cell dispersal, and stabilization in the microenvironment in order to facilitate tumor progression (Fares et al., 2020). Numerous research works have indicated that the tumor cells interact with one another, and the neighboring stromal cells may result in the development and progression of metastatic tumor. This invasion–metastasis cascade encompasses a variety of biological alterations that facilitates cancer cell penetration into healthy tissues prior to intravasation into blood and lymphatic vessels (Krakhmal et al., 2015). Exosomal ncRNAs play a critical function in the tumor microenvironment and the procedure of promoting and impeding malignant tumor metastasis (Fan et al., 2018).
miRNAs
miR-208a encapsulated in exosomes derived from BMSCs has been shown to foster the malignant phenotype of osteosarcoma cells. PDCD4 is the target of miR-208a, as it is elevated, and the ERK1/2 signaling pathway is suppressed after being treated with miR-208a inhibitor-loaded exosomes (Qin et al., 2020). The exosomes loaded with miRNA released from malignant oral squamous cell carcinoma (OSCC) cells promote cell growth, migration, and invasion of cancer cells. By specifically targeting DENND2D expression via binding to its 3′UTR, exosomal miR-1246 was showcased as a metastasis-supporting characteristic, which involves enhanced invasion in OSCC (Sakha et al., 2016). The plasma levels of exosomal miR-92a-3p are diminished post tumor resection, and its high exosomal level is strongly correlated with HCC metastasis, implying that exosomal miR-92a-3p can serve as a dynamic and effective diagnostic biomarker for HCC (Yang et al., 2020). Exosomes produced from high-metastatic HCC communicate metastatic capacity to recipient cancer cells by transmitting miR-92a-3p. Through selective suppression of the tumor suppressor gene PTEN, miR-92a-3p-activates Akt/Snail, thereby promoting EMT and carcinogenesis of HCC.
miR-3940-5p behaves as a tumor suppressor. Exosomes from mesenchymal stem cells deliver miR-3940-5p to colorectal cancer cells (CRCs), resulting in ITGA6 downregulation and TGF-β1 signaling impairment, and ultimately, the decline in invasive and metastatic potential of CRC cells and tumors (Li et al., 2021). It is found that miR-3607-3p is concentrated in the natural killer (NK) cell-derived exosomes and transferred to pancreatic cancer (PC) cells. It is demonstrated to suppress proliferation, invasion, and migration of PC cells by using IL-26 as a direct target (Sun et al., 2019).
lncRNAs
In consistence with various studies, it has been indicated that exosomal lncRNAs play a role in the invasion and metastasis of numerous cancers. Castration-resistant prostate cancer cell-secreted exosomes were found to be directly internalized into prostate cancer (PCa) cells, transferring HOXD-AS1 and modulating the miR-361-5p/FOXM1 axis (Jiang et al., 2021). HIF-1α elevates the PCGEM1 levels under hypoxic conditions, and it can be enveloped into exosomes, which promotes GC cell invasiveness and metastatic potential. PCGEM1 is able to maintain the stability and SNAI1 from getting degraded. SNAI1 facilitates EMT and, hence, enhances the invasion and metastatic potential of GC (Piao et al., 2021). Elevated levels of lncRNA LINC01711 in ESCC tissues are linked with poor prognosis. The progression and migration of ESCC cell lines is inhibited by silencing LINC01711. It is established as a ceRNA that represses miR-326 and upregulates the expression of fascin actin-bundling protein 1 (FSCN1) and hence improves the incidence and progression of ESCC (Xu et al., 2021).
circRNAs
The circular RNA hsa-circ-0004277 encourages epithelial–mesenchymal transition (EMT) in peripheral cells and a malignant phenotype in hepatocellular carcinoma. It has been demonstrated that the circ-0004277-exosome from HCC cells increases circ-0004277 expression in HL-7702 cells, induces invasiveness, and boosts the EMT process (Zhu et al., 2021). Hypoxia-derived exosomal circ-133 in CRC is delivered into normoxic cancer cells and enhances cell migration via the miR-133a/GEF-H1/RhoA axis (Yang et al., 2020). Exosomal circ007293 can be transported to papillary thyroid carcinoma (PTC) cells and participate in altering PTC cell malignant phenotypes. Exosomal circ007293 inhibits miR-653-5p activity via acting as a sponge for miR-653-5p, and hence, enhancing PAX6 levels in PTC cells and increasing tumor cell metastasis and EMT (Lin et al., 2021). Exosomal circ-PDE8A stimulates tumor invasion by miR-338/MACC1/MET/AKT or ERK pathways. Circulating tumor-secreted circ-PDE8A can be secreted into the bloodstream via exosome transfer, and plasma exosomal circ-PDE8A is associated with tumor invasion and prognosis in patients with pancreatic ductal adenocarcinoma (PDAC) (Li et al., 2018).
Reprogramming of energy metabolism
Cancer cells routinely modify their metabolism in order to generate adenosine triphosphate (ATP) promptly for boosting macromolecular synthesis and maintaining an optimum homeostatic redox balance (Martinez-Outschoorn et al., 2017). Unlike normal cells, tumor cells display different metabolic characteristics, involving excessive glucose uptake, a greater reliance on aerobic glycolysis, elevated glutamine uptake and glutaminolysis, and altered lipid metabolism (Vander Heiden and DeBerardinis, 2015). The primary objective of metabolic reprogramming in cancer cells is to maintain balanced energy expenditure and enable biomass production in order to facilitate cancer cell proliferation (Pavlova and Thompson, 2016).
miRNAs
Exosomal miR-105 is stimulated by the oncoprotein MYC in cancer cells and promotes MYC signaling in CAFs to drive a metabolic program. It enables CAFs to demonstrate varied metabolic characteristics in response to alterations in the metabolic environment. In ample availability of nutrients, miR-105-reprogrammed CAFs increase glucose and glutamine metabolism to fuel neighboring cancer cells. Upon encountering a decrease in nutrient levels and the build-up of metabolic byproducts, the CAFs aid in conversion of lactic acid and ammonium into energy-rich metabolites to detoxify metabolic wastes. Thus, miR-105-directed metabolic reprogramming of stromal cells promotes tumor growth by controlling the metabolic environment (Yan et al., 2018). Researchers explored whether melanoma-derived exosomes could alter normal human adult dermal fibroblast (HADF) metabolism, hence adding to optimal pre-metastatic niche conditions. Their observation of enhanced glycolysis and diminished OXPHOS in normal HADF in contact with human melanoma-derived exosomes (HMEX) and enhancement of the “Warburg effect” is in consistence with results regarding the capacity of tumor exosomes to reprogram stromal cells. They demonstrated that HMEX and specifically its microRNAs miR-155 and miR-210 are able to remodel the metabolism of stromal fibroblasts in order to promote aerobic glycolysis (Shu et al., 2018). Pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) is reduced dramatically in cisplatin (DDP)-resistant SKOV3 and DDP-resistant ovarian tumor tissues, whereas miR-21-5p is considerably enhanced as compared to controls. Moreover, miR-21-5p is highly elevated in SKOV3/DDP exosomes relative to SKOV3 exosomes. It has been indicated in a study that SKOV3/DDP exosome therapy reduced the cisplatin sensitivity of SKOV3 cells and increased cell survival and glycolysis through PDHA1 inhibition via exosomal miR-21-5p. This miRNA from DDP-resistant SKOV3 OC cells was reported to induce glycolysis and suppress chemosensitivity of its progenitor SKOV3 cells via targeting PDHA1 (Zhuang et al., 2021).
lncRNAs
Malignant cells and CAFs established a network of interactions inside the microenvironment of a tumor. The findings established by a group of researchers suggest a novel metabolic modulatory role of CAF–exosomal lncRNA in breast malignancies by demonstrating that the SNHG3/miR-330 signaling axis altered the metabolism and proliferation of breast tumor cells by altering PKM at the post-transcriptional level (Li et al., 2020).
circRNAs
Generally, metastatic neoplasms, like colorectal cancer (CRC), depend on ATP synthesis via aerobic glycolysis for accelerated growth. From a panel of dysregulated circRNAs, ciRS-122 has been projected to sponge miR-122 in drug resistance-resistant CRC cells. Furthermore, the ciRS122 level in serum exosomes has been verified to be positively linked with chemoresistance. Exosomes could deliver ciRS-122 from drug-resistant cells to drug-sensitive cells, where glycolysis and drug resistance are augmented by inhibiting miR-122 and upregulating PKM2. Furthermore, the suppression of ciRS-122 significantly decreases glycolysis and reverses oxaliplatin resistance in CRC (Wang et al., 2020).
circ_0094343 is considerably downregulated in CRC and when transported by exosomes, it plays a suppressive function against the aggressiveness of HCT116 cells. It sponges miR-766-5p, which targets and regulates TRIM67. Moreover, mechanistic validation indicated that circ_0094343 can repress HCT116 cell proliferation, clone formation, glycolysis, and chemotherapy resistance through the miR-766-5p/TRIM67 axis (Li and Li, 2022).
Evading immune destruction and promoting tumor inflammation
Due to its ability to evade immune detection and generate an immunosuppressive environment, cancer can hinder attempts to mount a robust antitumor response. Immune escape, according to the immune-editing notion, is essential for tumor survival (Vinay et al., 2015). Tumor immune escape (TIE) mechanisms include abnormalities in tumor antigen presentation that allow tumors to avoid immune system identification, perturbations in the tumor death pathway to enhance resistance to cytotoxic immune responses and metabolic aberrations to promote tumor evasion, and establishment of stem cell-like phenotypes in order to avoid immune-based detection and elimination (Shimizu et al., 2018). Moreover, TIE is influenced by various cytokines in the tumor microenvironment (TME), aberrant expression of immunological checkpoint molecules on tumor or immune cell surfaces, and certain immunosuppressive cells. These characteristics may combine to facilitate TIE, causing a low rate of response to immunotherapy in many cancers (Muenst et al., 2016). Exosomal ncRNAs involved in TIE are currently emerging as attractive prospective targets for anticancer treatment. Several investigations have found that exosomal ncRNAs play a crucial role in TIE (Chen et al., 2019).
miRNAs
Despite their role as a barrier to the effector arm of the antitumor immune response, the immunosuppressive mechanism of lymphatic endothelial cells during tumorigenesis within the microenvironment is poorly defined. The intercellular crosstalk within the TME has been attributed to exosome-derived miRNAs. A decrease in CD8+ T cell immunity by activation of JAK2/STAT3 signaling is triggered by the exosomal microRNA miR-1468-5p, released by cervical cancer cells. The microRNA augmented the PD-L1 expression and vascularization within the lymphatic system by suppressing HMBOX1-SOCS1 expression. The findings lend credence to a mechanism for the growth of tumors dependent on lymphatic immunosuppression (Zhou et al., 2021). Similarly, miR-1290 encapsulated within the GC cell-derived extracellular vesicle and lowered the proliferation of T cells by modulation of the Grhl2/Zeb1/PD-1 axis, facilitating the immune evasion (Liang et al., 2021).
MSCs are capable of suppressing the immune system and aiding tumor cells in evading immunological responses. An interaction strategy between colorectal cancer cells and MSC-EVs has been presented, in which miR-222 originating from MSC-EVs commits the post-transcriptional regulation on ATF3, which, therefore, activates the AKT pathway and encourages the tumorigenesis of CRC and immune evasion (Li S. et al., 2021). Gastric cancer (GC) extracellular vesicle (EV) encapsulated miR-675-3p aid in the immune evasion of GC cells by repression of CXXC4 and boosting the expression of PD-L1 via the MAPK signaling pathway. The favorable cytokine profile in the TME triggers the rapid amplification of activated cytotoxic NK cells, which is perceived as an important prognostic indication (Li et al., 2020). Moreover, miR-21 conveyed by BMDM exosomes accelerates glioma cell growth and inhibits apoptosis by limiting PEG3 (paternally expressed gene 3). This further facilitates immune escape of glioma cells by increasing the tumor burden and expression of PCNA and Ki67, prominent nuclear markers to demonstrate proliferative phase of the cell cycle, and decreasing the CD8+ T cell population in glioma. Depleting miR-21 or reintroducing PEG3 reinstated the proliferative capacity of CD8+ T cells and boosted the cell cytotoxicity and IFN-γ levels, while decreasing the activity of cancer cells and the level of TGF-β1, as demonstrated by Yang et al. (2020).
Several miRNAs with tumor-suppressing ability act to regulate the immune suppressive trait of cancer. Adipose-derived mesenchymal stem cells (adMSCs) have immunomodulatory property and the ability of triggering de novo regulatory T cells. Exosomes derived by adMSCs encapsulating miR-15a are taken by CRC cells, resulting in a decline of the KDM4B and HOXC4 levels, which in turn reduces the production of PD-L1 that prevents CRC cells from immune evasion. Additionally, this cascade of actions also inhibits CRC cell malignancy by stifling their proliferation, invasion, and metastasis (Liu et al., 2021). Based on the findings, tumor suppressor miR-186 entrapped in NK cell-derived exosomes has diminished levels in high-risk neuroblastoma. The longevity and motility of MYCN-amplified neuroblastoma cells are impaired by ectopic delivery of miR-186 to NK cells and neuroblastoma cells, and TGF-dependent suppression of NK cytotoxicity is averted. Irrespective of the activation status of NK cells, the exosomes generated by them are capable of eliminating MYCN-amplified neuroblastoma cell proficiently, apparently suggesting that the miR-186 level is accountable for the cytotoxic effect, and NK exosomes are resilient to TGF-β1-dependent suppression (Neviani et al., 2019).
lncRNAs
γδT cells act as a prominent constituent of tumor-infiltrating lymphocytes (TILs) in breast cancer. The subpopulation CD73+γδT1 cells remain the major regulatory T cells (Tregs) in breast cancer. The expression of SMAD5 in γδT1 cells gets upregulated via transfer of exosomal lncRNA SNHG16 that serves as a ceRNA by acting as a sponge of miR-16–5p and, hence, potentiates the TGF-β1/SMAD5 pathway to enhance CD73 levels (Ni et al., 2020).
NK cells are an innate part of the immune system and are in command of eradicating cancer cells either directly or by sequestering cytokines upon activation. In malignancies, like ESCC, NK cell functionality is repressed or dysfunctional, leading to immune escape (Kim., 2007). Exosomes released by metastatic CRC cells have a proven role in immunologically dampening NK cells, as well as a strategy to accomplish this goal. The consequences of exosomes on NK cells have been determined by tracking their proliferative ability, cytotoxic capacity, secretion of interferons (IFN-γ), and perforin and granzyme B expression levels. Employing next-generation sequencing, the vital lncRNAs within exosomes and the genes they influence have been traced out. Secreted exosomes by CRC cells have indeed been demonstrated to transmit the lncRNA SNHG10 that impairs NK cell activity and enhances tumor growth. To stimulate the TGF-signaling pathway, it facilitated the production of inhibin subunit beta C (INHBC), which in response suppressed NK cytotoxicity (Huang et al., 2021).
Numerous studies have shown PD-1 as the predominant inhibitory receptor in tumor immunology. Exosomal participation in the KCNQ1OT1/miR-30a-5p/USP22 axis-mediated control of PD-L1 provides a deeper understanding of immune escape of CRC. The expression of lncRNA KCNQ1OT1 was found to be markedly increased simultaneously in both, exosomes generated from tumor cells and tumor tissues. The lncRNA KCNQ1OT1 supports colorectal tumorigenesis by modulating PD-L1 ubiquitination and limiting CD8+ T-cell response via the autocrine effect of CRC exosomes (Xian et al., 2021). The prominent lncRNA TUC339, overexpressed in exosomes derived of HCC cells, promotes HCC cellular proliferation and obstructs cell adherence with an extracellular matrix on transmission to adjacent tumor niche via exosomes. On the basis of recent evidences, the transfer of lncRNA to the immune cells like macrophages has been promulgated via exosomes, leading to alteration in their phenotype. For example, in macrophages, lncRNA TUC339 modulates cytokine secretion, phagocytic activity, and polarization toward the M1/M2 state (Li et al., 2018). In a recent study, exosomes secreted by renal cell carcinoma (RCC) encases lncARSR, which leads macrophages to polarize from M1 to M2, to secrete cytokines, engage in phagocytosis, and initiate angiogenesis, hence substantially contributing in the development of malignancies. Additionally, by serving as competing endogenous RNA for miR-34/miR-449-5p, lncARSR encourages polarization of macrophages by activating the STAT3 pathway (Zhang et al., 2022).
circRNAs
PD1 is a negative costimulatory receptor that is important for suppressing T-cell activation and is associated with SHP2. In addition, SHP2 plays an imperative role in oncogenic KRAS-driven malignancies, promoting tumor development. Enhanced circUSP7 levels blunt the clinical efficiency of anti-PD-1 therapy orchestrated via the exosomal circUSP7/miR-934/SHP2 axis. In NSCLC patients, circUSP7 promotes tumor progression and is critical for immune evasion (Chen et al., 2021). Similarly, circGSE1 facilitates immunological escape of HCC by facilitating the proliferative ability of Tregs via modulating the miR-324p/TGFBR1/Smad3 axis (Huang et al., 2022). Correspondingly, in patients with HCC, enhanced levels of circUHRF1 imply NK cell malfunction and a poor clinical outlook. CircUHRF1 restricts NK cell-derived IFN-γ and TNF-α secretion and is predominantly secreted in plasma exosomes of HCC patients. Elevated levels are linked to lower the NK cell percentage and tumor infiltration. Furthermore, circUHRF1 inhibits NK cell function by elevating TIM-3 levels by the inhibition of miR-449c-5p (Zhang et al., 2020).
By serving as a miR-141-3p sponge, exosomal hsa-circ-0085361 (circTRPS1) has been associated with metastatic spread of bladder cancer cells. GLS1-mediated glutamine metabolism was revealed to be implicated in circTRPS1-mediated perturbations via integrated metabo-transcriptomics study. Exosomal-circTRPS1 secreted by knocked-down breast cancer cells hindered the exhaustion of CD8+ T lymphocytes and impeded breast cancer cell’s propensity to become malignant. Therefore, it might be concluded that the circTRPS1/miR-141-3p/GLS1 axis regulates the equilibrium of intracellular reactive oxygen species (ROS) generation and exhaustion of CD8+ T cell via breast cancer exosomes (Yang et al., 2022). It has also been suggested that exosome-encapsulated circ_6790 released from MSC downregulates S100A11 in PDAC cells and, thereby aids in immune evasion. Along with the antitumor effects of circ_6790-loaded exosomes derived from BM-MSC, their supporting role in enhancing the killing effects of activated T cells has been demonstrated. Such exosomes diminished the levels of PD-L1 and CTLA-4 in PDAC cells co-cultured with exosomes and T cells in addition to reducing the secretion of IFN-γ and TNF-α (Gao et al., 2022).
CONCLUSION
Initially, cancer hallmarks were defined as the attainment of functional abilities that enable cancer cells to survive, proliferate, and metastasize. Later on, it has been found that exosomes facilitate information exchange among cells facilitating tumor cell development and progression. Recent years have seen a surge in studies focusing on exosomal ncRNAs, revealing important functions of these molecules in the progression of cancer and suggesting potential new uses for them. Among the several ncRNAs, miRNAs, lncRNAs, and circRNAs are considered the mainstream regulatory molecules. Exosomal ncRNAs play a role in oncogenic spread, immunological regulation, and the establishment of pre-metastatic niches.
In this review, we have called attention to the biological attributes of exosomes and showcased an extensive update about the roles of exosomal ncRNAs in tumor hallmarks, especially growth, metastasis, angiogenesis, replicative immortality, cell death, metabolic regulation, and immune modulation. The exosomal ncRNA interacts with the promoter or enhancer region and modulates the gene expression. The released ncRNAs may act as a tumor promoter in one cancer and as a tumor suppressor in another sort of cancer. This finding highlights the possibility that the roles and expression patterns of at least certain exosomal ncRNAs in cancer development and advancement are context-dependent. Concentrating on their roles as tumor suppressor and tumor promoter genes, here, we examine the functional relationship between exo-ncRNAs implicated in cancer development and progression.
It should be noted that a range of exosomal constituents can be exploited as a biomarker (diagnosis and prognosis) and treatment target of cancer. Several exosomes encapsulated ncRNAs can serve as predictive markers of associated cancers. Endogenous ncRNAs contained within circulating exosomes may also serve as a source of valuable information and can be targeted by a specialized treatment protocol. It may help in designing specific drugs and other specific inhibitors that are closely related to these RNAs, aiding in advancement toward personalized treatment regimens.
In addition to breakthroughs in mechanistic research, a key difficulty in the clinical setting that needs attention is the limitation of potentially harmful RNAs and the optimization of medication doses for exosomal therapy. Another uncharted concern in the sector is the quest to guarantee the quality and safety of new methodology applied for the isolation and utilization of exosomes. As we gain a greater understanding of the nature of exosomes, diagnostic and therapeutic tools are also advancing. Future research will most likely focus on in vivo models and clinical applications to help resolve these challenges. Exploratory research in this emerging segment is anticipated to provide knowledge that is highly clinically relevant and has the capability to positively transform the lives of cancer patients.
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Background: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common type of cancer worldwide. Its highly aggressive and heterogeneous nature and complex tumor microenvironment result in variable prognosis and immunotherapeutic outcomes for patients with HNSCC. Neurotrophic factor-related genes (NFRGs) play an essential role in the development of malignancies but have rarely been studied in HNSCC. The aim of this study was to develop a reliable prognostic model based on NFRGs for assessing the prognosis and immunotherapy of HNSCC patients and to provide guidance for clinical diagnosis and treatment.
Methods: Based on the TCGA-HNSC cohort in the Cancer Genome Atlas (TCGA) database, expression profiles of NFRGs were obtained from 502 HNSCC samples and 44 normal samples, and the expression and prognosis of 2601 NFRGs were analyzed. TGCA-HNSC samples were randomly divided into training and test sets (7:3). GEO database of 97 tumor samples was used as the external validation set. One-way Cox regression analysis and Lasso Cox regression analysis were used to screen for differentially expressed genes significantly associated with prognosis. Based on 18 NFRGs, lasso and multivariate Cox proportional risk regression were used to construct a prognostic risk scoring system. ssGSEA was applied to analyze the immune status of patients in high- and low-risk groups.
Results: The 18 NFRGs were considered to be closely associated with HNSCC prognosis and were good predictors of HNSCC. The multifactorial analysis found that the NFRGs signature was an independent prognostic factor for HNSCC, and patients in the low-risk group had higher overall survival (OS) than those in the high-risk group. The nomogram prediction map constructed from clinical characteristics and risk scores had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and expression of immune checkpoints and were more likely to benefit from immunotherapy.
Conclusion: The NFRGs risk score model can well predict the prognosis of HNSCC patients. A nomogram based on this model can help clinicians classify HNSCC patients prognostically and identify specific subgroups of patients who may have better outcomes with immunotherapy and chemotherapy, and carry out personalized treatment for HNSCC patients.
Keywords: head and neck squamous cell carcinoma, neurotrophic factor, prognostic signature, nomogram, tumor microenvironment, immunotherapy
1 INTRODUCTION
Head and neck cancer is the seventh most common type of cancer in the world, with a high incidence in Southeast Asia, Brazil, and Central Europe (Kaidar-Person et al., 2018). An estimated 700,000 new cases in 2018 augur well for a serious prognosis, of which 350,000 are expected to be fatal (Bray et al., 2018). At present, the treatment of HNSCC has been based on various treatment methods, such as chemotherapy, radiotherapy, and photodynamic therapy, and the survival rate of HNSCC patients within 5 years after early disease treatment is 70–90% (Lim et al., 2017). However, due to its highly invasive and heterogeneous nature, the prognosis of patients with HNSCC remains poor (Liang et al., 2021). At the same time, most cases of HNSCC are diagnosed at an advanced stage with poor medical treatment and require surgery to dismember the organs needed to speak and swallow (Hashim et al., 2019). For individuals in countries with limited access to tertiary care centers, survival rates are 30%–40% (Sinha et al., 2003; Attar et al., 2010; Pruegsanusak et al., 2012; Nandakumar and Nandakumar, 2016). Although the recurrence rate is unacceptably high after the patient recovers. In fact, nearly half of oral cancer patients will have a recurrence (Kademani et al., 2005; Koo et al., 2006; Haddad and Shin, 2008), and the 5-year survival rate in this condition is 35%–45%, which is frustrating (Kademani et al., 2005; Bell et al., 2007). To quell these adverse consequences, and to recognize that HNSCC is one of the most inflammatory tumor microenvironments (TME) of all solid tumors, treatment of head and neck cancer has begun to shift to immunotherapy (Horton et al., 2019). Now immunotherapy has become a model for cancer treatment and has received widespread attention as a precision medicine program for the treatment of solid malignancies (Xie et al., 2017). Since risk stratification based solely on tumor size, lymph node and distant metastases (TNM staging), and histological grade are not sufficient to predict prognosis in patients with HNSCC, such as squamous cell carcinoma of the tongue versus squamous cell carcinoma of the oral cavity, therefore there is an urgent need for more accurate models that predict prognosis (Kim et al., 2017; Gao et al., 2022). Nerve growth (Tumor neurogenesis) in the tumor microenvironment has recently been shown to be critical for cancer progression. Neurotrophic factors such as nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF), are considered drivers of neurogenesis during development and regeneration, playing a key role in the crosstalk between tumor cells and nerves (Gao et al., 2018). Studies have shown that nerves release neurotransmitters to promote tumor growth, and tumors secrete neurotrophic factors from each other, stimulate nerve growth and tumor cells to stimulate proliferation, survival, migration, and/or invasion, and favor tumor angiogenesis, while neurotrophic growth factors secreted by cancer cells can also drive the growth of nerves in solid tumors (Jobling et al., 2015; Chopin et al., 2016; Griffin et al., 2018). The effect of growing nerves on tumors has also been studied in other cancers, such as tumor cells and nerve endings such as laryngeal cancer and colorectal cancer by secreting and absorbing neurotrophic factors; Causing peripheral invasion (PNI) and promoting tumor progression (Hou et al., 2021; Zhang et al., 2022a). Tumor denervation of prostate, stomach, and pancreatic cancers reduces tumor growth and invasion; The presence of nerves is associated with metastasis and increased tumor grading (Rowe et al., 2020). Some studies have shown that BDNF protects neuroblastoma cells from chemotherapeutic agent-induced cytotoxicity. In the Triple-Negative Breast Cancer (TNBC) brain metastasis model, BDNF was shown to autocrine regulate the expression of the BDNF-tumor cell trophic carnosine kinase receptor B (TrkB) gene, thereby increasing the migration activity of cells (Zimmer, 2021). Nerve growth factor (NGF) from cancer cells causes increased nerve density in the tumor microenvironment (Rowe et al., 2020), while nerve cells expressing nerve growth factor (NGF) receptors of NTRK1 (TRKA) and NGFR (p75NTR) were found, and it was thought that there was a correlation between a large amount of NGF produced by cancer cells and the presence of nerves (p = 0.02) (Griffin et al., 2020). NGF has a promoting effect on various cancers, and anti-NGF has been shown to reduce tumor proliferation (Ye et al., 2011). In addition, we also found that NGF has the potential to selectively affect the proliferation of breast cancer cells rather than normal breast epithelial cells, so NGF may be the best treatment target for specific cancer types; The effect of NGF on cancer cells varies depending on the expression status of TrkA and/or p75NTR and varies with the use of chemotherapy drugs, and may have a greater impact on immune or drug therapeutic effects (Noh et al., 2017). This neurotrophic effect of NGF in cancer may be associated with a large number of human malignancies as well as other neurotrophins and may have an effect on cancer pain (Griffin et al., 2018).
In recent years, with the development of molecular biology techniques and bioinformatics, new biomarkers have the potential to become effective and specific prognostic factors for different types of cancer, including HNSCC. As far as we know, although there are a large number of studies exploring the mechanism and role of neurotrophic factors in various cancers, research on determining the prognosis of HNSCC as a target for immunotherapy through neurotrophic factor-related genes is still a blank. In view of the fact that its value and mechanism in the diagnosis and prognosis of HNSCC have not yet been clarified, this study used the TCGA-HNSC dataset to comprehensively analyze the relationship between the expression differences of NFRGs and the prognosis of HNSCC and screened out 18 reliable NFRGs. On this basis, we further constructed a prognostic model based on NFRGs, made a risk-scoring formula, and analyzed the correlation between the prognosis model and the immune microenvironment, gene mutation burden, and immunosuppressive point therapy, as well as the sensitivity of chemotherapy drugs. Through the comprehensive analysis of genomic data and clinically relevant data, we aim to demonstrate the value of NFRGs in predicting the prognosis of patients with HNSCC and improving the diagnosis of patients with HNSCC, and exploring more effective personalized treatment options.
2 MATERIALS AND METHODS
2.1 Data sources
We downloaded the TCGA-HNSC cohort from the TCGA database (https://portal.gdc.cancer.gov/), which includes 502 HNSCC samples and 44 normal samples. Of these, 501 HNSCC samples with complete clinical information were included in the follow-up analysis. The sample size of HNSCC patients at the M stage varied greatly. This stage was consequently excluded from the analysis. Based on relevant clinical information, the HNSCC cohort was randomly divided into training risk groups and test risk groups using the cart R software package. The ratio is 7:3. The model is externally validated using the GSE41613 dataset collected in GEO (Gene Expression Omnibus) as a validation set (N = 97).
2.2 Model construction
The model was constructed using univariate Cox regression analysis to screen for prognostically associated neurotrophic factor-related genes in the HNSCC cohort. Subsequently, neurotrophic factor-related genes (p < 0.05) significantly associated with prognosis in patients with HNSCC were incorporated into the Least Absolute Shrinkage and Selection Operator (LASSO) COX regression models, and the key genes and their regression coefficients were determined using the R package “glmnet” (Friedman et al., 2010). The risk fraction is generated using the following formula: risk fraction = ExpressionmRNA1 × CoefmRNA1 + ExpressionmRNA2 × CoefmRNA2 +. . ExpressionmRNAn × CoefmRNAn。
2.3 Model formulas
The risk score of all patients is calculated according to the output model equation, and then the optimal cut-off value is calculated using the R packet “survminer” all HNSCC patients are divided into high-risk and low-risk groups, and the survival curves of high-risk and low-risk groups are plotted. PCA analysis using R software and “pec” R packages are used to calculate the c-index. Time-dependent ROC curve analysis was performed using the “survivalROC” R package to assess the predictive power of genetic traits.
2.4 Independent prognostic analysis and nomogram predictive model construction
Univariate Cox regression and multivariate Cox regression analysis were used to assess whether the risk score was an independent prognostic factor. Using the “rms” R packet, a line plot was constructed using risk score, age, tumor stage, and model gene expression to predict the overall survival at 1, 3, and 5 years in HNSCC patients in the TCGA dataset.
2.5 Immunoassay of risk signatures
Currently recognized methods, including XCELL (Aran et al., 2017; Aran, 2020), TIMER (Chen et al., 2018; Li et al., 2020), QUANTISEQ (Finotello et al., 2019; Plattner et al., 2020), MCPCOUNT (Dienstmann et al., 2019), EPIC (Racle et al., 2017), CIBERSORT (Chen et al., 2018; Zhang et al., 2022b) and CIBERSORT-ABS (Tamminga et al., 2020) is used to measure immune infiltration scores. Spearman correlation analysis was used to explore the correlation between risk fraction and immune cells. To distinguish the immune infiltrative status of patients in the high-risk and low-risk groups, we used a single-sample GSEA (ssGSEA) method to calculate the immune cell characteristics of patients with HNSCC. At the same time, we collected 19 inhibitory immune checkpoints with therapeutic potential from Auslander’s study to compare their differences between high- and low-risk groups (Auslander et al., 2018). We obtained the gene set associated with cancer-immune circulation from the website developed by Xu et al (http://biocc.hrbmu.edu.cn/TIP/) Xu et al (2018). and the gene set that was positively correlated with the clinical response to the anti-PD-L1 drug (atezolizumab) from the research features of Mariathasan (Mariathasan et al., 2018). Using the GSVA algorithm (Hänzelmann et al., 2013)to calculate the enrichment scores of genetic signatures positively correlated with the cancer immune cycle and immunotherapy between the high-risk and low-risk groups, the p-value <0.05 was considered to have a significant difference’. The ggcor'R software package is used to analyze the correlation between risk scores and the two genetic traits described above.
2.6 Somatic mutation analysis
We downloaded the mutation data available to patients with TCGA-HNSC from the TCGA Data Portal (https://portal.gdc.cancer.gov/). Somatic mutation data is stored in mutation annotation format (MAF), and we analyze mutation data from HNSCC samples using maftools (Mayakonda et al., 2018). We calculated the individual tumor mutation burden (TMB) score for each HNSCC patient and explored the relationship between risk score and TMB. The TMB score is calculated as follows: (Total Mutation/Total Coverage Base) × 10^6 (Robinson et al., 2017).
2.7 Drug sensitivity
The treatment response of patients in the high- and low-risk groups was assessed using the pRRophetic R software package, which was determined by each HNSCC patient in Cancer Drug Susceptibility Genomics (GDSC) (https://www.cancerrxgene.org/)and Cancer Therapeutics Response Portal (CTRP) (https://portals.broadinstitute.org/ctrp/) determined by the semi-maximum inhibitory concentration (IC50) (Geeleher et al., 2014).
2.8 Statistical analysis
Statistical analysis is carried out using R software v4.1.3. p-values < 0.05 are considered statistically significant, and FDR (false detection rate) q < 0.05 is considered statistically significant.
3 RESULTS
3.1 Identification of candidate NFRGs
Figure 1 shows the flow chart of the study protocol. To find biomarkers that can effectively predict the prognosis of HNSCC, we developed a risk score model based on neurotrophic factor-related genes to assess the prognosis of HNSCC patients. Clinical information and mRNA expression of 546 HNSCC samples were collected and downloaded from The Cancer Genome Atlas (TCGA). The gene set of neurotrophic factors was obtained from the Genecard database, which contains 2601 genes. A heat map was created based on the difference in mRNA expression between tumor samples (n = 502) and normal samples (n = 44) (Figure 2A). The differential expression analysis of genes based on |log2FC|>0.5 was performed on HNSCC tumor tissues by applying the “limma” R package, and 562 genes with up-regulated expression and 152 genes with down-regulated expression were obtained (Figure 2B). We performed univariate Cox analysis of differentially expressed NFRGs by the “survival” R package and extracted 305 prognostically relevant NFRGs (p < 0.05). Next, we subjected these 305 NFRGs to lasso regression analysis and obtained 31 NFRGs (Figures 2C,D), and further downscaled these high-dimensional data by a multifactorial Cox proportional risk regression model, and finally identified 18 NFRGs, namely TGFB1, IL10, CDKN2A, ADIPOQ, EPO CHAT, LPL, TAC1, CTSG, CYP2D6, DES, RNASE3, PGK1, SFRP1, TRIB3, TMEFF2, GRIA3, and EFNB2. And the corresponding regression coefficients coef were obtained as 0.2934, −0.9684, −0.0727, 0.3209, −0.3963, 0.3167, 0.1622, 1.5022, −0.1324, −0.4854, 0.0532, 0.8230, 0.3546, −0.0934, 0.3191 0.9016, −0.4756 and 0.2471. In multivariate Cox analysis, the linear prediction model was built based on 18 NFRGs weighted by their regression coefficients. 18 NFRGs weighted by their correlation coefficients were given by the formula: risk score as = (0.2934 × TGFB1 expression level) + (−0.9684 × IL10 expression level) + (−0.0727 × CDKN2A expression level) + (0.3209 × ADIPOQ expression level)+(−0.3963 × EPO expression level) + (0.3167 × CHAT expression level) + (0.1622 × LPL expression level) + (1.5022 × TAC1 expression level) + (−0.1324 × CTSG expression level)+(-0.4854 × CYP2D6 expression level) + (0.0532 × DES expression level) + (0.8230 × RNASE3 expression level) + (0.3546 × PGK1 expression level) + (−0.0934×SFRP1 expression level) + (0.3191 × TRIB3 expression level) + (0.9016 × TMEFF2 expression level) + (−0.4756 × GRIA3 expression level) + (0.2471 × EFNB2 expression level).
[image: Figure 1]FIGURE 1 | Workflow of the study.
[image: Figure 2]FIGURE 2 | Identification of candidate NFRGs. (A) Heat map of the difference in mRNA expression between tumor samples and normal samples. (B) Volcano map of NFRGs with differential expression. (C) Adjustment of parameters and (D) cross-validation in the LASSO model.
3.2 Validating the accuracy of the NFRGs model to predict patient prognosis
To verify the accuracy of the prognostic model we constructed, patients included in the study (n = 546) were randomly divided into training cohorts and test cohorts (train:test = 7:3). In the training cohort, mortality in surviving HNSCC patients increased with increased risk (Figures 3A,B). We then constructed a time-dependent receiver operation characteristics (ROC) curve and found that both the ROC curve of the GEO cohorts and the ROC curve of the TCGA cohorts show that the performance of the prognostic signature we constructed is very prominent (Figures 3C–F). At the same time, the survival curve was constructed to analyze the prognosis differences between the high-risk and low-risk groups, and it was found that the prognosis of high-risk patients was worse than that of low-risk patients in both test and training cohorts (p < 0.001).
[image: Figure 3]FIGURE 3 | Validating the accuracy of the NFRGs model to predict patient prognosis (A,B) Partial likelihood deviation map. Time-dependent ROC curve of HNSCC patients (C) in the GEO cohort; (D) in the TCGA all cohort; (E) in the TCGA test cohort; (F) in the TCGA train cohort. K-M survival curve of HNSCC patients (G) in the GEO cohort; (H) in the TCGA all cohort; (I) in the TCGA test cohort; (J) in the TCGA train cohort.
3.3 PCA correlation analysis
In the TCGA and GEO cohorts, we divided the samples into high and low-expression groups based on median risk scores, respectively, and then performed PCA analysis based on model genes versus neurotrophic factor-related genes to obtain PCA plots of neurotrophic factor genes versus model genes in the GEO cohorts (Figure 4A,B) and the TCGA cohorts for the sum group (Figures 4C,D), test group (Figures 4E,F) and training group (Figures Figure4G,H) of the neurotrophic factor genes with the PCA plot of the model genes (Figures 4C,D). The results showed that the high-risk and low-risk groups were most clearly differentiated among the model gene groups.
[image: Figure 4]FIGURE 4 | PCA correlation analysis in TCGA and GEO Cohorts. In GEO Cohort: (A) PCA plots of neurotrophic factor genes; (B) PCA plots of model genes. In TCGA Cohort: (C) PCA plots of neurotrophic factor genes in the sum group; (D) PCA plots of model genes in the sum group; (E) PCA plots of neurotrophic factor genes in the test group; (F) PCA plots of model genes in the test group; (G) PCA plots of neurotrophic factor genes in the training group; (H) PCA plots of model genes in the training group.
3.4 Combining clinical characteristics to build nomograms
Considering that the constructed risk model of NFRGs was significantly associated with the prognosis of HNSCC patients, to further determine whether the prognostic characteristics constructed based on the 18 NFRGs could be used as an independent factor to predict prognosis, we combined the OS of HNSCC patients with their clinical characteristics for univariate and multivariate Cox analyses. According to the results of univariate analysis, T (p = 0.005), N (p < 0.005), Stage (p = 0.003), and risk score (p = 0.003) were significantly associated with the prognosis of HNSCC patients (Figure 5A). Subsequent multifactorial Cox analysis was performed, and the risk score remained a reliable, independent risk predictor (p < 0.001) (Figure 5B). To expand the clinical application and usability of the constructed NFRGs risk model for HNSCC, we constructed nomograms based on age, grade, stage, T, N, and risk score as a means of predicting 1-, 3-, and 5-year prognostic survival probabilities. In addition, the model results showed that the risk score had the greatest influence on predicting OS and also indicated that the risk model based on 18 NFRGs genes could better predict the prognosis of head and neck squamous cell carcinoma (Figure 5C). The calibration curves also showed satisfactory agreement between predicted and observed values in terms of the probability of 1-year, 3-year, and 5-year OS (Figure 5D). The NFRGs risk score model (AUC = 0.756) was more predictive of HNSCC prognosis than the traditional age and tumor grading and clinicopathological characteristics (Figure 5E). Consistent with this result, our model had the highest net benefit, indicating that our NFRGs risk model is more influential in clinical decision-making (Figure 5F).
[image: Figure 5]FIGURE 5 | Independent prognostic analysis of risk scores and clinical parameters. Univariate (A) and multivariate (B) COX regression analysis of the signature and different clinical features. (C) Nomogram for predicting 1-year, 3-year, and 5-year OS of patients with HNSCC. (D)The calibration curve of the constructed nomogram of 1- year, 3- year, and 5-year survival. (E) Multi-index ROC analysis in the test cohort. (F) Decision curve analysis.
3.5 Correlation analysis of NFRGs risk scores with clinicopathological features
The heat map shows the association between the gender, age, grade, stage, T, N, and risk score of 18 NFRG genes found in the prognostic risk model and the samples of all head and neck squamous cell carcinoma patients in the TCGAs (Figure 6A). At the same time, to examine the correlation between the risk model and the clinical pathological characteristics of patients with HNSCC, the risk score of each subgroup was compared by the Wilcoxon test in terms of age, tumor grade, stage, T stage, M stage, N stage, and gender. The results showed that the risk score was significantly correlated with tumor grade (p < 0.05), T stage (p < 0.05), and stage (p < 0.05) but not with age, M stage, N stage, and gender. (Figures 6B–H).
[image: Figure 6]FIGURE 6 | Correlation analysis of risk scores and clinicopathological features and signatures based on 18 NFRGs (A) heat maps (B) gender, (C) age, (D) N stages, (E) M stages, (F) T stages, (G) tumor grades, (H) pathological stages.
3.6 Clinical subgroup analysis of the NFRGs risk model
To further understand whether there are differences in the prognosis of patients in different clinical subgroups, we collated clinical data from the entire TCGA sample. Subsequently, the samples were divided into different subgroups according to age (>65 and≤65 years), gender (male and female), tumor grade (grade I-II and III-IV), pathological N stage (N0 and N1-3, pathological stage (I-III and III-IV) and pathological T stage (T1-2 and T3-4) for further stratified survival analysis (Figure 7). The results showed that in all subgroups, patients in the high-risk group had significantly lower OS than the low-risk group (Figures 7A–L). These results suggest that our NFRGs risk model also has a reliable predictive value for the prognosis of different clinical subgroups of HNSCC.
[image: Figure 7]FIGURE 7 | Prognostic power of the NFRGs risk model for overall survival for multiple HNSCC subtypes. (A) Age >65 years. (B) Age≤65 years. (C) Female. (D) Male. (E) Grade I-II. (F) Grade III-IV. (G) N0. (H) N1-3. (I) Stage I-III. (J) Stage III-IV. (K) T1-2. (L) T3-4.
3.7 NFRGs signature performs better than other signatures in prognosis prediction
To further demonstrate whether our constructed NFRGs signature has accurate predictive power for HNSCC patients, we compared it with four published prognostic signatures, namely the Fang signature, Liu signature, Song signature, and Sun signature. To ensure the comparability of the signatures, we calculated risk scores for each HNSCC sample in the entire TCGA cohort using the same method and transformed the risk scores across the four signatures according to the previous method. Although these four signatures effectively divided HSNCC patients into two subgroups with significantly different prognoses, time-dependent ROC curve analysis showed that these four signatures had lower AUC values at 1-, 3-, and 5-year survival than our NFRGs signature (Figures 8A–E). In addition, Figure 8F shows that our NFRGs signature had the highest C-index (AUC = 0.712). All these results suggest that our constructed NFRGs signature has a more prominent predictive performance.
[image: Figure 8]FIGURE 8 | Comparison of the NFRGs signature with other models (A) KM curves and ROCs for NFRGs signature. (B–E) KM curves and ROCs for risk models constructed by others. (F) C-indexes for five risk models.
3.8 NFRGs risk score predicts tumor microenvironment (TME) and immune cell infiltration
Immune features of TME include the expression levels of immune checkpoint inhibitors (ICIs), infiltration of tumor-infiltrating immune cells (TIICs), and activity of the cancer immune cycle (Fan et al., 2021). First, we investigated the risk score based on XCELL, TIMER, QUANTISEQ, MCPCOUNTER, CIBERSORT, CIBERSORT- ABS, and EPIC algorithms and explored the correlation between risk score and infiltrating immune cell abundance (Figure 9A). Subsequently, we performed a comparison of one-sample GSEA (ssGSEA) scores for immune cells and immune function, with the vast majority of immune cells and immune function scoring significantly greater in the low-risk group than in the high-risk group (Figure 9B).
[image: Figure 9]FIGURE 9 | NFRGs risk score predicts tumor microenvironment and immune cell infiltration. (A) Immune cell bubble plots. (B) Immune cell and immune function ssGSEA scores between high and low-risk groups. (C) TME component analysis. (D) Immune checkpoint differences between high- and low-risk groups. (E) ICB response signature differences between high and low-risk groups. (F) Differences in immune steps with tumor between high- and low-risk groups. (G) Correlation between risk score and ICB response signature. (H) Correlation of risk scores with each step of the tumor immunization cycle. *p < 0.05; **p < 0.01; ***p < 0.001.
The results suggest that this NFRGs risk score model may significantly inhibit or enhance the expression of specific immune cell types and immune function, thus affecting the response to immunotherapy. In addition, as infiltrating immune cells are an important component and one of the characteristics of the tumor microenvironment (TME), changes in the expression of immune cell types can lead to changes in TME composition, so we analyzed the TME composition of HNSCC samples using ESTIMATE. The results showed that the immune score (p < 0.001) as well as the ESTIMATE score (p < 0.01) were higher in the low-risk group compared to the high-risk group, indicating that the overall immune level and immunogenicity of the tumor microenvironment were higher in the low-risk group (Figure 9C). Given the importance of checkpoint-based immunotherapy, further differences in immune checkpoint expression were found between the two groups. Eight immune checkpoint genes were found to be significantly upregulated in the low-risk group, including IDO1, CTLA-4, PD-1, TIGIT, CEACAM1, KIR3DL, and BTLA. ADORA2A (Figure 9D). Based on these results, it can be suggested that risk scores can guide clinicians in the use of immune checkpoint-targeted drugs. Since the immune microenvironment mediates ICB responses, we further analyzed the differences in ICB response signatures between high and low-risk groups and found that in the low-risk group, Systemic lupus erythematosus, Viral carcinogenesis, Base excision repair, p53 signaling pathway, Proteasome, and microRNAs in cancer risk scores were higher in the low-risk group than in the high-risk group, and there were no significant differences in other ICB response signatures (Figure 9E). Meanwhile, the correlation between NFRGs risk scores and ICB-related positive signatures was analyzed, and no significant correlation was found between them (Figure 9G). Subsequently, to further refine the immune profile of the HNSCC tumor microenvironment, we also performed a differential analysis of tumor immune step risk scores between high and low-risk groups. In the low-risk group, upregulation of activity was observed for most steps in the cycle, including priming and activation (step 3), transport of immune cells to the tumor (step 4) (T-cell recruiting, CD4 T-cell recruiting, CD8 T-cell recruiting, Th1 cell recruiting, DC cell recruiting, Th22 cell recruiting, macrophage recruiting, NK cell recruiting, Th17 cell recruiting, B-cell recruiting, Th2 cell recruiting, Treg cell recruiting), Infiltration of immune cells into tumors (Step 5), Recognition of cancer cells by T cells (Step 6), Killing of cancer cells (Step 7) (Figure 9F). Simultaneous correlation analysis between risk score and tumor immune cycle steps revealed that only priming and activation (step 3), DC cell recruiting, and Th22 cell recruiting were significantly negatively correlated with risk score (Figure 9H).
3.9 Mutation analysis and biological functional enrichment analysis
We analyzed and visualized somatic mutation data from HNSCC patients by distinguishing between high-risk and low-risk groups. The top three mutated genes in high-risk patients were TP53 (72%), TTN (40%), and MUC16 (19%); the top three mutated genes in low-risk patients were TP53 (60%), TTN (34%), and SYNE1 (19%) (Figures 10A,B). It has been shown that different mutational statuses and expression patterns of wild type may lead to different clinical outcomes of the immune response, with wild-type TP53 patients having a higher sensitivity to radiotherapy for HNSCC (Cao et al., 2019). In addition, TP53 mutations are more likely to occur in HPV-negative HNSCC and less common in HPV-positive HNSCC (Helman et al., 2014), possibly suggesting that TP53 acts as an indicator of radiotherapy sensitization target and HPV typing in patients with HNSCC, which has great value for clinical studies. To elucidate the potential biological pathways associated with our risk genes, we performed Gene set enrichment analysis (GSEA) (Figures 10C,D) and Gene Set Variation Analysis (GSVA) using the Kyoto Gene and Genome Encyclopedia (KEGG) pathway database on risk group samples (Figure 10E) for Kyoto genes; the results showed that highly activated gene sets in the high-risk group were associated with RNA polymerization and degradation as well as cell cycle, cancer-related pathways. We subsequently obtained pathways that were significantly enriched in the high and low-risk groups. Among them, the expression of gene sets associated with primary immunodeficiency pathways was significantly downregulated in the low-risk group. These functional enrichment results also confirm the correlation between the immune microenvironment and gene expression differences analyzed in the previous sections.
[image: Figure 10]FIGURE 10 | Mutation analysis and biological function enrichment analysis (A) Mutation analysis of high-risk group (B) Mutation analysis of low-risk group (C) Enrichment pathway of high-risk significantly up-regulated gene set (D) Enrichment pathway of low-risk significantly down-regulated gene set (E) Heat map of difference in enrichment scores between high- and low-risk groups.
3.10 Multi-omics mutation characteristics and drug susceptibility analysis of NFRGs
To further explore the biological mechanism of abnormal expression of these 18 target genes, we analyzed them from different omics levels such as genome level and copy number level. Single nucleotide site variation (SNV) results showed that the Nonsense_Mutation of NFRGs was the most common variant classification in the TCGA-HNSC cohort, while the most prevalent variant type was single nucleotide polymorphism (SNP). Compared to other SNV categories, C>T has the highest frequency (Figure 11A). And the mutation occurred in 131 patients with HNSCC, with CDKN2A having the highest mutation frequency (Figure 11B). Subsequently, the analysis of copy number variation (CNV) was carried out to summarize the ratio of homozygous mutations to heterozygous mutations in NFRGs copy number variations in the sample (Figure 11C), In addition, we counted the two mutations separately, and the results showed that the amplification of homozygous mutations in the sample was mainly ADIPOQ, while CDKN2A was mainly characterized by copy number deletion, and the amplification of heterozygous mutations was mainly ADIPOQ, while the LPL was mainly copy number deletion (Figures 11D,E). In addition, the Speedman correlation coefficient analysis between copy number variation and gene expression was carried out, and it was found that the copy number variation of IL10 was down-regulated in HNSCC, while CDKN2A, EFNB2, TRIB3, PGK1, EPO were upregulated (Figure 11F), Therefore, abnormal gene expression may be the result of a combination of single nucleotide variation and copy number variation. In addition, we obtained significant correlations between the expression differences of NFRGs and the drug sensitivity of the Cancer Therapeutics Response Portal (CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC) databases (Figures 11G,H). This means that the expression of our risk profile genes can be used as a predictor of drug sensitivity to chemotherapy in patients or as a target for future drug sensitization. Finally, we explore the relationship between the expression of NFRGs and the activity of cancer-related pathways. It can be seen that under the regulation of 18 genes, the cell cycle, RTK, and TSCmTOR pathways of patients with HNSCC are inhibited, while the DNA-Damage, EMT, apoptosis, Hormone AR, and Hormone ER pathways are activated or inhibited (Figure 11I).
[image: Figure 11]FIGURE 11 | Multi-omics mutation characteristics and drug sensitivity analysis of NFRGs. (A,B) Classification of mutations in HNSCC and mutation incidence of NFRGs. (C) The proportion of different types of copy number variation in NFRGs. (D and E) The distribution of copy number variant amplification and deletion in homozygous mutations versus heterozygous mutations. (F) Correlation analysis of copy number variation and expression of NFRGs. (G,H) Correlation analysis of expression of NFRGs with the sensitivity of chemotherapeutic drugs in CTRP and GDSC cohorts. (I) Analysis of the role of expression activity of NFRGs in the regulation of cancer-related pathways.
3.11 TIDE and drug susceptibility analysis based on NFRGs
Among the 10 immunotherapeutic agents applied in the treatment of HNSCC, the low-risk group included AZ628 (p = 1.4e-05), BMS-509744 (0.00015), Dasatinib (p = 7.1e-05), Mitomycin C (p = 8.2e-05), Pyrimethamine (p = 7.7e- 06), Roscovitine (p = 0.00022), Sorafenib (p = 0.00045), WH-4-023 (p = 1.1e-07), IC50 were higher compared to the high-risk group (Figures 12A–C,E–I). In addition, we found that two other chemical or targeted drugs, KIN001-135 (P = 2e-05), and Z-LLNIe-CHO (p = 2.5e-06), had lower IC50 in the low-risk group (Figures 12D,J). Based on the risk score, we can further study the immunotherapy response of patients with HNSCC and enhance precise drug therapy. In addition, we use the Tumor Immunocompromise and Exclusion (TIDE) algorithm to predict the likelihood of immunotherapy risk models. The TIDE in the low-risk group was significantly higher than those in the high-risk group (p < 0.05) (Figure 12K), indicating that the higher the likelihood of immune evasion in the low-risk group, suggesting that patients were less likely to benefit from ICI (immune checkpoint inhibitor) therapy.
[image: Figure 12]FIGURE 12 |  Differences in IC50 of immunotherapy drugs by risk score (A) AZ628, (B) BMS-509744, (C) Dasatinib, (D) KIN001-135, (E) Mitomycin C, (F) Pyrimethamine, (G) Roscovitine, (H) Sorafenib (I) WH-4-023 (J) Z-LLNle-CHO . (K) TIDE score differences between high- and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001.
4 DISCUSSION
HNSCC is a common malignancy caused by abnormal squamous cells. With more research on HNSCC, the role of nerves in the development of tumorigenesis has been reflected, in which neurotrophic factors are involved in the mutual communication between cancer cells and the nervous system to promote tumor progression and gradually be concerned (Cervantes-Villagrana et al., 2020). Perineural invasion (PNI) and perineural spread (PNS) are considered to be the critical links of tumor growth and metastasis (Albo et al., 2011; Roh et al., 2015; Rademakers et al., 2017). Some studies have shown that cancer cells stimulate the growth of nerve fibers by secreting neurotrophic factors, thus completing PNI and PNS. What is exciting is that the growing nerve fibers can also promote tumor growth and cancer cell proliferation, thus forming positive feedback (Lu et al., 2017; Zhang et al., 2022c). Neurotrophic factors are also widely studied in HNSCC. Many clinical studies have shown that the local recurrence rate of patients with PNI is 23–36%, while that of patients without PNI is 9–5% (Fagan et al., 1998; Tai et al., 2013; Pinto et al., 2014). Another study showed that TrkB, as a high-affinity receptor for BDNF and NT-4, is highly expressed in HNSCC and that TrkB receptor blockers can inhibit the proliferation of cancer cells in vitro (Kupferman et al., 2010; Dudás et al., 2011). At the same time, the interaction between BDNF and TrkB is also believed to regulate tumor cell invasion and drug resistance, leading to poor prognosis. It may be the action mechanism of TrkB receptor blockers (Dudás et al., 2019). However, there is a lack of systematic study of the value of the neurotrophic factor family in predicting tumor prognosis.
This study constructed a polygenic model based on neurotrophic factor-related genes. Subsequently, we conducted a validation analysis of the constructed NFRGs risk scoring model and found that it can effectively assess the prognosis of patients with HNSCC. The risk score of each patient was calculated based on the expression levels of the 18 NFRGs screened out, and the risk group was divided into high and low-risk groups according to the median risk score. The nomogram was then constructed in combination with clinical pathological factors, and the calibration curve showed a satisfactory agreement between the predicted and observed values in terms of 1-year, 3-year, and 5-year OS. At the same time, with traditional clinical indicators such as age, sex, tumor grade, histological staging, etc., the prognosis of HNSCC can be predicted. Taken together, our model has the highest net return, suggesting that our NFRGs risk model is more influential in clinical decision-making, and clinicians can tailor anti-tumor personalized treatment based on nomogram results.
In our modeling genes, it has been shown that transforming growth factor β-inducible protein (TGFB1) can inhibit tumor progression by promoting apoptosis (Skonier et al., 1992; Zhao et al., 2002). It has also been proposed that TGFB1 may influence the behavior of oral squamous cell carcinoma through mechanisms such as involvement in tumor fibrosis, epithelial-mesenchymal transition (EMT), and extracellular matrix remodeling (Donohoe et al., 2017; Hu et al., 2019), but few studies have reported on the role of TGFB1 in HNSCC. We note that HNSCC can promote Th2-skewed response by regulating IL-10 expression and secretion in the tumor microenvironment (Jewett et al., 2006; Young, 2006; Johnson et al., 2014) and that IL-10 has been shown to inhibit IFN-α production in HNSCC (Caruntu et al., 2022), which may lead to antitumor poor therapeutic efficacy. In addition, based on mouse models, CDKN2A could inhibit p53R172H-induced metastasis in HNSCC, and patients with HNSCC with both high-risk p53 mutations and pure CDKN2A deletions had the worst clinical outcomes (Li et al., 2016). Erythropoietin (EPO) is commonly thought to alleviate anemia in patients after radiotherapy. However, clinical trials have demonstrated worse tumor control in HNSCC patients treated with EPO and found that EPO can promote lymphatic tract metastasis in HNSCC through mediated activation of JAK-STAT signaling, thereby enhancing tumor aggressiveness, which is detrimental to patient prognosis (Lai et al., 2005). The mechanism of action of other NRFGs in HNSCC remains to be elucidated.
Extensive characterization of TME is crucial for establishing reliable prognostic markers and new advanced modern HNSCC treatment regimens (Elmusrati et al., 2021); we are very interested in immune function and expression of immune cells in the tumor microenvironment, so we conducted immune cell infiltration, TME components, ssGSCA, and other analysis, and found that the low-risk group was higher than the high-risk group in terms of immune cells and immune function. This suggests that our risk model can distinguish the cold-heat tumor subtype from patients with HNSCC and suggests that the hot tumor subtype has a better prognosis.
Immune checkpoints have attracted much attention as one of the important features of TME. Some clinical studies have shown that immune checkpoint inhibitors (ICI), such as Nivolumab and Pembrolizumab, have good antitumor effects in HNSCC (Qiang et al., 2021). By using monoclonal antibodies against immune checkpoints (ipilimumab against CTLA-4, or nivolumab and pembrolizumab against PD1), cancer immunotherapy effectively releases tumor-induced immune system brakes to restart cancer immune circulation (Tan et al., 2017). However, the heterogeneous phenotypes present in HNSCC exhibit different genetic aberrations in complex mutational environments, which makes their response to targeted therapies limited (Elmusrati et al., 2021). According to previous clinical trials, the response rate of recurrent or metastatic HNSCC to PD-1/PD-L1 inhibitors was only 13.3–22%. Therefore, it is crucial to select patients who can respond effectively to ICIs (Guo et al., 2021). The analysis of differences in immune checkpoint activity between high and low-risk groups showed that NFRGs models were able to distinguish patients with differences in important immune checkpoint activity, and using these immune checkpoints as targets for immunotherapy may lead to better immunotherapy outcomes, providing guidance for decision-making before clinical immunotherapy. Among them, programmed death ligand 1 (PD-L1) as an immune checkpoint protein in the cancer immune cycle is highly expressed in the low-risk group, which may indicate that tumor cells in low-risk patients rely on the PD-1/PD-L1 signaling pathway to evade immune monitoring, and PD-1 monoclonal antibodies may have a good effect on patients in the low-risk group. Upregulation of inhibitory immune checkpoints such as PD-1 is a key feature of inflamed TME (Spranger et al., 2013), which may imply that low-risk patients are in an inflammatory microenvironment. In addition, we found that CD276 was highly expressed in the high-risk group, upregulated in HNSCC and helped tumor cells evade immune surveillance (Li et al., 2022), consistent with our predicted results. In 4-nitroquinoline-induced mouse HNSCC, cancer stem cells (CSCs) use the immune checkpoint molecule CD276 (B7-H3) to evade immune surveillance (Elmusrati et al., 2021). Since mRNA expression profile data from HNSCC patients receiving immunotherapy was not available, the potential of this signature to predict immunotherapy responses was indirectly assessed, which could lead to deviations from the actual situation. Therefore, in the future, it should be validated in conjunction with data from HNSCC patients receiving immunotherapy.
Our NFRGs risk scoring model is a good predictor of prognosis for patients with HNSCC, and nomograms based on this model can help clinicians personalize treatment for HNSCC. Experimental studies of neurotrophic factor-related molecular mechanisms and related clinical cohort studies can be carried out in the future, which have great clinical value and may provide a reliable direction for precision medicine.
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Autophagy pathway involves maintaining intracellular homeostasis by regulating the degradation of cytoplasmic components. Disfunction of autophagic process has been confirmed to be critical mechanism in many diseases, including cancer, inflammation, infection, degeneration and metabolic disorders. Recent studies have shown that autophagy is one of the early events in acute pancreatitis. Impaired autophagy promotes the abnormal activation of zymogen granules and results in apoptosis and necrosis of exocrine pancreas. Furthermore, multiple signal paths involve progression of acute pancreatitis by regulating autophagy pathway. This article provides a comprehensive review of the recent advances in epigenetic regulation of autophagy and the role of autophagy in acute pancreatitis.
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1 INTRODUCTION
Acute pancreatitis (AP) is one of the most common gastrointestinal emergency events with varying clinical courses, ranging from self-limiting disorder to severe disease (Boxhoorn et al., 2020). Standard management of AP has been updated considerably in the past 10 years, the comprehensive and tailored treatments of multidisciplinary teams reduced both morbidity and mortality (Mederos et al., 2021). However, this unpredictable and potentially lethal disease remains a huge challenge for gastroenterologists owing to its complex and unclear pathogenesis.
To date, significant progress has been made in exploration of the pathophysiological mechanisms of AP. Acinar cell toxins and intraductal events can both trigger a series of intracellular responses including pathological calcium signaling, mitochondrial dysfunction, premature trypsinogen activation, endoplasmic reticulum stress, impaired unfolded protein response (Lee and Papachristou, 2019). However, deep insight and better understanding of molecular mechanism of acute pancreatitis are far away from well-illustrated.
Autophagy is a highly conserved decomposition process through which cytoplasmic materials such as damaged organelles and unwanted macromolecular substances can be degraded in the lysosomes, and the degradation products are recycled to maintain cellular homeostasis (Mizushima and Levine, 2020). The degradation phenomenon of intracellular components was firstly described by several scientists in 1950s and 1960s (Clark, 1957; Ashford and Porter, 1962; De Duve, 1963). In 1963, Christian de Duve named the degradation process as autophagy officially in the CIBI Foundation Symposium on Lysosomes (De Duve, 1963). Since then, numerous studies reported that the molecular pathway of autophagy has a universal and vital function in a wide range of human diseases, including cancer, inflammation, infection, neurodegeneration and metabolic disorders.
In recent years, accumulative researches have uncovered the relevance between AP and autophagy. The feature of autophagy in both experimental and human pancreatitis is the accumulation of vacuoles accompanied by increased LC3-II, p62 and decreased LAMP-2 (Helin et al., 1980; Koike et al., 1982; Mareninova et al., 2015). Studies proved that the vacuoles are mainly autophagosomes and autolysosomes, which are larger than that in basal and starvation-induced autophagy (Mareninova et al., 2009). Autophagy blockade through disruption of genes encoding ATG5, ATG7, LAMP-2 or IKK α stimulates activation in acinar cells of the proinflammatory transcription factors, such as NF-κB and STAT3, resulting in upregulation of cytokines and chemokines and inflammatory cell infiltration in the pancreas (Yang et al., 2016; Habtezion et al., 2019). Actually, abundant basal and starvation-induced autophagy has been confirmed to exist in mouse exocrine pancreas and be far more variable than in other organs (Mizushima et al., 2004). Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress (Antonucci et al., 2015). Perspective from physiological function, pancreatic acinar cells secrete ample digestive enzymes and zymogens. Furthermore, In AP rodent models, lysosomal markers accumulate in the ZG-enriched subcellular fraction, which indicates that autophagy may play a role in regulating the fate of zymogen granules (Mareninova et al., 2009). In this review, we describe recent progress in the role and regulation of autophagy in AP. Additionally, we discuss the potential applications of autophagy signaling molecules in AP.
2 PROCESS AND REGULATION OF AUTOPHAGY PATHWAY
Autophagic flux, the entire process of autophagy, mainly includes the origination of autophagosomes, the formation of autolysosomes and degradation of materials (Gukovskaya et al., 2017). In the process of autophagy, membrane dynamics is the core link initiated by autophagy-related genes (ATG). The hallmark of autophagy biogenesis is the formation of the double-membrane vesicular autophagosome. About 30 ATG proteins have been found involving the process of autophagosome biogenesis. There are six functional group of protein complex in mammal (Nakatogawa, 2020): (Boxhoorn et al., 2020) ULK complex; (Mederos et al., 2021); Atg9/ATG9-containing vesicles; (Lee and Papachristou, 2019); PI3K complex I; (Mizushima and Levine, 2020); ATG2–WIPI complex; (Clark, 1957); ATG16L1 complex; (De Duve, 1963); Atg8-family protein lipidation system (Mizushima and Levine, 2020). Subsequently, the membrane of autophagosome precursor will expand and form a closed-loop encapsulating the cytoplasm component. The lysosome then fuses with the outer membrane of autophagosomes and release many hydrolases to degrade the inner autophagosomal membrane and encysted materials (Levine and Kroemer, 2019).
In many diseases, autophagosome could be successfully generated through typical autophagy pathway, but the fusion of autophagosomes with lysosomes and degradation of substrate is impaired. This process is termed as incomplete autophagy flux (Zhang et al., 2022).
The nuclear regulatory network of autophagy is extremely complex (Figure 1). Recent studies have indicated that transcriptional control of autophagy plays a vital role in autophagy flux. Transcription factors, including FOXO family, E2F family, p53 and Ume6 complex, regulate the expression of ATG in different stages (Füllgrabe et al., 2014). It is currently recognized that TFEB and ZKSCAN3 are major antagonistic factors during autophagy. The nucleocytoplasmic translocation of TFEB significantly affects the biogenesis and function of lysosomes positively regulating autophagy, as well as upregulating autophagy genes including LC3 and SQSTM1 (Yan, 2022). Contrary to TFEB, several studies identified that ZKSCAN3 is the major transcriptional repressor of autophagy by targeting biogenesis and fusion of autophagosome and lysosome in cultured cells (Chauhan et al., 2013; Barthez et al., 2020; Pan and Valapala, 2021). However, in vivo mouse model, ZKSCAN3 did not serve anticipated effects on autophagy (Pan et al., 2017). One possible reason for this difference is that ZKSCAN3 may regulate autophagy by multiple mechanisms in different types of models or exist various regulatory pathways between normal tissue and tumor cells.
[image: Figure 1]FIGURE 1 | The roles of autophagy in AP. VMP1 promotes autophagy via NFE2L2/Nrf2 pathway; ERRγ promotes autophagy by reducing mitochondrial dysfunction and ER stress; Nrf2 promotes excessive autophagy through the p62–Keap1–Nrf2 signaling pathway; SNAP23 and STX2 promote autophagy by triggering SNARE complex; store-operated Ca2+ entry (SOCE) triggers calcium overload and activated TFEB via calcineurin activation, thereby enhanced autophagy; activation of AMPK relieved accumulation of autophagy by up-regulating SIRT1; Galectin-9 binds to Asn175 of Lamp2 and poly-LacNAc moieties to maintain lysosome function; long non-coding RNA FENDRR positively regulates autophagy through epigenetic suppression of ATG7 by binding PRC2; CypD maintains mitochondrial membrane and positively regulate lysosomal function and autophagy; microRNAs (miRNA) promote the initial stages of autophagy.
N6-methyladenosine (m6a) is associated with growth, occurrence and progression of disease and drug resistance of cancer cells. A study found that METTL3-mediated m6a methylation inhibited autophagy via decreasing stability of ATG5 mRNA to sustain porcine blastocyst development (Cao et al., 2021). In addition, scholars have provided evidence on the negative association between METTL14-mediated decreased autophagy and testosterone synthesis in Leydig cells, which indicated that m6a modification-mediated autophagy involved in body growth and development (Chen et al., 2021).
The effects of m6a modification on different diseases may be various by acting on diverse targets. METTL3 attenuates ATG7 mRNA stability in a YTHDF2-dependent manner and thus inhibits autophagy in osteoarthritis mouse models (Chen et al., 2022). Furthermore, the expression level of lysosomal protein Rubicon can be elevated by METTL3-mediated m6a modification, which inhibits the fusion of autophagosome and lysosome and then promotes the development of non-alcoholic fatty liver disease in mice (Peng et al., 2022). Similarly, in myocardial ischemia/reperfusion mouse model, METTL3 motivates RNA-binding protein HNRNPD to combine with TFEB pre-mRNA and subsequently restrains the expression of TFEB, while ALKBH5 plays an opposite role (Song et al., 2019). METTL14 promotes the translation of DNA damage-binding protein two and suppresses ultraviolet B radiation-induced skin tumorigenesis (Yang et al., 2021). METTL14 aggravates podocyte injury and glomerulopathy progression through m6a-dependent downregulating of Sirt1 (Lu et al., 2021). Knockdown of WTAP increased stability of LKB1 mRNA to decrease phosphorylation of AMPK, thereby promoting autophagy in hepatocellular carcinoma (HCC) (Li et al., 2021).
Furthermore, study has proved that FTO directly targets ATG5 and ATG7 mRNA in a YTHDF2-dependent way and positively regulate autophagy and adipogenesis (Wang et al., 2020a). Interaction has been confirmed between FTO and autophagy. In arsenic-associated human skin lesions, arsenic-mediated autophagy inhibition increased the stability of FTO proteins, and then accumulated FTO further inhibited autophagy through downregulating ATG5 and ATG7, increasing phosphorylation of AMPK, and decreasing phosphorylation of the mTOR (Cui et al., 2021).
Recent studies have confirmed that m6a modification involved in autophagy and regulated the sensitivity of cancer cells to anti-cancer drugs (Paramasivam and Priyadharsini, 2021). RNA-seq shows that m6a modification may induce autophagy activation through stabilizing BECN1 mRNA (Shen et al., 2021). In non-small cell lung cancer cells, METTL3 can positively regulate autophagy through targeting ATG5, ATG7, LC3, and SQSTM1 and thus modulate gefitinib resistance (Liu et al., 2020). Study observed significantly downregulated METTL3 in human sorafenib-resistant HCC and then identified that METTL3-mediated FOXO3 mRNA stabilization was associated with blocked autophagy which enhanced sorafenib resistance of HCC (Lin et al., 2020). Downregulation of METTL14 increased autophagy via mTOR signaling pathway, thereby sensitizing pancreatic cancer cells to cisplatin (Kong et al., 2020).
3 AUTOPHAGY AND ACUTE PANCREATITIS
3.1 Impaired autophagy in AP
According to the different modes of material delivery to the lysosomes, three types of autophagy have been described: macroautophagy, microautophagy and chaperone-mediated autophagy (CMA) (Ichimiya et al., 2020). Macroautophagy is studied most deeply and may be the only one detected in normal exocrine pancreas and in pancreatitis (Gukovskaya et al., 2017).
Moreover, differing in the way how autophagosome phagocytoses the degradation targets, non-selective and selective autophagy are described. In the former, cytoplasmic components around the site of autophagosome biogenesis are encapsulated randomly in autophagosomes usually induced by starvation. Nevertheless, in selective autophagy, autophagosomes actively engulf certain substances identified by autophagy proteins, such as mitophagy and ER-phagy. Both selective and non-selective autophagy each seem to be activated in AP (Gukovskaya et al., 2017).
3.1.1 Increased autophagosomes in AP
The significant feature of AP is the accumulation of large vacuoles in acinar cells (Gukovskaya et al., 2017). AP does not block autophagosome formation, but rather stimulates it. TEM and immunogold-TEM studies show that two morphologically different vacuoles were found in AP acinar cells, namely autophagosome, double-membrane vacuoles, containing intact sequestered material, and autolysosome, containing partially degraded substrate. The significantly increased expression of LC3, ATG5 and ATG7 demonstrate that autophagosome is activated and related to vacuoles accumulation in AP acinar cells (Mareninova et al., 2009).
Vacuole membrane protein 1(VMP1) was considered to be related to autophagosome biogenesis in acinar cell. Recent study reveals that observably increased levels of LC3-II and SQSTM1 in VMP1 KO mice, which promote inflammation, acinar-to-ductal metaplasia, and fibrosis in mice pancreas. In addition, loss of acinar cell VMP1 leads to spontaneous pancreatitis in mice through ER stress and activation of the NFE2L2/Nrf2 pathway (Wang et al., 2021a). Furthermore, a study shows that CCK-treated human pancreas slice decreased STX2 levels provoking amylase secretion and autophagic vacuole formation by enhancing Atg16L1/CHC complex assembly (Dolai et al., 2018).
The nuclear translocation of Nrf2 promotes excessive autophagy in severe acute pancreatitis-related acute lung injury through the p62–Keap1–Nrf2 signaling pathway in mice (Kong et al., 2021). Loss of estrogen-related receptor γ (ERRγ) result in mitochondrial dysfunction and further increases autophagosome accumulation and ER stress in pancreatic acinar cells (Choi et al., 2022).
Recently, microRNAs (miRNA) have been proven to regulate the initial stages of autophagy in AP (Yuan et al., 2021). MiR-141 can restrain the formation of autophagosomes in AP through binding to the 3′UTR region of HMGB1, resulting in decreased expression of downstream protein beclin-1 (Zhu et al., 2016). MiR-148a inhibits initial autophagy by down-regulating the interleukin-6 (IL-6)/Signal Transducers and Activators of Transcription 3 (STAT3) signaling pathway (Miao et al., 2019). Additionally, miR-181 b can activate the mTOR/Akt signaling pathway, and then inhibits the expression of beclin-1 and LC3 (Liu et al., 2018a). MiR-155 contributes to the accumulation of autophagosomes by inhibiting Rictor and MAP3K7 binding protein two which negatively regulated Beclin-1 (Wan et al., 2019; Zhang et al., 2020). MiR-375 inhibits autophagy and promotes inflammation and the apoptosis of rat pancreatic acinar cells via targeting ATG7 (Zhao et al., 2020). MiR-92b-3p attenuates inflammation and autophagy by targeting TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42 J cells (Sun et al., 2020). ATG7-enhanced impaired autophagy exacerbates AP by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway (Ji et al., 2022).
Furthermore, study found that long non-coding RNA FENDRR regulates autophagy through epigenetic suppression of ATG7 by binding PRC2 in AP (Zhao et al., 2021).
3.1.2 Disfunction of lysosomes in AP
The central physiologic function of the pancreatic acinar cell is to synthesize, transport, store and secrete digestive enzymes. Recent studies demonstrate that the functions of lysosomes are deranged in pancreatitis and underlie the mechanisms involved in impaired autophagy of AP. It is widely noticed by TEM that zymogen contents and lysosomal contents locate in a common compartment (Saluja et al., 1987; Saluja et al., 1989). The lysosomes containing cathepsin B fuse with the vacuoles containing trypsin and trypsinogen, and then transform trypsinogen into trypsin. This physiological process relies on a stable lysosomal membrane and sufficient activity of hydrolase (Zhang et al., 2021). Unstable lysosomal vacuoles would rupture and release trypsin and cathepsin B into cytoplasm, thus resulting in apoptosis or necrosis.
Multiple studies show that lysosomes formation decreased in cerulein-treated mouse pancreatic acinar cells according to downregulated LAMP one and LAMP 2, which stabilize lysosomal membrane and protect the cytoplasm from acid hydrolases (Saftig and Klumperman, 2009; Wang et al., 2019). LAMP proteins are protected from decomposition by acid hydrolases due to highly glycosylated molecular structure and relatively stable hydrolases complexes. Research has shown that experimental pancreatitis leads to changes in Cat B maturation which result in cutting of luminal part of LAMP molecule close to the transmembrane domain (Mareninova et al., 2015).
Normal activities of lysosomal hydrolases including cathepsins B and L also decreased in experimental pancreatitis (Mareninova et al., 2009; Gukovsky and Gukovskaya, 2010). The mechanism may be lack of mature cathepsins, accumulation of intermediate forms and the formation of abnormal activity of hydrolase complexes. It has been proved that Cat B transforms trypsinogen into trypsin, while Cat L degrade trypsinogen and trypsin. Cathepsin B-deficient mice do not show pathologic trypsinogen activation in response to caerulein stimulus. The imbalance between enhanced Cat B-mediated conversion of trypsinogen to trypsin and the of inefficient degradation of trypsin and trypsinogen by Cat L may provoke accumulation of trypsin in pancreatitis (Mareninova et al., 2009).
TFEB, a master regulator of lysosomal biogenesis, has been confirmed to be associated with the pathogenesis of experimental pancreatitis (Wang et al., 2019; Wang et al., 2020b). cerulein activated MTOR and increased the levels of phosphorylated TFEB, as well as improving pancreatic proteasome activities that led to accelerated TFEB degradation resulting in decreased number and function of lysosomes in mouse pancreas. It has been proved that store-operated Ca2+ entry (SOCE) triggered calcium overload and activated TFEB via calcineurin activation, thus promoting transcriptional activation of multiple autophagy-associated genes (Zhu et al., 2018). This indicated interaction between Ca2+ signaling pathway and autophagy flux. In addition, food restriction determines the susceptibility of mouse model to coxsackievirus infection and pancreatitis by regulating TFEB and autophagy (Alirezaei et al., 2021).
Study shew that AMPK and SIRT1 were downregulated during AP occurrence and activation of AMPK relieved accumulation of autophagy vacuoles and inhibited inflammation reaction by up-regulating SIRT1 in AP (Wang et al., 2021b).
Galectin-9 binds to Asn175 of Lamp2 and poly-LacNAc moieties to maintain lysosome function in highly secretory cells including intestinal Paneth cells and pancreatic acinar cells (Sudhakar et al., 2020). Galectin-9 knockout cells showed more abnormal lysosomes with partial degradation materials, increased accumulation of LC3 and Lamp2, more autophagic vacuoles, and higher lysosomal pH that was associated with impaired lysosomal hydrolase activity. MiR-352 obstructed the autophagy process through targeting the mRNA of LAMP-2 and Cat L1, which resulted in dysfunction of lysosomes and the abnormal activation of trypsin (Song et al., 2018).
Recent study indicates that dysregulation of mannose-6-phosphate (M6P) pathway mediates disorder of lysosome and autophagy and affects cholesterol metabolism (Mareninova et al., 2021). GNPTAB gene that code the key enzyme of M6P pathway regulates the lysosomal system and autophagy in exocrine pancreas. GNPTAB knockout perturbed processing of cathepsins and the maturation of lysosomes, thus diminishing lysosomal proteolytic capacity. In addition, Gnptab deficiency increases total and free cholesterol in acinar cell and result in unbalanced distribution of cholesterol in mitochondria and lysosomes. More interestingly, Gnptab ablation also causes increased levels of serum amylase and lipase, inflammation, as well as parenchymal necrosis of mice pancreas (Mareninova et al., 2021).
Pancreatitis stimuli motivates SNAP23 connection with the STX17 SNARE complex required for autolysosome formation. SNAP23-KD-induced blockade of autophagosome-lysosome fusion by inhibiting SNARE complex which mediates fusion of these two vesicles in experimental pancreatitis rather than physiological starvation. SNAP23-KD prominently disrupted autophagosome STX17 and reduced binding with lysosomal VAMP8 (Dolai et al., 2021).
Mitochondrial dysfunction is an early event in human AP or experimental pancreatitis. The abnormal opening of the permeability transition pore cause the loss of mitochondrial membrane potential (Mukherjee et al., 2016). Furthermore, the activity of F-ATP synthase decreases obviously in AP (Biczo et al., 2018). Cyclophilin D (CypD) was found to be one of the switches of permeability transition pore. Lack of CypD restores the polarity of mitochondrial membrane and positively regulate lysosomal function and autophagic flux in rodent models of pancreatitis (Mukherjee et al., 2016), which indicate the relationship between mitochondria and autophagy pathway.
3.2 Genetic and pharmacologic model of autophagy in AP
To explore the association between autophagy, valuable genetic model has been applied in practice. Transgenic green fluorescent protein conjugated LC3 mice (GFP-LC3) is the most classic tool. A recent study compared GFP-LC3 mice with wild-type mice (WT) and found that the expression of GFP-LC3 significantly increased endogenous LC3-II levels in exocrine pancreas by down-regulating the expression of ATG4B, as well as the formation of autophagosome increased 3-fold (Mareninova et al., 2020). However, this physiological interference of GFP-LC3 makes no obvious difference in liver, lung, and spleen.
Gene knockout models also are widely used. Many scholars observed that spontaneous pancreatitis occurs in mice with autophagy pathway related genes ablation including deficiency of ATG5, ATG7 and LAMP (Diakopoulos et al., 2015; Mareninova et al., 2015). Regardless of any level of autophagy flux, homeostasis of acinar cell will be disrupted and then induce spontaneous pancreatitis, manifested as inflammation and fibrosis in gene ablation models (Diakopoulos et al., 2015). It is worth noting that the genetic model itself might have effects on quality of researches.
In addition, pharmacologic inhibitors of autophagy have been widely used to manipulate autophagy. Chloroquine (CQ) increases endogenous LC3-II both in normal pancreas and AP model of mice, thereby regulating basal autophagy of pancreas tissue (Wang et al., 2019). Bafilomycin, a lysosomal inhibition, is usually used to regulate lysosomal functions (Mareninova et al., 2020). However, rare study focuses on if medicine could relieve inflammation of pancreas by autophagy pathway.
3.3 Therapy targeting autophagy
Taking intervention from perspectives of autophagy has caught the eyes of scientists in recent years (Table 1). Several autophagy regulators including small-molecule autophagy modulators (rapamycin, wortmannin, chloroquine, and 3-methyladenine), inhibitors of PI3K-AKT-MTOR signaling axis, AMPK activators, lysosomal inhibitors and autophagy-targeting compounds have been discovered and applied to cancer, neurodegenerative and metabolic diseases (Mizushima and Levine, 2020; Kocak et al., 2022). However, the low specificity to autophagy and multiple pharmacological effects of these compounds remained great challenges for scholars. Application of Autophagy regulator in AP is rarely reported. 3-methyladenine, a VPS34 inhibition, decreased the levels of inflammatory cytokines in AP model mice by modulating autophagy flux which is related with the activation of NF-κB signaling pathway and the caspase-1-IL-1β pathway (Mareninova et al., 2020). However, there is rare experimental data or clinical trial in human due to lack of established human pancreatic acinar cell line and accepted methods to separate human primary pancreatic acinar cells from pancreas.
TABLE 1 | Application of approved autophagy modulators in diseases.
[image: Table 1]So, it is still unclear whether timely intervention on autophagy could terminate progressive destruction of pancreatic acinar cells and relieve the cascade of inflammatory. To date, establishing a predictive biomarker to monitor autophagy in AP is meaningful for developing new autophagy modulators. In addition, organ specificity also needs to be considered prudently to reduce side effects.
4 SUMMARY
Although the roles of autophagy in AP have received more attention of scholars in recent years, the specific mechanism of autophagy flux changes in AP remain unclear. Proper basal autophagy may positively maintain cellular homeostasis, the role of impaired or excessive autophagy in AP is worth exploring further. In addition, current researches have suggested the involvement of epigenetic regulation of autophagy pathway in several diseases. M6a modifications show key roles in modulating autophagy, but few relative studies focus on the epigenetic regulation of autophagy in AP. Elucidating the mechanisms underlying the different stages of autophagic flux dysfunctions will provide us new insights in uncovering potential molecular targets to treat or alleviate the severity of pancreatitis.
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The pathogenesis of Chronic Obstructive Pulmonary Disease (COPD) is implicated in airway inflammation, oxidative stress, protease/anti-protease and emphysema. Abnormally expressed non-coding RNAs (ncRNAs) play a vital role in regulation of COPD occurrence and progression. The regulatory mechanisms of the circRNA/lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) networks might facilitate our cognition of RNA interactions in COPD. This study aimed to identified novel RNA transcripts and constructed the potential ceRNA networks of COPD patients. Total transcriptome sequencing of the tissues from patients with COPD (COPD) (n = 7) and non-COPD control subjects (Normal) (n = 6) was performed, and the expression profiles of differentially expressed genes (DEGs), including mRNAs, lncRNAs, circRNAs, and miRNAs, were analyzed. The ceRNA network was established based on the miRcode and miRanda databases. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and Gene set variation analysis (GSVA) were implemented for functional enrichment analysis of DEGs. Finally, CIBERSORTx was extracted to analyze the relevance between hub genes and various immune cells.The Starbase and JASPAR databases were used to construct hub-RNA binding proteins (RBPs) and lncRNA-transcription factor (TF) interaction networks. A total of 1,796 mRNAs, 2,207 lncRNAs, and 11 miRNAs showed differentially expression between the lung tissue samples from the normal and COPD groups. Based on these DEGs, lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed respectively. In addition, ten hub genes were identified. Among them, RPS11, RPL32, RPL5, and RPL27A were associated with the proliferation, differentiation, and apoptosis of the lung tissue. The biological function revealed that TNF–α via NF–kB and IL6/JAK/STAT3 signaling pathways were involved in COPD. Our research constructed the lncRNA/circRNA-miRNA-mRNA ceRNA networks, filtrated ten hub genes may regulate the TNF-α/NF-κB, IL6/JAK/STAT3 signally pathways, which indirectly elucidated the post-transcriptional regulation mechanism of COPD and lay the foundation for excavating the novel targets of diagnosis and treatment in COPD.
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INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a public health challenge related to disability and mortality worldwide (Niu et al., 2022). According to the report of World Health Organization, COPD affects approximately 400 million people and has become the third main cause of mortality in the world (Lozano et al., 2012; Labaki and Rosenberg, 2020). COPD is characterized by an abnormal airway in chronic bronchitis and a substantial reduction in solid lung texture in emphysema (Rabe and Watz, 2017), eventually leading to irreversible airflow limitation and persistent respiratory symptoms (Labaki and Rosenberg, 2020). According to previous studies (Yuan et al., 2017; Hikichi et al., 2019), COPD is associated with various risk factors, including environmental deterioration, genetic factors and airway inflammation. Cigarette smoke (CS) has long been recognized as the main risk factor for the occurrence of lung disease. CS can induce persistent inflammatory responses in the airway and only a part of life-long smokers will develop COPD. In addition, some non-smokers can develop COPD, and many people diagnosed with airway restriction in childhood may develop COPD later in life (Singh et al., 2018). Accordingly, individual differences and hereditary susceptibility play an important role in the pathogenesis of COPD. However, the pathogenesis of COPD has not been clarified (Cortopassi et al., 2017; Vogelmeier et al., 2020).Therefore, this study aimed to detect the regulatory mechanisms of the ceRNA integration networks in COPD.
Over the past decades, non-coding RNAs (ncRNAs) have been considered as controversial molecules. Whereas, owing to the rapid development of high-throughput sequencing and RNA analysis techniques, ncRNAs have been suggested to participate in the pathophysiological processes of various diseases (Guttman and Rinn, 2012; Castel and Martienssen, 2013). More than 90% of human transcripts are RNA transcripts, and these transcripts are thought to be ncRNAs (Li et al., 2017). These ncRNAs can be divided into microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) (Esteller, 2011).
LncRNAs can transcribe over 200 nucleotides via RNA polymerase II, but do not encode proteins (Rinn and Chang, 2012). LncRNAs have been demonstrated to regulate different epigenetic, transcriptional, and post-transcriptional functions, and play an integral part in the process of lung diseases, including COPD (Kopp and Mendell, 2018; Devadoss et al., 2019). CircRNAs are another class of endogenous ncRNAs possessing covalently closed loop structures that lack 5′ caps and 3′ poly A tails (Zhang et al., 2018). For circRNAs, due to their stability and histological specificity, the mechanisms and functions are still unclear. However, increasing number of reports suggested that circRNAs could be recognized as ideal biomarkers for clinical applications (Verduci et al., 2021).
In addition, recent studies revealed a hypothesis regarding competing endogenous RNAs (ceRNAs), indicating that these RNA transcripts (including mRNA, lncRNA, pseudogenes, and circRNA) may act as natural miRNA sponges by competing for the same miRNA response elements (MERs) to regulate relevant mRNA expression induced by the ceRNA network (Salmena et al., 2011; Tay et al., 2014). On the basis of many studies, ceRNA regulation has a significant effect on the emergence and progression of COPD. For example, in COPD tissues, the low-expressed lncRNA, SNHG5, is closely involved in low-forced expiratory volume in one second (FEV1%) in patients via the miR-132/PTEN axis, which regulates human bronchial epithelial cell inflammation and apoptosis in COPD (Shen et al., 2020). LINC00987 can regulate lipopolysaccharide-induced apoptosis, oxidative stress, inflammation, and autophagy via the let-7b-5p/SIRT1 axis (Wang et al., 2020), resulting in the amelioration of COPD. CircTMEM30A is highly expressed in COPD patients with lung cancer, the circTMEM30A/hsa-miR-130a-3p axis regulates TNF-α and promotes the malignant progression of COPD with primary lung cancer (Ding and Dong, 2021). Circ-OSBPL2 promotes apoptosis, inflammation, and oxidative stress in HBECs in smoking-associated COPD through the miR-193a-5p/BRD4 axis, indicating that the potential of circ-OSBPL2 to act as a diagnostic biomarker for smoking-induced COPD (Zheng et al., 2021).
ceRNAs represent a new post-transcriptional regulatory mechanism involved in the emergence and progression of various conditions (Guttman and Rinn, 2012; Castel and Martienssen, 2013; Meng et al., 2017). Based on several investigations, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks are associated with COPD progression (Liu et al., 2022). However, only few reports have revealed the overall expression profiles of lncRNAs, circRNAs, miRNAs, mRNAs and the regulatory mechanism of pivotal lncRNA or circRNA-miRNA-mRNA ceRNA regulatory networks in smoking-induced COPD. In addition, due to the difficulty of collecting clinical samples, most bioinformatics analyses are performed with samples from public databases rather than their own clinical samples. Therefore, comprehensive analyses are needed to identify more reliable biomarkers for the occurrence and development of COPD.
In the present study, lung resection specimens from patients with COPD (COPD) (n = 7) and non-COPD control subjects (Normal) (n = 6) were chosen. Whole transcriptome sequencing (RNA sequencing [RNA-seq]) was performed to screen differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs. In addition, we constructed the lncRNA-mRNA-miRNA and circRNA-mRNA-miRNA networks through bioinformatics analysis respectively. Relied on the Kyoto Encyclopedia of Gene and Genomes pathway enrichment analysis (KEGG), Gene Ontology analysis (GO), Gene set variation analysis (GSVA), and Gene set enrichment analysis (GSEA), the crucial pathways involved in COPD were detected. To further explore the mechanism of different mRNA expression, a protein-protein (PPI) network, hub-RBP (RNA binding protein) and immune infiltration analyses were carried out. Overall, these ceRNA networks may contribute to the discovery of novel biomarkers for COPD.
MATERIALS AND METHODS
Sample collection and the ethics committee
Lung resection specimens were collected from 20 patients with solitary pneumonic tumors who underwent pneumonectomy at the Department of Thoracic Surgery, General Hospital of Ningxia Medical University between June 2020 and December 2020, in accordance with the Declaration of Helsinki. Fresh non-neoplastic lung tissue should be at least 5 cm from the neoplastic lesion. The enrolled patients were divided into two groups: In the present study, lung resection specimens from patients with COPD (COPD) (n = 7) and non-COPD control subjects (Normal) (n = 6). Patients were diagnosed based on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) (Guo et al., 2018; Zhu et al., 2021). The characteristics of the participants are shown in Table 1.
TABLE 1 | Characteristics of subjects in this study.
[image: Table 1]The study inclusion criteria for patients with COPD were as follows: (Niu et al., 2022): a post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) rate lower than 0.70, which “verifies the existence of constant airflow restriction”; (Labaki and Rosenberg, 2020) age >40 and <80 years, current smoker with a history of cigarette smoking (more than 20 pack-years); (Lozano et al., 2012) patients with stable clinical condition that are not receiving chemotherapy or radiotherapy. The exclusion criteria for patients with COPD were as follows: (Niu et al., 2022): patients companied with lung metastasis or other organs tumors, including stomach, intestine, liver, pancreas, kidney, etc; (Labaki and Rosenberg, 2020) patients with other lung and systemic diseases, such as asthma, bronchitis, interstitial lung diseases, and cardiac, hepatic, or renal diseases; (Lozano et al., 2012) patients who inhaled or received oral glucocorticoids for 3 months before surgery and those who used biomass fuel and have a history of occupational exposure. Age- and sex-matched non-smokers without COPD and smokers with COPD served as controls.
This study was approved by the Ethics Committee of the General Hospital of Ningxia Medical University (Grant No.KYLL-2021-418). Each participant provided written informed consent.
Whole transcriptome resequencing and data quality control
Total RNA was extracted from frozen lung tissues using Trizol Reagent (Invitrogen, Life Technologies, United States). The Qubit® RNA Assay Kit for Qubit® 2.0 Fluorometer (Life Technologies, CA, United States) and NanoPhotometer® spectrophotometer (IMPLEN, CA, United States) were separately used to determine the concentration and purity of the total RNA. Subsequent experiments were performed with total RNA samples that met the following criteria: RNA integrity number (RIN) > 7.0 and 28S/18S ratio >1.8. First, the small RNA sequencing library was created using the NEB Next Multiplex Small RNA Library Prep Set (Illumina, San Diego CA, United States), as recommended by the manufacturer. Thereafter, a complementary DNA (cDNA) library of lncRNA was established following ribosomal RNA (rRNA) removal using the Epicenter Ribo-zeroTM rRNA Removal Kit (Epicenter, United States). rRNA with no residue was purified by ethanol precipitation. Sequencing libraries were produced using rRNA-depleted RNA and the NEBNext UltraTM Directional RNA Library Prep Kit for Illumina (NEB, United States), according to the manufacturer’s recommendations. Finally, all products were cleaned (AMPure XP system), and library quality was evaluated using the Agilent Bioanalyzer 2,100 system. Paired-end sequencing of individual libraries was performed on an Illumina HiSeq sequencer platform (Illumina).
Raw data (raw reads) in fastq format were initially processed using bcl2fastq or in-house Perl scripts. Clean data (clean reads) were acquired at this step by expurgating reads containing adapters, reads containing ploy-N, with 5′ adapter contaminants, without 3′ adapter or the insert tag, containing ploy A, T, G, or C, and low-quality reads from the original data. Simultaneously, the Q20, Q30, and GC content of the clean data were determined. High-quality and clean data were the basis of the entire downstream calculations.
Identification of differentially expressed genes
The R package “Deseq2” (Love et al., 2014) was used to identify differentially expressed genes between non-smokers without COPD and smokers with COPD tissues, and these genes were called differentially expressed lncRNAs (DElncRNAs), circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs), respectively. The screening criteria for differential genes were |log2FC| > 1 and p-value <.05. Genes with logFC >1 and p-value <.05 were identified as upregulated genes, while those with logFC <−1 and p-value <.05 were identified as downregulated genes. The result is visualized into volcano map and heatmap by R package ggplot2 and pheatmap respectively.
Construction of a ceRNA regulatory network
Based on the regulatory mechanism of ceRNA networks, lncRNAs and circRNAs can act as miRNA sponges to combine miRNAs and regulate downstream target mRNAs. In this study, DEmiRNAs were employed as the center of the ceRNA network. First, target genes of DEmiRNAs were obtained using four databases: miRDB (Chen and Wang, 2020), miTarBase (Huang et al., 2020), miRanda, and TargetScan (Agarwal et al., 2015). Genes in no less than three databases were indicated as the target genes for these DEmiRNAs, and only the overlapping portions of the genes were used to construct the miRNA-mRNA relationship. The miRcode database (Jeggari et al., 2012) was used to screen the miRNA-circRNA pair mutual effects, which were then combined with the miRNA-mRNA interaction pairs to set up the DElncRNA-DEmiRNA-DEmRNA ceRNA network using Cytoscape (Shannon et al., 2003) software What’s more, the miRanda database was used to determine the connection between the DElncRNAs and DEmiRNAs. The DEcircRNA-DEmiRNA were correlated with the miRNA-mRNA interaction pairs to construct the DEcircRNA-DEmiRNA-DEmRNA ceRNA network using Cytoscape software.
GO and KEGG enrichment analyses of DEmRNAs
GO (Gene Ontology, 2015) is a database resource for understanding the superior functions and availability of biological systems, including biological process (BP), cellular component (CC), and molecular function (MF), from large-scale molecular datasets produced using molecular-level information, especially genome sequencing and other high-throughput experimental techniques. KEGG (Kanehisa and Goto, 2000) is an extensively used database for storing information on genomes, biological pathways, diseases, and medicines. The R software package, clusterProfiler (Yu et al., 2012), was used to perform GO functional annotation and KEGG pathway enrichment analyses of DEmRNAs in the ceRNA networks. The significance levels of interest in the KEGG pathways and BPs in GO were p-value<0.05.
Gene set enrichment analysis (GSEA)
GSEA (Subramanian et al., 2005) (http://software.broadinstitute.org/gsea/index.jsp) is a genome-wide expression profile chip data analysis method for identifying functional enrichment through a comparison of genes and predefined gene sets. A gene set is a set of genes that share localization, pathways, functions, or other characteristics. GSEA can be used to assess related pathways and molecular mechanisms in smokers with COPD. We obtained the “hall.v7.2. symbols.gm” gene set in the MSigDB (Liberzon et al., 2015) database (v7.5.1) and performed GSEA on the differentially expressed mRNAs using the R package for GSEA. A false discovery rate (FDR) <.25 was considered to indicate obvious enrichment.
Gene set variation analysis (GSVA)
The R package, GSVA (Hanzelmann et al., 2013), was used to determine the scores of the relevant pathways underpinned by the gene expression matrix of every sample using single-sample gene set enrichment analysis (ssGSEA), and differentially screened many functions (or pathways) using the limma package (Ritchie et al., 2015).
Construction and analysis of the protein-protein interaction (PPI) network
PPI analysis of known differentially expressed genes and predicted PPIs was performed using the STRING database (Szklarczyk et al., 2015) (http://string-db.org; version11.5).
The Cytoscape software (version 3.6.1) Network Analyzer was used to calculate the node degree. cytoHubba (Chin et al., 2014) is a Cytoscape plug-in used to study the hub genes of the PPI network.
Combined PPI pairs with a confidence value of 0.9 were retrieved, and data from the PPI table were inputted into the Cytoscape software to create a visual PPI network. By employing the MCODE (Version 2.0.0) plug-in in the software to select hub modules in the PPI network, the GOSemSim (Yu et al., 2010) package was applied to conduct a Friends analysis on the first two core clusters. The cytoHubba plugin was also used to study hub genes in the PPI network.
Quantitative real-time PCR (qRT-PCR) for identification of hub genes
Total RNA was isolated from non-smokers without COPD (Normal) (n = 5) and smokers with COPD (COPD) (n = 5) using TRIzol reagent (Invitrogen, Life Technologies, United States), and cDNA was derived using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, United States). qRT-PCR was conducted using the CFX Connect Real-time PCR system (Bio-RAD, United States) and the TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) kit (Takara Bio, Japan), according to the instructions. The housekeeping gene, GAPDH, was used for normalization. All primer sequences are shown in Supplementary Table S1. Data represent the average of three independent replicates.
Immune infiltration analysis
CIBERSORTx (Chen et al., 2018) deconvolves the transcriptome expression matrix, which is based on the theory of linear support vector regression, to predict the composition and richness of immune cells in mixed cells. The gene expression matrix data were uploaded to CIBERSORTx, and combined with the LM22 eigengene matrix. Samples with p < .05 were filtered, and the immune cell infiltration matrix was obtained. The R language ggplot2 package was used to draw histograms to represent the distribution of 22 types of immune cell infiltration in every sample. For the two study groups, a boxplot was generated to demonstrate the relative abundance of immune cell infiltration. The correlation between the expression of key genes and the content of various types of immune cells was also analyzed.
Construction of the RBP-gene and TF-target gene
RNA binding proteins (RBPs) play a vital role in gene regulation. Currently, most RNAs bind to proteins to form RNA-protein complexes, except a few RNAs that can function as ribozymes alone. RBPs play a key role in the regulation of life activities, such as RNA synthesis, alternative splicing, modification, transportation, and translation. Consequently, analyzing the interaction between RNA and protein is key for evaluating the function of RNA. The starBase (Li et al., 2014) database is based on high-throughput CLIP-Seq and degradome experimental data. The database contains miRNA-ncRNA, miRNA-mRNA, RBP-RNA, and RNA-RNA data. RBPs can recognize special RNA binding domains and interact with RNA in cells, which belong to a type of post-transcriptional protein, and can participate in the control of RNA splicing, transport, sequence editing, intracellular localization, and translation. In this study, the hub-RBP network was constructed using the starBase database (https://starbase.sysu.edu.cn/) and visualized using Cytoscape software.
Transcription factors (TFs) control gene expression by interacting with target genes during the post-transcriptional stage. To analyze the regulatory effect of TFs on hub genes, specific binding of TFs to gene regulatory regions is an important approach for the regulation of gene expression. TF prediction was performed using the JASPAR database (JASPAR 2018) (Vlieghe et al., 2006) and TFBSTools software (3.3.2) (Tan and Lenhard, 2016), and the binding sites of TFs within the region 2,000 bp upstream of the start site of each lncRNA and 500 bp downstream, direction and scoring results were provided. The hub-TF interaction networks were visualized using Cytoscape software.
Statistical analysis
All calculations and statistical analyses were carried out at https://www.r-project.org/ (version 4.0.2). For the comparison of two groups of continuous variables, an independent Student’s t-test was used to estimate the statistics of normally distributed variables, and the Mann-Whitney U test (Wilcoxon rank sum test) was used to analyze the differences between non-normally distributed variables. All statistical p values were two-sided, and p < .05 was considered statistically significant.
RESULTS
Identification of DEGs in COPD
A total of 13 individuals participated in the study, including 6 in the normal and 7 in the COPD group (Table 1). The analysis strategy and procedure used in this study are illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Flow chart of the overall analysis to explore the biological characteristics of COPD by bioinformatics methods.
A total of 1,796 DEmRNAs were identified, of which 796 were upregulated and 1,000 were downregulated. A total of 2,207 DElncRNAs were identified, of which 1,245 were upregulated and 962 were downregulated. Finally, 11 DEmiRNAs were identified, among which 5 were upregulated and 6 were downregulated. Volcano plots (Figures 2A, B, E) and heat maps (Figures 2C, D, F) of the DEGs were generated to visualize the difference between the COPD group and the normal group.
[image: Figure 2]FIGURE 2 | Differential expression analysis. (A,B,E), Volcano plot of differentially expressed mRNA, lncRNA, and miRNA analysis. (C,D,F), Heatmap presentation of differential mRNAs, lncRNAs, and miRNAs.
Construction and analysis of the ceRNA network
Based on the expression profiles of miRNAs, lncRNAs, and mRNAs for COPD patients and normal participants, we established a lncRNA-miRNA-mRNA ceRNA network, which contained a total of 5 miRNA, 51 mRNA and 7 lncRNA nodes (Figures 1–3). Furthermore, a circRNA-miRNA-mRNA ceRNA network based on the expression profiles of miRNA, circRNA, and mRNA in COPD patients and normal participants was constructed. The ceRNA network contained 19 miRNA, 169 mRNA, and 10 circRNA nodes (Figures 2, 3).
[image: Figure 3]FIGURE 3 | Interaction network of mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA. The interaction network of differentially expressed mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA, in which the yellow node is miRNA, the green node is lncRNA, the blue node is mRNA, and the red node is circRNA.
PPI network and hub gene identification
A PPI network associated with DEmRNAs was constructed through the STRING database, visualizing the interaction relationship, which included 616 nodes and 1,424 edges. (Figure 4). The first two hub modules in the PPI network, Cluster1 (MCODE score = 12.667) and Cluster2 (MCODE score = 10.6) were selected using MCODE in the software (Figures 5A, B). Cluster1 contains 13 genes, of which 4 genes expression up-regulation were RPS27, DOCK4, RPL27A, RPL35A, the 9 genes expression down-regulated were RPS11, RPL23, RPL3, RPS21, FAU, RPLP0, RPL5, RPL13A, and RPL32 (Figure 5A). Cluster2 contains 10 genes, of which 5 were up-regulated, namely NOP58, NOP56, FTSJ3, UTP6, RSL1D1, and 5 were down-regulated, namely KRR1, NSA2, FCF1, NOC4L, UTP14C (Figure 5B). We further used the GOSemSim package to perform Friends analysis on the genes in the first two hubs, and the results suggested that the KRR1 was more important (Figure 5C). We then used the cytoHubba plugin to analyze the MCC algorithm to select the top 10 genes, namely RPS21, RPL32, RPL35A, FAU, RPLP0, RPS11, RPL27A, RPL23, RPL5, RPL13A as core genes (Figure 5D). We verified the mRNA levels of the top 10 hub genes in the COPD group, and we found that expression of 8 hub genes (RPLP0, RPL5, RPL32, RPL13A, FAU, RPL32, RPS21 and RPS11) was significantly downregulated in COPD tissues compared to the normal tissue consisted with the prediction results (Figures 6A–J).
[image: Figure 4]FIGURE 4 | Protein-protein interaction network. Protein-protein interaction analysis of DEGs was performed using STRING data, and the interaction relationship was visualized. The larger the circle,the higher the fold of differential expression. Blue indicates genes with down-regulated expression and red indicates genes with up-regulated expression.
[image: Figure 5]FIGURE 5 | Key analysis of differences between COPD and Normal. (A,B), MCODE plugins selected the first two hub modules in the PPI network, where blue indicates up-regulated genes and red indicates down-regulated genes. (C), Friends analysis of genes in the first two clusters was performed using the GOSemSim package, with similarity scores on the abscissa and gene names on the ordinate, where genes with higher scores were more important. (D), For the top ten Hub genes in the PPI network analyzed by the CytoHubba plug-in, darker colors indicate higher MCC scores.
[image: Figure 6]FIGURE 6 | Ten differential expression Hub genes. (A-J), RT-qPCR was used to verify the hub genes between COPD group and Normal group. “**” p<0.01.
Construction of the RBP-genes and TF-target gene network
We applied starBase database to construct a mRNA-RBP network, which comprised 7 mRNAs (FAU, RPS21, KRR1, NOP56, RPL5, RPL23, RPLP0) and 127 RBPs, of which RPL5 interacted with 118 RBPs, RPLP0 with 106 RBPs, RPL23 with 115 RBPs, FAU with 90 RBPs, RPS21 with RBPs, KRR1 with 103 RBPs and NOP56 with 114 RBPs (Figure 7A). We subsequently constructed a TF-lncRNA network consisting of 100 lncRNAs and 231 TFs using JASPAR database and TFBSTools software (Figure 7B). The top 10 TFs were ZNF354C, RHOXF1, SHOX, ISX, LHX9, RAX2, MZF1, PDX1, FOXL1, UNCX. Among them, ZNF354C was the transcription factor that interacted with the most lncRNAs (97 lncRNAs) in the TF-lncRNA network. (Figure 7B).
[image: Figure 7]FIGURE 7 | mRNA-RBP and TF-lncRNA networks. (A), Diagram of the interaction network between key mRNA genes and RBPS, where pink circle node represent RBPS and blue nodes represent the corresponding mRNAs. (B), network diagram of the interaction between lncRNA and TF transcription factors, where the yellow is the differential lncRNA and the purple node represents the TF.
Functional enrichment analysis of DEmRNAs
To study the relationship between DEmRNAs and BPs, MFs, CCs, biological pathways, and diseases, we first performed functional enrichment analysis of DEmRNAs (Figures 8A–G; Supplementary Tables S2, S3). DEmRNAs were the most abundant in BPs, such as nucleotide-excision repair, transcription-coupled nucleotide-excision repair, cell junction organization, cell junction assembly, and control of actin filament-based process (Figure 8E). Further, the DEmRNAs were enriched in CCs, such as focal adhesion, cell-substrate adherens junction, cell-substrate junction, cell-cell junction, ATPase complex (Figure 8F). Small GTPase binding, Ras GTPase binding, ubiquitin protein ligase binding, ubiquitin-like protein ligase binding, cadherin binding, and other MFs were identified (Figure 8G).
[image: Figure 8]FIGURE 8 | GO and KEGG enrichment analysis. (A), network diagram of GO and KEGG functional enrichment of differential mRNAs. (B), GO analysis dot plot of differential mRNA, abscissa is -log (p.adjust), ordinate is GO terms. (C), Chordal diagram of KEGG analysis. The quadrangle corresponding to the differentially expressed genes on the left shows downregulated expression in blue and upregulated expression in red. (D), KEGG enrichment Pathway map of differential genes, the horizontal axis is gene ratio, the vertical axis is Pathway name, the node size represents the number of genes enriched in the pathway, and the node color represents p.value. (E–G), are the visualization results of functional enrichment of BP, CC and MF, respectively. The outer circle is the GO terms, the red dot indicates the up-regulated genes, the blue dot indicates the down-regulated genes, the quadrate color indicates the z-score of GO terms, and the blue indicates that the z-score is negative, which means that the corresponding GO terms are more likely to be inhibited. Red indicates that the z-score is positive and is more likely to be activated in the corresponding GO terms.
Next, KEGG pathway enrichment analysis was performed on DEmRNAs. Based on the results, the DEmRNAs were abundant in biological pathways, such as base excision repair, ferroptosis, Yersinia infection, and human T-cell leukemia virus 1 infection (Figure 8D).
GSEA and GSVA
To determine the impact of gene expression levels on disease, GSEA was performed to analyze the relationship between gene expression and the BPs, CCs, and MFs. GSEA revealed that the most significantly enriched gene sets were negatively correlated with the COPD group, which included the TNF-α signaling via NF-κB, interferon gamma response, inflammatory response, unfolded protein response, mtorc1 signaling, estrogen response late, IL6/JAK/STAT3 signaling. Interestingly, these phenotype characteristics are thought to be associated with the progressions of COPD (Figures 9A–H; Supplementary Table S4).
[image: Figure 9]FIGURE 9 | GSEA and GSVA analysis. (A), GSEA analysis showed five main biological functions. (B-H) and GSEA analysis suggested that themain enriched pathways in the case group COPD group. (I), Heat map presentation of GSVA analysis.
The results of GSVA suggested that COPD group was mainly enriched in KEGG pathogenic Escherichia coli infection, prion diseases, regulation of autophagy, mismatch repair, glycosphingolipid biosynthesis lacto and neolacto series, antigen processing and presentation, porphyrin and chlorophyll metabolism, primary bile acid biosynthesis, riboflavin metabolism, glutathione metabolism, metabolism of xenobiotics by cytochrome p450, drug metabolism cytochrome p450, sphingolipid metabolism, retinol metabolism, and other biologically related functions and signaling pathways (Figure 9I).
Immune infiltration analysis
In this study, the gene expression matrix data were analyzed for immune cell infiltration, and filtered an immune cell infiltration matrix (p < .05) that revealed the distribution of immune cells (Figure 10A). The differences in immune cell infiltration between the normal group and COPD group were analyzed, the proportions of Eosinophils, M1 Macrophages, activated memory CD4+ T cells, resting NK cells and resting memory CD4+ T cells were higher in normal group. In addition, activated NK cells had a higher proportion of infiltration in COPD group (Figure 10B).
[image: Figure 10]FIGURE 10 | Analysis of immune infiltration. (A), component analysis of immune cells in COPD and control samples; (B), Differential analysis of the composition of various immune cells in the samples of COPD group and control group. The meanings represented by different asterisks explain significant differences. * indicates that the difference is statistically significant, “*” p < 0.05; “**” p < 0.01.
At the same time, the correlation between the infiltration of various immune cells and hub genes in the COPD group was analyzed (Figures 11A–F). There was a positive correlation between FAU gene expression and T cells regulatory (Tregs) in the COPD group (Figure 11A). RPL5 was negatively correlated with Neutrophils (Figure 11B). RPL5 was negatively correlated with T cells follicular helper (Figure 11C). RPLP0 was negatively correlated with T cells CD4 naive (Figure 11D). RPL10 was negatively correlated with B-cell memory (Figure 11E) and RPS21 was negatively correlated with CD4 naive T cells (Figure 11F).
[image: Figure 11]FIGURE 11 | Correlation analysis between hub genes and immune cells. (A), There was a positive correlation between FAU expression and immune cells T cells regulatory (Tregs) in COPD group. (B), RPL5 gene expression was negatively correlated with Neutrophils (C), RPL5 gene expression was negatively correlated with T cell follicular helper. (D), RPLP0 gene expression was negatively correlated with the immune cell component CD4 naive T cells. (E), RPL10 gene expression was negatively correlated with B cell memory. (F) and RPS21 gene expression were negatively correlated with CD4 naive T cells.
DISCUSSION
COPD is a heterogeneous disease in which chronic bronchiolitis and emphysema are the most prominent phenotypes and remain the leading causes of death worldwide (Mirza et al., 2018). With the evolution of the high-throughput sequencing technology and bioinformatics analysis, the ceRNA network hypothesis may illustrates the occurrence and progression of disease partially. Despite an increasing number of studies on ceRNA networks, it was not been fully elaborated about the molecular mechanisms of COPD (Salmena et al., 2011; Gong et al., 2020; Chen et al., 2022). In the present study, we utilized the whole transcriptome sequencing analysis of two groups (seven patients with COPD and six non-COPD control subjects), screened out 1,796 DEmRNAs (796 upregulated and 1,000 downregulated), 2,207 DElncRNAs (1,245 upregulated and 963 downregulated), and 11 DEmiRNA (five upregulated and six downregulated).
To date, the functions of most lncRNAs and circRNAs remain unclear. Consequently, the construction of a ceRNA network of lncRNAs/circRNA-miRNAs-mRNAs could provide help for the prediction of the functions of lncRNAs/circRNAs. According to the ceRNA co-expression network, 7 lncRNA-5miRNA-51mRNA and 10circRNA-19miRNA-169mRNA ceRNA networks were selected for further investigation respectively. LncRNAs regulate gene expression at different levels, including epigenetic, transcriptional, and post-transcriptional, which can act as miRNA sponges and interfere with miRNA-mediated degradation of target mRNA (Quinn and Chang, 2016; Kopp and Mendell, 2018). For example, the lncRNA, NORAD, is upregulated in non-small cell lung cancer (NSCLC) and accelerates the progression of NSCLC by enhancing tumor cell proliferation by targeting the miRNA-455/CDK14 axis (Wang et al., 2021). Similarly, the expression of the NORAD was notably increased in cancer tissues and cells compared with that in normal tissues and cells in NSCLC, which regulates the proliferation, migration, and invasion capabilities of NSCLC cells by targeting the miR-520a-3p/PI3k/Akt/mTOR signaling pathways (Wan et al., 2020). Wang et al. revealed that the lncRNA, EBLN3P, was upregulated in lung adenocarcinoma cell lines (A549 and NCI-H23), inhibiting A549 cell viability and promoting apoptosis via the miR-655-3p/Bcl-2 axis (Wang and Yin, 2022). CircRNA is a covalently closed loop-like structure that is highly specific to the eukaryotic transcriptome and can be used as a microRNA sponge, a splicer, and for transcribed gene expression (Qu et al., 2015). Subsequently, out of the 10 DEcircRNAs from circRNA-miRNA-mRNA ceRNA network in this study, only 1 DEcircRNAs had reported to be associated with lung diseases. Yang et al. reported that hsa_circ_0003162 is significantly down-regulated in lung adenocarcinoma, indicating that it may be involved in the progression of lung adenocarcinoma (Liu et al., 2021). However, none of the other 9 circRNAs have been reported, which need further in vitro and in vivo experiments, might serve as novel potential biomarkers for COPD. Thus, these ceRNA networks indicate that our bioinformatics approach can effectively identify the potential functions of lncRNAs and circRNAs. To sum up, our results are consistent with most current studies focusing on lncRNA or circRNA-miRNA pairs and hopefully provide useful information for future research on COPD.
In our research, the STRING database was used to generate PPI with DEmRNAs, which were keeping a high degree of consistency with confirmatory experiment. The mRNAs including RPL5, RPL11, RPL27A and RPL32 are significantly informative. As far as we know, most ribosome proteins (RPs) are connected with cell growth, proliferation, differentiation and apoptosis. Liao et al. reported that ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) synergistically guide RNA-induced silencing complexes (RISCs) into c-Myc mRNA and degrade their mRNA, thereby inhibiting the activity of c-Myc in human lung adenocarcinoma cells (H1299) (Liao et al., 2013). Park et al. reported that under stimulation, RPL5 further inhibits the upsurge and promotes apoptosis of NSCLC cells by inhibiting c-Myc (Park et al., 2021). Xie et al. found that silencing of RPL32 causes RPL5 and RPL11 to be transferred from the nucleus to the nucleoplasm, leading to the accumulation of p53 and inhibition of lung cancer proliferation (Xie et al., 2020). The expression of RPS27a in LUAD was also found to be upregulated, suggesting that the expression of RPS27a may be related to LUAD progression and poor prognosis (Li et al., 2022). These results are consistent with our research. Thus, we speculated that RPL5, RPL11, RPL27A and RPL32 might have influence on the pathogenesis of COPD by regulating the above phenotypes, which expected to be potential biomarkers for COPD. Overall, comprehensive analysis of hub genes in COPD may offer new perspectives on the pathogenesis of COPD.
Furthermore, the biological function of DEmRNAs was identified grounded on GO annotation and KEGG pathway enrichment analysis. The nucleotide-excision repair, base excision repair, Ferroptosis, Yersinia infection, Human T-cell leukemia virus 1 infection were related to the pathophysiologic mechanism of COPD. Then, we performed GSEA and GSVA analyses to further elucidate the underlying mechanisms. The GSVA heatmap result revealed that the activity of glutathione metabolism, metabolism of xenobiotics by cytochrome p450, drug metabolism cytochrome p450 was enhanced in smokers with COPD samples, whereas regulation of autophagy was impeded. GSEA result revealed relatively high enrichment of TNF-α via NF-κB, interferon gamma response, inflammatory response, IL6/JAK/STAT3 signaling pathways in smokers with COPD patients. Among which TNF-α via NF-κB play a significant role in COPD pathology. TNF-α is an important pro-inflammatory cytokine produced by different immune inflammatory cells (such as epithelial cells) in response to stimulation. In COPD, TNF-α recruit inflammatory cells producing inflammatory mediators, which activated airway inflammation response caused airway oxidation and hyperreactivity. Chen et al. suggested that TNF-α stimulates interleukin-6 (IL-6) and interleukin-8 (IL-8) generation, activating the nuclear factor-κB (NF-κB) pathway by the degradation of IκB-α and the phosphorylation and nuclear migration of NF-κB p65, highlight the role of TNF-α in the pathogenesis of chronic inflammation, suggesting that TNF-α may be a promising target for the treatment of airway inflammatory diseases especially COPD (Brightling et al., 2008; Herfs et al., 2012; Chen et al., 2020), which were consistented with our study. The JAK/STAT pathway is activated by a variety of pro-inflammatory cytokines, such as IL-6, IL-11, and IL-13, which are upregulated in different lung diseases (Montero et al., 2021). Eskiler G et al. revealed that IL-6-mediated Janus kinase (JAK)/signal sensor and transcriptional activator 3 (STAT3) pathways are indispensable in cancer cachexia, such as lung cancer via the induction of a systemic inflammatory response. Johnson et al. revealed that the IL6/JAK/STAT3 pathway is abnormally activated in many types of cancer, which is often associated with poor clinical prognosis (Johnson et al., 2018). All these above views indicated that TNF-α via NF-κB and IL6/JAK/STAT3 signaling pathways were implicated with pathogenesis of COPD.
Despite this, our study had some limitations. First, owing to the small sample size used in this study, it is impossible to comprehensively summarize the COPD transcriptome. Thus, the sample size and male to female ratio should be expanded for further analysis. Second, due to the limitations of the current environment, although we are also interested in the comparison for ceRNA networks between patients with lung tumor vs. no tumor COPD patients, However, no similar samples have been collected, and no similar public transcriptome data of lung tumor vs. no tumor COPD patients have been searched in public databases, so it cannot be done at present. Our next step is to collect such samples as much as possible and then perform whole-transcriptome sequencing. Third, because smoking is a risk factor for inducing COPD and most COPD patients are combined with smoking, our focus in this study was biased to whether the patient developed COPD and to search for possible biomarkers of COPD. Next, we will continue to collect samples, focus on whether COPD patients smoke and control subjects smoke, and further study the pathological mechanisms of smoking in the occurrence and development of COPD. Moreover, RNA regulatory networks are only based on bioinformatics predictions, lacking actual experiments to verify, which requires in vivo animal experiments and in vitro cell models for in-depth investigation. Finally, although several crucial signaling pathways were identified, a series of molecular experiments may help to demonstrate the possible phenotype and pathway regulation of these predictive genes in COPD.
In conclusion, whole-transcriptome sequencing provided all-side data for lncRNA, circRNA, miRNA, and mRNA from COPD samples, discovered lots of differentially expressed RNAs and significant pathways. Based on these ncRNAs, we conducted a series of analyses, which may contribute to discover potential biomarkers in the occurrence and development of COPD, and provide possible therapeutic targets for the diagnosis and prognosis of COPD.
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Aim: As the most common cardiomyopathy, dilated cardiomyopathy (DCM) often leads to progressive heart failure and sudden cardiac death. This study was designed to investigate the molecular subgroups of DCM.
Methods: Three datasets of DCM were downloaded from GEO database (GSE17800, GSE79962 and GSE3585). After log2-transformation and background correction with “limma” package in R software, the three datasets were merged into a metadata cohort. The consensus clustering was conducted by the “Consensus Cluster Plus” package to uncover the molecular subgroups of DCM. Moreover, clinical characteristics of different molecular subgroups were compared in detail. We also adopted Weighted gene co-expression network analysis (WGCNA) analysis based on subgroup-specific signatures of gene expression profiles to further explore the specific gene modules of each molecular subgroup and its biological function. Two machine learning methods of LASSO regression algorithm and SVM-RFE algorithm was used to screen out the genetic biomarkers, of which the discriminative ability of molecular subgroups was evaluated by receiver operating characteristic (ROC) curve.
Results: Based on the gene expression profiles, heart tissue samples from patients with DCM were clustered into three molecular subgroups. No statistical difference was found in age, body mass index (BMI) and left ventricular internal diameter at end-diastole (LVIDD) among three molecular subgroups. However, the results of left ventricular ejection fraction (LVEF) statistics showed that patients from subgroup 2 had a worse condition than the other group. We found that some of the gene modules (pink, black and grey) in WGCNA analysis were significantly related to cardiac function, and each molecular subgroup had its specific gene modules functions in modulating occurrence and progression of DCM. LASSO regression algorithm and SVM-RFE algorithm was used to further screen out genetic biomarkers of molecular subgroup 2, including TCEAL4, ISG15, RWDD1, ALG5, MRPL20, JTB and LITAF. The results of ROC curves showed that all of the genetic biomarkers had favorable discriminative effectiveness.
Conclusion: Patients from different molecular subgroups have their unique gene expression patterns and different clinical characteristics. More personalized treatment under the guidance of gene expression patterns should be realized.
Keywords: dilated cardiomyopathy, WGCNA, molecular subgroups, lasso algorithm, SVM-RFE algorithm
INTRODUCTION
Dilated cardiomyopathy (DCM) is the most common type of cardiomyopathy and a leading cause of death in the cardiovascular field, which is characterized by enlargement of the ventricle and reduced cardiac function (Fatkin et al., 2019). DCM can develop into severe congestive heart failure progressively and threaten the survival of patients. Although tremendous progress has been made in the treatment field of DCM in the past decades, the morbidity and mortality of DCM still remain high (Jefferies and Towbin, 2010). At present, the etiology and pathogenesis of DCM are still unclear. Most of DCM cases were thought to be sporadic, but at least 40%–60% of DCM cases are now found to be familiar. Pedigree analysis showed that most of families with DCM had autosomal dominant inheritance, while a few had autosomal recessive inheritance, mitochondrial inheritance and X-linked inheritance. It is of clinical significance to identify the underlying the genetic mechanisms of DCM, which will improve the prognosis of patients with DCM.
With the development of gene sequencing technologies, the public gene expression profile databases, such as TCGA database and GEO database, provide us an opportunity to better understand the underlying genetic mechanisms of DCM. Bioinformatics analysis can identify the differentially expressed genes (DEGs) of DCM and uncover the specific biological functions of DEGs, which plays a crucial role in developing clinical therapeutic measures and new drugs (Cordero et al., 2008). Xiao et al. used dataset of DCM (GSE3585) downloaded from GEO database to screen out the DEGs of DCM patients compared with control group and identified the hub genes (CTGF, IGFBP3, SMAD7, INSR, CTGF, IGFBP3) significantly related to DCM by establishing protein-protein interaction (PPI) network (Zhang et al., 2017). In addition, Huang et al. also analyzed the DCM heart tissue samples from the GEO database (GSE79962) using weighted gene co-expression network analysis (WGCNA) method, and identified gene modules that are related to the progression of DCM (Kang et al., 2020).
Molecular classification was first proposed in various cancer researches to reveal the heterogeneity between patients with the same tumor, shifting tumor classification from traditional morphology to molecular features-based molecular typing. Considering patients in different molecular subgroups often have different clinical manifestations and prognosis, molecular classification is helpful in judging prognosis and guiding treatment of diseases (Travaglino et al., 2020a; Travaglino et al., 2020b; Naso et al., 2021). In recent years, more and more researchers have focused on the molecular classification among chronic diseases rather than tumors, such as idiopathic pulmonary fibrosis (IPF), coronary artery disease (CAD) and hepatitis B virus (HBV) infection (Ainali et al., 2012; Zhang et al., 2021a; Zhang et al., 2021b). CAD is a leading cause of death in cardiovascular field. To investigate the molecular features of patients with CAD in different molecular subgroups, Peng et al. also performed molecular subgroups analysis and classified 352 patients with CAD into three molecular subgroups based on datasets downloaded from GEO database. They found that patients in different molecular subgroups of CAD not only showed different gene expression patterns, but also different clinical characteristics (Ainali et al., 2012). As a complex inherited disease similar to cancer, DCM also exhibited clinical heterogeneity. Nevertheless, the molecular subgroups of DCM have not been reported. Therefore, we carried out this work to conduct molecular classification of patients with DCM, looking for specific gene modules in each molecular subgroup and exploring the relationship between each molecular subgroup and clinical features. Many studies have analyzed the gene expression profiles related to DCM. However, most of the previous studies screened out differentially expressed genes (DEGs) between DCM patients and control individuals, but ignored the existed differences in gene expression profiles among DCM patients. In the present study, we further classified DCM patients into molecular subgroups based the gene expression patterns, and revealed that patients from different subgroups exhibited different clinical characteristics. Artificial intelligence (AI) is a new technical science that researches and develops theories, methods, technologies and application systems for simulating, extending and expanding human intelligence (Ghazal et al., 2022). Medicine is one of the earliest applications of AI, including disease diagnosis and the selection of the best surgical procedures (Goyal et al., 2022). Machine learning is an important branch of artificial intelligence and has been widely used in screening characteristic genes and risk factors of diseases (Dai et al., 2022; Liu et al., 2022; Wu et al., 2022). We also used machine learning methods to screen characteristic genes in subgroups in an attempt to correlate gene expression profiles with clinical features in patients with DCM.
METHODS
Data collection
Three gene expression datasets of DCM were downloaded from GEO database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013) via the “GEO query” package in R software (version 4.1.1, http://r-project.org/) (Davis and Meltzer, 2007), including GSE17800 (Liu et al., 2022), GSE79962 (Dai et al., 2022), and GSE3585 (Barrett et al., 2013). GSE17800 was performed on the GPL570 platform and included heart tissue samples from 40 DCM patients and eight control individuals (Ameling et al., 2013). GSE79962 was performed by GPL6244 platform and included nine DCM samples and 11 control samples (Matkovich et al., 2017). GSE3585 was based on the platform GPL96, which includes heart tissue samples from seven DCM patients and five control individuals (Barth et al., 2006). The detailed characteristics of datasets was shown in Table 1.
TABLE 1 | Characteristics of the datasets included in the analysis.
[image: Table 1]Data processing
Gene expression matrices of GSE17800, GSE79962, and GSE3585 were established by R software. Then, we employed the “limma” package to conduct log2-transformation and background correction, and merged three datasets into a metadata cohort for further analysis (Davis and Meltzer, 2007). Considering the integrated datasets were based on different platforms and different experiment conditions, it is of significance to remove the batch effect. The “SVA” package was adopted for removing batch effects (Yeh et al., 2013). Moreover, each gene expression value from different batches were adjusted by the normalization procedure of “central standardization,” also known as “mean centering” using “Combat” package. Finally, the “ggplot2” package was adopted to conduct principal component analysis (PCA) and draw PCA-plot based on the top two principal components in PCA (Ito and Murphy, 2013).
Consensus clustering
The consensus clustering of DCM samples from GSE17800, GSE79962, and GSE3585 was conducted by the “Consensus Cluster Plus” package (Wilkerson and Hayes, 2010). We set 10 as the maximum value of cluster groups. The consistency score (greater than 0.7 in all clusters) and cumulative distribution function (CDF) was used to determine the number of cluster groups.
Comparing the clinical features among molecular groups
Clinical characteristics were also obtained by “GEO query” package (Subramanian et al., 2007; Nidheesh et al., 2017). To obtain the difference of clinical features among different molecular subgroups, the clinical characteristics of the three subgroups were compared in detail. We adopted the Pairwise Wilcoxonʼs rank-sum test to investigate whether there were differences in age, BMI, LVEF and LVIDD among three subgroups. The analysis of variance for age, molecular subgroup and their interaction was also conducted to validate whether the factor of molecular subgroup classification is an independent indicator that can predict severity of DCM.
WGCNA analysis
WGCNA method is an effective tool to identify co-expression modules related to specific biological function (Langfelder and Horvath, 2008). We adopted WGCNA according to the subgroup-specific signatures to determine potential gene modules that can represent the functions of each molecular subgroup of DCM. In the scale-free network, the best soft-threshold power was determined by maximal R2. Moreover, we used the average method and the dynamic method to conduct hierarchical clustering analysis. After merging of similar modules, the module classification of genes were ultimately established. Correlation analysis between WGCNA modules and clinical characteristics was also performed using Spearmanʼs method.
Enrichment analysis
The “clusterProfler” package (Wu et al., 2021) was used to perform GO and KEGG pathway enrichment analysis among different modules to further investigate the biological meaning of different modules and its roles in occurrence and progression of DCM. We downloaded the gene group reference of KEGG pathway from MSigDB database (Kanehisa and Goto, 2000; Kanehisa et al., 2019). The filter was set as p-value < 0.05 in KEGG analysis.
Identification of biomarkers based on machine learning methods
We adopted two machine learning methods of LASSO regression algorithm and SVM-RFE algorithm to screen out biomarkers of molecular subgroup of DCM. “glmnet” package was employed to conduct LASSO regression algorithm, which is a linear regression model and widely used to screen characteristic genes or elements most closely related to disease occurrence (Zhang et al., 2014). SVM-RFE is another machine learning algorithm, which has also been widely used for classification and regression analysis. We used SVM-RFE algorithm based on “e107” package to identify genes with high discriminative power (Leavey et al., 2018). Genes identified by both algorithms were eventually selected as biomarkers.
Evaluation of discriminative power of the biomarkers
We created receiver operating characteristic (ROC) curve by the “pROC” package, and area under curve (AUC) value was adopted to determine the discriminative power.
RESULTS
Removal of batch effect
The detailed characteristics of the datasets included in the analysis, including GSE17800, GSE79962 and GSE3585, was shown in Table 1. A total of 11,779 genes were jointly detected by both microarray platforms of the dataset. Principal component analysis (PCA) was performed to validate whether the batch effect among the datasets included in this study was successfully removed. PCA-plot was drawn based on the top two principal components (PCs) in PCA. Before the process of batch effect removing, heart samples from patients with DCM were clustered by batches, indicating that there was significant batch effect caused by different platforms and different experiment conditions among the datasets (Figure 1A). In addition, the distribution range of specimens on the horizontal (PC1) and vertical (PC2) axes is 100 and 200, respectively, with a large variation rate. After removing of batch effect between GSE17800, GSE79962 and GSE3585, including samples of controls and patients with DCM, the PCA-plot based on PCA of the normalized meta-cohort data revealed that the batch effect between GSE17800, GSE79962, and GSE3585 was clearly removed. Of note, the batch effect between samples of controls and patients with DCM was also removed (Figure 1B).
[image: Figure 1]FIGURE 1 | PCA plots of the gene expression datasets. The points of the PCA plots visualize the samples based on the top two PC (PC1 and PC2) without (A) and with (B) the removal of batch effect between GSE17800, GSE79962 and GSE3585. PCA, Principal component analysis; PC, principal components.
Consensus clustering of DCM cases
After the batch effect was successfully removed, the merged dataset was employed to conduct molecular subgroup analysis by consensus clustering. The cluster consensus score of each subgroup was higher than 0.7 only in the three categories (Figure 2A). In addition, CDF curve showed that the CDF score was the largest in the three categories (Figure 2B). Both evidences suggested that three molecular subgroups were more robust than others in DCM patients. Therefore, heart tissue samples would be clustered into three molecular subgroups according to the consistency score and the CDF curve. In the consensus matrix, we observed that there is a high similarity of gene expression patterns within each molecular subgroup (Figure 2C). Ultimately, we adopted consensus clustering algorithm to divide 56 heart tissue samples from patients with into three molecular subgroups based on the gene expression patterns.
[image: Figure 2]FIGURE 2 | Consensus clustering analysis based on gene expression profiles of DCM patients. (A). The barplots of consistency scores of each cluster; (B). The CDF scores of the different categories; (C). The heatmap represents the consensus matrix with cluster count of 3, which was determined by the CDF scores and consensus scores of subgroups. DCM, dilated cardiomyopathy; CDF, cumulative distribution function.
The differences of clinical characteristics in the three molecular subgroups
DCM cases in subgroup 1, subgroup 2, and subgroup 3 had different gene expression patterns. To further investigate the clinical characteristics of three groups, the age, BMI, LVEF, and LVIDD were analyzed in detail in DCM cases from GSE17800 dataset. We found that patients in subgroup 2 had lower LVEF than patients in subgroup 1 and subgroup 3 with statistical difference (Figure 3A). However, the results of age, BMI, and LVIDD statistics showed that there was no significant difference among three groups (Figures 3B–D). As a result, not only did gene expression differs, but the severity of the disease also varied among three subgroups of DCM cases. As shown in Table 2, the analysis of variance (ANOVA) on age and our molecular classification was performed, indicating that the molecular classification in the present study was an age-independent indicator for the severity of DCM.
TABLE 2 | Analysis of variance for classification of subgroups, age, and their interactions.
[image: Table 2][image: Figure 3]FIGURE 3 | The comparison of clinical characteristics among the different molecular subgroups. (A). Box plot displays LVEF of each subgroup; (B). Box plot displays age of each subgroup; (C). Box plot displays BMI of each subgroup; (D). Box plot displays LVIDD of each subgroup. BMI, body mass index; LVEF, left ventricular ejection fraction; LVIDD, left ventricular internal diameter at end-diastole.
WGCNA analysis
Based on Pairwise differential expression analysis, we identified 605, 697, and 1,557 specific differentially expressed genes in subgroups 1, subgroups 2, and subgroups 3 compared with other subgroup (Benjamin-Hochberg adjusted p < 0.05, absolute difference of mean > 0.2) (Table 3). We also compared the gene expression profile of each molecular subgroup with that of control individuals. There was 1,236, 1,388, and 2,617 differentially expressed genes in subgroups 1, subgroups 2, and subgroups 3 compared with the control individuals (Table 3). To further reveal the differences in gene expression patterns and the resulting functional differences among molecular subgroups of DCM, WGCNA was performed based on the specific differentially expressed genes in each group. We carried out WGCNA analysis based on topological overlaps and scale-free network and created a hierarchical clustering tree based on the dynamic-hybrid cut (Figure 4A). According to the results of scale-free topology criterion, we selected 8 as the soft-thresholding power (R2 = 0.89; Figure 4B). Ultimately, a total of nine co-expressed modules were identified for further research. Figure 4C shows the cluster dendrogram of the modules and the clustering of module eigengenes was shown in Figure 4D. Figure 5 shows the identified nine WGCNA modules, of which the corresponding subgroups are shown in Table 3. To further study the relationship between WGCNA modules and clinical features of patients with DCM, the correlation coefficients between WGCNA models and clinical features were calculated. As shown in Figure 5, age was correlated positively with module blue, and negatively correlated with module brown, module black, module turquoise, module red and module pink. LVEF was positively correlated with module pink, and negatively corelated with module black and module grey. BMI was positively corelated with module grey, module blue, module brown, and module black, and negatively corelated with module pink and module yellow. These results show that the WGCNA modules was associated with clinical features of patients with DCM. Moreover, we performed GO functional enrichment analysis based on the genes in different WGCNA modules. Figure 6 shows the biological process terms enriched in different modules. The abscissa represents the elder brother module, and the ordinate represents the item of functional enrichment analysis. A triangle means statistically significant. The enriched terms in cellular component and molecular function are shown in Supplementary Figures S1, S2. Detailed results of GO enrichment analysis were shown in Supplementary Tables S1–S3. We also conducted KEGG pathway analysis and identified pathways enriched in different WGCNA modules (Figure 7). Detailed results of KEGG enrichment analysis were shown in Supplementary Table S4. Above all, these results of enrichment analysis demonstrated each molecular subgroup had its specific functional gene modules that could function in modulating DCM onset or progression.
TABLE 3 | The number of differentially expressed genes by case-control and case-case comparisons and weighted gene co-expression analysis modules in each subgroup.
[image: Table 3][image: Figure 4]FIGURE 4 | Sample clustering and network construction of the weighted co-expressed genes. (A) Clustering dendrogram heart tissue samples from patients with DCM and control individuals. (B) the scale-free index and the mean connectivity for various soft-thresholding powers. (C) Dendrogram clustered based on a dissimilarity measure. Gene expression similarity is assessed by a pair-wise weighted correlation metric and clustered based on a topological overlap metric into modules. Each color below represents one co-expression module, and every branch stands for one gene. (D) Cluster dendrogram of modules.
[image: Figure 5]FIGURE 5 | Heatmap of the correlation between modules and clinical features of patients with DCM.
[image: Figure 6]FIGURE 6 | Heatmap of the enriched biological processes in GO analysis for each WGCNA module.
[image: Figure 7]FIGURE 7 | Heatmap of the enriched pathways in KEGG analysis for each WGCNA module.
Identification of biomarkers based on machine learning algorithms
Considering the patients in subgroup 2 had more severe condition, two machine learning algorithms of LASSO regression and SVM-RFE algorithm were adopted to screen out biomarkers. According to the specific differentially expressed genes in subgroup 2, we screened out 28 key gene significantly related to molecular classification using LASSO algorithm (Figure 8A). In addition, 28 genes were identified as biomarkers based on the SVM-RFE algorithm (Figure 8B). The seven overlapping genes, including TCEAL4, ISG16, RWDD1, ALG5, MRPL20, JTB and LITAF, were finally selected as biomarkers (Figure 9A). All of the DEGs of subgroup 2 with detailed p-value and adjust p-value was shown in Supplementary Table S5.
[image: Figure 8]FIGURE 8 | Identification of biomarkers of molecular subgroup 2 using machine learning algorithms. (A) Identification of biomarkers of molecular subgroup 2 via LASSO algorithm; (B) Identification of biomarkers of molecular subgroup 2 via SVM-RFE algorithm.
[image: Figure 9]FIGURE 9 | Evaluation of the effectiveness of the biomarkers. (A) Venn plot of the overlapping genes identified by the LASSO algorithm and SVM-RFE algorithm. (B–H) ROC curves of TCEAL4, ISG15, RWDD1, ALG5, MRPL20, JTB, and LITAF. ROC, receiver operating characteristic.
Diagnostic effectiveness of biomarkers
ROC curve was adopted to evaluate the diagnostic effectiveness of biomarkers of subgroup 2. The results of ROC curve indicated that all of the biomarkers have a favorable diagnostic effectiveness in discriminating DCM cases in subgroup 2, with an AUC of 0.979 (95% CI 0.932–1.000) in TCEAL4, AUC of 0.869 (95% CI 0.750–0.968) in ISG15, and AUC of 0.939 (95% CI 0.850–0.996) in RWDD1, AUC of 0.955 (95% CI 0.888–1.000) in ALG5, AUC of 0.874 (95% CI 0.701–1.000) in MRPL20, AUC of 0.966 (95% CI 0.917–0.998) in JTB and AUC of 0.953 (95% CI 0.888–0.996) in LITAF (Figures 9B–H). The expression levels of the biomarkers among different molecular subgroups were shown in Figures 10A–G.
[image: Figure 10]FIGURE 10 | The comparison of expression levels of the biomarkers among control group and different molecular subgroups. (A–G) Expression levels of TCEAL4, ISG15, RWDD1, ALG5,MRPL20, JTB, and LITAF among control group and different molecular subgroups.*p < 0.05.
DISCUSSION
In this study, three gene expression profiles of heart tissue samples from patients with DCM and control individuals from GEO database were analyzed in detail. For the first time, we merge the three datasets as a metadata cohort and successfully clustered the DCM cases into three molecular subgroups according to the gene expression profile of DCM. The consensus clustering process based on CDF score and cluster consensus score guaranteed that our molecular subgroup classification was robust. Furthermore, significant correlation between clinical conditions and molecular subgroups was observed. Patients in subgroup 2 had lower LVEF comparing with the other two subgroups. In addition, molecular subgroups-specific functional modules and pathways were also analyzed through WGCNA method. These results taken together showed that the molecular classification of DCM was associated with clinical features of patients with DCM and patients in different molecular subgroups should receive personalized treatment.
Molecular subgroup classification based on gene expression patterns has provided great help for clinical diagnosis and treatment, especially in the field of cancer research. Zhang et al. (2014) reported that the stem-like signatures were significantly activated in patients with colon cancer from molecular subtype C. In recent years, more and more researchers have focused on the molecular classification among chronic diseases rather than tumors. For example, IPF is one of the idiopathic interstitial pneumonias with high mortality and morbidity. Zhang et al. (2021a) conducted a molecular subgroups analysis for patients with IPF according to gene expression profiles, and revealed the potential molecular features of different types of IPF. CAD is a leading cause of death in cardiovascular field. To investigate the molecular features of patients with CAD in different molecular subgroups, Peng et al. also performed molecular subgroups analysis and classified 352 patients with CAD into three molecular subgroups based on datasets downloaded from GEO database. They found that patients in different molecular subgroups of CAD not only showed different gene expression patterns, but also different clinical characteristics (Ainali et al., 2012). At present, the hepatitis B virus (HBV) infection is a public health threat worldwide. Patients infected with HBV in different molecular subgroups showed significantly differences in clinical features, such as degree of liver fibrosis and liver index. Of note, the immune cells infiltration in liver tissue samples from patients with HBV of different are also different (Zhang et al., 2021b). Understanding the gene expression patterns of diseases, especially inherited diseases and studying the clinical characteristics of different molecular subtypes are very important for the precise treatment of each patient. Moreover, psoriasis, pre-eclampsia, Alzheimerʼs disease and myelodysplastic syndrome were also found association between the clinical variables and transcriptional differences or subtypes (Aibar et al., 2016; Leavey et al., 2018). These studies provide a deeper understanding of diseases and indicate the significance of precise medicine. In the present study, we collected gene expression datasets of DCM from GEO database and conducted an integrated bioinformatics analysis, aiming to uncover the molecular subgroups according to genes expression patterns.
In particular, patients in subgroup 2 tended to have a more serious condition than patients from subgroup 1 and subgroup 3. The results of age, BMI, and LVIDd statistics showed that there was no significant difference among three groups. Therefore, DCM patients should be distinguished by the molecular classification and receive more personalized treatment.
Compared to previous studies, the functional modules and pathways identified by WGCNA method were also connected with specific molecular subgroup of DCM (Zhou et al., 2020; Huang et al., 2021; Li et al., 2021). We found that the specific differential expression genes in subgroup 2 were mostly in the black, blue, green and grey WGCNA module. Considering the black module had a significant negative correlation with LVEF, the enrichment analysis of black module demonstrated that valine, leucine and isoleucine degradation signaling pathway, nucleotide metabolism signaling pathway and ubiquitin mediated proteolysis signaling pathway may contribute to the negative correlation with cardiac function. The change of metabolism is an important feature of DCM. Optimizing myocardial energy metabolism is one of the important means to treat DCM (Mak et al., 2021). Of note, branched chain amino acids (BCAAs) are collectively referred to as leucine, valine and isoleucine. BCAAs can be regarded as one of the most important nutritional supplements and are the most characteristic energy source for the oxidation and utilization of myocardial amino acids. Although BCAAs accounts for only 2% of myocardial ATP production, it plays an important role in regulating insulin pathway and mammalian rapamycin like target protein (mTOR) signaling pathway (Jo et al., 2022). In addition, BCAAs can continuously activate mTOR signal and damage insulin signal transduction through insulin receptor substrate, and abnormal BCAAs metabolism can cause the accumulation of BCAAs metabolites and eventually lead to insulin resistance (Cuomo et al., 2022). Studies have shown that eating a mixture rich in BCAAs can prolong the average life span of mice and increase mitochondrial biogenesis in mouse myocardium and skeletal muscle (Valerio et al., 2011). However, the increase of plasma BCAAs level in patients is considered to be an early predictor of the development of DCM. The accumulated BCAAs can activate mTOR signal and accelerate the occurrence and development of myocardial hypertrophy (Caragnano et al., 2019). Protein phosphatase PPC2m and branched-chain alpha-ketoacid dehydrogenase (BCBDK) are important targets to improve BCAA metabolism, which is crucial for BCAA oxidation and promote BCAAs oxidation. The risk of heart failure in PPC2m knockout mice was significantly increased. Enhancing BCAAs oxidation and or reducing the level of BCAA in blood have cardioprotective effects in heart failure. In addition, BCBDK inhibitor BT2 can improve the oxidation capacity of BCAA in heart failure, reduce the accumulation of BCAA, and reduce the infarct area of cardiac ischemia reperfusion injury (Li et al., 2017). Nucleotide is the basic structural unit of genetic material nucleic acid and has a variety of biological functions. In addition to being the raw material for nucleic acid synthesis, it also constitutes energy substances, such as ATP, GTP, CTP, etc., (Barvík et al., 2017). Nucleotide is also involved in metabolism and physiological regulation, for example, cAMP is an important second messenger substance in the body and participates in signal transduction (Mani, 2022). In view of the important physiological significance of nucleotide, its abnormal situation in the process of metabolism often causes serious consequences. In recent years, a series of genetic diseases, including DCM, caused by abnormal nucleotide metabolism have been found (Pant et al., 2018). Ubiquitination refers to the process in which ubiquitins (a class of low molecular weight proteins) classify proteins in cells under the action of a series of special enzymes, select target proteins from them, and modify the target proteins specifically (Kolla et al., 2022). DCM are associated with cardiac remodeling, where the ubiquitin-proteasome system (UPS) holds a central role. Different levels of UPS components, E3 ligases, and UPS activation markers were observed in myocardial tissue from control individuals and patients affected by DCM, suggesting differential involvement of the UPS in the underlying pathologies (Shukla and Rafiq, 2019). Therefore, Attention to the role of metabolic abnormalities in dilated cardiomyopathy is important to identify therapeutic targets for patients with different molecular pressure groups. We also screened out biomarkers of molecular subgroup 2, including TCEAL4, ISG15, RWDD1, ALG5, MRPL20, JTB, and LITAF, based on two machine learning methods of LASSO regression and SVM-RFE algorithm. However, the accuracy of its predictions requires further validation in a larger population and roles of the biomarkers in DCM still need to further investigate. A limitation of this study should be noted. The development of DCM is a complex process, although a total of 56 participants were included, the input data might still be insufficient to identify and validate biomarkers. In addition, the 56 participants included in the study came from various regions with different genetic variation, diet, physical activity and so on. Therefore, the conclusions in the present study still need more external validations.
CONCLUSION
In conclusion, our results showed that, through molecular classification, more detailed disease characteristics and its relationship with clinical features of patients with DCM should be noticed. In addition, patients in different molecular subgroups should receive a more personalized treatment. Similar to molecular classification in cancer, more populations are needed to conduct further validation, moreover, future research in DCM should also introduce multi-omics data to reveal more precise molecular subgroups of DCM.
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FEV1 (L), median (IQR) 312 (277, 34) 266 (254, 2.81) 0198
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Mus-Pigs2
Mus-Cybb
Mus-IL-1b
Mus-Cdd4

Forward

CTTCGCAGGCCAGTGCT
CATCCCCTTCCTGCGAAGTT
CCCTCCCTGTCTAGGTAATGC
CCACCTCAATGGACAGAATATCA
GCAGAAATCAAGACGTTATGGG

Reverse

TACAAGGGAGTACCCCGACA
GGCCCTGGTGTAGTAGGAGA
GCATTTGCCTTCGGTGATGT
CCCAAGGCCACAGGTATTT
AAGCACCACCACCAAAGA
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LNC_000044

LNC_000009

LNC_001060

LNC_006155

LNC_005341

ENST00000424684.2 RP11-403113.7
ENST00000627173.1 LINC00891
LNC_006024

LNC_000026

ENST00000592135.5 CTD-3014M21.4

Log: (fold change)

15.093
12,943
11.905
10.413
9.999
-10.144
-9.798
-9.593
-9.383
-9.212

p-value

2.56E-07
0.00029719
0.00067081
4.82E-05
0.000127804
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1.19E-06

Regulated

Up
Up
Up
Up
Up
Down
Down
Down
Down
Down





OPS/images/fgene-13-919103/crossmark.jpg
©

|





OPS/images/fgene-13-902943/fgene-13-902943-t002.jpg
Exclusion criteria of the ADS group

(1) Medical history of metabolic bone disease, spinal trauma, and spinal infection
(2) History of spinal surgery

(@) History of autoimmune diseases, systemic inflammatory diseases, solid tumors,
or hematological malignancies

(4) Complcated with severe osteoporosis and severe liver o kidney insufficiency
(5) Pregnant or lactating women

(6) Scoliosis secondary to other organic spinal lesions, such as tumor, trauma,
tuberculosis, and metabolism

(7) History of lumbar spine surgery, congenital scolioss, or undetected idiopathic
spinal column scoliosis in adolescents
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Inclusion criteria of the normal group

(1) Age between 18 and 35 years
(2) 185 < BMI<24

(3) After X-ray, CT, and MR examination, there is no spine-related disease,
intervertebral disc and facet joint structure is complete, and there is no lesion

(4) CT and MRI suggested different degrees of degeneration of intervertebral discs,
intervertebral facet joints, ligamentum flavum, etc.
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Exclusion criteria of the normal group

(1) Medical history of autoimmune diseases, systemic inflammatory diseases, solid
tumors, or hematological malignancies

(2) Complcated with severe osteoporosis, severe liver, and kidney dysfunction
(3) Pregnant or lactating women
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ENST00000649717
ENST00000642937
ENST00000370857
ENST00000413219
ENST00000367051
ENST00000336967
ENST00000394419
ENST00000518721
ENST00000513163
ENST00000371706

Gene name

EPB41
EPB41
MBNL3
SDCBP
CR1
MYADM
ACTN1
ASAPT
FBXLS
SEC16A

Log; (fold change)

18.16001836
17.51348319
16.92620439
14.12285154
13.59940506
-14.67313747
-14.08400562
-13.85480643
-13.8071376
-13.57253774

p-value

2.28E-07
5.79E-09
0.000107137
6.45E-07
0.000229326
0.000185825
1.37E-06
0.000220224
0.000248399
9.53E-07

Regulated
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Up
Up
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Up
Down
Down
Down
Down
Down
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Inclusion criteria of the ADS group

(1) According to the medical history, clinical examination and imaging examination
were diagnosed as ADS

(2) Over 50 years old

(3) 18.5 < body mass index (BM)) < 24

(4) With the lumbar spine as the vertex, X-ray showed that the Cobb Angle range of
scoliosis on the coronal plane was greater than or equal to 15

(5) CT and MRI suggested different degrees of degeneration of intervertebral discs,
intervertebral facet joints, ligamentum flavum, etc.
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GSE41177 GPLS70; Affymetrix Human Genome U133 Plus 2.0 Array Ameling et al. (2013) Greifswald, Germany 8 0
GSE79962 GPL6244; Affymetrix Human Gene 1.0 ST Array Matkovich et al. (2017) St. Louis, USA ‘ 1 9
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Gene
symbol

Full name

Functions and known
contributions of key
DEIRGs in CAVD

and inflammatory diseases

PTPN11

SYK

PTPNG

SHCI1

Protein tyrosine phosphatase 11

Growth factor receptor-bound
protein 2

Spleen-associated tyrosine kinase

Protein tyrosine phosphatase 6

Sre-homology 2 domain containing 1

PTPNI1 is an important component in growth factor pathway and closely related to formation of valve endothelial
cells. Moreover, PTPN11 can reduce the level of Th1 cytokine through preventing combination of STAT1 and IFN-
yreceptor. PTPN11 is associated with inflammatory discases, including pulmonary valve stenosis, ulcerative col
inflammation induced-myocardial hypertrophy and cardiac fibrotic remodeling

‘GRB2 mainly functions in activating Egfr tyrosine kinase and its downstream renin-angiotensin system. GRB2 was
also involved in the process of development of T cells and Th cells. Studies have demonstrated that GRB2 was
significantly up-regulated in aortic valve tissues form CAVD patients

SYK is a member of the none receptor type tyrosine kinase family and involved in numerous biological functions.
As a proinflammatory molecule, SYK has become a crucial biomarker of coronary heart disease. However, the
relationship between SYK and aortic valve diseases still remains exclusive

PTPNG specially expressed in the cytoplasm, it can prevent excessive autoimmunity in IL-1 dependent
inflammatory diseases. PTPNG6 can ameliorate inflammatory diseases by decreasing TNF-a, TGE-p and IL-6 and
prevent the harmful effects of pathogens on the host. PTPNG is known as an important negative regulator of
inflammatory response and down regulated in patients with CAVD.

SHCI is a member of SHC family of adaptor proteins. SHCI functions in production of reactive oxygen species.
Oxidative stress can cause inflammation and play an important role in the development of CAVD. SHCI mediated-
reactive oxygen species production is closely related to development of atherosclerosis and coronary heart disease

CAVD: Calahs Asite Valie Discaia..
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LncRNA

ENSG00000255145
ENSG00000268001
ENSG00000184224
ENSG00000185332
ENSG00000251562
ENSG00000267532
ENSG00000224870
ENSG00000231177
ENSG00000270066
ENSG00000278249

Enriched Pathways/Pathways Related
Cells

IL-22 signaling; CD4 T cell; interferon; effector CD8 T cell

T cell migration; lymphocyte migration

Abnormality of the abdominal wall

NKT cell activation; CD8 T cell

IL-4 signaling; CD4 T cell; CD8 T cell; B cell; Treg cell; macrophage; monocyte; NK cell; dentric cell

B cell; dentric cell; macrophage; monocyte; B cell

IL-4 signaling; CD8 T cell; Treg cell; macrophage; B cell; CD4 T cell

Memory CD8 T cell; naive CD8 T cell; effector CD8 T cell; Treg cell; monocyte; B cell; CD4 T cell

CD4 T cell; B cell; macrophage; interleukin 4/6/12/13/27/35/37 signaling; NKT cell; Treg cell; NK cell; dentric cell; CD8 T cell
CD4 T cell; B cell; macrophage; interleukin 4/6/12/13/27/35/37 signaling; NKT cell; Treg cell; NK cell; dentric cell; CD8 T cell
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Univariate cox regression

Multivariate cox regression

Hazard ratio P Hazard ratio r

Training cohort
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