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Editorial on the Research Topic
Reviews in breast cancer

According to the GLOBOCAN there were an estimated 19.3 million new cancer cases
and 10 million cancer deaths worldwide in 2020 (1). Female breast cancer (BC) has
surpassed lung cancer and today it is the most diagnosed type of cancer (2.3 million new
cancer cases, representing 11.7% of all cancer cases). In terms of mortality, it ranks in 5th
place, with 685,000 deaths in 2020. For women, BC represents 1 in 4 cancer cases and
accounts for 1 in 6 cancer deaths (1). Moreover, the GLOBOCAN Cancer Tomorrow
prediction tool estimates that incidence will increase by more than 46% by 2040 (2).
However, incidence rates are not equal around the world. They are 88% higher in
developed countries than in developing countries (55.9 vs. 29.7 per 100.000 women,
respectively), but mortality rates are 17% higher in developing countries compared to
developed countries (15.0 vs. 12.8 per 100.000 women, respectively). There are a number of
reasons for the higher incidence rates in the developed countries, including early age at
menarche, later age at menopause, advanced age at first birth, fewer number of children, in
addition to lifestyle factors such as obesity, physical inactivity and alcohol intake.

Incidence of BC rapidly increased in the 1980s and 1990s, but by the 2000s incidence
had dropped or stabilized. However, since 2007 there has been a slow increase of BC
incidence of 0.5% per year in the United States, and moderate increases have been reported
in several countries in Europe and in Oceania (2). Using cancer registry data, supplemented
with tumor marker information to further understand these increases in incidence, it has
been found that most breast cancers are estrogen-receptor positive (1). This particular type
of cancer is associated with the obesity epidemic and with mammography screening, which
tends to detect slow growing cancers like estrogen-receptor positive cancers. The analysis
has also shown that incidence rates are falling for estrogen-receptor negative cancers (1).

Five-years survival rates range between 85-90% for developed countries, whereas for
developing countries, particularly those located in Africa, it is 66%. This is primarily due to late-
stage presentation of the disease, which reflects on the lack of screening programs and weak
health infrastructure. As a result, mortality rates in Africa are among the world’s highest (1).

In this Special Issue our focus was to bring some state-of-the-art research in breast
cancer to light. In here the reader will find papers on prognostic and potential therapeutic
factors, such as immune cells in the tumor microenvironment, inflammations, small
extracellular vesicles, RNA binding proteins, dysbiosis, etc. Moreover, social factors will
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also be discussed, such as the risk of anxiety, depression and sexual
disfunction, as well as health-related quality of life in BC patients.
The effects of tobacco smoking and breast cancer risk will also be
explored. In terms of breast cancer diagnosis, we will examine the
diagnostic value of multiple ultrasound techniques, as well as the
role of Artificial Intelligence. We will also explore the use of
educational tools to improve radiologists’ performance when
detecting this disease. Finally, we will discuss the recent progress
of therapeutic vaccines for breast cancer.

A growing body of evidence demonstrated a relationship between
inflammation and cancer. It increases the risk of cancer development
influencing occurrence and progression (3). IL-6 triggers chronic
inflammation and cancer, it was higher in many solid tumors
including BC (4) which correlated with poor prognosis and
metastasis (5). As summarized by Chen et al. several antibodies for
IL-6/IL-6R have been used, either as single drug or combined with
chemotherapy, demonstrating a marked outcome in both preclinical
and clinical trials. IL-6/JAK/STAT3 pathway suppresses anti-tumor
immune responses in BC tumor microenvironment. Therefore,
treatments against this pathway have given benefit for patients with
BC by reducing tumor cell growth and stimulating anti-tumor
immunity. Combining IL-6 pathway inhibitor with other targets
therapies may represent a new strategy to treat human cancers.

The most important cause of BC death is disease progression
due to metastases. Because of this challenge, the identification of
unambiguous molecular biomarkers to predict the disease response
is needed. Wang et al. conducted a meta-analysis assessing that
higher CD68+ and CD163+ tumor-associated macrophages (TAM)
density, accounting for approximately 50% of tumor
microenvironment cells, is associated with poor outcome in BC
patients and also with higher tumors size, no vascular invasion, and
positive ER expression, highlighting the significant prognostic value
for TAMs in BC patients.

The triple negative breast cancer (TNBC) is the most aggressive
and invasive BC subtype, with rapid progression, short response
duration to available treatment and poor clinical outcomes.
Therefore, there is an urgent need to develop new early diagnosis
tools and therapies with good efficacy. Zhou et al. summarized the
role of small extracellular vesicles (sEVs) in TNBC. sEVs are natural
nano-sized extracellular vesicles with lipid membrane outside and
bioactive contents inside, produced by nearly all cell types, play a
significant role in intercellular communications. sEVs contribute to
angiogenesis, immune escape, tumor proliferation, invasion and
distant metastasis, and drug resistance in TNBC. sEVs can be
simply detected in body fluids. So, they hold great promise as
biomarkers for early diagnosis, prognosis and treatment approach
of TNBC. Huertas-Caro et al. argued that higher levels of tumor
infiltrating lymphocytes (TILs) in TNBC have been associated with
better outcomes and a higher rate of pathological complete response
to neoadjuvant chemotherapy. Similar results were observed for CD4
+, CD8+ TILs, independently to the human population analyzed. All
together these results suggest that TILs subpopulations might have a
prognostic role in TNBC, although the underlying mechanism
demands to be elucidated.

Cancer stem cells are a small population of cancer cells with
self-renewal and differentiation potential, responsible for tumor
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heterogeneity, recurrence, metastasis and drug resistance (6). Xu
et al. reviewed that breast cancer stem cells (BCSCs) obtained from
the same tumor exhibit heterogeneity in terms of mutations,
transcriptional programs, immune characteristics and functional
properties. Therefore, BCSC concept not only has extensive and
great implications for cancer biology, but also has strongly clinical
significance for the development of personalized therapies.

RNA binding proteins (RBPs) are key regulators of RNA
metabolism. mRNAs as unstable and degradable biomacromolecules
bind to specific RBPs and form complexes to maintain their stability in
cells, within which RBPs control their localization, stability, translation,
and degradation binding to specific mRNAs regions (7). Presently,
functional inactivation or abnormal expression of RBPs may be closely
associated with BC development, which means that RBPs may become
good diagnostic and prognostic biomarkers for BC. Chen et al.
described the role of several RBPs and their target genes in the BC
development and progression, as well as Lu et al. summarized the
function of RBPs in BC cells and their regulatory mechanisms. The
RBPs role in drug resistance is still little know and can become a new
research direction. Although, as described by Chen et al. therapeutic
strategies are developing against RBPs, as the inhibition of HuR by KH-
3 that blocks the invasion of BC cells by destroying the HuR-FOXQ1
mRNA interaction, the compound ZM-32 that prevent the formation
of HuR-RRM1/2-VEGFA mRNA complex suppressing proliferation,
migration, growth, and angiogenesis of BC cells.

Zhang et al. discussed about the emergent role of
gastrointestinal microbiome as an important player in the risk
and progression of BC. Supposing that the treatment of gut
microbiota to stabilize the microenvironment may decrease the
production and propagation of pro-tumorigenic factors and
determining new approaches to stabilize these deleterious
fluctuations is of interest in the treatment and prognosis of BC.

Zhang et al. provided a meta-analysis to evaluate the prognostic
differences between multicentric/multifocal (MM) and unifocal BC,
in order to illustrate a theoretical basis for the design of an
applicable therapeutic strategy for treating MMBC patients.
However, MMBC patients showed a higher death risk, but it may
not be independently associated with poorer outcomes. MMBC and
UFBC patients with appropriate surgery and adjuvant therapies
showed the same prognosis, although the prognostic impact of
every lesion in MMBC still needs further investigation.

Lei et al. summarized that germline BRCA1/2 mutations are
common in Chinese patients with hereditary breast, ovarian,
prostate and pancreatic cancers. Although Chinese consensuses
recommend BRCA1/2 genetic testing for cancer patients only,
depending on cost-effectiveness and social and political factors,
public interest and patients” benefits. The Authors recommended
that healthy individuals harboring pathogenic mutations should be
identified to promote prevention, early diagnosis, and timely
treatment of BRCA mutation-related cancers, which may increase
5-year survival for these patients.

Social factors that affect breast cancer patients were also
discussed. For example, anxiety and depression risk in Taiwanese
women with breast cancer and women with cervical cancer was
explored by Yang et al. As they compared these two populations of
patients, the authors found that they are both at an elevated
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likelihood of developing anxiety and depression, but that the risk for
developing depression was slightly higher in breast cancer patients.

In addition, sexual dysfunctions in breast cancer patients were
examined by Hernandez-Blanquisett et al.. The authors report that
up to 75% of women treated for breast cancer report sexual
disorders, but oncologists are not trained to recognize which
patients are at high risk for developing this disease. The authors
suggest that the choice of less toxic treatments in the surgical,
chemotherapy and radiation therapy domains could lead to a
reduced risk of female sexual dysfunction without increasing the
risk for breast cancer recurrence or the effectiveness of treatment.

In another meta-analysis and systematic review, Chen et al.
studied the health-related quality of life in breast cancer patients in
Asia. The authors reported that Asian breast cancer patients suffer
from poor quality of life and were severely impacted by the effects of
fatigue and hair loss, pain, insomnia, and anxiety.

Also in this Research Topic, He et al. carried out a systematic
review and meta-analysis on the relationship between tobacco and
breast cancer. They showed that active or passive smoking increased
the risk of BC in women, and that the effect of smoking was
influenced by factors such as duration, intensity, number of years
since quitting, as well as population-related factors (such as fertility
status) and breast cancer subtypes.

In terms of breast cancer diagnosis, Li et al. explored the
diagnostic value of multiple ultrasound techniques for assessment
of lymph node metastases in breast cancer patients. As the authors
posit, early diagnosis of lymph node metastases is very important
for prognosis of breast cancer development. Currently the most
commonly used method is lymph node biopsy, however it is an
invasive method that may bring complications to the patients (such
as lymphedema). The authors found that the combination of
ultrasound with contrast-enhanced ultrasound led to the best
performance among all the ultrasound techniques tested.

Moreover, the use of Artificial Intelligence for the diagnosis and
prognosis prediction of breast cancer was explored by Jones et al. In
their review the authors focused on two tasks (1): better
understanding the association between radiomics features and
tumor microenvironment; and (2) the progress developing new
computer-assisted aid schemes for predicting breast cancer risk,
determining the likelihood of tumor malignancy, and determining
tumor response to treatment.

Aiming to improve radiologists’ performance when detecting
early BC, Trieu et al. explored the use of an educational intervention,
BREAST (Breastscreen REader Assessment STrategy), which helps
radiologists’ interpretation skills when reading both mammograms
and Digital Breast Tomosynthesis cases. The authors described the
use of the BREAST platform in countries with screening programs for
breast cancer (such as Australia, Singapore) and countries without
(such as China, Vietnam).

The recent progress on the development of therapeutic vaccines
for BC has been explored by Zhang et al. in this issue. Although
advanced BC is still considered to be a poorly immunogenic disease,
the great success of cancer immunotherapy is paving the way for a
new era in cancer treatment. Vaccine targets have included both
tumor-associated antigens and tumor-specific antigens. However,
as only a few women seem to benefit from neoantigens, more
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attention is being paid to overexpressed antigen-based treatments,
such as HER-2-derived peptide vaccines.

Finally, Lyu et al. have determined the research trends and hot
spots of breast cancer management during the COVID-19
pandemic. The authors suggest that during the epidemic the
management of breast cancer patients changed considerably,
including all aspects of management such as screening, treatment,
follow-up and rehabilitation.

Conclusions

Breast cancer is currently the most diagnosed type of cancer for
women worldwide. Moreover, the GLOBOCAN Cancer Tomorrow
estimates that incidence of this disease will increase by more than
46% by 2040, making it critical that we device new ways to detect,
diagnose and treat breast cancer.

In this Special Issue we presented reviews and meta-analyses that
promoted knowledge of the mechanisms of breast cancer progression,
as well as its prevention, diagnosis and treatment. We believe that this
information will be useful for both scientists and clinicians.
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Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced
breast cancer is still an incurable disease mainly because of its heterogeneity and limited
immunogenicity. The great success of cancer immunotherapy is paving the way for a new
era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine
targets include tumor-associated antigens and tumor-specific antigens. Immune
responses differ in different vaccine delivery platforms. Next-generation sequencing
technologies and computational analysis have recently made personalized vaccination
possible. However, only a few cases benefiting from neoantigen-based treatment have
been reported in breast cancer, and more attention has been given to overexpressed
antigen-based treatment, especially human epidermal growth factor 2-derived peptide
vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast
cancer and highlight near-term opportunities for moving forward.

Keywords: breast cancer, cancer vaccines, cancer immunotherapy, clinical trials, concurrent therapies

INTRODUCTION

Breast cancer (BC) is the leading cause of cancer worldwide (1). Although there has been an increase
in the overall survival rate in BC because of improvements in early-stage diagnosis and targeted
therapies, almost all metastatic tumors develop drug resistance and cannot be cured. It is still a
difficult problem to reduce the recurrence rate of early breast cancer and to prolong the survival time
of advanced breast cancer. Immune-based interventions could be a beacon of hope to decrease
morbidity and mortality of cancer. Although immune checkpoint inhibitors (ICIs) have been
proven to increase the survival rate in lung cancer, melanoma, gastric cancer and so on, the
indications of ICIs for the treatment of BC are only focused on first-line and neoadjuvant therapy
for triple-negative breast cancer (TNBC) (2) to date.

The tumor microenvironment (TME) plays a crucial role in the recognition and prevention of
cancer and early eradication. The TME may also interact with tumor cells and promote the
progression of cancer. The immunoediting hypothesis describes the dynamic interaction between
the immune system and tumor cells in three phases: elimination phase, equilibrium phase and
escape phase (3). Tumor cells that avoid immune recognition and elimination steps enter the escape
phase and present a clinically detectable tumor. The advantage of active immunotherapy is to
develop a protective effect against tumor tissue, modifying the immune microenvironment and
resetting the immune system to an antitumor surveillance status. Therapeutic cancer vaccines led by
neoantigens are hotspots of active immunotherapy. Combination strategies with ICIs have shown
clinical benefits in multiple types of cancer (4, 5). To date, only one vaccine named sipuleucel-T has
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been approved by the FDA and is used to treat metastatic
castration-resistant prostate cancer in a limited group of nearly
asymptomatic patients (6). No BC vaccine has been approved for
clinical use. BC is a heterogeneous disease and can be classified
into 4 common groups: luminal A, luminal B, human epidermal
growth factor 2 (HER2)-positive, and TNBC (7). BC is
traditionally considered a poorly immunogenic tumor.
However, recently published data on TNBC have shown that a
significant number of tumor infiltrating lymphocytes infiltrate
TNBC tissues (8), indicating that an immunotherapeutic
approach may be suitable for this hard-to-treat malignancy. A
series of clinical trials for TNBC vaccines are underway. In
addition, increasing numbers of clinical trials are being
conducted demonstrating that vaccination is capable of
inducing an antitumor-specific response in BC. In this review,
we discuss recent progress on therapeutic vaccines from the
perspective of tumor development and clinical data, and a
blueprint for personalized vaccines is also presented.

SPECTRUM OF VACCINE TARGETS

Therapeutic tumor antigens are divided into two main categories:
tumor-associated antigens (TAAs) and tumor-specific antigens
(TSAs) (9) (Figure 1). TAAs include tumor germline antigens,
tumor differentiation antigens and overexpressed antigens (10).
Tumor germline antigens, or cancer testis antigens, are expressed
at high levels in the germinal cells of the testis, ovaries, and placenta

Vaccines:
-whole cell-based vaccines
-multi-peptide vaccines
-DNA/RNA-based vaccines

-dendritic cell-based vaccines

-in situ vaccination

o

-adjuvants

-cytokines

and are not expressed in somatic cells under normal conditions (11).
They are expressed in malignant cells of various cancer types,
including BC. In BC, the expression of a number of cancer testis
antigens has been reported, such as MAGE-AL1 (12), NY-ESOI (13)
and KK-LC-1 (14). Serum antibodies against cancer testis antigens
can be detected as useful biomarkers for predicting the clinical
benefits of immunotherapy (14-16). Tumor differentiation antigens
are proteins expressed in tumor cells and in normal tissue from
which the tumor originates, such as Melan-A/Mart-1 (17), gp100
(18), PSA (19), CEA (20) and NY-BR-1 (21, 22). Overexpressed
antigens are proteins expressed at low levels in normal cells and at
high levels in cancer cells. The most common overexpressed
antigens targeted in BC are HER2 (23), MUC-1 (24), hTERT (25)
and survivin (26). TAA-based vaccines must be sufficiently
immunogenic to activate the remaining low-affinity TAA-reactive
T cells because central and peripheral immune tolerance
mechanisms have removed T cells with strong TAA affinity.

TSAs are expressed specifically in tumor cells, mainly including
oncoviral antigens and neoantigens (27). Neoantigens are products
of genomic alterations and consist of simple point mutations that
change single amino acids, frameshift insertion or deletion
mutations, splice-site alterations that lead to exon skipping,
structural alterations that lead to the formation of fusion proteins
and other forms of collateral damage (28). Although there are
thousands of genomic alterations in the process of tumor formation,
only a handful of neoantigens succeed in eliciting antitumor
immune responses. BC shows an intermediate genomic
mutational load, and only a few cases benefiting from neoantigen-

TAA or TSA-specific
CD8+ and CD4+ T cell

Tumor cell

PD-L1, PD-1

Treg

CD80 CTLA-4

DC

FIGURE 1 | Graphic representation of the therapeutic breast cancer vaccine platforms and their mechanism of action. The figure summarizes the spectrum of
vaccine targets and vaccine platforms for breast cancer. Vaccine platforms are whole cell-based vaccines, multipeptide vaccines, DNA/RNA-based vaccines,
dendritic cell (DC)-based vaccines and in situ vaccination. DCs present processed tumor-associated antigen (TAA) or tumor-specific antigen (TSA) to CD4+ and
CD8+ T cells. This interaction generates TAA/TSA-specific effector T cells, leading to the kiling of tumor cells. B7, B7 protein; CD28, T cell costimulatory molecule
CD28; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; DC, dendritic cell; MHC, major histocompatibility complex; PD-1, programmed cell death protein 1;
PDL-1, programmed death ligand 1; TAAs, tumor-associated antigens; TSAs, tumor-specific antigens; TCR, T cell receptor; Treg, regulatory T cell.
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based treatment have been reported in BC (29). Since TNBC is
recognized as a potential suitable subtype for immunotherapy,
clinical trials of neoantigens are enrolling TNBC patients to
evaluate the safety and induction of specific T cell responses.
Clinical trials using autologous dendritic cells (DCs) pulsed with
tumor-specific neoantigen (NCT04105582) or neoantigen DNA
vaccine administered with durvalumab (NCT03199040) or
personalized synthetic long peptide (SLP) neoantigen vaccine
administered with durvalumab and nab-paclitaxel
(NCT03606967) are currently enrolling TNBC patients. The
neoantigen prediction process includes identifying tumor-specific
somatic mutations and predicting major histocompatibility
complex (MHC)-binding epitopes. Whole-exome sequencing is
performed using tumor biopsy specimens and nonmalignant
tissue samples to identify tumor-specific somatic mutations (30,
31). Tumor and germline DNA are compared to exclude germline
mutations, while RNA sequencing provides additional information
on mutated genes and confirms the mutation calls (32-34). Owing
to human leukocyte antigen (HLA) restriction, various algorithm-
based computational approaches have been developed to predict the
binding of a tumor antigen to MHC molecules (35, 36). Peptides
predicted with a moderate-to-strong HLA-binding affinity (IC50 <
150 nmol/l) are considered more likely to induce CD8+ T cell
responses. Mass spectrometry-based immunopeptidomics can be
used to identify neoantigens or to validate those predicted by in
silico strategies. Recently, a new strategy based on using signaling
and antigen-presenting bifunctional receptor (SABR) libraries was
developed, enabling the identification of specific TCR-pMHC
interactions (37).

In addition to TAAs and TSAs, multiple TME-targeting vaccine-
based clinical trials are underway for patients with BC (38). Resident
cells in the TME are likely more genomically stable than tumor cells.
Pathological angiogenesis in the vascular TME can suppress
effective immunotherapies. Multiple strategies targeting whole-cell
endothelial cells (39), tumor blood vessel antigens (40),
epidermal growth factor receptor (EGFR) (41), CD105 (42),
platelet-derived growth factor receptor (PDGFR)-f (43) and
vascular endothelial growth factor receptor (VEGFR) (44) have
been tested in preclinical models of BC. A phase I study of pulsed
DCs with tumor blood vessel antigens was completed recently
(NCT02479230). Cancer-associated fibroblasts of the TME are
vaccine targets as well. However, cancer-associated fibroblast
vaccine strategies are all in the preclinical stage (45-47). Mads
Hald Andersen et al. (48) designed an innovative investigational
approach to target immune inhibitory pathways in the TME,
modulating immune regulation. Therapeutic vaccination with
long peptide epitopes is derived from proteins including
indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase,
arginase, and programmed death ligand 1 (PD-L1). Endogenous
anti-regulatory T cells are activated because they recognize these
peptides, and these pro-inflammatory cells are attracted to the TME,
potentially altering tolerance to tumor antigens. Vaccinations
against IDO or PD-L1 have been proven to be safe in clinical
trials. Tryptophan 2,6-dioxygenase (TDO) is another enzyme
involved in tryptophan degradation in the TME and is expressed
in many cancers, including breast cancer, making it an interesting

target for therapeutic vaccinations against the TME for BC.
Vaccines are also currently being developed to target gene
products associated with epithelial-mesenchymal transition
(EMT) and cancer cells with stem-like characteristics (49, 50).

VACCINE DELIVERY PLATFORMS

Diverse vaccine platforms have now been evaluated in clinical
trials, including whole cell-based vaccines, multipeptide vaccines,
DNA/RNA-based vaccines, dendritic cell-based vaccines and in
situ vaccination (Table 1).

Whole Cell-Based Vaccines

Whole cell-based vaccines are derived from autologous or allogenic
tumor cells (56). Immunizing BC patients with tumor cells isolated
from the patient can circumvent the problems associated with
antigen selection and epitope prediction. In addition, whole cell-
based vaccines present the patient’s immune system with a wide
variety of TAAs as immunogens. However, whole cell-based
vaccines have shown relatively poor immunogenic potential (57).
The immunogenicity can be increased by engineering tumor cell
lines to secrete granulocyte-macrophage colony stimulating factor
(GM-CSF), combined with strong adjuvants or cytokines (58, 59).
In addition, whole cell-based vaccines in combination with
chemotherapy may also exert synergistic antitumor effects.
Autologous tumor cell vaccines (ATCVs) present a unique set of
antigens, such as particular point mutations or fusion gene
products, from a given patient’s own tumor (60-62). These
antigens could help to launch a polyclonal response against a
variety of tumor cells. However, the generation of ATCVs is
patient specific with high complexity and high cost. Allogenic
tumor cell vaccines, which typically contain two or three
established human tumor cell lines, can be used as an alternative
for the development of cell-based vaccines (56). In a phase I clinical
trial enrolling 28 patients with stable metastatic breast cancer
(mBC), the efficacy of a combination therapy using an allogenic
GM-CSF-secreting BC vaccine along with chemotherapy was
investigated (63). The vaccine was formulated from two HER2/
neu+ mammary adenocarcinoma BC cell lines, SKBR3 and T47D.
This vaccine was administered either alone or in sequence with
common chemotherapeutic agents, such as cyclophosphamide and
doxorubicin. The results suggest that the vaccine alone or in
sequence with low-dose chemotherapy could induce an effective
immune response. In another phase I study, a human leukocyte
antigen (HLA)-A2+, HER2/neu(+) allogeneic MDA-MB-231 BC
cell line was modified to express the costimulatory molecule B7-1
(CD80) and used as a vaccine to treat stage IV BC patients (64).
Although this immunization strategy proved to induce tumor-
specific immune responses in a minority of patients, no
significant tumor regression was observed. In a single-arm
feasibility study, an allogeneic HER2+ GM-CSF-secreting BC
vaccine was given with low-dose cyclophosphamide and weekly
trastuzumab in 20 patients with HER2+ mBC (65). This vaccination
regimen was safe and demonstrated clinical effects in terms of
objective response rate (ORR), progression-free survival (PFS), and
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TABLE 1 | Comparison of different vaccine platforms.

Vaccine Mechanisms Advantages Disadvantages Ref
platforms
Whole cell-  Whole tumor cell lysates can be prepared by hypochlorous acid, ultraviolet B All tumor cells express a ~ Complex and expensive production (61)
based ray-irradiation, repeat cycles of freezing and thawing or hyperthermia wide range of tumor- The immunogenicity is relatively poor
vaccines associated antigens

Gene sequencing and

bioinformatics predictive

screening are not

required

Diminishes the chance of

tumor escape
Multipeptide  Peptide vaccines contain tumor-specific epitopes that can be taken up and Stable The immunogenicity of synthetic (52)
vaccines processed by antigen-presenting cells to activate T cell immune responses Safe peptide-based vaccines can be

Can be inoculated significantly affected by the delivery

repeatedly process

Long peptides can

stimulate both CD4+ and

CD8+ T cell responses
DNA/RNA-  In vitro transcribed RNA or plasmid DNA encoding cancer antigens is Rapid and inexpensive RNA vaccine is susceptible to (53)
Based introduced into the body, and cancer antigens are expressed by the host to production extracellular degradation by RNAses
Vaccines induce antitumor response Mimics viral infection DNA vaccine has theoretical risk of

DNA vaccines have host genome integration, relatively low

flexible platform for immunogenecity

molecule engineering

RNA vaccines have

intrinsic adjuvant

properties
Dendritic DC cells are stimulated with cytokines in vitro to become mature DCs Bypass conventional Time-consuming personalized (54)
cell-based upregulating costimulatory molecules, and mature DCs loaded with antigens antigen presentation process
vaccines migrate to lymph nodes resulting in the subsequent specific immune responses  pathways Less practical

Hard to preserve

In situ Manipulation of intratumoral myeloid cells by injecting immunomodulators and Simple and cost-effective  Requirement for intratumoral injection  (55)
vaccination  local ablative therapies which are used to release tumor antigens from the Minimal side effects

therapy-killed tumor cells such as radiation or combination with vaccines

Minimizes immune

escape

Adjuvant delivery is
feasible and flexible

overall survival (OS), with a trend toward longer PFS and OS in
HER2-specific T-cell responders.

Peptide Vaccines

The advantages of peptide vaccines include ease of synthesis and
storage, safety, cost-effectiveness, and tolerable side effects. The
great limitation for peptide-based vaccines is the possibility of
insufficient immunogenicity, which makes a great need for a
suitable adjuvant to produce an efficient response. The
expression of antigen epitopes within the tumor bed can be
heterogeneous, while the immune response may be limited to a
few epitopes. Multipeptide vaccines formulated from MHC class
I-restricted TAAs are being tested for their antigen-specific
immune response in clinical trials (66-70). Peptides with
epitopes can bind directly to MHC class I molecules on the
surface of antigen-presenting cells without cross-presentation,
but they often result in only low-level, short-lived responses
without the help of CD4+ T cells. CD4+ T cells can enhance the
tumoricidal activity of other antitumor effector cells, such as
CD8+ T cells and macrophages. Some CD4+ subsets influence
angiogenesis to facilitate the infiltration of CD8+ T cells, in
addition to direct cytotoxic functions (71). There are attempts to
activate both CD4+ and CD8+ T cells by using multivalent

synthetic long peptides (SLPs) containing both MHC class I and
class II epitopes (72). SLP vaccines offer several advantages. They
are not able to bind directly to MHC class I so that they have to
be processed by DCs (73). SLP vaccines increase the duration of
in vivo epitope presentation in the antigen-draining lymph node
(74), which is shown to be important for clonal expansion (75)
and for interferon-y production by CD8+ T cells (76), and harbor
both CD4+ and CD8+ T cell epitopes, ensuring a balanced CD4/
CD8 response. Some well-designed peptide vaccines will be
discussed in the 4th part of this review. In addition, delivery
systems have been applied to improve antitumor immunity.
Among them, nanomaterials, such as liposomes, micelles,
dendrimers, microneedles, proteins, polymer-based conjugates,
the B-subunit of Shiga toxin (STxB), and polyactin A (PAA), are
under investigation to convey and release antigens and
immunostimulatory molecules (77).

DNA/RNA-Based Vaccines

DNA or RNA-based vaccines are easy to design and can encode
multiple epitopes. DNA vaccines have good stability and can be
rapidly and easily modified. Plasmid DNA vaccines can be
integrated with additional immune modulators to elicit a maximal
immune response (78). Most DNA-based cancer vaccine studies
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have targeted TAAs, such as HER2/neu and mammaglobin-A
(MAM-A), in BC. The first clinical trial of a HER2/neu DNA
vaccine evaluated the efficacy and tolerability of the vaccine in
humans. The HER2/neu DNA vaccine was administered with low
doses of interleukin-2 (IL-2) and GM-CSF in mBC patients in a
pilot clinical trial, even though no significant T cell response was
elicited (79). Currently, two phase I clinical trials of HER2/neu DNA
vaccines are active (NCT00393783 and NCT00436254). The MAM-
A DNA vaccine was also investigated in mBC in a phase I clinical
trial. This vaccine was safe and succeeded in eliciting MAM-A-
specific CD8+ T cell responses. PFS was improved in vaccinated
patients, although the sample size was low (n=14) (80).
Additionally, a clinical trial using a neoantigen DNA vaccine to
treat TNBC was launched (NCT03199040). RNA vaccines are
designed to enter the cytosol and thus avoid safety concerns
related to integration into the host cell genome. RNA-based
vaccines have an inherent function through Toll-like receptor 3
(TLR3), TLR7 and TLR8 stimulation to provide an adjuvant effect.
However, RNA is very unstable, so delivery systems such as
nanoparticles and liposomes are challenging. Viral vectors can be
used to deliver nucleic acid vaccines to enter the cytosol. However,
the production of antibodies against viral vectors attenuates the
efficiency. PANVAC (containing transgenes for CEA, MUC-1 and
3 T cell costimulatory molecules) is a well-studied poxviral vaccine.
For the 12 mBC patients, 5 patients had stable disease (SD) by
RESIST lasting > 4 months, with one patient having a complete
response (CR) and remaining on study for > 37 months (81).

Dendritic Cell-Based Vaccines

DCs are professional antigen-presenting cells that can process
exogenous and endogenous antigens and present them to
stimulate naive T lymphocytes through the MHC I and II
pathways. Therefore, DCs play a crucial role in the initiation of
the primary response and induction of the antitumor-specific
immune response. Most cancer vaccines are greatly dependent
on the activation of DCs. Peptide-pulsed DCs have superiority in
inducing antitumor responses compared to peptide vaccines with
adjuvants (82). In a pilot study, autologous DCs were pulsed with
HER2/neu- or MUCI1-derived peptides to generate a DC-based
vaccine. Ten patients suffering from advanced BC and ovarian
cancer showed a strong immunogenic response with no side
effects (83). A HER2 intracellular domain (ICD) protein-
containing DC vaccine was tested in disease-free BC patients.
Six patients out of seven had circulating anti-HER2 ICD
antibodies, and all patients were alive and disease free at 4.6-
6.7 years of follow-up (84). Autologous DCs were also pulsed
with patient-derived tumor cells or cell lysates to facilitate a
strong immunogenic response (85-87). However, ex vivo
generation of DCs is complicated, and it is costly and time-
consuming to generate the large number of DCs required for
vaccination. The demanding production process of DC vaccines
and lack of improvement in clinical benefits limit their
application in the clinic.

In Situ Vaccination
In situ vaccination (ISV) refers to inducing and stimulating an
immune response specially at the tumor site (88). ISV uses the

tumor itself as the antigen source and should be defined as a
treatment process or strategy. There are several advantages of ISV. It
is simple and cost-effective with minimal side effects, and it utilizes
all tumor antigens in the tumor which minimizes immune escape.
There is no need to identify antigens and adjuvant delivery is
feasible and flexible. Besides, there is a great chance to obtain
synergistic effect with other therapies (55). One limitation may be
due to intratumoral injection, because some internal tumors will not
be accessible to injection. As to breast cancer, the primary tumor is
superficial, skin and regional lymph node recurrence is common.
Therefore, breast cancer is quite accessible to injection, making it a
good candidate for ISV.

Food and Drug Administraion (FDA) has approved a number
of ISV-based cancer immunotherapies, such as Bacilus Calmette-
Guerin (BCG) for in situ vaccination, toll-like receptor agonists
for in situ vaccination, oncolytic virus for in situ vaccination, and
in situ vaccination with cytokines and immune checkpoint
blockade. ISV involves manipulation of intratumoral immune
cells by injecting immunomodulators (89) and local ablative
therapies which are used to release tumor antigens from the
therapy-killed tumor cells (90). Besides, local treatment with
vaccines and adjuvant is another option to provoke immune
system in situ (91). The combination of ISV with other
immnutherapies is likely to provide the optimal local control
and systemic antitumor effect. Yokoi et al. treated mammary
tumors with in sity immunomodulation consisting of
intratumoral injections of Fms-like tyrosine kinase 3 receptor
ligand to mobilize conventional type-1 dendritic cells (cDCls),
local irradiation to induce immunogenic tumor cell death, and
TLR3/CD40 stimulation to activate cDCls. Circulating effector T
cells and CD8+ T cells infiltrated into metastatic brain lesions
were increased and resistance to anti-PD-1 therapy was
overcome, resulting in improved survival. Radiation can elicit
systemic response which is known as abscopal effect, and the
potential mechanism is to release tumor antigens in the process
of ISV (92). Numerous clinical data supported the concept of
radiation as an important part during in situ vaccine treatment
(93-95), and clinical trials are underway investigating
combination therapy of radiation with other immunotherapies
(91). Combination therapy with noninvasive low intensity
focused ultrasound and ablative radiation therapy was reported
to generate an in situ tumor vaccine as well (96). Like radiation,
heat (hyperthermia) has been used to damage targeted tumors
and could be further combined with ISV (97). More approaches
will be integrated into future multi-modality therapy.

Therapeutic Vaccines for Breast Cancer in
Clinical Trials

The treatment for BC at different stages includes neoadjuvant
therapy, adjuvant therapy for early BC, rescue therapy and
maintenance therapy for advanced BC. Therapeutic vaccines
for BC at different stages are summarized.

Neoadjuvant Setting
Disease at an early stage presents with a more intact immune
system and a lower tumor burden, possibly affording vaccines the
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potential to confer a more favorable outcome. Therapeutic
vaccines in the neoadjuvant setting are the theoretically most
likely method to optimize the immune microenvironment and
improve prognosis. Cancer treatment starts with modulation of
the microenvironment and promotion of antitumor immunity
before any inhibition occurs to the immune system.

Mucin or MUC-1 is a transmembrane glycoprotein that is
expressed in the lung, colon, breast, ovary, pancreas and other
cancer tumor cells. MUC-1 is considered a promising candidate
for vaccine development in BC. Tecemotide is a synthetic 27
amino acid lipopeptide used as an MUC-1 immunogen that is
applied in clinical trials of prostate, NSCLC and colon cancer
with promising effects. In a prospective, multicenter, randomized
2-arm academic phase II trial (ABCSG 34), tecemotide was
added to neoadjuvant standard-of-care treatment in early BC
patients. Approximately 400 patients with early BC were
recruited into this trial. No significant difference was observed
in residual cancer burden or overall pathological complete
response (pCR) rates between the two groups. This trial
demonstrated that MUC-1-based vaccination strategies are safe
but did not show an improved treatment effect when added to
standard treatment in the neoadjuvant setting (98). However,
disease-free survival data are still premature and may provide
further information. Interestingly, tumors which achieved a
residual cancer burden (RCB) 0/I and a pCR had a higher
concentration of intratumoural and stromal tumor-infiltrating
lymphocytes in the pre-therapeutic biopsy than those which did
not. Several ongoing studies address vaccines for BC in the
neoadjuvant setting (NCT03387553, NCT02204098,
NCT03564782, NCT03572361, NCT04144023). Further data
are needed to determine whether neoadjuvant vaccine therapy
can reduce the risk of recurrence and prolong relapse-
free survival.

Adjuvant Setting

Further immune elimination of subclinical lesions is an
important function of vaccines for BC after tumor resection.
There have been a number of clinical studies of preventive
vaccines in the field of adjuvant therapy.

In a pilot clinical trial of oxidized mannan-MUC-1 (M-FP)
for the treatment of patients with stage II BC, the follow-up at
12-15 years showed that the recurrence rate was 12.5% (2/16) in
the vaccine group compared with 60% (9/15) in the placebo
group. M-FP also benefits the overall survival of stage II BC
patients (99). In a phase II clinical trial (NCT02764333), a folate
receptor alpha-based vaccine (TPIV200) was investigated in
TNBC patients. In this trial, an immunologic response was
elicited, and more data has not been exposed.

Peptide vaccines for HER2 have been explored in the adjuvant
setting. The E75 peptide vaccine (nelipepimut-S), an HLA-A2/A3-
restricted extracellular HER2-domain-derived peptide, is an MHC
class I epitope (100). A series of trials in the adjuvant setting were
conducted at approximately E75, demonstrating not only a good
safety profile of the E75 peptide vaccine but also a superiority of
immune response in BC patients with low HER2 expression than
vaccinated patients with high levels of HER2 expression (101).

Mittendorf et al. further examined schedule optimization according
to lymph node (LN) status and risk of disease recurrence in a phase
I/IT clinical trial (69). Analysis of disease-free survival (DFS)
revealed that patients who had tumors with low HER2 expression
(immunohistochemistry score 1+ or 2+ with fluorescence in situ
hybridization negativity) and had positive lymph nodes benefited
the most from vaccination therapy. In a phase I/II trial, 187 LN-
positive and high-risk LN-negative breast cancer (IHC score 1-3)
patients were evaluated in the adjuvant setting. E75 patients with
GM-CSF versus placebo were administered to 108 patients with
HLA-A2/3- and 79 HLA-A2/3-negative patients, respectively. The
results concluded that the 5-year DFS was improved for those who
received E75 with respect to controls (89.7% vs 80.2%, P=0.08)
(102). Given these promising data, in phase III clinical trials, the
study assessed the effects of vaccination with E-75 plus
subcutaneous GM-CSF relative to placebo in LN+ BC patients
with low expression of HER2 in the adjuvant setting (103).
However, no significant difference was found in DFS between the
vaccine group and the control group, leading to the termination of
the trial. Future clinical trials should be carried out to study the
combination of vaccines with other medications. Several studies
were conducted combining traustuzumab plus E75 in hope of a
synergistic effect of active immunotherapy and passive
immunotherapy (104). In phase IIb, multicenter, randomized,
single-blinded, controlled trial (NCT01570036), the efficacy of the
combination with E-75 plus traustuzumab was evaluated in patients
with HER2 low-expressing BC in the adjuvant setting. No
significant difference in DFS was seen in the HER2 low-
expressing BC; however, significant clinical benefit was seen in
patients with TNBC (105). These findings warrant further
investigation in a phase III randomized trial. GP2 is a 9 amino
acid-long peptide vaccine derived from the transmembrane domain
of the HER/neu protein. It binds to the HLA-A2 molecule but has
poor binding affinity compared to E75 (106). A phase II clinical trial
was conducted to investigate GP2 vaccine efficacy in preventing
recurrence in LN+ and high-risk LN- HER2 breast cancer patients
(IHC 1+-3+) in the adjuvant setting. The results of the primary
analysis did not show a significant difference in response to the
vaccine compared to the control group in the rate of recurrence
(70). However, patients who were vaccinated with GP2+GM-CSF
had a significant increase in their delayed type hypersensitivity
(DTH) reaction compared to pre-vaccination (p<0.001), the post-
vaccination response was significantly greater in vaccinated patients
than in control patients (p<0.001). In addition, ex vivo immune
responses were assessed by phenotypic clonal expansion assays and
by T cell functional assays. The GP2+GM-CSF vaccine induced
significant increase in both clonal expansion as well as improved
CTL function compared to pre-vaccine levels while GM-CSF alone
had no such effect. A post for a prospective, randomized, single-
blinded, placebo-controlled, multicenter phase IIb clinical trial was
presented during the 2020 San Antonio Breast Cancer Symposium
(SABCS) on December 09, 2020. This trial was completed in 2018,
and Kaplan-Meier analysis of DFS for patients treated with GP2
immunotherapy showed 100% survival (0% breast cancer
recurrence, p=0.0338) in the HER2/neu-positive adjuvant setting
after a median of 5 years of follow-up. Greenwich LifeSciences
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announced an update of the GP2 phase III clinical trial design at the
2021 American Association for Cancer Research (AACR)
annual meeting.

Metastatic Setting

Most mBC cannot be cured by surgery and is highly dependent
on systemic therapy. Therapeutic vaccines can be used in
combination with other therapies as part of rescue therapy,
and other studies are exploring their value as maintenance
therapy for advanced breast cancer.

Therapeutic vaccines for rescue therapy for mBC have rarely
been reported. Wilms tumor 1 (WT-1) is a protein with
transcription factor activity involved in the maintenance of tissue
homeostasis, possibly as an oncogene in BC. In a phase I clinical
trial, WT-I vaccination activated WT-1-specific cytotoxic T
lymphocytes (CTLs) and resulted in cancer regression with a
good safety profile in 2 patients with BC with overexpression of
the WT-1 gene and HLA-A*2402-possibility (107). Yang et al (108)
enrolled 10 patients with advanced cancers, including mBC, and
treated them with a DC-based WT-1 vaccination. Two patients had
a partial response (PR), and three patients had stable disease (SD)
with a disease control rate up to 50%. WT-1-specific CTL responses
were enhanced in patients. CEA is overexpressed in BC and has
attracted much attention as a target of vaccines. In a pilot study, the
recombinant PANVAC poxviral vaccine (containing transgenes for
CEA and MUC-1 and three T cell costimulatory molecules) was
tested in 12 heavily pretreated metastatic BC patients. One patient
demonstrated a CR lasting >37 months, and 4 patients had SD
lasting >4 months. The median time to progression (TTP) was 2.5
months, and the median OS was 13.7 months (81). In another
open-label phase II clinical trial, 48 patients with mBC were enrolled
to receive treatment with either docetaxel with PANVAC or
docetaxel alone. The median PFS was 7.9 months in the
vaccination group vs 3.9 months in the docetaxel alone group,
but the difference was not significant (p=0.09) (109). There was also
no statistical correlation seen between the generation of TAA-
specific immune responses in peripheral blood mononuclear cells
and time to progression in either group. Takahashi et al. (110)
developed a novel regimen of personalized peptide vaccination
(PPV), in which vaccine antigens were selected and administered
from a pool of 31 different peptide candidates based on the pre-
existing immunoglobulin G (IgG) responses specific to peptides
before vaccination. Based on previous results in cancer patients, they
conducted a phase II study of PPV for metastatic recurrent breast
cancer patients who had failed standard chemotherapies. Boosting
of CTL and/or IgG responses was observed in most of the patients
after vaccination. In addition, three CR cases and six PR cases were
observed, irrespective of the BC subtypes. In a more recent early
phase II study including 14 advanced metastatic triple-negative
breast cancer (nMTNBC) patients, the treatment protocol consisted
of a weekly vaccination of mixed 19-peptide cancer vaccine
monotherapy for 6 weeks. An increase in peptide-specific IgG was
observed in all patients. The median OS was 11.5 months in all 14
patients and 24.4 months in the patients who completed the
vaccination (111). Human telomerase reverse transcriptase
(hTERT) is nearly universally overexpressed in human cancers
and contributes critically to oncogenesis. A phase I clinical trial

was performed to evaluate the HLA-A2-restricted hTERT 1540
peptide presented with keyhole limpet hemocyanin (KLH) by ex
vivo-generated autologous DCs. hTERT-specific T lymphocytes
were induced in 4/7 patients after vaccination. PR was seen in 1
patient in association with the induction of CD8+ tumor infiltrating
lymphocytes (112). In conclusion, although no prospective large-
sample studies have confirmed the efficacy of therapeutic vaccines in
the rescue therapy of advanced BC, some studies have preliminary
results suggesting their effectiveness and possible prospects.

Immunosurveillance using therapeutic vaccines to trigger active
immunity when remission is achieved through rescue therapy such
as radiotherapy or chemotherapy suggests novel opportunities for
both therapeutic and prophylactic vaccine strategies for cancer
treatment. MAM-A is overexpressed in 40-80% of breast tumors.
Tiriveedhi et al. (80) enrolled 14 mBC patients with stable disease
and treated them randomly with the MAM-A vaccine or placebo in a
phase I clinical trial. Although this trial was not powered to evaluate
PES, improved PFS was seen in vaccinated patients. A significant
increase in the frequency of MAM-A-specific CD8+ T cells (0.9% +
0.5% vs 3.8% + 1.2%; p<0.001) and an increase in the number of
MAM-A-specific IFNy-secreting T cells (41 + 32 vs 215 + 67 spots
per million cells (spm); p<0.001) were observed. Increased Siayl-TN
(STn) expression, which is a carbohydrate epitope found on a variety
of glycoproteins, including MUC-1, has been proven to be associated
with the progression and poor prognosis of BC (113). Miled et al.
(114) conducted the largest phase III clinical trial in 1028 mBC
patients across 126 centers. Patients were administered a vaccine
made of STn conjugated to the carrier protein KLH versus placebo.
Although clinically significant antibody titers specific for STn were
produced in patients, no significant improvement in TTP or OS was
observed (115). Ibrahim et al. conducted a subgroup analysis in
which patients who were also on endocrine therapy (ET) had longer
TTP and OS than the control group. Moreover, vaccinated patients
on ET with higher antibody responses had longer OS (41.3 vs 25.4
months; p=0.0147). In an open-label prospective study, 19 patients
with mBC refractory to at least one conventional therapy were
treated with the hTERT peptide vaccine, and hTERT-specific CD8+
T cells were detected after vaccination in the peripheral blood of
patients and exhibited effector functions in vitro, including
proliferation, IFN-gamma production, and tumor lysis. In this
small sample study, the median OS was significantly longer in
patients who achieved an immune response to hTERT peptide
than in patients who did not (116). All the results above suggest
that therapeutic vaccines are a potentially feasible option for
maintenance therapy of advanced BC, but no mature vaccine has
been proven to be beneficial in a large-sample clinical trial. Another
important issue that should be considered is that the essential
immune capability to recognize and activate antigens should be
conserved before vaccination.

FUTURE PERSPECTIVES

Tumor Stage Specific Vaccine Strategy
During cancer clonal evolution, both selection and neutral
growth may progress simultaneously within the same tumor,
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but both styles of tumor progression may alter dynamically over
time (117). Metastatic BC shows an increase in mutational
burden and clonal diversity compared to early BC because
genomic alterations are acquired during the evolution of
cancers from their early stages (118). A multitude of epigenetic
mechanisms, including DNA methylation, chromatin
remodeling and posttranslational modification of histones,
contribute to diversity within tumors, and the heterogeneity
becomes extensive. Intratumor heterogeneity (ITH) is a key
factor contributing to the lethal outcome of cancer, therapeutic
failure, and drug resistance. Some claim that tumors with high
heterogeneity may generate neoantigens that attract immune
cells (119), but others argue that immune cells provide selection
pressure that shapes tumor heterogeneity. High heterogeneity
tumors are associated with higher subclonal diversity, less
immune cell infiltration, less activation of the immune
response, and worse survival in BC (120). Immune-infiltrated
tumor regions exhibit either HLA loss of heterozygosity (LOH)
or depletion of expressed neoantigens, which will eventually
make it increasingly difficult to treat mBC with an immune
strategy (120-122). Finding the right target antigen and
intervening at the right time are the most important issues of
active immunotherapy. The continuous evolution of the immune
microenvironment during tumorigenesis also suggests that
different modes of treatment should be considered at
different stages.

Neoantigen profiles keep changing while tumor-specific
mutations change during tumorigenesis and progression.
Therefore, individual immune status, clonal heterogeneity and
stage of disease should be fully considered, and time specificity
should be realized.

Universal Vaccines
Optimal antigens should be developed from publicly mutated
genes or high frequency overexpressed genes that are shared by a
number of patients. A punch of such public antigens that are
consumed to cover most patients with one type of cancer can be
used to develop public vaccines, also named universal vaccines
(123). Universal vaccines have the great advantage of convenient
production and reduction in cost. In addition, preprepared
vaccines that can be quickly inoculated into patients also save
time and are more practical. The efficacy of universal vaccines
should be ensured. One important problem should be considered
except for the restriction of MHC molecules. That is, the
proportion of tumor antigen expression in the population.
Although more than 900,000 neoantigens have been identified
through a wide examination of 20 tumor histotypes, only 24
neoantigens among a tiny fraction of patients have the potential
to become public vaccines (124). Therefore, it is more feasible to
develop public vaccines based on TAAs. Public vaccines have
broad coverage and can improve the immune surveillance
function of individuals to prevent tumor metastasis and
recurrence. It is theoretically more suitable for the stage of
neoadjuvant and adjuvant therapy.

From a single genome point of view, improving the
antitumor effect of tumor-specific T cells and memory T cells

is important for designing therapeutic vaccines. Personalized
therapeutic vaccines targeting trunk or driver mutations are
more effective and have a more comprehensive antitumor effect
than those targeting companion or passenger mutations. In
addition, the option of designing vaccines needs to be weighed
between selecting a large number of target antigens to avoid
immune escape and selecting antigens with good
immunogenic potential.

Concurrent Therapies With Vaccination
Conventional therapies such as chemotherapy, radiotherapy and
targeted therapy constantly promote the emergence of new
subclones of tumor cells as a result of the pressure of clonal
evolution, resulting in treatment failure. Immunotherapy, as a
new therapeutic strategy, has a totally different effect on tumor
heterogeneity from conventional therapy. However, patients who
have received multiline conventional therapies can hardly benefit
from immunotherapy. How to maximize the therapeutic effect of
immunotherapy by rational arrangement of comprehensive
therapy is an important direction in the future. In addition,
how to exert antitumor effects of therapeutic vaccines
synergistically with various therapeutic means is a hotspot. It
was reported that sequential treatment with vaccine and PD-1
blockade was more effective than a simultaneous treatment
regimen (125). In the PACIFIC trial, when durvalumab
therapy was initiated within 14 days of completing
chemoradiotherapy, better progression free survival was
observed than when it was initiated after 14 days (126). Thus,
timing is an important factor in obtaining abscopal effect and the
optimal scheduling of vaccines, immunotherapy, radiation and
chemotherapy needs to be clearly established, ideally through
clinical trials. The TME is a major reason for the disappointing
clinical results in addition to tumor-intrinsic resistance
mechanisms, so an inflammatory TME is needed for sterile
immunity (38). Except for what we have mentioned above
about TME-targeting vaccines, in situ TME modulation
strategies include stimulation of professional antigen
presenting cells, combination with checkpoint inhibitors and
depletion of regulatory T cells (Treg cells). PVX-410 (PVX) is a
multipeptide vaccine targeting X-Box Binding Protein 1 (XBP1),
and CD138 is overexpressed in TNBC. The synergistic effects of
PVX-410 and ICI pembrolizumab will be evaluated in a clinical
trial (NCT03362060) for TNBC. Another phase I clinical trial
(NCT02826434) tested the synergistic effects of durvalumab and
PVX-410 for TNBC. In this trial, the levels of CD8+ CTLs
increased in patients 14 weeks after the first injection. The
combination therapy strategy to work together with vaccines
will include, but is not limited to, ICIs, antiangiogenic therapy,
epigenetic regulation therapy, low intensity focused ultrasound
(55) and conventional chemoradiotherapy. Cyclophosphamide
to block Treg cells has been evaluated as a vaccine adjuvant in
clinical trials (NCT03012100, NCT02938442). Several other
ongoing trials are further assessing the application of various
promising vaccination therapies in early and metastatic
disease (Table 2).
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TABLE 2 | Ongoing trials of tumor vaccine-based combination therapy for BCs (data from ClinicalTrials.gov).

Drug Regimen NCT.gov Sample Phase; Population
Identifier Size Status
Neoantigen DNA Vaccine NCT03199040 10 I; ANR Clinical Stage T1c-T4c, Any N, MO TNBC Prior to
Durvalumab Neoadjuvant Chemotherapy, with Residual
Invasive BC after Neoadjuvant Therapy
VRP-HER2 NCT03632941 39 I, R Advanced HER2-overexpressing BC
Pembrolizumab
PVX-410 NCT03362060 20 I; ANR HLA-A2 + Metastatic TNBC
Pembrolizumab
Galinpepimut-S NCT03761914 90 I/1; R Advanced Tumors including Advanced TNBC
Pembrolizumab
RO7198457 NCT03289962 770 IR Advanced Tumors including Advanced TNBC
Atezolizumab
PVX-410 NCT02826434 22 Ib; ANR HLA-A2 + Subjects Following Standard
Durvalumab Treatment of Stage Il or Il TNBC
Hiltonol
Multiepitope Folate Receptor Alpha Peptide Vaccine NCT03012100 280 I, R Stage I-lll TNBC
Cyclophosphamide
NeuVax Vaccine NCT02297698 100 II; ANR Stage I-lll Noninflammatory, HER2+ High-risk BC
Trastuzumab
A Peptide Mimotope-based Vaccine P10s-PADRE with NCT02938442 102 I/I; R Stage |, Il or [l TNBC
MONTANIDE™ ISA 51 VG
Doxorubicin
Cyclophosphamide
Paclitaxel
AEB7 Peptide vaccine NCT04024800 29 Il; ANR Advanced TNBC
Pembrolizumab
Dendritic Cell Vaccine NCT03387553 30 IR HER-2/neu Positive Invasive BC during
Neoadjuvant Chemotherapy Neoadjuvant Therapy
Anti-HER2/HERS3 Dendritic Cell Vaccine NCT04348747 23 lla; NYR Patients With Asymptomatic Brain Metastasis
Recombinant Interferon Alfa-2b From TNBC or HER2+ BC
Celecoxib
Pembrolizumab
Personalized Synthetic Long Peptide Vaccine NCT03606967 70 I; R Advanced TNBC
Carboplatin
Durvalumab
Gemcitabine Hydrochloride
Nab-paclitaxel
Tremelimumab
Multiepitope HER2 Peptide Vaccine TPIV100 NCT04197687 480 I; R HER?2 Positive, Stage II-lll BC in Patients With
Pertuzumab Residual Disease After Chemotherapy and
Trastuzumab Surgery
pUMVC3-IGFBP2-HER2-IGF1R Plasmid DNA Vaccine NCT04329065 16 I, R BC during Neoadjuvant Therapy
Paclitaxel
Trastuzumab
Pertuzumab
Brachyury-TRICOM NCT04296942 65 IR Advacned BC
Entinostat
M7824
Ado-trastuzumab emtansine
In Situ Vaccination With FIt3 L, Radiation, and Poly-ICLC NCT03789097 56 I/1l; R Advanced, Measurable, Biopsy-accessible
Pembrolizumab Cancers including BC
In Situ Vaccination NCT02643303 58 I/ll; ANR Advanced, Measurable, Biopsy-accessible

Durvalumab
Tremelimumab

ANR, active; not recruiting; NYR, not yet recruiting; R, recruiting.

CONCLUSION

In recent years, the application of therapeutic vaccines has been
gradually accepted in the field of BC, but both the candidates and
the efficacy need further study. Increasing attention has been

Cancers including BC

given to the use of therapeutic vaccines to modulate the immune
microenvironment and fully mobilize the body’s own immune

system for active immunotherapy. However, the exploration of
therapeutic vaccines for BC is still in the early stage and is bound
to be long based on considering the stage of disease, personal
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immune status and clonal heterogeneity. Fully combining
therapeutic vaccines with not only ICIs but also other multiple
treatment methods may take great advantage in the future
treatment of BC.
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Background: The prognostic and clinical value of tumor-associated macrophages
(TAMs) in patients with breast cancer (BCa) remains unclear. We conducted the current
meta-analysis to systematically evaluate the association of CD68+ and CD163+ TAM
density with the prognosis and clinicopathologic features of BCa patients.

Methods: Searches of Web of Science, PubMed, and EMBASE databases were
performed up to January 31, 2022. The meta-analysis was conducted using hazard
risks (HRs) and 95% confidence intervals (Cls) for survival data including overall survival
(OS), disease-free survival (DFS), and BCa specific survival. Sensitivity and meta-
regression analyses were also conducted to identify the robustness of the pooled
estimates.

Results: Our literature search identified relevant articles involving a total of 8,496 patients
from 32 included studies. Our analysis indicates that a high CD68+ TAM density in the
tumor stoma was significantly linked with poor OS (HR 2.46, 95% CI, 1.83-3.31,
P<0.001) and shorter DFS (HR 1.77, 95% CI, 1.08-2.89, P=0.02) compared to low
CD68+ TAM density. A significant association was also found in the tumor nest. Analysis
of CD163+ TAM density showed similar results (all P<0.001). Notably, the pooled analysis
with multivariate-adjusted HRs for OS and DFS also found that a high TAM density was
significantly related to poorer outcomes for BCa patients (all P<0.05). In addition, BCa
patients with high TAM density were more likely to have larger tumors, no vascular
invasion, and positive estrogen receptor expression (all P<0.05).

Conclusion: This meta-analysis indicates that a high CD68+ and CD163+ TAM density is
associated with poor OS and shorter DFS in BCa patients. Further clinical studies and in
vivo experiments are needed to elucidate the underlying mechanism of TAMSs.
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INTRODUCTION infiltration and BCa clinicopathologic features. A clearer

Breast cancer (BCa) is one of the most frequent cancers among
malignant diseases in women and is the leading cause of cancer-
related deaths worldwide (1). Recently, BCa has exhibited a trend
of early age onset, further threatening women’s health and global
disease burden (2). Despite great achievements in the diagnosis
and clinical treatment of BCa, overall survival (OS) has not
significantly improved, especially for patients with advanced-
stage or triple-negative BCa (3, 4). Traditional prognostic
indicators, such as TNM classification scheme, histological
grade, progesterone receptor (PR), estrogen receptor (ER), and
human epidermal growth factor receptor-2 (HER2), can not fully
represent tumor biological behavior and BCa prognosis (5-7).
Therefore, there remains a large unmet demand for novel
effective biomarkers with superior prognostic and predictive
power to deliver personalized and precise treatment for BCa.

Recently, the tumor microenvironment (TME) has gained
increased interest in BCa research. Both clinical and pre-clinical
studies found a mixture of tumor cells and host-activated immune
cells including B cells, natural killer cells, and tumor-associated
macrophages (TAMs) that predominated on the BCa TME (8, 9).
It was demonstrated that tumor-associated immune cells are
associated with tumor progression, metastasis, and acquired
resistance. TAMs are the main component of the TME,
accounting for approximately 50% of TME cells, playing a
crucial role in antigen presentation, angiogenesis, tissue repair,
and tumor cell apoptosis (10). TAMs can be classified into two
main functional subtypes including classically activated M1 and
alternatively activated M2 macrophages (11). Generally, M1
macrophages exert cytotoxic effects on cancer cells via
proinflammatory cytokine molecules such as lipopolysaccharide,
interleukin-12, and interferon-y. In contrast, M2 macrophages
function as “tumor promotors”, which facilitate tumor cell
invasion and metastasis and restrain anti-tumor immune
response (9, 12).

Several studies focused on the prognostic significance of TAMs
among different cancers, such as lung (13), liver (14), gastric (15),
pancreatic (16) cancer, and BCa (17). The prognostic value of
TAMs remains controversial and the results highly depend on
macrophage subtypes and TAMs locations (18). This systematic
review and meta-analysis was conducted to evaluate the impact of
different TAMs markers and histologic locations on BCa
prognosis. We also analyzed the association between TAMs

Abbreviations: TAMs, Tumor-associated macrophages; BCa, Breast cancer; OS,
Overall survival; PR, Progesterone receptor; ER, Estrogen receptor; HER2, Human
epidermal growth factor receptor-2; TME, Tumor microenvironment; IHC,
Immunohistochemistry; BCSS, Breast cancer specific survival; DFS, Disease-free
survival; NOS, Newcastle-Ottawa Scale; TN, Tumor nest; TS, Tumor stroma; HRs,
Hazard ratios; Cls, Confidence interval; KM, Kaplan-Meier; OR, Odds risk.

understanding of TAMs infiltration modes and prognostic value
would be helpful to improve treatment efficacy in BCa.

METHODS

This meta-analysis was performed in accordance with the Meta-
Analyses and Systematic Reviews of Observational Studies
(MOOSE) (19) and Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (20). The
meta-analysis is registered with PROSPERO (CRD42022304853).

Literature Search

Two investigators (WCJ and LY) independently searched the
Web of Science, PubMed (MEDLINE), and EMBASE databases
for potential studies published in journals until January 31, 2022,
without any language limitation. The main key words were
“tumor-associated macrophages” + “breast cancer”, and a
detailed search strategy is shown in Supplementary Table 1.
We also conducted forward and backward citation tracking to
avoid missing any relevant literature. Unpublished literature and
conference papers were not included. All studies reporting TAMs
and BCa were included and screened by two authors
independently based on the inclusion criteria.

Inclusion Criteria

We included studies reporting TAMs associated with BCa that
met the following inclusion criteria: (i) patients with
pathologically diagnosed BCa; (ii) BCa patients without any
previous cancer history; (iii) TAMs were measured at the
primary tumor site using immunohistochemistry (IHC)
staining for CD68 and CD163; and (iv) the study design was a
cohort study or case-control study, evaluating the association of
TAMs with survival data [OS, breast cancer specific survival
(BCSS), disease-free survival (DFS)] and other clinical outcomes.

Exclusion Criteria

We excluded studies measuring TAMs at metastases or local
relapse sites. Comments, reviews, conference abstracts, and case
reports were also excluded from our meta-analysis.

Quality Assessment and Data Extraction

The quality of each selected study was independently evaluated
by two experienced researchers using the modified Newcastle-
Ottawa Scale (NOS) based on the current PRISMA guidelines
(21). The researchers focused on measurement and selection bias
because most studies included in this review were cross-
sectionally designed. Studies obtained a NOS score based on
three evaluation indicators including study comparability,
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patient selection, and outcome assessment. Eligible studies were
graded as high quality with a NOS score >6. A third researcher
resolved any disagreements and made the final decision for
candidate articles.

Two authors independently extracted the data from the
studies using a standardized data extraction form. The
following data were extracted: name of the first author,
publication year, country, study design, study period, sample
size, age, treatment received, tumor size, histologic type,
histological grade, the status of ER, PR, HER-2, and Ki-67
(positive or negative), macrophage markers, macrophage
location site [tumor nest (TN) or tumor stroma (TS)], follow-
up time, OS, DFS, and BCSS with adjusted or unadjusted hazard
ratios (HRs) and 95% confidence interval (CIs). TAMs in the TN
was defined as intraepithelial tumor-infiltrating macrophages,
and TS was defined as the stromal tissue surrounding the tumor
nest. We also collected prognostic information from studies that
only reported a Kaplan-Meier (KM) plot and a P-value derived
from log-rank analysis. HRs and 95% CIs were extracted from
KM plots using Engauge Digitizer version 4.1 (free software
downloaded from http://sourceforge.net) and calculated as
previously described (22) . The low TAM group was used as a
reference to calculate HRs. If the high TAM group was
considered as a reference in the included study, then the
relevant measures were inverted to ensure data uniformity. The
corresponding author of the included study was contacted if
there were any unclear or missing data.

Statistical Analysis

The statistical analysis was performed according to the
recommendations from The Cochrane Collaboration. The HR
with 95% CI was used to evaluate the association between TAM
density and survival. The odds risk (OR) with 95% CI for the
difference in clinicopathological features was used to measure
dichotomous data. Heterogeneity across studies was assessed
using the Cochran Q test and the I statistics. For I statistics, we
considered I’<25% as low heterogeneity and I°> 5% as high
heterogeneity. Data were also analyzed with a fixed-effects model
for P>0.10 and I°<50%; otherwise, the random-effects model
was applied. We performed meta-regression analysis to analyze
the role of potential contributors to heterogeneity using the
“metafor” package in R software (Version 4.0.2; R Foundation
for Statistical Computing, Vienna, Austria). Subgroup analysis
and sensitivity analysis were also conducted to identify the
source of heterogeneity. Potential publication bias was
evaluated using funnel plots. All statistical analyses were
conducted using Review Manager Version 5.3 software (The
Nordic Cochrane Center, The Cochrane Collaboration, 2014,
Copenhagen). A two-tailed P-value <0.05 was considered
statistically significant.

RESULTS

A total of 14,781 articles were found in our initial search, and
3,145 duplicated articles and irrelevant studies were removed.

After reviewing the title and abstract, 11,368 studies were
excluded; after reviewing the full text 38 articles were excluded.
Finally, 32 unique studies were included in the meta-analysis
(Supplementary Table 2). The detailed screening method and
results are presented in Figure 1.

Basic Characteristics and Quality
Assessment

The main characteristics of the enrolled studies are summarized
in Table 1. We included 32 studies in our meta-analysis that were
published between 1996 and 2021 and conducted in 10 countries
from 1985 to 2018 (England, Japan, America, UK, Sweden,
China, Finland, Republic of Korea, Singapore, Germany). A
total of 8,496 patients were included in the eligible studies,
with the reported age from 23 to 97 years.

For TAM identification, 28 studies used CD68 and 12 studies
used CD163, among which three studies used a combination of
CD68 and PCNA. Five studies explored the role of TAMs in both
TN and TS, 18 studies only detected TAMs in TN, and nine
studies only included TAMs in TS. The majority of studies used
the median number of macrophages per high-power field as the
cut-off value to divide TAMs into the high and low TAM groups.
Moreover, most studies assessed the association between TAMs
and the prognosis of BCa patients, including OS (25 studies),
DES (24 studies), and BCSS (seven studies). The reported follow-
up time ranged from 0.1 to 20.4 years. The NOS scores of all
included studies ranged from 6 to 8 (Table 1).

Prognostic Significance of CD68+ TAMs

A total of 15 studies were included in the analysis of CD68+
TAMs on survival data in patients with BCa using the fixed-effect
model for the absence of heterogeneity (all ’<50% or P>0.10).
Our meta-analysis indicated that a high CD68+ TAM density
was significantly associated with poor OS compared to a low
CD68+ TAM density in the TN with a pooled HR of 1.72 (95%
CI 1.44-2.06, P<0.001) and in the TS with a pooled HR of 2.46
(95% CI, 1.83-3.31, P<0.001) (Figures 2A, B). For adjusted
measurements of OS from five studies, the results also supported
a poor OS in patients with a high CD68+ TAM density in the TN
(HR 2.37, 95% CI 1.69-3.31, P<0.001) (Figures 2C, D). The
results were similar for the association between CD68+ TAMs
and BCSS in the TN (HR 1.25, 95% CI 1.03-1.52, P=0.03) and TS
(HR 2.23, 95% CI 1.68-2.96, P<0.001) (Supplementary
Figure 1A). However, there was no significant association
between CD68+ TAMs and BCSS in the TN (HR 0.83, 95% CI
0.33-2.08, P=0.70) after excluding the study of Mahmoud et al.
for high weight (84.9% of total weight), and the study of Murri
et al. for high weight (69.3% of total weight in remaining four
studies) (Supplementary Figure 1B).

A total of 14 studies were eligible to assess the correlation
between CD68+ TAMs and DFS. The results showed that a high
CD68+ TAM density in the TS was significantly correlated with
shorter DFS compared to a low CD68+ TAMs density (HR 1.77,
95% CI 1.08-2.89, P=0.02) in a random-effects model with
significant heterogeneity (I =90%, P<0.001). No significant
difference was found in the TN (HR 1.04, 95% CI 1.01-1.07,
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P=0.02) (Figures 3A, B). However, the results showed that a high
CD68+ TAM density in the TN was significantly correlated with
shorter DFS (HR 1.50, 95% CI 1.19-1.89, P<0.001) after
excluding the study of Leek et al. accounting for 98.4% of total
weight (Supplementary Figure 1C). For adjusted measurements
of DFS from 12 studies, the results support a poor DFS in
patients with a high CD68+ TAM density (TN: HR 1.24, 95% CI
1.06-1.46, P=0.008; TS: HR 2.10, 95% CI 1.59-2.77, P<0.001)
(Figures 3C, D), and the results still support a poor DFS in
patients with a high CD68+ TAM density (TN: HR 1.52, 95% CI
1.16-2.01, P=0.003; TS: HR 1.96, 95% CI 1.27-3.02, P=0.003)
even after excluding the studies of Mahmoud et al. and Yuan
et al. accounting for 66.2% and 59.0% of the total weight,
respectively (Supplementary Figure 1D, E).

Prognostic Significance of CD163+ TAMs

The following meta-analysis was conducted using the fixed-effect
model for the absence of heterogeneity (all ’<50% or P>0.10),
except for adjusted measurements of OS in the TN (I° ~79%,
P=0.009). A total of nine studies were eligible to assess the
association of CD163+ TAMs and survival data in patients
with BCa. The results showed that a high CD163+ TAM
density in the TN was significantly associated with poor OS
(HR 1.50, 95% CI, 1.22-1.86, P<0.001), especially in the TS with
a pooled HR of 2.17 (95% CI, 1.67-2.82, P<0.001) (Figures 4A,

B). For adjusted measurements of OS from seven studies, the
results also support a poor OS in patients with a high CD68+
TAM density (TN: HR 3.08, 95% CI 1.18-8.02, P=0.02; TS: HR
2.71, 95% CI 1.35-5.46, P=0.005) (Figures 4C, D). There was no
significant association between CD163+ TAMs and BCSS in the
TN (HR 1.17, 95% CI 0.45-3.05, P=0.74), but only two studies
were included in this analysis (Supplementary Figure 1F).

For the correlation between CD163+ TAMs and DFS, the
results indicated that a high CD163+ TAM density was
significantly associated with shorter DFS both in the TN (HR
1.45, 95% CI 1.19-1.77, P<0.001) and TS (HR 2.48, 95% CI
1.87-3.27, P<0.001) (Figures 5A, B). For adjusted measurements
of DFS from eight studies, the random-effects model was used to
obtain HRs and the corresponding 95% Cls because the pooled
data exhibited high heterogeneity (TN: I* “61%, P=0.05; TS: I’ =
62%, P=0.03). The results also supported a poor DFS in patients
with a high CD163+ TAM density (TN: HR 2.52, 95% CI
1.56-4.07, P<0.001; TS: HR 2.84, 95% CI 1.35-5.97, P=0.006)
(Figures 5C, D).

Association Between TAMs (CD68+ or
CD163+) and Clinicopathological
Characteristics

We also analyzed the association between TAMs (CD68+ or
CD163+) and clinicopathological characteristics in patients with
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TABLE 1 | Characteristics of studies included in the meta-analysis.

Author

Leek et al., 1996 (23)
Tsutsui et al., 2005 (24)
Murri et al., 2008 (25)

Campbell et al., 2010 (26)

Mukhtar et al., 2011 (27)

Mohammed et al., 2012
(28)
Medrek et al. 2012 (29)

Mahmoud et al. 2012 (30)

Carrio et al., 2012 (31)
Zhang et al., 2013 (32)

Campbell et al., 2013 (33)

Yuan et al., 2014 (34)
Gujam et al., 2014 (35)
Yang et al., 2015 (36)
Sousa et al., 2015 (37)
Gwak et al., 2015 (38)
Tiainen et al. 2015 (17)
Ward et al., 2015 (39)
Koru-Sengul et al., 2016
(40)

Tian et al., 2016 (41)
Shiota et al., 2016 (42)
Xu et al., 2017 (43)
Miyasato et al., 2017 (44)
Liu et al. 2017 (45)
Yang et al. 2018 (46)

Zhang et al., 2018 (47)

Country

England
Japan
UK
American
American
UK
Sweden
UK
American
China
American
China
UK
China
Finland
Korea
Finland
UK
American
China
Japan
China
Japan
China

China

China

Sample

size

91

249

168

216

70

468

144

1902

29

172

102

287

361

100

562

276

270

129

150

278

167

102

149

203

200

278

Markers

CD68+
CD68+
CD68+
CD68+/
PCNA+
CD68+/
PCNA+
CD68+

CD68+
CD163+
CD68+

CD68+
CD68+
CD68
+/PCNA+
CD68+

CD68+
CD68+
CD68+
CD163+

CD68+

CD68+
CD163+

CD68+
CD163+

CD163+
CD68+
CD68+
CD68+
CD163+
CD163+
CD68+

CD163+
CD163+

Cut-off
value

Median 12
55th percentile
Tertiles

5

Median
5
Tertiles

Median 50%

N, 6
TS,17
Positive
Median 26
Mean 24

16

Tertiles
Median 61.14
Median
CD68: 369
CD163: 167.5
Median 24.2
Median
CD68: 34
CD163: 26
Mean value
150

Median 50%
Median 50%
Mean number
190

10%

TN: 11;

TS: 36
Mean

Tissue
distribution

Tumor nest
Tumor nest
Tumor nest
Tumor nest

Tumor nest

Tumor nest

Tumor nest
and stroma
Tumor nest
and stroma
Tumor nest
Tumor nest
Tumor nest

Tumor
stroma
Tumor
stroma
Tumor nest
Tumor nest

Tumor nest

Tumor
stroma

Tumor nest
Tumor
stroma
Tumor
stroma
Tumor nest

Tumor
stroma
Tumor nest

Tumor
stroma
Tumor nest
and stroma
Tumor nest

26

Analysis

Unavailable
Unavailable
Blind

Blind

Blind

Blind
Unavailable
Blind
Unavailable
Blind
Unavailable
Unavailable
Blind
Unavailable
Double-
blinded
Unavailable
Blind
Unavailable
Blind
Unavailable
Blind

Blind

Blind
Unavailable

Blind

Blind

Follow-up

60 months
Unavailable
Median 72 months
108 months

Median 10.34 years
10 years

Median 6.55 years
(0.33-7.55)
Unavailable

Unavailable
Unavailable
Unavailable

Median 89 months
(4-181)
Median 168 months

Mean 56.68 months
Unavailable

Median 7.7 years (0.1-
10.6)
Median 6.3 years (0.4-
11.1)

Median 78 months
Unavailable

Median 76 months (4-
116)

Median 86 months (1-
159)

Unavailable

Unavailable

Median 51 months (13-
88)

Median 66 months (12-
86)

Median 87 months (8-
130)

Outcome
assessment

OS, DFS
DFS

0OS, BCSS
OS, DFS

OS, DFS
0S, BCSS
OS, BCSS,
DFS

OS, BCSS,
DFS

0s

OS, DFS
OS, DFS
OS, DFS
0S, BCSS
0s

DFS

DFS

0os

DFS

OS, DFS
0os

OS, BCSS,
DFS

OS, DFS
0S, BCSS,
DFS

OS, DFS
OS, DFS

DFS

Selection Comparability Outcome NOS

* %k k

28,88

% %k ok

Kk k

* %k k

% %k ok

* %k Kk k

* %k

* kK

* %k Kk

* %k Kk

* %k Kk

% %k Kk k

* %k

* %k ok

Kk K

* %k k

* kK

* %k Kk ok

* %k

1. 8.8.8 ¢

* %k ok

28,88

* %k Kk

* %k K

* %k

*
* %

* %k

* ok

* %k
* %k

*

* %k

* %k

* %k

* %k

* 6

* 7
* * 7
* Kk k 8
1. 8.8 ¢ 8
* %k k 8
* %k 8
* * 6
2 8.8 ¢ 7
* * 7
* * 7
2 8.8 ¢ 7
* %k 8
* * 6
* %k 8
* * 7
2 8.8 ¢ 8
* * 6
* %k 8
* k 6
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TABLE 1 | Continued

Author Country Sample Markers Cut-off Tissue Analysis Follow-up Outcome  Selection Comparability Outcome NOS
size value distribution assessment
Yuan et al., 2019 (48) China 217 CD68+ Immunoreactivity scoring  Tumor nest  Blind 5 years DFS * %k * * Kk k
>6
Jeong et al., 2019 (49) Korea 367 CD68+ CD68+ Tumor nest  Blind Unavailable OS, DFS * %k * * %k
CD163+ TN:33 and stroma
TS:17.8
CD163+
TN: 1.67
TS: 21
Jamiyan et al. 2020 (50) Japan 107 CD68+ Median value CD68+ Tumor nest  Unavailable Unavailable OS, DFS * Kk k * * %
CD163+ TS: 26.2 and stroma
TN: 11.2
CD163+
TS: 26.6
TN: 8.6
Chen et al., 2020 (51) Singapore 198 CD68+ >10% Tumor Unavailable Median 7.2 years (0- DFS * %k k * * %k
CD163+ stroma 20.4)
Gunnarsdottir et al., 2020  Sweden 286 CD68+ 10% Tumor nest  Blind Unavailable oS * ok k * * *
62)
Lin et al., 2021 (53) Germany 298 CD68+ <45 Tumor Unavailable 12 years OS, DFS * ok Kk * k *
stroma

TN, tumor nest; TS, tumor stroma; OS, overall survival; DFS, disease-free survival; BCSS, breast cancer specific survival; NOS: Newcastle-Ottawa Scale checklist

*: A star means that the study obtain one score in NOS.
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FIGURE 2 | Forest plots of HRs for OS between high and low CD68+ TAM density in BCa patients. (A) HRs of OS in raw data for CD68+ TAMs in the TN of BCa;
(B) HRs of OS in raw data for CD68+ TAMs in the TS of BCa; (C) HRs of OS with adjusted measures for CD68+ TAMs in the TN of BCa; (C) HRs of OS with
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FIGURE 3 | Forest plots of HRs for DFS between high and low CD68+ TAM density in BCa patients. (A) HRs of DFS in raw data for CD68+ TAMs in the TN of
BCa; (B) HRs of DFS in raw data for CD68+ TAMs in the TS of BCa; (C) HRs of DFS with adjusted measures for CD68+ TAMs in the TN of BCa; (D) HRs of DFS
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with adjusted measures for CD163+ TAMs in the TS of BCa.

BCa. The pooled results indicated that a high CD68+ TAM
density was not significantly associated with age, lymph node
status, histology classification, and PR in the TN or TS (all
P>0.05) (Table 2). However, our meta-analysis using a random-
effects model also revealed that a high CD68+ TAM density in
the TN was significantly associated with larger tumor size (OR
0.36, 95% CI 0.15-0.85, P=0.02), no vascular invasion (OR 0.40,
95% CI 0.28-0.58, P<0.001), positive Ki-67 (OR 4.23, 95% CI
1.33-13.48, P<0.001), positive ER (OR 2.23, 95% CI 1.19-4.18,
P=0.01), and negative HER-2 (OR 0.08, 95% CI 0.05-0.14,
P<0.001), with significant heterogeneity (all > 50%).

For the association between high CD163+ TAM density and
clinicopathological characteristics, pooled analysis showed a
significant correlation between high CD163+ TAM:s in the TN
and age = 50 years (OR 0.21, 95% CI 0.13-0.34, P<0.001,
random-effects model), large tumor size (OR 0.34, 95% CI
0.12-1.00, P=0.05, random-effects model), no vascular invasion
(OR 0.56, 95% CI 0.38-0.82, P=0.003, fixed-effects model), and
positive ER (OR 3.55, 95% CI 2.58-4.88, P<0.001, fixed-effects
model) (Table 3). However, the results of the TS showed no
significant association between high CD163+ TAM density and
any clinicopathological characteristics, which could be due to
insufficient CD163+ TAM data.

Heterogeneity

We used meta-regression analysis to quantitatively analyze the
source of heterogeneity found in Figure 4B. A P-value <0.1 could
be considered the main source of heterogeneity. The results of
univariate analysis showed that region, year, sample size, and
cut-off value for high or low TAM density may not be the
main sources of heterogeneity between studies (Table 4).
Multivariate analysis also showed that region, year, sample
size, and cut-off value may not be a major source of between-
study heterogeneity. Subgroup analysis was also conducted for
CD68+ TAM density in the TS associated with DFS. The
quantitative data for these subgroups are summarized in
Supplementary Table 3. Subgroup analysis also showed that
region, year, sample size, and cut-oft value were not the potential
sources of heterogeneity (all P>0.05).

Tumor stroma

Hazard Ratio Hazard Ratio

Chen CD163+ 2020 -
Jamiyan CD163+ 2020
Jeong CD163+ 2019
Liu CD163+ 2017
Medrek CD163+ 2012
Yang CD163+ 2018

06881 02018 49.7%  199[1.34,296)
24423 10457  1.9% 1150(1.48,89.29)
06523 03611 155%  192(095,390)
24651 10563 1.8% 11.76[1.48,93.26]
07514 04785 88%  2.12[083,542)

138 03018 222%  397(220,7.18)

100.0% 248 (1.87,3.27] 4
—_—
001

Total (95% CI)
Heterogeneity: Ch = 8.57,df =5 (P = 0.13) = 42%
Test for overalleffect: Z = 6.37 (P < 0.00001)

01 10 100
Low TAMs  High TAMs.

Hazard Ratio Hazard Ratio
06313 02248 33.3%
22038 10487 97%
25642 10527  96%
-0.0943 05662 205%
14595 03926 26.9%

Chen CD163+ 2020
Jamiyan CO163+ 2020
Liu CD163+ 2017

1.88[1.21,2.92)
9.06[1.16,70.75]
1299165, 10225
091030, 276)
430[1.99,929)

Medrek CD163+ 2012
Yang CD163+ 2018

Total (95% CI) 100.0%
Heterogenelty: Tau® = 0.38; Chi" = 1045, df = 4 (P = 0.03); P = 62%
Testfor overall effect: Z = 276 (P = 0.006)

284[1.35,5.97
_—
001 01 10
Low TAMs High TAMs.

FIGURE 5 | Forest plots of HRs for DFS between high and low CD163+ TAM density in BCa patients. (A) HRs of DFS in raw data for CD163+ TAMs in the TN of
BCa; (B) HRs of DFS in raw data for CD163+ TAMs in the TS of BCa; (C) HRs of DFS with adjusted measures for CD163+ TAMs in the TN of BCa; (D) HRs of DFS

Sensitivity Analysis

Due to the significant heterogeneity of CD68+ TAMs and DFS
data, sensitivity analysis was conducted to evaluate the stability
of the pooled HRs. After excluding individual studies one by one,
the pooled HRs did not substantially change. Similarly, we
performed sensitivity analysis for the association between
CD163+ TAMs and OS data in the TN. When we removed the
article by Jeong et al., we found that high CD163+ TAM density
in the TN was associated with better OS with no significant
heterogeneity (HR 4.30, 95% CI 2.86-6.47, P<0.001, I*
~0%, P=0.39).

Publication Bias

We examined potential publication bias using funnel plots when
the meta-analysis was conducted with more than five studies.
The results showed no significant publication bias for TAMs
(CD68+ or CD163+) with OS and DFS (Supplementary
Figures 2, 3).

DISCUSSION

As the leading cause of death among women, BCa remains a
significant global health threat, and new therapeutic strategies
are required. TAMs are regarded as a potentially promising
target for cancer treatment, and increasing studies have
explored the possibility to suppress their tumor-promoting
activity (54). Recent ongoing pre-clinical TAM-targeted studies
indicated that TAMs are closely associated with poor prognosis
and BCa progression (55, 56). Given the discordent conclusions
among previous studies, the present meta-analysis was
conducted to assess the association between TAMs and
BCa prognosis.

This meta-analysis included 32 studies analyzing the
prognostic value of TAMs in BCa. A total of 15 studies
detected TAMs using a CD68+ biomarker, and 11 and eight of
these studies identified TAMs in the TN and TS, respectively.
CD163 was used in nine studies to identify TAMs, of which six
and seven studies evaluated TAMs in the TN and TS,
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TABLE 2 | Meta-analysis of high CD68+ TAMs density and clinicopathological features of breast cancer patients.

Clinicopathological features

Tumor nest

Age
(<50yvs=>50Y)
Tumor size

(< 2cmvs > 2cm)
Lymph node status
(NO vs. N1-3)
Histological grade

(L, 1Fvs i1

Vascular invasion
(yes vs no)

Ki-67 status
(positive vs negative)
ER status

(positive vs negative)
PR status

(positive vs negative)
HER-2 status
(positive vs negative)
Tumor stroma

Age
(<50yvs=50Y)
Tumor size

(< 2cm vs > 2cm)
Lymph node status
(NO vs. N1-3)
Histological grade

(L, 1Fvs 11T

Vascular invasion
(yes vs no)

Ki-67 status
(positive vs negative)
ER status

(positive vs negative)
PR status

(positive vs negative)
HER-2 status
(positive vs negative)

References

> 50 years
>2cm
N1-3

Il

No
Negative
Negative
Negative

Negative

> 50 years
>2cm
N1-3

I

No
Negative
Negative
Negative

Negative

No. of studies

Model

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Random

Pooled OR (95% CI)

0.59 (0.33-1.04)
0.36 (0.15-0.85)
0.74 (0.13-1.29)
0.85 (0.46-1.56)
0.40 (0.28-0.58)

4.23 (1.33-13.48)
2.23 (1.19-4.18)
1.34 (0.88-2.04)

0.08 (0.05-0.14)

0.48 (0.13-1.85)
0.59 (0.12-2.94)
0.71 (0.21-2.42)
0.32 (0.08-1.35)
0.08 (0.01-2.16)
0.32 (0.21-0.49)
5.00 (3.68-6.80)
1.23 (0.60-2.55)

0.21 (0.01-6.81)

P value

0.07

0.02

0.28

0.60

< 0.001

0.01

0.01

0.17

< 0.001

0.29

0.52

0.59

0.12

0.13

< 0.001

0.57

0.38

Heterogeneity
P (%) P value
93 < 0.001
96 < 0.001
90 < 0.001
95 < 0.001
55 0.11
94 < 0.001
94 < 0.001
78 < 0.001
88 < 0.001
96 < 0.001
97 < 0.001
91 < 0.001
97 < 0.001
94 < 0.001
94 < 0.001
80 0.006
99 < 0.001

TAMs, tumor-associated macrophages; OR, odds ratio; Cl, confidence interval; ER, oestrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2.

TABLE 3 | Meta-analysis of high CD163+ TAMs density and clinicopathological features of breast cancer patients.

Clinicopathological features References No. of studies Model Pooled OR(95% CI) P value Heterogeneity

P (%) P value
Tumor nest
Age > 50 years 4 Random 0.21 (0.13-0.34) < 0.001 65 0.04
(<50yvs=>50Y)
Tumor size >2cm 5 Random 0.34 (0.12-1.00) 0.05 95 < 0.001
(< 2cmvs > 2cm)
Lymph node status N1-3 3 Random 0.94 (0.21-4.13) 0.93 95 < 0.001
(NO vs. N1-3)
Histological grade Il 5 Random 0.41 (0.13-1.31) 0.13 95 < 0.001
(L, 1hvs 1)
Vascular invasion No 2 Fixed 0.56 (0.38-0.82) 0.003 17 0.27
(yes vs no)
Ki-67 status Negative 2 Random 4.70 (0.88-25.00) 0.07 93 < 0.001
(positive vs negative)

(Continued)
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TABLE 3 | Continued

Clinicopathological features References No. of studies Model Pooled OR(95% CI) P value Heterogeneity

P (%) P value
ER status Negative 2 Fixed 3.55 (2.58-4.88) < 0.001 51 0.15
(positive vs negative)
PR status Negative 1 - 1.81 (0.92-3.57) 0.09 - -
(positive vs negative)
HER-2 status Negative 2 Random 0.11 (0.01-0.79) 0.03 94 < 0.001
(positive vs negative)
Tumor stroma
Age > 50 years 4 Random 1.71 (0.57-5.08) 0.34 90 < 0.001
(<50yvs=>50Y)
Tumor size >2cm 5 Random 0.31 (0.06-1.54) 0.15 96 < 0.001
(< 2cm vs > 2cm)
Lymph node status N1-3 4 Random 1.98 (0.44-8.96) 0.38 95 < 0.001
(NO vs. N1-3)
Histological grade 1l 5 Random 0.36 (0.06-2.19) 0.27 97 < 0.001
(L, 1Fvs 11T
Vascular invasion No 1 - 0.03 (0.01-0.09) - - -
(yes vs no)
Ki-67 status Negative 1 - 2.52 (1.30-4.85) - - -
(positive vs negative)
ER status Negative 2 Random 2.96 (0.61-14.35) 0.18 91 0.001
(positive vs negative)
PR status Negative 3 Fixed 1.22 (0.87-1.71) 0.26 46 0.16
(positive vs negative)
HER-2 status Negative 3 Random 0.25 (0.02-2.53) 0.24 97 < 0.001

(positive vs negative)

TAMs, tumor-associated macrophages; OR, odds ratio; Cl, confidence interval; ER, oestrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2.

TABLE 4 | Univariable and multivariable meta-regressions for variables.

Variable Univariable Meta-Regressions Multivariable Meta-Regression

Standard deviation P value 95%ClI Standard deviation P value 95%ClI
Region (Europe/Asian) 0.689 0.269 0.56-8.29 0.960 0.660 0.23-10.02
Year (after 2018/before 2018) 0.624 0.5627 0.20-2.29 0.813 0.672 0.14-3.49
Sample size (<200/>200) 0.620 0.571 0.21-2.37 0.990 0.324 0.05-2.62
Cut-off value (not median/median) 0.724 0.465 0.14-2.44 1.164 0.345 0.03-3.26

respectively. We systemically analyzed the association between
TAMs (CD68+ or CD163+) and OS and DES in BCa patients.
The present study concluded that a high TAM density in the
TME was significantly associated with poor prognostic (OS, and
DFS) compared to a low TAM density, irrespective of TAM
marker (CD68+ or CD163+, all P<0.001). Notably, the pooled
results were further strengthened by OS and DFS multivariate
analyses showing that a high TAM density was significantly
related to poorer outcomes (all P<0.05). Compared to TAMs
detected in the TN, a high TAMs density detected in the TS
seems to show relatively higher prognostic value for BCa
patients, validated both for CD68+ and CD163+ TAMs. We
also analyzed the association between TAMs and
clinicopathological characteristics in BCa patients, which indicated
that a high TAM density was closely associated with larger tumor
size, no vascular invasion, and positive ER. However, the
heterogeneity was very large, requiring further clinical studies
with larger sample sizes to validate this conclusion.

The conclusion of the present study is in line with two
previous meta-analyses, involving 16 studies (57) and 13
studies (58), respectively. The study by Zhao et al. also showed
a worse OS in the TS group compared to the TN group (57). Our
findings are consistent with these studies, highlighting the
significant prognostic value for TAMs in BCa patients.
However, there were contradictory conclusions regarding the
prognostic value of CD68 and CD163. Zhao et al. reported that
CD68 was a more sensitive prognostic indicator than CD163 in
BCa patients, while Ni et al. reported the opposite result. Our
results indicated that both CD68+ and CD163+ TAMs were
significantly related to poor OS and shorter DFS in both raw and
adjusted measures. Compared with previous studies, the present
meta-analysis has the advantage of a much larger sample size and
more included studies, thus providing more reliable conclusions.
Our subgroup analysis for different TAM locations (TN and TS),
as well as for raw or adjusted measures, provides more insight
into the value of TAM location for BCa prognosis.
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Our study also found that a high TAM density in the TS
tended to have superior prognostic value for BCa than TAMs in
the TN. This finding was not only presented for BCa (50, 59), but
also for gastric cancer (15) and oral squamous cell carcinoma
(60). TAMs are prone to localize in certain cancer tissues and
exhibit different biological behaviors (61). A previous study
suggested that different histological locations could induce
TAMs to perform distinct functions (62). High TAM density
in the TS tended to cause stroma activation and extracellular
matrix (ECM) remodeling, via interacting with other stromal
components including lysyl oxidase, matrix metalloproteinase-9,
and type IV collagen (63, 64). Fibroblasts and microvessels are
the main supporting components for promoting angiogenesis
and tumor metastasis. Activation of ECM remodeling enzymes
might limit the function of immune cells and keep them out of
the tumor (65). The consequences of these factors can result in
tumor enlargement and potentially metastasis. However, these
niches may be reshaped by anti-cancer therapy. For instance,
immunotherapy increased the number of tertiary lymphoid
structures, and anti-angiogenic therapy remodeled perivascular
system and stroma niches (66). Moreover, several cytotoxic and
targeted therapies have been shown to alter the comprehensive
phenotype of tumor macrophages (67; 66) .

Although the present meta-analysis indicated that a high
TAM density (both in CD68+ and CD163+) is associated with
poor prognosis in patients with Bca, the results still need to be
treated with caution. CD68 is a universal macrophage marker, as
it stains both M1-like and M2-like TAMs, which exerts opposing
effects on carcinogenesis. This may be the reason why CD68 was
not an independent risk factor for prognosis in some
multivariate analyses (29, 30, 46). CD68 can also be detected
on some other non-monocyte cells (e.g. fibroblasts) (68, 69).
Therefore, CD68 alone may not be a good marker of TAMs to
predict OS. CD163 is a highly specific marker for M2-like
macrophages. A previous study suggested that the presence of
CD163+ TAMs was significantly associated with less favourable
clinicopathological features than CD68+ TAMs (29). It has been
found that TAMs tend to polarize to M2 in the TME, and their
surface receptors and cytokines secreted are similar to M2-like
macrophages (70). As a specific and predominant marker of
macrophages in BCa, CD163 could be used as a general marker
with prognostic impact alone or immunohistochemical double-
staining with CD68 to detect macrophage subpopulations and
calculate the ratio of M1/M2.

Furthermore, the subgroup analysis indicated that high TMA
density was closely related to BCa patients with larger tumor size,
no vascular invasion, or positive ER status. This implies that
TAMs density may have prognostic, even therapeutic, value for
BCa. A study by Castellaro et al. also reported that TAMs could
promote proliferation, migration, invasiveness, and breast tumor
growth of ER+ cells via rendering these estrogen-dependent
breast cancer cells resistant to estrogen withdrawal and
tamoxifen treatment (71). Therefore, TAM-targeted therapy
may help improve BCa prognosis. Currently, several clinical
trials on TAM-targeted therapy have been carried out.
Interventions targeting TAMs include macrophages depletion,

inhibition of macrophage-derived cytokines, anti-TAMs
activation, chimeric antigen receptor macrophage (CAR-M)
therapy, TAMs-based immune vaccine, and TAMs
nanobiotechnology (70). CCL2, CSF-1, and CSF-1R inhibitors
have been shown to effectively lower TAM density in both an
animal model and clinical trials. (72-74). Given that M1
macrophages exert cytotoxic effects on cancer cells, another
novel strategy could focus on inducing pro-tumor TAMs to an
anti-tumor phenotype or M1 phenotype using typical agents
such as CD40 agonists, CD47 inhibitors, STAT3 inhibitors,
Bruton’s tyrosine kinase (BTK) inhibitors, IL-1Ra inhibitors,
and TLR agonists (72, 75, 76), However, despite numerous
ongoing clinical and pre-clinical trials on TAM-targeting
therapies, a further in-depth understanding of the underlying
mechanism of TAMs-related carcinogenesis and the complexity
of TAM subsets would be essential to fully realize their
therapeutic potential.

There are several important strengths of this meta-analysis.
First, the present study was the meta-analysis with the largest
sample size, including several recently published papers, and
thus the pooled results would be more reliable than previous
studies. Second, our meta-analysis included different TAMs
locations (TN and TS), which adds new information for the
impact of TAM location on BCa survival. Third, our results
indicated that a high TAM density is significantly related to
poorer outcomes, especially for TAMs in the TS, as a useful
prognostic marker. Fourth, given that preoperative adjuvant
therapy might disturb TAM density, especially for large
tumors, ER positive, and Ki-67 positive patients, the reliability
of the results may be compromised. Most included studies
excluded patients receiving preoperative neoadjuvant
chemotherapy or anti-HER2 therapy, increasing the
homogeneity of the study population and strengthening
the conclusions.

Several limitations of our meta-analysis should be
acknowledged. First, there is currently no consensus on the
cut-off values of TAMs in BCa, as previous studies did not set
a unified criterion. Most included studies adopted a median value
as the cut-off for high/low TAMs. Although there is a concern
that the inconsistent cut-off values used in the included studies
may potentially introduce bias, the univariate and multivariate
meta-regression analysis in the present study both demonstrated
that the cut-off value was not the potential sources of
heterogeneity, indicating studies using different cut-off value
were homogeneous, further strengthening the final conclusions.
Future large-scale randomized controlled trials and meta-
analyses base on individual patient data are warranted to
further elucidate the correlation between TAMs and BCa
prognosis. Second, there was significant heterogeneity among
the analysis of TAMs and clinicopathological features, even when
making a distinction between TAM locations. The heterogeneity
might be derived from the different antibodies and dilution
applications to detect TAM density. Similarly, the cut-oft value
of Ki-67 expression (14% or 20%) varied in the included studies,
which might have introduced heterogeneity. Third, all included
articles were retrospective studies, which may have led to
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selection bias in the pooled results. Fourth, excessive differences
in the range of sample sizes may have increased the weight of the
studies with big sample sizes in the pooled results and increased
systematical biases. Therefore, future studies with larger sample
sizes are required to validate the conclusions of our study.

CONCLUSION

In summary, the present systemic review and meta-analysis
indicates that an elevated density of CD68+ and CD163+
TAMs is associated with poor OS and shorter DFS in BCa
patients. Due to the limitations in our study, further well-
designed studies with larger sample sizes are needed to validate
our conclusion.
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Breast cancer is one of the leading causes of mortality in females. Over the past decades,
intensive efforts have been made to uncover the pathogenesis of breast cancer.
Interleukin-6 (IL-6) is a pleiotropic factor which has a vital role in host defense immunity
and acute stress. Moreover, a wide range of studies have identified the physiological and
pathological roles of IL-6 in inflammation, immune and cancer. Recently, several IL-6
signaling pathway-targeted monoclonal antibodies have been developed for cancer and
immune therapy. Combination of IL-6 inhibitory antibody with other pathways blockage
drugs have demonstrated promising outcome in both preclinical and clinical trials. This
review focuses on emerging studies on the strong linkages of IL-6/IL-6R mediated
regulation of inflammation and immunity in cancer, especially in breast cancer.

Keywords: breast cancer, interleukin-6, inflammation, immune, target therapy

INTRODUCTION

Breast cancer is one of the leading diagnosed cancers in women with high mortality. According to
International Agency for Research on Cancer (IARC), there were 2,261,419 women diagnosed with
breast cancer in 2020 worldwide. It is a common cause of cancer-related death especially in less
developed countries. Despite the recent advanced technique in breast cancer screening and early
diagnosis, the high morbidity and mortality rates urge the need of investigation into the molecular
mechanism of breast cancer.

Genome wide analyses have recently demonstrated thousands of mutations accumulated in
breast cancer cells (1). In addition, as a multifactorial disease, the etiologies of breast cancer include
not only distinct inherent factors such as genetic status, but also environmental factors such as
obesity, lifestyle, and chronic inflammation (2).

Accumulating studies have been performed on the relationship between inflammation and
cancer (3). It is well-accepted that inflammatory diseases could increase the risk of cancer
development during tumor initiation, promotion, progression, and metastasis (3-6).

As one of the best-characterized pro-tumorigenic cytokines, IL-6 has been studied extensively for
its central role in both physiological and pathological processes (7). Previous studies indicated that
IL-6 regulate the pro-inflammatory and enhance monocyte infiltration at the inflammatory site
during chronic inflammation (8). IL-6 responsive tissues would become resistant gradually during
chronic inflammation, which correlated with high basal level of IL-6 (9, 10). IL-6 was also elevated
in many solid tumors including breast cancer (11-13), which correlated with poor prognosis and
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metastasis (14, 15). The current review will further discuss the
intricate relationship between IL-6, inflammation, and
breast cancer.

THE IL-6 SIGNALING PATHWAYS
AND FUNCTIONS

The 1I-6 Signaling Pathway

Human IL-6 is a 26 kDa glycoprotein known as a B-cell
differentiation regulator (16) which is secreted by a number of
cells (17). IL-6 is a multifunctional cytokine that plays both pro-
inflammatory and anti-inflammatory roles in humans (18). IL-6
is a single chain phosphorylated glycoprotein consisting of four
helix bundles (A-D), with A and B run in one direction while C
and D run in the opposite direction. IL-6 transmits its signals
through a cell-surface type-I receptor complex, which consists of
the membrane-bound IL-6 receptor (IL-6R) and a signal-
transducing component gp130 homodimer (19). IL-6R is
expressed on a limited number of cell types, such as
macrophages, B cells and subtypes of T cells (20, 21). IL-6R is
80 kDa o-chain and is also called as CD126 consisting of three
domains namely D1, D2 and D3. Besides the membrane bound
receptor (mIL-6R) as previously mentioned, soluble (sIL-6R) is
the other form of IL-6R, which is expressed mainly in
hepatocytes, neutrophils, monocytes, and T-cells (22). IL-6
selectively activates different signaling pathways, the classical
signaling pathway through mlIL-6R, and the trans-signaling
pathway through sIL-6R. In both the cases, IL-6 binds to the
receptor and then to gpl30, but elicits different biological
effects depending upon the receptor form (23). Cytokine IL-6
triggers the anti-inflammatory responses through classic
signaling by binging to mIL-6R and gp130, while in contrast,
trans-signaling can be manifested in all gp130-expressing cells,
and leads to pro-inflammatory responses (24). The sIL-6R can be
found at circulation with concentration from 25 to 35 ng/ml
in human, which is generated by proteolytic cleavage of
the membrane bound form IL-6R and by proteolytic
cleavage of metalloproteinases gene family members, or by
alternative splicing of IL-6R mRNA (25). There are three
routes of the IL-6 signaling pathway. In route 1, Janus kinase
(JAK) is phosphorylated and activated, subsequently
activates dimerization of signal transducer and transcription-3
(STAT3) (26). In route 2, JAK activates Ras/Raf pathway,
causing hyperphosphorylation of mitogen activated protein
kinases (MAPK) and incudes its serine/threonine kinase
activity (23). The third route involves the activation of
phosphoinositol-3 kinase (PI3K)-protein kinase B (PKB)/Akt
pathway (27).

IL-6 and Immunity

IL-6 is secreted by largely plasmacytoid dendritic cells (pDCs),
which is critical for differentiation from B cells to plasma cells
(28). This cytokine is also a vital modulator to maintain dynamic
balance between Thl and Th2 immune cells (29). For example,
IL-6 is necessary during the differentiation from Th1 to Th2 cells

(30). The process was proved to interfere with IFN-y production
via up-regulation of suppressor of cytokine signaling 1 (SOCS1)
and SOCS3 in CD4+T cells (31). Meanwhile, together with
transforming growth factor-f3 (TGF-P), IL-6 could promote the
differentiation of Th17 cells via activating both retinoic acid-
related orphan receptor yt (RORyt) and RORo (32). It was
reported that STAT3 mediated the effectiveness of IL-6 on
Th17 differentiation and this cytokine could inhibit the activity
of Treg cells (33). Therefore, IL-6 is regarded as the main
regulator of Treg/Th17 equilibrium (34).

IL-6 also plays a vital role in early differentiation of T
follicular helper cells (Tth), the main T helper cell subtype
provides support for germinal center formation, affinity
maturation, and immune cells’ generation. Early BCI6
+/CXCR5+/Tth differentiation would be mostly interfered in
the case of IL-6 absence which was proved to mediate by STAT1
and STATS3 (35).

Novel agents against the IL-6/IL-6R signaling pathway have
been proved to be effective for some inflammatory diseases.
Preclinical studies have demonstrated that IL-6 has crucial
functions in inflammatory cells recruitment (36). Tumor-
associated macrophages (TAMs) secreted IL-6 and plays
critical role in carcinogenesis and differentiation of myeloid-
derived suppressor cells (MDSCs), which gives rise to intra-
tumoral inflammatory processes (37, 38). A previous study
demonstrated that inhibition of NF-kB decreased the stem cell
compartment, which in turn reduced blood vessel formation in
breast cancer (39). In addition, high expression of IL-6R on liver
cells led to recruitment of acute phase proteins (40). High
expression levels of acute phase proteins including CRP,
fibrinogen and serum amyloid protein A were identified during
both acute and chronic disease (41, 42). Interestingly, clinical
observation found that CRP levels in patients with severe
bacterial infections were not elevated when IL-6 was absent
(43). Further studies demonstrated that blocking IL-6 signaling
by neutralizing antibody may reverse low serum level of CRP
(44). However, the application of IL-6/IL-6R blockers as anti-
cancer agents has not been proved intensively in cancers
including breast cancer.

IL-6 and Stem Cell

IL-6 family cytokines play an important role in generation and
maintenance of stem/progenitor cells including cancer stem cells
(CSCs) (45). As a member in IL-6 family, leukemia inhibitory
factor (LIF) has an crucial role in both embryonic stem (ES) cells
and cancer development (46), which is necessary to maintain
mouse ES cells in an undifferentiated condition via STAT3
activation (47). Active LIF was detected in a wide range of
malignancies including lung, breast, stomach, colon, liver,
gallbladder, and pancreatic carcinoma (48). Once activated,
STAT3 may induce gene expression including c-Myc, which
contribute to the maintenance of undifferentiated state in mouse
ES cells (49). It is also reported that IL-6 increased pluripotent
stem (iPS) cell population by inducing c-Myc and Pim1 (50). The
transcription factor C/EBPJ, was reported to be pro-tumorigenic
in breast cancer cell lines by directly targeting IL-6R, leading to
cancer progression with cancer stem cells activation (51). The IL-
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6-JAK1-STAT3 pathway has a vital function in the transition
from non-CSCs into CSCs by regulating OCT4 in human breast
cancer cell lines (52). In lung cancer CSCs, IL-6Ro. was detected
in CSCs (53), whereas STAT3 was necessary for proliferation and
survival in colon cancer-initiating cells (54, 55). It was reported
that constitutive activation of STAT3 and NF-«kB signaling in
glioblastoma CSCs regulate Notch pathway, which played a key
role in CSC maintenance and cell survival (56). STAT3 activation
by IL-6 from adipose-derived stem cells could promote
endometrial carcinoma proliferation and metastasis (57).

IL-6 is also crucial for epigenetic modification in stem cells
(58, 59). NF-xB and STAT3 were identified as key regulators in
epigenetic switch in inflammation (60, 61). Recently, a positive
feedback loop involving microRNA let-7 has been demonstrated
for maintaining chronic inflammatory status in malignant cells
(60). Interestingly, this feedback loop regulated by IL-6 signaling
could in turn activate NF-xB pathway and its downstream
targets such as let-7 and Lin-28. Similarly, IL-6 was proved to
be essential in keeping inflammatory loop in breast cancer CSCs
(60, 61). In summary, IL-6 signaling plays a regulatory role in
controlling cancer cell growth, CSC renewal and metastasis (62).

IL-6 and Tumor Microenvironment

Tumor microenvironment contributes significantly towards
potentiating the stemness and metastasis properties of cancer
cells. Solid tumors, including breast cancer cells were reported to
have intense interaction with stromal cells such as mesenchymal
stem cells (MSCs), adipocytes, cancer associated fibroblasts
(CAFs), endothelial cells and immune cells in tumor
microenvironment (63). Majority of these stromal cells within
tumor microenvironment could secrete both IL-6 and IL-8 (63,
64). Mesenchymal cells could be either recruited from bone
marrow (65) or normal breast stroma (66). In breast tumor cells,
it has been identified that MSCs could be selectively recruited to
the sites of growing carcinoma through cytokine such as IL-6 and
CXCL7, where they interact with breast cancer CSCs (65, 66). In
addition, MSCs are capable to differentiate into CAFs as well as
adipocytes, which also interact with cancer cells (67).

CAFs have been demonstrated to have the ability to support
tumorigenesis by stimulating angiogenesis, cell proliferation and
invasion (68). CAFs in breast tumors expressed high levels of IL-
6 (68, 69), which mediated epithelial-stromal interactions and
promoted tumorigenesis (70). CAFs were reported to induce
trastuzumab resistance in HER2 positive breast cancer cells (71).
More importantly, IL-6 could in turn reactivate breast stromal
fibroblasts through STAT3-dependent manner (72). CAFs could
affect intra tumoral CD8+ and FoxP3+ T cells via IL-6 in tumor
microenvironment (73). Recent findings also indicated miR-
149’s role in the crosstalk between tumor cells and CAFs,
which highlighted the potential therapeutic strategy using
interfering miRNAs (74). There was growing evidence support
that CAFs promote stem cell-like properties of hepatocellular
carcinoma via IL-6/STAT3/Notch signaling pathway (75).

In a recent study, a novel developed liposomal nanoparticle
loaded with anti-IL6R antibody which deliver to tumor
microenvironment achieved a significant effect in inhibiting
the metastasis of breast cancer cells in mouse models (76).

Obesity has been recently identified as a negative prognostic
factor in breast cancer (77, 78), which appears to be independent
of menopausal status, tumor stage, and hormone-related factors
(79). According to the reported literature, adipocytes produced
inflammatory cytokines such as IL-6 in obesity individuals (80).
IL-6 was reported to mediate crosstalk between preadipocytes
and breast ductal carcinoma in situ cells which may lead to
progression of early-stage breast cancer (81). In addition,
adipose-derived stem cells (ADSCs) promoted tumor initiation
and accelerated tumor growth through IL-6 production (82).
Obesity was suggested to induce resistance to anti-VEGF therapy
in breast cancer by up-regulating IL-6 (83).

IL-6’S FUNCTIONAL ROLE IN BREAST
CANCER DEVELOPMENT

Experimental Studies

The predominant role of IL-6 in cancer is its key promotion of
tumour growth. It has been demonstrated that deregulated IL-6
signaling pathway plays important roles in proliferation,
migration, and adhesion among tumors (84-87). High level of
IL-6 in breast cancer tissues stimulated Jagged-1 expression to
promote cell growth and maintain the aggressive phenotype (88).
High level of IL-6 secretion may facilitate tumor cell growth via
suppressing apoptosis and promoting angiogenesis (89). High
expression of IL-6Ro. was also demonstrated to induce apoptosis
resistance in breast cancer (90). In metastatic lesions of breast
cancer patients, upregulated IL-6 was identified which may lead
to chemotherapy resistance such as paclitaxel (91). The crosstalk
between adipocytes and breast cancer cells in cancer progression
has attracted much attention in recent years. The adipocyte-
derived IL-6 was reported to promote breast cancer metastasis by
inducing PLOD?2 expression through activating the JAK/STAT3
and PI3K/AKT signaling pathways (92). In a recent study on
triple-negative breast cancers (TNBCs), restraining of IL-6 and
IL-8 expressions prominently suppressed both in vitro and in
vivo cancer cell proliferation (93).

IL-12, which is produced by activated antigen presenting cells
including dendritic cells and macrophages, was reported to
inhibit tumor development (94). Some studies suggested that
high expression level of IL-12 receptor were found to
significantly increase breast cancer patients’ survival, especially
in the more aggressive subtypes (95). It is also critical to initiate
the differentiation of naive CD4+ T cells to T helper type 1 (Th-
1) cells (96). However, the correlation between IL-6 and IL-12
remains elusive in breast cancer. According to the reported
literature, the Th-1/Th-2 imbalance plays important role in the
development of breast cancer (97). And circulating Th-1 and Th-
2 levels and their ratios are associated with ER-negative and
TNBC, suggesting their contribution in breast cancers (98). IL-6
played dual functions on Th-1/Th-2 differentiation by promoting
Th-2 differentiation and inhibiting Th-1 polarization
simultaneously (29).

IL-6 is a vital player during acute inflammation, controlling
not only the inflammatory response but also tissue metabolism
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(99). Under chronic inflammation circumstance, IL-6 may
induce cachexia through cytokines production and metabolism
change in both lipids and proteins (100). Over-expression of IL-6
has been proved to be related with atrophy by promoting muscle
protein metabolism (101). Cachexia and its related diseases
account for approximately one third of all cancer-related
deaths (102). Inflammatory breast cancer (IBC) describes a
highly aggressive form of breast cancer of diverse molecular
subtypes and clonal heterogeneity. The signature of IBC is
recognized by its inflammation feature which is associated with
IL-6 expression. A recent study published in May 2022 revealed
that IL-6 signaling stimulate cell proliferation in IL-6R and
HER2-expressing responsive sub-clones in IBC, and this effect
was abrogated by the IL-6R neutralizing antibody
Tocilizumab (103).

IL-6 is able to diffuse through cells structures and tissues in
tumor microenvironment due to its low molecular weight (104).
Tumor microenvironment-associated inflammation, mainly
regulated by cytokines including IL-6, has been well-
documented to contribute to every stage of cancer progression
(105-108). Accumulating evidence has proved the significance of
senescent cells in the microenvironment of cancer cells, of which
pro-inflammatory IL-6 and IL-8 are consistently present. In this
study, IL6 was reported to induce a self-reinforced senescence/
inflammatory milieu responsible for the epithelial plasticity and
stemness features which prone to a more aggressive phenotype in
breast cancer (109).

Despite significant therapeutic achievements have been made
in recent years, breast cancer is still one of the most common
cancers with high mortality in women worldwide. Estrogen
receptor (ER) o-positive breast cancers account for more than
two thirds of all the category and endocrine therapies such as
selective and aromatase inhibitors remain the standard adjuvant
therapy for these tumors. However, majority of patients will
develop drug resistance after treatment for several years and
alternative hormone therapy is needed afterwards (110, 111).
Interestingly, IL6/STAT3 signaling was suggested to drive
metastasis in ER positive breast cancer independent of ER,
decoupling IL6/STAT3 and ER oncogenic pathways could
sensitize some hormonal resistant patients (112). In another
study, similar conclusion was reported that Tocilizumab, an
antibody that binds to IL-6R, could robustly reverse tamoxifen
resistance (113). In compliance with this result, clinical breast
cancer samples analysis confirmed that IL-6R expression was
significantly associated with tamoxifen resistance in breast
cancer tissues, with high IL-6R expression correlated with poor
survival (113). Apart from the role in ER positive breast cancer,
IL-6 was identified to trigger the migration and invasion of ER
negative breast cancer cells via activation of YAP signals (114).

IL-6 could upregulate circulating VEGF in breast cancer
patients, which was confirmed to promote angiogenesis and
metastasis (115). Downregulation of IL-6 was related to the
better response to breast cancer therapy (11, 116). Ligation of
IL-6 with IL-6R activates Janus kinase (JAK) tyrosine kinases
leading to phosphorylation of signal transducer and activator of
transcription 3 (STAT3), which is a well-studied cancer signaling

pathway. Moreover, the expression level of IL-6 was higher in
aggressive tumors with multi-drug resistance and is negatively
related to the expression of estrogen receptor in breast cancer
patients (117, 118). Recently, the fact that IL-6-mediated
Jagged1/Notch signaling pathway enhanced the ability for
breast cancer cells metastasis has been demonstrated (119). All
the evidence suggested that IL-6 and its receptor as attractive
therapeutic targets.

Clinical Studies

In many preclinical models, IL-6 has been demonstrated to
promote carcinogenicity, angiogenesis and metastasis (88, 118,
120, 121). IL-6 has been implicated in resistance to trastuzumab
treatment in HER2 positive patients. The induction of IL-6
inflammatory feedback loop leads to the expanded population
of CSCs, which lead to high levels of this cytokine secretion. The
addition of tocilizumab, an anti-IL-6R antibody, was reported to
be capable for the interruption against this feedback loop (122).
Based on this finding, a Phase I clinical trial started from 2017
with combined treatment including trastuzumab and
tocilizumab for patients with metastatic trastuzumab-resistant
HER2+ breast cancer was carried out (NCT03135171).
According to the reported literature, IL-6 signaling is a major
determinant of TNBC cell proliferation and viability (123), and
this chemotherapy-associated inflammatory cytokine may
promote resistance mechanisms in TNBC cells as well (124). A
Phase Ib/II, open-label, multicenter, randomized umbrella study
is being carried out to evaluate the efficacy and safety of multiple
immunotherapy-based treatment combinations including
tocilizumab in patients with metastatic or inoperable locally
advanced TNBC (NCT03424005).

The Prognostic Significance of IL-6 and Its
Correlation With Survival

The prognostic impacts of preoperative IL-6 expression levels in
patients with breast cancer remain controversial. In a meta-
analysis extracted from thirteen articles containing 3,224 breast
cancer patients showed that IL-6 expression was not associated
with lymph node metastasis, tumor size, or histologic grade.
Moreover, there was no correlation between IL-6 expression and
disease-free survival. However, the combined hazard ratio for OS
was 2.15 (125). Another study included 1,380 patients with early-
stage invasive breast cancer revealed that high IL-6 expression is
associated with better disease-free survival and breast cancer
specific survival (126). However, anther investigation involving
55 female patients with invasive breast cancer demonstrated that
the individuals with IL-6 >10.0 pg/ml had poorer overall survival
compared with those with IL-6 <10.0 pg/ml (127). Similarly, it
was reported that high level of serum IL-6 secreted by metastatic
breast cancer cells were correlated with poor survival (15).
Regarding the roles of IL-6 in ER positive breast cancers as
previously described, we further summarized the prognostic
value of IL-6 among different subtypes of breast cancer
patients (Table 1). For example, in a prospective study
included 240 patients who underwent surgery for management
of newly diagnosed breast cancer, the associations between
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TABLE 1 | Prognositc value of IL-6 in different types of breast cancers.

Tumor subtype? Prognostic value of IL-6 Reference
Luminal A *ER+ breast cancer cells express and/or secrete lower cytokine levels than ER- cells (128, 129) (128-130)
eHigh levels of gene expression of IL-6 receptor in luminal A and B (130)
Luminal B eThe luminal B HER2+ group was found to feature the highest spontaneous secretion of IL-6 among subgroups (131) (130, 131)
eHigh levels of gene expression of IL-6 receptor in luminal A and B (130)
HER2 (+/-) eHER2- patients with recurrence had higher levels of circulating IL-6 (P=0.024) (132) (122, 126, 132-135)
eHigh IL-6 expression was significantly associated with DFS in HER2- (P = 0.026) (126)
eHigh serum in HER2+ patients (P<0.05) (133)
*|L6 as good indicator in both HER2- (P = 0.001) and HER2+ subgroups (P = 0.002) (134)
eAssociation with HER2 or endocrine therapy resistance (122, 135)
TNBC ePatients with recurrence had higher levels® of circulating IL-6 (P=0.024) (132) (123, 126, 132, 136, 137)

eHigh IL-6 expression was significantly associated with DFS in non-TNBC (P = 0.003) (126)

eInduction of TNBC progression (123, 136, 137)
ER/PR status
eHigh serum in ER+ patients (P<0.05) (133)

eHigh IL-6 expression was significantly associated with DFS in ER+ (P =0.025) (126)

(126, 133, 134)

*|L6 as the independent prognostic factor for good outcome (P=0.001) (134)

Metastasis

eHigher serum IL-6 level correlated with more metastatic sites (P<0.0001) (15)

(15)

“Luminal A (ER+ and/or PR+, HER2-, and Ki-67 index<15%); luminal B (JER+ and/or PR+, HER-, and Ki-67 index>15%)] or [ER+ and/or PR+,and HER2+]); HERZ2 only (ER-, PR-, and HER2

+); TNBC (ER-, PR-, and HERZ2-).
PHigh and low levels were determined based on the median value.

plasma concentration of IL-6 and breast cancer recurrence
during a six-year follow-up period were examined. The result
showed that patients with recurrence had higher levels of
circulating IL-6 only among those with HER2 negative tumors.
Results of survival analyses revealed an association of high levels
of IL-6 with poor recurrence-free survival in patients with HER2
negative and TNBC patients (132).

The approximate percentage of HER2 gene amplified in
human breast cancer is 25%, which is characterized by a more
aggressive phenotype (138). Trastuzumab, as one of the targeted
therapeutic agents for HER2+ breast cancer patients, has totally
changed the treatment course. Although many patients benefit
from the HER? targeted therapy, nearly half of them will develop
drug resistance after one to two years of treatment (139).
Evidence showed that overexpression of HER2 in breast CSCs
increased IL-6 production, which could promote CSC self-
renewal. The fact that HER2 targeted therapy could
prominently activate the IL-6 inflammatory loop and expand
the CSC population, signified the cause of IL-6 in Herceptin
resistance (122). In ER-negative breast cancer, findings
demonstrated that IL-66/Stat3/NF-kB inflammatory loop was
activated (140). And it has been proved that leptin-induced
STATS3 is partially cross activated through SK1-mediated IL-6
secretion and gpl30 activation, suggesting the potential
significance of this pathway (141).

A growing body of evidence indicated Bazedoxifene, which is
a synthetic anti-gp130 compound, could effectively disrupt the
IL-6R/gp130 interactions thus inhibit cell viability, and overall
cell survive, proliferation as well as cell migration in TNBC (142).
A novel in-house prepared IL-6 pathway inhibitor namely 6a,
which is capable of selectively inhibiting STAT3 activation
following IL-6 stimulation in MDA-MB-231 breast cancer
(143). Sarilumab, an FDA-approved anti-IL-6R antibody for
rheumatoid arthritis, which blocks both mIL-6R and sIL-6R, is
currently under clinical studies for breast cancer (144).
Siltuximab, which is a neutralizing anti-IL-6 antibody, delayed
engraftment of MCF-7 humanized xenograft tumors and elicited

tumor xenograft regression in tumors (145). The anti-IL-6
receptor antibody, Tocilizumab, is effective in the treatment of
various autoimmune diseases such as rheumatoid arthritis (RA)
(146). Experimental results demonstrates that IL-6 pathway
targeted drugs may have additional benefit in HER2+ breast
cancer (122). It has been proved that IL-6 receptor inhibitor
suppressed bone metastases in a breast cancer cell line (147).
Another study showed that IL-6R antagonist Tocilizumab
significantly decreases breast cancer stem cell and inhibits
tumor growth in Notch3-expressing breast cancers (148). The
high level of IL-6R expression in spindle-shaped stromal cells
such as CAF was not associated with the vasculature but could be
used as prognostic determinant of early breast cancer (149).
CAFs in tumor microenvironment played a vital role in
developing trastuzumab resistance by magnifying CSCs bulge
and activating multiple pathways (150). Regarding this,
combination of anti-IL-6 antibody, or multiple pathway
inhibitors with trastuzumab maybe novel strategy to reverse
drug resistance in HER2+ breast cancer (71). Genotype of IL-6
was prominently related to early events among patients bearing
with ER-negative tumors (151). The IL-6 signaling loop
mediated drug resistance to PI3K inhibitors via inducing
epithelial-mesenchymal transition (EMT) and CSCs expansion
in human breast cancer cells (152). In summary, IL-6 signaling
pathway may be potential treatment target for breast cancer
patients in the future. The previously mentioned agents targeting
the IL-6/IL-6R signaling for breast cancer therapy were listed
in Table 2.

IL-6 could promote the response of acute phase inflammatory
via increasing the production of acute inflammatory proteins. IL-
6 was also correlated with elevated CRP in different kinds of
cancers including breast cancer (154), renal cancer (155), lung
cancer (156), and colorectal cancer (157). Although breast
cancers rarely are characterized by inflammation, a growing
body of evidence nevertheless suggests that inflammatory
process also play an important role in breast cancer
progression (158, 159). Based on the reported literature, the
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TABLE 2 | Agents directly targeting the IL-6/IL-6R/gp130 complex for breast cancer therapy.

Agents Antibody/Compound Preclinical

Bazedoxifene Synthetic Anti-gp130 Inhibit the growth of IL-6-induced
compound SUM159 breast cancer cell line (153)

6a Anti-IL-6 synthetic Inhibition of STAT3 phosphorylation in IL-
pyrrolidinesulphonylaryl 6 stimulated MDA-MB-231 breast cancer
compound cell line (143)

Sarilumab IL-6R antagonist

Siltuximab CNTO-328, IL-6 mAb  Treatment in 6 orthotopically implanted
which received FDA- PDX lines in vivo (145)
approval

Tocilizumab  IL-6R antagonist Trastuzumab-resistant breast tumor

xenograft mouse model

results from epidemiologic studies in different centres are
conflicting, with some showing significant association between
elevated CRP levels and poor prognosis in breast cancers while
others show no association (160-162). In a study consisted of
700 women with early-stage breast cancer found that elevated
levels of CRP measured 2.5 years after diagnosis were associated
with reduced DFS and OS (163). Similarly, another investigation
included 2,910 women for up to seven years after invasive breast
cancer diagnosis revealed elevated CRP levels were significantly
associated with reduced DFS and OS (164). Preoperative CRP
level was indicated as a more accurate prognostic factor
compared with other factors, such as histological grade, tumor
factor and node factor (127).

To eliminate minimal residual disease in TNBC

Clinical trial Mechanism

Breast tissue density change (NCT00774267) 1. Inhibition STAT3
(NCT00418236) phosphorylation by disrupting IL-
6/gp130 interface (153)
2. Estrogen antagonist in breast
tissue
Selective inhibition of STAT3
phosphorylation (143)

Selective inhibition of STAT3
phosphorylation (143)

To prevent binding to soluble and
membrane bound interleukin-6
receptors

(NCT04333706)

For metastatic HER2 positive breast cancer
resistant to Trastuzumab (NCT03135171)

Treatment combinations in patients with

metastatic or inoperable locally advanced

TNBC (NCT 03424005)

CONCLUSIONS

IL-6 is a pleiotropic cytokine in the regulations of various
physiological and pathological processes. IL-6 causes
uncontrolled inflammatory responses resulting in chronic
inflammation and even carcinoma. IL-6 expression is associated
with poor prognosis for breast cancer. The interaction network of
IL-6 in breast cancer cells/stromal cells is listed as Figure 1. The IL-
6 signal transduction pathway including IL-6, IL-6R, sIL-6R,
gp130, JAK, and STAT3 has been suggested as promising
therapeutic targets for breast cancer. Several antibodies for IL-6/
IL-6R have been developed, either as single drug or combined with
other traditional chemotherapy, have demonstrated dramatical
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FIGURE 1 | The interaction network of IL-6 and breast cancer cells/stromal cells.
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outcome in both preclinical and clinical trials. In addition to the
critical roles of IL-6/JAK/STAT3 signaling in breast cancer,
hyperactivation of this pathway has also been implicated in
suppressing anti-tumor immune responses in tumor
microenvironment. Treatments targeting the IL-6/JAK/STAT3
pathway have provided benefit for patients with breast cancer by
directly inhibiting tumor cell growth and activating anti-tumor
immunity. Taken together, strategy targeting the IL-6/JAK/STAT3
signaling pathway, which has already been shown to be beneficial
in certain cancers including breast cancer, has proven to be
effective. Combination of IL-6 signaling pathway inhibitor and
other targets blockage drugs may serve as novel strategy to treat IL-
6 mediated immune disease and human cancers.
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Triple-negative breast cancer (TNBC) occurs more frequently in young (<50 years) non-
Hispanic black and Hispanic/Latina women. It is considered the most aggressive subtype
of breast cancer, although, recently, immune infiltrate has been associated with long-term
survival, lower risk of death and recurrence, and response to neoadjuvant chemotherapy.
The aim of this review was to evaluate the clinical impact of the immune infiltrate in TNBC
by discussing whether its prognostic value varies across different populations. A
comprehensive systematic search in databases such as PubMed and Web of Science
was conducted to include papers focused on tumor-infiltrating lymphocytes (TILs) in
TNBC in different population groups and that were published before January 2021. TNBC
patients with higher levels of TILs had longer overall survival and disease-free survival
times compared with TNBC patients with low TIL levels. Similar results were observed for
CD4+, CD8+ TIL populations. On the other hand, patients with high TIL levels showed a
higher rate of pathological complete response regardless of the population group (Asian,
European, and American). These results altogether suggest that TIL subpopulations might
have a prognostic role in TNBC, but the underlying mechanism needs to be elucidated.
Although the prognosis value of TILs was not found different between the population
groups analyzed in the revised literature, further studies including underrepresented
populations with different genetic ancestries are still necessary to conclude in this regard.

Keywords: triple-negative breast cancer, tumor-infiltrating lymphocytes, prognosis, predictive, population groups

INTRODUCTION

Breast cancer (BC) is a heterogeneous disease in its phenotypic and genomic features (1). Four
intrinsic subtypes, luminal A, luminal B, HER2-enriched, and triple negative, have been reported,
each one characterized by differences in the transcriptional profile and clinical behavior (2-4). The
prevalence of these subtypes is variable between population groups (5, 6). Several studies have
agreed that the triple-negative subtype is more prevalent in NHB and in H/L compared with non-
Hispanic white NHW) women (7-10).
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TILs and Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is characterized by the
lack of expression of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2). It
constitutes 10-20% of all breast cancers and occurs more frequently
in young women (<50 years) (11, 12). It is the most aggressive
subtype of BC considering that it presents with a larger tumor size
and a higher histological grade at the time of diagnosis and has a
high expression of cell proliferation genes, which correlated with
their clinical characteristics and poor prognosis (13).

TNBC has been described as a transcriptionally heterogeneous
subtype (14-16). Lehmann ef al. (14) identified 6 subtypes through
gene expression analysis: basal-like 1 (BL1) characterized by a high
expression of genes involved in cell cycle and cellular division, basal-
like 2 (BL2) that expresses genes that enrich the signaling by growth
factors such as MET and EGFR and expresses myoepithelial
markers, immunomodulator (IM) subtype that expresses genes
involved in the signaling of immune cells and cytokine-mediated
translation pathways, and the mesenchymal (M) and mesenchymal
stem-like (MSL) subtypes which display similarities in terms of the
high expression of genes involved in cell motility, epithelial-
mesenchymal transition pathways, and growth factors (such as,
NOTCH, PDGFR, FGFR, and TGFbeta dysregulation). However,
the MSL subtype differs from the M subtype as it presents a lower
expression of cell proliferation genes. Finally, the luminal androgen
receptor (LAR) subtype presents a high expression of genes that
participate mainly in hormonally regulated pathways, for example,
by the androgen receptor (AR) (14, 17-19).

An important characteristic of TNBC is that it is the most
immunogenic BC subtype. Its immune infiltrate has been
associated with both the control of tumor cells and with the
processes of tumor growth and metastasis (20-22). It has been
likewise associated with the effectiveness of neoadjuvant and
adjuvant therapy, thus correlating with the clinical outcome of
the disease (23).

The variability in the immune infiltrate and its clinical impact
in TNBC has been studied mainly in NHW women, but it is
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unknown how it may vary according to the population group.
The aim of this review was to systematize those studies that have
evaluated the clinical impact of the immune infiltrate in TNBC,
discussing whether there are differences in its prognostic value
based on the population groups.

TUMOR MICROENVIRONMENT
AND IMMUNE INFILTRATE IN
BREAST CANCER

The neoplastic progression of BC at the cellular level depends on
the interaction of the tumor microenvironment (TME) and the
adjacent immune system, which can act to promote or suppress
the tumor growth and invasion (24, 25).

TME is composed of tumor cells and different stromal cells,
such as fibroblasts, mesenchymal cells, immune cells, and
adipocytes. These stromal cells secrete growth factors,
cytokines, chemokines, and exosomes, molecules that maintain
a constant interaction among cells within the TME (26, 27).
Tumor cells are the only ones that have mutations within the
TME and can promote epigenetic modifications on non-tumor
cells. These modifications facilitate tumoral invasion, survival,
and growth in an autocrine and paracrine way (25) (Figure 1).

COMPOSITION OF TUMOR-INFILTRATING
LYMPHOCYTES IN TNBC

The antitumor immune response in the TME is mainly driven by
tumor-infiltrating lymphocytes (TILS) which, according to their
location in the TME, are divided into stromal (sTILs) and
intratumoral (iTILs). Most of the lymphocytes are sTILs,
which infiltrate the tissue adjacent to the tumor and are
considered the real tumor-infiltrating cells; on the other hand,
iTILs are in direct contact with the tumor, actively infiltrating it

Myeloid-derived

0 M1 macrophages

T cells suppressor cells
! (MDSCs) S
. M2 macrophages . Natural Killer @ Becel & Tumor cel tromal cel
FIGURE 1 | Composition of tumor microenvironment in breast cancer.
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into nests (28). It is noteworthy that different subtypes of TILs
may have inhibitory or stimulatory effects on tumor progression
(29)—for instance, CD8+ T cells show the highest antitumor
activity that is mediated by interferon-gamma (IFN-y), perforin,
and granzyme B secretion (30). In BC, a high number of CD8+ T
cells has been associated with a better prognosis and response to
neoadjuvant treatment (31). On the other hand, T helper cells
CD4+ have the function of enhancing the adaptive immune
response by increasing the infiltration and the effector functions
of CD8+ T cells and other immune cells (32). Regulatory T cells
(Treg), a subpopulation of CD4+ T cells, are positive for FOXP3
and CD25 markers and participate in immune escape by
suppressing the antitumor activity of CD8+ T cells (33). The
presence of Treg cells within the TME is commonly associated
with a poor prognosis in cancer (34). However, recent studies
have demonstrated the opposite in TNBC, where the presence of
Tregs in the TME was associated with longer overall survival
(OS) and disease-free survival (DFS) (35, 36).

B cells can produce specific antibodies for antigens present in
tumor cells; however, it has not yet been demonstrated if these
cells have the same degree of clinical significance as T cells (37).
The presence of B cells in the tumor stroma has been correlated
with longer DFS and metastasis-free survival (MES) in TNBC
patients (38).

The role of both functionally distinct macrophage
subpopulations M1 and M2 has been reported. Ml
macrophages exhibit antitumoral activity by activating natural
killer (NK) cells and Thl cells (IFN- v, IL-2, and TNF-alpha
producers), which contributes to the activation of CD8+ T cells
(39). In contrast, M2 macrophages or tumor-associated
macrophages (TAMs) favor tumor growth and progression by
facilitating tumor invasion and angiogenesis, thus being
associated with a poor prognosis in patients with TNBC (40, 41).

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
group of cells with immunosuppressive activity, composed mainly
of granulocytes and monocytes. The MDSCs have been associated
with tumoral progression through the production of
immunosuppressive and pro-angiogenic cytokines that inhibit the
immune response of antitumor T cells (42, 43). It should be noted
that the role of MDSCs specifically in TNBC patients remains
relatively unexplored (44, 45).

NK cells recognize and delete tumor cells lacking MHC-1
expression on their cell surface, whose expression is necessary for
the activation of CD8 + T cells (46). Recent studies have shown
that NK cells are associated with a better prognosis in the early
stages of TNBC (47). More studies are needed.

TILS AS PROGNOSTIC AND PREDICTIVE
BIOMARKER IN TRIPLE-NEGATIVE
BREAST CANCER

In the last few years, the predictive and prognostic role of TILs in
TNBC have been studied. The relations between the composition of
TILs subpopulations, clinico-pathological characteristics, and the
survival of patients have likewise been explored (Table 1) (29, 62).

Studies carried out in Asian populations mostly showed that
TILs, when evaluated in resected specimens, have a positive impact
on the prognosis of TNBC (48) (50). Some studies have 95% CI with
OS (HR: 0.493, 95% CI: 0.232-1.047, p = 0.066) when patients with
high TILs (210%) vs. low TILs (<10%) were compared (48). Hida et
al. (50) reported a poorer prognosis in TNBC patients with low TIL
levels (<10%) compared with intermediate/high-TIL groups (>50%)
(HR: 2.68, 95% CI: 1.13-5.95). This association remained significant
in the multivariate model (HR: 2.49, 95% CI: 1.05-5.55). Moreover,
TILs analyzed at the biopsy, before neoadjuvant chemotherapy,
were found to be associated with pCR rate (p = 0.024). Despite
previous results, opposite results have also been reported where
TILs did not correlate with survival outcomes (52).

When TILs have been evaluated in biopsies, a lower
likelihood of recurrence has been observed in patients with a
high TIL infiltration (=10%) compared with those with a low TIL
infiltration (<10%) in univariate (HR: 0.18, 95% CI: 0.05-0.58)
and multivariate analyses (HR: 0.24, 95% CI: 0.07-0.82). In
addition, patients with higher TIL infiltration presented with
higher pCR rates (p = 0.013) when compared with patients with
low TIL infiltration (49) Similarly, Ruan et al. (51) reported a
significant association between the percentage of TILs and pCR
in a model adjusted for age, lymph-vascular invasion, and Ki67,
both for iTILs (OR: 1.06, 95% CI: 1.00-1.12, p = 0.04, per 10%
increase) and for sTILs (OR: 1.05, 95% CI: 1.02-1.09, p = 0.006,
per 10% increase). When the optimal thresholds for TILs were
analyzed, the results suggested that 20% is a better cutoft to
determine high or low sTILs infiltration since it seems to be a
better predictor of pCR (OR 2.85, 95% CI: 1.38-5.90, p = 0.005).

The differences in the prognosis impact of TILs between
studies might be related to the clinical stage of the patients
included. Presumably, there are lower amounts of tumor
antigens among patients at earlier stages (31, 52), which could
lead to misinterpretations regarding the relationship of TILs and
clinico-pathological variables and outcomes of interest, as few
studies have assessed the prognosis impact of TILs in early-stage
TNBC patients.

Studies in a European population show similar findings to
those in the Asian population. A study in France that evaluated
TILs in the primary tumor reported a 15% reduction in the risk
of death for every 10% of increase in sTIL levels (HR: 0.85, 95%
CI: 0.74-0.99) and 18% reduction in the risk of death for every
10% of increase in iTILs (HR: 0.82, 95% CI: 0.68-0.99) in the
multivariate analysis adjusted for the grade of lymph nodes
(LN) (53).

In Italy, two studies were carried out in a larger number of
TNBC patients and analyzed TILs in the resected specimen (54,
55). The first study included 897 women and reported TILs as an
independent prognostic factor for a longer distant disease-free
survival (HR: 0.76, 95% CI: 0.69-0.84, for every 10% increase in
TILs) and longer OS (HR: 0.76, 95% CI: 0.68-0.84, for every 10%
increase in TILs) in a model adjusted for age at diagnosis, lymph
node stage, peritumoral vascular invasion, tumor size and grade,
and Ki67 (54). The second study that evaluated sTILs in the
resected specimen and dichotomized patients in having TILs
>50% vs. patients with TILs <50% likewise found a 13% risk
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TABLE 1 | Outcomes from studies that analyzed tumor-infiltrating lymphocytes (TILs) according to the region of origin.

Reference Population n (triple- Specimen TiLs Cut-off value  Outcomes for Outcomes for Adjustment variables
negative evaluated evaluated univariate multivariate
breast analysis analysis
cancer)
(48) Asian 308 Resected Stromal >10 vs. <10% No specified OS (HR: Tumor size, LN metastasis, LVI, and histologic
specimen 0.498, 95%  grade
Cl: 0.232-
1.047)
DFS (HR:
0.429, 95%
Cl: 0.215-
0.859)
(49) Asian 61 Biopsy Stromal High (=10%) vs. For DFS (HR: DFS (HR: Pathological response
low (<10%) 0.18,95% CI:  0.24, 95% Cl:
0.05-0.58) 0.07-0.82)
(50) Asian 381 Resected Stromal Low (<10%) vs. RFS (HR: RFS (HR: Nodal status
specimen Intermediate (10~ 2.68, 95% Cl:  2.49, 95% Cl:
50%) + high 1.13-5.95) 1.05-5.55)
(>50%)
(51) Asian 166 Biopsy Stromal Continuous (per ~ pCR for sTILS  pCR for sTILS  Age, histological grade, tumor size, nodal
10% increase) (OR: 1.07, (OR: 1.05, status, LVI, Ki67 index, and NAC
95% Cl: 1.03- 95% Cl: 1.02—
1.10) 1.09)
Intratumoral pCR for iTILS ~ pCR for iTILs
(OR: 1.10, (OR: 1.086,
95% Cl: 1.04— 95% Cl: 1.00-
1.16) 1.12)
(52) Asian 121 Resected Stromal Continuous (per DFS for sTILs  DFS for sTILs  Age, T stage, and nodal status
specimen 10% increase) (HR: 0.75, (HR: 0.99,
95% Cl: 0.28—- 95% Cl: 0.97-
2.03) 1.01)
Intratumoral DFS for iTILs OS for sTILs
(HR: 0.66, (HR: 0.99,
95% Cl: 0.24— 95% Cl: 0.97—
1.83) 1.02)
(53) European 199 Biopsy Stromal Continuous (per OS for sTlLs OS for sTlLs ~ Grade, LN status, and treatment arm
10% increase) (HR: 0.89, (HR: 0.85,
95% Cl: 0.78- 95% Cl: 0.74—
1.02) 0.99)
Intratumoral OS for iTlLs OS for iTlLs
(HR: 0.883, (HR: 0.82,
95% Cl: 0.69- 95% Cl: 0.68-
0.99) 0.99)
(54) European 897 Resected Stromal Continuous (per DDFS (HR: DDFS (HR:  Age, LN status, tumor size, tumor grade,
specimen 10% increase) 0.79,95% Cl:  0.76, 95% Cl:  peritumoral vascular invasion, and Ki67 index
0.74-0.86) 0.69-0.84)
OS (HR: 0.79, OS (HR: 0.76,
95% Cl: 0.72— 95% Cl: 0.68-
0.86) 0.84)
(55) European 647 Resected Stromal >50 vs. < 50% BCFI (HR: BCFI (HR: Age, nodal status, tumor size, and tumor
specimen 0.87,95% Cl:  0.87,95% Cl:  grade
0.79-0.95) 0.79-0.96)
DFS (HR: DFS (HR: 0.9,
0.89, 95% Cl:  95% Cl: 0.82—
0.82-0.97) 0.97)
DRFI (HR: DRFI (HR:
0.84,95% CI:  0.83, 95% Cl:
0.74-0.94) 0.74-0.94)
OS (HR: 0.83, OS (HR: 0.83,
95% Cl: 0.74- 95% Cl: 0.74—
0.92) 0.93)
(56) European 607 Biopsy Stromal Continuous (per DFS (HR: DFS (HR: Age, T stage, N stage, histopathological type,
10% increase) 0.93,95% CI:  0.95, 95% Cl:  tumor grading, and molecular subtype
0.87-0.98) 0.89-1.01)

(Continued)
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TABLE 1 | Continued

Reference Population n (triple- Specimen TILs Cut-off value  Outcomes for Outcomes for Adjustment variables
negative evaluated evaluated univariate multivariate
breast analysis analysis
cancer)

OS (HR: 0.92, OS (HR: 0.95,
95% Cl: 0.86- 95% Cl: 0.88-

0.99) 1.03)
pPCR (HR: pCR (OR:
1.16,95% Cl:  1.17,95% Cl:
1.10-1.22) 1.11-1.24)
(57) European 314 Biopsy Stromal Continuous (per pCR (HR: pCR (HR: LPBC, tumor grade, T stage, nodal status,

10% increase) 1.15,95% Cl:  1.17,95% Cl:  therapy, and age
1.05-1.26) 1.06-1.30)

(58) European 304 Residual Stromal Continuous (per ~ OS (HR: 0.79, OS sTILs (HR: Age, stage, histotype, grade, nodal status
disease 10% increase) 95% Cl: 0.71— 0.86, 95% Cl:  after chemotherapy, residual tumor size, neo,
0.89) 0.77-0.97)  and neo + adj

OSTILs (HR:  OS iTILs (HR:
0.78,95% Cl:  0.86, 95% Cl:
0.68-0.89) 0.75-0.99)

Intratumoral MFS sTILs MFS sTILs
(HR: 0.79, (HR: 0.86,
95% Cl: 0.71—-  95% Cl: 0.77-
0.88) 0.96)
MFS iTlLs MFS iTILs
(HR: 0.77, (HR: 0.85,
95% Cl: 0.68- 95% Cl: 0.75-
0.88) 0.98)
(59) European 375 Residual Stromal Continuous (per RFS (HR: RFS (HR: Age, pretreatment tumor size, pretreatment
disease 10% increase) 0.83,95% CI:  0.86, 95% Cl: nodal status, and RCB class
0.76-0.90) 0.78-0.93)

OS (HR: 0.82, OS (HR: 0.85,
95% Cl: 0.75—- 95% Cl: 0.77-
0.89) 0.94)
(21) Australian 134 Biopsy Stromal Continuous (per DDFS (HR: DDFS (HR:  Tumor size, histological grade, nodal status,
10% increase) 0.79,95% Cl:  0.77,95% Cl: and age
0.64-0.98) 0.61-0.98)
OS (HR: 0.80, OS (HR: 0.81,
95% Cl: 0.62- 95% Cl: 0.61-

1.03) 1.1)
(22) United 481 Resected Stromal Continuous (per DRFI (HR: DFS (HR: Tumor size, node status, and age
States specimen 10% increase) 0.82,95% Cl:  0.84, 95% ClI:
0.68-0.99) 0.74-0.95)

OS (HR: 0.81,  DRFI (HR:
95% Cl: 0.69- 0.81, 95% ClI:

0.95) 0.68-0.97)
OS (HR: 0.79,
95% Cl: 0.67—
0.92)
(60) United 157 Resected Stromal Continuous DFS (HR: DFS (HR: LV invasion and Nottingham histologic grade
States specimen 0.96, 95% CI:  0.95, 95% Cl:  and stage

0.93-1.00) 0.91-1.00)
OS (HR: 0.96, OS (HR: 0.95,
95% Cl: 0.93- 95% Cl: 0.91-

1.00) 1.00)
61) United 605 Resected Stromal Continuous (per IDFS (HR: IDFS (HR: Age, menopausal status, tumor size, nodal
States specimen 10% increase) 0.89, 95% Cl:  0.90, 95% Cl:  status, Nottingham grade, Ki67 index, LPBC,
0.83-0.95) 0.86-0.94)  histopathology subtypes, and type of breast

surgery

OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival; pCR, pathological complete response; DDFS, distant disease-free survival; BCFl, BC-free interval; DRFI,
distant recurrence-free interval; MFS, metastasis-free survival; IDFS, invasive disease-free survival; LN, lymph nodes; LVI, lymph-vascular invasion;, NAC, neoadjuvant chemotherapy;
LPBC, lymphocyte-predominant BC.

Frontiers in Oncology | www.frontiersin.org 51 July 2022 | Volume 12 | Article 910976


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Huertas-Caro et al.

TILs and Triple-Negative Breast Cancer

reduction in BC-free interval (HR: 0.87, 95% CI: 0.79-0.96,
p = 0.006), 10% risk reduction for DFS (HR: 0.9, 95% CI:
0.82-0.97, p = 0.01), 17% for distance recurrence-free interval
(HR: 0.83; 95% CI 0.74-0.94, p = 0.004) in a model adjusted for
age, nodal status, tumor size, and tumor grade (55). A study
carried out in France and Italy reported that the high presence of
TILs in the residual disease after neoadjuvant treatment had a
positive impact on MES (sTIL: HR = 0.86, 95% CI: 0.77-0.96,
p = 0.01; iTILs: HR: 0.85, 95% CI: 0.75-0.98, p = 0.02, per 10%
increase in TILs) and longer OS (sTIL: HR: 0.86, 95% CI:
0.77-0.97, p = 0.01; iTILs: HR: 0.86, 95% CI: 0.75-0.99,
p = 0.03, per 10% increase in TILs). The 5-year OS rate was
91% (95% CI, 68 to 97%) for patients with higher TILs in residual
disease compared with 55% (95% CI, 48 to 61%) for patients with
low TIL levels (58). Similarly, Luen et al. (59) found that a higher
percentage of TILs in residual disease was associated with a
longer recurrence-free survival (RFS) (HR: 0.86, 95% CI:
0.78-0.93, per 10% increase in TILs) and a longer OS (HR:
0.85, 95% CI: 0.77-0.94, per 10% increase in TILs).

Denkert et al. (56) also reported in a model adjusted for clinical
parameters that patients with high TIL levels in the biopsy have
longer DFS (HR: 0.93, 95% CI: 0.87-0.98, p = 0.011) and longer OS
(HR: 0.92, 95% CI: 0.86-0.99, p = 0.032). However, when pCR was
included in the multivariate analysis for both outcomes, the TILs
were no longer significantly associated (HR: 0.95, 95% CI: 0.89-1.01,
p = 0.11 for DFS, HR: 0.95, 95% CI: 0.88-1.03, p = 0.24 for OS).
They also analyzed if TILs are predictors for pCR in TNBC and
found a positive association for sTILs (OR: 1.17, 95% CI: 1.11-1.24,
per 10% increase in sTILs). Similar results were reported by the
same authors in a different study (57). A different effect of TILs
according to chemotherapy regimen has been observed. TILs
conferred the greatest survival benefit in patients treated with
cyclophosphamide, methotrexate, and 5-fluorouracil +
cyclophosphamide doxorubicin regimen (HR: 0.60, 95% CI: 0, 48
to 0.76) (54). More studies are needed to explore differences in the
prognosis value of TILs according to the chemotherapy regimen.

The relationship between higher TIL levels and higher pCR
rates could be explained by the degree of antitumor immune
response by TILs against cancer cells that act synergistically with
the natural-immunity-restoring antitumor response (20, 22). In
addition, it has been demonstrated that chemotherapy treatment
can promote the antitumor immune response due to the
production of danger signals—danger-associated molecular
patterns—during cell death. The expression of calreticulin
(CALR) and release box 1 of the high mobility group
(HMGBI) also boosts this antitumor immune response (63).
All these could be together related to the presence of TILs in
residual disease (58), and thus a good prognosis was reported for
TILs in residual disease (64).

In the Australian population, an analysis that included early-
stage TNBC patients showed that for every 10% increase in the
presence of TILs in the primary tissue, there was a 13% decrease
in the risk of distant relapse (HR: 0.77, 95% CIL: 0.61 -0.98,
p = 0.02) in a model adjusted for clinico-pathological
characteristics. No statistically significant differences were
observed for OS (21).

In the United States, Adams and colleagues (22) reported
that for every 10% increase in sTILs evaluated in surgical
specimens, there was a 16% reduction in the risk of recurrence
(HR: 0.84, 95% CI: 0.74-0.95, p = 0.005) and a 21% reduction
in the risk of death (HR: 0.79, 95% CI: 0.67-0.92). In the same
direction, Krishnamurti and colleagues (60) showed that
higher peripheral TILs were associated with a better survival
(HR: 0.95, 95% CI: 0.91-1.00, p = 0.0354) and less chance of
recurrence (HR: 0.95, 95% CI: 0.91-1.00, p = 0.0314).
Leon-Ferre et al. (61) reported a similar association between
sTILs and invasive disease-free survival in patients with
TNBC diagnosed at early stages (HR: 0.90, 95% CI:
0.86-0.94, per 10% increment in TILs).

The case-only study that includes 86 Peruvian women with
TNBC observed a statistically significant association between TIL
density and a higher tumor grade (p = 0.006), but no significant
association was found regarding the relationship between sTILs and
survival (65). More studies are needed in the Latino population.

THE SUBPOPULATION OF TILS AND ITS
PROGNOSTIC VALUE

Due to the relevance of TILs in TNBC, in recent years, an
attempt has been made to elucidate the role of the different TIL
subpopulations, in particular, the most recurrent ones such as
CD8, CD4, and FOXP3 (Table 2).

A study conducted in the Asian population in which the number
of TILs CD8+ and TILs FOXP3+ was analyzed in biopsy and
residual tissue reported that a high rate of change in the CD8
+/FOXP3+ ratio was an independent prognostic factor for
recurrence and survival (66). In a different study, high levels of
iTILs CD8+ were associated with DFS (HR: 0.48, 95% CI: 0.27-0.83)
but not with OS (HR: 0.59, 95% CI: 0.32-1.07). On the other hand,
patients with higher levels of sTILs CD4+ presented longer DFS (HR:
0.46, 95% CI: 0.26-0.82) and OS (HR: 0.44, 95% CI: 0.24-0,83) (67).
Regarding clinico-pathological variables, a correlation between the
immune infiltrate and age at diagnosis has also been reported. The
highest rates of the CD8+/FOXP3+ ratio were observed more
frequently in women diagnosed at an early age (p = 0.003),
specifically when they are still in a premenopausal state (p =
0.002) (68). Moreover, a high CD8+/FOXP3+ ratio was found as a
strong predictor of pCR (OR: 5.32, 95% CI: 1.62 to 19.98) (68).

Studies in less common subpopulations, such as B-cell (CD20+)
and Tregs (FOXP3+/CD3+), have found them positively associated
to better outcomes. A Kaplan-Meier analysis showed that patients
with higher intratumoral Treg presented longer DFES (p = 0.001). A
multivariate analysis confirmed this association (HR: 0.33, 95% CI:
0.165 to 0.659). High intratumoral Treg infiltration was also found
to be associated with OS (HR: 0.49, 95% CI: 0.25-0.95).
Additionally, patients with higher CD20+ B-cell infiltration in
both the intratumoral (DFS: p = 0.015; OS: p = 0.020) and
stromal (DFS: p = 0.012; OS: p = 0.031) compartments presented
better clinical outcomes (35). Tian and colleagues (69), in a Chinese
study, categorized patients according to the DFS times and reported
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TABLE 2 | Outcomes from studies that analyzed tumor-infiltrating lymphocytes (TIL) subpopulations according to the region of origin.

Reference Population n Specimen Biomarker Outcomes for Outcomes for Adjustment variables Methodology
(triple-negative evaluated analyzed univariate analy- multivariate
breast cancer) sis analysis
(66) Asian 39 Biopsy and CRF CRF low vs. high  CRF low vs. high  Pathological response Tissue
residual RFS (HR: 11.420, RFS (HR: 13.021, sections
disease 95% ClI: 2.215- 95% ClI: 2.241-
208.742) 258.136)
OS (HR: 9.847, OS (HR: 8.346,
95% ClI: 1.883- 95% ClI: 1.5638-
180.764) 155.128)
67) Asian 164 Biopsy CcD8 None reported CD8 iTILs high vs. Tumor size, LN stage TMA
low
DFS (HR: 0.48,
95% Cl: 0.27-
0.83)
OS (HR: 0.59,
95% ClI: 0.32—
1.07)
CD4 CD4 iTILs high vs.
low
DFS (HR: 0.62,
95% ClI: 0.36—
1.07)
OS (HR: 0.55,
95% ClI: 0.30-
1.01)
CD4 sTILs high
vs. low
DFS (HR: 0.46,
95% ClI: 0.26—
0.82)
OS (HR: 0.44,
95% ClI: 0.24—
0.83)
(68) Asian 110 Biopsy cD8 CDB8/FOXPS (high  CD8/FOXPS (high Age, menopausal status, tumor Tissue
vs. low) vs. low) size, TNBC subtype, Ki67, CD8, sections
FOXP3 PCR (HR: 4.93, pCR (HR: 5.32, and VPR
95% ClI: 1.82— 95% ClI: 1.62—
15.09) 19.98)
(35) Asian 164 Biopsy Treg Intratumoral Treg  Intratumoral Treg  Tumor size, nuclear grade, and age TMA
(high vs. low) (high vs. Low)
OS (HR: 0.59, OS (HR: 0.49,
95% ClI: 0.33— 95% ClI: 0.25—
1.04) 0.95)
DFS (HR: 0.49, DFS (HR: 0.33,
95% ClI: 0.20— 95% Cl: 0.17-
0.83) 0.66)
(69) Asian 278 Resected FOXP3 Stromal FOXP3 Stromal FOXP3  TNM stage, p53 status, EGFR Tissue
specimen (high vs. low) (high vs. low) status, Scd8, TlLs, Sfoxp3, and sections
OS (HR: 1.743, OS (HR: 1.712,  prognostic risk score
95% Cl: 1.111- 95% ClI: 1.085-
2.734) 2.702)
(70) European 179 Resected cD8 High vs. low High vs. low Tumor size Tissue
specimen OS (HR: 2.1,95% OS (HR: 1.8, 95% sections
Cl: 1.1-4.5) Cl: 1.1-4.4)
(71) European 213 Biopsy TlLs None reported Average TILs CDg, CD8, FOXPS, CD20, and Tissue
BCSS (HR: 0.3, CD68 sections
95% Cl: 0.1-0.8)
(72) European 175 Resected FOXP3 None reported High vs. low N/A TMA
specimen RFS (HR: 0.371,
95% CI: 0.213-
0.644)
(Continued)
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TABLE 2 | Continued

Reference Population n Specimen Biomarker  Outcomes for Outcomes for Adjustment variables Methodology
(triple-negative evaluated analyzed univariate analy- multivariate
breast cancer) sis analysis
DSS (HR: 0.416,
95% Cl: 0.231-
0.750)
(73) United 183 None FOXP3 High vs. low None reported ~ N/A TMA
States specified OSHR =127,
95% Cl: 4.5-35.6)
CD163 High vs. low
OS (HR = 3.2,
95% Cl: 1.7-6.2)
(74) United 160 Resected CcD8 High vs. low in AA  High vs. low in AA  Age TMA
States specimen OS (HR: 0.51, OS (HR: 0.51,
95% Cl: 0.25— 95% Cl: 0.25—
1.03) 1.04)

OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival; pCR, pathological complete response; BSCC, BC-specific survival; LN, lymph nodes; AA, African American.

that patients in the DFS 5 years group had higher NK cell stromal
infiltration (p < 0.001) and low stromal TAM infiltration
(p = 0.004). Stromal FOXP3+ TILs were found as an independent
prognostic factor for OS (sTILs FOXP3+ low/high HR: 1.712, 95%
CIL: 1.085-2.702) (69).

Regarding the studies in a European population, it was
observed that patients with low TIL CD8+ infiltration were
associated with a higher risk of death from BC (HR: 2.2, 95%
CI: 1.0-3.8) (70). On the contrary, Althobiti and colleagues (71)
only found TILs as an independent predictor of good prognosis
in a model that included various immune cells, such as CD3,
CD8, FOXP3, CD20, and CD68. West and colleagues (72)
reported that a high infiltration of TILs FOXP3+ was strongly
associated with better outcomes (RFS: HR = 0.371, 95% CI:
0.213-0.644; p = 0.0004) and disease-specific survival (HR =
0.416, 95%: CI10.231-0.750; p = 0.0036). In contrast, a study from
the United States reported that a high expression of FOXP3 and
CD163 was associated to a worse OS (HR = 12.7, 95% CI: 4.5-
35.6 and HR = 3.2, 95% CI: 1.7-6.2, respectively) (73).

Few studies have analyzed the differences in the tumor
microenvironment between European American (EA) women
and African American (AA) women, and the results have been
contradictory. Preliminary data from Wright and colleagues (75)
found higher levels of TILs in early-stage (I-II) tumors from AA
patients compared with EA (p = 0.019), but this difference was
not observed for late-stage (III-IV) tumors. TILs also correlated
negatively with AR expression and positively with PD-L1
expression. The analysis of CD8+ T cell infiltration in AA and
EA women revealed that AAs with high CD8 infiltration have a
trend towards better survival compared with AA with low CD8
infiltration (HR: 0.51, 95% CI: 0.25-1.04) (74). On the other
hand, a study that analyzed The Cancer Genome Atlas database
and compared the immune gene expression between AA and EA
women did not find large-scale immunogenic differences (76).

TILs have a useful prognostic role in TNBC based on TIL
populations. Nevertheless, the immune infiltrate phenotype and its
prognostic value require better understanding. Thus, it is
necessary to include other immune cell populations in future

studies. The association reported between the high Treg FOXP3
infiltrate and better DFS and OS in TNBC is interesting
considering that Treg has been associated with a poor prognosis
as it can suppress antigen-presenting cells and other immune cells,
events that are regulated through the secretion of inhibitory
cytokines, granzyme B, and perforin (77). On the contrary, the
favorable prognosis may be explained by the positive correlation
between FOXP3 infiltration and TILs CDS8+ infiltration (68).
There is a need to clarify the prognostic role of Treg FOXP3+ in
TNBC tumors.

EXPRESSION OF MEMBRANE MARKERS
IN THE IMMUNE INFILTRATE

In addition to the different immune cell’s populations mentioned
before, there are other biomarkers of special interest, such as the
expression of PD-L1. Studies in different populations have
consistently showed a correlation between a high expression of
PD-L1 in tumor cells and higher levels of sTILs (78-80).

Regarding the impact of PD-L1 in a patient’s prognosis,
controversial results have been published. A study from Japan
found PD-L1 positive/TILs low expre