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Editorial on the Research Topic

Diabetes and non-alcoholic fatty liver disease: points of physiological
and mechanistic intersection and current co-therapeutic approaches
Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most prevalent liver

disease across the globe, with estimates of ~25% of individuals globally having NAFLD (1).

The term NAFLD covers a broad spectrum of severity, ranging from “benign” lipid

accumulation, often referred to as “simple steatosis”, to non-alcoholic steatohepatitis

(NASH) which involves hepatocellular injury, inflammation, and fibrosis. If left

untreated, NASH can further progress to cirrhosis, liver failure, hepatocellular

carcinoma, and either necessary liver transplantation or death. It should be noted, that

as of June 2023, the preferred nomenclature was updated to metabolic dysfunction-

associated steatotic liver disease (MASLD) and metabolic dysfunction-associated

steatohepatitis (MASH) (2). However, since this Research Topic was initiated well before

this nomenclature update, for the purpose of this editorial we will use the NAFLD/NASH

nomenclature. However, this updated nomenclature highlights the exact purpose of this

special Research Topic.

One of the main factors contributing to the dramatic rise in incidence of NAFLD is its

integral connection with obesity, insulin resistance, and diabetes, which are all undergoing

their own pandemics. More recently, the mechanistic directionality of these associations

has been debated. While hepatic lipid accumulation is believed to contribute directly to

whole-body defects in insulin action (3), insulin resistance is also a driving factor for

hepatic lipid accumulation due to both excessive adipose tissue lipolysis and increased

hepatic de novo lipogenesis (4–6). With these controversies in mind, the aim of this special

Research Topic was to share research findings in the areas of either type 1 diabetes (T1D) or

type 2 diabetes (T2D) related to NAFLD. Additionally, since there are currently no
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approved therapies for NAFLD, and due to the close relationship

between insulin sensitivity and NAFLD, research on therapeutics to

treat both diseases concomitantly were also encouraged.

A review article by Memaj and Jornayvaz summarized the

current knowledge of the prevalence and pathophysiology of

NAFLD in T1D which is much less understood compared to

insulin resistance/T2D. This review concluded that NAFLD is

more prevalent in T1D subjects compared to the general

population, however, notes the difficulty in comparing studies

with different criteria for determining NAFLD. This article also

notes interesting pathophysiological mechanisms which could drive

NAFLD in T1D subjects such as altered insulin delivery and hepatic

clearance, as well as noting the association between poor glycemic

control and the risk of NAFLD.

Related to the potential for NAFLD driving T2D, an article by

Chen C. et al. reported that NAFLD progression associated with the

development of incident diabetes. Similarly, Chen Y. et al. reported

that in a large Taiwanese population, the presence of high serum

markers of liver injury was significantly associated with

development of incident diabetes. Additionally, an article by Li,

et al. reported that even lean individuals with NAFLD were more

susceptible to development of T2D. In another study of lean

NAFLD, Zhu et al. describe that the association of high

circulating lipids or lipid ratios and NAFLD risk is true in both

obese and lean individuals. Other studies in this special Research

Topic investigated more specific aspects of diabetes and the role

NAFLD may play in the association. Basnet et al. describe the

presence of high serum uric acid, or hyperuricemia in T2D, and

suggest that the prevalence of NAFLD increases the risk of

development of diabetes with hyperuricemia. Lastly, studying a

cohort of T2D patients, Deravi et al. found that the presence of

NAFLD associated with the diabetic microvascular complications

such as diabetic neuropathy, nephropathy, and retinopathy. In

summary, these studies suggest that the presence of NAFLD is

associated with the later development of T2D or worsening of T2D

co-morbidities such as hyperuricemia and microvascular disease.

Provided the profound connection between diabetes and

NAFLD, a number of articles in this special Research Topic

described the therapeutic options for concomitantly treating both

diabetes and NAFLD. In a specific population of individuals with

both metabolic syndrome-related NAFLD with sarcopenia, Yi

et al. noted that physical activity, more-so than dietary factors,

was key to preventing sarcopenia. Several studies investigated

pharmacotherapeutic options for treating NAFLD and diabetes.

Two studies investigated the potential of incretin-related therapies

to improve NAFLD. Tan et al. performed a prospective analysis in

T2D subjects treated with the glucagon-like peptide-1 receptor

agonist (GLP1-RA), liraglutide, and report that liraglutide use

decreased hepatic fibrosis in these T2D subjects. Wang X. et al.

performed a prospective study on the use of the dipeptidyl

peptidase-4 inhibitor, sitagliptin, and reported that while

sitagliptin improved glucose metabolic parameters, there was no

significant improvement in hepatic fat content. Yan et al. also

discuss the efficacy of GLP1-RAs and compare to the effects of
Frontiers in Endocrinology 0276
sodium-glucose cotransporter-2 inhibitors (SGLT2i) which

alternatively reduce glycemia by preventing renal glucose

reabsorption. In this systematic review and meta-analysis, the

authors describe that in NAFLD patients, only GLP1-RAs

improve markers of insulin resistance, while SGLT2i did not

significantly reduce fasting glycemia or insulin resistance. Wang

Z. et al. performed a meta-analysis of studies regarding the

treatment of NAFLD with the thiazolidinedione insulin sensitizer

pioglitazone in patients with and without T2D. This analysis

concluded that pioglitazone improved insulin resistance and

plasma lipids, and also improved NAFLD in both subjects with

and without T2D. Conversely, Huang et al. studied T2D subjects

treated with or without metformin, and report that long-term

metformin use may actually increase susceptibility to developing

NAFLD. Lastly, a review article by Niranjan, et al. summarized the

therapeutic options for improving hepatic insulin sensitivity to treat

NAFLD, including the potential importance of anti-inflammatory

agents. Altogether, these studies suggest that agents that improve

insulin action, are also associated with improved NAFLD.

The sole “basic” research study published within this Research

Topic was performed by Wu et al. In this study, livers from high-fat

diet-fed mice with or without overexpression of the G0/G1 switch

gene (G0S2) were subjected to proteomics analysis. G0S2

overexpression led to the differential expression of 125 proteins in

these livers, with pathway analysis indicating that G0S2 disrupts the

“response to insulin”, which is supported by decreased glucose

tolerance and insulin tolerance in these mice. Overall, the authors

suggest that G0S2 should be considered a potential target for the

treatment of diabetes and NAFLD.

This interesting Research Topic certainly highlights the strong

connection between diabetes and NAFLD. With the ongoing

pandemics of obesity, diabetes, and NAFLD, research on the vital

connections between these diseases will only continue to rise.

Additionally, in-depth studies and reviews on therapeutic options

to concomitantly treat both diabetes and NAFLD will be of utmost

importance due to the current lack of approved treatments for

NAFLD. Articles from this Research Topic suggest that therapeutic

agents that improve insulin sensitivity associate with NAFLD

improvements, whereas agents that may only improve glycemia

do not improve NAFLD.
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GLP-1 RAs and SGLT-2 Inhibitors for
Insulin Resistance in Nonalcoholic
Fatty Liver Disease: Systematic
Review and Network Meta-Analysis
Hongle Yan1,2, Chunyi Huang1,2, Xuejun Shen1,2, Jufang Li1,2, Shuyi Zhou1,2

and Weiping Li1*

1 Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China,
2 Department of Clinical Medicine, Shantou University Medical College, Shantou, China

Objective: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose
cotransporter-2 (SGLT-2) inhibitors reduce glycaemia and weight and improve insulin
resistance (IR) via different mechanisms. We aim to evaluate and compare the ability of
GLP-1 RAs and SGLT-2 inhibitors to ameliorate the IR of nonalcoholic fatty liver disease
(NAFLD) patients.

Data Synthesis: Three electronic databases (Medline, Embase, PubMed) were searched
from inception until March 2021. We selected randomized controlled trials comparing
GLP-1 RAs and SGLT-2 inhibitors with control in adult NAFLD patients with or without
T2DM. Network meta-analyses were performed using fixed and random effect models,
and the mean difference (MD) with corresponding 95% confidence intervals (CI) were
determined. The within-study risk of bias was assessed with the Cochrane collaborative
risk assessment tool RoB.

Results: 25 studies with 1595 patients were included in this network meta-analysis.
Among them, there were 448 patients, in 6 studies, who were not comorbid with T2DM.
Following a mean treatment duration of 28.86 weeks, compared with the control group,
GLP-1 RAs decreased the HOMA-IR (MD [95%CI]; -1.573[-2.523 to -0.495]), visceral fat
(-0.637[-0.992 to -0.284]), weight (-2.394[-4.625 to -0.164]), fasting blood sugar (-0.662
[-1.377 to -0.021]) and triglyceride (- 0.610[-1.056 to -0.188]). On the basis of existing
studies, SGLT-2 inhibitors showed no statistically significant improvement in the above
indicators. Compared with SGLT-2 inhibitors, GLP-1 RAs decreased visceral fat (-0.560
[-0.961 to -0.131]) and triglyceride (-0.607[-1.095 to -0.117]) significantly.

Conclusions: GLP-1 RAs effectively improve IR in NAFLD, whereas SGLT-2 inhibitors
show no apparent effect.

Systematic Review Registration: PROSPERO https://www.crd.york.ac.uk/
PROSPERO/, CRD42021251704

Keywords: GLP-1 RAs, SGLT-2 inhibitors, nonalcoholic fatty liver disease, insulin resistance, networkmeta-analysis
n.org July 2022 | Volume 13 | Article 923606198

https://www.frontiersin.org/articles/10.3389/fendo.2022.923606/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.923606/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.923606/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.923606/full
https://www.crd.york.ac.uk/PROSPERO/
https://www.crd.york.ac.uk/PROSPERO/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wpli818@126.com
https://doi.org/10.3389/fendo.2022.923606
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.923606
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.923606&domain=pdf&date_stamp=2022-07-13


Yan et al. GLP-1RAs vs SGLT-2i in NAFLD
1 INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic
liver disease characterized by increased lipid accumulation in
hepatocytes but is not caused by clear causes related to alcohol
consumption. NAFLD is often associated with central obesity,
insulin resistance (IR) and in general with some symptoms of
metabolic syndrome (1, 2).The global prevalence rate of NAFLD
is 25%, and it is one of the most common chronic liver diseases in
the world (3). Its clinical features are liver triglyceride (TG)
accumulation and IR. TG in the liver is synthesized from fatty
acyl-CoA. The concentration of fatty acyl-CoA is determined by
the balance between the formation of fatty acids (circulating free
fatty acids, de novo lipogenesis, TG decomposition) and
utilization (lipid synthesis, b-oxidation) (4, 5). When IR
occurs, the lipolysis of white lipids increases, and the synthesis
of lipids decreases (6). At the same time, with the decrease in
glucose utilization by skeletal muscle, more fatty acyl-CoA
produced by glucose metabolism turns to de novo lipogenesis
(7), which increases the accumulation of liver TG and even
transforms into lipotoxic substances such as long-chain fatty
acids, ceramides, and diacylglycerols, resulting in inflammation,
endoplasmic reticulum stress, liver fibrosis and hepatocyte
apoptosis (5). In short, IR increases the accumulation of lipids
in the liver, leading to NAFLD occurrence and development.

For IR, GLP-1 RAs and SGLT-2 inhibitors show satisfactory
efficacy in patients with type 2 diabetes mellitus (T2DM), has and
havebeenrecommendedbyexperts frommanyassociations (8–10).
GLP-1 RAs can reduce oxidative stress (11, 12), inflammation (13),
and endoplasmic reticulum stress (14), improve b-cell function (14,
15) and enhance insulin sensitivity (16–18). SGLT-2 inhibitors act
on the sodium-glucose cotransporter in renal tubules to inhibit the
reabsorption of glucose in renal tubules, reduce blood glucose and
alleviate the effects of hyperglycemia on b-cells and IR (19–24).
There are a considerable number of studies that have already
compared GLP-1 RAs and SGLT-2 inhibitors in T2DM patients
on variety outcomes, such as in the PIONEER-2 and SUSTAIN-8
trials, which found that similitude is superior to empagliflozin and
canagliflozin in reducing HbA1c and body weight at week 52,
respectively (2, 25).

At present, there is no recognized drug treatment for NAFLD
(26–29), but as a metabolic disease, GLP-1 RAs and SGLT-2
inhibitors should have significant effects on IR and seem to be
appropriate choices. Several studies have used GLP-1 RAs and
SGLT-2 inhibitors in the treatment of NAFLD, but no study have
directly compared their effects. Therefore, we conducted this
systematic review and network meta-analysis to comprehensively
evaluate and compare the abilities of GLP-1 RAs and SGLT-2
inhibitors to ameliorate IR in patients with NAFLD.
2 METHODS

2.1 Agreement to Register
We registered the protocol for this system review at
PROSPERO (CRD42021251704).
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2.2 Search Strategy
The study team co-designed a literature search strategy to search
for randomized controlled trials (RCTs) published up to March
01, 2021, in Embase, Medline, and PubMed with language
limited to English (Appendix 1). In addition, we screened
references in the included articles to look for other
potential studies.

2.3 Study Selection
Two reviewers, working independently, screened citations and
evaluated the full text of eligible studies. A third reviewer
resolved disagreements by consensus.

2.3.1 Eligibility Criteria
Inclusion criteria were defined using the ‘Patients, interventions,
comparators, outcomes, study designs, timeframe’ (PICOST)
framework, as follows:

2.3.1.1 Patients
NAFLD Patients with or without T2DM, age ≥ 18.

2.3.1.2 Interventions
Antidiabetic drugs, including GLP-1 RAs, SGLT-2 inhibitors,
thiazolidinediones (TZDs), dipeptidyl peptidase (DPP-4),
sulfonylureas (SUs), and metformin.

2.3.1.3 Comparators
Control group including Placebo, standard care or another
antidiabetic mentioned in interventions. All treatments should
be given alone and not in combination with any other
antidiabetic drugs mentioned in interventions.

2.3.1.4 Outcomes
The main results of this review are based on IR-related indicators
that show the degree of IR (direct indicators of IR) or influence
IR (indirect indicators of IR): 1) the direct indicator of IR was the
homoeostasis model assessment of insulin resistance (HOMA-
IR) index; 2) the indirect indicators were adipose tissue, such as
subcutaneous fat (SAT), visceral fat (VAT), weight and body
mass index (BMI), and adipokines, including leptin and
adiponectin. Secondary outcomes were IR-related laboratory
measurements, including: 1) glycolipid metabolism, such as
fasting blood sugar (FBS), total cholesterol (TC), TG, high-
density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL); 2) systolic blood pressure (SBP) and diastolic
blood pressure (DBP); and 3) liver enzymes aspartate
aminotransferase (AST) and alanine transaminase (ALT).

2.3.1.5 Study Design
RCTs reporting the mean and standard deviation of outcome
indicators after interventions.

2.3.1.6 Timeframe
The duration of treatment should be longer than two months.

2.3.2 Other Limitation
First, the language of the publications was limited to English.
Second, for studies whose results were reported in multiple
publications, we excluded publications presenting duplicate
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data and included the publications reporting the most complete
data from any study. Third, studies under the risk of low-quality
(retracted, terminated and impact factor less than 1 point) were
excluded. Finally, studies were excluded if the data could not
be extracted.

2.4 Data Extraction
For each eligible study, two reviewers independently extracted the
following: study characteristics (study registration number, year of
publication, country or countries, funding, duration), population
(setting, sample size, patient demographics, whether subjects had
coexisting T2DM), intervention description (drug class, name,
dose, presence or absence of lifestyle intervention, and specific
type of lifestyle intervention) and results. For outcome indicators,
the mean and standard deviation after intervention of each study
were extracted. Reviewers resolved disagreements by discussion or,
if necessary, consultation with a third reviewer.

2.5 Risk of Bias Assessment
The risk of bias was assessed by two reviewers independently
using the Cochrane collaborative risk assessment tool RoB (30).
The tool is used to determine the risk of bias in randomized
trials, including seven dimensions of sources, six types of bias
risk: selection bias (random sequence generation and allocation
concealment), performance bias (blinding of participants and
personnel), detection bias (blinding of outcome assessment),
attrition bias (incomplete outcome data), reporting bias
(selective reporting) and other bias (funding sources, etc.) (30).
Each risk of bias evaluation dimension had three classifications:
low, unclear, or high.

If the random sequence was generated correctly and hidden, the
risk of selection bias was considered to be low. The risk of
performance bias was deemed to be low if participants were
blinded as well as those administering the treatment. If the
outcome evaluator was blinded, or the outcome indicators were
not influenced by evaluator subjectivity, the risk of detection bias
was considered tobe low.The risk of attritionbiaswas considered to
be low if there was no missing data, or the number and cause of
missing datawere similar between groups, themissing data was not
sufficient to affect the effect size of treatment, and themissing values
are handled properly. The risk of reporting bias was required to
determine whether an outcome was selectively reported by
comparison of protocols and research reports.

2.6 Statistical Analysis
A network meta-analysis was conducted within a Bayesian
framework to assess the relative effects of GLP-1 RAs and
SGLT-2 inhibitors. ADDIS1.16.6 and R-3.6.2 software were
used for data analysis, STATA.16 software was used to draw
the network evidence graph, and risk of bias graphs were drawn
by RevMan 5.3 software.

Because the outcome index was continuous variables, the
mean difference (MD) and associated 95% confidence interval
(95% CI) was used as the index for effect size of treatment. In this
study, a network meta-analysis was conducted within a Bayesian
framework to compare six hypoglycemic agents, especially to
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assess the relative effectiveness of GLP-1 RAs and SGLT-2
inhibitors for NAFLD.

All outcomes were analyzed by using the consistency model
and the inconsistency model, the overall heterogeneity was
compared based on the differences in deviance information
criteria and I2. If the difference of deviance information criteria
between the two models was ≥ 5, the inconsistency model was
used. Both a fixed effect (FE) model and a random effect (RE)
model were run for each result, and a more appropriate model
based on the deviance information criteria, mean posterior
residences, and I2 was chosen.

The Markov Chain Monte Carlo method was used to estimate
the posterior densities of all unknown parameters in each model.
Four Markov chains were initially set for simulation with 50,000
iterations, and the first 10,000 anneals were used for eliminating the
effects of the initial values. The potential scale reduction factor
(PSRF) was calculated to diagnose the degree of the model’s
convergence. A PSRF ≥ 1.2 would indicate that the current
simulation times were insufficient to achieve good convergence
and more iterations were needed, a PSRF < 1.2 would indicate that
convergence has been achieved, and a PSRF value close to 1 would
indicate the model achieved good convergence.

The included studies were tested for consistency and
inconsistency. We used node splitting approaches to assess the
agreement between direct and indirect estimates in every closed
loop of evidence, and a P > 0.05 was considered to indicate good
consistency, whereas a P≤ 0.05 was considered to indicate
inconsistency. If there was evidence of material inconsistency,
the specific reasons were identified by reviewing the
corresponding study with further analysis.

The rank probability of each treatment was estimated by the
surface under the cumulative sorting curve (SUCRA) (31).
SUCRA is a percentage interpreted as the probability of a
treatment that is the most effective without uncertainty on the
outcome, which is equal to 1 or 0 when the treatment is certain to
be the best or the worst, respectively.
3 RESULTS

3.1 Description of the Included Studies
The electronic search yielded 586 unique records. Screening and
full-text article analysis identified 25 trials with 1595 patients
(Figure 1) (Appendix 2) comparing the effects of 6 glucose-
lowering drugs (GLP-1 RAs, DPP-4, SGLT-2 inhibitors, TZDs,
SUs, andmetformin)withplaceboor standardcareonIR inpatients
with NAFLD. The median trial mean age was 52 years, the median
baselineFBSwas7.66mmol/L and themean treatment durationwas
28.86 weeks. Figure 2 shows the treatment comparison network
from the included studies. The sample sizes ranged from 12 to 162.
Of the25 studies, 13 studies indicatedactive lifestyle interventions, 1
showed no lifestyle intervention, and the other 11 studies did not
specify whether or not they had a lifestyle intervention. In addition,
6 studieshadpatientswithNAFLDalonewithoutT2DM,16 studies
had patients with NAFLD and T2DM, 1 study had T2DM or
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impaired glucose tolerance and 2 studies did not report whether or
not their patients had comorbid T2DM (Figure 1).

3.2 Risk of Bias
Appendix 3 presents the risk of bias and the reasons for its
determination in each trial. The key limitation was low levels of
reported blinding of participants and personnel because the
GLP-1 RAs were mainly administered by injection and could
not be blinded. Of the 25 trials, for selection bias, 17 trials (68%)
were at low risk of bias in random sequence generation, 14 trials
(56%) were at low risk of bias in allocation concealment, and 11
trials (44%) were at low risk in performance bias. The outcome
indicators in this analysis were all objective and were not
influenced by evaluators, so the 25 trials (100%) were at low
risk for detection bias. 16 trials (64%) were adjudicated as being
at low risk of attrition bias, 17 trials (68%) were at low risk for
reporting bias, and 21 trials (84%) were judged to have a low risk
of other bias (Figures 3, 4).

3.3 Outcomes
Appendix 4 presents the network plot for each outcome
indicator. Appendix 8 gives a network estimate for each drug
comparison for all outcomes.

3.3.1 HOMA-IR
HOMA-IR was reported in 14 trials with 1153 patients (Appendix
4; Supplementary Figure 1). Compared with the control group,
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GLP-1 RAs reduced the HOMA-IR (MD [95% CI]; -1.573[-2.523
to -0.495]), whereas SGLT-2 inhibitors had no statistically
significant effect (MD -0.342 [-1.156 to 0.218]) (Figure 5A). The
SUCRA chart shows that the probabilities of GLP-1 RAs and
SGLT-2 inhibitors being among the top three most effective drugs
were 97% and 23%, respectively (Figure 6A). Compare with
SGLT-2 inhibitors, GLP-1 RAs showed no difference in the
effect on the HOMA-IR (MD -1.217 [-2.210 to 0.087]) (Figure 7).

3.3.2 Adipose Tissue and Adipokines
3.3.2.1 VAT and SAT
The VAT was reported in 8 trials with 561 patients (Appendix 4;
Supplementary Figure 2). Compared with the controls, GLP-1
RAs decreased VAT (MD -0.637 [-0.992 to -0.284]), whereas
SGLT-2 inhibitors had no statistically significant effect (MD -0.078
[-0.308 to 0.120) (Figure 5C). The SUCRA chart shows that the
probabilities of GLP-1 RAs and SGLT-2 inhibitors being among
the top three most effective drugs were 99% and 49%,
respectively (Figure 6B).

The SAT was reported in 4 trials with 235 patients (Appendix
4; Supplementary Figure 3). Compared with the control group,
both GLP-1 RAs and SGLT-2 inhibitors had no statistically
significant effect on SAT (MD -0.176 [-0.758 to 0.403] and
-0.360 [-0.979 to 0.260], respectively) (Figure 5C). The
SUCRA chart shows that the probabilities of GLP-1 RAs and
FIGURE 2 | Network plot of trials evaluating glucose-lowering drugs for
NAFLD. The network shows the number of participants assigned to each
glucose-lowering class, and the size of each circle is proportional to the
number of participants randomly assigned to treatment (sample size per drug
in parentheses). The thickness of the line is proportional to the number of
trials between the corresponding drugs. Compared with placebo, the most
commonly compared drugs were TZDs. DPP-4=Dipeptidyl peptidase-4
inhibitors; GLP-1 RAs=Glucagon-like peptide-1 receptor agonists; SGLT-2
inhibitors=Sodium-glucose cotransporter-2 inhibitors; SUs=Sulfonylureas;
TZDs=Thiazolidinediones.
FIGURE 1 | Flow diagram for the study selection.
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SGLT-2 inhibitors being among the top three most effective
drugs were 73% and 89%, respectively (Figure 6C).

Compared with SGLT-2 inhibitors, GLP-1 RAs had a higher
probability of reducing VAT (MD -0.560 [-0.961 to -0.131]),
whereas they did not have different effects on SAT (MD 0.184
[-0.669 to 1.030]) (Figure 7).

3.3.2.2 BMI and Weight
BMI was reported in 18 trials with 1006 patients (Appendix 4;
Supplementary Figure 4). Compared with the control group,
GLP-1 RAs and SGLT-2 inhibitors had no statistically significant
effect on BMI (MD -1.262 [-2.933 to 0.218] and -0.964 [-2.385 to
0.423], respectively) (Figure 5D). The SUCRA chart shows that
the probabilities of GLP-1 RAs and SGLT-2 inhibitors being
among the top three most effective drugs were 87% and 67%,
respectively (Figure 6D).

Weight was reported in 19 trials with 1143 patients (Appendix
4; Supplementary Figure 5). As shown in Figure 5D, compared
with the control group, GLP-1 RAs significantly reduced body
weight (MD -2.394 [-4.625 to -0.164]), whereas SGLT-2 inhibitors
had no effect (MD -1.059 [-3.056 to 0.931]). The SUCRA chart
shows that the probabilities of GLP-1 RAs and SGLT-2 inhibitors
being among the top three most effective drugs were 98% and 66%,
respectively (Figure 6E).
Frontiers in Endocrinology | www.frontiersin.org 51312
Compared with SGLT-2 inhibitors, GLP-1 RAs showed no
difference in the effects on BMI or weight (MD 0.501 [-1.582 to
2.434] and 0.5796 [-4.127 to 5.034], respectively) (Figure 7).
3.3.2.3 Leptin and Adiponectin
Leptin was reported in 4 trials with 158 patients (Appendix 4;
Supplementary Figure 6). None of the studies reported the effect
of GLP-1 RAs on leptin. Compared with the control group,
SGLT-2 inhibitors had no statistically significant effect on leptin
(MD -6.479 [-17.4 to 3.127]) (Figure 5E). The SUCRA chart
shows that the probabilities of SGLT-2 inhibitors being among
the top three most effective drugs is 92% (Figure 6F).

7 trials, including 345 patients, reported adiponectin
(Appendix 4; Supplementary Figure 7). Compared with the
control group, GLP-1 RAs and SGLT-2 inhibitors had no
statistically significant effect on adiponectin (MD 7.007 [-5.033
to 18.850] and 3.402 [-7.910 to 14.670], respectively) (Figure 5F).
The SUCRA chart shows that the probabilities of GLP-1 RAs
being among the top three most effective drugs was 77%, while
SGLT-2 inhibitors’ was only 31% (Figure 6G).

There was no difference between GLP-1 RAs and SGLT-2
inhibitors in the effect on adiponectin (MD 3.575 [-8.045 to
15.340]) (Figure 7).
FIGURE 4 | Risk of bias summary. Review of authors’ judgements about each risk of bias for each included study.
FIGURE 3 | Risk of bias graph. Review of authors’ judgements about each risk of bias presented as percentages across all included studies.
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3.3.3 Glucose and Lipid Metabolism
3.3.3.1 FBS
FBS was reported in 20 trials with 1216 patients (Appendix 4;
Supplementary Figure 8). Compared with the control group,
GLP-1 RAs decreased the FBS (MD -0.663 [-1.377 to -0.021]),
whereas SGLT-2 inhibitors had no statistically significant effect
(MD -0.330 [-0.832 to 0.170]) (Figure 5B). The SUCRA chart
shows that the probabilities of GLP-1 RAs and SGLT-2 inhibitors
being among the top three most effective drugs were 89% and 47%,
respectively (Figure 6H). GLP-1 RAs and SGLT-2 inhibitors
showed no difference in the effect on FBS (MD -0.333 [-1.106 to
0.371]) (Figure 7).

3.3.3.2 TG and TC
TG was reported in 17 trials with 986 patients (Appendix 4;
Supplementary Figure 9). Compared with the control group,
GLP-1 RAs decreased TG (MD -0.608 [-1.056 to -0.188]),
whereas SGLT-2 inhibitors had no statistically significant effect
(MD -0.003 [-0.279 to 0.234]) (Figure 5G). The SUCRA chart
shows that the probabilities of GLP-1 RAs and SGLT-2 inhibitors
being among the top three most effective drugs were 99% and
12%, respectively (Figure 6I).

TC was reported in 12 trials with 741 patients (Appendix 4;
Supplementary Figure 10). Compared with the control group,
neither GLP-1 RAs nor SGLT-2 inhibitors had any statistically
significant effect on TC (MD -0.263 [-0.872 to 0.344] and -0.354
[-0.754 to 0.035], respectively) (Figure 5G). The SUCRA chart
shows that the probabilities of GLP-1 RAs and SGLT-2 inhibitors
being among the top three most effective drugs were 75% and
92%, respectively (Figure 6J).

Compared with SGLT-2 inhibitors, GLP-1 RAs had a higher
probability of decreasing TG (MD -0.607 [-1.095 to -0.116]).
However, there was no difference between GLP-1 RAs and
SGLT-2 inhibitors in effect on TC (MD 0.090 [-0.568 to
0.750]) (Figure 7).
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3.3.3.3 HDL and LDL
HDL was reported in 19 trials with 1171 patients (Appendix 4;
Supplementary Figure 11). Compared with the control group,
GLP-1 RAs and SGLT-2 inhibitors had no statistically significant
effect on HDL (MD -0.056 [-0.204 to 0.129]) and 0.015 [-0.092 to
0.133]) (Figure 5H). The SUCRA chart shows that the
probabilities of GLP-1 RAs and SGLT-2 inhibitors being
among the top three most effective drugs were 21% and 67%,
respectively (Figure 6K).

LDL was reported in 19 trials with 1171 patients (Appendix
4; Supplementary Figure 12). Compared with the control group,
GLP-1 RAs and SGLT-2 inhibitors had no statistically significant
effect on LDL (MD -0.045 [-0.466 to 0.355] and -0.107 [-0.421 to
0.205], respectively) (Figure 5H). The SUCRA chart shows that
the probabilities of GLP-1 RAs and SGLT-2 inhibitors being
among the top three most effective drugs were 44% and 64%,
respectively (Figure 6L).

Compared with SGLT-2 inhibitors, GLP-1 RAs showed no
difference in effects on HDL or LDL (MD -0.072 [-0.228 to 0.119]
and 0.061 [-0.404 to 0.512], respectively) (Figure 7).
3.3.4 Blood Pressure: SBP and DBP
SBP was reported in 9 trials with 604 patients (Appendix 4;
Supplementary Figure 13). As shown in Figure 5I, compared
with the control group, GLP-1 RAs and SGLT-2 inhibitors had
no statistically significant effect on SBP (MD -1.486 [- 9.753 to
5.709] and -1.029 [- 7.830 to 4.853], respectively). The SUCRA
chart shows that the probabilities of GLP-1 RAs and SGLT-2
inhibitors being among the top three most effective drugs were
77% and 67%, respectively (Figure 6M).

DBP was reported in 9 trials with 604 patients (Appendix 4;
Supplementary Figure 14). Compared with the control group,
GLP-1 RAs and SGLT-2 inhibitors had no statistically significant
effect on DBP (MD 3.457 [-0.877 to 8.709) and 1.990 [-2.272 to
A
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FIGURE 5 | Two-dimensional graphs and forest plots for different outcome indicators. (A) HOMA-IR, (B) FBS, (C) VAT and SAT, (D) Weight and BMI, (E) Leptin,
(F) Adiponectin, (G) TC and TG, (H) LDL and HDL, (I) DBP and SBP, (J) ALT and AST.
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5.526], respectively) (Figure 5I). The SUCRA chart shows that
the probabilities of GLP-1 RAs and SGLT-2 inhibitors being
among the top three most effective drugs were 22% and 75%,
respectively (Figure 6N).

Compared with SGLT-2 inhibitors, GLP-1 RAs showed no
difference in effects on SBP or DBP (MD 0.460 [-8.146 to 7.142]
and 1.311 [-2.683 to 7.328], respectively) (Figure 7).
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3.3.5 Liver Function: AST and ALT
AST was reported in 20 trials with 1206 patients (Appendix 4;
Supplementary Figure 15). As shown in Figure 5J, compared
with the control group, GLP-1 RAs and SGLT-2 inhibitors had
no statistically significant effect on AST (MD 0.643 [-4.097 to
4.777]and -2.274 [-5.712 to 0.588], respectively). The SUCRA
chart shows that the probabilities of GLP-1 RAs and SGLT-2
A

B D

E F G

IH J

K L M
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O P

FIGURE 6 | Ranking probabilities of different hypoglycemic agents for different outcome indicators. (A) HOMA-IR, (B) VAT, (C) SAT, (D) BMI, (E) Weight, (F) Leptin,
(G) Adiponectin, (H) FBS, (I) TG, (J) TC, (K) HDL, (L) LDL, (M) SBP, (N) DBP, (O) AST, (P) ALT.
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inhibitors being among the top three most effective drugs were
13% and 84%, respectively (Figure 6O).

ALT was reported in 22 trials with 1312 patients (Appendix 4;
Supplementary Figure 16). As shown in Figure 5J, compared
with the control group, GLP-1 RAs and SGLT-2 inhibitors had no
statistically significant effect on ALT (MD -0.534 [-10.180 to
9.163] and -3.136 [-9.704 to 2.860], respectively). The SUCRA
chart shows that the probabilities of GLP-1 RAs and SGLT-2
inhibitors being among the top three most effective drugs were
39% and 73%, respectively (Figure 6O).

There was no difference between GLP-1 RAs and SGLT-2
inhibitors on AST or ALT (MD 2.892 [-1.816 to 7.797] and 2.590
[-7.701 to 13.470], respectively) (Figure 7).

3.4 Heterogeneity and Inconsistency Test
The difference value in deviance information criteria between the
consistency and inconsistencymodels was less than 5, indicating the
data have met the premise of consistency. In terms of deviance
information criteria and mean posterior residuals, the RE model
provided a better fit than the FEmodel in the analysis of all outcome
indicators except for SAT and weight (Appendix 5). The node
splitting method based on a Monte Carlo Markov Chain simulation
was used to evaluate the network inconsistency of different outcome
indicators, considering random-effect models, normal priors for
treatment fixed effects, and uniform priors for the variances of the
random effects. Supplementary materials (Appendix 6) show
evidence of overall network inconsistencies or heterogeneity with
no severe concerns of incoherence between direct and indirect
evidence, and there were no local inconsistencies except for the
following: (1) BMI of TZDs versus GLP-1 RAs, and TZDs versus
metformin (P = 0.049 and 0.006, respectively); (2) FBS between
TZDs andmetformin (P = 0.046); (3) HDL level between TZDs and
GLP-1 RAs, and metformin and GLP-1 RAs (P = 0.006 and 0.032,
respectively); (4) AST level between metformin versus TZDs (P=
0.008); and (5) ALT level between metformin versus TZDs (P=
0.006). Convergence analysis shows that each Monte Carlo Markov
chain achieved stable fusion from the initial part, and it could be
visually analyzed in the subsequent calculation. Single chain
Frontiers in Endocrinology | www.frontiersin.org 81615
fluctuations could not be recognized, which means the degree of
convergence was high (Appendix 7; Supplementary Figures 1–16).
4 DISCUSSION

To our knowledge, this is the first systematic review and network
meta-analysis to directly compare the effects of GLP-1 RAs and
SGLT-2 inhibitors on IR levels in patients with NAFLD. NAFLD
is a chronic metabolic liver disease, with the main clinical
manifestation being increased lipid accumulation in the liver
without a clear link to alcohol consumption and is a clinical
manifestation of metabolic syndrome in the liver (32). In 2020,
two articles proposed that NAFLD should be renamed MAFLD
(metabolic associated fatty liver disease), and experts have agreed
that compared with NAFLD, MAFLD more accurately reflects
the mechanism of NAFLD (32, 33).

Given the increasingly defined metabolic nature of the
disease, treatments targeting metabolism will be very
promising. GLP-1 RAs and SGLT-2 inhibitors are two types of
drugs that treat NAFLD through metabolic targeting. We
evaluated the effect of these two drugs on the degree of IR, in
patients with NAFLD, by applying Bayesian network meta-
analysis and showing that, compared with the control group,
GLP-1 RAs can reduce HOMA-IR value, weight, VAT, FBS, and
TG, whereas SGLT-2 inhibitors had no significant effect on those
outcomes. In addition, in the absence of head-to-head
comparisons between GLP-1 RAs and SGLT-2 inhibitors, we
also found significant differences between them. Importantly,
GLP-1 RAs reduced VAT content and TG levels to a greater
extent than SGLT-2 inhibitors. Our results provide both direct
and indirect evidence that GLP-1 RAs improves IR and has
certain advantages over SGLT-2 inhibitors in ameliorating IR in
NAFLD patients.

GLP-1 RAs are incretin hormones secreted by intestinal L-
cells following meal ingestion, and have various metabolic
functions, including: 1) inducing b-cell proliferation and
reducing lipotoxic b-cell apoptosis; 2) enhancing both insulin
FIGURE 7 | Mean difference of GLP-1 RAs compared with SGLT-2 inhibitors on different outcome indicators in NAFLD patients. Mean difference and 95% confidence
intervals were derived with the use of network meta-analysis. GLP-1 RAs, Glucagon-like peptide-1 receptor agonists; SGLT-2 inhibitors, Sodium-glucose cotransporter-2
inhibitors; CI, confidence interval.
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synthesis and glucose-stimulated insulin secretion; 3) inhibiting
glucagon secretion in a glucose-dependent manner; 4) reducing
IR and improving peripheral insulin sensitivity through
promoting weight loss caused by delayed gastric emptying and
appetite suppression; and 5) increasing liver and muscle glucose
uptake, followed by lowering of free fatty acid levels (34–37). A
recent meta-analysis, concerning the use of GLP-1 RAs in
patients with NAFLD (12 studies involving 780 patients),
found significant improvements in FBS levels and HOMA-IR
when the trial lasted longer than 24 weeks in subgroup analysis
(38), similar to the results of our analysis. However, few studies
have focused on the improvement in IR. In another RCT, GLP-1
RAs also reduced VAT in patients with polycystic ovary
syndrome (39). In addition, low activity of brown adipose
tissue has been associated to NAFLD (40), but none of 25
included RCTs have involved data of brown adipose tissue
between groups, suggesting the need for NAFLD drug therapy
studies focusing on brown adipose tissue. Mechanistically, GLP-1
RAs reduce hepatic steatosis and increases insulin sensitivity of
hepatocytes through AMP-activated protein kinase, which exert
an influence on insulin signaling pathways (41). At the same time,
GLP-1 RAs may also reduce the expression of genes related to
fatty acid synthesis, TG level or de novo synthesis, and the
accumulation of liver and ectopic fat (42), which is consistent
with the results obtained in this paper. We speculate that GLP-1
RAs improve IR and further reduce FBS and TG, as well as
improve glucose and lipid metabolism by reducing VAT. This
would suggest that GLP-1 RAs should be applied in NAFLD
patients with IR and obesity (especially abdominal obesity), and
glucose or lipid metabolic disorders. Moreover, GLP-1 RAs
tended to reduce BMI, TC, SAT and LDL levels, and increase
HDL and adiponectin, but these improvements were not
statistically significant. In the included studies, the mean
duration of medication in all 25 studies was 28.86 weeks, but
for those studies using GLP-1 RAs, medication was collected after
taken for only 20.4 weeks in average. The average duration of
treatment with GLP-1 RAs was less than the average intervention
duration of all 25 studies, which may have reduced efficacy.

SGLT-2 inhibitors are a new class of antidiabetic drugs that
reduce blood sugar by inhibiting the kidney’s reabsorption of
glucose and allowing excess glucose to be excreted in the urine. In
short, its mechanism of action is the direct excretion of glucose
instead of insulin sensitization to promote glucose transport. Its
principle is similar to the dam principle, only promoting the
excretion of excess glucose, which also makes the risk of
hypoglycemia low. In animal studies, SGLT-2 inhibitors have
reduced new fat generation and increased lipoprotein
decomposition (43, 44). Based on the existing literature, SGLT-2
inhibitors have been suggested to reduce HOMA-IR, weight, BMI,
SAT, VAT, FBS, TC, LDL, AST, ALT, SBP, and also increase HDL,
but these improvementswerenot statistically significant.According
to SUCRA, SGLT-2 inhibitors have more advantages than GLP-1
RAs in improving HDL, LDL, TC, AST, ALT, and DBP in NAFLD
patients. Considering that some of our patients with NAFLD did
not have T2DM comorbidity, their median FBS was 7.66 mmol/L,
indicating glucose toxicity was not severe. In this case, due to the
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normal levels of glucose, the ability of SGLT-2 inhibitors to improve
IR, i.e. by excreting excess glucose, would not be activated. No trial
has been reported on SGLT-2 inhibitors in pure NAFLD patients
without T2DMdiabetes. A study on the “Effect of Empagliflozin on
Liver Fat in Non-diabetic Patients” (NCT04642261) has been
registered in Clinical Trials and is expected to be completed by
December 31, 2022. In addition, the average duration of SGLT-2
inhibitor medication for all studies was 25.09 weeks, shorter than
the average duration of intervention in the included studies overall,
which may be one of the reasons why SGLT-2 inhibitors have no
significant effect on IR in NAFLD patients.

The advantages of this systematic review and network meta-
analysis are as follows. First, we grasp the nature of NAFLD as a
metabolic disease and focus our analysis on IR as a metabolic
marker. Second, a network meta-analysis is used to
comprehensively measure the effects of GLP-1 RAs and SGLT-
2 inhibitors on various indicators that are related to IR in
patients with NAFLD, making up for the lack of direct
comparison between them. Third, a network meta-analysis is
used to enlarge the sample size and correct the results obtained
with smaller sample size. In addition, the emergence of new
studies on these two classes of drugs has created a need for
updated analysis, and this article meets this need (45–55).

There are also some limitations in this study. First, there is some
heterogeneity in the clinical environment of each trial. For example,
due to the small number of related studies in this field, we did not
limit whether the included patients had diabetes, whichmay lead to
some heterogeneity. Still, the consistency of the results was
acceptable. We also run both the RE and the FE models, choosing
the appropriate model to obtain more reliable results. Second, the
measurement of insulin resistance in our included trails were
HOMA-IR instead of hyper-insulinemic-euglycemic clamp
technology, which is internationally recognized as the gold
standard. Hyper-insulinemic-euglycemic clamp technology can
be applied to all study groups, but at the same time it is a complex
operation and requires repeated blood puncture. HOMA-IR is
suitable for large-scale evaluation of IR in research with large
sample sizes (56). However, the sample size of some included
trials was relatively small and the application of HOMA-IR to
evaluate IR may have some defects. Therefore, we selected other
indicators that are highly correlated with the degree of IR, such as
SAT, VAT, BMI, TG, and adipocytokines (57–60) to assist
judgment of IR and make up for this deficiency. Finally, the
average duration of treatment was not balanced. For example, the
average duration of treatment with GLP-1 RAs and SGLT-2
inhibitors was lower than the average duration of all included
studies, which suggests that larger and longer RCTs are needed to
verify our results.
5 CONCLUSION

In conclusion, this network meta-analysis provides evidence for
the effect of GLP-1 RAs and SGLT-2 inhibitors on reducing IR in
patients with NAFLD. This study suggests that GLP-1 RAs can
improve the metabolism of NAFLD, and in this regard, the effect
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of SGLT-2 inhibitors still needs to be determined using rigorous
long-term and large-scale RCTs.
6 PROSPECTS

As one of the most prevalent chronic diseases in the world, the
public health and economic impact of NAFLD has been gradually
given increasing attention by patients, regulatory agencies, and
biopharmaceutical organizations. Although the cure for NAFLD is
still unknown, drug research and development for each link of its
mechanism is underway. Due to the close relationship between
NAFLD and metabolic syndrome, especially IR, this review
indicates that GLP-1 RAs, but not SGLT-2 inhibitors can be used
for treatingNAFLDpatients, based onobesity especially abdominal
obesity, a high-HOMA-IR index and glucose or lipid metabolic
disorder. More clinical studies targeting IR are needed to provide
more evidence for improving IR and reduce the risk of chronic
complications in patients with NAFLD.
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Association between use of
liraglutide and liver fibrosis in
patients with type 2 diabetes

Yijiong Tan1†, Qin Zhen2†, Xiaoying Ding2, Tingting Shen2,
Fang Liu2, Yufan Wang2, Qidi Zhang3, Renkun Lin3, Lili Chen3,
Yongde Peng2* and Nengguang Fan2*

1Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University,
Shanghai, China, 2Department of Endocrinology and Metabolism, Shanghai General Hospital,
Shanghai Jiao Tong University, Shanghai, China, 3Department of Gastroenterology, Shanghai
General Hospital, Shanghai Jiao Tong University, Shanghai, China
Objective: Patients with type 2 diabetes have a high risk of non-alcoholic fatty

liver disease (NAFLD) and related liver fibrosis. Glucagon-like peptide-1

receptor agonists (GLP-1RAs) have demonstrated efficacy in improving

NAFLD, while their effectiveness on liver fibrosis is limited in type 2

diabetic patients.

Materials/Methods: A prospective cohort study was performed in type 2

diabetic patients. The study subjects were divided into two groups based on

the use of liraglutide or not, and propensity score matching (PSM) was also

conducted. After 12 months follow-up, liver fibrosis was assessed by NAFLD

fibrosis score (NFS) fibrosis-4 (FIB-4), and liver stiffness measurement (LSM).

The association between liraglutide use and liver fibrosis was analyzed by

multivariable linear regression.

Results: In the current study, a total of 1,765 type 2 diabetic patients were

enrolled. 262 patients were liraglutide user and 1,503 were nouser. After 12

months follow-up, liraglutide use tended to be associated with reduced

prevalence of advanced fibrosis (3.1% vs. 6.1%, P = 0.218). After adjustment

for confounding factors, multivariable linear regression revealed that liraglutide

use was negatively associated with decreased NFS (b= -0.34, P = 0.043), FIB4

(b= -0.26, P = 0.044) and LSM (b= -4.95, P = 0.007) in type 2 diabetics. The

results after PSM were similar to those before PSM.

Conclusions: Liraglutide treatment is associated with decreased liver fibrosis in

type 2 diabetic subjects.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most

frequent chronic liver disorder worldwide, which includes a

range of pathological conditions from simple steatosis to

nonalcoholic steatohepatitis (NASH), fibrosis and even

hepatocellular carcinoma (HCC) (1). The incidence of NAFLD

is rising along with obesity and type 2 diabetes mellitus (T2DM).

NAFLD is estimated to affect up to 25% of the general

population and 70%–80% of people with T2DM (1–3). T2DM

further promotes the progression of NAFLD from simple

steatosis to NASH and fibrosis (3).

During the last decade, it has grown increasingly evident that

hepatic fibrosis is the strongest predictor of NAFLD-related

morbidity and mortality (4, 5). The presence of clinically

relevant liver fibrosis (F2 to F4) can occur in up to 15% of those

with NAFLD and T2DM (6). Early recognition and treatment of

NAFLD and liver fibrosis in people with T2DM are crucial.

Although liver biopsy remains the gold-standard diagnosis of

fibrosis, several non-invasive indices including NAFLD fibrosis

score (NFS) and fibrosis-4 (FIB-4) can be used to estimate the

prevalence and extent of fibrosis (7, 8). With regard to the

treatment of NAFLD, up to date the pharmacological therapy of

NAFLD and related liver fibrosis is still rare.

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are

subcutaneous antidiabetic drugs approved for the treatment of

T2DM. They are also effective in reducing both body weight and

visceral adipose tissue, and have beneficial effects on the risk of

cardiovascular and renal outcomes (9–13). In addition, recent

evidence has shown that GLP-1RAs also improve hepatic

histological components of NAFLD (14–16). Liraglutide and

semaglutide consistently resolved NASH histologically in 40% to

60% of patients (17, 18). However, their effects on fibrosis in

NAFLD were inconsistent (17, 18). Thus, it remains to be

determined whether GLP-1RAs have ameliorative effects on

NAFLD related liver fibrosis.

The present study was therefore conceived to explore the

association between liraglutide use and liver fibrosis related to

NAFLD in an unselected sample of adults with T2DM.
Methods

Subjects

All subjects were enrolled from the department of

Endocrinology and Metabolism at Shanghai General Hospital

from May 2017 to June 2021. Diagnosis of type 2 diabetes was

based on the 1999 World Health Organization criteria. A

standard questionnaire was distributed to all participants,

which asked questions about present and past illnesses and

medical treatment, and subjects with an alcohol intake >140

grams per week for men and 70 grams per week for women, with
Frontiers in Endocrinology 02
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hepatitis, auto-immune hepatitis, or any other chronic liver

disease, and with the treatment of pioglitazone and other

GLP-1RAs rather than liraglutide were excluded from the

study. The subjects were followed for 12 months and data was

collected at baseline and 12 months later. In the end, 1,765 type 2

diabetic patients were included in the final analysis. The

Institutional Review Board of Shanghai General Hospital

affiliated to Shanghai Jiao Tong University School of Medicine

approved this study, which was performed in accordance with

the principle of the Helsinki Declaration II. Written informed

consent was obtained from all subjects.
Anthropometric and biochemical
measurements

Body weight, height, systolic and diastolic blood pressure

(SBP, DBP) were measured after overnight fasting for at least 8

hours. BMI was calculated by dividing the body weight by the

square of height in meters.

A nurse with extensive experience collected blood samples.

Biochemical parameters including serum triglycerides (TG), total

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C),

high-density lipoprotein cholesterol (HDL-C), alanine

aminotransferase (ALT), aspartate aminotransferase (AST), serum

creatinine (Scr) and serum uric acid (SUA) were measured using an

autoanalyzer (Beckman, Palo Alto, CA). Blood glucose were

measured with glucose oxidase method and HbA1c was evaluated

by high-performance liquid chromatography.
Non-invasive assessments of liver fibrosis

NFS was calculated according previous study: −1.675 + 0.037 ×

age (years) + 0.094 × BMI (kg/m2) + 1.13 × IFG/diabetes (yes = 1,

no = 0) + 0.99 × AST/ALT ratio − 0.013 × platelet (×109/L) − 0.66 ×

albumin (g/dL) (7). As all subjects in the present study were

diabetic, so NFS = −1.675 + 0.037 × age (years) + 0.094 × BMI

(kg/m2) + 1.13 + 0.99 × AST/ALT ratio − 0.013 × platelet (×109/L)

− 0.66 × albumin (g/dL). FIB-4 was calculated as follow: (age

(years) × AST (U/L))/(platelet count (× 109/L) × ALT (U/L)1/2) (8).

In addition, liver stiffness measurement (LSM) was performed using

Fibroscan (Echosens®, Paris, France).
Statistical analysis

All statistical analyses were performed using SPSS 13.0

(Chicago, IL). Continuous variables were presented as means

± SD or median (interquartile range). Differences among groups

were tested by t test for continuous variables and x2 test for

categorical variables. Multivariate linear regression model was

performed to evaluate the independent association between
frontiersin.org
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liraglutide use and liver fibrosis assessed by NFS. P < 0.05 was

considered statistically significant.
Results

Baseline clinical characteristics of the
subjects before and after matching

Among the 1,765 type 2 diabetic patients, 262 were taking

liraglutide users and 1,503 were nousers. Clinical characteristics

of the subjects according to the use of liraglutide were

summarized in Table 1. Proportion of female, BMI, DBP,

duration of diabetes, ALT, AST, UA, HbA1C was significantly

higher, while age, HDL-C was lower in the user of liraglutide

when compared with the nousers (all P < 0.05). There was no

significant difference in SBP, FBG, Scr, TC, LDL-C and NFS

between the two groups.

Furthermore, the subjects were propensity score matching

(PSM) (1:1) according to the age, sex and BMI of the subjects.

Clinical characteristics of the matched population was exhibited

in Table 2, liraglutide users and nousers had similar age and sex

proportion, and the difference of BMI was decreased when

compared with the difference before PSM.
Effects of liraglutide on clinical data and
the prevalence of advanced liver fibrosis

After a 12-month follow-up, liraglutide users showed a

significant reduction in body weight and BMI compared to the

control group (all P < 0.05). In contrast, there was no significant

differences in HbA1c and ALT (Figures 1A–D). After PSM,

similar results were observed in the cohort (Figures 1E–H).

Next, liver fibrosis was evaluated by NFS and the overall

prevalence of advanced liver fibrosis (NFS > 0.676) was 5.0%. At

baseline, the prevalence of advanced liver fibrosis in the control

and liraglutide group was 4.4% and 8.3%, respectively (P < 0.01).

After 12 months treatment, the prevalence of advanced liver

fibrosis in the two group was comparable (3.4% vs. 3.1%, P >

0.05) (Figure 2A). In the cohort after PSM, the prevalence of

advanced liver fibrosis in the control and liraglutide group at

baseline was 5.3% and 8.1%, respectively (P > 0.05). After 1 year

treatment, the prevalence of advanced liver fibrosis was 6.1%,

while that in the liraglutide group was decreased to 3.1%, though

the difference was not significant probably due to the limit of

sample size (P = 0.218) (Figure 2B).
Association of liraglutide use with
liver fibrosis

Using multivariate linear regression, we further studied the

independent association between liraglutide use and noninvasive
Frontiers in Endocrinology 03
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liver fibrosis markers including NFS and FIB-4. As shown in

Table 3, liraglutide use was negatively associated with NFS after

adjustment for age, sex, BMI, SBP, DBP, smoking, drinking and

duration of diabetes (model 1). After further adjustment for

FBG, HbA1c, TG, TC, LDL-C and HDL-C (model 2), liraglutide

use remained significantly correlated with NFS. Finally,

additional adjustment of the use of other antidiabetic

medicines including metformin, SGLT2i, sulfonylurea, DPP-4i

and insulin also did not significantly change the association

between liraglutide use and NFS (model 3). The association

between liraglutide and NFS was further analyzed after PSM,

and the results were consistent with those before PSM (Table 3).

Consistently, use of liraglutide was also negatively associated

with FIB-4 before and after PSM (Table 4).

Furthermore, we investigated the effect of liraglutide on LSM

performed by transient elastography. As expected, treatment of

liraglutide was associated with reduced LSM after adjustment of

confounders (b: -4.95; 95%CI:-8.43, -1.47; P=0.007).
Discussion

NAFLD related liver fibrosis affects a large proportion of

individuals with T2DM. Nonetheless, to date, no medicine has

been approved for the treatment NAFLD and liver fibrosis. In

the present study, we explored the association of liraglutide use

and liver fibrosis in T2DM patients. It was found that liraglutide

use was negatively associated with liver fibrosis in patients

with T2DM.

NAFLD and related liver fibrosis is common in patients with

T2DM. In one recent study, the prevalence of NAFLD in T2DM

patients was 70%, while advanced liver fibrosis is 9% (6). In

another meta-analysis, the prevalence of NAFLD in patients

with T2DMwas 55.5%, while the prevalence of advanced fibrosis

is 17.0%. In our study, NFS was used as a marker of liver fibrosis

and the prevalence of advanced liver fibrosis in T2DM was 5.0%.

Different populations and methods to assess liver fibrosis may be

responsible for the inconsistency in the above studies. In fact,

T2DM has been recognized a promoter of liver fibrosis. Though

the underlying mechanisms remain largely unknown, insulin

resistance and hyperglycemia may contribute to liver fibrosis in

T2DM patients (19, 20).

GLP-1RAs are widely used in the treatment of T2DM and

are effective in lowering blood glucose level and body weight. In

recent years, the role of GLP-1RAs in NAFLD has also been

investigated. The role of GLP-1RAs in hepatic steatosis and

NASH is demonstrated in the previous studies (15, 16, 18). In

contrast, its role in liver fibrosis in NAFLD is still controversial.

In the Liraglutide Efficacy and Action in Non-alcoholic

steatohepatitis (LEAN) randomized phase 2 trial, liraglutide

improved NASH as well as reduced fibrosis progression both

in diabetics and non-diabetics (15). More recently, a phase 2

study of semaglutide, a longer-acting GLP-1RA has also shown
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to effectively reduce liver enzymes and amealioate NASH after

72 weeks of therapy. Nevertheless, the study failed to show any

significant improvement in fibrosis stage (18). In another real-

world study, GLP-1RAs use was shown to improve markers of
Frontiers in Endocrinology 04
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liver fibrosis in T2DM (21). Consistently, we observed decreased

prevalence of advance liver fibrosis in T2DM individuals treated

with liraglutide compared with nousers. In addition, liraglutide

use was negatively associated with NFS, FIB-4 and LSM, three
TABLE 1 Baseline data in the population according the use of liraglutide before PSM.

Characteristics Liraglutide nonusers Liraglutide users P value

Number 1503 262

Age (years) 50.7 ± 11.9 47.8 ± 12.9 <0.001

DBP (mmHg) 77.1 ± 10.8 79.0 ± 10.1 0.007

SBP (mmHg) 129.3 ± 17.3 128.8 ± 16.5 0.677

BMI (kg/m2) 25.2 ± 3.3 29.3 ± 3.4 <0.001

Duration (months) 53.1 ± 73.0 80.4 ± 85.2 <0.001

FBG (mmol/L) 8.3 ± 3.1 8.1 ± 2.8 0.351

HbA1c (%) 8.5 ± 2.2 8.8 ± 2.0 0.045

ALT (IU/L) 30.2 ± 30.8 36.6 ± 28.6 0.002

AST (IU/L) 23.9 ± 19.1 27.4 ± 19.9 0.007

Scr (mmol/L) 68.6 ± 205.0 64.1 ± 27.6 0.727

UA (mmol/L) 339.5 ± 100.7 361.2 ± 99.7 0.001

TG (mmol/L) 2.2 ± 3.2 2.6 ± 2.7 0.05

TC (mmol/L) 4.8 ± 1.4 4.8 ± 1.5 0.555

HDL-C (mmol/L) 1.0 ± 0.3 0.9 ± 0.2 <0.001

LDL-C (mmol/L) 2.8 ± 1.0 2.7 ± 1.0 0.14

NFS -1.2 ± 1.2 -1.2 ± 1.3 0.689

Sex (n,%) 0.002

Female 471 (31.3%) 108 (41.2%)

Male 1032 (68.7%) 154 (58.8%)

Current smoking (n,%) 0.028

0 787 (69.8%) 166 (77.2%)

1 341 (30.2%) 49 (22.8%)

Current drinking (n,%) 0.787

0 701 (51.7%) 128 (52.7%)

1 654 (48.3%) 115 (47.3%)

Metformin (n,%) <0.001

0 506 (33.7%) 41 (15.6%)

1 997 (66.3%) 221 (84.4%)

Akabose (n,%) <0.001

0 1011 (67.3%) 119 (45.4%)

1 492 (32.7%) 143 (54.6%)

DPP-4i (n,%) <0.001

0 537 (35.7%) 262 (100.0%)

1 966 (64.3%) 0 (0.0%)

SGLT-2i (n,%) <0.001

0 1282 (85.3%) 165 (63.0%)

1 221 (14.7%) 97 (37.0%)

Sulfonylurea (n,%) <0.001

0 1203 (80.0%) 245 (93.5%)

1 300 (20.0%) 17 (6.5%)

Insulin (n,%) <0.001

0 1100 (73.2%) 162 (61.8%)

1 403 (26.8%) 100 (38.2%)
front
DPP-4i, dipeptidyl peptidase-4 inhibitor; GLP1-RAs, glucagon-like peptide 1 receptor agonists; HbA1c, hemoglobin A1c; SGLT-2i, sodium glucose co-transporters 2 inhibitor; TZD, thiazolidinedione.
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TABLE 2 Baseline data in the population according the use of GLP-1RAs after PSM.

Characteristics Liraglutide nonusers Liraglutide users P value

Number 254 254

Age (years) 49.0 ± 13.2 47.8 ± 12.9 0.313

BMI (kg/m2) 27.8 ± 4.3 29.1 ± 3.3 <0.001

DBP (mmHg) 78.8 ± 11.5 79.1 ± 10.0 0.783

SBP (mmHg) 133.0 ± 17.1 128.8 ± 16.6 0.006

Duration (months) 40.8 ± 58.5 81.0 ± 85.9 <0.001

FBG (mmol/L) 8.6 ± 3.2 8.2 ± 2.8 0.107

HbA1c (%) 8.6 ± 2.2 8.8 ± 2.0 0.314

ALT (IU/L) 37.0 ± 58.0 36.9 ± 28.9 0.978

AST (IU/L) 28.6 ± 38.6 27.4 ± 20.0 0.654

Scr (mmol/L) 61.2 ± 15.5 64.1 ± 27.6 0.148

UA (mmol/L) 350.5 ± 94.6 361.3 ± 99.3 0.212

TC (mmol/L) 4.9 ± 1.4 4.8 ± 1.5 0.311

TG (mmol/L) 2.2 ± 1.8 2.6 ± 2.7 0.071

HDL-C (mmol/L) 1.0 ± 0.2 0.9 ± 0.2 <0.001

LDL-C (mmol/L) 2.9 ± 0.9 2.7 ± 1.0 0.037

NFS -1.1 ± 1.3 -1.2 ± 1.3 0.523

FIB-4 1.2 ± 0.8 1.1 ± 0.7 0.042

Sex (n,%) 0.716

0 98 (38.6%) 102 (40.2%)

1 156 (61.4%) 152 (59.8%)

Current smoking (n,%) 0.614

0 184 (72.7%) 189 (74.7%)

1 69 (27.3%) 64 (25.3%)

Current drinking (n,%) 0.428

0 173 (68.9%) 166 (65.6%)

1 78 (31.1%) 87 (34.4%)

Metformin (n,%) <0.001

0 72 (28.3%) 40 (15.7%)

1 182 (71.7%) 214 (84.3%)

Akarbose (n,%) <0.001

0 202 (79.5%) 115 (45.3%)

1 52 (20.5%) 139 (54.7%)

DPP-4i (n,%) <0.001

0 106 (41.7%) 254 (100.0%)

1 148 (58.3%) 0 (0.0%)

SGLT-2i (n,%) <0.001

0 209 (82.3%) 161 (63.4%)

1 45 (17.7%) 93 (36.6%)

Sulfonylurea (n,%) <0.001

0 210 (82.7%) 237 (93.3%)

1 44 (17.3%) 19 (6.7%)

Insulin (n,%) <0.001

0 202 (79.5%) 156 (61.4%)

1 52 (20.5%) 98 (38.6%)
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FIGURE 1

Changes of the clinical characteristics after 12-months follow-up. (A-D) The changes of body weight, BMI, HbA1c and ALT after 12-month
follow-up in all T2DM patients with or without GLP-1RAs use. (E-H) The changes of body weight, BMI, HbA1c and ALT after 12-month flow-up
in T2DM patients with or without GLP-1RAs use after PSM. *P < 0.05.
A B

FIGURE 2

Change of the prevalence of advanced liver fibrosis after 12-month follow-up. (A) The prevalence of advanced liver fibrosis at baseline and 12-
month follow-up in all T2DM patients with or without GLP-1RAs use. (B) The prevalence of advanced liver fibrosis at baseline and 12-month
follow-up in T2DM patients with or without GLP-1RAs use after PSM.
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noninvasive assessments of liver fibrosis. Thus, our study

provides additional clinical evidence of a possible role of GLP-

1RAs in the treatment of liver fibrosis in T2DM patients.

The mechanism of GLP-1RAs’ role on NAFLD is still not well

illustrated. Reduction in body weight is one of the reason

responsible for the favorable effect of GLP-1RAs on NAFLD.

Besides, GLP-1RAs have anti-inflammatory and antioxidant

properties and contributed to significant reductions in

biomarkers of inflammation and oxidative stress in clinical trials

(22). In animal models, GLP-1RAs treatment could alleviate

inflammation in liver (especially M1 pro-inflammatory

macrophages accumulation) (23). These properties of GLP-

1RAs could confer its protection against liver fibrosis.

The present study has several limitations that need to be

considered. First, the follow up period was relative short, which

may affect the association between liraglutide use and liver

fibrosis. Second, this study did not include a diagnosis of

NAFLD, which precluded stratifying by the presence or

absence of NAFLD. Third, fibrosis was not evaluated by liver

biopsy. Nevertheless, NFS, FIB-4 and LSM has become widely

used detect liver fibrosis.
Conclusion

In conclusion, the present study showed that GLP-1RA use

was negatively correlated with liver fibrosis in type 2 diabetic

patients. GLP-1RAs may be a therapy to ameliorate liver fibrosis

in type 2 diabetic patients.
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Purpose: Dipeptidyl peptidase-4 inhibitors (DPP-4I), key regulators of the

actions of incretin hormones, exert anti-hyperglycemic effects in type 2

diabetes mellitus (T2DM) patients. A major unanswered question concerns

the potential ability of DPP-4I to improve intrahepatic lipid (IHL) content in

nonalcoholic fatty liver disease (NAFLD) patients. The aim of this study was to

evaluate the effects of sitagliptin on IHL in NAFLD patients.

Methods: A prospective, 24-week, single-center, open-label, comparative study

enrolled 68 Chinese NAFLD patients with T2DM. Subjects were randomly divided

into 4 groups: control group who did not take medicine (14 patients); sitagliptin

group who received sitagliptin treatment (100mg per day) (17 patients); metformin

group who received metformin (500mg three times per day) (17 patients); and

sitagliptin plus metformin group who received sitagliptin (100mg per day) and

metformin (500 mg three times per day) (20 patients). IHL, physical examination

(waist circumstances, WC; body mass index, BMI), glucose-lipid metabolism

(fasting plasma glucose, FPG; hemoglobin A1c, Hb1A1c; triglycerides;

cholesterol; alanine aminotransferase, ALT; aspartate aminotransferase, AST)

were measured at baseline and at 24 weeks.

Results: 1) WC and BMI were decreased significantly in all groups except

control group (all P<0.05). 2) There was no statistically significant difference

in IHL among the sitagliptin, metformin, and sitagliptin plus metformin groups

before and after treatment(all P>0.05). Only the metformin group showed a

statistically significant difference in IHL before and after treatment(P<0.05). 3)

Sitagliptin treatment led to a significant decrease in FBG and HbA1c when

compared with the control group (all P<0.01). Additionally, HhA1c was

significant decreased in the sitagliptin group when compared with the

metformin group (P< 0.05). 4) HbA1c and FBG were decreased by 0.8% and

0.7 mmol/l respectively and the percentage of patients with HbA1c less than 7%

was 65% with sitagliptin treatment.
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Conclusion: Sitagliptin improves abnormalities in glucose metabolism, but not

reduces the IHL in T2DM with NAFLD, indicating that sitagliptin might be a

therapeutic option for treatment of NAFLD indirectly while not directly on IHL.

Clinical Trial Registration: https://clinicaltrials.gov/, identifier CTR#

NCT05480007.
KEYWORDS

intrahepatic lipid, nonalcoholic fatty liver disease, sitagliptin, metabolism, glucose
Introduction

Non-alcoholic fatty liver disease (NAFLD) is highly

associated with several components of metabolic syndrome

(MS), particularly obesity, increased plasma lipid levels, insulin

resistance, and type 2 diabetes mellitus (T2DM) (1–3). The

proportion of NAFLD patients with concomitant obesity and

T2DM is in the range of 25%-75% (4, 5). Diabetic patients with

NAFLD may be existing insulin resistance and impaired lipid

metabolism, and the insulin resistance may further increase fat

deposition in the liver (6, 7), thereby exacerbating

both conditions.

Lifestyle adjustments leading to weight loss are effective in

the treatment of NAFLD and can also improve insulin sensitivity

(8–10). The present therapeutic options used for treatment of

NAFLD patients with diabetes include insulin sensitizing agents

such as metformin and thiazolidinediones (11, 12). Metformin

maintains glucose homeostasis by increasing the utilization of

glycogen and inhibiting hepatic glucose output, and reduces the

accumulation of fat mass in liver (11, 13). However, the effects

metformin on liver histology is not clear and metformin is

currently not recommended in treatment of NASH (non-

alcoholic steatohepatitis). By activation of the peroxisome

proliferator activated receptor (PPAR), thiazolidinediones

increase insulin sensitivity, regulate lipid metabolism, alleviate

liver damage, and decrease fat accumulation in liver (14, 15).

However, they have not been able to improve the histological

appearance of liver damage. No effective drug therapy

for NAFLD has been established. Thus, given the difficulty in

sustaining lifestyle modification, effective pharmacological

options are necessary and incretin based therapies may

represent an effective option.

Glucose dependent insulinotropic polypeptide (GIP) and

glucagon like peptide 1 (GLP-1) are known incretine

hormones. However, the metabolic effects of GIP are

blunted in T2DM and only GLP-1 remains of interest in the

treatment of T2DM and related disorders (16). Circulating
02
3029
GLP-1 is readily degraded by the enzyme dipeptidyl peptidase-

4(DPP-4) (17–19). Therefore, DPP-4 inhibitors (DPP-4I) have

been developed which can inhibit the degradation of GLP-1,

thereby increasing incretin levels, stimulating insulin

secretion, increasing sensitivity of beta cells to incretins, and

increasing beta cell proliferation (20). DPP-4I can reduce

fasting and postprandial plasma glucose levels (21, 22) and

reduce HbA1c, although to a greater extent in Asian patients

compared with Caucasians (23). Thus, these agents may be

particularly useful for Chinese patients. Sitagliptin is a DPP-4

inhibitor which can increase insulin release and decrease

glucagon levels by increasing the levels of active incretin

(24–26).

The GLP-1 receptor (GLP-1R) has been found on human

hepatocytes (27). Sitagliptin treatment has been shown to be safe,

well tolerated, and have anti-diabetic effects. A previous study has

shown that the change in HbA1c after stigliptin treatment for 8 and

12 weeks were significantly greater in T2DM patients with NAFLD

than in T2DM patients without NAFLD (28). Forty-one patients

with biopsy-proven NAFLD with T2DM were treated

with sitagliptin (50 mg/day) for 12 months and showed a 0.7%

reduction in HbA1c (29). Another study showed that HbA1c and

fasting plasma glucose (FPG) in 20 NAFLD patients with T2DM

who were treated with sitagliptin group were significantly decreased

compared with a control group treated with diet and exercise (30).

Four months of treatment with sitagliptin in NAFLD patients

with T2DM diagnosed by ultrasonography led to significant

decreased plasma glucose, HbA1c, aspertate aminotransferase

(AST), and alanine transaminase (ALT) (31). However, body

weight did not change in NAFLD patients with T2DM treated

with sitagliptin (32). Animal experiments have shown a decrease in

intrahepatic lipid content (IHL) after treatment with DPP-4I (33,

34). However, the effect of DPP-4I on hepatic fat accumulation has

not been fully evaluated in NAFLD patients with T2DM. Therefore,

the aim of this study was to investigate the effect of sitgliptin on IHL

and glucose-lipid metabolism in Chinese NAFLD patients

with T2DM.
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Methods

Subjects

A total of 68 Chinese subjects were recruited from the

outpatient department of Shanghai Tenth People’s Hospital.

Informed consent was obtained from each participant after

being informed of the aims of the study and potential adverse

effects of the study drugs. This study was approved by the Ethics

Committee of Shanghai Tenth People’s Hospital. Inclusion

criteria were as follows: 1) age 30-70 years old, 2) fulfillment

of the diagnostic criteria for T2DM by WHO in 1999 (HbA1c

ranged from 7% to 10%, FPG< 11 mol/l, 2-hour blood glucose

postprandial< 20mmol/l), 3) Fulfillment of the diagnostic

criteria for NAFLD according to the guidelines of the Chinese

Medical Association in 2010. The IHL content was measured by

using 1H-magnetic resonance spectroscopy (1H-MRS)

quantitative detection, and the liver fat content of the enrolled

subjects was more than 5.5%. The subjects included in this study

had either no history of alcohol consumption or their alcohol

intake was less than 70 g/week in males and less than 140 g/week

in females. Liver transaminase and serum creatinine were less

than two times the upper limit of normal. The exclusion criteria

were as following: 1) T2DM complicated with ketoacidosis,

hyperosmolarity, acute and chronic infection, 2) serious heart,

liver, kidney, lung disease, and liver damage, 3) alcoholic fatty

liver, 4) drug use that influences glucose metabolism such as

thiazide diuretics and hormones within three months, 5)

Hypertension ≥ 180/110 mmHg, 6) gastrointestinal disease or

absorption dysfunction, 7) recent trauma, surgery, or other

conditions resulting in an increased stress response within the

past three months. The clinical trial is NCT02118376.
Anthropometric data measurement

Weight (Wt), height, waist circumference (WC), and

calculated to body mass index (BMI, according to the formula:

BMI (kg/m2) = body weight (kg)/height (m) 2) were measured

for each subject at baseline as well as at 24 weeks after starting

the trial.
Lab testing

Venous blood was collected and serum was prepared after 8

hours of fasting before and after treatment. Total cholesterol

(TCH), triglyceride (TG), low density lipoprotein cholesterol

(LDL-C), high density lipoprotein cholesterol (HDL-C), ALT,

AST, and alkaline phosphatase (AKP) were measured using an

automatic biochemistry analyzer (model) at baseline and 24
Frontiers in Endocrinology 03
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weeks. FPG was measured using the glucose oxidase method.

HbA1c was measured using the BIO-RAD VARIANTII.
Measurement of liver fat content

To evaluate the liver fat content, HD magnetic resonance

imaging (1.5 Tesla, GE) was performed at baseline and 24 weeks.

The peak value of water proton peak, the area under the water

proton peak (AUC-water), the peak value of fat peak and the

area under the fat peak (AUC-IHL) were determined. The

relative content of IHL was calculated by the following

formula: IHL= AUC-IHL/(AUC-water+ AUC-IHL) ×100%.
Grouping

Subjects were randomly divided into 4 groups using blocked

randomization according to the drug treatment:
Group A: control group (14 patients, average age:53.4 ± 5.2

years old). The subjects received nothing at all. They

were under diet and exercise control.

Group B: sitagliptin group (17 patients, mean age:54.4 ± 9.4

years old). These subjects received sitagliptin 100 mg per

day.

Group C: metformin group (17 patients, mean age: 55.6 ±

10.9 years old). These subjects took metformin 500 mg

three times per day.

Group D: sitagliptin plus metformin group (20 patients,

mean age 54.5 ± 5.6 years old). These subjects took

sitagliptin 100 mg per day and metformin 500 mg three

times per day.
The treatment period was 24 weeks. All subjects were given

health education regarding eating a diabetic diet and performing

routine exercise during the treatment period. Adverse reactions

and side effects of drug were monitored throughout the study.

The primary endpoint was liver fat content and secondary

endpoints including indicators of lipid (TCH, TG and LDL-C)

(HDL-C), liver enzymes (ALT, AST and AKP) and glucose(FPG

and HbA1c).
Statistical analysis

All data are presented as mean ± standard deviation( X±s).

SPSS17.0 software was used for statistical analysis. Comparison

of mean values was performed using a paired or unpaired t-test.

Variance analysis (ANOVA) was utilized when comparing the

difference among groups. LSD (Least-Significant Difference) was
frontiersin.org

https://doi.org/10.3389/fendo.2022.866189
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2022.866189
what we used for post-hoc tests in ANOVA. The statistical

difference was considered significant for P< 0.05.
Results

The general clinical data

Self-pair comparison showed that BMI was significantly

decreased with sitagliptin treatment(P< 0.05). Additional

comparisons between the sitagliptin group and control group

are displayed in Table 1. WC and BMI showed a statistically

significant decrease comparing baseline with 24 weeks after

treatment with sitagliptin, metformin, and metformin and

sitagliptin (all P< 0.05). There was no statistically significant

difference in WC and BMI at 24 weeks among the three groups

(all P > 0.05) as shown in Table1.
Liver fat content

The average IHL content was 61.88%, the highest IHL was

86.67% and the lowest IHL was 22.5% in sitagliptin group at

baseline. The average IHL content was 42.11% in the sitagliptin

group at 24 weeks which showed a trend decrease compared

with baseline without statistical significance (P > 0.05). The

average IHL was 54.43% at baseline and was 47% at 24 weeks in

the control group. There was no significant statistical

significance between sitagliptin group and the control group as

shown in Table 2. IHL content was significantly decreased in
Frontiers in Endocrinology 04
3231
metformin group (from 68.73 ± 14.6 to 32.57 ± 16.7) (P< 0.05).

Data for liver function tests are shown in Table 2. ALT and AST

were not significantly different among the groups before

treatment, however after treatment, ALT and AST in the

sitagliptin group was significnalty higher compared with the

metformin group (all P< 0.05).
Glucose-lipid metabolism

Self-pair comparison showed that FBG and HbA1c were

significantly decreased after 24 weeks treatment with sitagliptin

(all P< 0.05). Additionally, FBG and HbA1c were significantly

decreased in the sitagliptin group when compared with the

control group (all P< 0.01) as shown in Table 3. There was a

significant decrease in HbA1c in tbe sitagliptin group compared

with the metformin group (all P< 0.05). However, the sitagliptin

group had a higher HbA1c and FBG compared with the

sitagliptin plus metformin group after the 24 week treatment

period (all P<0.05) as shown in Table 3. HbA1c was decreased by

0.8% and FBG was decreased by 0.7mmol/l with sitagliptin

treatment while HbA1c was decreased by 0.3% and FBG was

decreased by 0.7mmol/l with metformin treatment.

Additionally, the percentage of HbA1c less than 7% was 65%

and 25% after sitagliptin and metformin treatment, respectively.

HbA1c was decreased by 1% and FBG was decreased by

1.3mmol/l, and the percentage of HbA1c level that less than

7% was 72.7% after sitagliptin plus metformin treatment. TCH,

TG, HDL-C, LDL-C showed no significant difference among the

groups before or after treatment. There was a trend toward a
TABLE 1 Comparison of the clinical characteristics between groups.

Group At baseline At 24 weeks

A(control) Sex 14(male/female:8/6) 14(male/female:8/6)

Age (years old) 53.40 ± 5.20 53.40 ± 5.20

BMI (kg/m2) 24.06 ± 2.85 23.85 ± 2.74

Waistline(cm) 83.0 ± 6.5 81 ± 6.87

B(sitagliptin) Sex 17(male/female:10/7) 17(male/female:10/7)

Age (years old) 54.40 ± 9.0 54.40 ± 9.40

BMI (kg/m2) 25.41 ± 3.45 24.39 ± 3.02※

Waistline(cm) 86.9 ± 9.8 84.88 ± 8.19※

C(metformin) Sex 17(male/female:9/8) 17(male/female:9/8)

Age (years old) 55.63 ± 10.9 55.63 ± 10.9

BMI (kg/m2) 26.46 ± 2.86 25.75 ± 3.55※

Waistline(cm) 88.50 ± 8.00 88.67 ± 8.80※

D(Sitagliptin+ metformin) Sex 20(male/female:9/11) 20(male/female:9/11)

Age (years old) 54.55 ± 6.6 54.55 ± 6.6

BMI (kg/m2) 26.07 ± 3.24 25.53 ± 3.02※

Waistline(cm) 90.0 ± 8.20 86.8 ± 6※
Self-pair comparison before and after treatment, ※P<0.05.
Data are number of patients or mean ± standard deviation.
BMI, body mass index.
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decrease in TG and HDL in the metformin group after treatment

but this did not reach statistical significance (all P>0.05).
Discussion

The prevalence of NAFLD is increasing with the rapid

development of modern economies which permit lifestyles

contributing to the development of numerous metabolic

disorders and making NAFLD one of the most serious chronic

diseases globally (35). NAFLD has been associated with vascular

endothelial dysfunction, which is an indicator of the early stages

of arteriosclerosis (36). The thickness of the carotid artery

intima-media and the plaque formation rate in NAFLD

patients were higher compared with controls (37). It was

further shown that, the risk of cardiovascular disease in

NAFLD patients is 5.3 times higher than in controls, and the

incidence of diabetes, hypertension, systemic inflammatory

response and metabolic syndrome are 15 times higher than

that of the control group (38). Therefore, an effective treatment

is needed to improve the underlying disease process of patients

with NAFLD. A previous study has shown that the effects of

dietary intervention using a carbohydrate (CH)-restricted low

energy diet (CH: 10% of total energy) for 48 hours lowered IHL

content in obese subjects compared with a high CH diet (CH:

65% of total energy) (39). The effect of diet on reducing IHL
Frontiers in Endocrinology 05
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content can also be found in T2DM patients or obese subjects

with impaired glucose tolerance (IGT) (40–42). In this study, we

explored the effects of sitagliptin on IHC lipid content and

metabolic profile in NAFLD patients with T2DM.

Liver fat content measured by magnetic resonance 1H-MRS

has been shown to be reliable and has been accurately replicated.

The diagnosis of fatty liver is based on the area under lipid peak/

AUC-IHL + AUC-water≥ 5.5% or area under lipid peak/area

under water peak≥20% (43, 44). The liver fat content was about

65% and ranged from 6% to 89.7% in all these subjects. Many of

the subjects in this study had never been shown to have fatty

liver by abdominal ultrasound prior to entry into the study. 1H-

MRS can detect mild fatty liver with a much higher sensitively

than conventional ultrasonography. Utilizing 1H-MRS in our

study, the average fat content of all subjects was about 65%,

which classifies most patients as having moderate or severe

fatty liver.

The mechanism of occurrence and development of NAFLD

is not completely understood. One commonly proposed theory

suggesting a “two hit”mechanism: too much triglycerides stored

in the liver cells constitutes the first hit, and this contributes to

the second hit which may be a variety insults such as insulin

resistance, oxidative stress, inflammatory reaction, lipid

peroxidation, etc (45). Logistic regression analysis also found

that insulin resistance (HOMA-IR), waist to hip ratio, total

cholesterol, and triglycerides are independent risk factors for
TABLE 2 Comparison of the intrahepatic lipid and liver enzymes between groups.

Group At baseline At week 24

A(Control) The maximum fat content(%) 84.74% 67.2%

The minimum fat content(%) 6% 6.8%

The average fat content(%) 54.43% 47.7%

Fat content of male(%) 56.4% 49.6%

Fat content of female(%) 52.4% 45.6%

B(Sitagliptin) The maximum fat content(%) 86.67% 91.20%

The minimum fat content(%) 22.5% 7.10%

The average fat content(%) 61.88% 42.11%

Fat content of male(%) 60% 40.18%

Fat content of female(%) 64% 41.97%

ALT(U/L) 26.81 ± 12.68 26.23 ± 17.33 △

AST(U/L) 21.76 ± 5.02 22.00 ± 8.24 △

AKP(U/L) 75.62 ± 22.49△ 77.15 ± 37.94

C(metformin) The average fat content(%) 68.73 ± 14.6 32.57 ± 16.7※

ALT(U/L) 24.00 ± 9.53 22.00 ± 12.57※

AST(U/L) 19.25 ± 3.62 21.20 ± 8.50

AKP(U/L) 90.75 ± 14.87 71.20 ± 32.38

D(sitagliptin+ metformin) The average fat content(%) 65.88 ± 16.4 42.7 ± 22.5

ALT(U/L) 25.45 ± 14.45 25.14 ± 15.99

AST(U/L) 22.00 ± 8.75 21.14 ± 7.27

AKP(U/L) 64.18 ± 19.59△ 59.00 ± 20.39
Self-pair comparison before and after treatment, ※P<0.05;vs Group C, △P<0.05.
ALT, alanine transaminase; AST, aspertate aminotransferase; AKP, alkaline phosphatase.
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NAFLD (46). Insulin resistance is thought to be one of the key

initial pathogenic mechanisms contributing to the development

of NAFLD as high insulin levels can result in liver fat deposition

by stimulating the oxidation of surrounding adipose tissue

resulting in increased levels of serum free fatty acids (FFA),

increased removal of serum FFA through increased hepatic

storage, and increasing endogenous synthesis of FFA in the

liver. Furthermore, deposition of FFA in the liver also

exacerbates insulin resistance through increase fatty acid

oxidation and free radical production leading to a vicious cycle

of worsening liver fat accumulation and insulin resistance (47).

Some adipocytokines such as adiponectin, leptin and resistin

play important roles in the development of NAFLD by acting on

liver by producing increased inflammation reaction and

increasing insulin resistance (48, 49).

I t is bel ieved that both insul in resistance and

hypertriglyceridemia play important roles in the development of

diabetes and NAFLD. Currently, the treatment of patients with

diabetes and NAFLD includes the use of insulin sensitizing agents

such as metformin and thiazolidinediones (11, 12). Metformin

improves glucose homeostasis by increasing the utilization of

glycogen and inhibiting glucose output. Additionally, metformin
Frontiers in Endocrinology 06
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reduces the accumulation of fat in the liver (11, 13). A previous

study has shown that metformin (750 mg/day) reduced IHL

content by 25% in obese patients with T2DM (50). However,

metformin has no significant effect on liver histology and is not

recommended for the treatment of NASH. A recent meta-analysis

suggested that the use of thiazolidinediones may improve hepatic

steatosis both in non-diabetic and diabetic patients (51). However,

it exerts limit actions in histological liver injury. Thus, we studied

the effects of DPP-4 inhibitors on intrahepatic lipid content and

the metabolic profile in NAFLD patients with T2DM. There was a

trend toward a reduction in liver fat content with sitagliptin

treatment. The average liver fat content was decreased from

61.88% to 42.11% after sitagliptin treatment, although this did

not reach statistical significance. The lack of statistical significance

may be due to the small sample size and short treatment period

among other factors. Additionally, the peak plasma level of active

GLP-1 was 15-20 pmol/L after treatment with sitaglitin while the

GLP-1 receptor agonist lirglutide led to higher levels (4000-8000

pmmol/L) (52, 53). Thus, the lack of statistical significance

observed in the reduction of IHL content may be due to the

relatively lower plasma concentrations of GLP-1 achieved with

sitagliptin. Metformin treatment resulted in a significant
TABLE 3 Comparison of the glucose-lipid data between groups.

Group At baseline At week 24s

A(control) FPG(mmol/l) 9.45 ± 1.83 9.96 ± 2.55

HbA1c(%) 8.08 ± 1.13 8.16 ± 1.37

TCH(mmol/l) 4.81 ± 0.95 4.56 ± 0.55

HDL(mmol/l) 1.22 ± 0.17 1.20 ± 0.24

TG(mmol/l) 1.73 ± 0.93 1.59 ± 1.04

LDL(mmol/l) 2.92 ± 1.02 2.92 ± 1.02

B(sitagliptin) FPG(mmol/l) 8.39 ± 1.89 7.60 ± 1.55※*

HbA1c(%) 7.93 ± 0.91 6.95 ± 0.86※*△

TC(mmol/l) 5.22 ± 0.92 5.19 ± 0.95

HDL(mmol/l) 1.31 ± 0.38 1.31 ± 0.50

TG(mmol/l) 1.70 ± 0.82 1.67 ± 1.08

LDL(mmol/l) 3.02 ± 0.97 3.02 ± 0.97

C(metformin) FPG(mmol/l) 10.40 ± 2.46 9.71 ± 2.16

HbA1c(%) 8.60 ± 1.17 8.38 ± 0.61

TCH(mmol/l) 4.88 ± 0.64 4.84 ± 1.06

HDL(mmol/l) 1.18 ± 0.31 1.20 ± 0.28

TG(mmol/l) 1.94 ± 0.97 1.69 ± 0.83

LDL(mmol/l) 2.83 ± 0.65 2. 90 ± 0.26

D(sitagliptin+ metformin) FPG(mmol/l) 9.60 ± 2.03 8.33 ± 1.63△

HbA1c(%) 7.83 ± 0.58 7.04 ± 0.48△

TCH(mmol/l) 4.46 ± 1.03 4.53 ± 1.02

HDL(mmol/l) 1.34 ± 0.27 1.37 ± 0.27

TG(mmol/l) 1.26 ± 0.62 1.35 ± 0.51

LDL(mmol/l) 2.54 ± 1.01 2.54 ± 0.90
Self-pair comparison before and after treatment, ※P<0.05;vs Group A, *P<0.05; vs Group B, #P<0.05; vs Group C, △P<0.05: vs Group D, ※P<0.05.
FBG, fasting plasma glucose; HbA1c, hemoglobin A1c; TCH, total cholesterol; HDL, high density lipoprotein cholesterol; TG, triglyceride; LDL, low density lipoprotein cholesterol.
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reduction in liver fat content, which is likely due to activation of

hepatic AMP-activated protein kinase (AMPK) by metformin

which suppresses hepatic TG production and increases hepatic

catabolic metabolism (54). Previous studies have also suggested

that AMPK may be able to be directly activated by GLP-1 (55).

The GLP-1 receptor belongs to the G protein coupled

glucagon receptor family and is widely distributed throughout

the body and can be found in the pancreas, gastrointestinal tract

and other tissues (56). Studies in animal models have shown that

DPP-4 inhibitors can inhibit DPP-4 activity by 90% and increase

plasma concentrations of exogenous GLP-1 thereby decreasing

postprandial blood glucose (56, 57). Previous studies have shown

that HbA1c was decreased by 0.65 percentage points with

sitagliptin treatment after 24 weeks poorly controlled T2DM

patients (24–26). In this study, HbA1c was decreased by 0.8

percentage points, and FBG was decreased by 0.7 mmol/l in the

sitagliptin group while HbA1c was decreased by 1 percentage

point and FBG was decreased by 1.3 mmol/l in the sitagliptin

plus metformin group. HbA1c significantly decreased in the

sitagliptin group was significant compared with the metformin

group. The percentage of HbA1c level less than 7% was 65%,

25%, and 72.7% after sitagliptin, metformin and sitagliptin plus

metformin treatments, respectively. These results suggest that

sitagliptin effectively decreases blood glucose levels. There were

no adverse reactions of hypoglycemia during the treatment

period. Each participant demonstrated good compliance, and

the treatment was well tolerated. Animal studies have confirmed

that DPP-4 inhibitors can reduce blood glucose and triglyceride

levels significantly in high fat diet (HFD) fed diabetic rats (58).

However, in our study, the effects of sitaglipin and metformin on

lipid metabolism were not obvious. This may be due to relatively

short duration of treatment used in this study.

The present study also had some limitations. Firstly, the

number of patients included in this study was relatively small

and the study period also was relatively brief. Secondly, the

change of total fat mass and distribution of fat was not measured

in this study. Therefore, we cannot estimate the effects of

sitagliptin on fat redistribution. A large-scale, longer-term

study clinical trial is warranted to verify our findings.

In conclusion, our study showed that 24 weeks of treatment

with sitagliptin was safe and well tolerated. It improves glycemic

control and can slightly reduce liver fat content inNAFLD patients

with T2DM. Therefore, sitagliptin may have therapeutic potential

for NAFLD patients was well as those with other metabolic

disorders indirectly while not directly on IHL.
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goal achievement
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Aims: Non-obese non-alcoholic fatty liver disease (NAFLD) phenotype has

sparked interest and frequently occurred in type 2 diabetes mellitus (T2DM).

Information on associations between lipid parameters and NAFLD in non-

obese patients with diabetes has been lacking. We aimed to investigate the

relationships between lipid parameters and NAFLD according to obesity status

and metabolic goal achievement in T2DM patients.

Methods: A total of 1,913 T2DM patients who were hospitalized between June

2018 and May 2021 were cross-sectionally assessed. We used logistic

regression models to estimate the associations of lipid parameters with

NAFLD risk according to obesity and metabolic goal achievement status.

Results: Higher triglycerides, non-HDL-cholesterol, and all lipid ratios

including (total cholesterol/HDL-cholesterol, triglyceride/HDL-cholesterol,

LDL-cholesterol/HDL-cholesterol, non-HDL-cholesterol/HDL-cholesterol),

and lower HDL-cholesterol were associated with NAFLD risk in both non-

obese and obese patients. The associations were stronger in non-obese

patients than in obese patients. Further, the inverse associations of total

cholesterol and LDL-cholesterol with NAFLD risk were only detected in non-

obese patients. Triglycerides, HDL-cholesterol, and all lipid ratios studied were

significantly associated with NAFLD risk, irrespective of whether the patients

achieved their HbA1c, blood pressure, and LDL-cholesterol goal. The presence

of poor lipids and lipid ratios were more strongly associated with NAFLD in

patients who attained the HbA1c, blood pressure, and/or LDL-cholesterol goal

than in those who did not achieve the goal attainment.
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Conclusions: The associations of lipids and lipid ratios with NAFLD risk were

stronger in T2DM patients who were non-obese and achieved the HbA1c,

blood pressure, and/or LDL-cholesterol goal attainment.
KEYWORDS

non-alcoholic fatty liver disease, diabetes mellitus, obesity, blood pressure, lipids
Introduction

Non-alcoholic fatty liver disease (NAFLD) has become one of

the major liver diseases worldwide, affecting around 25.2% of the

global population (1). It may surpass alcohol as the leading cause

for liver transplantation (1). The NAFLD epidemic has paralleled

that of the diabetes epidemic. Approximately 60-70% of patients

with type 2 diabetes mellitus (T2DM) suffered from NAFLD (2).

T2DM is an aggravating factor for NAFLD. For example, it was

reported that T2DM patients were at 2 to 4-fold risk for

developing advanced liver fibrosis, cirrhosis, liver failure, and

hepatocellular carcinoma compared to those without T2DM (3);

Vice versa, patients with NAFLD are more commonly progress

toward diabetic micro- and macro-vascular complications (4).

Dyslipidemia plays a central role in the pathogenesis of

NAFLD (5, 6). Accumulating evidence showed that lipid profile

was significantly associated with an increased risk of NAFLD in

the general population (7–9). Insulin resistance (IR), well known

in T2DM and the main physio-pathological link between

NAFLD and T2DM (10–12), triggers an increase in free fatty

acids from peripheral adipose tissue and favoring the

development of dyslipidemia. However, whether lipids can

affect NAFLD independent of IR in T2DM is less well-defined.

Additionally, despite NAFLD is predominantly seen with

overweight or obesity, this entity can occur in non-obese

individuals (13). It was reported that the global prevalence of

non-obese NAFLD was above 40% among the NAFLD

population and nearly 20% in non-obese population (14).

Non-obese NAFLD can develop IR and the full spectrum of

metabolic comorbidities and liver damage that occurs in obese

NAFLD (13, 15) and may have as severe consequences as obese

NAFLD (16). Previous studies conducted in general population

have shown that the association between dyslipidemia and

NAFLD was more pronounced in non-obese persons than in

obese persons (17). It is unclear whether lipid parameters play a

role in non-obese T2DM patients and whether the associations

between lipid parameters and NAFLD differ between non-obese

and obese patients with diabetes. Further, NAFLD is more

frequent in patients with poor “ABCs” (parameters usually
02
3938
followed by clinicians for diabetes control, including glycated

hemoglobin [HbA1c] [A], blood pressure [BP] [B], and low-

density lipoprotein cholesterol [LDL-C] [C]) metabolic

treatment goals. It remains unclear whether lipid parameters

are associated with different risks of NAFLD in distinct

populations defined by glycated hemoglobin (HbA1c), blood

pressure (BP), and low-density lipoprotein cholesterol (LDL-C)

levels. Therefore, we aimed to investigate the relationships

between lipid variables and NAFLD according to obesity and

metabolic treatment goal status in T2DM.
Methods

Study design and population

This cross-sectional study included 2,946 T2DM patients

hospitalized in the Department of Endocrinology, Tongji

Hospital, Tongji medical college, Huazhong University of Science

and Technology (Wuhan, China) between June 2018 and May

2021. T2DM was diagnosed according to the 2022 American

Diabetes Association criteria (18). The exclusion criteria included

a history of alcohol abuse (alcohol consumption >140 g/week for

male or >70 g/week for female), other causes of hepatic diseases

including viral hepatitis, autoimmune liver disease and cirrhosis,

current diagnosis of life-threatening cancer, severe psychiatric

disturbance, pregnancy or lactation. We excluded 516 with

alcohol abuse, 145 with viral hepatitis, and 1 with hepatic

cirrhosis; 127 with missing data on blood lipids and liver

ultrasound. In addition, to avoid the effects of lipid-lowering on

all lipid parameters, 244 participants with lipid-loweringmedication

use were excluded. The remaining 1,913 subjects were included in

our data analyses According to the Private Information Protection

Law, information that might identify subjects was safeguarded by

the Computer Center. This study was approved by the institutional

review board of Tongji Hospital. Because we only retrospectively

accessed a de-identified database for purposes of analyses, informed

consent requirement was exempted by the institutional

review board.
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Clinical measurements

Patients’ data including age, sex, height, weight, current and

previous illness histories, and medical treatments were obtained

from medical records. Weight was measured with participants

wearing light clothing on a calibrated beam scale. Height was

measured without shoes. Waist circumference (WC) was

measured with an inelastic tape at a midpoint between the

bottom of the rib cage and the top of the iliac crest at the end

of exhalation. Seated systolic/diastolic BP was measured in

triplicate after a 10-min rest, using mercury manometers. The

means of the last two readings was used in data analyses. Body

mass index (BMI) was calculated as weight (in kilograms)

divided by height in square meters.

Blood was collected from the antecubital vein of each

individual after an at least 8-hour overnight fast .

Measurements were done soon after the blood samples had

been collected, and no samples were stored and reused. Glycated

hemoglobin (HbA1c) was measured using high performance

liquid chromatography (D‐10™; Bio‐Rad Laboratories,

Hercules, CA, USA). Fasting plasma glucose (FPG),

triglycerides (TG), total cholesterol (TC), high‐density

lipoprotein cholesterol (HDL-C), low‐density lipoprotein

cholesterol (LDL-C), alanine aminotransferase (ALT),

aspartate aminotransferase (AST), uric acid, and creatinine

were measured on an autoanalyzer (Cobas C8000, Roche,

Mannheim, Germany). Hepatitis viral antigens/antibodies were

detected with corresponding Architect reagents (Architect i2000,

Abbott Diagnostics, Abbott Park, IL). Non-HDL-C was

calculated as TC minus HDL-C. HOMA-IR was calculated as

fasting insulin (mU/mL) × FPG (mmol/L)/22.5.
Definitions

According to the China Obesity Working Group (19),

obesity was defined as BMI≥28kg/m2.

Ultrasound tests were performed by certified sonographers

using a high-resolution, real-time scanner (model SSD-2000;

Aloka Co., Ltd., Tokyo Japan). Certified radiologists used

standard criteria in evaluating the presence or absence of

hepatic fat. Generally, liver steatosis was defined as the

presence of stronger echoes in the hepatic parenchyma

compared with echoes in the kidney or spleen parenchyma

(20). The presence of advanced liver fibrosis was defined as

the presence of the high probability for advanced fibrosis

calculated by NAFLD fibrosis score (NFS) or BARD score.

NFS was calculated as -1.675 + 0.037 × age (years) + 0.094 ×

BMI (kg/m2) + 1.13 × IFG/diabetes (yes 1, no 0) + 0.99 × AST/

ALT ratio - 0.013 × platelet (109/L) - 0.66 × albumin (g/dl) (21).
Frontiers in Endocrinology 03
4039
The presence of advanced liver fibrosis was confirmed when the

score was greater than 0.676. BARD score: BMI > 28 = 1 point,

AAR (Aspartate transaminase/alanine animo-transferase [AST/

ALT] ratio) of > 0.8 = 2 points, DM = 1 point. A score of ≥ 2 was

associated with advanced fibrosis (22).
Statistical analyses

All statistical analyses were conducted using SPSS software

(version 24.0 for mac; SPSS, Chicago, IL, USA). Continuous

variables were presented as means (minimum to maximum) or

medians (IQRs) depending on their distribution. Categorical

variables were presented as percentages. Differences in

continuous variables between groups were tested with one-way

ANOVA or Kruskal-Wallis test. Differences in categorical

variables were tested with c2 test. Logistic regression models

were used to estimate the associations (odds ratios [ORs], with

95% confidence Intervals [CIs]) between each lipid parameter

and risk of NAFLD. Four models were fitted. Model 1 was

adjusted for age, smoking status, family history of diabetes.

Model 2 was additionally adjusted for body mass index,

systolic blood pressure, glycated hemoglobin, use of anti-

hypertensive drug. Model 3 was additionally adjusted for

HOMA-IR. Model 4 was additionally adjusted for anti-diabetic

drug use. A receiver operating characteristic (ROC) curve

analysis was performed for each lipid parameter to compare

the abilities of these measures to discriminate NAFLD correctly.

The overall diagnostic accuracy was quantified using the area

under the ROC curve (AUC). Significance was accepted at a two-

tailed P <0.05.
Results

Baseline characteristics of study subjects

Of the 1,913 T2DM patients included in the present

analyses, the mean age was 52.1 (13.3) years, 55.2% were men,

the mean BMI value was 24.9 (3.8) kg/m2. The overall prevalence

of NAFLD was 48.5%. 73.49% diabetic patients with NAFLD

were non-obese. T2DM patients with obese NAFLD phenotype

have a mean BMI value of 31.14 (3.33) kg/m2 and a mean HbA1c

value of 9.86% (2.36%). The corresponding figures were 22.92

(2.68) kg/m2 and 9.14% (2.57%), respectively, for T2DM patients

with non-obese NAFLD phenotype. As seen in Table 1, NAFLD

patients were younger, had higher BMI, WC, HbA1c, AST, ALT

and adverse lipids and lipid ratios than patients without NAFLD

(all P value <0.001). Moreover, NAFLD patients were less likely

to have the care goal achievement (all P value <0.001).
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ROC analysis of lipids and lipid ratios for
identifying NAFLD in patients
with diabetes

AUCs for all lipid parameters studied indicated that all

lipid parameters could effectively discriminate NAFLD (all

AUC > 0.5). In addition, AUCs derived from lipid ratios

were in general significantly greater than from single

lipids (Figure 1).
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Associations of lipid parameters with
NAFLD according to obesity status

The prevalence of NAFLD increased from the first to the

fourth quartiles of the serum TG levels and each lipid ratio and

decreased from the first to fourth quartiles of the serum HDL-C

levels (all P <0.001) (Figure 2).

The associations of lipid parameters with NAFLD according

to obesity status were shown in Table 2. After controlling for
TABLE 1 Characteristics of participants according to non-alcoholic fatty liver disease status.

Without NAFLD With NAFLD P value

n 985 928

Male, % 55.20 60.23 0.011

Smoking, % 17.25 19.94 0.084

Age, years 55.55 (14-85) 50.23 (14-89) <0.001

Weight, kg 63.98 (30-105) 73.62 (45-159.3) <0.001

BMI, kg/m2 23.60 (15.31-37.46) 26.38 (18.75-49.63) <0.001

Obesity, % 16.94 26.51 <0.001

WC, cm 89.20 (62-129) 95.86 (74-188) <0.001

SBP, mmHg 130.70 (70-216) 132.08 (76-215) 0.106

DBP, mmHg 80.09 (49-137) 84.22 (46-133) <0.001

HbA1c, % 9.05 (4.30-18.10) 9.74 (5.20-18.70) <0.001

ALT, U/L 21.27 (5-450) 32.47 (5-393) <0.001

AST, U/L 20.01 (5-212) 25.15 (5-317) <0.001

TC, mmol/L 4.38 (1.78-13.70) 4.76 (1.56-14.10) <0.001

TG, mmol/L 2.15 (0.36-22.06) 3.60 (0.21-45.21) <0.001

HDL-C, mmol/L 1.12 (0.23-2.82) 0.97 (0.38-2.03) <0.001

LDL-C, mmol/L 2.68 (0.61-7.14) 2.82 (0.20-6.23) <0.001

TC/HDL-C 4.15 (1.59-18.92) 5.16 (1.89-32.05) <0.001

TG/HDL-C 2.27 (0.21-36.77) 4.30 (0.24-88.65) <0.001

LDL/HDL-C 2.53 (0.48-7.61) 2.98 (0.38-10.02) <0.001

non-HDL-C, mmol/L 3.26 (0.94-12.56) 3.79 (1.00-13.66) <0.001

nonH-DL-C/HDL-C 3.15 (0.59-17.92) 4.16 (0.89-31.05) <0.001

Anti-hypertensive drug use, % 32.28 31.79 0.816

Anti-diabetic drug use

Sulfonylureas use, % 14.98 17.97 0.078

Non-sulfonylureas use, % 1.94 3.15 0.095

Metformin use, % 30.82 32.59 0.589

Glucosidase inhibitor use, % 18.43 28.73 <0.001

Thiazolidinediones use, % 5.17 7.92 0.016

DPP4i use, % 6.25 7.72 0.209

SGLT2i use, % 3.02 3.45 0.592

Insulin use, % 22.31 39.70 <0.001

GLP-1 RA use, % 1.72 0.81 0.073

‘A’ attained, % 14.72 5.93 <0.001

‘B’ attained, % 35.63 25.54 <0.001

‘C’ attained, % 46.80 37.82 <0.001
front
Values are proportions, and means (minimum to maximum)
BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; ALT, alanine animo-transferase; AST, aspartate
transaminase; TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; DPP4i, Dipeptidyl peptidase-4 inhibitor;
SGLT2i, Sodium-glucose cotransporter 2 inhibitor; GLP-1 RA, glucagon-like peptide 1 receptor agonists; ‘A’ attained, HbA1c <6.5%; ‘B’ attained, blood pressure < 130/80mmHg; ‘C’
attained, LDL-C <2.6mmol/L.
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potential intermediate variables including HOMA-IR and anti-

diabetic medication use, all lipid parameters studied, except

LDL-C, were significantly associated with NAFLD in non-

obese T2DM patients. Among obese T2DM subjects, TG and

each lipid ratio were positively associated with NAFLD, while

HDL-C was negatively associated with NAFLD. In both obese

and non-obese T2DM patients, lipid ratios were more closely

associated with NAFLD than any of the individual variables

used alone.

The odds ratios (ORs) and 95% confidence intervals (CIs) of

quartiles of each lipid parameter for NAFLD were presented in

Table 3. Among both non-obese and obese patients, after

controlling for potential intermediate variables including

HOMA-IR and anti-diabetic medication use, higher TG, TC/
Frontiers in Endocrinology 05
4241
HDL-C, TG/HDL-C, and non-HDL-C/HDL-C, and lower HDL-

C were significantly associated with NAFLD risk. In non-obese

subjects, higher TC, LDL-C, non-HDL-C, and LDL-C/HDL-C

levels were also significantly associated with NAFLD risk.
Odds ratios of lipid parameters for
NAFLD according to diabetes
control parameters

The associations of lipid parameters with NAFLD in different

T2DM control parameters, namely HbA1c (A), BP (B), and LDL-

C (C) were shown in Table 4. After adjusting for potential

confounding variables, TG, HDL-C, and all lipid ratios studied
FIGURE 2

The prevalence of non-alcoholic fatty liver disease by quartiles of lipid parameters. TC, total cholesterol; TG, triglycerides; HDL-C, high density
lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol.
FIGURE 1

Receiver operating characteristic (ROC) curves of lipid parameters for detecting non-alcoholic fatty liver disease in T2DM patients. AUC, area
under the curve; TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol;
T2DM, type 2 diabetes mellitus.
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were significantly associated with NAFLD risk, irrespective of A,

B, and C status. The associations of lipid parameters with NAFLD

were stronger in patients who achieved the A, B, and/or C goal.

Moreover, lipid ratios were more closely associated with NAFLD

risk than any of the individual variables used alone, regardless of

whether the patients reached their care goal attainment.
Frontiers in Endocrinology 06
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Association of lipid parameters and
advanced liver fibrosis

The ORs of quartiles of each lipid parameters for advanced

fibrosis, defined by two non-invasive advanced fibrosis predict

scores: NFS and BARD, were shown in Table 5. Lower HDL-C
TABLE 2 Odds ratios and 95% confidence intervals of lipid parameters for non-alcoholic fatty liver disease according to obesity status.

Model Total Obese Non-obese

TC 1 1.28 (1.18-1.38)* 1.23 (0.96-1.57) 1.27 (1.17-1.39)*

2 1.22 (1.12-1.33)* 1.11 (0.86-1.42) 1.28 (1.16-1.41)*

3 1.23 (1.12-1.35)* 1.13 (0.88-1.47) 1.28 (1.15-1.43)*

4 1.22 (1.11-1.34)* 1.13 (0.87-1.46) 1.25 (1.12-1.39)*

TG 1 1.29 (1.22-1.36)* 1.26 (1.06-1.48)# 1.27 (1.20-1.35)*

2 1.22 (1.15-1.28)* 1.22 (1.02-1.45)# 1.21 (1.14-1.29)*

3 1.21 (1.15-1.28)* 1.26 (1.06-1.51)# 1.19 (1.13-1.27)*

4 1.21 (1.15-1.28)* 1.23 (1.04-1.46)# 1.19 (1.12-1.26)*

HDL-C 1 0.15 (0.11-0.22)* 0.07 (0.02-0.25)* 0.19 (0.13-0.28)*

2 0.24 (0.16-0.36)* 0.10 (0.03-0.33)* 0.34 (0.22-0.52)*

3 0.22 (0.14-0.34)* 0.08 (0.02-0.31)* 0.30 (0.19-0.49)*

4 0.23 (0.15-0.36)* 0.10 (0.02-0.38)* 0.28 (0.17-0.46)*

LDL-C 1 1.18 (1.07-1.30)# 1.19 (0.89-1.58) 1.20 (1.07-1.33)*

2 1.13 (1.01-1.26)# 1.05 (0.76-1.44) 1.16 (1.03-1.31)#

3 1.12 (1.00-1.27) 1.05 (0.76-1.47) 1.15 (1.01-1.31)#

4 1.08 (0.96-1.22) 1.04 (0.75-1.45) 1.09 (0.95-1.25)

TC/HDL-C 1 1.52 (1.41-1.64)* 1.58 (1.26-1.99)* 1.48 (1.36-1.60)*

2 1.37 (1.27-1.49)* 1.37 (1.09-1.73)# 1.34 (1.23-1.47)*

3 1.39 (1.27-1.51)* 1.47 (1.16-1.86)* 1.38 (1.26-1.51)*

4 1.39 (1.28-1.51)* 1.41 (1.11-1.79)* 1.32 (1.20-1.45)*

TG/HDL-C 1 1.20 (1.15-1.25)* 1.22 (1.02-1.42)# 1.18 (1.13-1.23)*

2 1.14 (1.10-1.19)* 1.18 (1.02-1.35)# 1.13 (1.08-1.18)*

3 1.14 (1.09-1.19)* 1.22 (1.05-1.41)# 1.12 (1.07-1.17)*

4 1.14 (1.10-1.19)* 1.20 (1.04-1.40)# 1.12 (1.07-1.17)*

LDL-C/HDL-C 1 1.52 (1.37-1.67)* 1.64 (1.23-2.22)* 1.49 (1.34-1.65)*

2 1.36 (1.22-1.51)* 1.40 (1.03-1.91)# 1.31 (1.17-1.47)*

3 1.37 (1.22-1.53)* 1.40 (1.03-1.92)# 1.31 (1.16-1.48)*

4 1.34 (1.20-1.51)* 1.38 (1.01-1.81)# 1.27 (1.12-1.44)*

Non-HDL-C 1 1.45 (1.32-1.58)* 1.40 (1.08-1.82)# 1.43 (1.30-1.58)*

2 1.34 (1.22-1.47)* 1.21 (0.92-1.57) 1.40 (1.25-1.55)*

3 1.35 (1.22-1.50)* 1.24 (0.94-1.63) 1.40 (1.25-1.57)*

4 1.34 (1.21-1.48)* 1.23 (0.93-1.61) 1.36 (1.21-1.52)*

Non-HDL-C/HDL-C 1 1.52 (1.41-1.64)* 1.58 (1.26-1.99)* 1.48 (1.36-1.60)*

2 1.37 (1.27-1.49)* 1.36 (1.07-1.74)# 1.34 (1.23-1.47)*

3 1.39 (1.27-1.51)* 1.47 (1.16-1.86)* 1.38 (1.26-1.51)*

4 1.39 (1.28-1.51)* 1.41 (1.11-1.79)* 1.32 (1.20-1.45)*
Model 1 was adjusted for age, sex, smoking status, family history of diabetes mellitus.
Model 2 was adjusted for all the variables in model 1 plus SBP, BMI, HbA1c and use of anti-hypertensive drugs for total; In obesity and non-obesity subgroup, BMI was replaced by waist
circumference.
Model 3 was adjusted for all the variables in model 2 plus HOMA-IR.
Model 4 was adjusted for all the variables in model 3 plus use of anti-diabetic drugs.
TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; BMI, body mass index;
HbA1c, glycated hemoglobin.
*P < 0.001, #P < 0.05.
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was significantly associated with advanced fibrosis risk defined

by NFS.
Sensitivity analysis

Since metformin and glucagon-like peptide 1 receptor agonists

(GLP-1RAs) are two of the few anti-diabetic medications
Frontiers in Endocrinology 07
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preventing weight gain or even favoring weight loss in T2DM

patients (23, 24), to avoid the effects of these medications use on

results, we did the above analysis after excluding patients taking

these two drugs. The results were essentially the same

(Supplementary Tables 1, 2) except in the obese subgroup, in

whom the associations were no longer significant. However,

estimates in this subgroup should be interpreted with caution due

to limited sample size and inadequate statistical power.
TABLE 3 Odds raitos and 95% confidence intervals of lipid parameters in terms of the quartiles for non-alcoholic fatty liver disease according to
obesity status.

Total Obese Non-obese

OR (95% CI) P OR (95% CI) P OR (95% CI) P

TC Q1 ref. ref. ref.

Q2 1.10 (0.80-1.51) 0.572 0.84 (0.37-0.93) 0.683 1.09 (0.76-1.57) 0.639

Q3 1.51 (1.09-2.10) 0.013 1.88 (0.74.4.61) 0.170 1.50 (1.05-2.16) 0.028

Q4 1.78 (1.24-2.48) 0.001 1.62 (0.64-4.06) 0.473 1.73 (1.20-2.50) 0.004

TG Q1 ref. ref. ref.

Q2 2.08 (1.50-2.89) <0.001 1.64 (0.73-3.66) 0.228 2.61 (1.78-3.84) <0.001

Q3 2.64 (1.90-3.68) <0.001 4.67 (1.89-10.50) 0.001 2.89 (1.97-4.26) <0.001

Q4 4.73 (3.35-6.68) <0.001 4.68 (1.66-13.22) 0.004 4.99 (3.37-7.39) <0.001

HDL-C Q1 ref. ref. ref.

Q2 0.69 (0.50-0.96) 0.028 1.29 (0.42-3.91) 0.656 0.73 (0.52-1.04) 0.081

Q3 0.60 (0.43-0.82) 0.002 0.72 (0.27-1.90) 0.503 0.69 (0.49-0.98) 0.038

Q4 0.32 (0.23-0.46) <0.001 0.41 (0.15-1.08) 0.071 0.39 (0.27-0.58) <0.001

LDL-C Q1 ref. ref. ref.

Q2 1.16 (0.84-1.59) 0.374 1.16 (0.50-2.71) 0.735 1.07 (0.75-1.53) 0.697

Q3 1.14 (.083-1.56) 0.427 1.40 (0.57-3.42) 0.464 1.11(0.78-1.57) 0.572

Q4 1.38 (1.00-1.90) 0.050 1.30 (0.54-3.15) 0.557 0.41 (0.99-2.02) 0.058

TC/HDL-C Q1 ref. ref. ref.

Q2 1.84 (1.33-2.55) 0.002 3.93 (1.72-8.99) 0.001 1.60 (1.09-2.34) 0.016

Q3 2.55 (1.83-3.57) <0.001 3.64 (1.44-9.22) 0.006 2.47 (1.70-3.59) <0.001

Q4 3.23 (2.28-4.57) <0.001 3.33 (1.26-8.78) 0.015 3.36 (2.28-4.94) <0.001

TG/HDL-C Q1 ref. ref. ref.

Q2 2.67 (1.92-3.72) <0.001 1.52 (0.69-3.36) 0.297 3.02 (2.04-4.46) <0.001

Q3 2.76 (1.98-3.85) <0.001 4.93 (1.95-12.44) 0.001 2.94 (1.99-4.35) <0.001

Q4 5.25 (3.69-7.50) <0.001 5.12 (1.65-15.88) 0.005 5.14 (3.45-7.68) <0.001

LDL-C/HDL-C Q1 ref. ref. ref.

Q2 1.74 (1.26-2.40) 0.001 2.20 (0.94-5.15) 0.069 1.74 (1.20-2.51) 0.003

Q3 2.15 (1.55-2.96) <0.001 2.37 (1.01-5.53) 0.047 2.14 (1.49-3.06) <0.001

Q4 1.97 (1.41-2.75) <0.001 1.35 (0.54-3.38) 0.518 1.83 (1.26-2.66) 0.001

Non-HDL-C Q1 ref. ref. ref.

Q2 1.42 (1.02-1.97) 0.037 0.94 (0.42-2.13) 0.886 1.29 (0.89-1.87) 0.176

Q3 2.26 (1.62-3.12) <0.001 2.07 (0.84-5.15) 0.116 1.90 (1.32-2.74) 0.001

Q4 2.44 (1.75-3.41) <0.001 1.96 (0.69-4.48) 0.236 2.27 (1.57-3.29) <0.001

Non-HDL/HDL-C Q1 ref. ref. ref.

Q2 1.69 (1.21-2.35) 0.002 3.93 (1.72-8.99) 0.001 1.60 (1.09-2.34) 0.016

Q3 2.55 (1.83-3.57) <0.001 3.64 (1.44-9.22) 0.006 2.47 (1.70-3.59) <0.001

Q4 3.23 (2.28-4.57) <0.001 3.33 (1.26-8.78) 0.015 3.36 (2.28-4.94) <0.001
frontiers
Odds ratios were adjusted for age, sex, smoking status, family history of diabetes mellitus, SBP, BMI, HbA1c, HOMA-IR, use of anti-hypertensive drugs, and anti-diabetic drugs.
TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; BMI, body mass index;
HbA1c, glycated hemoglobin.
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Discussion

This is, as far as we are aware, the first report to describe

the associations of lipids and lipid ratios with NAFLD in

T2DM patients according to obesity status and metabolic goal

achievement status. We found that in patients with T2DM,

adverse lipids and lipid ratios were significantly associated

with NAFLD risk, regardless of obesity status and metabolic

goal attainment status. The associations were stronger in

patients who were non-obese and had the A, B, and/or C

goal attainment. Moreover, lipid ratios have a stronger

association with NAFLD risk than any of the individual

variables used alone.
Frontiers in Endocrinology 08
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The associations of lipids and lipid ratios with NAFLD have

been established in the general population (7–9, 25). However, in

patients with T2DM, the associations between lipid parameters

and NAFLD risk remain less clear. Here, we verified the

significant associations of lipids and lipid ratios with NAFLD

risk in T2DM patients. In consistent with previous studies

conducted in the general population (7, 8, 25), we also noted

that lipid ratios were more effective than single measures of

lipids in detecting NAFLD. This may be explained by that lipid

ratios taken account of the proportion between the pro-

atherogenic and anti-antherogenic fractions (26, 27).

The relatively low BMI in diabetic patients with NAFLDmay be

due to the following reasons: 1) Chinese individuals are
TABLE 4 Odds ratios 95% confidence intervals of lipid parameters for non-alcoholic fatty liver disease according to metabolic goal attainment
status.

HbA1c ≥
6.5%

HbA1c <
6.5%

BP ≥ 130/
80mmHg

BP <130/
80mmHg

LDL-C ≥ 2.6mmol/L LDL-C < 2.6mmol/L

TC 1.19 (1.07-1.33)* 1.46 (0.85-2.49) 1.22 (1.08-1.37)* 1.20 (1.03-1.41)# 1.19 (1.02-1.38)# 1.29 (1.10-1.52)*

TG 1.23 (1.15-1.31)* 1.53 (1.09-2.15)# 1.31 (1.21-1.42)* 1.11 (1.04-1.19)# 1.34 (1.22-1.51)* 1.18 (1.11-1.25)*

HDL-C 0.25 (0.15-0.41)* 0.02 (0.002-0.15)* 0.18 (0.10-0.31)* 0.36 (0.16-0.80)# 0.29 (0.15-0.53)* 0.10 (0.05-0.21)*

LDL-C 1.07 (0.93-1.23) 2.14 (1.02-4.48)# 1.02 (0.88-1.18) 1.22 (0.97-1.53) 1.10 (0.88-1.37) 0.98 (0.67-1.45)

TC/HDL-C 1.37 (1.24-1.51)* 2.62 (1.58-4.36)* 1.49 (1.34-1.65)* 1.24 (1.10-1.41)* 1.37 (1.21-1.55)* 1.39 (1.24-1.57)*

TG/HDL-C 1.16 (1.10-1.22)* 1.69 (1.23-1.33)* 1.22 (1.15-1.30)* 1.08 (1.02-1.13)* 1.31 (1.20-1.44)* 1.12 (1.08-1.17)*

LDL-C/HDL-C 1.29 (1.11-1.47)* 3.90 (1.88-8.10)* 1.32 (1.15-1.52)* 1.32 (1.08-1.63)# 1.33 (1.13-1.57)* 1.62 (1.27-2.07)*

Non-HDL-C 1.29 (1.15-1.45)* 1.65 (1.00-2.71)# 1.36 (1.20-1.55)* 1.26 (1.07-1.48)* 1.30 (1.11-1.53)* 1.48 (1.23-1.78)*

Non-HDL-C/HDL-
C

1.37 (1.24-1.51)* 2.62 (1.58-4.36)* 1.49 (1.34-1.65)* 1.24 (1.10-1.41)* 1.37 (1.21-1.55)* 1.39 (1.24-1.57)*
Model for HbA1c subgroup was adjusted for age, sex, smoking status, family history of diabetes mellitus, SBP, BMI, RBG(random blood glucose), HOMA-IR, use of anti-hypertensive drugs,
and anti-diabetic drugs;
Model for blood pressure subgroup was adjusted for age, sex, smoking status, family history of diabetes mellitus, BMI, HbA1c, HOMA-IR, use of anti-hypertensive drugs, and anti-diabetic
drugs;
Model for LDL-cholesterol subgroup was adjusted for age, sex, smoking status, family history of diabetes mellitus, SBP, BMI, HbA1c, HOMA-IR, use of anti-hypertensive drugs, and anti-
diabetic drugs.
TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; BMI, body mass index;
HbA1c, glycated hemoglobin; BP, blood pressure.
*P < 0.001, #P < 0.05.
TABLE 5 Odds raitos and 95% confidence intervals of lipid parameters in terms of the quartiles for advanced liver fibrosis.

NFS BARD

≤ 0.676 > 0.676 P value < 2 ≥ 2 P value

TC ref. 0.95 (0.39-2.28) 0.904 ref. 0.92 (0.62-1.36) 0.668

TG ref. 0.85 (0.35-2.07) 0.715 ref. 0.89 (0.60-1.32) 0.550

HDL ref. 4.98 (2.17-11.40) <0.001 ref. 1.25 (0.82-1.90) 0.296

LDL ref. 0.96 (0.43-2.15) 0.919 ref. 0.91 (0.62-1.34) 0.629

TC/HDL-C ref. 0.74 (0.28-1.93) 0.534 ref. 1.25 (0.83-1.88) 0.283

TG/HDL-C ref. 0.58 (0.25-1.36) 0.208 ref. 1.10 (0.74-1.64) 0.637

LDL-C/HDL-C ref. 0.32 (0.51-3.47) 0.568 ref. 1.04 (0.69-1.55) 0.862

non-HDL ref. 0.82 (0.34-1.94) 0.648 ref. 1.07 (0.72-1.60) 0.733

non-HDL/HDL-C ref. 0.43 (0.28-1.93) 0.534 ref. 1.25 (0.83-1.88) 0.283
frontier
Odds ratios were adjusted for age, sex, smoking status, family history of diabetes mellitus, SBP, BMI, HbA1c, HOMA-IR, use of anti-hypertensive drugs, and anti-diabetic drugs.
TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; BMI, body mass index;
HbA1c, glycated hemoglobin.
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characterized by a greater amount of visceral or ectopic adipose

tissue than Europeans at a given BMI (28); 2) Non-obese NAFLD

phenotype was more frequent in patients with T2DM. The non-

obese NAFLD phenotype has sparked interest because of its high

prevalence (6, 7, 29), and unanswered questions regarding whether

stratifying NAFLD patients based on their obesity status could

prioritize allocation of clinical resources for those most at risk of

poor outcomes (30). Reports convinced that non-obese NAFLD

subjects had severe impaired glucose tolerance and dyslipidemia

that were identical or even worse than obese NAFLD subjects (15,

16). This evidence from general population-based analyses supports

that non-obese NAFLD may represent a distinct entity in the

disease spectrum of NAFLD. To date, analysis of the association

of lipids and lipid ratios with non-obese NAFLD has not been

reported in patients with diabetes, in whom NAFLD and

dyslipidemia commonly occur (2, 3, 31).

We addressed this fundamental knowledge gap in the

present study. We found that more severe dyslipidemias in

T2DM, including higher TG, all lipid ratios studied, and lower

HDL-C were associated with NAFLD risk in both non-obese and

obese patients. The associations were stronger in non-obese

patients than in obese patients. Further, the inverse

associations of TC and LDL-C levels with NAFLD risk were

only detected in non-obese patients. One possible explanation

for these results may be due to a decreased capacity for storing

fat in adipose tissue in non-obese NAFLD patients (13, 32, 33).

According to the overflow hypothesis, adipose tissue acts as a

reservoir of free fatty acids and prevents their overflow into

insulin-sensitive tissues including liver. Alterations in fatty acid

trafficking lead to abnormalities in lipid storage and consequent

dyslipidemia and ectopic fat deposition (33). Further, obesity is a

well-defined risk factor for NAFLD (34–36). Thus, obesity

attenuates the relationship between lipids and lipid ratios and

NAFLD. Although the percentage of metformin and/or GLP-

1RAs use, which were used for a dual approach of treating both

diabetes and NAFLD (23, 24), were similar in T2DM patients

with and without NAFLD, to avoid the effects of these

medications use on NAFLD, we have adjusted the anti-

diabetic medication use. Moreover, we did sensitivity analysis

after excluding patients taking these two drugs. The results were

essentially the same. This suggested that dyslipidemia in subjects

with diabetes, even if they were not obese, might be identified as

an indicator of the presence of NAFLD.

Since diabetic control parameters have strong effects on

NAFLD and lipid profile (3, 34, 35), we also investigated

whether the relationships between lipids and lipid ratios and

NAFLD differed by HbA1c, BP, and LDL-C status. We found

that in patients with T2DM, TG, HDL-C, and all lipid ratios

studied were significantly associated with NAFLD risk,

irrespective of A, B, and C status. When further adjusting for

the use of anti-diabetic drugs, the results were essentially the

same. The presence of poor lipids and lipid ratios were more

strongly associated with NAFLD in patients who attained the A,
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B, and/or C goal than in those who did not achieve the goal

attainment. Further, the inverse association of LDL-C levels with

NAFLD risk was only detected in patients who achieved the A, B,

and/or C goal. One possible explanation for these results may be

due to the independent associations of increased HbA1c, BP,

and/or LDL-C levels with NAFLD (37–40). The significant and

independent associations of lipids and lipid ratios with NAFLD

in those who achieved the A, B, and/or C goal attainment

highlight that lipids and lipid ratios predispose to increased

NAFLD risk, regardless of care goal attainment status. However,

estimates across subgroups should be interpreted with caution

because of limited sample size and inadequate statistical power.

In the present study, when using NFS and BARD to indicate

advanced fibrosis, we found lower HDL-C was significantly

associated with advanced fibrosis risk, defined by NFS. The

relations between lipid parameters and advanced fibrosis is still

controversial (41, 42). Hegazy M,et,al. found that lipid ratios,

particularly TG/HDL-C, are associated with advanced fibrosis

(43). While other studies showed that the advanced fibrosis risk

did not differ by lipid status (44). Further studies are warranted

to explore the associations between lipid parameters and

advanced fibrosis in T2DM patients.

Our findings have important clinical implications. With the

diabetes epidemics in China, the incidence of NAFLD is

expected to be even more prevalent in patients with diabetes

in the near future. The increased prevalence of NAFLD suggests

that more patients with diabetes are predisposed to an increased

cardiovascular disease risk. The established insulin resistance

(IR) in T2DM plays a key role in the development of NAFLD by

increasing the accumulation of free fatty acids in the liver and

inhibiting adipose tissue lipolysis (10–12). The current study

demonstrates the important impacts of adverse lipids and lipid

ratios on NAFLD independent of HOMA-IR in both obese and

non-obese T2DM patients. Therefore, NAFLD cannot be

explained by IR alone, as other factors such as genetic and

epigenetic factors, lipotoxicity, mitochondrial dysfunction,

endoplasmic reticulum stress, microbiota, chronic low-grade

inflammation and oxidative stress, dysfunction of adipose

tissue, and nutritional factors and lifestyle are also involved in

the development of the disease (45). Taken together,

management of dyslipidemia in patients with T2DM,

regardless of obesity status and care goal achievement status,

may be therefore of importance for the prevention and reduction

of NAFLD and cardiovascular disease risk.

The main strength of this study is the large number of

T2DM patients included from an academic hospital. Further, we

can get access to clinical, laboratory, and imaging data in medical

records, which provided more in-depth clinical information that

are not usually available in large epidemiological surveys.

There are several limitations. First, NAFLD was diagnosed

by ultrasonography rather than liver histopathology, which may

lead to an inaccurate diagnosis. Nevertheless, l iver

ultrasonography has been confirmed as an accurate and
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reliable tool for detecting fatty liver. Due to the relatively low

cost and lack of radiation exposure, ultrasonography is widely

used for identifying fatty liver in clinical settings and population

studies. Second, although we adjusted for multiple potential

confounding variables, residual and unmeasured confounding

might not be fully addressed. Third, our study population were

mainly based on inpatients suffering from T2DM, whose health

conditions might be severer than those of outpatients. Thus, our

findings could not be generalized to outpatients with T2DM.

Fourth, the cross-sectional study design makes it difficult to infer

causality between the lipid parameters and NAFLD risk. At last,

some anti-diabetic drug use in T2DM patients including

metformin and/or GLP-RA, can affect weight and liver fat

content (23, 24).

In conclusion, in patients with T2DM, lipids and lipid ratios

were significantly associated with NAFLD risk, independent of

HOMA-IR, irrespective of obesity status and metabolic goal

attainment status. The associations of lipids and lipid ratios with

NAFLD risk were stronger in T2DM patients who were non-

obese and achieved the HbA1c, blood pressure, and/or LDL-

cholesterol goal attainment.
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Correlation between long-term
use of metformin and incidence
of NAFLD among patients with
type 2 diabetes mellitus: A real-
world cohort study

Kuang-Hua Huang1†, Chiu-Hsiang Lee2,3†, Yih-Dih Cheng4,5,
Shuo-Yan Gau6, Tung-Han Tsai1, Ning-Jen Chung6

and Chien-Ying Lee7,8*

1Department of Health Services Administration, China Medical University, Taichung, Taiwan,
2School of Nursing, Chung Shan Medical University, Taichung, Taiwan, 3Department of Nursing,
Chung Shan Medical University Hospital, Taichung, Taiwan, 4School of Pharmacy, China Medical
University, Taichung, Taiwan, 5Department of Pharmacy, China Medical University Hospital,
Taichung, Taiwan, 6School of Medicine, Chung Shan Medical University, Taichung, Taiwan,
7Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, 8Department of
Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
Background and aims: Studies have demonstrated that the short-term use of

metformin benefits liver function among patients with type 2 diabetes mellitus

(T2DM). However, few studies have reported on the effects of long-term

metformin treatment on liver function or liver histology. This study

investigated the correlation between metformin use and the incidence of

nonalcoholic fatty liver disease (NAFLD) among patients with T2DM.

Methods: This population-based study investigated the risk of NAFLD among

patients with T2DM who received metformin treatment between 2001-2018.

Metformin users and metformin nonusers were enrolled and matched to

compare the risk of NAFLD.

Results: After 3 years, the patients who received <300 cDDD of metformin and

those with metformin use intensity of <10 and 10–25 DDD/month had odds

ratios (ORs) of 1.11 (95% confidence interval [CI] = 1.06–1.16), 1.08 (95% CI =

1.02–1.13), and 1.18 (95% CI = 1.11–1.26) for NAFLD, respectively. Moreover,

metformin users who scored high on the Diabetes Complications and Severity

Index (DCSI) were at high risk of NAFLD. Patients with comorbid

hyperlipidemia, hyperuricemia, obesity, and hepatitis C were also at high risk

of NAFLD.
frontiersin.org01
4948

https://www.frontiersin.org/articles/10.3389/fendo.2022.1027484/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1027484/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1027484/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1027484/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1027484/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.1027484&domain=pdf&date_stamp=2022-11-30
mailto:cshd015@csmu.edu.tw
https://doi.org/10.3389/fendo.2022.1027484
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.1027484
https://www.frontiersin.org/journals/endocrinology


Huang et al. 10.3389/fendo.2022.1027484

Frontiers in Endocrinology
Conclusion: Patients with T2DM who received metformin of <300 cDDD or

used metformin at an intensity of <10 and 10–25 DDD/month were at a high

risk of developing NAFLD. The results of this study also indicated that patients

with T2DM receiving metformin and with high scores on the DCSI were at a

high risk of developing NAFLD.
KEYWORDS

nonalcoholic fatty liver disease, metformin, type 2 diabetes mellitus, cumulative
defined daily dose, NHIRD
Highlights
1. According to results from 3-year follow-up, metformin

users with type 2 diabetes had an increased risk for

NAFLD, with odds ratio of 1.11 (95% confidence

interval [CI] = 1.06–1.16).

2. Metformin users who scored high on the Diabetes

Complications and Severity Index (DCSI) were at high

risk of NAFLD.
Introduction

Nonalcoholic fatty liver disease (NAFLD) is a major public

health concern worldwide because of its high prevalence.

NAFLD is characterized by increased hepatic triglycerides in

patients who do not consume alcohol excessively (1). NAFLD is

typically classified into nonalcoholic fatty liver (NAFL) and

nonalcoholic steatohepatitis (NASH); NASH is characterized

by liver inflammation and hepatocyte damage due to the

development of NAFLD (2). The accumulation of triglycerides

within the cytoplasm of hepatocytes is a distinguishing

characteristic of NAFLD (1).

The correlation between NAFLD and type 2 diabetes

mellitus (T2DM) is indicated by insulin resistance (IR) and

the progression of compensatory hyperinsulinemia leading to

defective lipid metabolism and hepatic triglyceride accumulation

(3). NAFLD is highly prevalent among patients with T2DM,

accompanied by frequent incidences of obesity and IR (4).

Hepatic fat accumulation among patients with T2DM is more

likely to progress to NASH and fibrosis than among patients

without T2DM (5). Patients with T2DM exhibit more than a

twofold increase in the prevalence of NAFLD, regardless of the

diagnostic method used (6).

Recent studies have reported that metformin can improve

IR and hyperinsulinemia and may aid in the treatment of
02
5049
NAFLD (7). Evidence from animal and human studies has

indicated that metformin may attenuate the onset and

progression of NAFLD (8–11). Several studies have

attributed the alleviating effects of metformin on NAFLD to

the anti-inflammatory effects of metformin (12, 13),. However,

metformin is not used for treating NAFLD because of a lack of

evidence that metformin significantly improves liver histology

(2, 14).

Few epidemiological studies have reported the effects of

long-term metformin use on the risk of NAFLD among

patients with T2DM. Therefore, we investigated whether long-

term metformin use is associated with the risk of NAFLD by

using the patient population in Taiwan’s National Health

Insurance Research Database (NHIRD).
Material and methods

Data source

Secondary data analysis was performed in this study by

using the Longitudinal Health Insurance Database (LHID; a

subset of the NHIRD) from 2001 to 2018 released by the

Health and Welfare Data Science Center, Ministry of Health

and Welfare (HWDC, MOHW). The LHID is prepared from

claims from Taiwan’s National Health Insurance (NHI)

program that enrolls up to 99% of Taiwanese citizens.

Hence, the database is a nationally representative health

database for Taiwan. The data in the LHID, including

detailed clinical data of outpatient visits, hospitalizations,

diagnostic results, and prescriptions, have demonstrated

high concordance between NHI claims records and patient

self-reports (15). Therefore, the LHID was used to analyze the

risk of NAFLD among patients with DM receiving metformin.

The data in the LHID are anonymized, and the HWDC assigns

scrambled random identification numbers to insured patients

to protect their privacy. The requirement of informed consent

was waived.
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Ethics approval

This study was conducted in compliance with the

Declaration of Helsinki. Data used in the analysis were

anonymized and released by the HWDC, MOHW, Taiwan.

The HWDC assigns scrambled random identification numbers

to insured patients to protect their privacy. The study was

approved by the Central Regional Research Ethics Committee

of China Medical University, Taiwan, as meeting all ethical

criteria (No. CRREC-109-011).
Study participants

Patients with new-onset DM who were aged above 20 years

were enrolled in this study to investigate the effects of metformin

on incident NAFLD from 2002 to 2013. The criterion for DM

was three diagnoses in a year according to the International

Classification of Diseases, Ninth Revision, Clinical Modification

(ICD-9-CM; code 250). The criterion for metformin use was

based on Anatomical Therapeutic Chemical (ATC) code

A10BA02. To reduce study bias, we excluded patients with

type 1 DM diagnosed with NAFLD before the onset of DM,

those diagnosed with NAFLD in the first year after the onset of

DM, and those hospitalized within one year after the onset of
Frontiers in Endocrinology 03
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DM. The patients were divided into two groups: a case group

and a comparison group. The case group included patients who

had received metformin in the first year after the onset of DM,

and the comparison group included patients who had not

received any metformin. A total of 1,000,080 patients with

new-onset DM were included from 2002 to 2013; of them,

459,064 patients had not received any metformin, and 541,016

patients had received metformin in the first year after the onset

of DM. Figure 1 illustrates the process of selecting study

participants.
Study design

This study had a cross-sectional design and investigated the

risk of NAFLD among patients with DM who received

metformin for 3 or 5 years. The defined daily dose (DDD) is

used as a standard unit for measuring drug utilization and drug

exposure in a population. The World Health Organization

defines DDD as the estimated average maintenance dose per

day of a drug used to treat a condition in adults. The DDD does

not necessarily reflect the recommended or prescribed daily dose

(16). Each patient was observed for one year after the diagnosis

of DM to assess the use of metformin. The DDD of metformin

used to evaluate the medication was 2 g (17). The cumulative
FIGURE 1

Patient selection process.
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DDD (cDDD) of metformin use in the first year was calculated

and categorized into five groups for dose–response analysis:

nonusers, <300 cDDD, 300–500 cDDD, and above 500 cDDD.

Furthermore, we calculated and categorized the average monthly

DDD into four groups to investigate the association of

metformin use intensity with NAFLD incidence: nonusers, <10

DDD, 10–25 DDD, and above 25 DDD. All patients were

observed for 3 and 5 years to analyze the association between

metformin use and NAFLD incidence. The criterion for NAFLD

in this study was three or more diagnoses within one year,

according to ICD-9-CM code 571.8 and ICD-10-CM codes

K75.81 and K76.0. The control variables included diabetes

severity and related comorbidities. We used the Diabetes

Complications Severity Index (DCSI) to adjust the diabetes

severity. The DCSI was used to assess the DM patients’ risks

of adverse outcomes calculated by the information from the

seven diabetes complication categories (retinopathy,

nephropathy, neuropathy, cerebrovascular, cardiovascular,

peripheral vascular disease, and metabolic) (18, 19). The

assessed comorbidities included hypertension (ICD-9-CM

401–405), hyperlipidemia (ICD-9-CM 272.0–272.4),

hyperuricemia (ICD-9-CM 790.6), chronic kidney disease

(CKD; ICD-9-CM 585), obesity (ICD-9-CM 278.00),

Helicobacter pylori infection (ICD-9-CM 041.86), psoriasis

(ICD-9-CM 696.1), rheumatoid arthritis (RA ICD-9-CM 714),

hypothyroidism (ICD-9-CM 244.9), polycystic ovary syndrome

(ICD-9-CM 256.4), and hepatitis C virus (HCV; ICD-9-CM

070.4, 070.5, 070.70).
Statistical analysis

All analyses in the study were performed using SAS version

9.4. The chi-square test was used to evaluate the distribution of the

baseline characteristics between metformin users and nonusers.

Differences in the incidence of NAFLD between metformin users

and nonusers were estimated through multiple logistic regression

with the adjustment of the relevant variables, and the results are

presented as odds ratios (ORs) with 95% confidence intervals (CI).

Two adjusted models were developed to estimate the incidence of

NAFLD among metformin users; the estimation involved

calculating the cDDD and intensity of metformin use (DDD/

month). Statistical significance in this study was indicated by

p-values <0.05.
Results

Characteristic distribution of study
participants

Table 1 displays the baseline characteristics of the patients.

The average age of all the patients was 56.37 ± 12.49 years.
Frontiers in Endocrinology 04
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Among the selected patients, 47.39% were female and 52.61%

were male. Further, 29.12% of the patients were aged 20–49

years, 16.38% were aged 50–54 years, 15.77% were aged 55–59

years, 12.62% were aged 60–64 years, and 26.12% were aged

≥65 years.

Among metformin users, the average age was 55.06 ± 12.16

years. Among the selected patients, 194,590 patients (35.97%)

had hypertension, 80,546 patients (14.89%) had hyperlipidemia,

3,507 patients (0.65%) had hyperuricemia, 1,656 patients

(0.31%) had CKD, 3,338 (0.62%) patients had obesity, 839

patients (0.16%) had H. pylori infection, 2,052 patients (0.38%)

had psoriasis, 3,372 patients (0.62%) had RA, 1,553 patients

(0.29%) had hypothyroidism, 1,279 patients (0.24%) had

polycystic ovary syndrome, and 1,573 patients (0.29%) had

HCV. Furthermore, the difference in the distribution of each

comorbid disease between metformin users and nonusers was

statistically significant.
Incident NAFLD in patients with new-
onset dm receiving metformin
medication

Table S1 displays the distribution of incident NAFLD among

patients with T2DM. Table 2 displays the data on NAFLD

incidence obtained through 3-year follow-up; 7,451 patients

(0.75%) developed NAFLD within 3 years after the diagnosis

of DM. The incidence rate of NAFLD among metformin

nonusers was 0.70%, and those among the metformin users

were 0.79% for cDDD <300, 0.81% for cDDD 300–500, and

0.88% for cDDD ≥500. In terms of metformin use intensity, the

incidence rate of NAFLD was 0.76% for <10 DDD/month, 0.85%

for 10–25 DDD/month, and 0.81% for ≥25 DDD/month. After

3-year follow-up, the ORs for the incidence of NAFLD among

patients with DM receiving cDDD <300, 300–500, and >500

were 1.11 (95% CI = 1.06–1.16), 1.08 (95% CI = 0.85–1.37), and

1.19 (95% CI = 0.39–3.70), respectively. In terms of metformin

use intensity, the ORs for the incidence of NAFLD among

patients with DM receiving <10, 10–25, and ≥25 DDD/month

were 1.08 (95% CI = 1.02–1.13), 1.18 (95% CI = 1.11–1.26), and

1.09 (95% CI = 0.86–1.37), respectively. In terms of risk factors,

the ORs for dementia among patients with DM scoring 1 and ≥2

on the DCSI were 1.07 (95% CI = 1.01–1.14) and 1.16 (95% CI =

1.09–1.24), respectively. Furthermore, the patients with DM

comorbid with hyperlipidemia (OR = 1.30, 95% CI = 1.22–

1.38) and obesity (OR = 1.78, 95% CI = 1.44–2.21) were at high

risk of developing NAFLD. Patients with DM comorbid with

hypertension (OR = 0.94, 95% CI = 0.89–0.99) and CKD (OR =

0.66, 95% CI = 0.47–0.94) were at low risk of developing

NAFLD. By contrast, patients with comorbid hyperuricemia,

H. pylori infection, psoriasis, RA, hypothyroidism, polycystic

ovary syndrome, and HCV were not at risk of developing

dementia.
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TABLE 1 Baseline characteristics of patients with new-onset diabetes mellitus.

Variables Total Metformin

Non-users Users p-value

N % N % N %

Total 1,000,080 100.00 459,064 45.90 541,016 54.10

Gender <0.001

Female 473,966 47.39 226,960 49.44 247,006 45.66

Male 526,114 52.61 232,104 50.56 294,010 54.34

Age (year) (Mean ± SD) 56.37 ± 12.49 57.92 ± 12.69 55.06 ± 12.16 <0.001

20-49 291,184 29.12 116,329 25.34 174,855 32.32

50-54 163,773 16.38 70,456 15.35 93,317 17.25

55-59 157,692 15.77 70,933 15.45 86,759 16.04

60-64 126,193 12.62 60,554 13.19 65,639 12.13

≥65 261,238 26.12 140,792 30.67 120,446 22.26

Income level (NTD) a <0.001

≤21,000 516,216 51.62 240,725 52.44 275,491 50.92

21,001-33,000 232,549 23.25 100,298 21.85 132,251 24.44

≥33,001 251,315 25.13 118,041 25.71 133,274 24.63

Urbanization b <0.001

Level 1 274,537 27.45 133,435 29.07 141,102 26.08

Level 2 328,483 32.85 149,758 32.62 178,725 33.04

Level 3 162,209 16.22 70,392 15.33 91,817 16.97

Level 4 136,631 13.66 61,759 13.45 74,872 13.84

Level 5 21,690 2.17 10,215 2.23 11,475 2.12

Level 6 39,780 3.98 17,472 3.81 22,308 4.12

Level 7 36,750 3.67 16,033 3.49 20,717 3.83

DCSI score c <0.001

0 650,315 65.03 290,957 63.38 359,358 66.42

1 195,134 19.51 90,537 19.72 104,597 19.33

≥2 154,631 15.46 77,570 16.90 77,061 14.24

Hypertension <0.001

No 618,217 61.82 271,791 59.21 346,426 64.03

Yes 381,863 38.18 187,273 40.79 194,590 35.97

Hyperlipidemia <0.001

No 818,863 81.88 358,393 78.07 460,470 85.11

Yes 181,217 18.12 100,671 21.93 80,546 14.89

Hyperuricemia <0.001

No 992,413 99.23 454,904 99.09 537,509 99.35

Yes 7,667 0.77 4,160 0.91 3,507 0.65

CKD c <0.001

No 993,567 99.35 454,207 98.94 539,360 99.69

Yes 6,513 0.65 4,857 1.06 1,656 0.31

Obesity <0.001

No 994,396 99.43 456,718 99.49 537,678 99.38

Yes 5,684 0.57 2,346 0.51 3,338 0.62

Helicobacter pylori <0.001

No 998,245 99.82 458,068 99.78 540,177 99.84

Yes 1,835 0.18 996 0.22 839 0.16

Psoriasis 0.012

No 996,427 99.63 457,463 99.65 538,964 99.62

(Continued)
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Table 3 displays the 5-year follow-up data on NAFLD

incidence. After adjusting the related variables, we discovered

that the ORs for NAFLD incidence among patients with DM

receiving cDDD <300, 300–500, and ≥500 were 1.06 (95% CI =

1.02–1.09), 0.96 (95% CI = 0.80–1.15), and 1.02 (95% CI = 0.43–

2.46), respectively. In terms of the intensity of metformin use,

the ORs for NAFLD incidence among patients receiving <10,

10–25, and >25 DDD/month were 1.04 (95% CI = 1.00–1.08),

1.11 (95% CI = 1.06–1.16), and 0.96 (95% CI = 0.80–1.15).

Adjusted model 1 also indicated that the ORs for NAFLD

incidence among patients with DM who scored 1 and ≥2 on

the DCSI were 1.08 (95% CI = 1.04–1.13) and 1.14 (95% CI =

1.09–1.20), respectively. In terms of risk factors, patients with

DM having hyperlipidemia (OR = 1.33, 95% CI = 1.28–1.39),

hyperuricemia (OR = 1.23, 95% CI = 1.04–1.45), obesity (OR =

1.62, 95% CI = 1.38–1.91), and HCV (OR = 1.46, 95% CI = 1.15–

1.86) were at high risk of developing NAFLD. Patients with

comorbid hypertension (OR = 0.93, 95% CI = 0.90–0.97) and

CKD (OR = 0.72, 95% CI = 0.57–0.92) were at low risk of

developing NAFLD.
Discussion

To the best of our knowledge, few large-scale epidemiological

studies have evaluated the risk of NAFLD incidence among

patients with T2DM receiving metformin. The results obtained

after 3-year and 5-year follow-up indicated that patients with
Frontiers in Endocrinology 06
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T2DM receiving metformin in cDDD <300 or at intensities of <10

and 10–25 DDD/month were at high risk for developing NAFLD.

However, in patients with T2DM receiving metformin in cDDD

of 300–500 and >500 or at intensities of >25 DDD/month,

metformin exhibited no protective effects against NAFLD. In

addition, metformin users who scored high on the DCSI had

high ORs for NAFLD incidence among patients with T2DM;

patients with comorbid hyperlipidemia, hyperuricemia, obesity

and HCV were also at high risk of NAFLD.

Several studies have reported that patients with T2DM and

fatty liver disease exhibited improved aminotransferase levels

and IR after metformin therapy (20–23). Therefore, metformin

may aid the treatment of NAFLD (8, 20, 24). Animal and

physiological studies have proposed various possible

mechanisms to explain the relationship between metformin

use and the risk of NAFLD incidence. Metformin is

considered an activator of AMP-activated protein kinase

(AMPK), which is a major cellular regulator of glucose and

lipid metabolism. This serves as a key mechanism through which

metformin treatment aids glucose metabolism and alleviates

diabetes-related complications (25). Metformin decreases

triglyceride accumulation in hepatocytes due to high-fat diets

in vivo and in vitro (26). Moreover, metformin can activate

intracellular AMPK and stimulate NO synthesis in human aortic

endothelial cells (27). The beneficial effects of metformin extend

beyond glycemic control and include the improvement of

hepatocyte lipid metabolism and the suppression of hepatocyte

and macrophage inflammatory responses (13).
TABLE 1 Continued

Variables Total Metformin

Non-users Users p-value

N % N % N %

Yes 3,653 0.37 1,601 0.35 2,052 0.38

RA c <0.001

No 992,795 99.27 455,151 99.15 537,644 99.38

Yes 7,285 0.73 3,913 0.85 3,372 0.62

Hypothyroidism <0.001

No 995,976 99.59 456,513 99.44 539,463 99.71

Yes 4,104 0.41 2,551 0.56 1,553 0.29

Polycystic ovary syndrome <0.001

No 998,493 99.84 458,756 99.93 539,737 99.76

Yes 1,587 0.16 308 0.07 1,279 0.24

HCV c <0.001

No 996,636 99.66 457,193 99.59 539,443 99.71

Yes 3,444 0.34 1,871 0.41 1,573 0.29
fronti
aThe premium-based salary of the patient which is according to the payroll bracket table of the National Health Insurance Administration Taiwan. NTD is New Taiwan Dollar. NTD 1 ≈
USD 0.034).
bLevel 1 denoted the highest degree of urbanization, whereas level 7 denoted the lowest degree of urbanization.
cDCSI, diabetes complications severity index; CKD, chronic kidney disease; RA, rheumatoid arthritis; HCV, hepatitis C virus.
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TABLE 2 Three-year follow-up of incident non-alcoholic fatty liver disease in new-onset diabetes mellitus patients with metformin medication.

Variables Three-year follow-up of incident non-alcoholic fatty liver disease

Events p-value Model 1 Model 2

N % OR 95% CI p-value OR 95% CI p-value

Total 7,451 0.75

cDDD of metformin use <0.001

Non-users 3,195 0.70 1 – – –

DDD <300 4,185 0.79 1.11 1.06 – 1.16 <0.001 – – –

DDD 300-500 68 0.81 1.08 0.85 – 1.37 0.535 – – –

DDD ≥500 3 0.88 1.19 0.39 – 3.70 0.759 – – –

Intensity of metformin use <0.001

Non-users 3,195 0.70 1

<10 2,914 0.76 – – – 1.08 1.02 – 1.13 0.004

10-25 1,271 0.85 – – – 1.18 1.11 – 1.26 <0.001

≥25 71 0.81 – – – 1.09 0.86 – 1.37 0.500

Gender <0.001

Female 3,362 0.71 1 1

Male 4,089 0.78 1.03 0.98 – 1.08 0.207 1.03 0.98 – 1.08 0.219

Age (year) <0.001

20-49 2,776 0.95 1 1

50-54 1,232 0.75 0.79 0.73 – 0.84 <0.001 0.79 0.73 – 0.84 <0.001

55-59 1,150 0.73 0.76 0.70 – 0.81 <0.001 0.76 0.71 – 0.81 <0.001

60-64 823 0.65 0.67 0.62 – 0.73 <0.001 0.68 0.62 – 0.73 <0.001

≥65 1,470 0.56 0.58 0.55 – 0.62 <0.001 0.59 0.55 – 0.63 <0.001

Income level (NTD) a <0.001

≤21,000 3,747 0.73 1 1

21,001-33,000 1,646 0.71 0.94 0.89 – 1.00 0.048 0.94 0.89 – 1.00 0.049

≥33,001 2,058 0.82 1.07 1.02 – 1.14 0.012 1.07 1.02 – 1.14 0.013

Urbanization b 0.429

Level 1 2,039 0.74 1 1

Level 2 2,518 0.77 1.04 0.98 – 1.10 0.240 1.04 0.98 – 1.10 0.237

Level 3 1,172 0.72 0.98 0.91 – 1.05 0.534 0.98 0.91 – 1.05 0.539

Level 4 1,002 0.73 1.04 0.96 – 1.12 0.361 1.04 0.96 – 1.12 0.350

Level 5 147 0.68 1.01 0.86 – 1.20 0.890 1.01 0.86 – 1.20 0.868

Level 6 285 0.72 1.05 0.93 – 1.19 0.453 1.05 0.93 – 1.19 0.438

Level 7 288 0.78 1.13 0.99 – 1.28 0.062 1.13 1.00 – 1.28 0.060

DCSI score c 0.601

0 4,805 0.74 1 1

1 1,470 0.75 1.07 1.01 – 1.14 0.023 1.07 1.01 – 1.14 0.023

≥2 1,176 0.76 1.16 1.09 – 1.24 <0.001 1.16 1.09 – 1.24 <0.001

Hypertension <0.001

No 4,771 0.77 1 1

Yes 2,680 0.70 0.94 0.89 – 0.99 0.012 0.94 0.89 – 0.99 0.011

Hyperlipidemia <0.001

No 5,876 0.72 1 1

Yes 1,575 0.87 1.30 1.22 – 1.38 <0.001 1.30 1.22 – 1.38 <0.001

Hyperuricemia 0.024

No 7,377 0.74 1 1

Yes 74 0.97 1.23 0.97 – 1.54 0.083 1.23 0.98 – 1.55 0.081

CKD c 0.017

(Continued)
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Our results indicated that in patients with T2DM receiving

metformin in cDDD of 300–500 and >500 or at an intensity of

>25 DDD/month, metformin exhibited no protective effects

against NAFLD after 3-year and 5-year follow-up periods.

Several studies have investigated the effects of metformin

therapy on liver aminotransferase levels and liver histology of

patients with NASH or NAFLD (10, 22, 23, 28–31). Several small

open-label studies have demonstrated decreases in IR and liver

aminotransferase levels with metformin use (10, 29, 31), but liver

histology was not considerably improved (10, 29). Although

histological necroinflammation improved among the metformin

treatment group, the improvement was not statistically

significant and no difference in liver fibrosis was observed

between the metformin user and nonuser groups (29). Other

studies have failed to demonstrate significant improvements in

insulin sensitivity, aminotransferase level, or liver histology due

to metformin treatment (22, 23). A meta-analysis study that

included a subanalysis of the effects of metformin on
Frontiers in Endocrinology 08
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biochemical and histological outcomes among NASH patients

demonstrated that metformin did not improve NASH-related

outcomes (28). Another meta-analysis study also demonstrated

that metformin therapy did not improve liver histology among

patients with NASH or NAFLD (28, 32). Therefore, the clinical

administration of metformin among patients with NAFLD is

limited because of mixed study results, the heterogeneous effects

of treatment, and the small number of patients involved in the

studies. Preclinical studies on rodents have suggested that

metformin may be a useful therapeutic medication for

reducing intrahepatic triacylglycerol (IHTAG) content;

however, the effectiveness of metformin therapy in reducing

IHTAG levels among patients has yet to be confirmed (33).

Therefore, owing to a lack of evidence for significant histological

improvement of the liver, metformin is not recommended for

treating NASH or NAFLD in adult patients (2, 14).

Our results indicated that patients with T2DM receiving

metformin in cDDD of <300 or at intensity of <10 and 10–25
TABLE 2 Continued

Variables Three-year follow-up of incident non-alcoholic fatty liver disease

Events p-value Model 1 Model 2

N % OR 95% CI p-value OR 95% CI p-value

No 7,419 0.75 1 1

Yes 32 0.49 0.66 0.47 – 0.94 0.022 0.66 0.47 – 0.94 0.022

Obesity <0.001

No 7,366 0.74 1 1

Yes 85 1.50 1.78 1.44 – 2.21 <0.001 1.78 1.44 – 2.21 <0.001

Helicobacter pylori 0.240

No 7,433 0.74 1 1

Yes 18 0.98 1.19 0.75 – 1.90 0.455 1.20 0.75 – 1.91 0.452

Psoriasis 0.059

No 7,414 0.74 1 1

Yes 37 1.01 1.35 0.97 – 1.86 0.072 1.35 0.97 – 1.86 0.072

RA c 0.756

No 7,399 0.75 1 1

Yes 52 0.71 1.00 0.76 – 1.32 0.979 1.01 0.77 – 1.32 0.969

Hypothyroidism 0.659

No 7,418 0.74 1 1

Yes 33 0.80 1.04 0.74 – 1.47 0.813 1.04 0.74 – 1.47 0.810

Polycystic ovary syndrome 0.264

No 7,443 0.75 1 1

Yes 8 0.50 0.50 0.25 – 1.01 0.053 0.50 0.25 – 1.01 0.054

HCV c 0.946

No 7,425 0.75 1 1

Yes 26 0.75 1.09 0.74 – 1.61 0.649 1.10 0.75 – 1.61 0.645
fronti
aThe premium-based salary of the patient which is according to the payroll bracket table of the National Health Insurance Administration Taiwan. NTD is New Taiwan Dollar. NTD 1 ≈
USD 0.034).
bLevel 1 denoted the highest degree of urbanization, whereas level 7 denoted the lowest degree of urbanization.
cDCSI, diabetes complications severity index; CKD, chronic kidney disease; RA, rheumatoid arthritis; HCV, hepatitis C virus.
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TABLE 3 Five-year follow-up of incident non-alcoholic fatty liver disease in new-onset diabetes mellitus patients with metformin medication.

Variables Five-year follow-up of incident non-alcoholic fatty liver disease

Events p-value Model 1 Model 2

N % OR 95% CI p-value OR 95% CI p-value

Total 14,281 1.43

cDDD of metformin use <0.001

Non-users 6,294 1.37 1 – – –

DDD <300 7,864 1.48 1.06 1.02 – 1.09 <0.001 – – –

DDD 300-500 118 1.40 0.96 0.80 – 1.15 0.626 – – –

DDD ≥500 5 1.47 1.02 0.43 – 2.46 0.961 – – –

Intensity of metformin use <0.001

Non-users 6,294 1.37 1

<10 5,530 1.44 – – – 1.04 1.00 – 1.08 0.038

10-25 2,334 1.56 – – – 1.11 1.06 – 1.16 <0.001

≥25 123 1.40 – – – 0.96 0.80 – 1.15 0.644

Gender 0.009

Female 6,613 1.40 1 1

Male 7,668 1.46 0.99 0.95 – 1.02 0.441 0.99 0.95 – 1.02 0.423

Age (year) <0.001

20-49 5,257 1.81 1 1

50-54 2,439 1.49 0.81 0.77 – 0.85 <0.001 0.81 0.77 – 0.85 <0.001

55-59 2,213 1.40 0.76 0.72 – 0.80 <0.001 0.76 0.72 – 0.80 <0.001

60-64 1,585 1.26 0.68 0.64 – 0.72 <0.001 0.68 0.64 – 0.72 <0.001

≥65 2,787 1.07 0.58 0.55 – 0.61 <0.001 0.58 0.55 – 0.61 <0.001

Income level (NTD) a <0.001

≤21,000 6,958 1.35 1 1

21,001-33,000 3,344 1.44 1.03 0.98 – 1.07 0.245 1.03 0.98 – 1.07 0.239

≥33,001 3,979 1.58 1.11 1.07 – 1.16 <0.001 1.11 1.07 – 1.16 <0.001

Urbanization b 0.087

Level 1 4,013 1.46 1 1

Level 2 4,760 1.45 1.00 0.96 – 1.04 0.961 1.00 0.96 – 1.04 0.965

Level 3 2,279 1.40 0.97 0.93 – 1.03 0.307 0.97 0.93 – 1.03 0.311

Level 4 1,906 1.39 1.01 0.96 – 1.07 0.709 1.01 0.96 – 1.07 0.695

Level 5 274 1.26 0.97 0.86 – 1.10 0.640 0.97 0.86 – 1.10 0.657

Level 6 539 1.35 1.02 0.93 – 1.12 0.624 1.02 0.94 – 1.12 0.608

Level 7 510 1.39 1.03 0.94 – 1.13 0.561 1.03 0.94 – 1.13 0.551

DCSI score c 0.306

0 9,205 1.42 1 1

1 2,851 1.46 1.08 1.04 – 1.13 <0.001 1.08 1.04 – 1.13 0.000

≥2 2,225 1.44 1.14 1.09 – 1.20 <0.001 1.14 1.09 – 1.20 <0.001

Hypertension <0.001

No 9,123 1.48 1 1

Yes 5,158 1.35 0.93 0.90 – 0.97 <0.001 0.93 0.90 – 0.97 <0.001

Hyperlipidemia <0.001

No 11,178 1.37 1 1

Yes 3,103 1.71 1.33 1.28 – 1.39 <0.001 1.33 1.28 – 1.39 <0.001

Hyperuricemia <0.001

No 14,138 1.42 1 1

Yes 143 1.87 1.23 1.04 – 1.45 0.015 1.23 1.04 – 1.45 0.015

CKD c 0.006

(Continued)
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DDD/month were at high risk of developing NAFLD after 3-

year and 5-year follow-up periods. The effectiveness of short-

term metformin treatment in reducing lipid levels and

preventing lipid accumulation in hepatocytes has been

frequently reported (34, 35). Metformin treatment has been

reported to cause only transient improvement in liver

chemistry. The reduction in insulin sensitivity due to

metformin therapy was not sustainable (10). Animal and

physiological studies on the effects of long-term metformin

treatment have been inconclusive. Furthermore, data regarding

the long-term effects of metformin therapy on liver function

among patients with NAFLD are controversial. An animal study

demonstrated that long-term treatment with metformin had no

preventive effects against NAFLD in Zucker diabetic fatty rats

(36). Studies on long-term metformin therapy have not

demonstrated any histological protective effects in the liver

(20–23). Moreover, metformin-induced hepatotoxic effects,

including acute hepatitis, liver transaminitis, and intrahepatic
Frontiers in Endocrinology 10
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cholestasis, have rarely been reported (37–40). Vitamin

deficiency has been reported in many causes of chronic liver

disease, and has been associated with the development of

NAFLD (41). Furthermore, low vitamin B12 serum levels were

revealed to be significantly correlated with NAFLD, especially in

grade 2 to grade 3 hepato-steatosis (42). Another study also

demonstrated that low level of vitamin B12 has been related to

NAFLD patients, and the histological severity of NASH (43).

Low levels of vitamin B12 have been linked to high levels of

homocysteine characterizing hyper-homocysteinemia as an

indicator for oxidative stress (44). Subjects with chronic liver

disease can benefit from vitamin B, since its antioxidant effect

has possessed hepatoprotective activity to ameliorate chronic

liver injury (41). A low vitamin B12 serum level is an

independent predictor of NASH histological severity and

fibrosis grade (43). Serum vitamin B12 levels were significantly

lower among patients with NAFLD than in controls, indicating a

correlation with a higher grade of steatohepatitis (43). The
TABLE 3 Continued

Variables Five-year follow-up of incident non-alcoholic fatty liver disease

Events p-value Model 1 Model 2

N % OR 95% CI p-value OR 95% CI p-value

No 14,214 1.43 1 1

Yes 67 1.03 0.72 0.57 – 0.92 0.009 0.72 0.57 – 0.92 0.009

Obesity <0.001

No 14,130 1.42 1 1

Yes 151 2.66 1.62 1.38 – 1.91 <0.001 1.62 1.38 – 1.90 <0.001

Helicobacter pylori 0.083

No 14,246 1.43 1 1

Yes 35 1.91 1.21 0.87 – 1.69 0.262 1.21 0.87 – 1.69 0.260

Psoriasis 0.169

No 14,219 1.43 1 1

Yes 62 1.70 1.19 0.92 – 1.52 0.182 1.19 0.92 – 1.52 0.182

RA c 0.768

No 14,174 1.43 1 1

Yes 107 1.47 1.07 0.88 – 1.29 0.515 1.07 0.88 – 1.29 0.507

Hypothyroidism 0.399

No 14,216 1.43 1 1

Yes 65 1.58 1.04 0.81 – 1.32 0.774 1.04 0.81 – 1.32 0.772

Polycystic ovary syndrome 0.777

No 14,257 1.43 1 1

Yes 24 1.51 0.79 0.53 – 1.19 0.262 0.80 0.53 – 1.19 0.263

HCV c 0.010

No 14,214 1.43 1 1

Yes 67 1.95 1.46 1.15 – 1.86 0.002 1.46 1.15 – 1.86 0.002
fronti
aThe premium-based salary of the patient which is according to the payroll bracket table of the National Health Insurance Administration Taiwan. NTD is New Taiwan Dollar. NTD 1 ≈
USD 0.034).
bLevel 1 denoted the highest degree of urbanization, whereas level 7 denoted the lowest degree of urbanization.
cDCSI, diabetes complications severity index; CKD, chronic kidney disease; RA, rheumatoid arthritis; HCV, hepatitis C virus.
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prevalence of B12 deficiency was higher in metformin users than

non-metformin users (45). Metformin induces vitamin B12

malabsorption may be dose-related which may increase the

risk of vitamin B12 deficiency in T2DM patients (46). Several

studies demonstrated that vitamin B12 deficiency occurred when

patients taken metformin for more than 2-4 years (45, 47).

Metformin use is associated with vitamin B12 deficiency,

which is dependent upon the cumulative dose of metformin

(48). Due to the clinical benefits of metformin use, its associated

side effects such as vitamin B12 deficiency is often overlooked in

T2DM patients. However, the diagnosis of metformin-induced

vitamin B12 deficiency may be difficult (46). Vitamin B12

deficiency play a pivotal role in the risk of NAFLD

development in T2DM patients receiving cumulative dose of

metformin treatment over the long term.

In summary, short-term metformin use is effective in

treating NAFLD, whereas long-term cumulative dose of

metformin use may not alleviate NAFLD but may instead have

harmful effects. Vitamin B12 deficiency may increase the risk of

NAFLD among patients with T2DM receiving cumulative dose

of metformin use over the long term. However, the actual

mechanism of the effects of metformin dosage on the risk of

NAFLD remains unclear and should be investigated in the

future. Randomized-controlled studies are warranted to verify

these effects.

Our study revealed that patients with DM receiving

metformin and having higher scores on the DCSI were at high

risk of developing NAFLD. The prevalence of NAFLD among

young adults was significantly higher than among older adults,

likely because of the higher prevalence among women and

metabolic syndrome among young adults (49). The DCSI is an

effective tool for predicting the risk of hospitalization and

mortality among patients with T2DM (18). DCSI may also be

used as an indicator for estimating the risk of developing NAFLD.

The results of this study indicated that patients with DM

receiving metformin with comorbid hyperlipidemia, obesity,

hyperuricemia, and HCV were at high risk of developing

NAFLD. Studies have demonstrated that NAFLD is a

multisystem disease. Evidence indicated a strong correlation

between NAFLD and increased risk of hyperlipidemia (50).

Obesity is strongly correlated with the development of NAFLD

(51). T2DM, IR, and obesity are key factors influencing the

development of NAFLD and NASH (52). The risk of NAFLD

among patients with hyperuricemia was significantly higher

than among patients with normal uric acid levels (53). NAFLD

is a predominant outcome of chronic HCV infection (54), which

causes impairment of lipid and glucose metabolism (55).

We included data approximately covering the entire

Taiwanese population in this study; thus, the sample size was

large and highly representative of patients with T2DM at risk of

developing NAFLD, and the data obtained were of high quality.

The follow-up period of metformin use in this study was

divided into 3 years and 5 years. The cDDD of metformin use
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was divided into three levels: ≤300, 300–500, and >500.

Similarly, the intensity of metformin use was divided into

three levels, namely ≤10, 10–25, and >25 DDD/month, to

investigate the correlation between T2DM and the risk of

developing NAFLD.

We investigated the correlation between the risk factors of

comorbidities and the risk of NAFLD incidence among patients

with T2DM.

This study has several limitations that should be addressed

by future studies. First, the algorithm used to categorize the

severity of liver disease could not be validated because of the

limitation of the NHIRD (the Child–Pugh–Turcotte score used

for the prognosis of chronic liver disease was not available in

the NHIRD).

Second, the ICD codes from the NHIRD data did not include

detailed computed tomography findings. Third, a few factors,

including alcohol consumption behavior, laboratory parameters,

and abdominal ultrasonography findings, that influence NAFLD

development could not be determined from the LHID, thereby

affecting the findings of this study. Fourth, physical activity and

eating habit are the leading causes for developing NAFDL in

T2DM patients. However, we could not get information of

physical activity and eating habit from these patients. Finally,

although the LHID includes a large amount of data, it does not

include personal information of patients, such as self-pay

medical information, which could influence the development

of NAFLD.
Conclusions

Patients with T2DMwho received metformin of <300 cDDD

or used metformin at an intensity of <10 and 10–25 DDD/

month were at a high risk of developing NAFLD. Moreover,

patients receiving 300–500 and >500 cDDD of metformin or

using metformin at an intensity of >25 DDD/month did not

exhibit any protective effects against NAFLD.
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Non-alcoholic fatty liver disease
in type 1 diabetes: Prevalence
and pathophysiology
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Non-alcoholic fatty liver disease (NAFLD) is themost frequent chronic liver disease

in the general population with a global prevalence of 25%. It is often associated

with metabolic syndrome and type 2 diabetes, as insulin resistance and

hyperinsulinemia are known to be favoring factors. Recent studies have

described growing incidence of NAFLD in type 1 diabetes (T1D) as well.

Although increasing prevalence of metabolic syndrome in these patients seems

to explain part of this increase in NAFLD, other underlying mechanisms may

participate in the emergence of NAFLD. Notably, some genetic factors are more

associated with fatty liver disease, but their prevalence in T1D has not been

evaluated. Moreover, oxidative stress, poor glucose control and long-lasting

hyperglycemia, as well as exogenous insulin administration play an important

role in intrahepatic fat homeostasis. The main differential diagnosis of NAFLD in

T1D is glycogenic hepatopathy, which needs to be considered mostly in T1D

patients with poor glycemic control. This article aims to review the prevalence and

pathophysiology of NAFLD in T1D and open perspectives for clinicians taking care

of T1D patients with potential hepatopathy.

KEYWORDS

NAFLD, type 1 diabetes, glycogenic hepatopathy, prevalence, pathophysiology
Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of

lipids in the liver, particularly in the absence of high-risk alcohol consumption. It has

seen its prevalence increase steadily for several years due to the global epidemic of

overweight and obesity (1, 2). Insulin resistance is a pathological process very frequently

associated with NAFLD and explains a very strong association of this condition with

diabetes (2).
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In recent years, NAFLD in patients with type 1 diabetes

(T1D) rises a particular interest due to its apparent higher

prevalence (3–5). The rising prevalence of metabolic syndrome

in T1D due to unhealthy lifestyle is one important explanation of

this increase of NAFLD in these individuals (6), but other

underlying biologic mechanisms found in T1D tend to favor

liver fat accumulation.

By understanding these mechanisms, we can not only have a

better comprehension of NAFLD development, but this can also

help us find ways to slow, stop and prevent fatty liver disease in

patients with T1D.
Methodology

A literature review was realized using PubMed, Google

Scholar and Web of Science including several studies which

were linked to the association between NAFLD or MAFLD and

T1D. Medical Subject Headings terms such as “Non-alcoholic

fatty liver disease”, “Metabolic-dysfunction associated fatty liver

disease”, “Glycogenic Hepatopathy”, “Liver disease”, “NASH”,

“Steatohepatitis” were associated with “Type 1 Diabetes”. The

different articles were analyzed and selected according to their

abstract relevance. Similar articles suggested by the research sites

were also taken into consideration and selected. In total, this

review was based on the study of 62 different articles. The articles

were all restricted to English language.
NAFLD and diabetes: Definition and
generality

NAFLD encompasses several pathologies affecting the liver

ranging from simple hepatic steatosis to non-alcoholic

steatohepatitis (NASH), and subsequently cirrhosis which is

the most severe form of NAFLD. Cirrhosis may lead to

hepatocellular carcinoma. The differences between these stages

of liver damage can be seen on analysis of a histological section

after performing a liver biopsy, which remains an invasive

procedure associated with potential morbi-mortality (1). Over

the past four decades, NAFLD has become the most prevalent

chronic liver disease affecting approximately 25% of the adult

population worldwide (1). NAFLD prevalence is even higher in

type 2 diabetic (T2D) patients, reaching about 55%, and up to

90% in obese patients with a body mass index (BMI) above 40

kg/m2 (7). Given its increasing prevalence, NAFLD is the most

rapidly increasing cause of liver-related mortality (7). There is no

specific approved treatment for this disease and its

pathophysiological complexity represents a challenge for the

development of potential therapeutic targets. Lifestyle changes

remain the best way to prevent and treat the disease. NAFLD is

usually associated with metabolic syndrome including T2D and

obesity (8, 9). Additionally, this disease is also associated with
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other illnesses and factors such as dyslipidemia, hypertension,

genetic and environmental factors, notably lack of exercise and

unhealthy food intake (10). Regarding the mortality of patients

with NAFLD in the general population, various studies have

shown contradictory results with, on one hand, a slight increase

in mortality (all causes combined) in patients with NAFLD

compared to the general population and, on the other hand,

other studies showed no association between mortality and

NAFLD (11, 12). Although NAFLD increases the risk of

developing cirrhosis or hepatocellular carcinoma, the main

cause of death in these patients remains cardiovascular

diseases followed by extrahepatic malignancies (13–15).

T1D is an autoimmune disease characterized by the

destruction of beta cells resulting in the cessation of insulin

production (16). T1D is mainly diagnosed in childhood or

adolescence (under the age of 18) but can also be diagnosed in

adults. The risk of developing T1D is extremely low in the

general population (0.4%) but increases in the presence of risk

factors such as a T1D in a first-degree relative (parent or

brother/sister) or the presence of self-specific antibodies (17,

18). Typically, the autoantibodies sought in T1D are anti-GAD

(glutamic acid decarboxylase), IA2 (islet antigen 2), ZnT8 (Zinc

transporter protein member 8) and Islets of Langerhans (18).

The initial clinical presentation, the family history of T1D and

the age at diagnosis help in the diagnosis even if T1D can be

diagnosed at a later age (Latent Autoimmune Diabetes in Adults,

LADA). The initial clinical presentation is classically in the form

of diabetic ketoacidosis with an acidic pH (<7.35), increased

blood glucose and presence of plasmatic ketone bodies.

However, it should be considered that the number of patients

affected by T2D is increasing in the young population (19)

making the diagnosis of T1D less obvious in young patients.

Usually, the disease presents in 3 stages: The first stage consists

in the destruction of beta cells with normal blood glucose levels

and no symptoms. The second stage is characterized by the

presence of hyperglycemia, but the patient usually remains

asymptomatic. Finally, the third stage is the time of diagnosis

characterized by the presence of symptoms such as polydipsia,

polyuria, weight loss, dehydration, etc. (16). It is common to

find, in addition to T1D, other autoimmune diseases such as

Hashimoto’s thyroiditis, celiac disease, pernicious anemia, etc.

Therefore, screening for other autoimmune diseases is

recommended in patients with T1D (16). Apart from the fact

that type 1 diabetics are usually thinner and younger than type 2

diabetics and that they have positive antibodies, unlike type 2

diabetics, another way to distinguish them is the measurement of

C-peptide in the blood. The latter determines the insulin reserve

that the pancreas produces and is very low in T1D (20). The only

treatment for T1D remains the subcutaneous injection of long-

acting and short-acting insulins. With the technological

advances of recent years, patients with T1D can benefit from

insulin pump systems that will, when coupled to a blood glucose

sensor and a correction algorithm, adjust the dose of insulin
frontiersin.org

https://doi.org/10.3389/fendo.2022.1031633
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Memaj and Jornayvaz 10.3389/fendo.2022.1031633
given continuously to keep blood glucose within the targets.

Recent studies are looking at possible treatments that could

prevent or slow the progression of T1D in people at risk.

Teplizumab is a monoclonal antibody that appears to slow the

progression of T1D in newly diagnosed patients. Its action seems

to protect the remaining beta cells against autoantibodies (16).

This area is still unexplored and there is a lot of research to do in

immunotherapy for T1D.
Diagnosis of NAFLD

Simple hepatic steatosis in NAFLD can be assessed by

histology following a biopsy or by imaging like ultrasound

imaging or magnetic resonance imaging (MRI). Liver biopsy is

the gold standard for diagnosing and characterizing liver

histologic alterations in NAFLD (3, 21). Histologically,

NAFLD is defined as the presence of at least 5% hepatic

steatosis without evidence of hepatocellular injury such as

hepatocyte ballooning, whereas NASH is characterized by the

presence of hepatocellular injury with lobular inflammation and

hepatocellular ballooning (22, 23).

Liver biopsy is an invasive procedure, and imaging is

therefore more frequently used to diagnose NAFLD. Hepatic

fat content can be evaluated using conventional imaging such

as ultrasonography, computed tomography (CT) and MRI.

Nonetheless, these conventional imaging are limited for

different reasons, such as lack of sensitivity and specificity

(for ultrasonography and CT), lack of objectivity (for

ultrasonography and MRI), radiation safety issues (CT) and

different confounding factors (for all conventional imaging)

(24). One of the main confounding factors is differential

diagnosis, particularly hepatic glycogenesis and glycogenic

hepatopathy (25). Nevertheless, recent advances in imaging

such as multi-parametric MRI can help detect hepatic fat

more efficiently. The multi-parametric MRI with, notably, the

proton density fat fraction allows to overcome these

limitations and has become a virtual liver biopsy method

which can help avoid unnecessary biopsies and can also be

used for the follow-up during therapy (24). Given the high

and growing prevalence in NAFLD, this new imaging method

can turn out to be crucial.
NAFLD prevalence in type 1 diabetes

As discussed above, there is a clear and known link between

NAFLD and T2D. However, in recent years, there has been a

significant increase in type 1 diabetic patients affected by

NAFLD, although studies on this subject are scarce (25). It is

known that the prevalence of NAFLD in type 2 diabetics (55.5%)

is more than two times higher than in the general population

(25%) (26). The association between T2D and NAFLD has been
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known and studied for several decades and the interest in the

subject is significant, while the association with T1D has only

been recently explored.

A recent systematic review and meta-analysis included

twenty studies about the prevalence of NAFLD in T1D. In

total, 3’901 subjects were included in this study. Overall, 19.3%

of subjects with T1D had NAFLD, whereas NAFLD prevalence

was 22% in type 1 diabetic adults only, which is less than in the

general population (3). However, there were significant

differences between the 20 studies included in this meta-

analysis, depending on the way NAFLD was diagnosed. Three

ways were used to diagnose NAFLD: Ultrasound, MRI and liver

biopsy. When looked separately, NAFLD was found in 27.1% of

subjects using ultrasound, in 8.6% using MRI and 19.3% using

liver biopsy, the latter being the gold standard (3). To interpret

these results in the context of the general population, other

parameters must be taken in consideration. Indeed, patients with

T1D are younger and mostly non obese.

Another study compared NAFLD prevalence in type 1

diabetics, type 2 diabetics and healthy individuals who were

matched for age and BMI. This study showed that only 4.7% (6

out of 128) of type 1 diabetics had NAFLD, versus 13.4% (9 out

67) of healthy individuals, versus 62.8% (166 out of 264) of type

2 diabetics (4). In this study, the diagnostic modality used to

evaluate liver fat content was MRI and hepatic steatosis was

defined as liver fat content > 5.5%. In a more recent meta-

analysis, the prevalence of NAFLD in lean/nonobese healthy

individuals was reported to range from 10.2% to 15.7% (5).

When compared to the above discussed meta-analysis,

which showed that 19.3% of subjects (including children,

adolescents and adults) with T1D had NAFLD, this is in

contrast with the second one which showed that 4.7% of

people with T1D had NAFLD. Considering the sample sizes,

3901 individuals in the first study versus 128 in the second study,

we can presume that the statistical power of the first study is

much higher and therefore potentially more representative of

NAFLD prevalence in T1D.

Another study looked into etiologic factors of NAFLD

development in patients with T1D and T2D using transient

elastography to diagnose NAFLD and to assess the presence or

absence of advanced liver fibrosis. This study reported that

NAFLD prevalence in T1D patients (N=150) was 20% (N=30)

and 76% (N=76) in T2D patients (N=100) (27). Advanced liver

fibrosis was found in 2% (N=3) of T1D patients and in 22% (N=

22) of T2D patients. Hepatic steatosis was estimated by

controlled attenuation parameter and hepatic fibrosis by liver

stiffness measurement using transient elastography (27).

Interestingly, larger waist circumference, higher BMI and

presence of metabolic syndrome were all positively associated

with the presence of NAFLD in both groups, whereas insulin

sensitivity, calculated with estimated glucose disposal rate and

SEARCH estimated insulin sensitivity, were negatively

associated with the presence of NAFLD (27).
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In conclusion, we can say that most studies report a higher

prevalence of NAFLD in T1D, but further analyses must be done

to support this statement. Therefore, it remains difficult to

establish whether individuals with T1D are more likely to

develop NAFLD and a lot of limitations can explain the

difficulty to prove a clear link between those two diseases, one

of them being the diagnostic modality used.
NAFLD pathophysiology in T1D and T2D

NAFLD pathophysiology in T2Dmight differ in some points

from NAFLD pathophysiology in T1D but it can help

understand how T1D may contribute to the development of

NAFLD (Table 1). In T2D, insulin resistance plays a key role in

the development of NAFLD (2). Additionally, some lipid

intermediates found in the development of NAFLD, such as

diacylglycerols and ceramides, are more likely to cause hepatic

insulin resistance than others, thus alimenting a vicious cycle

leading to the increase of NAFLD (28). Insulin resistance is in

fact associated with increased circulating free fatty acids and

ectopic lipid accumulation in the liver, which can further

promote inflammation and endoplasmic reticulum stress,

participating also in this vicious cycle of the insulin resistance

state (29). Inflammation seems to play an important role in both

insulin resistance and NAFLD, with inflammatory mediators

such as cytokines and adipokines playing a primordial role not

only in inflammation but also in metabolic energy balance and

immune response (30). Oxidative stress, which is caused by the

excessive presence of intracellular reactive oxygen species (ROS),

also plays a key role in the development of NAFLD. NADPH

Oxidase (NOX) enzymes are the main producers of ROS, and it

has been shown that their increased activity is linked to NAFLD

and insulin resistance due to hepatic lipid overload (31, 32).

Also, it is known that obesity and unhealthy food habits lead to

excessive production of ROS by creating an imbalance between

ROS production and elimination, and therefore participate even

more in the development of insulin resistance and liver tissue

damage participating in the vicious cycle (31). Subjects with
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NAFLD have in general lower plasma adiponectin

concentrations than individuals without NAFLD and it is

known that adiponectin plays an anti-inflammatory role and

improves hepatic insulin sensitivity (33).

In T1D, it has been shown that insulin resistance and obesity

are increasing with time and these described mechanisms in

T2D may be likely to occur in T1D (6). Since T1D only relies on

exogenous insulin subcutaneous administration, one of the

factors influencing the pathophysiology of NAFLD

development in these individuals is the altered dynamic of

insulin delivery and of insulin clearance. Hyperinsulinemia in

patients with NAFLD appears to be much more correlated with

impaired insulin clearance than with increased insulin secretion

(34). A recent study assessed the role of metabolic determinants

of NAFLD in T1D individuals. Poor glycemic control (HbA1c >

7%) doubled the risk of NAFLD, and the prevalence in patients

with BMI > 25 kg/m2 was higher (66%) than the overall NAFLD

prevalence (47%). Interestingly, 37% of the lean individuals

(BMI < 25 kg/m2) had NAFLD and this was correlated with

total insulin dose. This study shows in patients with T1D the

potential importance of exogenous injected insulin and the

crucial impact of obesity in the development of NAFLD (35).

CEACAM1 (Carcinoembryonic antigen-related cell

adhesion molecule 1) is a cell transmembrane protein playing

a key role in insulin degradation and thus its clearance and is

abundantly found in hepatocytes to help regulation of insulin

homeostasis. CEACAM1 mediates excess insulin removal

through its phosphorylation induced by the ligand activated

insulin receptor to maintain normal insulinemia (36). There are

two main mechanisms that can compromise CEACAM1

phosphorylation and action: hyperinsulinemia and impaired

pulsatility of insulin secretion. As a reminder, it has been

known for a long time now that beta cells release insulin in

two phases: following blood glucose increase with a peak

secretion, then followed by a slower release to maximal

secretion levels until glycemia is back to normal (37).

Considering the importance of insulin secretion pulsatility for

CEACAM1’s efficiency to clear insulin, continuous high

insulinemia exposure not only downregulates insulin receptor
TABLE 1 Comparison of NAFLD Pathophysiology mechanisms between in T1D and T2D.

NAFLD pathophysiological mechanisms T1D T2D

Insulin resistance + +++

Altered dynamic of insulin delivery ++ –

Altered insulin clearance +++ +

Relative insulin resistance in hepatocytes ++ +++

SREBP and ChREBP activation by hyperglycemic state and high fructose intake + ++

Hyperglucagonemia and hepatic glucagon resistance (worsened by amylin deficiency) +++ –

Low GLP-1 blood concentration + ++
frontiers
(-: unlikely; +: not unlikely; ++: likely; +++: very likely). T1D, type 1 diabetes; T2D, type 2 diabetes; SREBP, sterol regulatory element-binding proteins; ChREBP, carbohydrate response
element-binding protein; GLP-1, glucagon-like peptide-1.
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density, but also downregulates insulin clearance, therefore

increasing insulinemia and insulin resistance. The less

variation in insulin concentration, the more insulin is needed

to be effective.

Poor glucose control leads to hyperglycemia which then

increases expression of GLUT-2, a glucose transporter in

hepatocytes. In this state of insulin resistance and

hyperinsulinemia with hyperglycemia, hepatic lipogenesis is

upregulated because of the increase of lipogenic substrate

(glucose) availability through GLUT-2 increase and because of

the lipogenic effect of insulin (de novo lipogenesis) (25). Because

of the high blood glucose level and insulin action, glycogen

synthesis is enhanced but when glycogen synthesis pathways are

saturated due to long-lasting hyperglycemia exposure, glucose is

shunted to lipogenic pathways thus favoring NAFLD

development (23, 38).

In T1D, subcutaneous insulin injections are required to

maintain normal blood glucose levels and it is unlikely that all

injected insulin reaches the liver through the portal vein as in

endogenous insulin production, then implying a relative state of

insulin resistance and increased insulin requirement (25, 39)

(23, 40).

Intrahepatic lipogenesis is enhanced by insulin notably by

increasing sterol regulatory element-binding proteins (SREBPs)

in hepatocytes and stimulating them (41). These proteins not

only help for cholesterol, free fatty acids, triglycerides and

phospholipids synthesis and uptake, but are also essential for

enzymes expression that are required for lipogenesis (42).

SREBP-1c protein, which is upregulated by hyperglycemia, is

crucial for glucokinase, liver-type pyruvate kinase (LPK), fatty

acid synthase (FAS), and acetyl-CoA-carboxylase (ACC)

expression, which all participate in the increase of lipogenesis

(43). LPK gene transcription is also stimulated by another

transcription factor called ChREBP (carbohydrate response

element-binding protein) but is only highly activated in

hyperglycemic state without the influence of insulinemia (44).

We can then hypothesize that SREBP and ChREBP are

important factors and contributors for the development of

NAFLD in T1D.

These factors are also activated by chronic fructose

consumption usually found in individuals with metabolic

syndrome and T2D (45). However, fructose consumption by

T1D individuals is very common given the potentially frequent

hypoglycemias experienced by these individuals. To correct their

low blood sugar level, they use sugar-rich beverages which are

often fructose-rich nutrients such as sodas/soft drinks, fruit

juices or processed food. This behavior can occur every day

for a lot of T1D and contribute not only to weight gain or

obesity, but also to the activation of lipogenesis leading therefore

to NAFLD susceptibility (40, 46).

T1D is also associated with other pancreatic hormones

abnormalities such as hyperglucagonemia. Glucagon is a

hormone secreted by alpha cells to counteract the effects of
Frontiers in Endocrinology 05
6665
insulin to stabilize blood glucose level. It is usually suppressed by

hyperglycemia and by paracrine insulin production but not by

exogenous insulin administration, explaining in part

hyperglucagonemia seen in T1D (47). Another cause of

hyperglucagonemia in T1D is the lack of amylin secretion

usually produced by beta cells simultaneously with insulin in

response to nutrient stimuli. Amylin suppresses glucagon

production in response to postprandial glucose increase,

avoiding hepatic glucose production, and slows gastric

emptying, avoiding glucose excursions (48). In normal

individuals, glucagon increases hepatic lipolysis with free fatty

acids oxidation, and suppresses lipogenesis, thus having likely a

protective effect against fat accumulation in the liver (49).

Nonetheless, hepatic glucagon resistance has been found in

patients with NAFLD, thereby promoting fat accumulation in

the liver and hyperglycemia through lack of neoglucogenesis

inhibition (50). Therefore, hyperglucagonemia found in T1D

could contribute to the development and worsening of NAFLD,

although there is not enough evidence yet.

Another hormone that rose a lot of interest these recent

years is glucagon-like peptide-1 (GLP-1). GLP-1 is an incretin

hormone secreted by intestinal L cells upon food intake with

effects on satiety, glycemia and gastric emptying. It has been

shown that GLP-1 agonists reduce liver fat accumulation and

reduce NASH activity (51). GLP-1 agonists have also shown to

upregulate CEACAM1 transcription, thus increasing insulin

clearance, which helps protecting the liver from insulin

resistance and from fat deposition (36). In some studies, GLP-

1 blood concentrations have been shown to be lower in patients

with T1D and as such could also be one of the factors

contributing to NAFLD development (40, 52–54). This

hypothesis should be further studied since other work seems

to support the fact that there is no significant difference in GLP-1

blood concentrations between T1D patients and the general

population (55, 56).
Glycogenic hepatopathy: A differential
diagnosis

One of the main differential diagnoses of NAFLD that can be

seen on imaging, especially ultrasonography, is glycogenic

hepatopathy. This is a rare condition characterized by the

accumulation of glycogen in the hepatocytes, mostly affecting

children and adolescents with poorly controlled T1D (25).

Initially, glycogenic hepatopathy was considered to be part of

Mauriac syndrome, which is a complication of badly controlled

T1D with delayed puberty, dwarfism, cushingoid features and

liver enlargement due to glycogen deposition (57). However,

glycogenic hepatopathy was later dissociated from Mauriac

syndrome and characterized by glycogen accumulation in

hepatocytes due to poor glycemic control without any other

features of Mauriac syndrome (58). To diagnose glycogenic
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hepatopathy, a liver biopsy is required (59). Imaging is also used

to help diagnose glycogenic hepatopathy, for example using

ultrasonography. The main difficulty with ultrasonography

remains its poor specificity due to similarities found in both

NAFLD and glycogenic hepatopathy even though both diseases

can coexist at the same time considering that their cause is

identical: poor glucose control (25). Since MRI can distinguish

fat from glycogen, it can be used to distinguish these two

pathologies much more efficiently than ultrasonography or

CT. To distinguish one from the other, there are some

biological and clinical characteristics that can help, such as

abdominal discomfort and elevation of liver enzymes, both

found more often in glycogenic hepatopathy (Table 2) (60).
Discussion

NAFLD in T1D has become a subject of interest these recent

years with more studies assessing a potential link between these

diseases, sinceNAFLDis a risingdisease thatwe still know little about

despitemore studies nowbeingpublished in thisfield.Nonetheless, it

seems very likely that there is a causative link between T1D and

NAFLD, and exploring this association with further studies will help

understand and treatNAFLD inT1D. It is not totally clear if patients

with T1D aremore susceptible to developNAFLDas studies seem to

be contradictory about whetherNAFLDprevalence in T1D is higher

than in the general population or not (3–5). Although most studies

seem to show a higher prevalence of NAFLD in T1D, further work

must be done to support this statement.

The main limitation of these studies assessing NAFLD

prevalence in T1D remains the diagnostic modality used. Since

the gold standard to diagnose NAFLD remains liver biopsy, but

is expensive and risky to perform in a large population and since

there is no blood biomarkers specific enough for NAFLD,

imaging diagnosis remains the best way to diagnose NAFLD

for now with multi parametric MRI being considered as a virtual

biopsy with great specificity and sensitivity (24). However, given

the cost of MRI, applying it to a large number of individuals will

be a limitation for further studies.
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NAFLD encompasses a whole spectrum of liver injuries

including NASH. However, there is currently very little data

on NASH prevalence in patients with T1D. It has been shown in

a study that NASH has been histologically diagnosed in 20.4% of

T1D individuals (10 out of 49 individuals) whereas it has been

diagnosed in 44.4% of the T2D individuals (20 out of 45

individuals) (61). The T1D cohort in this study was younger

but diabetes duration before liver biopsy was longer in the T2D

cohort. A recent study in 2021 compared 30 T1D patients with

37 T2D patients in order to assess the relationship between

hepatic energy metabolism and diabetes-related NAFLD. This

study showed that, as expected, T2D individuals had higher

hepatocellular lipid content (38% in T2D vs. 7% in T1D) and

higher insulin resistance despite similar glycemic control. The

follow-up after 5 years showed that hepatocellular lipid content

doubled in T2D individuals with an increase of visceral adipose

tissue, increasing the prevalence of NAFLD up to 70%. This was

correlated with insulin resistance, and hepatic energy

metabolism, estimated with gATP and inorganic phosphate

(Pi) concentrations, was impaired in both individuals but

significantly more in T2D individuals (17% vs. 10% in T1D).

Altogether, this study suggests that fat tissue mass and liver

mitochondria have an important role in the development of

NAFLD in patients with diabetes (62). This can suggest the

important role of excessive visceral adipose tissue in NAFLD and

NASH emergence. Since there is only little data regarding NASH

prevalence in T1D, further work is therefore required to

specifically address this question.

Another area yet to be explored is searching for biological blood

biomarkers that would be highly specific for NAFLD in T1D. A

potential candidate is CEACAM1, which is known to be

downregulated in NAFLD and upregulated with GLP-1 analogs

(36). CEACAM1, a transmembrane protein acting in hepatocytes to

get rid of insulin excess hence limiting insulin resistance, has been

shown to be lower in T1D and could be the link between NAFLD

and T1D (36). Another interesting biomarker that can help

diagnose NAFLD is an elevated alanine transaminase (ALT)

blood concentration. Indeed, elevated ALT concentration is

frequently encountered in T1D-associated NAFLD (63).
TABLE 2 Comparison between Glycogenic Hepatopathy and Non-Alcoholic Fatty Liver Disease (NAFLD).

Glycogenic Hepatopathy Non-Alcoholic Fatty Liver Disease

Age at onset Mostly children and adolescents Mostly Adults

Uncontrolled T1D with extremely poor glucose control Yes Not necessarily

Symptoms Present (abdominal discomfort) Uncommon

Signs Tender hepatomegaly Ascites in advanced NAFLD

Liver Enzymes Mild to severe elevation No or mild elevation (mostly alanine transaminase)

Ultrasonography findings Hyperechogenic: due to glycogen deposition Hyperechogenic: due to fat deposition

Magnetic Resonance Imaging findings Absence of steatosis (no difference in intensities) Presence of steatosis (difference in intensities)

Diagnosis: Gold Standard Histology (liver biopsy) Histology (liver biopsy)
T1D, type 1 diabetes.
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Nevertheless, elevated liver enzymes can have many causes and

raised liver enzymes are not necessarily present in NAFLD (25).

Since CEACAM1 plays a crucial role in insulin resistance and in

NAFLD development, we can hypothesize that pharmacologically

upregulating CEACAM1 could be a promising therapeutic

approach for the treatment of NAFLD in T1D. As described

above, GLP-1 analogs along with PPARg (peroxisome

proliferator-activated receptor g) agonists have both shown good

potential since they both increase CEACAM1 transcription. Other

potential therapeutic targets include molecules such as GIP (gastric

inhibitory polypeptide) analogs, which are also part of the incretin

hormones family like GLP-1 analogs, or a combination of both

GLP-1 analog and GIP analog such as the dual agonist tirzepatide.

Nevertheless, studies in this area are still needed to evaluate the

potential of this group of molecules on NAFLD, not only in T2D,

but also in T1D. Another potential therapy could be amylin analogs

since amylin in T1D is lacking and it was demonstrated that

pramlintide, a synthetic amylin analog, showed improvement in

metabolic control (25, 64). A retrospective analysis showed that

short-chain fatty acids can influence gut barrier health and have

positive effects not only on NAFLD, but also on T1D. Short-chain

fatty acids, especially butyrate, seem to prevent the destruction of

gut barrier by maintaining it and strengthening it. They also

participate in the regulation of gut microbiota and immune cells,

and for all these reasons short-chain fatty acids represent another

promising potential therapy for NAFLD and T1D (65).
Conclusion

There are several important points to keep in mind when it

comes to NAFLD and T1D: the diagnostic modality used for

NAFLD diagnosis is very important since NAFLD is difficult to

diagnose without histological analysis and conventional imaging

is often insufficient (24). Glycogenic hepatopathy is

radiologically similar to NAFLD mostly in ultrasonography

and it is important to remember the other differences that

help distinguish them, such as elevated liver enzymes and

abdominal discomfort, usually not found in NAFLD (28). New

imaging techniques such as multi parametric MRI show

promising results but remain costly and therefore represents a
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major limitation (24). Even though NAFLD in T1D can be partly

explained by the increase in obesity and metabolic syndrome in

T1D subjects, some other pathways different from the ones

found in metabolic syndrome and T2D may be the key to

understand the relation between T1D and NAFLD

development (25, 44, 46). Relative hepatic insulin resistance

caused by impaired insulin pulsatility and impaired insulin

clearance, as well as hyperglucagonemia, both play a crucial

role in NAFLD development and are both present in T1D (36,

47). GLP-1 agonists, amylin agonists and short-chain fatty acids

have shown promising results in the treatment of NAFLD but

must be further investigated, notably in T1D (51, 64, 65).
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Background: The prevalence of diabetes mellitus (DM) in Taiwan between

2017 and 2020 was 11.05%, which is higher than the global prevalence

(10.5%). Previous studies have shown that patients with DM have higher liver

enzyme levels than those without DM. However, it is unclear whether there

are sex di�erences in the association between incident DM and liver function.

Therefore, the aim of this longitudinal study was to investigate this issue in a

large Taiwanese cohort.

Methods: We identified 27,026 participants from the Taiwan Biobank, and

excluded those with baseline DM (n = 2,637), and those without follow-up

data on DM, serum fasting glucose or glycosylated hemoglobin A1c (n = 43).

The remaining 24,346 participants (male: 8,334; female: 16,012; mean age

50.5 ± 10.4 years) were enrolled and followed for a median of 4 years.

Results: Of the enrolled participants, 1,109 (4.6%) had incident DM and

23,237 (95.4%) did not. Multivariable analysis showed that high levels

of glutamic-oxaloacetic transaminase (AST) (p < 0.001), glutamic-pyruvic

transaminase (ALT) (p < 0.001), albumin (p = 0.003), α-fetoprotein (p = 0.019),

and gamma-glutamyl transpeptidase (GGT) (p = 0.001) were significantly

associatedwith incident DM in themale participants. In comparison, high levels

of AST (p = 0.010), ALT (p < 0.001), albumin (p = 0.001) and GGT (p < 0.001),

and low total bilirubin (p = 0.001) were significantly associated with incident

DM in the female participants. Therewere significant interactions between total

bilirubin and sex (p = 0.031), and GGT and sex (p = 0.011) on incident DM.

Conclusion: In conclusion, liver function parameters were significantly

associatedwith incident DM. Further, there were di�erences in the associations

between the male and female participants.
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Introduction

Diabetes mellitus (DM) is a heterogeneous group of

disorders characterized by hyperglycemia (1). Type 2 is the most

common form of DM, and is cause by multiple pathophysiologic

abnormalities. While insulin resistance in muscle/liver and β-

cell failure remain the core defects, dysfunction of adipocytes,

gastrointestinal tract, α-cells, kidney, and brain had also

been found to be important in development of glucose

intolerance in Type 2 DM population which form the

concept of ominous octet (2). The International Diabetes

Federation Diabetes Atlas estimated that the global prevalence

of DM in people aged 20–79 years in 2021 was 10.5%

(536.6 million people) (3). According to the Taiwan Health

Promotion Administration, the prevalence of DM in Taiwan

between 2017 and 2020 was 11.05%, which is higher than the

global prevalence (10.5%) (4). Common risk factors for DM

include overweight or obesity, high-risk race/ethnicity, history

of cardiovascular disease, hypertension, physical inactivity,

smoking and aging (5). The complications associated with

DM include microvascular (diabetic nephropathy, neuropathy,

and retinopathy), macrovascular (coronary artery disease,

cerebrovascular disease), andmiscellaneous types (6). The global

diabetes-related health expenditure was estimated to be USD 966

billion in 2021 (3), highlighting the importance of detecting the

potential risk factors for DM.

Liver function parameters could be classified to 3 main

categories according to their functions: (1) Detection of

hepatocellular injury such as glutamic-oxaloacetic transaminase

(AST), glutamic-pyruvic transaminase (ALT) and gamma-

glutamyl transpeptidase (GGT); (2) Liver’s biosynthetic capacity

such as albumin and α-fetoprotein (AFP); (3) Liver’s capacity

of transportation of the organic anions and to metabolize

drugs such as total serum bilirubin (7). In the first category,

detection of hepatocellular injury, marked elevations in ALT

levels suggest hepatocellular injury such as viral hepatitis,

ischemic liver injury and toxin-induced liver damage (8). AST

is present in a wide variety of tissues including the heart,

skeletal muscle, kidney, brain and liver, however it is not as

sensitive as ALT to detect hepatocellular injury (9). In addition,

an elevated GGT level may indicate liver diseases such as

acute viral hepatitis, chronic hepatitis C and non-alcoholic

fatty liver disease (NAFLD) (10), however it may also indicate

the presence of non-liver diseases such as uncomplicated DM,

acute pancreatitis and myocardial infarction (11). In the second

category, liver’s biosynthetic capacity, albumin is synthesized

in the liver and it is one of the most important proteins

in plasma. Since albumin is only synthesized in the liver, it

is a useful indicator of hepatic function, and a decrease in

albumin may indicate chronic liver disease or liver cirrhosis

(12). An elevated level of AFP may also indicate liver injury

and the early stages of chemical hepatocarcinogenesis (13),

so it can be an indicator of hepatocellular carcinoma (HCC).

In the last category, liver’s capacity of transportation of the

organic anions and to metabolize drugs, bilirubin is derived

from the breakdown of hemoglobin, and an elevated level of

the unconjugated form in the liver may suggest underlying liver

disease or hemolysis (8). Since the liver performs a variety of

functions, no single test is sufficient to completely evaluate its

function (7).

Previous studies showed that patients with abnormal liver

functions test were related to incident DM (14–17). However,

it is unclear whether there are sex differences in the association

between incident DM and liver function. Therefore, the aim of

this longitudinal study was to investigate sex differences in the

association between incident DM and liver function parameters

(AST, ALT, albumin, AFP, total bilirubin, and GGT) in a large

cohort derived from the Taiwan Biobank (TWB).

Materials and methods

TWB

The TWB is the largest biobank in Taiwan. It was established

by The Ministry of Health and Welfare with the goals of

promoting healthcare and preventing diseases, with a focus on

the aging population in Taiwan. The TWB collects health-related

data on∼200,000 healthy volunteers around Taiwan, as detailed

below (18, 19). Ethical approval for the TWB was granted by the

Ethics and Governance Council of the TWB and Institutional

Review Board (IRB) on Biomedical Science Research, Academia

Sinica, Taiwan.

The data collected by the TWB include body mass

index (BMI), age, sex, and the presence of hypertension

and DM. Fasting blood samples were obtained from all of

the patients, and laboratory tests were conducted using an

autoanalyzer (Roche Diagnostics GmbH, D-68298 Mannheim

COBAS Integra 400). Overnight fasting blood and urine tests are

also performed to collect data on uric acid, glucose, glycosylated

hemoglobin A1c (HbA1c), triglycerides, total cholesterol, high-

/low-density lipoprotein (HDL/LDL) cholesterol, estimated

glomerular filtration rate (eGFR) [using the MDRD equation

(20)], and liver function parameters (AST, ALT, albumin, AFP,

total bilirubin, and GGT).

Data on blood pressure (BP) are also obtained, with the

measurements made digitally by a TWB researcher three times

with a 1–2-min gap between measurements. The participants

are requested to avoid caffeine, exercise, and smoking for a

minimum of 30min prior to the measurements. Average systolic

and diastolic BPmeasurements were analyzed in this study. Data

on regular exercise, defined as ≥30min of physical activity ≥3

times a week, were also recorded. This study was conducted

according to the Declaration of Helsinki, and approved by the

IRB of Kaohsiung Medical University Hospital (KMUHIRB-

E(I)-20210058).
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Assessment of alcohol drinking and
cigarette smoking history

All the participants also underwent a face-to-face

interview with a researcher, during which they completed

a questionnaire asking about alcohol drinking and cigarette

smoking history. Subjects who had had smoked one cigarette

or more per day for at least 1 year were defined as ever-

smokers. Subjects who had drunk an alcoholic beverage,

including beer, liquor, wine or Chinese herd wine, more

than four times a week for at least 1 year were defined as

ever drinkers.

Participants

A total of 27,026 participants (male: 9,552; female: 17,474)

were identified in the TWB. The participants who enroll in

the TWB follow up after 2–4 years. Information, including a

questionnaire, physical examination and blood examination, is

collected upon first enrollment and second follow-up. Of whom

those with no follow-up data on DM, serum fasting glucose or

HbA1c (n = 43), and those with baseline DM (n = 2,637) were

excluded. The remaining 24,346 participants were enrolled and

followed for a median of 4 years (Figure 1). All of the enrolled

participants gave written informed consent.

FIGURE 1

Flowchart of study population.
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Definition of incident DM

Participants with no past history of DM (self-reported)

with a fasting glucose level <126 mg/dL and HbA1c <6.5%

were defined as not having DM. Incident DM was defined as

developing DM (self-reported, fasting glucose level≥126 mg/dL

or HbA1c ≥6.5%) during the follow-up period.

Statistical analysis

Statistical analysis was done using SPSS version 19 (IBM

Inc., Armonk, NY). Variables are shown as percentage or

mean (±SD). Continuous variables were compared using the

independent t-test, and categorical variables were compared

using the chi-square test. Multivariable logistic regression

analysis was used to examine associations between the

development of incident DM and the studied liver function

parameters (AST, ALT, albumin, AFP, total bilirubin, and GGT)

in the male and female participants. An interaction p in logistic

analysis was defined as: model disease (y) = x1 + x2 + x1 × x2

+ covariates; where x1× x2 is the interaction term, y= incident

DM, x1 = sex, and x2 = the studied liver function parameters.

The covariates were significant variables in univariable analysis.

Receiver operating characteristic (ROC) curves were assessed

the performance of the liver function parameters to identify

incident DM, and areas under the ROC curves (AUCs) were used

to assess their predictive ability. A two-tailed p-value < 0.05 was

considered statistically significant.

Results

Of the 24,346 enrolled participants (male: 8,334; female:

16,012; mean age, 50.5±10.4 years), 1,109 (4.6%) had incident

DM and 23,237 (95.4%) did not. The incidence rates of DMwere

5.7 and 4.0% in the males and females (p < 0.001), respectively.

Characteristics of the with and without
incident DM groups

The characteristics of the with and without incident DM

groups are shown in Table 1. The incident DM group had

a higher percentage of males, were older, had higher rates

of hypertension, smoking, alcohol drinking, menstruation (in

females), and higher systolic and diastolic BP, BMI, fasting

glucose, HbA1c, triglycerides, total cholesterol, uric acid and

LDL-cholesterol, and lower HDL-cholesterol and eGFR than the

without incident DM group. With regards to the liver function

parameters, the incident DM group had higher AST, higher ALT,

higher albumin, lower total bilirubin and higher GGT. However,

there was no significant difference in AFP.

Comparisons of liver function parameters
between the with and without incident
DM groups in the male and female
participants

The male participants with incident DM had higher AST,

ALT, AFP, and GGT, but lower total bilirubin than the male

participants without incident DM (Table 2). However, there

was no significant difference in albumin. In addition, the

female participants with incident DM had higher AST, ALT,

albumin, and GGT, but lower total bilirubin than the female

participants without incident DM. However, there was no

significant difference in AFP.

Associations among liver function
parameters with incident DM in the male
and female participants

Multivariable logistic regression analysis was performed

to examine associations among the liver function parameters

with incident DM by sex (Table 3). In the male participants,

after adjusting for age, hypertension, systolic and diastolic

BPs, smoking and alcohol history, BMI, triglycerides, total

cholesterol, LDL/HDL-cholesterol, eGFR and uric acid

(significant variables in Table 1), high AST (per 1 U/L; odds

ratio [OR], 1.013; 95% confidence interval [CI], 1.008–1.019; p

< 0.001), high ALT (per 1 U/L; OR, 1.009; 95% CI, 1.006–1.012;

p < 0.001), high albumin (per 1 g/dL; OR, 1.975; 95% CI,

1.254–3.110; p = 0.003), high AFP (per 1 g/mL; OR, 1.021;

95% CI, 1.003–1.039; p = 0.019), and high GGT (per 1 U/L;

OR, 1.003; 95% CI, 1.001–1.005; p = 0.001) were significantly

associated with incident DM. However, total bilirubin was not

associated with incident DM in the male participants. In the

female participants, after adjusting for the variables listed above

for the male participants plus menstruation status, high AST

(per 1 U/L; OR, 1.007; 95% CI, 1.002–1.012; p = 0.010), high

ALT (per 1 U/L; OR, 1.007; 95% CI, 1.003–1.010; p < 0.001),

high albumin (per 1 g/dL; OR, 2.018; 95% CI, 1.356–3.003; p

= 0.001), low total bilirubin (per 1 mg/dL; OR, 0.515; 95% CI,

0.348–0.762; p = 0.001), and high GGT (per 1 U/L; OR, 1.006;

95% CI, 1.004–1.009; p < 0.001) were significantly associated

with incident DM. However, AFP was not associated with

incident DM in the female participants.

Interactions among liver function
parameters and sex on incident DM

Significant interactions were found between total bilirubin

and sex (p = 0.031), and GGT and sex (p = 0.011) on incident

DM (Table 3).
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TABLE 1 Comparison of clinical characteristics among participants without or with incident DM.

Characteristics Incident DM (–)
(n = 23,237)

Incident DM (+)
(n = 1,109)

p

Age (year) 50.3± 10.4 54.7± 9.0 <0.001

Male gender (%) 33.8 42.9 <0.001

Hypertension (%) 10.2 25.5 <0.001

Systolic BP (mmHg) 116.1± 17.2 125.3± 17.7 < 0.001

Diastolic BP (mmHg) 72.0± 10.8 76.3± 10.6 <0.001

Smoking history (%) 24.5 31.1 <0.001

Alcohol history (%) 2.7 4.7 <0.001

Regular exercise habits (%) 47.6 48.7 0.493

BMI (kg/m2) 23.7± 3.4 26.1± 3.7 <0.001

Menstruation in female (%) 47.9 27.8 <0.001

Laboratory parameters

Fasting glucose (mg/dL) 91.7± 7.3 101.5± 10.0 <0.001

HbA1c (%) 5.6± 0.3 6.0± 0.3 <0.001

Triglyceride (mg/dL) 107.2± 72.6 159.3± 134.5 <0.001

Total cholesterol (mg/dL) 195.5± 34.8 203.1± 37.2 <0.001

HDL-cholesterol (mg/dL) 55.2± 13.2 48.7± 11.3 <0.001

LDL-cholesterol (mg/dL) 121.7± 31.1 128.9± 33.7 <0.001

eGFR (mL/min/1.73 m2) 109.6± 25.0 106.0± 24.0 <0.001

Uric acid (mg/dL) 5.4± 1.4 6.1± 1.5 <0.001

Liver function parameters

AST (U/L) 24.1± 10.9 28.3± 16.2 <0.001

ALT (U/L) 22.4± 17.9 31.6± 26.5 <0.001

Albumin (g/dL) 4.55± 0.23 4.58± 0.24 <0.001

AFP (ng/mL) 3.32± 6.50 3.41± 5.75 0.636

Total bilirubin (mg/dL) 0.67± 0.28 0.64± 0.27 0.003

GGT (U/L) 22.6± 26.5 33.9± 40.8 <0.001

DM, diabetes mellitus; BP, blood pressure; BMI, body mass index; HbA1c, glycosylated hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; eGFR, estimated

glomerular filtration rate; AST, glutamic-oxaloacetic transaminase; ALT, glutamic-pyruvic transaminase; AFP, α-fetoprotein; GGT, gamma-glutamyl transpeptidase.

Performance and predictive ability of the
liver function parameters to identify
incident DM

The AUCs of the liver function parameters to incident

DM in the male and female participants are shown in

Table 4. In the male participants, GGT had the highest AUC

(0.631), followed by ALT (0.617), AST (0.570) and total

bilirubin (0.472). Albumin and AFP were not significantly

associated with incident DM. In the female participants,

GGT also had the highest AUC (0.701), followed by ALT

(0.679), AST (0.614), total bilirubin (0.441), AFP (0.558) and

albumin (0.540).

Discussion

In this study, we investigated sex differences in the

associations between incident DM and liver function parameters

after a median 4-year follow-up period.We found that high AST,

ALT, albumin and GGT were associated with incident DM in

both sexes. However, high total bilirubin was only associated

with incident DM in the females, and high AFP was only

associated with incident DM in the males. Further, we found

significant interactions between total bilirubin and GGT and sex

on incident DM.

The first important finding of this study is that high AST,

ALT, albumin and GGT were associated with incident DM in
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TABLE 2 Comparison of clinical characteristics of the study participants classified by the presence of di�erent sex and incident DM.

Characteristics Male (n = 8,334) Female (n = 16,012)

Incidence of
DM (–)

(n = 7,858)

Incidence of
DM (+)
(n = 476)

p Incidence of
DM (–)

(n = 15,379)

Incidence of
DM (+)
(n = 633)

p

Age (year) 50.4± 11.0 53.9± 9.9 <0.001 50.3± 10.1 55.3± 8.3 <0.001

Hypertension (%) 14.3 29.0 <0.001 8.2 22.9 <0.001

Systolic BP (mmHg) 121.1± 16.0 126.4± 16.6 <0.001 113.5± 17.2 124.4± 18.5 <0.001

Diastolic BP (mmHg) 76.8± 10.4 79.2± 10.3 <0.001 69.6± 10.2 74.1± 10.3 <0.001

Smoking history (%) 57.9 64.3 0.006 7.5 6.2 0.201

Alcohol history (%) 6.8 10.5 0.002 0.7 0.3 0.446

Regular exercise habits (%) 48.4 45.6 0.228 47.2 51.0 0.061

Menstruation in female (%) – – – 47.9 27.8 <0.001

BMI (kg/m2) 24.8± 3.1 26.7± 3.6 <0.001 23.2± 3.4 25.7± 3.7 <0.001

Laboratory parameters

Fasting glucose (mg/dL) 93.9± 7.2 102.8± 9.8 <0.001 90.5± 7.0 100.5± 10.0 <0.001

HbA1c (%) 5.57± 0.33 6.01± 0.29 <0.001 5.54± 0.33 6.04± 0.28 <0.001

Triglyceride (mg/dL) 127.3± 90.8 181.9± 168.5 <0.001 96.9± 58.6 142.3± 95.4 <0.001

Total cholesterol (mg/dL) 192.4± 33.8 197.6± 38.1 0.001 197.1± 35.2 207.3± 36.0 <0.001

HDL-C (mg/dL) 48.8± 11.1 43.8± 8.9 <0.001 58.5± 13.0 52.4± 11.6 <0.001

LDL-C (mg/dL) 123.0± 30.8 126.3± 34.2 0.023 121.0± 31.3 130.9± 33.1 <0.001

eGFR (mL/min/1.73 m2) 99.2± 19.8 96.9± 20.6 0.018 114.9± 25.7 112.9± 24.1 0.041

Uric acid (mg/dL) 6.5± 1.3 6.9± 1.5 <0.001 4.9± 1.1 5.5± 1.1 <0.001

Liver function parameters

AST (U/L) 25.9± 11.3 30.1± 19.2 <0.001 23.2± 10.6 26.9± 13.4 <0.001

ALT (U/L) 27.4± 20.3 36.5± 31.5 <0.001 19.9± 16.0 28.0± 21.3 <0.001

Albumin (g/dL) 4.62± 0.23 4.63± 0.25 0.500 4.51± 0.22 4.54± 0.23 0.005

AFP (ng/mL) 3.14± 2.29 3.53± 8.60 0.007 3.41± 7.82 3.32± 1.52 0.255

Total bilirubin (mg/dL) 0.76± 0.32 0.73± 0.29 0.028 0.62± 0.24 0.58± 0.22 <0.001

GGT (U/L) 29.9± 36.3 41.5± 51.5 <0.001 18.9± 18.6 28.1± 29.1 <0.001

Abbreviations are the same as in Table 1.

both sexes. ALT is an enzyme primarily found in the liver, and it

is more closely related to hepatocellular injury or fat deposition

(21). Although AST is present in the liver, it is also present in

other organs including cardiac and skeletal muscles, kidneys

and brain, and it is less specific for hepatic damage then ALT

(22). The AST to ALT ratio has been use to discern the different

etiologies of hepatic injury (23). Previous studies have reported

associations between ALT and type 2 DM (24, 25). Ohlson et al.

(24) reported that an increase in ALT was associated with a

higher relative risk of incident DM inmiddle-aged Swedishmen.

Vozarova et al. (25) analyzed 451 Pima Indians, and found that

high ALT was an independent predictor of incident type 2 DM

after adjusting for age, sex, body fat, insulin sensitivity and acute

insulin response. In addition, Goessling et al. (26) reported that

both ALT and ASTwere associated with a greater risk of incident

DM after adjusting for baseline blood glucose and changes in

weight. Moreover, they also found that only ALT was associated

with incident DMwhen using normal values in the analysis (26).

Previous studies have also shown a close relationship between

NAFLD with type 2 DM (27). In patients with NAFLD, increases

in ALT and AST bymore than 2–5 times the normal limit and an

AST/ALT ratio<1 have consistently been reported, possibly due

to the effect of hepatocyte damage (23, 28). Another possible link

between DM and NAFLD may be due to insulin resistance and

visceral fat deposition, both of which can affect the regulation of

lipoprotein and glucose. Under conditions of increasing insulin

resistance, the downregulation of lipolysis by insulin can lead

to further adipose deposition on hepatocytes, thereby further
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TABLE 3 Association of liver function parameters with incident DM using multivariable logistic regression analysis in di�erent sex.

Liver function parameters Male (n = 8,334) Female (n = 16,012) Interaction p

Multivariable∗ Multivariable#

OR 95% CI p OR 95% CI p

AST (per 1 U/L) 1.013 1.008–1.019 <0.001 1.007 1.002–1.012 0.010 0.126

ALT (per 1 U/L) 1.009 1.006–1.012 <0.001 1.007 1.003–1.010 <0.001 0.315

Albumin (per 1 g/dL) 1.975 1.254–3.110 0.003 2.018 1.356–3.003 0.001 0.586

AFP (per 1 g/mL) 1.021 1.003–1.039 0.019 0.992 0.967–1.016 0.503 0.069

Total bilirubin (per 1 mg/dL) 0.941 0.688–1.288 0.706 0.515 0.348–0.762 0.001 0.031

GGT (per 1 U/L) 1.003 1.001–1.005 0.001 1.006 1.004–1.009 <0.001 0.011

Values expressed as odds ratio (OR) and 95% confidence interval (CI). Abbreviations are the same as in Table 1.
∗Adjusted for age, hypertension, systolic and diastolic blood pressures, smoking and alcohol history, body mass index, triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol,

eGFR and uric acid (significant variables in Table 1).
#Adjusted for age, hypertension, systolic and diastolic blood pressures, smoking and alcohol history, body mass index, triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol,

eGFR, uric acid and menstruation status (significant variables in Table 1).

TABLE 4 Area under curve of liver function parameters for incident DM of di�erent sex.

Liver function parameters Male (n = 8,334) Female (n = 16,012)

AUC 95% CI p AUC 95% CI p

AST 0.570 0.542–0.598 <0.001 0.614 0.591–0.636 <0.001

ALT 0.617 0.591–0.644 <0.001 0.679 0.658–0.699 <0.001

Albumin 0.515 0.488–0.542 0.273 0.540 0.517–0.563 0.001

AFP 0.516 0.490–0.542 0.230 0.558 0.536–0.579 <0.001

Total bilirubin 0.472 0.445–0.499 0.039 0.441 0.419–0.464 <0.001

GGT 0.631 0.605–0.656 <0.001 0.701 0.682–0.719 <0.001

Values expressed as area under curve (AUC) and 95% confidence interval (CI). Abbreviations are the same as in Table 1.

inducing steatosis (21). Taken together, these explanations may

partially explain our findings of associations between high AST

and ALT with incident DM.

Another key finding is that we found an association between

high albumin and incident DM in both sexes. Serum albumin is

mostly produced by the liver, and it accounts for around half

of all human plasma proteins. Albumin regulates the oncotic

pressure of blood and transports many small molecules (29).

A decrease in liver function may result in hypoalbuminemia,

which can lead to general edema, fluid loss to the third space,

and hyperlipidemia (30). Kunutsor et al. (16) found a nearly

linear independent positive association between type 2 DM

and serum albumin. In addition, Bae et al. (31) reported that

increased serum albumin was positively associated with insulin

resistance, but that it was not an independent factor for incident

DM. In contrast, Schmidt et al. (32) found that a low serum

albumin level was associated with an increased risk of type 2

DM among 12,330 men and women aged from 45 to 64 years.

Chang et al. (33) also found that a decrease in albumin level was

associated with an increased risk of type 2 DM, and the authors

attributed this result to a decrease in hepatic albumin synthesis

and increase in glycated albumin, which may increase oxidative

stress and inflammation. Although we found that high albumin

was associated with incident DM, further studies are needed to

clarify the underlying mechanisms.

High GGT was associated with incident DM in both sexes

in this study. GGT is an enzyme which catabolizes extracellular

glutathione, and it has been widely used as a parameter of

liver function. GGT is metabolized in the epithelial cells of the

intrahepatic duct, which play an important role in glutathione

equilibrium (34). An elevation in GGT has been linked to

greater oxidative stress due to increasing glutathione catabolism

(antioxidant agent), which may lead to ß-cell dysfunction and

a decrease in insulin activity (35). In a cross-sectional study

of 7,976 participants from the National Health and Nutrition

Examination Survey from 1999 to 2002, Sabanayagam et al.

(36) found that higher serum GGT levels were positively

associated with DM, independent of alcohol consumption,

BMI, hypertension and other confounders. Fraser et al. (14)

conducted a meta-analysis of 18 prospective population-based

studies, and also found a positive association between GGT and

incident DM. Kunutsor et al. (15) conducted another meta-

analysis of 24 cohort studies with 177,307 participants focusing

on the nature of the dose-response relationship between GGT
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and incident DM, and found a non-linear association between

GGT and the risk of type 2 DM in both sexes. Moreover, the

interactions between GGT and sex on incident DM were also

statistically significant. We found that high GGT was more

strongly associated with incident DM in the females than in

the males in our study. This could be explained from several

aspects. Previous studies have shown that GGT level may be

affected by estrogen, menopausal stage, and even the use of

oral contraceptives. Nilssen and Førde (37) found that starting

to use oral contraceptives and menopause were associated with

an increase in GGT level, and Serviddio et al. (38) found

that estrogen was negatively associated with glutathione. As a

catalyzer of glutathione, GGT may also be positively related to

the level of estrogen. Moreover, Wang et al. (39) found that the

association between elevated GGT and cardiovascular mortality

was stronger in females than in males. Hozawa et al. (40) also

found a strong positive association between elevated GGT and

cardiovascular mortality among Japanese women, but not in

men. Both studies concluded that their findings were due to

the high percentage of alcohol consumption in men, which may

also affect circulating oxidative stress. Female hormones and

excessive alcohol consumption in men may play an important

role, however the mechanisms underlying sex differences in the

association between GGT and incident DM are still not fully

understand, and further research is needed.

Another important finding of this study is the association

between high AFP with incident DM inmales but not in females.

AFP belongs to the family of serum albumins produced by

the yolk sac and fetal liver during fetal development (41). It

is usually at the highest level in infants, and then decreases to

normal range before 1 year of age (42). It is used to screen

for specific malignancies such as HCC (43) and developmental

abnormalities from maternal blood or amniotic fluid (44) in

current clinical practice. Moreover, the incidence and mortality

rates of HCC are higher in people with DM (45). Obesity is

an important risk factor shared between DM and HCC. The

pathogenesis is associated with lipid peroxidation, which can

lead to an increase in free radical oxidative stress (46) and

mutations of p53 tumor suppressor (47), which can both lead

to hepatic carcinogenesis (48). Moreover, obesity may cause

insulin resistance with hyperinsulinemia, further leading to an

increase in insulin-like growth factor-1 which then promotes

proliferation and inhibits apoptosis through receptor-mediated

pathways, resulting in hepatic carcinogenesis (49). Since the

prevalence of HCC is about 2–3 times higher in males compared

with females (43), this may explain why a higher AFP level was

only associated with incident DM in the males and not females.

Another possible explanation for the relationship between AFP

and incident DM may be related to metabolic syndrome, which

is related to the development of DM, cardiovascular disease,

and NAFLD. A possible mechanism for the association between

metabolic syndrome and elevated AFP may be due to insulin

resistance and fatty liver disease. Both are usually accompanied

with each other and theymay influence the hemostasis of hepatic

glucose, further leading to a chronic inflammatory status of the

liver (50).

The last important finding of this study is that low total

bilirubin was associated with incident DM in the females but

not in the males. Bilirubin is traditionally considered to be

derived from the breakdown of hemoglobin via normal catabolic

pathways, and it is clinically related to jaundice (51). However,

recent studies have shown that it is also a potential antioxidant

which is inversely related to a lower prevalence of oxidative

stress-mediated diseases (52). In a meta-analysis of cross-

sectional studies, Nano et al. (53) found an inverse association

between bilirubin level and type 2 DM. Several studies have

also revealed similar results of an inverse relationship between

serum bilirubin level and incident type 2 DM (17). In our

study, we found that bilirubin level was only significantly

inversely related to incident DM in the females but not in

the males. A possible explanation for this finding may be

related to different interactions between hormones and bilirubin

metabolism in males and females. Kao et al. (54) found that

estrogen may facilitate bilirubin metabolism in a regenerating

liver by enhancing the expression of cytochrome (CYP2A6).

Moreover, Muraca et al. found that hepatic bilirubin UDP-

glucuronosyltransferase activity, an enzyme that catalyzes the

conjugation of bilirubin and plays an important role in bilirubin

excretion, was higher in female than in male rats, but that

decreased enzyme activity in female rats and increased activity

in male rats were noted after gonadectomy. Therefore, the

excretion of bilirubin decreased in the female rats but increased

in the males rats after gonadectomy (55), which may partially

explain our findings. Another possible mechanism of differences

in the association between bilirubin and incident DM between

sex maybe related to difference of heme oxygenase (HO)

expression between male and female. HO is an enzyme play an

important role of heme catabolism to produce biliverdin, and

carbon monoxide and eventually increase bilirubin which is the

end product of heme catabolism (56). The HO system is related

to antioxidant and anti-apoptotic because of its byproducts,

bilirubin/biliverdin and carbonmonoxide (57). HO-1 is induced

by oxidant stress and plays a crucial role of antioxidant in

diabetes by improving insulin sensitivity, reduces adipose tissue

volume, and causes adipose tissue remodeling (58). An animal

study of rats found that trauma and hemorrhage induced

a twofold increase in hepatic HO-1 expression in proestrus

females compared with males (59). This may explain the

mechanism of differences in the association between bilirubin

and incident DM between sex.

The strengths of this study include that the analysis involved

a large cohort, and the comprehensive follow-up data to

analyze sex differences in the association between liver function

and incident DM. Despite these strengths, several limitations

should be noted. First, information on the presence/absence

of fatty liver, dietary issues, and certain medications (ex.
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renin-angiotensin-aldosterone system blockers, and statins)

which could affect the development or prevention of incident

DM is not available in the TWB, which may have resulted

in underestimation of the association between liver function

and incident DM. In addition, information on factors which

could lead to incident DM such as proteinuria is also not

available in the TWB. Another limitation is that we only enrolled

participants of Han ethnicity residing in Taiwan, and thus our

findings may not be generalizable to other ethnicities/areas.

Finally, sample bias may have been introduced, as only around

25% of participants in the TWB return for follow-up evaluations.

In conclusion, liver function parameters were significantly

associated with incident DM. Further, there were differences in

the associations between the male and female participants.
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Diet was less significant than
physical activity in the prognosis
of people with sarcopenia and
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associated fatty liver diseases:
Analysis of the National
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YuQing Lv1,2 and Ying Chang1,2*

1Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China, 2Hubei
Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of
Wuhan University, Wuhan, China
Background: Sarcopenia is prevalent in metabolic dysfunction-associated fatty

liver diseases (MAFLD), and the primary treatment for both diseases is lifestyle

modification. We studied how dietary components and physical activity affect

individuals with sarcopenia and MAFLD.

Materials and methods: We conducted a study utilizing National Health and

Nutrition Examination Survey (NHANES) III (1988–1994) data with Linked

Mortality file (through 2019). The diagnosis of fatty liver disease (FLD) was

based on ultrasound images revealing moderate and severe steatosis. Using

bioelectrical measures, sarcopenia was assessed. Using self-report data, dietary

intake and physical activity levels were evaluated.

Results: Among 12,259 participants, 2,473 presented with MAFLD, and 290 of

whom had sarcopenia. Higher levels of physical activity (odds ratio [OR] = 0.51

[0.36–0.95]) and calorie (OR = 0.58 [0.41–0.83]) intake reduced the likelihood of

sarcopenia in MAFLD patients. During a median follow-up period of 15.3 years,

1,164 MAFLD and 181 MAFLD patients with sarcopenia perished. Increased

activity levels improved the prognosis of patients with sarcopenia (Insufficiently

active, HR = 0.75 [0.58–0.97]; Active, HR = 0.64 [0.48–0.86]), which was

particularly pronounced in older patients.
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Conclusion: In the general population, hyperglycemia was highly related to

MAFLD prognosis. Physical inactivity and a protein-restricted diet corresponded

to sarcopenia, with physical inactivity being connected to poor outcomes.

Adding protein supplements would be beneficial for older people with

sarcopenia who are unable to exercise due to frailty, while the survival benefits

were negligible.
KEYWORDS

sarcopenia, MAFLD, mortality, physical activity, nutrition, NHANES
1 Introduction

Non-alcoholic fatty liver disease (NAFLD), initially defined as

fatty liver disease in the absence of significant alcohol intake and

other causes of steatosis, is a common liver disorder that is strongly

associated with features of the metabolic syndrome (1). With a

prevalence of approximately 25% in the general population,

NAFLD has emerged as a leading cause of advanced liver

disorders, posing an underestimated global healthcare burden (2).

However, the term “non-alcoholic” overemphasized the absence of

alcohol consumption while underemphasizing the significance of

metabolic factors, which are the primary drivers of the course of the

disease (3). It has been suggested that metabolic (dysfunction)-

associated fatty liver disease (MAFLD), which endorsed a list of

positive diagnostic criteria and offered a more comprehensive

description of its metabolic-related natural courses, may represent

the importance of metabolic risk factors and improve the detection

of the disease (4, 5). Despite the rising prevalence and increasing

impact of MAFLD (5, 6), there is an absence of approved

pharmacotherapy for this significant condition, whose treatment

remains limited to lifestyle modification (7, 8).

Sarcopenia is a geriatric syndrome characterized by

generalized loss of muscle mass and its function, and is

associated with adverse outcomes (9, 10). Since age-related

sarcopenia is inevitable, inactivity and poor diet can accelerate

the process. Physical inactivity may contribute to the

development of sarcopenia (11, 12), and an increase in
rtate aminotransferase;

index; CRP, C-reactive

e; FPG, fasting plasma

ycosylated hemoglobin;

yperlipidemia; HTN,

, homeostasis model

sistance; LDL-C, low-
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moderate-to-vigorous physical activity levels could potentially

prevent sarcopenia from developing (13). A cohort study

demonstrated that malnutrition is related to a fourfold

increased risk of developing sarcopenia over a four-year follow-

up period (14).Moreover, lean muscle mass in older individuals is

positively associated with protein consumption (15), where

insufficient protein intake and a lack of amino acid availability

contribute to deficits in muscle protein synthesis (16). Physical

exercise has a protective effect on muscle mass and function

maintenance, in comparison, the effect of supplemental nutrition

on muscle function is uncertain (17–19). A number of studies

have revealed that dietary supplements may enhance the benefit

of exercise training despite the relatively low quality of the

evidence (20); however, the existing evidence for nutrition

interventions is based on groups with varying ages, frailties,

and nutritional conditions, and the findings are inconsistent

(21, 22). Currently, large scale clinical trials are addressing the

role of exercise and nutritional interventions in the treatment of

sarcopenia, such as the European SPRINTT trial (NCT02582138)

(23). In addition to aforementioned variables, sarcopenia is

secondary with chronic illness, such as liver diseases, renal

diseases, inflammatory diseases, and malignancies (24). Recent

studies have observed a significantly higher prevalence of

sarcopenia among obese and NAFLD patients (25–27). Multiple

potential mechanisms evolved in the link between sarcopenia and

NAFLD, including insulin resistance, elevated inflammation,

myokines secreted by skeletal muscle, vitamin D deficiency and

physical inactivity, but the specific mechanism is yet unclear (28).

Lifestyle modification remains the first-line intervention for

fatty liver diseases (FLD), and a standard approach consists of a

7%–10% weight loss from baseline. Similarly, there are no approved

pharmacological treatment for sarcopenia. In liver cirrhosis, the

severity of sarcopenia increased as the liver disease progress (29),

which was primarily regarded as a sign of malnutrition and required

nutritional supplementation. However, these treatments had

minimal benefits for survival improvement (30).

The Third National Health and Nutrition Examination Survey

(NHANES III) was a well-designed population-based program,

collecting data from US adults from 1988 to 1994. In this context,

we aim to analyze the associations between diet, physical activity

and sarcopenic MAFLD using the population-based survey data.
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2 Material and methods

2.1 Data source and population

National Health and Nutrition Examination Survey (NHANES)

is a population-based survey program carried out by the National

Center for Health Statistics (NCHS), which aims to evaluate the

health and nutritional status of civilian, non-institutionalized

members in the US population (31). Our work is predicated on

the database of NHANES III (1988–1994) (32), which is the only

survey that recorded liver ultrasonography data using a Toshiba

Sonolayer SSA-90A and Toshiba video recorders (33). The steatosis

severity of participants was reevaluated and graded by experts

between 2009 and 2010, and FLD was defined as moderate or

severe hepatic steatosis based on hepatic ultrasound imaging.

Household interviews were conducted by qualified health

technicians utilizing a computer-assisted personal interview

system to collect data on demographic variables and health

history. Body mass index (BMI) was computed by dividing

weight in kilograms by height in meters squared, rounding to the

nearest decimal. The Linked Mortality Files (LMF) have been

updated with mortality follow-up data through December 31,

2019 (34). During the follow-up phase, respondents without

matched death records were presumed alive. Survival time was

counted from a subject who participated in the survey to death or

December 31, 2019. Informed consent was obtained from all

participants, and ethical approval was obtained from the NCHS

Ethics Review Board.

A total of 20,050 subjects were included in the NHANES III

survey. Among these subjects, 7,791 were excluded based on the

following criteria (1): missing data of BIA (n=4186); (2) missing

data of height or weight (n=25); (3) positive serologic markers for

hepatitis B (n=73) or C (n=348) virus; (4) patients with missing data

of liver ultrasounds (n=3159); After applying the above exclusion

criteria, we included 12,259 subjects aged 18 to 75 years, of which

2,473 were MAFLD patients, and 9,786 were non-MAFLD

patients (Figure 1).
2.2 Definition of MAFLD

MAFLD was diagnosed in individuals with FLD and any of the

following three medical conditions: overweight/obesity (body mass

index [BMI] ≥ 25 kg/m2), type 2 diabetes mellitus (T2DM), or the

existence of metabolic dysregulation (5). Metabolic dysregulation

was defined by the presence of at least two metabolic risk

abnormalities: (a) waist circumference ≥ 102 cm in men and ≥

88 cm in women; (b) blood pressure ≥ 130/85 mmHg or specific

drug treatment; (c) TG ≥ 150 mg/dL or specific drug treatment; (d)

HDL-C < 40 mg/dL for men and < 50 mg/dL for women; (e)

prediabetes (FPG = 100–125 mg/dL or HbA1c = 5.7%–6.4%); (f)

homeostasis model assessment of insulin resistance score (HOMA-

IR) ≥ 2.5; and/or (g) CRP > 2 mg/L. The classification of individuals

into MAFLD and non-MAFLD categories was based on

their diagnoses.
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2.3 Definition of sarcopenia

Following the recommendation of 2nd edition of European

Working Group on Sarcopenia in Older People (EWGSOP2), this

study employs bioelectrical impedance analysis (BIA) to diagnose

sarcopenia based on the existence of decreased muscle quantity or

quality (9). For the NHANES III database, BIA was measured as the

resistance at 50 kHz between the right wrist and ankle of a supine

participant using A Valhalla 1990B Bio-Resistance Body

Composit ion Analyzer (Valhal la Medical , San Diego,

California, USA).

Here, Skeletal muscle mass (SMM) was calculated by BIA from

NHANES III database using Janssen’s equation: SMM (kg)= (height

in cm)2/BIA-resistance × 0.401 + (sex × 3.825) + (age in years ×

−0.071) + 5.102, where BIA-resistance is measured in ohms, and sex

is encoded as 1 for male and 0 for female (35). Using the following

formula, skeletal muscle mass index (SMI) was calculated: SMI =

skeletal muscle mass in kg/body weight in kg × 100. Participants

were considered to have sarcopenia if their SMI was more than two

standard deviation below the sex-specific mean for young adults

aged 18 to 39 (9, 35).
2.4 Physical activity level

Physical activity questionnaires were given at a home interview

for all participants, inquiring about the frequency of leisure time

activities (walking, running or jogging, riding, swimming, aerobics,

dancing, etc.) in the previous month. The intensity of each activity

was evaluated by metabolic equivalent (MET) based on the criteria

from the Compendium of Physical Activities (36), which defines

one MET as the energy expended at resting metabolic rate.

The NHANES III datasets collected information on the

intensity rating and frequency of each individual’s daily physical

activity. The activities are classified into moderate (METs ranging

from 3 to 6) and vigorous (METs above 6) categories based on their
FIGURE 1

Flow Chart of Participants for the Study.
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intensity rates. Active group was characterized as those who

engaged in moderate or vigorous activity at least five or three

times per week. The inactive group was defined as those who

participate in no physical activity during their leisure time. The

insufficiently active group fell in the middle between active and

inactive levels of physical activity (37, 38).
2.5 Ascertainment of nutrient
components intake

A nutritional interview comprising a 24-hour recall of dietary

intake was conducted, with participants providing information on

specific foods and quantities. Following the instruction of the

Nutrient Composition Data Bank, the grams of nutrient

components (carbohydrate, protein, fat, cholesterol, saturated

fatty acids, monounsaturated fatty acid, and polyunsaturated fatty

acid) were recorded and calculated.

In our study, the absolute quantity and percentage of energy

intake from each macronutrient were categorized into gender-

specific quartiles (Q1, Q2, Q3, and Q4). Additionally, the

contribution of carbohydrates, proteins, and fatty acids to the

overall amount of energy intake (% of total energy consumed)

was calculated. The quartile variables were modeled as dummy

variables, comparing each quartile to the lowest one (Q1).

In accordance with the American Gastroenterological

Association’s (AGA) guidelines for lifestyle modification for

NAFLD management, we further grouped individuals based on

their calorie and protein intake (7). The definition of a hypocaloric

diet was < 1200 kcal/day for women and < 1500 kcal/day for men.

In addition, the relative daily protein intake of participants was

graded as low (< 1.2 g/kg), adequate (1.2–1.5 g/kg), and high (> 1.5

g/kg) based upon recommendations for patients with sarcopenia.
2.6 Other definitions

Household interviews were conducted by skilled interviewers

utilizing a computer-assisted personal interview system to collect

data on demographic variables and health history. The data on body

measurements were gathered by qualified health technicians. Body

mass index (BMI) was computed by dividing weight in kilograms by

height in meters squared, and then rounding to the nearest decimal.

Participants were asked to fast for 9 hours before the blood sample

was collected. Serum insulin and plasma glucose concentrations

were measured by radioimmunoassay and a hexokinase enzymatic

array from fasting blood samples. The HOMA-IR score was

determined by the following formula: HOMA-IR = (Fasting

insulin in mIU/mL) × (Fasting glucose in mg/dL)/405 (39). In

addition, concentrations of alanine aminotransferase (ALT),

aspartate aminotransferase (AST), creatinine, gamma-glutamyl

transferase (GGT), total bilirubin, albumin, glycated hemoglobin

(HbA1c), low-density lipoprotein cholesterol (LDL-C), triglyceride

(TG), high-density lipoprotein cholesterol (HDL-C), and C-reactive

protein (CRP) were measured. Details of measurements are

available at http://www.cdc.gov/nchs/nhanes/index.htm.
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T2DM was defined by a self-reported diabetic medical history,

an FPG ≥ 126 mg/dL, or an HbA1c of ≥ 6.5%. Hypertension (HTN)

was defined by self-reported medical history of HTN, systolic blood

pressure readings above 130 mmHg, or diastolic blood pressure

measures above 80 mmHg from an average of 3 measurements.

Hyperlipidemia (HL) was defined by a reported history of HL,

cholesterol ≥ 200 mg/dL, LDL-C ≥ 130 mg/dL, or HDL-C ≤ 40 mg/

dL for men and ≤ 50 mg/dL for women.

NAFLD Fibrosis Score (NFS) score is a non-invasive method to

separate NAFLD patients with and without advanced fibrosis,

calculated as: NFS = -1.675 + (0.037 × Age in years) + (0.094 ×

BMI in kg/m2) + (1.13 × Impaired fasting glucose or diabetes) +

(0.99 × AST in U/L/ALT in U/L) – (0.013 × Platelets in ×109/L) –

(0.66 × Albumin in g/dL), where impaired fasting glucose/diabetes

is encoded as 1 and 0 for participants with or without abnormal

fasting glucose (40). Fibrosis-4 (FIB-4) index was designed to

predict significant fibrosis in a simple equation: (Age in years ×

AST in U/L)/(Platelets in ×109/L × ALT0.5 in U/L) (41). Advanced

fibrosis was determined by a NFS > 0.675 (40) or Fibrosis-4 (FIB-4)

index > 2.67 (41).
2.7 Statistical analysis

We compared the baseline characteristics of MAFLD and non-

MAFLD participants using data from NHANES III. Continuous

variables were expressed as means ± standard deviation (SD), while

categorical variables were expressed as percentages. The Student t-

test was utilized for normally distributed variables, the Chi-squared

test for categorical variables, and the Mann-Whitney U-test for

non-normally distributed variables. Multivariate logistic regression

models adjusted for confounders were used to evaluate the

association between sarcopenia and other clinical covariates. In

tests of interaction, age (dichotomized into < 60 years and ≥ 60

years) modified the effect of sarcopenia, whereas gender did not

interact significantly with sarcopenia. Cox proportional hazards

models were developed to estimate hazard ratios (HR) and 95%

confidence intervals (CI) of risk factors for all-cause mortality in

participants with sarcopenia or MAFLD. Model 1 was adjusted for

age, sex, race, and BMI levels. Model 2 was adjusted for age, sex,

race, BMI levels, and the existence of advanced fibrosis. Model 3 was

adjusted for variables mentioned in model 2 with T2DM. Model 4

was adjusted for all variables in model 3 with other medical histories

(HTN, HL, smoking). No evident interactions betweenMAFLD and

sarcopenia were found (p > 0.05). All tests were two-tailed, and a p

value less than 0.05 was considered statistically significant. R 4.2.0

(https://www.r-project.org/) was used to conduct all analyses.
3 Results

3.1 Data characteristics

A total of 12,259 participants from NHANES III data sets were

included in this analysis, of whom 2,473 (20.2%) were diagnosed

with MAFLD (Figure 1). The included participants contained 5,862
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(47.8%) males aged 43.8 ± 15.9 years. Individuals with MAFLD had

a higher prevalence of sarcopenia than those without MAFLD

(11.7% vs. 3.0%), and this tendency persisted regardless of age,

sex, ethnicity, levels of physical activity, calorie consumption, and

liver fibrosis (Figure 2). The statistical differences between MAFLD

and non-MAFLD groups were listed in Table S3.

The demographic, laboratory, and lifestyle characteristics of

participants were demonstrated in Tables S1–2, categorized by the

presence of MAFLD and sarcopenia. Sarcopenia, with or without

MAFLD, was characterized by female gender, advanced age, and

central obesity. Moreover, self-report data demonstrated that those

with sarcopenia consumed fewer calories and engaged in less

physical activity than those without the condition.
3.2 Identify risk factors for sarcopenia
among MAFLD participants

The fully-adjusted logistic regression model showed that the

presence of MAFLD was associated with an increased risk of

sarcopenia (odds ratio [OR] = 1.38 [95% CI 1.11–1.73])

(Table 1). We then generated multivariate Logistic regression

models (adjusted for age, sex, and race) to identify sarcopenia-

related factors by calculating their ORs amongst the MAFLD

population. As shown in Table 2, sarcopenia was associated with

physical activity levels (active vs. inactive, OR=0.51 [95% CI 0.36–

0.95]), calorie intake (Q2 vs. Q1, OR = 0.58 [95% CI 0.41–0.83]),

carbohydrates (Q2 vs. Q1, OR = 0.54 [95% CI 0.37–0.76]), and fatty

acids (Q2 vs. Q1, OR = 0.62 [95% CI 0.44–0.89]) intake.

Ordinal logistic regressions were performed to further reveal the

relationship between sarcopenia and lifestyle factors. Sarcopenia was

significantly and negatively associated with higher levels of physical

activity (OR = 0.74 [95% CI 0.62–0.87]) (Table S4) and appropriate

relative protein intake (OR = 0.48 [95% CI 0.35–0.65]) (Table S5). In

contrast, there was no connection between sarcopenia and absolute

calorie, carbohydrates, protein, or fat consumption (Tables S6–7).
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3.3 All-cause mortality

Of the overall NHANES III cohort (1988–1994), 290 (2.37%)

patients presented with MAFLD and sarcopenia, of whom 181

(62.41%) individuals died after a median follow-up of 15.3 years.

Analyses of the relationships between MAFLD and sarcopenia

and all-cause mortality were conducted using Models 1 through 4,

which included age, sex, race, health behavior, and medical history

as adjustments (Table 3). The presence of sarcopenia was associated

with a poorer prognosis after modifications, whereas the presence of

MAFLD was unable to predict survival when a history of T2DMwas

added to the model (Models 3–4).

For the purpose of modifying the interaction between age and

sarcopenia, adjusted HRs calculated for individuals with sarcopenia

were split into two age groups (Table 4). Higher levels of activity

improved the survival of sarcopenia (Insufficiently active, HR = 0.75

[95% CI 0.58–0.97]; Active, HR=0.64 [95% CI 0.48–0.86), which

was more prominent in older patients. In both age categories,

adequate protein intake was not significantly associated with

long-term outcomes.

Diabetes had the greatest impact on the prognosis of persons

with MAFLD (HR = 1.84 [95% CI 1.59–2.12]), and increasing

activity levels also improved the survival (Insufficiently active, HR =

0.85 [95% CI 0.73–0.99]; Active, HR = 0.64 [95% CI 0.67–0.93]). A

daily protein intake of greater than 1.5 g/kg protein was associated

with a better prognosis in older MAFLD patients, but had no

significant effect on younger individuals (Table S8).
4 Discussion

In this study, we used data sets from NHANES III (1988–1994)

to investigate the clinical impact of dietary components and

physical activity on patients with sarcopenia and MAFLD,

revealing an increased incidence of sarcopenia in patients with

MAFLD. Decreased physical activity levels and insufficient protein
FIGURE 2

Prevalence of Sarcopenia among Participants with and without MAFLD. MAFLD, metabolic-associated fatty liver diseases..
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consumption may contribute to sarcopenia, with reduced physical

activity being related to unfavorable outcomes.

Sarcopenia is strongly age-related and primarily observed in

older people, while chronic diseases may induce sarcopenia in

younger individuals (42). Consistent with earlier studies that

demonstrated a positive correlation between NAFLD and

sarcopenia (43, 44), sarcopenia was more prevalent in MAFLD

than non-MAFLD participants (11.7% vs. 3.0%) in our study and

related to a higher mortality. Insulin resistance may function as the

main pathologic mechanism of MAFLD and sarcopenia. Insulin

could activate the mammalian target of rapamycin (mTOR) and

enhance its downstream effectors, 4E-binding protein 1 and

ribosomal S6 kinase 1, mediating skeletal muscle anabolism and

maintaining muscle mass (45). Impaired insulin sensitivity may

interrupt the glucose metabolism and result in excess glucose

conversion to triacylglycerol in the liver, which also leads to

hepatic insulin resistance. Other factors, such as chronic

inflammation, hyperammonemia, alterations in sex hormones,

and insulin-like growth factor-1 signaling may also interfere with

the glucose disposal in skeletal muscles and lead to muscle loss (42,

46, 47), which helps to explain the co-existence of sarcopenia with

MAFLD. The impact of sarcopenia on the long-term prognosis of

MAFLD is anticipated to be substantial, since both sarcopenia and

liver fibrosis caused by MAFLD are independently associated with

increased risk of death from all causes (47).

Prior studies showed a strong interest in elucidating how

sarcopenia contributes to adverse outcomes in patients with

chronic liver diseases, particularly those with cirrhosis. Molecular

studies have shown that cirrhotic patients had an increase in muscle

cell autophagy (48) and a higher expression of myostatin that

inhibited mTOR signaling and suppressed protein synthesis (49).

Besides, hyperammonia, a common abnormality caused by liver
TABLE 1 Multivariate Analysis for Sarcopenia in overall population.

OR (95% CI) P-value

MAFLD 1.38 (1.11–1.73) 0.004

Age 1.06 (1.05–1.07) < 0.001

Male sex 1.37 (1.09–1.73) 0.006

Race

Black Reference

Hispanic 0.81 (0.61–1.07) 0.144

White 0.83 (0.64–1.09) 0.182

Others 0.62 (0.31–1.25) 0.181

BMI 1.34 (1.31–1.36) < 0.001

HbA1c 0.92 (0.85–0.99) 0.088

Physical activity

Inactive Reference

Insufficiently active 0.79 (0.61–1.03) 0.085

Active 0.71 (0.53–0.95) 0.02

Calorie a

Q1 Reference

Q2 0.84 (0.64–1.11) 0.226

Q3 0.82 (0.61–1.10) 0.177

Q4 0.61 (0.44–0.85) 0.003
aQ1: 0–1763 kcal in male, 0–1230 kcal in female; Q2: 1764–2365 kcal in male, 1231–1647 kcal
in female; Q3: 2366–3128 kcal in male, 1648–2148 kcal in female; Q4: >3128 kcal in male,
>2148 kcal in female.
MAFLD, metabolic dysfunction-associated fatty liver diseases; BMI, body mass index; HbA1c,
glycosylated hemoglobin.
TABLE 2 Age, Sex and Race-adjusted Odds Ratio (OR) for Sarcopenia in patients with and without MAFLD.

Covariates MAFLD Non-MAFLD

OR (95% CI) P-value OR (95% CI) P-value

Physical activity

Inactive Reference Reference

Insufficient 0.77 (0.57–1.04) 0.089 0.65 (0.49–0.87) 0.004

Active 0.51 (0.36–0.95) < 0.001 0.57 (0.42–0.77) < 0.001

Calorie a

Q1 Reference Reference

Q2 0.58 (0.41–0.83) 0.003 1.00 (0.73–1.36) 0.978

Q3 0.82 (0.58–1.14) 0.238 0.86 (0.61–1.21) 0.388

Q4 0.83 (0.58–1.20) 0.333 0.83 (0.57–1.20) 0.313

Protein b

Q1 Reference Reference

Q2 0.98 (0.70–1.38) 0.913 0.98 (0.71–1.34) 0.898

(Continued)
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dysfunction and portosystemic shunting, may contribute to both

myostatin upregulation and autophagy processes (48–50). In

addition to the detrimental impact of sarcopenia on cirrhosis,

additional investigation is needed to understand how sarcopenia

affects the prognosis of MAFLD. Moreover, we confirmed that

sarcopenia was an independent predictor of survival in individuals

either with or without MAFLD. Our research further revealed a

strong correlation between MAFLD and T2DM rather than severe

fibrosis, indicating that metabolic dysregulation was mainly

responsible for the unfavorable prognosis of MAFLD patients in

the general community.

Despite compelling evidence that sarcopenia is associated with

negative outcomes, no viable methods to reverse muscle mass loss

have been identified (51). Previous studies supported the hypothesis
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that physical activity can enhance the functional capacity of skeletal

muscle, but its effect on gaining muscle mass remained uncertain

(52). Here, we revealed that in patients diagnosed with sarcopenia,

increasing the intensity and frequency of exercises is linked to a

better prognosis, especially in the older population. Exercise may

boost the muscle accumulation by increasing hormone levels such

as testosterone (53) and insulin-like growth factor-1 (IGF-1) (54),

and it may promote mitochondrial biogenesis by inhibiting TNF-a
and various other molecular mechanisms. Exercise also upregulated

PGC-1a and Toll-like receptors downregulation that enhanced the

anti-inflammatory and anti-atrophy effects (55, 56). Autophagy

contributes to decreased synthesis and increased proteolysis of

skeletal muscle in patients with chronic liver diseases. Physical

exercise may rescue the impaired mTORC1 signaling by stimulating
TABLE 2 Continued

Covariates MAFLD Non-MAFLD

OR (95% CI) P-value OR (95% CI) P-value

Q3 0.83 (0.57–1.20) 0.325 0.85 (0.61–1.19) 0.335

Q4 1.04 (0.73–1.48) 0.838 0.94 (0.66–1.34) 0.729

Carbohydrates c

Q1 Reference Reference

Q2 0.53 (0.37–0.76) < 0.001 0.85 (0.61–1.17) 0.309

Q3 0.75 (0.53–1.05) 0.09 1.12 (0.82–1.53) 0.471

Q4 0.76 (0.53–1.08) 0.128 0.64 (0.43–0.94) 0.024

Fatty acids d

Q1 Reference Reference

Q2 0.62 (0.44–0.89) 0.009 1.01 (0.74–1.38) 0.949

Q3 0.89 (0.64–1.25) 0.503 0.86 (0.61–1.21) 0.387

Q4 0.82 (0.57–1.19) 0.297 1.02 (0.72–1.44) 0.928

Carbohydrates %

<40% Reference Reference

40%-59% 0.82 (0.60–1.13) 0.223 0.89 (0.65–1.22) 0.484

≥60% 0.85 (0.57–1.28) 0.434 1.04 (0.71–1.52) 0.832

Fatty acids %

<40% Reference Reference

≥40% 1.18 (0.89–1.57) 0.257 1.09 (0.83–1.43) 0.549

Relative protein intake < 0.001

< 1.2 g/kg Reference Reference

1.2–1.5 g/kg 0.28 (0.14–0.53) < 0.001 0.06 (0.03–0.14) < 0.001

>1.5 g/kg 0.39 (0.23–0.68) < 0.001 0.27 (0.17–0.43) < 0.001
aQ1: 0–1763 kcal in male, 0–1230 kcal in female; Q2: 1764–2365 kcal in male, 1231–1647 kcal in female; Q3: 2366–3128 kcal in male, 1648–2148 kcal in female; Q4: > 3128 kcal in male, >
2148 kcal in female.
bQ1: 0-64.0 g in male, 0-44.0 g in female; Q2: 64.1-89.2 g in male, 44.1-62.1 g in female; Q3: 89.3–121.0 g in male, 62.2-82.9 g in female; Q4: > 121.0 g in male, > 83.0 g in female.
cQ1: 0–203 g in male, 0–152 g in female; Q2: 204–280 g in male, 153–206 g in female; Q3: 281–371 g in male, 207–271 g in female; Q4: > 371 g in male, > 271 g in female.
dQ1: 0-58 g in male, 0-40 g in female; Q2: 59-87 g in male, 41-60 g in female; Q3: 88–124 g in male, 61-87 g in female; Q4: > 124 g in male, > 87 g in female.
Adjusted for age, sex, and race.
MAFLD, metabolic dysfunction-associated fatty liver diseases.
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phosphatidic acid (57), therefore maintaining muscle mass by

activating protein synthesis and inhibiting autophagy. As

resistance exercises were more effective at stimulating skeletal

muscle protein synthesis (58), the effect of different types of

exercise on preventing sarcopenia and improving survival

required more validation.

Given that physical activity was rather compromised in older

people by their frailty or diseases, a protein supplement was

considered a practical choice for preserving muscle mass (59,

60). Although older and younger individuals had similar rates of

protein turnover (61), elderly people have a more muted response

to administered amino acids than young people (62). Lower

mTOR and p70S6K concentrations (63), along with a

concurrent decline in positive regulators (such as IGF-1) and an

increase in negative regulators (such as AMPK) in older skeletal

muscle, may explain their resistance to amino acid feedings (64).

Some observational and cohort studies demonstrate that adequate

protein consumption is well tolerated without major adverse

events and can prevent muscle loss (65, 66), but there is

insufficient evidence to support the hypothesis that protein

intake can improve the long-term outcomes. Several randomized

controlled trials were performed in cirrhotic individuals with

sarcopenia; nevertheless, nutrition supplementation through

multiple routes had little influence on sarcopenia or survival
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(30). Supplemental hormone therapy and mechanistic targeted

treatments were produced as more precise treatments for

sarcopenia, necessi tat ing a clearer knowledge for its

pathophysiological process (51, 67).

This research has a few limitations. First, the diagnosis of FLD

was established by ultrasound images from NHANES III, but

fibrosis data were not available with ultrasound. In the absence of

liver stiffness measurement (LSM) results, advanced fibrosis was

determined by NFS and FIB-4 scores. The relationship between

MAFLD-related fibrosis and sarcopenia should be evaluated

further. Moreover, the NHANES III database was relatively

outdated in comparison to other NHANES survey cycles. Second,

we calculated the skeletal muscle mass using BIA measurements,

whereas dual-energy X-ray absorptiometry (DXA) is the primary

method for measuring body composition. Since sarcopenia is

defined as loss of both muscle mass and function, the NHANES

database does not contain muscle function measurements, such as

contractile strength, maintenance of contraction, and muscle

fatigue in response to persistent and repetitive contraction (68).

Finally, the mortality data came from a separate national database

that matched the NHANES III data, where the data on liver-

associated mortality was not available. Given the cross-sectional

nature of the NHANES database, the progression of liver diseases

cannot be determined.
TABLE 3 Hazard Ratios of Risk Factors for All-cause Mortality (Multiple Imputation Analysis).

Covariate Model 1 Model 2 Model 3 Model 4

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

MAFLD 1.11 (1.03–1.19) 0.007 1.11 (1.04–1.20) 0.003 1.05 (0.97–1.13) 0.209 1.03 (0.96–1.11) 0.427

Sarcopenia 1.18 (1.06–1.34) 0.003 1.17 (1.04–1.30) 0.009 1.16 (1.03–1.30) 0.013 1.14 (1.02–1.28) 0.025

Age 1.09 (1.09–1.09) < 0.001 1.09 (1.09–1.09) < 0.001 1.09 (1.08–1.09) < 0.001 1.09 (1.08–1.09) < 0.001

Male 1.46 (1.37–1.55) < 0.001 1.43 (1.35–1.52) < 0.001 1.46 (1.37–1.55) < 0.001 1.28 (1.20–1.37) < 0.001

Race

Black Reference Reference Reference Reference

Hispanic 0.69 (0.63–0.75) < 0.001 0.73 (0.67–0.80) < 0.001 0.70 (0.64–0.76) < 0.001 0.74 (0.67–0.80) < 0.001

White 0.81 (0.75–0.87) < 0.001 0.79 (0.74–0.86) < 0.001 0.82 (0.76–0.88) 0.002 0.83 (0.78–0.90) < 0.001

Others 0.55 (0.45–0.66) < 0.001 0.55 (0.46–0.67) < 0.001 0.55 (0.46–0.66) < 0.001 0.61 (0.50–0.73) < 0.001

Obesity

Normal Reference Reference Reference Reference

Obese 0.87 (0.86–0.93) < 0.001 0.90 (0.84–0.97) 0.005 0.87 (0.81–0.94) < 0.001 0.86 (0.80–0.93) <0.001

Overweight 1.03 (0.13–1.12) 0.409 1.10 (1.02–1.19) 0.014 1.03 (0.95–1.10) 0.503 0.99 (0.91–1.07) 0.767

Advanced fibrosis 1.33 (1.21–1.46) < 0.001 1.21 (1.10–1.33) < 0.001 1.22 (1.11–1.35) < 0.001

T2DM 2.00 (1.83–2.18) < 0.001 1.94 (1.77–2.11) < 0.001

HTN 1.30 (1.22–1.39) < 0.001

HL 0.92 (0.85–0.98) 0.017

Smoking 1.58 (1.48–1.69) < 0.001
Model 1 was adjusted for age, sex, race, and BMI levels. Model 2 was adjusted for age, sex, race, BMI levels, and the existence of advanced fibrosis. Model 3 was adjusted for age, sex, race, BMI
levels, advanced fibrosis, and T2DM. Model 4 was adjusted for age, sex, race, BMI levels, advanced fibrosis, T2DM, HTN, hypercholesterolemia, and history of smoking.
MAFLD, metabolic dysfunction-associated fatty liver diseases; BMI, body mass index; T2DM, Type 2 Diabetes; HL, hyperlipidemia; HTN, Hypertension.
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In summary, our data demonstrate that sarcopenia is more

prevalent and is associated with an increased risk of all-cause death

among MAFLD participants. MAFLD patients who suffer from

sarcopenia may benefit from physical activity and a proper intake of

proteins. Therefore, clinicians should recognize and manage

sarcopenia in patients with MAFLD in order to improve their life

quality and overall survival outcome.
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TABLE 4 Hazard Ratios of Risk Factors of Patients with Sarcopenia for All-cause Mortality, Stratified by Age.

Covariate Overall < 60 years ≥ 60 years

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Age 1.07 (1.06–1.08) < 0.001 1.07 (1.05–1.09) < 0.001 1.10 (1.06–1.13) < 0.001

Male 1.47 (1.15–1.88) 0.002 1.92 (1.28–2.88) 0.002 1.21 (0.87–1.67) 0.251

Race

Black Reference Reference Reference

Hispanic 0.87 (0.65–1.17) 0.353 0.87 (0.53–1.43) 0.581 0.85 (0.58–1.23) 0.383

White 0.98 (0.76–1.27) 0.896 0.78 (0.50–1.22) 0.276 1.14 (0.83–1.56) 0.435

Others 1.06 (0.46–2.48) 0.884 1.20 (0.35-4.08) 0.768 0.92 (0.28–3.08) 0.896

Physical activity

Inactive Reference Reference Reference

Insufficiently active 0.75 (0.58–0.97) 0.027 0.74 (0.45–1.02) 0.176 0.78 (0.57–1.08) 0.132

Active 0.64 (0.48–0.86) 0.003 0.80 (0.51–1.30) 0.392 0.60 (0.42–0.86) 0.006

Relative protein intake

< 1.2 g/kg Reference Reference Reference

1.2–1.5 g/kg 0.93 (0.43–1.99) 0.851 0.72 (0.26–2.00) 0.534 1.09 (0.34–3.51) 0.886

> 1.5g/kg 0.90 (0.56–1.45) 0.667 1.14 (0.57–2.29) 0.715 0.77 (0.40–1.49) 0.434

Cirrhosis 1.12 (0.86–1.45) 0.395 0.96 (0.60–1.56) 0.883 1.15 (0.84–1.59) 0.383
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HTN 1.12 (0.90–1.40) 0.311 1.31 (0.90–1.91) 0.165 1.00 (0.76–1.32) 0.983

HL 1.02 (0.80–1.31) 0.862 0.82 (0.52–1.31) 0.409 1.08 (0.79–1.47) 0.64

Smoking 1.40 (1.11–1.77) 0.004 1.36 (0.92–2.01) 0.123 1.54 (1.14–2.07) 0.005
Adjusted for age, sex, and race.
T2DM, Type 2 Diabetes; HL, hyperlipidemia; HTN, Hypertension.
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Background: Previous research has shown a tight relationship between the G0/

G1 switch gene 2 (G0S2) and metabolic diseases such as non-alcoholic fatty liver

disease (NAFLD) and obesity and diabetes, and insulin resistance has been shown

as the major risk factor for both NAFLD and T2DM. However, the mechanisms

underlying the relationship between G0S2 and insulin resistance remain

incompletely understood. Our study aimed to confirm the effect of G0S2 on

insulin resistance, and determine whether the insulin resistance in mice fed a

high-fat diet (HFD) results from G0S2 elevation.

Methods: In this study, we extracted livers from mice that consumed HFD and

received tail vein injections of AD-G0S2/Ad-LacZ, and performed a

proteomics analysis.

Results: Proteomic analysis revealed that there was a total of 125 differentially

expressed proteins (DEPs) (56 increased and 69 decreased proteins) among the

identified 3583 proteins. Functional enrichment analysis revealed that four insulin

signaling pathway-associated proteins were significantly upregulated and five

insulin signaling pathway -associated proteins were significantly downregulated.

Conclusion: These findings show that the DEPs, which were associated with

insulin resistance, are generally consistent with enhanced insulin resistance in

G0S2 overexpression mice. Collectively, this study demonstrates that G0S2 may

be a potential target gene for the treatment of obesity, NAFLD, and diabetes.
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Introduction

The increasing incidence of metabolic diseases such as obesity,

type 2 diabetes mellitus (T2DM), dyslipidemia, and nonalcoholic

fatty liver disease (NAFLD) that are triggered by metabolic

derangements has been a subject of serious concern worldwide in

the past few decades. The systemic metabolic dyshomeostasis

caused by impaired insulin signaling is a hallmark of metabolic

disease (1, 2). The overabundance of circulating fatty acids lead to

insulin resistance, and the aggravation of insulin resistance can

further inhibit the antilipolytic effect of insulin and increase

lipolysis. The decrease in fatty acid oxidation and increase in

cytosolic levels of free fatty acids increases the overall risk of

T2DM. The accumulation of lipids in the liver leads to hepatic

insulin resistance and NAFLD Therefore, insulin resistance is the

most important etiological factor of metabolic disorders (3, 4).

Accumulating evidence has shown that simultaneous presence of

obesity, NAFLD, and type 2 diabetes mellitus (T2DM) is frequently

observed and acts synergistically, resulting in an increased risk of

hepatic and cardiovascular clinical outcomes (5–7).

The G0/G1 switch gene 2 (G0S2), also known as the lipolytic

inhibitor, was originally identified in lymphocytes during the phase

of G0 to G1 cell cycle transition that is associated with

pharmaceutical stimulation (8, 9). G0S2 encodes a small 12-kDa

protein and is abundantly expressed in the liver, adipose tissue,

heart, and skeletal muscle (10, 11). In humans and mice, G0S2 is a

multifaceted protein and has been shown to play various important

roles in metabolism (9, 10). G0S2 mediates endoplasmic reticulum

stress-induced metabolism dysfunction in mice models with

metabolic disorders through the PERK-eIF2a-ATF4 pathway

(12). As the rate limiting step in fat catabolism, G0S2 knockout

mice shows enhanced lipid metabolism, enhanced thermogenesis,

and improved insulin sensitivity (13).

The liver is one of the primary metabolic organs involved in

energy homeostasis and glycolipid metabolism and disposes off as

much as one-third of the glucose and lipid load (14). Insulin

resistance is a primary characteristic and underlying cause of

metabolic disorders, including non-alcoholic fatty liver disease

(NAFLD) (15). Liver insulin resistance in NAFLD increase the

risk for metabolic diseases such as T2DM (16, 17). It has been

shown that insulin resistance in adipose tissue contributes to

excessive release of fatty acids into the bloodstream, which are

taken up by the liver, resulting in liver insulin resistance and

NAFLD through dysregulated lipolysis (18–20). It has been

revealed that loss of liver glycogen synthesis, which promotes and

diverts glucose toward fat synthesis, is the result of liver insulin

resistance. G0S2 plays an important role in inducing hepatic

steatosis through downregulation of UPR signaling, while

regulating lipolysis and energy metabolism by inhibiting adipose

triglyceride lipase (ATGL) (14, 21). G0S2 has been shown to exert

significant influence on the metabolism of liver lipids, while it has

been shown that lipid metabolism has a close relationship with

insulin sensitivity (15–17). G0S2 expression was upregulated in the
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hepatocytes of Nagoya-Shibata-Yasuda (NSY) mice fed with high-

sucrose diet (22). G0S2 can modulate the lipolysis process by

interacting with ATGL, and the level of G0S2 is upregulated in

the occurrence of fatty liver disease in mice (9, 14). Thus far, the

precise underlying mechanisms of G0S2 in the regulation of insulin

resistance-related NAFLD are still unknown. To reveal the

mechanism of G0S2 in NAFLD, we performed a preliminary

study of proteomic analysis of livers taken from G0S2-

overexpressed mice fed high-fat diet (HFD) and control mice fed

HFD by using quantitative proteomics, GO analysis, and KEGG

analysis. This study shows that overexpression of the G0S2 gene

aggravates liver insulin resistance of mice through upregulating P-

Foxo1, Socs3, and Ptpn1 and downregulating Gstp1 and Ppar-g,
which demonstrates that G0S2 may be a potential target gene for the

treatment of NAFLD, obesity, and diabetes.
Materials and methods

Animal models

Eight-week-old male C57BL/6 mice were used in this study. The

mice were housed in microisolator cages in a specific pathogen-free

(SPF) animal room maintained at a controlled environment of

temperature of 22 ± 2°C and humidity of 55%, under a 12-h light/

dark cycle. Mice had ad libitum access to water and high-fat diet

(HFD) (protein, 20 kcal%; fat, 45 cal%; carbohydrates, 35 kcal%,

D12451, Research Diets, New Brunswick, NJ, USA) for 12 weeks.

We selected the mice in G0S2 overexpression group to receive tail

vein injections of Ad-G0S2 (2.51×1010 PFU/mL), and the control

mice were injected with Ad-LacZ (4.5×1010 PFU/mL) via the tail

vein as control. Following the operation, all mice continued on the

existing diet for 4 weeks. Body weight and glucose tolerance levels

were monitored routinely. At the end point, mice were euthanized

to minimize suffering, and the livers were extracted, frozen, and

stored in liquid nitrogen. All animal experiments in this protocol

were approved by The Animal Care and Use Committee of

Shandong Provincial Hospital.

Body weight was measured at the same time every week during

the experiments. For the glucose tolerance test (GTT) and insulin

tolerance test (ITT), mice were fasted for 6 h, and blood glucose was

measured after intraperitoneal injection of glucose (2 g/kg body

weight) and insulin (0.75 U/kg body weight), respectively. Blood

glucose levels were measured at 15, 30, 60, 90, and 120 minutes after

the glucose or insulin injection.
Tissue sample preparation

To the lysis samples, the SDT buffer (4% SDS, 100 mM Tris-

HCl, 1 mM DTT, pH 7.6) was added to the liver tissues, and an

Automated Homogenizer (MP Fastprep-24, 6.0M/S, 30S) was used

to homogenize the lysate twice. Boiling, centrifugation, and
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filtration were used to extract the homogenate supernatant. The

amount of protein was quantified as previously described (23). The

protein extracts were digested with trypsin based on a filter-aided

sample preparation (FASP) procedure (24). Next, 12.5% SDS-

PAGE was used to separate the proteins, and Coomassie Blue R-

250 staining was used to visualize the protein bands (25).
Label-free LC-MS/MS analysis

LC-MS/MS analysis was performed on a Nanoelute HPLC

system (Bruker Daltonics) coupled with a timsTOF Pro mass

spectrometer (Bruker) for 60, 120, and 240 min. The mass

spectrometer was operated as described in previous studies (26).
Protein identification and quantification

MaxQu an t s o f tw a r e ( v e r s i o n 1 . 6 . 1 4 ) a n d t h e

Swissport_Mus_Musculus_17063_20210106 in Fasta were used to

analyze the MS data (27). Trypsin/P was specified as the cleavage

enzyme. The maximum number of missed cleavages were 2.

Carbamidomethyl (C) was defined as fixed modification, while

the oxidation (M) of methionine and the acetylation of the N-

terminus of the protein was specified as variable modification. The

global false discovery rate (FDR) of peptide and protein

identification was <0.01. As for the experimental bias, the

calculation of protein abundance was normalized by the spectral

protein intensity (LFQ intensity). Proteins with a fold change >1.5

or <0.669 and p value (Student’s t-test) <0.05 were considered

differentially expressed proteins (28–30).
Protein functional classification and
database search

All differentially expressed proteins’ (DEPs) sequence

information was aligned to the Homo Sapiens reference

sequence (NCBIBLAST-2.2 .28+-win32.exe) . Blast2GO

Command Line was used to complete the annotation from GO

terms to proteins. The InterProScan was used to search the EBI

database, and it also added functional information of motif to the

proteins. The number of DEPs and total proteins correlated to GO

terms was compared by Fisher’s exact test to enrich the GO terms,

and generate hierarchical clustering heat maps. Fold change

>1.5 and the corrected p-value <0.05 is considered significant in

GO (31–33).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment annotation of proteins was performed using

the database (https://geneontology.org/). The enrichment of DEPs

against all identified proteins were identified by Fisher’s exact test,

and a corrected p value <0.05 was considered to be enriched

significantly. The annotation of proteins were matched into the
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database. Online tool KEGG mapper was used to classify these

pathways into hierarchical categories.

The protein–protein interaction (PPI) network analysis of the

DEPs were searched from IntAct molecular interaction database

(https://www.ebi.ac.uk/intact/) or STRING software (https://

www.string-db.org/) (version 11.5). The results were downloaded

in the XGMML format, and Cytoscape software (https://

www.cytoscape.org/, version 3.2.1) was used to visualize and

further analyze functional PPI networks (34).
Real-time reverse transcription-polymerase
chain reaction (qRT-PCR)

Total RNA was isolated from liver tissue with TRIzol Reagent

(Invitrogen, Carlsbad, CA, United States) and PrimeScript reagent

(TaKaRa, Kusatsu, Japan) was used to reverse transcribe into

cDNA according to the manufacturer’s instructions. To analyze

the target genes’ relative mRNA expression, SYBR Green PCR

Master Mix Reagent Kit (Yeasen, Shanghai, China) was used to

perform real time qPCR using the Roche 480 detection system.

The relative mRNA expression levels were normalized by

GAPDH, and 2 -△△Ct me thod was pe r f o rmed to

calculate the results. The primer sequences used are listed in

Supplementary Table 2.
Western blot analysis

RIPA buffer containing PMSF and phosphatase inhibitor was

used to lyse mice liver tissues to extract total protein. After

centrifugation at 12000 ×g for 15 min, the supernatant was used

to measure total protein concentration by BCA method. We used

10% and 12.5% SDS-PAGE gels in the experiment, respectively,

based on the molecular weights of the proteins of interest, and then

transferred onto a PVDF membrane. The membranes containing

proteins were incubated with primary antibodies overnight at 4°C,

followed by incubation at room temperature for 1 h with the

secondary antibody. The Enhanced Chemiluminescene Plus

imaging system was used to detect the protein–antibody

immune complexes.
Antibodies

Anti-FOXO1 antibody (GB11286), Anti-Phospho-FOXO1

antibody (GB113974), Anti-PPAR gamma antibody (GB112205),

Anti-SOCS3 antibody (GB113792) and b-actin antibody (GB15003)
were purchased from Servicebio Technology (Wuhan, China); Anti-

GSTP1(PTM-5992) antibody and Anti-PTPN1(PTM-6344)

antibody were obtained from PTM BIO (Suzhou, China); Anti-

G0S2 antibody (A9970), b-actin antibody (AC004), b-tubulin
antibody and Hsp90a antibody were purchased from ABclonal

(Wuhan, China).
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Primary mouse hepatocyte isolation

and culture

Primary hepatocytes were isolated from G0S2 normal

expression mice (HFD) and G0S2 overexpression mice (HFD

+G0S2 overexpress) as previously described (35). The isolated

primary hepatocytes were cultured in DMEM with 10% fetal

bovine serum overnight. After attachment, cells were incubated in

Dulbecco’s modified Eagle medium with 0.1 mM insulin or without

insulin for 1 h (36).
Statistical analyses

All data were expressed as the mean ± SD values. Significant

differences between the two groups were assessed using an unpaired

Student’s t-test, while comparisons among multiple groups were

conducted using one-way ANOVA analysis, both performed with
Frontiers in Endocrinology 049796
GraphPad Prism 8.0. P<0.05 was considered to indicate statistically

significant differences. The experiment was repeated three times,

using three independent batches of mice and three independent

mice in each group.
Results

G0S2 increased HFD-induced obesity and
insulin resistance

To address the effects of G0S2 on HFD-fed mice, we injected

Ad-G0S2 in vivo, directly through the tail vein and continued the

HFD for 4 weeks. However, control mice received a vehicle.

Compared with control mice, the fasting body weight of G0S2

overexpression mice was significantly increased (Figure 1A).

Furthermore, the assays of the GTT and ITT indicated that G0S2

aggravated insulin resistance (Figures 1B, C). We examined the

hepatic mRNA and protein levels of the G0S2 gene in both groups
A B

D

C

FIGURE 1

G0S2 increased HFD-induced obesity and insulin resistance. (A) Fasting body weight of mice in G0S2 normal expression group (HFD) and G0S2
overexpression group (HFD+G0S2 overexpress). (B, C) Representative GTT (B) and ITT (C) results of mice in the two given groups. (D) Western blot
and RT-PCR were used to analyze the levels of G0S2 gene in mice that did and did not receive tail vein injections of Ad-G0S2 after HFD feeding for
16 weeks in all. *P<0.05; **P<0.01 compared with HFD-vehicle mice.
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by RT-PCR and western blot method. The results showed G0S2

overexpression of mice upregulation of G0S2 genes (Figure 1D).

These data indicate that the G0S2 overexpression of the mouse

model was established successfully.
G0S2 overexpression induces
differential protein expression in
the HFD-diet mouse liver

Insulin resistance is strongly associated with NAFLD (16).

Deletion of the G0S2 gene alleviates HFD-induced NAFLD and

insulin resistance (13, 37). However, the mechanisms of G0S2 in

insulin resistance-related NAFLD are still unknown. To identify the

DEPs in the liver of G0S2 overexpression mice compared to control

mice, we performed label-free quantitative proteomics analysis. In

all, 3583 proteins were identified by proteomics analysis; among

these, 125 proteins were significantly differentially expressed, which

included 56 upregulated and 69 downregulated (fold change≥1.5,

P<0.05) proteins (Figure 2, Supplementary Table 1). These results

show that G0S2 has an obvious impact on liver protein expression

in HFD-diet mice.
GO analysis

To further identify the functions of DEPs influenced by G0S2,

GO analysis was performed to analyze the proteomics data. The

molecular function (MF) category was mainly enriched in “protein

binding,” “catalytic activity,” “enzyme binding,” “cell adhesion

molecule binding,” and “cadherin binding” (Figures 3A, B). These

terms suggest a differential influence of G0S2 on NAFLD by

interacting with PNPLA2, ABHD5, E-cadherin, and cell

adhesions (2, 38–40).

The results of the biological process (BP) category showed that

19% of the identified DEPs were enriched in the metabolic process,
Frontiers in Endocrinology 059897
while 2% of proteins were involved in fatty acid metabolic process

and “response to insulin,” respectively (Figures 4A, B). Nine DEPs

in the liver of G0S2 overexpression mice were possibly involved in

the regulation of insulin homeostasis (four upregulated and five

downregulated) (Figure 5A, Table 1). The results of PPI network

analysis showed that G0S2 may interact with Forkhead box protein

O1 (Foxo1), Suppressor of cytokine signaling 3 (Socs3), Tyrosine-

Protein phosphatase non-receptor type 1 (Ptpn1), Acyl-CoA (8-3)-

desaturase (Fads), 5-AMP-activated protein kinase catalytic subunit

alpha-1 (Prkaa1), Eukaryotic translation initiation factor 6 (Eif6),

Glutathione S-transferase P 1 (Gstp1), Growth factor receptor-

bound protein 2 (Grb2), and Peroxisome proliferator-activated

receptor gamma (PPAR-g) (Figure 5B). To confirm the effect of

DEPs on the regulation of insulin in G0S2 overexpression mice, five

DEPs were validated using WB assay. Consistent with the results of

the proteomics analysis, an obvious increase of phosphatase Foxo1,

Socs3, and Ptpn1, and an obvious decrease of Gstp1 and PPAR-g
was observed (Figure 6). Next, primary mouse hepatocytes isolated

from mice with normal G0S2 expression (HFD) and mice

overexpressing G0S2 (HFD+G0S2 overexpression) were either

stimulated with insulin or left unstimulated. These DEPs were

differentially regulated under basal and insulin-stimulated

(0.1mM, 1h) conditions. Downregulation of phosphatase Foxo1,

Socs3, and Ptpn1, and upregulation of Gstp1 and PPAR-? in the

livers of HFD-G0S2 overexpression mice were determined by

western blotting and RT-PCR in primary mouse hepatocytes

(Figures 7, 8) and suggest that G0S2 plays an important role in

the regulation of insulin sensitivity.
KEGG analysis of DEPs

KEGG enrichment analysis was used to further explore the

functions of the identified DEPs. The results revealed that the

enrichment of DEPs in the pathways were associated with insulin
FIGURE 2

Differentially expressed proteins in the liver tissue of HFD-G0S2 overexpression mice.
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A

B

FIGURE 3

Gene Ontology (GO) enrichment analysis of molecular function for DEPs. (A) Pie chart of DEP-enriched GO terms for molecular function (MF).
(B) Max level for MF.
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resistance (4%), insulin signaling pathway (4%), and AMPK

signaling pathway (3%). Additionally, 3%, 3%, and 2% of DEPs

were associated with “Glucagon signal ing pathway,”

“Adipocytokine signaling pathway,” and “Steroid biosynthesis”

(Figures 9A, B). To better understand the relationship between
Frontiers in Endocrinology 0710099
the nine DEPs and insulin resistance, another network of PPI was

established (Figure 10). The complicated network comprised

various insulin resistance-associated proteins, which was

interacted with each other, suggesting that G0S2 might be the key

factor in regulating insulin sensitivity.
A

B

FIGURE 4

Gene Ontology (GO) enrichment analysis of biological processes for DEPs. (A) Pie chart of DEP-enriched GO terms for biological processes (bp).
(B) Enriched GO terms for bp.
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Discussion

G0S2 is primarily a cell cycle-regulated protein that was

originally identified in blood mononuclear cells and has 78%

homology between mouse and human isoforms (2). A further
Frontiers in Endocrinology 08101100
study ruled out that G0S2 is involved in various biological and

pathological processes such as glycolipid metabolism,

inflammation, immunization, and cancer (41–44).

Increasing research indicates that interfering hepatic G0S2

expression represents an effective change in the level of hepatic
A

B

FIGURE 5

Gene Ontology (GO) enrichment analysis of biological processes for DEPs involved in insulin signaling pathways. (A) Heatmap of nine DEPs in
response to insulin. (B) Protein–protein interaction (PPI) network of DEPs associated with the response to insulin. The red signal represents
upregulation and green signal represents downregulation. The red pentagram represents the most pronounced upregulation and green pentagram
represents the most pronounced downregulation,.
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TG and blood glucose (21, 35). G0S2 knockout mice exhibit a

lower level of hepatic triglycerides and were resistant to HFD-

induced liver steatosis (12). Moreover, clinical trials show that the

mRNA and protein content of G0S2 are reduced in poorly

controlled type 1 and type 2 diabetic subjects (41, 45). These

previous studies suggested that G0S2 is critical for the regulation

of physiological and pathological processes of NAFLD

and diabetes.
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Accumulating studies support that insulin resistance is one of

the earliest manifestations of a constellation of metabolic disease,

including T2DM and NAFLD (46). Some extracellular factors lead

to defects in the responsiveness of cells to insulin, such as lipids and

other circulating factors that perturb the intracellular concentration

of ceramide (14). Insulin resistance is the main risk factor of

diabetes and NAFLD (11, 47, 48). However, the mechanisms of

G0S2 regulated NAFLD and diabetes is still not clearly known.
TABLE 1 Identification of G0S2 overexpression-induced differentially expressed proteins associated with the response to insulin.

Change Protein IDs Protein Name Gene Name Fold Change

up Q9R1E0 Forkhead box protein O1 Foxo1 6.420271268

up O35718 Suppressor of cytokine signaling 3 Socs3 4.792348761

up P35821 Tyrosine-protein phosphatase non-receptor type 1 Ptpn1 2.911627141

up Q920L1 Acyl-CoA (8-3)-desaturase Fads1 2.059835232

down Q5EG47 5-AMP-activated protein kinase catalytic subunit alpha-1 Prkaa1 0.650331086

down O55135 Eukaryotic translation initiation factor 6 Eif6 0.616771107

down P19157 Glutathione S-transferase P 1 Gstp1 0.563400004

down Q60631 Growth factor receptor-bound protein 2 Grb2 0.526383608

down P37238 Peroxisome proliferator-activated receptor gamma Pparg 0.397358829
Up, upregulated; down, downregulated.
FIGURE 6

Insulin resistance was evaluated using western blotting and RT-PCR analysis. Upregulation of phosphatase Foxo1, Socs3, and Ptpn1, and
downregulation of Gstp1 and PPAR-g in the livers of HFD-G0S2 overexpression mice were determined by western blotting and RT-PCR in liver
tissue. The experiment was repeated three times, using three independent batches of mice and three independent mice in each group. *P<0.05.
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In our study, the protein expression in the livers of G0S2-

overexpression mice was analyzed by label-free LC-MS/MS

quantitative proteomics. The results of proteomics demonstrated

that there were four upregulated proteins that were related to

insulin signaling pathways. Foxo1 was mainly involved in insulin

resistance and lipid metabolism. Previous studies have revealed that

Foxo1 participates in insulin resistance and b-cell failure in T2DM

patients and leads to gluconeogenesis dysfunction and cell

apoptosis. However, inhibition of Foxo1 improves insulin

resistance (49, 50). However, some studies show that inhibition of

Foxo1 interacts with ATGL leading to hepatic steatosis (51). Our

study showed that Foxo1 was upregulated by 6.4-fold and was a

pro-insulin resistance protein. Hence, the above research results

suggest that G0S2 exerts an important role in regulating the insulin

signaling pathway in the liver.

The suppressor of cytokine signaling (SOCS) family of proteins

are negative regulators of cytokine signaling. The expression of

Socs3 in the liver, skeletal muscle, and adipose tissue is upregulated
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in obese rodents (52, 53). In obese patients with NAFLD, the

abundance of Socs3 in mononuclear cells was also increased (54,

55). In an Socs3 AKOmouse model, the HFD increased the levels of

Socs3 in adipose tissue of WT mice; however, Socs3 AKO mice

failed to show the same results (56). Socs3 has been shown to play

an important role in insulin sensitivity, because it inhibits tyrosine

phosphorylation of the relevant receptor, such as insulin receptor

and insulin receptor substrate-1 (IRS1) (57, 58). A recent study

found that Polygoni Cuspidati ethanol extract attenuates obesity,

NAFLD, and IR via inhibitions of Socs3 (59). The findings of our

study suggest that upregulation of G0S2 induced impairment of

insulin signaling. Insulin resistance is likely an important

determinant of the negative effects of G0S2 targeting NAFLD

and diabetes.

Ptpn1, the gene coding for Protein Tyrosine Phosphatase-1B,

plays a critical role in negative regulation of insulin signaling. The

upregulation of Ptpn1 in tissues and cells inactivates protein

tyrosine kinase (PTK), blocks the effect of insulin on binding to
FIGURE 7

The genes involved in insulin resistance were evaluated using RT-PCR analysis in primary mouse hepatocytes. Downregulation of the phosphatases
Foxo1, Socs3, and Ptpn1, as well as upregulation of Gstp1 and PPAR-g, were determined in primary mouse hepatocytes isolated from G0S2-
overexpressing mice (HFD+G0S2 overexpression) by RT-PCR. *P<0.05, **P<0.01. ns, P>0.05.
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insulin receptors and dephosphorylation of tyrosine residues on

insulin receptors substrates, leading to insulin resistance and finally

to diabetes (60–62). A study revealed that by inhibiting Ptpn1

expression and promoting phosphorylation of insulin receptor,

microRNA-206 impaired hepatic lipogenesis and exerted the

beneficial effect of preventing hepatic steatosis (63). Our study

results are consistent with the above observations in that it

suggests that inhibition of Ptpn1 expression mediates the

beneficial effect of G0S2 on NAFLD and diabetes.

Our study results demonstrated that the levels of Gstp1 and

PPAR-g were significantly down-regulated after overexpression of

G0S2. Previous studies ruled out that Gstp1 is closely involved in

the inhibition of cell apoptosis and regulation of cell oxidative stress

(64, 65). The tumor necrosis factor-related receptor 2 (TRAF2)

interacts with apoptosis signal regulating kinase 1 (ASK1), and the

interaction between them could be abolished by binding Gstp1 to

TRAF2 (66). Gstp1 regulated the ASK1-MEK-JNK/p38 pathway

negatively and inhibited cell apoptosis (67). Another research on

humans showed that participants with Gstp1 AG genotypes showed
Frontiers in Endocrinology 11104103
stronger associations between insulin resistance markers who were

exposed to air pollution (68).

PPAR agonists, lipid sensors that modulate whole-body energy

metabolism, have been used to treat dyslipidemia and diabetes for

decades. PPAR-g increases systemic insulin sensitivity by increasing

adipocyte differentiation and fatty acid uptake and storage in lipid

droplets (69). PPAR-g deficiency in adipose tissue causes metabolic

dysfunction in mice (70). Under conditions of energy deficiency,

PPAR-g on Lys 268 and Lys 293 was deacetylated by SIRT 1.

Regulation of PPAR-g can protect mice from HFD-induced insulin

resistance (71–73). Notably, thermogenesis was enhanced in the

mouse model of Kdm2a deficiency in macrophages, and the obesity

induced by HFD was prevented by enhancing H3K36me2 at the

PPAR-g locus. The upregulation of PPAR-g may highlight a new

mechanism by which G0S2 helps improve insulin sensitivity in

NAFLD and diabetes.

There are some limitations to this study. For example, there was

no control group of mice on normal chow diet. Based on the

absence of these groups as control, the results of our study should be
FIGURE 8

The proteins involved in insulin resistance were evaluated using western blotting analysis in primary mouse hepatocytes. Downregulation of the
phosphatases Foxo1, Socs3, and Ptpn1, as well as upregulation of Gstp1 and PPAR-g, were determined in primary mouse hepatocytes isolated from
G0S2-overexpressing mice (HFD+G0S2 overexpression) by western blotting. *P<0.05, **P<0.01, ns P>0.05.
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interpreted with caution, and further investigations are needed.

Another limitation is that we did not test the effects of G0S2 gene

deletion to determine whether such deletion is sufficient to improve

insulin resistance.
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In conclusion, we focused our study on the effect of G0S2 on

insulin resistance. Insulin resistance is a key contributor to the

pathogenesis of NAFLD, diabetes, and fatty and other metabolic

diseases. Our research demonstrates that the expression patterns of
A

B

FIGURE 9

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs. (A) Pie chart of DEP-enriched KEGG pathways. (B) KEGG pathway
enrichment distribution of DEPs.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1130350
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2023.1130350
several proteins associated with insulin signaling pathway are

consistent with the change of insulin resistance after overexpression

of G0S2. These observations might uncover the molecular mechanisms

of metabolic diseases and provide novel insights into potential

therapeutic targets for NAFLD, diabetes, and other metabolic diseases.
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Response to pioglitazone in
non-alcoholic fatty liver disease
patients with vs. without type 2
diabetes: A meta-analysis of
randomized controlled trials

Zeyu Wang1†, Huiqing Du2†, Ying Zhao3†, Yadi Ren3, Cuihua Ma4,
Hongyu Chen3, Man Li3, Jiageng Tian3, Caihong Xue5,
Guangfeng Long6*, Meidong Xu1* and Yong Jiang3*

1Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine,
Tongji University, Shanghai, China, 2Department of Gastroenterology, Xingtai People’s Hospital,
Xingtai, China, 3Department of Gastroenterology, The Second Hospital of Tianjin Medical University,
Tianjin, China, 4Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical
College, Inner Mongolia University of Science and Technology, Baotou, China, 5Department of
Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, China, 6Department of Clinical
Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
Background: Pioglitazone is considered a potential therapy for non-alcoholic

fatty liver disease (NAFLD). However, different effects of pioglitazone on NAFLD

have been demonstrated in diabetic and non-diabetic patients. Herein, a meta-

analysis of randomized, placebo-controlled trials was carried out to indirectly

compare pioglitazone in NAFLD patients with vs. without type 2 diabetes.

Methods: Randomized controlled trials (RCTs) of pioglitazone vs. placebo

involving NAFLD patients with or without type 2 diabetes/prediabetes collected

from databases were enrolled into this analysis. Methodological quality was

employed to evaluate the domains recommended by the Cochrane

Collaboration. The analysis covered the changes in histology (fibrosis,

hepatocellular ballooning, inflammation, steatosis), liver enzymes, blood lipids,

fasting blood glucose (FBS), homeostasis model assessment-IR (HOMA-IR),

weight and body mass index (BMI) before and after treatment, and adverse

events.

Results: The review covered seven articles, with 614 patients in total, of which

three were non-diabetic RCTs. No difference was found in patients with vs.

without type 2 diabetes in histology, liver enzymes, blood lipids, HOMA-IR,

weight, BMI, and FBS. Moreover, no significant difference was revealed in

adverse effects between NAFLD patients with diabetes and without DM, except

the incidence of edema that was found to be higher in the pioglitazone group

than in the placebo group in NAFLD patients with diabetes.

Conclusions: Pioglitazone could exert a certain effect on alleviating NAFLD,

which was consistent between non-diabetic NAFLD patients and diabetic NAFLD

patients in improving histopathology, liver enzymes, and HOMA-IR and reducing
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blood lipids. Furthermore, there were no adverse effects, except the incidence of

edema which is higher in the pioglitazone group in NAFLD patients with diabetes.

However, large sample sizes and well-designed RCTs are required to further

confirm these conclusions.
KEYWORDS

pioglitazone, nonalcoholic fatty liver disease, randomized controlled trials, diabetes
mellitus, nonalcoholic steatohepatitis
Introduction

The overall prevalence of non-alcoholic fatty liver disease

(NAFLD) is globally estimated at 25%–40%, which has been

considered a major disease burden worldwide with a rising

trend (1). Non-alcoholic steatohepatitis (NASH) will be

developed in approximately 25% of NAFLD patients, of whom

one-fourth will develop liver failure and hepatocellular carcinoma

(HCC) with higher rates of progression to cirrhosis (2–4). Indeed,

a study in the US has already demonstrated that NAFLD is the

most common risk factor for HCC (24%), in contrast to HCV

(23%) and hepatitis B (19.3%) (5). NAFLD could exhibit a close

correlation with metabolic syndrome, a range of risk factors for

type 2 diabetes mellitus, and end-stage vascular disease, with

cardiovascular disease being the most common burden of death

in patients with NAFLD (6). Lifestyle interventions, such as

calorie restriction and exercise therapy, are demonstrated to

play a central role in treating NAFLD, which, however, are

difficult to achieve and maintain. Despite several pharmacologic

interventions to treat NAFLD, there is still no approved drug for

its effective treatment (3, 7).

Pioglitazone as a peroxisome proliferator-activated receptor

(PPAR) agonist could increase plasma adiponectin levels, which

are associated with insulin sensitivity improvement, exerting

anti-inflammatory and antifibrotic effects on NAFLD (8). Della

et al. discovered that treatment with pioglitazone at low dosage

significantly improved liver inflammation and alleviated insulin

resistance in NAFLD patients with type 2 diabetes mellitus

(T2DM) (9). Bril et al. found that pioglitazone discontinuation

in patients with biopsy-proven NASH was associated with

biochemical worsening of the disease, and pioglitazone

therapy in patients with NASH should be considered as a

long-term treatment (10). These studies suggest that
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pioglitazone has a certain role in the treatment of NAFLD. As

a result, pioglitazone may be recommended for treating NAFLD

as verified by the improvement of liver histology and some

biochemical indexes in several studies (11–15). These studies

have explored the efficacy of pioglitazone in NAFLD patients,

primarily by comparing the effect of pioglitazone and all other

drugs for NAFLD together. Furthermore, these studies have

not compared NAFLD patients with T2DM to non-diabetic

patients, and there are varying opinions among these studies.

For this reason, it is of significance to investigate whether

pioglitazone will exert different effects between diabetic and

non-diabetic individuals, so as to treat different types of NAFLD

more efficiently.

This meta-analysis was carried out to compare the efficacy and

safety of pioglitazone in treating NAFLD with vs. without T2DM.

Nevertheless, few studies have compared pioglitazone with placebo

in patients with NAFLD between T2DM and normal glucose

tolerance; therefore, we conducted this study to try to replenish

this gap.
Materials and methods

Retrieval strategy

The major databases PubMed, Embase, Web of Science,

WangFang Data, CNKI, and Medline were systematically searched

for literature to retrieve eligible studies without language restriction

by two reviewers from inception to May 2022, and additional

information or raw data were asked by the corresponding authors

through email. The keywords “nonalcoholic steatohepatitis” OR

“nonalcoholic fatty liver disease” OR “NASH” OR “NAFLD” AND

“pioglitazone” were employed. At the same time, a wide scanning of

relevant references listed in the retrieved articles was also conducted

to seek other articles of possible eligibility. The research selection

process is provided in Figure 1.
Inclusion and exclusion criteria

Randomized controlled trials of pioglitazone vs. placebo

involving patients with NAFLD confirmed by liver biopsy or

ultrasound, with or without T2DM/prediabetes, were included.
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The exclusion criteria were as follows: i) non-randomized placebo-

controlled trials; ii) trials without raw data; iii) leading articles,

abstracts, letters, animal experiments, case reports, meta-analysis,

expert opinion, conference papers, and book sections; iv) no clear

validity of whether NAFLD patients were complicated with

diabetes; v) patients with severe renal failure, heart failure,

malignant tumor, or secondary hepatic fat accumulation such as

viral hepatitis or significant alcohol consumption; and vi) trials that

did not present data on pioglitazone alone.
Methodological quality assessment

Each randomized controlled trial was evaluated for

methodological quality using Cochrane Collaboration’s tool (16),

which involved sequence generation, allocation hiding, the blinding

method in the selection of participants and personnel and result

evaluators, processing of data results, and the lack of other deviation

sources, determining the high, low, or unclear deviation risk of the

research. The assessment of the enrolled studies is presented

in Figure 2.
Frontiers in Endocrinology 03111110
Outcome measures

The primary outcomes referred to histological variables such as

fibrosis, steatosis, inflammation, and hepatocellular ballooning, and

the secondary outcomes included changes in alanine transaminase

(ALT), aspartate aminotransferase (AST), FBS, blood lipids,

HOMA-IR, weight, and BMI. In addition, the impact on adverse

events was evaluated.
Data extraction

Data were extracted by two reviewers independently and

summarized into a standardized spreadsheet in duplicate after the

studies have been confirmed to meet the predetermined criteria.

Disagreements were resolved by negotiated solutions or mutual

discussion, and the quality of the trials was assessed by kappa

statistics scoring. The following variables were extracted from each

study: i) general information (name of the first author, year, study

design, presence of diabetes); ii) treatment details (dosage,

frequency, duration, lifestyle changes throughout the trial); iii)
FIGURE 1

Flowchart of study information.
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histological variables (baseline and at the end of the study): fibrosis,

steatosis, inflammation, and hepatocellular ballooning; iv)

laboratory and anthropometric tests (baseline and at the end of

the study), covering ALT, AST, blood lipids, FBS, HOMA-IR,

weight, and BMI; and v) adverse events.
Data analysis

All data were analyzed on R software v3.6.1 (R Foundation for

Statistical Computing, Vienna, Austria). The “Meta” package was

employed in the meta-analysis. Mean differences were calculated by

the following formula: (mean value of treatment at baseline −mean

value of treatment at the end of the study) − (mean value of control

at baseline − mean value of control at the end of the study). The

mean differences for the intervention and control groups were

either directly provided by the research results or calculated by

the mean values before and after treatment. To calculate the SD of

the change in means for those studies, it was imputed applying a

modified method by Follmann et al.: SDchange in means = sq root

[(SDpre)2 + (SDpost)2 − (2(q)·SDpre·SDpost)] (17). The change in

means (SDchange in means) was obtained using the SD of the
Frontiers in Endocrinology 04112111
preintervention mean (SDpre) and the SD of the postintervention

mean (SDpost) as well as the within-participant correlation (q) of

the outcome measures. Sensitivity analysis was conducted to

exclude studies that influence the stability of research results and

to assess heterogeneity. Publication bias was evaluated with funnel

plot analysis and Egger’s and Begg’s tests. The level of statistical

significance was 0.05, and the statistical heterogeneity across studies

was represented by I2 statistics. Improvement was determined by a

reduction of 1 point or more in the pathology score. The fixed-

effects model will be employed in the statistical analysis when

P ≥0.05 and I2 ≤50%; otherwise, the random-effects model was

applied. Dichotomous and continuous variables were expressed as

odds ratios (ORs), mean differences (MDs), and 95% confidence

intervals (CIs), respectively.
Result

Study characteristics

After the primary screening, 26 studies were included for the

subsequent full-text review until May 2022. Seven articles (9, 18–23)
A

B

FIGURE 2

Methodological quality (A) and risk of bias (B) for trials included in systematic review.
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without placebo-controlled data, 10 articles (24–33) from the same

clinical trial, one article (34) without a clear statement of whether

NAFLD patients were complicated with diabetes, and one article

(35) that did not present data on pioglitazone alone were removed.

Ultimately, a total of seven studies (11, 12, 36–40) deemed eligible

were included, covering 614 patients, three of which (36–38) were

non-diabetic RCTs, each being extracted for outcomes. The subjects

of four studies included patients with NASH, and three studies

included patients with NAFLD. The mean age of the patients with

diabetes or prediabetes vs. without diabetes or prediabetes was

found to be 51.1 ± 8.4 vs. 49.3 ± 11 years, and the male sex

distribution was 59.3% vs. 49.1%. The main characteristics of the

RCTs involved in the network meta-analysis are summarized in

Table 1 and Supplementary Table 1. The flowchart in Figure 1

describes the selection process of the literature and the final

selection of the studies. The dose of pioglitazone ranged from 15

to 45 mg/day, and the duration of pioglitazone or placebo treatment

ranged from 3 to 24 months.
Study quality assessment

The risk of bias (such as selection bias, performance bias,

detection bias, attrition bias, and reporting bias) was assessed

using Cochrane Collaboration’s tool. All data were derived from

randomized studies. The probability of bias was estimated and

considered low in most studies and domains (Figure 2).
Changes in liver histology
with pioglitazone

The histological changes of the liver were significantly improved

in NAFLD patients who received pioglitazone therapy (fibrosis:

I2 = 0, OR = 1.81, 95% CI: 1.15 - 2.83, P = 0.01; hepatocellular

ballooning: I2 = 0, OR = 2.71, 95% CI: 1.71 - 4.31, P < 0.01; lobular
Frontiers in Endocrinology 05113112
inflammation: I2 = 0, OR = 2.94, 95% CI: 1.89 - 4.59, P < 0.01;

steatosis: I2 = 40%, OR = 4.04, 95% CI: 2.59 - 6.30, P < 0.01;

Figure 3). No significant differences in primary outcomes were

found in NAFLD patients with diabetes compared with those

without diabetes who received pioglitazone therapy (fibrosis:

c2 = 0.02, P = 0.90; hepatocellular ballooning: c2 = 0.68, P = 0.41;

lobular inflammation: c2 = 0.31, P = 0.57; steatosis: c2 = 0.78,

P = 0.38; Figure 3).

The subgroup comparison results revealed no obvious

superiority of pioglitazone therapy in fibrosis both in NAFLD

patients with diabetes and without diabetes (with DM: OR = 1.87,

95% CI: 0.94 - 3.72, P = 0.08; without DM: OR = 1.76, 95% CI: 0.97 -

3.19, P = 0.06; Figure 3). However, these results suggest that

pioglitazone may play a role in the treatment of liver fibrosis,

with significant improvements in hepatocellular ballooning (with

DM: OR = 3.40, 95% CI: 1.68 - 6.88, P < 0.01; without DM:

OR = 2.29, 95% CI: 1.24 - 4.24, P < 0.01; Figure 3), lobular

inflammation (with DM: OR = 3.43, 95% CI: 1.70 - 6.92, P < 0.01;

without DM: OR = 2.65, 95% CI: 1.49 - 4.71, P < 0.01; Figure 3),

and steatosis (with DM: OR = 5.16, 95% CI: 2.56 - 10.39, P < 0.01;

without DM: OR = 3.02, 95% CI: 1.01 - 8.97, P = 0.05; Figure 3)

compared with placebo.
Changes in liver enzymes with pioglitazone

AST and ALT were confirmed to be significantly decreased in

NAFLD patients who received pioglitazone therapy (AST: I2 = 51%,

MD = −6.56, 95% CI: (−11.18) - (−1.94), P < 0.01; ALT: I2 = 71%,

MD = −14, 95% CI: (−23.75) - (−4.26), P < 0.01; Supplementary

Figure 1). No significant differences were found in both AST and

ALT between NAFLD patients with diabetes and those without

diabetes who received pioglitazone therapy (AST: c2 = 0.19,

P = 0.66; ALT: c2 = 0.16, P = 0.69; Supplementary Figure 1).

The subgroup comparison indicated no significant

improvements in both AST and ALT in NAFLD patients without
TABLE 1 Patient and trial characteristics of the included studies.

Study N Intervention, dose Comparator(s) Duration Diabetes or
prediabetes

NASH or
NAFLD Country

NASH/NAFLD
assessment in

results

Aithal (36), 74 Pioglitazone, 30 mg/day Placebo 12 months No NASH
United
Kingdom

Histology

Anushiravani
(37),

60a
Lifestyle + pioglitazone,

15 mg/day
Lifestyle + placebo 3 months No NAFLD Iran Ultrasound

Sanyal (38), 163a Pioglitazone, 30 mg/day Placebo 24 months No NASH America Histology

Belfort (11), 47a
Hypocaloric diet +

pioglitazone, 45 mg/day
Hypocaloric diet +

placebo
6 months Yes NASH America Histology

Cusi (12), 101 Pioglitazone, 45 mg/day Placebo 18 months Yes NASH America Histology

Kamolvisit
(39),

98 Pioglitazone, 45 mg/day Placebo 18 months Yes NAFLD Thailand Ultrasound

Chehrehgosha
(40),

71a Pioglitazone, 30 mg/day Placebo 6 months Yes NAFLD Iran Ultrasound
aRepresents patients in the trial arms of interest only.
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diabetes who received pioglitazone therapy compared with those

who received placebo [AST: MD = −5.5, 95% CI: (−11.33) - 0.33,

P = 0.06; ALT: MD = −17.79, 95% CI: (−38.14) - 2.57, P = 0.09;

Supplementary Figure 1], while there was a significant reduction in

AST in patients with diabetes [MD = −7.48, 95% CI: (−14.27) -

(−0.7), P = 0.03; Supplementary Figure 1], but not in ALT

[MD = −12.74, 95% CI: (−26.33) - 0.84) , P = 0.07;

Supplementary Figure 1].
Changes in metabolism with pioglitazone

HDL and HOMA-IR were confirmed to be significantly

improved in NAFLD patients who received pioglitazone therapy;

however, the levels of LDL, total cholesterol, triglycerides, and FBS

showed no significant changes compared with the placebo groups.

No significant differences were found in NAFLD patients with

diabetes compared with those without diabetes who received

pioglitazone therapy in terms of HDL, LDL, total cholesterol,

triglycerides, HOMA-IR, and FBS (HDL: I2 = 96%, c2 = 0.00,

P = 0.99; LDL: I2 = 0%, c2 = 0.23, P = 0.63; total cholesterol: I2 = 0%,

c2 = 0.91, P = 0.34; triglycerides: I2 = 40%, c2 = 1.53, P = 0.22;

HOMA-IR: I2 = 92%, c2 = 1.30, P = 0.25; FBS: I2 = 81%, c2 = 2.42,

P = 0.12; Figure 4 and Supplementary Figure 2).

The subgroup comparison results showed significant

improvements in HDL, LDL, total cholesterol, and triglycerides

with pioglitazone therapy than with placebo in patients without

diabetes [HDL: MD = 2.98, 95% CI: 2.64 - 3.31, P < 0.01; LDL: MD

= −2.22, 95% CI: (−3.48) - (−0.96), P < 0.01; total cholesterol:

MD = −1.76, 95% CI: (−3.14) - (−0.37), P = 0.01; triglycerides:

MD = −13.07, 95% CI: (−15.47) - (−10.66), P < 0.01; Figure 4], while

there were no significant improvements in both FBS and HOMA-IR

[FBS: MD = −6.16, 95% CI: (−22.14) - 9.81, P = 0.45; HOMA-IR:

MD = −0.43, 95% CI: (−2.06) - 1.2, P = 0.60; Supplementary

Figure 2]. However, no significant improvements were found in

NAFLD patients with diabetes in HDL, LDL, and total cholesterol

[HDL: MD = 1.87, 95% CI: (−0.77) - 4.52, P = 0.16; LDL:

MD = −3.59, 95% CI: (−8.97) - 1.79, P = 0.19; total cholesterol:

MD = −4.54, 95% CI: (−10.08) - 1.00, P = 0.11; Figure 4]. Significant

improvements were revealed in triglycerides, FBS, and HOMA-IR

in NAFLD patients with diabetes [triglycerides: MD = −38.61, 95%

CI: (−76.17) - (−1.06), P = 0.04; FBS: MD = −21.84, 95% CI:

(−23.06) - (−20.63), P < 0.01; HOMA-IR: MD = −1.82, 95% CI:

(−3.57) - (−0.07), P = 0.04; Figure 4 and Supplementary Figure 2].
Changes in weight and BMI
with pioglitazone

Weight and BMI showed no significant differences in patients

who received pioglitazone therapy and those who received a

placebo. No significant differences were found in both weight

and BMI between NAFLD patients with diabetes and those

without diabetes who received pioglitazone therapy (weight:

I2 = 0%, c2 = 1.15, P = 0.28; BMI: I2 = 0%, c2 = 0.07, P = 0.79;

Supplementary Figure 3).
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The subgroup comparison results revealed significant increases

in both weight and BMI compared with the placebo groups in

patients without diabetes (weight: MD = 4.15, 95% CI: 2.14 - 6.17,

P < 0.01; BMI: MD = 0.84, 95% CI: 0.03 - 1.65, P = 0.04;

Supplementary Figure 3). No significant difference in BMI

[MD = 0.64, 95% CI: (−0.58) - 1.87, P = 0.30] or weight

[MD = 1.77, 95% CI: (−2.09) - 5.63, P = 0.37; Supplementary

Figure 3] was found in NAFLD patients with diabetes.
A

B

D

C

FIGURE 3

Changes in histology with pioglitazone: (A) fibrosis,
(B) hepatocellular ballooning, (C) lobular inflammation, and
(D) steatosis.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1111430
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1111430
Adverse effects of pioglitazone compared
with placebo

No significant differences were revealed in terms of adverse

effects between NAFLD patients with diabetes and those without

diabetes who received pioglitazone therapy (I2 = 61%, c2 = 3.44,

P = 0.06; Supplementary Figure 4).

No significant difference was found in terms of adverse effects

between pioglitazone and placebo in NAFLD patients with or
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without diabetes. The mean differences and 95% CI for patients

with diabetes and without diabetes with NAFLD were calculated as

follows: DM: OR = 1.61, 95% CI: 0.82 - 3.16, P = 0.17; without DM:

OR = 0.47, 95% CI: 0.16 - 1.42, P = 0.18 (Supplementary Figure 4).

The incidence of edema was significantly increased in the

pioglitazone group than in the placebo group in NAFLD patients

with DM. No statistical significance was found in specific adverse

effects comparing the pioglitazone group with the corresponding

placebo group (Table 2).
Sensitivity analysis and publication bias

We conducted a sensitivity analysis and publication bias

analysis on the research studies with significant heterogeneity.

Running the sensitivity analysis by excluding some high-risk

studies showed a remarkable effect on the results of the analysis.

Excluding the studies of Chehrehgosha et al. (40) in the ALT

analysis, Anushiravani et al. (37) in the HDL analysis, Kamolvisit

et al. (39) in the FBS analysis, and Cusi et al. (12) in HOMA-IR

changes the substantiation of the corresponding results of the meta-

analysis (Supplementary Figure 5). The analysis of the funnel plot

for publication bias is shown in Supplementary Figure 6.

Furthermore, Begg’s test showed no publication bias in ALT, FBS,

HDL, and HOMA-IR analysis (all P > 0.05).
Discussion

The present guidelines state the promising role of pioglitazone in

liver histology in NASH patients as confirmed by liver biopsy,

whether or not suffering from T2DM; however, the safety of long-

term treatment should also be considered (41, 42). Tokushige et al.

(43) recommend pioglitazone for NASH patients with insulin

resistance. A prospective study (44) aiming at adults with biopsy-

proven NASH (49 with prediabetes and 52 with T2DM) suggested

pioglitazone for NASH patients with prediabetes as well as for NASH

patients with T2DM to achieve metabolic and histologic benefits.

However, this head-to-head observational study may lead to

erroneous results with inconsistent baselines. Previous meta-

analyses (13, 45–48) have explored the efficacy of pioglitazone in

the treatment of NAFLD, primarily by comparing the effect of

pioglitazone and all other drugs for NAFLD together and obtaining

similar conclusions that pioglitazone has effects on NAFLD patients

with T2DM or non-diabetes. Furthermore, studies have not

compared NAFLD patients with T2DM to NAFLD patients

without diabetes. As a result, no convincing conclusions about

pioglitazone in the treatment of NAFLD patients without diabetes

can be indeed drawn. In order to obtain a better understanding of the

effects of pioglitazone in non-diabetes and diabetes NAFLD, RCTs on

pioglitazone in the treatment of diabetes or non-diabetes NAFLD

were searched and compared with placebo, so as to achieve an

indirect comparison of pioglitazone in the treatment of NAFLD

with vs. without diabetes, comprehending the efficacy and adverse

effects of pioglitazone in the treatment of NAFLD patients.
A

B

D

C

FIGURE 4

Changes in metabolism with pioglitazone: (A) HDL, (B) LDL, (C) total
cholesterol, and (D) triglycerides.
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The improvement of liver fibrosis is of crucial significance for the

treatment of NAFLD as it is associated with higher rates of cirrhosis as

well as overall mortality (1, 2). Mahady et al. (49) have stated that

pioglitazone can optimize histological variables, such as fibrosis,

hepatocellular ballooning, lobular inflammation, and steatosis. As

Musso et al. (45) stated, pioglitazone can contribute to reversing

advanced fibrosis in NASH, even in non-diabetic patients. However,

the article has not compared the effects of non-diabetes NAFLD with

diabetes NAFLD, but only compared pioglitazone with different drugs.

We demonstrated the outcomes of pioglitazone in NAFLD patients on

improvements in fibrosis, hepatocellular ballooning, lobular

inflammation, and steatosis, which were similar to the results of the

placebo group. The subgroup comparison results revealed the

association of pioglitazone with significant improvements in

hepatocellular ballooning, lobular inflammation, and steatosis both in

NAFLD patients with diabetes and without diabetes compared with

placebo. Though no significant improvements in fibrosis were found

both in NAFLD patients with diabetes and without diabetes, it may be

related to the relatively limited sample size, and both groups have

trends of improvement.

Van et al. (50) reported that pioglitazone can improve liver

biochemistry in mice deficient in phosphatidylethanolamine N-

methyltransferase by activating PPARg, which redirects the flux of

fatty acids toward the adipose tissue away from the liver. Mahady

et al. (49) concluded that thiazolidinediones can improve liver

biochemistry by lowering ALT. In this review, we discovered the

same effects of pioglitazone on improvements in both ALT and AST

compared with diabetes NAFLD. The subgroup comparison results

showed significant reductions in AST only in patients with diabetes

(P = 0.003), while improvement was exhibited in the liver enzymes in

both groups. The absence of statistical significance may be attributed
Frontiers in Endocrinology 08116115
to the high heterogeneity, limited sample size, and the calculated

SD value.

The effect of pioglitazone on blood lipids varies among patients

with NAFLD. Aithal et al. (36) confirmed the inhibitory role of

pioglitazone in LDL but not in TC and HDL. Anushiravani et al.

(37) concluded that pioglitazone can reduce LDL and TC. Pioglitazone

can elevate plasma adiponectin levels, which is conducive to improving

insulin sensitivity.We observed no significant differences in HDL, LDL,

total cholesterol, triglycerides, FBS, and HOMA-IR between NAFLD

patients with diabetes and those without diabetes who received

pioglitazone therapy. Subgroup analysis showed a reduction of blood

lipids to some extent in NAFLD patients with or without diabetes by

pioglitazone. The higher baseline FBS values and greater room for

improvement of patients with diabetes may affect the statistical results.

Pioglitazone serves as a prominent regulator of adipocyte

differentiation and adipogenesis, which can lead to weight gain

and obesity with chronic stimulation (51). Similar to previous

results (42, 49, 51), in terms of variations in weight and BMI, we

revealed significant differences in the two indexes between non-

diabetes patients treated with pioglitazone and those with a placebo.

However, an increase in weight can be found in NAFLD patients

with diabetes, and the results showed no significant difference. The

increase in weight caused by pioglitazone may be related to water–

sodium retention and increased fat content (52, 53). These results

still need to be studied with a larger sample size.

Drug safety is one of the key factors in the practicability of a

drug. As a hypoglycemic drug, the application of pioglitazone in

non-diabetes patients remains controversial. Some studies (54, 55)

have suggested the contributed development of bladder cancer by

the long-term use of pioglitazone, but others (56, 57) argued

otherwise. A meta-analysis (58) revealed the increased risk of
TABLE 2 Reported adverse events and withdrawals during the treatment period.

Adverse Events

NAFLD with DM NAFLD without DM

Placebo
(n = 141)

Pioglitazone
(n = 152) P

Placebo
(n = 120)

Pioglitazone
(n = 111) P

Cardiovascular 9 4 0.116 14 10 0.507

Gastrointestinal 17 14 0.429 7 4 0.423

Hypoglycemic 9 5 0.213 8 15 0.081

Neurologic 6 9 0.516 6 2 0.173

Gynecologic 2 2 0.94 0 1 0.225

Urologic 4 7 0.423 0 0 -

Edema 3 12 0.02 0 0 -

Musculoskeletal 21 23 0.955 4 4 0.911

Hepatotoxicity 1 0 0.226 6 4 0.601

Bone fractures 0 0 - 5 3 0.541

Cancer 1 0 0.226 0 0 -

Total number of withdrawals 3 2 0.591 7 6 0.888
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congestive heart failure by the use of glitazones, and another

article (59) indicated its contribution to the increased risks of bone

fracture. However, the patients involved in these articles are

main ly d iabe t e s pa t i en t s , who requ i re a long- te rm

administration of pioglitazone, and the observed patients are the

same. In the meta-analysis, pioglitazone could be well tolerated,

and no major adverse events were found in the relevant literature.

We noticed no significant adverse effects between NAFLD patients

who received pioglitazone therapy and those who received a

placebo. No statistical significance was found in the specific

adverse effects of most groups compared with the corresponding

placebo group, including cancer, congestive heart failure, and

bone fracture. The incidence of edema was found to be higher

in the pioglitazone group than in the placebo group in NAFLD

patients with diabetes. Although pioglitazone has the risk of

causing water and sodium retention (60), however, the higher

risk of edema in the diabetes group is more likely due to the

combination of insulin use in most diabetes patients. Some studies

suggest that pioglitazone combined with insulin has a significantly

higher probability of edema than pioglitazone alone (60).

Although pioglitazone may be associated with water and sodium

retention, it can also reduce the risk of myocardial infarction and

ischemic stroke (61). A small sample size and a relatively short

follow-up time may not reveal the entire spectrum of side effects;

thus, the side effects of pioglitazone on NAFLD patients require a

larger sample size and a longer follow-up time to get relatively

true results.

The limitations of the article are related to the research

design and the biochemical and histological parameters. In

terms of the research design, the doses of pioglitazone

medication varied among studies (15 (37), 30 (36, 38–40), and

45 mg/day (11, 12)), as well as the treatment courses (3 (37), 6

(11, 40), 12 (36, 39), 18 (12), and 24 months (38)). Some studies

implemented strict diet (11, 12, 36, 37, 39) and exercise (36, 39,

40) regimens, while some did not provide any information about

lifestyle (38). In addition, the inclusion criteria were also

inconsistent among studies: some trials enrolled only type 2

diabetics (40), while others also included prediabetics. Some

prediabetic NAFLD patients may be included in the non-

diabetic NAFLD patients. The proportion of gender differences

between diabetes and non-diabetes patients was relatively

different. As for the explanation of biochemical parameters,

some art ic les did not cover the research indicators ,

accompanied by inconsistent units of results, and some studies

did not list an average of changes before and after treatment,

resulting in insufficiently accurate results. Due to the limitation

of the number of studies, we included NASH and NAFLD for

analysis. The involvement of both NAFLD (37, 39, 40) and

NASH in the present study (11, 12, 36, 38) also enhanced the

heterogeneity of the research.

In conclusion, this systematic review suggests the same efficacy

of pioglitazone in non-diabetic and diabetic NAFLD patients in

alleviating histopathology, liver enzymes, and HOMA-IR and

reducing blood lipids. Furthermore, it did not elicit extra adverse

effects. Large sample sizes and well-designed RCTs are required to

further confirm these conclusions.
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association of hyperuricemia
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mediation analysis
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Background: Fatty liver, obesity, and dyslipidemia are associated with

prediabetes or diabetes risk, and hyperuricemia co-exists. The present study

evaluated the role of multiple mediators, namely, fatty liver, body mass index

(BMI), and dyslipidemia, in the association between hyperuricemia and diabetes

status.

Methods: Baseline data from the ongoing Fuqing cohort (5,336 participants)

were analyzed to investigate the association of hyperuricemia with diabetes

status using a multinomial logistic regression model. Furthermore, causal

mediation analysis with the weighting-based approach was performed to

estimate hyperuricemia’s total natural direct effect (tnde), total natural indirect

effect (tnie), and total effect (te) on prediabetes and diabetes risk, mediating

jointly via fatty liver, BMI, and dyslipidemia.

Results: In multinomial analysis without considering mediators’ effects,

hyperuricemia was associated with a higher risk of prediabetes only (odds

ratio: 1.25; 95% CI: 1.09–1.43; p < 0.001). When fatty liver, BMI, and

dyslipidemia were considered as multiple mediators in the association,

hyperuricemia was linked to both prediabetes [tnde: 1.11, 95% CI: 1.04–1.11;

tnie: 1.07, 95% CI: 1.05–1.09; and overall proportion mediated (pm): 42%, 95% CI:

27%–73%] and diabetes risk (tnde: 0.96, 95% CI: 0.82–1.14; tnie: 1.25, 95% CI:

1.18–1.33; and pm: 100%, 95% CI: 57%–361%). Hyperuricemia showed significant

tnde, te, and tnie, mediated by fatty liver jointly with dyslipidemia (pm = 17%) or

BMI (pm = 35%), on prediabetes risk.

Conclusion: Hyperuricemia could increase prediabetes or diabetes risk, partially

mediated by fatty liver, BMI, and dyslipidemia. Fatty liver is the crucial mediator in

the association between hyperuricemia and prediabetes.
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Highlights

• Fatty liver disease singly and combined with body mass index

and/or dyslipidemia could mediate the association between

hyperuricemia and diabetes. Therefore, fatty liver disease is a

crucial mediator in this association.

• The present findings suggest further randomized control trials

are needed to consider treatment options for asymptomatic

hyperuricemia with higher BMI, dyslipidemia, and fatty liver to

prevent prediabetes and diabetes risk.

• Clinicians should be cautious of hyperuricemic patients with

higher BMI, dyslipidemia, and fatty liver to avoid the future risk of

developing diabetes.
Introduction

Type 2 diabetes mellitus (T2DM) is a leading public health

burden as the incidence and prevalence are substantial worldwide

and even increasing. The International Diabetes Federation

estimated that the number of T2DM patients worldwide was 463

million in 2019, and age-adjusted prevalence was 8.3% and expected

to increase to 9.6% by 2045 among the age group 20–79 years (1). A

recent national representative diabetes survey reported that the

weighted prevalence of total diabetes, self-reported diabetes, newly

diagnosed diabetes, and prediabetes was 12.8% [95% confidence

interval (CI) 12.0%–13.6%], 6.0% (5.4%–6.7%), 6.8% (6.1%–7.4%),

and 35.2% (33.5%–37.0%), respectively, among adults living in

China (2). A varied range of risk factors, such as socioeconomic,

dietary, lifestyle, environmental, and genetic factors, are under

consideration for prediabetes and diabetes in different

populations worldwide (3).

In recent decades, the incidence and prevalence of high serum

uric acid (SUA) have increased worldwide. Although high SUA is

causally linked to gout, evidence shows that it is also related to

several chronic diseases, including kidney disease, diabetes, and

cardiovascular diseases (4, 5). Several studies identified high SUA as

an independent risk factor for T2DM, particularly among the

Western population (6, 7); however, epidemiological studies

reported conflicting results among the Asian population (8–10).

For instance, recent cohort studies in China demonstrated that high

SUA was linked to an increased risk of T2DM only in women

(8, 11).

Overweight/obesity, dyslipidemia, and hypertension often co-

exist with T2DM (12, 13) and are also related to high SUA levels

(14). A national health survey showed a significant association

between elevated SUA levels and the increased prevalence of

abdominal obesity, hypertriglyceridemia, and hyperglycemia in

the US population (15). A previous study reported that obesity

could significantly mediate the association between hyperuricemia

and diabetes risk (16), and body mass index (BMI) and

dyslipidemia were significant mediators in the association only in

women (11). However, the causal relationship between

hyperuricemia and prediabetes or diabetes has yet to be explored.

It is still unclear whether the increased prediabetes and diabetes risk
Frontiers in Endocrinology 02121120
due to elevated SUA is via multiple mediators like obesity, fatty

liver, and dyslipidemia. Therefore, we aim to determine the

mediating mechanism of their relationship via fatty liver disease,

high BMI, and dyslipidemia. Also, our study evaluates both single

and possible combinations of the mediators’ effects on prediabetes

and diabetes with the weighting-based mediation model approach.
Methods

Design and setting

The Fuqing cohort aims to investigate the natural history and

risk factors of chronic non-communicable diseases, including

cancer, diabetes, and fatty liver, among the Chinese population

residing in the Southeast coastal region of China. The present study

was based on the baseline data collected from the Fuqing cohort

participants, which began on 14 July 2020. Seven thousand and nine

individuals aged 35 to 75 years old and residing in the 23 rural

villages of Gaoshan town were recruited for the study until 31

June 2021.
Participants

The current analysis excluded subjects with self-reported

diabetes and undergoing-treatment diabetes or hyperuricemia

cases, and a detailed description of the selection of study

participants is presented in Supplementary Figure 1. Finally, the

dataset for analysis included 5,336 participants (1,870 men and

3,466 women; median age of 57 years). Each participant was

interviewed by trained staff using a structured electronic

questionnaire, including socio-demographics, lifestyle and

dietary habits, history of selected diseases and medication use,

and family history of selected diseases. The interview was tape-

recorded. The response rate of the Fuqing cohort was 48% for

study participants. The ethical committee of Fujian Medical

University approved this study [2017-07] and [2020-58], and all

participants provided written informed consent before

participation in the study.
Laboratory testing

Each serum sample was measured on an automatic biochemical

analyzer (TBA-120FR, TOSHIBA, Japan) with reagents from

DiaSys Co., Ltd (Golzheim, Germany). SUA was measured using

an enzymatic colorimetric test with the uricase-peroxidase method,

and its concentration was measured in mg/dl (1 mg/dl = 59.48

mmol/L). Serum total cholesterol (TC) and triglycerides (TG) were

measured using a chromatographic enzymic method in the

analyzer. Low-density lipoprotein cholesterol (LDL-C) and high-

density lipoprotein cholesterol (HDL-C) were measured using a

homogeneous method. Serum creatinine was measured using a

kinetic test.
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Definition of outcome and exposure

Participants whose fasting blood glucose levels ≥ 7 mmol/L and/

or glucose level after 2 h of oral glucose tolerance test (OGTT) ≥

11.1 mmol/L and/or glycated hemoglobin A1c (HbA1c) ≥ 6.5%

and/or the use of anti-diabetic drugs were classified as having type 2

diabetes, and non-diabetic individuals whose fasting blood glucose

levels ≥ 5.6 mmol/L to < 7 mmol/L, or glucose level after 2 h of

OGTT ≥ 7.8 mmol/L to < 11.1 mmol/L, or HbA1c ≥ 5.7 to < 6.5%

were classified as prediabetes, according to American Diabetes

Association criteria (17). Hyperuricemia was defined as SUA

concentration > 7.0 mg/dl (416.4 mmol/L) for men or > 6.0 mg/dl

(356.9 mmol/L) for women (18).
Definition, measurements, and
classification of mediators

SUA is related to BMI and diabetes, and obesity is considered a

mediator in the association between hyperuricemia and diabetes

(16). A recent study showed that high BMI and dyslipidemia

significantly mediated the association in women (11). Elevated

SUA is significantly associated with hyperlipidemia (19) and a

higher percentage of fat accumulation in the liver (20).

Atherogenic dyslipidemia likely causes incident diabetes (21), and

the fatty liver condition is an independent predictor of T2DM in

several studies (22). Therefore, we considered high BMI,

dyslipidemia, and fatty liver as mediators through which

hyperuricemia could increase prediabetes or diabetes risk.

Height was measured, to the nearest 0.1 cm, without shoes, and

weight was measured with an electronic bulk composition meter

(580515, TANITA Corporation, Japan), to the nearest 100 g,

without shoes and with light clothes. BMI was calculated as

weight (in kilograms) divided by height (in meters squared).

Dyslipidemia was defined as having either or a combination of

serum TC ≥ 6.2 mmol/L, LDL‐C ≥ 4.1 mmol/L, HDL‐C < 1 mmol/

L, TG ≥ 2.2 mmol/L, and self‐reported use of lipid‐lowering

medication, according to the 2007 Chinese guidelines on the

prevention and treatment of dyslipidemia (23). Likewise, non-

alcoholic fatty liver disease (NAFLD) was diagnosed by

experienced doctors using ultrasound images (ALOKA Prosound

a7, Japan) and was divided into normal, mild, and moderate-

to-severe.
Definition and classification of covariates

The trained staff took the participants’ blood pressure

measurements from their relaxed right arm, which was supported

by a table with an electronic sphygmomanometer (OMRON U30

sphygmomanometer, OMRON Healthcare Co, Japan). Each

participant was measured twice, and the average of the two

measurements was used in the analysis. If the difference between

the two measurements were > 5 mmHg, the third measurement was

conducted and calculated as the average of two measurements with
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similar values. Participants whose average blood pressure levels

were ≥ 140/90 mmHg or under anti-hypertensive medication were

categorized as having hypertension (24). Smoking was categorized

into never, past, and current smokers. Likewise, alcohol drinking

was classified into never, past, and current users. Physical activities

were measured as a metabolic equivalent (MET) per day. The

estimated glomerular filtration rate (eGFR) was calculated using

blood creatinine value; the calculation method was based on the

chronic disease epidemiology method (25).
Causal mediation analysis

Causal inference methods for mediation analysis are an

extension of the traditional approach. First, in the presence of

exposure–mediator interaction, total effect (te) is decomposed into

direct and indirect effects (controlled or natural) from a potential

counterfactual outcomes framework; it develops estimations of

these quantities that are not model specific. Second, causal

mediation elucidates the primary assumptions to estimate direct

and indirect effects, providing clarity to the no unmeasured

confounding assumptions. Under the causal mediation approach,

sensitivity analyses can be conducted to examine the robustness of

findings to violations of these assumptions.

The controlled direct effect (cde) is the effect derived by the

contrast between the counterfactual outcome if the individual were

exposed at A = a and the counterfactual outcome if the same

individual were exposed at A = a*, with the mediator set to a fixed

level M = m. The natural direct effect (nde) is the contrast between

the counterfactual outcome if the individual were exposed at A = a

and the counterfactual outcome if the same individual were exposed

at A = a*, with the mediator assuming whatever value it would have

taken at the reference value of the exposure A = a*. The pure natural

direct effect (pnde) is in the absence of reference interaction while

the total natural direct effect (tnde) is the effect including reference

interaction. The natural indirect effect (nide) is intuitively defined as

the effect of the mediator in the absence of exposure. This effect is

the contrast between the counterfactual outcome if the mediator

assumed whatever value it would have taken at a value of the

exposure A = a and the counterfactual outcome if the mediator

assumed whatever value it would have taken at a reference value of

the exposure A = a*. The pure natural indirect (pnie) effect is in the

absence of mediator interaction, while the total natural indirect

effect (tnie) is the effect including mediator interaction. The total

effect not only is equal to the sum of the indirect and direct effects

but also includes interaction if it exists. Proportion mediated (pm) is

defined as the ratio of the total natural indirect effect to the

total effect.

Several causal mediation analysis approaches are implemented,

including the regression-based approach, the weighting-based

approach, the inverse-odds-ratio-weighting approach, the natural

effect model, the marginal structural model, and the g-formula

approach. A regression-based method estimates the direct and

indirect effects under a parametric assumption. It requires the

model for the outcome, and the models for each of the mediators
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are correctly specified; no model for the exposure is needed in the

regression approach (26). In contrast, the weighting approach

specifies correctly the model for the outcome and the model for

the exposure; no models for the mediators are needed. In the

regression approach, the model for the outcome, and the models

for each of the mediators are required to be correctly specified,

whereas no model for the exposure is needed (26). Although this

approach deals with when the outcome is binary rather than

continuous, it can be used if the mediators are binary (or if some

are binary and some are continuous). This weighting approach can

be used for any type of outcome, including non-rare binary

outcomes; it can also be used regardless of whether there are

exposure–mediator or mediator–mediator interactions (26).

However, as with other weighting approaches, it works best when

the exposure is binary or discrete with only a few levels. If there is a

missingness problem in the outcome dataset, natural effect models

can deal with it within the counterfactual framework (27).

Some more causal mediation approaches work in their principle

and the assumptions under which effect values are calculated for

time-varying variables. For example, the marginal structural model

is designed to control for the effect of confounding variables that

change over time and are affected by previous treatment (28). The

parametric g-formula approach can accommodate both mediation

and time-varying exposures, mediators, and confounders (29); thus,

it constitutes a general approach to mediation analysis with time-

varying exposures and mediators.
Statistical analyses

Continuous and categorical variables are presented as mean

values ± standard deviation and frequencies with percentages,

respectively. An independent two-sample t-test was used to test

differences among participants with and without hyperuricemia for

continuous variables. The difference in distribution for categorical

variables was tested using c2 test. Multinomial logistic regression

was performed to examine the association between hyperuricemia

and the risk of prediabetes or diabetes, adjusting for potential

confounding covariates, namely, age in years, sex (male/female),

BMI, fatty liver (none/mild/moderate-to-severe), hypertension

(yes/no), dyslipidemia (yes/no), eGFR, alcohol drinking (current/

past/never), smoking (current/past/never), and physical activity

metabolic equivalent (MET) per day. We used a weighting-

based approach because of several reasons (1): our study

mediators were binary, ordinal, and continuous (2); our outcome

variable (prediabetes or diabetes) was not a rare disease (3); there

were unequal distribution of covariates between those with

hyperuricemia and without hyperuricemia.

We estimated cde, pnde, tnde, pnie, tnie, te, and pm; the

mathematical formula for calculation has been explained in

Supplementary File 1. The point estimate of each causal effect was

obtained by imputing counterfactuals directly. The standard

deviations of bootstrapped results are the standard errors of

causal effects, and the percentiles of bootstrapped results get the
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causal effects’ confidence intervals. A two-tailed p-value of 5% was

considered statistically significant. We performed mediation

analysis with the “CMAverse” R package, and all other statistical

analyses were executed in R statistical software using its

base packages.
Results

Prevalence and general characteristics

The proportions for prediabetes and diabetes were 44.3% and

11.5%, respectively, after excluding the previously diagnosed cases

of diabetes and the participants under antidiabetic medication. We

observed 48.5% and 12.9% prediabetes and diabetes among

hyperuricemic while 42.2% and 10.8% prediabetes and diabetes,

respectively, among normouricemic individuals; the difference in

the distribution was significant (c2 = 34.3, p < 0.001). The baseline

characteristics of hyperuricemia status are presented in Table 1.

Men and older participants had a higher chance of having

hyperuricemia. Participants with higher BMI, hypertension,

dyslipidemia, fatty liver, and lower eGFR were more likely to be

hyperuricemic. Likewise, physical activity, smoking, and alcohol

drinking were significantly associated with hyperuricemia. We

evaluated correlation among exposure, mediators, and

confounders with correlation matrix (Supplementary Figure 2)

and principal component analysis (Supplementary Figure 3).
Multinomial analysis

We constructed two multinomial regression models: model 1

adjusted for covariates only (age, sex, hypertension, eGFR, alcohol

drinking, smoking, and physical activity), and model 2

additionally adjusted for mediators (BMI, fatty liver, and

dyslipidemia). In model 1, SUA level was significantly associated

with increased risks for both prediabetes and diabetes. The

estimates were attenuated mostly for diabetes in model 2 after

further adjusting for mediators; the significant results were

constrained to overall and women only. Likewise, hyperuricemic

individuals had significantly increased risks of prediabetes or

diabetes overall in model 1, while the estimates were attenuated

in model 2 and only significant for prediabetes. Stratified analyses

by sex showed similar patterns, but significant findings were

mostly observed among women. With SUA quintile categories,

significant associations were observed for prediabetes and diabetes

in model 1, which became attenuated mainly in model 2, especially

for diabetes. Stratified analyses by sex showed similar patterns,

and again, significant findings were mostly found among women

(Table 2). Furthermore, we stratified the analysis by age into

middle-aged adults (<55 years) and older adults (55 years and

over), and significant prediabetes risk was observed for the fifth

quintile of SUA compared to the first quintile in the overall

population (Supplementary Table 1).
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Mediation analysis

A directed acyclic graph was constructed considering fatty liver,

BMI, and dyslipidemia as mediators in the association between

hyperuricemia and diabetes status (Figure 1). All estimates (tnde:

1.11; 95% CI: 1.04, 1.18; tnie: 1.07; 95% CI: 1.05, 1.09; te: 1.18; 95%

CI: 1.10, 1.25) were significant for prediabetes risk linked to

hyperuricemia while only tnie (1.25; 95% CI: 1.18, 1.33) and te

(1.25; 95% CI: 1.05, 1.49) were significant for diabetes risk. The

corresponding pm were 42% (95% CI: 27%, 73%) and 100% (95%

CI: 57%, 361%) for prediabetes and diabetes, respectively. In sex-

wise subgroup analysis, hyperuricemia showed significant tnde only

for prediabetes in women and tnie for prediabetes or diabetes risk in

both sexes. However, pm was 48% (p = 0.008) in men for

prediabetes but not significant in men for diabetes while 35% (p <

0.001) and 96% (p = 0.020) for prediabetes and diabetes in women,

respectively (Table 3). In subgroup analysis among those less than

55 years (middle-aged adults) and equal to or over 55 years (older

adults), tnie and pm were significant for prediabetes and diabetes in

middle-aged adults. In further age–sex stratification, hyperuricemic

middle-aged men and women had statistically significant tnie and

pm for prediabetes and diabetes while tnie and pm were significant

only in the prediabetes men (Supplementary Table 2).
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In addition, we evaluated the effect of each mediator and the

possible combination of mediators (Supplementary Table 3).

Hyperuricemia showed significant tnde, te, and tnie, including

pm, mediated by fatty liver jointly with dyslipidemia (pm = 17%)

or BMI (pm = 35%), on prediabetes risk. In contrast, for diabetes

risk, the only significant indirect effect was observed mediated by

fatty liver disease singly or jointly with either BMI or dyslipidemia,

while other mediation parameters were insignificant.
Effect modification with mediators

Hyperuricemia and SUA quintiles (p for linear trend = 0.001)

were significantly associated with prediabetes among individuals

with mild fatty liver disease compared to those with no fatty liver

(p for interaction 0.172 for hyperuricemia and 0.073 for SUA

quintiles). Hyperuricemia demonstrated a relatively higher

prediabetes risk among people with fatty liver and normal

blood lipid levels than individuals with no fatty liver and no

dyslipidemia (p for interaction 0.047). Compared to the lower

SUA quintile, the highest SUA quintile showed significant

prediabetes risk among people with fatty liver and normal lipid

levels (p for linear trend 0.017 and interaction 0.010) and fatty
TABLE 1 Characteristics of participants by hyperuricemia status.

Variable Category Participants (%) or mean (SD)
Hyperuricemia

No (%) Yes (%) p-value

Age (years) 56.6 (9.8) 56.3 (9.8) 57.1 (9.9) <0.001

Sex
Male 1,870 (35.0) 1,071 (30.1) 799 (44.9)

<0.001
Female 3,466 (65.0) 2,484 (69.9) 982 (55.1)

BMI (kg/m2) 24.0 (3.2) 23.5 (3.0) 24.9 (3.3) <0.001

Hypertension
No 2,931 (55.1) 2,061 (58.1) 870 (49.0)

<0.001
Yes 2,388 (44.9) 1,484 (41.9) 904 (51.0)

Dyslipidemia
No 3,557 (66.7) 2,512 (70.7) 1,045 (58.7)

<0.001
Yes 1,779 (33.3) 1,043 (29.3) 736 (41.3)

Fatty liver

No 3,610 (68.6) 2,651 (75.4) 959 (54.9)

<0.001Mild 1,213 (23.0) 674 (19.1) 539 (30.8)

Moderate-to-severe 441 (8.4) 192 (5.5) 249 (14.3)

eGFR (ml/min/1.73 m2) 96.5 (11.7) 98.1 (10.7) 93.4 (12.9) <0.001

Physical activity (MET/day) 14.0 (13.0) 14.0 (13.1) 14.0 (12.6) <0.001

Smoking

Never 3,935 (73.8) 2,742 (77.2) 1,193 (67.0)

<0.001Ex-smoker 467 (8.8) 263 (7.4) 204 (11.5)

Daily 928 (17.4) 546 (15.4) 382 (21.5)

Alcohol drinking

Never 4,754 (89.2) 3,224 (90.8) 1,530 (85.9)

<0.001Former 170 (3.2) 102 (2.9) 68 (3.8)

Current 408 (7.6) 225 (6.3) 183 (10.3)
fron
SD, standard deviation; BMI, body mass index; eGFR, estimated glomerular filtration rate; MET, metabolic equivalent per day; kg, kilogram; m2, meter squared; ml, milliliter; min, minute.
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liver and dyslipidemia (p for linear trend 0.010 and interaction

0.182) than people with no fatty liver and no dyslipidemia.

Hyperuricemia showed a higher prediabetes risk among people

with fatty liver and non-obesity than people with no fatty liver

and non-obesity (p for interaction 0.138). Compared to the lowest

SUA quintile, the highest SUA quintile demonstrated significant

prediabetes risk among people with fatty liver and non-obesity (p

for linear trend 0.002 and interaction 0.169) and both fatty liver

and obesity (p for linear trend 0.005 and interaction 0.987)

compared to people with no fatty liver and non-obesity.

Significant diabetes risk was observed with the highest SUA

quintile compared to the lowest among individuals with fatty

liver and obesity (p for linear trend 0.019 and interaction 0.019)
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than people with no fatty liver and non-obesity. The above results

indicated that increased prediabetes risk was greater among

people with fatty liver disease (Supplementary Tables 4–6).
Sensitivity analysis

The mediation estimates were likely influenced by unmeasured

confounders, such as environmental exposure to toxicants, dietary

factors, and a family history of diabetes; therefore, we performed a

sensitivity analysis considering the effect of unmeasured confounders in

the association. Overall, we observed high E-values for prediabetes and

diabetes risk in men and women, which indicated that only relatively
TABLE 2 Multinomial logistic analysis for prediabetes and diabetes risk in association with serum uric acid.

Model 1 Model 2

Prediabetes
OR (95% CI)

Diabetes
OR (95% CI)

Prediabetes
OR (95% CI)

Diabetes
OR (95% CI)

Uric acid (continuous)

Overall 1.003 (1.002, 1.004)*** 1.004 (1.003, 1.005)*** 1.002 (1.001, 1.003)*** 1.001 (1.000, 1.003)*

Men 1.002 (1.001, 1.003)*** 1.003 (1.001, 1.004)** 1.001 (1.000, 1.002)* 1.001 (0.999, 1.003)

Women 1.004 (1.003, 1.005)*** 1.005 (1.004, 1.007)*** 1.002 (1.001, 1.003)*** 1.002 (1.000, 1.004)*

Hyperuricemia (yes vs. no)

Overall 1.52 (1.33, 1.73)*** 1.65 (1.35, 2.02)*** 1.25 (1.09, 1.43)*** 1.13 (0.91, 1.40)

Men 1.38 (1.12, 1.70)*** 1.32 (0.94, 1.85) 1.19 (0.96, 1.48) 1.03 (0.73, 1.47)

Women 1.57 (1.32, 1.87)*** 1.81 (1.40, 2.34)*** 1.29 (1.07, 1.54)** 1.18 (0.90, 1.56)

Uric acid (higher quartile vs. the lowest quartile)

Overall
Q2

1.34 (1.11, 1.62)*** 1.44 (1.06, 1.96)* 1.24 (1.02, 1.50)* 1.26 (0.91, 1.73)

Q3 1.37 (1.13, 1.66)*** 1.67 (1.22, 2.27)*** 1.16 (0.95, 1.41) 1.21 (0.88, 1.67)

Q4 1.60 (1.31, 1.96)*** 2.00 (1.46, 2.75)*** 1.27 (1.03, 1.56)* 1.28 (0.92, 1.78)

Q5 2.26 (1.82, 2.82)*** 2.88 (2.05, 4.05)*** 1.58 (1.26, 1.99)*** 1.44 (1.00, 2.07)*

p for linear trend <0.001 0.075

Men Q2 1.19 (0.86, 1.62) 1.29 (0.76, 2.18) 1.10 (0.80, 1.52) 1.15 (0.67, 1.96)

Q3 1.01 (0.73, 1.38) 1.53 (0.93, 2.54) 0.89 (0.64, 1.24) 1.26 (0.75, 2.12)

Q4 1.32 (0.96, 1.83) 1.46 (0.86, 2.49) 1.11 (0.80, 1.55) 1.09 (0.63, 1.88)

Q5 1.82 (1.31, 2.54)*** 1.72 (0.99, 2.99) 1.41 (1.00, 1.98)* 1.05 (0.59, 1.87)

p for linear trend 0.08 0.837

Women Q2 1.18 (0.94, 1.50) 1.20 (0.81, 1.77) 1.10 (0.87, 1.40) 1.03 (0.69, 1.53)

Q3 1.31 (1.03, 1.66)* 1.65 (1.13, 2.41)** 1.14 (0.89, 1.45) 1.28 (0.86, 1.88)

Q4 1.49 (1.17, 1.89)*** 1.74 (1.18, 2.55)*** 1.22 (0.95, 1.56) 1.13 (0.75, 1.69)

Q5 2.09 (1.63, 2.68)*** 2.72 (1.86, 3.98)*** 1.53 (1.18, 1.98)*** 1.40 (0.93, 2.10)

p for linear trend 0.001 0.120
OR, odds ratio; CI, confidence interval; Q, quintile; vs, versus.
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
Model 1 (without adjustment for mediators) adjusted with age, smoking, alcohol drinking, log of physical activity, and in overall group also adjusted with sex.
Model 2 (with adjustment for mediators) further adjusted with fatty liver, body mass index, and dyslipidemia.
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strong unmeasured confounders could change the reported effects

(Supplementary Table 7).
Discussion

In a multinomial regression model without considering

mediators in the association, we observed that hyperuricemia was

significantly associated with a higher risk of prediabetes

independent of age, sex, BMI, dyslipidemia, fatty liver,

hypertension, eGFR, smoking, alcohol drinking, and physical

activity. Furthermore, the association remained significant for

prediabetic risk only in women; however, we did not find a

significant association between hyperuricemia and increased

diabetes risk.

In addition, we investigated the mediation mechanism of

association between hyperuricemia and diabetes status: individual

and the combined effects of BMI, dyslipidemia, and fatty liver were

evaluated. We observed that BMI, dyslipidemia, and fatty liver

jointly mediated the association. In the analysis considering these

three mediators, hyperuricemia significantly increased the risk

directly and indirectly for prediabetes or diabetes; the

corresponding pm was 42% (p < 0.001) and 100% (p = 0.008),

respectively. In sex-wise subgroup analysis, these mediators

modulated the association significantly for prediabetes or diabetes

risk in women (pm = 35% and 96%, respectively), while men had

significant pm only for prediabetes (pm = 48%).

An elevated SUA level has been reported with an increased risk

for diabetes and prediabetes in the Western population. For

instance, cohort studies in the US (6), the Netherlands (7), and

Germany (30) showed that hyperuricemia was an independent risk

factor for prediabetes or diabetes. A meta-analysis also revealed a

higher diabetes risk among hyperuricemic subjects, providing

strong evidence that a higher SUA level is independent of other

established risk factors for developing T2DM in middle-aged and

older people (31).

In contrast, among the Asian population, including the Chinese

people, mixed results were revealed (8–11). Using the multinomial
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logistic regression model, we observed that hyperuricemia was an

independent risk factor for prediabetes but not diabetes among

adults (aged between 35 and 75 years). The significant risk for

prediabetes and not diabetes may be because our analysis excluded

diagnosed cases of diabetes and individuals under antidiabetic

medication. However, the finding agreed with a study that

concludes that serum uric acid is more closely linked to early-

phase mechanisms in the development of T2DM than late-phase

mechanisms (7). The reported differences in the relative risk among

the different gender and populations were probably partly due to the

study’s sample size, disease classification, lifestyle, dietary habits,

and exposure to environmental conditions that interact with their

genetic background. Also, there might be differences in the burden

of comorbidities like hypertension, fatty liver, obesity, dyslipidemia,

and kidney disease, which directly or indirectly were associated with

hyperuricemia and diabetes prevalence.

In subgroup analysis, we demonstrated that hyperuricemic

women had a higher chance of having prediabetes only. Recent

large cohort studies in the Chinese population reported a higher risk

of diabetes in hyperuricemic women but not men (8, 11). Likewise,

women with higher uric acid were reported at a higher prediabetes

and diabetes risk among the Japanese (9) and Korean populations

(10). Elevated SUA levels independently increase prediabetes or

diabetes risk among the younger population (6), indicating the

potential causal role of SUA at an early age. We also stratified by age

group into middle-aged adults (<55 years) and older adults (≥ 55

years) and observed that middle-aged adult women with

hyperuricemia were at higher risk of diabetes. The reason might

be the different biological pathways, including hormonal differences

and the effect of confounders involved in the disease progress

(hyperuricemia to diabetes).

By performing weighting-based mediation analysis, we found that

higher BMI, fatty liver, and dyslipidemia jointly mediated the

association between hyperuricemia and diabetes status. Although the

indirect effects remained significant inmen and women, the proportion

mediated was significant for prediabetes and diabetes in women while

only for prediabetes in men. Thus, the finding suggested that the effect

of mediators was prominent in womenwith diabetes risk. In the further

stratified analysis of the middle-aged and elderly population, we found

that middle-aged women with hyperuricemia were more likely to have

prediabetes or diabetes than their counterparts. In our study, excess

diabetes risk in middle-aged women (<55 years) might be due to a

larger proportion of women during the menopausal stage who might

suffer from hormonal changes leading to higher uric acid levels (32). A

previous study also revealed a significant correlation between SUA

levels and metabolic syndrome, and the association was significant in

premenopausal women compared to postmenopausal ones (33).

In addition, we evaluated the effect of individual mediators and

the possible combination of mediators. When a single mediator was

considered, the mediation effect was too small and insignificant. In

opposition to our finding, Han et al. reported that BMI as a single

mediator significantly mediated the association between

hyperuricemia and diabetes; the mediation proportion was 20%

(16). A recent cohort study demonstrated that high BMI and

dyslipidemia partially mediated the association in Chinese adult

women (11). However, both studies reported their findings
FIGURE 1

Directed acyclic graph for the combined mediating effect of fatty
liver, body mass index, and dyslipidemia on the association between
hyperuricemia and diabetes.
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analyzing diabetes as a binary variable. A possible combination of

two mediators, especially fatty liver with either BMI or

dyslipidemia, significantly increased the effect of hyperuricemia

on prediabetes risk, indicating that fatty liver condition has a

crucial mediating role in the association. The previous study

claimed a potentially causal impact of NAFLD on diabetes (34),

which supported the idea that fatty liver was a primary mediator in

the association.

The previous clinical and experimental studies have shown that

higher uric acid mediates vascular changes leading to renal ischemia

and renin–angiotensin system stimulation, promoting

hypertension, hypertriglyceridemia, and hepatic steatosis through

pro-oxidative mechanisms and ultimately the development of

insulin resistance and decreased release of insulin leading to

T2DM (35), which supports our proposed multiple mediation

mechanism. Higher uric acid also augments reactive oxygen
Frontiers in Endocrinology 08127126
species production leading to the loss of transcription factors

needed for insulin gene expression, eventually decreasing insulin

production and secretion (36).

The present study has several limitations. First, we used cross-

sectional data for the cause–effect analysis, which has several

inherent study design drawbacks. Second, the traditional non-

instrumental variable method for mediation analysis has its

methodological problem, including bias due to confounding

between exposure, mediator, and outcome. Simplifying some

mediators like fatty liver and dyslipidemia into categorical

variables introduced measurement error, which biases the indirect

effect and thus mediated proportion towards the null. Therefore, the

actual mediated proportion of the association between

hyperuricemia and prediabetes or diabetes mediated by biological

fatty liver and dyslipidemia might be higher than that reported in

our study. Furthermore, we analyzed the effect of multiple
TABLE 3 Prediabetes and diabetes causal risk associated with hyperuricemia based on weighted model jointly mediated by dyslipidemia, body mass
index, and fatty liver.

Mediators’ parameter Prediabetes Diabetes

Estimate 95%CI Estimate 95%CI

Overall

Controlled direct effect 1.17 (1.07, 1.29)** 1.05 (0.87, 1.29)

Pure natural direct effect 1.10 (1.03, 1.18)** 1.00 (0.84, 1.19)

Total natural direct effect 1.11 (1.04, 1.18)*** 0.96 (0.82, 1.14)

Pure natural indirect effect 1.06 (1.04, 1.09)*** 1.30 (1.23, 1.37)***

Total natural indirect effect 1.07 (1.05, 1.09)*** 1.25 (1.18, 1.33)***

Total effect 1.18 (1.10, 1.25)*** 1.25 (1.05, 1.49)**

Proportion mediated (%) 42 (27, 73)*** 100 (57, 361)**

Men

Controlled direct effect 1.17 (0.95, 1.40) 1.01 (0.71, 1.41)

Pure natural direct effect 1.08 (0.96, 1.20) 0.97 (0.73, 1.26)

Total natural direct effect 1.11 (0.99, 1.22) 0.92 (0.68, 1.23)

Pure natural indirect effect 1.04 (1.01, 1.08)* 1.19 (1.10, 1.28)***

Total natural indirect effect 1.07 (1.03, 1.10)*** 1.13 (1.03, 1.24)**

Total effect 1.16 (1.03, 1.27)** 1.10 (0.82, 1.43)

Proportion mediated (%) 48 (22, 197)** 128 (-695, 849)

Women

Controlled direct effect 1.16 (1.05, 1.29)** 1.06 (0.81, 1.32)

Pure natural direct effect 1.11 (1.03, 1.20)** 1.01 (0.80, 1.21)

Total natural direct effect 1.11 (1.03, 1.20)** 0.99 (0.80, 1.19)

Pure natural indirect effect 1.06 (1.03, 1.08)*** 1.31 (1.21, 1.42)***

Total natural indirect effect 1.05 (1.02, 1.09)*** 1.28 (1.18, 1.40)***

Total effect 1.17 (1.09, 1.27)*** 1.30 (1.04, 1.56)*

Proportion mediated (%) 35 (15, 67)*** 96 (54, 337)*
CI, confidence interval; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
Adjusted for age, sex, hypertension, estimated glomerular filtration rate, smoking, alcohol drinking, log of physical activity.
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mediators in the association between hyperuricemia and diabetes

status without considering the time effect and the confounder

affected by exposures (hyperuricemia).

The previous research showed that persistent hyperuricemia at

baseline to follow-up could better predict diabetes risk and cross-lag

analysis shows the reverse relation of diabetes to the SUA level (8).

Therefore, we analyzed the data excluding self-reported

diabetes and individual undergoing-treatment for diabetes and

hyperuricemia, possibly removing the effect of reverse causality.

We used weighting-based mediation analysis to better predict the

causal estimation in the scenario where some mediators like fatty

liver and dyslipidemia were simplified into categorical variables.

Considering that the estimates were likely to be influenced by

unmeasured confounders like family history of diabetes,

environmental exposure to toxicants, and dietary factors, we

performed a sensitivity analysis that showed relatively large E-

values, indicating that considerable unmeasured confounding

would be needed to explain away an effect estimate.

Hyperuricemia is associated with higher prediabetes and

diabetes risk among the Chinese population, partially mediated by

higher BMI, dyslipidemia, and fatty liver. Increased diabetes and

prediabetes risks were more prominent in women and middle-aged

adults. Among the mediators considered, fatty liver jointly with

either dyslipidemia or higher BMI had a robust mediating effect in

the association. The findings suggest that further randomized

controlled trials are needed to consider treatment options for

asymptomatic hyperuricemia, with higher BMI, dyslipidemia, and

fatty liver to prevent prediabetes and diabetes risk. Finally, the

clinician should be cautious of hyperuricemic patients with higher

BMI, dyslipidemia, and fatty liver to avoid the future risk of

developing diabetes.
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Background & aims: The effect of change in non-alcoholic fatty liver disease

(NAFLD) status on incident diabetes has not been well studied. We aimed to

investigate the association of NAFLD development and remission with the risk of

incident diabetes during a median of 3.5-year follow-up.

Methods: A total of 2690 participants without diabetes were recruited in 2011-

2012 and assessed for incident diabetes in 2014. Abdominal ultrasonography was

used to determine the change of NAFLD. 75 g oral glucose tolerance test (OGTT)

was performed to determine diabetes. NAFLD severity was assessed using

Gholam’s model. The odds ratios (ORs) for incident diabetes were estimated

by logistic regression models.

Results: NAFLD was developed in 580 (33.2%) participants and NAFLD remission

occurred in 150 (15.9%) participants during a median of 3.5-year follow-up. A

total of 484 participants developed diabetes during follow-up, including 170

(14.6%) in consistent non-NAFLD group, 111 (19.1%) in NAFLD developed group,

19 (12.7%) in NAFLD remission group, and 184 (23.2%) in sustained NAFLD group.

The development of NAFLD increased the risk of incident diabetes by 43% (OR,

1.43; 95%CI, 1.10-1.86) after adjustment for multiple confounders. Compared

with sustained NAFLD group, remission of NAFLD reduced the risk of incident

diabetes by 52% (OR, 0.48; 95%CI, 0.29-0.80). The effect of NAFLD alteration on

incident diabetes was not changed after adjustment for body mass index or waist

circumference, change of body mass index or waist circumference. In NAFLD

remission group, participants with non-alcoholic steatohepatitis (NASH) at

baseline were more likely to develop diabetes (OR, 3.03; 95%CI, 1.01-9.12).

Conclusions:NAFLD development increases the risk of incident diabetes, whereas

NAFLD remission reduces the risk of incident diabetes. Moreover, presence of

NASH at baseline could attenuate the protective effect of NAFLD remission on

incident diabetes. Our study suggests that early intervention of NAFLD and

maintenance of non-NAFLD are important for prevention of diabetes.

KEYWORDS

non-alcoholic fatty liver disease, incident diabetes, obesity, type2 diabetes mellitus
(T2DM), prevention
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Introduction

Type 2 diabetes mellitus (T2DM) poses a serious challenge for

human health due to complicated cardiovascular diseases and

mortality (1). The prevalence of diabetes is rapidly increased (2,

3), therefore, it is urgent to identify risk factors for incident diabetes

in order to prevent major complications. Accumulating evidence

has demonstrated that non-alcoholic fatty liver disease (NAFLD) is

emerging as a leading cause of chronic liver disease worldwide in

the past two decades (4). The close association of NAFLD and

diabetes has been well determined. In patients with diabetes the

prevalence of NAFLD is as high as 40-70% (5) and NAFLD patients

are usually accompanied with impaired glucose metabolism as well

(6, 7). A long-term effect of NAFLD on incident T2DM risk has

been reported. A 19-year cohort study reported that the risk of

T2DM was increased by 11.7 folds in NAFLD subjects as compared

to the general population (8). Sinn Dong Hyun reported that

NAFLD subjects with either normal weight or overweight/obesity

was an independent risk for incident diabetes (9). Of note, the co-

existence of NAFLD and diabetes results in worse hepatic injury, as

the presence of diabetes accelerates the progression of simple fatty

liver to steatohepatitis, cirrhosis, and hepatocellular carcinoma (10).

Moreover, unfavorable extrahepatic disease risks should be

highlighted. The co-existence of NAFLD in patients with diabetes

leads to an increased risk of chronic kidney disease (1.87-fold),

cardiovascular disease (1.96-fold), and cardiovascular mortality

(3.46-fold), imposing a heavy burden on global healthcare

systems (11–14).

NAFLD can be dynamic across the lifespan, changing from

remission to worsening. As the pathophysiology of the association

between NAFLD development and incident diabetes has been well

illustrated, which involves insulin resistance, increased lipogenesis,

overproduced hepatic glucose, and dysregulated hepatokines thus

contributing to b-cell dysfunction, the change in NAFLD status

might modify the risk of diabetes (15, 16). Several previous studies

have proved that the risk of incident diabetes was increased with the

development of fatty liver and worsening of fatty liver (17).

However, the effect of remission of NAFLD on incident diabetes

has not been well studied. As NAFLD could be ameliorated by

clinical intervention (18, 19), targeting the effect of the change in

NAFLD, especially the improvement of NAFLD might be

important for diabetes prevention.

In the present study, we explored whether the development and

remission of NAFLD increased and reduced the risk of incident

diabetes in a prospective cohort.
Abbreviations: NAFLD, non-alcoholic fatty liver disease; OGTT, oral glucose

tolerance test; ORs, odds ratios; NASH, non-alcoholic steatohepatitis; T2DM,

type 2 diabetes mellitus; BMI, body mass index; WC, waist circumference; TG,

triglyceride; TC, total cholesterol; LDL-C, low density lipoprotein cholesterol;

HDL-C, high density lipoprotein cholesterol; ALT, alanine aminotransferase;

AST, aspartate aminotransferase; GGT, gamma-glutamyl transpeptidase; FBG,

fasting blood glucose; HbA1c, glycated hemoglobin; SD, standard deviations;

ANOVA, one-way analysis of variance.
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Materials and methods

Subjects and study design

Our cohort study was conducted in the Chongming

District, Shanghai and the detailed information about study

design, eligibility criteria, and sampling has been described

previously (20). In brief, a total of 9930 participants received

a baseline survey from 2011 to 2012 and 7707 participants

completed the follow-up survey in 2014. In our present study,

3577 subjects who had complete baseline and follow-up

information were included. Those individuals with diabetes at

baseline (n=771), a history of known liver disease including

viral or autoimmune hepatitis, liver cancer, or cirrhosis (n=35),

abusing alcohol (alcohol consumption >140 g/week in men or

>70 g/week in women, n=75), or missing information of fatty

liver (n=6) were excluded. Finally, 2690 participants were

included for this analysis. Our prospective cohort study was

approved by the Ethical Committee of Zhongshan Hospital,

Fudan University, and each participant was provided with a

written informed consent.
Clinical and laboratory evaluation

Standard questionnaires were employed to obtain the

information about demographic characteristics, lifestyles, history

of diseases and medication on site conducted by trained

investigators. Body weight and height were obtained in light

clothes and bare feet to the nearest 0.1 kg and 0.1 cm,

respectively. Body mass index (BMI) was derived from weight in

kilograms divided by square of height in meters. Waist

circumference (WC) was measured at the level of umbilicus in

a standing position. Blood pressure was measured on non-

dominant arm at a seated position, three times consecutively

with 1-min rest and 10-min interval using an automated

electronic sphygmomanometer (OMRON Model HEM-752

FUZZY’ Omron Co., Dalian, China). The average value of three

readings was used. Current smokers were defined as participants

regularly consuming cigarettes (duration> 6 months) right before

the survey. Former smokers were defined as participants with a

history of cigarettes consuming for longer than 6 months and

having quitted smoking at the time of survey. Similarly, current

drinkers were defined as participants regularly consuming alcohol

(duration > 6 months) right before the survey. Former drinkers

were defined as participants with a history of alcohol consuming for

longer than 6 months and having quitted drinking at the time

of survey.

Blood samplings were done two times, one at baseline and

another at the 3.5-year follow-up. Fasting venous blood samples

were collected after at least 10-h fasting. Serum triglyceride (TG),

total cholesterol (TC), low density lipoprotein cholesterol (LDL-C),

high density lipoprotein cholesterol (HDL-C), alanine

aminotransferase (ALT), alanine aminotransferase (AST),

gamma-glutamyl transpeptidase (GGT) were measured on the

auto analyser (Modular E170, Roche).
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Diabetes definition

A 75g oral glucose tolerance test (OGTT) was conducted and

blood samples at 0h and 2h after glucose load were collected.

Fasting blood glucose (FBG) and 2-h post-load glucose levels

were measured using glucose oxidase method on an auto analyser

(Modular P800, Roche). Serum insulin was measured by an

electrochemiluminescence assay (Modular E170, Roche). The

homeostasis model assessment of insulin resistance index

(HOMA_IR) was calculated as fasting insulin (mIU/ml) × fasting

glucose (mmol/L)/22.5. Glycated hemoglobin (HbA1c) was

measured by high-performance liquid chromatography.

According to American Diabetes Association 2010 criteria,

diabetes mellitus was defined as 1) self-reported doctor-diagnosed

diabetes or taking antidiabetic medications, and/or 2) FBG levels ≥

7.0 mmol/L and/or, 3) 2h post-load glucose levels ≥ 11.1 mmol/L,

and/or 4) HbA1c concentration ≥ 6.5% (48mmol/mol). In the

absence of unequivocal hyperglycemia, diagnosis requires two

abnormal test results from the same sample or in two separate

test samples.
NAFLD definition

NAFLD was diagnosed by ultrasonography with exclusion of a

history of known liver diseases. Liver ultrasonography was operated

by two specialists who were blinded to clinical data using a high-

resolution B-mode tomographic ultrasound system (Esaote

Biomedica SpA, Italy) equipped with a 3.5-MHz probe. Fatty liver

was defined as the presence of at least two of the following three

findings: 1) diffusely increased echogenicity of the liver relative to

kidney; 2) ultrasound beam attenuation; 3) poor visualization of

intrahepatic structures. The definitions for NAFLD development

were absence of NAFLD at baseline and presence of NAFLD at the

end of follow-up, NAFLD remission presence of NAFLD at baseline

and absence of NAFLD at the end of follow-up, consistent non-

NAFLD absence of NAFLD at baseline till the end of follow-up and

sustained NAFLD presence of NAFLD at baseline till the end of

follow-up. Non-invasive NAFLD scores was used to assess the non-

alcoholic steatohepatitis (NASH). Gholam’s model was calculated

as 2.627 * ln AST + 2.13 for diabetics, with a cut-off for predicting

NASH of 8.22 (21, 22).
Statistical analysis

Normally distributed continuous variables were presented as

means with standard deviations (SDs), whereas skewed distributed

continuous variables were presented as geometrical median and

interquartile range. Continuous variables were compared by student

t tests and one-way analysis of variance (ANOVA), whereas skewed

distributed variables were compared by Mann Whitney U and

Kruskal Wallis tests. Categorical variables were expressed as

proportions and compared across groups using chi-square tests or

fisher exact test. The unadjusted and multivariate adjusted logistic
Frontiers in Endocrinology 03132131
regression analyses were performed to investigate the odds ratios of

new development and remission of NAFLD on the risk of incident

diabetes. In the NAFLD remission group, logistic regression

analysis was further performed to compare the risk of incident

diabetes between subjects with or without steatohepatitis at

baseline. Statistical analyses were performed on SPSS version 26

(IBM Corp., Armonk, NY). A two-sided p value less than 0.05 was

considered as statistical significance.
Results

Baseline characteristics of participants with
and without incident type 2 diabetes

The present study included 2690 participants free of diabetes at

baseline from 2011 to 2012, and followed up in 2014. Diabetes

developed in 484 subjects (18.0%). The baseline characteristics of

participants by incident diabetes at follow-up were shown in

Table 1. Participants who developed diabetes were older (p =

0.006), had higher BMI and WC, higher concentrations of TC,

TG (all p < 0.0001) and LDL-C (p = 0.01) at baseline. The incidence

of diabetes was 21.5% in subjects with presence of NAFLD at

baseline and 16.1% in subjects without NAFLD at baseline (21.5%

VS 16.1%, p < 0.0001).
The association of NAFLD alteration with
incident diabetes

Table 2 showed the change of NAFLD during 3.5-year follow-

up. Of 1746 non-NAFLD subjects at baseline, 580 (33.2%)

participants developed NAFLD and 1166 (66.8%) was consistently

free of NAFLD throughout the follow-up. Of 944 NAFLD subjects

at baseline, 150 participants (15.9%) had NAFLD remission and 794

(84.1%) participants had sustained NAFLD. We then investigated

the association of NAFLD alteration and incident diabetes. 170 of

1166 (14.6%) participants with consistent non-NAFLD developed

diabetes, whereas 184 of 794 (23.2%) participants with sustained

NAFLD developed diabetes. In contrast, 111 of 580 (19.1%) subjects

with NAFLD development developed diabetes, and 19 of 150

(12.7%) subjects with NAFLD remission developed diabetes.
The risk for incident diabetes according to
NAFLD alteration by logistic regression
analysis

Table 3 showed the baseline clinical and biochemical

characteristics according to NAFLD alterations during 3.5-year

follow-up. The subjects with consistent non-NAFLD were

younger by age, had lower BMI, WC, blood pressure, plasma

glucose, TG, and higher HDL-C, whereas sustained-NAFLD

group was older and had higher BMI, WC, blood pressure,

plasma glucose, insulin resistance, and more adverse lipid
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metabolism at baseline (all p < 0.0001). There were no significant

differences in smoking or drinking status across four groups.

Then logistic regression analyses were performed to study the

effect of NAFLD alteration on the risk of incident diabetes

(Figure 1). After adjustment for age, gender, smoking and

drinking status, subjects with NAFLD development had a

significantly higher risk for diabetes as compared with sustained

non-NAFLD group (OR, 1.43; 95%CI, 1.10-1.86). The risk was not

changed after further adjustment for BMI (OR, 1.36; 95%CI, 1.03-

1.79) or WC (OR, 1.38; 95%CI, 1.05-1.81). After adjustment for age,

gender, smoking and drinking status, subjects with remission of

NAFLD had a significantly decreased risk for diabetes as compared

with sustained NAFLD (OR, 0.48; 95%CI, 0.29-0.80). The decreased

risk was not changed after further adjustment for BMI (OR, 0.49;

95%CI, 0.30-0.83) or WC (OR, 0.49; 95%CI, 0.29-0.82). Since

change in NAFLD status is always accompanied with change of

BMI or WC, and meanwhile BMI and WC have strong associations

with incident diabetes, therefore we assessed the risk after

adjustment for BMI change and WC change in the existing
Frontiers in Endocrinology 04133132
model, respectively. The results showed that the association of

change of NAFLD status with incident diabetes was independent

of the change of BMI and WC (Figure 2).
The association between baseline NAFLD
severity and risk of incident diabetes in
NAFLD remission group

In order to investigate what might contribute to the incidence of

diabetes in subjects whose NAFLD remitted, we then calculated the

Gholam’s model to assess their NAFLD severity at baseline. 27 of

150 (18.0%) subjects were identified with NASH at baseline. The

incidence of diabetes in subjects with NASH at baseline was

obviously higher than in those without NASH at baseline (25.9%

VS 9.8%, p=0.048) (Supplemental Table 1). In the age, gender

adjusted- logistic model, presence of NASH at baseline increased

risk of incident diabetes in participants with NAFLD remission

(OR, 3.08; 95%CI, 1.05-8.99). After further adjustment for smoking
TABLE 1 Baseline characteristics of participants with and without incident type 2 diabetes: demographics and laboratory values.

Non-Diabetes
(n=2206)

Incident Diabetes
(n=484)

P value

Age, y 55 ± 8 56± 8 0.006

Gender (male/female) 586/1620 (27%) 150/334 (31%) 0.048

Smoking status, n (%)

Current smoker 178 (8.1%) 33 (6.8%)

0.36Former smoker 70 (3.2%) 11 (2.3%)

Never smoker 1958 (88.8%) 440 (90.9%)

Drinking status, n (%)

Current drinker 74 (4.4%) 15 (3.7%)

0.69Former drinker 230 (15.6%) 50 (14.9%)

Never drinker 1264 (79.9%) 253 (81.4%)

BMI, kg/m2 24.1 ± 3.3 24.7± 3.4 <0.0001

WC, cm 82.2 ± 9.5 84.0 ± 10.1 <0.0001

SBP, mmHg 126 ± 17 131± 17 <0.0001

DBP, mmHg 79 ± 10 81 ± 10 <0.0001

Lipids

Total cholesterol, mmol/L 4.40 ± 0.99 4.57 ± 1.05 <0.0001

Triglycerides, mmol/L 1.22 (0.89-1.74) 1.36 (0.97-1.92) <0.0001

LDL-C, mmol/L 2.48 ± 0.74 2.58± 0.76 0.01

HDL-C, mmol/L 1.19 ± 0.30 1.20 ± 0.32 0.75

NAFLD at baseline (%)

Yes 741 (33.6%) 203 (41.9%)
<0.0001

No 1465 (66.4%) 281 (58.1%)
fron
Data are presented as mean ± SD, number and percentage, or median (IQR). Continuous variables were compared by student t tests, skewed distributed variables were compared by Mann
Whitney U tests, categorical variables were compared by chi-square tests. A two-sided p value < 0.05 was considered as statistical significance. BMI, body mass index; WC, waist circumference;
SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease.
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and drinking status, and baseline BMI, the association persisted

(OR, 3.03; 95%CI, 1.01-9.12) (Table 4).
Discussion

NAFLD is indicative of intrahepatic triglyceride accumulation

and strongly associated with diabetes (15) and cardiovascular

disease (23). Previous studies have indicated that NAFLD patients

were more likely to have impaired glucose regulation and to develop

type 2 diabetes (5, 6). Park SK et al. have revealed that, compared to

non-NAFLD participants, mild to moderate NAFLD patients

increased the risk of incident diabetes by 42% and moderate to

severe NAFLD increased the risk of incident diabetes by 158% in 5-

year follow-up. The associations were independent of age, BMI,

smoking status, regular exercise or family history of diabetes (24).

Given that liver fat content is variable, NAFLD status can change

from remission to worsening. As the pathophysiology of the

interplay between NAFLD and incident diabetes has been

elucidated, the change in NAFLD status might modify the risk of

incident diabetes. However, the association of the change of

NAFLD status, especially the NAFLD remission with incident

diabetes has not been well studied.

Our present study showed that new development of NAFLD

increased the incident diabetes, in accordance with previous studies

(25, 26). Yamazaki H et al. reported that NAFLD remission reduced

the risk of incident diabetes (25), whereas, the association was not

observed by Sung KC et al., probably due to they adopted different

controls, the former focused on whether NAFLD remission reduced

the risk of incident diabetes, and the latter focused on whether

people had an increased risk of diabetes even if NAFLD resolved

(27). In our study, NAFLD remission markedly decreased the

incident diabetes compared with sustained NAFLD. Since
Frontiers in Endocrinology 05134133
NAFLD status was changeable, and NAFLD remission reduced

risk of incident diabetes, targeting the improvement of NAFLD

might be important to prevent diabetes. NAFLD could be

ameliorated by lifestyle intervention, including lifestyle

modification and physical exercise, medications, and bariatric

surgery as well (18, 19, 28, 29). Petersen KF et al. reported that

8% of body weight loss by caloric restriction could reverse NAFLD

and hepatic insulin resistance and further normalized plasma

glucose levels in patients with diabetes (30). Taylor R et al.

demonstrated that removal of excess intrahepatic fat via

substantial weight loss can normalize hepatic insulin

responsiveness, which was required remission in human type 2

diabetes (31). They revealed that both fatty liver and diabetes were

closely associated with hepatic insulin resistance and speculated

that fatty liver played a central role in the progression of

diabetes (32).

Our data indicated that remission of NAFLD reduced the risk of

incident diabetes, which might be explained by: 1) the improvement

of hepatic insulin resistance; 2) alteration of hepatokine production,

such as a reduction of fetuin A levels (33). Liver fat content is an

important regulator of hepatic insulin sensitivity, and hepatic

insulin sensitivity was found to be a strong predictor of glucose

tolerance. And decreased liver fat is always accompanied by a

decrease in serum Fetuin A levels. Fetuin A can induce insulin

resistance by interruption of insulin receptors and activation of toll-

like receptors (34).

However, there were still a proportion of subjects developing

diabetes even though their NAFLD remitted. A meta-analysis in

501,022 adult individuals showed that patients with more ‘severe’

NAFLD were also more likely to develop incident diabetes (17).

Similarly, we found in participants with NAFLD remission,

those predicted to have NASH at baseline were more likely to

develop diabetes. This indicated that increased severity of NAFLD
TABLE 2 (A) NAFLD status at baseline and follow-up.

Baseline NAFLD status

Follow-up NAFLD status

P valueNo NAFLD
(n=1316)

NAFLD
(n=1374)

No NAFLD
(n=1746)

1166/1746
(66.8%)

580/1746
(33.2%)

<0.0001
NAFLD
(n=944)

150/944
(15.9%)

794/944
(84.1%)

Data are presented as number and percentage. P values was compared among groups using chi-square test. P value < 0.05 was defined as statistically significant.
fron
(B) Incident diabetes according to baseline and follow-up NAFLD status

NAFLD status at baseline and follow-up No. of cases/total Incidence rate P value

Sustained non-NAFLD 170/1166 14.6% 0.015

New NAFLD 111/580 19.1%

NAFLD remission 19/150 12.7% 0.004

Sustained NAFLD 184/794 23.2%

Data are presented as number and proportion. P values were compared across groups sustained non-NAFLD VS new NAFLD; NAFLD remission VS sustained NAFLD using chi-square tests.
P value < 0.05 was defined as statistically significant.
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(ie. NASH) at baseline could attenuate the protective effect of

NAFLD remission. Therefore, early intervention of NAFLD

is important.
Strengths and limitations

The strengths of the present study are as follows. First, we

focused on change in NAFLD status as effects of alcohol consuming

and other liver diseases were ruled out. We conducted a well-

designed longitudinal cohort and reported the effect of NAFLD

status change, including new development and remission of

NAFLD on incident diabetes in a 3.5-year Chinese cohort
Frontiers in Endocrinology 06135134
population for the first time. Third, standardized collection of

covariates allowed for adjustment for potential confounders. We

also have some limitations. First, the study was performed in

middle-aged and older Chinese population and cannot be

generalized to adolescent or other ethnical populations. Second,

NAFLD was determined by ultrasonography, which had limited

sensitivity to detect low-level liver fat, limiting the generalizability of

our study to earlier stages of NAFLD. NASH were assessed by non-

invasive score instead of gold-standard hepatic biopsy. Third,

diagnoses of diabetes and NAFLD were only made at baseline

and the 3.5-year follow-up, so it might not differentiate which one

developed first, and an annual screening for incident diabetes could

be helpful.
TABLE 3 Baseline characteristics of the cohort stratified by NAFLD status at baseline and at follow up.

NAFLD status

Sustained non-NAFLD New NAFLD Remission of NAFLD Sustained NAFLD P for trend

Age, y 55 ± 8 54 ± 8 56 ± 8 56 ± 7 <0.0001

Gender (male/female, male%) 343/823 (29%) 132/448 (23%) 37/113
(25%)

224/570 (28%) 0.023

Smoking status, n (%)

Current smoker 97 (8.3%) 45 (7.8%) 8 (5.3%) 61 (7.7%)

0.78Former smoker 40 (3.4%) 17 (2.9%) 4 (2.7%) 20 (2.5%)

Never smoker 1029 (88.3%) 518 (89.3%) 138 (92.0%) 713 (89.8%)

Drinking status, n (%)

Current drinker 50 (4.3%) 24 (4.1%) 4 (2.7%) 38 (4.8%)

0.90Former drinker 177 (15.2%) 94 (16.2%) 21 (14.0%) 125 (15.7%)

Never drinker 939 (80.5%) 462 (79.7%) 125 (83.3%) 631 (79.5%)

BMI, kg/m2 22.4 ± 2.5 24.5 ± 2.7 25.1 ± 2.7 26.7 ± 3.2 <0.0001

WC, cm 78 ± 8 83± 8 86 ± 9 89 ± 8 <0.0001

SBP, mmHg 124 ± 18 126 ± 17 127 ± 17 131 ± 17 <0.0001

DBP, mmHg 77 ± 10 79 ± 9 80 ± 10 82 ± 10 <0.0001

Lipids

Total cholesterol, mmol/L 4.37 ± 0.99 4.34 ± 0.99 4.55 ± 1.12 4.56 ± 1.00 <0.0001

Triglycerides, mmol/L 1.01
(0.78-1.40)

1.25
(0.92-1.82)

1.34
(0.98-1.81)

1.64
(1.20-2.31)

<0.0001

LDL-C, mmol/L 2.46 ± 0.74 2.43 ± 0.69 2.62 ± 0.85 2.58 ± 0.75 <0.0001

HDL-C, mmol/L 1.27 ± 0.32 1.15 ± 0.28 1.15 ± 0.29 1.11 ± 0.26 <0.0001

FBG, mmol/L 5.52 ± 0.51 5.56 ± 0.53 5.73 ± 0.54 5.72 ± 0.53 <0.0001

2h-BG, mmol/L 6.56 ± 1.62 7.03 ± 1.54 7.00 ± 1.68 7.59 ± 1.58 <0.0001

HbA1c, % 5.66 ± 0.37 5.71 ± 0.36 5.75 ± 0.35 5.81 ± 0.35 <0.0001

HbA1c, mmol/mol 38 ± 4.1 39 ± 4.0 39 ± 3.8 40 ± 3.8 <0.0001

HOMA_IR 1.32
(0.96-1.71)

1.63
(1.31-2.19)

1.79
(1.29-2.33)

2.33
(1.74-2.93)

<0.0001
Data are presented as mean ± SD, number and percentage, or median (IQR). Continuous variables were compared by one-way analysis of variance (ANOVA). Skewed distributed variables were
compared by Kruskal Wallis tests. Categorical variables were compared by chi-square tests. A two-sided p value < 0.05 was considered as statistical significance. BMI, body mass index; WC, waist
circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; NAFLD, non-alcoholic fatty
liver disease.
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TABLE 4 Odds ratios for incident diabetes according to Gholam’s model assessment at baseline in the NAFLD remission group.

NAFLD severity
at baseline

No. of cases/controls Model 1 Model 2

OR (95% CI) P value OR (95% CI) P value

Gholam’s <8.22 7/20 Ref. Ref.

Gholam’s >8.22 12/111 3.08 (1.05-8.99) 0.040 3.03 (1.01-9.12) 0.048
F
rontiers in Endocrinology
 07136135
 fron
Model1: adjusted for age, gender;
Model2: adjusted for age, gender, smoking and drinking status, baseline BMI.
FIGURE 1

Odds ratios for incident diabetes according to change in NAFLD status between baseline and follow-up. Data are presented as Odds ratios (ORs),
and the corresponding 95%CI in each group. Logistic regression models were used to estimate the ORs, 95% CIs, and P values. Model 1: adjusted for
age, gender; Model 2: adjusted for age, gender, smoking and drinking status; Model 2: adjusted for age, gender, smoking and drinking status,
baseline BMI; Model 4: adjusted for age, gender, smoking and drinking status, baseline WC. No-yes: absence of NAFLD at baseline but presence of
NAFLD at follow-up; No-no: absence of NAFLD at baseline till the follow-up; Yes-no: presence of NAFLD at baseline but absence of NAFLD at
follow-up; Yes-yes: presence of NAFLD at baseline till the follow-up.
FIGURE 2

Odds ratios for incident diabetes after adjustment for change of BMI and WC. All adjusted for age, sex, smoking and drinking status, baseline BMI and
baseline WC.
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Conclusion

In conclusion, the change of NAFLD is associated with the

change of risk of diabetes. NAFLD development increases the risk of

incident diabetes, whereas NAFLD remission decreases the risk of

incident diabetes, after adjustment for multiple potential

confounders. Moreover, presence of NASH at baseline could

attenuate the protective effict of NAFLD remission on incident

diabetes. Therefore, our study indicates that early intervention of

NAFLD and maintenance of non-NAFLD are important for

prevention of diabetes.
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Non-alcoholic fatty liver disease
and incidence of microvascular
complications of diabetes in
patients with type 2 diabetes: a
prospective cohort study
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Fatemeh Moosaie1, Hassan Asadigandomani1,
Melika Arab Bafrani1, Niyoosha Yoosefi 1, Amirhossein Poopak1,
Mohammad Dehghani Firouzabadi1, Mohadeseh Poudineh1,4,
Soghra Rabizadeh1, Ibrahim Kamel1, Manouchehr Nakhjavani1

and Alireza Esteghamati 1*

1Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine,
Tehran University of Medical Sciences, Tehran, Iran, 2Student Research committee, School of
Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3Radiology and Imaging
Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States, 4School of
Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
Objective: To investigate the association between non-alcoholic fatty liver

disease (NAFLD) and liver enzymes with the incidence of microvascular

complications (neuropathy, retinopathy, and nephropathy) in a cohort of

Iranian patients with type 2 diabetes.

Methods: For a total population of 3123 patients with type 2 diabetes, a

prospective study was designed for 1215 patients with NAFLD and 1908 gender

and age-matched control patients without NAFLD. The two groups were

followed for a median duration of 5 years for the incidence of microvascular

complications. The association between having NAFLD, the level of liver

enzymes, aspartate aminotransferase to platelet ratio index (APRI), Fibrosis-4

(FIB-4) value, and the incidence risk of diabetic retinopathy, neuropathy, and

nephropathy were assessed through logistic regression analysis.

Results: NAFLD was found to be associated with incidence of diabetic

neuropathy and nephropathy (Odds ratio: 1.338 (95% confidence interval:

1.091-1.640) and 1.333 (1.007-1.764), respectively). Alkaline-phosphatase

enzyme was found to be associated with higher risks of diabetic neuropathy

and nephropathy ((Risk estimate: 1.002 (95% CI: 1.001-1.003) and 1.002 (1.001-

1.004), respectively)). Moreover, gamma-glutamyl transferase was associated

with a higher risk of diabetic nephropathy (1.006 (1.002-1.009). Aspartate

aminotransferase and alanine aminotransferase were inversely associated with

the risk of diabetic retinopathy (0.989 (0.979-0.998) and 0.990 (0.983-0.996),

respectively). Furthermore, ARPI_T (1), ARPI_T (2), and ARPI_T (3) were shown to

be associated with NAFLD (1.440 (1.061-1.954), 1.589 (1.163-2.171), and 2.673
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(1.925, 3.710), respectively). However, FIB-4 score was not significantly

associated with risk of microvascular complications.

Conclusion: Despite the benign nature of NAFLD, patients with type 2 diabetes

should be always assessed for NAFLD to ensure early diagnosis and entry into

proper medical care. Regular screenings of microvascular complications of

diabetes is also suggested for these patients.
KEYWORDS

type 2 diabetes, non-alcoholic fatty liver disease, diabetic neuropathy, diabetic
retinopathy, diabetic nephropathy
Introduction

Non-alcoholic fatty liver disease (NAFLD) occurs commonly in

patients with type 2 diabetes mellitus, with a prevalence of 55%–

68% (1) due to the frequent occurrence of insulin resistance and

obesity in patients with type 2 diabetes (2).

There is now growing evidence that independent of other known

risk factors and especially in patients with type 2 diabetes, NAFLD,

could be associated with an increased risk of macrovascular

complications. Several observational studies and some meta-

analyses have documented that NAFLD, especially its advanced

forms, is strongly associated with fatal and non-fatal cardiovascular

events, as well as with specific cardiac complications, including sub-

clinical myocardial alteration and dysfunction, heart valve diseases

and cardiac arrhythmias. Importantly, across various studies, these

associations remained significant after adjustment for established

cardiovascular risk factors and other confounders (3–7).

Furthermore, It has been shown that NAFLD increases the risks

for the development of type 2 diabetes and/or its progression (8, 9).

Therefore, NAFLD could increase the risk for type 2 diabetes organ-

specific complications as well and consequently the incidence of

type 2 diabetes complications such as nephropathy, retinopathy,

and neuropathy with NAFLD is an emerging concept (10).

Several population-based studies have revealed different types of

associations between the incidence of microvascular complications of

type 2 diabetes and NAFLD. A report from India revealed increased

prevalence of microvascular complications including nephropathy

and neuropathy in patients with type 2 diabetes and fatty liver disease

(10). However, a cross sectional study of the Korean population

reported that prevalence of diabetic nephropathy and retinopathy

were lower in patients with type 2 diabetes who had NAFLD (11).

Conversely, Targher et al. (12, 13) reported that NAFLD is

independently associated with an increased prevalence of both

diabetic nephropathy and retinopathy in patients with type 2

diabetes. Altogether, convincing epidemiological evidence have

supported a strong association between the presence and severity of

NAFLD, and the risk of chronic microvascular diabetes

complications (14).

Since results of the previous studies are controversial, once

again the present study aimed to investigate the association of
02140139
NAFLD, liver enzymes, and Fibrosis-4 (FIB-4) index [a non-

invasive fibrosis scoring systems to checkup liver fibrosis (15, 16)]

with the incidence of microvascular complications (neuropathy,

retinopathy, and nephropathy) in a cohort of Iranian patients with

type 2 diabetes.
Materials and methods

Study population

In this prospective cohort study, 3123 patients with a history of

type 2 diabetes enrolled and were followed for median of 5 years.

The participants had all previously attended the endocrinology

clinic of Vali-Asr Hospital, a medical center affiliated with Tehran

University of Medical Sciences. The study group was chosen based

on comprehensive exclusion criteria which consisted of having a

history of glaucoma, vitreous surgery, cataract on eye examination,

kidney disease (Creatinine (Cr)> 2 mg/dl) or low estimated

glomerular filtration rate (eGFR) <30 cc/min), hypothyroidism,

familial hypercholesterolemia, liver dysfunction, epilepsy, and

hemoglobinopathy. Women taking oral contraceptives or

hormone replacement therapy and pregnant women were also

excluded. Additionally, patients with type 1 diabetes, gestational

diabetes, diabetes due to pancreatic cancer, pancreatitis and other

metabolic conditions were excluded. Patients with a history of

alcohol use, viral hepatitis, hepatotoxicity-inducing drugs usage,

autoimmune hepatitis, and/or rapid weight loss were excluded from

the study. Baseline biochemical tests of the patients such as

cholesterol levels and other lipid and glycemic indices were

measured (Table 1).

NAFLD was defined as the presence of definite hepatic steatosis

on ultrasound scan in the absence of a secondary cause for hepatic

steatosis. The participants were divided into two study groups based

on the presence of NAFLD at the start of the study: 1215 patients

with NAFLD and 1908 without NAFLD. The presence of NAFLD

was diagnosed based on the observation of definite hepatic steatosis

on abdominal ultrasound performed by an expert radiologist (i.e.,

grades 2 or 3 hepatic steatosis, defined based on marked and diffuse

hepatic hyperechogenicity relative to the renal parenchyma, ultra-
frontiersin.org
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sound beam attenuations and/or poor or no visualization of the

diaphragm and intrahepatic vessels/structures, with or without focal

fatty sparing consistent with the evidence of severe hepatic

steatosis). Three hundred and fifty (350) patients who developed

NAFLD over the duration of the study were excluded. During the

study period, the status of possible chronic causes of non-

NAFLD were constantly recorded. Patients with positive serology

tests for hepatitis B, and C viruses surface antigens, and other

causes of chronic liver diseases such as autoimmune hepatitis,
Frontiers in Endocrinology 03141140
hemochromatosis, Wilson’s disease, primary biliary cirrhosis, and

sclerosing cholangitis were excluded from the current study, based

on physical examinations and blood tests (i.e. antinuclear and anti-

smooth muscle antibody, iron studies, ceruloplasmin, and urinary

copper). After obtaining written informed consent from the

participants, the incidence of microvascular complications was

investigated in both groups. The study was reviewed and

approved by the ethics committee of Tehran University of

Medical Sciences.
TABLE 1 Baseline characteristics of the study population based on the presence of fatty liver.

With fatty liver Without fatty liver P-value

total female male p-value total female male p-value

Age (year) 51.34 ± 12.86 52.02 ± 12.98 50.56 ± 12.70 0.005 57.54 ± 28.91 56.40 ± 34.87 59.59 ± 12.04 0.008 <0.001

Diabetes duration
(year)

9.44 ± 7.58 9.76 ± 7.69 9.12 ± 7.47 0.068 9.50 ± 8.58 8.86 ± 8.29 10.58 ± 8.96 <0.001 0. 797

SBP (mmHg) 126.23 ±
27.17

125.12 ±
16.97

127.50 ±
35.40

0.030 128.98 ±
31.60

127.72 ±
17.39

131.26 ±
47.41

0.007 0.001

DBP (mmHg) 78.76 ± 8.75 78.41 ± 8.85 79.15 ± 8.63 0.037 75.61 ± 10.57 74.85 ± 10.73 76.99 ± 10.13 <0.001 <0.001

FBS (mg/dL) 139.40 ±
55.17

134.43 ±
52.56

145.14 ±
55.54

<0.001 144.45 ±
56.55

139.95 ±
56.94

152.60 ±
54.96

<0.001 0.001

2hPP (mg/dL) 192.03 ±
86.73

181.11 ±
85.14

203.82 ±
86.93

<0.001 190.31 ±
88.78

178.55 ±
85.18

211.40 ±
91.22

<0.001 0.506

Hb AIC (%) 7.05 ± 1.69 6.89 ± 1.66 7.23 ± 1.71 <0.001 7.51 ± 14.63 7.51 ± 18.20 7.51 ± 1.67 0.995 0.134

Chl (mg/dL) 186.94 ±
43.97

191.95 ±
43.10

181.14 ±
44.28

<0.001 172.41 ±
44.75

177.16 ±
44.64

163.79 ±
43.68

<0.001 <0.001

HDL (mg/dL) 44.85 ± 11.63 47.68 ± 11.55 41.58 ± 10.87 <0.001 46.11 ± 12.13 48.10 ± 12.57 42.51 ± 10.38 <0.001 <0.001

LDL (mg/dL) 107.55 ±
35.16

110.42 ±
35.32

104.23 ±
34.71

<0.001 97.23 ± 33.62 99.66 ± 34.13 92.85 ± 32.25 <0.001 <0.001

TG (mg/dL) 183.54 ±
119.48

175.03 ±
95.02

193.36 ±
142.02

<0.001 155.65 ±
90.17

156.32 ±
86.30

154.44 ±
96.84

0.619 <0.001

Cr (mg/dL) 0.98 ± 0.21 0.90 ± 0.20 1.07 ± 0.20 <0.001 0.97 ± 0.24 0.91 ± 0.21 1.09 ± 0.26 <0.001 0.147

eGFR (ml/min) 49.00 ± 23.67 49.20 ± 31.54 48.83 ± 18.04 0.981 50.45 ± 20.59 48.82 ± 23.46 51.22 ± 17.84 0.884 0.860

UA (mg/dL) 5.36 ± 1.95 5.09 ± 2.14 5.66 ± 1.70 <0.001 4.78 ± 2.07 4.58 ± 1.71 5.15 ± 2.57 <0.001 <0.001

BMI (Kg/m2) 32.37 ± 6.48 33.70 ± 7.10 30.74 ± 5.20 <0.001 28.67 ± 5.17 29.41 ± 5.63 27.54 ± 4.14 <0.001 <0.001

AST 28.79 ± 17.11 27.17 ± 14.20 29.45 ± 17.41 0.001 19.33 ± 10.70 18.80 ± 8.61 20.09 ± 12.01 0.002 <0.001

ALT 40.38 ± 24.62 35.19 ± 20.63 43.39 ± 24.14 <0.001 21.67 ± 11.65 20.82 ± 11.25 23.18 ± 9.68 <0.001 <0.001

ALKP 166.84 ±
82.75

174.56 ±
89.15

158.46 ±
74.34

<0.001 141. 41 ±
69.54

143.05 ±
68.80

138.50 ±
70.79

0.183 <0.001

GGT 38.54 ± 50.51 35.94 ± 53.82 40.99 ± 47.14 0.185 27.82 ± 25.08 24.29 ± 20.19 32.19 ± 29.52 0.002 <0.001

Retinopathy 157 (8.96) 82
(4.68)

75
(4.28)

0.616 235 (10.37) 126 (5.56) 109 (4.81) 0.002 0.134

Neuropathy 228 (17.62) 116
(8.96)

112
(8.66)

0.942 296 (14.47) 157
(7.67)

139 (6.80) 0.001 0.015

Nephropathy 108 (8.67) 51
(4.09)

57
(4.58)

0.420 126 (6.50) 52 (2.68) 74 (3.82) <0.001 0.022
fron
SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; 2hPP, Two-Hour Postprandial Glucose; Hb AIC, hemoglobin A1C; Chl, cholesterol; HDL, High density
lipoproteins; LDL, low density lipoproteins; TG, triglycerides, Cr, creatinine; eGFR, Estimated Glomerular Filtration Rate; UA, uric acid; BMI, body mass index; AST, aspartate aminotransferase;
ALT, Alanine transaminase; ALKP, Alkaline phosphatase, GGT, gamma-glutamyl transferase.
Bold values report statistically significant difference.
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Physical examinations

For each participant, baseline demographic data such as weight,

height, blood pressure, diabetes duration, the usage of anti-

hypertensive and lipid lowering drugs were recorded by trained

medical staff. Patients’ weight was measured using a portable digital

scale with a precision of 0.1 kg, after they were asked to wear light

clothing. An inflexible measurement tape with a precision of 0.1 cm

was used to measure height with the subjects being asked to stand

erect and remove their socks and shoes. Using the height and weight

data, each individual’s body mass index (BMI) was then measured

(Kg/m2). The subjects’ blood pressure was measured three times,

after a ten-minute seated rest and within five-minute intervals. To

measure blood pressure, a calibrated Omron M7 digital sphyg142

manometer (Hoofddorp, The Netherlands) with appropriately sized

cuffs which covered at least 80% of the subjects’ right arm was used.

First reading was discarded due to possible imprecision and the

second and third readings were averaged to calculate the mean value

of systolic (SBP) and diastolic blood pressure (DBP). The

participants were asked to stand still in a relaxed position, placing

both feet together on a flat surface for waist circumference (WC)

measurements; one layer of clothing was accepted. A non-

stretchable measuring tape was used to measure WC as the

smallest horizontal girth between the costal margins and the iliac

crest at minimal respiration. During the interview process,

demographic information, smoking habits, and medication usage

status were obtained.
Laboratory analysis

Ten ml of blood sample was drawn from each individual who

was asked to fast for 12 to 14 hours over night. The samples were

kept at a temperature of 4 to 8 °C in cold biochemistry tubes and

were later sent to the appropriate calibrating laboratories where

they were instantly centrifuged (1500 rmp, for 10 min, at standard

room temperature of 21 °C). The extracted serum was stored in the

temperature of -70) (17). Laboratory evaluations were done on the

extracted serum stored at a temperature of -70°C. In randomly

selected urine samples, the measure of urinary albumin excretion

was performed using urinary albumin-to-creatinine ratio

(UACR). Urinary albumin concentrations were evaluated by an

immunoturbidimetric commercial kit (Randox, Antrim, UK). The

Chronic Kidney Disease Epidemiology Collaboration Equation was

used to calculate the estimated glomerular filtration rate (eGFR).

Employing high-performance liquid chromatography (A1C,

DS5 Pink kit; Drew, Marseille, France), Glycated hemoglobin

(HbA1c) was measured. Fasting plasma glucose (FPG) and two-

hour postprandial (2HPP) glucose were measured using

colorimetric methods by the glucose oxidase test. Serum lipid

concentrations [triglycerides(TG), high-density lipoprotein

cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-

c) (18), and total cholesterols (Chl) (19)] were measured using

enzymatic methods. The kits used in this study were approved by

the central reference laboratory in Tehran, Iran (17). Enzymatic
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photometry was used to analyze serum liver enzymes: alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

alkaline phosphatase (ALKP), and gamma glutamyl transferase

(GGT). Based on respective standardized criteria, an ALT level

>30 IU/L in women and >40 IU/L in men, AST level >30 IU/L in

women and >36 IU/L in men, ALKP levels of greater than 306 U/

L in both genders and GGT levels greater than 60 U/L for men

and greater than 40 IU/L in women were considered elevated.

IFCC (International Federation of Clinical Chemistry and

LaboratoryMedicine) method was employed to measure levels

of ALT, AST and GGT (ALT intra-assay CV = 3.7%, AST intra-

assay = 2.5% and GGT intra-assay CV = 2.2%) (20). The level of

ALKP was measured according to Deutsche Gesellschaft für

Klinische Chemie (DGKC) method (21). The liver enzyme

measurements were performed using commercial Parsazmun

kits (Tehran, Iran) and Hitachi 704 automatic analyzer

(Tokyo, Japan).

A non-invasive diagnostic test for NAFLS is aspartate

aminotransferase to platelet ratio index (APRI) which is

calculated as (AST level/AST upper level of normal/platelet

count) × 100 (22).

The FIB-4 index, a marker of hepatic fibrosis, was calculated by

the following formula:

{age [years] ×AST [U/L]/[platelet count (109/L) ×ALT (U/L)1/2]} (23)
Assessment of complications

To identify the microvascular complications associated with

diabetes, the International Classification of Diseases, Tenth

Revision (ICD-10) was used. Diabetic neuropathy was identified

using specific codes E10.4, E11.4, E12.4, E13.4, and E14.4. Diabetes-

related chronic microvascular complications were identified

according to the International Classification of Diseases, Tenth

Revision (ICD-10). The specific codes used were: E10.3, E11.3,

E12.3, E13.3 and E14.3 for diabetic retinopathy; E10.2, E11.2, E12.2,

E13.2 and E14.2 for diabetic nephropathy; E10.4, E11.4, E12.4,

E13.4 and E14.4 for diabetic neuropathy (24, 25). Based on Macular

Edema Disease Severity Scale, patients with moderate to severe

maculopathy who required laser therapy were also considered as

patients with retinopathy (26, 27).
Statistical analysis

To statistically analyze the recorded data, version 25 of SPSS

software was employed. Kolmogorov–Smirnov and Shapiro-Wilk

normality tests, P-P plot, and histograms were used to test for the

normality of the study population. The tested variables were

discovered to be normal and the null hypothesis was rejected.

Univariable analysis of potential categorical and continuous risk

factor variables was performed using t-test and chi-square test,

respectively. Mean ± standard deviation (SD) was used to report

continuous, and proportions were used to report values for

categorical variables. Logistic regression was conducted to
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ascertain the effects of NAFLD, liver enzymes and FIB-4 on

microvascular complications and APRI on NAFLD. The results

were adjusted for age, sex, and duration of diabetes, 2hpp, FBS, Cr,

and BMI. Multifocal logistic regression and 4 models group of

covariates used for evaluation of relationship between NAFLD and

diabetic microvascular complications. A p-value < 0.05 was

considered statistically significant.
Results

Characteristics of the study population

The level of ALKP, liver enzymes (ALT, AST, GGT) as well as

the presence of non-alcoholic fatty liver based on the ultrasound

findings were assessed and statistically analyzed as possible

predictors of microvascular complications. The baseline

characteristics of the study population were summarized in

Table 1. Overall, the patients with fatty liver tended to be

significantly younger compared to those without (Age: 51.34 ±

12.86 vs. 57.54 ± 28.91, p-value<0.001), have lower levels of FBS,

SBP, shorter drug duration and HDL, and BMI, DBP, cholesterol

(Chl), LDL, Tg, and uric acid (UA) (Table 1). Moreover, 17.62% and

8.67% of the NAFLD patients had neuropathy and nephropathy,

respectively, which were significantly higher than patients without

NAFLD (p-value: 0.015 and p-value: 0.022, respectively). However,

the prevalence of retinopathy incidence was not significant between

the patients with and without NAFLD.
Association of gender and baseline
characteristics and microvascular
complications of diabetes

Considering the importance of the role of gender in the

occurrence of non-alcoholic fatty liver, statistical analysis was

performed to investigate the role of gender in NAFLD

determinants. In the group of fatty liver, females were older

significantly (52.02 ± 12.98 vs. 50.56 ± 12.70, p-value=0.005), had

lower SBP, DBP, drug duration, FBS, 2hpp, HbA1C, TG, Cr, uric

acid, AST, ALT and higher Chol, HDL, LDL, BMI and ALKP,
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although there were no statistically significant in the prevalence of

microvascular complications in fatty liver group based on

gender (Table 1).
Association of serum liver enzymes and
NAFLD with microvascular complications
of diabetes

Tables 2 summarizes the association between liver enzyme levels

and incidence of the three outlined complications. ALKP increased

the incidence risk of diabetic neuropathy and nephropathy (Odds

ratio (OR):1.002 (95% confidence interval (CI) 1.001-1.003), and

1.002 (1.001-1.004), respectively). Moreover, GGT was a risk factor

for the incidence risk of diabetic nephropathy (1.006 (1.002-1.009)).

AST and ALT were inversely associated with the risk of diabetic

retinopathy (0.989 (0.979-0.998) and 0.990 (0.983-0.996),

respectively). Tertiary multivariate adjusted model was used to

adjust for duration of diabetes, fasting blood sugar level, sex, age,

2hpp, creatinine, and BMI. As shown in Table 3, different parameters

were used in 3 models to investigate the relationship between NAFLD

and microvascular complications of type 2 diabetes. The results of

these models are in general agreement with the baseline model and

indicate that the incidence risk of diabetic neuropathy and

nephropathy were significantly increased in patients with NAFLD

in base line model and even after adjusting for various confounding

variables (OR: 1.338 (95% CI: 1.091-1.640) and 1.333 (1.007-1.764),

respectively). On the contrary, the incidence of the other

complication, retinopathy, was not found to be significantly

associated with the presence of NAFLD in patients.
Association of APRI and NAFLD

Table 4 summarizes the association between APRI and NAFLD.

ARPI_T(1), ARPI_T(2), and ARPI_T(3) values were significantly

increased in patients with NAFLD after adjusting for confounding

variables (1.440 (1.061-1.954), 1.589 (1.163-2.171), and 2.673

(1.925, 3.710), respectively). Tertiary multivariate adjusted model

was used to adjust for duration of diabetes, fasting blood sugar level,

sex, age, 2hpp, creatinine, and BMI.
TABLE 2 Association between incidence of diabetic microvascular complications with liver enzymes.

Retinopathy Neuropathy Nephropathy

Odds ratio 95% CI P-value Odds ratio 95% CI P-value Odds ratio 95% CI P-value

AST 0.989 0.979-0.998 0.02 1.000 0.994-1.006 0.993 1.001 0.992-1.011 0.794

ALT 0.990 0.983-0.996 0.003 0.995 0.989-1.001 0.079 1.001 0.994-1.009 0.769

ALK-P 1.001 1.000-1.003 0.079 1.002 1.001-1.003 0.001 1.002 1.001-1.004 0.008

GGT 1.002 0.999-1.005 0.267 1.000 0.997-1.004 0.926 1.006 1.002-1.009 0.001
fron
Data was adjusted for age, sex, duration of diabetes, fasting blood sugar, 2hPP, Cr, and BMI in the tertiary multivariate adjusted model. ALT, alanine aminotransferase; AST, aspartate
aminotransferase; ALKP, alkaline phosphatase; GGT, gamma glutamyl transferase.
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Association of FIB_4 and microvascular
complications

Table 5 shows the relationship between the severity of liver

fibrosis (measured through the FIB-4 index) and the occurrence of

microvascular complications of diabetes. In the third tertile of FIB-4

compared to the first one, the risk of complications such as

retinopathy and neuropathy is higher (1.116 (0.741-1.681)

compared to 1.399 (0.335-5.168) and 1.003 (0.683-1.473)

compared to 1.399 (0.371-5.276), respectively; while this trend is

reversed in nephropathy (1.087 (0.678-1.744) compared to

0.741 (0.192-2.86). However, the mentioned findings are not

statistically significant.
Discussion

This prospective cohort study investigated the association of

NAFLD and liver enzymes with the incidence of microvascular

complications (retinopathy, nephropathy, and neuropathy). After

adjustment for confounding factors, NAFLD was a precipitating

factor of nephropathy and neuropathy in patients with type 2

diabetes. On the contrary, NAFLD was not a risk factor of

retinopathy in patients with type 2 diabetes after adjustment for

confounding factors. Although it was found that alkaline-

phosphatase increases the incidence risk of diabetic neuropathy and

nephropathy and GGT is an increasing risk factor for the incidence risk

of diabetic nephropathy. However, other liver enzymes as well as FIB-4

levels were not associated with microvascular complications.

We observed that the incidence risk of diabetic neuropathy is

significantly associated with NAFLD. In line with our study, a

recent meta-analysis by Greco et al. (28) demonstrated that the
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prevalence of diabetic neuropathy significantly increased in patients

with type 2 diabetes and NAFLD. Moreover, a recent observational

study also conformed the association between diabetic neuropathy

and NAFLD by measuring NAFLD fibrosis score and FIB-4 (29).

Mantovani et al. (30) also suggested that NAFLD exacerbates

hepatic and peripheral insulin resistance, presents with a

predisposition to atherogenic dyslipidemia, and results in the

activation of several pro-fibrogenic mediators, procoagulant,

proinflammatory, and pro-oxidant. This can have a crucial role in

neuropathy pathology. For instance, several studies established that

atherogenic dyslipidemia can directly promote nerve damage via

lipotoxicity of free fatty acids and, indirectly, via free fatty acids

which can stimulate a systemic inflammatory cytokine cascade and

elevate insulin resistance (31, 32). Many other studies also indicated

that pro-inflammatory and pro-oxidant mediators have an essential

role in neuropathy pathology (32).

Our results showed that the incidence risk of diabetic

nephropathy is significantly correlated with NAFLD. In line with

our results Casoinic et al. (33) discovered NAFLD to be positively

correlated with microalbuminuria, which is a marker of the early

stage of nephropathy in patients with type 2 diabetes. A report from

India also revealed an increased prevalence of microvascular

complications including nephropathy in patients with type 2

diabetes who had fatty liver disease (10). Wen et al. reported that

the presence of kidney disease and retinopathy was higher in the

“indeterminate risk” and “high risk” groups than in the “low risk”

group of NAFLD, after adjusting for the same covariates. They also

found that the presence of diabetic kidney disease significantly

increased with high NAFLD fibrosis score (34). Another study on

Iranian population also reported that NAFLD was not found to

increase the risk of diabetic nephropathy (35). Furthermore,

Targher et al. (12, 36) reported that NAFLD is independently

associated with an increased prevalence of chronic kidney disease

in patients with type 2 diabetes. Jia et al. (37) reported a positive

association between NAFLD and serum uric acid, tumor necrosis

factor-a (TNF-a), insulin resistance index, omentin-1, free fatty

acids, homocysteine, and visceral fat area. Any of the above factors

combined with NAFLD can elevate nephropathy risk in patients

with type 2 diabetes. They established that NAFLD patients showed

insulin resistance and elevated visceral fat area, which are the usual

components of the metabolic syndrome, a crucial contributor to the

progression and development of nephropathy (38, 39). Several

studies also indicated a positive correlation between insulin

resistance and nephropathy (40, 41).
TABLE 4 Association between incidence of NAFLD and APRI.

NAFLD

Odds ratio 95% CI P-value

APRI_T(1) 1.440 1.061-1.954 0.019

APRI_T(2) 1.589 1.163-2.171 0.004

APRI_T(3) 2.673 1.925-3.710 0.001
Data was adjusted for age, sex, duration of diabetes, fasting blood sugar, and 2hPP in the
tertiary multivariate adjusted model. T, tertile. APRI, aspartate aminotransferase to platelet
ratio index. NAFLD, non-alcoholic fatty liver disease.
TABLE 3 Association between NAFLD and diabetes-related microvascular complications among patients with type 2 diabetes [OR 95%CI].

Model 1 Model 2 Model 3

Retinopathy 0.799 (0.624-1.023) 0.848 (0.660-1.089) 0.899 (0.713-1.134)

Neuropathy 1.492 (1.199-1.856) 1.540 (1.234-1.923) 1.338 (1.091-1.640)

Nephropathy 1.290 (0.963-1.726) 1.253 (0.933-1.684) 1.333 (1.007-1.764)
Model 1: Baseline model.
Model 2: Model adjusted for age and sex.
Model 3: Model adjusted for gender, age, diabetes duration, FBS, 2hPP, Cr, and BMI
NAFLD, non-alcoholic fatty liver disease.
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In contrast to our results, a cross-sectional study of the Korean

population reported that the prevalence of nephropathy was lower in

patients with type 2 diabetes and NAFLD (11). In addition, Afarideh

et al. reported that NAFLD was inversely associated with the

prevalence of diabetic nephropathy in the Iranian population (42).

In contrast to our findings Lv et al. reported that NAFLD

negatively correlated with the risks of nephropathy, retinopathy

and neuropathy (43). Moreover, in contrast to several previously

conducted studies (11, 12, 43, 44), our study failed to demonstrate

any associations between diabetic retinopathy. However, similar to

our results among the Western population and independent of

gender, age, ethnicity, serum HDL-C, serum triglycerides, waist

circumference, SBP, and A1C, NAFLD was found not to be

associated with the presence of retinopathy in the US general

population with or without diabetes (45).

These discrepancies in the findings of the studies might

be attributed to differences in baseline characteristics of

the participants. Furthermore, the ethnic differences for

pathophysiological characteristics of patients with type 2 diabetes

might also be responsible for the differences between our findings

and those of the mentioned studies.

Our result showed ALKP had a significant association with

incidence of neuropathy and nephropathy. Also, GGT had a

significant association with nephropathy. An inverse association

between ALT and AST were also observed with incidence of

diabetic retinopathy. Similarly, Afarideh et al. (42), established

that ALT had an inverse association with diabetic neuropathy and

retinopathy. Similar to our result, a retrospective study reported

that elevated ALKP level is associated with nephropathy in

patients with type 2 diabetes (46). Circulating ALKP degrades

pyrophosphate, which is an endogenous anti-calcification factor

in the arterial wall. So, high levels of ALKP can promote arterial

calcification and lead to cardiovascular disease (47). Increased

arterial stiffness led to elevated systemic blood pressure in the

defective glomerular capillaries, with low resistance, and

exacerbated intraglomerular hypertension and hyperfiltration, and

eventually, nephrosclerosis (46). Therefore, the ALP-diabetic

nephropathy association identified in our study may support the

role of arterial calcification in the progression of kidney disease (48).

Our study failed to demonstrate associations between the level of

other liver enzymes and incidence of microvascular complications;
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However, a recent study by Kim et al. (29) found that the levels of

ALT and AST is higher in diabetic neuropathy in patients with

NAFLD. In another study, Lin et al. (49) showed that neuropathy is

directly associated with GGT in a Chinese population with diabetes.

Despite the existence of conflicting studies on the relationship

between microvascular complications of diabetes and NAFLD,

several systematic reviews, meta-analyses and umbrella reviews

have been conducted to investigate this relationship. It is

concluded that NAFLD is a multi-system disease that does not

only affect the liver tissue, but it causes many important

complications in several organs and increases the mortality of

diabetic patients, which is one of the important reasons for the

increase in the mortality of coronary artery disease and also diabetic

nephropathy (50). Diabetic neuropathy also increases as one of the

complications of diabetes following the occurrence of NAFLD in

diabetic patients (28), but Dandan Song’s meta-analysis did not

report a relationship between diabetic retinopathy and NAFLD

(50), and the results of these complications were in line with

our study.

In the present study, APRI had significant association with

NAFLD. In line with our results, a recent systematic review reported

that APRI risk stratify morbidity and mortality in patients with

NAFLD (51). Also a recent cross-sectional study in Iran showed

that APRI can significantly detect fibrosis in NAFLD (52). Also, a

retrospective cohort study in Canada evaluated the prognostic

values of non-invasive diagnostic tests such as APRI against liver

histology and hepatic venous pressure gradient (HVPG) in NAFLD

patients. Their results showed that APRI can predict outcomes of

NAFLD patients and it could be used to monitor, risk stratify, and

find targeted interventions (53). Furthermore, a prospective study

in Brazil demonstrated that is a very accurate in identifying

NAFLD (54).

To the best of our knowledge, this is the first prospective cohort

study with a population-based sample in Middle East and North

Africa (MENA) region to identify the association of NAFLD and

liver enzymes with the incidence risk of microvascular

complications (retinopathy, neuropathy, and nephropathy) in

patients with type 2 diabetes. Another strength of the current

study is the sufficient sample size, exact ultrasound grading by

single expert operator, as well as the exclusion of other causes of

liver disease to assess the presence of NAFLD in patients with type 2
frontiersin.or
TABLE 5 Association between incidence of microvascular complications and FIB-4.

Retinopathy Neuropathy Nephropathy

Odds ratio 95% CI P-value Odds ratio 95% CI P-value Odds ratio 95% CI P-value

FIB-4_T1 Reference – – Reference – – Reference – –

FIB-4_T2 1.116 0.741-1.681 0.600 1.003 0.683-1.473 0.988 1.087 0.678-1.744 0.728

FIB-4_T3 1.399 0.335-5.168 0.695 1.399 0.371-5.276 0.620 0.741 0.192-2.860 0.741
Data was adjusted for age, sex, duration of diabetes, fasting blood sugar, and 2hPP in the multimodal logistic regression. FIB4, Fibrosis 4 score; T, Tertile.
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diabetes related microvascular complications.

However, there were some limitations to our study. First, since

the present study population was a cohort of patients cared for at a

single center, caution should be taken when extrapolating the results

to all patients with type 2 diabetes. It should be considered that the

majority of the participants were typical patients with type 2 diabetes

commonly encountered in outpatient clinics and the present study

granted a high degree of consistency regarding, ultrasonographic

findings, laboratory data, and the assessment of microvascular

diabetic complications. Second, estimated GFR was used rather

than a more precise measure of kidney function, e.g., iothalamate

clearance. Third, due to the NAFLD definition in the present study

based on definite signs of hepatic steatosis (grade 3 hepatic steatosis

on abdominal ultrasound), our results may not apply to patients with

earlier hepatic steatosis stages on ultrasound or those individuals with

sonographically undetectable NAFLD. Fourth, in our database one of

the ignored data was consumption of some oral anti-diabetic agents

like pioglitazone, so in the next studies, researchers should consider

this issue. Moreover, the lack of a liver biopsy which is the gold

standard method for diagnosis of NAFLD as well as differentiating it

from non-alcoholic stetohepatitis (NASH) (55) can be deemed as the

most significant limitation of the present study. Lack of Vibration-

controlled Transient Elastography and fibro scan are also other

limitations of the current study. However, due to the aggressive

nature of liver biopsy, in this study similar to most previous studies,

ultrasound was preferred for the diagnosis of NAFLD.
Conclusion

The present prospective cohort study found that NAFLD, as

diagnosed by characteristic sonographic features, was associated

with an increased incidence of diabetic nephropathy and

neuropathy. Additionally, according to our data, ALKP, GGT,

were associated with increased risks of microvascular

complication of diabetes, while ALT and AST were shown to be

inversely associated with the incidence of diabetic retinopathy.

Future studies are required to assess possible mechanisms related

to the underlying pathophysiological basis of these associations.
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Diabetes mellitus is a metabolic disease clinically-characterized as acute and

chronic hyperglycemia. It is emerging as one of the common conditions

associated with incident liver disease in the US. The mechanism by which

diabetes drives liver disease has become an intense topic of discussion and a

highly sought-after therapeutic target. Insulin resistance (IR) appears early in the

progression of type 2 diabetes (T2D), particularly in obese individuals. One of the

co-morbid conditions of obesity-associated diabetes that is on the rise globally is

referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of

known and suspected mechanism that underlie the progression of NAFLD which

concurrently exhibits hepatic inflammation, particularly enriched in cells of the

innate arm of the immune system. In this review we focus on the known

mechanisms that are suspected to play a role in the cause-effect relationship

between hepatic IR and hepatic inflammation and its role in the progression of

T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break

an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD

with a concurrent restoration of physiologic glycemic control. As part of this

review, we therefore also assess the potential of a number of existing and

emerging therapeutic interventions that can target both conditions

simultaneously as treatment options to break this cycle.
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Introduction

Diabetes mellitus is a metabolic disease clinically-characterized as

acute and chronic hyperglycemia (1). It is emerging as one of the

common conditions associated with incident liver disease in the US.

The spectrum of liver disease ranges from mild transaminitis to non-

alcoholic fatty liver disease (NAFLD). NAFLD encompasses non-

alcoholic steatosis (fatty liver) without inflammation (normal

transaminases), non-alcoholic steatohepatitis (NASH) without

fibrosis, NASH with fibrosis eventually progressing to cirrhosis,

hepatocellular carcinoma and liver failure culminating in death (1,

2). In clinical practice, most patients with NAFLD are asymptomatic

with possible hepatomegaly. They are diagnosed when liver enzymes

ALT and/or AST are elevated, or steatosis is detected on abdominal

imaging. It is a diagnosis of exclusion, and normal liver enzymes do

not eliminate a diagnosis of NAFLD (3–7). Worldwide, the pooled

prevalence of NAFLD (umbrella term of macrovesicular fat

deposition) is 25.24% (8). In the US, a comparison of 3 cycles of

the National Health and Nutrition Examination Survey (NHANES)

based on transaminitis alone, demonstrated a steady increase in the

prevalence of NAFLD from 5.5% in 1988 to 11% in 2008. The

inclusion of steatosis with normal transaminases may account for an

even higher prevalence (9). The prevalence of NAFLD’s closely

associated metabolic counterparts such as essential hypertension,

obesity and diabetes has trended up as well (10). Studies in

multiple countries have demonstrated that NAFLD has a higher

prevalence in men. Prevalence in women increases with age, while it

remains stable in men. Sex hormones, menopausal status and obesity

are major contributing factors to this disparity (11).

The mechanisms by which diabetes drives liver disease have

become a topic of intense discussion and highly sought-after

therapeutic targets. Traditionally, diabetes has been classified into

type 1 (T1D) and type 2 (T2D). T1D begins as an autoimmune

process culminating in an autoimmune inflammation-mediated,

selective impairment of the pancreatic beta cells and overt

hyperglycemia. T2D, instead, is characterized by peripheral

insulin resistance (IR) compensated for by the production of

more insulin culminating in overt hyperglycemia. Accumulating

evidence suggests that these seemingly divergent conditions share

many etiopathogenetic and clinical features other than just

hyperglycemia. Thus, latent autoimmune diabetes of adults

(LADA) presents features of both T1D and T2D and IR is seen in

overweight T1D patients (12). On the other hand, some T2D

patients exhibit pancreatic autoimmunity (13).
Evolution of hepatic IR in T2D and
T2D-associated NAFLD

Broadly-understood, IR is coupled to impaired insulin action at

multiple points in the signaling cascade in the main glucose-

utilizing, insulin-responsive tissues, particularly skeletal muscle,

adipose, and the liver. These as well as possible pressure points of

therapeutic interest are illustrated in Figure 1. These include the

action of lipid mediators, cellular stress, mitochondrial
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abnormalities, and leukocyte-derived soluble molecules (14).

Lipid-induced IR has been observed in the liver (15) as the

consequence of high fat diet (HFD) or lipolysis, where the

concentration of FFA exceeds that of the intracellular fatty acid

oxidation and storage rate, as demonstrated in humans and rodent

models (14). Increased concentrations of diacylglycerol (DAG) also

lead to IR by impairing insulin signaling (14). For example,

plasmalemmal accumulation of intrahepatic DAG stimulates

protein kinase Cϵ and inhibitory insulin receptor kinase

phosphorylation on threonine (16, 17) resulting in IR. These

results were consistent in rodent models and humans. In addition

to protein kinase Cϵ, increased activity of the d enzymatic isoform

in livers of obese humans has been observed to cause hepatic IR

(18). Human study outcomes and rodent models have shown that

activation of other protein kinase C isoforms (d, ϵ, n, q) have been
implicated in DAG release and IR onset or progression (14). Non-

FFA-derived lipids are another species implicated in the onset of

hepatic IR in humans exhibiting NASH. A number of studies in

humans revealed elevated intra-hepatic FFA concentrations

concurrent with hepatic oxidative stress and inflammation (19).

While ceramides have also been implicated in hepatic IR under

obese conditions and T2D evolution, this has been well-reviewed

elsewhere (20) and remains outside the topic of the current review.

While HFD-facilitated elevations in circulating FFAs and lipids as a

basis of IR is strongly-supported by many lines of animal and

human investigation (21), not all situations of IR are a consequence

of this. Cellular stress, instead, is a better predictor of IR in the obese

state. Endoplasmic reticulum (ER) stress, particularly, is a common

finding in the liver among obese men and women (22, 23).

Nevertheless, exposure to HFD in rodents leads to an expansion

of lipid deposition inside the liver followed by hepatic IR even in the

absence of peripheral fat accumulation and peripheral IR. Under

such diet conditions, insulin signaling has been shown to be

impaired, partly due to activation of PKCe and JNK1 (24).

Estrogen has a protective role against hepatic steatosis and insulin

resistance by decreasing triglyceride synthesis and increasing

hepatic FFA oxidation (25). Circulating 17-beta estradiol also

suppresses hepatic gluconeogenesis via FoxO1 signaling,

independent of IRS-1 and IRS- 2 (26). In mice IRS-2 is

transcriptionally-attenuated as a function of sterol-regulatory

element binding protein (SREBP) activation and FoxO

suppression (27–31). This is possibly a consequence of

hyperinsulinemia-induced downregulation of IRS-2 facilitating

hepatic IR (32, 33). Further, growing evidence indicates that

hepatic DAG accumulation potentiates hepatic IR (34) and DAG

levels inside hepatocyte lipid droplets were particularly-informative

predictors of IR in humans (35).
The paradox of increased hepatic
lipogenesis in the presence of
hepatic IR

One of the molecular pathways of insulin signaling is the

activation of Akt which, as it suppresses hepatic gluconeogenesis,
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in parallel causes activation of sterol regulatory element binding

protein 1c (SREBP1c). As demonstrated in transgenic rat

hepatocytes, this is a consequence of Akt-stimulated mammalian

target of rapamycin complex-1 (mTORC1) activity which regulates

the transcription and stability of SREBP1c (36). Activated SREBP1c

stimulates increased expression of genes encoding key enzymes in

FA biosynthesis including those of the fatty acid elongase complex,

fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and ATP

citrate lyase (37). A seeming paradox is observed inside the liver

with developing obesity and progression towards T2D-associated

NAFLD. Impairment of gluconeogenesis suppression occurs

concomitant with de novo lipogenesis (DNL) and IR. This can be

partially explained as a function of liver insulin signaling

stimulating hepatic DNL whose biochemical pathway products

predispose and drive the impairment of gluconeogenesis
Frontiers in Endocrinology 03150149
suppression. These biochemical pathway products and their

concentrations, evidence suggests, determine the onset and rate of

hepatic structural and cellular damage observed in the onset of

NAFLD in mice (38). The question that remains to be better

understood is, what is the point in hepatic insulin signaling where

its effects on glucose and lipid metabolism diverge?

Some evidence suggests that mTORC1may be one such point of

divergence at the level of hepatic hyperinsulinemia and resistance.

Studies in rodents have shown that the blockade of Akt and PI3K

activity prevents insulin-mediated expression of genes of enzymes

involved in gluconeogenesis while mTORC1 prevented insulin-

dependent induction of SREBP1c without any effect on

suppression of expression of gluconeogenetic genes (39).

mTORC1 is a nutrient-sensing biochemical control point

promoting its re-distribution to the lysosome (40–42). However,
FIGURE 1

Insulin-sensitive inter-organ effects of obesogenic diets in the deterioration of insulin sensitivity and possible treatment pressure points. Obesogenic
diets promote a state of systemic low-grade inflammation which contributes to, and is response to pathologic changes in glucolipometabolism in
the main insulin-sensitive tissues and organs. The intestinal microbiome is altered causing changes in the complement of short-chain fatty acids
produced. These are released into the circulation affecting insulin sensitivity and potentiate systemic and insulin-sensitive tissue inflammation.
Obesogenic diet causes adipose hypertrophy and expansion, resulting in the conversion of resident M2 macrophages into pro-inflammatory M1
macrophage. Concurrent core adipose hypoxia creates an environment that signals “danger”. This initiates the accumulation of neutrophils and other
leukocytes which become activated, further potentiating local inflammation. The net result is peripheral insulin resistance, consequent to insulin
receptor signaling impairment due to the action of immunokines produced by the accumulating pro-inflammatory leukocytes. IL-6, for example,
acting via the IL-6 receptor on adipocytes, impairs insulin-stimulated phosphorylation of signaling components downstream of the insulin receptor
tyrosine kinase. Skeletal muscle is susceptible to expanding fat and accumulation of lipid droplets, as well as the effects of circulating FFA on
hepatocytes cause the accumulation of leukocytes and their activation, with a net effect of insulin signaling impairment. The different classes of
agents shown in the Figure have shown variable beneficial effects on insulin sensitivity. Combination approaches could simultaneously act
systemically and on the key insulin-sensitive tissues, attenuating inflammation thus facilitating better insulin sensitivity.
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as demonstrated in transgenic mouse models, mTORC1, on its own,

is insufficient to cause de novo lipogenesis and NASH, at least in the

absence of Akt2 (43). The nuance in these observations is best

evaluated noting the role of tuberous sclerosis complex (TSC)

proteins (44, 45). A number of mouse models have shown that

Akt stimulation of mTORC1 is conditioned on TSC2 inhibition.

Hepatic deletion of TSC1 results in an insulin-depended mTORC1

activation and protects from steatosis and de novo lipogenesis (44,

46). Additional studies in mice exhibiting hepatocyte-targeted

inactivating genetic modifications of Akt, FoxO1, and TSC1,

insulin-dependent co-ordinate activation of mTORC1 and FoxO1

inhibition were considered to be sufficient and possibly-necessary

for insulin-dependent de novo lipogenesis (47, 48).
The stress response as one of the
mechanisms involved in the evolution
of hepatic IR

Co-incident with the onset of NAFLD, are a series of changes

inside hepatocytes indicating an acute stress response; changes

concomitant with intra-hepatic inflammation (49). Central to this

stress response is the unfolded protein response (UPR) with its

fulcrum point the endoplasmic reticulum (ER). Hepatic ER stress

has been observed in NAFLD (50) and related to its progression,

including its mechanistic relationship with hepatic insulin

resistance (51). ER stress has been coupled to steatohepatitis-

associated insulin resistance (52). Moreover, de novo lipogenesis

in the liver has also been linked to hepatocyte ER stress (53).

Pharmacologic suppression of Caspase-2 as well as Caspase-2

disruption, observed in hepatocyte ER stress-associated NASH

prevented fibrosis and inflammation by preventing SREBP1 and

SREBP2 activation. These observations suggested that ER stress

could participate in the early onset of hepatic insulin resistance, de

novo lipogenesis and the progression towards NAFLD.
Amino acids in the evolution of
hepatic IR

It stands to reason that, especially under HFD conditions, lipids

and FFAs are widely-viewed as the basis of IR, systemic or hepatic,

however, other metabolites, especially in high fat “Western diets”

have been implicated. Several amino acids (AA) have been shown to

contribute to IR (15). In humans, AA elevation in plasma impairs

insulin-stimulated glucose disposal in skeletal muscle. The

mechanism appears to be through the mammalian target of

rapamycin (mTOR)/S6 kinase pathway and phosphorylation of

IRS-1 (54). Branched-chain (BC) AA are constituents of liver

gluconeogenesis and their levels in the circulation have been

found to be correlated with IR in humans (55). In skeletal muscle

under hypersinulinemic conditions, BCAA impair glucose disposal

and augment ATP synthesis without any effect on mitochondrial

abundance of DNA (56, 57). In contrast, transient dietary reduction
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of BCAA reduces post-prandial insulin secretion and improves

adipose metabolism (58).
Leukocytes, immunokines, and
inflammation: cause or outcome
of hepatic IR, in response to
metabolic stress?

Macrophages are possibly the first leukocytes to accumulate

inside the liver of obese individuals concomitant to IR onset

(peripheral and/or hepatic) (59). These cells impair insulin

signaling mainly via secreted immunokines (60). Liver-resident

macrophages have been implicated in the onset and progression

of hepatic IR and a number of overlapping mechanisms have been

identified in their activation. While the following observations have

been made mainly in skeletal muscle, and muscle-associated

adipose, one can anticipate similar mechanisms to participate in

hepatic IR: Accumulation of lipids inside myotubes in humans and

rodent models, stimulates NF-kB nuclear translocation, attenuated

mitochondrial respiration, fragmentation and mitophagy and

elevated production of reactive oxygen species (ROS) (61).

Systemic IR is widely-reported to co-incide with macrophage

accumulation and activation inside adipose (62), however,

adipose IR can manifest adipose macrophage accumulation and

activation (63), suggesting that, at least in some instances, IR can

precede an inflammatory state and may in fact represent a “danger”

signal causing the eventual activation of Kupffer cells and liver

macrophages. Potential mechanisms underlying an IR-first cause

could involve local hyperinsulinemia-stimulated activation of these

leukocytes and/or hyperinsulinemia-stimulated increase in

microvascular blood flow, hyperoxygenation and hepatic cell

stress. Hyperinsulinemia would then be a consequence of

pancreatic b cell impairment. A number of known mechanisms of

peripheral IR could cause beta cell impairment via stress induction,

UPR, and failure to sense glucose/produce insulin (64, 65).

Overnutrition and obesity lead to a systemic low grade chronic

inflammatory state referred to as meta-inflammation, characterized

by adipocyte necrosis and altered secretory phenotype in adipocytes

(66–68). This results in the recruitment and release of

proinflammatory cells and cytokines, such as TNFa expressed by

macrophages and monocytes infiltrating obese adipocytes. Adipose

tissue contains predominantly M2 macrophages, with a phenotypic

switch to M1 in obese persons. M1 macrophages produce

chemokines such as MCP-1 which recruit circulating monocytes

to the liver and adipose tissue where they can undergo maturation

into the pro-inflammatory M1 phenotype. Adipocytes also produce

low levels of TNFa, leading to MCP-1 production and macrophage

infiltration in adipocytes, triggering release of pro-inflammatory

cytokines, such as IL-6 and IL-1b (69). The level of pro

inflammatory cytokines in subcutaneous abdominal adipose

tissue, inversely correlates with hepatic and systemic insulin

sensitivity. Obese individuals with NAFLD have shown a decrease

in hepatocyte insulin signaling compared to obese individuals with
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normal intrahepatic triglycerides (70). This low grade chronic

inflammatory state in adipose tissue further contributes to IR via

TNFamediated serine/threonine phosphorylation of IRS-1, leading

to enhanced lipolysis and increased exposure of hepatocytes to

lipids (71, 72), fueling the progression of NASH.

More recent human and rodent studies, however, show that

macrophages alone may not be sufficient to be involved in hepatic

pathology concomitant to obesity-driven IR. Accumulation of

neutrophils occurs very close to, or concurrent with that of

macrophages (73). Indeed, more recent data demonstrate a

prominent role of neutrophils over macrophages as being pivotal

leukocytes that license and co-operate with macrophages in the

onset of IR and T2D (74, 75). Neutrophil migration to sites of

“danger” and their activation is a function of the balance of the

CXCR2/CXCR4 chemokine receptor density on their surface (76).

Neutrophil-attracting CXCR2 ligands are expressed in the pancreas,

adipose and liver (77), suggesting that under potentially-stressful

states, their secretion can be expected to recruit and activate

neutrophils, which in turn would exacerbate and amplify a low

grade inflammatory condition (78).

With the activation of leukocytes inside the liver, such as

macrophages, growing intra-hepatic lipid deposition results in

immunokine release [reviewed in (79) and (80)] which

potentiates adipocyte lipolysis (81) concomitant to inhibition of

hepatic insulin signaling (81, 82). Immunokines promote not only

hepatic, but also systemic IR (83, 84), and cytokines like TNFa are

detectable and upregulated in concentration inside the liver and

adipose tissue of NASH patients (85), suggesting that upregulated

TNFa in adipose might potentiate the progression of NAFLD in

two ways: systemic IR and activation of a peripheral inflammation

of insulin-responsive tissues (86). For example, adipose-produced

IL-6 in liver stimulates hepatic SOCS3, suppressing insulin

signaling, resulting in hepatic IR (87). Serum IL-6 concentrations

are elevated in NAFLD and NASH (88).
Possible strategies to improve hepatic
insulin sensitivity

The most obvious approaches to improving insulin sensitivity

are diet changes and exercise that result in weight loss. However,

work-life balance, in many instances, can impede commitment to

defined diet and even low-level exercise activity. The distinct sex

related disparities in the prevalence of NAFLD due to an interplay

of sex hormones, age related hormonal changes as well as diseases

such as polycystic ovarian syndrome and Turner’s Syndrome may

warrant exploration into sex-specific therapeutic strategies that

have been presented and/or reviewed elsewhere (89–93).

An array of different medicinals has been developed specifically

to lower glucose concentrations, improve insulin production and/or

correct weight and attenuate inflammation. Table 1 presents the

clinical studies where insulin sensitivity, and hepatic insulin

sensitivity in particular, was one of the outcome measures. Other

classes of drugs have been repurposed for these indications. Their
Frontiers in Endocrinology 05152151
effects on IR have been mild to variable. A single class of agent to

improve insulin sensitivity together with prevention of IR-

associated liver pathology remains to be discovered, although we

have shown that a neutrophil-targeting CXCR2 antagonist could

offer such a solution [see below, (105)].
Antihyperglycemic agents

Sulfonylureas lower blood sugar concentrations by stimulating

insulin secretion independent of food intake, however, they are

associated with hypoglycemia. While some studies demonstrated

beneficial effects on IR, others could not (106, 107). Sulfonylurea use

is slowly being replaced by newer agent classes to treat hyperglycemia.

Metformin remains a first-line glucose lowering agent. Although

the underlying mechanism of action remains incompletely

understood, it appears that it inhibits the hepatic glycerol-3-

phosphate dehydrogenase activity, resulting in suppression of

glycerol-induced gluconeogenesis and increased cytosolic redox

state. Together, these actions lead to a reduction in lactate

dehydrogenase and lactate-induced endogenous glucose production

(108). Other possible mechanisms of action include the inhibition of

complex I followed by increased AMP, activating AMP kinase and

facilitating fatty acid oxidation in liver and reduced expression of

genes encoding enzymes involved in gluconeogenesis. Additionally,

AMP interferes with glucagon signaling and gluconeogenesis (108).

In non-hepatic tissues, metformin increases insulin stimulated

glucose utilization (108) and AMP kinase activity (109). A meta-

analytic inspection of 11 randomized controlled trials (RCT) in obese

and overweight adolescents, revealed that metformin reduced fasting

plasma glucose (FPG) at less than 6 months, without impacting

insulin sensitivity (110). Another meta-analysis of 31 RCT using

metformin for more than 8 weeks in individuals at high risk for T2D

revealed that it improved insulin sensitivity concurrent with a

reduced incidence T2D (111). An additional meta-analysis in

patients with NAFLD revealed benefit in insulin sensitivity without,

however, any improvement in NAFLD liver histology (112).
Peroxisome proliferator-activated
receptor agonists

PPAR agonists, particularly those for PPARg, have shown

promising efficacy in improving IR and liver histology in T2D-

associated NAFLD. As a class, they also suppress the production of

pro-inflammatory immunokines concurrent with stimulation of

adiponectin production (113, 114). Pioglitazone treatment of T2D

patients has resulted in beneficial outcomes in NAFLD (62)

resulting in improved liver and peripheral insulin sensitivity

(101). While its use has been somewhat questioned due to

adverse event concerns (115), a more recently-developed agent,

lobeglitazone, exhibits improved safety with improvements in

insulin sensitivity and liver steatosis in T2D-associated NAFLD

(116). Another PPARg-sparing agent, MSDC-0602K, also achieves
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TABLE 1 Clinical trials assessing the 3-month (and greater) outcomes on insulin sensitivity in overweight/obese individuals with or without type 2 diabetes.

Study
Agent

Study Design Main Outcome(s) Metabolic Outcomes Reference

Lixisenatide
vs
Placebo

Randomized, Placebo-
controlled

Decreased HbA1c Decreased
- FPG
- BW
- 2hr PPG
Increased
- HOMAb

Ahren et al. (94)

Dulaglutide
vs
Liraglutide

Randomized, Parallel Decreased HbA1c Decreased
- FPG
- BW
- PPG

Dungan et al. (95)

Exenatide
vs
Placebo

Randomized, Placebo-
controlled

Decreased
- HbA1c
- Hepatic triglycerides
- Epicardial adipose

Decreased
- BW

Dutour et al. (96)

Dulaglutide
vs
Liraglutide
vs
Placebo

Randomized, Placebo-
controlled

Decreased HbA1c Decreased (both agents vs.
placebo)
- HbA1c
- FPG
Increased
- HOMA-2 %b

Miyagawa et al.
(97)

Empagliflozin
vs
Placebo

Randomized, Placebo-
controlled

Decreased Hepatic Lipid Content Decreased
- FPG
- BW
- Uric acid

Kahl et al. (98)

SAR425899
vs
Liraglutide
vs
Placebo

Randomized, Parallel Decreased HbA1c (both agents vs. placebo)
Increased
- HOMA-2 %S

Schiavon et al. (99)

Saroglitazar
vs
Placebo

Randomized, Placebo-
controlled

Increased
- Glucose Metabolism (M)
- Insulin Sensitivty (M/I)
- HOMA-b

Decreased
- HbA1c
- FPG
- Triglycerides
Increased
- HDL-C

Jain et al. (100)

Pioglitazone
vs
Placebo

Randomized, Placebo-
controlled

Increased
- Glucose Disposal Rate
- Insulin-Stimulated Suppression of Endogenous Glucose
Production

Decreased
- HbA1c
- FPG
- Plasma TG
- Visceral Fat
- BW
Increased
- BW
- Fat Mass
- Subcutaneous Fat

Miyazaki et al.
(101)

Semaglutide
vs
Empagliflozin

Randomized
Active Control

Decreased
- HbA1c

Decreased
- FPG
- Fasting Plasma Insulin
- Fasting C-Peptide
- BW
- CRP

Rodbard et al.
(102)

Canagliflozin
vs
Placebo

Decreased
- Hepatic Triglycerides
Increased
- Insulin-Stimulated Suppression of Endogenous Glucose
Production
- Beta Cell Function

Decreased
- HbA1c
- FPG
- Fasting Plasma Insulin
- BW
Increased
- Insulin Clearance
- FFA

Cusi et al. (103)

(Continued)
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insulin-sensitizing peripheral effects safely (117). More recently,

CHS-131 demonstrated significant dual-target outcomes,

improving fasting insulin levels and insulin sensitivity, total

plasma cholesterol, triglycerides, liver enzymes, and increased

plasma adiponectin levels. Most importantly, CHS‐131 improved

liver histology and markers of hepatic fibrosis (118). Fibrates,

ligands of PPARa, reduce fasting plasma glucose, insulin, and

improve insulin sensitivity (119) although some questions remain

about their true efficacy (120). Seladelpar and GW501516 are

PPARd agonists shown to improve insulin sensitivity in obese

individuals (120, 121) with mechanisms of action that include

increased fatty acid oxidation in skeletal muscle and attenuation

of macrophage pro-inflammatory state (122). Another PPAR agent

is Elafibranor, a PPARa/d agonist, which reduces inflammation and

enhances both peripheral and liver insulin sensitivity under obese

conditions (123, 124), although the latter findings remain to be

validated (125). Saroglitazar is a dual PPARa/g agonist with whole

body insulin sensitivity improvement without adverse events noted

with the use of other PPARa/g agonists (100, 104). A pan-PPAR

agonist, lanifibranor, is currently being tested in phase II studies,

with enabling data showing improved insulin sensitivity in T2D and

improved intra-hepatic lipid content in T2D-associated NAFLD

(clinicaltrials.gov #NCT03459079).
Fatty acid synthetases

A randomized single blinded phase 2a clinical trial evaluated the

efficacy of a fatty acid synthetase inhibitor TVB-2640 on de novo

lipogenesis in a population of NASH patients (126). Fatty acid

synthetases convert metabolites of simple sugars to palmitate (126).

The rationale behind this was to reduce de novo lipogenesis in

patients with NASH. The outcome demonstrated decreased liver fat

by 9.6% in a population with fatty liver and fibrosis that included

subjects with diabetes.
Incretins

GLP-1 agonists like exenatide, liraglutide, semaglutide, and

lixisenide can improve insulin sensitivity, although it is not clear if

this effect is in the periphery or in the liver as well (94, 96, 102, 127,

128). Glucose-dependent insulinotropic polypeptide (GIP;

tirzepatide) use also achieved some insulin sensitivity improvement

in T2D, although again it is unknown if this acted at the level of the

liver (127). Reduced hepatic inflammation and lipid deposition was
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demonstrated in T2D-associated liver pathology following a tri-

pathway-targeting approach using HM1521, an agent that targets

glucagon/GIP/GLP-1Ra in mice and in humans (117, 127).
a-Glucosidase inhibitors and sodium
glucose co-transporter-inhibitors

While a-Glucosidase inhibitors (AGI) are not a priori thought

of as agents that could affect IR, clinical studies have shown that

they can, following establishment of a steady dose level (129, 130).

These effects are expected to be extra-hepatic and a consequence of

attenuation of hyperglycemia. In a similar manner, Sodium Glucose

Co-transporter-2 Inhibitors (SGLT2I) have also demonstrated

some insulin sensitivity enhancing effect (103, 131, 132) including

a positive effect on liver IR (103) with neutral outcomes on non-

hepatic IR (133).
Leukocyte and immunokine-targeting
anti-inflammatory agents

It stands to reason that the accumulation of pro-inflammatory

leukocytes and elevation of the concentration of their pro-

inflammatory soluble mediators inside insulin-sensitive tissues is

a high-priority target of therapy aimed to restore normal insulin-

sensitivity in T2D as well as prevent any T2D-associated liver

impairment that can be a consequence of, or drive hepatic IR.

Salicylates were among the earliest agents tested for this objective

and demonstrated mild improvement in peripheral glucose disposal

(134, 135).

Inhibition of TNFa action with a variety of antibodies

(etanercept, infliximab, adalimumab) improved insulin sensitivity

in some patients, however, the heterogeneity of the study

populations requires validation of those outcomes (135, 136).

Targeting the IL-1b system (using IL-1 receptor antagonist

protein, or antibodies like canakinumab and gevokizumab)

improves glucoregulation overall, absent of any discernible effects

on insulin resistance in T2D (135). In contrast, using the IL-6-

targeting antibody tocilizumab, which aims to break the IL-6-

mediated interference of insulin signaling, achieved statistically-

relevant improvement of insulin sensitivity in obese patients (137).

Some excitement was generated when initial results from pre-

clinical and early-clinical outcomes were reported showing

improved hepatic function with the use of cenicriviroc, a dual

CCR2/CCR5 chemokine receptor antagonist in hepatic pathology,
TABLE 1 Continued

Study
Agent

Study Design Main Outcome(s) Metabolic Outcomes Reference

Saroglitazar
vs
Pioglitazone

Randomized, Parallel Decreased
- HbA1c
- FPG

Decreased
- Triglycerides
- VLDL-C
- LDL-C
- HDL-C

Krishnappa et al.
(104)
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however these reactions were tempered when the agent was unable

to improve insulin sensitivity in patients with NASH (138).

As neutrophil accumulation into areas characterized by

molecular and microenvironmental structural anomaly is a

function mainly of the balance of CXCR2 and CXCR4 ligands

and the neutrophil cell surface ratio of CXCR2:CXCR4 chemokine

receptors (76), modulation of signaling via these receptors was

proposed to be potentially therapeutic for T2D progression, IR, and

possibly NAFLD. CXCR2-deficient mice are resistant from high fat

diet-induced IR and T2D and are characterized by reduced

macrophage accumulation in adipose (139). We recently

demonstrated that a selective CXCR2 antagonist, AZD5069 (140)

treatment of high fat diet-fed mice, improved insulin sensitivity and

insulin-induced suppression of hepatic glucose production,

decreased hepatic lipid storage, and significantly-prevented the

progression towards liver pathology reminiscent of NAFLD.

Myeloperoxidase (MPO) is a key enzyme in neutrophil

respiratory burst, that generates reactive oxidation species. Studies

have shown an increase in the prevalence of MPO-positive Kupffer

cells and neutrophils in the liver during NASH. The free radicals

produced by MPO could participate in liver damage, directly (on

hepatocytes) and/or on the stroma. MPO-deficient mice fed a high fat

diet were protected against NASH-related liver injury. Additionally,

mice fed with an oral MPO inhibitor exhibited reduced transaminitis

and fibrosis (141). Thus, this enzyme, targeted alone or together with

CXCR2 inhibitors/antagonists could represent a novel therapeutic

approach in liver IR-related NASH (142, 143).

Currently there are no FDA-approved single agent treatments

for the concurrent management of insulin sensitivity and the

prevention (or at least the attenuation of progression to) to

NAFLD/NASH in individuals with metabolic syndrome and T2D.

The closest drug to market is obeticholic acid which recently

completed a phase 3 clinical trial, but has yet to be approved by

the FDA due to safety concerns in long term adverse effects (144).

Our outcomes with AZD5069, as a single agent, showing benefits in

the prevention of progression of insulin resistance and liver

pathology reminiscent of NASH/NAFLD, as well as clinical trials

in humans showing that AZD5069 was very well-tolerated with few

side effects (145), offer an opportunity for this and possibly other

similar drugs (e.g. ladarixin (146),) to enter clinical consideration as

adjunctive treatments to standard of care of obesity and T2D to

prevent and/or attenuate insulin resistance and liver pathology.

AZD5069 and similar agents may be found to exert their overall

effects in a wider-ranging manner. For example, by preventing

CXCR2-stimulated inhibition of insulin-induced glucose transport

in muscle cells (147). Additionally, by preventing the effects of IL-8

(produced by growing adipose) on insulin-induced Akt

phosphorylation in adipocytes (148, 149). This furthers

strengthens the rationale that these agents can be potentially

helpful treatments in insulin resistance-incident obesity and T2D.

Finally, ongoing studies in our laboratory will soon determine if

neutrophil antagonism impacts macrophage accumulation and

function and thus, in an indirect manner, AZD5069 and similar

agents, such as ladarixin (146), could prevent accumulation and

further activation of liver-resident macrophages.
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Modulation of lipid and
energy metabolism

Improvement in insulin sensitivity in obesity and T2D-associated

NAFLD have been achieved using lipid metabolism-modifying agents

like ketohexokinase inhibitor, a protein tyrosine phosphatase-1B

inhibitor, or an w3-fatty acid [reviewed in (117)]. Liver-targeted

dinitriophenyl (DNP)-methyl ether (DNPME) and mitochondrial

protonophore (CRMP) aiming to motivate hepatic fatty acid

oxidation while reducing lipid accumulation improved systemic IR

in rodent and non-human primate models of obesity-associated

NAFLD (150). Another mitochondrion-acting agent, BAM15, also

showed evidence of improving systemic IR and liver inflammation as

well as pathology in mouse models of obesity (150). Precise targeting

of sensitive points inside these pathways without systemic adverse

events or toxicities remains a largely-unexplored area of T2D

pharmaceutical research, especially for the objective of improving

IR concurrent with delaying or obviating liver pathology.
Discussion

It is now evident that inflammation dependent pathways have a

clear pathological role in the propagation of NAFLD. Initially, IR and

hepatic lipid accumulation result in oxidative stress and activation of

inflammatory pathways in the liver. In fact, inflammation plays a key

role in IR as well. Overnutrition and increased caloric intake, set the

stage for IR via multiple mechanisms. IR and hepatic lipid

accumulation result in oxidative stress and activation of

inflammatory pathways in the liver. Additionally, ER stress

culminates in the UPR aimed at reducing ER burden while

simultaneously increasing the translation of pro-apoptotic proteins.

Finally, obesity-mediated adipocyte inflammation and necrosis

results in a systemic meta-inflammation mediated by macrophages

and cytokines such as TNFa and IL-8. IR contributes to hepatic

steatosis through an increase in the circulating FFA, further leading to

inflammation dependent liver injury resulting in NASH. This

happens through liver macrophages in combination with, as

emerging evidence indicates, the increased recruitment of

neutrophils through CXCR2 signals. This recruitment of

inflammatory cells to the liver plays a key role in the pathogenesis

of NASH. Functionally, peripheral IR, especially in the liver further

impairs systemic glucoregulation. The liver is a key site of

gluconeogenesis, typically down regulated by insulin via the

interference in transcription of gluconeogenic genes. Insulin

physiologically favors lipogenesis and inhibits gluconeogenesis.

Paradoxically, during IR states in the liver, there continues to be an

increase in lipogenesis and gluconeogenesis referred to as selective IR.

This culminates in NASH and systemic hyperglycemia, contributing

to the diabetic phenotype.

With respect to therapeutics, a novel approach is to target IR

and interfere with the natural disease progression of NASH. Bearing

in mind that IR often precedes NASH and has an overlapping

pathogenesis in the form of systemic meta-inflammation,
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combination therapy targeting at least two distinct inflammation

networks would have maximum synergistic value. CXCR2

antagonists are a novel approach that have demonstrated both an

improvement in insulin sensitivity and interference in the natural

disease progression of NASH, through an interference in

recruitment of inflammatory cells. CXCR2 antagonists in

combination with PPARg agonists may have a synergistic role

considering the latter’s proven efficacy in improving insulin

sensitivity and potential in NASH treatment. PPARg agonists

improve insulin sensitivity by increasing adiponectin and GLUT-

4 translocation. Though limited by their side effects such as

pulmonary edema in clinical practices new alternatives like CHS-

131 show promise in this aspect, alone or in combination.
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Association between the lean
nonalcoholic fatty liver disease
and risk of incident type 2
diabetes in a healthy population
of Northwest China: a
retrospective cohort study with
a 2-year follow-up period

Nong Li1*, Weiting Xang1, Shengli Wu1, Danting Li2,
Min Chang3, ChengYao Xie3, Mei Yu Zhang3 and Huiwen Tan4*

1Department of Endocrinology and Metabolism, the Hospital of Integrated Traditional Chinese
Medicine and Western Medicine of Karamay, Xinjiang, China, 2Department of Health Management
Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 3Department of Health
Management Center, the Hospital of Integrated Traditional Chinese Medicine and Western Medicine
of Karamay, Xinjiang, China, 4Department of Endocrinology Metabolism, West China Hospital of
Sichuan University, Chengdu, China
Aims:We aimed to explore the metabolic features of lean nonalcoholic fatty liver

disease (Lean-NAFLD) and its association with the risk of incident type 2 diabetes

in young and middle-aged people.

Methods: We conducted a retrospective cohort study of 3001 participants who

were enrolled in a health check-up program from January 2018 to December

2020 in the Health Management Center of Karamay People’s Hospital. The age,

sex, height, weight, body mass index (BMI), blood pressure, waist circumference

(WC), fasting plasma glucose (FPG), lipid profiles, serum uric acid and alanine

aminotransferase (ALT) of the subjects were collected. The cutoff point of BMI for

lean nonalcoholic fatty liver disease is <25 kg/m2. A COX proportional hazard

regression model was used to analyze the risk ratio of lean nonalcoholic fatty

liver disease to type 2 diabetes mellitus.

Results: Lean NAFLD participants had many metabolic abnormalities, such as

overweight and obesity with nonalcoholic fatty liver disease. Compared with lean

participants without nonalcoholic fatty liver disease, the fully adjusted hazard

ratio (HR) for lean participants with nonalcoholic fatty liver disease was 3.83 (95%

CI 2.02-7.24, p<0.01). In the normal waist circumference group (man<90cm,

woman<80 cm), compared with lean participants without NAFLD, the adjusted

hazard ratios (HRs) of incident type 2 diabetes for lean participants with NAFLD

and overweight or obese participants with NAFLD were 1.93 (95% CI 0.70-5.35,

p>0.05) and 4.20 (95% CI 1.44-12.22, p<0.05), respectively. For excess waist

circumference (man≥90 cm, woman ≥80 cm) compared with lean participants

without NAFLD, the adjusted hazard ratios (HRs) of incident type 2 diabetes for
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lean participants with NAFLD and overweight or obese participants with

NAFLD were 3.88 (95% CI 1.56-9.66, p<0.05) and 3.30 (95% CI 1.52-7.14,

p<0.05), respectively.

Conclusion: Abdominal obesity is the strongest risk factor for type 2 diabetes in

lean nonalcoholic fatty liver disease.
KEYWORDS

nonalcoholic fatty liver disease, risk factor, type 2 diabetes, visceral fat obesity,
cohort study
1 Introduction

At present, NAFLD has become one of the most common liver

diseases affecting the health condition of adults and children in the

world (1, 2) and has brought a huge burden to the global health care

system. Approximately 25% of the global population is affected by

NAFLD, and Middle Eastern countries and South America have the

highest incidence of NAFLD in the world (3, 4). NAFLD is

characterized by the accumulation of more than 5% fat in

hepatocytes (5), which includes hepatic steatosis, steatohepatitis

and liver fibrosis, and further development of the lesions can lead to

cirrhosis and hepatocellular carcinoma (6) NAFLD is a multisystem

disease that increases the risk of type 2 diabetes mellitus (T2DM),

cardiovascular disease (CVD), some types of extrahepatic

malignancies, and chronic kidney disease (CKD), and the

magnitude of this risk parallels the severity of NAFLD (especially

the stage of liver fibrosis) (7, 8).

NAFLD is closely related to type 2 diabetes mellitus. NAFLD

and T2DM often coexist and act synergistically, increasing the risk

of hepatic and extrahepatic adverse clinical outcomes (1). T2DM is

also one of the strongest risk factors for faster progression of

NAFLD to nonalcoholic steatohepatitis, advanced fibrosis, or

cirrhosis (T2DM plays an important role in disease progression

to NASH, liver fibrosis, and cirrhosis). The global prevalence of

NAFLD in patients with T2DM was 55.5% (95% CI: 47.3-63.7) (9)

more than half of T2DM patients have been diagnosed with

NAFLD, and there is a strong correlation between them. Obesity,

physical inactivity and metabolic syndrome are common risk

factors (1, 10–12).

Nonalcoholic fatty liver disease (NAFLD) can be classified into

lean or nonoverweight obese (BMI < 25 kg/m2) and overweight

obese (BMI≥25 kg/m2) according to BMI (2, 13). A systematic

review and meta-analysis reported in 2020. The prevalence rates of

lean NAFLD and nonobese NAFLD in the general population are

5.1% and 12.1%, respectively. In the NAFLD population, lean

NAFLD and nonobese NAFLD accounted for 19.2% and 40.8%,

respectively (14). Studies have shown that not only overweight and

obese NAFLD may have liver and extrahepatic complications.

“Lean” or “nonobese” patients with nonalcoholic fatty

liver disease (NAFLD) also have hepatic and extrahepatic
02161160
complications, suggesting that metabolic phenotype is more

important than the clinical classification of body mass index in

the prognostic assessment of NAFLD (15). However, to date, the

characteristics of the lean NAFLD population are still unclear, and

there are still few studies on the prevalence and outcome of lean

nonalcoholic fatty liver disease based on race (16).

Studies have shown that there is a bidirectional interaction

between NAFLD and type 2 diabetes (12, 17). However, the direct

relationship between NAFLD and the incidence of type 2 diabetes is

still less studied, and the causal relationship between the two is still

unclear, especially the association between “lean” or “nonobese”

nonalcoholic fatty liver disease (NAFLD) and the incidence of type

2 diabetes. Further studies are needed (2) Compared with

overweight and obese NAFLD, the incidence of type 2 diabetes in

people with “lean” or “nonobese” nonalcoholic fatty liver disease is

also less studied worldwide, especially in China. This retrospective

cohort study was conducted to investigate the association between

lean nonalcoholic fatty liver disease (NAFLD) and the risk of type 2

diabetes mellitus (T2DM) in healthy people undergoing physical

examination in Karamay, Northwest China.
2 Materials and methods

2.1 Subjects (study design and
study participants)

In Karamay, Northwest China, the Xinjiang Oilfield Company

organizes a medical health checkup program for employees and

citizens every year. The medical examinations were carried out at

the Medical Examination Centre of Karamay People’s Hospital.

This study is a retrospective cohort study. Adults who underwent

annual physical examination in the Health Management Center of

Karamay People’s Hospital of Xinjiang from January 1, 2018, to

December 31, 2020, were selected as the study population. The

inclusion criteria were as follows: (1) Participants participated in the

annual physical examination (baseline examination) at the Health

Examination Center of Karamay People’s Hospital from January

2018 to December 2018. (2) Age ≥20 years, no history of diabetes.

(3) Participation in annual employee health check-ups in 2019 and
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2020. The exclusion criteria for subjects of study were as follows:(1)

Queer alcohol intake (male>30 g/day, female>20 g/day); (2)

Combined with viral hepatitis, drug-induced liver disease,

hepatolenticular degeneration, autoimmune liver disease and

other specific diseases that can lead to fatty liver; (3) Baseline

examination, fasting blood glucose ≥ 6.1 mmol/L; (4) Loss of

fasting blood glucose during baseline examination or physical

examination follow-up (5); Loss of abdominal ultrasound and

other parameter data during physical examination follow-up.

A total of 4085 people participated in the baseline examination

at the Health Examination Center of Karamay People’s Hospital in

2018 and the annual employee health examination follow-up in

2019 and 2020. Based on the inclusion and exclusion criteria, a total

of 3001 participants were included in the cohort analysis (see

Figure 1). This research project follows the Helsinki Declaration

and China’s clinical research management norms and regulations.

The research plan was approved by the Medical Ethics Committee

of Karamay People’s Hospital. Informed consent was obtained from

all participants.
2.2 Baseline data collection
and measurement

Sex, age, ethnicity, height, weight, BMI, blood pressure, waist

circumference and past medical history were collected by the

investigators. The subjects’ height and weight were measured in an

overnight-fasted state, shoes were removed, light clothes were worn,
Frontiers in Endocrinology 03162161
and the readings were accurate to 0.5 kg and 0.5 cm, respectively.

Body mass index (BMI) was calculated as body weight (kg) divided

by squared height (m2) (kg/m2). Waist circumference (WC) was

taken as the circumference of the midpoint line between the lowest

point of the rib and the upper edge of the iliac crest under normal

breathing conditions. Fasting blood glucose (FPG), alanine

aminotransferase (ALT), triglyceride (TG), total cholesterol (TC),

high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C) and blood uric acid (BUA) were

collected. The triglycerides and glucose index (TyG) were calculated

as ln (fasting TG (mg/dL) ×FPG (mg/dL)/2) (18).
2.3 Ultrasound examination and
diagnosis of NAFLD

Abdominal ultrasound examination was performed on subjects

using a color Doppler ultrasound diagnostic instrument E9 (GE

Company, USA) with a transduce of 3.5 MHz. All subjects were

diagnosed with fatty liver according to the results of ultrasound

examination. Inspectors of the clinical information of the subjects,

according to the subjects of liver tissue echoes, the differences between

the liver and right kidney and blood vessels of the structure of the

visibility diagnosis, ultrasonic tip liver frontcourt echogenicity (“bright

liver “), the far field echo attenuation, and the display are not clear, such

as structural characteristics of the intrahepatic duct in the exclusion of

alcohol, virus, autoimmune, drugs and other causes of fatty liver. The

by experienced sonographers (19, 20).
FIGURE 1

Flowchart of the present observational cohort study.
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2.4 Endpoint and diagnosis of
type 2 diabetes

The outcome event (study endpoint) was the onset of type 2

diabetes mellitus during the annual health check-up from 2019 to

2020. Survival was defined as the time from January 2019 to the date

of diagnosis of type 2 diabetes at physical examination and was

censored at the last follow-up physical examination in 2020 or at the

last follow-up physical examination in 2020 without diabetes.

Diabetes was diagnosed according to the 1999 World Health

Organization (WHO) criteria: diabetes mellitus, fasting blood

glucose ≥7.0 mmol/L, oral glucose tolerance test (OGTT) 2-hour

postprandial blood glucose (2hPG) ≥11.1 mmol/L, or self-reported

use of hypoglycemic drugs. Prediabetes: 6.1 mmol/L ≤ fasting

glucose ≤7.0 mmol/L is impaired fasting glucose (IFG), and 7.8

mmol/L ≤2 hPPG ≤ 11.1 mmol/L is impaired glucose tolerance

(IGT). Normal blood glucose: fasting blood glucose ≤6.1 mmol/L

and OGTT 2hPPG ≤ 7.8 mmol/L (21).
2.5 the category used to define BMI and
WC groups of NAFLD

The 3,001 participants were divided into four groups based on

whether they were overweight/obese and NAFLD. The four groups

were non-overweight/obese group without NAFLD (n = 1398),

non-overweight/obese group with NAFLD (n = 160), overweight or

obese group without NAFLD (n = 758), overweight or obese group

with NAFLD (n = 685). BMI ≥ 25kg/m2 was defined as overweight/

obese. WC≧ 90 cm in men,and WC≧≥ 80 cm in women was

defined as abdominal obesity (22).
2.6 Statistical analysis

Excel 2007 was used to establish the database and manage the

data, double input the data and correct the errors. SPSS 22.0

statistical package (IBM, Armonk, New York) was used for data

processing for all statistical analyses. A normality test was

performed on continuous variables of measurement data.

Measurement data with a normal distribution are expressed as

the mean ± standard deviation (x±s), and continuous data with a

skewed distribution are expressed as the median and interquartile

range (IQR). The Kruskal−Wallis H test or Mann−Whitney U test

was used for comparisons among groups. Categorical variables are

expressed as percentages. The chi-square test was used to compare

categorical variables. The 3001 participants were divided into four

groups based on the presence or absence of overweight and NAFLD.

Taking lean subjects without NAFLD as the reference group

(compared with lean subjects without NAFLD), a COX

proportional hazards regression model was used to analyze

overall overweight (or obesity) without NAFLD, lean with

NAFLD and overweight (or obesity) with NAFLD, and

abdominal obesity (WC ≥ 90 cm in men and ≥ 80 cm in women)

and nonabdominal obesity subgroups were associated with the risk
Frontiers in Endocrinology 04163162
of type 2 diabetes, and their hazard ratios and 95% confidence

intervals were calculated. Hazard ratios (HRs) with 95% confidence

intervals (CIs) for the incidence of diabetes were calculated for each

study phenotype using Cox proportional-hazard regression models,

with lean subjects without NAFLD as the reference group. The

Kaplan−Meier method was used for survival analysis to draw the

risk function curves of the above four categories of type 2 diabetes,

and the log-rank test was performed to compare whether there was

a difference in the risk of type 2 diabetes among the four groups.

The Stata 17.0 was used to plot the figure of cumulative hazard

estimates. The difference was statistically significant with a P value

of <0.05 (two-tailed).
3 Results

3.1 Baseline clinical characteristics
of subjects

A total of 3001 subjects were enrolled in the study. The average

age of these people was 43 (34-49) years. The BMI was 24.84(22.55-

27)kg/m2, and there were 2255 men (75.1%) and 746 women. Of

these, 845 had nonalcoholic fatty liver disease, while 2156 subjects

had no NAFLD. A total of 81.1% of those with nonalcoholic fatty

liver disease were overweight or obese, and 35.2% of those without

NAFLD were overweight or obese. The number of subjects with

lean nonalcoholic liver was 160, and the average BMI of these

subjects was 23.86(23.05-24.48)kg/m2. The number of subjects with

overweight or obesity with nonalcoholic liver was 685, and the

average BMI of these subjects was 28.65 (26.96-30.88)kg/m2. In

both the overweight (or obesity) with NAFLD group and the lean

with NAFLD group, the baseline levels of fasting blood glucose,

triglycerides, total cholesterol, low-density lipoprotein cholesterol,

alanine aminotransferase, blood uric acid and TyG index were

higher than those of any group without NAFLD, while the high-

density lipoprotein cholesterol was lower than that of any group in

the without NAFLD group (Table 1).
3.2 Incidence of type 2 diabetes in subjects
with or without NAFLD

The follow-up period was 104 weeks (2.0 years). The results are

shown in Table 2. The incidence rate of T2DM was 1.72% (24/1398)

in the nonoverweight without NAFLD group, 11.88% (19/160) in

the nonoverweight with NAFLD group, 5.01% (38/758) in the

overweight without NAFLD group and 12.70% (87/658) in the

overweight with NAFLD group. The number of participants with

incident T2DM was larger in the NAFLD group than in the non-

NAFLD group. The risk rate of type 2 diabetes was higher in the

nonalcoholic fatty liver group than in the non-NAFLD group. In the

case of unadjusted age, sex and other risk factors, the subjects in

the lean with NAFLD group and overweight or obese with NAFLD

group had HRs of 7.23 (95% confidence interval (CI) 3.96–13.20)

and 7.77 (95% confidence interval (CI) 4.95–12.21), respectively, for
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TABLE 2 Subgroup analysis of the Cox proportional hazard model for the incidence of type 2 diabetes from the 3001 subjects with NAFLD and the
subjects without NAFLD.

Grouping of subjects No of subjects No of subjects
Who developed diabetes (%)

Hazard Ratio (95% CI)

Model 1 Model 2

Lean without NAFLD 1398 24(1.72) 1 1

Over weight (or obesity) without NAFLD 758 38(5.01) 2.97(1.78-4.95) ** 1.80 (1.05–3.08) *

Lean with NAFLD 160 19(11.88) 7.23(3.96–13.20) ** 3.83(2.02-7.24) **

Over weight (or obesity) with NAFLD 685 87(12.70) 7.77(4.95–12.21) ** 3.84(2.28-6.47) **
F
rontiers in Endocrinology
 05164163
Model 1 Risk factors were unadjusted; Model 2 adjusted for age, sex, TC, LDL-C, HDL-C, SBP, DBP, ALT, BUA, and TyG index.
NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; TC, total cholesterol; LDL-C. low density lipoprotein cholesterol: HDL-C. High-density lipoprotein cholesterol; SBP, systolic blood
pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; BUA, blood uric acid; TyG index, a product of triglyceride and fasting glucose; *p<0.05; **p<0.001, by chi-square test.
TABLE 1 Comparison of baseline characteristics of four groups from the subjects with NAFLD and the subjects without NAFLD.

Parameters Total Lean without
NAFLD

Over- weight/Obesity
without NAFLD

Lean with
NAFLD

Over- weight/Obesity
with NAFLD

H/X2 P
value

Number of
subjects

3001 1398 758 160 685

Age(year) 43(34-49) 42(33-48) 45(36-51) 45(36-50) 41(34-49) 45.477 <0.001

Male, N (%) 2255(75.1%) 875(62.6%) 626(82.6) 136(85.0%) 618(90.2%) 232.1 <0.001

BMI(kg/m2 ) 24.84(22.55-
27.46)

22.43(20.81-23.70) 26.84(25.81-28.40) 23.86(23.05-
24.48)

28.65(26.96-30.88) 2296.922 <0.001

Waist
circumference
(cm)

89(81-96) 80.00(74.00-87.00) 94.00(89.00-99.00) 88.00(84.00-
92.00)

99.00(93.00-104.00) 1641.133 <0.001

SBP (mmHg) 124.0(114.0-
136.0)

120.00(109.00-
129.00)

127.00(117.00-137.00) 128.50(116.00-
137.00)

132.00(121.00-143.50) 331.834 <0.001

DBP (mmHg) 77.0(69.3-
87.0)

73.00(66.00-81.00) 80.00(72.00-88.00) 78.50(72.75-
88.00)

84.00(75.00-92.00) 325.173 <0.001

FBG (mmol/
L)

5.37(5.14-
5.73)

5.32(5.10-5.60) 5.38(5.18-5.74) 5.49(5.16-5.90) 5.47(5.18-5.92) 79.428 <0.001

TC (mmol/L) 4.57(3.92-
5.19)

4.44(3.83-5.03) 4.56(3.99-5.20) 4.79(4.00-5.42) 4.83(4.16-5.45) 64.978 <0.001

HDL-C
(mmol/L)

1.28(1.08-
1.54)

1.45(1.22-1.73) 1.23(1.05-1.44) 1.19(1.03-1.45) 1.10(0.94-1.25) 561.377 <0.001

LDL-C(mmol/
L)

3.02(2.50-
3.58)

2.86(2.40-3.45) 3.05(2.56-3.61) 3.185(2.68-
3.76)

3.25(2.70-3.80) 93.608 <0.001

TG (mmol/L) 1.42(0.97-
2.15)

1.10(0.81-1.58) 1.50(1.10-2.17) 1.83(1.37-2.51) 2.12(1.51-3.01) 614.575 <0.001

ALT (U/L) 23.0(16.0-
33.0)

18.0(13.0-15.0) 23.0(17.0-32.0) 30.50(22.0-
41.75)

35.0(25.0-53.0) 705.754 <0.001

BUA (µmol/L) 334.0(276.0-
394.0)

298.0(248.0-354.0) 342.0(291.0-397.0) 363.5(313.25-
419.0)

387.09(335.5-444.0) 519.812 <0.001

TyG index 5.59(5.20-
6.05)

5.33(5.01-5.690) 5.67(5.31-6.08) 5.90(5.55-6.26) 6.04(5.66-6.42) 649.744 <0.001
frontie
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TGs, triglycerides; TC, total cholesterol; HDL-c, high-density lipoprotein
cholesterol; LDL-c, low-density lipoprotein cholesterol; ALT, alanine aminotransferase; BUA, blood uric acid; TyG index, a product of triglycerides and fasting glucose. The continuous data were
expressed as median and interquartile range (IQR). Kruskal-Wallis H test or Mann-Whitney U test was used for comparison between groups. The categorical variables are expressed as
percentages. Chi-square test was used to compare categorical variables.
rsin.org

https://doi.org/10.3389/fendo.2023.1173757
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1173757
the development of diabetes compared with those in the lean

without NAFLD group. After adjusting for the above risk factors,

the subjects in the lean with NAFLD group and overweight or

obesity with NAFLD group had HRs of 3.83 (95% confidence

interval (CI) 2.02-7.24) and 3.84 (95% confidence interval (CI)

2.28-6.47), respectively, for the development of diabetes compared

with those in the lean without NAFLD group (p<0.001). The results

suggested that the risk of developing type 2 diabetes was similar in

the two groups.
3.3 The cumulative hazard ratios of
incident T2DM and the results of
Kaplan−Meier survival analysis

The cumulative hazard ratios of incident T2DM are indicated in

Figure 2. Univariate COX regression results according to the

presence or absence of nonalcoholic fatty liver disease and

overweight or obesity groups showed that both NAFLD and

overweight/obesity were significantly associated with an increased

risk of incident T2DM. Lean subjects without NAFLD were taken as

the reference group, and the Logran method was used to compare

the differences in the distribution of “survival” (pairwise

comparisons of differences in the incidence of type 2 diabetes)

among the four groups. The incidence of type 2 diabetes was the

same in the lean with NAFLD group and the overweight/obesity

with NAFLD group (3.83 vs 3.84, p=0.778). The incidence of type 2

diabetes was significantly different among the other groups,

p<0.01 (Table 3).
3.4 Results of COX regression subgroup
analysis of lean nonalcoholic fatty liver
disease and risk of T2DM

According to the level of waist circumference, the study

population was divided into a normal waist circumference group
Frontiers in Endocrinology 06165164
(man<90 cm, woman<80 cm) and an excessive waist circumference

group (man≥90 cm, woman≥80 cm). In the normal waist

circumference group, the lean without NAFLD group was used as

the reference group. After adjusting for risk factors such as age, sex

and blood pressure, the overweight or obesity without NAFLD

group and lean with NAFLD group had a risk of type 2 diabetes of

0.60 (0.14-2.66) and 1.93 (0.70-5.35), respectively (p>0.05), and the

overweight or obesity with NAFLD group had a risk of type 2

diabetes of 4.20 (1.44-12.22), p<0.01, while in the excessive waist

circumference group. After adjusting for risk factors such as age, sex

and blood pressure, the lean without NAFLD group was taken as

the reference group. The lean with NAFLD group and overweight

(or obesity) with NAFLD group had a risk of type 2 diabetes of 3.88

(1.56-9.66) and 3.3 (1.52-7.14), respectively (p<0.01), while the

overweight or obesity without NAFLD group had a risk of type 2

diabetes of 1.80 (0.82-3.93), p>0.05 (Table 4).
4 Discussion

In our present study, among 3001 eligible participants, 28.16%

hadNAFLD, and 5.33%had leanNAFLD. In theNAFLDpopulation,

18.93% had lean NAFLD. The detection rate of NAFLD was 10.27%

in those with BMI<25 kg/m2 and 45.6% in those with BMI ≥ 25 kg/

m2. Our results are similar to those of previous studies. In a recent

study from the United States, Zou B et al. found that the overall

prevalence of NAFLD was 32.3%. Among patients with NAFLD,

29.7% were nonobese, and 13.6% had lean NAFLD (23). A large

meta-analysis covering 84 studies worldwide showed that 19.2% of

the subjects in the NAFLD population were lean, 40.8% were

nonobese, and the prevalence of nonobese NAFLD and lean

NAFLD was 12.1% and 5.1%, respectively (14). ShiY et al. reported

a meta-analysis of 55,936 lean/nonobese subjects, and the total

prevalence of NAFLD in lean and nonobese subjects was 10.2%

and 15.7%, respectively (24). Zou ZY et al. reported an overall

prevalence of NAFLD of 14.5% in a meta-analysis that included

155,846 nonobese participants (25). The prevalence of lean NAFLD

increased between 1988 and 2017. Results of a meta-analysis of 33

observational studies involving 205,307 individuals from 14

countries. The global prevalence of lean NAFLD was 4.1% (95%

CI: 3.4-4.8%). Among lean subjects, the prevalence of NAFLD was

9.7% (95% CI: 7.7-11.8%), and Asians had the highest prevalence of

lean NAFLD (4.8%, 95% CI: 4.0-5.6%) (26). Table 1 shows that both

overweight and obese NAFLD and lean NAFLD have much higher

metabolic characteristics than those without NAFLD, and the risk of

metabolic diseases is correspondingly increased

Among the 4 groups in the present study, the lean with NAFLD

group had the oldest average age and male predominance (85.0%).

BMI and waist circumference were higher than those in the lean

without NAFLD group, and fasting blood glucose was the highest.

Systolic blood pressure, serum total cholesterol, low-density

lipoprotein, triglyceride and blood uric acid levels were also

higher than those in the non-NAFLD group, and high-density

lipoprotein was lower than those in the non-NAFLD group. The

results of this study showed that the metabolic index value level of

the lean with NAFLD group was basically the same as that of the
FIGURE 2

The cumulative hazard ratios of incident T2DM in different groups.
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overweight (or obesity) with NAFLD group, which was the same as

the results of other similar studies (13, 27).

Insulin resistance (IR) is not only the main pathogenesis of

obese nonalcoholic fatty liver disease but also plays a key role in the

pathogenesis of lean NAFLD (28). Studies have shown that the

triglycerides and glucose index (TyG index) could be a reliable

surrogate index for IR (18, 29), and the results of this study

suggested that the insulin resistance level of people with lean

NAFLD was higher than that of lean without NAFLD and

overweight (or obesity) without NAFLD and was slightly lower

than that of those with overweight (or obesity) with NAFLD. Our

study suggests that insulin resistance plays an important role in the

pathogenesis of lean fatty liver disease and type 2 diabetes mellitus.

To date, there are few studies on the association between lean

fatty liver and the risk of type 2 diabetes, and the definition of lean

fatty liver is based on BMI<25.0 kg/m2 or <23.0 kg/m2 without waist

circumference stratification. Fukuda T and his colleagues had

shown that ‘A cutoff point of BMI 23 kg/m2 was used to define

overweight (≥23.0 kg/m2) or nonoverweight (<23.0 kg/m2). This

was a population-based retrospective cohort study of 4629
Frontiers in Endocrinology 07166165
participants who were enrolled in a health check-up program for

a mean follow-up of 12.8 years. The adjusted hazard ratios for

incident T2DM compared with the nonoverweight without NAFLD

group were as follows: 3.59 (95% CI: 2.14–5.76) in the

nonoverweight with NAFLD group, 1.99 (95% CI: 1.47–2.69) in

the overweight without NAFLD group and 6.77 (95% CI: 5.17–8.91)

in the overweight with NAFLD group. The adjusted hazard ratio in

the nonoverweight with NAFLD group was significantly higher

than that in the overweight without NAFLD group or that in the

nonoverweight without NAFLD group (30). Another cohort study

from the Japanese Physical Examination Population Database

(JPEPD) with an average follow-up of 6 years showed that after

adjusting for confounding factors, the fully adjusted HR (95% CI)

for incident diabetes in lean NAFLD vs lean without NAFLD

patients was 2.58 (95% CI: 1.68 -3.97) in the study population as

a whole or in subgroups stratified by sex, and the risk of type 2

diabetes was the same for lean and overweight or obese with

NAFLD (31).

In our study, lean nonalcoholic fatty liver was defined as a BMI

of less than 25.0 kg/m2. If waist circumference was not stratified,
TABLE 3 Log rank (Mantel−Cox) test results of paired comparisons.

Grouping of subjects
N1 N2 N3 N4

X2-value P-value X2-value P-value X2-value P-value X2-value P -value

N1 19.097 .000 56.323 .000 111.138 .000

N2 19.097 .000 10.699 .001 26.583 .000

N3 56.323 .000 10.699 .001 .079 .778

N4 111.138 .000 26.583 .000 .079 .778
fro
N1, lean without NAFLD; N2, overweight (or obesity) without NAFLD; N3, lean with NAFLD; N4, overweight (or obesity) with NAFL.
TABLE 4 Rates of incident and hazard ratio of type 2 diabetes based on waist circumference of the 3001 subjects with NAFLD and the subjects
without NAFLD.

By waist circumference, No of subjects No of subjects
who developed diabetes (%)

Hazard Ratio (95% CI)

Model 1 Model 2

Normal waist circumference
(man<90 cm, woman<80 cm)

Lean without NAFLD 1099 16(1.46) 1 1

Over weight (or obesity) without NAFLD 139 2(1.44) 0.99(0.23-4.30) # 0.60 (0.14-2.66) #

Lean with NAFLD 78 7(8.97) 6.35(2.61-15.44) ** 1.93(0.70-5.35) #

Over weight (or obesity) with NAFLD 44 5(11.36) 8.08(2.96-22.07) ** 4.20(1.44-12.22) *

Excess waist circumference
(man≥90 cm, woman≥80 cm)

Lean without NAFLD 298 8(2.68) 1 1

Over weight (or obesity) without NAFLD 619 36(5.82) 2.21(1.03-4.74) * 1.80(0.82-3.93) #

Lean with NAFLD 82 12(14.63) 5.70(2.33-13.95) ** 3.88(1.56-9.66) *

Over weight (or obesity) with NAFLD 641 82(12.79) 5.0(2.42-12.34) ** 3.30(1.52-7.14) *
Model 1 Risk factors were not adjusted; Model 2 adjusted for age, sex, TC, LDL-C, HDL-C, SBP, DBP, ALT, BUA, and TyG index.
NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; TC, total cholesterol; LDL-C. Low-density lipoprotein cholesterol: HDL-C, high-density lipoprotein cholesterol; SBP, systolic
blood pressure DBP, diastolic blood pressure; ALT, alanine aminotransferase; BUA, blood uric acid; TyG index, a product of triglyceride and glucose index; #p>0.05; *p<0.01; **p<0.001, by chi-
square test.
ntiersin.org

https://doi.org/10.3389/fendo.2023.1173757
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1173757
after adjusting for related risk factors, compared with nonalcoholic

fatty liver with BMI<25.0 kg/m2. The adjusted hazard ratios for

incident T2DM were 3.83 (2.02-7.24) in the lean with NAFLD

group, 1.80 (1.05–3.08) in the overweight or obesity without

NAFLD group and 3.84 (2.28-6.47) in the overweight or obesity

with NAFLD group. Lean nonalcoholic fatty liver group than in the

study of the risk of type 2 diabetes in the Japanese population is

higher, the reason is that we study the lean nonalcoholic fatty liver

disease in cutting point than their high, but lean nonalcoholic fatty

liver disease group and overweight fuelling nonalcoholic fatty liver

disease is the same risk for type 2 diabetes (3.83 vs3.84). After

stratification by waist circumference, this study found that in the

normal waist circumference group, compared with the BMI<25.0

kg/m2 and nonalcoholic fatty liver groups, the hazard ratio of type 2

diabetes in the lean nonalcoholic fatty liver group was 1.93 (0.70-

5.35, P>0.05) after adjusting for related risk factors. In the

overweight waist circumference group (abdominal obesity group),

the risk ratio of type 2 diabetes in the lean nonalcoholic fatty liver

group was 3.88 (1.56-9.66), P<0.05. The results of this study showed

that overweight nonalcoholic fatty liver disease is an independent

risk factor for type 2 diabetes in the presence of a normal waist

circumference, while lean nonalcoholic fatty liver disease is not an

independent risk factor for type 2 diabetes. The high incidence of

type 2 diabetes in people with lean nonalcoholic fatty liver disease

may be due to the higher level of insulin resistance, higher blood

lipid levels, and different degrees of steatohepatitis in this group.

In the presence of excess waist circumference (abdominal obesity),

lean nonalcoholic fatty liver disease was an independent risk factor for

type 2 diabetes, and the risk of type 2 diabetes was slightly higher than

that of overweight and obese nonalcoholic fatty liver disease (3.88 vs

3.30). In abdominal obesity, there is an increase in visceral fat, which is

a major source of free fatty acids and inflammatory cytokines.

Increased levels of visceral fat can lead to insulin resistance and type

2 diabetes. Feng RN et al. found that abdominal obesity was closely

related to type 2 diabetes in Chinese adults (32). NAFLD is strongly

associated with the pathogenesis of type 2 diabetes mellitus. NAFLD is

a multisystem disease characterized by “ectopic fat accumulation” in

the liver, leading to a series of pathophysiological manifestations.When

hepatic fat accumulation occurs, long-chain fatty acids (LCFAs) and

triglycerides 3-phosphate (derived from glycolysis) form

monoacylglycerol, diacylglycerol (DAG), and triacylglycerol (TAG)

within hepatocytes. Lipid synthesis can increase the production of

intermediates, such as diacylglycerol DAG, dipalmitoyl phosphate (Di-

P PA), and other lipid products, such as ceramides. Increased

production of these lipid products, especially DAG, leads to

“resistance” within the hepatic insulin signaling pathway, and

ceramide inhibits distal insulin signaling, which is also a mediator of

inflammation and oxidative stress. In addition, liver fat accumulation

can secrete hepatokines, which affect the insulin signaling pathway and

subclinical inflammation, cause hepatic/peripheral insulin resistance

and promote liver inflammation (33, 34). NAFLD often coexists with

metabolic syndrome (MS) or predisposes patients to metabolic

diseases. Therefore, the 2020 International Panel of Experts

recommended that NAFLD be renamed metabolically associated

fatty liver disease (MAFLD). The diagnostic criteria of MAFLD are

based on histological (liver biopsy), abdominal imaging, and blood
Frontiers in Endocrinology 08167166
biomarker evidence of hepatic fat accumulation (hepatocellular

steatosis). Combined with one of the following three conditions:

overweight/obesity, type 2 diabetes mellitus and at least two risk

factors for metabolic abnormalities (35), MAFLD is prone to develop

into type 2 diabetes mellitus. According to the diagnostic criteria of

MAFLD, overweight/obese fatty liver can be diagnosed asMAFLD, and

lean fatty liver combined with risk factors for metabolic abnormalities

also belongs to MAFLD. Ye JZ et al. conducted cohort cluster analysis

on the MAFLD population and found that the high abdominal

circumference cluster has a higher risk of T2DM and CVD after

long-term follow-up, and its pathogenesis is related to the high waist

circumference population often accompanied by hyperfree lipasemia

and hyperinsulinemia (36).

This study also confirmed that the risk of type 2 diabetes in

NAFLD patients with abdominal obesity was significantly higher

than that in NAFLD patients with normal waist circumference,

regardless of BMI. According to previous studies and the results of

this study, regardless of whether it is MAFLD or not, the risk of type

2 diabetes in lean nonalcoholic fatty liver disease is similar. If

NAFLD is MAFLD, whether it is lean nonalcoholic fatty liver

disease or nonlean nonalcoholic fatty liver disease, it has a high

risk of type 2 diabetes. BMI-driven approaches for NAFLD should

be replaced by better diagnostic tools emphasizing the assessment of

metabolic disorders and advanced liver fibrosis (16). It should be

explored which clinical manifestations and outcomes of lean

NAFLD meet the criteria for MAFLD and which do not.

There are several limitations of our study. As this study subjects

were from healthy people undergoing physical examination, most

of them were young and middle-aged people under 60 years old, so

the correlation between lean elderly nonalcoholic fatty liver disease

and the risk of type 2 diabetes was not covered in this study. Second.

Due to the small number of women in the study population, this

study was not conducted according to gender classification. Third.

It is a single-center retrospective cohort study with a short follow-

up period for the study population. In the future, a prospective

multicenter cohort study with a longer follow-up period and a

larger sample size is needed to strengthen the verification of the

results. Fourth. For the reason of health examination, the glucose

tolerance test was not used to exclude patients with type 2 diabetes

during the baseline survey in this study. Therefore, a very small

number of patients with impaired glucose tolerance with fasting

blood glucose <6.1 mmol/L may participate in the follow-up study,

but we believe that this has no significant impact on the study

results. Fifth. Considering the short follow-up time of the present

study, smoking, a small amount of alcohol consumption and

exercise have little influence on the risk of type 2 diabetes, so the

lifestyle data of smoking, alcohol consumption and exercise were

not collected when the baseline data were collected.
5 Conclusion

The results of this study showed that abdominal obesity was a

stronger risk factor for type 2 diabetes than overweight/obesity, with

BMI ≥ 25 kg/m2 as the cutoff point in nonalcoholic fatty liver

disease. In waist circumference normal young and middle-aged
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people, lean nonalcoholic fatty liver disease (BMI < 25.0 kg/m2) is

not an independent risk factor for type 2 diabetes. In the abdominal

obesity population, lean nonalcoholic fatty liver disease is an

independent risk factor for type 2 diabetes and causes the risk of

type 2 diabetes and overweight fueling nonalcoholic fatty liver

disease to be the same. The risk of lean nonalcoholic fatty liver

disease in type 2 diabetes mellitus is affected by the number of risk

factors for metabolic abnormalities; among them, the most

important factor is abdominal obesity. It is of great significance to

classify nonalcoholic fatty liver disease into metabolic fatty liver

disease and classify its management and treatment according to the

risk factors for type 2 diabetes mellitus, cardiovascular and

cerebrovascular diseases and malignancy, as well as cluster risk

factors for the prevention and treatment of nonalcoholic fatty liver

disease complications.
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