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Editorial on the Research Topic

Tumormicroenvironment, inflammation, and resistance to immunotherapies
The tumor microenvironment (TME) refers to the complex ecosystem surrounding a

tumor, including stromal cells, blood vessels, extracellular matrix, and different types of

immune cells such as T-cells, B-cells, dendritic cells, neutrophils, natural killer cells,

myeloid-derived suppressor cells, and tumor-associated macrophages. Cancer cells exploit

the inflammatory mechanisms present in the TME to promote their growth and survival.

In turn, immunotherapies, including immune checkpoint inhibition (ICI), adoptive cell

transfer (ACT), and genetically-modified T-cell receptor (TCR) and chimeric antigen

receptor (CAR-T) based therapies, aim to modulate the immune system to better recognize

and eliminate cancer cells. However, the molecular profile of cancer cells affect the TME,

hampering the response to these therapies. The causes of immunotherapy resistance

remain unclear, but immune dysregulation within the TME, the tumor mutational

landscape, inflammation, hypoxia, and epithelial-mesenchymal transition (EMT) have

been implicated. Understanding the key immunosuppressive and resistance mechanisms

associated with the TME is crucial to develop new therapeutic strategies, limit immune

escape, and tailor effective treatments.

This Research Topic aims to provide new insights into the interplay of cancer cells and

immune cells within the TME and its impact on resistance to immunotherapeutic approaches.

One of the major mechanisms by which tumor cells can shape the tumor-immune

microenvironment in favor of tumor progression is through increased infiltration and

polarization of immunosuppressive cells. Here, Cai et al. demonstrated that cancer cell lines

release branched-chain a-ketoacids (BCKAs) that affect macrophage polarization in a

MCT1-dependent manner whereby a-ketoisocaproate (KIC) and a-keto-b-methylvalerate
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(KMV) induce pro-tumoral polarization of macrophages whereas

a-ketoisovalerate (KIV) exert a pro-inflammatory effect on

macrophages, suggesting that cancer-derived BCKAs should be

selectively targeted to optimize the anti-tumor immune response.

In turn, Qin et al. found that the serine protease PRSS23 is

associated with worse prognosis in gastric cancer, supports tumor

cell proliferation and invasion, and promotes infiltration of

immunosuppressive M2-type macrophages through increased

expression and secretion of FGF2. On the other hand, Geng et al.

demonstrated how expression of the tumor suppressor RARRES1

could be exploited to enhance the recruitment of anti-tumorigenic

type 1 macrophages and reduce the viability of kidney renal clear

cell carcinoma cells (KIRC). Although KIRC is the most frequently

diagnosed subtype of renal cell carcinoma, the need for diagnostic

biomarkers remains unmet and was addressed by Wang et al. who

established a 13-gene diagnostic model using cell death-related

genes. While NK cells been mostly investigated in relation to

their direct anti-tumorigenic functions, Lindsay et al. show that

NK cells also play an important role in the maturation of antigen

presenting cells during immune responses to early-stage tumors,

reducing the development of anergic T cells and improving tumor

control and T cell responses.

Given the complexity and dynamic nature of the tumor-immune

microenvironment, major efforts are invested towards the

identification of biomarkers that can predict the immune

composition and contexture of tumors. For instance, Zhong et al.

found that elevated expression of FAM110A was associated with the

expression of multiple immune checkpoint genes and abundance of

tumor-infiltrating immune cells across multiple types of cancer,

especially in liver hepatocellular carcinoma. The diverse roles of

immune checkpoints in different immune cells were reviewed in

more detail by Guo et al. who highlighted the importance of gaining a

better understanding of immune checkpoint expression in relation to

immune checkpoint blockade. Further, An et al. defined a gene

signature score for tertiary lymphoid structures in bladder cancer

that correlates with immune cell infiltration, and predicts clinical

outcome and response to immunotherapy and chemotherapy. In a

second bladder cancer study in this Research Topic, Chang et al.

identified a novel immune and inflammatory responses signature

(IIRS) that could independently predict overall survival,

immunotherapy and chemotherapy response and classify patients

with poor clinical and histopathological features. In addition,

Georgoulias and Zaravinos examined the expression of various

immune receptors, immune-cell fractions, immune-related

signatures and mutational signatures across cutaneous melanomas

with diverse tumor mutation burdens (TMB) and found that patients

with low TMB who are considered to be less responsive to

immunotherapy could still benefit from immune-based

interventions thanks to pre-existing T-cell immunity. Furthermore,

Fang et al. identified a prognostic gene signature associated with iron-

dependent regulated cell death, ferroptosis, in triple negative breast

cancer which strongly correlated with immunological features and

could predict response to anti-cancer treatment. Finally, Kimm et al.

observed alterations in the composition of monocyte subpopulations

and abundance of monocytic myeloid-derived suppressor cells

(mMDSCs) following interstitial brachytherapy or radiofrequency
Frontiers in Oncology 026
ablation of hepatocellular carcinoma, suggesting that liquid biopsy of

monocytes may provide information on the inflammatory response

to local ablation.

In addition to modulation of the cellular components of the

tumor microenvironment, dysregulation of the extracellular matrix

can impact anti-tumor immunity. Here, Donelan et al. discuss how

hyaluronan-enriched stroma contributes to tumor growth and

progression through the promotion of cancer inflammation,

angiogenesis and tumor-associated immune suppression. In this

context, Nath et al. demonstrated that inflammation in the bone

marrow of N-ethyl-N-nitrosourea-induced leukemic mice could be

reduced by treatment with ethanolic olive leaves extract, thereby

decreasing the expression of anti-apoptotic proteins.

Overall, the studies in this Research Topic collectively improve

our current understanding of the key mechanisms involved in

resistance to immunotherapeutic approaches and highlight

potential prognostic biomarkers for treatment response. These

findings can inform the development of new therapeutic

strategies to overcome resistance and improve patient outcomes.
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Serine protease PRSS23 drives
gastric cancer by enhancing
tumor associated macrophage
infiltration via FGF2

Shanshan Qin1,2*, Zidi Wang2, Congcong Huang1,2,
Pan Huang1,2 and Dandan Li1,2*

1Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei
University of Medicine, Shiyan, China, 2Laboratory of Tumor Biology, Academy of Bio-Medicine
Research, Hubei University of Medicine, Shiyan, China
Serine proteases has been considered to be closely associated with the

inflammatory response and tumor progression. As a novel serine protease,

the biological function of PRSS23 is rarely studied in cancers. In this study, the

prognostic significance of PRSS23 was analyzed in two-independent gastric

cancer (GC) cohorts. PRSS23 overexpression was clinically correlated with

poor prognosis and macrophage infiltration of GC patients. Loss-of-function

study verified that PRSS23 plays oncogenic role in GC. RNA-seq, qRT-PCR,

western blotting and ELISA assay confirmed that serine protease PRSS23

positively regulated FGF2 expression and secretion. Single-cell analysis and

gene expression correlation analysis showed that PRSS23 and FGF2 were high

expressed in fibroblasts, and highly co-expressed with the biomarkers of tumor

associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and

mesenchymal cells. Functional analysis confirmed PRSS23/FGF2 was required

for TAM infiltration. Rescue assay further verified that PRSS23 promotes GC

progression and TAM infiltration through FGF2. Survival analysis showed that

high infiltration of M1-macrophage predicted favorable prognosis, while high

infiltration level of M2-macrophage predicted poor prognosis in GC. Our

finding highlights that PRSS23 promotes TAM infiltration through regulating

FGF2 expression and secretion, thereby resulting in a poor prognosis.

KEYWORDS

serine protease PRSS23, FGF2, macrophage infiltration, TAM, gastric cancer
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Introduction

Gastric cancer (GC) is a heterogeneous tumor with the third

highest mortality rate worldwide (1). There are about 1.089 million

new cases of gastric cancer worldwide in 2020, of which about

478,508 cases occurred in China (2, 3). Though current treatments

for patients have been greatly improved, the prognosis remains

unoptimistic to date due to the inconvenience of early diagnosis of

GC (4). Besides, the molecular mechanisms underlying GC

progression remain unclear (5–8). Hence, it is urgent and

necessary to explore novel potential biomarkers and their

molecular mechanisms to better understand the pathophysiology

of gastric malignancies.

Serine proteases play critical roles in the digestion, blood

coagulation fertilization, fibrinolysis, cell apoptosis and

differentiation, angiogenesis (9). Recently, emerging evidence have

showed that serine proteases play essential roles in tumor

progression. For examples, Serine protease PRSS8 suppresses

colorectal carcinogenesis and metastasis by inhibiting epithelial

mesenchymal transition (EMT) signaling (10, 11). Serine protease

PRSS3was found to function as anoncogene in stomach cancer, lung

cancer and colon cancer (12–14). However, as a conserved member

of the trypsin familyof serineproteases (15), thebiological functionof

serine protease PRSS23 remains largely unknown in cancers.

Tumor-associated macrophages (TAMs) have been reported to

be independent prognostic biomarker in cancers, includingGC (16–

18). Increasing studies have reported that TAMs exert pro-tumor

effectsby inhibitingantitumor immuneresponses (19).TAMsclosely

resemble the M2-macrophages, both of which highly express classic

biomarkers of M2 macrophage, such as CD163, MSR1, and MRC1

(20–22). Fibroblast growth factor 2 (FGF2), secreted by cancer-

associated fibroblast (CAFs), was reported to be required for tumor

cell growth in lung cancer (23). Recently, multiple independent

studies have reported a critical role of FGF2 in TAM infiltration,

which implied a pro-tumor role of FGF2 in tumor progression

(24–26).

In this study, a novel role of serine protease PRSS23 in immune

infiltration was disclosed in GC. PRSS23 overexpression was

positively associated with poor prognosis and macrophage

infiltration in GC. PRSS23 functions as an oncogene in GC by

enhancing tumor associated macrophage infiltration via FGF2.

Our data highlights that the upregulation of PRSS23/FGF2 may be

critical for macrophage infiltration in pan-cancer.
Materials and methods

Prognostic analysis and
single-cell analysis

The gene expression profile of GSE62254 used in this study

was downloaded from the Gene Expression Omnibus (GEO) in
Frontiers in Immunology 02
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the NCBI web server. The clinical information of GC patients

from GSE62254 cohort was download as descripted previously

(27). The gene expression data and the clinical information of

GC patients were obtained from the Cancer Genome Atlas

(TCGA) database. Expression level of per gene was calculated

from log2 of FPKM-UQ value. Single-cell analysis used in this

study was obtained from the Human Protein Atlas (HPA)

dataset (https://www.proteinatlas.org/).
Immune infiltration analysis

The TIMER database can used to estimate the immune

infiltration levels of B cells, CD4+ T cells, CD8+ T cells,

Neutrophils, Macrophages and Dendritic cells . The

CIBERSORT method can used to estimate the immune

infiltration of 24 immune cell types. The quanTIseq method

can used to estimate the immune infiltration of 10 immune cell

types, including M1 and M2 macrophages. These algorithms

provide powerful correlation analysis and survival analysis

regarding different types of immune cells. The gene module

allows users to select any gene of interest and visualize the

correlation of its expression with immune infiltration level in

diverse cancer types. The survival module allows users to explore

the clinical relevance of one or more tumor immune subsets,

with the flexibility to correct for multiple covariates in a

multivariable Cox proportional hazard model. The gene

expression level in different immune cell types between

stomach cancer and normal stomach tissues was analyzed

using GEPIA 2021 web tool.
Cell culture and cell transfection

For cell culture, all cell lines used in this study were cultured

in DMEM medium containing 10% fetal bovine serum (FBS) at

37 °C in 5% CO2. The siRNAs targeting PRSS23 were purchased

from Genepharma (Shanghai, China). The sequence of 2 siRNAs

targeting PRSS23 were listed as follows. siRNA#1: 5’-

GCGGCAGAUUUAUGGCUAUTT-3 ’ , s iRNA#2: 5 ’-

CCAGAUUUGCUAUUGGAUUTT-3’. For cell transfection,

the GC cells were plated into a six-well plate. After the cell

density reaches 30-50% the next day, siRNAs were transfected

into GC cells using Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s instructions.
THP-1-derived TAMs

THP-1 cells were used to induce TAMs in vitro as described

previously (28–30). Briefly, macrophages were induced fromTHP-1

cells by treatmentwithPMA(Sigma, 100 ng/mL) for 24 hours. Then,

these THP-1 derived macrophages were re-placed into a six-well
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transwell plate. At the same time, HGC-27 cells were cultured as

usually on the 0.4-mm porous membrane of upper chamber. After

24 hours, we co-cultured HGC-27 cells with THP-1-derived

macrophages. Then 48 hours later, macrophages were collected for

RNA extraction and other experiments.
Quantitative RT-PCR assay

At 48 hours post-transfection, GC cells were directly harvested

using Trizol reagent (Invitrogen, USA) and the total RNA was

extracted according to the manufacturer’s instructions. The

contaminated gDNA in total RNA was removed using RNase-free

DNase I (Roche) for 20 minutes (31). cDNAwas obtained using the

PrimeScript™ RT reagent Kit (Perfect Real Time, Takara). The

qPCR analysis was performed on Bio-Rad CFX Manager 3.1 real-

time PCR system. The specific primers used in this study were

synthesized by Wcgene Biotech (Shanghai, China). FGF2-F:

5’-GAAAAGGCAAGATGCAGGAG-3’, FGF2-R: 5’-ACGTG

AGAGCAGAGCATGTG-3 ’ ; PRSS23-F: 5 ’-GGGGGAT

TTTCTGCTTGTCT-3’, PRSS23-R: 5’- TGGAGACCTCCC

TTCTTCCT-3’; ACTIN-F: 5’-ATCGTCCACCGCAAATGC

TTCTA-3’, ACTIN-R: 5’-AGCCATGCCAATCTCATCTTGTT-3’

2 – Δ Δ C t m e t h o d w a s u s e d t o d e t e rm i n e g e n e

expression quantification.
Western blotting assay

The western blotting assay was performed as previously

described (1). In brief, after 72h transfected with siRNAs, GC cells

were lysed inRIPAbuffer added1mMPMSF.Approximately 100mg
of total protein was electrophoresed through 10% SDS

polyacrylamide gels and were then transferred to a PVDF

membrane (Millipone). The FGF2 antibody (A11488) and PRSS23

(A17092) antibody was purchased from Abclonal company

(Wuhan, China).
RNA sequencing

After transfection of 2 siRNAs targeting PRSS23 in AGS cells,

total RNA was extracted and send to Lifegenes company (Shanghai,

China) to perform RNA sequencing. A total amount of 1.5 µg RNA

per sample was used as input material for the RNA sample

preparations. The RNA-seq data used in this study was uploaded

in the GEO dataset (GSE204725).
Statistical analysis

The P values for PRSS23 expression analysis of different

subtypes of GC were estimated using Mann–Whitney
Frontiers in Immunology 03
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nonparametric test. The P values of survival curves were

analyzed using the log-rank test. Pearson correlation analysis

was used for the correlation test of the two groups of data. For

quantitative RT-PCR, the P values were analyzed using ANOVA.

P < 0.05 considered statistically significant.
Results

Serine protease PRSS23 overexpression
predicts poor prognosis in GC

To reveal the biological function of PRSS23 in GC, we firstly

analyzed its expression pattern in GC and normal stomach

tissues. The Human Protein Atlas (HPA) contains large

quantity of immunohistochemistry (IHC) images of different

proteins in normal human tissues and cancer tissues (32).

Therefore, we first evaluated the protein expression of PRSS23

in normal and cancer tissue of stomach using the HPA web tool

(Figure 1A). The results showed that PRSS23 protein was mainly

located in cytoplasmic and was relatively highly expressed in GC

tissue compared to the normal stomach tissue. In addition, two

independent GC cohort (GSE54129 and TCGA_STAD)

containing normal tissues and cancer tissues were included

into our study. The results showed that PRSS23 expression

was also significantly upregulated in the GSE54129 cohort

(Figures 1B, C).

To understand the significance of PRSS23 overexpression in

GC, we analyzed the prognostic value of PRSS23 in two

independent GC cohort (TCGA_STAD and GSE62254). In the

TCGA_STAD cohort, PRSS23 expression in diffuse GC tissues

was higher than that in intestinal GC tissues (Figure 1D). Poorly

differentiated GC tissues tended to have relatively high

expression of PRSS23 (Figure 1E). Furthermore, PRSS23

expression level was positively correlated to T stages of GC

patients (Figure 1F). However, there was no significant

difference in the expression of PRSS23 in GC tissues with or

without lymph node metastasis or distant metastasis

(Figures 1G, H). In addition, we also noted that PRSS23

expression was significantly decreased in the GC patients with

radiation therapy, compared to the GC patients without

radiation therapy (Figure 1I). Survival analysis showed that

PRSS23 overexpression predicted poor prognosis (Figures 1J, K).

Similarly, in GSE62254 cohort, PRSS23 was also relatively

high expressed in the diffuse or MLH1+ GC tissues (Figures 2A,

B). Furthermore, PRSS23 was positively correlated with the

degree of malignancy in GC (Figures 2C, D), but has no

significant changes in GC patients with different N/M stages

(Figures 2E, F). Survival analysis in GSE62254 cohort also

showed that PRSS23 predicted poor prognosis in GC

(Figures 2G, H). Taken together, PRSS23 functions as an

oncogene and can be served as a prognostic biomarker in GC.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.955841
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2022.955841
PRSS23 knockdown inhibits GC cell
proliferation and invasion

Since clinical analysis implied an oncogenic role of PRSS23

in GC, we further validated the biological function of PRSS23 in

vitro. Given PRSS23 was overexpressed in GC tissues, we hence

considered performing loss-of-function study to verify the

biological function of PRSS23 in GC. Firstly, we verified the

RNA interference efficiency of PRSS23 depletion in GC cell lines

by qPCR assay (Figure 3A). Next, the cell proliferation assay

showed that PRSS23 depletion caused a strong inhibition of cell

growth (Figure 3B). After knocking down PRSS23 expression for
Frontiers in Immunology 04
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72 hours in GC cell lines, we checked the cell morphology with

an optical microscope. The results showed that PRSS23

knockdown significantly decreased the proliferation of GC

cells (Figure 3C). At the same time, we also determined the

effect of PRSS23 knockdown on the metastasis of GC cells. In the

scratch wound healing assays, the migration of GC cells that

silenced PRSS23 was significantly slower than that of control GC

cells (Figures 3D–F). In transwell invasion assays, the numbers

of GC cells that invaded through the Matrigel were decreased in

the PRSS23 silencing group than the control group (Figures 3G,

H). These data demonstrated a tumor-promoting role of PRSS23

in GC.
B C

D E F G
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A

FIGURE 1

The clinical significance of PRSS23 overexpression was analyzed in the GC cohort from TCGA. (A) Differences in the immunostaining of PRSS23
between normal tissues and cancerous tissues in GC. (B, C) PRSS23 was overexpressed in cancerous tissues in the GSE54129 and TCGA_STAD cohort.
(D) Differences in PRSS23 expression between intestinal and diffuse tissues of GC. (E) PRSS23 expression in GC tissues with different differentiation
stages. (F–H) PRSS23 expression level in different TNM-stages of GC tissues. (I) PRSS23 was lowly expressed in GC patients with radiation therapy. (J, K):
PRSS23 overexpression predicted shorter overall survival time and disease-free survival time in GC. **, P < 0.01, ***, P < 0.001.
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PRSS23 is positively associated with
macrophage infiltration

Increasing studies have reported that immunity infiltration

level is an independent predictor of survival and sentinel lymph

node status in cancers (33). In order to clarify the biological role

PRSS23 in immune infiltration, two different algorithms,

including TIMER (34) and CIBERSORT (35), were performed

to analyze the RNA-seq data of GC samples from TCGA

(Figure 4A). The TIMER method contains 6 immune cell

types and the CIBERSORT method contains 24 immune cell

types. The infiltration level of each immune cells was evaluated
Frontiers in Immunology 05
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by the enrichment score calculated by TIMER and CIBERSORT.

Then, the correlation between PRSS23 expression level and

infiltration level of each immune cell was analyzed in GC.

According to immune infiltration analysis by TIMER, PRSS23

was most associated with macrophage infiltration (Figure 4B).

Likewise, immune infiltration analysis by CIBERSORT showed

that PRSS23 was most associated with macrophage and NK cell

infiltration (Figure 4C). Scatter plots for the correlation between

PRSS23 and macrophage infiltration based on two algorithms

are shown in Figures 4D, E respectively.

Interestingly, after adjusting the clinical factors, both of the

two algorithms indicated that GC patients with higher level of
B C

D E F

G H

A

FIGURE 2

The prognostic significance of PRSS23 overexpression was analyzed in the GC cohort from GSE62254. (A) Differences in PRSS23 expression
between intestinal and diffuse tissues of GC. (B) PRSS23 was highly expressed in GC patients with positive MLH1 expression. (C–F) PRSS23
expression level in different TNM-stages and Pathologic stages of GC tissues. (G, H) PRSS23 overexpression predicted shorter overall survival
time and disease-free survival time in GC. **, P < 0.01.
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Macrophage infiltration tends to possess a shorter overall

survival time (Figures 4F, G). These results suggested that

PRSS23 may promote GC by affecting macrophage infiltration.
PRSS23 knockdown decreased the
expression level of FGF2 in GC

To figure out the molecular mechanism of PRSS23 in

macrophage infiltration and GC progression, we conducted

transcriptome sequencing studies (GSE204725) in GC cells

between PRSS23-depleted group and control group. After

analysis of the RNA-seq data, genes with the most significant

fold change in expression (log2FC>0.8) after PRSS23

knockdown are listed in the heatmap (Figure 5A). A total of

67 genes were downregulated and 38 genes were upregulated

after knockdown of PRSS23 in GC. RNA-seq analysis revealed

that FGF2, which is involved in regulating macrophage

polarization, was greatly decreased after PRSS23 knockdown.

In addition, fibroblast growth factor-binding protein (FGFBP1),

which was reported to play essential roles in regulating FGF2

secretion (36–38), was also greatly decreased after knockdown of

PRSS23. Thus, we speculated that PRSS23 might regulate TAMs

infiltration by regulate FGF2 secretion.

Multiple independent experiments were performed to

validate the regulation of FGF2 by PRSS23 in GC. First, RNA-

seq data showed that the expression of PRSS23 and FGF2 were

both decreased in PRSS23-depleted GC cells (Figures 5B, C).
Frontiers in Immunology 06
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Consistently, the qRT-PCR assay further confirmed that PRSS23

knockdown decreased the FGF2 expression in two GC cell lines

(Figures 5D, E). Besides, gene expression correlation analysis

also showed that PRSS23 and FGF2 were highly co-expressed in

GC tissues from TCGA (Figure 5F). Furthermore, PRSS23

knockdown greatly reduced the protein level of FGF2 (Figure

5G). Given FGF2 was a secreted protein, we also examined the

effect of PRSS23 knockdown on FGF2 secretion by ELISA. The

ELISA assay showed that PRSS23 knockdown significantly

hindered secreted FGF2 level (Figures 5H, I).
PRSS23/FGF2 axis positively regulates
tumor associated macrophage infiltration

To further validate the role of FGF2 in macrophage

infiltration, immune infiltration analysis by two different

algorithms was conducted. The results confirmed that FGF2

was positively associated with macrophage infiltration in GC

(Figures 6A, B). Besides, survival analysis showed that

overexpression of FGF2 predicted poor prognosis in GC

(Figures 6C–E). Single-cell RNA-seq analysis revealed that

FGF2 and PRSS23 were predominantly expressed in gastric

fibroblasts and highly co-expressed in normal gastric tissue

(Figures 6F, G). Consistently, both FGF2 and PRSS23 were

closely related to EMT signaling and highly co-expressed with

biomarkers of CAFs and mesenchymal cells (Figures S1A-D).

Thus, we speculated that PRSS23 may regulate macrophage
B C D

E F G H

A

FIGURE 3

PRSS23 knockdown significantly decreased GC cell proliferation and invasion. (A) The efficiency of PRSS23 knockdown was determined in GC
cell lines. (B) The effect of PRSS23 knockdown on GC cell growth was determined by MTT assay. (C) The morphology of gastric cancer cells
after knockdown of PRSS23 for 72 hours. (D, E) Wound healing assays showed that PRSS23 knockdown inhibits GC cells migration. (F) The
statistical data of the migrated cells. (G) The effects of PRSS23 knockdown on GC cells invasion were assessed by transwell assays. (H) The
statistical data of the invasive cells. **, P < 0.01.
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infiltration via regulating FGF2 secretion in fibroblasts or

mesenchymal cells.

As described above, FGF2 has been shown to play a critical

role in TAMs infiltration (39–41). Multiple surface molecules

(such as CD163, MSR1 (CD204), MRC1 (CD206), CSF1R,

CD40 and CD81) and secreted factors (such as IL10, PDGFB

and CCL2) have been reported to be well-known biomarkers of

TAM/M2 (20, 42). Hence, we conducted the gene expression

correlation analysis between PRSS23/FGF2 and these M2/

TAM biomarkers. The results showed that both PRSS23 and

FGF2 were highly co-expressed with M2/TAM biomarker

genes (Figures 7A, B). Besides, we further analyzed the

expression level of PRSS23/FGF2 in monocytes and different

stages of macrophages. The results showed that both PRSS23

and FGF2 were significantly overexpressed in M2 macrophage,
Frontiers in Immunology 07
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which is highly similar to tumor associated macrophage

(Figures 7C, D).

Considering high level of secreted FGF2 would have a more

pronounced effect in regulating macrophage polarization, we

herein selected a GC cell line HGC-27 with relatively high

expression of FGF2 for co-culture with THP-1 cells

(Figure 7E). Then, we examined the expression of popular

M2/TAM biomarkers in TAM-like cells by qRT-PCR assay.

Both MSR1 (CD206) and IL10 were greatly upregulated in the

TAM-like cells, suggested that we successfully induced TAM

cells (Figure 7F). Consistent with previous immune infiltration

analysis, both FGF2 and PRSS23 were significantly upregulated

in TAM-like cells (Figure 7G). More importantly, knockdown of

either PRSS23 or FGF2 significantly reduced the survival rate of

TAM-like cells, indicating that both PRSS23 and FGF2 were
B C

D E

F G

A

FIGURE 4

PRSS23 is associated with macrophage infiltration in GC. (A) Immune estimation analysis was conducted using two different methods. (B, C) The
correlation between PRSS23 expression and immune infiltration was analyzed using TIMER and CIBERSORT methods. (D, E) The correlation
between PRSS23 expression and macrophage infiltration was analyzed using TIMER and CIBERSORT methods. (F, G) Survival analysis using
CIBERSORT or TIMER indicated that higher level of macrophage infiltration predicted poorer prognosis in GC.
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FIGURE 5

PRSS23 knockdown decreased FGF2 expression and secretion in GC. (A) RNA-seq studies were conducted in GC cells transfected with siRNAs
targeting PRSS23. The most significantly altered genes upon PRSS23 knockdown were shown in the heatmap. (B, C) The transcripts abundance
of PRSS23 and FGF2 in PRSS23-depleted GC cells was detected by RNA-seq. The normalized expression (FPKM value) of PRSS23 and FGF2 were
shown in the plot. (D) The knockdown efficiency of PRSS23 in GC cell lines was examined by qRT-PCR assay. (E) The effect of PRSS23
knockdown on FGF2 expression in GC cell lines were examined by qRT-PCR assay. (F) PRSS23 and FGF2 were highly co-expressed in GC.
(G) The effect of PRSS23 knockdown on FGF2 protein level in GC cell lines were examined by western blotting assay. (H, I) ELISA assay showed
that PRSS23 knockdown significantly decreased secreted FGF2 level in GC cell lines. **, P < 0.01.
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required for TAM macrophage infiltration (Figure 7H).

Furthermore, rescue assay confirmed FGF2 overexpression can

recovery the inhibitory effect of PRSS23 depletion on cell

survival rate of TAM-like cells or cell proliferation of GC cells

(Figures 7H, I).

As a serine protease, PRSS23 may play a role in FGF2

processing and secretion by directly cleaving FGF2 proteins.

Immunoblotting assay showed that PRSS23 knockdown mainly
Frontiers in Immunology 09
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downregulating 18kDa FGF2 expression (Figures 8A, B).

However, there is no new FGF2 band generated, even under

conditions where Brefeldin A blocked FGF2 secretion

(Figures 8A, B).

FGF2 has been reported to bind all 4 FGF receptors (FGFR1-

4) (43). Gene expression correlation analysis showed that FGF2

expression was positively associated with FGFR1/2, but

negatively associated with FGFR3/4 expression (Figure 8C).
B

C D E

F G

A

FIGURE 6

FGF2 showed a positive association with macrophage infiltration and PRSS23 expression. (A, B) The correlation between FGF2 expression and
immune infiltration was analyzed using TIMER and CIBERSORT methods. (C–E) FGF2 overexpression predicted poor overall survival, disease-
specific survival and progress-free survival in GC from TCGA dataset. (F) Single-cell analysis showed that PRSS23 and FGF2 were both highly
expressed in mesenchymal GC cells. (G) FGF2 and PRSS23 were highly co-expressed in normal stomach tissues.
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Besides, clinical analysis showed that FGF2 and FGFR1 were

highly expressed in diffuse GC, FGFR3 and FGFR4 were lowly

expressed in diffuse GC (Figures 8D, E). Although there were

several studies have reported that FGFR2 was amplified in

diffuse GC, our data herein showed that FGFR2 expression has

no significant change between diffuse GC and intestinal GC.

That may be due to the low frequency (approximately 4-10%) of

FGFR2 amplification events in diffuse GC (44–46). Survival

analysis showed that FGFR1 overexpression predicted poor

prognosis, FGFR3 overexpression predicted favorable

prognosis. These results implied that there may be a FGF2/

FGFR1 autorinal loop in GC (Figure 8F).

Several studies have reported that FGF2 can act in autocrine

modes by binding to FGFR1 (47–49). Since FGF2 mRNA and

protein level were both downregulated after PRSS23 knockdown,
Frontiers in Immunology 10
16
we thus further identified if PRSS23 knockdown downregulated

FGF2 mRNA level by affecting FGF2 in an autocrinal manner. In

other words, it’s possible that the reduced secreted FGF2 by

PRSS23 knockdown may in turn regulate FGF2 transcription via

an autocrinal loop. Thus, we performed exogenous recombinant

FGF2 protein treatment in HGC-27 cells. The results showed

that recombinant FGF2 significantly upregulated FGFR1

expression but has no significant effects on FGF2 and FGFR2/

3/4 expression in GC (Figure 8G).

Macrophage infiltration can be divided into M1 macrophage

infiltration and M2 macrophage infiltration. To this end, we

used the quanTIseq algorithm to distinguish M1 macrophages

fromM2 macrophages (50), and further analyzed the correlation

between M1 or M2 macrophage infiltration and the prognosis of

GC patients (Figures 9A, B). The results showed that GC
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FIGURE 7

PRSS23 enhances TAM infiltration by regulating FGF2 expression and secretion. (A) The gene expression correlation between FGF2 and the well-
known biomarker genes of TAM/M2 macrophage was analyzed. (B) The gene expression correlation between PRSS23 and the well-known
biomarker genes of TAM/M2 macrophage was analyzed. (C, D) PRSS23 and FGF2 was upregulated in M2 macrophages. (E) The TAM-like cells
were induced by co-culturing with HGC-27 cells and THP-1 derived macrophages. (F) The well-known biomarkers of TAM/M2 macrophages
were greatly upregulated. (G) Both FGF2 and PRSS23 were significantly upregulated in TAM-like cells. (H) Overexpression of FGF2 rescued the
inhibitory effect of survival of TAM-like cells by PRSS23 depletion. (I) Overexpression of FGF2 rescued the inhibitory effect of GC cell
proliferation by PRSS23 depletion. **p < 0.01, ****p < 0.0001, ns means no significant..
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patients with higher M1 macrophage infiltration tends to possess

a longer overall survival time (p=0.04), while GC patients with

higher M2 macrophage infiltration tends to possess a shorter

overall survival time (p<0.01). Given FGF2 suppressed M1

macrophage polarization but promoted M2 macrophage

polarization, we mapped the working model of PRSS23 in

promoting GC progression (Figure 9C).

In GC, serine protease PRSS23 was overexpressed, thereby

promoting the expression and secretion of FGF2. Increased level of

FGF2 in turn promotes TAMs polarization and infiltration, leading

to poor prognosis in GC. This study reveals for the first time the
Frontiers in Immunology 11
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biological function of PRSS23 inmacrophage infiltration,whichmay

have implications for immunotherapy of GC.
Discussion

Gastric cancer is a common malignancy characterized by

significant clinical heterogeneity and remains the fourth most

common cause of death resulting from cancer worldwide (51).

The intratumor heterogeneity determines the differences in drug

resistance, treatment methods and prognosis of different
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FIGURE 8

Exogenous recombinant FGF2 significantly upregulated FGFR1 expression in GC. (A) Western blotting assay confirmed that PRSS23 knockdown
mainly affected low weight molecular FGF2 (18 kDa) expression in GC. (B) The experiments combining blockade of FGF2 secretion by Brefeldin
A (BFA) with PRSS23 knockdown were performed. (C) The gene expression correlation between FGF2 and its receptors in TCGA_STAD cohort.
(D, E) The expression levels of FGF2/FGFR1/2/3/4 were analyzed in two independent GC cohorts. (F) Survival analysis of FGF2/FGFR1/2/3/4 in
GSE62254 cohort. (G) The expression levels of FGF2/FGFR1/2/3/4 were determined by qRT-PCR after treatment with recombinant FGF2 in
HGC-27 cells. **p < 0.01, ***p < 0.001, ns means no significant..
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patients. Biomarkers are one of the important ways to

distinguish tumor heterogeneity. Therefore, the development

of novel biomarker genes is of great significance to the diagnosis,

treatment and prognosis of tumors.

In this study, the clinical value of PRSS23 was analyzed in

two independent cohorts. PRSS23 overexpression showed a

significant correlation with malignant progression and poor

prognosis of GC, suggested PRSS23 can be served as an ideal

prognostic biomarker for GC. Loss-of-function study had

confirmed that PRSS23 functioned oncogenic roles in GC

progression, which fits well with another reported evidence

that PRSS23 knockdown inhibits gastric tumorigenesis (52).

Previous study had reported Fgf2 was secreted by CAFs in

mice (23). Likewise, single-cell analysis also showed that FGF2

was specifically expressed in fibroblasts of human stomach. So,
Frontiers in Immunology 12
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what is the role of FGF2 secreted by fibroblasts? Several studies

have reported the critical role of FGF2 in macrophage

infiltration and polarization. Knockout of Fgf2 in mice

significantly decreased macrophage infiltration (40). Likewise,

Im et al. have found that TAMs were polarized towards an

inflammatory (M1) phenotype in the Fgf2 knockout mice (24).

Similarly, Takase et al. also reported that FGF2/FGFR1 axis was

required for TAM infiltration in esophageal cancer (25). These

data proved that FGF2 promotes macrophage polarization

towards an M2/TAM phenotype. FGFBP1 was reported to be

a secreted heparin proteins that reversibly bind FGF1 and FGF2,

releasing them from the extracellular matrix and increasing the

local levels of free ligand available for receptor binding (53). In

other words, FGFBP1 contributes to FGF2 secretion, enhancing

its binding to the receptors (FGFR1/2/3/4) (43).
B
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FIGURE 9

Working model of PRSS23/FGF2 axis in regulating macrophage infiltration. (A) High level of M1 macrophage infiltration predicted favorable
prognosis in GC. (B) High level of M2 macrophage infiltration predicted poor prognosis in GC. (C) Working model of PRSS23/FGF2 axis in
macrophage infiltration. PRSS23 was overexpressed in GC, which enhanced the expression and secretion of FGF2. Meanwhile, FGF2
upregulation drives macrophage polarized towards M2/TAM phenotype, thereby resulting poor prognosis in GC. Taken together, PRSS23
promotes TAM/M2 macrophage infiltration through positively regulating FGF2 expression and secretion.
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In the present work, a novel role of the serine protease

PRSS23 in macrophage infiltration was uncovered in GC.

Through high-throughput RNA sequencing, we noted that

serine protease PRSS23 was involved into positively regulating

FGF2/FGFBP1 expression. Consistently, our subsequent qRT-

PCR, western blotting and ELISA assay showed that PRSS23

depletion significantly decreased FGF2 expression and secretion.

More importantly, HGC-27 cells and THP-1-derived

macrophages co-culture assay further confirmed that PRSS23

promoted TAM infiltration in GC through regulating FGF2

expression and secretion.

Although our findings demonstrate the positive regulation of

FGF2 expression and secretion by PRSS23, a non-negligible

limitation of our work lies in how exactly PRSS23 regulates FGF2/

FGFBP1 expression. Previous studies have reported that although

most of FGFs are secreted proteins with cleavable amino terminal

portions, FGF1andFGF2havenosecretion sequences, although they

are found in the extracellular compartment (18). In addition,

considering that FGF2 mRNA was also decreased by PRSS23

knockdown, this strongly implies that FGF2 was not a direct

substrate protein of PRSS23.

Previous publications had reported that ED-71 and its analogues

(1, 25-dihydroxyvitamin D3) suppressed expression of FGFBP1/

FGF2 by upregulating IkBa (NFKBIA), a critical regulator of NF-kB
pathway (54–56). However, according to our RNA-seq data,

NFKBIA expression was slightly downregulated in PRSS23-

depleted GC cells. The molecular mechanism of how PRSS23

regulates FGF2 expression remains to be further investigated.

TAMs have very similar phenotypes with M2 macrophages,

which functioned oncogenic roles in tumor progression (57–59).

While M1 macrophages with pro-inflammation functions

played tumor-suppressive roles in tumor progression (60).

Herein, after differentiation of M1 and M2 macrophages by

the quanTIseq algorithm (50), we analyzed the relationship

between M1 or M2 macrophage infiltration and the survival of

GC patients from TCGA. The results showed that M1

macrophage infiltration predicted favorable prognosis, while

M2 macrophage infiltration predicted poor prognosis in GC,

suggested M1 and M2 macrophage play opposite roles in GC

progression (Figures 9A, B). Therefore, we thought PRSS23 plays

critical roles in GC progression by enhancing TAMs infiltration

via FGF2.
Conclusion

In summary, PRSS23 was overexpressed and showed a

significant correlation with poor prognosis, macrophage

infiltration. Mechanismly, PRSS23 promotes tumor associated

macrophage infiltration by regulating FGF2 expression and

secretion. Our finding highlights that PRSS23/FGF2 was a

novel signaling axis involved into regulating TAMs infiltration

and GC progression.
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Deregulated hyaluronan
metabolism in the tumor
microenvironment drives cancer
inflammation and tumor-
associated immune suppression

William Donelan, Paul R. Dominguez-Gutierrez
and Sergei Kusmartsev*

Department of Urology, University of Florida, College of Medicine, Gainesville, FL, United States
Hyaluronan (HA) is known to be a prominent component of the extracellular

matrix in tumors, and many solid cancers are characterized by aberrant HA

metabolism resulting in increased production in tumor tissue. HA has been

implicated in regulating a variety of cellular functions in tumor cells and tumor-

associated stromal cells, suggesting that altered HA metabolism can influence

tumor growth and malignancy at multiple levels. Importantly, increased HA

production in cancer is associated with enhanced HA degradation due to high

levels of expression and activity of hyaluronidases (Hyal). Understanding the

complex molecular and cellular mechanisms involved in abnormal HA

metabolism and catabolism in solid cancers could have important

implications for the design of future cancer therapeutic approaches. It

appears that extensive crosstalk between immune cells and HA-enriched

stroma contributes to tumor growth and progression in several ways.

Specifically, the interaction of tumor-recruited Hyal2-expressing myeloid-

derived suppressor cells (MDSCs) of bone marrow origin with HA-producing

cancer-associated fibroblasts and epithelial tumor cells results in enhanced HA

degradation and accumulation of small pro-inflammatory HA fragments, which

further drives cancer-related inflammation. In addition, hyaluronan-enriched

stroma supports the transition of tumor-recruited Hyal2+MDSCs to the PD-L1+

tumor-associated macrophages leading to the formation of an

immunosuppressive and tolerogenic tumor microenvironment. In this review,

we aim to discuss the contribution of tumor-associated HA to cancer

inflammation, angiogenesis, and tumor-associated immune suppression. We

also highlight the recent findings related to the enhanced HA degradation in the

tumor microenvironment.
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tumor microenvironment, HYAL2, hyaluronan degradation, PD-L1, MDSC, tumor-
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Biology of hyaluronan

Synthesis and degradation of HA

Hyaluronan, also called hyaluronic acid (HA), is a member

of the glycosaminoglycan family of polysaccharides synthesized

at the cell surface. Distributed widely through vertebrate

connective, epithelial, and neural tissues, interactions between

HA and the extracellular matrix (ECM) regulate cellular

processes involved in embryonic development, tissue healing,

inflammation, and tumor progression (1–3). HA is synthesized

as an unbranched polymer of repeating disaccharides of

glucuronic acid and N-acety lg lucosamine. Normal

physiological HA polymers consist of 2,000-25,000

disaccharides with molecular masses in the range of 106 – 107

kDa and polymer lengths of 2-25µm. HA is synthesized at the

cell membrane as an unmodified polysaccharide by one of three

hyaluronan synthases (HAS): HAS1, HAS2, or HAS3.

These transmembrane enzymes initiate synthesis on the inner

side of the cell membrane and extrude HA onto the outer cell

surface or into the ECM. HAS2 produces the largest HA polymers

and is responsible for the majority of HA synthesis. Cell surface

HA binding proteins, such as CD44 and RHAMM, anchor the

matrix to the cell (4, 5). The degradation of HA is catalyzed by

hyaluronidase enzymes (6, 7). Hyal1 and Hyal2 are the major

hyaluronidases that are expressed in most tissues and hydrolyze

the linkage between N-acetylglucosamine and glucuronic acid to

generate HA fragments (8). Cell surface GPI-anchored Hyal2

degrades high molecular weight HA into intermediate molecular

weight fragments of 20 kDa. In a concerted effort, HA fragments

are further hydrolyzed by Hyal1 in endo-lysosomal compartments

generating oligosaccharides.
HA function and turnover in normal
tissues and organs

HA has numerous biological functions both structurally and

in terms of cell signaling. HA is an important constituent of the

ECM that plays a role in the lubrication of joints and

maintaining connective tissue integrity (1, 3). The biophysical

properties of HA such as high hydration capacity contribute to

tissue homeostasis and the structural integrity of the interstitial

space which is critical for cellular remodeling. The

transmembrane protein CD44 is considered the principal

receptor for HA (2). CD44 expression is upregulated by

growth factors and pro-inflammatory cytokines such as IL-1,

epidermal growth factor (EGF), and transforming growth factor-

beta (TGF-b). HA-CD44 interactions regulate key cellular

functions including cell-cell adhesion, cellular migration, and

receptor-mediated HA internalization and degradation.

RHAMM is another key HA receptor that is present at the cell

surface and also has isoforms that are localized to the cytoplasm
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and nucleus. HA-RHAMM interactions mediate cellular

migration, cytoskeleton rearrangement, and intracellular signal

transduction. HA-induced signal transduction via interactions

with CD44 and RHAMM is mediated through a variety of cell

signaling pathways including protein kinase C, focal adhesion

kinase (FAK), mitogen-activated protein kinases (MAPKs),

nuclear factor NF-kB, RAS, phosphatidylinositol kinase

(PI3K), tyrosine kinases, and cytoskeletal components (1, 2).

Under normal homeostatic conditions, the synthesis and

degradation of HA are well balanced, but a shift towards

increased degradation of HA occurs during pathological

conditions (2).
Hyaluronan metabolism in cancer

Enhanced HA synthesis in tumors

Multiple studies have demonstrated that cancers are

associated with elevated levels of HA, and human tumors

typically have higher HA concentrations than in healthy

tissues (2, 3). Human breast, lung, prostate, ovarian,

nephroblastomas, and colon cancer are considered to be

enriched with HA (1, 2). In these tumors, HA may support

tumor growth by stimulating anchorage-independent growth

and proliferation of tumor cells. Elevated HA levels have been

identified in the urine of patients with bladder carcinomas (9).

Not surprisingly, elevated expression of hyaluronan synthases

have been identified in bladder cancer tissue and HAS1 is a

predictor of tumor recurrence and disease-specific survival (10,

11). In vivo studies have confirmed that highly invasive and

aggressive breast cancer cell lines express significantly elevated

levels of HAS2 (12, 13). Additionally, clinical studies and

experiments using mouse models have further found that

expression of HAS2 in breast cancer tissues is associated with

metastasis and reduced overall survival (14, 15). Enhanced HA

synthesis and degradation are evident in the microenvironment

of several tumor types and affect tumor growth, cell motility, and

metastasis (2, 3).

In experimental tumor models, the overexpression of HA

synthases leads to increased HA levels and accelerated tumor

growth in vivo. The level of HA expression by tumors also

correlates well with metastatic progression. For example, high

levels of HA are found in the tumor stroma of patients with

prostate cancer and are associated with metastasis (16, 17).

Supporting these tumor-promoting functions of enhanced HA

synthesis, experimental evidence demonstrates that suppression

of HAS, reduction of HA synthesis using inhibitors, or use of HA

binding molecules have been shown to impair tumor growth and

reduce metastasis in several in vitro and in vivo models (3).

Abnormal activation of CD44 and RHAMM cell signaling

pathways can lead to malignant behavior, and HA interactions

with cell surface receptors CD44 and RHAMM promote tumor
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progression by affecting cell proliferation, migration, and

angiogenesis (2).
Enhanced HA degradation in tumors

HA turnover is key to understanding the role of HA

metabolism in tumor progression (1–3). HA is continually

turned over in normal tissues, but the degradation products are

rapidly cleared. In contrast, several types of cancer, including breast,

prostate, bladder,melanoma, and lung cancers, are characterized by

enhanced HA degradation (2, 3 and Figure 1). It is important to

understand thatHAdegradation in the tumormicroenvironment is

a complex process that involves not only the tumor but also tumor-

associated cells. The tumor stroma, which consists of an

extracellular matrix and many non-cancer cell types contains an

abundance of degraded HA compared to adjacent normal tissue.

Bladder cancer progression is associated with enhanced expression

of both Hyal2 and Hyal1 (11, 18), and Hyal2 gene expression is

significantly increased in patients with progressive versus non-

progressive bladder cancer. Elevated hyaluronidase expression and

activity in tumor tissues lead to the accumulation of small HA

fragments with low molecular weight.
The dual nature of hyaluronan

The size of HA fragments is important for biological activity:

high molecular-weight hyaluronan (HMW-HA), a major

component of the extracellular matrix, is anti-oncogenic,
Frontiers in Immunology 03
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which exerts anti-inflammatory and wound-healing activities.

Evidence of anti-oncogenic properties of HMW-HA comes from

the fact that naked mole rats show unusual resistance to cancer

and the maximal lifespan of these mice exceeds 30 years (19).

Analysis of HA produced by fibroblasts from naked mole rats

revealed that its molecular size is five-time higher than human or

mouse HA. Naked mole-rat tissues contain larger HA polymers

and less detectable fragmentation than tissues of the more

tumor-susceptible mouse. Knocking down the expression of

hyaluronan synthase or overexpressing the HA-degrading

enzyme, Hyal2, naked mole-rat cells become susceptible to

malignant transformation and readily form tumors. A recent

study demonstrated that at the molecular level, HMW-HA-

mediated signaling through the CD44 receptor engages the

tumor-suppressive Hippo pathway (20). Thus, recruitment of the

po l a r i t y - r e gu l a t i n g k in a s e PAR1b by th e CD44

intracellular domain results in disruption of the Hippo signaling-

inhibitory PAR1b-MST complex. Once liberated from PAR1b,

MST activates Hippo signaling.

In contrast, the low-molecular-weight hyaluronan (LMW-

HA) is pro-oncogenic. Thus, the HA fragments with low

molecular weight produced in a hyaluronidase-dependent

manner, inhibited Hippo signaling by competing with HMW-

HA for CD44 binding (20). Tumor growth frequently is

associated with enhanced HA degradation and the

accumulation of small HA fragments with low molecular

weight. The LMW-HA has been shown to promote tumor

growth in a multifaceted manner by stimulating cancer

inflammation, angiogenesis, and spreading of metastatic tumor

cells (21–26).
BA

FIGURE 1

Increased degradation of extracellular hyaluronan in tumor tissue. Normal non-malignant bladder tissue produce HA with mostly high molecular
weight (A). In contrast, the tumor bladder tissue is characterized by enhanced HA degradation and accumulation of tumor-associated HA with
low molecular weight (B).
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Effects of LMW-HA accumulation
in cancer

LMW-HA and cancer-related inflammation

Cancer-related inflammation is one of the hallmarks of tumor

growth (27). Increased production of various inflammatory factors

(chemokines, cytokines,bioactive lipids, etc) in tumortissuesupports

constant mobilization and recruitment of immunosuppressive cells,

precursors of endothelial cells, and cancer-associated fibroblasts

which are needed for tumor growth. Increased degradation of

hyaluronan in cancer tissue leads to the accumulation of HA

fragments with small molecular weight, which is associated with

elevated production of multiple cytokines, chemokines, and pro-

angiogenic factors (1–3, 18, 28). Mechanistically, the LMW-HA

elicits pro-inflammatory responses by modulating the toll-like

receptor-4 (TLR-4) and activating the nuclear factor kappa B (NF-

kB). In contrast, the HMW-HA manifests an anti-inflammatory

effect by inhibitingNF-kBactivation (29).During inflammation,HA

can be degraded by hyaluronidases or cleaved by reactive oxygen

species (ROS) (30–32). HA uptake and fragmentation by

macrophages are thought to be important for the resolution of

inflammation (24). The molecular weight of HA directly influences

the immune macrophage activation (33, 34). According to these

studies, thehigh-molecular-weightHAgreater than1,000kDaexerts

antiangiogenic, immunosuppressive, and anti-inflammatory effects

that are important in wound healing, embryogenesis, and ovulation.

In contrast, bothmedium-molecularweightHAand low-molecular-

weight HA are pro-inflammatory, pro-angiogenic, and pro-tumor

(34). HA added to LPS stimulated chondrocytes responded

differently according to the HA molecular weight (32). Lee et al.

demonstrated thatHA fragmentswithmolecularweight less than 50

kDa significantly increased iNOS production while medium MW-

HA(1000kDa)didnotaffect iNOS;however,HMW-HA(5000kDa)

significantly reduced iNOS in LPS-stimulated chondrocytes. A

similar result was observed in LPS- stimulated macrophages where

LMW-HAled to increases in iNOS,TNF-a, IL-6, IL-1b, TGF-b1, IL-
10, IL-11, CCL2, and Arg1; however, in unstimulated macrophages,

IL-10 significantly up-regulated by HMW-HA (24). Furthermore,

LMW-HA increases several cytokines such as MMP-12,

plasminogen activator inhibitor-1 (35, 36), CCL2 (MCP-1), CCL3

(MIP-1a), CCL4 (MIP-1b), keratinocyte chemoattractant,

interleukins IL-8, and IL-12 by macrophages (37–39).

Additionally, LMW-HA elicits the irreversible phenotypic and

functional maturation of human dendritic cells (40, 41). In the

model for acute lung injury to epithelium causes the production of

inflammatory cytokines and chemokines resulting in the influx of

neutrophils filled bymacrophages to the site with further increase of

cytokines and modulation of the extracellular matrix such as HA,

collagen, fibronectin. Mechanistically, the lowmolecular weight HA

fragments bind to the CD44, RHAMM, and Toll-like receptors (5,

26, 42–44). Stimulation of TLR2/TLR4 results in enhanced
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production of inflammatory cytokines and chemokines. In

addition, LMW-HA is a potent stimulant of arachidonic acid

release in a time- and dose-dependent manner, inducing cPLA2a,
ERK1/2, p38, and JNK phosphorylation, as well as activated

COX2 expression and PGE2 production in primary human

monocytes, murine RAW 264.7, and wild type bone marrow-

derived macrophages. Specific cPLA2a inhibitors blocked HA-

induced arachidonic acid release and PGE2 production in all

of these cells (26). It is interesting to note that HMW-HA can

significantly diminish TLR4, TLR2, MyD88, and NF-kB

expression (45).
LMW-HA and tumor angiogenesis

Multiple studies have demonstrated that both HMW-HA and

LMW-HA are potent regulators of angiogenesis signaling, mainly

by influencing endothelial cell (EC) behavior. One of the first

studies demonstrated that partial degradation products of HA

produced by the action of testicular hyaluronidase induced an

angiogenic response, such as the formation of new blood vessels in

the chick chorioallantoic membrane. Further fractionation of the

digestion products showed that the activity was restricted to

LMW-HA fragments between 4 and 25 disaccharides in length

(46). More recently published studies indicate that LMW-HA

stimulates vascular EC proliferation, migration, and tubule

formation in vitro, as well as in various in vivo models of

angiogenesis. In contrast, the HMW-HA displays anti-

angiogenic properties by inhibiting EC proliferation, motility,

and sprout formation (47–50). Since CD44 as well as RHAMM,

two main receptors for HA, are present on the surface of the

endothelial cells, both anti-RHAMM and anti-CD44 antibodies

blocked the EC’s ability to form tubule-like structures in matrigel.

Both CD44 and RHAMM stimulated by HA oligomers create a

complex with ERK 1/2, which leads to the constitutive activation

of ERK 1/2 and increased cell motility of invasive breast cancer

cells (49). Similar ERK 1/2 pathway activation by LMW-HA has

also been demonstrated in other tumor cell lines including ECs,

such as human umbilical vein ECs (HUVECs), human

microvessels endothelial cells, and human pulmonary artery ECs

(49). Additionally, LMW-HA promotes the proliferation of

HUVECs and ECs via ezrin, a linkage protein between the

plasma membrane and actin skeleton that interacts with the

cellular C-terminus of the CD44 receptor. In wound healing,

CXCL12 stimulates angiogenesis by activating CXCR4 present on

the EC surface and significantly increased cell migration, and

induced faster-wound closure in wound closure assays. By pre-

incubating with HMW-HA, the wound closure rate was

significantly increased. In vitro studies have shown that CXCR4

activation by CXCL12 was significantly increased in HUVECs

pretreated with HMW-HA; however, LMW-HA pre-incubation

blocked CXCL12 signaling.
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LMW-HA and cancer metastasis

It appears that enhanced HA degradation is associated with

tumor cell spreading. For example, accumulation of LMW-HA in

tumor interstitial fluid correlates with lymphatic invasion and

lymph node metastasis (51). Analysis of 176 serum specimens

from breast cancer patients revealed (52) that level of serum

LMW-HA but not total HA significantly correlated with lymph

nodesmetastasis, suggesting that serum LMW-HAmay represent

an indicator for metastasis development and prognosis for breast

cancer progression. In addition, LMW-HA has been reported to

induce cancer cell invasion by enhancing cancer cell motility (53).

Mechanistically, theHA receptors CD44s and RHAMMserve

as mediators of HA-dependent development of metastasis (54).

These receptors contribute to tumor progression via major

pathways including the MAPK (MEK1, ERK1, 2) and SRC/FAK

pathways that promote expression of an oncogenic transcriptome

required for tumor cell survival, migration invasion, proliferation,

and resistance to apoptosis (54).

CD44 co-localizes with HAS enzymes in lipid rafts where it is

clustered by highmolecular weight HApolymers and functions as

a co-receptor for growth factor receptors to reduce the activation

threshold of oncogenic driver signaling networks. For example,

these small HA fragments limit oncogenic pathway activation and

reverse drug resistance in CD133-positive highly tumorigenic

subpopulations of ovarian carcinoma cells (55).

AnotherHA receptor, RHAMM is consistently overexpressed

in many tumors, and its high expression is linked to the

progression of multiple solid cancers. Increased expression of

RHAMM is associated with castration-resistant disease in

patients with prostatic metastases and elevated levels of both

HA and RHAMM area are associated with a likelihood of

biochemical fai lure in at-risk cancer patients after

prostatectomy (56). Overexpression of RHAMM in breast

primary cancer was linked to distant metastases (57), whereas

increased RHAMM expression in colorectal cancers at the

invasive front of primary tumors is linked to frequent

lymphatic invasion, high tumor grade, and nodal metastasis (58).
Mechanisms of HA degradation in
the tumor microenvironment

The fragmented forms of HA occur in abundance in various

malignancies. These small hyaluronan oligomers are assumed to be

largely a result of increased hyaluronidase (Hyal) expression/

activity (30). Functional perturbations of HA synthesis in cancer

anddegradation have revealed active roles of both theHA synthases

and Hyals in epithelial tumor cells, stroma, tumor vascular

formation, and resistance to chemotherapy (59). Six

hyaluronidase-like gene sequences have been identified in

humans: Hyal1-6 (6, 7), and two recently discovered enzymes
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with hyaluronidase activity, termed HYBID (KIAA1199; CEMIP)

andTMEM(60, 61). Hyal1 andHyal2 are themajor hyaluronidases

expressed in human somatic tissues. It has been proposed that

Hyal1 and Hyal2 work together in a concerted effort (6, 62, 63).

Hyal2 is a rate-limiting, glycosylphosphatidylinositol-linked (GPI-

linked) enzyme that is anchored to the plasmamembrane. It cleaves

extracellular HMW-HA into intermediate size, 20-kDa HA

fragments, or about 50 disaccharide units. The Hyal2-generated

HA fragments are internalized, delivered to endosomes, and

ultimately to lysosomes, where Hyal1 degrades the 20-kDa

fragments to very small tetra-saccharides.

Importantly, both Hyal1 and Hyal2 contribute to intracellular

and extracellular catabolism of hyaluronic acid, respectively, in a

CD44-dependent manner (64). Several studies have shown that the

HA can be internalized by normal, non-malignant cells

(chondrocytes, macrophages, keratinocytes, etc.) for degradation

and that the endocytosis is mediated via cell surface HA receptors.

In cancer, the epithelial tumor cells frequently express the

membrane-bound Hyal2 and can break down secreted HA into

intermediate 20 kDa fragments. Analysis of tumor tissues from

cancer patients and experimental animal tumors revealed that

tumor cells frequently work together with tumor-recruited

myeloid cells including myeloid-derived suppressor cells

(MDSCs) and tumor-associated macrophages (TAMs) to break

down the extracellular HA into small HA fragments (18, 65, 66). It

appears, that tumor-associated myeloid cells have significant

amounts of internalized HA and display higher levels of Hyal1

expression as compared to tumor cells. Accordingly, the tumor-

associated myeloid cells, and particularly TAMs, are more efficient

in breaking down the HMW-HA into small pro-inflammatory and

pro-angiogenic HA fragments.
Tumor stroma and
hyaluronan metabolism

Tumor stroma supports tumor growth in multiple ways

including simulation of proliferation, migration, invasion,

promoting cancer-related inflammation, tumor angiogenesis,

and also by contributing to tumor-associated immune

suppression, resistance to cancer immunotherapy, and

chemotherapy (67–72). Major cellular components of tumor

stroma include cancer-associated fibroblasts (CAFs), TAMs, and

mesenchymal and endothelial cells.

In addition to cells, the tumor stroma also has a highly complex

extracellular component such as ECM, which comprises collagens,

glycans, proteoglycans, and various secreted proteins such as

growth and angiogenic factors, eicosanoids, chemokines, etc (73,

74). The state of tumor stroma is highly dynamic and is constantly

being remodeled via the recruitment of myeloid cell subsets as well

as precursors of endothelial and mesenchymal cells. HA is one of

the major ECM components in tumor stroma. HA has been
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implicated in regulating a variety of cellular functions in both tumor

cells and tumor-associated stromal cells, suggesting that alteredHA

levels can influence tumor growth and malignancy at multiple

levels. Previously published studies have demonstrated that HA

increases the proliferation rate of tumor cells in vitro and promotes

cell survival under anchorage-independent conditions. StromalHA

accumulation is associated with a low immune response and poor

prognosis in some cancers (75, 76)Due to the abnormal production

of HA and its enhanced degradation in tumor tissues, it is plausible

that aberrant HA metabolism in the tumor microenvironment is

highly relevant for tumor growth and progression, specifically

through stimulation of cancer inflammation, tumor angiogenesis,

and modulation of the anti-tumor immune response. HA has

frequently been implicated in monocyte/macrophage trafficking

and activation. Pathology studies of human cancer specimens

suggested that increased numbers of macrophages were

correlated with HA accumulation in tumors (77). Also, it has

been shown that TAMs preferentially infiltrate tumor tissues in an

HA-dependent manner and concomitantly enhance

neovascularization and tumor growth (78).

Recently we showed that HA-enriched tumor stroma directly

contributes to the development of the immunosuppressive tumor

microenvironment by supporting the formation of PD-L1-

expressing macrophages (65). Thus, analysis of organotypic

tumor tissue-slice cultures, from mice with implanted syngeneic

tumors as well as from cancer patients, revealed that tumor-

recruited myeloid cells directly interact with stromal cells to form

the large PD-L1-expressing cell congregates. Using genetically

modified tumor cells, we found that both epithelial tumor cells

and vimentin-positive CAFs represent themajor sources of HA in

the tumor microenvironment. Furthermore, similar cell clusters

comprised of HA-producing fibroblast-like cells and F4/80+PD-

L1+ macrophages were detected in tumor-draining, but not in
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distant lymph nodes. Taking together, these findings indicate that

the formation of multiple large HA-enriched stromal clusters that

support the development of PD-L1-expressing antigen-

presenting cells in the tumor microenvironment and draining

lymph nodes could contribute to the immune escape and

resistance to immunotherapy in cancer.
Tumor-recruited Hyal2+ myeloid
cells and degradation of tumor-
associated hyaluronan

There are multiple pieces of evidence in various cancer types

demonstrating that tumor-associated myeloid cells play pivotal

roles in the formation of the immunosuppressive and tolerogenic

tumor microenvironment that promotes immune escape and

contributes to resistance to cancer immunotherapy. Tumors

promote mobilization of myeloid-derived suppressor cells

(MDSCs) using various mechanisms primarily from bone

marrow and spleen (79, 80). Upon entering tumor tissue

MDSCs directly interact with tumor cells. However, the

mechanisms of these interactions are not fully understood. It

appears that tumor-associatedHAmediates the crosstalk between

tumor-recruited Hyal2+ MDSCs, tumor cells, and stroma (64).

Thus, Hyal2-expressing myeloid cells directly contact HA-

producing tumor cells and CAFs. In a non-activated state, the

HA-degrading enzyme Hyal2 in myeloid cells resides

predominantly in intracellular space. However, upon activation

in the tumor microenvironment Hyal2 translocate to the cell

membrane, thus enabling the degradation of extracellular HA

(Figure 2). The tumor-associated Hyal2-expressing myeloid cells

have been detected in close contact with HA-producing CAFs and

epithelial tumor cells, leading to enhanced degradation of tumor-
BA

FIGURE 2

Hyal2 translocation is required for the degradation of extracellular hyaluronan. In a quiescent state, the Hyal2 molecule in myeloid cells resides
predominantly in intracellular space (A). However, activation of the CD44 signaling pathway results in translocation of Hyal2 to the cellular
membrane, enabling the degradation of extracellular HA (B). Depicted yellow crosses indicate the activated status of the enzyme Hyal2.
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associated fragmentation of HA in the tumor microenvironment.

It should be noted that Hyal2 activity in myeloid cells is regulated

by CD44 signaling and IL-1beta (18).

The increased numbers of Hyal2+ MDSCs have been detected

in peripheral blood and tumor tissue in patients with bladder and

kidney cancers (18, 66). In humans this co-express marker of

myeloid cells CD11b and the marker of monocytic MDSCs CD33

(Hyl2+CD33+CD11b+). A similar subset of Hyal2-expressing

MDSCs (Hyal2+Gr-1+CD11b+) has been found in tumor-bearing

mice (65). Mobilization and tumor recruitment of Hyal2+ myeloid

cells results in enhancedHAdegradation in tumor tissue, leading to

the accumulation of small HA fragments (~20 kDa) in the tumor

microenvironment. In addition, the tumor-infiltrating myeloid

cells show significantly higher expression of Hyal1 than tumor

cells and have the ability to degrade HA into much smaller

fragments with a molecular weight of less than 5 kDa (63). The

smallest HA fragments exert the strongest pro-inflammatory and

pro-angiogenic activities (2, 3, 7, 45).

Importantly, the tumor-recruited Hyal2+ MDSCs also co-

express the immunosuppressive ligand PD-L1 (64, 65). In mouse

tumor models, upon contact with HA-producing tumor cells or

CAFs, Hyal2+ MDSCs can proliferate and differentiate into

immunosuppressive macrophages, forming the large PD-L1+

myeloid cell clusters (Figures 3 and 4). Interestingly, during

the transition of Hyal2+MDSCs into TAMs, the activity of HA-

degrading activity of Hyal2 is reduced, while expression of

immunosuppressive ligand PD-L1 is markedly up-regulated. It

is still unclear how the degradation of extracellular HA promotes
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differentiation of Hyal2+Gr-1+PD-L1+ MDSCs into more

mature immunosuppressive F4/80+PD-L1+ tumor-associated

macrophages. It is plausible that under pro-inflammatory

conditions in the tumor microenvironment small HA

fragments promote the transition of MDSCs into activated

immunosuppressive PD-L1+ macrophages. Collectively, these

data indicate that tumor-recruited myeloid cells contribute to

tumor growth through degradation of tumor-associated HA,

promoting cancer-related inflammation, tumor angiogenesis,

and tumor-associated immune suppression.
Conclusions

Understanding the complex molecular and cellular

mechanisms involved in abnormal HA metabolism and

catabolism in solid cancers could have important implications

for the design of future cancer therapeutic approaches. It appears

that extensive crosstalk between tumor-associated myeloid cells

and HA-enriched stroma contributes to the tumor growth and

progression in several ways. Specifically, the interaction of

tumor-recruited Hyal2-expressing myeloid cells with HA-

producing stromal cells results in enhanced HA degradation

and accumulation of small pro-inflammatory and pro-

angiogenic HA fragments (18). HA-enriched stroma directly

supports the development of PD-L1-expressing macrophages,

thus contributing to the formation of the immunosuppressive,

tolerogenic microenvironment by creating a PD-L1 shield and
FIGURE 3

Tumor-recruited Hyal2+ MDSCs directly contribute to the development of the immunosuppressive tumor microenvironment by forming PD-L1+

macrophage clusters in the hyaluronan-enriched stroma. Tumors constantly secrete significant amounts of chemokines that attract the Hyal2+ MDSCs
from bone marrow. Once recruited to the tumor, Hyal2-expressing myeloid cells start degradation of extracellular HA in the tumor microenvironment.
Direct interaction of tumor-recruited myeloid cells with HA-producing cancer-associated fibroblasts (CAFs) and epithelial tumor cells leads to the
accumulation of small HA pro-inflammatory and pro-angiogenic fragments. Hyal2+ MDSCs differentiate into immunosuppressive tumor-associated
PD-L1+ macrophages (PD-L1+ TAMs), forming large PD-L1-expressing cell clusters in HA-enriched tumor stroma.
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preventing T cell-mediated immune response via the PD1/PD-

L1 pathway (65, 66). Constant mobilization of bone marrow-

derived Hyal2+ MDSCs, CAFs, and endothelial cells contribute

to the highly dynamic development of tumor stroma, enhances

degradation of tumor-associated HA, and further promotes the

tumor progression through stimulation of cancer-related

inflammation, tumor angiogenesis, and tumor-associated

immune suppression. Therefore, the normalization of HA

metabolism in the tumor microenvironment could potentially

provide a strong beneficial step for improving the efficacy of

existing approaches to treat cancer, particularly for

cancer immunotherapy.
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FIGURE 4

Tumor-associated hyaluronan directly supports the development of immunosuppressive PD-L1+ macrophages in the tumor microenvironment.
Freshly prepared tumor tissue slices were cultured for twenty-four hours. Then cultures were fixed with 4% formaldehyde and stained PD-L1
(red) and HA (green). Representative IF image is shown.
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Branched-chain ketoacids
derived from cancer cells
modulate macrophage
polarization and metabolic
reprogramming

Zhengnan Cai1, Wan Li1, Martin Brenner1,2, Sheyda Bahiraii2,
Elke H. Heiss2 and Wolfram Weckwerth1,3*

1Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology,
University of Vienna, Vienna, Austria, 2Department of Pharmaceutical Sciences, University of Vienna,
Vienna, Austria, 3Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
Macrophages are prominent immune cells in the tumor microenvironment that

can be educated into pro-tumoral phenotype by tumor cells to favor tumor

growth and metastasis. The mechanisms that mediate a mutualistic

relationship between tumor cells and macrophages remain poorly

characterized. Here, we have shown in vitro that different human and murine

cancer cell lines release branched-chain a-ketoacids (BCKAs) into the

extracellular milieu, which influence macrophage polarization in an

monocarboxylate transporter 1 (MCT1)-dependent manner. We found that a-
ketoisocaproate (KIC) and a-keto-b-methylvalerate (KMV) induced a pro-

tumoral macrophage state, whereas a-ketoisovalerate (KIV) exerted a pro-

inflammatory effect on macrophages. This process was further investigated by

a combined metabolomics/proteomics platform. Uptake of KMV and KIC

fueled macrophage tricarboxylic acid (TCA) cycle intermediates and

increased polyamine metabolism. Proteomic and pathway analyses revealed

that the three BCKAs, especially KMV, exhibited divergent effects on the

inflammatory signal pathways, phagocytosis, apoptosis and redox balance.

These findings uncover cancer-derived BCKAs as novel determinants for

macrophage polarization with potential to be selectively exploited for

optimizing antitumor immune responses.

KEYWORDS

macrophage polarization, tumor-associated macrophages, panomics, BCKAs Fc-
gamma receptor (FCgR)-mediated phagocytosis, tumor necrosis factor alpha
(TNFa)-nuclear factor kappa B (NFkB) -mediated inflammatory pathway, apoptosis
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Introduction

Over the past decade, a wealth of preclinical and clinical

evidence supports a tumor-promoting role for macrophages in

cancer (1). For example, macrophage contents in solid tumors

correlate with chemotherapy resistance and a worse prognosis

for non-small cell lung carcinoma (NSCLC), breast cancer,

pancreatic cancer, glioblastoma, and lymphoma (2–6). Indeed,

macrophages were thought to be antitumoral at an early stage of

tumor onset, owing to their ability to directly engulf and kill

tumor cells or indirectly clear tumor cells through presenting

tumor antigens to activate cytotoxic lymphocytes, but once

macrophages were influenced by cancer cells, they rapidly

adopt an alternative phenotype with an immunosuppressive

function that enhances tumor progression and metastasis.

Even though there may still be antitumor macrophages

present, most macrophages are “educated” to favor tumor

growth (7). Thus, understanding how cancer cells govern

macrophage phenotype within the tumor microenvironment

provides a means to selectively target macrophage

reprogramming and improve tumor immune surveillance.

Cancer cell-secreted metabolites within the tumor

microenvironment are partially responsible for modulating

surrounding immune profiles (8). Lactate is largely produced

within the tumor microenvironment by cancers cells exploiting

the Warburg effect (aerobic glycolysis) (9), which promotes

differentiation and polarization of tumor-associated

macrophages towards a pro-tumoral phenotype (M2-like) with

elevated expression of arginase-1 (ARG1), pro-tumoral marker

Vegf and M2 marker genes (Arg1, Fizz1, Mgl1, Mgl2) (10). In

turn, M2-like macrophages produce immunosuppressive

cytokines (IL10) and metabolites such as arginine, ornithine

and polyamines, which are essential for the cell division and

proliferation of some tumors (11, 12). In addition, tumor cell-

derived kynurenine dampened the effector function of

macrophages and engaged a pro-tumoral cooperation between

macrophages and regulatory T cells (Tregs) (13). TCA cycle

intermediate succinate released by lung cancer cells can activate

macrophage polarization into an M2-like phenotype, and

accelerate cancer cell migration and metastasis (14).

Our initial unpublished metabolomic analysis showed

elevated BCKAs levels in the conditioned media (CM) from

two lung cancer cell lines (A549 and AE17) compared to non-

proliferative cells. Recently, accumulated BCKAs were also

found in glioblastoma and can act as substrates for de novo

synthesis of branched-chain amino acids (BCAAs) in

macrophages (15). The three BCKAs are a-ketoisocaproate
(KIC), a-keto-b-methylvalerate (KMV), and a-ketoisovalerate
(KIV). All are precursors for or generated from essential amino

acids leucine, isoleucine, and valine. The reaction is catalyzed by

the compartment-specific BCAAs transaminases (cytoplasmic,

BCAT1; mitochondrial, BCAT2). Within cells or tissues, BCKAs

can either be reversibly transaminated to BCAAs and a-
Frontiers in Immunology 02
33
ketoglutarate (a-KG) or catabolized to branched-chain acyl-

CoA (R-CoA) that can be further metabolized by multimeric

BCKA dehydrogenase enzyme complex (BCKDH) to generate a

branched-chain acyl-CoA (R-CoA) that can be further

metabolized to acetyl-coenzyme A (acetyl-CoA) or succinyl-

CoA, which finally fuel the tricarboxylic acid (TCA) cycle (16)

(Figure S1A). BCAT1 and BCAT2 are highly expressed in

human tumors such as glioblastoma, acute myeloid leukaemia,

lung tumor, breast tumor and pancreatic tumor (17–22). BCAT1

inhibition significantly reduced BCKAs within pancreatic

stromal cells (22). Notably, uptake of BCKAs suppressed the

phagocytosis of macrophages suggesting an immunosuppressive

function of these metabolites (15). In contrast, BCKAs induced

upregulation of proinflammatory genes and inflammation-

related cytokines in bone marrow-derived macrophages

(BMDM) from wild-type and db/db mice (type 2 diabetes)

(23). Thus, how BCKAs modulate macrophage phenotype

remains controversial and underlying mechanisms and

context-dependency are far from being completely understood.

Here, we uncover the role of BCKAs in regulating

macrophage activation and metabolic reprogramming. We

found that a panel of selected cancer cells secrete all three

BCKAs to different extents, of which KIV exhibited an effect on

pro-inflammatory (M1-like) macrophage polarization while KIC

and KMV showed an effect on pro-tumoral (M2-like)

macrophage polarization. Combined BCKAs promoted M2-like

polarization and was closer to tumor setting. Proteomic analyses

revealed that KMV stimulation affected Fc-gamma receptor

(FcgR)-mediated phagocytosis, tumor necrosis factor-alpha

(TNFa)-nuclear factor kappa B (NFkB)-mediated inflammatory

pathway and apoptosis. Further metabolomics analyses indicated

that cancer-derived BCKAs were used for augmenting TCA

cycle intermediates. KIC and KMV also contributed to

enhanced polyamine metabolism in macrophages. Hence,

preventing the release of BCKAs by cancer cells, and selectively

targeting KMV or KIC in the tumor microenvironment would

benefit antitumor immunity.
Results

Cancer cell-derived BCKAs modulate
macrophage polarization via MCT1

To examine whether cancer cell-derived BCKAs can

modulate macrophage activation, we first measured

concentrations of KIV, KIC and KMV in the conditioned

media (CM) from 9 equally seeded cancer cell lines (6 human

cancer cell lines and 3 murine cancer cell lines), as well as

immortalized bone marrow derived-macrophages (iBMDM)

and BMDM. Both iBMDM and BMDM consumed a few

BCAAs and released a low quantity of BCKAs (Figures 1A, B).

In contrast, accumulated BCKAs were detected in cancer CM,
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which is consistent with the consumption of BCAAs by cancer

cells (Figure 1C). The contents of the three BCKAs varied

substantially in each cancer cell CM, where KIV ranges from

15 mM to 80 mM, KIC ranges from 15 mM to 100 mM and KMV

ranges from 10 mM to 40 mM. To keep our initial findings

consistent, we evaluated the effect of BCKAs and two lung cancer

CM (A549 CM and AE17 CM) on macrophage proliferation and

polarization (Figure 1D). Both BMDM and iBMDM

proliferation rates were significantly enhanced on exposure to

A549 CM and AE17 CM (Figures 2A, S1B), probably because of

cancer cell-released various cytokines (e.g., macrophage colony-

stimulating factor (M-CSF/CSF-1)) and soluble factors that

affect macrophage differentiation and proliferation. While

stimulation with BCKAs only had little effect on macrophage

proliferation even at a concentration of 1 mM (Figures 2B, S1C).

Moreover, both iBMDM and BMDM exhibited an increase in

expression of (Arginase-1) ARG1 protein and M2 marker genes

Arg1, Mgl1, Mgl2, Mrc1 and a pro-tumoral marker Vegf after

AE17 CM treatment (Figures 2C, D, S1D, E). BMDM also

significantly secreted anti-inflammatory cytokine TGF-b and

growth factor VEGF after AE17 CM treatment, whereas

proinflammatory cytokines TNF-a and IL6 were slightly

reduced (Figure 2F). However, the individual BCKAs differed

in their activation of genes and cytokines associated with

immune suppression, chronic inflammation, and tumor

angiogenesis in macrophages. Vegf mRNA expression was
Frontiers in Immunology 03
34
increased in both iBMDM and BMDM on stimulation with all

three BCKAs, while Arg1 was only enhanced by KIC and KMV

stimulation (Figures 2E, S1F). Mgl1 and Mgl2 were solely

enhanced by KIV stimulation (Figure 2E). Both KIV and KIC

additionally enhanced the proinflammatory (M1-like) marker

Nos2, while only KIV stimulation also activated Il1b and Il6

(Figures 2E, S1F). KIC and KMV treatment also caused the

production of anti-inflammatory cytokine TGF-b and growth

factor VEGF (Figure 2F). Similar effects on TGF-b and VEGF

production by BCKA pool treatment were observed (Figure 2F).

Proinflammatory cytokines IL6 and TNF-a were only increased

after KIV treatment while slightly reduced in KMV-treated

macrophages (Figure 2F). Interestingly, BCKA pool treatment

did not affect TNF-a and modestly reduced IL6 production,

which is closer to AE17 CM treatment and probably due to the

opposing effects from the other two BCKAs, especially KMV.

The monocarboxylate transporter MCT1 mediates the

transport of BCKAs through plasma membranes of Xenopus

oocytes and glioblastoma cells (15, 24, 25). We thus investigated

whether BCKAs activate macrophage MCT1 expression. RT-

quantitative PCR (qPCR) analyses of BMDM showed that

BCKAs stimulation has no effect on MCT1 (Slc16a1) mRNA

level (Figure 2E). However, BCKAs-induced upregulation of

Arg1 and Vegf was significantly reduced by the MCT1

inhibitor AZD3965 (Figure 2G). We repeated the same

experiments with iBMDM and found similar results (Figure
B

C

D

A

FIGURE 1

Cancer cells consume BCAAs and secrete BCKAs. (A), BCKAs (KIV, KIC and KMV) in the DMEM complete medium or conditioned media (CM)
from indicated cells were detected by GC-MS. (B), Representative mass spectra of KIV, KIC and KMV by GC-MS. (C), BCAAs (leucine, isoleucine
and valine) in the DMEM complete medium or conditioned media from indicated cells were detected by GC-MS. (D), Diagram of workflow.
Conditioned media from cancer cells and three BCKAs were added to BMDM or iBMDM, followed by multiomics analysis. Data in A and C show
the mean ± SEM of n = 3 technical experiments.
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B

C D

E

F

G

A

FIGURE 2

BCKAs in cancer cell CM induce murine BMDM polarization. (A), Relative proliferation rate of BMDM grown in DMEM complete medium or
indicated cancer cell CM. (B), Relative proliferation rate of BMDM grown in DMEM complete media or equivalent media containing 200 mM KIV
or 200 mM KIC or 200 mM KMV (n = 3). (C), mRNA expression of Arg1, Mrc1, Mgl1 and Mgl2 in BMDM was measured by qPCR after incubation
with AE17 CM for 24 hours. (D), ARG1 protein level was measured by western blot after incubation with AE17 CM for 24 hours. (E), mRNA
expression of Arg1, Mrc1, Mgl1, Mgl2, Vegf, Il1b, Il6, Nos2 and Slc16a1 was measured in BMDM after stimulation with DMEM (Control), 200 mM
KIV, 200 mM KIC and 200 mM KMV, respectively for 24 hours. (F), Cytokines TGF-b, TNF-a, IL6 and growth factor VEGF in BMDMs after the
indicated treatments were measured by ELISA kits. (G), mRNA expression of Arg1 and Vegf was measured after pretreatment with the MCT1
inhibitor 250 nM AZD3965 for 1 hour, and stimulation with 200 mM KIV, 200 mM KIC and 200 mM KMV, respectively for 24 hours. Data show the
mean ± SEM of n = 3 biological experiments. *p < 0.05, **p < 0.01, ***p < 0.001 (unpaired two-tailed t test).
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S1G). Taken together, these data indicate that cancer cell-

secreted KIV promote pro-inflammatory macrophage

polarization whereas KIC and KMV promote a pro-tumoral

phenotype (based on the investigated markers). Although

individual BCKAs differed in macrophage polarization,

combined BCKAs have a crucial impact on macrophage pro-

tumoral polarization and all three BCKAs seem to affect

macrophage polarization only after import by MCT1.
Macrophage apoptosis, redox balance
and inflammatory functions are
significantly altered by KMV stimulation

To investigate the global responses of macrophages to

BCKAs, we performed an untargeted MS-based proteomic

analysis on iBMDM treated with DMEM (Ctrl), AE17 CM,

200 mM KIC, 200 mM KIV and 200 mM KMV, respectively.

Overall, 3512 protein groups were quantified (Table S1) upon

data processing (see methods). Next we applied one-way analysis

of variance (ANOVA) with an False Discovery Rate (FDR) cutoff

(FDR value < 0.05) and found 114 and 130 differentially

expressed proteins (DEPs) in the DMEM group and in the

combined three BCKAs groups, respectively (Table S1,

Figure 3A). Principal component analysis (PCA) reliably

distinguished DEPs from three BCKAs groups versus the

control group (Figure S2A). Functional analysis indicated that

the most enriched categories of BCKAs-upregulated proteins

included the cAMP signaling pathway, sphingolipid signaling

pathway, autophagy, VEGF signaling pathway, nucleotide

synthesis and mitochondrial transport (Figure S2B). Among

the top categories of suppressed proteins were RNA splicing,

regulation of cytochrome c release, apoptosis, RNA

destabilization and TNFa-NFkB pathway (Figure 2B).

Next, we used all DEPs to construct a protein interaction

map. Most of these proteins exhibited significant interactions

(PPI = 0.00102) (Table S1, Figure 3B). 6 clusters of DEPs were

identified by way of k-means analysis and enriched in canonical

macrophage functions (Figures 3B, C), including FcgR pathway-

mediated phagocytosis (FCGR4, SPHK2, PIK3R1), apoptosis

(CASP3, STEAP3, ROCK1, ROCK2, RIPK1, PIK3R1), TNFa-
NFkB signaling (NFKB1, RELA, RIPK1, PPP2CA, SPHK2),

oxidation-reduction process (CAT, GSR, GPX1), ribosome

biogenesis (NOP58, NOP10, NOP14, WDR74), RNA transport

(POP1, RAN, NUPL1, TPR, FXR2) and metabolic pathways

(CMPK1, GRHPR, GPI, ACSL1, ABCD1, CKB, P4HA1, PFAS,

AK1, SGPL1, ATP5H). Of note, KMV stimulation has more

obvious alterations in these pathways than KIC and KIV.

Furthermore, we compared the top26 node degree of proteins

(each protein interacts with at least 10 other proteins) among

control and three BCKAs groups (Table S1). We found that

apoptosis executor CASP3 was reduced while negative apoptosis

regulator PIK3RL was increased by KMV stimulation
Frontiers in Immunology 05
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(Figure 3D), suggesting that KMV stimulation protects

macrophages from apoptosis. Similarly, reduced inflammatory

regulator NFKB1 and increased negative regulator CAT

indicated that KMV stimulation prevented macrophage

polarizing into inflammatory tumor suppressive phenotype

(Figure 3D), which is in line with our previous qPCR results.

In addition, KMV stimulation changed several metabolic

pathways such as glycolysis, TCA cycle, purine and pyrimidine

nucleotide synthesis, arginine and proline metabolism and

sphingolipid metabolism (Figure 3C).
BCKA stimulation elevates
metabolites in the TCA cycle and
polyamine metabolism

Metabolic reprogramming of macrophages shapes their

activation state and function. Our proteomic analysis

suggested a plausible metabolic alteration in response to

BCKA stimulation, we then decided to examine the

metabolome of macrophages after BCKA treatment. Because

macrophage metabolism is constantly changing, we harvested

unstimulated and iBMDM stimulated with each of the three

BCKAs at two-time points: 2 hours (h) for early response and 24

h for the late response. Totally 41 metabolites were identified by

GC-MS analysis, including glycolysis, TCA cycle, amino acids

metabolism, and polyamine metabolism. Clusters of 2 h groups

were notably separated from 24 h by PCA plot (Figure 4A),

indicating a dynamic metabolic change within the macrophages.

An interesting trend was observed after exposure to BCKAs,

where all clusters of late responses of BCKAs groups, especially

KIC, have shifted away from the DMEM (control) group

(Figure 4A). Indeed, a variety of intracellular metabolites were

altered after stimulation with BCKAs, and this difference was

more profound at 24 h compared to the DMEM group (Table S2,

Figure 4B). Evidently, TCA cycle intermediates a-ketoglutarate
(a-KG), succinyl-CoA, succinate, fumarate, and malate are all

enhanced by the administration of any of the three BCKAs at

both time points. Meanwhile, individual BCKAs treatment

significantly increased acetyl-CoA levels, implying that BCKAs

can be catabolized by macrophages and contribute to the TCA

cycle. Although glutamine and glutamic acid levels were not

changed by individual BCKAs treatment (Figures 4B, S3A),

increased a-KG may also be from the contribution of BCKA

transamination. Thus, our results indicate that BCKAs are taken

up and incorporated into the TCA cycle via acetyl-CoA,

succinyl-CoA, or a-KG (Figures 4B, C). The glycolysis

intermediates pyruvate and lactate were enhanced by KMV

and KIC at 24 h. In addition, inflammatory-related

metabolites itaconate, b-alanine and 2-hydroxyglutarate were

enhanced by BCKAs at 24 h (Figure 4B). KIC and KMV also

enhanced putrescine, which is the important metabolite of

polyamine metabolism (Figure 4D). Moreover, KIC
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stimulation at 24 h significantly activated creatinine, the by-

product of energy metabolism and other amino acids tyrosine,

alanine, cysteine, phenylalanine, taurine, and lysine (Figure 4B).

Of note, a recent study reported that macrophages take up

cancer cell-released KIV, KIC and KMV for regenerating

valine, leucine and isoleucine (15). However, our metabolic

data only revealed an increase in leucine level in the KIC

stimulation group (Figure 4B). One possibility is that

macrophages utilize regenerated BCAAs from BCKAs instead
Frontiers in Immunology 06
37
of extracellular sources (15). Moreover, no intracellular BCKAs

were observed after 2 h or 24 h treatment, it is probably because

intracellular concentrations of BCKAs are too low to be detected

by the mass spectrometer or BCKAs are quickly catabolized and

transaminated into the TAC cycle and BCAAs, respectively.

Next, we performed pathway analysis using selected 17

metabolites at 24 h whose FDR was < 0.05 by one-way

ANOVA (Table S2). The most enriched metabolic pathways

were the TCA cycle (citrate cycle), pyruvate metabolism and
B

C

D

A

FIGURE 3

Protein signatures of responses to BCKAs stimulation. (A), Heatmap of 243 differentially expressed proteins (one-way ANOVA, FDR q value < 0.05)
between unstimulated (DMEM) and three BCKAs-stimulated iBMDM. (B), Protein–protein interaction (PPI) network in differentially expressed
proteins shown in A illustrated by STRING (PPI enrichment p-value = 0.00102). Proteins were divided into 6 clusters by k-means clustering
method. Each node represents input proteins. Distinct nod colors indicated 1-6 clusters (see Table S1). Edges represent protein-protein
associations (evidence). Representative KEGG terms are shown in enriched positions. (C), Heatmap of the protein intensity of selected KEGG
terms shown in (B, D), Proteomics analysis of CASP3, PIK3R1, NFKB1 and CAT in Ctrl and three BCKAs-stimulated iBMDM. The LFQ intensities
were log2 transformed. Data shown the mean ± SEM of n = 3 biological experiments. *p < 0.05, **p < 0.01 (unpaired two-tailed t test).
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alanine, aspartate and glutamate metabolism in macrophages

(Figure S3B). Taken together, these data provide evidence that

administrat ion of BCKAs reprograms macrophage

metabolic profiles.
Discussion

The diverse metabolic environment of tumors has long been

implied to influence the phenotype of tumor-associated

macrophages, rendering them immunosuppressive and

contributing to tumor growth and metastasis (10, 14, 26, 27).
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Here, we demonstrate that cancer cells secreted three BCKAs

that are able to influence macrophage polarization and

metabolic reprogramming. Previous work has described the

importance of BCKAs in favoring tumor growth and

accelerating chronic inflammatory disease (22, 23). Our work

suggests that three BCKAs exhibit divergent roles in affecting

macrophage functional pathways and should be targeted

individually to improve anti-tumor immune responses.

Many solid tumor cells rely heavily on amino acids for their

proliferation, especially on BCAAs, which they can only derive

from the diet or the tumor microenvironment (28, 29). BCKAs

are the intermediates of BCAAs catabolism, which can be
B

C D

A

FIGURE 4

BCKAs stimulation enhance TCA cycle and polyamine metabolism in macrophages. (A), PCA analysis of total identified metabolites among
DMEM, KIV, KMV and KIC treatment at two time points (2 h and 24 h) is shown. (B), The hierarchal clustering heatmap of identified metabolites
upon DMEM and three BCKAs treatment at two time points (2 h and 24 h) is shown. The rows indicate different metabolites, and the columns
indicate different conditions. The log-transformed metabolite intensities (normalized to internal standards) were scaled by autoscaling (mean-
centering/standard deviation). (C), Schematic representation of the TCA cycle, the corresponding metabolite is shown. (D), Schematic
representation of the arginine metabolism at 24 h, the corresponding metabolites from (B) are shown. PCA (A) and hierarchical clustering (B)
analysis were applied via online tool MetaboAnalyst. Data shown the mean ± SEM of n = 3 or 4 biological experiments. *p < 0.05, **p < 0.01,
***p < 0.001 (unpaired two-tailed t test) (unpaired two-tailed t test).
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exported into extracellular space by MCT1 in glioblastoma (15).

Accumulation of BCKAs is also correlated with various diseases

including obesity, type 2 diabetes and cardiac dysfunction (30–

32). We showed that a panel of cancer cells including breast,

colorectal and lung cancer cells consumed BCAAs from media

and released high levels of KIV, KIC and KMV. KIC and KMV

could induce pro-tumoral polarization of macrophages whereas

KIV could exert pro-inflammatory effects on macrophages.

MCT1 is well known as the lactate transporter that mediate

lactate influx and efflux (33, 34). Tumor-associated macrophages

highly expressed MCT1, which is correlated with poor prognosis

in breast cancer patients (35). MCT1 also mediated M2-like

macrophage polarization instructed by lactate within an

ischemic muscle (36). We found that BCKAs influenced

macrophage polarization in an MCT1-dependent manner.

Considering a higher lactate level was observed in KIC-treated

macrophages, our results imply that the antitumor benefits of

targeting MCT1 may partially be due to the blocked uptake of

cancer-derived BCKAs or KIC-triggered lactate by surrounding

immune cells.

Tumor cells have evolved to evade the engulfment by

macrophages via the expression of anti-phagocytic molecules,

leading to immune escape and macrophage repolarization (37).

FcgRIV (encoded by gene Fcgr4) was recently identified as an

important Fc receptor that promotes macrophage-mediated

phagocytosis, proinflammatory cytokine production and

antigen presentation to T cells (38). Activated Fcgr4 by

Intravenous Igs (IVIg) treatment repolarized M2-like

macrophages switch to M1-like macrophages and impaired

tumor progression and metastasis (39). Our data revealed that

KMV stimulation significantly increased majority of proteins

(including phagocytosis negative regulator SPHK2) associated

with FcgR-mediated phagocytosis pathway while significantly

reduced FCGR4 protein intensity, which may partially explain

why BCKAs stimulation suppressed macrophage phagocytosis

(15). Transcription factor NFkB has been shown to play a critical

role in regulating the expression of proinflammatory mediators,

such as nitric oxide (NO) synthase and IL-1b, IL-6 and TNF-a.
Interestingly, NFKB1 intensity was decreased by KMV or KIC

stimulation but not KIV stimulation. We also found that catalase

(CAT) and serine/threonine-protein phosphatase 2A catalytic

subunit alpha isoform (PPP2CA) proteins are increased in KMV

group. CAT overexpression can inhibit NFkB activation

triggered by a peroxisome proliferator and protect liver cells

from oxidative damage (40). Similar, PPP2CA is a vital

constituent of PP2A and its downregulation by breast cancer

cell-derived exosomes activated NFkB signaling pathway in

tumor-associated macrophages (41). Our proteomics and

qPCR data imply that KMV probably activates CAT and

PPP2CA-mediated downregulat ion of NFkB signal

t ransduc t ion , thereby l imi t ing the expre s s ion of

proinflammatory genes. However, the causal relationship

between this signal axis and KMV-induced macrophage
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polarization and the detailed experimental validation of the

proteomic data remain to be addressed in the future studies.

Recent reports revealed a mutualistic relationship

concerning BCAAs metabolism between tumor cells and the

tumor microenvironment (15, 22). Cancer-associated

fibroblasts-secreted BCKAs can be taken up by pancreatic

cancer cells and re-aminated to BCAAs, which are further

involved in maintaining cellular protein synthesis, fueling the

TCA cycle and increasing oxidative phosphorylation (OXPHOS)

(22). In contrast, we did not find an increase of all three BCAAs

in macrophages except leucine after BCKAs exposure, but our

data showed the enhancement of glycolysis and TCA cycle

metabolites upon BCKAs stimulation. Metabolism has been

highlighted as a crucial mediator of macrophage activation

and polarization (42). It is well known that enhanced

glycolysis and accumulated TCA cycle intermediates such as

citrate and succinate emerge as typical features of M1-like

macrophages (43, 44). KIV, KMV, and KIC treatment all

triggered TCA cycle intermediates while only KIV activated

proinflammatory cytokines IL6 and TNF-a as well as transcripts

of Il6 and Il1b. Combined with our proteomics results, it seems

that KMV and KIC, not KIV inhibit the NFkB pathway, which is

responsible for the transcription of these proinflammatory

cytokines. In M2-like macrophages, arginine is metabolized to

urea and polyamines (putrescine and ornithine) by highly

expressed ARG1. Increased polyamines have been found to

promote tumor growth and blunt effector T cell responses (45,

46). Our results found that KMV and KIC treatment

significantly increased putrescine, which supports the role of

KMV and KIC on macrophage pro-tumoral polarization.

Moreover, mitochondrial OXPHOS and redox homeostasis are

essential for both M1-like and M2-like macrophages. M2-like

macrophages are crucially dependent on the efficient electron

transport chain and OXPHOS to support their energy demands

and phenotype, whereas M1-like macrophages shift

mitochondria away from ATP production and towards ROS

production, which drives IL-1b generation and undermines anti-

inflammatory activation (47). Our proteomic results revealed

that KIV treatment induced GSR protein expression, which

catalyzes GSH synthesis and highlighted the importance of

GSH in maintaining cellular redox balance during macrophage

proinflammatory activation. Unlike KIV treatment, KMV

treatment decreased GSR expression while enhancing another

antioxidant enzyme CAT. Thus, redox regulation is associated

with BCKAs-induced macrophage polarization, and the

complex mechanism remains further investigated.

In summary, we have shown that cancer cells secrete BCKAs

into the extracellular milieu, which can affect distinct

macrophage polarization by altering proinflammatory and

anti-inflammatory phenotype markers. Furthermore, all three

BCKAs can fuel TCA cycle metabolite pools. KIC and KMV can

also increase immunosuppressive metabolites in macrophages.

Proteomics and network analysis identified several canonical
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functions significantly altered by KMV treatment of

macrophages, including TNFa-NFkB pathway, FcgR-mediated

phagocytosis, apoptosis, and redox regulation. We also provide

evidence that BCKAs depend on MCT1. These findings

highlight the importance of cancer-derived BCKAs for

regulating macrophage polarization and metabolism. Studies

focusing on the actual net degree of tumor promotion by

BCKA-exposed macrophages and its reliance on observed

metabolic changes are warranted, most preferably in an

appropriate in vivo setting.
Materials and methods

Animals

6−8-week-old wild-type C57BL/6JRI mice were purchased

from Janvier (France). The animals were kept in a pathogen-free

environment. Every procedure was carried out under sterile

conditions and according to the regulations of the Ethics

Committee for the Care and Use of Laboratory Animals at the

Medical University of Vienna.
Cell culture

All cells were cultured at 37°C in a humidified (5% CO2)

atmosphere. All cancer cell lines were obtained by ATCC and

routinely cultured in Dulbecco′s Modified Eagle′s Medium

(DMEM) high glucose containing 10% heat-inactivated FBS, 2

mM L-glutamine, 100 U/mL penicillin and 100 µg/mL

streptomycin (DMEM complete medium). All the cultured cells

were tested negative for mycoplasma contamination regularly.

Bone marrow derived macrophages (BMDM) were obtained

as previously described (48). Briefly, femurs and tibiae from

wild-type C57BL/6JRI mice (Janvier) aged 6 to 8 weeks were

flushed and bone marrow (BM) cells collected by centrifugation

at 400g for 5 min at 4 °C. BM cells were resuspended in BMDM

differentiation medium and cultured in non-tissue culture

treated petri dishes for 6-7 days. BMDM differentiation

medium consists of DMEM high glucose, 10% heat-inactivated

FBS, 2 mM L-glutamine, 100 U/mL penicillin and 100 µg/mL

streptomycin supplemented with 20% L929-conditioned

supernatant. The medium was replaced every 3 days. On day 6

or 7, differentiated BMDM (96% of the cells were positive for F4/

80 and CD11b) were washed, harvested, and seeded in the

DMEM complete medium for different experiments. iBMDM

was kindly provided by Laszlo Nagy (Debrecen University,

Hungary) and cultured in iBMDM medium consisting of

DMEM high glucose, 10% heat-inactivated FBS, 10% L929-

conditioned supernatant, 2 mM L-glutamine, 100 U/mL

penicillin and 100 µg/mL streptomycin.
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CM preparation

5 × 106 cancer cells or BMDM or iBMDM were seeded in 20

mL DMEM complete medium, and conditioned medium (CM)

was collected after 24 h and centrifuged at 410g. for 4 min. The

supernatant was passed through a 0.22-µm filter to eliminate

debris before use.
Proliferation assay

Cancer cells were seeded in 24-well plates (AE17 2 × 104 cells

per well, A549 4 × 104 cells per well), BMDM or iBMDM in 12-

well plates (4 × 104 cells per well) in DMEM complete media and

allowed to grow overnight. Macrophages were then washed with

PBS and received fresh medium supplemented with or without

indicated concentrations of BCKAs. To maintain constant

nutrient levels and remove waste liberated from dead cells, the

medium was replaced every 24 h. Live cell numbers were

quantitated with the Vi-CELL XR cell counter (BECKMAN).

KIV (Cat: HY-W006057) and KMV (Cat: HY-113063) were

purchased from MedChemExpress. KIC (Cat: 68255) was

purchased from Sigma-Aldrich. All BCKAs are made up in

DMEM. The experiment was performed in 3 independent

biological replicates.
Metabolomic analysis

Metabolites in the conditioned media (CM) or iBMDM were

extracted and analyzed according to previous established method

with modifications (48). In brief, iBMDM were seeded at 0.85 ×

106 cells per well of a 6-well plate and allowed to attach for

overnight. Cells were washed with PBS and received freshmedium

supplemented with 200 mMKIV, 200 mMKIC and 200 mMKMV,

respectively. After 2 h and 24 h incubation, cells were washed in

cooled 0.9% NaCl and extracted in 1 mL/well of 80% methanol

with 0.3 nM Pentaerythritol and 2.5 nM Phenyl b-D-

glucopyranoside as internal extraction standards. Extraction

samples were incubated for 15 min at 4°C, then centrifuged for

10 min at 21,000g. The supernatant was transferred to a fresh

polypropylene tube and dried in a SpeedVac (Labogene). The cell

pellet was lysed by RIPA and used to measure protein levels for

normalization purposes. 15 mL of methoxyamine hydrochloride

solution (40 mg dissolved in 1 ml pyridine) was added to the dried

fraction which was then incubated for 90 min at 30°C. Next, 60 mL
of (N-Methyl-N-trimethylsilyltrifluoracetamid) MSTFA was

added and incubated for 30 min at 37°C. Reaction mixtures

were centrifuged for 10 min and 4°C at 21,000g and the

supernatants were transferred to glass vials with micro-inserts.

Measurement of metabolites was performed using gas

chromatography-mass spectrometry (GC-MS) standard
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protocols (49). Deconvolution of the total ion chromatogram,

peak alignment and integration was performed using the software

MS-DIAL v4.7 (50).

To measure the KIC, KIV, KMV, leucine, isoleucine, and

valine contents on CM samples, three aliquots (100 mL) were run
for each CM. Briefly, 400 mL prechilled methanol containing

internal standards was added to 100 mL media samples and kept

for 1h at 4°C. The samples were then centrifuged for 10 min and

4°C at 21,000g, and the supernatants were transferred to fresh

tubes and dried in a SpeedVac. 20 mL methoxyamine

hydrochloride solution (40 mg/1 mL pyridine) and 80 mL
MSTFA were used for metabolite derivatization. Measurement

and data process was performed as described above. Different

concentrations of standard compounds were extracted and

measured under the same conditions to calculate the standard

curves for absolute quantification.

The analysis of cellular acetyl-CoA and succinyl-CoA was

performed using microflow liquid chromatography in

combination with an Orbitrap Elite mass spectrometer (LC-

MS/MS, Thermo Fisher Scientific) system according to

Neubauer et al. (51) with some modifications. Briefly, iBMDM

was seeded at 0.8 × 106 cells per well of a 6-well plate and allowed

to attach for overnight. Cells were washed with PBS and received

fresh medium supplemented with 200 mM KIV, 200 mM KIC

and 200 mMKMV, respectively. After 24 h incubation, cells were

washed in cooled 0.9% NaCl and quenched in 80% methanol

(-20°C). The quenched cells were scraped and incubated for 30

min at 4°C, then centrifuged for 10 min at 21,000g. The

supernatant was transferred to a fresh polypropylene tube and

dried in a SpeedVac. MS buffer (20 mMNH4OAc in mqH2O and

2% methanol, pH 6.7) was added to the dried fraction and CoA

standards which were then centrifuged for 10 min at 21,000g and

the supernatant was transferred to LC-MS vials. 5 mL of the

sample was injected into a Accucore™ Vanquish C-18+ UHPLC

column (100 × 2.1 mm; 1.5 µm particle size), equipped with an

Accucore™ Defender guards pk4 guard column (150 - C18 10 ×

2.1 mm, 2.5 µm particle size (Thermo Fisher Scientific). The

mobile phase system consisted of a mixture of solvent A (20 mM

NH4OAc in mqH2O, pH 6.7) and solvent B (LC-MS grade

methanol). A gradient elution method was used for the analysis,

0–1 min 5% B, 1–30 min linear gradient to 85% B, 30-30.1 min

0% B, and 30.1–40 min 0% B. The flow was kept constant at 0.25

mL/min and the column was kept at 30°C throughout the

analysis. MS-analysis was performed in positive ion mode with

the following parameters: Resolution, 120,000; spray voltage, 3.8

kV; capillary temperature, 350°C; sheath gas, 5; auxiliary gas, 0.

The mass scanning range of the MS1 fullscan was set at 350–

1200 m/z. The collision energy for collision-induced dissociation

(CID) was set at 35 eV. Xcalibur (Thermo Fisher Scientific) and

MS-DIAL were used to analyze the data.
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Sample preparation for
proteomics analysis

Proteomic analyses were performed according to established

protocols with modifications (48). Briefly, iBMDMwas seeded in

DMEM complete medium and allowed to attach for overnight.

Cells were stimulated with AE17 CM, 200 mMKIV, 200 mMKIC

and 200 mM KMV, respectively. After 24h incubation, cells were

washed and harvested in lysis buffer (6M guanidinium chloride

(GdmCl), 100 mM Tris pH 8.5, 10 mM tris-(2-carboxyethyl)-

phosphin-hydrochloride (TCEP), 40 mM 2-chloroacetamide

(CAA)). Lysates were heated for 5 min at 95°C and sonicated

with a tip–probe sonicator at 4°C (3 × 30 s of 1 s on and 1 s off at

80% output power). The protein concentration was determined

by a BCA assay and adjusted to a concentration of 0.6 µg/µL. 60

µg of protein solution was diluted with 15% aqueous acetonitrile

(ACN), and digested with 200:1 (protein:enzyme) LysC at 37°C

for 1 h. Then, 10% aqueous ACN in 25 mM Tris (pH 8.5) was

added to obtain a final concentration of 0.5 M GdmCl and a final

volume of 1000 µL. Samples were incubated with trypsin 50:1

(protein:enzyme) overnight at 37°C. To stop the digestion

process, digested peptides were acidified to a final

concentration of 1% Trifluoroacetic acid (TFA). The peptides

were desalted with MonoSpin C18 columns according to the

manufacturer’s instruction. The peptides were eluted with 2 × 60

µL ACN and concentrated in a SpeedVac for 1 h at 45°C. Finally,

they were reconstituted in MS loading buffer (2% ACN, 0.1%

formic acid (FA)) for LC-MS/MS analysis. The experiment was

performed in 3-4 biological replicates.
LC-MS-based proteomics

Shotgun proteomics was performed according to established

protocols (48). LC-MS/MS runs were performed on the UltiMate

300 system (Thermo Scientific) coupled to a Q-Exactive Plus

mass spectrometer (Thermo Scientific) The peptides were

separated by reversed-phase chromatography using a binary

buffer system consisting of 0.1% FA (buffer A) and 90% ACN

with 0.1% FA (buffer B). 2 mg of peptides were loaded on a 50 cm

column with a 75 mM inner diameter and 2 mM C18 particles

(EASY-spray PepMap, Thermo Fisher) and separated by a 170

min gradient (4-35% buffer B over 110min, 35-90% buffer B over

1 min) at a flowrate of 300 nL/min. MS data were acquired using

a data-dependent top-20 method with a maximum injection

time of 50 ms, a scan range of 300–1650 m/z, and an AGC target

of 3e6. The resolutions of the MS and MS/MS spectra were

70,000 and 17,500, respectively. The AGC for MS/MS

acquisition was set to 5e4. The max IT and dynamic exclusion

were set to 100 ms and 20s, respectively.
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Rawmass spectrometry data were processed with MaxQuant

version v2.0.3.1 using the default setting if not stated otherwise

(52, 53). Oxidized methionine (M) and acetylation (protein N-

term) were selected as variable modifications, and

carbamidomethyl (C) as fixed modifications. Three missed

cleavages for protein analysis were allowed. Label-free

quantitation (LFQ) and “Match between runs” were enabled.

Searches were performed against the mouse UniProt FASTA

database (March 2021) containing 22,001 sequences.

Bioinformatics analysis was performed using Perseus v1.6.6.0

(54) and COVAIN toolbox (55). The proteinGroups output table

was used for all proteomic analyses. Reverse proteins, proteins

that were only identified by site, and potential contaminants

were filtered out. The protein groups were filtered to have at least

70% valid values, reaching a list of 3512 protein groups

(Table S1), which were further used for all downstream

analyses. Dataset integration was based on gene name. Missing

values were imputed using a minimal value model within the

COVAIN toolbox. Significantly up-or-downregulated proteins

(DEPs) between the three BCKAs groups and the control group

were determined by ANOVA (FDR < 0.05) and used for all

downstream analyses.
Enrichment analysis

Pathway analysis of metabolomics data was performed using

the online tool MetaboAnalyst v5.0 (56). Enrichment analyses of

proteomics data were performed using the Cytoscape v3.8.2 (57)

module ClueGO v2.5.8 (58). Enrichments were performed using

the GO, KEGG, REACTOME and Wiki Pathway databases.

Only pathways with p < 0.05 and at least a 4 gene overlap

were considered for grouping (kappa score 0.4). A protein

network was generated with DEPs using STRING v11.5 (59)

and selected KEGG pathways (FDR < 0.05) were highlighted.
Cytokine production measurement

Differentiated BMDMs were seeded at a density of 0.9 × 106

cells per well in 6-well plates in 2 mL of DMEM complete

medium overnight before the media was either replaced with

AE147 CM or was supplemented with 200 mM KIV, 200 mM
KMV, 200 mM KIV or BCKA pool. After 24 h, cell-free

supernatants were collected. The levels of IL-6 (Sigma,

RAB0308-1KT), TNF-a (Sigma, RAB0477-1KT), TGF-b
(Invitrogen, BMS608-4) and VEGF (Sigma, RAB0509-1KT) in

the supernatants were measured by ELISA kits according to the

manufacturer’s instructions. The experiment was performed in 3

biological replicates.
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Immunoblotting

BMDM or iBMDM were lysed on ice in self-made RIPA lysis

buffer supplemented with a proteinase inhibitor cocktail (Sigma;

4693116001). After 10 min incubation on ice the lysates were

subjected to sonication with a tip–probe sonicator at 4°C (3-5 s of

1 s on and 1 s off at 80% output power) to effectively shear DNA

and reduce viscosity. After centrifugation, the pellet was discarded

and the protein concentration in the supernatant was measured by

a BCA assay. Equal amounts of denatured lysate were separated by

10% SDS-PAGE and transferred to PVDF membranes.

Membranes were blocked in 5% low-fat milk for 1 h at room

temperature (RT) and incubated with primary antibodies at 4°C

overnight. Membranes were then incubated with HRP-conjugated

secondary antibodies for 1 h at RT. The signal was detected using

the ECL system (Amersham Biosciences, Cytiva) according to the

manufacturer’s instructions (iBright FL1500 Imaging System,

Thermo Fisher). The primary antibodies used were against

ARG1 (Santa Cruz; sc-47715) and a-tubulin (Proteintech; HRP-

66031). Appropriate secondary antibodies were from Proteintech.

The experiment was performed in 3 biological replicates.
RNA isolation and gene
expression analysis

BMDM or iBMDM were washed twice and suspended directly

in TRI reagent (Thermo Scientific; 15596026). Total RNA was

isolated according to the manufacturer’s instructions. Quality and

quantity weremeasured on a Nanodrop (Thermo Scientific). cDNA

was synthesized from 1 mg of RNA using the GoScriptTM Reverse

Transcription kit (Promega). mRNA levels were determined

using the Luna Universal qPCR Master Mix (New England

biolab) on a Bio-Rad CFX Connect. The quantification of the

results was performed by the comparative Ct (2–DDCt) method.

The Ct value for each sample was normalized to the value for

the Rps9 gene. The following primer pairs were used:Arg1,

ACATTGGCTTGCGAGACGTA, ATCGGCCTTTTCTTCC

TTCCC; Mrc1, CTCTGTTCAGCTATTGGACGC, CGGAATTT

CTGGGATTCAGCTTC; Rps9, GCAAGATGAAGCTGGATTAC,

GGGATGTTCACCACCTG; Nos2, CAGAGGACCCAGAGACA

AGC, TGCTGAAACATTTCCTGTGC; Vegf, GGCCTCCGAAA

CCATGAACT, CTGGGACCACTTGGCATGG; Mgl1 ,

TGCAACAGCTGAGGAAGGACTTGA, AACCAATAGCA

GCTGCCTTCATGC; Mgl2, GCATGAAGGCAGCTGCTATT

GGTT, TAGGCCCATCCAGCTAAGCACATT; Il6, ACAAAG

CCAGAGTCCTTCAGAGAG, TTGGATGGTCTTGGTCCTTA

GCCA; Il1b, TGGCAACTGTTCCTG, GGAAGCAGCCCTTC
ATCTTT; Slc16a1, GGGCTAAAGCCACAGTCCAT, TCTGCT

AAGTGCCACACAGG. The experiment was performed in 4

independent biological replicates.
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Quantification and statistical analysis

Statistical significance was calculated between two groups by

student’s unpaired t-test. One-way ANOVA with Tukey’s HSD

post-test was used to calculate statistical significance between

multiple groups. Analyses were performed using Microsoft Excel

or GraphPad Prism v9. Error bars represent SEM and p < 0.05

was considered statistically significant (∗p < 0.05, ∗∗p < 0.01,

∗∗∗p < 0.001).
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SUPPLEMENTARY FIGURE 1

BCKAs in cancer cell CM induce murine iBMDM polarization. (A), Schematic
showing how branched-chain amino acids (BCAAs) (leucine, isoleucine, and

valine) are broken and oxidation. BCAA transaminases 1 and 2 (BCAT1/2)
transfer nitrogen to a-ketoglutarate (a-KG) to produce glutamine and the

specifed BCKAs, which then metabolized by branched-chain a-keto acid
dehydrogenase (BCKDH) complex to produce a branched-chain acyl-CoA

(R-CoA) that can be furthermetabolized to the TCA cycle intermediates acetyl-

CoA or succinyl-CoA. (B), Relative proliferation rate of iBMDM grown in DMEM
completemediumor indicated cancer cell CM. (C), Relative proliferation rate of

BMDM grown in DMEM complete media or equivalent media containing 200
mM KIV or 200 mM KIC or 200 mM KMV (n = 3). (D), mRNA expression of Arg1,

Mrc1, Mgl1 and Mgl2 in iBMDM was measured by qPCR after incubation with
AE17 CM for 24 hours. (E), ARG1 protein level was measured by western blot

after incubationwith AE17CM for 24 hours. (F), mRNA expression of Arg1,Vegf,

Il6, Nos2 and Slc16a1 was measured in iBMDM after stimulation with DMEM
(Control), 200 mMKIV, 200 mMKIC and 200 mMKMV, respectively for 24 hours.

(G), mRNA expression of Arg1 and Vegf in iBMDM was measured after
pretreatment with the MCT1 inhibitor 250 nM AZD3965 for 1 hour, and

stimulation with 200 mM KIV, 200 mM KIC and 200 mM KMV, respectively for
24 hours. Data show the mean ± SEM of n = 3 biological experiments. ∗p <

0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 (unpaired two-tailed t test).

SUPPLEMENTARY FIGURE 2

Protein signatures of responses to BCKAs stimulation, related to (A),
Principal Component Analysis (PCA) of proteins shown in (B), Selected
functional categories (GO, KEGG, REACTOME and Wiki Pathway
databases) of BCKAs-stimulated iBMDM versus unstimulated iBMDM.

BCKAs upregulated proteins are enriched cAMP signaling pathway,

sphingolipid signaling pathway, autophagy, VEGF signaling, purine
nucleotide biosynthesis process (left). BCKAs downregulated proteins

are enriched in RNA splicing, redox regulation, apoptosis, NF-kB
pathway (right). PCA plot was applied via toolbox COVAIN (55).

SUPPLEMENTARY FIGURE 3

BCKAs stimulation reprogrammed macrophage metabolism. (A), Glutamine

and glutamic acid levels after individual BCKAs treatment were shown. (B),
Pathway analysis of 17 metabolites (FDR p < 0.05, one-way ANOVA) between

control and three BCKA groups at 24 h. First 3 critical pathways
are highlighted.
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Interaction of RARRES1
with ICAM1 modulates
macrophages to suppress the
progression of kidney renal
clear cell carcinoma

Xiaodong Geng1,2,3†, Kun Chi1,2†, Chao Liu1,2, Zhangning Fu1,2,
Xu Wang1,2, Liangliang Meng4, Hanfeng Wang5,
Guangyan Cai1,2, Xiangmei Chen1,2 and Quan Hong1,2*

1Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General
Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney
Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China, 2Beijing Key Laboratory of
Kidney Disease Research, Beijing, China, 3Beidaihe Rehabilitation and Recuperation Center, Chinese
People’s Liberation Army Joint Logistics Support Force, Qinhuangdao, China, 4Department of Radiology,
First Medical Centre of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,
5Department of Urology, Third Medical Center of Chinese People's Liberation Army (PLA) General
Hospital, Beijing, China
Background: RARRES1 is a tumor suppressor protein, and its expression is

suppressed in various tumor cells. However, whether it participates in the

immune response in kidney renal clear cell carcinoma (KIRC) is unknown, and

the defined mechanism is not clear. Therefore, the mechanism of RARRES1 in

KIRC is worthy of investigation.

Methods:We analysed the expression and function of RARRES1 with The Cancer

Genome Atlas (TCGA) database. The Kaplan–Meier curve was adopted to

estimate survival. RARRES1-correlated genes were obtained from the UALCAN

database and subjected toGeneOntology (GO) enrichment and protein–protein

interaction (PPI) network analyses. The correlation analysis between tumor-

infiltrating immune cells and selected genes were performed with TIMER

database. We also investigated the possible function of RARRES1 in KIRC by

coculturing Caki-1 cells with THP-1 cells. Immunofluorescence assay was

performed to study the RARRES1 expression in difference grade KIRC tissues.

Results: The expression of RARRES1 was negatively correlated with survival in

KIRC patients. The GO biological process term most significantly enriched with

the RARRES1-correlated genes was regulation of cell adhesion. ICAM1, which

exhibited a relatively highest correlation with RARRES1, is positively correlated

with the infiltration level of macrophages. RARRES1 could enhance the

expression of ICAM1 in Caki-1 cells and then induce the activation of M1

THP-1 cells to decrease the viability and induce the apoptosis of Caki-1 cells.
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Conclusion: RARRES1 plays an antitumor role by promoting ICAM1 expression

and inducing the activation of M1 macrophages. We offer insights into the

molecular mechanism of KIRC and reveal a potential therapeutic target.
KEYWORDS

kidney renal clear cell carcinoma, RARRES1, ICAM1, bioinformatic analyses,
M1 macrophages
Introduction
The most common form of renal cancer is known as renal

cell carcinoma (RCC). It represents over 90 percent of all renal

cancer cases. RCC is an immunogenic tumor characterized by

frequent invasion of tumor tissues by immune cells, rare

spontaneous regression, and a clinical response to

immunotherapy (1). The most aggressive RCC in adults is

kidney renal clear cell carcinoma (KIRC) (2). Genetic

aberrations and the tumor environment have been indicated to

be associated with KIRC. Extensive studies have examined the

mechanisms of relapse and metastasis, but the cause and

pathogenesis of KIRC is still unknown. It is worth noting that

the occurrence and development of KIRC reveal a correlation

with its immune microenvironment (3). The characteristic of

tumor microenvironment strongly influence disease biology and

may influence the response rate to systemic therapy. Targeted

immunotherapy is currently an option in first line treatment

because KIRC is also considered an immunogenic tumour with

high numbers of immune cells (4). Macrophage infiltration in

KIRC is associated with prognosis (5). Macrophages are the

regulators of tumor immunity and immunotherapy (6).

Macrophages can be affected by different factors to polarize

toward the M1 or M2 phenotype and thus affect tumor

progression (7). It is necessary to unravel the causes and

mechanisms to find biomarkers for diagnosis or personalized

therapy of KIRC (8).

RARRES1 was described as a retinoid response gene in skin

raft cultures and thought to be a transmembrane protein (9).

RARRES1 is induced by retinoic acid and expressed in multiple

tissues. Research has shown that RARRES1 inhibits tumor cell

proliferation or invasion and induces apoptosis of tumor cells

(10). RARRES1 has been shown to act as an invasion inhibitor in

prostatic tumor cell lines (11). In inflammatory breast cancer,

RARRES1 mediates the regulatory cancer invasion cells through

the Axl pathway (12). RARRES1 has been described as a cell

adhesion molecule that increases cell contact or reduces cell

proliferation. Previously, downregulation of RARRES1 has been

confirmed in some human cancers (13). RARRES1 is

epigenetically silenced by promoter methylation, and its
02
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promoter is hypermethylated in prostate, nasopharyngeal, and

gastric cancers (14). Hence, understanding the regulatory

mechanism and molecular functions of RARRES1 may identify

potential targets for the diagnosis and immunotherapy of KIRC.
Materials and methods

Clinical cohorts and RNA-Seq datasets

RNA-seq datasets, including information on the clinical

cohorts, were searched from TCGA database (http://

cancergenome.nih.gov/). 533 patients of KIRC and 72 controls

were enrolled in this study. The clinical features of these data

included patient gender, race, age and survival time.
Analysis of RNA-Seq data

Differential expression analysis and survival analysis of

Kaplan–Meier(KM) curve were performed to compare the

normal control group and KIRC patients using the UALCAN

tool (http://ualcan.path.uab.edu/) (15). The bioinformatic

analyses of RARRES1-correlated genes included Gene

Ontology (GO) enrichment and protein–protein interaction

(PPI) analyses with the Metascape analysis tool (http://

metascape.org/) (16). All of these analytical tools can be

accessed online.
Immune infiltration analysis

Tumor Immune Estimation Resource (TIMER; http://

cistrome.shinyapps.io/timer/) (17) was adopted to carry out a

comprehensive correlation analysis of RARRES1 expression with

the features of tumor-infiltrating immunocytes (TILs) in KIRC.

The “Gene module” of TIMER could visualize the correlation of

gene expression with immune infiltration level in KIRC. The

scatterplots will show the purity-corrected partial Superman’s

rho value (partial.cor) and statistical significance(P value). The

integrated repository portal for tumor-immune system
frontiersin.org

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://ualcan.path.uab.edu/
http://metascape.org/
http://metascape.org/
http://cistrome.shinyapps.io/timer/
http://cistrome.shinyapps.io/timer/
https://doi.org/10.3389/fimmu.2022.982045
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2022.982045
interactions (TISIDB; http://cis.hku.hk/TISIDB) (18) was used

to inspect tumor-immune system interactions for 28 TILs in

human cancers. For each cancer type, the relative abundance of

TILs were inferred by using gene set variation analysis (GSVA)

based on gene expression profile. Spearman correlation analysis

was used to assess the relations between RARRES1 and TILs in

TISIDB. The correlations between RARRES1 expression and

hub gene expression in KIRC were determined using Gene

Expression Profiling Interactive Analysis (GEPIA; http://gepia.

c an c e r - pku . cn ) and wa s c a l c u l a t e d by Pe a r s on

correlation coefficient.
Cell culture and Transwell assay

Both the human KIRC cell line Caki-1 and the human

macrophage line THP-1 were purchased from American Type

Culture Collection(ATCC company). THP-1 cells and Caki-1

cells were all cultured in Dulbecco’s modified Eagle’s medium

(DMEM) (HyClone™) supplemented with 10% fetal bovine

serum (FBS) (Gibco™) at 37°C with 5% CO2 in a humidified

incubator. To assess the interaction between macrophages and

RCC cells, Caki-1 cells and THP-1 cells were co-cultured in a

Transwell system (0.4 mm pore diamete, Corning Incorporation)

in a 6-well plate for 24 h, allowing free diffusion of molecules

between the two compartments but not cell translocation. THP-

1 cells were seeded in the upper chamber of Transwell system

and co-cultured with Caki-1 cells in the bottom chamber.
Induction and identification of
macrophages

THP-1 cells were treated with 100 ng/mL PMA (#HY-18739,

MCE) for 24 h every 2 days to induce differentiation into M0

macrophages. To induce M1 macrophage polarization, M0

macrophages were exposed to 20 ng/mL IFN-g(#HY-p7025,

MCE) and 100 ng/mL LPS (#HY-D1056, MCE) for 24 h. Cells

were collected for qRT-PCR detection and western blot analysis.

The markers of M0 macrophage (CD68) and M1 macrophage

(CD86) were analyzed by western blot in THP-1 cell. And the

markers of M1 macrophage(CD86) was also analyzed by

qPCR method.
Lentivirus construction and cell infection

The full-length RARRES1 cDNA fragment was cloned into

the lentiviral vector pReceiver-lv185 by Guangzhou FulenGen

Co., Ltd; empty vector was regarded as negative control. The

pReceiver-RARRES1 lentivirus was produced by 293T cells.

Before cell transduction, Caki-1 cells digested into single cell

suspension were inoculated into 6-well culture plates and
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cultured in cell culture incubator. Then, Caki-1 cells were

infected with pReceiver-RARRES1 lentivirus(RARRES1-OE

group) and empty vector(Vector group) when 70% to 80%

confluent respectively; Caki-1 cells without any intervention

served as a blank control(control group). Quantitative PCR

was used to evaluate the mRNA expression level of RARRES1

and RARRES1 related-ICAM1 in Caki-1 cells.
RNA extraction and quantitative PCR

THP-1 cells (macrophages) or Caki-1 cells (RCC) were

grown in 6-well plates. THP-1 cells were cultured for 24 h

after being transfected with either control or siRNA-CD11b.

Caki-1 cells transfected with control or siRNA-ICAM1 were

cultured for another 24 h. TRIzol reagent purchased from

Invitrogen Life Technologiesis was used to isolate total RNA

from cells. A first-strand reverse transcription kit (Thermo

Fisher, Carlsbad, CA) was used to synthesize complementary

DNA, and SYBR Green dye mixture (Takara, Kusatsu, JPN) was

used for qPCR with the following primers:
RARRES1, 5’-TGGCTTTCCTTGGAAGCTCT-3’(Forward)

and 5’-AGGTTTTTCTTACCCACTGCCT-3’(Reverse);

ICAM1, 5’-ACGGAGCTCCCAGTCCTAAT-3’ (Forward)

and 5’-CTCCTTCTGGGGAAAGGCAG-3’ (Reverse);

CD86, 5’-AGCTTTGCTTCTCTGCTGCTGTA-3’ (Forward)

and 5’-CAGCACCACTGGGGATCCATTT-3’ (Reverse);

CD11b, 5’-CCCAATTGTGACCGCAAAGG-3’(Forward)

and 5’-GGCAGCTTCATCCCGTACTT-3’(Reverse).
The siRNAs targeting human CD11b and ICAM1 and the

NC siRNA (Si-CTRL) were purchased from RiboBio company.

The oligonucleotide sequences were as follows:
si-CTRL (Nontargeting), 5’-UUCUCCGAACGUGUCACG

UTT-3’ (Forward) and 5’-ACGUGACACGUUCGGAGA

ATT-3GUGACACGUU (Reverse);

siRNA-CD11b, 5’-AUCAAGAAGGCAAUGUCACUA-3’

(Forward) and 5’-GUGACAUUGCCUUCUUGAUUG-3’

(Reverse);

siRNA-ICAM1, 5’-UUGAAUAGCACAUUGGUUGGC-3’

(Forward) and 5’-CAACCAAUGUGCUAUUCAAAC-3’

(Reverse)
ELISA detection of ICAM1

Twenty-four hours after M1 THP-1 cells and Caki-1 cells

were cocultured in the Transwell system, the concentration of
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ICAM1 in the cell culture supernatant was determined by ELISA

following the kit instructions (#ab100688, Abcam).
Co-Immunoprecipitation

THP-1 cells treated in three different ways (THP-1 cells only,

THP-1 cells cocultured with Caki-1 cells in transwell system

after 24h and THP-1 cells cocultured with RARRES1-

overexpression (OE) Caki-1 cells in transwell system after 24h

were collected separately. Co-IP assays were carried out using

the Pierce CoImmunoprecipitation(Co-IP) Kit (#26149,Thermo

Scientific™,MA, USA) according to the manufacture’s

instruction. The antibodies used were as follows: IP: (Mac-1)

CD11b/Integrin aM Polyclonal antibody(#21851-1-AP;

Proteintech). The Mac-1 protein expression of THP-1 cells in

three groups were tested by western blot analysis. IgG group was

used as a negative control. Extracted cell lysates before adding

antibodies (imput) were also used as a control for target protein-

GAPDH detection.
Immunofluorescent staining

The studies involving human participants were approved by

the PLA General Hospital ethics committee (Approval Number

S2015-061-01). The patients had provided informed consent

when their tissues were stored in the tissue bank. The KIRC

tissues which fixed in formalin and made into paraffin embedded

tissue blocks were obtained form the tissue bank of PLA General

Hospital. Immunofluorescent (IF) staining was performed in

KIRC tissues. Briefly, The slices were incubated with indicated

primary anti-RARRES1(#MA5-26247, Invitrogen), anti-ICAM-

1 (#10831-1-AP, Proteintech) and anti-CD86(#ab239075,

Abcam) at 4°C overnight and then incubated with Cy3-

conjugated goat ant i -rabbi t IgG(#A0516 , Beyt ime

Biotechnology) secondary antibody or FITC-conjugated goat

anti-mouse IgG(#A0568, Beytime Biotechnology) secondary

antibody. The nucleus was stained with DAPI and signals were

observed using confocal fluorescence microscopy (Olympus).

The evaluation was done via Image J software.
Cell migration assay

Transwell migration chambers (8.0 mm pore diamete,

Corning Incorporated) were used to evaluated the migratory

capacity of M1 THP-1 cells. The M1 THP-1 cells and Caki-1

cells were cultured in DMEM medium (HyClone™)

supplemented with 10% FBS(Gibco™). M1 THP-1 cells were

seed in the upper chambers at 2×105 cells/well, and Caki-1 cells

were grown in the lower chambers at 15×105 cells/well. After

incubated for 24h at 37°C in an incubator, the upper chamber
Frontiers in Immunology 04
49
was removed , and the ce l l s were fixed wi th 4%

paraformaldehyde. We used a cotton swab to remove cells on

the upper surface of the filter membrane. 0.1% crystal violet

(#G106, Solarbio) was used to stain the cells migrated to the

lower surface. Image J software was used to record migrated

cells. Cells were counted and averaged in 5 random fields.
Cell viability assay

Caki-1 cells were cultured in a 96-well plate (2000 cells/well)

for 12 h and then cocultured with or without M1 THP-1 cells in

the Transwell system for anther 24 h. The culture medium added

10% CCK-8 solution(#CK04, Dojindo) and incubated in 37°C

temperature. Cell viability was quantified by evaluating the

OD450 with a microplate reader.
Western blot analysis

Total protein extracted from cells were used RIPA buffer.

Proteins were separated by 10% SDS-PAGE and then transferred

to a PVDF membrane. After blocking by 5% skim milk for one

hour, the membrane was incubated with an anti-RARRES1(#MA5-

26247, Invitrogen), anti-CD86(#ab239075, Abcam), anti-CD68

(#ab213363, Abcam) and anti-cleaved caspase-3 primary antibody

(#ab2302, Abcam). HRG-tagged anti-rabbit IgG (#ab205718,

Abcam) was used as the secondary antibody. Immunoreactive

bands were detected with the Western blot reagent ECL and the

gray values were analyzed with ImageJ software.
Statistical analysis

UALCAN and GEPIA gene expression data were analyzed

using Student’s t test. Spearman’s correlation analysis was used

for evaluation of correlation analysis. Database-derived tools

were applied to all statistical tests. Statistical analysis was

performed with GraphPad Prism 8.0 (GraphPad Software Inc.,

San Diego, CA, USA). The results are expressed as the mean ±

standard deviation of at least 3 independent experiments. One-

way ANOVA was performed with the Bonferroni method for

multiple comparisons. The t test was used for comparisons

between two groups.
Results

RARRES1 was related to the prognosis
of KIRC

We analyzed survival rates by the KM curves, which

indicated that RARRES1 expression was closely related to
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survival time in KIRC patients and that lower RARRES1

expression implied a longer survival time for patients.

However, there was no correlation between RARRES1

expression and survival time in KIRP or KICH patients

(P>0.05) (Figure 1A). To analyze RARRES1 expression in

subgroups, we divided KIRC patients stratified by RARRES1

expression into subgroups based on age, race, sex, pathological

grade, and tumor stage. The expression level of RARRES1 was

significantly higher in male compared to female patients

(p<0.01; Figure 1B). The expression level of RARRES1 in the

subgroup of individuals with stage 1 tumors was significantly

lower than that in the stage 3/4 subgroups, and the RARRES1

expression level in the stage 2 subgroup was also significantly

lower than that in the stage 3 and stage 4 subgroups (p<0.05)

(Figure 1C. The expression of RARRES1 was significantly lower

in the tumor grade 1 subgroup than in the normal subgroup and

the tumor grade 2/3/4 subgroup (P<0.001). In addition, the

RARRES1 expression level was significantly lower in the tumor

grade 2 and 3 subgroups than in the tumor grade 4 subgroup

(Figure 1D). There was no significant difference in RARRES1

expression among the normal control, Caucasian, African-

American and Asian populations (p>0.05). (Figure 1E).

Patients were separated into four subgroups by age with a 20-

year interval, and there was no significant difference among the

age 21-40, 41-60, 61-80 and 81-100 subgroups (p>0.05)

(Figure 1F). DNA methylation is an epigenetic regulation

mechanism involved in gene transcription and tissue

development. The methylation level of the RARRES1 gene was

decreased in KIRC tissue samples (p<0.0001) (Figure 1G).
Regulation of cell adhesion was the GO
biological process most significantly
enriched with genes related to RARRES1

As gene regulatory networks suggest genetic risk factors that

have functional relationships, we studied the regulatory factors

of RARRES1 in KIRC. Figure 2A shows the genes highly

coexpressed with RARRES1; 164 genes were positively

correlated with RARRES1(dark red dots), and 120 genes were

negatively correlated with RARRES1(dark green dots). After

that, we used the Metascape analysis tool to analyze RARRES1

and the 284 related genes and found that the main enriched GO

biological processes were regulation of cell adhesion, protein

maturation, negative regulation of hydrolase activity, negative

regulation of response to external stimuli, protein hydroxylation,

and positive regulation of cell migration (Figure 2B). A similar

effect was seen in PPI networks identified by functional cluster

analysis (Figures 2C, D). The GO biological process most

significantly enriched with genes related to RARRES1 was

regulation of cell adhesion. It is well known that cell adhesion

is the first step in cancer metastasis and invasion. Twenty-six
Frontiers in Immunology 05
50
genes were included in the GO biological process regulation of

cell adhesion: ADA, BCL2, ICAM1 and so on.
Eight hub genes overlapped between the
GO term regulation of cell adhesion and
immune-related genes

A total of 1640 immune-related genes (IRGs) were

downloaded from the ImmPort database. By overlapping these

IRGs with the 26 genes involved in the regulation of cell

adhesion, which was the GO biological process most

significantly enriched with genes related to RARRES1, we

finally identified 8 common genes: CALR, ICAM1, CMTM7,

CX3CL1, SAA1, PLAUR, IL23A, and IL20RB (Figure 3A). After

that, the UALCAN database was used to analyze overall survival

rates based on these 8 hub genes, and we found that high

expression of these 8 hub genes are associated with poor

prognosis(Figure 3B).
ICAM1 had a relatively high correlation
with RARRES1 among the 8 hub genes

According to TIMER, a web tool for analyzing immune cell

infiltration in TCGA data, we discovered that RARRES1

expression had a negative correlation with tumor purity in

KIRC and strong positive correlations with the infiltration of B

cells and macrophages. The expression level of RARRES1 was

positively correlated with the infiltration levels of B cells

(r=0.247, P=8.34e-08), macrophages (r=0.258, P=3.08e-08),

neutrophils (r=0.204, P=1.14e-05) and DCs (r=0.215, P=3.55e-

06) in KIRC tissues (Figure 4A). In addition, we found that

RARRES1 expression was significantly related to the abundance

of 28 types of TILs in heterogeneous human cancers (Figure 4B).

Regarding B cells and macrophages, RARRES1 expression was

significantly related to the numbers of activated B cells Act_B

cells; rho=0.348, p<0.001), immature B cells (Imm_B cells;

rho=0.323, p<0.001), memory B cells (Mem_B cells;

rho=0.304, p<0.001) and macrophages (rho=0.537, p<0.001)

(Figure 4C). Among these cells, RARRES1 had the highest

correlation with macrophages. We further analyzed the

correlations between macrophage infiltration and the

expression of the 8 hub genes related to RARRES1. As shown

in Table 1, the expression levels of CMTM7, PLAUR, IL23A, and

ICAM1 in KIRC tissues were significantly positively correlated

with the infiltration of macrophages (p<0.05). We next analyzed

the correlations between RARRES1 expression and CMTM7,

PLAUR, IL23A, and ICAM1 expression with GEPIA. There was

a relatively highest correlation (Spearman correlation

coefficient=0.38) between RARRES1 and ICAM1 (CMTM7 =

0.28, PLAUR=0.3, and IL23A=0.31) (Figure 4D).
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FIGURE 1

RARRES1 expression in KIRC. (A) The effect of the RARRES1 expression level on KIRC, KIRP and KICH patient survival was assessed by Kaplan–
Meier survival analysis. (B–G) The differential expression of RARRES1 in KIRC patients. RARRES1 expression in different subgroups. (B) The
expression of RARRES1 in male patients was significantly different from that in female patients (p=0.00144). (C) The RARRES1 expression level in
the stage 1 subgroup was significantly different from those in the stage 3 (p=0.037) and stage 4 (p=0.0017) subgroups. The RARRES1 expression
level in the stage 2 subgroup was significantly different from those in the stage 3 (p=0.039) and stage 4 (p=0.0056) subgroups. (D) RARRES1
expression in different tumor grades. (E) Expression of RARRES1 in KIRC based on race. RARRES1 expression in normal controls was not
significantly different from that in Caucasian, African-American and Asian patients (p>0.05). (F) Expression of RARRES1 in KIRC based on age.
There was no significant difference in RARRES1 expression among the groups (p>0.05). (G) The promoter methylation level in the RARRES1 gene
was significantly decreased compared with that in normal controls (p < 0.0001) (TPM, transcripts per million). *p<0.05.
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ICAM1 was positively correlated with
macrophage infiltration in KIRC

Furthermore, we analyzed the ICAM1 expression in KIRC

using the UALCAN database. Compared with normal controls

group, ICAM1 expression was significantly increased in KIRC

patients (Figure 5A). ICAM1 was highly correlated with patient

survival, as shown by the KM curves (P<0.001) (Figure 3B). The

ICAM1 expression was negatively correlated with tumor purity

in KIRC and positively correlated with the infiltration levels of B

cells (r=0.339, P=8.28e-14), CD8+ T cells (r=0.174, P=2.57e-04),

CD4+ T cells (r=0.182, P=8.56e-05), macrophages (r=0.201,

P=1.76e-05), neutrophils (r=0.444, P=1.67e-23), and DCs

(r=0.385, P=1.59e-17) in KIRC tissues (Figure 5B). These

results also indicated that ICAM1 was closely related to

macrophage infiltration in KIRC.
ICAM1 expression and interaction with
Mac-1 were induced by RARRES1
overexpression

GEPIA analysis indicated a positive correlation between

RARRES1 and ICAM1 expression. To investigate whether
Frontiers in Immunology 07
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RARRES1 overexpression can induce the expression of ICAM1

in RCC (Caki-1) cells, we generated RARRES1 overexpression

lentivirus to infect RCC cells. Compared with control cells,

RARRES1-overexpressing RCC cells showed significantly

upregulated expression of RARRES1 and ICAM1 (Figures 6A,

B). It is commonly considered that M1 macrophages contribute

to the promotion of inflammation and tumor suppression. To

investigate the interaction between M1 macrophages and renal

carcinoma cells, THP-1 cells were induced to differentiate with

IFN-g+LPS, which act as activators of the M1 macrophage

phenotype. IFN-g+LPS stimulation increased the expression of

CD86 at the mRNA and protein levels, suggesting that the

polarization of THP-1 cells toward M1-like macrophages was

successfully induced (Figure 6C). Given that Mac-1 (CD11b/

CD18), mainly expressed in macrophages, is the receptor for

ICAM1, to study whether RARRES1-overexpressing RCC cells

can enhance the binding of ICAM1 to Mac-1 in macrophages,

we cocultured RARRES1-overexpressing RCC cells and M1

macrophages in a Transwell system. The mRNA expression

level of ICAM1 and the concentration of ICAM1 in cell

supernatants were significantly increased when RARRES1 was

overexpressed in RCC cells (Figures 6D, E). Next, we performed

a Co-IP assay to examine the binding of ICAM1 and Mac-1 in

macrophages.We found that the expression of Mac-1 in THP-1
A B

DC

FIGURE 2

GO and PPI analyses of RARRES1-correlated genes. (A) The genes highly correlated with RARRES1 identified by Pearson correlation analysis in
the KIRC cohort. (B) Main GO biological processes of all 284 genes correlated with RARRES1. (C) The PPI networks determined by functional
cluster analysis. The different colors represent different functional clusters. (D) The PPI networks determined by functional cluster analysis. The
different colors represent different P values. GO, Gene Ontology. PPI, protein–protein interaction.
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cells did not change when THP-1 cells co-cultured with or

without Caki-1 cells and RARRES1-OE Caki-1 cells. But the

binding of ICAM1 with Mac-1 on THP-1 cells was increased

with after RARRES1 was overexpressed in Caki-1 cells. These

results demonstrated that overexpression of RARRES1 in RCC

cells promoted the binding of ICAM1 and Mac-1 (Figure 6F).
Validated the expression of RARRES1,
ICAM1 and CD86 in KIRC tumor tissue

We also used KIRC samples to verify the correlation between

RARRES1, ICAM1 and CD86. we performed immunofluorescence

assay with Grade 4 KIRC tissues and Grade 2 KIRC tissues to study

the expression difference. We found that the fluorescent signals of

RARRES1 were stronger in Grade 4 KIRC tissues. Higher

RARRES1 were accompanied by higher ICAM1 staining and

higher CD86 staining. On the contrary, lower RARRES1 were
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accompanied by lower ICAM1 staining and lower CD86 staining.

This is consistent with our above results which indicated that higher

expression of RARRES1 may lead to more M1 macrophages

infiltration (Figure 7).
Knockdown of ICAM1 or Mac-1
decreased the migration potential of
macrophages induced by RARRES1
overexpression

To examine whether the Mac-1 and ICAM1 interaction

affected the migration potential of macrophages after RARRES1

was overexpressed in RCC cells, we transfected siRNA-CD11b

into macrophages and transfected siRNA-ICAM1 into RCC cells.

As shown in Figures 8A, B, the mRNA and protein expression

levels of CD11b in macrophages and ICAM1 in RCC cells were

decreased after siRNA transfection. We assessed the migration
A

B

FIGURE 3

Eight hub genes were found in the regulation of cell adhesion GO term and among immune-related genes (IRGs). (A) Identification of 8
common genes between the GO biological process regulation of cell adhesion and the set of immune-related genes (IRGs). The different
colored regions represent different datasets. The overlapping region indicates overlapping genes. (B) Kaplan–Meier survival analysis based on
the expression of these 8 hub genes in KIRC was performed with the UALCAN database.
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ability of macrophages by coculture with RCC cells. The migration

assay showed that the number of migrated macrophages was

significantly increased after coculture with RARRES1-

overexpressing RCC cells for 24 h, which demonstrated that

RARRES1 overexpression (OE) in RCC cells promoted the
Frontiers in Immunology 09
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migration of macrophages. Furthermore, after coculture with

ICAM1-overexpressing (OE) RCC cells for 24 h, the number of

migrated macrophages was significantly increased. Then, we

evaluated the migration of macrophages after Mac-1 or ICAM1

was inhibited. The number of migrated macrophages was greatly
A

B

D

C

FIGURE 4

Analysis of associations between immune infiltration and the expression of RARRES1 and the 8 hub genes in KIRC. (A) Correlation of RARRES1
expression with the numbers of 6 tumor-infiltrating immune cells in KIRC using TIMER. (B) Relations between the expression of RARRES1 and
the abundance of 28 types of TILs across heterogeneous human cancers. (C) RARRES1 expression was significantly correlated with the
abundance of activated B cells (Act_B cells; rho=0.348, p<0.001), immature B cells (Imm_B cells; rho=0.323, p<0.001), memory B cells (Mem_B
cells; rho=0.304, p<0.001), and macrophages (rho=0.537, p<0.001). (D) Correlations between the mRNA expression level of RARRES1 and those
of CMTM7, PLAUR, IL23A, and ICAM1 in KIRC were determined using GEPIA.
TABLE 1 Gene expression positively correlates with the infiltration level of macrophages in KIRC tissues.

variable GENE partial.cor P value

Macrophage ICAM1 0.201318588 1.76E-05

CMTM7 0.328467814 9.91E-13

PLAUR 0.271638741 5.11E-09

IL23A 0.175304878 0.000192199

CX3CL1 0.074709859 0.114313278

CALR 0.063240745 0.181499461

IL20RB 0.039214584 0.407661468

SAA1 0.029919598 0.527615135
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reduced as CD11b was silenced in macrophages or ICAM1 was

silenced in RCC cells (p<0.05) (Figure 8C). Taken together, these

findings indicated that blockade of Mac-1 in macrophages or

ICAM1 in RCC cells decreased macrophage migration induced by

RARRES1-OE.
M1-Like macrophages reduced the
viability of renal carcinoma cells and
induce apoptosis

We cocultured M1 macrophages with RCC cells to determine

whether overexpression of RARRES1 can induce M1 macrophage

polarization and mediate resistance to tumors. We aimed to

explicit the effect of M1 type macrophages on the viability of

cancer cells. The CCK-8 assay results showed that M1

macrophages significantly decreased the viability of renal

carcinoma cells after being cocultured with RARRES1-

overexpressing RCC cells (Figure 9A). In addition, the apoptosis

rate of RCC cells was increased after M1 macrophages were

cocultured with RARRES1-overexpressing RCC cells. In the

RARRES1-overexpressing RCC cell group, the protein

expression level of cleaved caspase-3 was significantly increased

after co-culture with M1 macrophages compared with that in the

group of RCC cells without RARRES1 overexpression (Figure 9B).
Discussion

KIRC is the most common renal tumor. Genetic alterations

or epigenetic regulation are involved in the progression and
Frontiers in Immunology 10
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tumor environment of KIRC (19). RARRES1 acted as an

invasion suppressor in prostate cancer and triple-negative

breast cancer (20, 21). In our research, we assessed the

prognostic value of RARRES1 in KIRC and observed that

RARRES1 expression was negatively correlated with survival

time. In our vitro experiments, we showed that RARRES1 exerts

anti-tumor effect on tumor cells through macrophages. This

seems inconsistent with KM curve of RARRES1 expression in

KIRC. The reason maybe that tumors are abnormal organs

composed of multiple cell types and extracellular matrix rather

than simply clones of cancer cells (22). In our research, high

expression of RARRES1 may indicate high degree of tumor

malignancy and RARRES1 is recruiting more macrophages to

suppress tumor. But the tumor microenvironment is complex,

the tumor suppressor effects of RARRES1 may fail to counteract

malignant tumor. These results provide insight into the

influence of RARRES1 expression on the disease progression

of KIRC through macrophage activation. We sought to

determine the mechanism by which RARRES1 exerts a tumor-

suppressive effect in KIRC.

Functional enrichment analysis demonstrated that the GO

biological process most significantly enriched with genes related

to RARRES1 was regulation of cell adhesion. Inflammation as a

basic physiological process is a hallmark of various tumors (23).

Cancer-associated inflammation involves reciprocal autocrine

and paracrine communication among malignant and

nonmalignant cells through chemokines, cytokines and

prostaglandins. Inflammatory tumor environment combines

with genetic alterations that ultimately lead to tumor

progression and metastasis (24). Cell adhesion mediates cell–

cell crosstalk and exerts an important effect on the inflammatory
A

B

FIGURE 5

Expression of ICAM1 in KIRC patients. (A) ICAM1 was upregulated in primary tumors (p < 0.001). (B) Correlation analysis of ICAM1 expression and
infiltration levels of immune cells in KIRC tissues using TIMER. ICAM1 expression in KIRC tissues was negatively correlated with tumor purity and
positively correlated with the infiltration levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. (KIRC,
kidney renal clear cell carcinoma; TPM, transcripts per million.). *p<0.05.
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response. Intercellular adhesion molecule 1 (ICAM1) is regarded

as a cell surface glycoprotein which is in the immunoglobulin

superfamily that mediates adherence-dependent interactions

between cells (25). Different expression levels of ICAM1 have

been found in various malignant tumors. In this study, we found

that ICAM1 is significantly upregulated in KIRC. ICAM1 can

also regulate immune cell-mediated tumor cytotoxicity, thereby

improving the prognosis of patients with certain tumors, such as

melanoma and oral squamous cell carcinoma (26). Several

articles have suggested that patients with ICAM1-positive

tumor cells have better clinical outcomes in breast, colorectal,

and gastric cancers (27). We analyzed the correlation between

RARRES1 and ICAM1 expression. GEPIA analysis indicated

that there was a relatively highest correlation between RARRES1

and ICAM1. Thus, we hypothesized that RARRES1
Frontiers in Immunology 11
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overexpression can upregulate the expression of ICAM1 and

inhibit tumorigenesis. In addition, ICAM1 is an adhesion

receptor that is best known for regulating immune cell

recruitment (28).

Our study reveals that overexpression of RARRES1 can

promote ICAM1 expression in RCC cells. In addition, we

found that ICAM1 expression was negatively correlated with

tumor purity in KIRC and positively correlated with the

infiltration level of macrophages in KIRC. Macrophage

antigen-1 (Mac-1, CD11b/CD18, CR3), a b2 integrin

expressed on macrophages, is a receptor for ICAM1 (29).

KIRC is a highly immunogenic tumor type whose tumor cells

generate an immunosuppressive environment through multiple

immunosuppressive mechanisms. KIRC tumors are surrounded

by many inflammatory cells, such as T cells, NK cells, and
A B

D E

F

C

FIGURE 6

ICAM1 expression and interaction with Mac-1 were induced by RARRES1 overexpression. (A, B) Relative RARRES1 (A) and ICAM1 (B) mRNA
expression in renal carcinoma cells, as measured by qPCR after transfection. RARRES1 and ICAM1 were significantly upregulated in the
RARRES1-OE group; *p < 0.05 compared to the vector group; n = 3 in each group. (C) CD86 mRNA and protein expression in THP-1 cells after
stimulation with IFN-g. *p < 0.05 compared to the THP-1 only group. (D) ICAM1 mRNA expression in RCC cells cocultured with macrophages.
Coculture of RARRES1-overexpressing RCC cells with macrophages induced evident upregulation of ICAM1 in RCC cells. *p < 0.05 (E) The level
of ICAM1 in cell supernatants was measured by ELISA and was significantly increased after RARRES1 overexpression in RCC cells. *p < 0.05 (F)
The Co-IP assay showed that overexpression of RARRES1 in RCC cells significantly promoted the interaction of ICAM1 and Mac-1. *p < 0.05.
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macrophages (30). This observation could help to design new

clinical trials for patients undergoing immunotherapy.

Depending on the patterns of M1 and M2 polarization,

macrophages probably play either a tumor-promoting role or

a antitumor role (31). In RCC cells, M1 macrophage markers are

expressed alongside M2 markers in tumor-Associated

macrophages(TAM), suggesting that some TAMs can exhibit

hybrid phenotypes in some cancers (32). M1-like macrophages

are essential tumor suppressor cells that initially act in the inhibition

of tumor cell growth in the tumor microenvironment (33).

For the application of novel immunotherapy, macrophage-

based therapies could augment macrophage functionalities with

antitumor activity (34). We found that both ICAM1 expression

in RCC cells and Mac-1 expression in M1 macrophages were

upregulated after RARRES1-overexpressing RCC cells were

cocultured with macrophages. In addition, RARRES1

overexpression in renal carcinoma cells enhanced the
Frontiers in Immunology 12
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migration potential of M1 macrophages. Blocking Mac-1 in

M1 macrophages or ICAM1 in RCC decreased RARRES1-OE-

induced M1 macrophage migration. We showed that M1

macrophages more significantly decreased the viability of

RARRES1-overexpressing renal carcinoma cells and increased

the apoptosis rate of renal carcinoma cells. Collectively, these

results indicate that M1 type macrophages perform antitumor

functions by decreasing the viability of renal carcinoma cells and

inducing their apoptosis. Our results indicated interaction of

RARRES1 with ICAM1 modulating macrophages may be a new

target for immunotherapy of kidney renal clear cell carcinoma.

In summary, RARRES1 expression is strongly related to

cancer progression, survival rate and immune invasion in KIRC

patients. According to the bioinformatics analysis and preliminary

validation experiments, we suggest that the antitumor effect of

RARRES1 is achieved by promoting the expression of ICAM1 and

inducing the activation of M1 macrophages. This study offers
A
B

D

E

C

FIGURE 7

Validate the expression of RARRES1, ICAM1 and CD86 in KIRC tumor tissue. (A) The immunofluorescence staining of RARRES1, ICAM1 and CD86
in Grade 4 and Grade 2 KIRC samples (Scale bar, 50 mm). Fluorescence intensity of RARRES1 (B) combine with ICAM1 (C) in Grade 4 and 2 KIRC
tissue groups. Fluorescence intensity of RARRES1 (D) combine with CD86 (E) in Grade 4 and 2 KIRC tissue groups. n = 3 in each group;
**p < 0.01,***p < 0.001.
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A

B

C

FIGURE 8

Blockade of Mac-1 or ICAM1 decreases the migration potential of macrophages. (A, B) The effects of siRNA transfection on Mac-1 (CD11b) and
ICAM1 silencing were confirmed by qPCR and Western blot analysis. (C) Blockade of Mac-1 (CD11b) in macrophages or ICAM1 in RCC cells
decreased RARRES1-OE-induced macrophage migration. The migration potential of macrophages (THP-1 cells) cocultured with renal
carcinoma cells (Caki-1) was examined using a Transwell assay (scale bars: 100 mm). *p < 0.05.
A

B

FIGURE 9

RARRES1-overexpressing RCC cell-induced M1 macrophages reduce the viability, induce the apoptosis and suppress the proliferation of renal
carcinoma cells. (A) Cell viability was evaluated by a CCK-8 assay. (B) The level of an apoptosis-related protein (cleaved caspase-3) was
measured by Western blot analysis. *p < 0.05.
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promising insights for subsequent research to elucidate the

molecular pathogenesis of KIRC.
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Early monocyte response
following local ablation in
hepatocellular carcinoma

Melanie A. Kimm1*†, Sophia Kästle1†, Matthias M. R. Stechele1,
Elif Öcal1, Lisa Richter2, Muzaffer R. Ümütlü1,
Regina Schinner1, Osman Öcal1, Lukas Salvermoser1,
Marianna Alunni-Fabbroni1, Max Seidensticker1,
S. Nahum Goldberg3,4,5, Jens Ricke1 and Moritz Wildgruber1

1Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München,
Munich, Germany, 2Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-
Universität München, Planegg-Martinsried, Germany, 3Goldyne Savad Institute of Gene Therapy,
Hadassah Hebrew University Hospital, Jerusalem, Israel, 4Laboratory for Minimally Invasive Tumor
Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, MA, United States, 5Division of Image-guided Therapy and Interventional
Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
Local ablative therapies are established treatment modalities in the treatment

of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic

effects of local ablation on circulating immune cells may contribute to patients’

response. Depending on their activation, myeloid cells are able to trigger HCC

progression as well as to support anti-tumor immunity. Certain priming of

monocytes may already occur while still in the circulation. By using flow

cytometry, we analyzed peripheral blood monocyte cell populations from a

prospective clinical trial cohort of 21 HCC patients following interstitial

brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated

alterations in the composition of monocyte subpopulations and monocytic

myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in

orchestrating monocyte function. We discovered that mMDSC levels increased

following both IBT and RFA in virtually all patients. Furthermore, we identified

varying alterations in the level of monocyte subpopulations following radiation

compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in

the future may provide information on the inflammatory response towards

local ablation as part of an orchestrated immune response.

KEYWORDS
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Introduction

Liver cancer is the second leading cause of cancer death

worldwide (1). Etiological causes of hepatocellular carcinoma

(HCC) include chronic viral infections, high alcohol intake, and

increasingly non-alcohol-related steatohepatitis (NASH),

whereby the majority of HCC arises in the setting of chronic

liver inflammation (2). Clinical decision-making in HCC is

further dependent on staging systems that include tumor size

and burden as well as liver function (3). The “Barcelona Clinic

Liver Cancer” (BCLC) staging system is commonly used to link

the prognostic stage of HCC to the best first-line treatment

option. In early-stage HCC, curative surgical treatments, such as

resection or transplantation, are first-line therapies (4).

However, many patients do not fulfill the criteria for surgical

treatment options, whereby image-guided local ablative

therapies represent an alternative, either as definitive treatment

or as a bridging option to transplantation (3).

Radiofrequency ablation (RFA) is a well-established

method in interventional oncology and has been proven to

be safe and effective for the treatment of early HCC (5, 6), but is

limited with respect to a certain tumor size and tumor location.

Interstitial brachytherapy (IBT) is a valuable alternative with

deposition of an ionizing source (e.g., 192Iridium) within the

tumor tissue instead of using external beam radiation, thereby

limiting the injury of adjacent non-tumor tissue, which is

particularly important in the setting of impaired liver

function (7). IBT allows for safe and effective ablation even

in patients with tumors larger than 3 cm, and who are not

suitable for treatment by RFA or microwave ablation (MWA)

(8). Notably, both local ablative therapies are able to induce

effects on the local as well as on the systemic immune response

(9, 10). Local effects are mainly related to the tumor

microenvironment (TME), which is a heterogeneous

composition of interacting tumor and non-tumor cells (such

as fibroblasts and immune cells) and extracellular matrix

components (11). Any change of this highly sensitive cell-to-

cell communication mediated by internal or external

alterations can support either pro- or anti-tumorigenic

immune responses (12). Although it is still puzzling which

cell–cell interactions, communication signals, and polarization

events within TME of HCC will lead to an anti- or pro-

tumorigenic effect, it is well established that myeloid-derived

cells such as monocytes, macrophages, and dendritic cells are

key players within this theater (13).

In the liver, tissue-resident macrophages (Kupffer cells) play

a central role in maintaining liver homeostasis and upon acute

liver injury become activated and differentiate into immune-

activating or immune-suppressive phagocytes (14). In addition,

myeloid cell populations from the peripheral blood [monocytes

and myeloid-derived suppressor cells (MDSCs)] are recruited to
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the site of injury (15, 16). When entering the tissue, monocytes

differentiate into macrophages and the TME orchestrates the

polarization into certain phenotypes. Whether different ablative

treatments induce differences in pre-priming of peripheral blood

monocytes is not yet elucidated. This pre-priming of circulating

immune cell populations may serve as a predictive or prognostic

biomarker for response to targeted treatment or may indicate

severity of tissue injury. Recent studies have identified

lymphocyte-to-monocyte ratio (LMR), neutrophil-to-monocyte

ratio (NMR), and neutrophil-to-lymphocyte ratio (NLR) as

potential prognostic markers for survival of HCC patients (17–

21). Yet, little is known about possible differences in peripheral

blood myeloid cell subpopulations following local ablative

therapies, such as IBT and RFA.

Thus, in this study, we aimed to investigate priming of

circulating monocytes following local ablation in early- and

intermediate-stage HCC.
Material and methods

Patients and study design

Patients were recruited in two prospective clinical trials

investigating the image-guided local ablation of early- and

intermediate-stage HCC. The analysis consists of 21 patients

with HCC. The ESTIMATE trial investigates the effects of IBT,

from which 12 patients were recruited. In order to compare the

effects after local radiation to RFA, nine patients were included

from the THIAMAT trial. An overview of the patients’ clinical

characteristics is shown in Table 1. Blood samples were obtained

at baseline on the day before local ablation as well as 24–48 h

post-IBT/RFA.
Ethics

The studies were approved by the local ethics commission of

the university hospital (LMU München, Munich, Germany),

with German clinical trial register numbers DRKS 00010587

(ESTIMATE) and DRKS 00010560 (THIAMAT). All study

protocols were conducted in accordance with the Declaration

of Helsinki. Informed consent of each participant was obtained

prior to enrollment.
Patient response assessment

Patients were stratified into responders versus non-

responders based on previously published criteria for HCC

disease stages (4) and eligibility for curative versus palliative
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treatments in case of progression. Accordingly, responders were

defined as patients showing complete remission for a minimum

of 6 months following therapy. Any recurrence seen within 6

months post-therapy or tumor appearance in between a total

follow-up period of 24 months greater than 3 cm or >3 tumor

lesions classified the patient as a non-responder.
Leukocyte ratios

LMR and NMR were computed as absolute numbers of

lymphocytes and neutrophils, respectively, divided by

monocytes. NLR was computed as absolute number of

neutrophils divided by lymphocytes. Pre- and post-therapy

LMR, NMR, and NLR were calculated from absolute numbers

of monocytes, lymphocytes, and neutrophils (G/µl). In total,

from all 12 ESTIMATE patients and from 7/9 THIAMAT

patients, cell numbers were available and analyzed.
PBMC collection and flow
cytometry analysis

PBMCs were isolated using a Ficoll-Paque density gradient

(Cytiva, Uppsala, Sweden) and cryopreserved until analyzed.
Frontiers in Oncology 03
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The following monoclonal antibodies specific for human

antigens were used: anti-CD14-APC (63D3), anti-CD16-PE

(B73.1), anti-CD64-PE-Cy7 (10.1), anti-CD86-FITC (BU63),

anti-CD163-APC (GHI/61), anti-CD200R-PE (OX-108), anti-

HLA-DR-PE-Cy7 (L243), anti-IgG1 (MOPC-21) (all from

BioLegend, San Diego, CA, USA), anti-CD11b-PerCP-

eFluor®710 (ICRF44), and Fixable Viability Dye-eFluor®780

(all from ThermoFisher Scientific, Waltham, MA, USA). In

brief, cells were thawed and resuspended in staining buffer (1×

PBS/3% FBS). Staining against surface antigens only (panel 2)

or surface antigens and cytoplasmic protein (panel 1, data for

intracellular staining not shown) was performed for 30 min at

4°C in the dark. Staining against cytoplasmic protein was

performed after cell fixation with 2% PFA. Cells were analyzed

on the flow cytometer FACSCanto (BD Biosciences, Immune

Cytometry Systems, San Jose, CA, USA), and data were

analyzed using FlowJo software version 10 (BD Life

Sciences, Ashland, OR, USA). The gates were set based on

Fluorescence-minus-one (FMO) and IgG control antibody

staining, and the number in each gate represents the

percentage of cells. Gating strategy for monocyte subsets and

mMDSC (panel 1) is shown in Figure 1A, and gating strategy

for the myeloid polarization markers (panel 2) is shown in

Figure 1B. Monocyte subsets, CD86+, D163+, and CD200R+

cells were presented as percentage of monocytes; mMDSCs
TABLE 1 Clinical characteristics of the study cohort.

IBT (n = 12) RFA (n = 9) p-value

Sex Female 3 1 0.6030a

Male 9 8

Age at therapy start# 71.50 (7.50) 70.00 (14.00) 1.0000b

Cirrhosis 10/12 8/9 1.0000a

Child pugh score A 8 7 0.3865c

B 2 1

NASH 1/8 2/8 1.0000a

Diabetes mellitus Type II 7/12 5/9 1.0000a

High alcohol intake 5/8 4/7 1.0000a

Viral hepatitis 2/8 1/8 1.0000a

Mixed etiology 2/8 2/8 1.0000a

Maximal tumor diameter [mm]* 34.73 (± 14.56) 31.93 (± 14.61) 0.6691d

⌀ amount of tumors# 1.00 (1.00) 2.00 (1.00) 0.0091b

BCLC score BCLC 0/A 2/6 0/3 0.4753c

BCLC B/C 2/2 2/4

AFP [ng/ml]# 16.05 (412.85) 8.55 (13.80) 0.9079b

Serum albumin [g/dl]* 3.92 (± 0.61) 3.87 (± 0.43) 0.8370d

Total bilirubin [mg/dl]# 0.70 (0.90) 0.80 (0.60) 0.4920b

Platelet count [G/L]# 130.50 (56.00) 114.00 (75.00) 0.9716b

Therapy outcome (Responder/Non-Responder) 11/1 7/2 0.5534a
fronti
The size of tumor lesions was measured as maximal tumor diameter of the largest lesion. AFP, a-fetoprotein; BCLC, Barcelona Clinic Liver Cancer staging system; NASH, non-alcoholic
steatohepatitis. #median (IQR), *mean ( ± SD), a, Fisher’s exact test, b, Mann–Whitney U-test, c, Chi-square test, d, t-test.
ersin.org

https://doi.org/10.3389/fonc.2022.959987
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kimm et al. 10.3389/fonc.2022.959987
were presented as percentage of viable cells. Monocyte gating

strategies and nomenclature were applied following the

principles by Ziegler-Heitbrock et al. (22, 23); those for

mMDSCs were based on Gabrilovich et al. (24, 25).
Histology

Tumor biopsies were fixed in 3.7% neutral-buffered

formaldehyde and embedded in paraffin according to standard

protocols. Two-micrometer sections were prepared, and

morphology was visualized by standard H&E staining. For

immunohistochemistry, the activity of the endogenous

peroxidase was blocked with 1% hydrogen peroxide, and after

antigen retrieval (citric acid buffer, pH 6) at 100°C, sections were

incubated with anti-CD68 (dilution 1:250, clone KP1,

ThermoFisher Scientific, Waltham, MA, USA), anti-CD86

(dilution 1:75, clone E2G8P, Cell Signaling Technology,

Beverly, CA, USA), and anti-CD163 antibody (dilution 1:250,

clone D6U1J, Cell Signaling Technology, Beverly, CA, USA),

respectively. This was followed by incubation with

EnVision™+Dual Link System-HRP (Dako, Carpinteria, CA,
Frontiers in Oncology 04
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USA). Diaminobenzidine (Cell Signaling Technology, Beverly,

CA, USA) was used as a chromogen. Sections were

counterstained with 1% Mayer’s hematoxylin. Slides were

analyzed using a Leica dm2500 microscope equipped with LAS

version 4 software (Leica, Germany).
Statistical analysis

Statistical analysis was performed using GraphPad Prism

(version 9, GraphPad Software, San Diego, CA, USA) and SAS

(version 9.4, SAS Institute Inc., Cary, NC, USA). Normality

distribution was determined by the Shapiro–Wilk test. Paired

data were analyzed using paired t-test or Wilcoxon test. We

calculated intraindividual differences delta to take care of the

dependencies in the data (pre- and post-treatment values of the

same patient) and compared the independent deltas between

the two different cohorts using t-test or Mann–Whitney U-test,

depending on normality of data. For analysis of clinical and

demographic data, Fisher’s exact test, Mann–Whitney U-test, t-

test, and chi-square test were used in dependency of the normal

distribution. Non-normally distributed data are presented as
A B

FIGURE 1

Gating strategies for myeloid cell populations. Representative dot plots from one HCC patient. (A) Panel 1: Monocytes were defined as HLA-
DR+CD14+ cells. Monocyte subsets (classical, intermediate, non-classical; all presented as % frequency of monocytes) were further defined by
their expression of CD14 and CD16: (i) classical monocytes (CD14++CD16−), (ii) intermediate monocyte (CD14++CD16+), and (iii) non-classical
monocytes (CD14+CD16++). Monocytic MDSCs (mMDSCs) were defined as HLA-DR-CD11b+CD14+ cells (% of live cells). Cells were fixed prior
to staining. (B) Panel 2: CD11b+CD64+ monocytes were further analyzed for CD86, CD163, and CD200R marker expression. Cells were not
fixed prior to staining. Following staining, cells of both panels were fixed with 4% PFA and subsequently analyzed. FVD, Fixable Viability
Dye-eFluor®780.
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median with interquartile range (IQR), and normally distributed

data are presented as mean with standard deviation (SD).

A p-value < 0.05 was considered significant.
Results

Patient characteristics of the
study cohort

All patients were recruited through the liver clinics in a

tertiary care/liver transplant center and diagnosed with HCC

based on radiological cr iter ia and biopsy. Pat ient

characteristics and liver function tests at treatment baseline

are summarized in Table 1. No significant differences were

observed between the two patient cohorts for most of the

listed parameters.

Tumor-associated macrophage staining (CD68) of tumor

biopsies of nine patients obtained at baseline before local

ablation revealed tumor regions with CD163+ cells in all

patients. This denoted an inflamed liver microenvironment

and immunosuppressive M2-phenotypic TME. In turn, CD86

staining, indicative of M1 polarization of macrophages, was

almost completely absent (Figure 2).
Frontiers in Oncology 05
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Alterations in leukocyte populations and
ratios following IBT and RFA

First, we investigated peripheral blood LMR, NMR, and NLR

following local ablative therapy IBT and RFA (Figure 3). Both

treatments resulted in significant changes in LMR and NMR, IBT

additionally in NLR. Following IBT, LMR decreased from 2.06

pre-therapy to 1.85 post-therapy (p = 0.0024) (Figure 3A) while

NMR increased from 7.70 to 10.16 (p = 0.0130) (Figure 3B) and

NLR increased from 3.38 to 8.26 following treatment (p = 0.0044)

(Figure 3C). Strikingly, following RFA, both LMR and NMR

dropped close to zero in all patients analyzed, indicating a

tremendous increase in monocytes. LMR values decreased post-

RFA from 1.95 to 0.19 (p < 0.0001) (Figure 3A), and NMR

decreased from 6.60 to 0.70 (p < 0.0001) (Figure 3B). No

significant changes were obtained for NLR in patients following

RFA (Figure 3C). Detailed specifications are listed in

Supplementary Table 1. These results point to the different

mode of action between IBT and RFA.

Looking into the distribution of the different leukocyte

populations in more detail, we found an increase in monocyte

and neutrophil numbers following IBT, while lymphocyte

numbers decreased (Figures 3D–F). In contrast, following

RFA, only peripheral blood monocytes increased in numbers
FIGURE 2

Macrophage polarization within HCC biopsies. A representative sample shows the appearance of macrophages in tumor tissue obtained before
local ablation. H&E staining as well as CD68 (pan macrophage), CD86 (M1), and CD163 (M2) IHC allowed the identification of large areas with
M2-type macrophages (CD163+) whereas M1-type macrophages (CD86+) were almost completely absent.
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(Figure 3D), whereas lymphocytes and neutrophils showed no

significant changes (Figures 3E, F).
Interventional therapy-related dynamics
of peripheral blood myeloid cell
populations

To gain more insight into treatment-related differences in

monocyte subpopulations between radiation-based IBT and

heat-based RFA, we analyzed the peripheral blood of 12 IBT-

and 9 RFA-treated patients pre- and post-treatment (Figure 4)

using flow cytometry. In addition to the three major

subpopulations—classical, intermediate, and non-classical

monocytes (Figures 4A–C)—we identified mMDSC

(Figure 4D) and analyzed the expression of CD86, CD163, and

CD200R indicative for monocyte activation and differentiation

(Figures 4E–G). Healthy donor data of three non-matched

individuals showed no difference for monocyte subpopulations

and mMDSC at baseline (Supplementary Figure 1).
Frontiers in Oncology 06
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Compared to baseline, we found significantly increased

fractions of classical monocytes in 11 out of 12 patients

following IBT (52% pre vs. 66% post, p = 0.0027) (Figure 4A,

Supplementary Table 1). Only in patient no. 1 did classical

monocyte levels decrease post-IBT; still, the patient responded

well to therapy. The most relevant clinical parameter that

differed compared to other patients was a chronic hepatitis

B infection.

Patients treated with RFA were heterogeneous in regard to

classical monocyte proportion (Figure 4A). Only two patients

showed an increase in the proportion of classical monocytes

following RFA (patient no. 14 and patient no. 18), but no

relevant clinical parameters could be clearly correlated to this

observation. Furthermore, we determined intraindividual

differences (delta) for each patient cohort and analyzed

possible differences between the two treatment options. With

regard to classical monocyte percentages, we observed

significant differences between the two treatments (p =

0.0027). Looking at intermediate monocyte frequencies, we

saw no significant changes compared to baseline neither for
A B C

D E F

FIGURE 3

Leukocyte changes following different local ablation treatments. Pre and post analysis of (A) LMR, (B) NMR, (C) NLR, (D) monocytes,
(E) lymphocytes, and (F) neutrophils. Differential blood values from 12 IBT- and 7 RFA-treated patients were analyzed. Each dot represents an
individual patient. Numbers next to dots represent patient IDs and ensure assignment of pre and post values. Data were analyzed using paired
t-test (IBT: B, C, E, and F; RFA: A–C, E, F) or Wilcoxon-test (IBT: A, D; RFA: D). Intraindividual differences were analyzed using unpaired t-test (A,
B, D–F) or Mann–Whitney U-test (C). p-values < 0.05 indicate statistical significance.
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IBT- nor RFA-treated patients (14% pre vs. 12% post, p = 0.1294

and 15% pre vs. 21% post, p = 0.2031, respectively) (Figure 4B,

Supplementary Table 1). Yet, the comparison between treatment

modalities revealed significant difference concerning the

proportion of intermediate monocyte population (p = 0.0371).

While IBT led to decreased intermediate monocyte fractions,

they were overall increasing following RFA (Supplementary

Table 1). Interestingly, non-classical monocyte levels

significantly decreased unrelated to one or the other treatment

(IBT: 4% pre vs. 1% post, p = 0.0005 and RFA: 5% pre vs. 3%

post, p = 0.0088) (Figure 4C, Supplementary Table 1) even

though the effect was more pronounced following IBT.

Next, we analyzed proportions of peripheral blood mMDSC

and detected in virtually all IBT-treated patients significantly

increased mMDSC proportions (1% pre- vs. 2% post-therapy,

p = 0.0049) (Figure 4D, Supplementary Table 1). Only in one

patient (patient no. 4) did we observe a decrease in mMDSC
Frontiers in Oncology 07
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following IBT. This patient represents the only non-responder in

the IBT-treated patient cohort. Following RFA, we found in 8

patients increasing levels of mMDSC regardless of the response

status. One patient had decreasing mMDSC proportion (patient no.

17), and one patient (patient no. 19) showed equal percentages pre-

and post-therapy. In comparison to the non-responding patient

following IBT, both non-responding patients of the RFA-treated

patient cohort showed increasing mMDSC frequencies (all RFA-

treated patients: 0.87 pre vs. 1.32 post, p = 0.1081). Compared to the

other patients, there was no clinically evident cause explaining the

decreased mMDSC.

Furthermore, we investigated possible variance in expression

of CD86, CD163, and CD200R pre- and post-treatment

(Figures 4E–G). The rate of CD86+ monocytes showed a

tendency to decrease in both patient cohorts, but not reaching

significant differences (IBT: 86% pre vs. 81% post, p = 0.0772;

RFA: 82% pre vs. 72% post, p = 0.0508) (Figure 3E, Supplementary
A B C D

E F G

FIGURE 4

Therapy-specific alterations in monocyte cell populations. Percentage of myeloid cells as measured by flow cytometry. Pre and post analysis of
12 IBT- and 9 RFA-treated patients. (A) Classical monocytes (CD14++CD16−), (B) intermediate monocytes (CD14++CD16+), (C) non-classical
monocytes (CD14+CD16++), (D) mMDSC, (E) CD86+, (F) CD163+, and (G) CD200R+ monocytes (shown as percentage of monocytes). Each
dot represents an individual patient. Numbers next to dots represent patient IDs and ensure assignment of pre and post values. Data were
analyzed using paired t-test (IBT: A, F; RFA: A, C–F) or Wilcoxon test (IBT: B–E, G; RFA: B, G). Intraindividual differences were analyzed using
unpaired t-test (A, B, D, E) or Mann–Whitney U-test (C, F, G). p-values < 0.05 indicate statistical significance.
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Table 1). At the same time, we observed a significant increase in

scavenger receptor CD163-expressing monocyte proportions

following IBT (55% pre vs. 80% post, p < 0.0001), and even

though not significant, we observed a gain in CD163+ monocyte

fraction following RFA (49% pre vs. 62% post, p = 0.1298)

(Figure 4F, Supplementary Table 1). Only for one IBT-treated

patient (patient no. 12) did we observe a decrease in CD163+

monocyte percentages. This result may be explained by an

underlying hemochromatosis with a mutation in the HFE gene.

Two RFA-treated patients showed decreased CD163+

proportions. Patient no. 15 was classified as a non-responder;

patient no. 21 was the only HBV-positive patient within the RFA-

treated cohort. When looking at the dynamics of CD200R+

monocyte fractions, we discovered certain differences. Following

IBT, CD200R+ monocyte levels significantly decreased (16% pre

vs. 10% post, p = 0.0425) (Figure 4G, Supplementary Table 1).

Only two IBT-treated patients had increasing CD200R+

proportions (patient no. 2 and patient no. 5). We could

not identify relevant clinical parameters for patient no. 2

explaining an increase in CD200R+. Patient no. 5, however, has

an underlying autoimmune hepatitis. In comparison, we could

not detect significant differences in CD200R expression

levels in monocytes of RFA-treated patients (Figure 4G)

(Supplementary Table 1).

For none of the three markers analyzed did we find a

significant difference between the two types of treatment

(Figures 4E–G).
Discussion

Liver cancer is an inflammation-associated tumor that

develops on the ground of injured liver tissue—cirrhosis.

The inflammatory reaction originally intended for tissue

repair usually develops towards a chronic condition, which

is able to promote tumorigenesis and growth (26).

Inflammation is considered a hallmark of cancer and the

innate immune response is a major player in orchestrating

both the local and systemic response (27). Furthermore,

myeloid cells play a critical role in the resolution phase of

inflammation (28) and activating myeloid cell populations

following therapy could affect patients’ response, resulting in

positive or negative abscopal effects. The TME plays a decisive

role, and its composition mainly determines whether a pro- or

anti-tumorigenic environment dominates the scene. Herein,

tumor-associated macrophages are one of the most abundant

cell types in the TME. They mature from peripheral

circulating monocytes and, depending on prevalent

mediators, differentiate into pro-inflammatory M1 or anti-

inflammatory M2 macrophages. Additionally, under

pathological conditions, tissue-resident Kupffer cells become

activated and gain either M1 or M2 function (29, 30).
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Local ablative therapies have proven effective in the

treatment of primary liver tumors and their combination with

immunotherapies is currently an increasing focus of research.

IBT as locally effective radiotherapy and heat-induced tumor

destruction by RFA or microwave ablation represent common

forms of interventional tumor therapy (31). Both IBT and RFA

are able to induce immunogenic cell death leading to increased

antigen presentation and the release of damage-associated

molecular patterns (DAMP) due to cell necrosis, which may

finally result in an anti-tumorigenic response (32–35). In both

types of therapy, next to the destruction of tumor tissue, adjacent

liver tissue and vasculature is affected and potentially injured.

The associated inflammatory reaction is of interest, as it may

contribute to the patient’s therapy response beyond the initial

tumor destruction. This raises several questions: Is the immune

reaction restricted locally or is it possible to detect systemic

effects within the peripheral blood? Are there differences in the

systemic immune reaction depending on the type of

interventional therapy applied? To answer these questions, we

analyzed the dynamics of circulating blood monocytes and the

expression of monocyte function-related markers using flow

cytometry in a cohort of 21 HCC patients treated with either

IBT or RFA. Due to the applied study protocols and the

prospective character of the studies, our analysis does not

include data from patients with the same degree of liver

cirrhosis, but without cancer. This is a clear limitation of the

herein presented data and future studies shall address this issue

in more detail.

We found significant changes in leukocyte ratios LMR,

NMR, and NLR that indicate systemic effects following

ablation therapy. Furthermore, we detected changes in

monocyte proportions, monocyte subpopulations, mMDSCs,

and distinct monocyte markers at 24 to 48 h after the

respective therapy. The changes occurred independent of the

patients’ response status, but differed regarding the treatment

modality. Noteworthy, the analysis revealed an increase in

absolute monocyte numbers that was significantly higher

following RFA, compared to IBT treatment. This could

indicate the degree of early injury, which initially is more

pronounced in RFA compared to IBT, where cell death and

necrosis develop in due course. In addition to monocytosis, we

noted lymphopenia and neutrophilia following IBT, but not

RFA, representing an inflammatory leukogram that is caused by

IBT-induced necrosis and thus related to the induction of

immunogenic cell death. Hence, differences in leukocyte

populations may hint to temporal differences in wound

healing phases following either one of the ablative treatments.

In addition, RFA and IBT clearly induce different systemic

immune reactions, which might correlate to the degree and

mode of tissue injury and the associated inflammatory response.

With respect to the different monocyte subsets, we observed

a substantial decrease in non-classical monocytes, no matter
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which treatment modality was applied. A drop in non-classical

monocytes may indicate their migration to the liver, and since

non-classical monocytes are associated with wound healing (36,

37), they might be recruited for tissue repair following tumor

ablation. Even though classical monocytes are the predominant

population, which upon tissue injury is recruited from the blood

to the site of injury (38), we noted increased proportions of

classical monocytes only following IBT, not after RFA. Classical

monocytes have an important function in the initiation and

progression of the inflammatory response (39), and differences

in the appearance of classical monocyte proportions could be

related to radiation-induced cell death, which occurs over an

extended time frame of at least several days, while RFA induced

cell death is an immediate event. Furthermore, we noted that

changes within intermediate monocyte subsets differed

significantly between IBT- and RFA-treated patients. Changes

in peripheral monocyte subsets may also indicate how fast

ablation-induced inflammation resolves (39, 40). A clear

limitation of this study is that only one time point after local

ablation was sampled. Kinetic studies will be needed to obtain a

more precise picture on the recruitment and re-storage of

individual monocyte subsets following the different

interventional therapies. Such studies are also necessary to

better understand how the wound healing phases temporally

differ depending on the ablation mode.

The increase in mMDSC fractions observed in both patient

cohorts also suggests a treatment-related effect, although the

increase in mMDSC was only significant following IBT. Again,

this might be the result of the different modes of action and

may indicate a stronger inflammatory response post-IBT.

Monocytic MDSCs are only found under pathological

conditions (40–42), and as they are able to enhance or

restore immune reactions, their function is a double-edged

sword (43). mMDSC accumulation is commonly linked to a

worse prognosis of patients in a wide range of cancers (44).

However, given that virtually all treated patients had a good

response to ablation (18/21), defined as no recurrence of the

disease within 6 months after treatment, we conclude that the

mMDSC signature in the peripheral blood that we observed at

the given time point is treatment- rather than response-related.

Immunosuppression is a critical part during wound healing

(45), and the recruitment of mMDSCs following ablative

therapy may indicate the healing process. To delineate the

role of mMDSC following local ablation, more mechanistic

studies, including animal models of local ablation, would be

needed. The descriptive character of our study is a clear

limitation and more studies are needed to reveal the role of

mMDSC following ablative therapies in HCC.

The observation that the proportion of CD163+ monocytes

was increased independent of the type of treatment applied was

remarkable. CD163 is a scavenger receptor, physiologically

involved in the clearance of hemoglobin after red blood cell
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lysis (46). Changes in CD163+ monocyte proportion could

indicate complications, technically as well as those that are

hemolysis-related. Hemolysis was described in patients

following thermal injury, and the circumstance that

hemolysis can lead to acute kidney failure makes CD163 an

interesting marker for monitoring patients after ablative

treatments. Further studies with higher patient numbers are

needed to better understand why radiation-induced injury

caused significantly increased CD163+ monocyte fractions

whereas thermal-induced injury did not. The tendency of

CD86+ monocyte fractions to decrease following ablative

treatment suggests a functional shift from an inflammatory

environment towards an anti-inflammatory one within the

peripheral blood. In complex with CD80, the CD86 receptor

interacts with CD28 on T lymphocytes and is part of the full

activation of CD4+ T cells. Finally, this leads to CTLA-4

upregulation that competes with CD28 for CD80/86 binding,

resulting in the termination of T-cell stimulation. Furthermore,

CD86 is a marker for APC activation (47) and CD86 receptor

downregulation can lead to an anti-inflammatory and

immune-regulatory phenotype (48) and may indicate the

presence of a wound healing phase following ablation

therapy. With regard to CD200R+ monocytes, we detected

decreased fractions following treatment with IBT, but no

relevant changes following RFA. CD200–CD200R is a known

immunoregulatory checkpoint axis with CD200R mainly

expressed on myeloid cells and T cells. It is one key player in

regulating immune homeostasis, especially in maintaining

immune tolerance (49, 50). We identified in one patient with

autoimmune hepatitis (AIH) high CD200R+ monocyte

numbers at baseline that further increased following IBT.

Recently, CD200R was described as dampening the

production of inflammatory cytokines by myeloid cells in

healthy people. Nevertheless, in IFN-alpha-mediated

inflammation, CD200R can amplify the immune response

(51). Type I interferon activation is also described for AIH

(52), and it is likely that IBT triggers the induction of IFN-

alpha. With regard to immunotherapies and their increasing

use in combination with local ablative therapies, the CD200–

CD200R axis is of major importance and additional

investigations are needed to identify targets harmonizing

combinations of both therapy types.

In summary, local ablation by IBT and RFA causes an early

systemic innate immune response and modulates myeloid cell

populations in the peripheral blood of HCC patients. We

demonstrate that IBT leads to changes in levels of several

monocyte subpopulations as well as mMDSC and significantly

alters expression levels of myeloid markers whereas RFA does

less. Future studies are necessary to explore the impact of the

therapy-induced innate immune response on tumor cells and

how myeloid-targeting immunotherapies could be combined

with interventional strategies. Regardless of mechanism, we
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hypothesize that radiation-based therapy may be more

advantageous when combined with immune-oncology. Thus,

in the future, with further validation, addressing myeloid cells

and their function may become an adjunct to alter effects of local

ablative therapies.
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Distinct immune and
inflammatory response patterns
contribute to the identification
of poor prognosis and advanced
clinical characters in bladder
cancer patients

Zhenglin Chang1,2,3†, Rongqi Li4†, Jinhu Zhang3†, Lingyue An3†,
Gaoxiang Zhou1,3, Min Lei3, Jiwang Deng3, Riwei Yang3,
Zhenfeng Song2,3, Wen Zhong3, Defeng Qi3, Xiaolu Duan3,
Shujue Li3*, Baoqing Sun2* and Wenqi Wu1,3*

1Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou,
Guangdong, China, 2Department of Allergy and Clinical Immunology, Department of Laboratory,
National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State
Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated
Hospital of Guangzhou Medical University, Guangzhou, China, 3Guangdong Key Laboratory of Urology,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 4Department of
Hepatobiliary Surgery, Foshan Hospital of Traditional Chinese Medical, Foshan, Guangdong, China
Due to the molecular heterogeneity, most bladder cancer (BLCA) patients

show no pathological responses to immunotherapy and chemotherapy yet

suffer from their toxicity. This study identified and validated three distinct and

stable molecular clusters of BLCA in cross-platform databases based on

personalized immune and inflammatory characteristics. H&E-stained

histopathology images confirmed the distinct infiltration of immune and

inflammatory cells among clusters. Cluster-A was characterized by a

favorable prognosis and low immune and inflammatory infiltration but

showed the highest abundance of prognosis-related favorable immune cell

and inflammatory activity. Cluster-B featured the worst prognosis and high

immune infiltration, but numerous unfavorable immune cells exist. Cluster-C

had a favorable prognosis and the highest immune and inflammatory

infiltration. Based on machine learning, a highly precise predictive model

(immune and inflammatory responses signature, IIRS), including FN1, IL10,

MYC, CD247, and TLR2, was developed and validated to identify the high

IIRS-score group that had a poor prognosis and advanced clinical

characteristics. Compared to other published models, IIRS showed the

highest AUC in 5 years of overall survival (OS) and a favorable predictive

value in predicting 1- and 3- year OS. Moreover, IIRS showed an excellent

performance in predicting immunotherapy and chemotherapy’s response.

According to immunohistochemistry and qRT-PCR, IIRS genes were

differentially expressed between tumor tissues with corresponding normal or
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adjacent tissues. Finally, immunohistochemical and H&E-stained analyses were

performed on the bladder tissues of 13 BLCA patients to further demonstrate

that the IIRS score is a valid substitute for IIR patterns and can contribute to

identifying patients with poor clinical and histopathology characteristics. In

conclusion, we established a novel IIRS depicting an IIR pattern that could

independently predict OS and acts as a highly precise predictive biomarker for

advanced clinical characters and the responses to immunotherapy

and chemotherapy.
KEYWORDS

bladder cancer, chemotherapy, immunotherapy, immune and inflammatory
characteristics, unsupervised cluster analysis
Introduction

Bladder Cancer (BLCA) has become an increasingly

prominent public health issue worldwide due to its high

recurrence rate, high metastatic propensity, and peculiar

chemo- and radio-resistance (1, 2). Radical cystectomy can

perform well in resecting localized tumors, and cisplatin-based

neoadjuvant chemotherapy (NAC) remains the most established

perioperative option so far. Nevertheless, the survival probability

of patients after an operation is extremely low, and nearly 50% of

them will ultimately experience the spread of cancer (3, 4). In the

past decade, immunotherapy has evolved as one of the most

promising advancements, deeply revolutionizing the therapeutic

paradigm of BLCA. Factually, some immune checkpoint

inhibitors have already been approved in advanced BLCA (5).

Unfortunately, most patients show no pathological responses to

immunotherapy and chemotherapy yet suffer from their toxicity.

The distinct sensitivity to therapy might primarily be due to the

molecular and genetic heterogeneity of the tumor

microenvironment (TME) in BLCA (1, 3). Hence, there is an

urgent need to identify the potential molecular subtype and

develop novel and reliable markers to predict prognosis,

chemotherapy, and immunotherapy efficacy for BLCA.

The initiation and progression of tumors not only depend on

the genetic heterogeneity of malignant cells but also on the tumor

microenvironment (TME) (6). The inflammatory milieu has been

considered a pivotal aspect of a tumor, affecting various hallmarks

of the tumor, including cell proliferation, angiogenesis, invasion,

and metastasis (7, 8). Recently, a growing number of clinical and

experimental evidences indicated that the acute inflammatory

response could prevent the growth and invasion of the tumor,

while chronic inflammation can aid the transformation of

malignancy (9–11). Moreover, innate immunity can promote

tumorigenesis, while adaptive immunity often restrains through

immunosurveillance (7, 9, 12). It is worth noting that immune and
02
73
inflammatory responses (IIR) play distinct roles in different stages

of tumor progression, and the balance of IIR is crucial in restricting

the development and progression of malignancy. The normal

controlled inflammatory response can activate a specific immune

response, resulting in healing (13). Conversely, prolonged and

dysregulated inflammation is closely related to immune

suppression, thus leading to disease progression (13, 14). The

immune and inflammatory process is dynamic and changing over

time, reflecting the degree of the normal or abnormal responses of

the body. Although increasing research has focused on the

molecular characteristics of BLCA based on gene expression

patterns of immune or inflammation (15–19), there has been no

report of prognosis-related classification that combined immune

with inflammatory response patterns. Therefore, it is meaningful to

identify the distinct IIR patterns and develop a novel prognosis,

immunotherapy, and chemotherapy-related signature based on

IIR patterns.

The IIR patterns and IIR-based signature (IIRS) were

identified for the first time in this study using two cross-

platform BLCA data. In addition, bladder tissues and

corresponding clinical characteristics of BLCA patients were

collected to validate the clinical application potential of the IIRS-

score. These findings will unveil unknown molecular subtypes of

TME-related immune and inflammatory responses and make

current immunotherapy and chemotherapy strategies more

efficient, optimizing the chance of response and reducing the

overtreatment of non-responders.
Methods

Dataset acquisition and preparation

The RNA-Seq data of BLCA with matched clinicopathological

features were obtained from TCGA database. The microarray data
frontiersin.org
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set GSE32894 with corresponding clinical information was

downloaded from the GEO database. IMvigor210 trial, including

patients withmetastatic urothelial cancer treated with atezolizumab,

was obta ined from http : / / research-pub .gene .com/

IMvigor210CoreBiologies/. In two data sets, the selection criteria

were as follows: (1) have survival data; (2) follow-up ≥ 1 month; (3)

pathological diagnosis was BLCA. Finally, 403 BLCA samples of

TCGA, 224 of GSE32894, and 348 of IMvigor210 were enrolled in

this study.
Identification of immune and
inflammatory phenotype-related
genes (IIRGs)

We analyzed six inflammation-related gene sets (M3952,

M5932, M6910, M17322, M38152, and M39641) from the GSEA

database, representing diverse targets from inflammatory cells,

cytokines, pathways, and responses. In addition, immune-related

genes were picked from the Tracking Tumor Immunophenotype

database. These targets were put into the STRING database, and

CytoNCA plug-in was applied to sieve the IIRGs.
Identification of the IIR-related patterns
by consensus clustering

Based on these identified IIRGs, the consensus clustering

method was applied to identify novel IIR patterns in TCGA

cohort to classify patients. We limited the clustering algorithm to

‘pam’ and performed 100 iterations here. Two GEO cohorts were

utilized to verify the clustering stability using the same method. To

determine the optimal clustering number, we applied the PCA

method to extract the data of the consensus matrix, followed by

generating thefitting curve using the ‘ecdf’method.After calculating

the area under the cumulative distribution function (CDF) curve

between 0.1 and 0.9, the corresponding K was regarded as the

optimal number of clustering according to theminimumarea under

CDF. The overall survival (OS) among classifications was calculated

using the Kaplan-Meier (KM) method. Principal component

analysis (PCA) was also utilized to demonstrate expression

patterns of IIRGs in different BLCA patients.
Comparison of tumor microenvironment
infiltration patterns

Based on the ESTIMATE algorithm, we generated the immune

score, stromal score, and tumor purity. We then generated the

inflammatory score based on the ssGSEA algorithm using the

identified inflammation-related gene sets. Next, CIBERSORTXwas
Frontiers in Immunology 03
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applied to evaluate the relative abundances of multiple immune cell

types (20). The influence of immune cell types on survives was

determined by classifying the patient’s samples into high or low

groups according to relative expression levels of immune cell types.

Cases were divided into two groups based on the relative

expression levels of immune cell types, and then the prognoses of

BLCA patients with different immune cell expression levels were

analyzed by the Kaplan–Meier survival curve. Subsequently, the

univariate Cox regression was applied to identify the prognostic-

related differentially expressed immune cells among clusters.
Identification of the BLCA-related
inflammation activity signature

We established scoring systems to quantify the different

inflammatory activity patterns to increase our understanding

of cluster-related inflammatory activities. First, 11 signatures of

inflammatory activity related to the progression of bladder

cancer were selected from the GSEA database (Supplementary

Table 1). Then, using a univariate Cox regression model, we

performed prognostic analysis on the genes in each signature.

Next, genes with significant prognoses (p<0.05) were extracted

for further analysis. Afterward, PCA was performed to establish

inflammatory signatures. Both principal components 1 and 2

were selected as signature scores. Finally, the scores were defined

using a method similar to Genomic Grade Index (21, 22):

score =o(PC1i + PC2i)

Where i is the expression of inflammatory activity-related

genes with a significant prognosis among clusters.
Construction of IIR-based
signature (IIRS)

To conduct the quantitative assessment of the IIR pattern of

each patient, we constructed a scoring system termed IIRS. First,

the “limma” package was utilized to filter the differentially

expressed IIRGs (DEIIRGs) among patterns. The optimal IIRS

was then established based on the machine learning and Cox

regression. We then calculated the IIRS-score (risk-Score) of

each patient to predict the prognosis of BLCA and utilized the

“survminer” package to determine the optimal cut-off score for

the risk. Next, the time-dependent receiver operating

characteristic (ROC) curve analysis was conducted to compare

the predictive accuracy and other clinicopathological

characteristics of IIRS. Moreover, we picked five reported

immune or inflammatory signatures to compare the

prognostic values (15–19). Finally, the clinical utility was

evaluated by decision curve analysis (DCA).
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Gene set enrichment analysis of the
IIRS genes

Based on the median expression of IIRS genes, 403 BLCA

patients were divided into two groups. First, GSEA was

conducted to investigate the potential molecular mechanisms

of IIRS genes, setting the “c2.cp.kegg.v7.1.-symbols.gmt” as the

reference gene set. The top 10 terms of each IIRS gene were

obtained after excluding unrelated signaling pathways such as

“acute myeloid leukemia” and “endometrial cancer”.
Biomarkers for predicting
immunotherapy response and
chemotherapeutic response

The tumor mutation burden (TMB) of each TCGA-BLCA

patient was calculated by Perl script. Then, we divided patients

into four groups based on the median cut-offs of IIRS-score and

TMB to see if the IIRS-TMB joint diagnosis had a thorough

prediction ability. A total of 50 checkpoints were collected from

the previously published articles. In addition, IMvigor210 cohorts

were included in our study to see if the IIRS could predict clinical

response to PD-1 blockers. Moreover, we applied The Cancer

Immunome Atlas (TCIA) to detect the immunophenoscore (IPS)

of tumor samples, which can predict the clinical response to CTLA-

4 and PD-1 blockers. Finally, to provide individualized medication

for each BLCA patient, we picked underlying drugs of BLCA in the

‘pRRophetic’ package according to previously published articles,

followed by evaluating the half-maximal inhibitory concentration

(IC50) of each drug.
Tumor mutation analysis of DEIIRGs

The single nucleotide variants data of BLCA samples based

on the “VarScan” process were obtained from the TCGA

database. Mutation data were visualized using the “maftools”

package to identify the somatic mutations of the patients with

the identified genes of IIRGs.
Quantitative real-time polymerase chain
reaction (qRT-PCR)

Three bladder samples of carcinomas and adjacent normal

tissues were obtained from BLCA patients who underwent surgery

at Guangzhou Medical University’s Second Affiliated Hospital

(GZhmu2.cohort) without preoperative immunotherapy or

chemotherapy. RNA extraction and qRT-PCR were conducted as

previously described (22, 23). The PCR primers are described in

Supplementary Table 2. The relative expression of IIRS genes was

calculated from three technical replicates using the 2 −DDCt method.
Frontiers in Immunology 04
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Hematoxylin and eosin (H&E)

A total of 403 whole-slide H&E-stained histopathology

images were obtained from TCGA. Moreover, 14 bladder

samples of cancer tissues were obtained from BLCA patients

who underwent surgery at Guangzhou Medical University’s First

Affiliated Hospital (GZhmu1.cohort) without preoperative

immunotherapy or chemotherapy. The corresponding clinical

information is displayed in Supplementary Table 3. A single

tissue was too small to scan and was abandoned for subsequent

analysis. All images were observed by a tissue scanner

(PathScope 4s, DigiPath, NV, USA) to observe the

inflammatory and immune histological changes of bladder

tissues. The corresponding score system was performed as

previously described (22, 23).
Immunohistochemistry (IHC)

The primary antibodies: CD247 (1:200), TLR2 (1:200), c-

MYC (1:500), IL10 (1:200), and FN1 (1:200) were obtained from

Proteintech (Rosemont, IL, USA) and were applied for IHC. IHC

was conducted as previously described (22, 23). For each IHC-

tissue section, five random visual fields were selected for

determination. The relative expressions of IIRS genes were

obtained by calculating the means of integrated optical density

(MOD) using ImageJ software.
Statistical analyses

R and IBM SPSS Statistics were used to conduct statistical

analyses. The KM analysis was conducted using the log-rank test.

The Hazard Ratio (HR) and 95% confidence interval (CI) were

generated using KM and Cox regression. Statistical significance of

the comparison between two groups for continuous variables and

categorical variables was estimated by Student’s T-test or Mann-

Whitney-Wilcoxon test and Chi-square test or Fisher’s exact tests,

respectively. The existence of a correlation between variables was

accessedbySpearmancorrelationanalysis.Thestatistical significance

of PCR and IHC were assessed by t-tests or one-way ANOVA with

LSDposthoccomparisonsorDunnett’sT3posthoc tests.Atwo-tailed

P value less than 0.05 was considered statistically significant.
Results

Collection of IIRGs

The workflow is shown in Figure 1. 1193 inflammatory genes

and 178 immune genes were enrolled into our analysis

(Supplementary Figures 1A, B). After filtering, a total of 85 IIRGs

were selected (Supplementary Figures 1C-F, Supplementary Table 4).
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Three distant IIR Clusters with different
clinical outcomes of BLCA

The optimal clustering division was three based on the

minimum area under the CDF curve. The heatmap showed a

relatively clear-cut boundary, indicating the reliability of

clustering (Figure 2A). KM analysis revealed that patients in

Clusters A and C had a survival benefit, while patients in cluster

B had the worst outcome (Figure 2B). The PCA distribution

patterns represented three different dynamic IIR types and

validated three clusters assignment (Figure 2C). Moreover, the

hierarchical clustering revealed that the expression of IIRGs

among subtypes was significantly different, further verifying the
Frontiers in Immunology 05
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reliability of clustering (Figure 2D). We further confirmed less

immune and inflammatory cells infiltration in Cluster A and

more infiltration in Cluster C (Figures 2E, F). Finally, two GEO

cohorts were applied to prove the repeatability of classification

(Supplementary Figures 2A, B).
Existence of diverse tumor
microenvironment infiltration among
three identified patterns

The ESTIMATE and ssGSEA tools were used to analyze the

levels of the immune score, stromal score, tumor purity, and
FIGURE 1

The workflow of designed analysis.
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inflammation score among clusters (Supplementary Table 5).

Cluster A showed the highest tumor purity, while Cluster C

referred to the highest inflammation, immune, and stromal

scores, further validating the distribution of the three subclasses

(Supplementary Figures 3A-D). Subsequently, we noticed that

Cluster A showed the highest abundance of NK cells resting, T

cells CD4 naïve, T cells regulatory (Tregs), and Plasma cells. On the
Frontiers in Immunology 06
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other hand, cluster B was characterized by immature and resting

immune cells, includingMacrophagesM0,Mast cells resting, andB

cells naïve. This can help explain that it did not survive as well as

Cluster A or Cluster C. Cluster C was primarily made up of

activated immune cells, such as T cells CD8, T cells follicular

helper, T cells CD4memory activated, T cells CD4memory resting,

Neutrophils, and Macrophages M1 (Supplementary Figure 3E).
B

C D

E F

A

FIGURE 2

Unsupervised consensus cluster analysis of IIRGs in TCGA-BLCA cohort. (A) Heatmap of consensus clustering matrix for k =3 and Consensus
clustering cumulative distribution function (CDF) for k = 2 to 6. (B) KM curves of OS among clusters in BLCA. (C) PCA among three IIRG
modification patterns. (D) Hierarchical clustering of IIRGs in TCGA-BLCA cohort. (E) Representative photomicrographs of H&E staining of
bladder sections among clusters. (F) The One-way ANOVA analysis of histopathological scores among clusters.
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Cluster B-specific differentially expressed
immune cells and inflammatory activity
might result in a poor outcome for
TCGA-BLCA patients

In order to investigate the mechanisms leading to clinical

phenotypic heterogeneity among clusters, univariate Cox

regression was conducted to analyze 13 differentially expressed

immune cells (Supplementary Table 6). Cluster A-specific NK

cells resting were regarded as prognosis-related favorable factors

(Figure 3A). While prognosis-related risk factors consisted of

Cluster B-derived Macrophages M0, Mast cells resting, and B

cells naïve. This might help explain the worst prognosis of

cluster B despite having a high immune score. Further KM

analysis showed that the high-level group of T cells follicular

helper, T cells CD4 memory activated and NK cells resting had

significantly higher survival probability than the low-level group

(Figures 3B–D). Conversely, the abundance of Macrophages M0,

Mast cells resting, T cells CD4 memory resting, and Neutrophils

were related to poor prognosis (Figures 3E–H).

Furthermore, we assessed the relationship between clusters

and inflammatory activity signatures. Cluster A positively

correlated with the higher activity of PI3K-AKT-mTOR

(Figure 3I), which was related to favorable prognosis

(Supplementary Figure 4A). MAPK activity was regarded as

the specific inflammatory activity of cluster B (Figure 3J). Cluster

C showed the highest abundance of other inflammatory

activities (Figures 3K–S), significantly related to OS

(Supplementary Figures 4B-3G). Next, univariate Cox

regression was conducted to analyze these differentially

expressed inflammatory activities. PI3K-AKT-mTOR was

cluster-specific favorable factor, which probably accounts for

why Cluster A had a favorable prognosis (Figure 3T).
Construction of the IIRS

We obtained 62 DEIIRGs among clusters (Figure 4A).

Univariate and multivariate Cox regression models identified 5

DEIIRGs (Figures 4B, C; Supplementary Figure 4H). The risk

score = 1.13822603*Expression (FN1) + 0.50559931*Expression

(IL10) + 0.631436*Expression (MYC) – 0.8375582*Expression

(CD247) – 0.8336228*Expression (TLR2). GSEA further

revealed that the five genes were correlated with immune

pathways (Figure 4D).
Genetic alteration of IIRS genes in
TCGA-BLCA patients

The waterfall plot revealed 38 mutated DEIIRGs with higher

than 0.5% mutation frequencies (Supplementary Figures 5A, B).

Notably, TP53 and FN1 were regarded as the most frequently
Frontiers in Immunology 07
78
mutated DEIIRGs. Further pathway enrichment indicated that

these 38 mutated DEIIRGs were significantly associated with the

PD-L1 expression and PD-1 checkpoint pathway in cancer

(Supplementary Figure 5C). Next, we unveiled the genetic

alteration of IIRS genes. These genes are FN1 (5.34%), TLR2

(0.73%), IL10 (0.49%), MYC (0.49%), and CD247 (0.24%)

(Supplementary Figure 5D).
IIRS could predict OS and the
IIR patterns

The KM analysis showed that the high IIRS-score group was

significantly associated with low survival probability (Figure 4E).

After adjusting clinical characteristics, 168 patients with

complete clinical information were collected (Supplementary

Table 7). The ROC curve revealed a high accuracy of IIRS in

predicting the prognosis of BLCA patients, with an AUC of

0.671, 0.719, and 0.790 in 1, 3, and 5 years, respectively,

compared to other clinical factors (Figure 4F). Compared to

other models, IIRS showed the highest AUC in 5 years and a

favorable predictive value in predicting 1- and 3- year OS

(Supplementary Figure 4I), which revealed a favorable

efficiency of our model in predicting short-term and long-term

survival for BLCA patients.

Further, we noticed that patients in Cluster B showed a

higher IIRS score than other subclasses (Figure 4G), which might

help explain the survival inferiority of Cluster B. Simultaneously,

patients in Cluster A showed a lower IIRS score compared to

other molecular subclasses. Moreover, a Chi-square test

demonstrated a significant difference in IIRS scores among

IIR-clusters (Figure 4H). These results indicated that the IIRS

had a strong predictive ability for survival prediction and

IIR patterns.
Two IIRS subtypes have
distinct clinical behaviors

To investigate whether IIRS was related to OS among

different clinical subgroups, the log-rank analysis indicated

that lower risk scores were associated with favorable clinical

character is t ics in most subgroups (Supplementary

Figures 6A-E).
IIRS showed a good performance in
predicting the clinical response of
immunotherapy and chemotherapy

TMB has been regarded as an essential biomarker of the

clinical response to immunotherapy in BLCA (24). We

calculated the TMB value of each patient, and it was used to
frontiersin.org
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analyze the correlation between IIR clusters and IIRS scores

(Supplementary Table 8). First, we noticed that patients in

Cluster C (Figure 5A) and IIRS low-risk group (Figure 5B)

showed the highest TMB values, matching their higher survival

probability. The Sankey diagram further revealed that most

Cluster B patients had high IIRS scores and low TMB, which
Frontiers in Immunology 08
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was associated with a poor clinical outcome (Figure 5C). The

further KM curve indicated that BLCA patients with high TMB

showed a higher survival advantage than patients in the low

TMB group (Figure 5D). Moreover, a high-TMB/low-IIRS risk

score had the highest survival probability, whereas a low-TMB/

high-IIRS score showed the worse clinical outcome (Figure 5D).
B C D

E F G H

I J K L

M N O P

Q R S T

A

FIGURE 3

Identification of cluster-specific and prognosis-related differentially expressed immune cells and inflammatory activities in TCGA-BLCA cohort.
(A) Interaction of cluster-specific and prognosis-related differentially expressed immune cells. Cluster A, blue; Cluster B, yellow; Cluster C, red.
These circles highlighted in Green (purple) referred to favorable (risk) factors of overall survival. The size of each circle evaluated by Unicox p-
values indicated the survival impact of each immune cell. The connection shows the interaction between two immune cells, and the thickness
of the lines means the correlation strength among cells. The red (blue) lines represented the positive (negative) correlation. (B-H) KM curves
were applied to estimate OS for the high- and low-level groups of differentially expressed immune cells. (I-S) The violin plots demonstrate the
differences in expression levels of various inflammatory activities among clusters. (T) Interaction of cluster-specific and prognosis-related
differentially expressed inflammatory activities.
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Next, we noticed that almost all differentially expressed

checkpoints were significantly upregulated in high IIRS-score

groups compared with the low IIRS-score groups (Figures 5E, F).

Immunotherapies represented by PD-1 and CTLA-4

blockade have undoubtedly emerged as a critical breakthrough

in BLCA therapy. We found that patients with low IIRS-score

showed significant therapeutic advantages compared to those

with high IIRS scores in the IMvigor210 cohort (Figure 5G). To
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80
further evaluate the relationship between IIRS and the clinical

response to CTLA-4 and PD-1 blockers, we calculated the IPS of

402 BLCA patients. The results indicated that the low IIRS score

was significantly correlated with CTLA-4 and PD-1 blockers

(Figure 5H). Moreover, we noticed that the IC50 of potential

majority drugs, including cisplatin, was significantly higher in

the low IIRS-score group than in IIRS high-risk patients

(Supplementary Figure 7).
B C D

E F

G H

A

FIGURE 4

Construction of immune and inflammatory phenotype-related gene signature in TCGA-BLCA cohort. (A) Differences in the levels of the 85 IIRGs in
three subtypes (***P< 0.001; **P< 0.01; *P< 0.05). (B, C) Forrest plot depicting the univariate and multivariance Cox regression analysis of DE. (D)
Enrichment analysis for pathways in the high expression group of the IIRS genes. NES is the normalized enrichment score. (E) Survival analyses were
applied to evaluate overall survival for the high- and low-risk groups in the TCGA train cohort. (F) AUCs (Area under ROC curve) for 1-, 3-, and 5-year
OS and the risk score and clinical characteristics ROC curves. (G) Distributions of IIRS-score among clusters. (H) The Chi-square test was applied to
evaluate the difference in immune and inflammatory patterns among patients in the high- and low-IIRS-score groups.
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Evaluation of the IIRS genes’ expression

According to the histopathological section, the infiltration of

immune and inflammatory cells in the high or low IIRS-risk

group was significantly different (Figures 6A, B). We further

explored the expression of five identified genes in the Human

Protein Atlas (HPA) database. Compared with the normal

tissues, FN1, IL10, and MYC were highly expressed, while the

expression of CD247 was decreased in tumor bladder tissues
Frontiers in Immunology 10
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(Figure 6C). Nevertheless, the HPA database has not included

information on TLR2 due to its limited bladder tissues. So, we

further evaluated the expression of the five proteins in two

cohorts. In the IMvigor210 cohort, FN1, IL10, and MYC

expressions in the IIRS high-risk group were significantly

upregulated, while CD247 was significantly downregulated

(Figure 6D). In the GSE32894 cohort, CD247 in the IIRS low-

risk group was significantly upregulated, while MYC was

significantly downregulated (Figure 6E). Finally, we evaluated
B C

D E

F G

H

A

FIGURE 5

Evaluation of the performance of IIRS in the TCGA-BLCA patients’ immunotherapy. (A) The distribution of the TMB value in different IIR-clusters
in TCGA-BLCA patients. (B) Differences in the TMB value between high- and low-risk IIRS groups. (C) The Sankey diagram was used to visualize
the relation between IIR-clusters, IIRS-score groups, and TMB. Each column indicates a characteristic variable, different colors show different
types, and lines represent the distribution of the same sample in different characteristic variables. (D) KM curves for different groups stratified by
TMB or combining IIRS with TMB in the TCGA-BLCA cohort. (E) Differences in the expression of immune checkpoints between high- and low-
risk IIRS groups. The upper and lower ends of the boxes refer to an interquartile range of values. (F) The correlation chord chart displays the
mutual correlation among IIRS risk score, TMB, and checkpoints. (G) The differences in the clinical response (CR/PR, SD/PD) to anti–PD-1
immunotherapy in high or low IIRS-score groups in the IMvigor210 cohort. (H) The differences of the immunophenoscore (IPS) to anti–PD-1 or/
and anti–CTLA4 immunotherapy in high or low IIRS-score groups. ***P < 0.001; **P < 0.01; *P < 0.05.
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the expressions of five identified genes in human bladders. As

expected, MYC expressions in the cancer tissues were

significantly upregulated, while CD247 and TLR2 were

significantly downregulated in the adjacent normal tissues

(Figure 6F). These data indicated that IIRS genes were

differentially expressed between tumor tissues with

corresponding normal or adjacent tissues.
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Evaluating the clinical application
potential of the IIRS score

To evaluate the clinical application potential of the IIRS score,

we first collected 13 bladder tissues of BLCA patients. First, the

relative expression of five IIRS genes and the IIRS scores of 13

patients were evaluated by IHC (Supplementary Table 9).
B

C

D E

F

A

FIGURE 6

Evaluation of the expression of identified IIRS genes. (A) Representative photomicrographs of H&E staining of bladder sections between high or
low IIRS-score groups. (B) Student’s T-test of histopathological scores between high or low IIRS-score groups. (C) The representative images of
the immunohistochemical labeling of the identified genes of IIRGS on bladder tissues. Data were obtained from the human protein atlas
(https://www.proteinatlas.org/). (D, E) Differences in the levels of the 5 identified genes of IIR signature in GEO cohorts. (F) Differences in the
levels of the 5 identified genes of IIR signature in bladder cancer (CA) tissues and adjacent (ADJ) normal tissues. ***P < 0.001; **P < 0.01; ns
refer to not statistically significant.
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Intriguingly, these patients with higher T and M stages showed

increased IIRS scores (Figures 7A–C). Next, the H&E-stained

images evaluated the IIR cluster and inflammatory and immune

scores of 13 patients (Supplementary Table 10). The HE-scores

showed a nearly significant correlation with IIRS-scores

(Figure 7D, p=0.0506), indicating that IIRS-score can effectively

reflect the inflammatory/immune infiltration of bladder tissues.

Furthermore, patients in Cluster B showed the highest IIRS scores

than other subclasses (Figure 7E), which further proved that the

IIRS score is a valid substitute for IIR patterns.
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Discussion

BLCA is one of the most frequent tumors in the urinary

tract, with nearly 200,000 deaths reported worldwide annually,

which carries a considerable financial and societal debt to

countries (1, 2). Along with the growing molecular

understanding of tumors, we have realized that BLCA is a

heterogeneous disease with diverse oncogenic pathways and

unique tumor microenvironment (TME) infi ltration

characteristics (2, 25). This molecular diversity bestows the
B C

D E

A

FIGURE 7

Evaluating the clinical application potential of IIRS-score in GZhmu1.cohort. (A-C) Differences in the IIRS-score among different TNM groups. (D)
The correlation between IIRS-score and HE-score. (E) Distributions of IIRS-score among clusters. (***P< 0.001; **P< 0.01; *P< 0.05).
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poor treatment responses that oncologists often see when

treating BLCA. Despite several therapeutic advances in BLCA,

the traditional histological subtype usually fails to accurately

predict clinical response to immunotherapy and chemotherapy

(1, 5). Ever-increasing studies have revealed the critical role of

immune and inflammatory responses (IIR) in facilitating or

constraining the progression of tumors. Although several

immune or inflammatory response-related patterns of BLCA

have been identified (15–19), most of these researches seem to

ignore the indivisible relationship between immune and

inflammation. Thus, comprehensive analyses of IIR patterns in

tumor microenvironment (TME) infiltration characteristics of

BLCA remain urgently needed.

In the current study, three distinct and stable IIR subtypes

have been identified and survival analysis suggested that cluster

A and Cluster C had a favorable prognosis while cluster B had a

worse prognosis. Previous studies demonstrated that normal

controlled inflammation and immunity were correlated with

favorable prognosis, while uncontrolled inflammation and

immunity can result in disease progression (13, 26–29).

Consistent with this, Cluster A and Cluster C may cause the

normally controlled inflammation, while cluster B seems to be

related to uncontrolled inflammation. H&E-stained

histopathology images and immune scores confirmed clusters’

distinct infiltration of immune and inflammatory cells. A limited

and balanced inflammation can initiate a favorable immune

response (13, 26, 27), which is corroborated by the H&E results

in cluster A. Patients in cluster C with a favorable prognosis

showed massive infiltration of immune and inflammatory cells,

which is in agreement with the concept that highly controllable

inflammation in tumors is related to increased survival of

patients with nearly any type of cancer (5, 27). However, some

highly infiltrating cells may be retained in the stroma

surrounding tumor nests, suggesting that these cells are

ineffective in their duties as anti-tumor agents (5, 28). The

stromal status, which is defined as “loose” or “dense,” might

influence the migration of immune or inflammatory cells and

restrict them from interacting with cancer cells (29). Following

this, we observed that the high-level immune and inflammatory

cells in cluster B were nearly nonexistent in the cancer cells,

which might help explain the mismatched survival advantage of

cluster B. We first identified cluster-specific and prognosis-

related immune cells to further investigate the causes of these

differences. Cluster A-specific NK cells resting were the

prognosis-related favorable factors, while prognosis-related

risk factors consisted of Cluster B-specific Macrophages M0,

Mast cells resting, and B cells naïve. Although immature

immune cells can help the body struggle with cancer, a recent

study demonstrated that these immature cells could aid the

metastatic spread, which helps explain the Cluster B-specific

unfavorable prognosis (30, 31). Cluster C with a better prognosis

was prominently composed of various activated immune cells,

suggesting that they play a positive role in BLCA progression.
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Numerous activated function immune cells contribute to anti-

tumor immunity, as they transmigrate across the stroma into the

tumor (32).

Furthermore, we noticed that the relative abundance of 11

selected inflammatory activities differed significantly among

clusters, suggesting the critical role of IIR in the development

of BLCA. PI3K/AKT/mTOR and MAPK were activated in

clusters A and B, respectively. Other inflammatory-activities

populations were significantly more abundant in cluster C

than in the other clusters, confirming the activated

inflammatory status in cluster C. A growing number of

researches have shown that inflammation plays a vital role in

the progression of BLCA through various molecular basis and

signaling pathways (14, 33–38). Cytokines, the most pivotal

effector and messenger molecules in the immune and

inflammatory responses, mediate the interactions between

immune and non-immune cells in TME, thereby involving the

occurrence, invasion, and migration of BLCA (14, 33).

Cyclooxygenase-2 (Cox-2), a key enzyme that catalyzes the

synthesis of prostaglandins, is overexpressed in BLCA and

plays a pivotal role in inflammation-mediated stem cell

proliferation/differentiation, thus promoting the growth of

bladder tumors (34, 35). Moreover, the progression of BLCA

involves alterations in multiple inflammation-related pathways

that determine patients’ clinical characteristics and outcomes (5,

36–38). These changes were strongly associated with multiple

cellular activities, such as cell proliferation, apoptosis, cycle

progression, and angiogenesis. Overall, we observed the

heterogeneity of the TME infiltration characteristics of BLCA

among three IIR subtypes, which partially explains the distinct

clinical outcome of patients among IIR subtypes. These results

indicated that TME-associated immune and inflammatory

infiltration plays a critical part in the progression of BLCA.

Given the specificity of IIR-modified phenotypes in

individuals, we established a scoring model, IIRS, to evaluate

the IIR modification pattern of individual patients with BLCA.

Intriguingly, we noticed that patients in Cluster B showed the

highest IIRS score with the worst prognosis compared to other

subtypes, suggesting that the IIRS score was a dependable model

for the comprehensive assessment of the IIR modification

pattern and predicting the prognosis of patients. The IIRS was

constructed based on five filtered genes: FN1, TLR2, IL10, MYC,

and CD247. FN1, IL10, and MYC activation were related to the

poor prognosis, indicating a pivotal role in cancer progression.

FN1 was significantly elevated in several malignant tumors (39),

which is in accordance with our results. Evolving lines of

evidence have indicated that FN1 played a pivotal role in

tumor cell proliferation, migration, invasion, and angiogenesis

(39–41). As a crucial anti-inflammatory cytokine, IL10 has

profound immunosuppressive functions, such as supporting

immune escape and suppressing the expression of antigen-

presenting cells, MHC-class II Ags, and costimulatory

molecules on macrophages (42). Previous research has
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1008865
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chang et al. 10.3389/fimmu.2022.1008865
indicated that IL10 was reported to be upregulated in numerous

advanced cancers (43), confirmed by the present work. MYC

activation has been reported to regulate the expression of several

immune checkpoints, inactivate macrophages and DCs, and

limit NK and T cells (44, 45). The inactivation of MYC

triggers tumor regression through the loss of hallmark features

of cancer (45). The upregulation of TLR2 and CD247 in current

work was significantly associated with the superior prognosis,

suggesting that TLR2 and CD247 activation may be essential for

anti-tumor immunity. In agreement with our concept, TLR2 was

reported to initiate the innate and sustained adaptive immune

responses in cancer (46, 47). Moreover, the downregulation of

CD247 in T cells was associated with immunosuppression due to

chronic inflammation (11). Taken together, previous research

and our results indicated that the IIRS genes might act as

potential biomarkers and therapeutic targets for BLCA.

In the last decade, the accumulated interest in immunotherapy

and chemotherapy, coupled with a growing understanding of the

pathogenesis of BLCA, has dramatically enriched the therapeutic

choices against BLCA (1, 3). Accumulating evidence has revealed

that TMB can enable oncologists to identify patients who are likely to

benefit from immunotherapy (24), which is in line with our finding

that high TMB has a significant correlation with favorable prognosis.

Additionally, checkpoint blockades significantly impact cancer

immunotherapy (48). Preliminary pathway annotation analysis

indicated that mutated DEIIRGs were significantly associated with

the PD-L1 expression and PD-1 checkpoint pathway in cancer. It

was also found that the vast majority of checkpoint molecules were

negatively correlated to IIRS-score, indicating that IIRS may play a

pivotal role in immunotherapeutic response prediction. With the

IMvigor210 cohort and TCIA database, IIRS was further verified to

be efficient in predicting the response to immunotherapy.

Considering that traditional cisplatin-based chemotherapy still

plays a non-negligible role in the personalized medicine era (3),

we assessed the IC50 of potential drugs against BLCA. Patients with

low IIRS-score were more sensitive to most potential drugs than the

high IIRS-score group, suggesting that the low IIRS-score group was

more likely to benefit from chemotherapy. Although our analyses

provided different therapeutic options for high and low IIRS-score

groups, the efficacy andmechanism of these drugs against BLCA still

require further demonstration.

The present work is the first to establish the immune and

inflammatory phenotype-related prognosis, immunotherapy,

and chemotherapy signature for BLCA. Intriguingly, we

observed that IIRS could even predict the prognosis of BLCA

patients with different subclasses stratified by clinical traits.

Moreover, they may effectively improve the prediction of

prognosis when compared to conventional staging. To our

knowledge, the five-gene prognostic signature described herein

has not been reported previously. The current study has certain

limitations that deserve mention. On the one hand, this work

was a retrospective design with heterogeneity due to

comparisons between patients from cross-platform data. A
Frontiers in Immunology 14
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comprehensive prospective study is even more necessary to

affirm the complete prediction ability of the IIRS. On the other

hand, potential driver molecules in our research require further

functional validation, and their detailed molecular mechanisms

in the pathogenesis of BLCA need further elucidation.
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SUPPLEMENTARY FIGURE 1

Collection of Inflammation-Immunity-related genes. (A) Screening out

the Inflammation-related union genes using six gene sets. (B) The
“Immune Cell-Target” network. (C) Identification of Inflammation-

related core genes. (D) Identification of Immune-related core genes
after screening. (E) The Venn diagram of drug-disease crossover genes.

SUPPLEMENTARY FIGURE 2

Validation of three IIR patterns in two GEO cohorts. (A, B) Hierarchical
clustering of IIRGs in GEO cohorts and the KM curves of OS for three IIRGs
modification patterns.

SUPPLEMENTARY FIGURE 3

Comparison of composition and immune cells infiltration of TME among

three subtypes in TCGA-BLCA cohort. (A-C) Comparison of the
composition of TME (immune score, stromal score, and tumor purity)
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among three subgroups. (D) Comparison of inflammation score among
three subgroups. (I)Differences in the abundances of the 22 immune cells

infiltration in IIRGs subtypes.

SUPPLEMENTARY FIGURE 4

(A-G) KM curves were applied to estimate overall survival for the high- and

low-level groups of differentially expressed immune cells. (H)The
interaction of prognosis-related differentially expressed IIRGs. (I) The
AUC values were applied to compare models’ differences in predicting

1-, 3-, and 5-year OS.

SUPPLEMENTARY FIGURE 5

Tumor mutation analysis of DEIIRGs in TCGA-BLCA cohort. (A) The

mutation profile of DEIIRGs in TCGA-BLCA patients. (B) A visual

summary of these mutated genes is displayed as a tag cloud, where
more frequent genes are displayed using a larger font size. (C) Enrichment

analysis of KEGG signal pathway of the mutated DEIIRGs with mutation
frequencies higher than 1%. (D) Lollipop plot displaying mutation

distribution and protein domains for identified genes in cancer with the
labeled recurrent hotspots.

SUPPLEMENTARY FIGURE 6

Evaluation of the performance of IIRS in different clinical subgroups of

TCGA-BLCA patients. (A-E) The KM curves of IIRS in BLCA patients with
different ages, gender, stage, T, and N.

SUPPLEMENTARY FIGURE 7

Chemotherapeutic responses of high- and low-risk TCGA-BLCA patients.

(A, B) The box plots of the estimated IC50 for selected drugs.
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Skin melanoma cells are tightly interconnected with their tumor

microenvironment (TME), which influences their initiation, progression, and

sensitivity/resistance to therapeutic interventions. An immune-active TME

favors patient response to immune checkpoint inhibition (ICI), but not all

patients respond to therapy. Here, we assessed differential gene expression

in primary and metastatic tumors from the TCGA-SKCM dataset, compared to

normal skin samples from the GTEx project and validated key findings across 4

independent GEO datasets, as well as using immunohistochemistry in

independent patient cohorts. We focused our attention on examining the

expression of various immune receptors, immune-cell fractions, immune-

related signatures and mutational signatures across cutaneous melanomas

with diverse tumor mutation burdens (TMB). Globally, the expression of most

immunoreceptors correlated with patient survival, but did not differ between

TMBhigh and TMBlow tumors. Melanomas were enriched in “naive T-cell”,

“effector memory T-cell”, “exhausted T-cell”, “resting Treg T-cell” and “Th1-

like” signatures, irrespective of their BRAF, NF1 or RAS mutational status.

Somatic mutations in IDO1 and HLA-DRA were frequent and could be

involved in hindering patient response to ICI therapies. We finally analyzed

transcriptome profiles of ICI-treated patients and associated their response

with high levels of IFNg, Merck18, CD274, CD8, and low levels of myeloid-

derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs) and M2

macrophages, irrespective of their TMB status. Overall, our findings highlight

the importance of pre-existing T-cell immunity in ICI therapeutic outcomes in

skin melanoma and suggest that TMBlow patients could also benefit from

such therapies.

KEYWORDS

skin melanoma, tumor mutation burden (TMB), immune signatures, immune
checkpoint inhibition therapy, patient response, tumor-infiltrating lymphocytes,
tumor microenvironment
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Introduction

Cutaneous melanomas are among the most immunogenic

cancers (1), with an increasing incidence rate worldwide

(2). They have an increased mutation rate as a result of

exposure to UV radiation (2, 3) and are very heterogenous

with different mutational subtypes, being mainly sorted

according to the mutational status of BRAF, NRAS and NF1

(4–6). Additionally, skin melanomas can be classified across five

main immune subtypes; wound healing, IFN-g dominant,

inflammatory, lymphocyte depleted and TGF-b dominant;

whereas very few of them are immunologically quiet (7).

The tumor microenvironment (TME) is the ecosystem

surrounding a tumor and includes the extracellular matrix,

blood vessels and stromal cells. It also encompasses a diverse

number of immune cells, such as dendritic cells (DCs),

neutrophils, natural killer (NK) cells, T-cells and B-cells, as

well as immunosuppressors, including myeloid-derived

suppressor cells (MDSCs), regulatory T (Treg) cells, tumor-

associated macrophages (TAMs) or cancer-associated

fibroblasts (CAFs). All these, constitute an ecosystem where

they interact with the tumor cells bidirectionally, modulating the

malignant phenotype (8). An immune-active TME has been

shown to favor clinical response to immune checkpoint

inhibition (ICI) therapies with anti-CTLA-4 and anti-PD-1

mAbs (9–11). The absence of tumor-infiltrating lymphocytes

(TILs) in the TME on the other hand, predicts sentinel lymph

node metastasis and survival (12). Combination immunotherapy

or dual ICI (anti-PD-1 plus anti-CTLA-4) has recently shown

impressive response rates in metastatic patients. However, half

of them had significant toxicity from the treatment regimen

(13, 14).

The tumor’s relationship with immune cells within the TME

can remarkably influence cancer cell proliferation, progression,

and metastasis (15). This unique immunogenicity renders skin

melanoma as a paradigm for tumor-immune interactions and is

driven by a high mutational burden (TMB), which can increase

the tumor’s probability to generate immunogenic neoantigens,

making it easier for the immune system to recognize cancer cells

and elicit effective immune responses against them (16–18).

Patients with high TMB are also likely to be more responsive to

immunotherapy (19, 20). However, despite the promising

therapeutic outcome that most ICI therapies provide to

metastatic patients, most of them will not respond, exhibiting

early (primary) or late (adaptive) resistance and relapse (21).

Here, we delved into the expression of a group of activating

and inhibitory immune receptors in the TME of skin melanoma

patients with diverse TMB. We also examined immune-related

signatures, fractions of immune-cells and mutational signatures

across tumors with a low or high TMB. Our results indicate that

elevated expression levels of TIGIT, IDO1 and LAG3, other than

PD-1, PD-L1/2 and CTLA-4, associate with the patients’ overall
Frontiers in Immunology 02
89
and disease-free survival, but not with the TMB, corroborating

that immunogenicity in these tumors is affected by other factors

as well. In addition, we found that skin melanomas are

significantly enriched in the “naive T-cell”, “effector memory

T-cell”, “exhausted T-cell”, “resting Treg T-cell” and “Th1-like”

signatures, irrespective of their BRAF, NF1 and RAS mutational

status. We also show that despite the similar immune-cell

fractions between TMBhigh and TMBlow tumors, the first have

a higher ratio of M1/M2 macrophages. Our data further support

that somatic mutations in IDO1 and HLA-DRA are frequent and

could be involved in hindering patient response to ICI therapies.

We finally provide evidence that TMB alone is not the best

predictor of immunotherapy response and therefore, anti-PD-1/

anti-CTLA-4 monotherapy or combination ICI therapy could

also be applied to TMBlow patients.
Materials and methods

NGS data extraction and analysis

We extracted whole exome and RNA-seq data from the

TCGA-SKCM dataset, containing 461 primary and metastatic

skin melanoma samples, in total. All data, including patient

clinicopathological information and MAF files, were assessed

from GDC Data Portal (https://portal.gdc.cancer.gov/). Apart

from one matched blood sample from the TCGA cohort that was

used as control, we included normal skin samples from the

GTEx project (https://gtexportal.org/) for differential gene

expression analysis, totaling to 557 controls. TCGA and GTEx

samples were re-aligned to the hg38 genome and were processed

using a uniform bioinformatic pipeline, to eliminate

batch effects.

Differential gene expression was identified between skin

melanoma and matched TCGA normal and GTEx normal

skin data, using limma with cut-off |log2FC>2| for

upregulation and |log2FC<1| for downregulation, along with

adjusted p<0.05. The B-statistic was used to sort the

differentially expressed genes. We then performed Gene

Ontology (GO) enrichment analysis for the top 250 up- and

down-regulated genes in primary (or metastatic) skin

melanomas, respectively, using Enrichment Analysis

Visualization Appyter. Similar gene sets from GO analysis

were c lus tered toge ther us ing Uni form Mani fo ld

Approximation and Projection (UMAP) (22) and the

significantly enriched (adjusted p<0.05) GO terms for

biological processes (GO-BP), molecular function (GO-MF)

and cellular component (GO-CC) were highlighted.

We focused on the expression of some well-known immune

checkpoints, including PD-1, PD-L1/2, CTLA-4, TIGIT, IDO1/2

and other prospective immunoreceptors (LAG3, VTCN1,

VISTA, ILT2 and ILT4). To calculate each gene’s expression,
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we used one-way ANOVA, and the disease state (skin melanoma

or matched TCGA normal and GTEx normal skin samples) as

variable to calculate differential expression. The expression data

were first log2(TPM+1) transformed for differential analysis and

the |log2FC| was defined as median (skin melanoma) - median

(matched TCGA normal and GTEx samples), as explained

before (23, 24).
Validation of deregulated genes using
independent GEO datasets

Four independent studies from the Gene Expression

Omnibus (GEO) repository were analyzed for subsequent

validation of the top deregulated genes in primary (or

metastatic) melanomas against their adjacent normal skin

samples, or between primary and metastatic melanomas,

depending on the study. In specific, we obtained microarray

data from the studies with the following GEO accession

numbers: GSE8401, containing 31 primary and 52 metastatic

melanomas (25, 26); GSE7553, 2 in-situmelanomas, 14 primary,

40 metastatic melanomas and 4 normal skin samples (27);

GSE46517, 31 primary, 73 metastatic melanomas and 7

normal skin samples (28); and GSE15605, composed of 46

primary and 12 metastatic melanomas, as well as 16 normal

skin samples. Data were analyzed using limma with vooma

transformation in R (29). P-values were adjusted using

Benjamini & Hochberg (FDR) and the significance threshold

was set at p<0.05. The top 250 differentially expressed genes

(ranked by p-value) were obtained either between primary and

metastatic melanomas, or between each of those and their

corresponding normal skin samples. UMAP, boxplots, and

expression density plots were retrieved to assess normalization

status and sample groupings. Volcano plots and mean difference

(MD) plots were used to visualize differentially expressed genes.

Adjusted p-value histograms were generated using hist to view

the distribution of the p-values in the analysis results. Moderated

t-statistic quantile-quantile (q-q) plots were used to check the

variation in the data.
Immune-related gene signatures

We compared immune-related gene signatures between

cutaneous melanoma and control samples (matched TCGA

and GTEx normal data), as well as between BRAF hotspot

mutants (BRAFmut, n=147), NF1 mutants (NF1mut, n=27),

RAS hotspot mutants (RASmut, n=91) and triple-wild type

(TripleWT, n=47) tumors, using GEPIA2 (30). The signatures

were specific for naive T-cells (CCR7, LEF1, TCF7 and SELL);

effector T-cells (CX3CR1, FGFBP2 and FCGR3A); effector

memory T-cells (PDCD1, DUSP4, GZMK, GZMA and IFNG);

central memory T-cells (CCR7, SELL and IL7R); resident
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memory T-cells (CD69, ITGAE, CXCR6 and MYADM);

exhausted T-cells (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13

and LAYN); resting Tregs (FOXP3, IL2RA); effector Tregs

(FOXP3, CTLA-4, CCR8 and TNFRSF9); and Th1-like cells

(CXCL13, HAVCR2, IFNG, CXCR3, BHLHE40 and CD4). The

|log2FC>1| and p<0.01 (ANOVA) were used to assess differences

with statistical significance between groups. Principal

component analysis (PCA) was used to automatically perform

dimensionality reduction on data from the TCGA-SKCM

dataset and normal suprapubic skin (not exposed to the sun),

based on the expression of these signatures in the samples. The

expression of specific immune-checkpoints was also explored

individually across the different molecular or immune subtypes

(C1, wound healing; C2, IFN-gamma dominant; C3,

inflammatory; C4, lymphocyte depleted; C5, immunologically

quiet; C6, TGF-b dominant) (7).
Commutation analysis and comparison
of immunostimulators and
immunoinhibitors between TMBhigh

and TMBlow tumors

We used iCoMut Beta 0.21 for FireBrowse to categorize skin

melanomas into three TMB subgroups, based on the mutational

distribution quartiles. The lower quartile contained tumors with

a lowmutation rate, i.e., <7.4 synonymous and non-synonymous

(total) mutations/Mb or <5.14 non-synonymous mutations/MB

(also termed as “TMBlow”). The upper quartile involved tumors

with an increased rate of mutation, i.e., >30 total mutations/Mb

or >20 non-synonymous mutations/MB (“TMBhigh”). Among

the TMBhigh subgroup, 18 tumors with >81 total mutations/Mb

were considered as “extremely hypermutated”. The rest 50% of

samples was termed “TMB-intermediate” (TMBint, >7.42 & <30

total mut/Mb). Tumor stratification based on their TMB

(synonymous and non-synonymous mutations) was also

reflected on their neoantigen burden, being significantly higher

among TMBhigh tumors (68,263 neoantigens, 734.5 ± 695.7;

median ± SD) versus TMBint (34,473 neoantigens, 211 ± 151.2)

and TMBlow tumors (4,929 neoantigens 57 ± 52.3). Maftools (31)

was also used to compare oncoplots between TMBhigh and

TMBlow tumors.

The mutation rate was then correlated with the expression of

either activating or inhibitory immune receptors within each

TMB subgroup. In specific, we compared the expression of 49

immunostimulators (BTNL2, C10orf54, CD27, CD274, CD276,

CD28, CD40, CD40LG, CD48, CD70, CD80, CD86, CXCL12,

CXCR4, ENTPD1, HHLA2, ICOS, ICOSLG, IL2RA, IL6, IL6R,

KLRC1, KLRK1, LTA, MICA, MICB, NT5E, PDCD1LG2, PVR,

RAET1E, TMEM173, TMIGD2, TNFRSF13B, TNFRSF13C,

TNFRSF14, TNFRSF17, TNFRSF18, TNFRSF25, TNFRSF4,

TNFRSF8, TNFRSF9, TNFSF13, TNFSF13B, TNFSF14,

TNFSF15, TNFSF18, TNFSF4, TNFSF9 and ULBP1) and 23
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immunoinhibitors (ADORA2A, BTLA, CD160, CD244, CD96,

CSF1R, CTLA4, HAVCR2, IDO1, IL10, IL10RB, KDR, KIR2DL1,

KIR2DL2, KIR2DL3, LAG3, LGALS9, PDCD1, PVRL2, TGFB1,

TGFBR1, TIGIT and VTCN1) across TMBhigh, TMBint and

TMBlow melanoma tumors.
Mutational signatures and cancer
driver genes

We extracted and analyzed single base substitutions (SBS)

and doublet base substitutions (DBS) using SigProfiler’s

MatrixGenerator and Extractor, as previously described in

detail (32, 33). SBS signatures were identified using 96

different contexts, considering also the bases 5’ and 3’ from the

mutated base. DBS signatures were generated after the

concurrent modification of two consecutive nucleotide bases

(34). The extracted mutational signatures were then compared

against the ones found in COSMIC v3.2 (https://cancer.sanger.

ac.uk/signatures/). Each signature’s contribution was calculated

separately for primary and metastatic skin melanomas. Cancer

driver mutations were identified using IntOGen (35).
Cell-type fractions

We analyzed each tumor’s cell type fraction by extracting

data from the Cancer Immunome Database (TCIA) (36). The

absolute values and the quanTIseq computational pipeline were

used to quantify tumoral immune contexture (37), focusing on B

cells, M1/M2 macrophages, neutrophils, monocytes, NK cells,

non-regulatory CD4+ and CD8+ T cells, regulatory CD4+ T

cells (Tregs) and dendritic cells.
Immunohistochemistry and evaluation of
TIL load

An independent cohort of 11 skin melanoma samples from

the Human Protein Atlas (https://www.proteinatlas.org/) (38)

and tissue microarrays (TMAs), containing 40 cases of

malignant melanoma, plus 30 adjacent normal skin tissue and

10 skin tissue (ME803b, US Biomax, Inc.) were used to validate

protein expression using IHC and evaluate the TIL load with

hematoxylin and eosin (H&E) staining. In brief, FFPE sections

(4mm) were heated at 50°C overnight. Then, they were

deparaffinized in xylene and rehydrated in graded ethanol to

distilled water. During hydration, a 5 min blocking for

endogenous peroxidase was done in 0.3% H2O2 in 95%

ethanol. Prior to immunostaining, the sections were immersed

in 10mM citrate buffer (pH 6.0), rinsed in Tris-buffered saline

(TBS) and subjected to heat-induced epitope retrieval (HIER)

using a pressure boiler. Sections were then incubated overnight
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at 4°C with mouse monoclonal antibodies (mAbs) against IDO1

(1:150, Sigma-Aldrich Cat# HPA023149, RRID : AB_1846221),

PD-1 (1:250, Sigma-Aldrich Cat# HPA035981, RRID :

AB_10669664), PD-L1, a marker specific for T-cells, B-cells

and tumor cells (1:50 dilution, clone 22C3, Dako, CA), LAG3

(1:15, Sigma-Aldrich), the cytotoxic T-cell markers CD8A The

image used in Figures 1-3 has part labels; however, the

description is missing in the caption. Could you clarify this?

Provide revised files if necessary.and CD8B (CDA, 1:400

dilution, clone C8/144B, Dako, CA; CD8, 1:100, Sigma-Aldrich

Cat# HPA029164), and the Treg-specific marker FOXP3 (1:200

dilution, clone 236A/E7, ThermoFischer Scientific). The

UltraVision LP HRP polymer®, Ultra V Block and DAB

quanto substrate system® (Thermo scientific, CA) were used

for detection. Finally, slides were rinsed in tap water,

counterstained with hematoxylin, dehydrated in grade ethanol

and coverslipped. Slides were then independently assessed by

two observers. Sections of hyper-reactive tonsils were used as

positive controls for anti-PD-L1 and anti-CD8 staining

and preimmune rabbit serum as a negative control for

nonspecific staining. Protein staining was scored as 2+ (high

(>75% positive cells) or medium (50-75% positive cells)

staining), l+ (low staining, 5-25% positive cells) and 0

(staining not detected or <5% positive cells) with strong,

medium, weak or negative intensity. The percentage (%) of

TILs (200x magnification) in the was also scored. Slide

scanning was performed on a VENTANA iScan HT slide

scanner v1.1.1 (Roche).
Somatic mutations in the IFN-g gene
expression signature and immune
checkpoint genes

We evaluated gene expression along with the detection of

SNVs and Indels across an IFN-g-related signature, composed of

IDO1, CXCL10, CXCL9, HLA-DRA, STAT1 and IFNG (39). We

also assessed somatic mutations in the IFN-g pathway genes

IFNGR1/2, JAK1/2 and IRF1, as well as across BRAF, NRAS,

NF1, PTEN and B2M in the TCGA-SKCM dataset. The analysis

of somatic mutations was performed using MuTect2 Variant

Aggregation and Masking (v.4.1) and gene expression was

measured in log2(FPKM-UQ+1) values using the UCSC Xena

platform (40). MuPIT Interactive (http://mupit.icm.jhu.edu/)

was used to map the SNVs on the crystal structure of each

protein, in 3D (hg38).
Detection of immunophenoscores

We calculated IPS scores in TMBhigh and TMBlow tumors (ranging

from 0-10) based on the expression of immunomodulators, effector

T-cells, effector memory T-cells and immunosuppressors. Their
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immunophenotypes were visualized using immunophenograms, as

previously described (41, 42).
Patient response to immunotherapy

Tumor Immune Dysfunction and Exclusion (TIDE, http://

tide.dfci.harvard.edu/) (43, 44) was used to predict patient

response to anti-PD1 or combined anti-PD-1 and anti-CTLA-

4 therapy across seven independent skin melanoma datasets

(Van Allen et al., 2015 (45), Hugo et al., 2016 (GSE78220) (41),

Nathanson et al., 2017 (46), Prat et al., 2017 (GSE93157) (47),

Lauss et al., 2017 (GSE100797) (48), Riaz et al., 2017 (GSE91061)

(49) and Gide TN, et al., 2019 [PRJEB23709) (50)]. Pre-

treatment melanoma tumor expression profiles of patients

(log2(TPM+1) values) were downloaded and normalized

towards the control samples. Each gene was normalized by

subtracting the expression value in the reference control

samples. Higher TIDE values indicate that the patient has

higher potentials of tumor immune evasion and is, therefore,

less likely to benefit from the corresponding immune-

checkpoint blockade. The IFNG values indicate the IFNg
response biomarkers of IFNg, ACAT1, IDO1, CXCL10, CXCL9
and HLA-DRA. From the analysis we also deduced the

expression of CD274 (PD-L1), the average expression from

CD8A and CD8B genes, the levels of cytotoxic T-lymphocytes,

each patient’s dysfunction of the tumor, exclusion potential of

the tumor, as well as the Pearson’s correlation between gene

expression and MDSCs, CAFs and M1/M2 TAMs.
Statistical analysis

Differences in gene expression between high and low

activating (or inhibitory) immune receptor-expressing tumors

or between TMBhigh and TMBlow tumors, were assessed using

the nonparametric Mann-Whitney test. Gene expression (log2
(TPM+1) values were profiled using violin plots across different

pathological stages of the tumors. Multivariate analysis of

variance (MANOVA) with the F statistic was used to estimate

differences across the different stages. We used Kaplan-Meier

curves to plot overall and disease-free survival in patients with

high or low expression of immune checkpoints or different

multi-gene signatures, using the median expression as cut-off.

The log-rank test with HR and 95% CI was used for analysis.

Adjusted p-values <0.05 were considered statistically significant.

Correlations between each patient’s TIL or TMB load and the

expression of immune receptors were assessed using Pearson’s

test. All statistical analyses were performed using GraphPad

Prism v9.0.0.121. Clusters of similar GO terms were computed

using the Leiden algorithm (51) and points were plotted on the

first two UMAP dimensions using BokehJS 2.3.2.
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Results

Deregulated genes and functional
analysis in skin melanoma

We initially detected the significantly deregulated genes,

having a broad distribution across all chromosomes, in

primary and metastatic skin melanoma (Table S1), and

focused on the top 250 up-/down-regulated genes within each

subgroup. The upregulated genes in primary melanomas were

enriched in regulation of immune response; cytokine-mediated

signaling pathway; antigen receptor-mediated signaling

pathway; cellular response to interferon-gamma; regulation of

T cell proliferation; regulation of T cell activation; T cell receptor

signaling pathway; positive regulation of lymphocyte

proliferation; positive regulation of T cell activation; and

cellular response to cytokine stimulus (GO-BP), in MHC class

II receptor activity; MHC class II protein complex binding;

CXCR3 chemokine receptor binding; chemokine activity; and

cytokine receptor activity (GO-MF), as well as in MHC class II

protein complex; T cell receptor complex; lumenal side of

endoplasmic reticulum membrane; and integral component of

lumenal side of endoplasmic reticulum membrane, among other

GO-CC terms (Table S2 and Figure S1).

On the other hand, the top 250 down-regulated genes were

enriched in regulation of extrinsic apoptotic signaling pathway;

positive regulation of protein localization to cell periphery;

maintenance of protein location in nucleus; response to

cytokine; positive regulation of protein localization to plasma

membrane; regulation of protein localization to plasma

membrane; ribosome biogenesis; and positive regulation of

NF-kappaB transcription factor activity, among other GO-BP

terms. They were also enriched in cytoskeleton-nuclear

membrane anchor activity; chloride channel inhibitor activity;

nucleoside-diphosphatase activity; chloride channel regulator

activity, among other GO-MF terms, as well as in (cytosolic)

large ribosomal subunit; melanosome membrane; and

chitosome; pigment granule membrane, among other GO-CC

terms (Table S3 and Figure S2).

Among metastatic melanomas, the upregulated genes were

enriched in regulation of immune response; cytokine-mediated

signaling pathway; antigen receptor-mediated signaling

pathway; cellular response to interferon-gamma; regulation of

T cell proliferation; regulation of T cell activation; and T cell

receptor signaling pathway, among other GO-MF terms. Similar

to primary tumors, they were also enriched in MHC class II

receptor activity; MHC class II protein complex binding; MHC

protein binding; CXCR3 chemokine receptor binding;

chemokine activity; and cytokine receptor activity, among

other GO-MF terms, as well as in MHC protein complex;

MHC class II protein complex; T cell receptor complex;

lumenal side of endoplasmic reticulum membrane; and
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integral component of lumenal side of endoplasmic reticulum

membrane, among other GO-CC terms (Table S4 and

Figure S3).

Finally, the top 250 down-regulated genes in metastatic

melanomas were enriched in the same GO terms as in the

primary tumors (Table S5 and Figure S4). Key findings were also

validated across four independent GEO datasets (GSE8401,

GSE7553, GSE46517 and GSE46517). The top 250 deregulated

genes in each dataset were mainly enriched in the GO-BP terms

epidermis & skin development, keratinocyte & epidermal cell

differentiation, among others.
High expression of immune-checkpoints
associates with the TIL load and can
be used as a prognostic marker
in melanoma

Focusing on immune checkpoints, we found higher

expression for PD-1, PD-L1, CTLA-4, IDO1, LAG3, HAVCR2,

TIGIT and ILT4, as well as for CD8 in skin melanomas against

the normal samples, reflecting the immunosuppressive TME in

these tumors. On the other hand, VISTA and VTCN1 were
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downregulated in skin melanoma, whereas, IDO2, PD-L2 and

ADORA2A did not differ between melanomas and normal

samples (Figure 1). Interestingly, the expression of CD8 and

the given immunoreceptors, did not differ stage-wise (Figure S5).

In addition, skin melanoma patients expressing highly CD8,

PDCD1, CD274, PDCD1LG2, CTLA-4, C10orf54 (VISTA),

LAG3, HAVCR2, TIGIT, ILT2, ILT4, ADORA2A, IDO1 and

IDO2 had better overall survival versus low-expressing

patients. What’s more, patients with higher levels of CD8,

VISTA, PD-L2, LAG3, ADORA2A, IDO1, IDO2 and ILT2 had

markedly improved disease-free survival, suggesting that their

expression can be used as a prognostic marker, with high levels

being favorable in melanoma (Figure S6).

The TIL load is a predictive biomarker for patient response

to anti-PD1/PD-L1 immunotherapy (52). We hypothesized that

TILs associate with the expression of further immune

checkpoints in the TME. To verify this assumption, we

conducted Pearson’s correlation test with the expression of 11

immune receptors and found that, similar to other cancers (53,

54), the TIL load significantly correlates with TIGIT (r=0.503,

p=0.05), IDO1 (r=0.545, p=0.037), LAG3 (r=0.589, p=0.023) and

ADORA2A (r=0.589, p=0.037) in skin melanomas, irrespective

of their mutation rate.
FIGURE 1

The expression of CD8, PD-1, CTLA-4, IDO1, LAG3, HAVCR2, TIGIT, ILT2 and ILT4 was significantly higher in skin melanomas; whereas,
C10orf54 (VISTA) and VTCN1, were expressed at markedly lower levels in the tumor samples compared to normal skin samples. Red asterisks (*)
denote significant differences (|log2FC>1| and p<0.01) between skin melanomas from the TCGA-SKCM dataset and matched normal samples
from TCGA and GTEx. One-way ANOVA, using disease state (skin melanoma or normal sample) was used to calculate differential expression.
The expression data were first log2(TPM+1) transformed for differential analysis and the log2FC was defined as median (skin melanoma) - median
(normal skin).
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Furthermore, CD274 (PD-L1) expression correlated

significantly with the rest immune checkpoints (apart from

VTCN1) in skin melanoma compared to normal skin (not

exposed to the sun), especially with PD-L2, ILT2, HAVCR2

and TIGIT (Figure S7A). This finding supports previous

evidence that immune response is driven by different

immunosuppressive mechanisms within the TME in skin

melanoma, which could be tackled using combination

immunotherapies, especially in metastatic patients (55, 56).

Adding to that, CD8A expression correlated significantly with

CD274, PDCD1, PDCD1LG2, IDO1, LAG3, ILT2, HAVCR2,

TIGIT, ADORA2A and ILT4 expression in the tumor

compared to unexposed normal skin, reiterating that CD8

expression is of paramount significance for a successful

response to ICI therapies (57, 58) (Figure S7B).
Immune-signatures are activated in skin
melanomas irrespective of their
molecular subtype

Recent evidence shows that immune signatures are

associated with disease prognosis. We thus, investigated 9

immune-related gene signatures in skin melanoma against the

normal counterparts, and found a significant enrichment in the

“naive T-cell”, “effector memory T-cell”, “exhausted T-cell”,

“resting Treg T-cell” and “Th1-like” gene signatures. Naïve T

cells are precursors for effector and memory T cell subsets (59).

Exhausted T cells are dysfunctional and arise during chronic

infection and cancer. Their state is defined by poor effector

function, sustained expression of inhibitory receptors and a

transcriptional state distinct from that of functional effector or

memory T cells (60). Resting Treg cells differentiate as activated

Tregs after the antigen exposition (61), whereas, Th1-like cells

play a role on inflammatory and autoimmune disorders (62).

On the other hand, the “effector T-cell”, “resident memory

T-cell”, “central memory T-cell” and “effector Treg T-cell”

signatures did not differ significantly between melanoma and

normal samples, despite being higher in the former. Effector T-

cells steer the immune responses to execute immune functions.

While they were initially found to promote immunity, recent

studies unraveled negative regulatory functions of effector T-

cells in modulating adaptive, but also innate immunity (63).

Resident memory T-cells are critical for maintaining antitumor

immunity (63), whereas central memory T-cells mediate a faster,

stronger, and more effective response to secondary challenge

from a pathogen, compared to naive T-cells. As for Treg cells,

they are quite heterogeneous with distinct phenotypical and

functional subsets. Naïve-like thymus-derived Tregs, once

stimulated, can differentiate into effector Tregs and migrate to

peripheral tissues to control immune homeostasis (64).

Interestingly, none of the above immune signatures differed

between BRAFmut, NF1mut, RASmut and TripleWT tumors
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(Figure S8). In addition, PCA analysis for the “effector

memory T-cell” and “naïve T-cell” signatures discriminated

best skin melanomas from the non-sun-exposed (suprapubic)

normal skin (Figure 2). Collectively, these findings strongly

suggest the activation of several immune-related gene

signatures in skin melanoma, irrespective of its molecular

subtype, reflecting their link with the disease prognosis.
Mutational signatures causing high TMB
associate with UV light exposure and
ageing in melanoma

Skin melanoma patient stratification based on their

mutation rate revealed that tumors with >30 mutations/Mb

had a different mutational signature profile from those

having <7.42 mutations/Mb. The former group was mainly

characterized of (C/T)p*Cp(C/G)>T and (C/T)p*Cp(A/G)>T

mutations, whereas the latter, of transversions, A>G and (A/

G)p*C>T mutations (Figure 3). We further analyzed the single-

base substitution (SBS) profiles and decomposed each signature

to its components and the different percentages of contribution

for each of these. As expected, we found that (both primary

and metastatic) melanomas were mainly characterized of

signatures SBS7a/b (exposure to UV light), SBS1 (spontaneous

deamination of 5-methylcytosine; clock-like), SBS5 (clock-like)

and SBS10b (POLE/POLD1 mutations). Interestingly, we

found a primary tumor to associate with SBS4 (tobacco

smoking) and a metastatic tumor to associate with SBS17b.

The latter signature is of unkown aetiology, but previous studies

have associated it with 5FU chemotherapy treatment and to

damage inflicted by reactive oxygen species (65). As expected,

we found ~3.6-times higher number of SBSs among metastatic

tumors compared to primary ones (121,175 vs 33,796 SBSs).

The mutational signatures exhibiting the highest contribution in

primary tumors, were SBS7b (17,220 mutations; 51.9%)

SBS7a (13,873 mutations; 41.8%), SBS1 (1,408 mutations;

4.2%) and SBS5 (640 mutations; 1.9%), followed by a small

contribution in SBS4 (46 mutations; 0.1%), SBS17b (603

mutations; 0.5%) and SBS7d (6 mutations; 0%). Metastatic

tumors on the other hand, were enriched in SBS7b (60,043

mutations; 49.5%) SBS7a (50,904 mutations; 42%), SBS1 (4,124

mutations; 3.4%) and SBS10b (3,823 mutations; 3.2%), followed

by a small contribution in SBS5 (1,321 mutations; 1.1%), SBS17b

(603 mutations; 0.5%) and SBS17a (357 mutations; 0.3%)

(Figures 4A–C). Most of these SBSs were previously reported

in skin melanoma and their mutational processes are known to

cause a high TMB and hypermutation (32, 42, 66–69). As

regards POLE/POLD1 mutated tumors (SBS10b), they have

been shown to have a higher number of neoantigens and

infiltrating lymphocytes (70).

We also found a substantial variation in the number of

doublet base substitutions (DBS) (range, 0-79 DBSs/sample in
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primary tumors ; 0-206 DBSs/sample in metastat ic

tumors). Among these, we identified a high percentage of

DBS1 and ID13, both due to exposure to UV light. DBS1 is

mainly composed of CC>TT on the untranscribed strands of

genes indicative of damage to cytosine and repair by

transcription-coupled nucleotide excision repair (TC-NER),
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and it associates with SBS7a/SBS7b (71, 72). ID13 is

p r edom inan t l y c ompo s ed o f T d e l e t i on s a t TT

dinucleotides, exhibits large numbers of mutations and is

also associated with DBS1 (34) (Figure 4D). These data

reiterate the strong link between UV light exposure with

melanoma and ageing.
A

B

FIGURE 2

(A) Immune-related signatures being upregulated in skin melanomas. The “naïve T-cell”, “effector memory T-cell”, “exhausted T-cell”, “resting
Treg T-cell” and “Th1-like” signatures discriminated best skin melanomas (TCGA-SKCM) from the non-sun-exposed (suprapubic) normal skin
(GTEx). Asterisks (*) denote significant differences |Log2FC|>1 and p-value<0.01. (B) PCA dimensionality reduction on skin melanoma samples
and normal skin tissue not exposed to the sun, based on the expression of each signature.
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B

FIGURE 3

(A) Skin melanomas were stratified into upper and lower quartiles. The upper quartile includes TMBhigh tumors (>30 total mutations/Mb), among
which some were extremely hypermutated (>81 total mutations/Mb); whereas the lower quartile contains TMBlow tumors (<7.4 total mutations/
Mb). Tumors in-between were classified as TMB intermediate (TMBint). The scatterplots in the upper part show the total number of mutations
(TMB), non-synonymous and synonymous mutations, as well as cancer neoantigens per TMB subgroup. Melanoma samples overexpressing
CD274 (PD-L1) (>2.44 log2(TPM+1)) and CTLA4 (>3.089 log2(TPM+1)) are highlighted in red and purple color, respectively. Samples
overexpressing both CD274 and CTLA4 are colored in light purple. Asterisks (***) denote statistically significant differences in the TMB, non-
synonymous mutations, synonymous mutations or cancer neoantigens, between the three subgroups (p<0.0001). (B) The mutational signatures
differed between TMBhigh and TMBlow tumors, with the first having a preference for (C/T)p*Cp(C/G)>T and (C/T)p*Cp(A/G)>T mutations, whereas
the latter, of transversions, A>G and (A/G)p*C>T mutations. The significantly mutated genes include TTN, BRAF, XIRP2, THSD7B, USH2A, NRAS,
RELN, TPTE, CNTN5, EPHA6, COL3A1, among others. Copy number gains and losses were observed irrespective of the TMB status of the
tumors, mainly across 6q12, 11q13.3, 5p15.33, 6p24.3, 9p21.3, 7q34, 11q23.3, 10q23.31, 4q34.3, 9p23 and 6q26.
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C

FIGURE 4

(A) The most prevalent single base substitution (SBS) signatures in primary and metastatic skin melanoma. The proposed aetiology of each SBS
signature, along with the total number of mutations and corresponding percentage (%) are denoted. SBS signatures were identified using 96
different contexts, considering not only the mutated base, but also the bases immediately 5’ and 3’. (B) Activity plots depicting the number of
mutations in each signature per skin melanoma patient. (C) TMB plots depicting the somatic mutations per Mb. (D) The most common doublet
base substitutions (DBS) across primary and metastatic skin melanomas, were DBS1 and ID13. DBS signatures were generated after the
concurrent modification of two consecutive nucleotide bases.
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Genomic landscape in skin melanomas
with diverse TMB

In total, 25 genes were recurrently mutated in skin

melanoma, including TTN (156 missense out of a total of 228

mutations), BRAF (141 missense out of a total of 146 mutations),

XIRP2 (91 missense out of a total of 118 mutations), THSD7B

(76 missense out of a total of 105 mutations), USH2A (80

missense out of a total of 104 mutations), NRAS (85 missense

out of a total of 88 mutations), RLN (50 missense out of a total of

88 mutations) and TPTE (45 missense out of a total of 75

mutations), among others, having a lower mutation frequency

(Figure 3). As expected, BRAF and NRAS mutations were not

common among TMBhigh patients, as only the BRAFV600K

mutation is UV-induced and associates with a higher

mutational burden (73). Overall, we identified 40 recurrently

mutated cancer drivers, including BRAF, NRAS, ARID2 and

TP53, across 466 tumors within the TCGA-SKCM dataset

(413,742 total mutations), among which, BRAF dominated

(35) (Table S6 and Figure S9). As anticipated, we found

differences in the top mutated genes between primary and

metastatic skin melanomas, apart from the drivers BRAF,

NRAS, TP53 and PTEN, being commonly mutated in the two

types (Figure S9).

Copy number variations (CNVs) were also observed across

all tumor samples, irrespective of their TMB status. In addition,

we did not detect any difference in the intra-tumoral genomic

heterogeneity between TMBhigh and TMBlow tumors, as reflected

by their MATH scores (74). CNVs were mainly located in 6q12

(1.39% deletion, 79% loss, 15.28% gain and 4.17% amplification);

11q13.3 (65.63% loss, 18.75% gain and 15.63% amplification;

associated with WNT11 amplification); 5p15.33 (45.45% loss,

43.64% gain and 10.91% amplification); 6p24.3 (7.55% loss,

84.91% gain and 7.55% amplification); 7q34 (89.58% gain,

4.17% amplification and 6.25% loss; associated with BRAF

amplification); 8q24.21 (89.13% gain, 6.52% amplification and

4.35% loss; associated with MYC amplification); 9p21.3 (47.47%

deletion and 52.53% loss); 11q23.3 (7.56% deletion, 92.44% loss);

10q23.31 (10.08% deletion, 89.92% loss; associated with PTEN

deletion); 4q34.3 (22% deletion, 78% loss); 9p23 (8.50% deletion,

90/20% loss and 1.31% gain), 6q26 (3.73% deletion, 96.27% loss)

and 1p22.1 (87.5% loss, 2.5% deletion and 10% gain; associated

with NRAS reduction) among others (Figure 3). These findings

are in good agreement with previous reports (75).
The expression of most immune-
receptors is independent of the TMB
in skin melanoma

PD-L1 expression and TMB were recently shown to be

independent biomarkers in most cancers (76). Here, we
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evaluated the expression of CD274 (PD-L1) along with other

immunoinhibitors and immunostimulators, across TMBhigh,

TMBint and TMBlow skin melanomas. Globally, we found that

the expression of most immunoreceptors does not differ across

the three TMB subgroups (p>0.05) (Figures S10–S13). CD274

expressed higher in TMBhigh tumors (p<0.05), but still without

any significant correlation with the TMB (Pearson’s rho (r)

=0.052, p=0.372). We also noted differences in the expression of

TNFSF18, KDR and ENTPD1, which were lower in TMBhigh

tumors (p<0.05) but also did not correlate significantly with the

TMB (TNFSF18, r=-0.043, p= 0.459; KDR, r=-0.073, p=0.214;

ENTPD1, r=0.0002, p=0.997). In contrast, the expression of

TNFSF9 was marginally higher in TMBlow melanomas

(p=0.06) and correlated negatively with the TMB (r=-0.146,

p=0.013). A few other correlations we could note, were between

TNFSF9 and TMB (r=-0.146, p=0.013), NT5E and TMB

(r=0.134, p=0.023), as well as between MICA and TMB

(Pearson’s r=0.167, p=0.004). Paradoxially, however, the

expression of several well-known inhibitory receptors,

including CTLA-4, PDCD1 (PD-1), TIGIT, IDO1, LAG3,

ADORA2A and VTCN1, was similar between TMBhigh and

TMBlow tumors, corroborating that in general, the expression

of immune checkpoints and TMB are independent biomarkers

in skin melanoma. This finding was further supported by our

IHC data, showing that PD-1, PD-L1, IDO1 and LAG3 protein

levels are also similar across melanomas of differential TMB

status (Figures 5A, B). In addition, PD-L1+ cells (when

expressed) were topologically associated with CD8+ T-cells.

The TIL percentage (%) also, did not differ significantly across

the three TMB subgroups of tumors (TMBhigh, 1.77 ± 2.63;

TMBint, 2.74 ± 5.46; TMBlow, 1.72 ± 3.03); it was higher in the

stroma than in the parenchyma of primary tumors, but this

percentage decreased in the metastatic cases. Taken together,

these data suggest that TMB is not the only factor that affects

immunogenicity. In fact, other factors apart from high PD-L1

expression, seem to also affect immunogenicity in skin

melanoma and therefore, prevent TMBlow patients to benefit

from ICI therapies. These include high levels of IFNg, CD8 and

GZMA/PRF1 [intra-tumoral immune cytolytic activity (23, 42,

77)], as well as low levels of MDSCs, CAFs or M2 macrophages

in the TME.

To further investigate these factors, we examined the

fractions of 10 immune cell types, including B-cells, DCs, M1/

M2 macrophages, NK cells, neutrophils, CD4+, CD8+T-cells

and Tregs, among the three TMB subgroups of melanomas.

Interestingly, we observed a similar immune-cell fraction

between TMBhigh and TMBint tumors, both having a higher

ratio of M1/M2 macrophages compared to TMBlow tumors. In

addition, the CD8+ T-cells/Tregs ratio was similar between the

three TMB subgroups (Figure 5C). Other than this, the total

number of lymphocytes and the rest immune cells did not differ

between TMBhigh and TMBlow melanomas, neither did the

number of TIL patches or clusters that they formed
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FIGURE 5

(A) Indicative immunohistochemistry (IHC) staining for the inhibitory receptors IDO1, PD-L1, PD-1, LAG3, CD8A/B (marker for cytotoxic T-cells)
and FOXP3 (marker for Tregs) in an independent cohort of 11 cutaneous melanomas. H&E, hematoxylin and eosin staining. (B) Overall, the
protein expression of these markers was either not detected (ND) or low and probably did not differ between TMBhigh and TMBlow tumors.
(C) Immune-cell fractions across TMBhigh, TMBint and TMBlow skin melanomas, using extracted data (quanTIseq) from The Cancer Immunome
Database. (D) The scatterplots depict the percentage of lymphocytes (%), average number of TIL patches and clusters (with standard deviation,
SD) in TMBhigh (>30 mut/Mb) and TMBlow (<7.4 mut/Mb) skin melanomas. Neither of these differed significantly between the two subgroups of
tumors. (E) The expression of CD8A (log2(TPM+1)) did not correlate with the neoantigen load in either TMB subgroup. Expression of CD8A,
PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), IDO1 and CTLA-4 across different immune (F) and molecular (G) subtypes in skin
melanoma. Immune subtypes: C1, wound healing (n=41); C2, IFN-gamma dominant (n=27); C3, inflammatory (n=14); C4, lymphocyte depleted
(n=19); C5, immunologically quiet (n=0); C6, TGF-b dominant (n=2). Molecular subtypes: BRAFmut (n=150), NF1mut (n=27), RASmut (n=92),
tripleWT (n=46).
Frontiers in Immunology frontiersin.org12
99

https://doi.org/10.3389/fimmu.2022.1006665
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Georgoulias and Zaravinos 10.3389/fimmu.2022.1006665
(Figure 5D), suggesting the existence of other mechanisms

allowing or inhibiting response to ICI therapies. These

findings also agree with the notion that the content of CD8+

cytotoxic T cells within the TME, along with the TMB, are both

crucial factors in determining patient resistance to ICI therapies.

In line with this, McGrail et al. showed that CD8+ T-cell levels

positively correlate with the neoantigen load in melanoma and

that TMBhigh tumors have a better response to ICI compared to

TMBlow ones (78). Nevertheless, in terms of CD8A gene

expression, our data show that this does not correlate with the

neoantigen load in either TMB subgroup (Figure 5E). As regards

the number of TIL clusters in different molecular subtypes of

skin melanoma, this was recently evaluated in the same cohort

and it was found to associate with better survival in BRAFV600E/K

patients, but neither in NRASmut nor BRAFwt/NRASwt patients

(79). We also found that CD8A, PDCD1 (PD-1), CD274 (PD-

L1), PDCD1LG2 (PD-L2), IDO1 and CTLA-4 are highly

expressed in the ‘IFN-gamma dominant ’ (C2) and

‘inflammatory’ (C3) immune subtypes, but not across the

different molecular subtypes (BRAFmut, NF1mut, RASmut or

tripleWT) (Figures 5F, G).
Mutations in the IFNg pathway
could affect immunogenicity in
melanoma patients

IFNg-related gene expression signatures have been shown to

predict patient response to PD-1 checkpoint blockade in

melanoma (39). Motivated by these observations, we

hypothesized that mutations in the IFNg pathway could also

affect immunogenicity in melanoma patients, apart from the

high IFNg levels. Therefore, we explored the mutational pattern

of genes in the IFNg pathway signaling, to find whether they

associate with T-cell insensitivity, and therefore, resistance to

immunotherapy. Notably, we found an increased number of

SNVs in IDO1 and HLA-DRA (MHC-II protein). In specific,

these contained 28 missense mutations, 1 stop gained and 1

splice acceptor variant in IDO1 (Figure 6 and Table S7), which

however did not seem to disturb the gene’s expression, as they

did not affect the protein’s, heme-ring. Therefore, the ability of

IDO1 to catalyze the deoxygenation of tryptophan does not seem

to be affected. Kynurenine is the metabolic product of

tryptophan, which suppresses T-cell proliferation and

promotes the development of Treg cells. Its inhibition could

be exploited therapeutically in cancer immunotherapy beyond

ICI or adoptive transfer of chimeric antigen receptor (CAR) T-

cells, since it may restore T-cell function and reduce the

accumulation of Tregs (80, 81).

In HLA-DRA , we detected 14 missense variants,

corroborating the dynamic role of the function of MHC in the

progression of the disease (82). HLA-II expression has also been

shown to predict patient response to anti-PD1, but not to anti-
Frontiers in Immunology 13
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CTLA-4 immunotherapy (82). HLA-DRa also exhibited

heterogenous expression in melanoma lesions and cell lines,

with IFNg being a strong inducer of HLA class II expression (83).

In addition, we noted 3 missense mutations in CXCL10 and

5 missense mutations, one 5’UTR and one stop gained variant in

CXCL9, 6 missense mutations in STAT1, as well as 5 missense

mutations in IFNG, including 1 splice donor, 1 stop-gained,

three 5’ UTR variants and one 3’ UTR variant (Figure 6 and

Table S7).

As expected, BRAF and NRAS were the most frequently

mutated genes among all patient samples, hosting hotspot

mutations (274 missense mutations, 2 in frame deletions and

one 3’ UTR variants in BRAF; and 121 missense mutations, one

frameshift and one splice donor variant in NRAS), followed by

NF1 (34 missense, 30 stop gained, 5 frameshift, one 3’ UTR, 3

splice acceptor and 1 splice donor variants and 2 splice region;

synonymous variants) and PTEN (23 missense, 14 frameshifts, 1

in frame insertion, 4 splice donor/acceptor variants and 6 stop

gained mutations). Finally, we detected a smaller number of

somatic mutations in B2M (1 in frame deletion, 2 splice donor

and 1 coding sequence variants), IFNGR1 (4 missense and two 3’

UTR variants), IFNGR2 (1 missense, one 3’ UTR and one splice

region variant in chr21), JAK1 (10 missense mutations, one 5’

UTR and 1 stop gained variant), JAK2 (2 frameshift and 6

missense mutations) and IRF1 (1 missense and one 3’UTR

variant) (Table S7). Apart from the activating NRAS mutations

(linked with high NRAS expression) and the inactivating NF1

mutations (linked with decreased NF1 expression), all the other

mutations were randomly distributed across all melanoma

tumors, irrespective of their gene expression (Figure 6).

Collectively, these data show that mutations in the IFNg
pathway could affect immunogenicity in melanoma patients.
Patient response to ICI therapies is
independent of their TMB status

Tumor immune evasion is based on the infiltration of

dysfunctional T-cells in the tumor, but also the prevention of

T-cell infiltration into the TME. TIDE scores predict better

patient response to anti-PD-1 and anti-CTLA-4 therapies,

compared to TMB and PD-L1, and can be used to predict

longer patient overall survival (84). Using 7 publicly available

transcriptome profiles of ICI-treated melanoma patients, we

predicted their response based on their TIDE scores. Overall,

patient response rate to ICI ranged between 27-53%, depending

on their number in each dataset and the ICI therapy given.

Broadly, non-responders (high TIDE score) had significantly

lower IFNG, Merck18, CD274 (PD-L1), CD8 and ‘dysfunction

of the tumor’ scores. In contrast, they had higher ‘exclusion

potential of the tumor’ scores, as a result of the higher levels in

MDSCs, CAFs and M2 macrophages. As expected, microsatellite

instability (MSI) did not associate with melanoma patient
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response to ICI therapies, obviously due to its low prevalence in

this tumor type. Importantly, we found higher CTL levels among

ICI-responders compared to non-responders (Figures 7A, B),

recapitulating previous findings (85).

Next, we questioned whether the TMB status associates with

the outcome of each ICI therapy. Therefore, we calculated the

immunophenoscores between TMBhigh, TMBint and TMBlow

patients treated with anti-PD1 or anti-CTLA-4 alone, a

combination of both immune checkpoint inhibitors, or any of

them. Interestingly, our analysis revealed similar IPS scores

across all TMB subtypes (Figures 7C, D), suggesting that ICI
Frontiers in Immunology 14
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therapy is independent of the patient’s TMB status alone, and it

could thus, also work effectively to treat TMBlow patients. Our

data also clearly point that the quality of mutations is a more

important factor than their quantity, in terms of their

immunologic impact on patient response to ICI therapy.
Discussion

In the present study, we explored the expression of various

activating or inhibitory immunoreceptors in skin melanomas
FIGURE 6

Gene expression and somatic mutations (deleterious, slice, missense/inframe or silent) in the genes BRAF, NRAS, NF1, PTEN, IDO1 and HLA-DRA
in skin melanoma. The crystal structures (3D) of the genes’ encoded proteins along with their somatic mutations detected in the TCGA-SKCM
dataset (purple color), were calculated using MuPIT (hg38 coding) and are depicted on the right of each plot. Hotspot BRAF and NRAS
mutations are highlighted in red color in the corresponding crystal structures. Apart from BRAF, NRAS, NF1 and PTEN, all of which are well-
known to be recurrently mutated in skin melanoma, IDO1 and HLA-DRA were also significantly mutated, but the somatic mutations did not
seem to affect their protein expression.
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with diverse TMB, and evaluated their association with patient

survival and the TIL load. Overall, our findings show that high

expression of most immunoreceptors, apart from PD-1, PD-L1/

L2 and CTLA-4 that have been already tested in the clinical

setting, associates with the TIL load and patient survival, but not

with the TMB, in contrast to other, less hypermutated and/or

non-inflamed tumor types (24, 53).

High TMB was initially noted to correlate with response to

anti-CTLA-4 immunotherapy in melanoma (45, 86). During the

next years, TMB was employed in many clinical trials of anti-PD-
Frontiers in Immunology 15
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1/PD-L1 agents for treating various cancer types. Patients with

higher TMB tended to exhibit better treatment response, but the

testing methods and cutoffs of TMB varied across trials (45, 87,

88). In contrast to the widely accepted threshold of ≥10 mut/Mb

to define TMBhigh tumors, in our study we used a more stringent

criterion, setting this threshold in the upper 25th quartile (≥30

mut/Mb, TMBhigh), but we also defined as TMBint those tumors

with a mutational burden between 7.42 and 30 mut/Mb.

Overall, our findings suggest that TMBhigh skin melanomas

correlate with high levels of IFNg, CD8+ T-cells in the TME,
A

B

D
C

FIGURE 7

(A) TIDE analysis was used to predict patient response to ICI in 7 independent datasets of skin melanoma patients. Higher TIDE score (blue) denotes
non-responders to immune-checkpoint blockade, whereas lower TIDE score (red) denotes responders. (B) Percentage (%) of high or low cytotoxic
T-cell lymphocytes (CTLs) among responders or non-responders to ICI therapies, across all 7 melanoma datasets. Clearly, higher CTL levels were
found among ICI-responders. The numbers of ICI-responders or non-responders with high or low CTL levels, are indicated within each bar.
(C) Indicative immunophenogram depicting the four categories of markers, the expression of which, was used to calculate the immunophenoscores
(IPS) for each TMB subgroup of patients. These include: MHC molecules (MHC), immunomodulators (CP), effector cells (EC) and suppressor cells
(SC). The outer part of the circle includes individual factors; whereas, the inner part illustrates the weighted average z-scores of the factors included
in each category. Sample wise z-scores were positively weighted according to stimulatory cells and negatively weighted according to inhibitory cells
and averaged. (D) The boxplots indicate the average IPS across the three TMB subgroups, treated with combination ICI therapy [CTLA-4 (+)/PD1 (+)]
or with each ICI therapy, alone [CTLA-4 (+)/PD1 (–) or CTLA-4 (–)/PD1 (+)] or none [CTLA-4 (-)/PD1 (-)]. Similar IPS scores were found across all
tumors, suggesting that ICI therapy can be applied independently of the patient’s TMB status.
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cancer neoepitopes, as well as high expression of PD-L1 and

further immune receptors. In addition, TMBhigh patients

experience longer survival and greater response rates after ICI

therapy, compared to TMBlow ones (89). The number of

cytotoxic CD8+ T-cells modulates immunogenicity in the

TME. CD8+ T-cells are the most powerful effectors during an

anticancer immune response and constitute the backbone of

cancer immunotherapy (90, 91). TMBhigh skin melanomas also

correlate with intratumoral immune cytolytic activity (CYT),

defined by the expression of granzyme A and perforin 1, both

secreted by effector cytotoxic CD8+ T-cells and NK cells against

their target cells (72, 87). CYT is significantly elevated upon CD8

+ T-cell activation, as well as during a productive clinical

response against immune-checkpoint blockade therapies in

melanoma patients (23). The presence of several immune-

exclusive cells in the TME, such as MDSCs, CAFs and M2

macrophages also affects response to ICI therapies (57).

By stratifying patients based on their TMB, we found that

those having a higher mutation rate (>30 mut/Mb) did not

express higher CTLA-4, PD-1, IDO1 or other immunoreceptors,

apart from just a few cases (including CD274 which was

upregulated in TMBhigh tumors). In contrast, TNFSF18, KDR

and ENTPD1 showed lower expression levels among TMBhigh

tumors, and also did not correlate with the TMB. Collectively,

these observations strongly indicate that immunogenicity in

these tumors is affected by other factors as well, other than the

TMB, and therefore, TMBlow patients could also benefit from

ICI therapies.

In the KEYNOTE-002 study, pembrolizumab (anti-PD-1)

was established as a new standard treatment after progression on

ipilimumab (anti-CTLA-4) and other therapies (92). A year

later, in the KEYNOTE-006 study, pembrolizumab was shown

to prolong progression-free survival and overall survival and had

less high-grade toxicity compared to ipilimumab in patients with

advanced melanoma (93). In the CheckMate-066 study,

nivolumab was also shown to associate with significant

improvements in overall survival and progression-free survival,

as compared with dacarbazine, among previously untreated

metastatic melanoma patients, without a BRAF mutation (94).

Similar improvements associated with ICI therapies were

reported elsewhere (13, 95).

Our findings also corroborate that the expression of immune

checkpoints and the quantification of the mutational burden

seem to be independent predictive biomarkers of ICI therapy in

melanoma patients. These results are in line with recent reports

mentioning that PD-L1 expression and TMB have non-

overlapping effects on the response rate to PD-1/PD-L1

inhibitors and can thus, be used to categorize the

immunologic subtypes of different tumor types (76, 96). In

addition, despite that TMB associates with improved treatment

response, the mutation frequency in expressed genes was found

to be superior in predicting the outcome. Additionally, the pre-
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existing T- and B-cell immunity was shown to play a key role in

therapeutic outcomes (97).

We also show that, apart from CTLA-4 and PD-1, there are

many other immune receptors expressed by T-cells, which

influence the TME and act as checkpoints, negatively

regulating immune responses in skin melanoma (24, 98). As

combination ICI therapy has been proven to provide clinical

benefits for patients with advanced metastatic melanoma, as in

other cancer types (99, 100), our data further open up new

perspectives for combining the currently administered immune

checkpoint b lockers , ip i l imumab, n ivo lumab and

pembrolizumab with mAbs towards additional inhibitory

molecules. These include IDO1, IL2RA, TIGIT, LTA, VTCN1,

TIM3, KDR, ENTPD1 and LAG3, as well as agonistic mAbs

targeting activating immune receptors, such as TNFSF18, CD70,

ICOS and KLRK1. In this line, FDA recently approved the

combination therapy of nivolumab (anti-PD-1) and relatlimab

(anti-LAG-3 mAb, Opdualag), which was shown to provide a

greater benefit with regard to progression-free survival than

inhibition of PD-1 alone, in patients with previously untreated

metastatic or unresectable melanoma (REALITIVY-047,

ClinicalTrials.gov number, NCT03470922) (101).

Importantly, we show that the TIL load is significantly

higher among TMBhigh skin melanomas, providing evidence

that patients with a high number of immunogenic mutations

have an increased survival. Indeed, the lymphocytic score

associated with better survival in these patients, in agreement

with previous reports (102, 103). The tumors also had higher

CTL numbers, as deduced from their CD8A expression. To

examine further the factors that could contribute to treatment

response or resistance among melanoma patients receiving anti-

PD-1 and/or anti-CTLA-4 immunotherapy, we evaluated

transcriptomic data from 7 independent datasets and found

that indeed, the number of CTLs in the TME associates with

patient response to ICI therapy, irrespective of the patient

TMB status.

In addition, we investigated different immune-related gene

signatures. We found several T-cell-related signatures, including

those of naive T-cells, effector memory T-cells and exhausted T-

cells, all being upregulated in skin melanoma compared to the

normal skin (or matched blood). Other signatures involving

inhibitory cells (effector Treg T-cell and resting Treg T-cell

signatures), or helper T-cells (Th1-like cell signature), were

also higher in skin melanoma, underlying the intricate

immunological reactions taking place within the tumor’s

microenvironment. Looking deeper into the fractions of

immune-cells within the TME however, we did not observe

significant differences between TMBhigh and TMBlow tumors,

apart from the ratio of M1/M2 macrophages, which was higher

in the TMBhigh subgroup.

Notably, different genomic events and the immune

microenvironment in skin melanoma seem to orchestrate the
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patients’ resistance to ICI therapies or their relapse (42).

Frameshift mutations, indels and splice-site mutations are

also believed to generate more immunogenic neoantigens

compared with the nonsynonymous SNVs that are more

frequently detected upon TMB assessment (104). In addition,

cancer neoantigens that are similar to pathogen-derived

antigens can affect tumor immunogenicity and thus, patient

response to ICI therapy (86). We explored the SNVs and CNVs

across the different TMB subgroups of tumors, and also

highlighted the mutational signatures contributing more to

this mutational burden. Chronic sun exposure over years

permits the accumulation of sun damage, and it correlates

with the age of melanoma diagnosis. Therefore, is was expected

to observe mainly UV-light (SBS7a/b/d) and clock-like

signatures (SBS1 and SBS5) across all melanomas. In

addition, we found that a small percentage of these tumors

also associated with POLE/POLD1 mutations (SBS10b) and

tobacco smoking (SBS4).

Together with granzyme B and perforin, IFN-g acts as a

cytotoxic cytokine that initiates apoptosis in tumor cells (105,

106). IFN-g also enables the synthesis of immune checkpoint

inhibitory molecules and indoleamine-2,3-dioxygenase (IDO),

thus stimulating other immune-suppressive mechanisms (107–

109). The IFN-g signaling pathway enhances MHC expression

and subsequent tumor antigen presentation. It also induces the

recruitment of further immune cells, and inhibits tumor cell

proliferation (110). IDO1 associates with adverse clinical

outcome in melanoma patients, and its activity promotes

an immunosuppressive TME by upregulating trafficking

of MDSCs and Tregs (111). Here, we evaluated somatic

mutations in IFNG and other IFN-g-related genes in skin

melanoma, and questioned whether their presence associates

with gene expression. Our data reveal that IDO1 and HLA-

DRA are frequently mutated in skin melanoma, but these

mutations do not seem to associate with their gene

expression. Nevertheless, the frequency of the somatic

mutations that we detected both in IDO1 and HLA-DRA,

suggests that these are common events taking place in skin

melanoma and could be involved in hindering patient response

to ICI therapies. Their contribution to immune evasion and

resistance to ICI therapies, could take place in parallel with

other well-known mutations in BRAF, NRAS, NF1, PTEN

and B2M, as well as in other genes involved in the IFN-g
signaling pathway, being critical in mediating antitumor

immunity (112).

We finally showed that non-responders to anti-PD-1 and/or

anti-CTLA-4 ICI therapies have lower IFNG, Merck18, CD274

and CD8 scores, and lower dysfunction of the tumor. In

addition, they have higher exclusion potential of the tumor

and higher levels in the immune suppressive MDSCs, CAFs

and M2 macrophages, compared to ICI-responders. The latter
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cell types, on their own and cooperatively, induce an immune-

suppressive TME that prevents anti-tumor cytotoxic and Th1-

directed T-cell activities, mainly through the release of cytokines,

chemokines, and other soluble mediators (113). In addition,

their depletion increases anti-tumor immune responses

overcoming innate resistance (114). Non-responders to

monotherapy often express alternate immune-checkpoints,

such as IDO1, ICOS, and TIGIT, in contrast to combination

therapy on non-responders, who rarely express these alternate

drug targets (50). Moreover, ICI responders had significantly

higher CTL numbers compared to non-responders. Therefore, it

seems that IFNɣ-associated genes and CTLs in the TME, along

with a high TMB (and consequently neoantigen) load, but no

specific gene mutation, associate with ICI therapy response.

These data provide important insights to facilitate the

development of precision immuno-oncology for skin

melanoma patients.

Overall, we highlight the associations between various

immune receptors, TMB, TILs, patient survival and their

response to ICI therapies. Taken together, our data highlight

the importance of pre-existing T-cell immunity in the

therapeutic outcome. They also corroborate that the

expression of most immunoreceptors and TMB are

independent biomarkers in predicting treatment response in

skin melanoma and that ICI therapies could also be applied to

TMBlow patients.
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SUPPLEMENTARY FIGURE 1

The bar charts (left) depict the top 10 enriched Gene Ontology (GO) terms

in the top 250 upregulated genes in primary skin melanoma, along with
their corresponding p-values. Asterisks (*) indicate the terms with

significant adjusted p-values (<0.05). The scatterplots (right) were

created using UMAP and are organized so that similar gene sets are
clustered together. Larger, black-outlined points represent significantly

enriched terms, the associated gene set names and p-values of which,
are denoted.

SUPPLEMENTARY FIGURE 2

The bar charts (left) depict the top 10 enriched Gene Ontology (GO) terms

in the top 250 downregulated genes in primary skin melanoma, along
with their corresponding p-values. Colored bars correspond to terms with

significant p-values (<0.05). Asterisks (*) indicate the terms with significant
adjusted p-values (<0.05). The scatterplots (right) were created using

UMAP and are organized so that similar gene sets are clustered
together. Larger, black-outlined points represent significantly enriched

terms, the associated gene set names and p-values of which, are denoted.

SUPPLEMENTARY FIGURE 3

The bar charts (left) depict the top 10 enriched Gene Ontology (GO) terms
in the top 250 upregulated genes in metastatic skin melanoma, along with

their corresponding p-values. Colored bars correspond to terms with
significant p-values (<0.05). Asterisks (*) indicate the terms with significant

adjusted p-values (<0.05). The scatterplots (right) were created using

UMAP and are organized so that similar gene sets are clustered
together. Larger, black-outlined points represent significantly enriched

terms, the associated gene set names and p-values of which, are denoted.

SUPPLEMENTARY FIGURE 4

The bar charts (left) depict the top 10 enriched Gene Ontology (GO) terms

in the top 250 downregulated genes in metastatic skin melanoma, along
with their corresponding p-values. Colored bars correspond to terms with

significant p-values (<0.05). Asterisks (*) indicate the terms with significant

adjusted p-values (<0.05). The scatterplots (right) were created using
UMAP and are organized so that similar gene sets are clustered
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together. Larger, black-outlined points represent significantly enriched
terms, the associated gene set names and p-values of which, are denoted.

SUPPLEMENTARY FIGURE 5

Stage-plot analysis of the expression of CD8 and several immune
receptors in skin melanoma, showing no significant differences

according to the tumor’s stage.

SUPPLEMENTARY FIGURE 6

The Kaplan-Meier curves show the overall and disease-free (DF) survival
of melanoma patients, expressing high or low expression levels of PD-1,

PD-L1/L2, CTLA-4, LAG3, IDO1/2, TIGIT, HAVCR2, VISTA, VTCN1, ILT2/4,
ADORA2A and CD8 (marker for CD8+ T cells). The log-rank test was used

to assess statistical differences between the two subgroups of patients.
The patients were separated into high expression group (upper 50

percentile, red curve) and low expression group (lower 50 percentile,

blue curve) by gene expression levels. The numbers of the patients in each
group are provided as “n(high)” and “n(low)”, respectively. The log-rank p-

value, along with the HR(high) and p(HR) values are also provided in each
Kaplan-Meier survival plot. A Bonferroni-corrected cut-off log-rank p-

value of <0.05 indicates statistical significance.

SUPPLEMENTARY FIGURE 7

The scatterplots depict the Pearson’s correlation coefficient (R and p-
values) between the expression of CD274 (PD-L1) (A) or CD8A (B) and
various immune receptors in skin melanomas (TCGA-SKCM) and normal
suprapubic skin sample, not exposed to the sun (GTEx).

SUPPLEMENTARY FIGURE 8

The boxplots depict nine immune-signatures which did not differ across

BRAFmut, NF1mut, RASmut and TripleWT skin melanoma tumors. Signatures
were calculated in log2(TPM+1) using the |log2FC>1| and p<0.01 (ANOVA)

as thresholds for statistical significance across the different skin
melanoma subtypes.

SUPPLEMENTARY FIGURE 9

The comutation plots depict the top 20 significantly mutated genes

(SMGs, FDR<0.1) in primary and metastatic (A) or TMBhigh and TBlow skin
melanomas (B). Green, red, pink, black and orange boxes indicate

missense, nonsense, translation start site, multi-hit and splice-site
mutations, respectively. The SMGs that correlate with primary or

metastatic tumors (p<0.05) are highlighted by red or blue circles,
respectively, next to the gene names. Each SMG’s q-values (−log10

(FDR)) are plotted as a right-side bar plot in blue color. (C) The bar chart

depicts the top 30 cancer drivers in skin melanoma. (D) The lollipop plots
(below) report all the variants affecting the coding region of three drivers

in skin melanoma (BRAF, NRAS and ARID2). Diagram circles are colored
with respect to the corresponding mutations. Passenger mutations are

highlighted in light blue and ad driver mutations in red.

SUPPLEMENTARY FIGURE 10

The scatterplots show mean values in log2(TPM+1) with standard
deviation (SD) of gene expression across various immunostimulators.

Gene expression did not change across TMBhigh, TMBint and TMBlow

skin melanomas, apart from CD274 and TNFSF18 (*, p<0.05. **, p<0.01).

SUPPLEMENTARY FIGURE 11

The scatterplots show mean values in log2(TPM+1) with standard

deviation (SD) of gene expression across various immunoinhibitors.
Gene expression did not change across TMBhigh, TMBint and TMBlow

skin melanomas, apart from KDR, which was lower in TMBhigh tumors
(**, p<0.01).

SUPPLEMENTARY FIGURE 12

Pearson’s correlation between TMB and the expression of activating

immune receptors (immunostimulators), shows that there was no
relationship between their gene expression and the TMB in skin melanoma.
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SUPPLEMENTARY FIGURE 13

Pearson’s correlation between TMB and the expression of inhibitory
immune receptors (immunoinhibitors), shows that there was no

relationship between the gene expression and the TMB in skin melanoma.

SUPPLEMENTARY TABLE 1

Significantly up- and down-regulated genes in skin melanoma

(TCGA-SKCM).

SUPPLEMENTARY TABLE 2

Gene Ontology enrichment for the top 250 up-regulated genes in
primary skin melanoma.

SUPPLEMENTARY TABLE 3

Gene Ontology enrichment for the top 250 down-regulated genes in
primary skin melanoma.
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SUPPLEMENTARY TABLE 4

Gene Ontology enrichment for the top 250 up-regulated genes in
metastatic skin melanoma.

SUPPLEMENTARY TABLE 5

Gene Ontology enrichment for the top 250 down-regulated genes in
metastatic skin melanoma.

SUPPLEMENTARY TABLE 6

Recurrently mutated cancer drivers in skin melanoma, identified using

IntOGen analysis.

SUPPLEMENTARY TABLE 7

Somatic mutation analysis for IDO1, HLA-DRA, CXCL10, CXCL9. STAT1,

IFNG, B2M, BRAF, NRAS, NF1, JAK1, JAK2, PTEN, IFNGR1, IFNGR2 and
IRF1, in skin melanoma.
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Tertiary lymphoid structure
patterns aid in identification
of tumor microenvironment
infiltration and selection of
therapeutic agents in
bladder cancer

Ye An †, Jian-Xuan Sun †, Meng-Yao Xu, Jin-Zhou Xu,
Si-Yang Ma, Chen-Qian Liu, Zheng Liu*‡, Shao-Gang Wang*‡

and Qi-Dong Xia*‡

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China
Background: Tertiary lymphoid structures (TLSs) are emerging as a potential

predictor of prognosis and response to immunotherapy in some solid

tumors. However, the comprehensive role of TLSs in bladder cancer

remains unclear.

Methods: Eighteen bladder cancer (BCa) datasets were downloaded from The

Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), ArratyExpress

and IMvigor210. Based on 39 validated TLS signature genes (TSGs), we

evaluated the TLS patterns in all patients, and correlated the TLS patterns

with prognosis and tumor microenvironment (TME) cell-infiltrating

characteristics. The cox regression model and principal component analysis

(PCA) algorithms were used to construct the TLS score, which helps to quantify

the TLS pattern in individuals.

Results: The landscape of 39 validated TSGs in BCa was assessed first. Five

distinct TLS patterns and four gene clusters were determined. TLS cluster C2

and gene cluster A were thought to be characterized by mature TLSs and

showed better prognosis and higher immune cells infiltration than other

clusters. The TLS score was discovered to be tightly correlated with the

infiltration level of immune cells, and could predict the maturation status of

TLSs to some extent. We found TLS score was an excellent predictor for

prognosis in patients with BCa independent of tumor mutation burden

(TMB), and low TLS score was related to better prognosis than high TLS

score. Besides, low TLS score was correlated with a better response to

immune checkpoint blockade (ICB) immunotherapy and commonly used

chemotherapy drugs.
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Conclusions: Our work demonstrated the characteristics of TLSs in BCa. By

using the TLS score, we could evaluate the TLS pattern in individuals. Better

understanding of TLS pattern and the usage of TLS score could help instruct

clinical strategy and precision medicine for BCa.
KEYWORDS

tertiary lymphoid structures, tumor microenvironment, bladder cancer, immunotherapy,
tumor mutation burden
Introduction

Bladder cancer (BCa) is the tenth most common cancer

worldwide with an estimated 573,000 new cases and 213,000

cancer deaths in 2020 (1). Based on the invasion of lamina

propria, BCa can be divided into non-muscle invasive bladder

cancer (NMIBC) and muscle invasive bladder cancer (MIBC).

NMIBC represents approximately 70% of localized BCa and

MIBC represents the remaining 30%. For prevention of

recurrence or progression to MIBC, tumor resection followed

by a scheduled intravesical instillation is the main treatment for

NMIBC (2). Treatments for MIBC include neoadjuvant therapy

followed by radical cystectomy (RC) and lymphadenectomy or a

bladder-sparing project such as chemotherapy (3). With a more

comprehensive understanding of tumor microenvironment

(TME) and the rise of immune checkpoint blockade (ICB)

therapy, immunotherapy offers a new option for patients with

metastasized BCa (4). However, not all patients could benefit

from immunotherapy. A single-arm phase 2 clinical trial with

atezolizumab reported a 30% pathological complete response

rate (5), thus, new biomarkers or molecular signatures are

urgently needed to predict the efficacy of immunotherapy.

Tertiary lymphoid structures (TLSs) are ectopic lymphoid

tissues formed at sites of long-lasting inflammation including

tumors. Structurally resembling secondary lymphoid organs

(SLOs), TLSs are mainly composed of B cells, T cells, dendritic

cells (DCs), neutrophils and macrophages (6). TLSs also consist

of high endothelial venules and lymphatic vessels, which help to

guide the trafficking of immune cells into TME (7). Thus, TLSs

play a nonnegligible role in anti-tumor immune activity, and it is

reported that TLSs are correlated with better prognosis of most

solid tumors including lung cancer (8, 9), breast cancer (10),

colorectal cancer (11), pancreatic cancer (12) and melanoma

(13). In addition, studies have revealed that B cells and TLSs are

tightly associated with the response to immunotherapy (14), and

the presence of TLSs is a predictive factor for the response to ICB

therapy in sarcoma and melanoma (15, 16). Based on this, TLSs

induction is now regarded as a potential therapeutic strategy for

malignancies (17). Several studies have proved that widely used
02
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anti-cancer treatments could induce the formation of

intratumoral TLSs in mouse models. For BCa, Zhou et al. and

Pfannstiel et al. used public databases for bioinformatics analysis

and found higher density of TLSs were correlated with a better

response to ICB therapy and prognosis (18, 19).

However, the mechanisms behind the interaction between

TLSs and BCa, and the crosstalk among immune cells in TLSs

remain unclear. Meanwhile, the results of previous studies were

based on the subtype of BCa, and none of them focused on the

comprehensive effect of TLSs on BCa. Therefore, in this study, we

integrated several independent BCa datasets and divided the

patients with BCa into five TLS patterns according to TLS

signature genes (TSGs). We performed survival analyses and

investigated the landscape of TME cell infiltration in each pattern

and found significantly different infiltration among five patterns.

These were in accordance with the opinion that high heterogeneity

existed in the cellular constituents of TLSs andwould contribute to

different anti-tumor effects and outcomes (14). Then, TLS cluster

related differentially expressed genes (DEGs) were discovered, by

which patients were classified into four genomic subgroups. The

correlation between TLS patterns and gene patterns was evaluated.

Finally,we developed a scoring systemnamedTLS score to evaluate

the TLS pattern in individuals and correlated it with tumor somatic

mutation, TME cell infiltration characteristics, and response to

immunotherapy and chemotherapy.
Materials and methods

Data retrieval and preprocessing

Thirty-nine TSGs were obtained from Fridman et al. (6). We

selected data sets if they satisfied the following criteria. The

inclusion criteria of the data sets are: 1) BCa patients with the

results of transcriptome sequencing; 2) biological duplication

should be more than 30; and the exclusion criteria is: normal

people with transcriptome sequencing results. Transcriptional

matrix (FPKM) and corresponding clinical information of 408

BCa patients was downloaded from The Cancer Genome Atlas
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1049884
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


An et al. 10.3389/fimmu.2022.1049884
(TCGA) (https://portal.gdc.cancer.gov/). Then, we transferred the

fragments per kilobase million (FPKM) values into transcripts per

kilobase million (TPM) values. EMTAB1803 and EMTAB4321

cohortsweredownloaded fromArrayExpress ((https://www.ebi.ac.

uk/arrayexpress). Transcriptional profiles and clinical information

of 14 cohorts including GSE5287, GSE13507, GSE31684,

GSE32548, GSE32894, GSE48075, GSE48276, GSE69795,

GSE70691, GSE86411, GSE87304, GSE120736, GSE128192 and

GSE128702 were downloaded from the Gene ExpressionOmnibus

database (GEO, https://www.ncbi.nlm.nih.gov/gds). IMvigor210

immunotherapy cohort which investigated the therapeutic

efficacy of Atezolizumab in metastatic urothelial carcinoma

patients (20) was obtained from R software using R package

“IMvigor210CoreBiologies”. The basic information of these

included cohorts was shown in Table 1. Then we merged these 18

datasets and eliminated the batch effects using the Combat

algorithm by R package “sva” (21). The principal components

analysis (PCA)was used to check the effectiveness of themergence.

The copy number variation matrix was downloaded from UCSC-

Xena (http://xena.ucsc.edu/).
The landscape of TSGs and TLS patterns
in BCa

Systematic analyses of copy number variation and mutation

of TSGs were conducted. Copy number variation and mutation
Frontiers in Immunology 03
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analysis were visualized as mutation atlas and genome cycle plot

respectively. Having merged the gene matrix and eliminated the

batch effects, Kaplan–Meier method survival curve and log-rank

test of each TSG were performed to investigate the prognostic

value of TSGs.

Then, we conducted non-negative matrix factorization

(NMF) algorithm based on the 39 TSGs to identify the TLS

pattern. MCPCOUNTER and CIBERSORT methods (22) were

applied to characterize the TME cell infiltration and quantify

their proportion among TLS patterns. The differential overall

survival was analyzed by log-rank test and Kaplan–Meier

method survival curve to investigate survival benefits among

these TLS patterns.
Identification of DEGs among TLS
patterns, DEGs based consensus cluster,
and development of the TLS score

The DEGs were screened out by R package “limma” with the

|log2 fold change (FC)| >0 and adjusted p-value <0.05, and

finally visualized as an Upset diagram. Univariate Cox regression

was performed to find out the DEGs with prognostic values.

Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses based on

these DEGs were conducted. An unsupervised consensus cluster

was performed by R package “ConsensusClusterPlus”. Similarly,

the TME cell infiltration characteristics and the differential

overall survival were analyzed among DEGs based consensus

clusters. Then we distinguished the molecular characteristics of

these DEGs with prognostic value by PCA algorithm and

developed a TLS score formula: TLS score = ∑ (PC1 + PC2).

In this formula, PC1 and PC1 represent the expression levels

of those DEGs with prognostic value in two different

dimensions, respectively. TLS score was identified as the

summary of PC1 and PC2, which can represent the individual

TLS level to some degree.
Validation of TLS score, and the
correlation between TME and TLS score

Using the above formula, we calculated the TLS score of each

sample. Following this, we checked the best cut-off value of TLS

score in TCGA_BLCA cohort to gain the best prognostic

predicting efficiency and obtained a threshold. All patients

included in these 18 datasets were divided into low score

group and high score group according to the threshold. Gene

sets enrichment analysis (GSEA) was performed to find the

differential function enrichments of TLS between high score

group and low score group (23). We performed survival analyses

in all patients and the above 18 cohorts separately to check

whether the TLS score was a predictor of prognosis for BCa.
TABLE 1 Data sources and including samples.

Data
source

Tumor bulk-seq
samples

Samples with survival
data

E-MTAB-
1803

85 73

E-MTAB-
4321

476 0

GSE120736 145 0

GSE128192 112 0

GSE128702 256 0

GSE13507 188 164

GSE31684 93 93

GSE32548 131 0

GSE32894 308 0

GSE48075 142 73

GSE48276 116 73

GSE5287 30 30

GSE69795 61 38

GSE70691 49 49

GSE86411 132 0

GSE87304 305 0

IMvigor 348 348

TCGA 408 407

Meta-cohort 3385 1348
frontiersin.org

https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress
https://www.ncbi.nlm.nih.gov/gds
http://xena.ucsc.edu/
https://doi.org/10.3389/fimmu.2022.1049884
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


An et al. 10.3389/fimmu.2022.1049884
Then, we used ssGSEA, ESTIMATE, TIMER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL

and EPIC algorithms to investigate the correlation between

TME and TLS score. Thus, we could obtain comprehensive

characteristics of immune cells infiltration, immune related

pathways and immune related functions between high and low

groups. The correlation between TLS score and immune cells

infiltration in the last seven algorithms was performed by the

linear regression test. Besides, we calculated the tumor mutation

burden (TMB) of each sample in TCGA_BLCA cohort and

further investigated the correlation between TMB and TLS score.

We also combined these two factors for prediction of overall

survival in patients with BCa. Finally, we collected the mutation

atlas of each sample and compared the differences in mutant

frequencies between high and low TLS groups by the c2 test.
Prediction of response to chemotherapy/
immunotherapy by TLS score

As TLSs were proved to be a predictor of response to ICB

treatment in many solid tumors, we investigated the relationship

between TLS score and drug sensitivity to either chemotherapy

or immunotherapy. We used three algorithms to predict the

response to immunotherapy: TCIA (24), TIDE (25) and SubMap

(26). A novel algorithm called oncoPredict was used to predict

the response to chemotherapy (27). All the prediction of

response to chemotherapy or immunotherapy was compared

between high TLS score group and low TLS score group by

Wilcoxon or c2 test.
Statistical analysis

All the data processing, analyses and figure plotting were

performed by R software vision 4.1.1. A P value less than 0.05

indicates statistical significance.
Results

The landscape of TSGs in BCa

In this study, 39 genes were identified as the gene signatures

of TLSs, among which CCL2/3/4/5/8/18/19/21, CXCL9/10/11/

13 were chemokine signature genes; CXCL13, CD200, FBLN7,

ICOS, SGPP2, SH2D1A, TIGIT, PDCD1 were T follicular helper

cell (TFH cell) signature genes; CD4, CCR5, CXCR3, CSF2,

IGSF6, IL2RA, CD38, CD40, CD5, MS4A1, SDC1, GFI1,

IL1R1, IL1R2, IL10, CCL20, IRF4, TRAF6, STAT5A were T

helper 1 cell (TH1 cell) and B cell signature genes; TNFRSF17

was plasma cell signature gene (6). We first explored the

incidence of somatic mutations and copy number variations
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(CNV) of the 39 TSGs in BCa. These genes are immune-related,

and we found low mutation rate (54 samples of 412 samples

TCGA_BLCA cohort with a 13.11% frequency) in BCa

(Figure 1A). Nevertheless, we found a prevalent alteration of

CNV in all TSGs. Compared to the higher frequency of loss in

IL10, GFI1, CCR5, ICOX, SGPP2, PDCD1 and CCL20, most

TSGs had a greater frequency of CNV gain (Figure 1B). The

locations of CNV were presented in Figure 1C.

Then, we used the Combat algorithm by R to eliminate the

batch effects of the 18 included cohorts mentioned above and

merged them into a new meta-cohort. Before processing, these

datasets could easily be distinguished by principal component

analysis (PCA) (Figure 1D), while they merged well after

processing (Figure 1E). Following this, we divided the samples

in the meta-cohort into two subgroups based on the expression

level of each TSG and performed survival analyses. As shown in

Figures S2A–S, higher expression level of CCL2, CCL8, CD4,

CD5, CD38, CD40, CD200, CXCL9, CXCL10, CXCL13, CCR3,

GFI1, ICOS, IRF4, MS4AA, PDCD1, SH2D1, STAT5 and

TRAF6 showed a better survival advantage, while high

expression level of IL1R1, IL10 and SDC1 indicated a worse

prognosis (Figures S1A–C). CXCL13 was first described as a key

chemokine for B cells migrating to SLOs, and was also regarded

as a key regulator for TLSs formation. We found patients with

high CXCL13 expression were associated with a significantly

better prognosis (P < 0.001, Figure S2J).
TLS patterns and the characteristics of
TME cell infiltration

We used non-negative matrix factorization (NMF) algorithm

for clustering, and could see an optimal clustering effect when k =

5 (Figure 2A). All samples in the meta-cohort were divided into 5

TLS patterns based on choosing k = 5, termedTLS cluster C1 –C5

(Figure 2B). We wondered whether there existed significant

differences in immune cells infiltration among five TLS

patterns. So we conducted TME infiltration analysis and

discovered that TLS cluster C1 was significantly enriched in

CD8+ T cell, T follicular helper cell (TFH cell) and macrophage

M1; TLS cluster C2was significantly enriched in B cells (including

naïve B cell, memory B cell and plasma B cell), CD8+ T cell, TFH

cell and myeloid dendritic cell (DC); TLS cluster C3 was enriched

in regulatory T cell (Treg) while other immune cells showed low

infiltration levels; cluster C4 showed enrichment in active mast

cell and cluster C5 was enriched in macrophage M0, M2,

fibroblasts, endothelial and neutrophil (Figures 2C, D). The

TME cells infiltration characteristics were consistent with the

results of survival analyses that patients from cluster C1 and C2

showed significant survival advantages compared to other clusters

(Figure 2E). In addition, we investigated the TSGs signatures

among five TLS patterns (Figure 2F), and we could see dramatic

differences in 25 TSGs transcriptional profile among five clusters.
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Cluster C1 was characterized by the significantly increased

expression level of CXCL9, CXCL10 and CXCL13; cluster C2

showed remarkable enrichment in CXCL13, ICOS, SH2D1A,

CD4, CXCR3, CD38, CD5 and MS4A1; cluster C3 was enriched
Frontiers in Immunology 05
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in SDC1, while other TGSs showed significantly decreased

expression; cluster C4 was significantly enriched in CCL20;

cluster C5 showed increased expression in CXCL2, CXCL8 and

CXCL18 and decreased in SDC1 and CCL20.
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A

FIGURE 1

Landscape of genetic and expression variation of TLS signature genes in BCa and the combination of 18 datasets. (A) Mutation frequency of 39 TLS
signature genes in 412 patients with BCa from the TCGA_BLCA cohort. Each column represented individual patients. The upper barplot showed TMB.
The number on the right indicated the mutation frequency in each regulator gene. The right barplot showed the proportion of each variant type. The
stacked barplot below showed a fraction of conversions in each sample. (B) CNV variation frequency of TLS signature genes. The height of the column
represented the alteration frequency. The deletion frequency, green dot; The amplification frequency, red dot. (C) Location of CNV alteration of TLS
signature genes on 23 chromosomes using cohort. (D, E) Principal component analysis for the expression profiles of common genes before and after
combination of 18 cohorts. Before processing, 18 subgroups without intersection were identified, indicating these datasets samples were well
distinguished based on the expression profiles of their common genes, while the 18 datasets merged well after processing.
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Generation of DEGs and the consensus
clustering

To further explore the latent mechanism behind the different

characteristics among five TLS patterns, we found 77 TLS cluster

related DEGs using R software package “limma” (Figure 3A).

Cox regression model was used to screen out 33 DEGs with

prognostic value. We first performed GO and KEGG enrichment

analyses by clusterProfiler R package to find out the biological

behavior behind these DEGs. We discovered enrichment in

biological process (BP), namely, cell-cell adhesion, immune

cell activation and granulocyte chemotaxis; cellular component
Frontiers in Immunology 06
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(CC), plasma membrane, endocytic vesicle; molecular function

(MF), namely, cytokine receptor binding, cytokine and

chemokine activity (Figure 3B). The KEGG analysis showed

similar results which exhibited high enrichment in cytokine-

cytokine receptor reaction and T cell signaling pathway

(Figure 3C). The above results proved again that TLSs were

important in regulating and coordinating the complicated

function of TME. Then, these 33 TLS related cluster DEGs

were used for clustering analysis by the unsupervised clustering

algorithm. By choosing k = 4 as the optimal k value, we finally

divided patients into four genomic subgroups, named gene

cluster A – D (Figure 3D, Figures S3A–H). Subsequently, we
B
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FIGURE 2

The generation of TLS patterns and biological characteristics of each pattern. (A) The NMF rank survey. (B) Connectivity matrix for patients with
bladder cancer in the meta-cohort by NMF when k = 5. (C) TME cells infiltration characteristics in five different TLS patterns by CIBERSORT. (D)
TME cells infiltration characteristics in five different TLS patterns by MCP. (E) Kaplan–Meier curves indicated TLS patterns were markedly related
to overall survival of patients in meta-cohort. (F) TLS signature genes enrichment in each TLS pattern.
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used the cumulative distribution function (CDF) curve to

validate the rationality of grouping (Figures S3I, J), and the

details of grouping were presented on the track plot (Figure

S3K). Similarly, we investigated the differences in TME cell

infiltration among these four gene clusters (Figures 3E, F). We

discovered similar infiltration characteristics to TLS patterns

that gene cluster A showed significantly high infiltration level of

CD8+ T cell, B lineage, TFH, natural killer cell (NK cell) and

macrophage M1; gene cluster B had high CD8+ T cell, NK cell,

macrophage M1 and neutrophil infiltration; gene cluster C was

enriched in Treg while other immune cells showed significantly

low level; gene cluster D was enriched in fibroblast, endothelial,

and showed a relatively high level of macrophage M2 and B

lineage. Survival analysis showed that patients from gene cluster

A had the best prognosis than patients in cluster B - D

(Figure 3G). Finally, we tested the expression level of TSGs

among these five gene clusters (Figure 3H). Gene cluster A

showed significantly high expression level of most TSGs except

SDC1; cluster B exhibited relatively high expression of CCL8,

CCL18, CXCL10, CXCL13, ICOS, SH2D1A, CSF2, CD38 and

CCL20; cluster C only showed high SDC1 expression and had

significantly decreased level of most TSGs; cluster D had high

expression level of CCL2, CD200, IL1R1 and IL10.
Development of TLS score and function
annotation

The above analyses elucidated the landscape of TLS

characteristics in BCa based on the patient population. However,

the TLS patterns and gene clustersmay not reveal the true situation

of specific individuals due to the heterogeneity among patients.

Therefore, we constructed a scoring system to quantify the TLS

patterns in individuals. We named the scoring system TLS score,

andwe could classify patients intohighTLS score group or lowTLS

score group based on this score. Firstly, we used gene sets

enrichment analysis (GSEA) to investigate the differentially active

pathways between the high and low groups. We discovered

immune response, cytokines and antigen-antibody reaction

pathways were significantly enriched in low TLS score group,

such as adaptive immune response, immune response signaling

pathway, lymphocyte mediated immunity, immunoglobulin

complex, allograft pathway, inflammatory response, antigen

processing, cytokine-receptor interaction (Figures 4A–C). While

high TLS score group showed enrichment in metabolic related

pathwaysandcell growthanddifferentiation relatedpathways, such

as steroidhormone synthesis, retinolmetabolism, drugmetabolism

cytochrome P450, and epidermal cell differentiation (Figures 4D–

F). Then,we performed survival analysis inmeta-cohort and the 18

cohorts separately (Figures S4A–I). Importantly, we observed a

significant survival advantage in patients with low TLS score in the

meta-cohort and IMvigor210 immunotherapy cohort

(Figures 4G, H).
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Tumormutation burden (TMB) has beendemonstrated to be a

useful predictor for ICB treatment including BCa (28), and a pan-

cancer research indicated that high somatic TMB was correlated

with better prognosis of patients receiving ICB treatment than low

TMB (29). Our result also revealed patients with high TMB had

better prognosis compared to low TMB (Figure S4A).

Subsequently, we analyzed the relationship between TLS score

and TMB, and we didn’t find a significant correlation between

them (Figure 4I). Therefore, we combined the TLS score and TMB

to predict the prognosis (Figure 4J). We found patients with high

TMBand lowTLS score had the best overall survival and thosewith

low TMB and high TLS had the worst. Additionally, we discovered

patients with high TMB and lowTLS score had better survival than

high TMB and high TLS score. These analyses revealed TLS score

was an excellent predictor of prognosis in patients with BCa

independent of TMB, and had better effect than TMB at the same

time. Finally,we investigated the distribution differences of somatic

mutation between high score and low score groups in the

TCGA_BLCA cohort. Generally, no obvious distribution

differences were found between the two groups (Figures S4B, C),

but significant differences existed in the distribution of gene FAT1,

EPG5, AHNAK, ERBB2, PIK3CA, HERC1, RXRA, RNF213 and

HYDIN (Table 2).
TLS score and TME cell infiltration

Considering the crucial role of TLSs in anti-tumor

immunity, we used nine algorithms to comprehensively

investigate the characteristics of TME cell infiltration in two

TLS score groups. The Sankey diagram showed the visualizing

attribute changes in individual patients (Figure 5A). As shown in

Figure 5B, low TLS score group was associated with higher

immune score and ESTIMATE score. The ssGSEA showed the

differences in immune function between two groups, and we

could see low score group has better immune function in almost

all the anti-tumor processes except IFN-b response (Figure 5C).

TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,

MCPCOUNTER, XCELL and EPIC methods were used for the

component analysis of TME cells (Figure 5D). We discovered

low score group had significant high infiltration levels of B cells,

T cells (CD4+ T cell and CD8+ T cell), macrophages

(macrophage M1 and macrophage M2), myeloid dendritic cell

and NK cell compared to high score group, and the lower of TLS

score, the higher infiltration of immune cells. Figure 5E showed

the correlation between TLS score and infiltration level of

immune cells. We noticed the value of TLS score showed

significantly negative correlation with B cells (Figures 6A, B)

including naïve B cells, memory B cells and plasma cells (Figures

S5A–E); T cells including various types of CD4+ T cell, CD8+ T

cell and TFH cell (Figures 6C–E and Figure S5F–K); macrophages

including macrophage M1 and macrophage M2 (Figure 6F and

Figures S5L, M). Besides, TLS score had significantly negative
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FIGURE 3

Identification of DEGs among TLS patterns and DEGs based consensus cluster. (A) 77 TLS cluster-related DEGs shown in the Upset diagram.
(B) Functional annotation for TLS cluster related DEGs using GO enrichment analysis. The size of the plots represented the number of genes
enriched. The pathways were grouped by cellular component (CC), molecular function (MF) and biological process (BP). (C) Functional
annotation for TLS cluster related DEGs using KEGG enrichment analysis. The size of the plots represented the number of genes enriched.
(D) Unsupervised clustering of 33 TLS cluster related DEGs with prognostic value in meta-cohort and consensus matrices for k = 4. (E) TME
cells infiltration characteristics in four different TLS gene cluster by CIBERSORT. (F) TME cells infiltration characteristics in four different TLS
gene cluster by MCP. (G) Kaplan–Meier curves indicated TLS genomic phenotypes were markedly related to overall survival of patients in
meta-cohort. (H) TLS signature genes enrichment in each TLS gene cluster.
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correlation to myeloid dendritic cells and NK cells (Figures 6G,

H). We also noticed that TLS score was positively correlated with

endothelial cells (Figure 6I). In general, the TLS score was

significantly associated negatively with the infiltration level of

most immune cells.
Characteristics of TLS in immunotherapy
and chemotherapy

Our above results demonstrated the TLS score was an

excellent predictor for prognosis and was tightly correlated
Frontiers in Immunology 09
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with infiltration level of immune cells. Based on this, we

proposed that low TLS score might indicate an immune

subtype which was more sensitive to immunotherapy.

Therefore, we investigated the correlation between the TLS

score and the response to ICB treatment. We discovered low

TLS score was significantly associated with better response to

anti-PD-1 immunotherapy and the significant correlation still

existed after Bonferroni correction (Figure 7A). Then, the

patients were classified into four subgroups according to their

usage of anti-PD-L1 and anti-CTLA-4 treatments: CTLA-4

positive PD-1 positive (Figure 7B), CTLA-4 positive PD-1

negative (Figure 7C), CTLA-4 negative PD-1 positive
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FIGURE 4

Development of TLS score and function annotation. (A-C) Gene sets enrichment analysis (GSEA) in low TLS score group by GO, KEGG and
HALLMARK. (D–F) Gene sets enrichment analysis (GSEA) in high TLS score group by GO, KEGG and HALLMARK. (G) Survival analyses for low and
high TLS score patient groups in meta-cohort using Kaplan–Meier curves (P <0.001, Log-rank test). (H) Survival analyses for low and high TLS
score patient groups in IMvigor210 immunotherapy cohort using Kaplan–Meier curves (P <0.001, Log-rank test). (I) Linear regression analysis for
tumor mutation burden and TLS score. The dot represented each sample. (J) Survival analyses for four groups grouped according to tumor
mutation burden and TLS score in the TCGA_BLCA cohort using Kaplan–Meier curves.
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(Figure 7D), CTLA-4 negative PD-1 negative (Figure 7E). We

found that in all four subgroups, the low TLS score group had

significant higher IPS score than low TLS score group, which

indicated patients from low TLS score group were associated

with better response to anti-PD-1, anti-CTLA-4 or combined

immunotherapy compared to high TLS score. We also

performed Tumor Immune Dysfunction and Exclusion (TIDE)

analysis, and surprisingly found low TLS score was related to

higher TIDE score (Figure S6A). This immune evasion effect

might be caused by the relatively higher infiltration level of Treg

in low TLS score group (Figure 4C).

Additionally, we investigated the relationship between TLS

score and response to chemotherapy. We applied R package

oncoPredict and examined several commonly used drugs, such

as gemcitabine, cisplatin and vinblastine which were used for

adjuvant treatment after surgery and epirubicin which was used

for intravesical instillation. We found low TLS score was

significantly related to lower sensitivity score of gemcitabine,

cisplatin, vinblastine and epirubicin (Figures 7F–I), which

indicated that low TLS score group was associated with higher

sensitivity to chemotherapy. Several other chemotherapy drugs

were also screened out, and showed significant association with

TLS score (Figure S6B–X and Figures S7A–Y). Although some of

them are newly developed and haven’t been used for BCa

treatment, we could screen out appropriate chemotherapy

drugs for patients and instruct clinical medication in the future.
Discussion

TLSs have emerged as a crucial role in the immune response

of anti-tumor effect and at the same time as a predictor of

prognosis and response to immunotherapy. As mentioned

earlier, many researches have been carried out to explore the

complex role of TLSs in anti-cancer, but there are still many

mysteries. For example, there still lacks accurate and

comprehensive biomarkers of TLSs, although many

biomarkers have been continuously proposed (17). Meanwhile,

the mechanisms how TLSs regulate the immune response and
Frontiers in Immunology 10
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how the immune cells interact with each other (especially B cells

and T cells) also remain unclear (30). Therefore, it is necessary

and urgent to investigate the comprehensive role of TLSs in

malignancies. Although previous studies have explored the

predictive value of TLSs in BCa, their results were based on

either the immune subtype or limited TLSs signature

biomarkers, which may lead to a biased conclusion. For

example, Zhou et al. divided patients with MIBC into six

MIBC immune classes, and found class F had the best

prognosis and highest level of TLSs. In addition, they analyzed

the TLS signature in pan-cancer using nine genes validated in

metastasized melanoma tumors as TLSs signature genes (19).

Pfannstiel et al. quantified the TLSs in intra- and peritumoral

stroma, and found the number of TLS and the distance from TLS

to tumor were associated with the disease specific survival. These

studies paid more attention to the TME of BCa or limited TLSs

signature genes and didn’t go deep into the effects of TLSs

in BCa.

In our study, we enrolled 18 bladder cancer datasets and 39

validated TSGs for further investigation which was the most

comprehensive analysis of the role of TLSs in BCa currently

reported. Firstly, we summarized the landscape of the 39

validated TSGs in BCa and discovered most TSGs exhibited

CNV rather than somatic mutation. Most TSGs including the

essential chemokines for the formation of TLSs such as CXCL13

and CCL21 showed greater frequency of CNV gain, which

indicated the neogenesis of TLSs in tumor tissue. Recently,

Groeneveld et al. proved CXCL13 could also be regarded as

the biomarker of TLSs in BCa, and demonstrated CXCL13 was

associated with better prognosis of patients with BCa (31).

Similarly, CCL21 is crucial for the recruitment of lymphocytes

and TLSs formation. Delvecchio et al. elucidated that

intratumoral injection of CXCL13 and CCL21 could induce

TLSs formation in the orthotopic model of pancreatic tumor,

resulting in a better therapeutic effect of gemcitabine (32). Then,

we merged the 18 cohorts into a new meta-cohort, and used the

NMF clustering to divide all patients into five TLS patterns

named TLS pattern C1 – C5 according to the expression level of

TSGs. It’s not surprising to find there existed huge differences
TABLE 2 Mutant genes that exist significant differences between high and low TLS score groups.

gene H-wild H-mutation L-wild L-mutation p-value

FAT1 253(93.7%) 17(6.3%) 116(85.29%) 20(14.71%) 0.009425

EPG5 262(97.04%) 8(2.96%) 123(90.44%) 13(9.56%) 0.00946

AHNAK 254(94.07%) 16(5.93%) 117(86.03%) 19(13.97%) 0.011132

ERBB2 248(91.85%) 22(8.15%) 114(83.82%) 22(16.18%) 0.022194

PIK3CA 224(82.96%) 46(17.04%) 99(72.79%) 37(27.21%) 0.023353

HERC1 260(96.3%) 10(3.7%) 123(90.44%) 13(9.56%) 0.029162

RXRA 251(92.96%) 19(7.04%) 134(98.53%) 2(1.47%) 0.031326

RNF213 255(94.44%) 15(5.56%) 120(88.24%) 16(11.76%) 0.042807

HYDIN 259(95.93%) 11(4.07%) 123(90.44%) 13(9.56%) 0.046722
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between five TLS patterns among the various aspects from TME

cell infiltration to prognosis. Cluster C2 showed high infiltration

level of B cells (including naïve B cell, memory B cell and plasma

B cell), CD8+ T cell, TFH cell and myeloid dendritic cell. It is now

considered that TLSs could be divided into three different
Frontiers in Immunology 11
119
mature states: early TLS, composed of dense lymphocytic

aggregate but lacking DCs; immature TLS, having DCs but

lacking germinal center (GC); and mature TLS, having active

GC and active B cell (33–35). Therefore, we thought cluster C2

was characterized by mature TLS, and not surprising to find
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FIGURE 5

The TME cell infiltrating characteristics between high and low TLS score group. (A) Sankey diagram showing the changes of TLS clusters, gene
clusters and TLS score and final survival status. (B) Differences in the stromal, immune and ESTIMATE score between high and low TLS score
groups in meta-cohort (***P <0.001, Wilcoxon test). (C) The intensity of immune function between high and low TLS score groups. The upper
and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed
outliers. The asterisks represented the statistical p-value (ns, no significance; ***P < 0.001). (D) TME cells infiltration characteristics in high and
low score groups by TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and EPIC methods. (E) The correlation between
TLS score and infiltration level of immune cells.
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patients from cluster C2 had the best survival advantage. Cluster

C1 was significantly enriched in CD8+ T cell, TFH cell and

macrophage M1. TFH (CD4+ CXCL13+ T cell) which could

produce CXCL13 is also believed crucial in the formation of

TLSs (6, 36). Although we didn’t see significantly high

infiltration level of B cells, cluster C1 showed better prognosis

than clusters C3 – C5. We supposed that the survival advantage

was due to the significantly high infiltration of TFH which

indicated active TLS neogenesis. The following heatmap of

TGSs also proved our opinion. Notably, CCL20 was highly

enriched in cluster C4 and we observed patients from cluster

C4 had the worst survival advantage. Previous studies have

proved that the activation of CCL20-CCR6 axis could promote

ovarian cancer migration, lung adenocarcinoma progression and

impair the function of T cells in prostate cancer (37–39). Thus,

our findings could provide a new insight into CCL20 in BCa.

Next, we investigated the mRNA transcriptome differences

between distinct TLS patterns and used unsupervised clustering
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to divide patients into four gene clusters named gene cluster A –

D. Consistent with the TLS clusters, gene cluster A was

characterized by mature TLS and patients from it had the best

prognosis. Interestingly, we found gene clusters B and D had

relatively high infiltration levels of immune cells (such as B cells,

T cells, macrophages and neutrophils), but didn’t show

corresponding survival advantages. Thus, we thought gene

clusters B and D were characterized by immune-exclude

phenotype, also called ‘cold’ tumor (40). In this phenotype,

cytotoxic T lymphocytes (CTLs) were excluded from the core of

the tumor and instead present along the margin of the tumor

where they could be stuck in the fibrotic stroma. The

significantly high infiltration level of fibroblasts and

endothelial cells in clusters B and D also proved it.

To further investigate the TLS pattern in individuals, we

developed a scoring system named TLS score to quantify the TLS

pattern in patients with BCa. Using the TLS score, we divided all

patients into two subgroups: high TLS score group and low TLS
B C

D E F

G H I

A

FIGURE 6

Linear regression analysis for TLS score and immune cells. (A) Correlation between TME B cells infiltration and TLS score by XCELL. (B)
Correlation between TME B cells infiltration and TLS score by TIMER. (C) Correlation between TME T cells infiltration and TLS score. (D)
Correlation between TME CD8+ T cell infiltration and TLS score. (E) Correlation between TME T cell follicular helper infiltration and TLS score.
(F) Correlation between TME macrophages infiltration and TLS score. (G) Correlation between TME myeloid dendritic cell infiltration and TLS
score. (H) Correlation between TME NK cell infiltration and TLS score. (I) Correlation between TME endothelial cell infiltration and TLS score.
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score group. We first performed GSEA to dig out the latent

enrichment of pathways between two subgroups. We found

immune response, cytokines and antigen-antibody reaction

related pathways were enriched in low score group, while

metabolic related pathways and cell growth and differentiation

related pathways were enriched in high score group. This result

revealed a better anti-tumor potential of low score group

compared to high score group. The subsequent survival

analysis also proved it that patients from low score group had

significantly better prognosis than that in high score group. As

TMB has been proved as a biomarker for prediction of response

to ICB treatment (29), we further evaluated the relationship

between TLS score and TMB. We didn’t find significant

correlation between TLS score and TMB, which indicated TLS

score might be a predictor independent of TMB. So, we

combined TMB and TLS score for prognosis prediction.
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Consistent with our expectations, TLS score showed a better

predictive value of prognosis than TMB. Nine genes (FAT1,

EPG5, AHNAK, ERBB2, PIK3CA, HERC1, RXRA, RNF213 and

HYDIN) showed significant distribution differences of somatic

mutation between high and low score groups. Among them, five

genes have been reported to be correlated with the development,

progression or metastasis of BCa. For example, Wang et al.

reported that knockdown of FAT1 promoted the BCa cell

apoptosis and inhibit the viability and migration of BCa in

vitro (41). The overexpression of AHNAK has been reported to

promote the proliferation and migration of UMUC3 and T24

cells, while knockdown of AHNAK could inhibit the metabolism

and epithelial-mesenchymal transition (EMT) of these cells (42).

Besides, RXRA hot-spot mutant was reported to related to

upregulated PPAR signaling activity (43), and then

contributed to the growth of BCa cells (44). The other genes
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FIGURE 7

Role of TLS patterns in immunotherapy and chemotherapy. (A) The similarity of gene expression profiles between TLS score and bladder cancer
patients treated with immune checkpoint blockade (ICB). CTLA4-noR, patients no respond to anti-CTLA4 treatment, CTLA4-R, patients respond
to anti-CTLA4 treatment, PD1-noR, patients no respond to anti-PD-1 treatment, PD1-R, patients respond to anti-PD-1 treatment. (B–E) The
violin diagram showed the differences of response index between high and low TLS score groups among four subgroups. (F–I) The differences
of drug sensitivity (oncoPredict score) between high and low TLS score group. (F) Cisplatin for chemotherapy; (G) Gemcitabine for
chemotherapy; (H) Vinblastine for chemotherapy; (I) Epirubicin for intravesical instillation.
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(EPG5, HERC1, RNF213 and HYDIN) haven’t been reported to

correlate with the pathology of BCa, and we think these genes are

potential targets for intervention of BCa.

A systematic analysis of immune cell infiltration in the TME

was conducted. We found low TLS score group showed better

immune functions than high score group and obtained higher

ESTIMATE score. Component analysis of infiltrating cells

revealed that low score group had significantly high infiltration

level of most immune cells: B cells, T cells (CD4+ T cell and

CD8+ T cell), macrophages (macrophage M1 and macrophage

M2), myeloid dendritic cell and NK cell. However, we noticed

Treg cell also showed infiltration in low TLS score group. Treg cell

is an important immunosuppressive cell and usually leads to

tumor angiogenesis, immune evasion, drug resistance, tumor

progression and metastasis (45). Indeed, Treg cell was found

within TLSs in breast cancer, lung cancer, colorectal cancer and

prostate cancer, and contributed to a negative effect on the

capacity of TLSs (46–48). The research results of Joshi et al.

demonstrated Treg cells suppressed anti-tumor response in TLSs,

while after Treg cell depletion, T cells proliferation rates

increased in TLSs and led to tumor destruction (49). These

results suggest TLSs play a complicated role in anti-tumor effect,

and more researches and accurate biomarkers for TLSs are

needed in the future. Correlation analysis of infiltrated

immune cells showed the value of TLS score was negatively

correlated with B cells (naïve B cell, memory B cell and plasma

cell), T cells (CD4+ T cell, CD8+ T cell and TFH cell),

macrophages (macrophage M1 and M2), myeloid dendritic

cell and NK cell. Therefore, the TLS score could be used to

evaluate the infiltration level of immune cells in TME in

individual patients with BCa. Considering plasma cells in TLSs

were activated and differentiated in GC, the TLS score could also

reveal the maturation state of TLSs to some extent. In recent

years, humoral immunity has been proposed to be important in

anti-tumor effects, and B cells play a key role in this process. A

pan-cancer study demonstrated that the presence of memory B

cells was associated with poor prognosis in colon, gastric

cancers, although TLSs were reported to promote the

prognosis of patients in these cancers (50). Another study

reported that high density of B cells was related to better

prognosis of patients with pancreatic cancer but only if these

cells formed TLS (51). Therefore, when considering the anti-

tumor effects of B cells, it is important to distinguish the

phenotypes or characteristics of B cells. For BCa, Koti et al.

reported that well-formed TLS were more common in aggressive

high grade MIBC compared to low grade NIMBC (52). More

studies are needed to further elucidate the effects of B cells

in BCa.

Immunotherapy, led by ICB treatment (PD-1/PD-L1

blockade alone or combined with CTLA-4 checkpoint

inhibition) showed great benefit in the second-line therapy of

patients with unresectable and metastatic BCa (53). However,
Frontiers in Immunology 14
122
the response rate to ICB treatment is low, and there is an urgent

need to find new biomarkers to screen out patients who are

appropriate for ICB treatment. Previous studies have reported

the presence of TLSs was associated with higher response rate to

immunotherapy of ICB treatment in the patient population with

BCa. Here we wondered whether TLS score could predict the

response to ICB treatment in individuals and instruct the clinical

treatment strategy. We found low TLS score group was

significantly associated with the response to anti-PD-1

treatment. In TCIA method, we discovered patients from low

score group showed advantages not only in anti-PD-1/anti-

CTLA-4 monotherapy but in combined immunotherapy.

Besides, survival analysis revealed that patients from low score

group had better prognosis than that from high score group in

meta-cohort and IMvigor210 immunotherapy cohort. These

results demonstrated that TLS score was an excellent predictor

for the response to ICB immunotherapy and prognosis in

patients with BCa. To our surprise, in TIDE analysis, low TLS

score group had a relatively higher TIDE score than high TLS

score group. We thought the result of TIDE might be influenced

by the relatively high Treg cell infiltration level and led to bias.

Finally, we investigated the relationship between TLS score

and response to chemotherapy by oncoPredict algorithm. For

BCa, gemcitabine, cisplatin and vinblastine are usually used for

adjuvant treatment after surgery and epirubicin is usually used

for intravesical instillation. We found low TLS score group was

related to better response to all these drugs. In addition, we

screen out a number of other chemotherapy drugs which showed

better response in low TLS score group. Our findings revealed

that TLS score played a unique role in predicting the response to

chemotherapy in BCa. Exhilaratingly, previous studies have

reported that widely used anti-cancer drugs could induce the

formation of intratumoral TLSs in mice. In patients with cancer,

studies revealed the use of chemotherapy was associated with

massive TLSs in tumors (54, 55), which strongly indicated that

chemotherapy could induce the formation of TLSs. All these

results suggest TLSs and chemotherapy are important in tumor

destruction, and mutually reinforce anti-tumor effect. Our work

plays a key role in this process that help to screen out patients

who are appropriate for chemotherapy.

In general, we used the validated TGSs to provide a

comprehensive insight into TLSs in BCa and evaluated the

comprehensive role of TLSs in prognosis, TMB, TME immune

cell infiltration, response to chemotherapy and immunotherapy.

The TLS patterns could help to distinguish patients with

different statuses of TLSs, and draw the landscape of TME cell

infiltration, TSGs expression and prognosis among patients. The

TLS score could evaluate the specific TLS pattern in individuals,

and was proven to be a good predictor for prognosis, response to

immunotherapy and chemotherapy. Besides, TLS score showed

a significant correlation with the infiltration level of immune

cells and could indicate the maturation status of TLSs to some
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extent. Therefore, the TLS score could aid in precision medicine

for patients with BCa.

However, there are a few limitations existing in our study.

First, though 39 genes were validated as TSGs, there still lacks

accurate TSGs. The TSGs we included in this study might not be

comprehensive and accurate enough, thus, might lead to bias.

Second, the study was performed by bioinformatic analyses, and

many cells reported to play a role in TLSs recently such as

regulatory B (Breg) cells couldn’t be distinguished well by

algorithms. Third, although the analysis used data from 18

cohorts and clinical samples size is relatively adequate, our

study lacks external verification in clinical trials. Finally, the

exact mechanisms behind the interaction between TLSs and BCa

remain unclear, and more researches are needed to further

unveil the mystery of TLSs.

In conclusion, our work demonstrated the characteristics of

TLSs in BCa. By using the TLS score, we could evaluate the TLS

pattern in individuals, and predict the TME cell infiltration, TLS

maturation, prognosis, response to immunotherapy and

chemotherapy in BCa. Thus, better understanding of TLS

pattern and the usage of TLS score could help instruct clinical

strategy and improve prognosis of patients with BCa.
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SUPPLEMENTARY FIGURE 1

Survival analysis for TLS signature genes that low expression subgroup

showed survival advantages. (A) Survival analysis for IL1R1. (B) Survival
analysis for IL10. (C) Survival analysis for SDC1.

SUPPLEMENTARY FIGURE 2

Survival analysis for TLS signature genes that high expression subgroup

showed survival advantages. (A–S) Survival analysis for CCL2, CCL8, CD4,
CD5, CD38, CD40, CD200, CXCL9, CXCL10, CXCL13, CCR3, GFI1, ICOS,

IRF4, MS4AA, PDCD1, SH2D1, STAT5 and TRAF6.

SUPPLEMENTARY FIGURE 3

The process of generating four distinct TLS cluster related DEGs genomic

patterns. (A–H) Unsupervised clustering of 33 TLS cluster related DEGs in

meta-cohort and consensus matrices for k = 1, 3 - 9. (I) The cumulative
distribution function (CDF) curve for k = 2 - 9. (J) The scree plot for k = 2 -

9. K The track plot for k = 2 - 9.

SUPPLEMENTARY FIGURE 4

Survival analysis between high and low TMB subgroups and somatic

mutation between high and low TLS score groups. A Survival analysis

between high and low TMB subgroups. B Distribution differences of
somatic mutation between high score and low score groups in the

TCGA_BLCA cohort.

SUPPLEMENTARY FIGURE 5

Linear regression analysis for TLS score and immune cells. (A) B cell

memory. (B) B cell memory. (C) B cell naive. (D) B cell plasma. (E) B cell

plasma. (F) T cell CD4+ Th1. (G) T cell CD4+ Th2. (H) T cell CD4+ memory
actived. (I) T cell CD8+. (J) T cell CD8+ effector memory. (K) T cell

follicular helper. (L) Macrophage M1. (M) Macrophage M2.

SUPPLEMENTARY FIGURE 6

23 drugs that are correlated with TLS score.

SUPPLEMENTARY FIGURE 7

25 drugs that are correlated with TLS score.
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Integrated profiling uncovers
prognostic, immunological, and
pharmacogenomic features of
ferroptosis in triple-negative
breast cancer

Kun Fang1*, Zhengjie Xu1, Suxiao Jiang1, Changsheng Yan2,
Desheng Tang2 and Yan Huang3

1Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China,
2Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China, 3Department of Surgery, Affiliated Hospital of Ningxia Medical University,
Yinchuan, China
Objective: Ferroptosis is an iron-dependent type of regulated cell death triggered

by the toxic buildup of lipid peroxides on cell membranes. Nonetheless, the

implication of ferroptosis in triple‐negative breast cancer (TNBC), which is the

most aggressive subtype of breast carcinoma, remains unexplored.

Methods: Three TNBC cohorts—TCGA-TNBC, GSE58812, and METABRIC—

were adopted. Consensus molecular subtyping on prognostic ferroptosis-

related genes was implemented across TNBC. Ferroptosis classification-

relevant genes were selected through weighted co-expression network

analysis (WGCNA), and a ferroptosis-relevant scoring system was proposed

through the LASSO approach. Prognostic and immunological traits,

transcriptional and post-transcriptional modulation, therapeutic response,

and prediction of potential small-molecule agents were conducted.

Results: Three disparate ferroptosis patterns were identified across TNBC, with

prognostic and immunological traits in each pattern. The ferroptosis-relevant

scoring system was proposed, with poorer overall survival in high-risk patients.

This risk score was strongly linked to transcriptional and post-transcriptional

mechanisms. The high-risk group had a higher response to anti-PD-1 blockade

or sunitinib, and the low-risk group had higher sensitivity to cisplatin. High

relationships of risk score with immunological features were observed across

pan-cancer. Two Cancer Therapeutics Response Portal (CTRP)-derived agents

(SNX-2112 and brefeldin A) and PRISM-derived agents (MEK162, PD-0325901,
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PD-318088, Ro-4987655, and SAR131675) were predicted, which were

intended for high-risk patients.

Conclusion: Altogether, our findings unveil prognostic, immunological, and

pharmacogenomic features of ferroptosis in TNBC, highlighting the potential

clinical utility of ferroptosis in TNBC therapy.
KEYWORDS

triple-negativebreast cancer, ferroptosis, prognosis, immunological feature, immunotherapy
Introduction

Female breast cancer is the most commonly diagnosed cancer

globally, with an estimated 2.3 million new cases (11.7%), and the

major cause of cancer deaths with estimated 0.68 million deaths

(6.9%) (1). Triple-negative breast cancer (TNBC) is a subtype of

breast cancer with the absence of expression of estrogen receptor

(ER) and progesterone receptor (PR) together with human

epidermal growth factor receptor type 2 (HER2) (2). TNBC

possesses a strong invasive and metastatic ability, easily invading

blood vessels, and increased recurrence risk (2). The therapeutic

options for TNBC are far more limited in comparison to those for

other breast cancer subtypes (3). Surgical resection and

chemotherapy remain the first‐line regimens against TNBC (3).

Immunotherapy has revolutionized the field of oncology over the

past few years, primarily with the introduction of immune

checkpoint blockade (ICB) into clinical practice. Few patients

with TNBC benefit from ICB, and complete and durable

responses are rare because most tumors are not immunoreactive

(4). Hence, an innovative scheme is required for bringing

immunotherapy closer to TNBC. TNBC is highly genetically

diverse, which ranges from high proliferation to chemotherapy

resistance with low proliferative and luminal features (5). Biomarker

selection, drug discovery, and clinical trial design are necessary to

match properly targeted therapies to distinct subpopulations of

TNBC patients.

Ferroptosis is an iron-dependent type of cell death induced

by disruption of membrane integrity because of overproduced

lipid peroxides, which is morphologically characterized by cell

swelling, pore formation on the cell membrane, smaller
ncer; ICB, immune

K-M, Kaplan–Meier;

yoto Encyclopedia of

A, gene set variation

CNA, weighted co-

rinkage and selection

, area under the curve;
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mitochondria, and reduced mitochondrial cristae together with

enhanced mitochondrial membrane density (6). Induction of

ferroptotic cell death involves a few alterations (altered iron

metabolism, response to oxidative stress, production of lipid

peroxides, etc.) (7). Excessive or deficient ferroptosis correlates

to various physiological and pathophysiological processes,

especially dysregulated immune responses (8). For instance,

CD8+ T cells trigger tumoral ferroptosis during cancer

immunotherapy (9). Inducing ferroptosis may elicit an

immunostimulatory tumor microenvironment (10). Due to the

distinction of ferroptosis from apoptosis and others, inducing

ferroptosis may eliminate tumor cells that have resistance to

other cell death types (11). Ferroptotic cell death has become a

novel direction around which to design TNBC therapy.

Nonetheless, the full appearance of ferroptosis in TNBC has

not yet been completely clarified.

The current study integrated ferroptosis-related genes

(FRGs) and proposed a novel ferroptosis classification in

TNBC. Especially, disparate ferroptosis patterns exhibited

unique prognostic and immunological traits. Additionally, a

ferroptosis-relevant gene signature was established and

evaluated its associations with survival, immunological traits,

and therapeutic sensitivity. Altogether, our findings suggested

the possible implications of ferroptosis in shaping tumor

immune microenvironment and immunological features.
Materials and methods

Study population and data collection

The current study searched the TNBC cohorts from The

Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)

and GEO (http://www.ncbi.nlm.nih.gov/geo/) together with

METABRIC (http://www.cbioportal.org/). The inclusion criteria

of TNBC patients comprised the following: i) histopathological

diagnosis of TNBC, ii) appropriate transcriptome data, and iii)

available follow-up information. As a result, we included 117

patients (tumors, N = 117; normal tissues, N = 113) from TCGA-
frontiersin.org
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TNBC as the training cohort. Meanwhile, 107 patients from the

GSE58812 (12) and 299 patients from the METABRIC (13) were

adopted as the verification cohorts. The specific clinical

information is listed in Supplementary Table 1.

The ensemble IDs of TCGA-TNBC dataset were mapped to

gene symbols in accordance with the annotation of

“Homo_sapiens.GRCh38.91.chr.gtf”. Then, gene expression was

normalized utilizing the scale approach of the limma package

(14), and the mean RNA expression of duplicates was computed,

followed by the removal of genes with low abundance. The probes of

GSE58812 expression profiles weremapped in line with the GPL570

annotation file, and the mean RNA expression was computed for

duplicates. The METABRIC data were acquired from the cBio

Cancer Genomics Portal (http://cbioportal.org) (15). Pan-cancer

expression profiles were acquired from TCGA project.
Ferroptosis gene set

Sixty FRGs were collected from previously published

literature, which is listed in Supplementary Table 2. The

position of chromosomes of FRGs was visualized in the Circos

plot via the RCircos package (16). The levels of FRGs were

compared between TNBC and normal tissues.
Somatic mutation analysis

The somatic variants in Mutation Annotation Format were

acquired from the TCGA-TNBC dataset. Overall gene mutation

was estimated utilizing the maftools package (17).
Interaction between ferroptosis-
related genes

Functional protein–protein interactions among FRGs were

conducted via the STRING database (https://string-db.org) (18),

which were visualized utilizing Cytoscape software (19).
Survival analysis

A univariate or multivariate Cox regression approach was

adopted to assess the relationships of variables with overall survival

(OS) using the survival package. Kaplan–Meier (K-M) curves with

the log-rank test were carried out by utilizing the survminer package.
Functional enrichment analysis

With clusterProfiler package (20), Gene Ontology (GO)

together with the Kyoto Encyclopedia of Genes and Genomes
Frontiers in Immunology 03
128
(KEGG) pathway enrichment analysis was conducted. False

discovery rate (FDR) <0.05 denoted significant enrichment.

The “c2.cp.kegg.v7.2.symbols” gene set was downloaded from

Molecular Signatures Database, which was adopted for gene set

variation analysis (GSVA) (21). Additionally, the activity of

known biological processes was inferred through GSVA. Gene

set enrichment analysis (GSEA) was conducted to estimate the

significant activity of KEGG pathways between groups (22).
Consensus clustering

The c on s e n s u s c l u s t e r i n g me t hod f r om th e

ConsensusClusterPlus package was employed to infer the

number of unsupervised classes across TNBC (23). This

analysis was set as agglomerative “k-means” clustering with

Euclidean correlation distance, and 80% of the samples were

resampled 1,000 times. The discrimination of transcriptome

profiling between diverse patterns was displayed through

principal component analysis (PCA) by utilizing the limma

package. To validate the reproducibility of ferroptosis

classification, the unique upregulated markers of each

ferroptosis pattern were selected, and sample clustering was

implemented in the verification cohorts via the NTP algorithm.
Estimation of immunological features

The relative abundance of tumor-infiltrating immune cells

was inferred through the single-sample gene set enrichment

analysis (ssGSEA) approach. Tumor purity, immune, and

stromal scores were computed via the ESTIMATE algorithm

(24). RNA expression, methylation, and copy-number

alterations of immunomodulators (co-stimulators, co-inhibitors,

ligands, receptors, cell adhesion, antigen presentation, and others)

were analyzed. Additionally, the activity of common immune

checkpoints was computed across TNBC. Seven steps within the

cancer-immunity cycle were quantified with ssGSEA in

accordance with expression profiling (25).
Weighted co-expression
network analysis

The weighted co-expression network analysis (WGCNA)

package (26) was adopted for co-expression analysis. First, an

appropriate soft threshold power was chosen to transform the

adjacency matrix into the topological overlap matrix.

Associations of co-expression modules with ferroptosis

classification were computed. The genes in the module that

exhibited the strongest relationship with ferroptosis

classification were regarded as ferroptosis classification-

relevant genes.
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Construction of a ferroptosis
scoring system

A least absolute shrinkage and selection operator (LASSO)

regression model was conducted on prognostic ferroptosis pattern-

relevant genes by utilizing the glmnet package. The coefficient was

computed with a multivariate Cox regression approach, and the

remaining genes were chosen for constructing a ferroptosis scoring

system (ferroptosis_score). Ferroptosis_score was computed as the

sum of the products of gene expression and matched coefficients.

TNBC cases were classified as ferroptosis_score-high and

ferroptosis_score-low groups in accordance with the median

score. Time-dependent receiver operating characteristic (ROC)

analysis was implemented, followed by calculation of the area

under the curve (AUC) at diverse time points for assessing the

discriminative significance. Utilizing the rms package, a nomogram

was constructed in accordance with prognostic parameters. The

predictive efficiency was estimated with calibration curves.
Evaluation of post-transcriptional events

The miRNA expression profiles were downloaded from

TCGA-TNBC dataset. MiRNAs or mRNAs with differential

expression were selected between groups in accordance with

FDR < 0.05. Targeted mRNAs were inferred through online

databases, followed by KEGG pathway enrichment analysis.
Therapeutic response estimation

The expression similarity between groups and patients

receiving anti-PD-1/anti-CTLA4 agents was assessed through

Subclass Mapping (SubMap) (27). The chemotherapeutic

response was inferred on the basis of the largest publicly

available pharmacogenomics database: Genomics of Drug

Sensitivity in Cancer (GDSC; www.cancerRxgene.org) (28).

The prediction process employed the pRRophetic package, and

ridge regression was utilized for estimating half of the maximum

inhibitory concentration (IC50) (29). The prediction accuracy

was evaluated with 10-fold cross-validation. Drug sensitivity

profiling of human cancer cell lines was obtained from the

Cancer Therapeutics Response Portal (CTRP) (https://portals.

broadinstitute.org/ctrp) together with the PRISM project

(https://depmap.org/portal/prism/), which was adopted for the

prediction of small-molecule agents (30).
Frontiers in Immunology 04
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Statistical analysis

R software (version 4.1.0) was adopted for statistical analysis.

Continuous variables were compared with Student’s t-test or

Wilcoxon rank-sum test. The relationships between variables were

estimated with Pearson’s or Spearman’s test. Statistical significance

was set at p < 0.05 (*p < 0.05, **p < 0.01, and ***p < 0.001).
Results

Transcriptional and genetic alterations,
survival implication, and interactions of
ferroptosis-related genes in triple‐
negative breast cancer

The present study collected 60 FRGs from previously

published literature. Figure 1A illustrates the position of FRGs

on chromosomes. Most FRGs exhibited abnormal expression in

TNBC in contrast to normal tissues (Figures 1B, C). The extensive

somatic mutations of FRGs occurred across TNBC, especially

TP53 (Figure 1D). Pearson’s correlation test of RNA expression

unveiled that most FRGs notably interacted with each other

(Figure 1E). Additionally, we investigated the closely functional

interactions among products of FRGs (Figure 1F). Among FRGs,

MT1G, FADS2, and HMOX1 were notably linked to TNBC cases’

OS (Figure 1G). GO and KEGG enrichment results confirmed the

implication of FRGs in ferroptosis (Figure 1H).
Definition of ferroptosis classification
across triple‐negative breast cancer

In accordance with the consensus clustering approach using

the transcript levels of prognostic FRGs, the optimal number of

clusters was 3, and TCGA-TNBC dataset was categorized as three

disparate ferroptosis patterns, namely, C1–3 (Supplementary

Figures 1A–C; Figure 2A). Three patterns exhibited disparate

OS results, with C3 being the worst, C1 the next, and C2 the best

(Figure 2B). PCA unveiled the diverse transcriptome profiling

traits among three ferroptosis patterns (Figure 2C). We selected

the unique upregulated markers in each ferroptosis pattern that

were utilized for sample clustering in the GSE58812 and

METABRIC datasets (Supplementary Figure 2A). The

reproducibility of ferroptosis classification was confirmed in the

two verification datasets (Supplementary Figures 2B–E).
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Unique immunological traits in diverse
ferroptosis patterns

The notable discrepancy in RNA expression, methylation,

and copy-number variations of immunomodulators (co-

stimulators, co-inhibitors, ligands, receptors, cell adhesion,

antigen presentation, and others) was observed across three

ferroptosis patterns (Figure 2D). In addition, the C3 subtype

displayed the highest abundance of immune cells and expression

of immune checkpoints, followed by C2 and C1 (Figure 2E). The

activity of KEGG pathways was compared between ferroptosis
Frontiers in Immunology 05
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patterns. In contrast to C1, higher activity of multiple

metabolism pathways (pyrimidine, arginine and proline

metabolism, alanine aspartate and glutamate, amino sugar and

nucleotide sugar, fructose, and mannose, etc.) was observed in

C2 (Figure 2F). C2 displayed the enhanced activity of

biosynthesis and degradation of DNA and RNA than C3

(Figure 2G). Additionally, tumorigenic pathways (calcium

pathway, apoptosis, ABC transporters, neuroactive ligand–

receptor interaction, etc.) possessed increased activity in C3

versus C2 or C1 (Figures 2G, H). In contrast to C1, higher

activity of immune response pathways (complement and
A B

D E F

G H

C

FIGURE 1

Transcriptional and genetic alterations, survival implication, and interactions of FRGs in TNBC. (A) Circos plot for the position of FRGs on
chromosomes. (B, C) Volcano and heatmap for RNA levels of FRGs in TNBC and normal tissues. (D) Oncoplot of the somatic landscape of FRGs
across TNBC. FRGs are ranked by mutation frequency, and side bar plot shows log10 converted Q-value estimated through MutSigCV. (E)
Relationships between FRGs at the RNA level. (F) An interaction network of products of FRGs. (G) Univariate Cox regression results of the
relationships of FRGs with OS. (H) GO and KEGG enrichment results of FRGs. FRGs, ferroptosis-related genes; TNBC, triple‐negative breast
cancer; OS, overall survival; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes *p<0.05, **p<0.01 and ***p<0.001..
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coagulation cascades, antigen processing and presentation,

chemokine pathway, etc.) was found in C3 (Figure 2H). We

compared known molecular subtypes with the ferroptosis

classification. Our results demonstrated that the ferroptosis

classification was independent of known TCGA subtypes and

immune subtypes (Figure 2I).
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Selection of ferroptosis pattern-relevant
genes in triple‐negative breast cancer

A gene co-expression network was conducted by adopting

WGCNA to select modules with the strongest correlation to

ferroptosis classification. First, no outliers were detected among
A B

D E F

G

I

H

C

FIGURE 2

Definition of ferroptosis classification with unique immunological traits in TCGA-TNBC cohort. (A) Classification of TNBC patients as three
patterns through consensus matrix. (B) K-M curves for OS among three ferroptosis patterns. (C) PCA plots for the notable discrepancy among
ferroptosis patterns. (D) Distribution of RNA expression, methylation, and copy-number alterations of immunomodulators in three ferroptosis
patterns. (E) Distribution of immune checkpoint expression, immune cell abundance, and immune and stromal scores across ferroptosis
patterns. (F–H) KEGG pathways with different activities in C1 versus C2, C2 versus C3, and C3 versus C1. (I) Relationships between the
ferroptosis classification with TCGA subtypes and immune subtypes. TNBC, triple‐negative breast cancer; K-M, Kaplan–Meier; OS, overall
survival; PCA, principal component analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas.
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TCGA-TNBC samples (Figure 3A). The appropriate soft

threshold was set as 10 by considering scale independence

together with mean connectivity (Figure 3B). Afterward, a scale-

free co-expression network was established. Consequently, 26 co-

expression modules were clustered (Figure 3C). Especially, the

yellow module displayed the strongest correlation to ferroptosis

classification (correlation coefficient = 0.37, p = 6e−05;

Figure 3D). In addition, module membership in the yellow

module was strongly linked to gene significance for ferroptosis

classification (Figure 3E). Thus, genes in the yellow module were

regarded as ferroptosis pattern-relevant genes, which primarily

participated in modulating immune response and TNBC-relevant

pathways (NOD-like/Toll-like receptor/TNF/NF-kB/B cell

receptor pathways, etc.) (Figure 3F).
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Establishment and external verification of
a robust ferroptosis scoring system in
triple‐negative breast cancer

A total of 145 ferroptosis pattern-relevant genes notably

correlated to TNBC cases’ OS (Supplementary Table 3), which

were adopted for implementing LASSO regression analysis.

Increasing l led to a decrease in the number of independent

variables with coefficients close to 0 (Figure 4A). Ten-fold cross-

validation was adopted for building the scoring system and

estimating the confidence intervals following diverse l values.

The optimal l value was determined when partial likelihood

deviance was the lowest (Figure 4B), and 16 genes were selected

for the scoring system following the formula: ferroptosis-
A B D

E
F

C

FIGURE 3

Selection of ferroptosis pattern-relevant genes in TCGA-TNBC cohort. (A) Removal of outliers via sample clustering. (B) Selection of the optimal
soft threshold through considering scale independence together with mean connectivity. (C) The branches of the clustering dendrogram
correspond to 26 modules. (D) Relationships of modules with ferroptosis classification. Correlation coefficients and p-values are exhibited in
boxes. (E) Scatter plots for the correlations of module membership in yellow module with gene significance for ferroptosis classification. (F) GO
and KEGG enrichment results of ferroptosis pattern-relevant genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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relevant risk score = (−0.142765874605473) * expCD47 +

0.112505459964827 * expMUL1 + 0.00538161716022841 *

expP LEKHF 1 + 0 . 215213236835648 * expCOPZ 1 +

(−0.168998590096113) * expENPP6 + 0.0791918658709983 *

e xp TOR 1 B + 0 . 2 54809882047955 * exp S LC 3 7 A 2 +

(−0.0946087366980265) * expPEG10 + 0.139388903981419 *

expCACNA2D4 + (−0.0109640256571299) * expSHMT1 +
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0.385024690538088 * expIGFL1 + 0.0181238671012704 *

expFKBP15 + (−0 .373571481244596) * expGSTO2 +

0.113747451219178 * expIL1RAPL2 + (−0.0758300765619583) *

expSLC35F3 + 0.0576459041484211 * expSDS. The risk score of

each case in TCGA-TNBC cohort was computed, and cases were

classified as ferroptosis-relevant high- and low-risk groups

under the median score (Figure 4C). K-M curves showed
A B

D E

F G
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FIGURE 4

Establishment of a ferroptosis scoring system in TCGA-TNBC cohort. (A) Changing trajectory of prognostic ferroptosis pattern-relevant genes.
The x-axis denotes the log l values of independent variables, and the y-axis denotes their coefficients. (B) Confidence intervals with distinct l
values. (C) Distribution of ferroptosis-relevant risk score, survival status, and gene expression across TNBC cases. (D) K-M curves of OS between
ferroptosis-relevant high- and low-risk groups. (E) ROC curves at 1-, 3- and 5-year OS outcomes. (F) Univariate and multivariate Cox regression
results of ferroptosis-relevant risk score and clinicopathological parameters with TNBC cases’ OS. (G) Construction of the nomogram by totaling
the points determined on the points scale for ferroptosis-relevant risk score, T, N, and M stages. (H) Calibration curves of the relationships
between observed 1-, 3-, and 5-year OS and nomogram-estimated outcomes. TNBC, triple‐negative breast cancer; K-M, Kaplan–Meier; OS,
overall survival; ROC, receiver operating characteristic.
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poorer OS outcomes in the high-risk score group (Figure 4D).

ROC analysis was conducted on the ferroptosis-relevant scoring

system for estimating prognostic outcomes. The AUCs at 1-, 3-,

and 5-year OS were all >0.9 (Figure 4E), demonstrating the

excellent efficiency of the scoring system in prognostic

estimation in TCGA-TNBC cohort. The robustness of the

ferroptosis-relevant scoring system was proven in GSE58812

and METABRIC cohorts, and the same formula was applied to

the two verification cohorts. Notable differences were observed

in OS between ferroptosis-relevant high- and low-risk groups,

with relatively high AUCs at 1-, 3-, and 5-year OS in GSE58812

and METABRIC cohorts (Supplementary Figures 3A–F). The

above data demonstrated that the ferroptosis-relevant scoring

system possessed favorable robustness on diverse platforms.

Univariate Cox regression results showed that T, N, and M

stages and the ferroptosis-relevant risk score were significantly

associated with TNBC OS (Figure 4F). Further multivariate Cox

regression analysis demonstrated that the ferroptosis-relevant

risk score acted as an independent risk parameter of TNBC

prognosis (Figure 4F). To assist in the clinical application of the

ferroptosis-relevant scoring system, we proposed a prognostic

nomogram by incorporating T, N, and M stages and the
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ferroptosis-relevant risk score (Figure 4G). Calibration curves

confirmed the high accuracy of the nomogram in inferring 1-, 3-,

and 5-year OS outcomes (Figure 4H).
Ferroptosis-relevant risk score involved
in somatic mutation and transcriptional
and post-transcriptional mechanisms

Somatic mutation was compared between ferroptosis-relevant

high- and low-risk groups. Figure 5A illustrates the top 20 mutated

genes across TCGA-TNBC individuals, with TP53 as the most

frequent mutated gene. A higher mutation frequency was observed

in low-risk populations. Additionally, Leishmania infection,

cytokine–cytokine receptor interaction, endocytosis, apoptosis,

and MAPK signaling pathway displayed prominently increased

activity in high-risk cases in contrast to low-risk cases (Figure 5B).

Most genes from the ferroptosis-relevant risk score displayed

abnormal expression between TNBC and normal tissues, with

upregulated SLC37A2, IGFL1, and SDS and downregulated

MUL1, ENPP6, CACNA2D4, SHMT1, GSTO2, IL1RAPL2, and

SLC35F3 (Figure 5C). Afterward, the present study assessed
A B

DC

FIGURE 5

Ferroptosis-relevant risk score involved in somatic mutation and transcriptional and post-transcriptional mechanisms in TCGA-TNBC cohort.
(A) Oncoplot for the somatic landscape of ferroptosis-relevant high- and low-risk patients. Genes are ranked by mutation frequency. (B) GSEA
for the activity differences in KEGG pathways between groups. (C) Levels of the genes from ferroptosis-relevant risk score in TNBC and normal
tissues. (D) Differences in miRNA-targeted signaling pathways between groups. Red dots denote miRNA-targeted genes that exhibit
upregulation in the high-risk group, while blue dots denote miRNA-targeted genes that exhibit downregulation. Red lines indicate low
expression of miRNAs in the high-risk group, while blue lines indicate highly expressed miRNAs in the low-risk group. The circle denotes a
signaling pathway enriched by targeted genes. GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; TNBC,
triple‐negative breast cancer. *p < 0.05, **p < 0.01 and ***p < 0.001.
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differences in miRNA expression between ferroptosis-relevant high-

and low-risk groups in TCGA-TNBC dataset. A total of 84miRNAs

notably differentially expressed between groups were selected

(Supplementary Table 4). Moreover, an enrichment analysis of

their target genes was implemented. The miRNA target genes

exhibited observable correlations to cell cycle, MAPK, Wnt, and

p53 signaling pathways, which were differentially expressed between

groups (Figure 5D), suggesting that the ferroptosis-relevant risk

score might correlate to miRNA expression and signaling pathway

activity. The survival significance of each gene in the ferroptosis-

relevant risk score was assessed. In Figure 6, upregulated

CACNA2D4, COPZ1, FKBP15, IGFL1, IL1RAPL2, MUL1,

PLEKHF1, SDS, SLC37A2, and TOR1B were correlated to poorer
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OS outcomes, with opposite effects of CD47, ENPP6, GSTO2,

PEG10, SHMT1, and SLC35F3 on OS.
Immunological traits and the
immunotherapeutic response of distinct
ferroptosis-relevant risk score groups

The activity of steps within the cancer-immunity cycle

was computed, which may reflect an anti-tumor immune

response. We observed that the ferroptosis-relevant risk

score was positively linked to most steps (Figure 7A). In

addition, this risk score displayed notably positive
FIGURE 6

K-M curves exhibit OS outcomes in the high and low expression of genes from ferroptosis-relevant risk scores across TCGA-TNBC patients. K-
M, Kaplan–Meier; OS, overall survival.
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interactions with angiogenesis and EMT2. A higher

abundance of most immune cells, increased immune and

stromal scores, and decreased tumor purity were observed

in the high-risk group (Figure 7B). By adopting the SubMap
Frontiers in Immunology 11
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algorithm, the therapeutic response of high- and low-risk

cases was inferred. Consequently, high-risk cases possessed a

h igher pos s ib i l i t y o f benefi t t ing f rom ant i -PD-1

immunotherapy (Figure 7C).
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FIGURE 7

Immunological traits and immunotherapeutic response of distinct ferroptosis-relevant risk score groups. (A) Relationships between risk score
and activity of each step within cancer-immunity cycle and known biological processes in TCGA-TNBC cohort. (B) Distribution of immune cell
infiltrations, tumor purity, and immune and stromal scores across TCGA-TNBC patients. (C) Estimation of immunotherapeutic response of high-
and low-risk TCGA-TNBC individuals through SubMap analysis. (D, E) Pan-cancer analysis of the relationships between risk score and activity of
known biological processes and abundance of immune cell types. SubMap, Subclass Mapping.
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Immune relevance of ferroptosis-
relevant risk score across pan-cancer

Pan-cancer analysis was implemented to further elucidate

the immune relevance of the ferroptosis-relevant risk score. This

risk score exhibited generally positive relationships with the

immune checkpoint, CD8 T effector, and antigen-processing

machinery in most cancer types (Figure 7D). In addition, this

risk score was positively linked to the abundance of most

immune cell types across pan-cancer (Figure 7E). The above

data demonstrated the crucial roles of the ferroptosis-relevant

risk score in the tumor immune microenvironment across

pan-cancer.
Potential therapeutic significance of
ferroptosis-relevant gene signature

Estimated IC50 values of chemotherapy or targeted

therapeutic agents were compared between ferroptosis-relevant

high- and low-risk TNBC cases. Data showed that the low-risk

group exhibited significantly lower IC50 of cisplatin, with

significantly lower IC50 of sunitinib in the high-risk group

(Figure 8A), indicating that low-risk cases had higher

sensitivity to cisplatin, with higher sensitivity to sunitinib for

high-risk cases. Potential small-molecule agents were predicted

aiming at high-risk cases. As a result, two CTRP-derived agents

(SNX-2112 and brefeldin A; Figure 8B) and PRISM-derived

agents (MEK162, PD-0325901, PD-318088, Ro-4987655, and

SAR131675; Figure 8C) were selected for high-risk patients.
Discussion

TNBC is the most aggressive subtype of breast carcinoma,

with higher recurrent risk and mortality compared with other

subtypes. Due to limited therapeutic options, it is urgently

required for ascertaining therapeutic agents with a unique

mode of action for surmounting current issues in TNBC

therapy (31). Ferroptosis is an iron-dependent cell death form

with the traits of accumulated reactive oxygen species together

with lipid peroxidation products. Targeting ferroptosis is

regarded as a novel anti-TNBC strategy (32). Inducing

ferroptosis may sensitize TNBC cells to radiotherapy (33) and

neoadjuvant chemotherapy, etc. (34). Nonetheless, FRGs have

been rarely studied in patients with TNBC.

On the basis of the expression profiling of prognostic FRGs,

a novel ferroptosis classification was proposed for TNBC. Each

ferroptosis pattern possessed unique prognostic and

immunological traits. Evidence demonstrates the interactions
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of ferroptosis with tumor immunity. For instance, the interplay

between TNBC cells and macrophages modulates ferroptotic cell

death, development, and chemoresistance of TNBC (35).

Ferroptosis of cancer cells negatively affects antigen-presenting

cells and impedes adaptive immune responses, thereby

hindering ferroptosis-induced therapeutic application (36).

The LASSO approach is a compressed estimate adopted for

acquiring a refined model through building a penalty function,

which enables to compress several coefficients and set several

coefficients to 0 (37). Hence, this approach reserves the

preponderance of gene subset choice with shrinkage and is a

biased estimator that is appropriate for dealing with complex

collinear data, thus helping select variables in parameter

estimation for better solving the multicollinearity issue of

regression analysis. Based on ferroptosis pattern-relevant

genes, a robust ferroptosis scoring system in inferring TNBC

survival was proposed. High- and low-risk groups exhibited

diverse somatic mutation and transcriptional and post-

transcriptional mechanisms. The activation of innate

immunity and tumoral ferroptotic cell death may induce anti-

PD-1/PD-L1 therapeutic resistance (38). High-risk cases were

more likely to benefit from anti-PD-1 immunotherapy.

Neoadjuvant chemotherapy remains a crucial treatment

option for patients with locally advanced TNBC, which lowers

tumor burden, offers the opportunity for surgery and even breast

conservation, and accelerates early evaluation of individual

responses (34). Evidence demonstrates that patients achieving

pathological complete responses (pCRs) following neoadjuvant

chemotherapy have more favorable survival (39). Nevertheless,

currently, pCRs remain in low proportions. Improving pCRs

represents an important aim of neoadjuvant chemotherapy.

Thus, early detection of cases with better responses to

neoadjuvant chemotherapy has naturally become the major

focus of TNBC therapy. The ferroptosis-relevant gene

signature may infer the sensitivity of TNBC to cisplatin and

sunitinib. Low-risk cases had higher sensitivity to cisplatin, and

high-risk cases were more sensitive to sunitinib. Small-molecule

agents exert crucial roles in cancer therapy, combining with

specific target molecules in cells for playing specific functions.

They have become the focus of research because of their potent

specificity, prominent curative effect, and little damage to

normal cells. We predicted two CTRP-derived agents (SNX-

2112 and brefeldin A) and PRISM-derived agents (MEK162,

PD-0325901, PD-318088, Ro-4987655, and SAR131675) for the

treatment of high-risk patients.

In summary, our study reported the prognostic, molecular,

immunological, and pharmacogenomic features linked to

ferroptotic cell death in TNBC. As our awareness of ferroptosis

continues to improve, we look forward to more research to unveil

the potential mechanisms of ferroptosis in cancer.
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FIGURE 8

Potential therapeutic significance of ferroptosis-relevant gene signature in TCGA-TNBC cohort. (A) Comparison of IC50 values of chemotherapy
or targeted therapeutic agents between ferroptosis-relevant high- and low-risk TNBC cases. (B) Association between CTRP-derived agents and
ferroptosis-relevant risk score and comparison of AUC values of agents between groups. (C) Association between PRISM-derived agents and
ferroptosis-relevant risk score and comparison of AUC values of agents between groups. TNBC, triple‐negative breast cancer; CTRP, Cancer
Therapeutics Response Portal; AUC, area under the curve. *p < 0.05, **p < 0.01.
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Conclusion

Altogether, our findings proposed three disparate ferroptosis

patterns across TNBC, which provided a novel insight into the

relationships of ferroptosis with prognostic outcomes and

immunological features. Additionally, a robust ferroptosis-

relevant gene signature was exploited, which enabled us to

precisely speculate survival and responses to immunotherapy,

chemotherapy, and targeted therapies for TNBC individuals.

Several small-molecule agents were also predicted based on

ferroptosis-relevant gene signatures. Hence, this study

provided a roadmap for patients’ stratification and assisted in

developing regimens for personalized treatment decisions and

follow-up in TNBC.
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SUPPLEMENTARY FIGURE 1

Consensus clustering analysis of TCGA-TNBC samples. (A) Consensus
cumulative distribution function (CDF) curve. (B) Relative alterations in the

area under the CDF curve. (C) Tracking plot of sample classification.

SUPPLEMENTARY FIGURE 2

Verification of reproducibility of ferroptosis classification. (A)
Heatmap illustrates the unique up-regulated markers in each

ferroptosis pattern across TCGA-TNBC samples. (B) Sample
clustering of the GSE58812 dataset through NTP algorithm based on

the unique up-regulated markers. (C) K-M curves of OS among three

clusters in the GSE58812 dataset. (D) Sample clustering of the
METABRIC dataset with NTP algorithm on the basis of the unique

up-regulated markers. (E) K-M curves of OS among three clusters in
the METABRIC dataset.

SUPPLEMENTARY FIGURE 3

External validation of the robustness of ferroptosis-relevant gene

signature. (A) Distribution of ferroptosis_score, survival status, and gene
expression in the GSE58812 dataset. (B) K-M curves of OS between

ferroptosis-relevant high- and low-risk groups in the GSE58812 dataset.
(C) ROC curves at 1-, 3- and 5-year OS in the GSE58812 dataset. (D)
Distribution of ferroptosis-relevant risk score, survival status, and gene
expression in the METABRIC dataset. (E) K-M curves of OS between

ferroptosis-relevant high- and low-risk groups in the METABRIC

dataset. (F) ROC curves at 1-, 3- and 5-year OS in the METABRIC dataset.

SUPPLEMENTARY TABLE 1

The clinical information of TNBC patients from TCGA-TNBC, GSE58812,

and METABRIC cohorts.

SUPPLEMENTARY TABLE 2

The list of ferroptosis-related genes.

SUPPLEMENTARY TABLE 3

Univariate cox regression results of ferroptosis pattern-relevant genes.

SUPPLEMENTARY TABLE 4

Differentially expressed miRNAs between ferroptosis-relevant high- and

low-risk groups in the TCGA-TNBC dataset.
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NK cells reduce anergic T cell
development in early-stage
tumors by promoting myeloid
cell maturation
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and Victor H. Engelhard1,2*
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Charlottesville, VA, United States, 2Department of Microbiology, Immunology and Cancer Biology,
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Introduction: Studies of NK cells in tumors have primarily focused on their

direct actions towards tumor cells. We evaluated the impact of NK cells on

expression of homing receptor ligands on tumor vasculature, intratumoral T

cell number and function, and T cell activation in tumor draining lymph node.

Methods: Using an implantable mouse model of melanoma, T cell responses

and homing receptor ligand expression on the vasculature were evaluated with

and without NK cells present during the early stages of the tumor response by

flow cytometry.

Results: NK cells in early-stage tumors are one source of IFNg that augments

homing receptor ligand expression. More significantly, NK cell depletion

resulted in increased numbers of intratumoral T cells with an anergic

phenotype. Anergic T cell development in tumor draining lymph node was

associated with increased T-cell receptor signaling but decreased proliferation

and effector cell activity, and an incomplete maturation phenotype of antigen

presenting cells. These effects of NK depletion were similar to those of blocking

CD40L stimulation.

Discussion: We conclude that an important function of NK cells is to drive

proper APC maturation via CD40L during responses to early-stage tumors,

reducing development of anergic T cells. The reduced development of anergic

T cells resulting in improved tumor control and T cell responses when NK cells

were present.

KEYWORDS

natural killer (Nk) cell, anergic T cells, CD40L blockade, antigen presenting cell (APC),
B16 melanoma
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Introduction

It has been shown that the adaptive immune system

generates anti-tumor responses, particularly T cell responses,

that delay tumor growth. The level of T cell infiltrate in tumors is

associated with enhanced 5-year survival times (1). Additionally,

clinical responses to immunotherapies correlate with the size of

the T cell infiltrate in tumors prior to therapy (2, 3) suggesting

that the magnitude and quality of the immune response prior to

therapy is an important determinant of responsiveness to future

therapy. However, the size and quality of the T cell infiltrate in

tumors can be determined by many factors.

One key factor is entry into the tumor, which requires

expression of appropriate homing receptors (HR) on T cells and

homing receptor ligands (HRL) on tumor vasculature (4–7).

VCAM-1, ICAM-1, and CXCL9 are key HRL for infiltration of

CD8+ T cells in several tumor models (8–10). We also previously

established that in late-stage (>14 days) B16 melanoma tumors,

expression of these HRL depends on IFNg produced by CD8+ T

cells (9). However, it is unclear what induces HRL expression to

promote the initial infiltration of these CD8+ T cells in early-stage

tumors. An interesting possibility is that this is due to innate

immune cells that produce inflammatory cytokines, including

IFNg, and are present in the tissue prior to tumor formation.

A second factor is the effectiveness of T cell priming in the

tumor draining lymph nodes (TDLN). This is dictated by the

number and quality of antigens expressed by tumors, how much

antigen arrives in the draining lymph node (LN) by direct

drainage or transport by migrating dendritic cells (DC), and

the maturation state of the antigen presenting DC (11, 12). It has

been well-established that the maturation state of DC in tumors

is suboptimal and/or immunosuppressive (12–15). This can

arise as a consequence of different factors in the tumor

microenvironment (TME), including immunosuppressive cells

(CD4+ T regulatory cells, myeloid derived suppressor cells,

fibroblasts, tumor cells), cytokines such as TGFb and VEGF,

and hypoxia (16).

An interesting and relatively unexplored area is the

contribution that NK cells make to the size or quality of the T

cell infiltrate in tumors. Studies of NK cell function in tumors

have largely focused on their direct actions towards tumor cells.

Although tumor cell killing and inflammatory cytokine secretion

by NK cells play a role in containing metastatic spread (17–20),

NK cells rarely play a significant role in determining the growth

rate of primary tumor (21, 22) as they are often dysfunctional in

advanced tumors (21, 23) due at least partially to the TME (24).

It has been hypothesized that NK cells promote the availability

of tumor antigen by killing tumor cells (25, 26). This is

supported by observations that functional NK cells can

promote DC maturation in murine in vitro systems and

infection models (27, 28), and in human in vitro systems (29,

30) and promote initiation of immune responses through DC
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crosstalk (31). Recent studies have also demonstrated that NK

cells promote larger numbers of DC in tumors (3, 32). NK cells

have also been shown to be in close proximity to DCs in murine

(3) and human (33) tumors, suggesting possible interactions.

However it is also possible that NK cells limit anti-tumor

immune responses through their well-established killing of T

cells (34, 35) and antigen presenting cells (36). Given these

differing NK cell effects on T cell immunity, it is unclear what

effect they would have on T cell priming in TDLN and T cell

activity over the course of tumor outgrowth.

In the present work, we evaluated the impact of NK cells on

HRL expression on tumor vasculature, intratumoral T cell

number and activity, and T cell priming and DC maturation

in TDLN. Considering the possible loss of NK function over

time, we focused our work on tumors harvested 7 days after

implantation, the earliest reliable point at which we could locate

them. Our results establish that NK cells promote DC

maturation and improved quality of T cell activation in

TDLN, and their absence leads to an increased number of

dysfunctional tumor infiltrating lymphocytes (TIL) that fail to

persist. These results illuminate a novel aspect of NK cell

function in early-stage tumors.
Materials and methods

Mice

C57BL/6 mice were from Charles River/NCI. Nur77-GFP

reporter (C57BL/6-Tg(Nr4a1-EGFP/cre)820Khog/J) (37), OT-I

transgenic (C57BL/6-Tg(TcraTcrb)1100Mjb/J) (38), Thy1.1

congenic mice (B6.PL-Thy1a/CyJ) (39), Rag1ko mice

(B6.Rag1em10Lutzy) and Perforinko (C57BL/6-Prf1tm1Sdz/J)

(40) mice, all from Jackson Laboratories, were bred and

maintained in a pathogen-free facility at the University of

Virginia. Six to 12-week-old Nur77-GFP x (OT-I x Thy1.1) F1

mice were the source of mice expressing OT-I+Thy1.1+Nur77-

GFP+ cells used for adoptive transfer. All procedures were

approved by the University of Virginia Animal Care and Use

Committee in accordance with the NIH Guide for Care and Use

of Laboratory Animals.
Cell lines

B16-F1 cells transfected to express cytoplasmic ovalbumin

(ova) have been described (41). Ova-transfected B16-F1 (B16-

ova) were cultured in RPMI-1640 (Corning) supplemented with

5% FBS (Sigma), 15 mM HEPES and 2 mM L-glutamine (both

from Gibco). Blasticidin (10mg/ml) (Gibco) was added to

maintain ova expression in B16-ova. Cells were authenticated

by visual confirmation of melanin pigment production in vitro
frontiersin.org
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and in vivo, and OVA expression confirmed by staining with the

H-2Kb+ova peptide specific antibody 25-D1.16. Where

indicated, B16-ova cells were transduced to express the

fluorescent protein IRFP720 (42). All cultured cells injected

into mice were within 2–8 passages after thaw and

mycoplasma free.
Tumor implantation

B16-ova cells (4×105) in 200 mL phosphate-buffered saline

(PBS) were injected subcutaneously (SC) in the neck scruff.

Where indicated B16-ova cells were transduced with IRFP720

fluorescent protein to enable tumor cell identification prior to

implantation. Mice were monitored for weight loss, signs of

distress and tumor size every 2–3 days. Where indicated, mice

were injected intraperitoneally (IP) daily with 5 mg/mL FTY720

(Novartis) or saline control for indicated periods of time during

tumor growth. Where indicated mice were treated IP with 250

mg Brefeldin A (Sigma) 4–6 hours prior to harvest. At the time of

harvest mice were euthanized and tumor, TDLN, NDLN, and/or

spleen were collected and processed as outlined below.
Isolation of CD45+ and CD31+ tumor
infiltrating cells

B16-ova tumors from C57BL/6 or Perforinko mice were

harvested in RPMI-1640 (Corning) supplemented with 2%

FBS, 0.05 mM b-mercaptoethanol, 40 mg/mL DNase (all from

Sigma), 15 mM HEPES, 2 mM L-glutamine, 10 mM sodium

pyruvate, 1X essential and non-essential amino acids,

gentamicin (1 mg/mL) (all from Gibco), and liberase™ (76 mg/
mL) (Roche). Tumors were digested for 15 min at 37°C,

manually homogenized, and filtered through 70 mm mesh

(Miltenyi) to prepare single cell suspensions. The CD45+

fraction was enriched with CD45 MicroBeads mouse

(Miltenyi) using an AutoMACS instrument and analyzed by

flow cytometry. Fractions with CD45+ cells removed were

stained for CD31+ cells in selected experiments or a second

enrichment was performed using CD31 MicroBeads (Miltenyi).
T cell ex vivo restimulation assay

B16-ova tumors from C57BL/6 mice were harvested and

CD8+ cells isolated using MACS beads (Miltenyi) as described

above. Cells were stimulated with CD3/CD28 T activator beads

(10 mL/mL, Gibco) for 12 hours in the presence of anti-CD107a

antibody (AF488, Biolegend) to mark degranulating cells.

Brefeldin A (10 mg/mL) was added during the last 4-6 hours

of culture to block secretion of intracellular cytokines.
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Isolation of single cells from LN
and spleen

LN were manually shredded using needles, and spleens were

cut up manually with scissors. Tissue suspensions were digested

using liberase™ (76 mg/mL) for 30 min at 37°C and then

manually homogenized and filtered through 70 mm mesh

(Miltenyi) prior to staining and analysis by flow cytometry.
Nur77-GFP reporter adoptive
cell transfers

Single-cell suspensions of splenocytes from naïve Nur77-

GFP+OT-I+Thy1.1+ mice were prepared smashing spleens

between frosted glass slides and filtering cells through a 100

mm filter. Red blood cells were lysed using RBC lysis buffer

(Invitrogen). Cells were washed twice, resuspended in PBS, and

immediately injected IV (5x104) into Thy1.2+ C57BL/6 mice.

The next day, recipient mice were implanted SC with B16-ova

cells. Seven days post tumor implantation spleen, TDLN, and

tumor were isolated and single cell suspensions prepared as

described above.
NK cell depletion

Starting 2 days prior to tumor implantation NK cells were

depleted by injection of 100 mg anti-NK1.1 (BioXcell) or isotype
control (BioXcell) antibody IP into mice. Injections were

repeated every 3 days until tumors were harvested. Depletion

was confirmed in all mice used for analysis by flow cytometry

(example tumor depletion shown in Supplementary

Figures 2A–E).
PD-1 blockade

Starting on D3 post tumor implantation 200 mg of anti-PD-1
blocking antibody (BioXcell) or isotype control (BioXcell) was

injected IP into tumor bearing mice with or without NK cell

depletion. Injections were repeated every 3 days until tumors

were harvested.
CD40L blockade

Mice were injected IP on D3 and D5 post tumor injection

with 250 mg anti-CD40L blocking antibody (BioXcell) or an

isotype control antibody (BioXcell) in 200 ml of PBS.
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Flow cytometry

Cells were Fc blocked with 1:1000 anti-CD16/CD32 (2.4G2,

BioXcell) and stained with Live/Dead Fixable Aqua (Life

Technologies) in PBS for 20 min at 4°C. Subsequently cells were

stained with fluorescently labeled antibodies in PBS supplemented

with 2% FBS and 0.1% sodium azide for 30 min at 4°C. For

extracellular stains only, cells were fixed in 2% paraformaldehyde

(Thermo Scientific) for 10 min at 4°C. For intracellular and

intranuclear stains, BD Cytofix/Cytoperm and BD Transcription

Factor Staining kits were used according to manufacturer’s

protocol. Data was acquired on Cytoflex (Beckman Coulter) or

Attune (BD Biosciences) flow cytometers and analyzed using

FlowJo software. In experiments that analyzed Nur77

expression, cells were directly analyzed without fixation. OT-I

CD3+ CD8+ T cells were subsequently gated on Thy1.1+ before

assessing Nur77 experiments. Normalized MFI values were

generated on positive cells by dividing all values generated that

day by the average of the isotype control group.
Annexin V staining

Following extracellular staining, cells were stained with

Annexin V-APC in Annexin buffer (Biolegend). Cells were

immediately run on the cytometer while still in the buffer.
Dextramer staining

Single cell suspensions from tumors or LN were incubated

with SIINFEKL-Dextramer or irrelevant dextramer control

(Immudex) for 1 h at 37°C. Cells were subsequently stained

for other surface or intracellular markers as described above.
Statistical analysis

Data is displayed as mean with error bars representing SEM.

Groups were compared using a one-way ANOVA with Tukey’s

multiple comparisons test or a Students T test with Welch’s

correction for comparisons only involving two groups. All analysis

and graphs were performed using PRISM software (Graphpad).
Results

Early-stage tumors contain CD31+

endothelial cells expressing high levels of
HRL and significant T cell infiltrates

To examine differences in early-stage and late-stage TME,

we used flow cytometry of single cell suspensions to compare
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subcutaneous B16-ova tumors on day 7 (D7), the earliest time at

which we could consistently locate them, to day 14 (D14)

tumors. While the total number of CD31+ tumor vascular

endothelial cells was higher in D14 tumors (Figure 1A), the

numbers per g of tumor were similar on both days (Figure 1B),

indicating that early-stage tumors are well-vascularized. The

number and percentage of CD31+ cells expressing ICAM-1

was unchanged between D7 and D14, but VCAM-1 and

CXCL9 (gating shown in Supplementary Figure 1A) were

expressed by a higher number (Figures 1B, C) and percentage

(Figures 1D, E) of these cells on D7, albeit at a similar mean

fluorescence intensity (MFI) (Figure 1F). This suggests that

effector T cells should be readily able to enter D7 tumors.

Indeed, T cell infiltrates were evident, but the numbers per g

of tumor were 46% lower for CD4+ cells and 65% lower for CD8+

cells on D7 than D14 (Figure 1G). This is consistent with the

possibility that cells other than T cells might upregulate the

expression of HRL, particularly VCAM-1 and CXCL9, on early-

stage tumor endothelial cells.
Functional NK cells in early-stage tumors
promote HRL expression on CD31+

endothelial cells but diminish
intratumoral T cell number

In contrast to T cells, we found that NK cells, and CD11c+MHC-

II+, CD11cnegCD11b+MHCII+, and CD11cnegCD11b+MHCIIneg

myeloid cells (gating shown in Supplementary Figure 1B), were

present at similar levels per g of tumor at all stages of tumor

growth (Figures 1H, I). Innate immune cells can express

inflammatory cytokines that upregulate HRL expression, and our

previous work implicated IFNg in controlling expression of both

VCAM-1 and CXCL9 (9). To determine if the intratumoral innate

cells produced IFNg, mice were treated with Brefelden A (BFA) prior

to tumor harvest. While no myeloid subpopulations in D7 tumors

expressed IFNg directly ex vivo (Figure 1J), NK cells in D7 tumors did

do so, although this was lost by D14 (Figure 1K, gating shown in

Supplementary Figure 1C). We found that B16-ova cells did not

express any NK cell ligands (Figure 1L). However, small fractions of

B16-ova cells in D7 tumors expressed the NK activating NKG2D

ligands Rae1 and H60 and some also upregulated MHCI, an

inhibitory ligand for NK cells (Figure 1L). Together these data

suggest that the production of IFNg by NK cells in early-stage

tumors is driven by B16-ova tumor cells. Overall, this suggests that

IFNg produced by NK cells increases HRL expression on CD31+

tumor vasculature and promotes T cell infiltration in early-

stage tumors.

To test this hypothesis, we depleted NK cells by injection of

anti-NK1.1 prior to tumor implantation and maintained

depletion with additional injections for the duration of the

experiment (Supplementary Figures 2A–E). The fractions of

CD31+ cells that expressed ICAM-1 and VCAM-1 were
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unchanged by NK cell depletion (Figure 2A), but the expression

levels on positive cells were modestly but significantly lower

(Figure 2B). Thus, NK cells augment HRL expression on CD31+

early-stage tumor vasculature but are not the only cells

responsible. However, despite this reduced HRL expression,

the numbers of CD8+ T cells per g of tumor in NK-depleted

D7 tumors were significantly increased, and those of CD4+ T

cells were trending toward an increase (Figure 2C), while APC

and myeloid populations were unchanged (Figure 2D). This was

not due to changes in tumor weight as NK cell depletion did not

significantly alter tumor weights (Figure 2E). Approximately
Frontiers in Oncology 05
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80% of CD8+ T cells in D7 tumors were antigen experienced

(CD44+) and consisted of CD62Lneg effector cells and CD62L+

cells that had either not yet downregulated CD62L after

activation or were central memory (Figure 2F, gating shown in

Supplementary Figure 2F). CD44neg CD62L+ naïve cells and

CD44neg CD62Lneg early activated cells were present at lower

levels. The distribution of these intratumoral CD8+ T cell

subpopulations was unchanged by NK depletion (Figure 2F).

This demonstrates that NK cells, despite increasing HRL

expression on D7 tumor vasculature, mediate an unexpected

reduction in intratumoral CD8+ T cells.
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FIGURE 1

Early-stage tumors have high levels of endothelial HRL expression, substantial innate immune cell infiltrates, and functional NK cells. B16-ova
tumors (A–K), or B16-ova expressing IRFP720 to identify tumor cells (L), were implanted into WT B6 mice and harvested on D7, D10, or D14.
Single cell suspensions were enriched for CD45+ cells using MACS Beads and the CD45neg (A–F, L) or CD45+ (G–K) fractions were analyzed by
flow cytometry. (J, K) Mice were treated with BFA for cytokine analysis 4-6 hours prior to tumor harvest. (L) B16-ova cells expressing IRFP720
fluorescent protein were analyzed by flow cytometry directly from culture prior to implantation and on D7. Data points represent a single tumor
and mean per group with error bars representing SEM. Data are from: (A, B) 2 experiments; (C, E) 1-3 experiments; (D) 3 experiments; (F) 1
experiment; (G) 3-5 experiments; (H) 2-6 experiments; (I) 2-3 experiments; (J) 1 experiment; (K) 2 experiments; (L) 3 experiments. Statistics:
(A–G, I) Unpaired Student’s T test with Welch’s correction; (H, J, K) One-way Anova with Tukey’s posttest. *p < 0.05; **p < 0.01; ***p < 0.001;
ns, not significant.
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Antigen-experienced T cells in tumors
from NK depleted mice show deficient
effector function but are not exhausted

To test the functionality of the antigen-experienced CD8+ T

cells in NK-depleted D7 tumors, we examined cytokine

production after in vivo BFA blockade. In tumors containing

NK cells, ~10% of CD8+ T cells produced IFNg, while only ~5%
in tumors from NK-depleted mice did so (Figure 3A gating

shown in Supplementary Figure 3A). However, the numbers of

IFNg producing cells per g were the same in both tumors, and

there were more than twice as many cells per g not producing

IFNg in NK-depleted tumors (Figure 3B). The majority of IFNg+

cells were CD44+CD62Lneg and were similar per g tumor in

isotype and NK depleted mice (Figure 3C). A small portion of

IFNg+ cells were CD44+CD62L+ and these were increased in NK

depleted tumors (Figure 3C). The increase in IFNgneg CD8+ T

cells per g in NK-depleted tumors was statistically significant in

all subpopulations, but the majority of the increase was in

CD44+ antigen-experienced CD8+ T cells (Figure 3D). To

determine if this effector deficiency was due to the TME or

intrinsic to the T cells, we isolated CD8+ T cells from D7 tumors

and re-stimulated them ex vivo with anti-CD3 and anti-CD28.

All T cells became CD44+ following this restimulation. However,

a smaller percentage of restimulated CD8+ T cells from tumors

of NK-depleted mice produced IFNg compared to restimulated

CD8+ T cells from tumors of normal mice, and this was evident
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only in the CD62Lneg population (Figure 3E). The percentage of

cells showing degranulation marked by CD107a was also

decreased in restimulated CD62Lneg T cells from tumors of

NK-depleted mice (Figure 3E, gating shown in Supplementary

Figure 3B), demonstrating that the effector function deficiency is

generalized. Thus, depletion of NK cells selectively increases the

accumulation in early-stage tumors of antigen-experienced

CD8+ T cells that intrinsically lack at least one effector function.

One common mechanism leading to intrinsic T cell

dysfunction in tumors is exhaustion, characterized by

increased expression of inhibitory molecules, including PD-1.

However, the percentages and numbers per g of PD-1+ CD8+ T

cells in early-stage tumors of mice containing or lacking NK cells

were not significantly different (Figure 3F). To determine

whether PD-1 was blocking T cells that might have otherwise

expressed IFNg, we treated mice containing or lacking NK cells

with anti-PD-1 starting on D3 after tumor implantation and

harvested on D7. There was no significant increase in total CD8+

T cells or IFNg+ CD8+ T cells per g of tumor as a consequence of

anti-PD-1 treatment in mice containing or lacking NK cells

(Figures 3G, H). These results suggest that the increase in non-

functional CD8+ T cells in tumors from NK depleted mice is not

due to PD-1 mediated exhaustion.

Recent studies have identified an exhausted stem-cell-like T

cell progenitor population with a SLAMF6HiTCF7+ phenotype

(43). Cells with this phenotype comprised ~13% of the total CD8+

TIL (Figure 3I, gating shown in Supplementary Figure 3C).
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FIGURE 2

Early-stage tumors from mice lacking NK cells have reduced endothelial HRL expression but increased numbers of CD8+ T cells. B16-ova
tumors were implanted into WT B6 mice treated with isotype control or anti-NK1.1 depleting antibodies on D-2, D1, and D4, and harvested on
D7. Single cell suspensions were enriched for CD45+ cells using MACS Beads and the CD45neg (A, B) or CD45+ (C–F) fractions were analyzed
by flow cytometry. Data points represent a single tumor and mean per group with error bars representing SEM. Data are from: (A, B) 4
experiments; (C) 7 experiments; (D) 6 experiments; (E) 9 experiments; (F) 4 experiments. Statistics: Unpaired Student’s T test with Welch’s
correction. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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However, there was no difference in the percentage or numbers of

SLAMF6HiTCF7+ CD8+ T cells in D7 tumors from mice

containing or lacking NK cells (Figure 3I). This population was

also not increased following anti-PD-1 treatment. These results

suggest that NK depletion does not influence the development of

SLAMF6HiTCF7+ T cell progenitors, and that the population that

is increased in D7 tumors of NK-depleted mice is therefore

non-progenitor.
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CD8+ T cells in early-stage tumors from
NK-depleted mice are more likely to
become anergic

Anergic CD4+ and CD8+ T cells show reduced responses to

TCR engagement and lack resulting effector functions (44–46).

While T cell effector cytokine production and proliferation are often

linked, anergic T cells continue to proliferate (47–49). To evaluate
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FIGURE 3

Early-stage tumors from mice lacking NK cells have increased numbers of dysfunctional but non-exhausted CD8+ T cells. B16-ova tumors were
implanted into WT B6 mice treated with isotype control or anti-NK1.1 depleting antibody on D-2, D1, and D4, and harvested on D7. (A–D, F–I)
Single cell suspensions were enriched for CD45+ cells using MACS Beads and analyzed by flow cytometry. (A–D, H) Mice were treated with BFA
for cytokine analysis 4-6 hours prior to tumor harvest. (E) CD8+ cells were isolated using MACS beads and restimulated with anti-CD3/28 beads
and labeled with anti-CD107a fluorescently labeled antibodies overnight, with unstimulated T cells pooled from all tumors as a control. BFA was
added for the final 4-6 h to block cytokine secretion. (G–H) Isotype-treated or NK depleted mice were treated with anti-PD-1 or isotype
control starting on D3 after tumor implantation. (A–D, F–I) Data points represent a single tumor and mean per group with error bars
representing SEM. Data are from: (A–B) 6 experiments; (C–D) 4 experiments; (E) 2 experiments, with unstimulated controls pooled from all
tumors in each individual experiment. (F) 5 experiments; (G–H) 3 experiments. Statistics: (A–D, F) Unpaired Student’s T test with Welch’s
correction; (E, G–I) One-way Anova with Tukey’s posttest. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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whether the non-functional CD8+ T cells in NK depleted tumors

were anergic, we first examined their ability to proliferate within the

tumor. Using Ki67, there were no changes in the proliferating

fractions of CD8+ T cells overall, or of CD8+ T cell subpopulations,

in early-stage tumors from mice containing or lacking NK cells

(Figure 4A, gating shown in Supplementary Figure 4A). To

determine whether sensitivity to TCR signals was reduced in

CD8+ T cells in tumors from NK-depleted mice, we transferred

congenically marked ovalbumin specific OT-I CD8+ T cells that

expressed Nur77-GFP prior to tumor implantation. Nur77

expression is directly tied to TCR signaling (37). The percentage
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of OT-I T cells that expressed Nur77-GFP was decreased in tumors

from NK-depleted mice, and this was most evident in the

CD44+CD62Lneg effector population (Figure 4B, gating shown in

Supplementary Figure 4B). The normalized Nur77-GFP MFI of

Nur77+ OT-I cells in tumors from NK-depleted mice was also

reduced (Figure 4C). These results indicate that intratumoral CD8+

T cells activated in mice lacking NK cells had reduced sensitivity to

TCR signals, but similar levels of proliferation, consistent with an

anergic phenotype.

Since CD8+ T cells in tumors from mice containing or

lacking NK cells proliferated similarly, this cannot explain
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FIGURE 4

Dysfunctional CD8+ T cells in tumors from mice lacking NK cells display an anergic phenotype. B16-ova tumors were implanted into WT B6
(A–H) or Perforinko (F) mice, with or without NK cell depletion. Anti-NK1.1 depleting antibody was administered prior to tumor implantation and
maintained with additional treatments every three days (A–J) or on D7 after tumor implantation (G, I). Single cell suspensions were enriched for
CD45+ cells using MACS Beads and analyzed by flow cytometry (A–H). Mice were treated with BFA for cytokine analysis 4-6 hours prior to
tumor harvest (H). Tumors were harvested on D7 (A–F), D14 (G–I). (B, C) Nur77-GFP+ Thy1.1+ OT-I T cells were adoptively transferred into
recipient mice prior to tumor implantation to monitor antigen specific TCR signaling. Nur77 MFI was normalized to the Isotype control average
for each individual experiment. (J) Tumors were implanted in RAG mice and harvested on D10 by which time tumor size endpoints were
reached in some mice. Data is from: (A) 4 experiments; (B, C) 2 experiments; (D, E) 2 experiments; (F) 2 experiments; (G) 6 experiments; (H) 2
experiments; (I) 8 experiments; (J) 3 experiments. Statistics: (A–E, H, J) Unpaired Student’s T test with Welch’s correction; (F, G, I) One-way
Anova with Tukey’s posttest. *p < 0.05; **p < 0.01; ns, not significant.
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their increased numbers in tumors from NK-depleted mice.

Anergic T cells have also been shown to have increased

resistance to apoptosis (46). Using a viability marker (Live/

Dead Aqua), we observed a significant decrease in the percentage

of dead CD8+ T cells overall, and of antigen experienced

CD44+CD62L+ and CD44+CD62Lneg subpopulations, in NK-

depleted tumors (Figure 4D). We also observed a significant

decrease in the percentage of Annexin VHi (late apoptosis)

CD44+CD62Lneg CD8+ T cells (Figure 4E, gating shown in

Supplementary Figure 4C). We considered that reduced

apoptosis of intratumoral T cells in tumors lacking NK cells

might be reflective of direct NK cell killing, which requires

perforin (35). To test this hypothesis, WT and Perforinko mice,

with and without NK depletion, were implanted with B16-ova,

and tumors analyzed on D7. CD8+ T cell numbers in tumors

from WT and Perforinko mice containing NK cells were

comparable, as were the numbers in tumors from NK-depleted

mice of both genotypes (Figure 4F). Thus, the increase in CD8+

T cells in tumors from NK-depleted mice is not due to a lack of

direct NK cell killing. These results suggest that the increased

level of CD8+ T cells in D7 tumors from NK-depleted mice is

due to a reduction in apoptotic death in the antigen experienced

population, consistent with an anergic phenotype.
NK depletion results in reduced CD8+ T
cell numbers and functionality in late-
stage tumors

To determine if T cell dysfunction continued in late-stage

tumors, we harvested D14 tumors from mice that were NK cell

depleted either prior to tumor implantation (D-2) in the same

manner as our early-stage tumors, or after initial T cell priming

(D7). NK depletion on D7 did not result in any changes in the

number of CD8+ T cell in D14 tumors (Figure 4G). However, in

D14 tumors from mice depleted of NK cells prior to tumor

implantation we observed a significant reduction in CD8+ T cell

numbers overall compared to mice with intact NK cells

(Figure 4G). This contrasts with the elevated numbers of

CD8+ T cells observed in D7 tumors from NK depleted mice.

We did not find a significant reduction in the numbers per g of

tumor of either IFNgneg or IFNg+ cells in NK depleted mice,

although there was a trend toward a reduction for IFNg+ cells

although this data showed significant variation (Supplementary

Figures 4D, E). However, there was a significant reduction in the

percentage of IFNg+ CD8+ T cells in late-stage tumors lacking

NK cells (Figure 4H) consistent with what was observed in D7

tumors. It is notable that these changes were accompanied by an

overall significant increase in CD8+ T cell numbers per g of

tumor from D7 to D14 in both NK depleted (Supplementary

Figure 4F) and non-depleted (Figure 1G) mice. While depletion

of NK cells prior to tumor implantation had no effect on the size

of D7 tumors (Figure 2E), it did result in a significant increase in
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the size of D14 tumors (Figure 4I). However, there was no

change in D14 tumor size when NK cells were depleted starting

on D7 (Figure 4I). We utilized RAG mice lacking T cells to

determine if this effect was directly mediated by NK cells. There

was no increase in late-stage tumor size in RAG mice depleted of

NK cells prior to tumor implantation (Figure 4J), suggesting that

the impact of NK cell depletion on tumor control inWT B6mice

is mediated by its effect on adaptive immunity. This indicates

that NK cell depletion reduces the functionality of intra-tumoral

CD8+ T cells in both early and late stage tumors, and that this

results in reduced long-term tumor control.
Altered T cell activation in the TDLN of
NK-depleted mice

T cell anergy normally develops during initial activation

from an imbalance among signals via the TCR, costimulatory

molecules, and cytokines (46). To determine whether NK

depletion altered activation of CD8+ T cells in the TDLN, we

treated mice starting on day 3 (D3) post implantation with

FTY720 to prevent T cell egress. The overall number of CD8+ T

cells in the TDLN or non-draining LN (NDLN) was unchanged

by NK depletion (Supplementary Figures 5A, B). However, the

percentage (Figures 5A, B) and number (Supplementary

Figures 5C, D) of CD8+CD44+CD62Lneg effector T cells were

reduced specifically in the TDLN and not the NDLN. The

percentage of Ki67+ proliferating CD8+ T cells was reduced in

the TDLN in all populations except the naïve CD44negCD62L+

cells (Figure 5C). The percentage of endogenous ovalbumin-

specific CD8+ T cells, representing tumor antigen specific T cells,

among all CD8+ T cells, was also reduced in TDLN but not

NDLN of NK-depleted mice (Figure 5D, Supplementary

Figure 5E). This was associated with decreased proliferation of

ovalbumin specific CD8+ T cells overall (Figure 5E), a reduced

number of the CD44+CD62L+ subpopulation (Figure 5F), and

an increased percentage of naïve (CD44negCD62L+) ovalbumin

specific CD8+ T cells (Supplementary Figure 5F). We did not

observe a change in the subpopulation distribution of ovalbumin

specific T cells in the NDLN, where naïve cells were the primary

population (Supplementary Figure 5G). These results

demonstrate that NK depletion leads to a reduction in T cell

activation, proliferation, and tumor specific effector generation

in the TDLN.

The development of anergic T cells has been shown to be

promoted by elevated TCR stimulation and/or a lack of co-

stimulation (46, 50–53). We therefore tested the hypothesis that

the reduced number of proliferating and differentiated effector T

cells in the TDLN of NK-depleted mice reflected increased

sensitivity to TCR stimulation. We tested this by examining

the activation of OT-I T cells expressing the Nur77-GFP reporter

that were transferred prior to tumor implantation. OT-I T cells

did not show a significant difference in subpopulation
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distribution in TDLN of isotype and NK-depleted mice

(Figure 5G). Importantly however, the fraction of Nur77+ OT-

I T cells (Figure 5H) and their Nur77 MFI (Figure 5I), were

significantly higher, indicating that they had received enhanced

TCR signals. Nur77 signaling was specific to the TDLN, as the

Nur77 positive signal was nearly absent in the spleens of both

isotype and NK depleted mice (Supplementary Figure 5H).

Taken together, these results demonstrate that NK depletion

leads to enhanced TCR stimulation of CD8+ T cells in TDLN,

decreased proliferation, and differentiation of those cells. This is

consistent with what others have shown to promote the

development of anergic T cells.
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APC from tumors and TDLN of NK-
depleted mice appear less mature

Based on the changes in CD8+ T cell phenotype that

accompanied NK depletion, we examined the phenotypes of

APC in both tumor and TDLN. The numbers of intratumoral

APC (Figure 2D) and their subsets (Figure 6A) were not altered by

NK depletion. While the numbers of CD11b+CD11cnegMHCII+

APC in TDLN of NK-depleted mice were not reduced, the

numbers of CD11c+MHCII+ APC were, and this was evident in

both CD11b+ and CD103+ subsets (Figure 6B). This was specific

for the TDLN, as NDLN APC numbers were unchanged
frontiersin.org
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FIGURE 5

T cell activation is altered in the TDLN of mice lacking NK cells. B16-ova tumors were implanted into WT B6 mice treated with isotype control or
anti-NK1.1 depleting antibody on D-2, D1, and D4. TDLN (A–H) or NDLN (B, D) were harvested on D7. (A–F) Mice were treated with FTY720 starting
on D3 to prevent T cell egress from LN. (G–I) Nur77-GFP+ Thy1.1+ OT-I T cells were adoptively transferred into recipient mice prior to tumor
implantation to monitor antigen specific TCR signaling. Nur77 MFI was normalized to the isotype control average for each individual experiment.
Single cell suspensions were analyzed by flow cytometry. Data is from: (A, C) 3 experiments; (B) 2 experiments; (D–F) 2 experiments; (G–I) 2
experiments. Statistics: Unpaired Student’s T test with Welch’s correction. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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(Supplementary Figure 6A). The lower numbers of these APC

subsets in TDLN could be due to reduced entry of migratory APC,

or reduced survival or proliferation of resident APC. Cells with an

CD11cHiMHCIIInt phenotype, characteristic of the majority of LN

resident APC (54), were selectively reduced in the TDLN of NK-

depleted mice, while cells with a CD11cLoMHCIIHi phenotype,

characteristic of migratory DC, were not altered (Figure 6C,

Supplementary Figure 6B). This is consistent with the

unchanged number of intratumoral APC and suggests that APC

migration from the tumor remains unchanged in NK depleted

mice. This suggests that one consequence of NK depletion is a
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reduction in the numbers of CD11b+ and CD103+ subsets of

resident DC in TDLN.

We also examined the maturation status of APC in tumor

and TDLN. All subsets of intratumoral APC from NK depleted

mice expressed lower levels of MHCII (Figure 6D), suggesting

that they are less mature than those from non-depleted mice. As

immature APCs in tissues are more phagocytic and have

reduced proteolytic capacity (55, 56) we used tumors

expressing the fluorescent protein iRFP720 to identify APC

that retained unprocessed tumor derived antigen. All

subsets of intratumoral APC from NK depleted mice
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FIGURE 6

Antigen presenting cells in tumors and TDLN of mice lacking NK cells have an altered maturation phenotype. (A–D, F–J) B16-ova or (E) B16-
ova-iRFP720 tumors were implanted into WT B6 mice treated with isotype control or anti-NK1.1 depleting antibody on D-2, D1, and D4. Tumor
(A, D–F), TDLN (B, C, G–J), or NDLN (C) were harvested on D7. Single cell suspensions were analyzed by flow cytometry. (C, G–I) Resident
APC were defined as CD11cHiMHCIIInt and Migratory APC as CD11cLowMHCIIHi. (I, J) For each APC subset, MHCII MFI was normalized to the
isotype control average of that same subset (I) or of all CD11c+MHCII+ APC (J) separately for each experiment. (B, C, G–J) Data are from 4
experiments; (A, D, F) Data are from 6 experiments; (E) Data are from 2 experiments. Statistics: (A–I) Unpaired Student’s T test with Welch’s
correction; (J) For CD80+ vs CD80neg comparisons, a paired T test was used. For comparisons between isotype and NK depleted, an Unpaired
Student’s T test with Welch’s correction was used. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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showed significantly greater retention of tumor derived

antigen (Figure 6E), again consistent with a less mature

phenotype. The percentage of intratumoral APC expressing

CD80 (Figure 6F) and their level of CD80 expression

(Supplementary Figure 6C), which typically increase with APC

maturation (55, 56) was unchanged by NK depletion. Overall,

this suggests that intratumoral APC from NK depleted mice are

less mature.

In APC from TDLN of either NK-depleted or non-depleted

mice retention of tumor derived antigen could not be detected.

However, compared to APC in NDLN, CD80 was expressed on

approximately 25-100% more cells in most CD11c+ APC subsets

in TDLN but was not different on CD11b+CD11cnegMHCII+

cells or resident APC (Figure 6G). Thus, APC in TDLN appear

more mature compared to those in NDLN. Neither the

percentage of APC expressing CD80 (Figure 6H), nor their

CD80 expression level (Supplementary Figure 6D) was

changed in any subsets in TDLN of mice lacking NK cells.

However, MHCII expression levels were increased in all

populations of CD11c+ APC (CD11b+, CD103+, resident, and

migratory; gating shown in Supplementary Figure 6E) and in

CD11cnegCD11b+MHCII+ cells (Figure 6I). In TDLN of intact

mice, CD11c+MHCII+ APC that expressed CD80 (gating shown

in Supplementary Figure 6F) also expressed higher levels of

MHCII (Figure 6J). However, in TDLN from NK depleted mice,

both CD80+ and CD80neg APC showed an increase in MHCII

MFI, and they were no longer different from one another

(Figure 6J). Thus, APC in early stage TDLN of NK depleted

mice display increased MHCII expression regardless of CD80

expression. Increased MHCII expression in mature APC usually

corresponds with an increased level of costimulatory molecule

expression (57). Increased MHCII expression without increased

CD80 suggests an incomplete APC maturation, which may have

resulted in the aberrant activation and anergic T cell phenotypes

we observed in tumor bearing mice lacking NK cells.
Blockade of CD40L results in similar
phenotypes of T cell activation and APC
in the TDLN as NK depletion

NK cells in tumor bearing mice express elevated levels of

CD40L (58), and interactions with CD40 cause increased APC

maturation (59). CD40L blockade also results in reduced T cell

numbers and function in tumor bearing mice (60). We found

that some NK cells, as well as some CD4+ T cells, in early-stage

tumors and TDLN expressed CD40L (Supplementary Figure 7).

We utilized CD40L blockade to determine if this resulted in an

increase in dysfunctional T cells in early-stage tumors similar to

NK depletion and resulted in similar effects on APC and T cell

phenotypes in the TDLN. In contrast to NK depletion, CD40L

blockade beginning on D3 led to almost complete absence of T

cells in early-stage tumors (Figure 7A), making it impossible to
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evaluate changes in T cell function or phenotype. However, in

the TDLN, CD40L blockade resulted in a reduction in the

numbers of CD8+ T cells overall, naïve (CD44negCD62L+), and

effector (CD44+CD62Lneg) T cells, but no change in

CD44+CD62L+ CD8+ T cells (Figure 7B), and similar results

were seen with either NK depletion alone or combination NK

depletion and CD40L blockade. While the observed reduction in

overall and naïve CD8+ T cell numbers was not seen in the

TDLN of NK depleted mice in Figure 5A, this is likely because

the mice in Figure 7 were not treated with FTY720. We

augmented these studies by comparing the effects of CD40L

blockade and NK depletion on tumor antigen specific cells. As

above, the total number of ova-dextramer+ CD8+ T cells in the

TDLN was reduced comparably by NK cell depletion, CD40L

blockade, and the combination (Figure 7C). This was primarily

due to a reduction in the number of antigen-experienced

(CD44+) ova-dextramer+ CD8+ T cells (Figure 7C). As we

observed with bulk T cells there was no significant difference

in the reduced number of effector cells in the TDLN of CD40L

blocked, NK depleted, or dual treated mice. These results suggest

that NK cell depletion and CD40L blockade target a common

pathway that results in diminished T cell differentiation and that

the effect of NK cells on T cell differentiation in the TDLN

during early-stage tumor growth is via CD40L. However, CD40L

blockade has effects beyond those of NK cell depletion as there is

complete blockage of T cell infiltration into the early-stage

tumors. This suggests that NK cells provide an important

source of CD40L during the initial stages of CD8+ T cell

activation but are not the only source of CD40L in

the microenvironment.

We next determined if CD40L blockade also resulted in

incomplete APC maturation in the TDLN similar to that

induced by NK depletion. In keeping with Figures 6A, B,

CD40L blockade resulted in reduced numbers of CD11b+,

CD103+, and resident APC, but unchanged migratory APC, in

the early-stage TDLN, and was not significantly different fromNK

cell depletion alone or combination treatment (Figures 7D, E). In

keeping with Figure 6D and Supplementary Figure 6C, neither the

percentage (Figure 7F) or expression level (Figure 7G) of CD80

were changed on CD11c+MHCII+ APC as a consequence of any

treatment. Finally, in keeping with Figures 6E, F, and

Supplementary Figures 6D, E, MHCII expression on all APC

subsets Figures 7H, I, regardless of CD80 expression was increased

similarly by CD40L blockade, NK cell depletion, or the

combination (Figures 7J, K). This suggests that CD40L blockade

during early-stage tumor growth promotes incomplete

maturation of APC in TDLN, similar to NK depletion.
Discussion

In this study we determined that NK cells play multiple roles

in enhancing the T cell response during the early stages of tumor
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development. We showed that NK cells in early-stage tumors are

a source of IFNg and that NK depletion reduced HRL expression

on tumor vasculature. However, NK cell depletion resulted in

increased intratumoral T cell numbers. Based on their reduced

TCR signaling and reduced expression of effector function, but

unchanged proliferation and increased resistance to apoptosis,

these T cells were functionally anergic. Their development in the

TDLN was associated with increased TCR signaling but

paradoxically, decreased proliferation and maturation to full

effector cells. Additionally, it was associated with an unusual

maturation phenotype of APC in the TDLN, characterized by
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increased MHCII expression but unaltered CD80 expression.

The effect of NK depletion on APC phenotype was similar to

that of blocking CD40L. This suggests that functional NK cells

drive proper APC maturation via CD40L during the early tumor

response thereby reducing the development of anergic T cells.

Anergic T cells develop in response to increased TCR

signaling and/or reduced costimulatory activation (46, 50–53).

Characteristics of anergic T cells include proliferation during

activation (47–49), reduced production of IL-2 and other

cytokines (44–46), resistance to apoptosis (46, 61, 62), and

paradoxically, given what drives their development, reduced
A B

D

E F G

I

H

J K

C

FIGURE 7

Blockade of CD40L and NK Depletion result in similar T cell and APC phenotypes in the TDLN. B16-ova tumors were implanted into WT B6
mice treated with isotype control or anti-NK1.1 depleting antibodies on D-2, D1, and D4, or isotype control or anti-CD40L blocking antibody
starting on the day of tumor implantation and then on D2, D4, and D6, or a combination of NK cell depletion and anti-CD40L blockade. Tumor
(A) or TDLN (B–K) were harvested at D7. Single cell suspensions of tumor samples were enriched for CD45+ cells by MACS Beads and analyzed
by flow cytometry. Single cell LN samples were analyzed by flow cytometry. (H–K) For each APC subset, the indicated MFI was normalized to
the isotype control average of that same subset separately for each experiment. (J, K) The MHCII MFI was normalized to the isotype control
average of all CD11c+MHCII+ APC separately for each experiment. Data are from: (A–K) 2 experiments. Statistics: One-way Anova with Tukey’s
posttest. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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response to TCR signals (50). While anergy is best characterized

for CD4+ T cells, CD8+ T cells also become anergic (63–65).

Anergic CD4+ T cells have been identified by high expression of

FR4 and CD73 (66), but there are no known surface markers

identifying anergic CD8+ T cells. While anergic CD8+ T cells

have been shown to exist in tumors (65, 67), the lack of clear

surface markers complicates separating them from exhausted

CD8+ T cells (68, 69). With the current focus on exhausted T

cells, the presence of anergic intratumoral CD8+ T cells may

have been underappreciated. In contrast to exhausted cells,

anergic T cells are thought to be immunosuppressive, although

the mechanism(s) are not fully understood (51, 70). Preventing

anergic cells from developing could increase the number of

functional tumor antigen specific cells in the tumor and improve

responses to checkpoint blockade therapy.

APCmaturation is necessary for T cell activation resulting in

generation of effector T cells capable of responding to antigenic

stimulation in the periphery. However, a range of distinct

maturation phenotypes have been described (71, 72). Fully

mature APC most commonly develop in the context of

infection or immunization, which include strong stimuli for

toll like receptors (73, 74) and CD40 (75). NK cells have also

been shown to promote full APC maturation and to improve T

cell responses to infections or vaccination (31, 76). NK cell

induced maturation of APC in vitro partially involves direct

contact (29–31) and multiple signaling pathways, including

CD40-CD40L interaction (30, 31). NK cells in tumors have

been shown to increase the number of APCs (3, 32) and have

increased localization near each other (3, 33). However, a direct

connection between NK cell induced APC maturation and NK

enhanced T cell responses has been questioned because NK cells

can also kill activated T cells (34, 35). Here we showed that NK

cells incapable of killing T cells did not increase the number of

anergic T cells. Instead, when NK cells were depleted, APC in

tumor remained immature, while APC in TDLN developed an

incomplete maturation phenotype in which elevated MHCII was

not accompanied by increased CD80 expression. This was

associated with elevated response to TCR signals in the TDLN,

but reduced T cell proliferation. This suggests that the increased

numbers of anergic T cells in early-stage tumors of mice lacking

NK cells is due to the aberrant activation of T cells in the TDLN

by incompletely matured APC. Our results provide new

evidence that NK cell induced maturation of APC at early

stages of tumor responses shapes the outcome of the T cell

response by limiting the induction of T cell anergy.

Interactions with CD40 cause increased APC maturation

(59, 77), and previous work has shown that NK cells can express

CD40L, including during the response to tumors (58). Our data

demonstrates that during early-stage tumor responses, NK cell

depletion and CD40L blockade result in a similar incomplete

APC maturation phenotype. These two treatments also led to

similar reductions in the number of effector T cells in the TDLN.

Importantly, the combination of NK depletion and CD40L
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blockade was not additive. This suggests that during the early

stages of tumor growth, NK cells are the primary source of

CD40L or induce its expression on another cell type such as

CD4+ T cells, and this is the principal mechanism by which they

drive APC maturation. NK cell expressed CD40L could be

operating via direct signaling to CD40 but CD40-CD40L

interaction may also be necessary for another aspect of NK

cell function, such as localized secretion of cytokines to alter

APC maturation. It is also important to note that CD40L

blockade had a much more profound impact on T cell

infiltration into tumor, pointing to a role for another CD40L+

cell in this aspect of the anti-tumor immune response. While the

mechanism is uncertain, our data identified CD40L expression

on CD4 but not CD8 TIL, and it seems likely that these cells may

fulfill this role.

Our results show that systemic depletion of NK cells leads to

incomplete maturation of both resident and migratory APC

populations in the TDLN but had no effect on APC in NDLN.

This selectivity indicates signals provided by the tumor in

addition to those provided by NK cells are necessary for APC

maturation. It is possible that NK cells in the TDLN drive

additional maturation following an initial signal provided by

the tumor. This is consistent with the observation that CD40L

blockade produced a similar result as NK cell depletion, which

suggests that NK cell direct contact with APC in the TDLN

promotes complete maturation. An additional possibility is that

intratumoral NK cells provide tumor-dependent activation

signals, such as DAMPs, that induce complete maturation of

APC in the TDLN. Further research into how and where the NK

cells drive optimal APC maturation during the early immune

response against the tumor will be critical to allow for

development of therapeutic intervention strategies in the future.

These results demonstrate that functional NK cells improve

the overall quality of tumor-specific T cell responses. However,

as NK cell function decreases over time, this effect may be lost,

leading to increased development of anergic TIL in association

with tumor progression. NK cell dysfunction can thus have

effects that resemble those of NK cell depletion in early-stage

tumors that we have described here. Our data also demonstrate

that the functional effectors that develop in the absence of NK

cells are less likely to persist in tumors. Thus, once NK cells have

become dysfunctional, new tumor antigens arising as a

consequence of ongoing mutation may generate a suboptimal

T cell response, resulting in decreased T cell control of the

tumor. This study has demonstrated that the long-term impacts

of NK cell dysfunction on the T cell response to tumors is an

important area for future investigation.

Our work demonstrates that there is a need to evaluate the

downstream consequences of NK cell function on both APC

maturation and early-stage tumor specific T cell activation in

human cancer patients. Based on our work, NK cell adoptive

transfer may be able to increase the efficacy of checkpoint

blockade therapy by diminishing the generation of anergic T
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cells that are unresponsive to checkpoint blockade therapy. NK

cell adoptive transfer therapy clinical trials (78–80) have shown

promise, but significant challenges remain in ex vivo generation

of NK cells that retain long-term effector function (81, 82).

While combination with other immune therapies is being

examined, no trials in combination with checkpoint blockade

therapy have been completed. Future examination of the effect of

NK cell adoptive transfer therapy on T cell activation in the LN

and in tumors will be key to determine if there is synergy with

checkpoint blockade therapy.
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Olive leaves extract alleviates
inflammation and modifies the
intrinsic apoptotic signal in the
leukemic bone marrow
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Introduction: Current anti-leukemic chemotherapies with multiple targets

suffer from side effects. Synthetic drugs with huge off-target effects are

detrimental to leukemic patients. Therefore, natural plant-based products are

being increasingly tested for new anti-leukemic therapy with fewer or no side

effects. Herein, we report the effect of ethanolic olive leaves extract (EOLE) on

the K562 cell line and on the bone marrow (BM) of N-ethyl-N-nitrosourea

(ENU)-induced leukemic mice.

Methods: Using standard methodologies, we assessed viability, chromatin

condensation, and induction of apoptosis in EOLE-treated K562 cells in-vitro.

The anti-leukemic activity of EOLE was assayed by measuring ROS, levels of

various cytokines, expression of iNOS andCOX-2 gene, and changes in the level of

important apoptosis regulatory and cell signaling proteins in-vivo.

Result: K562 cells underwent apoptotic induction after exposure to EOLE. In

the BM of leukemic mice, EOLE therapy decreased the number of blast cells,

ROS generation, and expression of NF-kB and ERK1/2. IL-6, IL-1b, TNF-a, iNOS,

and COX-2 were among the inflammatory molecules that were down-

regulated by EOLE therapy. Additionally, it decreased the expression of anti-

apoptotic proteins BCL2A1, BCL-xL, and MCL-1 in the BM of leukemic mice.

Discussion: Chronic inflammation and anomalous apoptotic mechanism both

critically contribute to the malignant transformation of cells. Inflammation in the

tumor microenvironment promotes the growth, survival, and migration of cancer

cells, accelerating the disease. The current investigation showed that EOLE

treatment reduces inflammation and alters the expression of apoptosis

regulatory protein in the BM of leukemic mice, which may halt the progression

of the disease.
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1 Introduction

Leukemia, a malignant blood disorder, is characterized by an

abnormal hematopoiesis and an accumulation of partially

differentiated leukemic blasts in the bone marrow (BM). Entry

of these blasts into the circulation alters the composition of

normal blood and impairs its functions. The leukemic blasts

infiltrate and gradually incapacitate the liver, the kidneys, the

lungs, the spleen, and the lymph nodes. Leukemia occurs in

individuals of all age groups. Relapse in critical patients and

resistance to chemotherapy cause severe hematological

complications and therapeutic incompatibility specifically

after a chemotherapy eventuating in death of the leukemia

patients (1). The leukemic cells and other cells in the BM

microenvironment secrete several soluble factors in a

dysregulated manner, altering cell signalling and aiding the

leukemic cells’ survival and resistance to chemotherapy. The

leukemic cells become drug resistant by several mechanisms,

including inactivation of drug, inhibition of apoptosis, increased

drug efflux, decreased drug uptake, altered drug metabolism,

enhanced DNA repair and so on (2). The aged leukemia patients

cannot sustain intensive chemotherapy due to severe toxicity, or

a BM transplant leads to high mortality (3). Overcoming these

complications requires the development of therapeutics that will

be less toxic, selectively target malignant cells, and strengthen the

natural defence mechanism of the individual.

Two important abnormal phenotypes prevalent in leukemia

are BM inflammation and apoptotic resistance of malignantly

transformed cells (4, 5). The very root of these anomalies lies in

the abnormal activation of various signaling molecules, including

the nuclear factor-kappa B (NF-kB) and excessive release of

various inflammatory cytokines (6, 7). Dysregulation of NF-kB
is strongly associated with malignant transformation. It mediates

inflammation, accelerates cell proliferation, and makes the cancer

cells resistant to apoptosis. It stimulates angiogenesis and

promotes metastasis of tumor cells. Constitutive NF-kB
activation is commonly seen in Acute Myeloid Leukemia

(AML) patients and experimental animal models of AML (7, 8).

NF-kB also regulates apoptosis by directly regulating the

expression of anti-apoptotic B-cell lymphoma 2-related proteins

A1 (BCL2A1) in the murine hematopoietic system (9). Increased

anti-apoptotic BCL2A1 and B-cell lymphoma-extra-large (BCL-

xL) expression in the mouse hematopoietic system makes the

hematopoietic stem and progenitor cells resistant to apoptosis,

often leading to hematopoietic transformation and development

of leukemia (10, 11). NF-kB is thus an important target for

therapeutic intervention in leukemia.

The olive fruit and leaves contain many biologically active

polyphenol compounds, including main constituents’

oleuropein and hydroxytyrosol. Both oleuropein and

hydroxytyrosol are chemopreventive and kill cancer cells by

multiple mechanisms (12, 13). The crude olive extract and the
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olive polyphenols tested in many tumor cell lines and animal

tumor models have shown substantial therapeutic benefits (14).

The olive leaf extracts induce apoptosis in K-562 leukemia cells

and trigger their differentiation into monocyte-macrophage

lineage (15). The EOLE potentiates the antioxidant enzyme

functions through up-regulation of nuclear factor erythroid 2-

related factor 2 (Nrf2) in vivo (16). The EOLE treatment also

lowers NF-kB expression and the concentration of inflammatory

cytokines in inflamed lungs. This observation is consistent with

the available literature describing the pharmacologic properties

of crude olive leaf extract, or olive polyphenols, which led us

to choose EOLE for the current study. Before finalizing this

research design, a pilot study with EOLE was conducted on

N-ethyl-N-nitrosourea (ENU) induced leukemic mice

substantially reduced the total leukocyte and blast count in the

peripheral circulation. This study investigated the anti-leukemic

effects of EOLE with reference to its anti-inflammatory and

cytotoxic activities.
2 Materials and methods

2.1 Preparation of plant extract and
phytochemical profiling

The fresh leaves of arbequina olive (Olea europaea) were

provided by the Rajasthan Olive Cultivation Limited (ROCL),

Bassi, Rajasthan, India. The plant was authenticated by the plant

taxonomist at the Department of Botany, University of

Rajasthan. A herbarium of the plant was preserved along the

voucher accession number RUBL211669, dated 06/03/2018. The

ethanolic extract of the Olive leaves was prepared according to

the previously described method (16). The dried extract was kept

at -20°C to prevent degradation.

The chemical formulation of EOLE was determined with liquid

chromatography-electrospray ionization tandem mass

spectrometry (LC-ESI MS/MS) (Agilent Technologies, Palo Alto,

CA, USA) (16). The LC-ESI MS/MS analysis identified around 23

different phytochemicals in EOLE; of which, hydroxytyrosol,

oleuropein, and apigenin compose significant fractions (16).
2.2 Cell culture

Human chronic myelogenous leukemia K562 cell was

procured from the National Centre for Cell Science (NCCS),

Pune, Maharashtra, India, and was expanded in our laboratory.

Cells were propagated with fetal bovine serum (FBS)

supplemented RPMI 1640 medium (Gibco) inside a

humidified cell culture incubator at 37°C temperature and 5%

CO2. On reaching about 80% confluence, the culture was split

for use in various experiments in-vitro (17).
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2.3 Cytotoxicity assay

The cytotoxicity of EOLE on K562 cells and naïve mouse

splenocytes was investigated by 3-(4,5-Dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) (Sigma Aldrich) assay

in a 96-well plate with slight modification of a standard protocol

(18). To each well of 96 well plates 0.1 ml cell suspensions with a

cell density of 2×105 cells/ml of RPMI media were seeded and

maintained under culture condition. The treated groups of cells

were given EOLE (dissolved in cell culture grade dimethyl

sulfoxide (DMSO) and successively in RPMI-1640 reducing

the final concentration of DMSO to 0.2% only) at the

concentrations of 5, 10, 20, 50, and 100 μg/ml of media,

whereas the control cells were given 0.2% cell culture grade

dimethyl sulfoxide (DMSO). After incubation for 24, 48, and 72

hours the cells were labelled with MTT solution at final

concentration of 5mg/ml and incubated for 2-4 hours at 37°C.

The resultant formazan crystal formed in control and treated

wells was dissolved by the addition of DMSO. The cytotoxic

effect of EOLE was calculated as: (%) viability = (absorbance of

test-absorbance of blank)/(absorbance of control-absorbance of

blank) × 100 (18), [where, the test represents the K562 cells that

received EOLE treatment; control represents the untreated K562

cells; and the blank represents only media plus MTT solution

and DMSO].
2.4 Cell viability assay

The viability of EOLE treated cells was measured by trypan

blue dye exclusion assay with minor modification of a standard

protocol. The K562 cells were treated with EOLE at 50 and

100μg/ml, incubated for 24 hours and preceded with trypan blue

staining. The numbers of live and dead cells were counted under

bright-field microscope using a Neubauer haemocytometer. The

calculation was done using the formula:

Viable cells (%) = (1 – number of blue or dead cells/total

number of cells) x 100 (19).
2.5 The AO/EtBr and DAPI staining assay

The Acridine orange/Ethidium bromide (AO/EtBr) and 4′,
6-diamidino-2-phenylindole (DAPI) staining were carried out to

study the EOLE-induced cell death and chromatin condensation

in K562 cells following standard protocols (20, 21). The

calculation was done using the formulae:

Non-apoptotic cells %ð Þ
= 1�No: of yellow or orange cells=total no: of cellsð Þ � 100
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Nuclear fragmented cells  %ð Þ
= 1  –  No: of bright blue cells=total no: of cellsð Þ � 100
2.6 DNA ladder assay

The nuclear DNA damage by EOLE was studied using a

DNA ladder assay (22). In brief, the DNA from the control and

treated K562 cells were electrophoretically separated in 1.5%

agarose gel. The DNA bands were visualized under ultraviolet

(UV) i l luminat ion in a Bio-Rad ChemiDoc™ MP

imaging system.
2.7 Western blot analysis of apoptosis
in K562 cells

Apoptosis induction in EOLE-treated K562 cells was

investigated by western blotting (23). An equal amount of

protein from the EOLE treated and control K562 cells were

separated in SDS-PAGE, transferred to a nitrocellulose

membrane, and processed to detect the protein of interest.

Primary and secondary antibodies against the target proteins-

GAPDH, BCL-2, BCL-xL, BCL2A1, MCL-1, BAX, PUMA,

Cytochrome-C, NF-kB, and ERK-1/2 were procured from

Abcam (United Kingdom).
2.8 Development of leukemia in mice

The animal experiments were performed with the approval

from the institutional animal ethics committee (IAEC),

reference no. TU/IAEC/2018/XVII/II dated 18th Dec 2018.

The healthy BALB/c mice, of both sexes, same age and body

weight, were housed at the institutional animal house,

maintained under a standard living condition of 25°C ± 2°C

temperature, 45% ± 10% relative humidity, 12h light/dark cycle

and food and water ad libitum. Leukemia in mice was induced

by ENU (24). The development of leukemia was confirmed by

blasts in the peripheral blood (24). As per our study, 46% mice

developed leukemia within 20 weeks after ENU injection.
2.9 Exclusion and inclusion criteria
for leukemic mice

The primary criteria for exclusion and inclusion of mice into

the experiment were the status of leukemia. The mice showing

more than 20% myeloid or lymphoid blast in the peripheral

blood after five months of ENU injection (25) were considered
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leukemic. The leukemic mice with excessive weakness or very

low body weight were excluded from the studies.
2.10 Mice groups and treatment
schedule for in-vivo studies

Four different groups of mice were taken for this study (n=6

in each group) (26). Treatment was given by oral gavage for 1

month. Details of animal groups and treatment are: Group-1:

Normal control- given sterile water; Group-2: Leukemia control-

given sterile water; Group-3: Normal + EOLE- given EOLE in

water at 200mg/kg body weight; and Group-4: Leukemia +

EOLE- given EOLE dissolved in water at 200mg/kg body weight.

A toxicity study (unpublished) of EOLE was performed in

mice before choosing the dose for the in-vivo treatment. In brief,

the EOLE was orally administered in different groups of mice at

the doses of 50, 100, 200, 500, and 1000mg/kg body weight daily

for 28 days. During this period the animals were observed for

changes in food and water intake, body weight and abnormal

symptoms, physical weakness, and death. Notably, the mice

group given EOLE at 1000mg/kg body weight developed

diarrhoea within 3 to 4 days of continued oral administration.

However, no such symptoms were seen in the mice groups given

EOLE at 50, 100, and 200mg/kg body weight. The food and

water intake, body weight, and physical status in these groups of

animals were found similar to the control mice. Therefore, EOLE

at 200mg/kg body weight was chosen for in-vivo treatment.
2.11 Animal sacrifice and
sample collection

On completion of treatment, all the mice under the

experiment were sacrificed following the IAEC guidelines.

Mice were allowed to inhale chloroform and euthanized by

cervical dislocation. The mice assorted in groups were then

dissected in aseptic conditions to collect the organs, spleen, and

hind limbs to isolate BM from femur bones. Blood was collected

before euthanasia by puncturing the retro-orbital sinus with a

sterile capillary tube.
2.12 Complete blood count and
morphological study

The complete blood count (CBC) of EDTA containing

peripheral blood samples was performed in the Trivitron

(Celenium-19) digital blood analyzer system (23). The blast

cell counting was performed manually under the microscope.

Morphology of blood cells was examined conventionally. In

brief, a thin smear of blood was prepared and stained using a

standard protocol (27). The observation was carried out under
Frontiers in Immunology 04
161
40X and 100X objectives in bright-field microscopy, Leica

DM4000B LED fluorescence microscope.
2.13 Serum lactate dehydrogenase activity

The lactate dehydrogenase activity in serum was measured

with little modification of the protocol of Simaga et al., 2008

(28). The activity was measured spectrophotometrically at room

temperature for 3 min by recording decrease in absorbance of

NADH at 340 nm in UV 1900 Shimadzu UV visible double

beam spectrophotometer.
2.14 Bone marrow smear preparation
and morphological study

The femoral marrow cells were isolated (29). A thin smear of

the BM cells was drawn on a grease-free glass slide, stained with

Leishman’s stain (27) and was observed under a Leica DM4000B

LED fluorescence microscope.
2.15 Determination of inflammatory and
hematopoietic cytokines in the BM

The indicated cytokines in the BM was measured using the

method described by Pino et al., 2010 (30). The supernatants of

PBS suspended BM samples were assayed for the indicated

cytokines such as IL-1a, IL-1b, TNF-a, TGF-b, VEGF, SCF,
G-CSF, GM-CSF, IL-3, and IL-6 by respective cytokine ELISA

kits following the manufacturer’s protocol (PeproTech, USA and

ImmunoTools GmbH, Germany).
2.16 Immunoblots for apoptosis-related
and signaling proteins in the BM

The total protein was isolated from the BM cells, resolved on

polyacrylamide gels, transferred onto PVDF membrane and

probed with the respective primary and secondary antibodies

(Abcam, United Kingdom) (31).
2.17 Measurement of ROS production in
bone marrow

ROS production in BM was measured following a standard

protocol (32). This method used 2-,7-dichlorofluorescein

diacetate (DCFDA) as a fluorescence probe. The fluorescence

intensity of the samples was taken at lexcitation = 488nm and

lemission = 530nm in Synergy H1 Hybrid Reader (BioTek

Instruments, Inc., Winooski, USA).
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2.18 Expression studies of iNOS and
COX-2 in bone marrow by real-time PCR

RNA from the BM cells was extracted using Trizol reagent

(Ambion by Life Technologies, #15596018). The RNA in equal

amount was taken from each sample to synthesize cDNA using

the BIO-RAD iScript ™ cDNA synthesis kit (#170-8891). The

gene expression was studied in an Applied Biosystem’s Step-One

Plus real-time PCR system following a standard protocol (16).

The sequence of the PCR primer used are: GAPDH Forward: 5′-
CAC CAC CCT GTT GCT GTA GCC-3′; GAPDH Reverse: 5′-
ACC ACAGTC CAT GCCATC AC-3′; iNOS Forward: 5’- GCC
ACC AAC AAT GGC AAC A-3’; iNOS Reverse: 5’- CGT ACC

GGA TGA GCT GTG AAT T-3’; COX-2 Forward: 5’- GAA

GAT TCC CTC CGG TGT TT-3’; COX-2 Reverse: 5’- CCC TTC

TCA CTG GCT TAT GTA G-3’
2.19 Immunohistochemistry of spleen

Splenic sections were stained for immunohistochemistry and

detection of leukemic blast using a standard protocol (10). In brief,

thin sections of spleen were deparaffinised and hydrated before

incubating in hydrogen peroxide (H2O2) solution to block

endogenous peroxidase activity. The sections were blocked with

bovine serum albumin (BSA) solution and incubated with anti-

mouse rabbit polyclonal antibody to BCL2A1/GRS and MCL-1

antibody for overnight. On the next day, the sections were washed

with PBS and incubated with goat anti-rabbit IgG H&L (HRP) (cat.

ab97051). Finally, the sections were stained with diaminobenzidine

(DAB) and followed by counterstaining with hematoxylin. The

sections were then examined and photographed under a Leica

DM4000B LED microscope.
2.20 Preparation and isolation of mouse
peritoneal macrophage

The peritoneal macrophage from the BALB/c mice was

isolated with a slight modification of a standard protocol (33).

The macrophage cells were maintained with the serum-

supplemented DMEM/F12 medium.
2.21 Macrophage inflammation assay

The effect of EOLE on macrophages- Macrophage + PBS

(Normal control); Macrophage + LPS (Inflammation control);

Macrophage + LPS &PBS (Treatment-1); Macrophage + LPS

and EOLE at 50μg/ml (Treatment-2); Macrophage + LPS and

EOLE at 100μg/ml (Treatment-3)- was assayed in-vitro (34).

Lipopolysaccharide (LPS) was added to the macrophages at the
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final concentration of 100ng/ml. The LPS stimulates the

macrophage to release TNF-a and IL-1b which were studied

in the presence and absence of EOLE.
2.22 Statistical analysis

The statistical analysis was performed in GraphPad InStat 3

software. Statistical significance was tested by one-way ANOVA

followed by Tukey’s multiple comparison tests between the

control and treated groups. The p-value p<0.05 was

considered statistically significant.
3 Results

3.1 EOLE is cytotoxic and induces
apoptosis to the K562 cells

MTT assay showed that EOLE (up to 100μg/ml) had significant

toxicity against K562 cells but not against naïve mouse splenocytes.

At the given dose of EOLE 50 μg/ml, the viability percentage of

K562 cells reduced significantly to 59.78 ± 5.46 (p<0.001), 29.48 ±

7.2 (p<0.001), and 7.16 ± 1.1 (p<0.001), respectively, after 24, 48 and

72 hours of incubation. The viability percentage of K562 cells

further reduced to 20.42 ± 2.79 (p< 0.001), 9.72 ± 3.36 (p<

0.001), and 2.64 ± 0.71 (p< 0.001), respectively, for 24, 48, and 72

hours at the EOLE dose of 100 μg/ml (Figure 1A i & ii). The trypan

blue dye exclusion experiment confirmed the above data (Figure 1B

a. i to iv). The control and treated K562 cells were also stained with

the AO/EtBr and DAPI and observed under fluorescence

microscope to visualize the apoptotic features like membrane

blebbing and chromatin condensation. AO/EtBr gives distinctive

characteristic features to normal and apoptotic cells. The normal

cell fluoresced green; however, the early apoptotic cell showed

bright yellow areas in the nucleus. Concurrently, the late

apoptotic cell took up EtBr due to loss of membrane integrity

and fluoresced orange (Figure 1B b. i to iv). The percentage of non-

apoptotic K562 cells presented along a bar diagram showed a

significantly (p<0.001) less non-apoptotic K562 cells in EOLE

treated groups compared to control group (Figure 1B b. iv). The

DAPI staining of K562 cells reflects the changes in the nucleus. The

control K562 cells showed round to oval-shaped nuclei with diffuse

blue staining, whereas many cells in EOLE treated groups fluoresce

bright blue indicating chromatin condensation and nuclear

fragmentation (Figure 1B c. i to iv). The number of chromatin

condensed cell was found significantly higher in 100μg/ml EOLE

treated group (Fig- 1Bc. iv). DNA fragmentation in K562 cells was

also assayed by DNA ladder assay. The DNA from the control K562

cells produced a thick band in the agarose gel close to the loading

well, whereas the DNA from EOLE-treated K562 cells produced a

smear due to DNA fragmentation by endonucleases (Figure 1C).
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FIGURE 1

Figures showing the cytotoxic activity of EOLE: (A) Viability percentage of control and EOLE-treated K562 and splenocytes evaluated through
MTT assay, where (i) Viability of mouse splenocytes, (ii) Viability of K562 cells; values are expressed as mean ± SD of 3 observations. The
statistical significance was tested using one-way ANOVA following Tukey’s multiple comparison tests by comparing the values as, control vs.
treatments separately for 24 hours, 48 hours, and 72 hours. P value, p < 0.05 was considered as statistically significant. When compared
between control vs. treatment for 24 hours the level of significance is denoted as, a = not significant when p > 0.05; * when p < 0.05; ** when
p < 0.01; and *** when p < 0.001. When compared between control vs. treatment for 48 hours the level of significance is denoted as, b = not
significant when p > 0.05; # when p < 0.05; ## when p < 0.01; and ### when p < 0.001. When compared between control vs. treatment for 72
hours the level of significance is denoted as, c = not significant when p > 0.05; a when p < 0.05; aa when p < 0.01; and aaa when p < 0.001;
(B) Result of the trypan blue dye exclusion assay, AO/EtBr staining, and DAPI staining, where (a) Trypan blue assay, (b) AO/EtBr staining, (c) DAPI
staining: (i) Representative images of control group, (ii) Representative images of EOLE-treated (50 µg/ml) group, (iii) Representative images of
EOLE-treated (100 µg/ml) group, (iv) Bar diagrams showing results of staining assay. Values are expressed as mean ± SD of 3 different
observations. The statistical significance was tested using one-way ANOVA followed by Tukey’s multiple comparison tests by comparing the
values as, control vs. treatments. P-value, p < 0.05 was considered as statistically significant and denoted as, a = not significant when p > 0.05; *
when p < 0.05; ** when p < 0.01; and *** when p < 0.001; (C) The representative image of the DNA ladder assay.
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3.2 EOLE induces the expression of
apoptotic proteins in K562 cells

The cytoplasm of an apoptotic cell always possesses more pro-

apoptotic proteins and fewer anti-apoptotic proteins. Therefore, the

changes in BCL-2, BCL-xL, BAX, PUMA, and cytochrome c

proteins in the control and treated K562 cells were studied by

western blotting (Figure 2). The densitometry analysis of protein

bands showed a significant reduction in anti-apoptotic proteins

BCL-2 (p<0.001) (Figure 2B), BCL-xL (p<0.001) (Figure 2C); and

an increase in pro-apoptotic proteins BAX (p<0.01) (Figure 2D),

and PUMA (p<0.001) (Figure 2E) in treated K562 cells at the

concentration of 50μg and 100 μg EOLE/ml of media. The western

blot study also showed significantly more (p<0.01) cytochrome c in

the treated K562 cells than the control due to the increased release

of cytochrome c from themitochondria of EOLE-induced apoptotic

cells (Figure 2F).
3.3 EOLE reduced leukemic blast cell in
blood and bone marrow in mice model

Leukemia was developed in mice within 20 weeks of ENU

challenge. In leukemic mice, the leucocyte count increased several
Frontiers in Immunology 07
164
folds. A significant part of these leucocyte comprised leukemic

blasts characterized by a large nucleus and scant cytoplasm. These

blasts accumulated in the BM and blood. The microscopic

observation of blood and BM smears revealed a significantly

(p<0.05) lesser blast count in EOLE-treated leukemic mice

compared to leukemic control (Figures 3A, B). The total count

of blood corpuscles and hemoglobin showed a considerable

difference among the studied animal groups. The total leukocyte

count in the EOLE-treated leukemic group was found significantly

(p<0.001) lesser compared to leukemic control mice (Figure 3C).

The RBC count, platelet count, and hemoglobin, which were

significantly less (p<0.01) in the leukemic control mice,

moderately increased in EOLE-treated leukemic mice (Figure 3C).
3.4 EOLE rescues the body weight and
improves LDH activity

The average body weight of mice differs among the studied

groups of mice. The experiments started by taking mice of almost

the same body weight of 11 to 12 gm; however, after the 20th week

of ENU administration, the weight of the mice showed a significant

difference between the normal and ENU-injected groups. The

average weight of ENU-induced leukemic mice was measured
B CA

D E F

FIGURE 2

Figure showing the expression of many apoptotic pathway proteins in control and EOLE treated K562 cells, where (A) Images of protein bands,
(B) Densitometry plot for BCL-2, (C) Densitometry plot for BCL-xL, (D) Densitometry plot for BAX, (E) Densitometry plot for PUMA, (F)
Densitometry plot for cytochrome c Values are expressed as mean ± SD of 3 observations. The statistical significance was tested using one-way
ANOVA following Tukey’s multiple comparison tests by comparing the values as, control vs. treatments. P-value, p<0.05 was considered as
statistically significant and denoted as a= not significant when p > 0.05; * when p < 0.05; ** when p < 0.01; and *** when p < 0.001.
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significantly (p<0.001) less than the average weight of normal mice

at 20th and 24th weeks. After 20 weeks the body weight of the

leukemic mice showed slight reduction, however when compared

the weight loss was found substantially more in leukemic control
Frontiers in Immunology 08
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mice than EOLE-treated group but not statistically significant

(p>0.05) (Figure 4A).

LDH is a prognostic marker of cancer progression. In this

study, the serum LDH activity was measured significantly
B

C

A

FIGURE 3

Figures showing the morphology of blood bone marrow and various hematologic parameters: (A) Representative images of blood smears at
different magnifications, where (i) Normal control, (ii) Leukemia control, (iii) Normal + EOLE, (iv) Leukemia+ EOLE. In these figures, the red arrow
indicates leukemic blast cells, and the green arrow indicates normal WBCs; (B) Representative images of bone marrow, where (i) Normal
control, (ii) Leukemia control, (iii). Normal + EOLE, (iv). Leukemia + EOLE. In these figures, the red arrow indicates leukemic blast cells; (C) Bar
diagrams representing various haematological parameters, where (i) WBC count, (ii) RBC count, (iii) Platelet count, (iv) Hemoglobin
concentration, (v) Blast cell count (percentage of total WBC). Values are expressed as mean ± SD of 3 different observations. The statistical
significance was tested using one-way ANOVA following Tukey’s multiple comparison tests by comparing the values as, Group-1 vs. Group-2, 3;
Group-2 vs. Group- 4. P value, p < 0.05 was considered as statistically significant. When compared with Group-1 the level of significance was
denoted as, a = not significant when p > 0.05; * when p < 0.05; ** when p < 0.01; and *** when p < 0.001. When compared with Group-2 the
level of significance was denoted as, b = not significant when p > 0.05; # when p < 0.05; ## when p < 0.01; and ### when p < 0.001.
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(p<0.01) higher in leukemic control group than in the normal

control. However, in the EOLE-treated leukemic group, it was

measured significantly (p<0.05) less than in the leukemic control

group (Figure 4B).
3.5 EOLE reduces the expression of
hematopoietic cytokines- SCF, IL-3, IL-6,
GCSF and GM-CSF- in the leukemic
bone marrow

Hematopoiesis from the hematopoietic stem cells (HSCs) is

a complex process tightly regulated by the hematopoietic

cytokines in the BM. The level of major hematopoietic

cytokines like G-CSF, GM-CSF, SCF, IL-3, and IL-6 measured

in the BM showed variation among different animal groups. The

result of ELISA revealed a significantly (p<0.001) higher level of

these cytokines in the BM of leukemic control mice. However,

the leukemic mice that received EOLE treatment had

significantly less G-CSF (p<0.05), IL-3 (p<0.001), and IL-6

(p<0.01) (Figure 5).
3.6 EOLE inhibits the inflammation
by reducing expression of
inflammatory markers

Inflammatory cytokines up-regulate in leukemia support the

progression of leukemia. In this study, the protein levels of IL-1a,
IL-1b, TNF-a, TGF-b, and VEGF in BM were measured

significantly (p<0.001) higher in the leukemic control group
Frontiers in Immunology 09
166
compared to the normal control. However, the level of these

cytokines significantly reduced (IL- 1a (p<0.001), TNF-a
(p<0.05), TGF-b (p<0.001), and VEGF (p<0.01)) after EOLE

treatment (Figure 6A). ROS is an essential mediator of

inflammation. The ROS level in the BM was found significantly

(p<0.01) higher in the leukemic control group compared to normal

control. EOLE treatment of leukemic mice significantly (p<0.05)

reduced ROS production (Figure 6B). Among the other

inflammatory markers, the expression of iNOS and the COX-2

gene was measured in the BM of different groups of mice. A

significantly higher expression of iNOS (p<0.05) and COX-2

(p<0.01) was found in the BM of the leukemic control group

compared to the normal control. In the EOLE-treated leukemic

group, the expression of iNOS and COX-2 was measured

moderately less than in the leukemic control group (Figure 6C).

The anti-inflammatory activity of EOLE was further assayed

in LPS-induced mouse peritoneal macrophages. LPS stimulates

the macrophage to release TNF-a and IL-1b are measured in-

vitro. The EOLE was found to affect the release of TNF-a and IL-

1b from LPS-stimulated macrophages. The culture supernatants

assayed through ELISA revealed a significantly (p< 0.001) higher

TNF-a (Figure 6Di) and IL-1b (Figure 6Dii) levels. However, the

release of TNF-a and IL-1b was reduced significantly (p< 0.001)

in the presence of EOLE.
3.7 EOLE alters intrinsic apoptotic signals
in the BM of leukemic mice

Apoptotic resistance is one of the fundamental properties of

cancer cells. In this study, the expression of anti-apoptotic
B
A

FIGURE 4

The figures show the effect of EOLE treatment on the health parameter of mice, where (A) Effect on body weight. Values are expressed as mean
± SD for 6 mice. (B) Lactate dehydrogenase activity (LDH) assay. Values are expressed as mean ± SD of 3 different observations. The statistical
significance was tested using one-way ANOVA following Tukey’s multiple comparison tests by comparing the values as, Group-1 vs. Group-2, 3;
Group-2 vs. Group- 4. P-value, p < 0.05 was considered as statistically significant (n = 6).When compared with Group-1 the level of significance
was denoted as, a = not significant when p > 0.05; * when p < 0.05; ** when p < 0.01; and *** when p < 0.001. When compared with Group-2,
b = not significant when p > 0.05; # when p < 0.05; ## when p < 0.01; and ### when p < 0.001.
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BCL2A1, BCL-xL, and MCL-1 proteins was found significantly

higher [(p<0.001), (p<0.01), and (p<0.001), respectively] in the

BM of ENU-induced leukemic mice with lesser expression of

pro-apoptotic proteins BAX and PUMA than in control mice.

However, following EOLE treatment the expression pattern of

the pro-apoptotic and anti-apoptotic proteins was reversed

significantly (Figure 7).
3.8 NF-kB and ERK 1/2 were down-
regulated by EOLE in leukemic
bone marrow

The NF-kB in general induces the expression of several

genes that play critical role in cell proliferation and apoptosis, so,

the expression of NF-kB in the BM from different groups of mice

were assayed. The study revealed a significantly (p<0.001)

increased expression of NF-kB protein in the BM of leukemic

mice. However, it was significantly (p<0.01) down-regulated in

the EOLE-treated leukemic group (Figures 8A, B).

Similarly the ERK1/2, that transduce extracellular signals to

the interior of cell showed aberrant expression. In this study, the

western blot analysis of BM cell protein revealed a significantly

(p<0.001) increased ERK1/2 in leukemic control group

compared to normal counterpart. However, in EOLE treated
Frontiers in Immunology 10
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leukemic group, the expression of the same protein was

significantly (p<0.01) reduced (Figures 8A, C).
3.9 EOLE reduced infiltration of leukemic
blast in the spleen

In progressive leukemia, the leukemic blast infiltrates into

various bodily organs like the spleen. Therefore, the splenic

infiltration of blast cells was investigated in all the groups

using immunohistochemical staining (Figure 9). The

immunohistochemistry of splenic sections revealed substantially

lesser blast cell infiltration in the EOLE-treated leukemic mice

compared to the leukemic control mice.
4 Discussion

The life-threatening side effects of existing therapeutics and

the acquisition of drug resistance pushing the research globally

that is targeted to develop new therapeutics for the treatment of

leukemia which is less toxic as well as effective for the treatment

of leukemia. The initial development of leukemia starts due to

some genetic abnormalities catalysing signaling defects and

abnormal cellular function. Chronic inflammation and
B C
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FIGURE 5

Bar diagrams showing the effect of EOLE treatment in the bone marrow concentrations of various hematopoietic cytokines, where (A) SCF,
(B) G-CSF, (C) GM-CSF, (D) IL-3, (E) IL-6; values are expressed as mean ± SD of 3 different observations. The statistical significance was tested
using one-way ANOVA and Tukey’s multiple comparison tests by comparing the values as, Group-1 vs. Group-2, 3; Group-2 vs. Group- 4. P
value, p < 0.05 was considered as statistically significant. When compared with Group-1 the level of significance was denoted as, a = not
significant when p > 0.05; * when p < 0.05; ** when p < 0.01; and *** when p < 0.001. When compared with Group-2, b = not significant when
p >0.05; # when p < 0.05; ## when p < 0.01; and ### when p < 0.001.
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FIGURE 6

Figures showing the result of EOLE treatment on the expression of various inflammatory substances: (A) Bar diagrams showing the
concentrations of various inflammatory cytokines in BM, where (i) IL-1a, (ii) IL-1b, (iii) TNF-a, (iv) TGF-b, (v) VEGF; (B) ROS production by the BM
cells; (C) Result of gene expression studies, where (i) Bands of PCR amplified products, (ii) Relative expression of iNOS, (iii) Relative expression of
COX-2; values are expressed as mean ± SD of 3 different observations. The statistical significance was tested using one-way ANOVA following
Tukey’s multiple comparison tests by comparing the values as, Group-1 vs. Group-2, 3; Group-2 vs. Group- 4. P value, p < 0.05 was considered
as statistically significant. When compared with Group-1 the level of significance was denoted as, a = not significant when p > 0.05; * when p <
0.05; ** when p < 0.01; and *** when p < 0.001. When compared with Group-2, b = not significant when p > 0.05; # when p < 0.05; ## when
p < 0.01; and ### when p<0.001; (D) Bar diagrams representing the result of macrophage inflammation assay, where (i) TNF-a release, (ii) IL-1b
release; values are expressed as mean ± SD of 3 different observations. The statistical significance was analyzed by comparing the values as,
Group-1 vs. Group-2; Group-2 vs. Group- 3, 4, 5. P value, p < 0.05 was considered as statistically significant. When compared with Group-1, a =
not significant when p > 0.05; * when p < 0.05; ** when p < 0.01; and *** when p < 0.001. When compared with Group-2, b = not significant
when p > 0.05; # when p < 0.05; ## when p < 0.01; and ### when p < 0.001.
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apoptotic resistance are the two major abnormal functions that

aid in the growth of cancer and spread to neighbouring tissues.

The drugs that can alter inflammation and induce apoptosis in

cancer cells help in preventing cancer growth. Plant

phytochemicals are one of the interesting classes of molecules

undergoing vigorous checking with the aim to identify novel

anticancer molecules. Some noteworthy plant phytochemicals

useful against leukemia are curcumin, lupeol, and corydine,
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isolated from certain herbs and trees (35). Another tree that

has drawn the attention of researcher is the olive tree. The olive

leaves, fruits, and oils contain many pharmacologically active

phytochemicals like oleuropein and hydroxytyrosol (14). The

GC-MS analysis of the prepared EOLE revealed the presence of

oleuropein and hydroxytyrosol as major chemical structures

(16). Both of these phytochemicals exerts anticancer activity

through antioxidant, inflammatory, immunomodulatory
B

C D

E F
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FIGURE 7

Figure showing the result of western blot analysis for many apoptotic pathway proteins in the bone marrow of mice, where (A) Image of protein bands,
(B) Densitometry plot for BCL2A1, (C) Densitometry plot for MCL-1, (D) Densitometry plot for BCL-xL, (E) Densitometry plot for BAX, (F) Densitometry
plot for PUMA. Values are expressed as mean ± SD of 3 observations. The statistical significance was tested using one-way ANOVA following Tukey’s
multiple comparison tests by comparing the values as, Group-1 vs. Group-2, 3; Group-2 vs. Group- 4. P-value, p < 0.05 was considered as statistically
significant. When compared with Group-1 the level of significance was denoted as, a = not significant when p > 0.05; * when p < 0.05; ** when
p < 0.01; and *** when p < 0.001. When compared with Group-2, b = not significant when p > 0.05; # when p < 0.05; ##when p < 0.01; and
###when p < 0.001.
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mechanisms (14, 16) encouraged us to hypothesize and test the

anti-leukemic activity of EOLE in an animal model of leukemia.

Before beginning with the in-vivo studies, the functional

activity of EOLE was checked in-vitro on the K562 cell line. The

EOLE induced apoptosis in K562 cells without any significant

toxicity to the normal mouse splenocytes is consistent with the

findings of previous studies carried out with olive leaf extracts on

HL-60 and K562 cell line (14, 15). As a novel development to the

existing literature, this study for the first time determined the

effect of EOLE in the expression of apoptosis related proteins

BCL-2, BCL-xL, BAX, PUMA and cytochrome c in the K562

cells. These proteins are categorized into pro-apoptotic and anti-

apoptotic groups serve essential role in cellular apoptosis

program (36). The EOLE was found to up-regulate the pro-

apoptotic protein and trigger apoptosis in K562 cells. The results

from the in-vitro studies sufficiently justify the plans to evaluate

the activity of EOLE in leukemic mice.

The leukemia in mice is characterized by appearance of blast

and very highWBC count in peripheral blood (24). The normal BM

contains about 5% blast cells; however, the number of blast cells

significantly increases in leukemic BM. This blast cell from the BM

enters into blood stream and then infiltrates to other organs. The

blast cell counts in the BM and peripheral blood are markers for

the disease progression and the efficacy of any therapy (37). In the

current study, the administration of EOLE in leukemic mice slow
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down the disease progression as indicated by significantly lesser

WBC and blast count in the peripheral blood of EOLE-treated

leukemic mice compared to the leukemic control. This data is

consistent with the result obtained from the studies with standard

anti-leukemic drug (38). Loss of body weight is an obvious feature

of progressive disease (39). The body weight and serum LDH

activity measured indicate better health of the leukemic mice that

received EOLE treatment than the untreated mice. The high level of

LDH in cancer is associated with inflammation, cell proliferation

and survival, metastasis, and immune escape (40).

In order to explore the anti-leukemic mechanism of EOLE,

various parameters in the BM that influence normal function of the

BM were studied in the included group of mice. The abnormal

expression of inflammatory cytokines and apoptosis regulatory

proteins is a common phenomenon in leukemia and other

hematological malignancies (10, 41, 42). The present study

revealed elevated ROS, inflammatory cytokine, high NF-kB,
ERK1/2, and high BCL2A1, MCL-1, and BCL-xL in the BM of

leukemic mice. ROS is a critical mediator of inflammation and play

important role in initiating malignant diseases (43). Elevated levels

of ROS induce the expression of COX‐2 and cytokines like IL‐1b,
TNF‐a, IL‐6, and IL‐8, promotes chronic inflammation (44, 45).

The increased release of TNF-a and IL-1 in turn induces the

expression of NF-kB which then stimulates the expression of

inflammation-related genes like iNOS, Cox-2, several
frontiersin.o
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FIGURE 8

Figure showing the expression of NF-kB and ERK1/2 in the bone marrow of mice, where (A) Image of NF-kB and ERK1/2 protein bands, (B)
Densitometry plot for NF-kB, (C) Densitometry plot for ERK1/2; values are expressed as mean ± SD of 3 observations. The statistical significance
was tested using one-way ANOVA following Tukey’s multiple comparison tests by comparing the values as, Group-1 vs. Group-2, 3; Group-2 vs.
Group- 4. P-value, p < 0.05 was considered as statistically significant. When compared with Group-1 the level of significance was denoted as, a
= not significant when p > 0.05; * when p < 0.05; ** when p < 0.01; and ***when p < 0.001. When compared with Group-2, b = not significant
when p > 0.05; # when p < 0.05; ## when p < 0.01; ### when p < 0.001.
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inflammatory cytokines and chemokines that contributes in

abnormal cell proliferation, and alters normal apoptosis (8). By

doing this, the NF-kB and inflammatory cytokine establish an

intricate system for cancer growth that plays a seminal role in

developing cancer (46). The NF-kB also directly regulates the

expression of BCL2A1, an anti-apoptotic protein important for

the survival of hematopoietic cells. Other factors like GM-CSF,

TNF-a, and IL-1 up-regulates the expression of BCL2A1 protein in

the hematopoietic compartment, leading to increased stem cell

survival (10). It is evident from the previous studies that the

hematopoietic stem and progenitor cells overexpress anti-

apoptotic BCL2 family proteins: BCL2A1, BCL-xL become less

susceptible or resistant to apoptotic stimulus and transformed into

malignant cells (10, 11). Similarly, over-expression of MCL-1 in

hematopoietic tissues sustains the growth and progression of AML

and develops therapeutic resistance against various chemo-drugs

(47). The excessive secretion of cytokine and growth factor caused

by the elevated ROS and NF-kB activity leads to hyper-activation of

ERK1/2 that influences cellular functions like proliferation and

differentiation etc. (48, 49).

The excessive ROS bought up chronic inflammation. In

opposite, neutralization of ROS inhibits carcinogenesis and
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related events (43) made ROS an important therapeutic target.

The Oleuropein and Hydroxytyrosol present in EOLE are

excellent ROS scavengers (50). In the present study, EOLE

treatment to leukemic mice reduce the production of ROS,

down-regulate NF-kB, and inflammatory markers like IL-1,

TNF-a, iNOS, and COX-2 are consistent with the findings of

previous studies (50). In the present study, the EOLE has

reduced inflammation in the BM of leukemic mice and the

release of TNF-a and IL-1b from LPS-induced inflamed mouse

peritoneal macrophages consistently supports the anti-

inflammatory activity of EOLE (50). The over-expression of

NF-kB in the leukemic BM confers apoptotic resistance to the

leukemic cells (8). The olive polyphenols indirectly down-

regulates the expression of NF-kB help in alleviating

inflammation and apoptotic resistance by regulating the

expression of inflammatory cytokines and the proteins of

apoptosis pathway. The role of NF-kB in leukemogenesis is

evident from the studies where blocking the expression of NF-kB
using an inhibitor molecule BMS-345541 altered the expression

of genes central to leukemogenesis in patient-derived AML cells

(51). The inhibition of NF-kB brings substantial changes in

cytokine and interleukin signaling, cellular metabolism, and cell
B

C

D

A

FIGURE 9

Immunohistochemistry images of splenic sections for BCLA1 protein. (A) Normal control, (B) Leukemia control, (C) Normal + EOLE, (D)
Leukemia + EOLE. In these figures, the brown spots indicate the intensity of BCLA1. The red arrow indicates the BCL2A1positive leukemic blast
cells in the spleen, and the green arrow indicates the BCL2A1 negative spleen cells.
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communication. In the present study, the EOLE-treatment

significantly reduced the expression of NF-kB and altered the

expression of BCL2A1, BCL-xL, and MCL-1 in the BM of

leukemic mice. These are consistent with the available

literature on olive polyphenols from previous studies (50). The

NF-kB inhibitory and apoptosis-inducing functions of EOLE are

also evident from the study of Liu and colleagues (52), where

oleuropein, a major polyphenol in EOLE, induced apoptosis in

breast cancer cells by abrogating the NF-kB activation cascade.

Given the critical role of NF-kB in transcriptional control of a

wide array of cellular genes involved in the initiation,

maintenance, and progression of malignant diseases, including

leukemia, it is not surprising that reducing its expression would

significantly change cellular function. Therefore, the reduced

inflammatory cytokines and anti-apoptotic proteins in the BM

of EOLE-treated leukemic mice may have some association with

down-regulated NF-kB in response to EOLE treatment. The

reduced production of inflammatory cytokines and ROS further

down-regulates the ERK1/2 activity stops cancer progression. It

is evident from the studies in which therapeutic inhibition of

ERK1/2 reduce the expression of MMPs and delays growth and

invasion tumors, including acute myeloid leukemia (AML) (48,

53). The activity of EOLE delays the progression of leukemia and

as a result lesser number of blast cell infiltrates in the spleen.
5 Conclusion

Overall, the present study investigated the anti-leukemic

activity of EOLE in-vitro against K562 cell line and in-vivo

against ENU-induced leukemia in BALB/c mice. The EOLE

treatments to leukemic mice reduce ROS production and

down-regulate the expression of NF-kB in the BM.

Subsequently, the EOLE reduces the expression of several

hematopoietic growth factors and inflammatory cytokines. The

EOLE treatment also reverses the expression of apoptosis

regulatory proteins in the BM of leukemic mice from an

apoptosis-resistant presentation to apoptosis supporting one

may indicate apoptosis induction in leukemic cells.
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Pan-cancer analysis reveals
potential of FAM110A as a
prognostic and immunological
biomarker in human cancer

Hongguang Zhong1†, Qianqian Shi1†, Qin Wen1†, Jingyi Chen1†,
Xuan Li1, Ruiwen Ruan1, Shaocheng Zeng1, Xiaofeng Dai1,
Jianping Xiong1,2, Li Li 1*, Wan Lei3* and Jun Deng1,2*

1Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang,
Jiangxi, China, 2Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, China,
3Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang,
Jiangxi, China
Background: Despite great success, immunotherapy still faces many challenges

in practical applications. It was previously found that family with sequence

similarity 110 member A (FAM110A) participate in the regulation of the cell

cycle and plays an oncogenic role in pancreatic cancer. However, the

prognostic value of FAM110A in pan-cancer and its involvement in immune

response remain unclear.

Methods: The Human Protein Atlas (HPA) database was used to detect the

expression of FAM110A in human normal tissues, the Tumor Immune Estimation

Resource (TIMER) and TIMER 2.0 databases were used to explore the association

of FAM110A expression with immune checkpoint genes and immune infiltration,

and the Gene Set Cancer Analysis (GSCA) database was used to explore the

correlation between FAM110A expression and copy number variations (CNV) and

methylation. The LinkedOmics database was used for Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis. Statistical analysis and visualization of data from the The Cancer

Genome Atlas (TCGA) or the Genotype–Tissue Expression (GTEx) databases

were performed using the R software (version 3.6.3). Clinical samples were

validated using immunohistochemistry.

Results: FAM110A expression was elevated in most tumor tissues compared with

that in normal tissues. CNV and methylation were associated with abnormal

FAM110A mRNA expression in tumor tissues. FAM110A affected prognosis and

was associated with the expression of multiple immune checkpoint genes and

abundance of tumor-infiltrating immune cells across multiple types of cancer,

especially in liver hepatocellular carcinoma (LIHC). FAM110A-related genes were

involved in multiple immune-related processes in LIHC.
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Conclusion: FAM110A participates in regulating the immune infiltration and

affecting the prognosis of patients in multiple cancers, especially in LIHC.

FAM110A may serve as a prognostic and immunological biomarker for human

cancer.
KEYWORDS

FAM110A, pan-cancer analysis, bioinformatics, prognosis, immune infiltration
1 Introduction

With the successful application of several immune checkpoint

blockers (ICBs), including PD-1, PD-L1, and LAG-3 antagonists,

immunotherapy is now a powerful and critical treatment approach

(1). However, immunotherapy responders account for only a small

fraction of patients with cancer, and resistance to immunotherapy

exists in the treatment of most tumor types and patients with cancer

(2–4). The tumor microenvironment (TME), which plays a critical

role in tumorigenesis and tumor progression, is an important factor

influencing the efficacy of immunotherapy (5), and therapeutic

strategies targeting the TME have also been regarded as a novel

promising modality for the treatment of cancers in recent years (6).

However, the complex mechanisms involved in regulating the

formation and dynamic variation of TME remain unclear. As a

result, the identification of novel prognosis and TME-related genes

will help overcome the bottlenecks that immunotherapy is

currently facing.

The family with sequence similarity 110 (FAM110), which

includes three members, FAM110A, FAM110B, and FAM110C,

has been demonstrated to be centrosome-related. They are located

in centrosomes and accumulate at spindle poles during mitosis (7).

Increasing studies have indicated that FAM110 family protein

participates in carcinogenesis. FAM110A exerts an oncogenic role

by facilitating malignant biological behaviors of pancreatic cancer

cells (8). FAM110B modulates the biologic behavior by inhibiting

Wnt/b-catenin signaling in non-small cell lung cancer (9) and has

been identified as a potential growth promoting key gene for

castration-resistant prostate cancer (10). FAM110C is involved in

cell spreading, migration, and filopodia induction (11). Overall,

these findings suggest that FAM110 family genes are closely related

to malignancies.

Recent studies have revealed that FAM110A expression is

regulated by the cell cycle and is highly expressed in the G2 phase;

Depletion of FAM110A leads to mitotic defects and delays mitotic

progression (12). In lymphoid tissues, proliferation signals from

antigen-presenting cells simulated by Dynabeads CD3/CD28 can

significantly activate FAM110A expression in CD4+ T

lymphocytes (7). These findings indicate a potential role for

FAM110A in promoting tumor cell proliferation and immune

cell infiltration. However, research on FAM110A, particularly

regarding the relevance of immune responses in cancer, is

currently inadequate. A more comprehensive analysis of
02176
FAM110A is warranted to better understand its functional roles

in malignancies.

In this study, we employed a series of bioinformatics

approaches to conduct pan-cancer analysis of FAM110A from

multiple aspects, including gene expression and genomic

alterations, correlation with prognosis, immunological markers,

immune infiltration, and gene sets of interest. Moreover,

immunohistochemical (IHC) analyses were performed to further

confirm the role of FAM110A in LIHC. Our results revealed that

FAM110A expression is correlated with immune response and may

be a promising prognostic biomarker in multiple cancers.
2 Results

2.1 FAM110A expression in various human
normal tissues

To explore the expression levels of FAM110A in various types

of normal human tissues, we evaluated the mRNA and protein

expression of FAM110A using the Human Protein Atlas (HPA)

database. As shown in Figure 1A, the tissues with the highest

FAM110A expression were the skin, esophagus, spleen, prostate,

and vagina. Next, we examined its expression at the protein level.

We found that the expression levels of FAM110A in various tissues

were significantly different (Figure 1B). FAM110A mRNA and

protein showd different expression patterns in normal tissues, this

may be due to the low specificity of the FAM110A antibody, which

has not been experimentally validated. Immunohistochemistry

showed that FAM110A was expressed in the nucleus and

cytoplasm, and representative tissue staining results for different

expression levels were shown (Figures 1C–F), including colon

(high), spleen (medium), kidney (low), and liver (no expression).
2.2 FAM110A expression in various
tumor tissues

We employed TIMER 2.0 website to explore the expression

changes of FAM110A between tumor tissues and correspond normal

tissues in the TCGA database. As shown in Figure 2A, the mRNA

expression of FAM110A was significantly increased in bladder

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),
frontiersin.org
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cervical squamous cell carcinoma (CESC), cholangiocarcinoma

(CHOL), colon adenocarcinoma (COAD), esophageal carcinoma

(ESCA), glioblastoma multiforme (GBM), head and neck squamous

cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC),
Frontiers in Immunology 03177
kidney renal papillary cell carcinoma (KIRP), LIHC, lung

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),

pheochromocytoma and paraganglioma (PCPG), prostate

adenocarcinoma (PRAD), rectum adenocarcinoma (READ), stomach
A

B

C

FIGURE 2

FAM110A expression in various tumor tissues. (A) FAM110A expression levels in pan-cancer from TCGA database were analyzed by TIMER2.0.
(*P<0.05, **P<0.01, ***P<0.001). (B) FAM110A expression differences between tumor and normal tissues in pan-cancer from the TCGA and GTEx
databases. (*P<0.05, **P<0.01, ***P<0.001). (C) The correction between FAM110A expression and the pathological stages of BRCA, LIHC, SKCM and
THCA using the GEPIA2 database.
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FIGURE 1

FAM110A expression in various human normal tissues. (A) FAM110A mRNA expression profiles in normal human tissues. (B) FAM110A protein
expression data in human normal tissues. (C–F) Representative IHC images of FAM110A expression in normal colon, spleen, kidney, and liver tissues.
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adenocarcinoma (STAD), thyroid carcinoma (THCA), uterine corpus

endometrial carcinoma (UCEC) and reduced only in kidney

chromophobe (KICH).

Due to the small quantity of corresponding normal tissue

expression data in the TCGA database, we further conducted a

joint analysis with matched normal tissue expression data from the

Genotype-Tissue Expression (GTEx) database in a more convincing

manner. The expression of FAM110A was elevated in most cancers,

including BLCA, BRCA, CESC, CHOL, COAD, diffuse large B-cell

lymphoma (DLBC), ESCA, GBM, HNSC, KIRC, KIRP, acute

myeloid leukemia (LAML), lower grade glioma (LGG), LIHC,

LUAD, LUSC, ovarian serous cystadenocarcinoma (OV),

pancreatic adenocarcinoma (PAAD), PCPG, PRAD, READ,

STAD, testicular germ cell tumors (TGCT), THCA, thymoma

(THYM), UCEC, and uterine carcinosarcoma. In contrast,

FAM110A expression in the tumor tissues of KICH and skin

cutaneous melanoma (SKCM) was significantly decreased

(Figure 2B). In addition, we further explored FAM110A

expression across different cancer pathological stages using the

GEPIA database and found that FAM110A mRNA expression

was correlated with clinicopathological stages in BRCA, LIHC,

SKCM, and THCA (Figure 2C).
2.3 Copy number variation and methylation
contribute to driving the abnormal
expression of FAM110A in pan-cancers

To further explore the mechanisms underlying the abnormal

expression of FAM110A mRNA, we analyzed the relationship

between gene copy number variation (CNV) and mRNA

expression. The results from the GSCA database showed that

there was a significant positive correlation between the expression

of FAM110A and CNV in patients with COAD, BRCA, HNSC, and

LUAD; in contrast, the correlations were not significant in patients

with LAML, THCA, GBM, uveal melanoma (UVM), THYM,
Frontiers in Immunology 04178
KICH, KIRC, PCPG, sarcoma (SARC), and DLBC (Figure 3A),

suggesting that CNV may not be the only factor responsible for

abnormal FAM110A expression, and the underlying mechanisms

leading to aberrant expression may be inconsistent in

different tumors.

DNA methylation is an epigenetic process that can significantly

modulate gene transcription (13); therefore, we found that DNA

methylation levels were significantly correlated with mRNA

expression in most tumor types, especially in BLCA, CESC,

ESCA, LUSC, and SKCM (Figure 3B). To further explore the

mechanisms responsible for the discordance in methylation levels

in various cancers, we assessed the correlation between FAM110A

and four methyltransferase genes, named DNA methyltransferase 1

(DNMT1), DNMT2, DNMT3A, and DNMT3B, and found a

significant correlation between them and FAM110A in STAD,

KICH, KIRC, KIRP, and LIHC (Figure 3C).
2.4 FAM110A expression level correlates
with prognosis in cancers

To further elucidate the effect of FAM110A expression on the

prognosis of patients with cancer, we downloaded TCGA RNA-seq

and clinical data. Univariate COX regression analysis was

performed to explore the relationship between FAM110A

expression and overall survival (OS) in 33 cancer types, as shown

in Figure 4A. High expression of FAM110 was significantly

associated with poorer prognosis in patients with adrenocortical

carcinoma (ACC), BLCA, BRCA, COAD, ESCA, KIRC, LAML,

LIHC, LUSC, mesothelioma (MESO), OV, and UVM, with LIHC

showing the most significant association with FAM110A. In

contrast, high CDCA4 expression levels were positively associated

with better prognosis in BLCA and LGG (Figures 4C–N).

To exclude the bias caused by non-tumor events, we further

evaluated the effect of FAM110A expression levels on disease-

specific survival (DSS) (Figure 4B). The results were roughly
A

B
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FIGURE 3

CNA and methylation contribute to driving the abnormal expression of FAM110A in pan-cancers. (A) Correlation of CNV and FAM110A mRNA
expression in the GSCA database. A significant positive correlation was observed in patients with COAD, BRCA, HNSC and LUAD. (B) In most tumor
types except DLBC, FAM110A mRNA expression was significantly associated with methylation levels, the strongest correlation was observed in BLCA,
CESC, ESCA, LUSC, and SKCM. (C) Correlation of FAM110A mRNA with four methyltransferases, namely DNMT1 (Red), DNMT2 (Blue), DNMT3A
(Green) and DNMT3B (Purple).
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consistent with the OS analysis, demonstrating that high FAM110A

expression was associated with poor prognosis in patients with

ACC, BRCA, COAD, KIRC, LIHC, LUSC, MESO, OV, PAAD and

UVM, while negatively correlated with prognosis in patients with

LGG and UCEC (Supplementary Figure 1). These results revealed

that FAM110A expression levels are significantly associated with

prognosis in patients with multiple tumor types.
2.5 Correlation of FAM110A expression on
immune checkpoints and immunotherapy

Since the expression of immune checkpoint genes is closely

related to the efficacy of immunotherapy, we first explored the

relevance of FAM110A to genes that are recognized as immune

response-related checkpoints using the TCGA database.

Interestingly, two significant but diametrically opposite trends

were observed among the different cancers. FAM110A expression

displayed a strong positive correlation with these genes including

neuropilin 1 (NRP1), leukocyte-associated immunoglobulin like

receptor 1 (LAIR1), CD244, lymphocyte activation gene 3

(LAG3), inducible T cell costimulator (ICOS), CD40 ligand gene

(CD40LG), cytotoxic T lymphocyte antigen 4 (CTLA4), CD28,

hepatitis A virus cellular receptor 2 (HAVCR2), CD80,
Frontiers in Immunology 05179
programmed cell death 1 (PDCD1 or PD1), programmed cell

death 1 ligand 2 (PDCD1LG2), CD27, TNF receptor superfamily

member 25 (TNFRSF25), T cell immunoglobulin and ITIM domain

(TIGIT), CD274 (PD-L1), and CD86 in ACC, LIHC, SKCM, and

UVM. In contrast, FAM110A was negatively correlated with these

genes in the BLCA, and LUSC (Figure 5A). Next, we verified the

correlations between FAM110A and several immune checkpoint

blocker genes, including PD1, PD-L1, CTLA-4, and LAG-3, in the

TIMER 2.0 database, and the results were consistent with those of

previous studies. The most significant positive correlation between

FAM110A and these genes was observed in LIHC and SKCM, and

the most significant negative correlation was observed in LGG and

BLCA (Figures 5B–E; Supplementary Table 1).

The status of deficient mismatch repair (dMMR)/microsatellite

instability-high (MSI-H) together with tumor mutational burden

(TMB) are currently considered as promising predictive biomarkers

for immunotherapy efficacy (14, 15). Significant correlations were

found between FAM110A and several MMR-associated genes, such

as MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), and MutS

homolog 6 (MSH6) in ACC, GBM, KIRC, LIHC, and STAD

(Figure 5F). FAM110A expression was positively correlated with

TMB in BRCA, LUAD, MESO, PAAD, STAD, and UCEC and

negatively correlated with CDAD, DLBC, ESCA, and THYM

(Figure 5G). Moreover, FAM110A expression was positively
DA

B

E

F G

I

H

J K

L M N

C

FIGURE 4

Survival analysis of FAM110A in different types of cancer in the TCGA database. (A, B) Correlation of FAM110 expression with OS and DSS in patients
with different cancers (*P<0.05, **P<0.01, ***P<0.001). (C-N) Kaplan–Meier (KM) curves of OS with significance in 12 cancer types (ACC, BLCA,
BRCA, COAD, ESCA, KIRC, LAML, LIHC, LUSC, MESO, OV and UVM) in TCGA.
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correlated with MSI in CESC, GBM, HNSC, KIRC, LUAD, LUSC,

PRAD, and THCA and negatively correlated with MSI in COAD,

READ, and SKCM (Figure 5H). However, according to a published

result in the TISIDB database, no significant difference of

FAM110A mRNA expression level was detected between

immunotherapy responders and non-responders (Supplementary

Table 2), which could be due to the small sample size in this study.

The corre l a t ion be tween FAM110A expres s ion and

immunotherapy response still needs further in-depth study.
2.6 Correlation of FAM110A expression
with immune infiltration

We used the TIMER database to explore the connection

between FAM110A expression levels and the degree of tumor-

infiltrating immune cell (TIIC) infiltration in pan-cancer (12). The

correlation coefficients of purity and six TIICs (B cells, CD4+ T

cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells)

collected from the TIMER database are shown in the form of

heatmaps (Figure 6A). The most obvious positive correlation

between immune cell infiltration and FAM110A was found in

LIHC. In contrast, the strongest negative correlation between

FAM110A expression and immune cell infiltration was observed

in LGG. CD4+ cells exhibited the greatest significant coefficients

among all cell types in multiple malignancies, including ACC,

CESC, COAD, KIRC, KIRP, LIHC, LUAD, LUSC, MESO, TGCT,
Frontiers in Immunology 06180
and THYM. A significant positive correlation between FAM110A

expression and tumor purity was found in BRCA-luminal, GBM,

and LGG, while a significant negative correlation was found

between KIRC and SKCM.

We further investigated the link between FAM110A expression

and tumor purity. We utilized the ESTIMATE algorithm to

calculate the stroma score, immune score, and estimate score of

relevant tumor samples based on the TCGA database and assessed

the correlation between FAM110A expression levels and those

scores. Based on our data, the three cancer types that showed the

strongest association between FAM110A and the stroma score were

PRAD, LGG, and KIRC. The three tumor types that showed the

strongest association between FAM110A expression and immune

score were LAML, SKCM, and LIHC. The three tumor types that

showed the highest association between FAM110A and estimate

scores were LAML, SKCM, and PRAD (Figure 6B). These results

indicate that FAM110A expression was closely related to the degree

of tumor purity and TIIC infiltration.

In addition, we assessed the effect of FAM110A on the

infiltration levels of various immune cells in the TME, based on

the expression of immune gene markers. Because of the

contradictory roles played by FAM110A in prognosis and its

association with immune checkpoints, we selected LIHC and

BLCA as representative tumor types for subsequent analyses.

PRAD served as a negative control because the expression of

FAM110A did not seem to have a significant effect on PRAD

prognosis. Results from the TIMER 2.0 database revealed a
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FIGURE 5

Correlation of FAM110A expression on immune checkpoints and immunotherapy. (A) The correlation of FAM110A with more than 40 immune
checkpoint genes in pan-cancer (*P<0.05, **P<0.01, ***P<0.001). (B-E) The correlation of FAM110A with PD-1, PD-L1, CTLA-4 and LAG-3 in the
TIMER 2.0 database. (F) The correlation of FAM110A with MMR-relate genes, including MLH1, MLH2, MLH6, PMS2 and EPCAM in pan-cancers
(*P<0.05, **P<0.01, ***P<0.001). (G, H) The correlations of FAM110A expression and TMB, MSI in pan-cancers.
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significant positive correlation between FAM110A expression and

the expression of CD8+ T cells, T cells (general), monocytes, tumor-

associated macrophages, M2 macrophages, dendritic cells, T helper

type 1 (Th1), and exhausted T cells in LIHC. In BLCA, FAM110A

and these gene markers were negatively correlated. As expected, no

significant correlation was observed between FAM110A expression

and TIIC markers in PRAD (Table 1). Analyses of the GEPIA

database obtained similar results (Supplementary Table 3).
Frontiers in Immunology 07181
2.7 FAM110A-related genes are closely
correlated with immue response in LIHC

Our previous results revealed that FAM110A is closely related

to patient prognosis and immunity in pan-cancer. Since the

strongest correlation between FAM110A expression and immune

infiltration was observed in LIHC, we used LIHC as an example to

verify the potential function of FAM110A using the LinkedOmics
A B

FIGURE 6

Correlation of FAM110A expression with immune infiltration. (A) Connection between FAM110A expression and the degree of immune cell infiltration
in multiple malignancies using the infiltration scores of six immune cell types (B cell, CD4+ T cell, CD8+ T cell, neutrophil, macrophage, and
dendritic cell) accessible in the TIMER database. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001) (B) The top three tumors with the most significant
correlation of FAM110A expression with stroma score, immune score and estimate score.
TABLE 1 Correlation analysis between FAM110A and related gene markers of immune cells in TIMER 2.0 (***P<0.001).

Description Gene markers LIHC(n=371) BLCA(n=408) PRAD(n=498)

None Purity None Purity None Purity

rho P rho P rho P rho P rho P rho P

CD8+Tcell CD8A 0.391 *** 0.369 *** -0.194 *** -0.152 0.003 -0.175 *** -0.066 0.180

CD8B 0.399 *** 0.367 *** -0.190 *** -0.151 0.004 0.039 0.383 0.115 0.019

T cell(general) CD3D 0.537 *** 0.535 *** -0.120 0.015 -0.044 0.401 -0.109 0.015 -0.014 0.774

CD3E 0.442 *** 0.442 *** -0.154 0.002 -0.086 0.098 -0.171 *** -0.073 0.137

CD2 0.458 *** 0.452 *** -0.148 0.003 -0.079 0.130 -0.152 *** -0.037 0.448

B cell CD19 0.405 *** 0.363 *** -0.115 0.020 -0.060 0.249 -0.068 0.129 0.004 0.931

CD79A 0.387 *** 0.359 *** -0.100 0.044 -0.034 0.517 -0.123 0.006 -0.050 0.308

Monocyte CD86 0.526 *** 0.526 *** -0.222 *** -0.189 *** -0.249 *** -0.140 0.004

(Continued)
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TABLE 1 Continued

Description Gene markers LIHC(n=371) BLCA(n=408) PRAD(n=498)

None Purity None Purity None Purity

rho P rho P rho P rho P rho P rho P

CD115 (CSF1R) 0.436 *** 0.419 *** -0.205 *** -0.178 *** -0.242 *** -0.143 0.003

TAM CCL2 0.415 *** 0.383 *** -0.195 *** -0.154 0.003 -0.056 0.213 0.028 0.566

CD68 0.327 *** 0.291 *** -0.165 *** -0.144 0.006 -0.222 *** -0.142 0.004

IL10 0.410 *** 0.379 *** -0.210 *** -0.189 *** -0.207 *** -0.098 0.046

M1 Macrophage INOS (NOS2) 0.051 0.325 0.037 0.492 0.010 0.840 0.059 0.261 -0.015 0.740 0.067 0.174

IRF5 0.398 *** 0.392 *** 0.271 *** 0.283 *** 0.015 0.732 0.036 0.468

M2 Macrophage CD163 0.235 *** 0.190 *** -0.248 *** -0.230 *** -0.286 *** -0.202 ***

VSIG4 0.310 *** 0.268 *** -0.240 *** -0.209 *** -0.258 *** -0.167 ***

MS4A4A 0.269 *** 0.231 *** -0.272 *** -0.266 *** -0.286 *** -0.201 ***

Neutrophils CD66b(CEACAMB) 0.071 0.170 0.069 0.202 -0.031 0.528 -0.047 0.364 0.013 0.774 0.033 0.508

CD11b (ITGAM) 0.461 *** 0.441 *** -0.173 *** -0.147 0.005 -0.208 *** -0.108 0.027

CCR7 0.276 *** 0.245 *** 0.033 0.508 0.058 0.267 -0.127 0.005 -0.026 0.603

NK cell KIR2DL1 0.051 0.327 -0.006 0.918 -0.098 0.047 -0.058 0.270 -0.013 0.779 0.042 0.395

KIR2DL3 0.222 *** 0.213 *** -0.110 0.027 -0.074 0.157 -0.006 0.898 -0.008 0.873

KIR2DL4 0.275 *** 0.241 *** -0.110 0.026 -0.069 0.189 0.076 0.091 0.131 0.008

KIR3DL1 0.054 0.300 0.024 0.664 -0.074 0.137 -0.037 0.475 -0.088 0.049 -0.071 0.151

KIR3DL2 0.151 0.004 0.123 0.023 -0.093 0.060 -0.053 0.313 0.013 0.772 0.041 0.403

KIR3DL3 0.084 0.107 0.072 0.179 0.030 0.547 0.058 0.271 -0.082 0.067 -0.135 0.006

KIR2DS4 0.118 0.023 0.094 0.082 -0.080 0.105 -0.018 0.735 -0.054 0.232 -0.046 0.353

Dendritic cell HLA-DPB1 0.428 *** 0.388 *** -0.140 0.005 -0.096 0.066 -0.063 0.157 0.037 0.452

HLA-DQB1 0.380 *** 0.335 *** -0.095 0.055 -0.032 0.538 -0.122 0.007 -0.055 0.264

HLA-DRA 0.381 *** 0.339 *** -0.107 0.031 -0.060 0.247 -0.209 *** -0.102 0.037

HLA-DPA1 0.366 *** 0.329 *** -0.131 0.008 -0.088 0.091 -0.204 *** -0.092 0.062

BCDA-1 (CD1C) 0.306 *** 0.266 *** -0.103 0.037 -0.052 0.316 -0.135 0.003 -0.008 0.873

BDCA-4 (NRP1) 0.231 *** 0.198 *** -0.331 *** -0.315 *** -0.045 0.313 -0.005 0.912

CD11c (ITGAX) 0.529 *** 0.526 *** -0.204 *** -0.172 *** -0.101 0.025 -0.029 0.551

Th1 TBX21 0.299 *** 0.263 *** -0.162 0.001 -0.108 0.038 -0.083 0.064 -0.006 0.908

STAT4 0.356 *** 0.344 *** -0.202 *** -0.143 0.006 -0.141 0.002 -0.037 0.449

STAT1 0.358 *** 0.345 *** -0.070 0.160 -0.017 0.749 -0.175 *** -0.068 0.169

IFN-g (IFNG) 0.378 *** 0.345 *** -0.100 0.043 -0.056 0.285 -0.109 0.015 -0.023 0.642

TNF-a(TNF) 0.467 *** 0.454 *** -0.031 0.527 0.014 0.788 -0.096 0.033 0.022 0.652

Th2 GATA3 0.464 *** 0.456 *** 0.347 *** 0.344 *** 0.004 0.924 0.132 0.007

STAT6 0.005 0.921 0.000 0.997 0.238 *** 0.248 *** -0.150 *** -0.099 0.043

STAT5A 0.421 *** 0.385 *** -0.022 0.655 0.016 0.758 -0.138 0.002 -0.027 0.588

IL13 0.196 *** 0.176 0.001 -0.127 0.010 -0.087 0.097 -0.016 0.724 -0.022 0.660

Tfh BCL6 0.046 0.380 0.058 0.286 0.239 *** 0.235 *** -0.222 *** -0.180 ***

(Continued)
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database. We analyzed the co-expression of genes associated with

FAM110A in LIHC (Figure 7A), and the top 50 genes with the most

significant positive or negative correlations with FAM110A are

displayed using a heat map (Figure 7B, C).

The Gene Set Enrichment Analysis (GSEA) analysis based on

FAM110A-related genes in LIHC showed that GO biological

process terms were mainly enriched for interferon-gamma

production, interleukin-4 production, interleukin-10 production,

T cell activation, B cell activation, myeloid dendritic cell activation,

and adaptive immune response (Supplementary Figure 2). Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis showed that the major enriched pathways were primary

immunodeficiency, Th1 and Th2 cell differentiation, antigen

processing and presentation, chemokine signaling, NF-kappa B

signaling, and T cell receptor signaling (Figure 7D-J).
2.8 FAM110A is associated with poor
prognosis, immune infiltration, and
immune checkpoints in LIHC

To further verify the expression of FAM110A in LIHC, IHC

analysis was performed to detect the expression level of FAM110A

protein in 120 randomly selected tumor tissues and paired adjacent

non-tumor tissues from patients with LIHC. Our results revealed

that FAM110A protein expression was significantly increased in

tumor tissues compared to that in matched non-tumor adjacent

tissues, the subcellular localization of FAM110A was in the

nucleoplasm and cytoplasm (Figure 8A). According to the IHC

scoring criteria, the high expression rate of FAM110A in tumor

tissues was 56.7% (68/120) and the low expression rate was 43.3%

(52/120).
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To verify the effect of FAM110A on poor prognosis in patients

with LIHC, all randomly selected patients were divided into high

and low FAM110A expression groups (Figure 8B), and the clinical

follow-up data of those patients were analyzed through Kaplan-

Meier survival analysis and log-rank test. Our results showed that

patients with high FAM110A expression were associated with worse

prognosis than those with low FAM110A expression (Figure 8C).

Next, the correlation between FAM110A and immune

infiltration and immune checkpoint genes was verified. We

evaluated the degree of immune infiltration and PD-L1

expression in serial sections of the specimens from the same

patient. The number of CD8+ lymphocytes infiltrating the tissues

of the patients was significantly higher than that of the patients with

low FAM110A expression (Figure 8B, D), and the PD-L1 protein

expression levels were positively correlated with the FAM110A

expression levels (Figure 8B, E).
3 Discussion

FAM110A is a centrosome-associated protein localized at the

mitotic spindle and spindle poles during mitosis (7). Perez et al.

revealed that aberrant expression of FAM110A may result in

dysregulation of the cell cycle (12), which is regarded as a typical

characteristic of cancer cells (16). Huang et al. demonstrated that

FAM110A is an oncogene that promotes the malignant behavior of

cancer cells and tumorigenesis in pancreatic cancer (8). In this

study, we conducted a comprehensive bioinformatics analysis of

FAM110A using multiple public databases.

Our results showed that FAM110A mRNA is widely distributed

and overexpressed in most cancer tissues compared to that in normal

tissues. Moreover, the expression level of FAM110A mRNA
TABLE 1 Continued

Description Gene markers LIHC(n=371) BLCA(n=408) PRAD(n=498)

None Purity None Purity None Purity

rho P rho P rho P rho P rho P rho P

IL21 0.093 0.072 0.093 0.084 -0.111 0.024 -0.083 0.113 -0.057 0.206 -0.023 0.646

Th17 STAT3 0.149 0.004 0.121 0.024 0.000 0.994 0.037 0.474 -0.131 0.004 -0.032 0.512

IL17A 0.009 0.867 0.026 0.625 0.136 0.006 0.159 0.002 -0.114 0.011 -0.036 0.470

Treg FOXP3 0.268 *** 0.279 *** -0.148 0.003 -0.083 0.111 -0.081 0.073 -0.035 0.480

CCR8 0.410 *** 0.405 *** -0.164 *** -0.112 0.032 -0.163 *** -0.081 0.097

STAT5B 0.090 0.083 0.120 0.025 -0.004 0.935 -0.014 0.795 -0.249 *** -0.148 0.002

TGFb (TGFB1) 0.481 *** 0.472 -0.132 0.007 -0.119 0.022 -0.073 0.104 -0.011 0.824

Tex PD-1 (PDCD1) 0.495 *** 0.487 *** -0.166 *** -0.113 0.030 -0.022 0.624 0.037 0.448

CTLA4 0.518 *** 0.514 *** -0.164 *** -0.097 0.062 -0.049 0.272 0.032 0.513

LAG3 0.426 *** 0.404 *** -0.181 *** -0.131 0.012 -0.033 0.465 0.031 0.523

TIM-3 (HAVCR2) 0.538 *** 0.546 *** -0.219 *** -0.196 *** -0.211 *** -0.107 0.029

GZMB 0.294 *** 0.250 *** -0.181 *** -0.117 0.025 -0.031 0.492 0.060 0.219
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FIGURE 7

GSEA of FAM110A in the TCGA LIHC cohort. (A) Correlations between FAM110A and genes differentially expressed in LIHC. (B, C) Heat maps of the
most 50 significant genes positively and negatively correlated with FAM110A in LIHC. (D-J) KEGG enrichment analyses showed that primary
immunodeficiency, Th1 and Th2 cell differentiation, antigen processing and presentation, chemokine signaling pathway, NF-kappa B signaling
pathway, and T cell receptor signaling pathway were enriched.
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FIGURE 8

FAM110A expression correlated with immune infiltration and poor prognosis in LIHC. (A) Representative FAM110A staining image in cancerous and
adjacent normal tissues. (B) Representative IHC staining images of LIHC tissues with FAM110A-high and low expression. Positive CD8, PD-L1
expression cells were shown. Scale bars, 100 mm. (C) Kaplan–Meier survival curves for OS of patients with LIHC based on the expression status of
FAM110A.*p < 0.05. (D)The number of CD8+ T cells in LIHC tissues with high or low FAM110A expression.***P<0.001. (E) The correlation of
FAM110A with PD-L1 protein expression was evaluated by Pearson’s correlation.
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correlated with the clinicopathological stages of BRCA, LIHC, SKCM,

and THCA. Our findings also demonstrated a significant correlation

between FAM110A mRNA expression and CNV and methylation in

pan-cancers. In view of the abnormal expression levels of FAM110A

in tumors, the Kaplan–Meier method and COX regression analysis

were conducted, and the results demonstrated that FAM110A may

serve as a potential prognostic biomarker for a variety of cancers,

especially LIHC. FAM110A is closely related to multiple immune

checkpoint genes, and its expression levels may indirectly reflect the

abundance of these two immune infiltrates in the TME. As a result,

we propose that FAM110A plays a delicate role in tumor initiation or

development based on differential expression profiles and may affect

immunotherapy efficacy to some extent.

Tumor immunotherapy aims to boost the natural immune

system and relies on the patients’ own immune function to

eliminate cancer cells and tumor tissues (17, 18). Through the

successful application of monoclonal antibodies, cytokines, cellular

immunotherapy, and vaccines, immunotherapy has revolutionized

cancer treatment (19). Immune-related gene expression is regarded

as a predictive marker for immunotherapy in a variety of cancers

(20–22). Here, we analyzed the association of FAM110A with more

than 40 immune checkpoint genes in pan-cancer based on the

TCGA database and verified the correlation of FAM110A between

several immune checkpoint genes, including PD-1, PD-L1, LAG-3,

and CTLA-4 in the TIMER 2.0 database. Our data suggested that

FAM110A had the strongest positive correlation with these immune

checkpoint genes in cancers where FAM110A is considered an

important risk factor, such as LIHC and SKCM. Meanwhile, in

BLCA and LGG, where FAM110A served as a protective factor, the

expression of FAM110A showed the strongest negative correlation

with these immune inhibitor checkpoint genes. This may explain

the association between FAM110A overexpression and poor

prognosis in patients with cancer.

DNA mismatch repair (MMR) is an important DNA repair

pathway that plays critical roles in DNA replication fidelity,

mutation avoidance, and genome stability. MMR-deficiency leads

to a hypermutated phenotype in the genome, which in turn leads to

MSI (23). Specifically, MMR-deficient cancers tend to be more

sensitive to immune checkpoint blockade (24). We found

statistically significant correlations between FAM110A and MSI

in several cancers; however, the correlation was not very strong

(correlation coefficient<0.6). The association of FAM110A with

cancer patient prognosis, especially immunotherapy efficacy,

requires further clinical validation.

The immune TME, majorly represented by the TIICs, plays an

important role in cancer therapeutics and patient prognosis (20, 25).

In fact, a high density of TIICs within the TME is associated with

better outcomes in several types of cancers (26–28). A thorough

understanding of the factors involved in regulating immune

infiltrates will aid in improving response rates and developing new

therapeutic strategies (29). Results from the TIMER database showed

that infiltration abundance of several TIICs, such as B cells, CD4+ T

cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells,
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were significantly correlated with the expression of FAM110A in

multiple malignancies, especially in LIHC. Taking these findings

together, we speculated that FAM110A is also significantly

associated with immune-related functions and pathways in LIHC.

We performed GO and KEGG enrichment analysis of FAM110A-

related genes in LIHC and found highly significant enrichment of GO

terms associated with immune function, including interferon-g
production, T cell activation, B cell activation, adaptive immune

response, mast cell-mediated immunity, and positive regulation of

cell activation. We also identified an enrichment of immune-related

signaling pathways, including primary immunodeficiency, Th1 and

Th2 cell differentiation, antigen processing and presentation,

chemokine signaling, NF-kappa B signaling and T cell receptor

signaling pathways, through KEGG pathway analysis. Based on our

identification, FAM110A is involved in the activation of T cells as well

as related immune pathways, which suggests that FAM110A plays an

important role in the immune process. These results may explain the

possible mechanism by which FAM110A promotes immune

infiltration, and provids corroborating support for the role of

FAM110A as an immunological biomarker.

Importantly, we further confirmed the abnormal expression of

FAM110A in LIHC and the correlation between the expression of

immune checkpoint PD-L1 protein and the immune infiltration

degree of CD8+ cells by IHC experiments. The Kaplan-Meier plot

and log-rank test demonstrated that high FAM110A expression

leads to a worse prognosis in patients with LIHC. In addition,

previous studies have shown that aberrant expression of FAM110A

is associated with cell cycle dysregulation (12), which is considered

to be a fundamental mechanism underlying malignant progression

(30). And this fact may represent an important cause for the

prognostic impact of FAM110A.

Due to the potential prognostic value of FAM110A, the

expression level of FAM110A in postoperative tissue specimens

can be used as one of the bases for assessing the prognosis of

patients in various tumors, particularly in LIHC. Moreover, our

fingdings also sets a new path in the field of tumor immunology.

Based on the findings, more studies are expected to reveal the

underlying mechanism of FAM110A regulating tumor immune

microenvironment in the future, which would be beneficial for

progresses of cancer immunotherapy.

There are still many limitations in this study. To begin with,

some of our results are limited to a single approach or database,

lacking mutual validation of data from multiple sources. Moreover,

our bioinformatic results show that FAM110A is associated with

poor prognosis of liver cancer and immune response. however, we

are still uncertain whether FAM110A affects prognosis by

regulating immune processes. In addition, although these findings

have pointed to new directions for subsequent studies, the potential

biological function process and molecular mechanism involved still

deserve detailed experimental validation.

In general, we performed a comprehensive analysis of

FAM110A using bioinformatics methods, revealing the important

role of FAM110A in prognosis and immune infiltration in multiple
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1058627
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2023.1058627
cancers, especially in LIHC. More importantly, our study provides a

promising candidate for therapeutic targets and a new direction for

future research.
4 Materials and methods

4.1 FAM110A expression analysis

The HPA (https://www.proteinatlas.org) database was used to

explore the mRNA and protein expression levels of FAM110A in

normal human tissues. The expression level of FAM110A gene in a

variety of cancer tissues was obtained through the “Gene_DE”

module in the TIMER 2.0 (http://timer.cistrome.org/) (31). The

RNA-seq data of normal and tumor samples were collected from

the TCGA (http://cancergenome.nih.gov) and GTEx (http://

commonfund.nih.gov/GTEx/) projects. We used the “Stage plot”

function in the Gene Expression Profiling Interactive Analysis

(GEPIA; http://gepia.cancer-pku.cn/) (32) database to analyze the

correlation between FAM110A expression and tumor stage. The

TISIDB (http://cis.hku.hk/TISIDB/) database (33) was used to

detect difference of FAM110A mRNA expression level between

immunotherapy responders and non-responders.
4.2 CNV and methylation analysis

The Gene Se t Canc e r Ana l y s i s (GSCA ; h t t p : / /

bioinfo.life.hust.edu.cn/GSCA/#/) database is a powerful

bioinformatics analysis tool which mainly integrates the mRNA

expression, mutation, immune infiltrates, methylation data from

the TCGA database (34), The “mutation” module in the GSCA

database was used to analyze CNVs and methylation of FAM110A

as well as their correlation with mRNA expression levels. SangerBox

(http://vip.sangerbox.com/) is a comprehensive, user-friendly

bioinformatics analysis platform (35). The relationship between

FAM110A and methyltransferase genes expression was investigated

by Sangerbox platform.
4.3 Survival analysis

We verified the prognostic value of FAM110A based on clinical

data from the TCGA database, Xiantao Academic Online Website

(https://www.xiantao.love/) was used for bioinformatics analysis

based on the R language. In the R environment, RNA sequencing

data in fragments per kilobase per million format were transformed

into transcripts per million reads format. The “Survival” (version

3.2-10) and “survminer” (version 0.4.9) packages were used for

statistical analysis and visualization, respectively. The statistical

significance of OS and DSS between the high and low FAM110A

expression groups in patients with 33 cancer types was analyzed by

univariate Cox regression. Statistical significance was set at P < 0.05.
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4.4 Immune infiltration analysis

The correlation data between FAM110A expression and six

types of TIICs (B cell, CD4+ T cell, CD8+ T cell, neutrophil,

macrophage, and dendritic cell) were obtained from the “GENE”

module in the TIMER (https://cistrome.shinyapps.io/timer/)

database (36). Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data (ESTIMATE) is a

method that uses gene expression signatures to infer the proportion

of mesenchymal and immune cells in tumor samples. We use the

“ESTIMATE” package to calculate the immune score, stromal score

and estimate score of relate samples respectively. The correlation

between those scores and the expression of FAM110A was explored

through SangerBox platform.
4.5 Co-expressed genes and gene
enrichment analysis

The LinkedOmics (http://www.linkedomics.org/login.php)

database (37) is a multi-omics database that integrates multi-

omics data and clinical data for 32 cancer types and 11,158

patients from the TCGA project. We selected the data set “LIHC

cohort”, data type “RNAseq”, and the statistical method “Pearson

correlation test” to analyze the co-expression genes of FAM110A in

LIHC. The “Gene Set Enrichment Analysis (GSEA)” tool was then

used to conduct the GO_BP term search and KEGG pathway

enrichment analysis to those FAM110A-related genes.
4.6 Patients and tissue specimens

All clinical samples were obtained from the First Affiliated

Hospital of Nanchang University, China. Formalin-fixed, paraffin-

embedded samples from 120 patients were collected from January

2019 to December 2019. All samples were collected with the consent

of the patients and the study was approved by the Ethics Committee

of the First Affiliated Hospital of Nanchang University. All patient

specimens and clinical data used in this study complied with the

principles of the Declaration of Helsinki.
4.7 Immunohistochemistry analysis

Paraffin-embedded tissue sections were degreased by

immersion in xylene for 10 min and hydrated in various

concentrations of alcohol, followed by antigen retrieval using

ethylenediaminetetraacetic acid solution, boiled in a pressure

cooker for 1.5 min, and cooled down to room temperature

naturally. The slides were then immersed in 3% H2O2 for 10 min

to eliminate endogenous peroxidase activity. After washing with

phosphate-buffered saline (PBS), the sections were incubated with

the FAM110A antibody (1:20, sc-376464, SANTA CRUZ), anti-
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CD274 antibody (1:200, 66248-1-Ig, Proteintech), or CD8 antibody

(1:200, 85336S, Cell Signaling) overnight at 4°C. After three times of

washing with PBS, the sections were incubated with secondary

antibody for 20 min at 37°C and stained using diaminobenzidine

solution. IHC scores were calculated according to the staining

intensity and the corresponding percentage of positive cells,

tumor proportion score (TPS) were calculated according to the

percentage of tumor cells showing partial or complete cell

membrane staining of PD-L1. Two blinded, independent

pathologists observed the results under a light microscope.
4.8 Statistical analysis

For bioinformatic data, the whole dataset was filtered by

deleting missing and duplicated data, and all statistical analyses

and visualizations were conducted using the R software (version

3.6.3) (http://www.rproject.org/). The correlation between

FAM110A and immune checkpoint and MMR genes was

evaluated using Pearson’s correlation test. The Wilcoxon rank-

sum test was used for differential expression analysis of FAM110A

between cancer and normal tissues, and the results were visualized

using the “ggplot2” package (version 3.3.3). For clinical data, we

compared the two groups using a t-test for continuous variables.

GraphPad Prism 8 was used for statistical analysis and visualization

and p < 0.05 was considered statistically significant.
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Diversity of immune checkpoints
in cancer immunotherapy
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and Guoxu Zheng1*

1State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical
University, Xi’an, China, 2State Key Laboratory of Cancer Biology, Department of Biochemistry and
Molecular Biology, Fourth Military Medical University, Xi’an, China
Finding effective treatments for cancer remains a challenge. Recent studies have

found that the mechanisms of tumor evasion are becoming increasingly diverse,

including abnormal expression of immune checkpoint molecules on different

immune cells, in particular T cells, natural killer cells, macrophages and others. In

this review, we discuss the checkpoint molecules with enhanced expression on

these lymphocytes and their consequences on immune effector functions.

Dissecting the diverse roles of immune checkpoints in different immune cells

is crucial for a full understanding of immunotherapy using checkpoint inhibitors.

KEYWORDS

immune checkpoint, immunotherapy, T cell, NK cell, macrophage
1 Introduction

It now appears that immunotherapies can elicit durable antitumor responses in

metastatic cancer. These immunotherapies include adoptive cell therapy (ACT) and

checkpoint inhibitor therapies (1). In particular, recent studies have confirmed that

targeting immune checkpoint pathways has remarkable clinical efficiency across several

tumor types (2). Immune checkpoint molecules are mainly expressed on immune cells and

can maintain immunological homeostasis. Under normal physiological conditions, they

can inhibit and prevent immune cells from killing tumor cells (3). In the past few years,

studies have mainly focused on finding new immune checkpoint molecules expressed on T

cells, which can effectively restore the exhaustion of T cells when blocked. The immune

checkpoint targets that have been validated clinically include CTLA4 and PD-1, and many

new candidates are being discovered and will undergo clinical evaluation (4). In addition to

T cells, Nature Killer cells also express immune checkpoints, but the consequences of these

checkpoints on NK cells’ functions are much less explored (5). Recently, literature has

shown that macrophage-centered blockade of immune checkpoints represents promising

therapeutic avenues (6). In this review, we will discuss recent advances in knowledge

regarding the diversity of immune checkpoints expressed on different immune cells and

their relationships with cancer immunotherapy (Figure 1).
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2 Checkpoint immunotherapy based
on T cells

In the last few decades, the function of tumor-infiltrating

lymphocytes (TILs), especially the cytotoxic CD8+ T cells and other

subgroups of T cells, such as CD4+ T cells and Tregs on tumor

progression and patient prognosis have been deeply explored (7–9).
Frontiers in Immunology 02190
In immunological homeostasis, the engagement of T-cell

antigen receptors (TCRs) with antigenic peptides can result in the

activation and proliferation of T cells (10). To prevent overreaction

and autoimmunity, inhibitory receptors are upregulated on T cells

and other immune cells. These inhibitory receptors are also called

immune checkpoints. Because of the presence of the

immunoreceptor tyrosine-based inhibitory motif (ITIM), immune
A

B

D

C

FIGURE 1

Different immune checkpoint molecules expressed on different immune cells. (A) Different immune checkpoint molecules expressed on T cell and the
corresponding ligand molecules expressed on tumor cells. (B) Different immune checkpoint molecules expressed on NK cell and the corresponding
ligand molecules expressed on tumor cells. (C) Different immune checkpoint molecules expressed on Macrophage and the corresponding ligand
molecules expressed on tumor cells. (D) Different immune checkpoint molecules expressed on dendritic cell and the corresponding ligand molecules
expressed on tumor cells.
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checkpoints can induce inhibitory signals in inhibitory receptor-

expressing immune cells (11).

In the immunosuppressive tumor microenvironment, tumor

cells make use of the overexpression of inhibitory receptors on

immune cells to avoid immune clearance (12). The expression of

immune checkpoints can lead to T-cell exhaustion, which is defined

by a decline in T-cell proliferation and reduced T-cell function. To

date, immune checkpoints that have been explored for their

expression by T cells include PD-1 (programmed cell death

protein-1), CTLA-4 (cytotoxic T-lymphocyte-associated protein-

4), TIM-3 (mucin-domain containing-3), LAG-3 (lymphocyte-

activation gene-3), and T cell immunoglobulin and ITIM domain

(TIGIT), among others (13).
2.1 PD-1

PD-1 (CD279) is a coinhibitory receptor that is extensively

expressed on T cells, NK cells (natural killer cells), and B cells. In

particular, PD-1 is expressed on activated T cells at high levels and

is considered to be involved in immune tolerance (14). There are

two ligands for PD-1, known as PD-L1 and PD-L2, which have low

expression in normal tissue but abnormal expression in some tumor

types. For example, it has been reported that the expression of PD-

L1 is upregulated in melanoma, non-small-cell lung cancer, breast

cancer, and squamous cell head and neck cancer (15).

PD-1+ T-cell exhaustion was originally studied in murine models

and then extended to human infection and cancer (16). In chronic

viral infections, CD8+ T cells are in a state of dysfunction and have

abnormal expression of PD-1. Se Jin Im et al. found that in a mouse

model chronically infected with lymphocytic choriomeningitis virus,

a population of virus-specific CD8+ T cells proliferated after PD-1

blockade, and this proliferative burst occurred only in this type of

CD8+ T cell (17). Tim Wartewig et al. found that mono- and biallelic

deletions of PDCD1, which encodes PD-1, are recurrently observed

in human T-cell lymphomas with frequencies of up to 30%,

indicating high clinical relevance; these findings imply that PD-1 is

a potent haploinsufficient tumor suppressor in T-cell lymphomas

(18). In a study of colorectal cancer, Xiao Albert Zhou et al. identified

a major PD-1-associated protein, KLHL22, that can mediate the

degradation of PD-1 before its transport to the cell surface. They

found that the expression of KLHL22 was markedly decreased in

tumor-infiltrating T cells from colorectal cancer patients and

suggested the therapeutic potential of 5-FU (which could increase

PD-1 expression by inhibiting the transcription of KLHL22) in

combination with anti-PD-1 in colorectal cancer patients (19).

Based on previous research, new strategies have emerged that

target PD-1 or PD-L1 and block them; as a result, T-cell function is

successfully reinvigorated (20). Along these lines, antibodies

targeting the PD-1/PD-L1 axis have been used for various

tumors. For example, Alexander C Huang et al. found that

neoadjuvant anti-PD-1 treatment is effective against high-risk

resectable stage III/IV melanoma (21). Edward B Garon et al.

assessed the efficacy and safety of PD-1 inhibition with

pembrolizumab in patients with advanced non-small-cell lung

cancer enrolled in a phase 1 study and found that a blocking
Frontiers in Immunology 03191
antibody targeting PD-1 had an obvious antitumor effect in NSCLC

patients and an acceptable side-effect profile (22). Fan Zhang et al.

performed scRNA-seq analysis on 3110 peripheral T cells of

NSCLC patients before and after the initiation of PD-1 blockade

and found a higher cytotoxic activity in tumor-related CD4+ T-cell

clones than in CD8+ T-cell clones (23). In a prognostic analysis of

advanced renal cell carcinoma, the investigator assessed the efficacy

and safety of nivolumab treatment versus everolimus treatment over

a 3-year follow-up and found that nivolumab treatment was more

effective and safer than everolimus (24). Two phase III clinical trials

(CheckMate 141 and KEYNOTE 040) analyzed the overall survival

(OS) of patients with recurrent or metastatic head-and-neck

squamous cell carcinoma (HNSCC) and found that anti-PD-1

monotherapy improved the therapeutic effects of platinum

chemotherapy (25, 26).

Although a promising therapeutic effect using a PD-1 blocking

antibody was observed in those tumor patients, some patients did

not respond to this blocking antibody blocking, or it had limited

effects. This implies that there are other inhibitory pathways

involved in T-cell dysfunction.
2.2 CTLA-4

CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), also

known as CD152, is a protein receptor mainly expressed on T cells

that was first identified as a second receptor for the T-cell

costimulatory legend B7 and later discovered to be a negative

regulator of T-cell activation (27–29). In naïve T cells, the

expression of CTLA4 is low, but in phases of TCR engagement

and activation, CTLA4 can be rapidly upregulated in both CD4

helper T cells and CD8 effector T cells, while its upregulation is

obvious in helper T cells (30). CTLA4 has two ligands, CD80 and

CD86, also called B7-1 and B7-2, which can also be recognized by

CD28, a T-cell costimulatory protein that is homologous to CTLA4.

However, for both ligands, CTLA4 has higher affinity and avidity

than CD28, implying that it is an antagonist of CD28-mediated

costimulation (31, 32). This mechanism suggests that the CD28/

CTLA4 regulatory form can act as a rheostat in T-cell activation.

In mouse models, anti-CTLA4 antibody treatment initially

resulted in the rejection of tumors, including preestablished

tumors; furthermore, the rejection resulted in immunity to a

secondary exposure to tumor cells (33). During the subsequent

development of clinical immunotherapy, two CTLA-4 blockade

antibodies, ipilimumab and tremelimumab, have been tested in

many types of human tumors, and their treatment efficacy has been

reported in melanoma (34, 35), non-small-cell lung cancer (36),

mesothelioma (37), prostate cancer (38), breast cancer (39) and

urothelial cancer (40). Despite the promising therapeutic effects, a

broad range of immune-related adverse events (irAEs) occurring in

the skin, gastrointestinal tract, liver and endocrine organs have been

reported in some trials, with an incidence of 60-65% (41). A

landmark clinical trial called the CheckMate 067 clinical trial

(ClinicalTrials.gov NCT01844505) used a combination CPI

therapy with an anti-CTLA-4 antibody and an anti-PD-1

antibody This study was carried out on 945 patients with stage III
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https://doi.org/10.3389/fimmu.2023.1121285
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1121285
or IV melanoma and evaluated the median overall survival under

treatment with nivolumab plus ipilimumab or with nivolumab or

ipilimumab monotherapy. Although the results showed that the OS

appeared to be improved in the combination treatment cohort

compared with the single-treatment cohorts, the trial did not have

sufficient power to show a significant difference between the two

nivolumab-containing groups, and the incidence of adverse events

was increased in the combination therapy cohort in this trial

(42, 43).

Additionally, while CTLA4 is expressed at high levels on Tregs

and although an important role of conventional T-cell CTLA4 in

self-tolerance has been reported, CTLA4 blockade therapy

combined with Treg depletion has led to considerable success in

tumor treatment as well as autoimmune disease treatment (41).

Therefore, more research should be conducted to reveal the pros

and cons of CTLA4 blockade immunotherapy.
2.3 TIM-3

TIM-3 (T-cell immunoglobulin and mucin domain containing-3),

a member of the TIM family is a coinhibitory receptors. It is expressed

on IFN-g-producing T helper 1 CD4+ and CD8+ T cells and Th17 cells

(44). The expression of TIM-3 is regulated by antigenic stimulation and

proinflammatory cytokines (45). In early studies, TIM-3 was reported

to have an inhibitory function, suppressing effector Th1 responses in

EAE and type I diabetes in amouse model, and the use of an anti-TIM-

3 antibody was reported to lead to disease exacerbation in EAE (46). In

subsequent studies, the overexpression of TIM-3 has been found to be

correlated with T-cell dysfunction and T-cell exhaustion (47). The role

of TIM-3 as a suppressive receptor that regulates T-cell activity in some

chronic viral infections, such as HIV-1, HBV and HCV infections, has

been reported (48–50). In the tumor microenvironment, TIM-3 has

also been found to be expressed on CD8+ TILs (tumor-infiltrating

leukocytes), which is closely associated with PD-1 expression.

Specifically, the expression patterns of TIM-3 and PD-1 indicate the

degree of T-cell exhaustion; for example, in mice bearing solid tumors,

TIM-3+PD-1+ TILs exhibit the most severely exhausted phenotype, as

defined by failure to proliferate and produce cytokines. Additionally,

high expression of TIM-3 on CD8+ T cells has been found to be

correlated with poor prognosis in certain types of cancers, and blockade

of TIM-3 combined with anti-PD-1 antibody treatment has been

confirmed to be more effective than blockade of either molecule

alone in antitumor immunotherapy (51–53). In a study on

medullary thyroid carcinoma (MTC) in 200 MTC patients, TIM-3

positivity was 48%, and TIM-3 expression was positively correlated

with PD-1 and CTLA-4 expression. Log-rank tests and multivariate

Cox analyses both indicated that TIM-3, CTLA-4 and PD-1/PD-L1

coexpression were associated with poor structural recurrence-free

survival (54).
2.4 LAG-3

LAG-3, lymphocyte activation gene 3, is a cell surface protein

belonging to the immunoglobulin superfamily that is expressed on
Frontiers in Immunology 04192
CD4+ and CD8+ T cells (55), NK cells (56), B cells and plasmacytoid

dendritic cells (57). It is a coinhibitory transmembrane receptor whose

ligands are MHC class II and FGL1, and interaction with the ligands

can negatively regulate the activation of T cells (58, 59), similar to the

case for CTLA4 and PD-1 (60, 61). In particular, LAG-3 has a

synergistic effect with PD-1 to regulate immune responses (62). In

clinical immunotherapy, a LAG-3 Ig fusion protein named IMP321

was first used in advanced renal cell carcinoma patients and resulted in

reduced tumor growth and improved progression-free survival (63).

When LAG-3 blockade antibody (BMS-986016) and nivolumab (a PD-

1 antibody) were used in combination in melanoma patients, the initial

resistance when only blocking of the PD-1/PD-L1 axis was converted

(64). In addition, many types of human tumors present aberrant

expression of LAG-3, which correlates with poor outcomes (65–69).

Kosaku Mimura et al. evaluated the distribution of different inhibitory

ligands in 365 GC patients and found coexpression of inhibitory

ligands for PD-1, Tim-3 and Lag-3 in the largest proportion (34.7%).

Their findings suggest that the expression of inhibitory ligands for Tim-

3 and Lag-3 on GC cells serve as potential predictive biomarkers of the

response to anti-PD-1 therapy (70).
2.5 TIGIT

TIGIT, T-cell immunoglobulin and ITIM domain, belongs to the

immunoglobulin superfamily and is also a T-cell coinhibitory receptor.

It is expressed on CD4+ memory and regulatory T cells, CD8+ T cells

and NK cells. To date, the ligands that have been discovered to be

recognized by TIGIT are CD155 (PVR or poliovirus receptor), CD112

(PVRL2) and CD113 (PVRL3, NECTIN-3), of which CD155 has the

highest affinity for TIGIT (71). TIGIT has been implicated in tumor

immunosurveillance, and its role is analogous to that of PD-1 in tumor

immunosuppression because it is overexpressed in tumor antigen-

specific CD8+ T cells and CD8+ TILs and is often coexpressed with PD-

1. Therefore, co-blockade of the two checkpoint molecules can enhance

the antitumor efficacy of single blockade (72).
2.6 VISTA

VISTA, V-domain Ig-containing suppressor of T-cell

activation, also belongs to the transmembrane Ig superfamily

(73). It is part of the B7 family and is mainly expressed on T cells

and CD11b+ antigen-presenting cells (APCs)/myeloid cells (74). It

has been reported that VISTA can act as both a receptor and a

ligand on T cells and that it functions as an inhibitor to maintain

immune tolerance (75). In tumor-infiltrating lymphocytes, VISTA

is overexpressed, especially in myeloid-derived suppressor cells and

regulatory T cells. Recently, it has been reported to be highly

expressed in human ovarian and endometrial cancers. The

abnormal expression of VISTA in tumor cells suppresses T-cell

proliferation and cytokine production in vitro and decreases the

tumor infiltration of CD8+ T cells in vivo. VISTA blockade prolongs

the survival of tumor-bearing mice (76). In a study on

oropharyngeal squamous cell carcinoma (OPSCC) including 241

tumor tissues aiming to describe the expression of LAG-3, Tim-3,
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and VISTA in the TME of OPSCC, immunohistochemistry showed

that 168 OPSCC samples stained positive for VISTA. The results

also revealed that CD8+ T cells were significantly associated with

LAG-3, Tim-3 and VISTA expression (p < 0.001, p < 0.001, p =

0.007), so immune checkpoint therapy targeting LAG-3, Tim-3,

and/or VISTA could be a promising treatment strategy, especially

for HPV-related OPSCC (77).
2.7 Siglec-15

Siglec-15, short for sialic acid-binding immunoglobulin-like lectin

15, belongs to the Siglec gene family because of its sialic acid-binding

immunoglobulin-type lectin structure (78). Originally, Siglec-15 was

mainly reported to play roles in osteoclast differentiation and bone

remodeling (79, 80). Recently, Wang et al. identified Siglec-15 as a

potent immunosuppressive molecule. In their study, using a newly

developed genome-scale T-cell Activity Array, they identified that the

expression of Siglec-15 was upregulated in many human cancer cells

and tumor-infiltrating myeloid cells, while under normal physiological

conditions, it was limited to cells in the myeloid lineage. In particular,

its expression was mutually exclusive with that of B7-H1 in cancer cells

and could be regulated by M-CSF and IFN-g. In thorough in vitro and

in vivo experiments, Siglec-15 was confirmed to suppress antigen-

specific T-cell responses and impair antitumor immunity. Conversely,

a Siglec-15-blocking mAb reversed T-cell suppression and promoted

tumor immunity in multiple tumor models (81). Siglec-15 has unique

molecular features compared with those of many other known

checkpoint inhibitory ligands; it shows mutually exclusive expression

with PD-L1, which suggests that it plays a key role in tumor escape in

PD-L1-negative patients. As a new player in cancer immunotherapy,

siglec-15 may have potential applications in anti-PD-1/PD-L1-resistant

patients (82). Collectively, the evidence suggests that Siglec-15 is an

attractive target for cancer immunotherapy.
2.8 CD112R

CD112R is a poliovirus receptor-like protein and has been

described as a new coinhibitory receptor for human T cells that

can interact with CD112 with higher affinity than CD226 and

TIGIT. Recently, it has also been reported to be expressed in

subpopulations of NK cells (83). Zhu et al. reported that CD112

is expressed on DCs and many tumor cells and mediates the

interaction of CD112R with DCs and tumor cells. When the

interaction between CD112R and CD112 is disrupted, human T-

cell function is enhanced. These results imply that the CD112R/

CD112 axis is a new checkpoint in human T cells (84).
3 Checkpoint immunotherapy based
on NK cells

Natural killer (NK) cells are involved in innate immunity and

play a significant role in immunological surveillance against various

infections and malignant transformation. Unlike that of T cells, the
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activation of NK cells does not require prior sensitization, and the

NK cell function is determined by the balance of a series of activated

and inhibitory receptors expressed on the cell surface (85, 86). In

the tumor microenvironment, tumor cells often downregulate the

expression of major histocompatibility complex (MHC) class I to

escape killing by T cells, nevertheless, these “missing self” tumor

cells become more susceptible to the immunosurveillance executed

by NK cells. Based on these intrinsic properties and accumulating

evidence that defects in NK-cell function and number are often

associated with viral infections and tumorigenesis (87), increased

attention has been given to NK-cell-based immunotherapy to

compensate for the lack of T cell immunotherapy.
3.1 KIRs

Killer-cell immunoglobulin-like receptors (KIRs) are a family of

type I transmembrane glycoproteins that are expressed on NK cells

and a minority of T cells (88). KIRs have dual functions: they can

inhibit NK-cell cytotoxicity by interacting with MHC class I

molecules but can also activate cytotoxic activity as activating

receptors (89). KIR family members have many haplotypes

because of their polymorphic genes, such as KIR2DL1 and

KIR3DL2, which are named by the number of extracellular

immunoglobulin domains and by the length of the cytoplasmic

domain they express (90). KIR inhibitory receptors conduct

inhibitory signals through the ITIM, which is located in their

long cytoplasmic domain. Based on the “missing self” theory, the

humanized antagonistic antibody lirilumab (IPH2102), which can

target inhibitory KIRs such as KIR2DL1-3 and KIR2DS1-2, has

been used in clinical immunotherapy studies (91). Although the use

of lirilumab has been shown to promote NK-cell cytotoxicity

toward multiple myeloma, lymphoma and leukemia in preclinical

studies, its efficacy in some phase I or II trials on multiple myeloma

and acute myeloid leukemia was not as good as expected (92–94).

Another mAb targeting KIR2DL1/2/3, IPH2102, has failed to exert

impressive clinical effects in patients with multiple myeloma (MM)

as monotherapy, but when combined with lenalidomide in a dual

immunotherapy for MM patients, it has been reported to achieve a

median progression-free survival of 24 months, suggesting the

promise of combination therapy (95).
3.2 NKG2A

NKG2 belongs to the C-type lectin-like receptor superfamily

and has seven types, NKG2A, NKG2B, NKG2C, NKG2D, NKG2E,

NKG2F and NKG2H. NKG2 is expressed on NK cells and acts as an

activating receptor or inhibitory receptor when dimerized with

other molecules. CD94/NKG2A forms a heterodimeric receptor

and plays an inhibitory role on both T cells and NK cells by

interacting with HLA-E, which is upregulated in many tumors

(96, 97). Pascale André et al. reported that the use of an NKG2A

blocking antibody, monalizumab, can enhance NK-cell effector

functions against various tumor cells and can rescue CD8+ T-cell

function in combination with PD-x axis blockade (98). Takahiro
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Kamiya et al. constructed NKG2A-null NK cells in which NKG2A

expression was abrogated and found that they had increased

cytotoxicity against HLA-E-expressing tumor cells . In

immunodeficient mice, NKG2A-null NK cells showed an

enhanced antitumor effect against HLA-E-expressing tumors (99).

In an in vivo study on cancer vaccination using mouse tumor

models, the impact of therapeutic vaccines was greatly potentiated

by disruption of the NKG2A/Qa-1b (conserved ortholog of HLA-E)

axis even in a PD-1-refractory mouse model. However, in this

research, the blockade therapy affected CD8 T cells, not NK cells.

These findings indicate that NKG2A-blocking antibodies might

improve clinical responses to therapeutic cancer vaccines (100).

Overall, blockade of the NKG2A axis represents a promising

therapeutic approach, but monalizumab monotherapy or

combination therapy with another blocking antibody (cetuximab

or durvalumab) is still under investigation, and more trials

are needed.
3.3 TIGIT

As mentioned above, TIGIT is expressed on some NK cells

and can interact with its ligands CD155 and CD112, which are

expressed on many tumor cells (71). The binding of TIGIT with its

ligands has been reported to result in an inhibitory signal and

downregulate NK-cell functions. Qing Zhang et al. reported that

TIGIT was associated with NK-cell exhaustion in mouse models

and in patients with colon cancer. In mice bearing tumors,

including colon tumors, breast tumors and chemically induced

fibrosarcomas, treatment with an mAb to TIGIT induced tumor

growth inhibition and tumor volume reduction and prevented

NK-cell exhaustion. In addition, blockade of TIGIT resulted in

potent tumor-specific T-cell immunity in an NK-cell-dependent

manner and exerted a synergistic effect with an mAb blocking PD-

1 (101).
3.4 PD-1

In addition to being expressed in T cells as mentioned above,

PD-1 has also been reported to be expressed in human NK cells

from healthy donors and cancer patients and to have an inhibitory

effect on NK-cell function (102, 103). Joy Hsu et al. reported that

blockade of the PD-1/PD-L1 axis can elicit a strong NK-cell

response, which is essential for the therapeutic effect, and implied

the importance of PD-1 in inhibiting NK-cell responses in vivo and

of the coordinating roles of T cells in PD-1/PD-L1 blockade

immunotherapy (104). Wenjuan Dong et al. found that some

tumors can induce PD-L1 expression on NK cells via AKT

signaling and that an anti-PD-L1 mAb can directly act on PD-

L1+ NK cells to combat PD-L1- tumors via a p38 pathway. Their

findings reveal a PD-1-independent mechanism of antitumor

efficacy through PD-L1+ NK cells that is activated with an anti-

PD-L1 mAb (105).
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3.5 TIM-3

The expression of TIM-3 is extensive in immune cells, as

mentioned above. In addition to T cells, TIM-3 is constitutively

expressed on resting human NK cells and is upregulated upon

activation (106). The transcriptional levels of TIM-3 are higher in

NK cells than in other lymphocytes, and TIM-3 can serve as a

maturation marker. Antibodies that crosslink TIM-3 suppress NK-

cell-mediated cytotoxicity, indicating that the function of NK cells

may be negatively regulated by the interaction of TIM-3 with its

cognate ligands, which are expressed on target cells (107). TIM-3 is

upregulated in peripheral NK cells of patients with gastric cancer,

lung adenocarcinoma and melanoma, while it is upregulated in

tumor-infiltrating NK cells of gastrointestinal stromal tumors. This

abnormal expression of TIM-3 on NK cells often predicts a poor

prognosis, especially in melanoma and lung adenocarcinoma, but

blockade of TIM-3 reverses NK-cell exhaustion and improves NK-

cell-mediated cytotoxicity (108–111).
3.6 LAG-3

LAG-3 is an inhibitory receptor that is upregulated on activated

T cells and NK cells, as mentioned above. It is homologous to CD4

but has a greater affinity for MHC class II molecules; additionally,

LAG-3 can bind to LSECtin and FGL1, which are expressed by

some tumor cells (112). Unlike in T cells, the function of LAG-3 in

NK cells is not clear. Although previous studies have not found that

blockade of LAG-3 on human NK cells can influence NK-cell

cytotoxicity (113), one study reported that patients with HIV

have lower expression of LAG-3 along with other inhibitory

molecules involved in viral control, such as PD-1 and TIM-3,

than individuals in a low-risk population or progressors (114).

IMP321, a soluble recombinant LAG-3-Ig fusion protein, has been

reported to induce NK cells to produce IFN-g and/or TNF-a in

healthy donors in an ex vivo short-term experiment, but in

metastatic cancer patients, the values are reduced (5, 115). In

clinical trials, many anti-LAG-3 monoclonal antibodies have been

analyzed either as monotherapies or in combination with other

checkpoint-blocking antibodies, such as anti-PD-1 mAb, for the

immunotherapy of solid tumors and hematologic malignancies.

Two examples are relatlimab (BMS-986016) (NCT01968109) and

LAG525 (NCT02460224). However, further work on the effect of

LAG-3 on NK cells needs to be explored (116).
3.7 Siglec-7/9

Siglecs, sialic acid-binding immunoglobulin-type lectins, are a

subset of the I-type lectins that bind sialic acid and are mainly

expressed on the surfaces of immune cells, including neutrophils,

eosinophils, monocytes, macrophages, NK cells, dendritic cells,

mast cells, B cells and T cells (117). To date, the siglec receptor

family comprises 15 members that vary in their expression patterns
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and in the specificity of ligand binding. Among the family members,

siglec-7 and siglec-9 are reported to be mainly expressed on NK

cells and to transport inhibitory signals through the ITIM motifs in

their cytoplasmic tails (118). Many studies have reported that

changes in sialic acid are correlated with tumorigenesis and

cancer progression (119). Therefore, siglec-sialic acid interactions

may play an important role in modulating the immune response

and can be targeted as useful checkpoints (120). In human cancer,

siglec-9 has been found to be upregulated in peripheral NK cells,

mainly in CD56dimCD16+ NK cells. In an in vitro study, blockade of

siglec-7 and siglec-9 using Fab fragments increased the cytotoxicity

of NK cells against tumor cells, and in an in vivo mouse model,

sialoglycan-dependent NK-cell inhibition led to the killing of tumor

cells (118). In a recent study, Itziar Ibarlucea-Benitez et al.

investigated the impacts of siglec-7 and siglec-9 on tumor

progression using a humanized immunocompetent murine model

and found reduced tumor burden when using Fc-engineered anti–

Siglec-7 and anti–Siglec-9 blocking antibodies. This effect may have

been mediated by prevention of macrophage polarization into

tumor-associated macrophages and thus reprogramming of the

immune-suppressive tumor microenvironment (121). In addition,

Siglec-9 has been found to be upregulated on tumor-infiltrated CD8

+ T cells in non-small-cell lung cancer and ovarian and colorectal

cancers, and other inhibitory receptors, such as PD-1, are also

coexpressed by T cells expressing siglec-9, implying that

combination with other immune checkpoint inhibitors could be

used for coinhibition in immunotherapy (122).
3.8 HLA-G

Human leukocyte antigen (HLA)-G is a nonclassical MHC-I

molecule that was initially found to be expressed in pregnancies by

cells of the trophoblast at the maternal–fetal interface and acts as a

mediator of immune tolerance because it protects the fetus from

NK-cell-mediated lysis (123, 124). To date, seven isoforms have

been found, including HLA-G1 to HLA-G7, some of which are

membrane-bound molecules and some of which are soluble forms.

Under normal physiological conditions, the expression of HLA-G is

restricted to immune-privileged organs, but it is upregulated in

some immune-mediated diseases, such as viral infections and

cancer. By interacting with different receptor molecules on

different immune cells, HLA-G exerts several immunomodulatory

effects. In NK cells, the inhibitory receptors ILT2 and ILT4 are

responsible for the HLA-G-mediated inhibitory effect (125). One

study has found that these two inhibitory receptors are broadly

expressed on T cells, B cells and dendritic cells, implying the

immunosuppressive effect of HLA-G on these cells (126). The

abnormal expression of HLA-G in different cancers is associated

with poor clinical outcomes in patients, so increasing attention has

been given to HLA-G as an immune checkpoint in cancer (127).

Numerous studies have reported that the expression of HLA-G in

ovarian carcinoma, hepatocellular carcinoma, glioma and renal cell

carcinoma inhibits NK cell-mediated cytolysis of these cancer cells

but that this inhibition can be reversed by the use of specific

antibodies targeting HLA-G or its receptors. In addition, the
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modulation of cytokine secretion by sHLA-G/ILT2 binding and

the different immunosuppressive functions of HLA-G on T cells, B

cells, macrophages, dendritic cells, and neutrophils have been

deeply discussed (128–132). Chia-Ing Jan et al. designed and

tested a CAR strategy to target HLA-G in solid tumors, and the

results showed that HLA-G CAR-transduced NK cells effectively

cytolyzed breast, brain, pancreatic and ovarian cancer cells in vitro

and resulted in reduced xenograft tumor growth with extended

median survival in orthotopic mouse models (133). In our study, we

found that HLA-G desensitizes breast cancer cells to trastuzumab

by binding to the NK-cell receptor KIR2DL4 and the blockade of

HLA-G/KIR2DL4 axis improves the vulnerability of HER2-positive

breast cancer to trastuzumab treatment in vivo (134).
4 Checkpoint immunotherapy based
on macrophage

As an essential innate immune population, macrophages are

also important components of the tumor microenvironment

(TME). Tumor-associated macrophages (TAMs) have been found

to be the most abundant immune cell type in solid tumors and to

play an important role in orchestrating the immunosuppressive

mechanism of the TME (135). Macrophages are highly plastic and

generally can be classified into two polarized cell types: classically

activated M1 cells and alternatively activated M2 cells. M1 cells have

an antitumor function with a proinflammatory phenotype, and M2

cells can promote tumor progression as immunosuppressive cells.

The specific phenotype or polarization type a macrophage assumes

is dependent on factors released from TME (136). Many studies

have revealed that macrophages play key roles in homeostasis and

tumor development; thus, they have been regarded as promising

targets for immunotherapy in a variety of diseases.
4.1 PD-1

In addition to T cells and NK cells, PD-1 has been found to be

expressed in macrophages, and its expression increases over time

and with disease progression (137, 138). Previous studies focused on

blockade of the PD-1/PD-L1 axis have demonstrated the promising

role of PD-1 in rejuvenating T cells, but the influence of axis

blockade on macrophages has not been fully revealed. A recent

study has reported that the expression of PD-L1 on macrophages is

correlated with clinical responses to anti-PD-L1 therapy; moreover,

macrophage polarization can have an effect on the suppression of

tumor metastasis (139). Genevieve P Hartley et al. used PD-L1

antibodies to treat mouse and human macrophages and found that

the treatment increased spontaneous macrophage proliferation,

survival and activation, as indicated by evidence including

costimulatory molecule expression and cytokine production. In

an in vivo model, the use of a PD-L1 antibody increased tumor

infiltration by activated macrophages and triggered macrophage-

mediated antitumor activity (140). On the other hand, macrophages

may be regulators participating in the mechanism of PD1/PD-L1

treatment resistance. Arlauckas et al. found that PD-1+ CD8+ T cells
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bound PD-1 antibody in a transient period, and then the antibody

was seized within minutes from the T-cell surface by PD-1-

macrophages, which led to the failure of reactivation of exhausted

T cells (141). Therefore, consideration of the macrophage effect and

phenotype in checkpoint immunotherapy is very important.
4.2 CTLA-4

In a study analyzing the action of ipilimumab, a CTLA-4 blocking

mAb, Emanuela Romano et al. found that unlike nonresponder

patients, patients who respond to ipilimumab treatment display

higher peripheral frequencies of nonclassical monocytes at baseline

and enrichment of tumor-infiltrating CD68+CD16+ macrophages

(142). Previously, Tyler R Simpson et al. explored the activity of an

anti-CTLA-4 antibody in the treatment of metastatic melanoma and

found that blocking CTLA-4 resulted in selective depletion of Treg

cells within tumor lesions; remarkably, this depletion was dependent

on Fcg receptor-expressing macrophages in the TME (143). TAM-

mediated elimination of anti-CTLA4-sensitized Tregs resulted in

effective antitumor immunity. These results suggest that

macrophages in the tumor microenvironment may contribute to

the action of anti-CTLA-4 antibodies in tumor treatment.
4.3 CD47-SIRPa

Signal regulatory protein alpha (SIRPa) is a receptor expressed

on macrophages that can interact with CD47, which is upregulated

on some tumor cells, and thus transmit a “don’t eat me” signal. This is

a strategy that is used by tumor cells to avoid phagocytosis. Based on

this, anti-CD47 antibodies or engineered SIRPa-Fc fusion proteins

have been used to prevent the immunosuppressive signal and restore

macrophage phagocytic ability. Inhibition of the CD47/SIRPa axis

can reduce tumor size and metastasis in many tumor models (144,

145). In clinical trials, anti-CD47 antibodies such as Hu5F9-G4 and

CC-90002 and engineered high-affinity SIRPa and SIRPa-Fc fusion
proteins (ALX148 and TTI-621) have been investigated for their

therapeutic effects. However, this strategy has a defect: because of the

ubiquitous expression of CD47 on red blood cells, anti-CD47 therapy

can also lead to transient anemia (146). However, an alternative

method has emerged involving a bispecific antibody that can target

CD47 and tumor-associated antigens at the same time (147).

Moreover, researchers have found that SIRPa is upregulated in NK

cells upon IL-2 stimulation and interacts with target cell CD47 in a

threshold-dependent manner. SIRPa deficiency or antibody blockade

increases the killing capacity of NK cells, so disruption of the SIRPa-
CD47 immune checkpoint may augment NK-cell antitumor

responses, and elevated expression of CD47 may prevent NK-cell-

mediated killing of allogeneic and xenogeneic tissues (148).
4.4 SFRs

In the study of phagocytic responses of different tumor cells to

phagocytic cells when using SIRPa-CD47 blackade, Chen et al. found
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that phagocytosis of haematopoietic tumor cells during SIRPa–CD47
blockade was strictly dependent on SLAM (signalling lymphocytic

activation molecule) family receptors (SFRs) in vitro and in vivo in

mouse model. As the same results obtained in mouse, they also

confirmed that this dependence required SLAMF7 (CD319 or

CRACC), a SLAM family member which expressed on macrophages

and tumor cell targets in human cells. Unlike other SLAM receptors,

whose phagocytosis function are dependent on signalling lymphocyte

activation molecule-associated protein (SAP) adaptors, SLAMF7

depended on its interaction with integrin Mac-1 and signals

involving immunoreceptor tyrosine-based activation motifs. What

counts is, their findings suggest that maybe the SIRPa–CD47
blockade therapy are more effective in patients with SLAMF7

expressing (149). Recently, Li et al. reported a critical role of the

other two members of SFRs, SLAMF3 and SLAMF4, in constraining

macrophage phagocytosis. Because of their ubiquitous expression on

hematopoietic cells, the authors knockout SLAMF3 and SLAMF4 and

found that the SFRs deficiency increased the ability of macrophages to

phagocytose hematopoietic cells. In mouse model, the SFRs knockout

lead to hematopoietic tumor rejection. Importantly, in CAR-

macrophage therapy of hematopoietic cancer, the SFRs deletion also

enhanced the efficacy. Together, their finding pointing to a potential

therapeutic target for hematopoietic cancers (150).
4.5 Clever-1

The full name of Clever-1 is common lymphatic endothelial and

vascular endothelial receptor-1, and it is also called Stabilin-1 or Feel-1.

It is a conserved, multifunctional adhesion and scavenger receptor that

is expressed by some endothelial cells and immunosuppressive

macrophages and TAMs. Recent studies have found that Clever-1

can promote tumor progression (151–153). Miro Viitala et al. found

that removal of Clever-1 from macrophages can significantly impair

tumor growth inmultiple solid tumormodels, and a lack of Clever-1 in

macrophages is associated with an increasingly immunostimulatory

phenotype and enhanced signaling through the inflammatory mTOR

pathway. Then, anti-Clever-1 treatment displays outcomes comparable

to those of PD-1 blockade, implying Clever-1 as a novel target in

clinical cancer evaluation and immunotherapy (154).
4.6 CD24/Siglec-10

CD24, a surface protein that is also called heat-stable antigen

(HSA) or small cell lung carcinoma cluster 4 antigen, can interact

with Siglec-10 and elicit inhibitory signals. CD24 has been reported

to be expressed in several solid cancer cells (155, 156). As a member

of the Siglec family, siglec-10 bears an ITIM within its cytoplasmic

domain and can conduct inhibitory signals. Amira A Barkal et al.

reported that many tumors overexpress CD24 and that TAMs

express high levels of siglec-10. They found that the phagocytosis

of all CD-24-expressing human tumors tested was augmented when

CD24 or Siglec-10 was ablated genetically or when an antibody was

used to block the CD24/Siglec-10 axis. In an in vivo study, ablation

and blockade of CD24 resulted in both a macrophage-dependent
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reduction in tumor growth and extension of survival. These findings

reveal the CD24/Siglec-10 axis as a promising new therapeutic

target in cancer immunotherapy (157).
5 Checkpoint immunotherapy based
on DCs

5.1 LAG-3

LAG-3 was found to be expressed on a subset of circulating

human plasmacytoid dendritic cells (pDCs), and its interaction with

MHC II can induce TLR-independent activation of pDCs with

limited IFN-a and enhanced IL-6 production. The same study also

found LAG-3+ pDCs in melanoma-invaded lymph nodes that were

IL-6 positive. These results suggest that activation of pDCs induced

by LAG-3 could be involved in creating a suppressive environment

in tumor sites (158).
5.2 TIM-3

In addition to T cells, TIM-3 is expressed by multiple other cell

types, including dendritic cells, and the expression of TIM-3 may

inhibit nucleic acid sensing through TLRs (159). A recent study

identified TIM-3, which is expressed by intratumoral CD103+

dendritic cells, as a target for therapy in a murine model of breast

cancer. In that study, the use of an anti-TIM-3 antibody improved

the response to paclitaxel chemotherapy in models of triple-

negative and luminal B disease, with no evidence of toxicity.

Anti-TIM-3 antibody administration led to enhanced granzyme B

expression by CD8+ T cells and increased CXCR3 chemokine ligand

expression by tumor conventional dendritic cells (160). Karen O.

Dixon et al. demonstrated that loss of TIM-3 on dendritic cells, but

not on CD4+ or CD8+ T cells, promotes strong antitumor

immunity; moreover, it prevents dendritic cells from expressing a

regulatory program and facilitates the maintenance of CD8+ effector

and stem-like T cells. Conditional deletion of TIM-3 in dendritic

cells leads to increased accumulation of reactive oxygen species,

resulting in NLRP3 inflammasome activation, which underscores

the potential of TIM-3 blockade for promoting antitumor

immunity by regulating inflammasome activation (161). Overall,

the immunomodulatory function mediated by TIM-3 is complex

because of the broad expression of TIM-3 in different immune cells

and the different interactions of this molecule with multiple ligands.

Although promising therapeutic results have been reported in

patients with anti-PD1-refractory disease in whom TIM-3 is co-

blocked with other checkpoint receptors, the potential of TIM-3 as a

drug target in different pathological conditions needs further

study (162).
5.3 PD-L1

In a study investigating the anti-tumor mechanism of anti–PD-

1 or PD-L1 antibodies, Mayoux et al. characterized various ligands
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on the surface of dendritic cells and found that PD-L1 is expressed

much more abundantly than B7.1 on peripheral and tumor-

associated dendritic cells in patients with cancer. PD-L1 expressed

on dendritic cells can bind B7.1 on the same cell. This binding

potentially prevent PD-1 ligation on T cells or B7.1 ligation of its

partner CD28. Blocking PD-L1 on DCs relieves B7.1 sequestration

in cis by PD-L1, which allows the B7.1/CD28 interaction to enhance

T cell priming. This finding revealed that PD-L1 blockade

reinvigorates DC function to generate potent anticancer T cell

immunity (163).
6 Discussion

Complex communications between different cells and between

cells and their surrounding microenvironment manipulate tumor

oncogenesis and progression. In the tumormicroenvironment, tumor

cells create favorable conditions for cancer progression and avoid

immunological surveillance through many strategies. For example,

they can reduce neoantigen expression and alter the expression of

immunoregulatory molecules on themselves. In addition, other

extrinsic factors in the TME, such as the composition of tumor-

infiltrating lymphocytes (TILs) and the inhibitory receptors expressed

by TILs, all determine the ultimate direction of tumor development

(164). Based on this, cancer immunotherapy, which mainly includes

adoptive cell transfer (ACT) and immune checkpoint (IC) inhibitor

(ICI) therapy, has revolutionized cancer treatment. In this review, we

mainly discussed the diversity of immune checkpoints which have

been found to be widely distributed in different immune cells and

play different regulatory role. With the research and application of

immunotherapy based on immune checkpoints in various malignant

tumors (Figure 2 and Table 1), their anti-tumor prospects are

exciting, but there are still many problems in clinical application.

The first question is that most patients exhibit primary or acquired

resistance, one possible reason is due to compensatory mechanisms,

such as upregulation of alternative immune checkpoints in addition

to the widely noted PD-1 and CTLA-4, such as TIM-3 and VISTA, or

the influence of many factors in the tumor immune

microenvironment on T cell function. To explore the diversity of

IC and their different effects on different lymphocytes, as well as to

identify new therapeutic targets in the tumor microenvironment, will

help guide the application of multi-ICI combination in clinical tumor

therapy. To explore the key immunosuppressive pathways in different

tumor types and different patient populations is particularly

important for selecting the right immunotherapy (165). In

addition, studies have found that in some refractory tumors

(immunologically cold), the combination of antibodies targeting

reverse inhibitory immune microenvironment and anti-PD-1

antibody can often improve the therapeutic effect (154). The

second question, there is currently no effective method to

distinguish ICI responders from non-responders. But with further

research, the discovery of more immune checkpoints and their

ligands may help predict the PD-1 therapeutic response in some

tumors. For example, it has been found that the expression of

inhibitory ligands for Tim-3 and Lag-3 on GC cells serve as

potential biomarkers to predict the response to anti-PD-1 therapy
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and the combinatorial immunotherapy with ICIs targeting for PD-1,

Tim-3, and Lag-3 has a therapeutic potential for GC patients (70).

Third question, the irAEs present in the clinical ICI treatment is a

huge problem, including systemic toxicity, dermotoxicity,

gastrointestinal toxicity, endocrine toxicity, pulmonary toxicity,

rheumatism, nervous system toxicity, ocular toxicity, renal toxicity,

cardiotoxicity and hematological toxicity (166). These side effects will

seriously affect the therapeutic effect and prognosis of patients.

What’s worse, studies have found that the combined use of ICI

may lead to a higher incidence of irAEs than single ICI therapy,

depending on the type of malignancy and ICI used (167). At present,
Frontiers in Immunology 10198
the cause of irAEs is not clear, but possible causes include non-

specific immune stimulation of organ-specific inflammation, tissue

damage and autoimmunity (168). Studies have found that the use of

some immune checkpoint antibodies can affect the normal immune

function of other normal tissues at the same time. For example, the

use of CTLA-4 monoclonal antibodies can simultaneously produce

an inhibitory effect on Treg cells expressing CTLA-4, leading to the

destruction of immune tolerance, and thus an increase in the

frequency and severity of irAEs was observed in some cases (169,

170). In view of the wide expression of immune checkpoints in

various lymphocytes listed in this paper and the wide distribution of
FIGURE 2

Different ICs expressing on different lymphocytes and and the targeted blocking antibody.
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TABLE 1 The description of IC molecules、targeted monoclonal antibody drugs and indications.

IC Expressing cells Targeted monoclonal antibody Indications

PD-1
Activated T cell, B cell,
NK cell, myeloid cells

nivolumab, pembrolizumab, cemiplimab,
sintilimab, camrelizumab, toripalimab,
tislelizumab, zimberelimab, prolgolimab,

dostarlimab

Melanoma, NSCLC, RCC, HCC, Hodgkin's lymphoma, primary mediastinal
large B cell lymphoma, SCC of the head and neck, urothelial carcinoma, gastric

cancer, solid tumors with high MSI, or MRD, Cutaneous squamous cell
carcinoma

PD-L1
various malignancies,

dendritic cells

atezolizumab
durvalumab
avelumab

NSCLC, urothelial carcinoma, bladder cancer, Merkel cell carcinoma

CTLA-4
Activated T cell and B
cells, Treg, NK cells

Ipilimumab malignant melanoma, NSCLC, mesothelioma, prostate cancer, breast cancer,
urothelial cancerTremelimumab

Tim-3 T cell, NK cell and DC
Sabatomimab

Advanced Malignancies
cobolimab

LAG-3
Activated T cell and NK
cell, B cell, Treg and

pDC

relatlimab
unresectable or metastatic melanoma

fianlimab

TIGIT T cell and NK cell

tiragolumab

Melanoma, liver cancer, cervical cancer, prostate cancer, ESCC, breast cancer,
NSCLC, NHL/DLBCL/B-cell malignancies

domvanalimab

ociperlimab

vibostolimab

VISTA

T cells and CD11b+
antigen-presenting cells,

myeloid
cells

JNJ-61,610,588
NSCLC, small-cell lung cancer, head and neck, pancreatic, colorectal, cervical

cancer

Siglec-15

tumor-associated
macrophages and

dendritic cells, human
cancer cells cells

NC318 advanced solid tumors

CD112R T cell and NK cell
COM701

Breast cancer, Melanoma, pancreatic cancer
GSK4381562

KIR NK cells, CD8+ T cells lirilumab MM, AML, relapsed/refractory lymphomas

NKG2A NK cells, CD8+ T cells monalizumab
oral squamous cell carcinoma, gynecological malignancies, relapsed

hematological malignancies

Siglec-7/
9

T cell, NK cell and
monocytes

none NSCLC, ovarian, colorectal cancers, melanoma

HLA-G various malignancies none Breast cancer

ILT2/4,
KIR2DL4

ILT2/4(T cell, NK cell,
DC), KIR2DL4(NK cell)

MK-4830 (anti-ILT2) solid malignancies and hematological malignancies

SIRPa macrophages
KWAR23

Burkitt's lymphoma, Melanoma
1H9

CD47 many tumor cells
letaplimab

Melanoma, AML stem cells, Breast cancer
magrolimab

SFRs Macrophages, NK cell elotuzumab MM

Clever-1
Endothelial cells and

TAMs
Clevegen

cutaneous and uveal melanoma, hepatobiliary, pancreatic, ovarian, oestrogen-
receptor-positive breast, colorectal, gastric, gallbladder cancer and

cholangiocarcinoma

Siglec-10
Macrophages, B cells,
activated T cells and

monocytes
ONC-781(anti-CD24) Advanced Solid Tumors, Unresectable or metastatic melanoma, Resected HCC
F
rontiers in I
mmunology
 11199
HCC, hepatocellular carcinoma; MRD, minimal residual disease; MSI, microsatellite instability; NSCLC, nonsmall-cell lung carcinoma; RCC, renal cell carcinoma; SCC, squamous cell
carcinoma. MM, multiple myeloma; AML, acute myeloid leukemia; ESCC, esophageal squamous cell carcinoma.
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the same immune checkpoint in different lymphocytes (Table 1), the

immune response caused by the application of ICI in the whole

immune system should be fully considered. It will be an urgent topic

for ICI treatment in the future to consider avoiding severe irAEs

caused by the breakdown of autoimmune balance while achieving

good anti-tumor efficacy.
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Dissecting order amidst chaos of
programmed cell deaths:
construction of a diagnostic
model for KIRC using
transcriptomic information in
blood-derived exosomes and
single-cell multi-omics data in
tumor microenvironment

Chengbang Wang1,2†, Yuan He3*†, Jie Zheng1,2†, Xiang Wang4*

and Shaohua Chen1,2*

1Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
2Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and
Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized
Medicine, Guangxi Medical University, Nanning, China, 3Department of Urology, The Second Nanning
People’s Hospital, Nanning, China, 4Department of Urology, Shanghai General Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China
Background: Kidney renal clear cell carcinoma (KIRC) is the most frequently

diagnosed subtype of renal cell carcinoma (RCC); however, the pathogenesis

and diagnostic approaches for KIRC remain elusive. Using single-cell

transcriptomic information of KIRC, we constructed a diagnostic model

depicting the landscape of programmed cell death (PCD)-associated genes,

namely cell death-related genes (CDRGs).

Methods: In this study, six CDRG categories, including apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA

sequencing (RNA-seq) data of blood-derived exosomes from the exoRBase

database, RNA-seq data of tissues from The Cancer Genome Atlas (TCGA)

combined with control samples from the GTEx databases, and single-cell RNA

sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO)

database were downloaded. Next, we intersected the differentially expressed

genes (DEGs) of the KIRC cohort from exoRBase and the TCGA databases with

CDRGs and DEGs obtained from single-cell datasets, further screening out the

candidate biomarker genes using clinical indicators and machine learning

methods and thus constructing a diagnostic model for KIRC. Finally, we

investigated the underlying mechanisms of key genes and their roles in the

tumor microenvironment using scRNA-seq, single-cell assays for transposase-

accessible chromatin sequencing (scATAC-seq), and the spatial transcriptomics

sequencing (stRNA-seq) data of KIRC provided by the GEO database.
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Result: We obtained 1,428 samples and 216,155 single cells. After the rational

screening, we constructed a 13-gene diagnostic model for KIRC, which had high

diagnostic efficacy in the exoRBase KIRC cohort (training set: AUC = 1; testing

set: AUC = 0.965) and TCGA KIRC cohort (training set: AUC = 1; testing set:

AUC = 0.982), with an additional validation cohort from GEO databases

presenting an AUC value of 0.914. The results of a subsequent analysis

revealed a specific tumor epithelial cell of TRIB3high subset. Moreover, the

results of a mechanical analysis showed the relatively elevated chromatin

accessibility of TRIB3 in tumor epithelial cells in the scATAC data, while stRNA-

seq verified that TRIB3 was predominantly expressed in cancer tissues.

Conclusions: The 13-gene diagnostic model yielded high accuracy in KIRC

screening, and TRIB3high tumor epithelial cells could be a promising

therapeutic target for KIRC.
KEYWORDS

kidney renal clear cell carcinoma, programmed cell death, exosomes, single-cell RNA
sequencing, spatial transcriptome, prognosis, biomarkers
Introduction

Renal cell carcinoma (RCC) is the most prevalent solid kidney

lesion, accounting for 90% of renal malignancies (1) and 3% of all

cancers (2). Kidney renal clear cell carcinoma (KIRC) is the most

frequently diagnosed pathological classification, occupying about

80% of RCC (3). Despite the relatively favorable KIRC prognosis,

with a 5-year survival rate of 75%, almost 30% of locally advanced

cases will relapse with a locoregional recurrence or distant

metastases (4, 5). The past decade has certainly witnessed

remarkable advances in the characterization of KIRC

management and research; nonetheless, much remains to be

elucidated regarding the disease’s pathogenesis and underlying

mechanism, and research into the identification of diagnostic

approaches for KIRC is in its infancy. In this scenario,

constructing a novel clinical model spanning screening, diagnosis,

and prognosis predictions is of tremendous significance to clinical

settings and provides novel insights into precision medicine

therapeutic decisions.

In recent years, programmed cell deaths (PCDs) have generated

holistic attention for researchers due to their inestimable potential

in diagnostic biomarkers and therapeutic targets in cancer. Several

PCD types have been identified, including apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and cuproptosis, all considered

cell-dependent and orderly cell death regulated by certain genes,

with the purpose of homeostasis preservation and clearance of

abnormal cells (6). PCDs are dynamically plastic, exert a dual role in

distinct contexts and stages of cancer development (7), and are

tightly regulated by spatiotemporal gene expression modulation.

Unambiguous evidence suggests that KLF2 deficiency contributes to

the suppression of ferroptosis and promotes the progression and

metastasis of RCC cells (8). Similarly, Peng et al. demonstrated that
02205
silencing key autophagy-related genes could promote anoikis

resistance and lung colonization of hepatocellular carcinoma

(HCC) cells (9). Recent research advances and efforts in PCDs

have predisposed to a significant growth in our understanding of

the pathomechanisms of various cancer types, including KIRC.

However, such studies have been hampered by a single PCD type or

limitations in experimental approaches, which obscure the subtle

yet essential regulatory mechanisms underlying the surface.

Encouragingly, the emergence of blood-derived exosomes

provides a new perspective on the mechanisms of cellular

interactions in the tumor microenvironment (TME) and the

search for tumor diagnostic biomarkers. Exosomes are cell-

derived nano-vesicles, ranging from 30 to 150 nm in diameter,

that transfer RNA, proteins, lipids, and metabolites to recipient cells

in the body (10). Initially, exosomes were thought to be the inert

debris produced by cells to dispose of wastes. As the study of

exosomes deepened, it was gradually discovered that they are

involved not only in antigen presentation, cell differentiation, and

immune response but also in tissue inflammation, virus

transmission, migration, and tumor cell invasion (11–13). A study

by Zhang et al. found that the exosomal miR-522 secreted by

cancer-associated fibroblasts inhibited ferroptosis in cancer cells

by targeting ALOX15 and compromising lipid peroxide

accumulation (14). Moreover, a study by Shen et al. reported that

exosomes secreted by pancreatic cancer cells were taken up by T

lymphocytes, which activated p38 MAPK and then induced

endoplasmic reticulum stress-mediated apoptosis, ultimately

causing immunosuppression (15). The abovementioned studies

demonstrate the intimate association between PCDs and

exosomes in TME. Existing studies, however, were conducted in

biological assays devoid of a cellular microenvironmental context,

which may result in unduly artificial outcomes. The link between
frontiersin.org
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PCDs and exosomes in the TME of KIRC is poorly understood as

are the regulating processes.

The emergence of single-cell RNA sequencing (scRNA-seq)

technology can partially solve the abovementioned problems. As a

high-resolution tool, it overcomes the limitations of traditional bulk

sequencing. It enables a breakthrough in the problem of exosomal

mRNA traceability at the single-cell level by combining single-cell

assays for transposase-accessible chromatin sequencing (scATAC-

seq) and spatial transcriptomics sequencing (stRNA-seq) to study

epigenetic regulation and observe the spatial distribution of key

genes at single-cell resolution, synergistically uncovering molecular

mechanisms at higher levels.

In the present study, we collected PCD-related genes,

specifically (CDRGs), along with scRNA data and the KIRC

cohort from The Cancer Genome Atlas (TCGA) database, to

investigate the relationship between KIRC and PCD development.

Meanwhile, we deciphered the blood-derived exosome

transcriptome data to construct a gene model for clinical

diagnosis and validated the diagnostic efficacy in KIRC cohorts by

machine learning methods. Finally, we explored the mechanisms of

these genes in the KIRC progression by scATAC data and cellular

interaction network analysis. The abovementioned results support

the clinical diagnosis and treatment decisions in KIRC. The dataset

information and workflow of the presented study are shown

in Figure 1.
Frontiers in Immunology 03206
Materials and methods

Acquisition of gene lists and
multi-omics datasets

Six PCD categories were included, and their respective related

genes, namely CDRGs, were collected. Among these, apoptosis- and

necroptosis-related genes were collected from Deathbase (http://

deathbase.org/), comprising proteins and corresponding coding

genes of typical PCDs. Autophagy-related genes were collected

f rom Human Autophagy Da taba s e (HADb ; h t tp : / /

www.autophagy.lu). Ferroptosis- and pyroptosis-related genes

were collected from Ferroptosis Database (FerrDb; http://

www.zhounan.org/ferrdb) and published literature (16).

Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genome (KEGG) databases were also used to extract

the associated genes in the PCDs mentioned above. The pyroptosis-

related genes were derived from the GO database and published

literature (17), while the cuproptosis-related genes were only

obtained from published literature (18). Details of the CDRGs are

listed in Supplementary Table S1.

A total of 11 independent datasets were included in this study,

containing eight single-cell datasets, two bulk RNA-seq datasets of

tissues, and bulk RNA-seq datasets of blood-derived exosomes.

Data from eight single-cell datasets, included five scRNA-seq data
FIGURE 1

The dataset information and workflow of the presented study.
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of KIRC, para-carcinoma, and healthy tissues from nephrectomy or

biopsies, are shown below: GSE131685 (n = 3), GSE140989 (n = 24),

GSE139555 (n = 6), GSE156632 (n = 12), and GSE152938 (n = 3);

one spatial transcriptome dataset of KIRC was derived from the

GEO database with accession number GSE175540; two datasets

contained five scATAC healthy kidney data and three scATAC

KIRC data, which were downloaded from GSE151302 and the

National Center for Biotechnology Information Sequence Read

Archive under accession number PRJNA768891, respectively.

Meanwhile, two bulk RNA-seq data of tissues of the TCGA-KIRC

cohort with associated clinical information (n = 613) were

downloaded from the TCGA (https://portal.gdc.cancer.gov/)

databases, combined with the normal kidney tissue data

downloaded from the GTEx portal (www.gtexportal.org). The

other bulk transcriptomic data of KIRC cohort provided by the

GEO database was used as an additional validation cohort with

accession number GSE167093 (n = 656); one bulk transcriptomic

data of blood-derived exosome was downloaded from the exoRbase

database (http://www.exorbase.org/, n = 133).
scRNA-seq data analysis

Fastq files were processed using Cell Ranger (version 6.1.2, 10x

Genomics) with default parameters and mapped to 10x human

transcriptome GRCh38-2020 (https://support.10xgenomics.com/

single-cell-gene-expression/software/downloads/latest). Seurat

(version 4.2.0) was used to process single-cell data for the

following analyses. We filtered out low-quality cells with less than

400 or more than 5,000 total genes expressed or with more than

30% mitochondrial RNA contents. SCTransform, RunPCA, and

RunUMAP functions were used for normalization and

dimensionality reduction, respectively (19). In addition, harmony

(version 0.1.1) was used to correct batch effects between different

arrays (20). FindNeighbors and FindClusters functions were then

used to differentiate the cell clusters with the dimensions and

resolution parameters of 1:25 and 0.8, respectively. scHCL

(version 0.1.1), SingleR (version 1.10.0), and ScType (https://

github.com/IanevskiAleksandr/sc-type) packages were used to aid

in the identification of cell subpopulations, and cluster-specific

marker genes were identified by the FindAllMarkers function of

Seurat package (logfc.threshold = 0.25, min.pct = 0.1).
scATAC-seq data analysis

scATAC-seq was processed by Cell Ranger -atac-2.1.0 using

default parameters and mapped to 10x human transcriptome

GRCh38-2020 (https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/latest). Signac (version 4.2.0, 10x

Genomics) was used to analyze the output of the Cell Ranger ATAC

pipeline. Low-quality cells were removed based on the following

criteria: nucleosome signal score of less than 4 and transcriptional

start site enrichment score of more than 3. RunTFIDF function was

used for normalization, while RunSVD and RunUMAP were used

for linear and nonlinear dimensional reductions, respectively (21).
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harmony (version 0.1.1) was likewise used to correct batch effects

between arrays (20). Gene activity was quantified via the

GeneActivity function in Signac, including the 2 kb upstream of

the transcriptional start site and gene body.
stRNA-seq data analysis

stRNA data was analyzed through Seurat (version 4.2.0). Spatial

spots featuring less than 300 genes or more than 30% of

mitochondrial genes were filtered out. Raw counts were

normalized with the SCTransform function of Seurat with the

assay of the spatial parameter. RunPCA and RunUMAP functions

were used for dimensionality reduction.
Bulk RNA-seq data processing

We used stringr (version 1.4.1) and stats (version 4.2.1) in R

language to integrate the data of KIRC dataset from the TCGA

database and the control samples from the GTEx database as well as

the raw data matrix of KIRC downloaded from the GEO database.

The data were collated and filtered under the following conditions:

(1) genes detected in all samples were retained, (2) genes with sum of

counts across all samples less than 2.5 were excluded from further

analyses, (3) genes with an average expression higher than 0 in at least

80% of the tumor or control samples were retained, (4) the expression

levels of duplicated genes in the data matrix were averaged, and (5)

batch effects between the TCGA and GTEx databases were corrected

using the ComBat function from sva (version 3.44.0) package.
Identification of differentially
expressed genes

Differential gene expression analysis in single-cell datasets was

performed using the FindMarkers function in the Seurat package

with P-value <0.05 and |log2FC| >0.25 as cutoff criteria. DESeq2

(version 1.36.0), limma (version 3.52.4), and edgeR (version 3.38.4)

packages were used for the identification of DEGs in the TCGA

KIRC cohort, with P-value <0.05 and |log2FC| >1 as the thresholds.

In the bulk RNA-seq data of blood-derived exosomes, differentially

expressed genes (DEGs) were recruited using |log2FC| >0.5 and P-

value <0.05. The intersection analysis of DEGs between different

datasets was visualized using the UpSetR (version 1.4.0) package.

We then used ggplot2 (version 3.3.6) to visualize the expression

differences and expression of key genes by means of bubble plots

and heat maps.
Gene Ontology analysis and
Kyoto Encyclopedia of Genes
and Genomes analysis

GO function enrichment analysis and KEGG pathway

enrichment analysis of the target genes in RNA-seq were
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performed using R package clusterProfiler (version 4.4.4). The

results were filtered with a P-value of 0.05.
Correlation analysis between the target
genes and clinical parameter

ggpubr (version 0.4.0) package was loaded to perform the

correlation analysis of target genes with clinical parameters using

the stat_compare_means function, thereby visualizing data with

boxplots using ggplot2 package. GEPIA2.0 (http://gepia2.cancer-

pku.cn/#index, accessed on December10, 2022), a platform for

TCGA data visualization, was also utilized to evaluate the effect of

candidate biomarker genes on overall survival in KIRC and to create

Kaplan–Meier survival curves. It was also used to analyze the

correlat ions between candidate biomarker genes and

clinical indicators.
Machine learning analysis

We used stratified random sampling to divide exoRBase KIRC

into a training set and a testing set in a ratio of 3:2. The training set

was used to construct the random forest classification model, and

the testing set was used to validate the model further. The

constructed model’s performance was assessed by calculating the

area under the curve (AUC) value. The same approach was used for

the TCGA KIRC cohort merged with GTEx samples to observe the

diagnostic efficacy of key genes in the tissue. The abovementioned

process was performed using the tidymodels (version 1.0.0) and

pROC (version 1.18.0) R packages.
Cell–cell interaction network analysis

Intercellular interaction analysis was conducted using CellChat

(version 1.5.0) (22), based on which we could identify the potential

ligand–receptor interactions according to the expression pattern of

ligands in one cell subtype and their corresponding receptors in the

other cell subtypes.
Reconstructing TRIB3high tumor cell
differentiation trajectories by Monocle2

Fate decisions and pseudotime trajectories of TRIB3high tumor

cells were reconstructed using the Monocle2 R package (version

2.24.1). First, tumor epithelial cells were selected by Seurat, and

16,747 tumor cells were imported into Monocle2 with a lower

detection limit parameter of 0.5. Subsequently, we performed

differential gene expression analysis using the differentialGeneTest

function and retained DEGs with q-value <0.01 as sorted gene sets

and performed descending dimensionality and trajectory analysis.

We finally determined the direction of the cell differentiation

trajectory by the cell stemness-related gene CD44 and visualized

the trajectory results using the plot_cell_trajectory function.
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Statistical analysis

The categorized variables between groups were compared using

Wilcoxon test, and a correlation analysis between different cell

subtypes was performed using Spearman correlation test. A P-value

less than 0.05 was considered to indicate statistical significance. R

language (version 4.2.1; http://www.r-project.org/) was used for

data analyses and figure generation unless indicated otherwise.
Results

Transcriptome information of KIRC in
multiple tissue sources

We started our investigations with the KIRC expression profiles

at single-cell resolutions. We assembled 48 KIRC cases from five

independent datasets provided by the GEO database. These were

containing cancer, para-carcinoma, and healthy tissues from

nephrectomy or biopsies. After the implementation of stringent

quality control, 216,155 single cells from five independent datasets

were retained for the following analyses. The sample information

and quality control data are shown in Supplementary Table S2 and

Supplementary Figures S1A, B. Having processed with the Seurat

package and removed the batch effect, 54 cell clusters

(Supplementary Figures S2A–C) and 10 main cell types were

identified, including tumor epithelial cell, normal epithelial cell,

endothelial cell (Endo), fibroblast (Fib), T cell, B cell, macrophage

(Mac), monocyte (Mono), natural killer cell (NK), and basophil

(Baso), thus visualized through uniform manifold approximation

and projection (UMAP) (Figure 2A). The marker genes of each cell

cluster are shown in Supplementary Table S3. The specific markers

and relative abundance for the main cell types are shown in

Figure 2B. Specifically, epithelial cells dominated all major cell

compartments, with tumor epithelial cells expressing the

canonical markers of CA9 coming exclusively from tumor tissues

and normal epithelial cells having multiple origins. The

distributions for each main cell type and their origins were

visualized using UMAP (Figure 2C). Subsequently, we explored

the DEGs between the cancer and control samples of various major

cell types based on their expression profiles (Supplementary Table

S4), with the bar plots indicating the exact counts of upregulated

and downregulated DEGs and the pie plots manifesting their

corresponding categories in the KEGG pathways (Figure 2D),

most of which belong to “human disease”. Intriguingly, the

highest DEG number was presented between tumor and normal

epithelial cells, followed by DEGs between Endo and Fib between

cancer and control samples (Figure 2D), demonstrating the

dramatic alterations of structural cells in transcriptome and their

essential stages in tumorigenesis.

Next, we further dissected the transcriptome landscape of KIRC

based upon the TCGA cohort merged with healthy samples in

GTEx (Figure 2E), revealing 4,604 upregulated and 2,073

downregulated DEGs in cancer tissues (Figure 2F; Supplementary

Table S5). An increasing body of unambiguous evidence denotes
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the role of cancer cell-derived exosomes of patients on the course of

epithelial–mesenchymal transition and metastasis in KIRC (23, 24),

thus making it a promising diagnostic and prognostic KIRC

biomarker. As such, we then analyzed the RNA-seq data of

human blood-derived exosomes of healthy controls and KIRC

patients using the exoRBase database, with UMAP showing

complete separations between cancer and control samples

(Figure 2E), and the differential gene expression analysis yielded a

total of 1,723 DEGs (Figure 2F; Supplementary Table S6). Notably,

the KEGG functional enrichment analyses between groups

elucidated that such DEGs were mainly enriched in cell cycle,

apoptosis, cancer, and immune-related signaling pathway

(Supplementary Figures S3A, B). In a nutshell, we investigated the

transcriptome data of tissue- and blood-derived exosomes of KIRC

patients and corresponding controls exhaustively, combining them

with DEGs of various cell types based on scRNA data, thereby

laying the groundwork for a subsequent analysis to identify

disease biomarkers.
The expressed pattern of CDRGs in KIRC

As planned, six kinds of PCDs, including apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and cuproptosis, and their

related genes, namely CDRGs, showing commonalities and

specificities were included (Figure 3A). However, we were unable

to uncover any genes that were shared by all PCD categories, but the

number of genes shared by ferroptosis and autophagy was very

high. As depicted in Figure 3B, most CDRGs were upregulated

DEGs in single-cell and RNA-seq datasets. However, the
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proportions of downregulated DEGs were very low in such

datasets, with most of them belonging to the autophagy,

apoptosis, and ferroptosis pathways. Such a phenomenon raised

an illustrative assertion: the expression levels of CDRGs were

enhanced in varying degrees. Notwithstanding, this explicit

demonstration of the eye-catching alterations of such genes

implicitly proposed the question of what specialized roles they

played in TME.

Next, we intersected the upregulated (Figure 4A) and

downregulated (Figure 4B) DEGs in exoRBase KIRC with CDRGs

and DEGs obtained from single-cell and TCGA datasets to screen

for the candidate biomarker genes. Herein we retained the

differentially expressed CDRGs between the exoRBase and TCGA

databases or differentially expressed CDRGs between the exoRBase

and single-cell datasets, thereby acquiring 53 candidate biomarker

genes. Notably, 20 genes were upregulated (Figure 4C), and 33

genes were downregulated in the blood-derived exosomes of KIRC

patients (Supplementary Figure S4A). Concomitantly, such

differentially expressed trends of candidate biomarker genes were

largely consistent in the TCGA datasets and single-cell datasets of

epithelial cells, Endo, and Fib, namely structural cells. Such

discoveries denoted the pivotal role of exosomes in orchestrating

the dialog with neoplastic cells and profoundly influencing the

TME alteration.

Following are the correlations between 53 candidate biomarker

genes and clinical markers. The results indicated that 32 out of 53

genes were closely associated with patients’ clinical stages or

survival outcomes, functioning doubly as a risk or protective

factor in KIRC (Figure 4D). Moreover, ferroptosis- and

autophagy-related genes account for 32 genes, with a small
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FIGURE 2

Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) profiling of kidney renal clear cell carcinoma (KIRC). (A) Uniform
manifold approximation and projection showing the 10 major cell clusters in the scRNA-seq datasets. (B) Marker genes and proportions of sample
origins for the 10 major cell clusters of the scRNA-seq datasets. (C) Distribution characteristics of the 10 major cell clusters in the scRNA-seq
datasets. (D) Barplots showing the counts of differentially expressed genes (DEGs) between the cancer and control samples of each cell cluster in
the scRNA-seq datasets. (E) Distribution characteristics of The Cancer Genome Atlas (TCGA) KIRC cohort merged with control cases from the GTEx
database (left) and exoRBase KIRC cohort (right) containing the RNA-seq data of blood-derived exosomes of patients. (F) Barplots showing the
counts of DEGs between the KIRC and healthy cases of TCGA KIRC and exoRBase KIRC cohorts. The pie plots at the top of the bar show the Kyoto
Encyclopedia of Genes and Genomes pathway enriched by each group of DEGs.
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proportion of genes belonging to apoptosis and necroptosis.

Thereinto, 13 out of 32 genes were simultaneously related to the

clinical stages and survival outcomes of KIRC (Supplementary

Figure S4B and Supplementary Figure S5), including PIP4K2C,

FIS1, PSAT1, ERBB2, TRIB3, CLU, GABARAPL2, LRBA, PCK2,

CDKN1A, FKBP1A, MAP1LC3B, and ITGA6, which are subject to

the following analysis.

PSAT1, a risk factor in KIRC, had contradictory expression

patterns in blood-derived exosomes and tissues, with the former

displaying an elevated expression level and the latter displaying a

downregulated expression level. Such phenomena are reminiscent

of the connections between exosome releasing and signaling

reception of neoplastic cells, possibly contributing to the

alteration of expression profiles in TME and the emergence of

mal ignant cancer phenotypes (25) . In summary, we

comprehensively explored the CDRG expression pattern in KIRC,

based on which we carried out the correlation analyses of candidate
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marker genes with clinical indicators, identifying 13 key genes

linked with survival outcomes and clinical stages of KIRC cases.
Validation of the 13-gene diagnostic model
and mechanism explorations

Next, we used 13 key genes to construct a diagnostic model for

KIRC, as previously described in the “Materials and methods”.

Specifically, we randomly stratified all samples from the exoRbase

database into two groups (training set and the testing set) with a

ratio of 3:2 for cross-validation. Encouragingly, the 13-gene

diagnostic model presented outstanding discriminatory ability in

the KIRC datasets of the exoRbase database (Figure 5A), with AUC

values of 1 and 0.965 in the training and testing sets, respectively.

Similarly, the model constructed with 13 genes in the TCGA KIRC

cohort showed promising diagnostic results, with AUC values of 1
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FIGURE 4

Screen for candidate biomarker genes. (A) UpSet plots showing the intersection analysis among cell death-related genes (CDRGs), differentially
expressed genes (DEGs) in exoRBase kidney renal clear cell carcinoma (KIRC) cohort, upregulated DEGs in The Cancer Genome Atlas (TCGA) KIRC
cohort, and scRNA datasets. (B) UpSet plots showing the intersection analysis among CDRGs, DEGs in the exoRBase KIRC cohort, downregulated
DEGs in the TCGA KIRC cohort, and scRNA datasets. (C) The bubble plots show 20 candidate biomarker genes upregulated in the exoRBase KIRC
cohort and their expression pattern in other datasets. Red circles represent positive logFC values or upregulated DEGs in corresponding datasets,
while blue circles represent negative logFC values or downregulated DEGs in corresponding datasets; the bubble size indicates negative log10(P-
value). (D) Heat map showing the expression levels of 53 candidate biomarker genes in the exoRBase KIRC cohort, with red color indicating relatively
high expression and blue color indicating relatively low expression levels. The column annotations on the left side represent the programmed cell
death classification of the candidate biomarker genes. The two annotated columns on the right side show the correlation of candidate biomarker
gene expression with the survival outcome and clinical stage of the TCGA KIRC cohort, respectively. Red color represents the gene as a risk factor,
and blue color represents a protective factor in the prognosis of KIRC cases.
BA

FIGURE 3

Distribution characteristics of programmed cell deaths in kidney renal clear cell carcinoma (KIRC). (A) UpSet plot showing the intersection analysis of
the six types of cell death-related genes (CDRGs). (B) Distribution characteristics of the differentially expressed genes (DEGs) in single-cell RNA
sequencing, The Cancer Genome Atlas KIRC, and exoRBase KIRC cohorts and their shared genes with six classes of CDRGs. The top bar plot
represents the counts of DEGs shared CDRGs, and the bottom bar plot shows the relative abundance of CDRGs in DEGs of all the groups.
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and 0.982 in the training and testing sets, respectively (Figure 5B).

Furthermore, GSE167093, provided by the GEO database

containing 656 KIRC cases, was used as an additional validation

cohort, exhibiting a tremendously high diagnostic accuracy with an

AUC value of 0.914. The findings unequivocally demonstrated that

the 13-gene diagnostic model was very stable and trustworthy in

detecting KIRC, regardless of whether the sample was taken from

blood-derived exosomes or solid tissue, and ensured high sensitivity

and specificity. Moreover, the differentially expressed trend in

blood-derived exosomes may provide an instant advantage in

liquid biopsy analyses for biomarker evaluations, reducing the

sampling inconveniences and hazards.

Nevertheless, the molecular basis for the 13-gene diagnostic

model has not been addressed. Such combinations of genes derived

from the transcriptomic data of exosomes and various cell subtypes

are not as simple as they may seem. The crosstalk behind the

cellular identities and their exosomes confers intriguing

information about the KIRC pathogenesis. Thus, we then focused

on studying the epigenetic profile of KIRC in scRNA and scATAC

data to uncover the role of such genes in transcriptome and

epigenetic regulation at single-cell resolutions. We discovered the

abnormal expression pattern of such genes in distinct cell types

based on scRNA data, especially for CLU, CDKN1A, PSAT1, and

MAP1LC3B, which are differentially expressed in virtually all cell

types (Supplementary Figure S6). Then, we analyzed 63,489 cells in

the scATAC datasets of KIRC cases, identifying 15 main cell types

based on the average promoter activity of representative marker

genes (Figures 5C, D). Of particular interest is the fact that we found

that TRIB3 expression was higher in tumor epithelial cells referred

to normal epithelial cells. At the same time, its chromatin

accessibility was significantly increased compared with the normal
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PT cell cluster (Figure 5E), a common type of epithelial cell in

the kidney.
Comprehensive descriptions of TRIB3high

tumor epithelial cells

Next, we investigated the TRIB3 influence in TME and its

corresponding cell subset. The subsequent analysis of TRIB3

demonstrated that this gene was positively associated with TNM

staging of KIRC (Figures 6A–C), implying its adverse role in the

survival outcome of KIRC, which could be the leading contributor

to the metastasis of cancer cells. Therefore, our analysis focused on

understanding the TRIB3 role in specific phenotypes of tumor

epithelial cells, the latter of which was exacted from scRNA datasets

and further visualized after dimensionality reduction. Notably, the

TRIB3high subset was presented in scattered tumor epithelial cells

(Figure 6D) and shared a much higher resemblance to PT (R =

0.864) (Figure 6E). In addition, the pseudotime analysis indicated

that such a cell subset could be a primitive cancer stem cell

(Figure 6F) as evidenced by the relatively high expression of the

cancer stem cell biomarker CD44 (Supplementary Figure S7) (26).

The cell–cell communication analysis suggests that TRIB3high

tumor cells interact more extensively and strongly than other cell

types, particularly for interactions with Mac and T cells (Figure 6G,

Supplementary Figure S8). At the same time, the high expression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may predict

a strong exosome assembly and aggregation capacity for this cell

type (Supplementary Figure S7) (27). The results of the cell–cell

interaction network analysis disclosed the higher interactions of

TRIB3high tumor epithelial cells with other cell types in certain
frontiersin
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FIGURE 5

Construction of 13-gene diagnostic models and single-cell assays for transposase-accessible chromatin (scATAC-seq) analysis. (A) Receiver-
operating characteristic (ROC) curve analysis of a 13-gene diagnostic model based on exoRBase kidney renal clear cell carcinoma (KIRC) cohort,
with the red curve representing the training set and the blue curve representing the testing set. (B) ROC curve analysis of a 13-gene diagnostic
model based on The Cancer Genome Atlas KIRC combined with GTEx cohort and KIRC cohort from the GEO database with accession number
GSE167093, with the former treated as the training set (red) and the testing set (blue). In contrast, the latter was an additional validation cohort
(purple). (C) Uniform manifold approximation and projection plot showing the 14 cell clusters in the scATAC-seq analysis (D) Bubble plots showing
the marker genes for each cell cluster in scATAC-seq. (E) CoveragePlot showing the peak–gene links for TIRB3.
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ligand–receptor pairs, spanning CD70-CD27, CLEC2B-KLRB1,

CD99-CD99, COL6A2-CD44, COL6A2-SDC4, PGD-VEGFR1,

and PROS1-AXL, suggesting that the TRIB3high subset showed

stronger local interactions with other major cell types

(Supplementary Figure S9), which could predispose to an

increased ability of induction and reprogramming of extrinsic

phenotypic features, thereby reshaping the overall TME.

TRIB3high tumor epithelial cells were mainly enriched in

apoptosis, ferroptosis, ribosome, and lysosome signaling pathways

compared with other cell clusters (Figures 7A, B). Lastly, the spatial

transcriptomic analysis confirmed that the TRIB3high subset is

highly enriched in tumor tissues (Figure 7C).
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Discussion

PCDs are fundamental and intricate biological processes in

various physiological and pathological events. Evidence

persuasively denotes that PCDs are critical regulators in cancer

development and progression (28, 29), and key factors in various

PCDs have been progressively appreciated, thus applying them in

the identification of tumor diagnosis and treatment (30–33). Many

association studies between KIRC and PCD have emerged in recent

years. However, the different types of PCDs are compartmentalized

studies, and there is a dearth of pertinent, comprehensive

investigations, particularly in KIRC. In this study, we discovered
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FIGURE 7

Functional analysis and spatial localization of TRIB3high tumor cells. (A) Gene Ontology enrichment analysis for upregulated differentially expressed
genes (DEGs) in TRIB3high tumor cells. (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis for upregulated DEGs in TRIB3high tumor
cells. (C) Visualization of TRIB3high tumor cells in kidney renal clear cell carcinoma spatial transcriptome tissue sections.
B

C

D

E

F

GA

FIGURE 6

Clinical characteristics of TRIB3 expression in kidney renal clear cell carcinoma (KIRC) patients and characterization of the TRIB3high tumor cell
subset. (A–C) The box plot shows the correlation between TRIB3 expression and T classification, N classification, and M classification in KIRC
patients. (D) Uniform manifold approximation and projection plot indicating the distribution pattern of TRIB3high tumor cells. (E) Heat map showing
the correlation between various cell types using the Spearman method; the colors represent the strength of the correlation. (F) Pseudotime analysis
of TRIB3high tumor cells. The direction of the arrow indicates the differentiation trajectory. (G) Signaling role analysis showing the aggregated cell–
cell communication networks from all signaling pathways. The shades of color represent the relative strength of cellular communication.
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significant alterations in the CDRG expression levels in KIRC

tissues. Such changes are not merely present in the tumor

epithelial cell emphasized by traditional studies; similar shifts

were also observed in other structural cells and immune cells in

the TME, most of which belong to autophagy, apoptosis, and

ferroptosis. The landscape of diagnostic and therapeutic targets

for PCD, as indicated by in vitro and in vivo data, continues to

evolve, making this an unquestionably fruitful area of research. Ma

et al. substantiated that silibinin could induce apoptosis by

inhibiting the mTOR-GLI1-BCL2 pathway, thus markedly

suppressing the tumor growth of RCC (34), with an in vitro cell

line assay indicating that capsaicin pronouncedly inhibited the

migration and invasion of RCC by inducing autophagy through

the AMPK/mTOR pathway (35). Similarly, Heiker et al. clarified

that silencing the enzymes essential for the biosynthesis of

glutathione or glutathione peroxidase could initiate ferroptosis,

thus selectively compromising the KIRC cells’ viability without

any impact on the growth of non-malignant renal epithelial cells

(36). The results mentioned above noted that PCDs are highly

coordinated and regulate the cells’ survival state through various

signaling pathways, suggesting its potential as a therapeutic target

for RCC.

Currently, the preoperative diagnosis of KIRC heavily relies on

MRI/CT. Despite specific enhancement modes for KIRC,

misdiagnosis consistently happens in clinical settings (37),

imposing a socio-economic burden on healthcare systems

globally. Myriads of studies have identified novel diagnostic

biomarkers for kidney cancer, spanning long non-coding RNAs,

circulating tumor DNA, and circulating tumor cells; despite this,

there is still scope for improvement in specificity as well as

sensitivity, and the clinical applicability of such emerging

biomarkers remains to be further validated (38–41). It is inspiring

that blood platelet and blood-derived exosome-based polygenic

models manifested excellent diagnostic efficacy, offering an

accessible complement to existing screening modalities (42–44).

Exosomes are secreted extracellularly by cytosolic fusion with the

plasma membrane, which plays an imperative role in shaping the

TME (45). Due to the nature of exosomes in mediating intercellular

communication and extensive existence in body fluids (e.g., blood,

saliva, and urine), they become an optimal surrogate in cancer

diagnosis and therapeutic predictions, also presenting encouraging

results in clinical application (46–48). Wang et al. found that tumor

cells can reduce T cell activity by secreting exosomal PD-L1 and that

exosome inhibitors and ferroptosis inducers can effectively

counteract these characteristics and create tumor-specific

immunity (25). Zhang and colleagues elucidated that adenosine

activation of AKT and ERK signaling mediated by exosome secreted

by mesenchymal stem cells could contribute to the facilitation of

cartilage repair, thereby reducing apoptosis and modulating

immune responses (49). These findings demonstrate that PCDs

and exosomes are inextricably linked, indicating that further

exploration of the reciprocal activity of PCDs and exosomes in

the TME could be employed as a unique avenue for future research

into the KIRC pathogenesis.

Based on the transcriptome profiling of blood-derived

exosomes from KIRC patients, combined with transcriptomic
Frontiers in Immunology 10213
information from the TCGA KIRC cohort and scRNA-seq data of

KIRC, we further screened out the candidate biomarker genes

among CRDGs by their correlation with clinical indicators, thus

uncovering 13 essential genes with diagnostic potential for KIRC.

Using machine learning and their cross-validation, the construction

of diagnostic models with 13 key genes showed high diagnostic

efficacy in both blood-derived exosome samples and tissue samples,

with AUC of 0.965 for blood-derived exosomes and AUC = 0.914

for tissue. The traceability analysis based on single-cell omics

showed that the expression and alterations of key genes presented

in multiple cellular identities in TME, especially in structural cells

and macrophages. TME is a highly heterogeneous ecosystem

constituted by cancer cells, fibroblasts, adipocytes, endothelial

cells, mesenchymal stem cells, and extracellular matrix (45, 50).

Notably, cancer cells could secrete exosomes to induce the

production of cancer-associated fibroblasts and cancer-associated

endothelial cells, thereby contributing to the remodeling of TME

(51–53). Comparably, stromal cells are competent in tumor

progression by stimulating and reprogramming cancer cells

through exosomes (54, 55). From a theoretical perspective, our

studies could accelerate the understanding of the identification of a

cancer biomarker, simultaneously facilitating the biological

interpretation of cancer biology in the multi-omic context.

Our study noted that the high TRIB3 expression, in one of the

genes in the 13-gene diagnostic model, was closely linked with

advanced clinical stage and worse prognosis in KIRC patients,

which is consistent with the findings of Hong et al., collectively

revealing its essential role in KIRC development and progression

(56). Meanwhile, the relatively elevated chromatin accessibility of

TRIB3 in tumor epithelial cells was manifested in the scATAC data.

At the same time, the stRNA-seq verified that TRIB3 was

predominantly expressed in cancer tissues, further justifying its

upregulated expression pattern in KIRC. The biological role of

TRIB3 is extensive. In addition to being associated with ferroptosis

(57), the upregulation of TRIB3 could suppress the process of

autophagy (58, 59). Furthermore, TRIB3 is implicated in the

carcinogenesis of a variety of cancers, with evidence indicating

that it could inhibit the degradation of FOXO1 and enhance SOX2

transcription, thus contributing to the carcinogenesis of breast

cancer (60) and induction of immune evasion by inhibiting the

STAT1–CXCL10 axis and impeding the CD8+ T cell infiltration in

colorectal cancer (61). Intriguingly, its relationship with exosomes

has also been investigated, indicating that TRIB3 could mediate the

impairment of autophagy and facilitate the secretion of INHBA/

Activin A-enriched exosomes of hepatocellular carcinoma, thus

resulting in the occurrence of liver fibrosis (59). On this basis, our

further analysis of the TRIB3high subset revealed that such cell

subtype interacts more extensively and strongly than the other cell

types, representing an optimized remodeling of the TME and

maintaining tumor progression. Functionally, the TRIB3high

tumor epithelial cell was highly enriched in ribosomes and PCD-

related pathways, representing its high metabolic demand, while its

high expression of CD44 suggests a high degree of stemness. Such

discoveries were validated in a study by Hua et al., elucidating that

TRIB3 interacts with b-catenin and TCF4 in intestinal cells, thereby

increasing the expression of cancer stem cell-related genes (62).
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Meanwhile, it was shown that a high expression of the GAPDH

plays a facilitating role in the assembly and secretion of exosomes by

cells (27), which is consistent with the TRIB3high tumor epithelial

cells, and this is probably a potential mechanism for the regulation

of TME of such subset.

To the best of our knowledge, the present study portrays the

first landscape of PCDs in KIRC and further explores the identified

biomarkers’ diagnostic role and biological functions. Nevertheless,

our study still has some unavoidable shortcomings. First, the

diagnostic model needs to be further validated by expanding the

validation cohort; second, additional experimental tools are needed

further to investigate the physiopathological mechanisms of the

relevant molecules; and finally, the therapeutic potential of such

biomarkers remains to be further elucidated. In conclusion, the

exosome is an essential mechanism to determine cell fate in

addition to cell surface ligand–receptor interaction, which could

be the game-changer in shaping the TME. In this study, we

constructed a diagnostic model based on PCD-related genes.

Furthermore, we validated the diagnostic efficacy in multiple

KIRC cohorts, subsequently exploring the mechanism through

single-cell omics, thus providing a novel perspective for the early

diagnosis of KIRC and facilitating the understanding of the

mechanisms of KIRC.
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SUPPLEMENTARY FIGURE 1

Quality control (QC) for scRNA-seq data. (A) Violin plot showing the number
of genes, unique molecular identifiers (UMIs), and the percentage of

mitochondrial genes of each sample before QC. (B) Violin plot showing the
number of genes, UMIs, and the percentage of mitochondrial genes of each

sample after QC.

SUPPLEMENTARY FIGURE 2

Single-cell RNA sequencing (scRNA-seq) profiling of kidney renal clear cell
carcinoma (KIRC). (A) Uniform manifold approximation and projection

(UMAP) plot presenting the cell clusters of scRNA-seq. (B) UMAP plots
showing the data sources of scRNA-seq. (C) UMAP plots presenting the 17

cell clusters of scRNA-seq.

SUPPLEMENTARY FIGURE 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of differentially expressed genes (DEGs) between different datasets.

(A) KEGG pathway enrichment for upregulated DEGs. (B) KEGG pathway
enrichment for downregulated DEGs. The visualized results were the top 30

intersectional enriched terms of the pathways between the datasets. The red
bubble represents the enrichment terms of upregulated DEGs (left), and the

blue bubble represents the enrichment terms of downregulated DEGs (right).

Shades of color in the bubble indicate negative log10(P-value), and the
bubble sizes indicate the number of genes enriched in the pathway.

SUPPLEMENTARY FIGURE 4

Screen for the candidate biomarker genes. (A) Bubble plots showing the 33
candidate biomarker genes that were downregulated in the exoRBase kidney

renal clear cell carcinoma (KIRC) cohort and their expression pattern in other
datasets. Red circles represent positive logFC values or upregulated DEGs in

the corresponding datasets, while blue circles represent positive logFC values

or downregulated DEGs in the corresponding datasets. The bubble size
indicates negative log10(P-value). (B) The survival analysis results indicated

that 21 candidate biomarker genes were significantly associated with the
overall survival of KIRC cases based on the GEPIA database.

SUPPLEMENTARY FIGURE 5

Correlation analysis of the clinical stage of kidney renal clear cell carcinoma

patients for candidate biomarker genes. The patients were grouped
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according to stages I–IV. The differences in the expression of candidate
biomarker genes were compared between groups, and P <0.05 genes

were retained.

SUPPLEMENTARY FIGURE 6

A total of 13 genes in 10 main cell clusters. Violin plot showing the differential
analysis of key genes in various cell clusters.

SUPPLEMENTARY FIGURE 7

Violin plot showing the differential analysis of CD44 and GAPDH in tumor

cells versus TRIB3high tumor epithelial cells.
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SUPPLEMENTARY FIGURE 8

Analysis of cell–cell signal interaction pathway networks for cell clusters. Circos
plot showing putative ligand–receptor interactions between each cell cluster,

with theweight of interactions indicated by the thickness of the connecting lines.

SUPPLEMENTARY FIGURE 9

Bubble plot of tumor cell ligand–receptor interactions in the tumor
microenvironment. Summary of selected ligand–receptor interactions

between different cell clusters between TRIB3high tumor epithelial cells and
other cell types. The P-values are indicated by the size of each circle. In

contrast, the color gradient indicates the level of interaction.
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