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Editorial on the Research Topic
Novel compounds from chemistry to druggable candidates

For decades natural product and novel compound research has been at the for front of drug
discovery and has produced a spectrum of therapeutics that underpin modern day treatment
regimes. Molecules of natural origin are often low molecular weight compounds, playing
important biological functions in their host species, but once isolated or modified have value in
drug discovery programmes. Other novel species that are inspired by nature have equal value in
drug discovery streams especially given recent shifts towards computational chemistry and
newer, greener routes of chemical synthesis. Advances in analytical chemistry applications has
driven efficient molecular characterisation and isolation platforms, that when combined with
genomic and biotechnological systems circumvents many of the barriers that hindered drug
discovery approaches in previous decades. These developments are creating new opportunities
in drug discovery research and importantly are allowing for the characterisation and isolation of
novel molecules from a spectrum of differing organismal sources or synthetic libraries. The
current topics “Novel Compounds from Chemistry to Druggable Candidates”discusses some of
the recent work of colleagues in drug discovery research that are designed to identify or develop
novel therapeutics. Several research articles are presented in the current topics, with additional
reviews that cover antiviral compounds, marine derived sesquiterpenes, plant phytochemicals,
computational chemistry and use in drug development and screening. Hopefully, the current
topic issue and associated articles will facilitate interest in researchers to instigate additional drug
discovery research programmes with the aim of developing future therapeutics.

In the current edition several research have contributed their valuable work that
describes some of fascinating work being conducted around the world on natural
products, novel compounds and drug discovery. In the review by Guo et al. the authors
summarize the progress of natural products research in supporting the identification of
novel antiviral agents that overcome some of the limitation and drug resistance seen over
the last 2 decades. This article describes the effects of different structural types of natural
products on antiviral activity thereby providing a foundation for the development of novel
antiviral drugs in the future. Points of interest are descriptions of recently discovered
alkaloids like isatigotindolediosides in root extracts of Isatis indigotica, and diterpenoids
forsyqinlingine isolated from Forsythia suspensa, with promising antiviral properties. Also
described are other molecules isolated from natural sources including examples of
quinones, flavonoids and polysaccharides. In the review of Li et al. a comprehensive
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overview of the compound is leonurine, a molecule isolated and
characterized in the tissues of Herb leonuri is provided. In recent
years, scientists have assessed the bioactive properties of this
compound that describe potent antioxidant, anti-apoptotic, and
anti-inflammatory properties. Therein, are described efficient
synthetic routes and isolation procedures and more recent efforts
to make structural modifications of leonurine to enhance its
pharmacological properties. Another fascinating field of research
is in the characterisation and assessment of animal derived
compounds for use in pharmacological research. Ye et al. shifts
the narrative towards traditional Chinese medicines and the
exploration of toad venom-derived agents (TVAs) for use in
cancer research. Ye et al. reports on the various bioactivities of
amphibian derived compounds and provides an overview of
bufadienolides, the major bioactive components in TVAs.
Descriptions of the molecular mechanisms of action provides
coverage of a range of cellular targets spanning descriptions of
their impacts on Na+/K+-ATPase and voltage-gated potassium
channels, through to impacts on apoptotic and cell cycle
pathways. In the review by Cai et al. the authors summarized
recent updates in click and computational chemistry for drug
discovery. Key aspects covered include development of clicking to
effectively synthesize druggable candidates, synthesis and
modification of natural products, targeted delivery systems, and
computer-aided drug discovery for target identification, seeking out
and optimizing lead compounds, and ADMET prediction. These
approaches are now becoming more common place in novel
compound research and with aid in optimising drug discovery
streams using computational strategies. In the final review paper
by Halma et al. the narrative provides an overview of novel
opportunities in the development and identification of novel
compounds for the inhibition of SARS-CoV-1 and SARS-CoV-
2 helicases. While many studies have focused on the SARS-CoV-
2 spike protein interest is also shifting to the development of
replication inhibitors like, for example, the SARS-CoV-2 helicase
(nsp13). This helicase shares 99.8% similarity with its SARS-CoV-
1 homolog and was shown to be essential for viral replication. Halma
et al. described computational studies and identified molecules that
show potency to this target. These studies potentially being of
interest in the anti-viral research field.

In addition to the review articles the primary research articles
highlight a breadth of research in novel compound drug discovery.
These articles turn attention towards the characterisation and testing
of novel compounds using various chemical routes. Zhang et al.
describes a genomic mining strategy to confirm the presence of
genes involved in Acorane-type sesquiterpenes biosynthesis in a
deep-sea derived Penicillium bilaiae F-28 fungus. Subsequently,
20 acorane sesquiterpenes were characterised following the large-
scale fermented of fungal isolates. Importantly, of the identified
molecules, 18 sesquiterpenes, namely, bilaiaeacorenols A–R were
new to science. Following pharmacological assessment in an anti-
inflammatory model, compound 18 exhibited the capacity to reduce
NO production in LPS-induced BV-2 macrophages. These
properties were dose-dependent and appeared to correlate with
the capacity to inhibit LPS-induced NF-κB activation. In the
article by Gao et al. the narrative shifts towards modification of
the plant derived anti-malarial, artemisinin. The labile lactone
structure of artemisinin is responsible for the instability of this

molecule. Using strategies involving biotransformation, stains of
Cunninghamella echinulata CGMCC 3.4879 and Cunninghamella
elegans CGMCC 3.4832, were used to transform 10-
deoxyartemisinin, a chemically modified form of artemisinin, to
several novel metabolites. These products were separated and
identified and tested for antimalarial activity against Plasmodium
falciparum 3D7. This paper highlighting the novel approaches in
which chemical synthesis is coupled to use of biotransformation
platforms to generate novel metabolites for use in screening systems.
Other articles cover refined analytical methods, computation and
other in silico technologies to assist in drug discovery. Yu et al.
focuses on plant derived compounds with a study describing the
development of an UPLC-MS/MS quantification method to study
the preclinical pharmacokinetics of N-demethylsinomenine, a
potential novel analgesic candidate. Niazi et al. contributes a
description of a combined synthetic chemistry and computational
docking method and molecular dynamics (MD) simulation to
identify small molecular modulators capable of targeting
Mdm2 and Pirh2, two critical regulators of the tumour
suppressor protein p53. Following screen, two synthetic lead
compound MMs02943764, and MMs03738126 were found to
have significant anti-proliferative effects across a range of cancer
cell lines. These findings correlating with the capacity of the
compounds to modulate p53 inhibitor complexes, as explored
using computational platforms. Molecules were found to promote
cell cycle arrest at the SubG0/G1, S, and G2 phases. This study,
highlighting how multidisciplinary strategies can underpin the
characterisation of novel chemicals for cancer therapy.

To summarize, this topic covers the frontiers of novel compounds
in drug discovery and development. Many of the included studies raise
the need for multi-disciplinary approaches that combine both synthetic
or traditional ‘wet chemistry approaches’ coupled with computational
or other in silico systems. Furthermore, these approaches are
complemented by the use of robust validated biological molecules to
determine compound efficacy. With the ever-rapid development of
newer computation approaches, green synthetic routes, and breadth of
biological screening assays, it is clear the new therapeutics will emerge in
coming years using these systems.
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Viruses spread rapidly and are well-adapted to changing environmental events.

They can infect the human body readily and trigger fatal diseases. A limited

number of drugs are available for specific viral diseases, which can lead to non-

efficacy against viral variants and drug resistance, so drugswith broad-spectrum

antiviral activity are lacking. In recent years, a steady streamof new viral diseases

has emerged, which has prompted development of new antiviral drugs. Natural

products could be employed to develop new antiviral drugs because of their

innovative structures and broad antiviral activities. This review summarizes the

progress of natural products in antiviral research and their bright performance in

drug resistance issues over the past 2 decades. Moreover, it fully discusses the

effect of different structural types of natural products on antiviral activity in

terms of structure–activity relationships. This review could provide a foundation

for the development of antiviral drugs.
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1 Introduction

Recently, numerous viral diseases originating from

wildlife hosts have posed a serious threat to the life of

humans. These viruses have included the Ebola virus (Zhu

et al., 2020), human immunodeficiency virus (HIV)

(Yonekawa et al., 2019), and influenza A virus (IAV)

(Joseph et al., 2017). Close contact between humans and

domestic animals and populations of wild animals has

increased the risk of virus transmission between species.

The International Committee on Taxonomy of Viruses

approved and promulgated the latest classification of

viruses in 2021, which contains 9,110 viruses (Walker et al.,

2021). The increasing number of viruses demonstrates their

biological diversity and rapid adaptability, and reflects the

potential harmfulness of viruses.

Viruses destroy the structure and function of host cells and

cause serious damage to the host by multiplying. They also evolve

at a fast rate to adapt to the host’s internal environment. For

example, there were 2,682 male and 2,455 female deaths from

infection by the Dengue virus (DENV) and its variants over the

past 3 decades in Brazil, with symptoms of severe internal

bleeding, circulatory collapse, and shock (Nunes et al., 2019).

Many diseases caused by viral infections are transmissible,

lethally harmful, and difficult to cure.

Vaccines and antiviral drugs are the two main strategies for

fighting viruses. In general, vaccines are considered the best

means for preventing viral infections. However, vaccine

development requires rigorous processes, which are time-

consuming. Also, the vaccination rates and outcome data are

not impressive in older populations, which necessitates use of

antiviral agents to complement vaccines (Demicheli et al., 2018).

Only a few antiviral drugs have been developed to prolong the life

of patients, but they had significant disadvantages: high price,

resistance, and non-efficacy against viral variants. Coronavirus

disease 2019 (COVID-19) occurs due to infection by severe acute

respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection.

COVID-19 continues to wreak havoc on healthcare and

economic systems worldwide. The number of infections and

deaths due to SARS-CoV-2 keeps rising, new strains of the virus

are emerging, and definite efficacious treatment is not available

(Barlow et al., 2020). Existing therapeutics cannot stop infection

by or transmission of viruses, and humankind cannot wait for the

research and development of new antiviral drugs.

“Natural products” (NPs) are chemical substances of natural

origin. They have complicated structures and a wide variety of

biological activities (Newman and Cragg, 2016). Many active

components of NPs and their derivatives possess antiviral

activity, such as alkaloids, quinones, flavonoids, terpenoids,

glycans, organic acids, and others (Supplementary Table S1).

Newman et al. concluded that, in the last 28 years, the drugs

developed based on NPs were 63.1% of all small-molecule drugs

(Newman and Cragg, 2020). That figure demonstrates the great

potential of NPs and their derivates in the development of new

drugs. Wright suggested continuation of exploration of NPs as a

source for drug development based on existing research. He

suggested avoiding the complicated steps of synthesis “from

FIGURE 1
Structures of alkaloids (and their derivatives) with antiviral
activity.
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scratch” and rationalizing application of resources for solving

threats to the life and health of humans (Wright, 2019).

Up to now, to our knowledge, there is no reported data to

conclude the relationships between the structure of each natural

product component and its antiviral activity. This review

summarized the research progress of antiviral NPs and their

derivatives in the past 2 decades. We focused on the structure-

activity relationships between various types of active ingredients

in NPs and their antiviral activity, mainly alkaloids, quinones,

flavonoids, terpenoids, glycans, organic acids and others. We also

discussed the development potential of natural products in

resolving drug resistance problems, and provided a rationale

for in-depth development of antiviral drugs.

2 Alkaloids

Alkaloids represent a structurally diverse group of nitrogen-

containing bases. Most of them show significant pharmacological

activities. In particular, the alkaloids with antiviral activity

mainly include the following categories: indole, terpenoid,

quinolinine, isoquinoline, indolizidine, quinolizidine,

pyrrolidine and piperidine. The structures of alkaloids and

their derivatives mentioned in this review are shown in Figure 1.

2.1 Indole alkaloids

Meng and colleagues discovered two new indole alkaloid

diglycosides, isatigotindolediosides C (1A) and

isatigotindolediosides E (2A), along with one known analog

Calanthoside (3A), isolated from an aqueous extract of Isatis

indigotica roots (Meng et al., 2017b). (1A) and (2A) showed equal

inhibitory activity to the (3A) for coxsackievirus B3 (CVB3), with

an IC50 of 33.3 µM. Also, Meng’s team separated eight additional

indole alkaloid sulfonic acids from the aqueous extract of I.

indigotica roots, including isatibisindosulfonic acid B (4A) and

isatindosulfonic acid B (5A), which had activity against

CVB3 and influenza virus A, respectively (Meng et al., 2017a).

Chen’s team identified seventeen alkaloids from the aqueous

extract of I. indigotica roots. Compounds (6A), (7A), (8A), and

(9A) had activity against influenza viruses, and (10A) inhibited

CVB3 replication with an IC50 value of 6.87 μM (Chen et al.,

2012). Moradi and his team discovered that the total alkaloids of

an extract of Peganum harmala seeds had a highly inhibitory

effect upon IAV replication in Madin-Darby canine kidney

(MDCK) cells. They could restrain the RNA replication and

polymerase activity of the IAV without affecting its

hemagglutination inhibition and virucidal activity, so they

could be developed as agents against the IAV (Moradi et al.,

2017). Zhang and his colleagues isolated a novel indole alkaloid,

17-nor-excelsinidine (11A), from Alstonia scholaris and it was

significantly more potent than acyclovir against the herpes

simplex virus (HSV) and adenoviruses, with an EC50 of

1.09 and 0.94 μg/ml, respectively (Zhang et al., 2014). Esteves

and his team isolated caulerpin (12A) from the marine green alga

Caulerpa racemose, and showed anti-Chikungunya virus

(CHIKV) activity, and its derivatives were promising as anti-

CHIKV drugs (Esteves et al., 2019). Macedo and coworkers

revealed that (12A) can inhibit the alpha and beta phases of

the replication cycle of the herpes zoster type-1 virus, as well as

could be a substitute for acyclovir (Macedo et al., 2012).

2.2 Terpenoid alkaloids

Li and his team isolated two diterpenoid forsyqinlingines

(13A), (14A) and two C9-monoterpenoid alkaloids (15A), (16A)

from Forsythia suspensa, all of them showed antiviral effects

against the IAV and respiratory syncytial virus in vitro (Li W.

et al., 2021; Li et al., 2022). Yu and his collaborates separated and

identified nine new alkaloids from the aqueous extract of

Lonicera japonica flower buds. Compounds (17A), (18A),

(19A), and (20A) demonstrated activity against influenza

viruses, and (18A) inhibited replication of coxsackieviruses

(Yu et al., 2013).

2.3 Quinolinine and isoquinolinine
alkaloids

(−)-Cytisine (21A) is a quinoline alkaloid with antiviral

activity. It is mainly isolated from plants of the Leguminosae

family (Gotti and Clementi, 2021). The structural modifications

of (21A) have focused on its secondary nitrogen atom and 2-

pyridone core. Tsypysheva and collaborators revealed that

derivative (22A) with introduction of m-bromobenzamide on

the secondary nitrogen atom and (23A) with an aryl-substituted

urea moiety on the 2-pyridone core could improve the anti-

influenza-virus activity of (21A) (ED50 = 109 μg/ml) with ED50

values of 44 and 57 μg/ml, respectively. They provided a

reference for further targeting and optimizing of the antiviral

activity of quinoline alkaloids (Tsypysheva et al., 2013). In

addition, they discovered that (−)-cytisine derivatives have

activity against DENV-2. The attachment and entry of E

proteins targeting the DENV could be inhibited by

introduction of a substituted thioamide or thiocarbamide

fragment at the 3-position of the 2-pyridone core, as well as

insertion of a fragment that formed a donor–acceptor bond

(Tsypysheva et al., 2021). Silva and colleagues extracted a

bisbenzylisoquinoline alkaloid, warifteine (24A), from the

rhizomes of Cissampelos sympodialis, which proved to be an

anti-DENV (da Silva et al., 2021a). Subsequently, they found that

(24A) and methylwarifteine (25A) had strong effects against the

Zika virus in vitro, and could be used as a pharmacophore or lead

compounds to counteract Zika-virus infection (da Silva et al.,
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2021b). Zeng’s team identified that dehydrocheilanthifoline

(26A) had anti-hepatitis B virus (HBV) activity in vitro,

making it a promising drug candidate for the treatment of

HBV infection (Zeng et al., 2013).

2.4 Indolizidine and quinolizidine alkaloids

Pan’s team discovered that several bitter ginseng alkaloids,

such as compounds (27A), (28A), and (29A) inhibited replication

of influenza viruses, whereas compounds (30A), (31A), (32A),

and (33A) showed activity against CVB3 (Pan et al., 2015). Xi and

colleagues suggested that Tylophorine B (34A) had high affinity

for the RNA of the tobacco mosaic virus (TMV) and the starting

point of its oriRNA assembly, with an IC50 of 2.4 nM against

TMV RNA. Presumably, (34A) contributed to the viral-

suppressive effect by binding to oriRNA and interfering with

viral assembly (Xi et al., 2006).

2.5 Pyrrolidine alkaloids and piperidine
alkaloids

Quintana and collaborators demonstrated that anisomycin

(35A) (derived from Botrytis cinerea) had activity against the

DENV and Zika virus by inhibiting viral replication (Quintana

et al., 2020). Huang et al. discovered significant inhibition of

SARS-CoV-2 replication in Vero E6 cells at the nanomolar level

with relatively non-toxic concentrations of (35A) (Huang et al.,

2020). Jiang’s group discovered that piperine (36A) had anti-

HBV activity and could inhibit secretion of hepatitis B virus

surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg),

thereby suggesting a rationale for development of new drugs that

can prevent and treat HBV infection (Jiang et al., 2013).

2.6 Structure–activity relationship of
alkaloids with respect to virus activity

Derivatization of alkaloids with respect to antiviral features had

focusedmainly on indole alkaloids. Nitrogen-containing heterocycles

have shown high antiviral activity. The structure–activity relationship

with regard to the antiviral activity of indole alkaloids is summarized

in Figure 2, where positions 2, 3, and five of the indole ring are the

essential active sites for indole alkaloids to exert antiviral effects.

Introduction of hydrophilic groups such as amide, carbonyl, and ester

at the 2-position, the phenyl ring at the 3-position terminus, and a

halogen group at the 5-position can enhance the antiviral activity of

indole alkaloids. Derivative (37A) of indole alkaloids synthesized by

Regina and colleagues showed potent activity against HIV-1 reverse

transcriptase (RT) and HIV-1 with an IC50 value of 1.3 nM (La

Regina et al., 2011). Dousson and coworkers revealed that aryl

phosphorindole (38A) was a potent non-nucleoside reverse

transcriptase inhibitor (NNRTI) of the HIV with an IC50 value of

0.34 μM, and that (37A) and (38A) shared a similar pharmacophore

profile (Dousson et al., 2016). Hassam and collaborators used a

cyclopropylindole derivative as the basic backbone to synthesize

NNRTIs of the HIV by introducing amide, carboxyl, and ester

groups at the 2-position. Experimental results indicated that the

amide and ester groups could enhance the antiviral activity of these

compounds. Compound (39A) showed the most potent antiviral

activity (IC50 = 0.066 µM), whereas the carboxyl group was not as

effective in inhibiting the HIV, presumably because of the poor

permeability of the carboxyl group, which was ionized at

physiological pH (Hassam et al., 2012). Chander and his

colleagues derivatized 3-hydroxy-3-(2-oxo-2-phenylethyl)indolin-2-

one as a basic backbone and evaluated its anti-HIV-1 activity in vitro.

Substitution with bromine or chlorine at position 5 (R1) of the

oxindole ring enhanced its antiviral activity significantly. Compound

(40A)with a chlorine substitution had higher antiviral activity (IC50 =

FIGURE 2
Structure–activity relationship of alkaloids with respect to viruses.
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FIGURE 3
Quinones (and their derivatives) with antiviral activity.
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5.92 μM), whereas little antiviral potency was observed in case of

substitution of bromine on the oxindole ring with hydrogen

(Chander et al., 2018). Moreover, the antiviral activity varied

depending on the type and position of the substituents on the

benzene ring. The electron-donating methyl (41A), methoxy

(42A), and halogenated chlorine groups (43A) increased their

antiviral inhibition (IC50 = 1.38, 0.82, and 2.03 μM, respectively),

with themethoxy group having themost significant antiviral activity.

Comparison of the antiviral activity of o-substituted (44A) (IC50 =

0.76 μM), inter-substituted (45A) (IC50 = 34.25 μM), and double-

substituted (46A) (IC50 = 68.86 μM) revealed that o-substitution

could strengthen the inhibitory ability of the compounds against

viruses, whereas inter-substitution and double substitution had a

negative effect on antiviral activity.

3 Quinones

3.1 Antiviral activity of quinones

Quinones are a class of aromatic organic compounds with two

double bonds and a cyclic diketone structure with six carbon

atoms. Quinones can be categorized into four groups based on

their structure: benzoquinone, naphthoquinone, anthraquinone,

and phenanthrenequinone (Patel et al., 2021), in which the main

ones with antiviral activity are anthraquinone and

naphthoquinone (Figure 3).

Cetina and coworkers discovered that the naphthoquinone

compound zeylanone epoxide (1Q), isolated from Diospyros

anisandra, could exert activity against influenza-A and -B

viruses. Compound (1Q) could reduce viral titers and block

the extra-nuclear transport of viral nucleoprotein, and could be a

promising drug against influenza viruses (Cetina-Montejo et al.,

2019). Liu and his team established that acetylshikonin (2Q)

could inactivate viral particles directly at relatively low

concentrations to block the uptake or entry of coxsackievirus

A16 (CVA16) in vitro. Hence, (2Q) could protect cells from

CVA16, and inhibit in vivo and ex vivo infection by CVA16 (Liu

X. et al., 2019). Cheng and collaborators identified that

dicoumarol (3Q) could inhibit the transcription of covalently

closed circular-DNA by promoting degradation of the targeted

viral protein (HBx), thereby combating chronic infection with

the hepatitis B virus (Cheng S. T. et al., 2021). Parvez and his

colleagues identified the potential of aloe-emodin (4Q) in

hepatocellular carcinoma cells, likely through inhibition of the

polymerase activity of the HBV (Parvez et al., 2019).

3.2 Structure–activity relationships of
quinones with respect to viruses

Most of the quinones that display antiviral activity are

naphthoquinone and anthraquinone compounds, and the

structure–activity relationship of their antiviral effects is

depicted in Figure 4.

Montejo’s team observed that the naphthoquinone

compound droserone (5Q) possessed weak activity against

influenza viruses as well as cytotoxicity. Plumbagin (6Q) (in

which the 2-position hydroxyl group is replaced with hydrogen)

showed antiviral activity, and it was assumed that the 2-position

hydroxyl group inhibited the antiviral activity of

naphthoquinone (Cetina-Montejo et al., 2019). However, 2,3-

epoxiplumbagin (7Q) and the naphthoquinone dimer 3,3-

biplumbagin (8Q), which are structurally similar and contain

an epoxide structure, reduced their cytotoxicity to different

degrees, and (1Q) (which has an epoxide structure and a

naphthoquinone backbone) showed the most significant

activity against influenza viruses, with an IC50 value of 0.65 ±

0.01 µM. They hypothesized that the presence of epoxide

structures and naphthoquinone multimers in naphthoquinone

compounds could enhance their antiviral activity.

Thus, the antiviral activity of anthraquinones appears to be

related to the number and location of phenolic hydroxyl groups in

their structures. Also, formation of a keto-phenol system on the

same benzene ring is the key to their antiviral activity. Furuta and his

colleagues showed that derivative (9Q) inhibited hepatitis C virus

(HCV) replication (IC50 = 54 µM)mainly by suppressing the activity

of NS3 decarboxylase. The activity of (9Q) was superior to that of

(10Q), (11Q), or (12Q) (Furuta et al., 2015). Also, increasing the

number of hydroxyl groups on the same benzene ring and the

number of pairs of keto-phenol systems could further improve the

inhibitory activity. They found that (13Q) had the most potent

inhibitory activity (IC50 = 6 µM), and that (14Q) and (15Q) had

similar abilities to inhibit NS3 decyclase, with IC50 values of 18 and

11 μM, respectively. Anti-HCV activity was also augmented

significantly by multimerization of hydroxyanthraquinones, such

as (16Q) and (17Q), both of which had a double-anthraquinone

backbone structure with IC50 values of three and 0.8 µM,

respectively. In addition, the antiviral activity of anthraquinones

might be potentiated to some extent by insertion of a group capable

of inhibiting the activity of viral proteins into the anthraquinone

structure. Frecentese and coworkers discovered that positions two

and six of the anthraquinone ring were crucial for the synthesis of

HIV-1 nucleocapsid inhibitors, and synthesized the compound

(18Q), which provided the groundwork for development of new

anti-HIV drugs (Frecentese et al., 2016).

4 Flavonoids

“Flavonoids” is a general term for compounds with a C6-C3-

C6 skeleton based on 2-phenylchromanone as the parent nucleus

(Liu et al., 2021). Flavonoids can be divided into flavonoids,

flavonols, isoflavones, and dihydroflavonoids according to the

degree of oxidation of the C3 chain and position of the benzene-

ring linkage (Fang et al., 2015).
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Zandi and his team showed that flavonoids have activity

against DENV-2 in Vero cells. Autophagy, the inflammation-

related nuclear factor-kappa B pathway, and Toll-like receptor

pathway might be the major molecular targets of flavonoids

against viruses (Zandi et al., 2011; Cheng C. et al., 2021). We have

described some representative flavonoids with significant

antiviral activity in this review. The structures of flavonoids

(and their derivatives) that possess antiviral activity are shown

in Figure 5.

4.1 Flavonoids and flavonols

4.1.1 Quercetin and rutin
Quercetin (1F) is the most common flavonol compound

with notable antiviral effects found in nature (Li et al., 2016).

Xu and coworkers demonstrated that (1F) had good

protective effects against the cardiomyocyte damage

wrought by CVB3 infection. Shohan and collaborators

used (1F) in combination with the antiviral drugs

raltegravir and famipiravir to treat critically ill inpatients

with neocoronary pneumonia, and (1F) showed a more

significant effect than that observed using raltegravir alone

or famipiravir alone (Xu et al., 2021; Shohan et al., 2022).

Rutin (2F) is a flavonol ligand composed of (1F) and

rhamnoglucoside. (2F) has been shown to exert activity

against the HBV, influenza viruses, human noroviruses,

and the DENV (Li K. et al., 2021). Kim and her colleagues

investigated the antiviral activity of (1F), (2F), and

isoquercetin (3F) against influenza-A and B viruses. (3F)

showed the highest antiviral activity (ED50 = 1.2 µM), even

better than that of the positive control drug amantadine

(ED50 = 1.4 µM) (Kim et al., 2010).

4.1.2 Baicalin and baicalein
Baicalin (4F) is a glycoside flavonoid with high polarity.

Baicalein (5F) is the aglycone part of (4F). Lani’s team revealed

that (5F) had stronger intracellular antiviral activity in the post-

entry phase of CHIKV replication, with an IC50 value of 1.891 μg/

ml and selectivity index (SI) of 188.4, much stronger than that of

the positive control, ribavirin (IC50 = 11.07 μg/ml, associated SI =

54.2) (Lani et al., 2016).

(5F) also possesses anti-CHIKV activity, in which the hydroxyl

group at position seven on the baicalin ring A is replaced with a

glucouronoid (EC50 = 7 μM). It inhibits different stages of the

replication cycle of the CHIKV as well as the production and

expression of CHIKV protein, thereby eliciting direct viral killing

(Oo et al., 2018). Zhu’s group showed that (5F) had anti-influenza

virus A3/Beijing/30/95 (H3N2) activity, mainly through inhibition

of formation of the autophagy-related gene 5 (Atg5)–autophagy-

related gene 12 (Atg12) complex and autophagy-related protein light

chain 3 (LC3-II) expression, as well as reducing virus replication by

suppressing the influenza virus-induced autophagy pathway (Zhu

et al., 2015).

4.2 Other flavonoids

Hesperidin (6F) is a glycoside formed by hesperetin and

rhamnoglucoside. (6F) is a dihydroflavonoid derivative.

Meneguzzo and colleague suggested that (6F) could interfere

with different stages of the invasion and replication of

FIGURE 4
Structure–activity relationship of quinones with respect to viruses.
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coronaviruses. (6F) has extremely strong binding capacity to the

receptors for SARS-CoV-2 (Meneguzzo et al., 2020).

Epigallocatechin-3-gallate (EGCG) (7F) is a major component of

tea. Pang and colleagues observed that (7F) had anti-HBV activity.

Treatment of HepG2 2.2.15 cells with (7F) (50 μg/ml) for 6 days

could repress secretion of HBsAg andHBeAg significantly (53% and

44% inhibition, respectively) and inhibition of HBsAg was stronger

than that of the positive control lamivudine (Pang et al., 2014).

FIGURE 5
Flavonoids (and their derivatives) that possess antiviral activity.
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4.3 Structure–activity relationship of
flavonoids with respect to viruses

Most flavonoids possess a C6-C3-C6 skeleton. The type and

position of substituent groups can affect their antiviral activity.

The specific structure–activity relationships are shown in

Figure 6. Pasetto and his team discovered that myricetin (8F)

had the highest activity against HIV-1 in vitro (IC50 = 20.43 µM),

which was about four-times that of (1F) (IC50 = 88.98 µM) and

16-times that of pinocembrin (9F) (IC50 = 346.75 µM) under

identical conditions (Pasetto et al., 2014). (8F) has 3′, 4′, and 5′
hydroxyl groups, whereas (1F) has two adjacent hydroxyl groups

at 3′ and 4′ positions, and no hydroxyl group is present in any of

these positions in (9F). The relationship between their structure

and antiviral activity has been hypothesized to be 3′,4′,5′-OH >
3′,4′- OH > B-ring without OH. The greater the number of

hydroxyl groups on the B-ring, the more potent is the antiviral

activity of flavonoid compounds. Besides the number of hydroxyl

groups on the B-ring, the position of hydroxyl groups on the

B-ring can also influence their antiviral activity. Morin (10F) and

(1F) are flavonol compounds containing two free hydroxyl

groups on the B-ring, but they are present in different

positions, with (10F) having a 2′,4′ interposition dihydroxy

group and (1F) having a 3′,4′ neighboring dihydroxy

group. Carvalho’s group revealed that the anti-Canine

distemper virus (CDV) activity of mulberry pigment was

weaker than that of (1F). They speculated that the 2′ hydroxyl
group on the B ring might influence its antiviral activity

(Carvalho et al., 2013). Tahpa’s group modified the C-3, C-5,

and C-3′ hydroxyl groups on (1F). They concluded that

introduction of gallate, dihydroxybenzoate, and

aminohydroxybenzoate at C-3 improved the antiviral activity

of (1F), with (11F) showing the most potent antiviral activity

(ED50 = 9.1 µM), which was similar to (4F) activity (ED50 =

8.3 µM). In contrast, introduction of gallate, aminopropoxy, and

propoxy at C-5 and C-3′ curtailed the antiviral activity of (1F),

presumably because 3′-OH and 5-OH were the active groups

involved in the antiviral action of (1F) (Thapa et al., 2012).

Flavonoids are combined with carbohydrates to form

glycosides in plants. The linkage position and type of sugar

affects their antiviral activity. Carvalho and his colleagues

showed that both (2F) and (7F) had stronger anti-CDV viral

activity than (1F) (Carvalho et al., 2013). They postulated that the

glycosylation of (2F) and (7F) could enhance their antiviral

activity, and that the degree of improvement in antiviral

activity was related to the glycosylation site, with (2F)

glycosylation at C-3 being distinctly superior to (7F)

glycosylation at C-7. Thapa and collaborators demonstrated

that (3F) containing 3-β-D-glu had considerable antiviral

activity (ED50 = 1.2 µM), which was superior to that of (2F)

containing 3-(6-α-L-rha)-β-D-glu (ED50 > 100 µM) (Thapa et al.,

2012). However, not all flavonoid glycosides have stronger

antiviral activity than their aglycones. In terms of activity

against DENV-2, (5F) is weaker than (6F). 7-OH might be an

important moiety for the antiviral activity of (6F) (Moghaddam

et al., 2014).

5 Terpenoids

Terpenoids are a group of hydrocarbons occurring naturally

in plants. They can be classified as monoterpenes, sesquiterpenes,

FIGURE 6
Structure–activity relationships with respect to the antiviral activity of flavonoids.
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triterpenes, and polyterpenes according to the number of

isoprene units in the molecule (Zhang et al., 2018). Thanks to

research into new antiviral drugs, the essential oils of plants have

become popular due to their high efficiency, safety, and resistance

(Zhang et al., 2021). The structures of terpenoids with antiviral

activity are presented in Figure 7.

5.1 Monoterpenes and sesquiterpenes

The monoterpenes present in the essential oils of plants

include monoterpene alcohols and monoterpene aldehydes,

which having slightly higher antiviral activity than

monoterpene alcohols (Astani et al., 2010). Artemisinin (1T)

FIGURE 7
Terpenoids (and their derivatives) with antiviral activity.
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is a sesquiterpene lactone, and its derivatives have shown

inhibitory effects against the human cytomegalovirus

(HCMV), HBV, and HCV. In particular, artesunate (2T) can

control secretion of HBsAg with an IC50 of 2.3 μmol/L and

reduce gene expression of the HBV with an IC50 of 0.5 μmol/

L (Wohlfarth and Efferth, 2009). Karagoz and collaborators

showed that derivative (3T) presented high anti-HCMV

activity (EC50 = 0.24 µM), which was 15-times higher than the

antiviral activity of betulinic acid and 23-times that of (2T), as

well as being superior to the clinically used anti-HCMV drug

ganciclovir (Karagoz et al., 2019). Panraksa and colleagues

showed that andrographolide (4T) displayed appreciable anti-

DENV activity in Hep G2 and HeLa cells, with EC50 values of

21.304 and 22.739 µM, respectively (Panraksa et al., 2017). Liu

and his team identified a new 14-demethylamino-based

sesquiterpene, phomanolide (5T), with high activity against

influenza A virus (HIN1) (IC50 = 2.96 ± 0.64 μg/ml), which

was first isolated from Aconitum vilmorinianum. (Liu S. S. et al.,

2019). Ding et al. isolated a pentacyclic indole sesquiterpene

named xiamycin (6T) from Streptomyces species with moderate

anti-HIV activity. (6T) blocked the entry of C-C chemokine

receptor 5 (CCR5)-tropic HIV-1, indicating that the pentacyclic

carbazole system might be an effective backbone for antiviral

agents (Ding et al., 2010).

5.2 Triterpenes

Triterpenoids are composed mainly of six isoprene units, of

which pentacyclic triterpenes are the most common and exhibit

strong antiviral activity. The main types of pentacyclic triterpene

skeletons are oleanolane, ursolidane, lupinane, and corkolidane

(Miranda et al., 2022).

Tseng and coworkers showed that celastrol (7T) could induce

gene expression of heme oxygenase-1, which led eventually to

HCV inhibition (Tseng et al., 2017). Si and collaborators

discovered that (8T) (a derivative of echinocystic acid

combined with acetylated galactose) exerted prominent effects

against the Ebola virus, with IC50 values of 59.2 ± 1.6 nM (Si et al.,

2018). Matsumoto and colleague demonstrated that glycyrrhizin

(9T) possessed anti-HCV activity (EC50 = 16.5 µM) and that its

mechanism of action involved controlling the release of

infectious HCV particles (Matsumoto et al., 2013).

5.3 Structure–activity relationships of
pentacyclic triterpenoids with respect to
viruses

Pentacyclic triterpenoids influence antiviral activity mainly

at C-3, C12–C13, and C-28 positions (Fan et al., 2020) (Figure 8).

Introducing of glycosyl groups, 3′,3′-dimethylsuccinic acid, and

acyl groups at C-3 can enhance antiviral activity. Cai’s group

observed that the pentacyclic triterpene parent nucleus and

glucose molecules were essential in upgrading the activity of

compounds against influenza viruses (Cai et al., 2022). Yu and

collaborators concluded that derivative (10T) containing a 3′,3′-
dimethylsuccinic acid moiety had an EC50 value of 0.32 µM

against HIV-1, whereas derivatives containing 3′,3′-
dimethylpentanedioic acid showed no antiviral activity (Yu

et al., 2006). Wang and colleagues reported that (11T) was

oxidized to a ketone group, and its ability to inhibit secretion

of HBsAg protein (IC50 = 432.54 µM) proved to be much weaker

than that of glycyrrhetinic acid (12T) (IC50 = 20.86 µM),

presumably because the 3-ketone group suppresses the

antiviral activity of triterpenoids (Wang L. J. et al., 2012).

Moreover, the C-3 configuration proffered different

advantages in the prevention of different viral species. Ma and

his team demonstrated that β-configuration substituent-

containing derivatives of oleanolic acid were superior to the

α-configuration counterparts in terms of anti-HCV activity (Ma

et al., 2009). Song’s team revealed that (13T) containing an α-
configuration hydroxyl group could maintain activity against

influenza A virus (H5N1) and reduce cytotoxicity against MDCK

cells greatly, stronger than the β-configuration (14T) (Song et al.,

2015).

The free hydroxyl group at the C-3 position and free carboxyl

group at the end of the side-chain at the C-28 position are crucial

moieties for the antiviral activity of triterpenoids (Sun et al.,

2002) such as ursolic acid (15T) and oleanolic acid (16T), which

both showed high anti-HCV activity (Kong et al., 2013). Liao and

colleagues discovered that introducing of an amide group in the

side-chain at the C-28 position was beneficial for enhancing

antiviral activity and reducing cytotoxicity. The antiviral activity

of aromatic amine derivatives was obviously better than that of

aromatic methylamines, which suggests that the distance

between the benzene ring and nitrogen atom is too long to

depress antiviral activity (Liao et al., 2019). It was possible to

improve the anti-H5N1 activity of aromatic amine compounds

containing methoxy or chlorine atoms substituted at adjacent/

opposite positions in the side-chain in preference to those

containing inter-substituted aromatic amines. Li’s team

synthesized a series of triterpenoid derivatives of 3,4-lactones,

among which derivative (17T) with a C12–C13 double bond

developed stronger inhibition of secretion of the HBV protein

HBeAg (IC50 = 0.86 µM), whereas the antiviral activity of (18T)

with an oxidized double bond decreased (IC50 = 149.1 µM),

thereby suggesting that the C12–C13 double bond played an

important role in the maintenance of activity (Li et al., 2018).

6 Polysaccharides

Polysaccharides are natural macromolecules with a wide

range of origin. In general, polysaccharides consist

of >10 monosaccharide molecules that have been polymerized,
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which contain multiple chiral centers andmost are non-cytotoxic

(Muralidharan et al., 2019). Polysaccharides and their derivatives

display prominent suppressive effects against the HIV, HSV,

enteroviruses, and influenza viruses, and become a focus of

research (Wang C. R. et al., 2011; Saha et al., 2012; de Godoi

et al., 2014; Wu et al., 2016).

6.1 Plant-derived polysaccharides

Plants are the main natural source of polysaccharides.

Oliveira and coworkers found that the crude aqueous and

alkaline extracts of Stevia rebaudiana leaves possessed activity

against HSV-1 in vitro (de Oliveira et al., 2013). Ceole and

collaborators noticed that anti-HSV-1 activity was more

pronounced in the crude fraction, which was related directly

to the interaction between the S. rebaudiana-derived

polysaccharide and viral glycoprotein, not to cellular receptors

(Ceole et al., 2020). Su’s team demonstrated that distilled-water

and 95%-ethanol extracts of Ardisia chinensis Benth exerted

varying degrees of activity against CVB3 in vitro, with the

aqueous extract being more active (IC50 = 3.9 μg/ml) (Su

et al., 2006). This antiviral activity was derived mainly from a

neutral polysaccharide with d-glucose as the main glycoside.

6.1.1 Ginseng polysaccharides
Baek and colleagues showed that two ginseng pectin

polysaccharides suppressed rotavirus-induced cell death in a

dose-dependent manner. They inhibited the binding of

rotaviruses to host cells (IC50 = 15 and 10 μg/ml), with the

hairy region possibly being its functional site (Baek et al.,

2010). Yoo’s group showed that ginseng polysaccharides

boosted the survival of H1N1- and H3N2 influenza-infected

mice, demonstrating that ginseng polysaccharides could be

used as therapeutic agents against infections by influenza

viruses (Yoo et al., 2012).

6.1.2 Houttuynia cordata polysaccharides
Cheng and his team revealed that H. cordata polysaccharides

possessed activity against human noroviruses by deforming and

swelling viral particles, thereby inhibiting virus penetration into

target cells (Cheng et al., 2019). Zhu and coworkers found that

treatment with H. cordata polysaccharides could improve the

survival chances of mice infected with IAV-H1N1, protecting

them from lung and intestinal damage as well as reducing viral

replication. H. cordata polysaccharides might have potential as

an alternative drug for treatment of human IAV infection (Zhu

et al., 2018).

6.1.3 Other polysaccharides
Kim’s team discovered that one polysaccharide from dried

roots of Sanguisorba officinalis was efficient in treatment of

Enterovirus 71 (EV71) infections (Kim et al., 2022). Vinicius

and coworkers found that polysaccharides from Leptospermum

species could influence the initial replication of poliovirus type

1 and bovine herpes zoster virus and had high antiviral activity

(Rincao et al., 2012). Lin and collaborators identified a

polysaccharide fraction in Platycladus orientalis (L.) Franco

with anti-HBV activity, primarily via repression of expression

of HBsAg and HBeAg and interfering with replication of HBV

DNA, with IC50 values of 1.33 ± 0.12, 1.67 ± 0.13, and 0.80 ±

0.03 mg/ml, respectively (Lin et al., 2016).

FIGURE 8
Structure–activity relationship of pentacyclic triterpenoids with regard to viruses.
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6.2 Sulfated derivatives

Sulfated polysaccharides are natural and semi-synthetic

acidic polysaccharides formed by substitution of a hydroxyl

group for a sulfate group on a monosaccharide in a

macromolecular chain (Lu et al., 2021). Usually, sulfated

polysaccharides have high activity because the negatively

charged sulfate group can bind to glycoproteins in the viral

envelope, thereby prohibiting the viral particle from binding to

and penetrating the target cell. Sulfated modifications appear to

be critical for polysaccharides, with sulfated polysaccharides

having greater potential for antiviral activity. For example, the

sulfated polysaccharides from Auricularia auricula and Tremella

species have strong activity against the Newcastle disease virus

(Zhao et al., 2011; Nguyen et al., 2012). Ma and coworkers

isolated a new partially sulfated polysaccharide, PSP-2B, with

low cytotoxicity and activity against HSV-1 (IC50 = 69 μg/ml)

and HSV-2 (IC50 = 49 μg/ml) (Ma et al., 2016). Galhardi and

colleagues evaluated the activity of Azadirachta indica

polysaccharides (P1 and P2) and their sulfated derivatives

(P1S and P2S) against the poliovirus and herpes zoster virus:

P1S was the most active and interacted mainly in the initial stages

of viral replication (Faccin-Galhardi et al., 2012). Godoi and

collaborators investigated the activity of sulfated polysaccharides

from Adenanthera pavonina seeds against poliovirus type 1, and

concluded that they repressed poliovirus type 1 at several steps of

replication and had low cytotoxicity (de Godoi et al., 2014).

LJ04 is an acidic polysaccharide that can inactivate EV71 within

2 h at 37°C (Yue et al., 2017). The sulfate group is vital to the

antiviral activity of LJ04 (Li et al., 2020). Mukherjee and

collaborators chemically vulcanized arabinoxylan (1P) from

the seed husks of Plantago ovata and found that the sulfate

group of arabinoxylan (2P) conferred activity against HSV-1

(Mukherjee et al., 2021). Kappa carrageenan (3P) is present in red

algae plants. Kappa carrageenan (3P) and its sulfated derivatives

have high inhibitory effects against IAV replication in vitro and

in vivo (Wang W. et al., 2012). Oral or nasal sprays containing

kappa gum have been shown inactivate SARS-CoV-2 infection in

cultures of human airway epithelial cells (Schutz et al., 2021).

6.3 Structure–activity relationship of
polysaccharides with regard to viruses

The type of functional group in polysaccharides is closely

related to their antiviral activity. Cai’s team demonstrated that

pectic polysaccharides derived from the above-ground parts of

Portulaca oleracea L. could restrain viral penetration and

possessed anti-HSV-2 activity. It has highly methyl-esterified

and partially acetylated residues of galacturonic acid in its

structure. Its anti-HSV-2 activity ceases after removal of

esterification; the methyl esterification or acetylation of

galacturonic acid (GalA) residues might be responsible for the

antiviral effect (Dong et al., 2010). Liu and collaborators

subjected neutral polysaccharides extracted from Polygonatum

cyrtonema Hua to sulfation, phosphorylation,

carboxymethylation, acetylation, or sulfonylation.

Phosphorylation or sulfation could intensify the inhibitory

activity of neutral polysaccharides against the HSV. The

sulfonylated derivative had identical activity to that of neutral

polysaccharides. Acetylation or carboxymethylation depressed

the antiviral activity of neutral polysaccharides (Liu et al., 2011).

Sulfation is the most common approach to chemical

derivatization of polysaccharides. Various factors influence the

antiviral activity of sulfated polysaccharides: the degree of

substitution, sulfation position, molecular composition,

molecular weight, and solution conformation of the

polysaccharide (Ghosh et al., 2009) (Figure 9). The number of

sulfate groups is correlated closely with antiviral activity in

polysaccharides. Jiao and his colleagues isolated four

polysaccharides from several Atlantic Canadian seaweeds, all

of which had activity against influenza viruses. The activity of

these four polysaccharides decreased as their sulfate content

increased (Jiao et al., 2012). However, the antiviral activity of

the polysaccharides did not follow a simple linear relationship

with the degree of sulfation. Wang’s group revealed that the anti-

IAV activity of carrageenan oligosaccharides was significantly

different despite possessing similar sulfate content. K-keratan

gum oligosaccharide had the highest activity at a sulfate content

of 0.8–1.0 mol/mol of disaccharide and a molecular weight of

1–3 kDa, thereby indicating that sulfation sites also influenced

FIGURE 9
Factors affecting the antiviral activity of sulfated
polysaccharides.
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antiviral activity (Wang W. et al., 2012). Thuy and coworkers

reported that fucoidan isolated from three species of brown

seaweed possessed distinctive anti-HIV activity. However, the

anti-HIV activity of compounds with different degrees of

sulfation and sulfate sites was very similar to each other,

which suggested that the molecular weight and type of

glycosidic bond of fucoidan were the main factors affecting

their antiviral activity (Thuy et al., 2015).

In addition, the molecular weight and conformational

changes of a polysaccharide can affect its antiviral activity.

Witvrouw and his team revealed that dextran sulfate of higher

molecular weight had higher antiviral activity than that of

dextran sulfate of lower molecular weight if the molecular-

weight range was 1–500 kDa (Witvrouw and De Clercq,

1997). Lopes and collaborators analyzed the activity of seven

chemically modified sulfated polysaccharides from green

seaweed against the HSV. SU1F1 (a heterosaccharide with a

molecular weight of 34 kDa) provided clearly superior antiviral

activity to that of SU1F2 (molecular weight <5 kDa) (Lopes et al.,
2017). Tuvaanjav’s group sulfated two water-soluble

polysaccharides from Cynomorium songaricum Rupr. They

noted that the sulfated polysaccharide could inhibit HIV

infection with an EC50 value of 0.3–0.4 μg/ml. They postulated

that sulfation changed the conformation of the polysaccharide

and enhanced the electrostatic interaction of sulfate groups

(Tuvaanjav et al., 2016).

7 Organic acids

The main organic acids involved in the antiviral activity of

NPs are ferulic acid, cinnamic acid, chlorogenic acid, and

caffeic acid.

Carvalho and his colleagues discovered that cis-cinnamic

acid (1R) and ferulic acid (2R) had high anti-CDV activity, and

that the antiviral effect of ferulic acid (2R) was stronger than that

of (1R) (Carvalho et al., 2013). Trans-cinnamic acid (3R) is

structurally similar to (2R), but did not show activity against the

CDV, probably owing to the substituents at the C-4 and C-5

positions of (2R). Chlorogenic acid (4R) had antiviral activity,

especially in fighting the herpes virus and CVB3 (Yu, 2017).

Ding’s group discovered that (4R) exhibited activity against

influenza viruses, with EC50 values of 44.87 μM against the

H1N1 virus and 62.33 μM against the H3N2 virus (Ding

et al., 2017). Caffeic acid (5R) is a degradation product of

(4R) and appears to be widespread in plants (Boerjan et al.,

2003). Shen and his collaborators reported that (5R) could inhibit

HCV replication by activating the Kelch-like ECH-associated

protein 1/Nuclear factor (erythroid-derived 2)-like 2 (Keap1/

Nrf2) pathway and led to an increase in protein expression of

p62, with an IC50 value of 100 ± 20 μM (Shen et al., 2018). Ogawa

and coworkers found that (5R) could inhibit severe fever with

thrombocytopenia syndrome virus (SFTSV) infection with an

IC50 of 0.048 mM. The mechanism of action was mainly through

suppression of binding of the SFTSV to cells rather than

dependence upon its acidity (Ogawa et al., 2018). Weng’s

team discovered that the activity of (5R) was higher than (4R)

in elderberry extracts against human coronavirus NL63, with an

IC50 of 3.54, and 43.45 µM, respectively (Weng et al., 2019).

8 Others

Tatanan A (1O) is a novel sesquiterpene lignan. It was first

identified in the ethanol extract of Acorus calamus L. roots (Ni

et al., 2011). Yao and colleagues found that (1O) could oppress

the translation and early RNA synthesis of DENV-2, thereby

resulting in new activity against DENV-2 (EC50 = 3.9 µM)

(Yao et al., 2018). Cui and collaborators demonstrated that

manassantin B (2O) (a lignan-like compound derived from

the roots of Saururus chinensis) conferred high activity against

replication of the Epstein-Barr virus (EBV) with an EC50 of

1.72 µM, thereby providing the first evidence of an anti-EBV

effect in lignans (Cui et al., 2014). Pang and coworkers

reported the anti-HBV activity of lutein (3O). It blocked

secretion of HBsAg and the amount of extracellular HBV

DNA in HepG2 cells in a dose-dependent manner (Pang et al.,

2010). Ratnoglik and coworkers characterized the high anti-

HCV activity of pyropheophorbide (4O) from Morinda

citrifolia leaves. It induced inhibition of RNA replication

and protein synthesis of the HCV with antiviral effects at

entry and post-entry steps with an IC50 of 0.2 μg/ml

(Ratnoglik et al., 2014). An enhanced interferon-α (IFN-α)
anti-HCV agent, diosgenin (5O) (steroidal saponin of plant

origin) was identified by Wang and collaborators as having

anti-HCV activity with an EC50 of 3.8 μM. A possible

mechanism of action may be related to inhibition of

expression of signal transducer and activator of

transcription-3 (Wang Y. J. et al., 2011).

9 Conclusion

Viruses pose a serious challenge to the health and quality of

life of humans. Their general spread and rapid mutation has

severely compromised the efficacy of antiviral drugs, thereby

stimulating research and development of new antiviral drugs

(Owen et al., 2022).

Antiviral drugs were developed to be used as a “second step”

after vaccination. Use of antiviral agents enables rapid clinical use

during outbreaks of viral diseases if vaccines are not available.

This strategy can control the spread of viral diseases and protect

the lives and health of humans. Vaccine are designed to be virus-

specific and to treat individual viruses, but fail to deliver the full

range of antiviral effects, including low (or no) effects against

mutant strains of a virus (Jefferson et al., 2014). Drug resistance is
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also an emerging problem. For instance, almost all prevalent

influenza strains are mutated with resistance to adamantanes,

which suggests an urgent need to reinvigorate development of

antiviral drugs (Van Poelvoorde et al., 2020).

In recent years, NPs have emerged as new sources for

development of antiviral drugs, with the potential to be

developed into broad-spectrum antiviral drugs. The large

number of compounds, comprehensive antiviral activity, and

low cytotoxicity could be the advantages of using NPs as antiviral

drugs (Mast et al., 2020). Most studies on antiviral agents have

focused on the activity of NPs, which can inhibit different types

of viruses. However, studies on related structural modifications

and derivatization are relatively scarce, and the structure–activity

relationship between NPs and their antiviral effects is seriously

lacking, which can not well guide the synthesis of antiviral drugs

derived from NPs.

This review surveyed NPs with antiviral activity and their

derivatives in the past 2 decades, and summarized one

hundred and twelve compounds’ structures and their

antiviral activities. On this basis, we systematically explored

the conformational relationships of different structural types

of NPs in antiviral aspects. Alkaloids, quinones, flavonoids

and terpenoids showed bright performance in exerting

antiviral activity. Meanwhile, the derivatives of indole

alkaloids, anthraquinones, naphthoquinones, flavonols and

pentacyclic triterpenes could be substantially enhanced in

their antiviral activities by appropriate structural

modifications. These structural skeletons are very

promising for the development of novel antiviral drugs and

deserve further investigation. The positions 2, 3, and five on

the indole ring were found to be important sites for antiviral

activity in indole alkaloids. The introduction of amide and

ester groups at the 2-position could enhance their antiviral

activity, and the oxindole backbone formed by the

introduction of carbonyl groups was also unique in

antiviral. The number of hydroxyl groups in

anthraquinones would correlate with their ability to exert

antiviral activity. It was possible to enhance the inhibition

of viruses by increasing the number of hydroxyl groups and

keto-phenol systems on the same benzene ring. In addition,

the introduction of epoxide structures in naphthoquinone

compounds and the synthesis of naphthoquinone

multimers could be employed for antiviral derivatization.

The type and position of the substituent in the NP could

have an effect on the antiviral activity of the compound. In

some sites, the introduction of some groups would weaken the

antiviral activity of natural products. For example, the

introduction of 2′ hydroxyl groups on the B ring of

flavonoids and 3-ketone groups in pentacyclic triterpenoids

would have a detrimental effect upon antiviral activity. This

knowledge could provide some ideas and directions for

derivatization of the NP and strongly help to design and

synthesize more antiviral drugs.

Drug resistance is a very challenging factor in the

development of antiviral drugs. NPs offer great potential to

combat this problem. Compared with drugs with single-

spectrum antiviral activity, the multi-targeting of NPs could

elicit more possibilities for antiviral agents. A combination of

NPs with antiviral drugs could enhance the inhibitory and

synergistic activity of antiviral drugs against drug-resistant

strains. Artesunate (a derivative of artemisinin) has been

shown to have activity against HCMV-susceptible,

ganciclovir-resistant sublines, and clinical isolates without

cross-resistance. Artesunate could offer a new approach to

clinically refractory HCMV infections if standard antiviral

therapies fail (Efferth et al., 2002; Schnepf et al., 2011). Studies

have suggested that a combination of artesunate with the

established antiviral drugs ganciclovir, cidofovir, maribavir,

or phosphonate provide synergistic inhibition of the HCMV

and reduce resistance to antiviral drugs (Drouot et al., 2016).

Heredia and collaborators found that resveratrol increased the

anti-HIV activity of tenofovir by 10-fold and restored

susceptibility of TFV-resistant viruses. (Heredia et al.,

2013). Kim’s team revealed that isoquercetin was highly

effective in treatment of influenza viruses (even better than

the positive control, amantadine). Moreover, isoquercetin

could act in synergy with amantadine against influenza

viruses and reduce resistance to amantadine (Kim et al.,

2010). Haidari and his team discovered that a combination

of pomegranate polyphenol extract and oseltamivir increased

the anti-influenza effect of oseltamivir synergistically, and

inhibited replication of the human influenza-A virus and

H3N2 influenza virus in vitro (Haidari et al., 2009).

Propolis is a non-toxic NP. Propolis and acyclovir have a

strong synergistic effect against the herpes virus; perhaps a

component of propolis affects cell division and increases the

efficacy of acyclovir (Yildirim et al., 2016).

Current research on the actions of NPs against viruses has

limitations. Many compounds have antiviral activity, but most

of the active ingredients are present in low concentrations and

difficult to isolate from NPs. Most studies have focused on the

isolation and identification of active ingredients, but few

studies have explored structural modifications. Many

studies on antiviral activity showed only preliminary

screening for antiviral activity and little research on the

mechanisms and targets of NPs against viruses. Conducting

clinical trials to demonstrate their efficacy and toxicity in vivo

is not ethical, so most studies have been at the cellular level.

This problem has restricted the development of antiviral

drugs. Further research is required to assess the feasibility

of NPs being used as antiviral drugs in clinical practice. It has

been proposed that the antiviral activity of NPs could be

deepened through a combination of technologies, such as

high-throughput screening, synthetic biology, metabolic

engineering, and medicinal chemistry. In recent years,

artificial intelligence has been applied gradually for the
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discovery and development of drugs. Computer-aided drug

design as well as artificial intelligence drug discovery and

design have started to become the core technologies for

innovative drug research because they have a short

development cycle and high hit rate. These technologies

could provide a new impetus to develop safe and

efficacious antiviral drugs faster, and drive the development

of innovative drugs.
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Natural products, those molecules derived from nature, have been used by

humans for thousands of years to treat ailments and diseases. More recently,

these compounds have inspired chemists to use natural products as structural

templates in the development of new drug molecules. One such compound is

leonurine, a molecule isolated and characterized in the tissues of Herb leonuri.

This molecule has received attention from scientists in recent years due to its

potent anti-oxidant, anti-apoptotic, and anti-inflammatory properties. More

recently researchers have shown leonurine to be useful in the treatment of

cardiovascular and nervous systemdiseases. Like other natural products such as

paclitaxel and artemisinin, the historical development of leonurine as a

therapeutic is very interesting. Therefore, this review provided an overview

of natural product discovery, through to the development of a potential new

drug. Content will summarize known plant sources, the pathway used in the

synthesis of leonurine, and descriptions of leonurine’s pharmacological

properties in mammalian systems.

KEYWORDS

herb leonuri, leonurine, synthesis, pharmacological effects, cardiovascular diseases,
nervous system diseases

Introduction

Human civilization, across all continents, has a long history of use of natural products

either in the form of plant, fungal, microbial, or animal-derived extracts, preparations, or

isolated compounds. These preparations are being used in the treatment of various

ailments and diseases (Ji et al., 2009). Examples of developments in this field litter the

historical records in various research publications and pharmacopeias. Common

examples include the18th-century description by Europeans of the discovery of

aspirin in the leaves of the willow tree (genus Salix), having properties that reduce

pain, fever, and inflammation (Ugurlucan et al., 2012). Similarly, Paclitaxel, a popular

anticancer drug, that was first isolated from the bark and needles of Taxus brevifolia in

1971, and now approved by the FDA for the treatment of various types of cancer (Zhu and
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Chen, 2019). Even today, natural products derived from various

plants species are still a valuable source of lead compounds, and

this is inspiring a generation of scientists interested in the

development and design of new therapeutic drugs (Katz and

Baltz, 2016). Many of these compounds have various biological

activities (Dutta et al., 2019) including anti-inflammation (Azab

et al., 2016), anti-cancer (Liu et al., 2020), anti-oxidation

(Jaganjac et al., 2021), and anti-viral properties (Thomas

et al., 2021). Here, we draw on some of these examples, and

describe various success stories relating to the development of

natural products as drugs. This review will cover paclitaxel,

artemisinin, aspirin, and camptothecin, and we summarize the

unique aspects of their developmental process. In addition, a

description will be given relating to plant sources, synthetic

pathways, and pharmacological activities of the natural

product, leonurine. Leonurine has gained interest from

scientist due to its therapeutic potential in the treatment of

cardiovascular and neurological diseases.

Extraction and separation

Plants, fungi, microorganisms, and some animal species are

novel sources of natural products, and tissues form these have

been exploited by researchers in their search for new therapeutics

(Sen and Samanta, 2014; Beutler, 2019). Due to the diverse

chemical structures and differences in stability and

physicochemical properties of natural products, extraction and

separation methodologies of natural products have always been a

huge challenge. Indeed, difficulties in extraction procedures are a

common topic of discussion in the early phases of research on

natural products (Sarker and Nahar, 2012; Wang et al., 2022).

This problem has led to the development of numerous forms of

extraction and isolation procedures used by natural product

chemists, ranging from basic solvent extraction procedures

through to supercritical CO2 extraction methods; each has its

challenges. Historically, solvent extract procedures have been

described since the 17th century. Scientists used solvent

extraction techniques to isolated morphine from the milk of

poppies (Brook et al., 2017), quinine from the bark of the

Cinchona tree, and cocaine from coca leaves (Goldstein et al.,

2009; Achan et al., 2011). In addition to extraction methods,

further complexity arises when the compound of interest requires

separation from other constituents present in the tissues of the

natural source. For this reason, separation methods such as

column chromatography have been developed, and these are

often coupled to some form of screening technique to ensure the

molecules of interest are present in separated fractions. For

example, a biological assay or compound confirmation

assessment like nuclear magnetic resonance (NMR) or mass

spectroscopy (Chun-Sheng et al., 2016). Common separation

methods include high performance liquid chromatography

(HPLC) or more informed approaches like liquid

chromatograph mass spectroscopy (LC-MS) that can be

utilized to establish a picture of compound composition. For

example, HPLC has been used to conduct fingerprint analysis of

compounds having free radical scavenging activities in Angelica

sinensis (Yang, 2013).

One of the success stories in natural product chemistry is the

extraction and isolation of the antimalarial drug, artemisinin.

Artemisinin is an example of a sesquiterpene lactone and was

first extracted from the plant sweet wormwood (Figure 1) (A.s.r

group, 1977). Isolation and characterization were conducted in

the laboratory of Tu Youyou, who won the Lasker Prize in

Clinical Medicine in 2011, and later the Nobel Prize for

Medicine in 2015. Initial work found that extracts of

Artemisia annua obtained by heating of plant tissues had

minimal antimalarial effects. Therefore, researchers began to

interrogate the earliest historical reference to Artemisia annua

in Ge Hong’s “Elbow Reserve Emergency Recipe”. These records

revealed a more efficient extraction method viz. A. annua

immersed in water to obtain a juice. This method avoided

heating, and yielded extracts with effective anti-malarial

properties. Researchers then modified the extraction process

in view of the historical information and later used low

temperature extraction procedures to isolated the, active

ingredients (Tu, 2016; Wang et al., 2019). Finally, the extracts

were separated to obtain artemisinin and analogues allowing for

further structural confirmation (White et al., 2015; Chang, 2016;

Xia et al., 2020). In addition to antimalarial activity, artemisinin

also has antiviral (Liu et al., 2019), antitumor (Slezáková and

Ruda-Kucerova, 2017), anti-inflammatory (Zhang et al., 2021),

and other pharmacological activities, and has a certain

therapeutic effect on autoimmune diseases (Efferth and Oesch,

2021). This example of the isolation and characterization of

artemisinin draws on the appreciation of historical and

traditional knowledge. And allowed for the optimization of

methods to facilitate the extraction of artemisinin now widely

used in the treatment of malaria.

FIGURE 1
The chemical structures of Artemisinin.
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Advances in analytical chemistry and organic synthetic

routes, extraction and separation techniques have allowed for

new approaches to be used by natural product chemistry that give

higher extraction efficiency and greater yields. For example,

carnosic acid and rosmarinic acid from rosemary were

obtained by supercritical fluid extraction (Lefebvre et al.,

2021), and brassin from Caesalpinia sappan was separated by

high-speed countercurrent chromatography (He et al., 2020).

Artificial synthesis and structural
modification

On occasion, researchers are faced with the problem that they

are unable to obtain plant tissues in large quantities for the

extraction of molecules of interest or that traditional extraction

approaches are not efficient enough to obtain compounds at

usable levels. Therefore, by the middle of the 19th century,

synthetic organic chemistry provided an alternative route to

obtaining natural products, albeit via a synthetic chemical

means. This is exemplified by the breakthrough in production

of the first synthetic drug, chloral hydrate (Jones, 2011). This

breakthrough spawned a new era in drug development and paved

the way for the production of other biological active molecules

with the capacity to produce molecules on an industrial scale

(Crane and Gademann, 2016).

Aspirin, also known as acetylsalicylic acid, exerts an anti-

inflammatory effect by inhibiting the production of

prostaglandins and thromboxanes in mammalian cells and

tissues, and is widely prescribed as an anti-inflammatory, pain

relief and fever reducing medication (Vane, 1971; Montinari

et al., 2019). It is one of the most widely used chemically

synthesized drugs in the world (Montinari et al., 2019).

Interestingly, the origin of aspirin can be traced back

3,500 years ago to the use of willow bark as an ancient pain

reliever and antipyretic drug. The active ingredient salicin is now

chemically synthesized (Mann, 2000; Montinari et al., 2019).

Salicin and other natural derivatives offer examples of how

synthetic approaches can be used to im-prove on the original

molecule. In many instances, therapeutics are developed through

different structural modifications to reduce toxicity, or to

improve the physicochemical traits of compounds such as

poor water solubility; this affording better candidate drugs

(Yao et al., 2017; Solís-Cruz et al., 2021). Chemically

synthesized salicylates are known to cause nausea, stomach

irritation and ringing in the ears as side effects. Therefore, to

solve this problem, sodium salicylate was modified using acetyl

chloride to synthesize acetylsalicylic acid, more commonly

known commercially as aspirin (Figure 2) (Montinari et al.,

2019; Valgimigli, 2019). This simple modification reduced

some of the side-effects attributed to this compound. Aspirin

was patented in the United States in 1900, and it was successfully

marketed 4 years later. The use of synthetic routes of production

show that this approach can have advantages over traditional

methods of extraction from plant tissues. To date, asprin is the

best-selling drug in the world (Montinari et al., 2019; Valgimigli,

2019), that is mainly used as an anti-platelet drug to prevent

cardiovascular and cerebrovascular diseases, such as myocardial

infarction, thrombosis, and cerebral apoplexy (Desborough and

Keeling, 2017).

Other natural products are also worthy of mention. The

quinoline alkaloid, camptothecin is highly cytotoxic and was first

isolated from the bark and branches of Camptotheca acuminata

in China (Figure 3). Camptothecin has significant antitumor

properties and was approved in 1970 for the treatment of gastric

cancer, bladder cancer and some leukemias (Wall et al., 1966;

Chen and Liu, 1994; Khaiwa et al., 2021).

While camptothecin has a wide range of applications, it is

limited due to its poor water solubility, fast hydrolysis rate, high

toxicity and issues relating to drug resistance (Li et al., 2006; Li

et al., 2017). In order to improve the anticancer efficacy and

safety of camptothecin, a series of analogs were synthesized using

structural modification (Venditto and Simanek, 2010; Khaiwa

et al., 2021). On the basis of retaining the key active structure of

camptothecin, chemical modifications focused on changes to key

functional groups (Martino et al., 2017). For example, the

FIGURE 2
The chemical structures of Aspirin.

FIGURE 3
The chemical structures of Camptothecin.
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quinoline ring in the original structure can be opened to convert

the molecule into a corresponding ring-opened sodium salt, so as

to improve the solubility, and to aid its use in intravenous

administration (Ulukan and Swaan, 2002; Martino et al.,

2017). Moreover, if the modifications are made on the

quinoline ring, the anti-cancer activity can be retained

without increasing the cytotoxicity of the molecule. In parallel,

by increasing the number of carbon chains in the quinoline ring it

is possible to increases lipid solubility and stability in plasma (Liu

et al., 2015). Lastly, the hydrolysis of the lactone ring in vivo

reduces the anticancer activity of camptothecin, by reducing

intramolecular hydrogen bond prevents hydrolysis from

occurring (Martino et al., 2017).

To date, camptothecin has been used as a structural template

for the synthesis of other derivatives namely topotecan,

irinotecan and homocamptothecin respectively. Both

topotecan and irinotecan have FDA-approval and are both

water-soluble derivatives used in the treatment of some

clinical cancers (Winterfeldt et al., 1975; Thomas et al., 2004).

Topotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]

carbonyloxycamptothecin) contains a basic amine side chain,

which makes it easy to form an ammonium salt and improves

water solubility. Topotecan is widely used clinically to treat

ovarian cancer and small lung cancer (Liu et al., 2015;

Martino et al., 2017). Similarly, irinotecan (9-

[(dimethylamino)methyl]-10-hydroxy-camptothecin) is a

carbamate analogue of camptothecin, and has enhanced water

solubility that is attributed to the presence of an alkaline side

chain. Interestingly, irinotecan can be hydrolyzed into

metabolites with strong anti-tumor activity in vivo, and this

drug is currently used in the treatment of rectal cancer (Martino

et al., 2017). Collectively, camptothecin is a good example of how

structural modification of natural products can be used to

manipulate the physicochemical properties of a molecule. On

the basis of retaining the original active skeleton, through

structural modification, better solubility, greater stability and

enhanced anticancer activity can be achieved.

Drug delivery

As discussed, structural modification of natural products can

improve solubility, chemical stability, resistance to metabolism,

and to enhance the ability of a drug to cross the blood-brain

barrier (Chen et al., 2015; Yao et al., 2017). Occasionally,

structural modification of target drug molecules fails to alter

bioavailability or to reduce drug toxicity. In this scenario, other

strategies are needed to improve and manage the delivery of

drugs to cells and tissues. In the last decade, novel drug delivery

systems have become popular and include various nano-carriers

(Erdoğar et al., 2018; Patra et al., 2018), lipid agents (Efendy

Goon et al., 2019), and transdermal delivery systems (Patil and

Saraogi, 2014). At present, nanocarriers are one of the most

robust delivery systems used in drug research to deliver

encapsulate drugs (Wong et al., 2020; Solís-Cruz et al., 2021).

The natural product, paclitaxel, is a secondary metabolite

produced by the genus Taxus, and was first isolated from the

Pacific yew in 1971 (Figure 4). Due to its strong anticancer

activity, it was approved for use by the FDA in 1993 for the

treatment of various cancers, such as breast cancer, Ovarian, and

lung cancer (Wani et al., 1971; Cragg, 1998; Gallego-Jara et al.,

2020). Unfortunately, members of the genus Taxus are slow

growing species, with plants often taking 200 years to reach

an appreciable size viz. 40 feet in height. At this size, following

harvest, only 0.5 g of paclitaxel could be feasibly extracted from

plant tissues. To place this into some context, to treat a single

patient requires 2 g of paclitaxel, the equivalent of four mature

yew trees. As a result, the supply of paclitaxel was greatly

restricted in the early years of its clinical use (Alqahtani et al.,

2019; Gallego-Jara et al., 2020). However, as patient demand for

paclitaxel grew, new developments were needed to meet the

growing demand for this drug. This droves research to identify

alternative paclitaxel production methods, including total syn-

thetic routes, semi-synthesis, and microbial engineering

(Gallego-Jara et al., 2020). Currently, the most commonly

used methods of production are semi-synthetic methods

(Kumar et al., 2019).

While paclitaxel has strong anticancer activity, its use is made

challenging due to its hydrophobic properties and low solubility

in water (Bernabeu et al., 2017; Gallego-Jara et al., 2020). To solve

this problem, polyoxyethylene castor oil, Cremphor EL (CrEL),

and ethanol delivery systems are being developed as novel drug

carrier systems. Other approaches are also been considered to

facilitate parenteral administration and to reduce adverse

reactions like severe allergic reactions (Gelderblom et al.,

2001). Currently, albumin-bound paclitaxel (nab-paclitaxel) a

nano-delivery approaches have been developed. Nab-paclitaxel,

FIGURE 4
The chemical structures of Paclitaxel.
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is a formulation that utilises nanoparticles as a carrier without the

need for CrEL. Nano-particles are ap-proximately 130 nm in size,

and allow for intravenous infusion (Petrelli et al., 2010).

Compared with traditional paclitaxel, nab-paclitaxel has

reduced side-effects that is largely attributed to the lack of

CrEL. This means that higher doses of paclitaxel can be

delivered with shorter infusion duration (Gradishar, 2006). In

2005, nab-paclitaxel was approved by FDA for the treatment of

metastatic breast cancer (Kundranda and Niu, 2015).

Paclitaxel is a natural product with potent anti-tumor

activity. In recent years, a variety of methods have been

developed to replace traditional extraction protocols, that

circumvent the demand for large batches of raw materials. In

addition, by adopting nanotechnology delivery approaches,

problems of poor water solubility, low bioavailability, and

toxicity have been resolved. These advances have become

important in the development of clinical first-line treatment of

some cancers by delivering anti-cancer drugs in a more refined

manner.

Herb leonuri and the identification
and characterization of leonurine

Stories relating to the development of other natural products

are equally as fascinating as that of asprin, camptothecin, and

paclitaxel.Herb leonuri, commonly known as “Yi-Mu-Cao”, is an

annual or biennial herb of the lamiaceae family. The plant is

native to parts of China, Central Europe, Scandinavia, and

Russia, is now naturalized in Japan, Java, Malaysia, and North

America (Zhu et al., 2018). According to the Flora of China, H.

leonuri has a squarish stem, which is clad in short trichome hairs,

and is often purplish in coloration especially near the nodes. The

opposite leaves have serrated margins and are palmately lobed

with long petioles, basal leaves are wedge-shaped with three

points while the upper left have three to five. They are slightly

hairs above and greyish beneath, and flowers appear in leaf axils

on the upper part of the plant and have three-lobed bracts. The

calyx of each flower is bell-shaped and has five lobes, and the

corolla is irregular and eight to 12 mm in length. The flowers are

pink to lavender, usually with a hairy lower lip. There are four

protruding stamens, two short and two long, with one pistil, and

the fruit has four-chambers (Figure 5) (Wojtyniak et al., 2013).

According to the record of “Shen Nong’sMateriaMedica”,H.

Leonuri has a pungent taste, and is bitter. The plant is widely used

to promote blood circulation, to manage and regulate

menstruation, to aid hydration, reducing swelling, clearing

heat, and to aid detoxifying (Miao et al., 2019). H. Leonuri, as

its name is” a beneficial herb for mothers” (Miao et al., 2019), and

is considered as a traditional herbal medicine. Other use for this

plant includes the treatment of gynecological diseases, irregular

menstruation, dysmenorrhea, lochia, edema, oliguria, and Sores

(Li et al., 2020). Since 1990, it also has been listed in the

Pharmacopoeia of the People’s Republic of China, in which

many kinds of traditional Chinese medicine prescription

contain this plant species. To date, several active compounds

have been identified in tissues and extracts of H. leonuri

including various alkaloids, flavonoids, diterpenes, iridoid

glycosides, sterols, peptides, phenylpropanoids, and phenolic

FIGURE 5
The plant diagram of Herb Leonuri.

FIGURE 6
The chemical structures of four alkaloids from Herb Leonuri.
(A) The chemical structures of leonurine. (B) The chemical
structures of stachydrine. (C) The chemical structures of betaine.
(D) The chemical structures of trigonelline.
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glycosides (Li et al., 2020). Alkaloids are the most important class

of active ingredients in this plant, and have become the focus of

much research (Zhang et al., 2018). Indeed, four alkaloids have

been isolated and characterized in the tissues of this plant

namely, leonurine, stachydrine, betaine, and trigonelline,

respectively (Figure 6). The pharmacological effects of H.

leonuri are mainly attributed to the presence of leonurine

(Fiskum et al., 2004; Liu X. et al., 2010; Li et al., 2020), a

compound present in levels equivalent to 0.02%–0.12% fresh

weight (Liu et al., 2013; Huang et al., 2021).

Isolation and purification aspects of
leonurine

Leonurine was first isolated from the plant H. Leonuri in

1930, and other alkaloid compounds such as stachydine,

betaine, and trigonelline were also isolated. There are

various approaches for extracting, isolating, and purifying

leonurine from the plant. As early as 1977, Yeung et al.

ground and impregnated 5 L of acid methanol (0.1%, v/v)

per kilogram of dried plants to obtain a methanol extract of

leonurine, and then used alumina column and dextran G-25

column, eluted with a gradient of methanol to 2% acetic

acid-methanol, and finally isolated 50 mg/kg of leonurine

(Yeung et al., 1977). In 2004, Chao et al. reported the use of

ethyl acetate in a Soxhlet extractor to decolorize H. Leonuri

and ethanol ultrasonic extraction. The total alkaloids in 2 g

crude drug powder accounted for 0.3%, of which stachydine

accounted for 0.1–0.2% and accounted for 0.01–0.05% (Zhi

et al., 2004). In 2010, Chen et al. reported a method with a

high recovery rate, Chen et al. extracted 350 ml of 95%

ethanol per 100 g of dry plants for 2 h each, repeated

3 times, and finally obtained 0.15 mg/g of leonurine

(Chen et al., 2010). In 2012, Kuchta et al. published a

high-performance liquid chromatography method. Kuchta

et al. used 120 ml of boiling water to extract 6 g of the plant

powder under reflux for 1 h and fixed it with a special

octadecyl-bonded stationary phase and an acetonitrile/

water gradient as fluidity yielded approximately 3 mg of

leonurine (Kuchta et al., 2012). In 2017, Jiang et al. used

a two-phase system of ethyl acetate-n-butanol-water (3:2:5)

as high-speed countercurrent chromatography to obtain

68 mg of leonurine from 2.48 g of the plant crude extract,

and the purity is about 96.2% (Jiang, 2017). In the same year,

Cao et al. successfully developed an acidic ionic liquid

ultrasonic-assisted extraction method. Cao et al. mixed

1 g of dried plants powder with 20 ml of a 1 mol/L

[HMIM][HSO4] aqueous solution, ultrasonicated, and

filtered, which could be extracted 0.136‰ of leonurine

from plants within 30 min (Cao et al., 2018). This method

not only greatly shortens the extraction time, but also

reduces the use of organic reagents.

Structural elucidation and analysis of
leonurine

In the past, the traditional identification method of leonurine

was to use reverse silica gel thin layer chromatography plate

(60 F254) and MeOH:CH2Cl2:NH3 25% (8:2:3) as mobile phase,

under 154 nm UV lamp, leonurine was identified with the Rf

value of 0.31 (Kuchta et al., 2012). Nowadays, the identification of

leonurine relies more on HPLC,MS, and NMR. Chen et al. used a

Acquity UPLC BEH C18 reversed-phase column (100 mm ×

2.1 mm) with 1.7 μm spherical porous particles and methanol-

ammonium formate (pH = 4.0) as the mobile phase at a flow rate

of 0.2 ml/min separation, the maximum absorption peak area of

leonurine was detected at 277 nm. Further, under the conditions

of the ESI model and typical background source pressure read by

ion meter of 1.2 × 10–5 Torr, the capillary temperature of 250 °C,

electrospray needle voltage of 4 kV, and drying gas of nitrogen,

finally, leonurine was obtained with m/z of 321 and ion fragment

m/z of 259, 181, and 114 (Chen et al., 2010). At the same time, Xie

et al. also used an Agilent Edlipse Plus C18 (100 mm × 2.1 mm,

3.5 μm) reversed-phase column and methanol–0.1% formic acid

solution (20:80, 0.2 ml/min) as the mobile phase. In positive

electrospray ionization interface and multiple reaction

monitoring modes, m/z 312.2→181.1 was determined to be

leonurine (Xie et al., 2015). Li et al. used diphenhydramine as

the internal standard on an Agilent ZORBAX Eclipse XDB-C18

column (150 mm × 4.6 mm, 5 μm) and a methanol-water

mixture containing 0.1% formic acid as the mobile phase with

0.6 ml/min of flow rate was obtained at the retention time of

6.43 min. Furthermore, leonurine was also determined by m/z of

312.2→181.1 under the reaction monitoring (MRM) mode of

multiple transitions for mass spectrometry analysis, which used

an Agilent 1,200 series HPLC system and an Agilent 6,410 triple

quadrupole mass spectrometer equipped with an electrospray

ionization (ESI) source. This method detected leonurine and

stachydrine in rat plasma, their lower limits of quantitation were

0.895 ng/ml and 0.287 ng/ml, respectively. The linear

relationship coefficient with the calibration curve containing

the internal standard exceeded 0.99 (Li et al., 2013).

Artificial synthesis of leonurine

In a similar scenario to that described for paclitaxel, plant-

derived leonurine limits its availability for use in research or in

the clinical due to it occurring at low levels in plant tissues. While

traditional separation and extraction methods do yield leonurine

with higher purity (Deng et al., 2013; Cao et al., 2018), the

amounts obtained are often low. Therefore, organic synthesis

approaches are being employed to produce greater quantities of

leonurine.

The synthetic route used in the production of leonurine

involves the preparation of the intermediary leucine urea,
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from succinic acid via the Gabriel reaction. This product is then

reacted with S-methyl isothiourea sulfate to form leonurine

(Cheng et al., 1979). This approach offers a simple method of

production although the raw materials are rather expensive. This

method has now been superseded using an optimized method

developed in the laboratory of Zhu Yizhun at the University of

Macau (Figure 7). The production of leonurine can now be

achieved at low cost, and in high yield using S-methylisothiourea

and 4-amino-1-butanol in a multistep synthesis. The compounds

are protected using Boc anhydride to obtain an intermediate (D),

and the phenolic hydroxyl group of caryophyllic acid acetic

anhydride is used to obtain another key intermediate (F).

Both (D) and (F) intermediates are further condensed to

obtain a final intermediate (H), which is then deprotected

under acidic conditions, to obtain leonurine (Cheng et al.,

1979). This method produces large quantities of leonurine of

high-purity and offers new sources of this compound for use in

research or for clinical application.

Pharmacological effects of leonurine

In mammalian models, leonurine is reported to promote

blood circulation and overcome blood stasis (Miao et al., 2019),

these properties are similar to the anticoagulant and anti-

inflammatory effects of other traditional Chinese medicines

(Deng et al., 1988). The anticoagulant effects have been

reported to reduce the formation of thrombosis, reduce the

risk of cardiovascular and cerebrovascular diseases such as

atherosclerosis and myocardial infarction (Poredos et al., 2020;

Alkarithi et al., 2021). This aroused the authors interest in

leonurine and its potential use in cardiovascular and

cerebrovascular diseases (Poredos et al., 2020; Alkarithi et al.,

2021; Huang et al., 2021).

Cardiovascular disease is a complex multifactorial set of

conditions with high mortality rate globally (Bozkurt et al.,

2021). Long-term studies have shown that extracts of mother-

wort have cardioprotective effect and can improve cardiovascular

diseases, such as in models of atherosclerosis, myocardial

infarction, and myocardial ischemia. In parallel, studies using

purified leonurine are beginning to explore the efficacy of this

compound in several clinical trials for the treatment of

cardiovascular diseases. Indeed, atherosclerosis is the

pathological basis of most serious cardiovascular diseases such

as myocardial infarction and thrombosis, coupled with

dyslipidemia; a key pathogenic risk factor linked to

atherosclerosis. At present, the clinical treatment of

atherosclerosis is largely based on the use of statins, but

several side effects occur with this class of medication viz.

impacts on muscle and severe liver function impairment

(Suguro et al., 2018; Bozkurt et al., 2021). However, in the

future other alternatives derived from natural products could

be developed like leonurine. Leonurine has no apparent side-

effects or adverse reactions when tested in various models and is

effective at reducing atherosclerotic plaque formation, and

attenuating atherosclerotic lesions by modulating

FIGURE 7
The chemical synthesis route of leonurine. RT, room temperature. Ac2O, acetic anhydride. Boc, tert-butoxycarbony group. (A) S-methyl-
isothiourea. (B) 4-Amino-1-butanol. (C) N-(4-Hydroxybutyl). (D) Boc-protected N-(4-Hydroxybutyl)guanidine. (E) Caryophyllic acide. (F) 4-
Acetoxy-3,5-dimethoxybenzoic acid. (G) Boc-protected 4-[(Aminoiminomethyl)amino]butyl 4-(acetyloxy)-3,5-dimethoxybenzoate. (H) Boc-
protected leonurine.
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inflammatory and oxidative stress pathways (Zhang et al., 2012).

The pharmacological mechanism responsible for leonurine

action to-ward inflammation and oxidative stress are complex

are under investigation. Research by us and other groups, show

that leonurine promotes cholesterol efflux by regulating the

Pparγ/Lxrα signaling pathway, and attenuates the formation

of atherosclerosis (Jiang et al., 2017). Moreover, leonurine not

only reduced the occurrence of inflammatory response by

inhibiting the activation of NF-κB (Liu et al., 2012), but also

enhanced stress defenses in tissues including the activities of

catalase (CAT), superoxide dismutase (SOD), glutathione

peroxidase (GPx), and glutathione (GSH) levels to regulate

oxidative stress (Zhang et al., 2012).

In addition to atherosclerosis, leonurine also improves

myocardial infarction, an ischemic heart disease associated

with cardiac damage and apoptosis. Leonurine protects

cardiac function after myocardial infarction by increasing

the viability of hypoxia-injured cardiomyocytes (Liu et al.,

2009), by activating the PI3K/AKT/GSK3β signaling pathway

(Xu et al., 2018), reducing the expression of pro-apoptotic

genes including Bax and Bcl-2, and by inhibiting cell apoptosis

(Liu et al., 2009). Similarly, leonurine also prevents cardiac

fibrosis and cardiac fibroblast activation following myocardial

infarction by regulating the Nox4-ROS pathway (Liu et al.,

2013) and attenuate myocardial fibrosis after myocardial

infarction by up-regulating miR-29a-3p. Combined these

bioactive properties exerting cardio-protective effects in

mammalian systems (Wang et al., 2021). More recently, a

clinical phase I study has reported that leonurine alter the

composition of intestinal microflora, and up-regulates the

biosynthesis of adenosylcobalamin (AdoCbl). In turn, these

actions promoted the conversion of homocysteine to

methionine, reducing the levels of this proatherogenic

sulfur amino acid (Liao et al., 2021).

Other research has shown leonurine to have significant

therapeutic effects on diseases associated with the central

nervous system including stroke, Alzheimer’s dis-ease,

Parkinson’s disease, and depression syndrome (Huang et al.,

2021). In the near future, clinical trials are being planned to assess

leonurine in the treatment of central nervous system diseases.

Stroke is one of the main types of cerebrovascular diseases seen in

the clinic, that causes damage to brain tissues caused by cerebral

ischemia and hypoxia (Kuriakose and Xiao, 2020). Research has

shown that leonurine induces the antioxidant response by

activating nuclear factor erythrocyte 2-related factor 2 (Nrf2),

and upregulates the expression of vascular endothelial growth

factor (VEGF) in neurons, astrocytes, and endothelial cells.

Collectively, this prevents brain tissue ischemic injury (Xie

et al., 2019). Moreover, leonurine was also shown to improve

mitochondrial ultrastructure, to regulated mitochondrial

function, and inhibited ATP synthesis, thereby exerting

neuroprotective effects (Qi et al., 2010). Furthermore,

researchers have shown that leonurine protects the integrity of

the blood-brain barrier, and prevents stroke by regulating the

HDAC4/NOX4/MMP-9 pathway (Zhang et al., 2017). In other

neurological conditions like Alzheimer’s disease, Parkinson’s

disease, and depression, leonurine likely acts by inhibiting

neuro-inflammation. In other neurological conditions,

leonurine promotes maturation of oligodendrocytes and

enhancing the myelin sheaths in models of multiple sclerosis

(Jin et al., 2019), inhibits the production of pro-inflammatory

cytokines including interleukin one beta as well as interleukin 6,

inhibits the nuclear factor kappa B signaling pathway (Jia et al.,

2017), and promotes neurite outgrowth and neurotrophic

activity by modulating the GR/SGK1 signaling pathway (Jia

et al., 2017), thereby exerting an antidepressant effect.

Some evidence also points to other potential therapetuc

effects in mammalian systems. Indeed, leonurine can inhibit

PDZ-binding motif (TAZ) expression to regulate Treg/

Th17 balance to alleviate rheumatoid arthritis (Du et al.,

2020), it can inhibit PI3K/Akt/NF-κB signaling pathway to

improve osteoarthritis (Yin and Lei, 2018), and improved

renal fibrosis by inhibiting TGF-β and NF-κB signaling

pathways (Cheng et al., 2015). Other studies show,

leonurine can alleviate endometriosis by inhibiting the

differentiation of regulatory T cells, providing a therapeutic

approach for intractable diseases (Li et al., 2022). Taken

together, this simple alkaloid appears to target multiple

pathways linked to cytoprotection and inflammation in

mammalian systems.

FIGURE 8
The structural modification of leonurine. (A) The chemical
structures of leonurine-cysteine. (B) The chemical structures of
leonurine-aspirin. (C) The chemical structures of leonurine-SPRC.
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Structure-activity relationship

Although leonurine has great cardioprotective effects and has

broad development prospects as a novel cardioprotective agent, it

has certain difficulties in clinical application due to its unique

chemical structure such as the guanidine group (Huang et al.,

2021). Therefore, several medicinal chemists have been inspired

by combination drug studies to study the structural

modifications and structure-activity relationships (SARs) of

leonurine. A study of SARs showed that the cardioprotective

effect of leonurine was essential with butanolamine and

guanidine group, and that the aromatic ring was tolerant to

various substituents (Luo et al., 2020). Currently, the structural

modification of leonurine mainly focuses on the combination

with cysteine (Liu et al., 2011), aspirin (Gao et al., 2016), or

S-propargyl cysteine (SPRC) (Luo et al., 2020) (Figure 8). Based

on cysteine’s regulation of endogenous H2S through the

cystathionine γ-lyase (CSE) pathway, Liu et al. designed a

leonurine-cysteine analog conjugate. Leonurine-cysteine could

modulate hydrogen sulfide production in vivo, enhance

antioxidant activity, and have better anti-myocardial ischemia

effects than leonurine (Liu et al., 2011). On the previous basis, Liu

et al. further synthesized SPRC and combined leonurine and

SPRC. The alkynyl group of SPRC is a strong electron-

withdrawing group, and the carbon atom between the alkynyl

group and the sulfur atom is more easily attacked by nucleophiles

to generate cysteine, further releasing H2S. Leonurine-SPRC is

also easily hydrolyze to release its bioactive substances, such as

anti-oxidative stress and anti-apoptosis, and had effective

cardioprotection against hypoxia-induced myocardial injury

effect (Liu C. et al., 2010). Furthermore, Gao et al. designed a

novel combination of leonurine-aspirin based on the antiplatelet

activity of aspirin. It not only enhances antioxidant activity and

protects cell membrane integrity, but also inhibits pro-

inflammatory mediators for more efficient cardioprotection

(Gao et al., 2016). So far, all of the novel compounds are

more cardioprotective than either compound alone. Therefore,

it is necessary to use leonurine as the parent nucleus to modify its

structure to develop new novel drugs for cardioprotection.

Conclusion and prospects

The current review summarizes some of the historical

breakthroughs made using classical approaches to drugs

discovery. In this instance, the natural products such as

paclitaxel, artemisinin, aspirin, and camptothecin have been

described. We also introduce, some of the work on the

alkaloid, leonurine. Leonurine, is a novel natural product

source, that is currently in development as a potential drug

candidate. Work systematically summarized its development

in recent times, including the plant origin, traditional

therapeutic effects, chemical synthesis process, and rich

pharmacological activities. Leonurine has attracted worldwide

attention due to it having significant protective effects in the

cardiovascular and neurological systems in mammals. Indeed,

leonurine is now in the clinical trial stages of assessment. It is

likely that this molecule, will become another example of how

natural products can be exploited in modern day drug discovery

programs. Hopefully, this series of stories will inspire new ideas

for the development of natural products as drug candidates.
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Acorane-type sesquiterpenes comprise a unique class of natural products with

a range of pharmaceutical effects. Genome sequencing and gene annotation,

along with qRT-PCR detection, demonstrate that the deep-sea derived

Penicillium bilaiae F-28 fungus shows potential to produce acorane

sesquiterpenes. Chromatographic manipulation resulted in the isolation of

20 acorane sesquiterpenes from the large-scale fermented fungal strain.

Their structures were established by the interpretation of spectroscopic

data, together with X-ray diffraction, chemical conversion, and ECD data for

configurational assignments. A total of 18 new sesquiterpenes, namely,

bilaiaeacorenols A–R (1–18), were identified. Bilaiaeacorenols A and B

represent structurally unique tricyclic acoranes. Compound 18 exhibited

efficient reduction against NO production in LPS-induced BV-2

macrophages in a dose-dependent manner, and it abolished LPS-induced

NF-κB in the nucleus of BV-2 microglial cells. In addition, marked reductions

of iNOS and COX-2 in protein and mRNA levels were observed. This study

extends the chemical diversity of acorane-type sesquiterpenoids and suggests

that compound 18 is a promising lead for anti-neuroinflammation.

KEYWORDS

fungus, Penicillium bilaiae, sesquiterpene, bilaiaeacorenols A–R, structure elucidation,
anti-neuroinflammation

Introduction

Acorane-type sesquiterpenes feature a spiro[4.5]decane core with an isopropyl unit at

C-1 and dimethyl substitution at C-4 and C-8, which markedly differs from other types of

the sesquiterpene family (Liu et al., 2015; Zhang et al., 2017; Guo et al., 2020). Hitherto,

less than 30 acorane-based sesquiterpenes have been reported from plants and

microorganisms. Acrorans in plants are characteristic of the volatile metabolites

which play crucial roles as biocontrol and biostimulant agents and are also considered

the chemotaxonomic markers of the plant (Zhang et al., 2020). Biogenetically, acrorans

are synthesized from farnesyl diphosphate (FPP) as a common precursor by catalysis
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using sesquiterpene synthases, of which EfCAS in the plant

catalyzes the cyclization of FFP to afford a spiro[4.5]decane

core such as eupho-acorenols A and B (Zhu et al., 2021).

Enzymatic catalysis to generate the acorane core in fungi is

also documented (Bian et al., 2018). Due to the unique

molecular scaffolds, acrorans exhibit a wide range of

bioactivities. Chermebilaene A and its hydrolyzed product

from a marine-derived fungus show significant activity against

pathogenic bacteria (Meng et al., 2020), daphneaines from a plant

show inhibitory effects against nitric oxide (NO) production in

lipopolysaccharide (LPS)-induced RAW 264.7 macrophages

(Guo et al., 2020), and rhodocoranes possess various cytotoxic

and antifungal effects (Sandargo et al., 2019).

Experiment

General experimental procedures

Optical rotations were recorded on an AUTOPOL III

Automatic Polarimeter, and IR spectra were performed on a

Thermo Nicolet Nexus 470 FT-IR spectrometer. NMR spectra

were measured on a Bruker Avance-400 NMR spectrometer with

TMS as the internal standard. HRESIMS data were recorded on a

Bruker APEX IV 70 eV FT-MS spectrometer. ESIMS spectra

were detected on a Finnigan MAT-95 mass spectrometer. Silica

gel (200–300 mesh) and HF254 silica gel for used for TLC were

purchased from Qingdao Marine Chemistry Co., Ltd., while

Sephadex LH-20 (18–110 μm; Pharmacia Co., Ltd.) and ODS

(50 μm, YMC,Milford, MA) were used for separation. HPLCwas

performed on an Alltech instrument (426-HPLC pump)

equipped with a UV detector. X-ray data were collected on a

Bruker SMART APEX-II DUO instrument. Dulbecco’s modified

Eagle’s medium (DMEM) and fetal bovine serum (FBS) were

purchased from HyClone (Waltham, United States). 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

and lipopolysaccharide (LPS) (Escherichia coli 055: B5) were

supplied by Sigma Chemical Co., (St Louis, MO, United States).

Griess reagent (ExCell Bio) and primary antibodies were supplied

by Cell Signaling Technology (Danvers, United States).

Fungal material and fermentation

The fungal strain Penicillium bilaiae F-28 was collected from

deep-sea sediment (GPS 27.90 W, 6.43 S, depth of 5,610 m) in the

South Atlantic Ocean. The DNA was collected and amplified by

the ITS primers (ITS4 and ITS5). The ITS sequence (773 bp) was

deposited in GenBank (accession number LN901118.1). Based

on the BLAST search, the fungal strain was identical to P. bilaiae.

Then, fermentation was performed in rice (80 g for each,

120 Fernbach flasks, 500 ml) with distilled H2O (80 ml for

each), which was allowed to soak overnight. Each flask was

seeded with 2.0 ml of the spore inoculum (107/ml) and

incubated at 25°C for 35 days. The EtOAc solvent was used

for the extraction of the fermented material.

Genome sequencing and analysis

Genome sequencing of P. bilaiae F-28 was detected by using

an Illumina HiSeq 2000 system. The sequence was constructed

on SPAdes version 3.5.0 (http://cab.spbu.ru/software/spades/),

generating 160 scaffolds (ca. 36.7 Mb). Gene annotation was

undertaken by Prokka (https://github.com/tseemann/prokka).

Analysis of the genome sequence by anti-SMASH and

correlation revealed nine isoprenoid biosyn-C1 superfamily

terpenoid cyclase genes, which were then compared and

annotated to the protein sequences in NCBI.

Quantitative RT-PCR for terpenoid cyclase
genes

The expression levels of nine terpenoid cyclase genes were

detected by qRT-PCR. The total RNA of P. bilaiae F-28 in the rice

culture medium was obtained. The synthesis of cDNA was

TABLE 1 Inhibitory effects of 1–20 against NO production in LPS-
induced BV-2 cells.

No IC50 (μM) CC50 (μM)

1 >10 >100
2 6.1 ± 2.3 >100
3 5.3 ± 1.1 >100
4 7.6 ± 1.2 >100
5 >10 >100
6 >10 >100
7 >10 >100
8 >10 >100
9 3.5 ± 0.1 >100
10 >10 >100
11 8.7 ± 2.1 >100
12 >10 >100
13 0.53 ± 0.47 >100
14 >10 >100
15 3.7 ± 0.1 >100
16 7.5 ± 0.2 >100
17 >10 >100
18 0.5 ± 1.2 >100
19 >10 >100
20 >10 >100
L-NMMA 6.8 ± 4.2 >100

L-NMMA, NG-monomethyl-L-arginine; CC, cell cytotoxicity.
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performed with the guidance of the manufacturer’s instruction

[1 μg of total RNA (20 μl) and TransScriptIIAll-in-One First-

Strand cDNA Synthesis Super Mix (Transgene) for qPCR]. A

measure of 0.4 μl of cDNA, together with the primer (10 μM) and

reverse primer (10 μM), and 10 μl 2× TransStart Top Green

qPCR SuperMix (Transgene) were supplied for RT-PCR in

ddH2O (20 μl). Optimized PCR conditions were 94°C/5 min;

40 cycles of 94°C/20 s; 54°C/20 s; and 72°C/20 s; 72°C/5 min.

Then, 4 μl of 6×DNA Loading buffer was added to the PCR

product, and 8 μl was taken for agarose electrophoresis detection.

The bands were observed under 300 nm UV and photographed.

An internal reference gene is β-actin.

UPLC-electrospray ionization-MS/MS
data and molecular networking

The EtOAc extract of the cultured fungus was analyzed on a

Thermo Vanquish F UPLC system coupled with the Thermo Q

Exactive HF-X mass spectrometer equipped with an electrospray

ionization (ESI) source operating with positive polarity at a mass

range of m/z 50–500 Da. The 0.1 mg/ml MeOH solution was

filtered through a 0.2-mm PTFE syringe filter (Carl Roth) and

then injected (injection volume: 5.0 μl) into the system that was

equipped with an Acquity UPLC HSS T3 column (high-strength

silica C18, 1.8 μm, 100 mm × 2.1 mm i. d., Waters) operating at

40°C. Separation was achieved with a binary LC solvent system

using mobile phase A [99.9% H2O/0.1% formic acid (ULC/MS

grade)] and B [MeCN (ULC/MS grade)], pumped at a rate of

0.3 ml/min with the following gradients: 0–1 min, 100% A;

1–3 min, 100%–95% A; 3–20 min, 95%–0% A; 20–25 min, 0%

A; 25–25.5, 0–100% A; and 25.5–30 min, 100% A. TIC and EIC

spectra were extracted and analyzed on Thermo Xcalibur Qual

Browser software. Instrumental parameters were set as follows:

source voltage 3.5 kV, lens 1 voltage −10 V, capillary temperature

320°C, gate lens voltage −40 V, capillary voltage 40 V, and tube

lens voltage 100 V. The CID parameters were set as follows: CE at

20% of the maximum and an activation time of 20 ms. Tandem

mass spectra arising from UPLC-MS/MS were annotated in the

Advanced Mass Spectral Database (https://www.mzcloud.org)

and analyzed by Compound Discoverer 3.1.0.305 software.

Subsequently, UPLC-MS/MS data were further analyzed using

the GNPS platform (http://gnps.ucsd.edu). The MS/MS data

were converted to mzXML format with MS-Convert and then

uploaded on the GNPS. Parameters for molecular network

generation were set as the precursor ion mass tolerance of 0.

05 Da, product ion tolerance of 0.05 Da, and removing fragment

ions below 10 counts from the MS/MS spectra. Molecular

networks were generated using four minimum matched peaks

and a cosine score of 0.70. Edges between two nodes were kept in

the network if each of the nodes appeared in each other’s

respective top 10 most similar nodes. The maximum size of a

molecular family was set to 100, and the lowest scoring edges

were removed frommolecular families until the molecular family

size was below this threshold. The spectra in the network were

then searched against GNPS spectral libraries. The library spectra

were filtered in the same manner as the input data. All matches

kept between the network spectra and library spectra were

required to have a score above 0.7 and at least six matched

peaks. Data were visualized by Cytoscape 3.8.0 software.

Extraction and isolation

The fermented fungus was extracted by EtOAc (3 L × 2 L),

which was concentrated under reduced pressure to obtain the

residue (38 g). The EtOAc extract was partitioned between

MeOH-H2O (1:10) and petroleum ether (PE), and the MeOH

layer was collected. The MeOH fraction (20 g) was

chromatographed upon a silica gel (200–300 mesh) vacuum

liquid column and eluted using CH2Cl2-MeOH (from 15:1 to

0:1, v/v) to collect nine fractions (F1–F9). The 1HNMR spectra of

F3 and F5 fractions showed the resonances featured terpene

analogs. F3 (0.32 g) was purified by an RP-C18 column with a

mobile phase of MeOH-H2O (55:45, v/v) to yield

adametacorenol A (160 mg). F5 (0.85 g) was fractionated upon

an RP-C18 column and eluted using MeOH-H2O (1:4, v/v) to

yield subfractions of F51–F56. F51 (260 mg) was subjected to a

Sephadex LH-20 column and eluted with MeOH to purify

compounds 8 (5.6 mg) and 16 (3.3 mg). F52 (90 mg) was

fractionated using a semipreparative RP-C18 HPLC column

with MeCN-H2O (30:70, v/v) as a mobile phase to yield

compounds 6 (1.2 mg), 5 (1.0 mg), 13 (2 mg), and 18

(1.6 mg). F53 (42 mg) followed the same protocol as for

F52 on a semipreparative RP-C18 HPLC column with MeOH-

H2O (1:3, v/v) to obtain compounds 17 (0.8 mg), 14 (0.6 mg), 11

(1.2 mg), and 7 (1.0 mg). F54 (400 mg) was separated using a

semipreparative RP-C18 HPLC column withMeCN-H2O (1:1, v/

v) to collect compounds 9 (1 mg), 1 (1.1 mg), 10 (0.8 mg), 4

(4 mg), 3 (2.5 mg), 15 (4 mg), adametacorenol B (0.8 mg), 12

(1.0 mg), and 2 (3.6 mg).

Compound characterization

Bilaiaeacorenol A (1): colorless monoclinic crystals

(acetone); mp. 106–108°; (α) -120 (c 0.1, MeOH); UV

(MeOH) λmax 202 nm; IR (KBr) νmax 3,306, 2,929, and

1,456 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Tables S3, S5; HRESIMS m/z 275.1623 [M +

Na]+ (calcd for C15H24O3Na, 275.1623) (Supplementary Figures

S1–S9); and Flack parameter: 0.00 (6).

Bilaiaeacorenol B (2): colorless monoclinic crystals (acetone);

mp. 108–110°; (α) -12 (c 0.1, MeOH); UV (MeOH) λmax 200 nm;

IR (KBr) νmax 3,348, 2,923, 1,456, and 1,374 cm−1; 1H and 13C

NMR data (DMSO-d6), see Supplementary Tables S3, S5;
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HRESIMS m/z 253.1801 [M + H]+ (calcd for C15H25O3,

253.1804) (Supplementary Figures S10–S18); and Flack

parameter: 0.05 (9).

Bilaiaeacorenol C (3): colorless oil; [α] -40 (c 0.1, MeOH); UV

(MeOH) λmax 200 nm; IR (KBr) νmax 3,335, 2,932, and

1,679 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Tables S3, S5; and HRESIMS m/z 335.1833 [M

+Na]+(calcd for C17H28O5Na, 335.1834) (Supplementary

Figures S19–S27).

Bilaiaeacorenol D (4): colorless oil; [α] –30 (c 0.1, MeOH);

UV (MeOH) λmax 202 nm; IR (KBr) νmax 3,360, 2,922, 1732,

1,667, 1,385, and 1,249 cm−1; 1H and 13C NMR data (DMSO-d6),

see Supplementary Tables S3, S5; and HRESIMS m/z

319.1888 [M + Na]+ (calcd for C17H28O4Na, 319.1885)

(Supplementary Figures S28–S36).

Bilaiaeacorenol E (5): colorless oil; [α] -8 (c 0.1, MeOH); UV

(MeOH) λmax 202 nm; IR (KBr) νmax 3358, 1,648, and

1,321 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Tables S3, S5; and HRESIMS m/z

219.1749 [M–HO]+(calcd for C15H23O2, 219.1749)

(Supplementary Figures S37–S45).

Bilaiaeacorenol F (6): colorless oil; [α] -20 (c 0.1, MeOH); UV

(MeOH) λmax 201 nm; IR (KBr) νmax 3,400 and 1,388 cm−1; 1H

and 13C NMR data (DMSO-d6), see Supplementary Tables S3, S5;

and HRESIMS m/z 237.1852 [M + H]+ (calcd for C15H25O2,

237.1855) (Supplementary Figures S46–S54).

Bilaiaeacorenol G (7): colorless oil; [α] -20 (c 0.1, MeOH);

UV (MeOH) λmax 201 nm; IR (KBr) νmax 3,312 and 1,643 cm−1;
1H and 13C NMR data (DMSO-d6), see Supplementary Tables S3,

S5; and HRESIMS m/z 275.1621 [M + Na]+ (calcd for

C15H24O3Na, 275.1623) (Supplementary Figures S55–S63).

Bilaiaeacorenol H (8): colorless monoclinic crystals

(acetone); mp. 113–115°; [α] -20 (c 0.1, MeOH); UV (MeOH)

λmax 201 nm; IR (KBr) νmax 3,312 and 1,643 cm−1; 1H and 13C

NMR data (DMSO-d6), see Supplementary Tables S4, S5;

HRESIMS m/z 275.1625 [M + Na]+(calcd for C15H24O3Na,

275.1623) (Supplementary Figures S64–S72); and Flack

parameter: 0.01 (10).

Bilaiaeacorenol I (9): colorless oil; [α] -40 (c 0.1, MeOH); UV

(MeOH) λmax 201 nm; IR (KBr) νmax 3,375, 1710, 1,374, and

1,260 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Tables S4, S5; and HRESIMS m/z 317.1724 [M

+ Na]+(calcd for C17H26O4Na, 317.1729) (Supplementary

Figures S73–S81).

Bilaiaeacorenol J (10): colorless oil; [α] -20 (c 0.1, MeOH);

UV (MeOH) λmax 201 nm; IR (KBr) νmax 3,380, 2,928, 2,872,

1734, 1375, and 1247 cm−1; 1H and 13C NMR data (DMSO-d6),

see Supplementary Tables S4, S5; and HRESIMS m/z

317.1723 [M + Na]+(calcd for C17 H26O4Na, 317.1729)

(Supplementary Figures S82–S90).

Bilaiaeacorenol K (11): colorless oil; [α] -20 (c 0.1, MeOH);

UV (MeOH) λmax 200 nm; IR (KBr) νmax 3,365, 2,925, 2,872,

1,680, 1,456, and 1,374 cm−1; 1H and 13C NMR data (DMSO-d6),

see Supplementary Tables S4, S5; and HRESIMS m/z

253.1817 [M + H] +(calcd for C15H25O3, 253.1804)

(Supplementary Figures S91–S99).

Bilaiaeacorenol L (12): colorless oil; [α] -40 (c 0.1, MeOH);

UV (MeOH) λmax 200 nm; IR (KBr) νmax 3,335, 2,932, and

1,679 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Table S6; and HRESIMS m/z 253.1806 [M -

H]- (calcd for C15 H25O3, 253.1804) (Supplementary Figures

S100–S108).

Bilaiaeacorenol M (13): colorless oil; [α] +8 (c 0.1, MeOH);

UV (MeOH) λmax 201 nm; IR (KBr) νmax 3,366, 2,931, 1732, and

1,246 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Table S6; and HRESIMS m/z 335.1833 [M +

Na]+(calcd for C17H28O4Na, 335.1834) (Supplementary Figures

S109–S117).

Bilaiaeacorenol N (14): colorless oil; [α] +12 (c 0.1, MeOH);

UV (MeOH) λmax 200 nm; IR (KBr) νmax 3,355, 2,929, 1,679,

1,447, and 1,204 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Table S6; and HRESIMS m/z 255.1959 [M

+H]+(calcd for C15H27O3, 255.1960) (Supplementary Figures

S118–S126).

Bilaiaeacorenol O (15): colorless monoclinic crystals

(acetone); mp. 108–110°; [α] +12 (c 0.1, MeOH); UV (MeOH)

λmax 201 nm; IR (KBr) νmax 3,420, 2,924, 2,854, 1732, 1,456, and

1,247 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Tables S4, S5; HRESIMS m/z 335.1833 [M +

Na]+ (calcd for C17 H28O5Na, 335.1834); and Flack parameter:

–0.03 (11) (Supplementary Figures S127–S135).

Bilaiaeacorenol P (16): colorless oil; [α] +10 (c 0.1, MeOH);

UV (MeOH) λmax 201 nm; IR (KBr) νmax 3,365, 2,924, 2,870

1,435, and 1,374 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Tables S4, S5; and HRESIMS m/z 293.1723 [M +

Na]+(calcd for C15H26O4Na, 293.1729) (Supplementary Figures

S136–S144).

Bilaiaeacorenol Q (17): colorless oil; [α] -20 (c 0.1, MeOH);

UV (MeOH) λmax 199 nm; IR (KBr) νmax 3,420, 1,648, and

1,387 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Table S7; and HRESIMS m/z 253.1801 [M +

H]+ (calcd for C15H27O4, 253.1804) (Supplementary Figures

S145–S153).

Bilaiaeacorenol R (18): colorless oil; [α] -4 (c 0.1, MeOH); UV

(MeOH) λmax 200 nm; IR (KBr) νmax 3,354, 2,925, and

1,679 cm−1; 1H and 13C NMR data (DMSO-d6), see

Supplementary Table S7; and HRESIMS m/z 267.1592 [M

-H]- (calcd for C15H23O4, 267.1596) (Supplementary Figures

S154–S162).

Hydrolysis

Analog 9 (1.0 mg) was dissolved in 1.0 mlMeOH, and 2.4 mg

K2CO3 was added to stir at room temperature overnight.

Subsequently, 1.0 ml H2O was added to the MeOH solution,
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which was extracted by 3 ml EtOAc. The EtOAc solution was

dried under vacuum, and the hydrolyzed product was then

detected by a 1H NMR spectrum (DMSO-d6) and optical

rotation. Adametacorenols A and B, and analogs 13 and 15,

respectively, were hydrolyzed in the same manner as for

compound 9.

Hydrolyzed product of compound 9: [α] -21 (c 0.05, MeOH),
1H NMR data, see Supplementary Figure S169.

Hydrolyzed product of compound 13: [α] +14 (c 0.05,

MeOH), 1H NMR data, see Supplementary Figure S170.

Hydrolyzed product of compound 15: [α] +16 (c 0.1, MeOH),
1H NMR data, see Supplementary Figure S171.

Hydrolyzed product of adametacorenol A: [α] -10 (c 0.1,

MeOH), 1H NMR data, see Supplementary Figure S172.

Hydrolyzed product of adametacorenol B: [α] -22 (c 0.1,

MeOH), 1H NMR data, see Supplementary Figure S173.

ECD calculation

By MacroModel 10.8.011 software using the MMFF94S

force field with 2.5 kcal/mol energy cutoff, mixed torsional/

low-mode conformational searches were carried out by

SYBYL-X 2.0. Geometry re-optimizations of the resultant

conformers (ωB97X/TZVP with the PCM solvent model for

MeOH) and TDDFT calculations were performed with

Gaussian 09 using B3LYP, the TZVP basis set, and the

same solvent model, as in the DFT optimization step at the

b3lyp/6–31 + g(d) level with the solvent of MeOH. First,

30 electronic excitations involving energies, oscillator

strengths, and rotational strengths (velocity) were

calculated by the TDDFT methodology at the b3lyp/6–31 +

g (d,p) level. ECD data were simulated by the overlapping

Gaussian function, and the simulated spectra of conformers

were averaged on the basis of the Boltzmann distribution

theory and the relative Gibbs free energy (ΔG). The Merck

molecular force field (MMFF) conformational search resulted

in initial conformers, which were re-optimized at the ωB97X/
TZVP PCM/MeOH level, yielding low-energy conformers

over 1% Boltzmann population.

Crystal data

Crystal data on compounds 1, 2, 8, and 15 were collected

with Cu Kα radiation at T = 100.01 (10) K on a Rigaku Oxford

Diffraction XtaLAB Synergy four-circle diffractometer,

and the data were collected, as shown in Supplementary

Figures S164–S168 and Supplementary Tables S8, S38.

Crystallographic data have been deposited at the Cambridge

Crystallographic Data Center as supplementary publications

(CCDC 2211217 for 1, CCDC 2211219 for 2, CCDC

2064519 for 8, and CCDC 2211218 for 15).

Cell culture and cell viability assay

Murine BV-2 microglial cells were obtained from the Cell

Culture Center of Institute of Basic Medical Sciences, Chinese

Academy of Medical Sciences, and the cells were cultured in

Dulbecco’s modified Eagle’s medium (Gibco) together with 10%

(v/v) fetal bovine serum (HyClone) within a 5% CO2 incubator at

37°C. The MTT method was utilized to detect the cytotoxicity of

the compound to read the absorbance at 570 nm using a

microplate spectrophotometer (Thermo Scientifics,

United States).

Measurement of nitric oxide production

In the presence or absence of LPS (1 μg/ml), murine BV-2

microglial cells were treated with compounds with different

concentrations for 24 h. The same volume of Griess reagent

was added to the supernatant of culture media. The Griess

method was used to determine the NO levels under the

absorbance at 540 nm measured using a microplate

spectrophotometer (Thermo Scientifics, United States). Based

on the established calibration curve of standard sodium nitrite

solutions, the content of nitrite was calculated.

Western blot

In 12-well plates, BV-2 cells were seeded to incubate with LPS

(1 μg/ml) for 1 h. Each compound was incubated with BV-2 cells

for 16 h. Phenylmethylsulfonyl fluoride-protease inhibitor

cocktail as the cell extraction buffer was used to lyse cells.

Nuclear and cytosolic extraction kits were applied for the

collection of the cytosolic and nuclear extracts. Upon SDS-

PAGE, proteins were purified and transferred to PVDF

membranes (Millipore). After treatment with 5% (W/V) skim

milk in TBST (Tris-buffered saline with 0.1% Tween 20) for 1 h,

the membranes were maintained at 4°C overnight. The

membrane was washed and then incubated with a secondary

antibody at 20°C for 1 h. The target proteins were visualized

under a chemiluminescence (ECL) detection system, and the

relative optical densities were analyzed by Image Master™ 2D

Elite software.

Immunofluorescence assay

Prior to LPS induction, BV-2 cells were pretreated by the

compound (2 μM) in DMSO. Cells were seeded in glass

coverslips, which were then treated with cold 4%

paraformaldehyde and 0.2% Triton X-100 (in PBS).

Subsequently, 5% BSA (in PBS) was added to the coverslips to

stay for 1 h, and cells were incubated with NF-κB p65, a primary

Frontiers in Chemistry frontiersin.org05

Zhang et al. 10.3389/fchem.2022.1036212

42

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1036212


antibody, at 4°C overnight. After adding labeled Alexa Fluor 594

(Proteintech) and the secondary antibody for 1 h, cells were

stained with DAPI, and the washed coverslips were sealed.

Images were detected using a fluorescence microscope

(OLYMPUS IX83).

Results and discussion

With the aim to discover chemical diversity with

pharmaceutical bioactivity, a deep-sea derived fungus, P.

bilaiae F28, was selected for chemical examination with the

help of bioinformatics and chemo-informative data, which

imply that this fungal strain is capable of producing diverse

and novel acorane sesquiterpenes. Anti-SMASH genome

sequence analysis revealed a total of nine terpene synthases

(Supplementary Table S1) in the F28 strain, and qRT-PCR

detection showed five terpene genes obviously expressed

(Figure 1A). Gene annotation (Supplementary Table S2)

revealed gene g10525 with a high homologous identity to

ffsc6, a terpene cyclase for the catalysis of acorane core

formation (Brock et al., 2013). These findings suggested that

the F28 strain shows potential to produce acorane-related

sesquiterpenes. To validate whether the terpene genes are

really activated in culture conditions, an LC-MS/MS molecular

networking approach was applied to detect the chemical

metabolites of the cultured fungus by the GNPS database.

Based on the LC-MS/MS spectral similarity, molecular

networking categorizes the chemical metabolites with similar

scaffolds into clusters (Figure 1B). Analyses of MS/MS data in the

nodes of clusters annotated a profile of acorane-type analogs,

indicating the activation of terpene genes in the culture medium.

Chromatographic separation of the EtOAc extract of the large-

scale cultured fungus resulted in the isolation of 20 acorane

sesquiterpenes, including 18 undescribed acoranes, namely,

bilaiacorenol A–R (1–18) (Figure 2), along with

adametacorenols A (19) and B (20). Herein, the structural

determination of new sesquiterpenes and their anti-

neuroinflammation are described.

Structure elucidation of new acoranes

Bilaiacorenol A (1), a colorless amorphous powder, has a

molecular formula of C15H24O3, as established by HRESIMS and

NMR data. Its 13C NMR data (Supplementary Table S5) showed

15 carbon resonances, which were classified into 13 sp3 and two

sp2 carbons for a double bond by the APT and HSQC data. The

sp3 resonances involved three methyl, four methylene, four

methine, and two nonprotonated carbons. The COSY

FIGURE 1
Genome characterization and molecular networks. (A) qRT-PCR detection of terpene genes. (B) GNPS-based molecular clusters.
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correlations from H-2 (δH 4.02, ddt, J = 2.0, 4.8, and 10.0 Hz) to

H-1 (δH 1.76, d, J = 10.0 Hz), OH-2 (δH 5.12, d, J = 4.8 Hz), and

H2-3 (δH 1.00, 2.43), and from H-4 (δH 1.73, ddq, J = 4.8, 7.2, and

8.0 Hz) to H2-3 and H3-14 (δH 0.92, d, J = 7.2 Hz) along with the

HMBC correlations fromC-5 (δC 40.0) to H-1, H-2, H2-3, and H-

4, established a 4-methyl-2-hydroxycyclopentane unit. In

addition, a cyclohexene unit was elucidated by the COSY

relationships between H2-6 (δH 1.42, 1.57)/H-7 (δH 3.90, J =

2.0, 3.2 Hz) and H-9 (δH 5.38 br)/H2-10 (δH 1.87, 2.31) in

association with the HMBC correlations from H3-15 (δH

1.72 brs) to C-7 (δC 69.2), C-8 (δC 135.8), and C-9 (δC 125.4)

and from H2-6 to C-5 and C-10. These findings demonstrated an

acorane core in which a spiro-fusion of the two moieties at C-5

with a methyl location at C-8 was characterized. The

substitutions of the dioxygenated isopropyl group at C-1 (δC
53.1) were deduced by the COSY relationship between H2-12 (δH
3.16, 3.18) and OH-12 (δH 4.83, t, J = 5.0 Hz) together with the

HMBC correlations from H3-13 (δH 1.12, s) to C-1, C-11 (δC
77.2) and C-12 (δC 72.5). The formation of an ether bond across

C-7 (δC 69.2) and C-11 was evident from the HMBC correlation

FIGURE 2
Chemical structures of bilaiaeacorenol A–R (1–18).

FIGURE 3
Key COSY and HMBC correlations of 1–3, 5, 8, 11–12, 14, and 17–18.
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between H-7 and C-11 (Figure 3). The NOE correlations between

H-1/H3-14 andH-2/H3-13 suggested a cofacial relationship of H-

2 with H-4, which was in the opposite face toward H-1. The NOE

correlations between H3-14 and H2-10 established the spiro-

chirality center C-5, for which H2-10 was spatially approximated

to H3-14. Additional NOE correlations between H2-12/H-1 and

H3-13/H-7 (Figure 4) established the relative configurations of C-

7 and C-11, in which H2-12 was spatially approximated to H-1.

The X-ray diffraction data for the single crystal of 1 using the

Flack parameter [0.00 (6)] assigned the absolute configurations as

1R, 2R, 4S, 5S, 7R, and 11S (Figure 5).

Bilaiacorenol B (2) was obtained as a colorless amorphous

crystal, and its molecular formula (C15H24O3) was determined on

the basis of the HRESIMS data. The NMR data on compound 2

(Supplementary Tables S3, S5) resembled those of 1, and the 2D

NMR data established a corane-type nucleus. The distinction was

observed in the NMR data for the cyclohexene ring and the side

chain at C-1 (δC 60.0). The connection of C-7 to C-11 (δC 69.4)

via a methylene unit instead of an ether bond was demonstrated

by the COSY relationship between H-7 (δH 2.28, ddt, J = 2.0, 4.0,

and 9.0 Hz) and H2-12 (δH 1.34, 1.80), and hydroxylation at C-11

was clarified by the HMBC correlations from OH-11 (δH 3.91, s)

FIGURE 4
Key NOE correlations of 1–4, 12, 14, and 17–18.
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to C-1, C-11 (δC 69.4), C-12 (δC 41.4), and C-13 (δC 30.3). In

addition, a hydroxymethyl group at C-8 (δC 144.0) was deduced

by the COSY coupling between H2-15 (δH 3.78, 3.79) and OH-15

(δH 4.57, t, J = 5.0 Hz) together with the HMBC correlations of

H2-15 to C-7 (δC 29.3), C-8, and C-9 (δC 118.3). Similar to the

NOE data on 1, the correlations from H3-14 to H-1 and H2-

10 and between H-2 and H3-13 suggested the same relative

configurations at C-2 and C-4 and the spiro-chirality center

C-5 of both compounds. The NOE correlations between OH-

11/H-2 and H2-12/H-1 (Figure 4) established the spatial

closeness among these groups. Based on the data on a single

crystal of the Cu/Kα X-ray diffraction experiment, a Flack

parameter of –0.05 (9) allowed an unequivocal assignment of

the 1R, 2R, 4S, 5R, 7S, and 11R configurations (Figure 5).

Bilaiacorenol C (3) was found to have a molecular formula

of C17H28O5, according to the HRESIMS data. Its NMR data

(Supplementary Tables S3, S5) were characteristic of a corane-

type sesquiterpene, related to those of compound 1. The COSY

and HMBC correlations established a planar structure, which

was closely related to co-isolated adametacorenol A (Liu et al.,

2015). However, the side chain at C-1 (δC 54.7) was assigned to

a 1,2-dihydroxyisopropane moiety on the basis of the COSY

relationship between H2-12 (δH 2.99, 3.07) and OH-12 (δH
4.57, t, J = 5.0 Hz) in association with the HMBC correlations

from H3-13 (δH 1.21 s) and OH-11 (δH 4.09, s) to C-11 (δC
73.3) and C-12 (δC 69.6), and the correlations of C-1 to H3-

12 and OH-11. The NOE correlations between H-1 and H3-

14 and between H-2 and H2-12 were indicative of the same

relative configuration for the cyclopentane ring in both

compounds 1 and 3. Additional NOE correlations

between H3-14 (δH 0.97, d, J = 7.2 Hz) and H-9 (δH
3.90 ddd, J = 4.4, 5.0, 6.5 Hz) and between H-4 and H-6b

fixed the spiro-form of the cyclohexene ring, in which H-9 was

spatially approximated to H3-14. If H-1 is arbitrarily assigned

to R* configuration, the NOE correlations between H-1 and

H2-12, from OH-11 to H-2 and H2-6, and between H2-12 and

H-2 (Figure 4) suggested an irrotational C1-C11 bond and

11R* configuration. The experimental ECD data were similar

to those calculated for (1R, 2R, 4S, 5S, 9S, 11R)-3

(Supplementary Figure S163), suggesting the R

configurations for C-1, C-2, and C-11, and the S

configurations for C-4, C-5, and C-9.

The NMR and MS data (Supplementary Tables S3, S5)

revealed bilaiacorenol D (4) to be a homolog of compound

FIGURE 5
Structures of X-ray diffractions of 1–2, 8, and 15.
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3 with the distinction for the side chain at C-1 (δC 49.4). The

COSY correlations from H-11 (δH 1.62, m) to H3-13 (δH 0.86, d,

J = 7.0 Hz), H-1 (δH 2.00, dd, J = 3.2, 9.0), and H2-12 (δH 3.16,

3.23), and the extension of coupling between H2-12 and OH-12

(δH 4.54, t, J = 5.0 Hz) identified a hydroxylated isopropane unit

at C-1. The HMBC correlations from H3-13 and H2-12 to C-1

and C-11 (δC 33.0) supported compound 4 as a 11-

dehydroxylated analog of 3. The similar NOE data on

compounds 3 and 4, such as the correlations between H-2/H-

4, H3-14/H-9, and H3-14/H-1, suggested the same relative

configurations in the backbone. The JH-1/H-11 value (3.2 Hz) in

association with the NOE correlations fromH3-13 to H-2 and H-

6b, from H2-12 to H-1 and H2-6b, and between H-11 and H-2,

also suggested the unrotational C-1/C-11 bond. The similar ECD

data (Supplementary Figure S163) suggested that the absolute

configuration of compounds 3 and 4 was identical, with the

exception of C-11, which was suggested to be the S configuration

with the help of NOE data.

Bilaiacorenol E (5) was found to have a molecular formula

C15H24O2 on the basis of the HRESIMS data. Interpretation of

the 2DNMR data clarified the planar structure of compound 5 to

be identical to a 2-deacetylated adametacorenol A. The similar

NOE data between compound 5 and adametacorenol A in

association with the comparable experimental ECD data to

those calculated for a model molecule of (1R, 2R, 4S, 5S, 9S)-

5 agreed compound 5 possessing the same absolute configuration

as the known homolog. Alkaline hydrolysis of adametacorenol A

derived a product whose NMR data (Supplementary Figure S172)

and optical rotation were consistent with those of compound 5,

supporting the structural assignment.

Analyses of the 2D NMR and HRESIMS data assigned the

planar structure of bilaiacorenol F (6) and compound 5 to be

identical. The NOE correlations between H-1 (δH 2.17, d, J =

5.6 Hz)/H3-14 (δH 0.85, d, J = 6.8 Hz) and H3-13 (δH 1.64, s)/H-2

(δH 4.00, ddt, J = 4.8, 5.6, and 10.8 Hz) suggested the same relative

configuration of ring A in both compounds 5 and 6. The

distinction was attributed to the NOE interactions between

rings A and B, where the NOE correlation between H3-14 and

H2-10 (δH 1.87, br) and the latter protons coupling to olefinic

proton H-9 (δH 5.34, brs) suggested the double bond shifted from

C-7/C-8 of 5 to C-8/C-9 of 6. Additional NOE correlation

between H3-13 and H-7 (δH 3.95) supported the structural

assignment.

The 1D and 2D NMR data in association with the HRESIMS

data identified bilaiacorenol G (7) as a 2-deacetylated

adametacorenol B, and it was supported by the chemical

conversion of adametacorenol B to compound 7 under

alkaline catalysis.

Bilaiacorenol H (8) has a molecular formula of C15H24O3, as

established by the HRESIMS data, containing an oxygen atom

more than that of compound 5. Comparison of the NMR data

(Supplementary Tables S4, S5) revealed the structure of

compound 8 closely related to compound 5, and the

cyclopentane moiety of both compounds was identical. With

regard to the cyclohexene ring, two hydroxyl groups resided at C-

6 and C-9, respectively, were recognized by the COSY

correlations between H-6 (δH 3.83, brd, J = 6.0 Hz)/OH-6 (δH
4.50, d, J = 6.0 Hz) and H-9 (δH 3.97, ddd, J = 6.0, 6.8, and

10.0 Hz)/OH-9 (δH 4.56, d, J = 6.8 Hz) along with the HMBC

correlations from OH-6 to C-5 (δC 52.5), C-6 (δC 68.9), and C-7

(δC 129.1) and from OH-9 to C-8 (δC 136.4), C-9 (δC 66.6), and

C-10 (δC 39.5). These data allowed the location of a double bond

at C-7/C-8. The similar NOE relationships in ring A of

compounds 5 and 8 suggested the same relative configuration

for the relevant protons of both compounds. Additional NOE

correlations between H3-14/H-9 and H3-13/H-6 (Figure 4)

reflected a trans-orientation between H-6 and H-9. The

comparable experimental ECD data to those calculated for

the model molecule of (1R, 2R, 4S, 5R, 6R, 9S)-8

(Supplementary Figure S163) clarified the absolute

configuration of compound 8.

Bilaiacorenol I (9) was determined as a 2-acetylated analog of

compound 8 based on the comparable NMR data, except for the

presence of an acetyl group in compound 9. The location of the

acetyoxy group at C-2 was evident from the HMBC correlation

between H-2 and the acetyl carbonyl carbon. The similar NOE

correlations suggested that both compounds have the same

relative configuration. The absolute configuration of

compound 9 was the same as that of compound 8 based on

the alkaline hydrolysis of compound 9 to produce a hydrolyzed

product, whose 1H NMR data (Supplementary Figure S169) and

specific rotation ([α]20D -21) were almost identical to those of compound 8.

The molecular formula (C17H26O4) of bilaiacorenol J (10)

was determined by the HRESIMS data, containing an oxygen

atom more than that of adametacorenol A. Its NMR data

(Supplementary Tables S4, S5) resembled those of

adametacorenol A, with the only difference for the

substitution at C-13. A hydroxymethylene unit to replace a

methyl group of the latter was recognized by the COSY

correlation between H2-13 (δH 3.78, 3.86) and OH-13 (δH
4.90, t, J = 5.6 Hz) together with the HMBC correlations

from H2-13 to the olefinic carbons C-11 (δC 147.4) and C-12

(δC 109.7), as well as C-1 (δC 52.7). The similar NOE

interactions suggested the same relative configuration for

both compound 10 and adametacorenol A. The comparable

experimental ECD data with those calculated for (1S, 2R, 4S, 5S,

7S)-10 reflected the same absolute configuration of both

compound 10 and adametacorenol A (Supplementary Figure

S163).

The molecular formula of bilaiacorenol K (11) was the

same as that of compound 8, as established by the HRESIMS

data. A comparison of the NMR data revealed both

compounds 8 and 11 share the partial structure of the

cyclopentane unit. In regard to the cyclohexene unit, the

olefinic coupling between H-6 (δH 5.28, d, J = 10.0 Hz) and

H-7 (δH 5.27, d, J = 10.0 Hz) resided a double bond at C-6 (δC
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SCHEME 1
Biogenetic relationships of bilaiaeacorenols.

SCHEME 2
Biogenetic formation of the stereospecific centers of acorane cores. (A): 1R,4R-form, (B): 1S,4S-form, (C): 1S,4R-form, (D): 1R,4S-form.
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131.6)/C-7 (δC 133.3), and the HMBC correlations of both H3-

15 (δH 0.96, s) and OH-8 (δH 4.33, s) to C-7, C-8 (δC 71.7), and

C-9 (δC 71.8) along with the COSY correlations from H-9 (δH
3.57, ddd, J = 2.4, 6.0, and 9.2 Hz) to H2-10 (δH 1.43, 1.64) and

OH-9 (δH 4.47, d, J = 6.0 Hz) located the hydroxyl groups at C-

8 and C-9 and a methyl substitution at C-8. Thus, compound

11 is likely derived from compound 8 by hydroxyl migration

from C-6 to C-8, following olefinic transformation. The NOE

correlations between H-1/H3-14 and H-2/H3-13 suggested the

same relative configuration of the cyclopentane moiety for

both compounds 8 and 11. The JH-9/H-10a value (9.2 Hz) was

indicative of an axial orientation of H-9. The spiro-chirality

center C-5 as the case of compound 8 was evident from the

NOE correlations between H3-14 and H-9 and between H3-

13 and H-6. The cis-orientation of H-9 with OH-8 was

identified by their NOE interaction.

Corane-type sesquiterpenes 12–18 are structurally

characteristic of a spiro-fusion of cyclopentane with a

cyclohexane unit instead of a cyclohexene unit. The

distinction was attributed to the different substitution at the

backbone.

The 2D NMR data established a corane core of

bilaiacorenol L (12). Apart from ring A, which was

identical to that of compound 11, the NMR data

(Supplementary Table S6) showed two hydroxyl groups in

the cyclohexane unit. The location of hydroxyl groups at C-9

(δC 67.5) and C-15 (δC 57.4) was evident from the COSY

relationships between H-9 (δH 3.70, dt, J = 4.0, 10.0 Hz)/OH-9

(δH 5.00, d, J = 4.0 Hz) and H2-15 (δH 3.29, 3.60)/OH-15 (δH
4.22, t, J = 5.0 Hz) along with the COSY correlations from H-8

FIGURE 6
Analog 18 inhibited the expression of iNOS andCOX-2 in LPS-induced BV-2 cells. Cells were stimulated by 1 μg/mL LPSwith orwithout 18 for 24 h. (A)
The protein expressions o f iNOS treated by different concentrations of 18 were determined byWestern blot assay, (B) the expressions of COX-2 t reated by
different concentrations of 18were determined byWestern blot assay. The data are represented as amean± S.D. from independent experiments performed
in triplicate (*compared with the control, #compared with LPS, */#p < 0.05, **/##p < 0.01, and ***p < 0.001).

FIGURE 7
Ineffective analog 18 to regulate MAPK phosphorylation in
LPS-stimulated BV-2 cells.
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(δH 1.81, m) to H-9 and H2-15. The same relative

configuration of the cyclopentane unit as that of compound

11 was suggested by the similar NOE correlations of the

relevant protons. A chair conformer of the cyclohexane was

recognized by the J values of the protons in cyclohexane. The

NOE interactions from H2-15 to H-6a and H-10a suggested an

axial orientation of the hydroxymethylene unit. As in the case

in compound 11, the NOE correlation between H3-14 and H-9

fixed the relative configuration of the spiro-center C-5, and H-

9 was spatially approximated to H3-14.

The planar structure of bilaiacorenol M (13) was identified as

a 2-acetylated analog of compound 12 on the basis of the

diagnostic 2D NMR data. The NOE data suggested the

relative configuration of the cyclopentane unit to be consistent

with that of compound 12. Like the case of 12, the NOE

interaction between H3-14 and H-9 identified the same spiro-

configuration of both compounds 12 and 13. The JH-7/H-8

(10.0 Hz) value and the NOE correlation between H2-15 and

H-9 suggested a trans axial–axial relationship between H-8 and

H-9, reflecting an equatorial orientation of H2-15. This resulted

in an unshielded C-15 (δC 63.2) of compound 13 comparing that

of compound 12 (δC 57.4).

Diagnostic 2D NMR (Supplementary Table S6) and MS data

identified bilaiacorenol N (14) to be a 2-deacetylated 13, and this

was confirmed by the chemical conversion of compound 13 to

14 under alkaline catalysis.

The molecular formula of bilaiacorenol O (15) was

determined to have an oxygen atom of more than 13, as

provided by the HRESIMS data. The NMR data revealed the

cyclopentane moiety of both compounds 13 and 15 to be

identical. The distinction was attributed to the substitution at

the cyclohexane moiety, where three hydroxyl protons were

observed at OH-7 (δH 4.56, d, J = 2.4 Hz), OH-8 (δH 3.78, s),

and OH-9 (δH 4.08, d, J = 4.4 Hz), which were clarified by the

COSY relationships between H-7 (δH 3.53, ddd, J = 2.4, 3.0, and

3.6 Hz)/OH-7 and H-9 (δH 3.49, ddd, J = 2.0, 4.4, and 10.0 Hz)/

OH-9. The HMBC correlations of H3-15 (δH 1.09, s) and OH-8 to

C-7 (δC 73.9), C-8 (δC 74.0), and C-9 (δC 70.5) further supported

the hydroxyl locations. The JH-9/H-10a (10 Hz) value and the JH7-

H6 values (3.0, 3.6 Hz) reflected an axial H-9 and an equatorial H-

7. The NOE correlation between H-9 and H3-15 suggested the

cofacial relationships of these groups. The remaining NOE data

were similar to those of compound 13. The single-crystal X-ray

diffraction using Cu-Kα radiation (Figure 5) clarified the absolute
configurations of compound 15 to be 1R, 2R, 4S, 5R, 7S, 8R,

and 9S.

Bilaiacorenol P (16) was determined as a 2-deacetylated

15 on the basis of the NMR and MS data. Alkaline hydrolysis

of compound 15 to derive compound 16 supported the structure

assignment.

Bilaiacorenol Q (17) has a molecular formula of

C15H24O3, as established by the HRESIMS data. The 2D

FIGURE 8
Effect of analog 18 on the nuclear translocation of NF-κB p65 in LPS-stimulated BV-2 cells. (A) BV-2 cells were stimulated with LPS (1 μg/ml) in
the absence or presence of analog 18 (2 μM) for 3 h, followed by detection of the NF-kB p65 subunit translocation by immunocytochemistry. NF-κB
p65 is shown in green, and DNA (DAPI nuclear staining) is shown in blue. Bars: 50 μm. (B)BV-2 cells were stimulatedwith LPS (1 μg/ml) in the absence
or presence of 18 (2 μM) for 3 h, and NF-kB p65 levels in the nucleus and cytoplasm were determined by Western blot. Histone H3 and β-actin
were used as endogenous controls for nuclear and cytoplasmic proteins, respectively. Values represent the mean ± SD of three independent
experiments (*compared with the control, #compared with LPS, */#p < 0.05, **/##p < 0.01, and ***p < 0.001).
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NMR data provided the partial structure regarding the

cyclopentane unit to be identical to that of compound 16.

The distinction was found in the cyclohexane moiety, where a

ketone group at C-9 (δC 211.2) was evident from the HMBC

correlations from H3-15 (δH 0.93, d, J = 6.0 Hz) to C-7 (δC
71.4), C-8 (δC 52.5), and C-9. The JH-7/H-6a and JH-7/H-8 values

(10 Hz) were characteristic of a chair conformation of the

cyclohexane ring. The NOE data suggested that both

compounds 17 and 16 have the same relative configuration

for ring A. The NOE interaction between H3-14 (δH 0.89, d, J =

7.2 Hz) and H2-10 (δH 2.22, 2.28) fixed the spiro-orientation,

and the correlations of H-7 (δH 3.37, ddt, J = 4.8, 6.0, 10.0 Hz)

with H3-13 (δH 1.69, s) and H3-15 (δH 0.93, d, J = 6.0 Hz)

assigned the same face of H-7 and H3-15 (Figure 4), and the

former was spatially approximated to H3-13.

Bilaiacorenol R (18) has a molecular formula of C15H24O4, as

determined by the HRESIMS data. The NMR data on compound

18 (Supplementary Table S7) resembled those of compound 14,

indicating structure similarity. The difference was attributed to

the substituent at C-8, where a carboxylic group of compound

18 was found for C-15 (δC 176.3) due to the HMBC correlations

of C-15 to H-8, H-9 and H2-7. The JH-7/H-8 (12 Hz) value and the

similar NOE data suggested that both compounds 14 and 18 have

the same relative configuration.

Compounds 19 and 20 were identical to adametacorenols

A and B by the comparison of their spectroscopic data and the

specific rotations with those reported in the literature (Liu

et al., 2015). Based on the configurational assignments, the

stereogenic centers in ring A regarding ring A of all

analogs are conserved. This can be explained by the

analogs derived from the same acorane precursor. Thus,

the comparison of experimental and calculated ECD data

(Supplementary Figure S163) in association with the NOE

data enables to assign the absolute configurations of the

amorphous analogs.

Biogenetic postulation

Biogenetically, the bisabolyl cation, as derived from farnesyl

diphosphate (FPP), is an intermediate to generate acoradiene

(Citron et al., 2011), which is considered the principal

component to derive an array of acorane-type sesquiterpenes

via various oxidation and rearrangement mechanisms. 2,9-

Dihydroxylation of acoradiene generates compound 5, and

further hydroxylation of compound 5 derives compounds

7 and 8. Acetylation of compounds 5, 7, and 8 affords

adametacorenols A and B, and compound 9. 13-

Hydroxylation of adametacorenol A derives compound 10,

but analog 6 is likely derived from 5 via hydroxyl migration

and olefinic transformation. A similar pathway occurs for the

conversion of compound 8 to 11. Reduction of the double bond

in compound 7 and adametacorenol B affords compounds 12,

13, and 14. Analogs 15 and 16 are assumed to be derived from

adametacorenols A and B via epoxidation and hydrolysis, but

analog 17 is likely derived from epoxidated 5, following

oxidative epoxide cleavage. Oxidation of hydroxymethylene

C-15 in compound 13 converts to 18. Epoxidation of

adametacorenol A at the side chain of ring A, following

epoxide cleavage, derives 3 and 4. Analogs 1 and 2 are

depicted to be derived from 11,12-epoxided 5, followed by

ring fusion (Scheme 1). Since acoradiene is a fungal product

isolated from our fungal strain and other organisms, it is an

intermediate to derive diverse acorane analogs. Hydroxylation

or oxidation at ring B is depicted to occur after the formation of

the bicyclic core. The different C-5 configuration in 5 and 6 is

thus raised by the hydroxylation at C-7 or C-9, respectively,

rather than the induction by different fusion of the bicyclic core.

The putative biogenetic relationships suggested that all isolates

maintain the conserved configurations in ring A due to

compound 5 as the sole precursor.

To provide evidence for the biosynthetic process of these

sesquiterpenes, genome sequencing was conducted, and nine

putative terpenoid synthases (TS) in different locations were

annotated by anti-SMASH analysis (Supplementary Table S2).

Among them, the gene g10525 showed a high identity to Ffsc6,

a terpene cyclase used for the synthesis of acorenols in

ascomycete Fusarium fujikuroi (Brock et al., 2013). Using

heterologous hosts to express g10525 in Aspergillus nidulans

A1145, a number of sesquiterpenes were detected by LC-MS/

MS spectra, and a molecular ion at m/z 204 was consistent

with that of acoradiene. These data supported that the

acorane-type derivatives synthesized in P. bilaiae followed

the similar pathways as other fungal origins reported in the

literature. Notably, corane-type sesquiterpenes from different

fungal species display distinct stereogenic centers regarding

the cyclopentane ring. Theoretically, the cyclization of the

homobisabolyl cation derives four diastereomeric acorenyl

cations (Scheme 2). In Trichoderma strains, the

intermediate B derives tricho-acorenol and relevant analogs

as the main components, which are characteristic of cis-

orientation of the substituents at C-1 and C-4 (Aoyagi

et al., 2008; Citron et al., 2011; Li et al., 2011; Wu et al.,

2011; Zhang et al., 2017). Eupho-acorenols from a plant are

diastereoisomers of tricho-acorenol with trans-orientation of

1,4-substituents, as catalyzed by the sesquiterpene synthase

EfTPS12 (Zhu et al., 2021). The stereogenic assembly pattern

of acorane sesquiterpene from the plant Lysionotus

pauciflorus coincides with those from Trichoderma fungi

but in a different manner from that in the plant Daphne

genkwa (Guo et al., 2020), which assembles the acorane

skeleton through the intermediate C. A basidiomycete

(mushroom)-derived acorane-type sesquiterpenoid

possesses the scaffold (Sandargo et al., 2019) which is likely

constructed by the intermediate A. In this work, bilaiacorenols

are obviously produced from the intermediate D and are
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characteristic of the 1,4-trans-substituted spiro [4,5]decane

core. These findings suggest that the terpene cyclases from

different origins play similar rules to assemble the acorane

core but with a stereospecific selection of precursors, implying

g10525 as a new sesquiterpene synthase. The detailed

functions and catalysis mechanism require further

investigation.

Anti-neuroinflammation effects

In preliminary in vitro bioassay, the inhibition of

lipopolysaccharide (LPS)-reduced nitric oxide (NO)

production in murine BV-2 microglial cells was detected

(Cheng et al., 2011; Mendes et al., 2012). Prior to the

detection, the MTT method was used to test the analogs for

their cytotoxic effects of analogs by counting and analyzing cell

viability. All tested compounds showed no to weak cytotoxicity

due to their IC50 values more than 100 μM (Supplementary

Table S2). At non-toxic concentrations (10 μM), six acorane-

type analogs exhibited potent effects for the reduction of the

LPS-induced NO production (Supplementary Table S2),

showing higher activities than the positive control NG-

monomethyl-L-arginine (L-NMMA), a nitric oxide synthase

(NOS) inhibitor. Analyses of the structures related to activities

suggested analogs with 2-acetylation increasing the activity in

comparison with that for 2-hydroxylated counterparts, such as

8 vs. 9, 13 vs. 14, and 15 vs. 16, indicating the substitution at C-

2 directly affected the activity. Hydroxylation at the

cyclohexane ring also affects the bioactivity, such as analogs

with the triol unit (15 and 16) showed higher effects than those

with diol and mono-hydroxylation. The most active analog

18 with a carboxylic group at C-8 showed more effects than

those with the hydroxymethylene unit at C-8 (Table 1).

The inducible nitric oxide synthase (iNOS) produced the

signaling molecule NO as an inflammatory factor related to

neurodegenerative diseases, and iNOS regulates the NO level

during neuroinflammation (Herbert et al., 2006). Western blot

detection revealed that 18 decreased the iNOS and the other

inflammatory mediator cyclooxygenase-2 (COX-2) levels in

LPS-induced BV-2 cells (Figure 6). The MAPK and NF-kB

signaling pathways are the critical transcription factors which

mediate the expression of pro-inflammatory genes (Lawrence

et al., 2009; DiDonato et al., 2012; Choi et al., 2019). In BV-2

microglial cells, analog 18 slightly affected the

phosphorylation of c-Jun NH2-terminal protein kinase

(JNK), extracellular regulated protein kinases (ERK), and

p38, which play key roles in the MAPK signaling pathway

(Figure 7). However, the immunofluorescence and WB results

revealed that 18 significantly downregulated the expression of

the p65 level in the nucleus of LPS-stimulated BV-2 cells

(Figure 8), suggesting the anti-neuroinflammatory effects of

compound 18 related to the NF-kB signaling pathway.

Conclusion

In this study, the bioinformatics approach in association with

the molecular networking data provides an effective method to

detect the metabolite patterns produced by marine-derived fungi,

and a total of 18 new acorane-type sesquiterpenes are obtained from

the deep-sea-derived fungus P. bilaiae F-28. Although the spiro[4.5]

decane core of analogs from the F-28 strain is similar to that

reported in the literature (Zhang et al., 2020), the distinct

stereogenic centers of the analogs from this fungus to those

derived from plants or the Trichoderma genus suggest the

synthases with distinct stereospecific selections, implying a group

of new synthases in this fungus. Bilaiacorenols A and B are

structurally featured by the unique tricyclic acorane-type

sesquiterpenes in nature. Analog 18 exhibits efficient reduction

against the NO production in LPS-induced BV2 macrophages in

a dose-dependent manner, and it abolished LPS-induced NF-κB in

the nucleus of BV-2 microglial cells, along with the inhibition of

iNOS and COX-2 at cellular levels. This study extends the chemical

diversity of acorane-type sesquiterpenes and demonstrates that

compound 18 shows potential for the development as an anti-

neuroinflammation agent after structure optimization.
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The economical and societal impact of COVID-19 has made the development

of vaccines and drugs to combat SARS-CoV-2 infection a priority. While the

SARS-CoV-2 spike protein has been widely explored as a drug target, the SARS-

CoV-2 helicase (nsp13) does not have any approved medication. The helicase

shares 99.8% similarity with its SARS-CoV-1 homolog and was shown to be

essential for viral replication. This review summarizes and builds on existing

research on inhibitors of SARS-CoV-1 and SARS-CoV-2 helicases. Our analysis

on the toxicity and specificity of these compounds, set the road going forward

for the repurposing of existing drugs and the development of new SARS-CoV-

2 helicase inhibitors.

KEYWORDS

SARS-CoV-2, helicase, nsp13, drug repurposing, small-molecule inhibitors, natural
products, COVID-19

1 Introduction

The global coronavirus disease (COVID-19) pandemic is caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses, named after the

similarity of the viral capsid on microscopy to the solar corona (Author anonymous,

1968), are widespread and can cause mild infection similar to the common cold. In fact, all

four human coronaviruses: HCoV-OC43, HCoV-HKU-1, HCoV-299E, and HCoV-

NL63, are endemic and continuously circulate the human population (Corman et al.,

2018). Three previous coronavirus outbreaks, albeit much smaller than the COVID-19

outbreak, have been reported: SARS-CoV-1, MERS-CoV, and coronavirus HuPn-2018.

Similar to COVID-19, all of these are zoonotic diseases, initially transmitted to humans

via animal hosts (Ye et al., 2020). In contrast to previous outbreaks, COVID-19 has caused

massive disruptions to the lives of virtually every person since the emergence in late 2019.

As of 4 November 2022, COVID-19 has caused 6.60 million deaths globally (Ritchie et al.,

2020). The significant death toll and the impact on society have resulted in large-scale

campaigns to develop vaccines and antivirals to prevent and combat COVID-19.

There should be no doubt about the positive outcomes of this research effort; multiple

vaccines, e.g., AstraZeneca, Moderna, Pfizer/BioNTech, have been developed and
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deployed in many countries. The three vaccines mentioned

all target the SARS-CoV-2 spike protein, either as an mRNA

or inactivated adenovirus vaccine (Dai and Gao, 2021). Concerns

have been raised about the emergence of vaccine-resistant SARS-

CoV-2 variants, most notably the BA.4 and BA.5 omicron

subvariants (Jian et al., 2022). These strains have mutations

in the spike protein, and various sources report higher attack

rates and infectivity for these mutants. Vaccine-produced

antibodies were shown to have less neutralizing potential

against omicron as compared to alpha- and delta variants

(Andrews et al., 2022). Furthermore, vaccines may be less

effective or even dangerous for immunocompromised

individuals (Marra et al., 2022). Moreover, certain individuals

are allergic to components of vaccines (Cabanillas and Novak,

2021), and adverse events are being reported (Karlstad et al.,

2022). Lastly, with the likelihood of the virus to become, and

remain, endemic (Lavine et al., 2021), and given the range of

confirmed animal reservoirs of SARS-CoV-2 infection (Prince

et al., 2021), a variety of strategies to combat SARS-CoV-

2 infection are required.

FIGURE 1
Binding sites of SARS-CoV-Nsp13 helicase. Panel (A) Structure of SARS-CoV-Nsp13 helicase (PDB ID: 7NN0) (Newman et al., 2021). V570, the
single different residue from SARS Helicase (I570) is highlighted in red. The residues constituting the ATP binding site are shown in the enlarged
window boundwith AMP-PNP, an AMP analog. Panel (B) Possible binding pockets fromNsp13 fragment screening. Reproduced fromNewman et al.,
2021 under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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1.1 Current antivirals

In the early days of the pandemic, there were no approved

antiviral compounds against SARS-CoV-2 (World Health

Organization, 2020). This changed in October 2020, when

remdesivir (brand name: Veklury; Gilead Sciences) was

granted emergency use authorization (EUA) by the US Food

and Drug Administration (FDA) for treatment of hospitalized

patients (World Health Organization 2020). Remdesivir was the

only approved medicine until the EUA of molnupiravir (Merck

and Ridgeback) and paxlovid (Pfizer) in December 2021 (U.S.

Food and Drug Administration, 2021).

The approved drugs have different mechanisms of action;

remdesivir, a nucleotide analogue, acts by stalling SARS-CoV-

2 RNA-dependent RNA polymerase (RdRp) (Kokic et al., 2021).

Remdesivir exhibited conflicting impact in studies, showing

improvement in time to recovery in the initial study cited

during authorization (Beigel et al., 2020), but later studies

showed either no statistically significant effect (Wang et al.,

2020), or a statistically significant but clinically minor effect

(Spinner et al., 2020). Concerns over renal toxicity (Gérard et al.,

2021;Wu et al., 2022), as well as a cardiac safety signal (Rafaniello

et al., 2021) challenge the safety of the drug. The second drug

under EUA, molnupiravir, was approved based on a study

showing a reduction in hospitalization and death (Jayk Bernal

et al., 2022). Molnupiravir, in addition to remdesivir, targets

RNA-dependent RNA polymerase and increases the frequency of

mutations during SARS-CoV-2 replication (Kabinger et al.,

2021). Concerningly, it has also been shown to induce

mutations in mammalian cells (Zhou et al., 2021). The

mechanism of action of molnupiravir is concerning as it has a

possibility of driving new variants (Kabinger et al., 2021;

Hashemian et al., 2022), as a result, its use is cautioned by the

World Health Organization (World Health Organization, 2022).

The third approved antiviral, paxlovid acts as a 3CL protease

inhibitor. 3CL protease is necessary for viral replication (Marzi

et al., 2022). Paxlovid displays a reasonable safety profile,

although patients often report a “paxlovid rebound” where

there is a resurgence of symptoms, often worse than the initial

bout (Charness et al., 2022). Moreover, drug-drug interactions

have been shown to cause adverse events (Burki, 2022). Drug

resistance is also a concern, as mutations have been characterized

which drastically reduce the effectiveness of paxlovid (Zhou et al.,

2022).

Depending on the drug target, medication is tailored for

different stages in infection. Different proteins can be targeted for

therapy depending on the stage of infection. Compounds

targeting the spike protein will inhibit entry of SARS-CoV-

2 into cells, whereas compounds targeting RNA-dependent

RNA polymerase will inhibit the replication process, but will

not prevent entry into the cell. Therefore, depending on the

clinical course, certain compounds can be used at different stages

of infection. The helicase, being a replication protein, is active in

unwinding the RNA secondary structure so that it can be either

replicated by RNA-dependent RNA polymerase or translated by

the host ribosome.

1.2 Drug repurposing

Responding to emerging and pandemic viral illnesses

requires a multifaceted approach, one strategy is drug

repurposing. Drug repurposing is the use of approved drugs

for novel targets and diseases. First, finding a useful medication

amongst already existing drugs obviates the need to create novel

drugs, thus saving time in disease response. Moreover, the side-

effects of marketed drugs, having undergone clinical trials and

prescribed use, are extensively researched and documented.

Lastly, the manufacturing process is already known, and needs

only to be scaled. Drug repurposing has previously found success,

for example in sildenafil, an angina medication, that was

successfully repurposed for erectile dysfunction as Viagra®
(Pushpakom et al., 2019).

One example of a successfully repurposed and widely

available medication for treatment of COVID-19 is

fluvoxamine, a well-tolerated and selective serotonin reuptake

inhibitor. Fluvoxamine is commonly used as an antidepressant

(Sukhatme et al., 2021). It has been shown to reduce

hospitalization in a large-scale randomized control trial (Reis

et al., 2022). Being a repurposed drug, fluvoxamine, which was

first approved by the FDA in 1994 (trade name: Luvox), has the

advantage of decades of safety data surrounding its use. Unlike

molnupiravir and paxlovid where a treatment course costs

approximately 700 and 500 USD, respectively (Goswami et al.,

2022; Morrison Ponce et al., 2022), fluvoxamine is accessible at

4 USD per course (Wang et al., 2021). Remdesivir is also

expensive at over 2000 USD per 5-day treatment course

(Carta and Conversano, 2021). The price and availability of

drugs is an important consideration, especially considering

that developing nations have far lower vaccination rates than

developed nations (Bollyky et al., 2020). As of 25 July 2022, 73.2%

of EU citizens have completed a full course with an EU-approved

vaccine1 and 55.0% have received at least one booster shot

(Ritchie et al., 2020). For comparison, in Africa 42.7% of

individuals have been vaccinated and only 2.5% have received

at least one booster shot (Ritchie et al., 2020).

Finally, other concerns shape the adoption of a particular

pharmacological compound in response to a global pandemic;

these include intellectual property concerns, current and future

availability, distribution, and (un)known side-effects. Ultimately,

1 i.e., Two doses of Moderna MRNA-1273, two doses of Pfizer-BioNTech
BNT162B2, two doses of Oxford-AstraZeneca ChAdOx1 or a single
dose of Johnson & Johnson Ad26.COV2.S.

Frontiers in Chemistry frontiersin.org03

Halma et al. 10.3389/fchem.2022.1062352

56

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1062352


an effective treatment of COVID-19 is preferred, that is widely

available, inexpensive and without significant toxicity.

1.3 SARS-CoV-2 helicase (nsp13)

Drug repurposing is mostly a phenotypic approach, meaning

that protein target and mechanism of action are often unknown. In

contrast, target-based approaches seek to first identify protein targets

(chemical biology) and to subsequently develop small-molecule

inhibitors (medicinal chemistry) for the target. In principle, every

SARS-CoV-2 protein can be considered a target, but it is preferable

to target essential and/or conserved proteins. A previous review has

already reviewed and postulated the main drug targets for COVID-

19 (Gil et al., 2020), while this report focuses on the helicase of

SARS-CoV-2. The SARS-CoV-2 nsp13 gene encodes a molecular

motor, which is a 5′ to 3′-translocating helicase, belonging to

superfamily 1B. Helicases act on (deoxy)-ribonucleic acid

substrates and are fueled by (deoxy)-nucleotide triphosphates

(Figure 1A). The primary functions of helicases are in DNA

repair, replication, recombination, and transcription.

Nsp13 is one of the most conserved genes in the SARS-CoV-

2 genome, having one of the lowest mutation rates of any of the

essential SARS-CoV-2 proteins (Martin et al., 2021; Newman

et al., 2021). The SARS-CoV-2 helicase differs from the SARS-

CoV-1 helicase by only one amino acid residue, i.e., V570 in

SARS-CoV-2 helicase (Figure 1A, highlighted in red) compared

to I570 in SARS-CoV-1 helicase, allowing drugs discovered for

SARS-CoV-1 to potentially be re-used. Potential binding pockets

of Nsp13 were explored via crystallographic fragment screening

(Figure 1B), presenting a starting point for structure-based drug

discovery (Newman et al., 2021). Moreover, the helicase plays a

critical role in replication of the viral genome (Jia et al., 2019).

The combination of these two argues for the functional

importance of SARS-CoV-2 helicase and makes it an

attractive target for the development of antivirals. This is also

evidenced by an upcoming CACHE challenge2 that aims to

discover new molecules that target SARS-CoV-2 helicase.

The viral helicase is not a new target in drug discovery, for

example the helicases of herpes simplex virus and hepatitis C

virus have been targeted, as reviewed by Shadrick et al. (Shadrick

et al., 2013). More recent reports feature the helicases of

polyomaviruses, Zika virus, and MERS-CoV (Bonafoux et al.,

2016; Kumar et al., 2020; Zaher et al., 2020; Mehyar et al., 2021b).

Additionally, human helicases have also attracted research

interest, and inhibitors for DDX and BLM, among others,

have been reported (Datta and Brosh, 2018). This approach

aims to use small molecule inhibitors to sensitize cancer cells

to chemotherapy and DNA-damaging agents and/or to utilize

specific tumor backgrounds for hypersensitization of tumors to

pharmacological inhibition, a concept which is known as

synthetic lethality (Datta and Brosh, 2018).

2 Main considerations

2.1 Target stability

As previously mentioned, SARS-CoV-2 helicase is among the

most conserved proteins in the SARS-CoV-2 genome (Martin et al.,

2021; Newman et al., 2021). Throughout the pandemic, it has

remained largely stable. Phylogenetic evidence demonstrates

increasing negative, i.e., purifying, selection over time, making it

a stable target (Figure 2A). The development of drug resistance is an

issue that undermines many treatments, most notably anti-biotics.

Under the selection pressure of a drug treatment, the target protein

can mutate such that the compound no longer binds (Richman,

1994; Menéndez-Arias and Richman, 2014). It was evaluated

whether the mutations observed through genomic surveillance of

COVID-19 cases (Kumari et al., 2022) altered the initial protein

sequence (Newman et al., 2021). For a drug to retain effectiveness

over time, the major mutations would not alter binding affinity of

the drug compounds, thus maintaining drug effectiveness against

mutations. Possibly, conservation of structure may enable

production of pan-beta coronaviral inhibitors to guard against

future zoonotic coronaviral outbreaks (Li et al., 2021; Munshi

et al., 2022). This possibility is supported by the low level of

nsp13 genetic variation within beta-coronaviruses, as

demonstrated by the phylogenetic tree shown in Figure 2B.

The technique used here to identify mutations is exploratory,

in that the predicted energetic shift was used as a proxy for

conformational change. It has been assessed whether there are

any changes likely to significantly impact the structural

conformation of SARS-CoV-2 helicase. If a mutation was near

a binding site and significantly shifted the energetic stability of

the protein, it is likely that the mutation alters compound

binding. Selection was determined using the toolkit made

from the GISAID database3, for all SARS-CoV-2 genomes up

to 2 January 2022. In Figure 2C, site selection in terms of fixed-

effects likelihood (FEL) (Kosakovsky Pond and Frost, 2005) is

displayed (blue and red stem plots), FEL is a measure of selection

pressure in phylogenetic trees and is calculated by comparing the

expected number of non-synonymous mutations with the actual

observed rate. In short, observing a higher than expected

frequency of non-synonymous mutations suggests positive

selection, i.e., evolutionary pressure for the protein to change.

Observing fewer than expected non-synonymous mutations is

2 https://cache-challenge.org/competitions/competition-2.
3 https://observablehq,com/@spond/revised-sars-cov-2-analytics-

page.
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evidence of negative purifying selection, whereby mutants are not

likely to survive and reproduce.

Additionally, a color plot depicts the average change in energetic

stability of the protein resulting from the set of possible mutations at

that site (Kwasigroch et al., 2002). Most mutations result in a slight

destabilization of the helicase protein, suggesting a high level of

structural optimization.While thismakes it less likely that the protein

will develop a drug resistant mutation, it is not certain. Residues

wheremutations have a destabilizing effect aremore likely to alter the

helicase structure, which affects the binding of compounds. The

limitation of this approach is the lack of experimental data to support

the generated model. Our assessment shows potentially worrisome

loci for future drug resistance, where there is a confluence of positive

selection and an energetically destabilizing impact (upward stems in

Figure 2C). These sites should be monitored for development of drug

resistance and ideally a drug will either act on a different location, or

the destabilization is significant enough to render the protein non-

functional.

2.2 Current inhibitors: In vitro, in vivo and
in silico assessment

Having established the validity of the helicase as a drug target,

multiple methods can be applied for the discovery of inhibitors. In

silico screening is experimentally less intense, requiring mostly

FIGURE 2
Suitability of the nsp13 protein as a drug target. Panel (A) Time course of selection pressures on SARS-CoV-2 helicase from August 2020 to
January 2022. Blue lines show the extent of negative selection, defined as the number of sites under negative selection normalized by kilobase of
gene length and the internal tree length. Red lines how the positive selection force, defined as the number of positively selected sites with the same
normalization. Over the time history, more sites show negative (purifying) selection, suggesting evolutionary stability. Panel (B) Phylogenetic
tree of the coronavirus family based on nsp13 protein sequences. Legend: alpha-CoV (blue), beta-CoV (black), delta-CoV (red), and gamma-CoV
(green). Within the beta-CoVs, there is high nsp13 conservation shown by the short tree lengths. Given the low variance amongst this clade, it may be
possible that a SARS-CoV-2 nsp13 inhibitor also inhibits the other clade members. Panel (C) Energetics and selection on residues in SARS-CoV-
2 nsp13 helicase. Stem plots show positive (red) or negative (blue) selection, expressed as FEL rate. Color plot shows the average energetic change in
kcal/mol of all mutations at the site.
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computational power. This methodology requires the availability

of an X-ray or cryo-EM structures. The crystal structure for SARS-

CoV-1 helicase was solved in 2019 (Jia et al., 2019), whereas for

SARS-CoV-2 helicase structural information was first published in

2021 (Newman et al., 2021). Earlier in silico research made use of

homology models based on either SARS-CoV-1 or MERS-CoV

helicase to perform molecular modelling studies. Orthogonal to in

silico, is in vitro, the screening of compounds directly on the

protein of interest. This methodology can be low- (1–100),

medium- (100–10.000) or high- (>10.000) throughput,

depending on the equipment used and assay deployed. The

most common in vitro assay performed for helicases is an

ATP-turnover assay, there is, however, a high risk for false

positives, e.g., aggregators or DNA-binders, when running these

experiments (McGovern et al., 2003; Acker and Auld, 2014).

Another common in vitro assay for helicase activity is to

measure the unwound fraction by using a DNA construct with

a double stranded region formed by an annealed oligonucleotide. If

the helicase is active, it will separate the oligonucleotide from the

construct, and a lighter band will show up on the gel. Form the

intensity of this band, the unwound fraction and subsequent

helicase activity can be calculated (Kim and Seo, 2009).

2.2.1 SARS-CoV-1 helicase
The first reports of compounds with SARS-CoV-1 helicase

activity date back to 2005, when Tanner et al., described a group of

adamantane-derived bananins (1-4, Supplementary Table S1,

Supplementary Figure S1) with low micromolar ATPase and

helicase inhibitor activities (Tanner et al., 2005). These

pyridoxal-conjugated trioxa-adamantanes were shown to be

non-competitive inhibitors by DNA- and ATP-competition

assays and did not exhibit inhibitory activity on E. coli DnaB

helicase. To the best of our knowledge, compounds 1-4 have not

been further investigated. Structurally different Ranitidine

Bismuth Citrate (5, Supplementary Table S1) inhibits ATPase

and DNA-duplex unwinding activity, IC50 = 0.3 and 0.6 µM,

respectively (Yang et al., 2007b). Compound 5 is the most

potent from a series of bismuth complexes (Yang et al., 2007a),

whosemechanism of action involves the displacement of Zinc ions

from the ATP-binding site (Yuan et al., 2020). Furthermore,

flavonoids have been shown to inhibit SARS-CoV-1 helicase.

Myricetin (6), baicalein (7), quercetin (8), and scutellarein (9)

all are natural products that inhibit helicase and/or ATPase activity

in the low micromolar range (Lee et al., 2009b; Yu et al., 2012;

Keum et al., 2013). Flavonoids have been ascribed many potential

health benefits, including antineoplastic and antiviral. However,

there have also been multiple reports characterizing flavonoids as

false positives and protein aggregators in biological assays.

Myricetin (6) has been reported to inhibit many other targets

including E. coliDnaB helicase and DNA polymerase (Griep et al.,

2007). The activity of flavonoids on SARS-CoV-1 helicase has

further been validated by the design and synthesis of compounds

10–15 (Lee et al., 2009b; Kim et al., 2011). There is still a

requirement for further experimentation to investigate the

inhibition and selectivity of flavonoids and synthetic analogues

thereof on SARS-CoV-1 helicase. Aryl di-keto acids are derived

from flavonoids, and were also shown to inhibit SARS-CoV-

1 helicase and various other targets, e.g., hepatitis C virus RNA

polymerase (Lee et al., 2009a). Lastly, four compounds (17–20)

have been published but there was no information on related

compounds. SSYA-10–001 (18) has additionally been reported as

an inhibitor of hepatitis C virus RNA polymerase and MERS-CoV

helicase (Adedeji et al., 2012, 2014).

2.2.2 SARS-CoV-2 helicase
The first reports on inhibitors of SARS-CoV-2 helicase were

compounds that have previously been investigated for SARS-CoV-

1 helicase, namely bismuth complexes (5, 21–24) (Supplementary

Table S2, Supplementary Figure S2). Ranitidine Bismuth Citrate (5)

was validated with sub-micromolar helicase and ATPase IC50’s

(Yuan et al., 2020) and exhibited greater activity compared to

Bismuth (III) tetraphenylpoprhyrinate (23) and Bismuth (III)

tetra-4-pyridiylporphyrinate (24). Moreover, 5 relieved virus-

associated pneumonia in a golden Syrian hamster model.

Disulfiram (25) and Ebselen (26) (Supplementary Table S2) are

other Zinc-ejector drugs that have been validated on SARS-CoV-

2 helicase (Chen et al., 2021).

White et al. have identified a hit list of 368 FDA-approved drugs,

fromwhich cepharanthine (27), IC50 = 400 µM and lumacaftor (28),

IC50 = 300 µM) were confirmed in an ATPase assay (White et al.,

2020). Cepharanthine (27) has previously been reported as a SARS-

CoV-1 inhibitor, however at the time the target enzyme was not

known (Zhang et al., 2005). Vapreotide (29), grazoprevir (30) and

simeprevir (31) are other FDA-approved drugs discovered by

phenotypic screening that inhibit SARS-CoV-2 helicase in vitro.

Their activities were confirmed by a DNA-unwinding activity assay

with IC50 values of ≈10, ≈2.5, and ≈1.25 µM, respectively (Muturi

et al., 2022). All three compounds have also been reported as virtual

hits (Borgio et al., 2020; Gurung, 2020). Furthermore, a high-

throughput screening of five thousand known pharmaceuticals by

Zeng et al., mentions the inhibitory activity of FPA124 (32), IC50 =

8.5 µM) and suramin (33, IC50 = 0.94 µM). These hits were

confirmed by a fluorescence resonance energy transfer (FRET)

based helicase assay in the presence of Tween-20. Tween-20 is a

non-ionic detergent that stops potential colloid formation. Both

compounds still inhibited helicase activity in this assay at IC50 =

8.4 µM and 1.1 µM, respectively, and viral inhibition was confirmed

in vivo on Vero E6 cells (Zeng et al., 2021). SARS-CoV-1 inhibitors

myricetin (6) and SSYA-100–01 (18) were used as a comparison in

these experiments and were confirmed to be active on SARS-CoV-

2 helicase. Research from the EXSCALATE4COV (E4C)4 project on

a natural product library once more confirmed the activity of SSYA-

4 www.exscalate4cov.eu.
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100–01 (18) and identified five flavonoids with low micromolar

activity: myricetin (6), quercetin (8), kaempferol (34), flavanone (35),

and licoflavone C (36) (Corona et al., 2022). Moreover, Mehyar et al.

(2021a) report on the repurposing of sulphoxide- and sulphone-

containing FDA-approved compounds. Zafirlukast (37) was the only

compound with inhibitory activity, interestingly 37was also reported

by Zeng et al., 2021), but was not selected for further analysis (Zeng

et al., 2021). Mehyar et al. (2021a) also report SARS-CoV-2 helicase

inhibitory activity for five previously identified MERS-CoV helicase

inhibitors (37–42). Lastly, Newman et al. identified 65 fragments by

crystallographic fragment screening. Although there were no

inhibitory values published for these fragments, the crystal

structures show binding in the ATP binding site as well as the

RNA/DNA-entry tunnel. These crystal structures have been made

publicly available and can be seen as a starting point for fragment

growing (Newman et al., 2021). More recently, Romeo et al.

identified multiple inhibitors with predicted binding to the RNA/

DNA-entry tunnel in vitro. (Romeo et al., 2022).

Although in vitro and in vivo assays are the gold standard for hit

validation, virtual screening allows for rapid identification of ‘virtual’

hits. The screening of ultra-large chemical spaces in silico has greatly

increased the possibilities of modern drug discovery (Warr et al.,

2022), but biological assays are still required to validate these hits.

Not all laboratories, however, have the means to perform in vitro

assays, thus making molecular modeling a more accessible method

for initial target investigation. The SARS-CoV-2 helicase has been

screened, virtually, in many instances (Supplementary Table S3).

From our analysis it was observed that most publications have

performed virtual screening on commercially available drugs

(Balasubramaniam and Schmookler Reis 2020; Borgio et al.,

2020; Gurung 2020; Iftikhar et al., 2020; Ugurel et al., 2020;

Abidi et al., 2021; Sundar et al., 2021; Alanazi et al., 2022;

Azmoodeh et al., 2022) or natural products (Kousar et al., 2020;

Naik et al., 2020; Ahmad et al., 2021; James et al., 2021; Vivek-

Ananth et al., 2021; Bhargavi et al., 2022; Hossain et al., 2022;

Samdani et al., 2022). Other published works make use of fragments

(Freidel and Armen, 2021) or publicly available compound libraries

(Mirza and Froeyen, 2020; García et al., 2021; El Hassab et al., 2022;

Pitsillou et al., 2022). It is recognized that multi-targeted approaches

are often carried out, most notably including RNA-dependent RNA

polymerase and 3CL protease, to have dual-target SARS-CoV-

2 inhibitors. The best scoring helicase inhibitors resulting from

in silico approach, and without in vitro data, are shown in

Supplementary Table S3. One particularly large study performed

ultra-large virtual screening of one billion molecules on fifteen

SARS-CoV-2 proteins, for each target the top 1,000 and top one

million (0.1%) are publicly available online5 (Gorgulla et al., 2021).

All publications mentioned in this paragraph, however, lack the

biological validation that is required to confirm activity. The

occurrence of false positives in virtual screening is still high and

results do often not translate to in vitro assays, as was recently shown

by Cerón-Carrasco (Cerón-Carrasco, 2022). Thus, it remains critical

to validate ‘virtual’ hits and to refrain from the use of thereof in

determining structure-activity relationships.

2.3 Toxicity analysis

The potential side-effects of any treatment are a concern for

medical practitioners when making a choice of which therapy to

implement. Certainly, drugs with minimal off-target toxicity are

preferred. While toxicity information exists for some compounds

in the included tables, many have limited application as

treatments and therefore little associated data on side-effects.

Toxicity prediction applies machine learning to chemical

structures with known toxicity tests on model organisms.

Based on chemical similarities, the toxicity of untested

compounds can be predicted. Toxicity prediction is a useful

tool for evaluating potential harmful side-effects before taking

the drug through costly pre-clinical and clinical trials.

It was not possible to use the same assay or toxicity prediction

for all compounds. Individual studies often use different assays and

thus report different values. Additionally, the toxicity prediction

software was not always successful, and therefore several different

tools were used: the Quantitative Structure-Activity Relationship

(QSAR) toolbox, developed by the Organization for Economic

Cooperation and Development (OECD) (Dimitrov et al., 2016);

the Toxicity Estimation Software Tool (TEST) software developed

by the US Environmental Protection Agency (US-EPA) (Martin

et al., 2008); and the lazar toxicity prediction web server (Maunz

TABLE 1 the nine most promising SARS-CoV-2 helicase inhibitors for
further development and drug repurposing.

Name (#) Classification Reference

Bananin (4) synthetic product Tanner et al. (2005)

Ranitidine Bismuth Citrate (5) pharmaceutical drug Yang et al. (2007b)

Yuan et al. (2020)

Myricetin (6) natural product Yu et al. (2012)

Zeng et al. (2021)

Corona et al. (2022)

SSYA10-001 (18) synthetic product Adedeji et al. (2012)

Zeng et al. (2021)

Corona et al. (2022)

Disulfiram (25) pharmaceutical drug Chen et al. (2021)

Vapreotide (29) pharmaceutical drug Borgio et al. (2020)

Muturi et al. (2022)

Grazoprevir (30) pharmaceutical drug Gurung (2020)

Muturi et al. (2022)

FPA124 (32) synthetic product Zeng et al. (2021)

Epirubicin HCl (38) natural product Mehyar et al. (2021b)

5 See: https://vf4covid19.hms.harvard.edu/.
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et al., 2013). For some compounds, particularly pharmaceutical

drugs, toxicity data was accessible from public documents for their

approval by either the FDA or the European Medicines Agency.

Many of the natural products included have long histories of use in

food as well as herbal medicines (Wang and Yang, 2020, 2021;

Yang and Wang, 2021; Wang et al., 2022). Many are found in

common foods and show strong association with positive health

outcomes (Kumar and Pandey, 2013), including possible antiviral

and antineoplastic (Rodriguez-García et al., 2019) properties. Since

these products have been consumed for millennia, it is unlikely

that they exhibit toxicity, although this may of course be different

when the active compound becomes highly concentrated. The

retrieved experimental toxicities and/or the predicted toxicity

values for every compound are provided in Supplementary

Tables S1,S2,S3 for the reader’s consideration. For most assays,

acute toxicity values were reported, this certainly has its drawbacks,

as compounds may exhibit toxicity at much lower doses. These

toxicities should not be overly interpreted, since the effective IC50

doses of compounds differ, it is more beneficial to take a selective

ratio against a toxicity endpoint.

3 Discussion

In Supplementary Tables S1,S2,S3, the source information of

SARS-CoV-2 inhibitors is found, referring to where the compound

can be extracted, synthesized or otherwise procured. Three

categories are presented: Natural Products (NP), Synthetic

Products (SP) and Pharmaceutical Drugs (PD). Natural

products need only be extracted from their source organism,

typically a plant; pharmaceutical drugs are approved molecules

for the treatment of diseases, though some may be off-market.

Synthetic products are typically only produced in very specific

contexts, typically a research study. For natural products, the

source organism(s) are indicated, whereas for pharmaceutical

drugs the tradename and manufacturers are mentioned.

FIGURE 3
Structures of the nine most promising SARS-CoV-2 helicase inhibitors for further development and drug repurposing.
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Contrary to natural products and pharmaceutical drugs, synthetic

products often do not yet have a known toxicity profile.

From the compounds in Supplementary Tables S1,S2, the nine

most promising compounds for further development are shown in

Table 1 and Figure 3. They have been determined based on

inhibitory activity, number of orthogonal assays and structural

diversity. The first compound, bananin, was discovered, along

with several other related compounds, to inhibit the helicase of

SARS-CoV-1 (Tanner et al., 2005). As such, it presents a scaffold on

which lead optimization can be performed. Two other synthetic

products, SSYA10-001 and FPA124, offer promising scaffolds to

develop into pharmaceutical drugs, should they have a reasonable

biodistribution and safety profile. Ranitidine Bismuth Citrate (RBC)

is a promising compound showing inhibition in helicase unwinding

assays, as well as in vivo activity in a Syrian hamster model (Yuan

et al., 2020). RBC has a higher level of validation than the other

compounds, and its previous use as a pharmaceutical (TRITEC,

GlaxoSmithKline) make it a promising drug for repurposing. Other

pharmaceutical drugs for potential repurposing are disulfiram,

vapreotide and grazoprevir. These are distinct enough that they

can be developed as independent scaffolds. Among the natural

products, myricetin, has the lowest IC50 (0.41 µM) of flavonoid

compounds against SARS-CoV-2 (Supplementary Table S2). Its

safety, wide use, and availability make it a promising compound for

development. Another natural product, Epirubicin HCl, is included

for its low IC50 (0.31 µM), while still being distinct enough from

myricetin to develop it as a distinct scaffold.

This review summarizes and builds on the work on discovery

of therapeutics targeting SARS-CoV-2 helicase, a vital replication

protein. We demonstrate that this protein is highly conserved

and resistant to drug-inactivating mutations. Additionally, the

high degree of conservation within the coronavirus family, and

particularly the beta-coronavirus clade, make coronaviral helicases

attractive targets for future coronaviral outbreaks.

We have aimed to provide a complete overview of drugs,

natural products, and synthetic products targeting the SARS-

CoV-2 helicase, at several levels of discovery. A broad range of

compounds either computationally predicted to bind to the target

or with higher levels of validation, such as in vitro or even in vivo

assays, have been covered. Furthermore, a summary of clinical trials

for COVID-19 that involve these compounds can be found as

Supplementary Table S4. Toxicity information on compounds was

provided and predicted for those with absent literature values.

Overall, SARS-CoV-2 helicase is an attractive drug target for

COVID-19. The potential of immune escape of future SARS-CoV-

2 strains from the immunity imparted by the current vaccination

program motivates the development of backup treatment options

(Harvey et al., 2021; Lazarevic et al., 2021). Finally, while vaccines

are a preventive measure, there is still a need for acute therapeutic

interventions, for which there is currently a paucity of options.

Both targeting the SARS-CoV-2 helicase by drug repurposing or

new drug discovery may provide acute interventions for COVID-

19 in the future.
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Introduction: Artemisinin (1) is a milestone compound in malaria treatment, and it
exhibits a broad scope of bioactivities. Herein, sequential chemo-reduction and
biotransformation of artemisinin were undertaken to obtain a series of artemisinin
derivatives.

Methods: First, 10-deoxyartemisinin (2) and 9-ene-10-deoxyartemisinin (3) were
synthesized after simple handling with boron trifluoride/diethyl ether and sodium
borohydride. Then, biotransformation of 10-deoxyartemisinin was conducted with
Cunninghamella echinulata CGMCC 3.4879 and Cunninghamella elegans CGMCC
3.4832, and the transformed products were separated and identified. The
antimalarial activity of these products was tested in vitro against Plasmodium
falciparum 3D7.

Results: Fifteen metabolites (4–18), including seven novel compounds, were
isolated and identified after cultivation. Compounds 2, 3, 13, 15, 16, and 18
displayed moderate-to-good antimalarial activity, with a half-maximal inhibitory
concentration ranging from 6 to 223 nM.

Discussion: This work explored the combination of chemical and biological
transformation to develop a co-environmental, efficient, and cost-efficiency
synthetic methodology and applied it to synthesize novel derivatives of
artemisinin. The association of the two strategies will hopefully provide an
abundant source for the development of novel drugs with bioactivities.

KEYWORDS

artemisinin, microbial transformation, Cunninghamella genus, anti-malarial activity,
bioactive metabolites

1 Introduction

Artemisinin (also named qinghaosu, ART) is a legendary antimalarial agent. It was
discovered from Artemisia annua L. by Tu et al. (1981) in 1972. In the last 50 years,
millions of people suffering from malaria have been saved by artemisinin or its derivatives.
Artemisinin-based combination therapy (ACT) is a recommended first-line treatment for
malaria by the World Health Organization (especially for chloroquine-resistant malaria)
(World Health Organization, 2021).
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In recent years, parasite clearance for some patients in the Great
Mekong Area and parts of Africa has been reported to be delayed after
treatment with artesunate for 3 days (Uwimana et al., 2020).
According to clinical studies, parasites can be cleared through 7-
day treatment of artesunate, but the aforementioned delayed clearance
has increased the anxiety about the possibility of resistance to
artemisinin (Wang et al., 2019). To prevent the consequences of
unpredictable drug resistance, there is an urgent need to explore
antimalarial agents, including novel derivatives of artemisinin or
other new chemical skeletons.

Microorganism-mediated modification of natural products and
bioactive molecules is an efficient route for drug development (Cao
et al., 2015). The abundant enzymes found in microorganisms enable
hydroxylation, oxidation, reduction, and coupling reactions, with
excellent chemo-, regio-, and even stereo-selectivities (Asha and
Vidyavathi, 2009). In recent years, numerous microbial-based
transformations of artemisinin have been attempted and various
microbiological strains have been applied, including those of the
genera Aspergillus, Streptomyces, Penicillium, and Cunninghamella
(Parshikov et al., 2004a; Liu et al., 2006; Goswami et al., 2010;
Ponnapalli et al., 2018). However, the number of compounds
converted in a single transformation has been modest. In the latest
research, four compounds from artemisinin were converted by
Aspergillus niger in 2022 (Luo et al., 2022). Comparatively, plentiful
metabolites were reported in this work.

Our research teamhas been engaged in the optimization of artemisinin
(1) for the development of antimalarial drugs. In recent years, we have
prepared a series of artemisinin derivatives through fungal-mediated
transformations (Bai et al., 2019; Ma et al., 2019; Bai et al., 2021; Zhao
et al., 2021). The labile lactone structure of artemisinin is widely perceived
to contribute to diminishing the stability of the entiremolecule. Herein, the
lactone was reduced to methylene to offer 10-deoxyartemisinin (2),
accompanied by a byproduct: 9-ene-10-deoxyartemisinin (3). The 10-
deoxyartemisinin was modified by Cunninghamella species to obtain
structurally divergent metabolites. The antimalarial activity of these
generated products against P. falciparum (Pf.) 3D7 was examined to
obtain potential lead compounds for drug development.

2 Materials and methods

2.1 General experimental procedures

1H (600MHz), 13C (150MHz), and two-dimensional nuclear
magnetic resonance (2D-NMR) spectroscopy were undertaken on a
spectrometer (AV 600; Bruker, Billerica, MA, United States) with
tetramethylsilane as an internal reference. Chemical shifts (δ) are given
in ppm. Coupling constants (J) are given in hertz. X-ray diffraction was
carried out using a diffractometer (D8 Venture; Bruker) with Cu Kα
radiation. Column chromatography was performed with a silica flash
column (330 g; Qingdao Marine Chemical Group, Qingdao, China), silica
gel (200–300 mesh; Qingdao Marine Chemical Group), and a
Chromatorex (FujiSilysia Chemicals, Kasugai, Japan) system. Analytical
thin-layer chromatography was carried out on pre-coated silica-gel GF254
plates (Qingdao Marine Chemical Group). Water was prepared using a
Milli-Q™ system operating at 18.2 MΩ (Millipore, Bedford, MA,
United States). Unless stated otherwise, all chemicals were obtained
from commercially available sources and were used without further
purification.

2.2 Synthesis of 10-deoxyartemisinin and 9-
ene-10-deoxyartemisinin

Artemisinin (99% by high-performance liquid chromatography
(HPLC); batch number, C00120160) was purchased from Kunming
Pharmaceutical Group (Kunming, China). Under an inert
atmosphere, a solution of artemisinin (2 g) and boron trifluoride/
diethyl ether (BF3/Et2O) (26.4 mL) in dry tetrahydrofuran (THF;
30 mL) at 0 °C was added dropwise to an ice-cooled solution of
sodium tetrahydroborate (NaBH4; 0.6 g) in dry THF (30 mL). The
reaction was carried out for 3 h at 0°C and then heated to reflux for
15 min. The synthetic route is shown in Figure 1. After cooling to
room temperature, the reaction mixture was extracted thrice with
ether (1:1, v/v). The combined organic phase was washed with
saturated sodium chloride and dried over anhydrous sodium
sulfate (NaSO4). The solvent was removed after evaporation in
vacuo to obtain the crude product. The latter was purified by
silica-gel column chromatography. The target product, 10-
deoxyartemisinin (2, yield 50%), and the byproduct, 9-ene-10-
deoxyartemisinin (3, yield 22%), were obtained with petroleum
ether–ethyl acetate as the eluent. High-resolution-electrospray
ionization-mass spectrometry (HR-ESI-MS) and 1H-NMR and
13C-NMR spectroscopy were used to identify structures. The NMR
data of 10-deoxoartemisinin and 9-ene-10-deoxyartemisinin are
shown in Table 1 and Table 2. The synthesis scheme is shown in
Figure 1.

2.3 Preparative biotransformation, extraction,
and isolation of metabolites

C. echinulataCGMCC 3.4879 and C. elegans CGMCC 3.4832 were
obtained from the China General Microbiological Culture Collection
Center (Beijing, China). Culture was conducted in a medium
comprising sabouraud dextrose broth (20 g/L), peptone (10 g/L),
and sucrose (15 g/L). Two-stage fermentation was carried out. The
substrate (10-deoxyartemisinin) was dissolved in methanol (25 mg/
mL) and added to each flask after the second fermentation to reach a
final concentration of 0.5 mg/mL. Cultures were incubated at 28 °C
and agitated at 180 rpm/min for 14 days. Then, they were filtered and
extracted thrice with ethyl acetate at an equal volume. The extract was
dried with anhydrous Na2SO4 and concentrated under a vacuum at
45 °C to provide a residue.

The residue from C. echinulata CGMCC 3.4879 was subjected to a
silica-gel column chromatography by elution with petroleum ether/
ethyl acetate to provide six subfractions (Fr.1–Fr.6). Fractions 1, 2, and
4 were separated by Chromatorex silica-gel column chromatography
with petroleum ether/ethyl acetate to obtain compound 12 (200 mg),
compound 9 (9 mg), and compound 13 (250 mg), respectively.
Fraction 3 was purified by recrystallization from ethyl acetate to
provide compound 11 (120 mg). Fractions 5 and 6 were purified
by semi-preparative normal-phase HPLC (methanol/water) to gain
compound 14 (7 mg) and compounds 4–6 (34, 12, and 6 mg),
respectively.

The residue fromC. elegansCGMCC3.4832was subjected to silica-gel
column chromatography by elution with petroleum ether/ethyl acetate to
provide seven fractions (Fr.1–Fr.7). Fractions 1, 5, and 7 were separated by
Chromatorex silica-gel column chromatography with petroleum ether/
ethyl acetate to afford compound 17 (50 mg), compound 18 (154 mg), and
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compound 9 (5 mg), respectively. Fraction 3 was separated by reverse-
phase C18 column chromatography with methanol/water to obtain
compound 15 (10 mg). Fraction 4 was separated by Chromatorex
silica-gel column chromatography with petroleum ether/ethyl acetate
with additional reverse-phase C18 column chromatography to obtain
compound 7 (10 mg), compound 8 (4 mg), compound 16 (20 mg),
and compound 10 (100 mg).

2.4 Identification of compounds

10-Deoxyartemisinin (2) (Jung et al., 1990): White acicular
crystals (ethyl acetate). HR-ESI-MS m/z 291.1624 [M + Na]+ (calcd
for C15H24O4, 268.1675). 13C-NMR data are shown in Table 1.
1H-NMR data are shown in Table 2.

9-ene-10-Deoxyartemisinin (3) (Xie et al., 2001): White powder
(ethyl acetate). HR-ESI-MS m/z 289.1425 [M + Na]+ (calcd for
C15H22O4, 266.1518). 13C-NMR data are shown in Table 1.
1H-NMR data are shown in Table 2.

2α-Hydroxy-5α-acetoxy-artemethin-Ⅱ (4): Colorless, transparent,
columnar crystals (ethyl acetate). HR-ESI-MS m/z 307.1520 [M + Na]+

(calcd for C15H24O5, 284.1624). Crystal data: C15H24O5, M = 284.34,
monoclinic system, crystal size is 0.47 mm3 × 0.40 mm3 × 0.39 mm3, a =
13.2788 (6) Å, b = 14.9910 (7) Å, c = 15.8479 (8) Å; α = β = γ = 90.00°, V =
3154.7 (3) Å3, space group P212121 (NO. 19), T = 273.15K, Z = 8, Z′ = 2, μ
(Cu Kα) = 0.089 mm−1, wavelength/Å = 0.71073, R1 = 0.1017, wR (F2) =

0.1283. Flack parameter: 0.2 (2). Crystallographic data of compound
4 have been deposited to CCDC (www.ccdc.cam.ac.uk/, number =
CCDC 2218207). The structure of a single crystal is shown in Figure 2.
13C-NMR data are shown in Table 1. 1H-NMR data are shown in Table 4.

5α,13-Dihydroxy-artemethin-Ⅱ (5): Colorless, transparent, columnar
crystals (petroleum ether and acetone). HR-ESI-MS m/z 265.1415 [M +
Na]+ (calcd for C13H22O4, 242.1518). Crystal data: C13H22O4, M = 242.30,
monoclinic system, crystal size is 0.47 mm3 × 0.40 mm3 × 0.39 mm3, a =
6.1074 (3) Å, b = 15.6846 (7) Å, c = 6.7830 (3)Å;α= γ=90°, V= 634.54 (5)
Å3, space group P21 (NO. 4), T = 273.15 K, Z = 2, μ (Cu Kα) =
0.092 mm−1, wavelength/Å = 0.71073, R1 = 0.0319 [I > 2σ (I)], wR (F2) =
0.0875. Flack parameter: 0.2 (2). Crystallographic data of compound
5 have been deposited to CCDC (www.ccdc.cam.ac.uk/, number =
CCDC 2218208). The structure of a single crystal is shown in Figure 2.
13C-NMR data are shown in Table 1. 1H-NMR data are shown in Table 4.

4α,6β-Dihydroxy-1-deoxy-10-deoxoartemisinin (6): White
powder (ethyl acetate). HR-ESI-MS 307.1549 [M + Na]+ (calcd for
C15H24O5, 284.1624).

13C-NMR data are shown in Table 1. 1H-NMR
data are shown in Table 2.

5α-Hydroxy-1-deoxy-10-deoxoartemisinin (7): White powder (ethyl
acetate). HR-ESI-MS 269.1756 [M + H]+ (calcd for C15H24O4, 268.1675).
13C-NMR data are shown in Table 1. 1H-NMR data are shown in Table 2.

7β-Hydroxy-1-deoxy-10-deoxoartemisinin (8): Yellow powder
(ethyl acetate). HR-ESI-MS 269.1754 [M + H]+ (calcd for
C15H24O4, 268.1675). 13C-NMR data are shown in Table 1.
1H-NMR data are shown in Table 2.

FIGURE 1
Synthesis route of 10-deoxyartemisinin and its metabolites by C. elegans and C. echinulata.
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TABLE 1 13C-NMR spectral data (δ) for compounds 2–18.

No. 2 δC 3 δC 4 δC 5 δC 6 δC 7 δC 8 δC 9 δC 10 δC 11 δC 12 δC 13 δC 14 δC 15 δC 16 δC 17 δC 18 δC

1 61.8 50.7 54.5 56.2 55.6

2 75.7 26.3 28.2 27.4 27.7

3 104.2 104.1 73.5 68.6 106.4 105.0 106.5 71.1 107.5 69.3 107.3 104.2 108.1 102.4 104.0 68.7 104.2

4 36.3 36.3 82.0 80.3 69.1 44.3 33.1 81.9 69.2 81.2 69.8 36.0 69.6 46.3 35.9 80.4 36.3

5 24.8 24.4 92.5 93.5 39.3 68.0 21.0 95.8 30.3 94.5 30.3 24.6 30.3 69.3 29.8 92.8 24.6

5a 52.2 51.4 42.5 53.1 42.3 42.0 41.8 49.6 41.1 59.4 53.4 44.3

6 37.3 36.7 47.3 45.9 70.3 34.6 41.5 46.6 37.7 46.8 35.0 42.5 35.0 36.9 72.4 47.1 40.7

7 34.0 34.1 20.9 19.7 24.8 34.4 73.8 31.7 74.6 21.0 34.3 73.9 34.2 34.9 39.5 21.0 70.0

8 20.7 29.5 35.6 37.1 17.8 23.0 32.1 78.1 32.8 35.4 23.7 27.6 22.8 20.6 16.7 28.0

8a 44.9 44.2 39.6 39.0 36.8 39.3 39.8 44.1 41.6 44.7 45.1 35.3 37.6

9 28.0 107.7 30.2 28.5 26.1 25.4 25.1 38.7 26.1 30.4 26.4 29.9 33.7 27.8 28.3 30.4 27.3

10 66.2 135.3 28.9 28.8 63.4 63.3 63.3 31.1 64.4 29.8 64.6 66.1 96.7 66.2 66.4 29.6 66.1

11 67.9 66.0 67.9 66.9 67.7

12 92.1 89.4 12.5 11.8 94.9 95.2 94.9 13.1 95.3 12.8 95.5 91.8 95.4 91.7 93.2 12.7 91.6

12a 80.8 79.1 82.7 81.6 80.7 82.4 83.2 80.0 83.1 80.1 81.3 80.5

13 26.1 16.3 19.8 65.8 19.8 22.7 22.9 17.1 20.5 20.5 20.6 26.0 20.8 25.9 26.1 20.6 26.1

14 20.3 20.5 169.0 27.7 20.8 13.3 15.9 18.7 15.4 18.6 21.3 19.6 169.2 16.5

15 13.1 25.9 21.6 14.0 15.8 15.3 14.2 16.3 13.1 14.6 13.0 13.2 21.6 13.0
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5α,8β-Dihydroxy-artemethin-Ⅱ (9): Colorless, transparent, needle
crystals (ethyl acetate). HR-ESI-MS m/z 265.1416 [M + H]+ (calcd for
C13H22O4, 242.1518). Crystal data: C13H22O4,M = 242.31, triclinic system,
crystal size is 0.38 mm3 × 0.11 mm3 × 0.08 mm3, a = 9.5815 (4) Å, b =
10.7290 (5) Å, c = 13.8292 (3) Å; α = 79.138 (3)°, β= 72.174 (3)°, γ = 75.565
(3)°, V = 1300.94 (9) Å3, space group P1 (NO. 1), T = 111.6 (3) K, Z = 4, μ
(Cu Kα) = 0.738 mm−1, R1 = 0.0436 (all data), wR (F2) = 0.1088. Flack
parameter: 0.06 (11). Crystallographic data of compound 9 have been
deposited to CCDC (www.ccdc.cam.ac.uk/, number = CCDC 2218214).
The structure of a single crystal is shown in Figure 2. 13C-NMR data are
shown in Table 1. 1H-NMR data are shown in Table 4.

3α,7β-Dihydroxy-1-deoxy-10-deoxoartemisinin (10): Colorless,
transparent, columnar crystals (ethyl acetate and acetone). HR-ESI-MS
m/z 285.1690 [M + Na]+ (calcd for C15H24O5, 284.1624). Crystal data:
C15H24O5, M = 283.94, triclinic system, crystal size is 0.46 mm3 ×
0.31 mm3 × 0.27 mm3, a = 9.3731 (18) Å, b = 12.574 (3) Å, c = 15.842
(3) Å; α = 85.623 (6)°, β = 81.953 (6)°, γ = 89.302 (7)°, V = 89.302 (7) Å3,
space group P1 (NO. 1), T = 273.15 K, Z = 5, Z’ = 5 μ (Cu Kα) =
0.095mm−1, wavelength/Å = 0.71073, R1 = 0.0463 [I > 2σ (I)], wR (F2) =
0.1078. Flack parameter: −0.05 (19). Crystallographic data of compound
10 have been deposited to CCDC (www.ccdc.cam.ac.uk/, number = CCDC
2218210). The structure of a single crystal is shown in Figure 2. 13C-NMR
data are shown in Table 1. 1H-NMR data are shown in Table 2.

5α-Hydroxy-artemethin-Ⅱ (11) (Gaur et al., 2014): White powder
(ethyl acetate). HR-ESI-MS m/z 249.1467 [M + Na]+ (calcd for
C13H22O3, 226.1569). 13C-NMR data are shown in Table 1.
1H-NMR data are shown in Table 4.

4α-Hydroxy-1-deoxy-10-deoxoartemisinin (12) (Parshikov et al.,
2004b): White powder (ethyl acetate). HR-ESIMS m/z 269.1741 [M +
H]+ (calcd for C15H24O4, 268.1675).

13C-NMR data are shown in
Table 1. 1H-NMR data are shown in Table 3.

7β-Hydroxy-10-deoxoartemisinin (13) (Parshikov et al., 2004a):
White powder (ethyl acetate). HR-ESI-MS 307.1521 [M + Na]+(calcd
for C15H24O5, 284.1624). 13C-NMR data are shown in Table 1.
1H-NMR data are shown in Table 3.

4α-Hydroxy-1-deoxydihydroartemisinin (14) (Lee et al., 1990):
Colorless, transparent, columnar crystals (ethyl acetate). HR-ESI-
MS m/z 307.1526 [M + Na]+ (calcd for C15H24O5, 284.1624).
Crystal data: C15H24O5, M = 284.34, monoclinic system, crystal
size is 0.25 mm3 × 0.21 mm3 × 0.13 mm3, a = 5.7937 (4) Å, b =
8.5070 (4) Å, c = 29.3066 (17) Å; α = β = γ = 90°, V = 1444.43 (15)
Å3, space group P212121 (NO. 19), T = 294.0 K, Z = 4, μ (Cu Kα) =
0.097 mm−1, wavelength/Å = 0.71073, R1 = 0.0585, wR (F2) =
0.1157. Flack parameter: 0.0 (12). Crystallographic data of
compound 14 have been deposited to CCDC (www.ccdc.cam.ac.
uk/. number = CCDC 2218211). The structure of a single crystal is
shown in Figure 2. 13C-NMR data are shown in Table 1. 1H-NMR
data are shown in Table 3.

5β-Hydroxy-10-deoxoartemisinin (15) (Parshikov et al., 2004b):
White powder (ethyl acetate). HR-ESI-MS 307.1519 [M + Na]+ (calcd
for C15H24O5, 284.1624). 13C-NMR data are shown in Table 1.
1H-NMR data are shown in Table 3.

6β-Hydroxy-10-deoxoartemisinin (16) (Medeiros et al., 2002):
Colorless, transparent, columnar crystals (ethyl acetate). HR-ESI-
MS m/z 307.1522 [M + Na]+ (calcd for C15H24O5, 284.1624).
Crystal data: C15H24O5, M = 284.34, monoclinic system, crystal
size is 0.24 mm3 × 0.21 mm3 × 0.10 mm3, a = 7.1619 (10) Å, b =
12.1265 (17) Å, c = 16.910 (2) Å; α = β = γ = 90.00°, V = 1468.6 (3) Å3,
space group P212121 (NO. 19), T = 273.15 K, Z = 4, Z′ = 1, μ (Cu Kα) =
0.095 mm−1, R1 = 0.0469 [I > 2σ (I)], wR (F2) = 0.1142. Flack
parameter: −0.2 (4). Crystallographic data of compound 16 have
been deposited to CCDC (www.ccdc.cam.ac.uk/, number = CCDC

TABLE 2 1H-NMR spectral data (δ) for compounds 2, 3, 6–8, and 10.

No. 2 δH (J in Hz) 3 δH (J in Hz) 6 δH (J in Hz) 7 δH (J in Hz) 8 δH (J in Hz) 10 δH (J in Hz)

4 3.61–3.55 (m) 2.22 (m) 1.65 (dd, J = 13.5, 5.7 Hz) 3.56 (dd, J = 9.9, 2.5 Hz)

1.45 (d, J = 3.5 Hz) 1.54–1.47 (m)

5 1.71–1.63 (m) 3.78 (m) 1.81–1.73 (m)

1.45 (m) 1.37–1.24 (m)

5a 1.60 (m) 1.12 (d, J = 6.5 Hz) 1.20 (m)

6 1.45 (d, J = 3.5 Hz) 1.12 (m)

7 1.71–1.63 (m) 2.02 (m) 3.18 (m, J = 10.4, 3,9 Hz)

8 1.93–1.84 (m) 1.72 (m) 1.37–1.24 (m)

1.71–1.63 (m) 1.30 (m) 1.97 (m)

8a 1.93–1.84 (m) 1.87 (m) 1.97 (m) 2.02 (m)

9 2.57 (m) 2.33–2.25 (m) 2.22 (m) 2.23 (m, J = 7.1, 12.3 Hz) 2.32 (m)

10 3.66 (dd, J = 12.0, 6.0 Hz) 6.08 (d, J = 1.9 Hz) 3.30 (dd, J = 11.6, 7.5 Hz) 3.86 (dd, J = 11.5, 7.2 Hz) 3.85 (dd, J = 11.5, 6.6 Hz) 3.86 (dd, J = 11.6, 6.3 Hz)

3.38 (t, J = 12.0 Hz) 3.67 (dd, J = 11.6, 5.5 Hz) 3.21 (dd J = 11.5, 4.4 Hz) 3.25 (dd, J = 11.6, 5.0 Hz) 3.34 (dd, J = 11.7, 5.6 Hz)

12 5.13 (s) 5.60 (s) 5.67 (s) 5.08 (s) 5.20 (s) 5.21 (s)

13 1.36 (s) 1.48 (s) 1.50 (s) 1.47 (s) 1.46 (s) 1.56 (s)

14 0.89 (d, J = 6.4 Hz) 0.88 (d, J = 6.4 Hz) 1.13 (s) 1.12 (d, J = 6.5 Hz) 0.96 (d, J = 6.2 Hz) 1.00 (d, J = 6.4 Hz)

15 0.71 (d, J = 7.2 Hz) 1.26 (s) 0.82 (d, J = 7.4 Hz) 0.86 (d, J = 7.4 Hz) 0.86 (d, J = 7.4 Hz) 0.91 (d, J = 7.4 Hz)
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2218212). The structure of a single crystal is shown in Figure 2.
13C-NMR data are shown in Table 1. 1H-NMR data are shown in
Table 3.

5α-Acetoxy-artemethin-Ⅱ (17) (Khalifa et al., 1995): Colorless,
transparent, oily substance (ethyl acetate). HR-ESI-MS m/z
291.1573 [M + Na]+ (calcd for C15H24O4, 268.1675). 13C-NMR
data are shown in Table 1. 1H-NMR data are shown in Table 4.

7α-Hydroxy-10-deoxoartemisinin (18) (Khalifa et al., 1995): Colorless,
transparent, columnar crystals (ethyl acetate). HR-ESI-MS m/z
307.1520 [M + Na]+ (calcd for C15H24O5, 284.1624). Crystal data:
C15H24O5, M = 284.34, triclinic system, crystal size is 0.46 mm3 ×
0.31 mm3 × 0.27 mm3, a = 10.2388 (17) Å, b = 14.937 (3) Å, c =
9.8826 (17) Å; α = 94.230 (6)°, β = 101.038 (6)°, γ = 90.123 (5)°, V =
1479.2 (4) Å3, space group P1 (NO. 1), T = 293 (2) K, Z = 4, μ (Cu Kα) =
0.095 mm−1, R1 = 0.1021 [I > 2σ (I)], wR (F2) = 0.2594. Flack parameter:
−0.3 (15). Crystallographic data of compound 18 have been deposited to
CCDC (www.ccdc.cam.ac.uk/, number = CCDC 2218213). The structure
of a single crystal is shown in Figure 2. 13C-NMRdata are shown inTable 1.
1H-NMR data are shown in Table 3.

2.5 Evaluation of antimalarial activity in vitro

Pf. 3D7 strains were obtained from Professor Chenqijun (Institute of
Zoonosis, Jilin University, Jilin, China). Pf. 3D7 strains were grown under a
gas mixture (5% CO2, 5% O2, and 90% N2). Human erythrocytes were
grown at 2% hematocrit. Synchronization was carried out by treatment
with 5% D-sorbitol when most parasites were in the “ring” stage. All
compounds were prepared in dimethyl sulfoxide and diluted serially in
culture medium (100 µL) across the columns of a 96-well tissue-culture
plate. Artemisinin was used as a positive control drug. Then, 100 µL of a
parasite suspension (1% ring-infected erythrocytes at 4% hematocrit) was
added to each well. The plate was incubated under the gasmixture for 72 h
at 37 °C. After incubation, 100 µL of lysis buffer (Tris-Cl (1 M), EDTA
(0.5M), 10% saponin, 0.08%TritonX-100, pH 7.5, SYBR™Green 1, at the
recommended dilution of the manufacturer) was added to each well. The
plate was agitated for 1.5 h, and fluorescencewasmeasured at an excitation
wavelength of 485 nm and emission wavelength of 530 nm. The half-
maximal inhibitory concentration (IC50) was used to evaluate the anti-
malarial action of all compounds.

FIGURE 3
HMBC correlations for compounds 6, 7, and 8.

FIGURE 2
ORTEP drawing of the X-ray structures of compounds 4, 5, 9, 10, 14, 16, and 18.
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TABLE 4 1H-NMR spectral data (δ) for compounds 4, 5, 9, 11, and 17.

No. 4 δH (J in Hz) 5 δH (J in Hz) 9 δH (J in Hz) 11 δH (J in Hz) 17 δH (J in Hz)

1 1.36 (m) 1.33 (m)

2 3.52 (t, J = 11.9 Hz) 2.20 (m) 1.84 (m) 1.96–1.89 (m)

2.12–1.90 (m) 2.18 (m)

3 4.54–4.51 (m) 4.15–4.10 (m) 4.18 (t, J = 8.4 Hz) 3.84 (m) 3.91 (q, J = 8.0 Hz)

3.82 (m) 3.84 ( q, J = 7.7 Hz) 4.17 (m) 4.27–4.22 (m, 1H)

5 5.92 (s) 4.95 (d, J = 8.0 Hz) 5.10 (s) 4.99 (d, J = 8.3 Hz) 5.97 (s)

6 1.71 (m) 1.75 (m)

7 1.96–1.86 (m) 1.58 (m) 1.40–2.00 (m)

1.92–1.85 (m) 1.66 (m)

8 0.89 (d, J = 6.6 Hz) 3.24 (dd, J = 10.3, 5.8 Hz) 0.86 (m) 1.96–1.89 (m)

1.85–1.79 (m) 1.87 (m)

9 2.60 (d, J = 8.3 Hz) 1.58 (m) 1.70–1.75 (m) 1.52 (m)

10 2.49–2.43 (m) 2.38–2.32 (m) 2.23 (m) 2.36 (m) 2.45 (m, J = 11.9, 5.0 Hz)

11 3.72 (dd, J = 11.7, 5.1 Hz) 3.62 (m) 3.58 (dd, J = 11.7, 5.1 Hz) 3.43 (d, J = 11.5 Hz) 3.52 (t, J = 11.8 Hz)

3.59 (dd, J = 8.1, 4.8 Hz) 3.41 (t, J = 11.7 Hz) 3.42 (t, J = 11.8 Hz, 1H) 3.64 (m) 3.70 (dd, J = 11.6, 5.2 Hz)

12 0.78 (d, J = 7.1 Hz) 0.71 (d, J = 7.1 Hz) 0.76 (d, J = 7.1 Hz) 0.73 (d, J = 7.2 Hz) 0.76 (d, J = 7.1 Hz)

13 1.06 (d, J = 6.4 Hz) 1.03 (d, J = 6.3 Hz) 0.94 (d, J = 6.5 Hz) 0.91 (d, J = 6.4 Hz)

15 2.14 (s)

TABLE 3 1H-NMR spectral data (δ) for compounds 12–16 and 18.

No. 12 δH (J in Hz) 13 δH (J in Hz) 14 δH (J in Hz) 15 δH (J in Hz) 16 δH (J in Hz) 18 δH (J in Hz)

4 3.31 (dd, J = 11.6, 5.1 Hz) 2.36 (m) 2.43 (m)

2.05 (m)

5 1.88 (m) 3.94 (q, J = 7.9 Hz)

5a 1.27 (dd, J = 11.3, 8.0 Hz)

6 1.27–1.17 (m) 1.58 (m)

7 1.75 (m) 3.26 (td, J = 10.7, 4.4 Hz) 3.88–3.84 (m)

1.02 (m)

8 1.88 (m) 1.87 (m) 1.88–1.76 (m)

1.34–1.27 (m)

8a 1.97 (d, J = 10.3 Hz) 1.64–1.57 (m) 1.64 (m) 2.13–2.02 (m)

9 2.33–2.25 (m) 2.62 (m) 2.46 (m) 2.63 (m) 2.64 (m) 2.71 (m)

10 3.89 (dd, J = 11.5, 6.6 Hz) 3.73 (dd, J = 11.8, 3.6 Hz) 5.32 (s) 3.70 (dd, J = 11.7, 4.2 Hz) 3.75 (dd, J = 11.6, 4.0 Hz) 3.78 (dd, J = 11.8, 5.0 Hz)

3.31 (dd, J = 11.6, 5.1 Hz) 3.44 (t, J = 11.8 Hz) 3.44 (t, J = 11.8 Hz) 3.48 (t, J = 11.7 Hz) 3.45 (t, J = 11.8 Hz)

12 5.18 (s) 5.22 (s) 5.14 (s) 5.61 (s) 5.20 (s)

13 1.56 (s) 1.41 (s) 1.54 (s) 1.41 (s) 1.46 (s) 1.45 (s)

14 0.91 (d, J = 7.4 Hz) 1.06 (d, J = 6.0 Hz) 0.96 (d, J = 7.5 Hz) 1.13 (d, J = 6.6 Hz) 1.30 (s) 1.08 (d, J = 6.8 Hz)

15 0.87 (d, J = 6.4 Hz) 0.78 (d, J = 7.2 Hz) 0.88 (d, J = 6.4 Hz) 0.76 (d, J = 7.2 Hz) 0.82 (d, J = 7.2 Hz) 0.80 (d, J = 7.2 Hz)
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3 Results

3.1 Structural elucidation

The two chemically synthesized derivatives, 10-deoxyartemisinin
(2) and 9-ene-10-deoxyartemisinin (3), were obtained following
reduction, dehydration, and a second reduction from artemisinin.
In addition, 10-deoxyartemisinin (2) was employed as the substrate
for microbial transformation with C. elegans CGMCC 3.4832 and C.
echinulata CGMCC 3.4879.

Seven new metabolites and eight known metabolites were isolated
and characterized unambiguously by various spectroscopy methods
(Figure 1). The biotransformation products were identified to be 2α-
hydroxy-5α-acetoxy-artemethin-Ⅱ (4), 5α,13-dihydroxy-artemethin-Ⅱ
(5), 4α,6β-dihydroxy-1-deoxy-10-deoxoartemisinin (6), 5α-hydroxy-1-
deoxy-10-deoxoartemisinin (7), 7β-hydroxy-1-deoxy-10-
deoxoartemisinin (8), 5α,8β-dihydroxy-artemethin-Ⅱ (9), and 4α,7β-
dihydroxy-1-deoxy-10-deoxoartemisinin (10). The known compounds
were determined to be 5α-hydroxy-artemethin-Ⅱ (11), 4α-hydroxy-1-
deoxy-10-deoxoartemisinin (12), 7β-hydroxy-10-deoxoartemisinin
(13), 4α-hydroxy-1-deoxydihydroartemisinin (14), 5β-hydroxy-10-
deoxoartemisinin (15), 6β-hydroxy-10-deoxoartemisinin (16), 5α-
acetoxy-artemethin-Ⅱ (17), and 7α-hydroxy-10-deoxoartemisinin (18).

Metabolite 4 had a molecular formula of C15H24O5, as deduced
from HR-ESI-MS m/z of 307.1520 [M + Na]+. 13C-NMR data
suggested one hydroxy carbon signal (δC 75.7) instead of an alkane
carbon signal. The hydroxy group was at C-2 on the basis of the data
for 5α-acetoxy-artemethin-II (Khalifa et al., 1995). The structure was
confirmed by X-ray crystallography. The structure of a single crystal is
shown in Figure 2. Thus, metabolite 4 was identified as 2α-hydroxy-
5α-acetoxy-artemethin-Ⅱ.

Metabolite 5 had a molecular formula of C13H22O4, as deduced from
its HR-ESI-MS m/z of 265.1415 [M + Na]+. 1H-NMR spectra
showed −CH3 (δH 0.95, 3H) to be substituted by −CH2OH (δH 0.94,
2H). 13C-NMR spectra showed that δC 20.5 (C-13) shifted to δC
65.8 compared with 5α-hydroxy-artemethin-II (Gaur et al., 2014).
Thus, the hydroxy group was at C-13. The structure was confirmed by
X-ray crystallography. The structure of a single crystal is shown in Figure 2.
Thus, metabolite 5 was identified as 5α,13-dihydroxy-artemethin-Ⅱ.

Metabolite 6 had a molecular formula of C15H24O5, as deduced
from its HR-ESI-MSm/z of 307.1549 [M + Na]+. 13C-NMR (150 MHz,
CDCl3) and distortionless enhancement by polarization transfer
(DEPT) spectroscopy showed 15 carbon signals: three methyl, four
methylene, five methine, and three quaternary carbon atoms. The low-
field shift of C-3 (δC 106.4) together with C-12 (δC 94.9) and C-12a (δC
82.7) compared with those of 2 implied deoxidation of an
endoperoxide bridge. Compared with 4α-hydroxy-1-deoxy-10-
deoxoartemisinin (Parshikov et al., 2004a), a quaternary carbon
signal δC 70.3 was found in place of a tertiary carbon signal.
Together with a mass shift of 16 Da, the aforementioned
information implied one more hydroxy group than that in 4α-
hydroxy-1-deoxy-10-deoxoartemisinin. Heteronuclear multiple-
bond coherence (HMBC) correlation from the methoxy proton (δH
1.13, H-14) to the quaternary carbon (δC 70.3, C-6) confirmed a
hydroxyl group at C-6. HMBC correlation for metabolite 6 is shown in
Figure 3. Thus, metabolite 6 was identified as 4α,6β-dihydroxy-1-
deoxy-10-deoxoartemisinin.

Metabolite 7 had a molecular formula of C15H24O4, as determined
by HR-ESI-MS at m/z of 269.1756 [M + H]+. 13C-NMR (150 MHz,

CDCl3), and DEPT spectroscopy showed three methyl carbon signals
(δ 22.7, 20.7, and 15.8), four methylene signals (δ 63.3, 44.3, 34.4, and
23.0), six tertiary carbon signals (δ 95.2, 67.9, 54.1, 39.0, 34.6, and
25.4), and two quaternary carbon signals (δ 105.0 and 81.7).
Compared with 4α-hydroxy-1-deoxy-10-deoxoartemisinin
(Parshikov et al., 2004b), metabolite 7 was indicated to be a
monohydroxy of 1,10-deoxy-artemisinin. 1H-NMR spectroscopy
(600 MHz, CDCl3) showed three methyl hydrogen signals: δH 1.47
(s, 3 H, H-13), 1.12 (d, J = 6.5 Hz, 3 H, H-14), and .86 (d, J = 7.4 Hz,
3 H, H-15), which implied that the hydroxyl group may be present at
positions 5, 7, or 8. Based on HMBC spectroscopy, δH 2.22 (m, 1H, H-
4α) and δH 1.45 (d, 1H, J = 3.5 Hz, H-4β) were remotely correlated to
δC 105.0 (C-3), δC 15.8 (C-13), δC 53.1 (C-5a), and δC 67.9, and the
hydroxyl group was suggested to be located at C-5. HMBC correlation
for metabolite 7 is shown in Figure 3. Given the characterized
hydroxylation C-5 of artemisinin, the structure of metabolite 7 was
identified as 5α-hydroxy-1-deoxy-10-deoxoartemisinin.

Metabolite 8 had a molecular formula of C15H24O4, as deduced
from its HR-ESI-MS m/z of 269.1754 [M + H]+. 13C-NMR (150 MHz,
CDCl3), and DEPT spectroscopy showed three methyl signals (δ 22.9,
15.3, and 13.3), four methylene signals (δ 63.3, 33.1, 32.1, and 21.0), six
tertiary carbon signals (δ 94.9, 73.8, 42.3, 41.5, 36.8, and 25.1), and two
quaternary carbon atoms. Compared with 13C-NMR spectroscopy of
1-deoxy-10-deoxoartemisinin, δC 73.8 was predicted to be a hydroxyl
carbon signal. Metabolite 8 was suggested to be hydroxyl 1-deoxy-10-
deoxoartemisinin. HMBC spectroscopy showed a correlation from δH
0.96 (d, J = 6.2 Hz, 3H, H-14) to δC 42.3 (C-5a), δC 41.50 (C-6), and δC
73.8, and a correlation from δH 2.02–1.92 (m, 1 H, H-8a) to δC 25.1 (C-
9), δC 63.3 (C-10), δC 32.1 (C-8), and δC 73.8. Thus, the hydroxyl group
was suggested to be positioned at C-7. HMBC correlation for
metabolite 8 is shown in Figure 3. Based on the distinction
between 7α (δC 73.5) and 7β (δC 68.7) hydroxylated chemical-shift
deviation of artemisinin C-7 (δC 33.6), metabolite 8 was finally
identified as 7β-hydroxy-1-deoxy-10-deoxoartemisinin.

Metabolite 9 had a molecular formula of C13H22O4, as deduced
from its HR-ESI-MS m/z of 265.1416 [M + H]+. 13C-NMR
spectroscopy showed one more hydroxy carbon signal (δC 78.1)
than that for 5α-hydroxy-artemethin-II. Combined with its
molecular formula, metabolite 9 was predicted to be hydroxylated
5α-hydroxy-artemethin-II. The 1H-NMR spectrum showed a
hydrogen signal δH 3.24 (dd, J = 10.3, 5.8 Hz, 1H), which indicated
that the hydroxy group was at position C-8. The structure of
metabolite 9 was confirmed by X-ray crystallography. The structure

FIGURE 4
The IC50 curves of compounds 2, 3, 13, 15, 16, and 18.
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of a single crystal is shown in Figure 2. Thus, metabolite 9 was
identified as 5α,8β-dihydroxy-artemethin-Ⅱ.

Metabolite 10 had a molecular formula of C15H24O5, as deduced
from its HR-ESI-MS m/z of 285.1690 [M + Na]+. 13C-NMR
spectroscopy indicated that metabolite 10 was a two hydroxy of 1-
deoxy-10-deoxoartemisinin, of which hydroxy carbon signals were at
δC 69.2 and δC 74.6. Compared with 4α-hydroxy-1-deoxy-10-
deoxoartemisinin, 1H-NMR spectroscopy indicated that the
hydroxy groups were located at C-4 and C-7. Finally, the structure
of metabolite 10 was confirmed by X-ray crystallography. The
structure of a single crystal is shown in Figure 2. Thus, metabolite
10 was identified as 4α,7β-dihydroxy-1-deoxy-10-deoxoartemisinin.

3.2 Antimalarial activity in vitro

The positive control drug (artemisinin) exhibited in vitro
antimalarial activity against Pf. 3D7, with an IC50 (50% inhibition
concentration) value of 11 nM. The in vitro antimalarial activity
against Pf. 3D7 of compounds 2, 3, 13, 15, 16, and 18 was indicated
by IC50 values (nM) of 6, 15, 133, 79, 84, and 223 (Figure 4). The other
compounds did not show activity against Pf. 3D7.

4 Discussion

Artemisinin is an unusual sesquiterpene lactone possessing an
endoperoxide moiety. The sesquiterpene lactone endoperoxide
structure of artemisinin is the pharmacophore characteristic element.
The partial resistance of artemisinin refers to a delay in the clearance of
malaria parasites from the bloodstream following treatment with ACT.
This class of compounds with parent nucleus structures is characterized
by a relatively complex metabolic process in vivo, which was considered
to be partly responsible for the drug resistance phenomenon by some
perspectives. Exploring the associated hydroxylation derivatives,
especially hydroxylation, which is highly similar to the in vivo
disposal process of artemisinin, is an effective approach to discover
novel agents with higher activities.

Structural modification of artemisinin to improve its solubility,
stability, and bioavailability has been a research “hotspot” in medicinal
chemistry since its discovery. In recent years, the need for novel
antimalarial drugs to prevent unpredictable drug tolerance has been
urgent. 10-Deoxyartemisinin was first synthesized by Jung in 1989,
and it was shown to be more stable in gastric acid and more efficacious
than artemisinin. The synthesis of 10-deoxyartemisinin has been
previously examined in detail, and in this work the reaction
conditions were optimized, including temperature, duration, and
solvent. As a result, a direct one-step reduction of the carbonyl
function of artemisinin into 10-deoxyartemisinin was successfully
achieved by NaBH4 in the presence of BF3/Et2O, with a yield of
50%. Moreover, 9-ene-10-deoxyartemisinin was isolated as a by-
product, and it demonstrated similar antimalarial activity to that of
artemisinin. Subsequently, 10-deoxyartemisinin was chosen as the
substrate for microbial transformation.

Cunninghamella species are commonly used models for microbial
transformation. Numerous research studies have confirmed that
Cunninghamella functioned with outstanding hydroxylation ability,
which was responsible for the cytochrome P450 activity of fungus
(Wang et al., 2000; Asha and Vidyavathi, 2009). In addition, some

research studies found that the cytochrome P450 in Cunninghamella
species belongs to the CYP5I family, and the role of these enzymes was
confirmed as the function of CYP3A4 enzyme in mammal metabolism
(Dube et al., 2016). Thus, Cunninghamella was also employed to
transform xenobiotics for the simulation of phase I (oxidative) and
phase II (conjugative) metabolism (Zhang et al., 1996). In this work,
two strains were chosen based on our previous study on the
biotransformation of artemisinin (Ma et al., 2019) and
dihydroartemisinin (unpublished data). The activity evaluation of the
microbial transformation products showed that the antimalarial activity of
the C-5 hydroxylated product was better than others. Thoughmetabolites
13 and 18 were both hydroxylated products at the C-7 position, the
antimalarial activity of the β-OH product exhibited two times better
efficiency than the α-OH product. Unfortunately, hydroxylated products
at C-5, C-6, and C-7 positions of 10-deoxyartemisinin led to attenuated
antimalarial activities. Nevertheless, hydroxylation could improve the
solubility of the compound, while also providing the possibility for
further functionalization. Derivatives with a reduced peroxide bridge
exhibited negligible antimalarial activity, a finding that is in
accordance with previous reports (O’Neill et al., 2010). The synergistic
effect of these products onmalarial treatment and other bioactivities needs
to be further studied.

5 Conclusion

In summary, seventeen artemisinin derivatives, including seven
novel compounds (4–10) and ten known compounds, were isolated
and identified through combined chemical and biological
transformation. This protocol provided a highly efficient and
divergent translation strategy for artemisinin. The pharmacological
activities of the generated products were evaluated, and some
derivatives displayed good antimalarial activity, which inspired us
to conduct a comprehensive druggability study. The novel products
with divergent structural moieties provided promising candidates for
further bio-evaluation and drug development.

Data availability statement

The data presented in the study are deposited in the article/
Supplementary Material. The crystallographic data presented in the
study are deposited in www.ccdc.cam.ac.uk/, accession numbers
CCDC 2218207 (M4), 2218208 (M5), 2218214 (M9), 2218210 (10),
2218211 (14), 2218212 (M16), 2218213 (M18).

Author contributions

Conceptualization and methodology: YM; investigation and
original draft preparation: XG and YB; data analysis: DZ; software:
YZ; writing—review: PS and HG; and funding acquisition: LY. All
authors read and agreed to the published version of the manuscript.

Funding

This research was funded by the Beijing Natural Science
Foundation (No. 7214292, China), the National Natural Science

Frontiers in Chemistry frontiersin.org09

Gao et al. 10.3389/fchem.2022.1089290

74

www.ccdc.cam.ac.uk/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1089290


Foundation of China (Nos. 82104516 and 82141004, China), the
Fundamental Research Funds for the Central Public Welfare
Research Institutes of China Academy of Chinese Medical Sciences
(Nos. ZZ14-YQ-054 and ZZ13-YQ-098), and the Innovation Project
of China Academy of Chinese Medical Sciences (CI2021A05102 and
CI2021A04002).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2022.1089290/
full#supplementary-material

References

Asha, S., and Vidyavathi, M. (2009). Cunninghamella-a microbial model for drug
metabolism studies-a review. Biotechnol. Adv. 27 (1), 16–29. doi:10.1016/j.biotechadv.
2008.07.005

Bai, Y., Zhang, D., Sun, P., Zhao, Y. F., Chang, X. Q., Ma, Y., et al. (2019). Evaluation of
microbial transformation of 10-Deoxoartemisinin by UPLC-ESI-Q-TOF-MSE. Molecules
24 (21), 3874. doi:10.3390/molecules24213874

Bai, Y., Zhao, Y. F., Gao, X. N., Zhang, D., Ma, Y., Yang, L., et al. (2021). A novel
antimalarial metabolite in erythrocyte from the hydroxylation of dihydroartemisinin by
Cunninghamella elegans. Front. Chem. 10, 850133. doi:10.3389/fchem.2022.850133

Cao, H., Chen, X., Jassbi, A. R., Xiao, J., and Kumar, M. S. (2015). Microbial
biotransformation of bioactive flavonoids Biotransformation of bromhexine by
Cunninghamella elegans, C. echinulata and C. blakesleeana. Biotechnol. Adv.Braz.
J. Microbiol. 3348 (12), 214259–223267. doi:10.1016/j.bjm.2016.11.003

Dube, A. K., and Kumar, M. S. (2016). Biotransformation of bromhexine by
Cunninghamella elegans, C. echinulata and C. blakesleeana. Braz. J. Microbiol. 48 (2),
259–267. doi:10.1016/j.bjm.2016.11.003

Gaur, R., Patel, S., Verma, R. K.,Mathur, A., andBhakuni, R. S. (2014). Biotransformation of
Artemisinin derivatives by glycyrrhiza glabra, lavandula officinalis, and panax quinquefolium.
Med. Chem. Res. 23, 1202–1206. doi:10.1007/s00044-013-0726-x

Goswami, A., Saikia, P., Barua, N., Bordoloi, M., Yadav, A., Bora, T., et al. (2010).
Biotransformation of artemisinin using soil microbe: Direct C-acetoxylation of
artemisinin at C-9 by Penicillium simplissimum. Bioorg. Med. Chem. Lett. 20, 359–361.
doi:10.1016/j.bmcl.2009.10.097

Jung, M., Li, X., Bustos, D. A., ElSohly, H. N., McChesney, J. D., and Milhous, W. K.
(1990). Synthesis and antimalarial activity of (+)- Deoxoartemisinin. J. Med. Chem. 33,
1516–1518. doi:10.1021/jm00167a036

Khalifa, S. I., Baker, J. K., Jung, M., Mcchesney, J. D., and Hufford, C. D. (1995).
Microbial and mammalian metabolism studies on the semisynthetic antimalarial,
Deoxoartemisinin. Pharm. Res. 12, 1493–1498. doi:10.1023/a:1016239505506

Lee, I. S., Elsohly, H. N., and Hufford, C. D. (1990). Microbial metabolism studies of the
antimalarial drug arteether. Pharm. Res. 7, 199–203. doi:10.1023/a:1015845306124

Liu, J. H., Chen, Y. G., Yu, B. Y., and Chen, Y. J. (2006). A novel ketone derivative of
Artemisinin biotransformed by Streptomyces griseus ATCC 13273. Bioorg. Med. Chem.
Lett. 16, 1909–1912. doi:10.1016/j.bmcl.2005.12.076

Luo, J., Mobley, R., Woodfine, S., Drijfhout, F., Horrocks, P., Ren, X. D., et al. (2022).
Biotransformation of Artemisinin to a novel derivative via ring rearrangement by Aspergillus
niger. Appl. Microbiol. Biot. 106 (7), 2433–2444. doi:10.1007/s00253-022-11888-0

Ma, Y., Sun, P., Zhao, Y., Wang, K., Chang, X., Bai, Y., et al. (2019). A microbial
transformation model for simulating mammal metabolism of artemisinin. Molecules 24
(2), 315. doi:10.3390/molecules24020315

Medeiros, S. F., Avery, M. A., Avery, B., Leite, S., and Williamson, J. S. (2002).
Biotransformation of 10-deoxoartemisinin to its 7β-hydroxy derivative by Mucor
ramannianus. Biotechnol. Lett. 24, 937–941. doi:10.1023/A:1015516929682

O’Neill, P., Barton, V., and Ward, S. (2010). The molecular mechanism of action of
artemisinin-the debate continues. Molecules 15, 1705–1721. doi:10.3390/
molecules15031705

Parshikov, I. A., Muraleedharan, K. M., Avery, M. A., and Williamson, J. S. (2004a).
Transformation of artemisinin by Cunninghamella elegans. Appl. Microbiol. Biot. 64 (6),
782–786. doi:10.1007/s00253-003-1524-z

Parshikov, I. A., Muraleedharan, K. M., Miriyala, B., Avery, M. A., and Williamson, J. S.
(2004b). Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans.Nat. Prod. 67,
1595–1597. doi:10.1021/np040089c

Ponnapalli, M. G., Suea, M. B., Sudhakar, R., Govindarajalu, G., and Sijwali, P. S. (2018).
Biotransformation of artemisinin to 14-hydroxydeoxyartemisinin: C-14 hydroxylation by
Aspergillus flavus. J. Agric. Food. Chem. 66 (40), 10490–10495. doi:10.1021/acs.jafc.
8b03573

Tu, Y. Y., Ni, M. Y., Zhong, Y. R., Li, L. N., Cui, S. L., Zhang, M. Q., et al. (1981). Studies
on the constituents of Artemisia annua L. Acta. Pharm. Sin. B 16 (5), 366. doi:10.16438/j.
0513-4870.1981.05.008

Uwimana, A., Legrand, E., Stokes, B. H., Ndikumana, J. L. M., Warsame, M., Umulisa,
N., et al. (2020). Emergence and clonal expansion of in vitro Artemisinin-resistant
Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 26
(10), 1602–1608. doi:10.1038/s41591-020-1005-2

Wang, J. G., Xu, C., Liao, F. L., Jiang, T., Krishna, S., and Tu, Y. (2019). A temporizing
solution to "artemisinin resistance. New. Engl. J. Med. 380 (22), 2087–2089. doi:10.1056/
NEJMp1901233

Wang, R., Cao, W., Khan, A., Khan, A., and Cerniglia, C. (2000). Cloning, sequencing,
and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella
elegans. Fems. Microbiol. Lett. 188, 55–61. doi:10.1111/j.1574-6968.2000.tb09168.x

World Health Organization (2021). World malaria report 2021, Available at: https://
apps.who.int/iris/handle/10665/350147.

Xie, X. T., Zheng, P., Zhang, G. Y., and Yang, M. (2001). Isolation and identification of
new components in mother liquor of synthetic Dihydroartemisinin methyl ether. Chin.
Traditional Herb. Drugs 32, 388.

Zhang, D., Yang, Y., Leakey, J., and Cerniglia, C. (1996). Phase I and phase II enzymes
produced by Cunninghamella elegans for the metabolism of xenobiotics. Fems. Microbiol.
Lett. 138, 221–226. doi:10.1111/j.1574-6968.1996.tb08161.x

Zhao, Y., Sun, P., Ma, Y., Chang, X., Chen, X., Ji, X., et al. (2021). Metabolite profiling of
dihydroartemisinin in blood of plasmodium-infected and healthy mice using UPLC-Q-
TOF-MSE. Front. Pharmacol. 11, 614159. doi:10.3389/fphar.2020.614159

Frontiers in Chemistry frontiersin.org10

Gao et al. 10.3389/fchem.2022.1089290

75

https://www.frontiersin.org/articles/10.3389/fchem.2022.1089290/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2022.1089290/full#supplementary-material
https://doi.org/10.1016/j.biotechadv.2008.07.005
https://doi.org/10.1016/j.biotechadv.2008.07.005
https://doi.org/10.3390/molecules24213874
https://doi.org/10.3389/fchem.2022.850133
https://doi.org/10.1016/j.bjm.2016.11.003
https://doi.org/10.1016/j.bjm.2016.11.003
https://doi.org/10.1007/s00044-013-0726-x
https://doi.org/10.1016/j.bmcl.2009.10.097
https://doi.org/10.1021/jm00167a036
https://doi.org/10.1023/a:1016239505506
https://doi.org/10.1023/a:1015845306124
https://doi.org/10.1016/j.bmcl.2005.12.076
https://doi.org/10.1007/s00253-022-11888-0
https://doi.org/10.3390/molecules24020315
https://doi.org/10.1023/A:1015516929682
https://doi.org/10.3390/molecules15031705
https://doi.org/10.3390/molecules15031705
https://doi.org/10.1007/s00253-003-1524-z
https://doi.org/10.1021/np040089c
https://doi.org/10.1021/acs.jafc.8b03573
https://doi.org/10.1021/acs.jafc.8b03573
https://doi.org/10.16438/j.0513-4870.1981.05.008
https://doi.org/10.16438/j.0513-4870.1981.05.008
https://doi.org/10.1038/s41591-020-1005-2
https://doi.org/10.1056/NEJMp1901233
https://doi.org/10.1056/NEJMp1901233
https://doi.org/10.1111/j.1574-6968.2000.tb09168.x
https://apps.who.int/iris/handle/10665/350147
https://apps.who.int/iris/handle/10665/350147
https://doi.org/10.1111/j.1574-6968.1996.tb08161.x
https://doi.org/10.3389/fphar.2020.614159
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1089290


Recent updates in click and
computational chemistry for drug
discovery and development

Jiang Hong Cai1†, Xuan Zhe Zhu1†, Peng Yue Guo2, Peter Rose3,
Xiao Tong Liu1, Xia Liu2 and Yi Zhun Zhu1,4*
1State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of
Science and Technology, Taipa, Macau, China, 2Department of Clinical Pharmacy, School of Pharmacy,
Second Military University, Shanghai, China, 3School of Biosciences, University of Nottingham, Nottingham,
United Kingdom, 4Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology,
School of Pharmacy, Fudan University, Shanghai, China

Drug discovery is a costly and time-consuming process with a very high failure rate.
Recently, click chemistry and computer-aided drug design (CADD) represent
popular areas for new drug development. Herein, we summarized the recent
updates in click and computational chemistry for drug discovery and
development including clicking to effectively synthesize druggable candidates,
synthesis and modification of natural products, targeted delivery systems, and
computer-aided drug discovery for target identification, seeking out and
optimizing lead compounds, ADMET prediction as well as compounds synthesis,
hopefully, inspires new ideas for novel drug development in the future.

KEYWORDS
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Introduction

Click chemistry, an efficient chemo-selective synthesis method for coupling molecular
fragments under mild reaction conditions, mainly includes Cu-catalyzed azide-alkyne
cycloaddition reaction (CuAAC), strain-promoted azide-alkyne cycloaddition reaction
(SPAAC), thiol-ene reaction, inverse electron demand Diels–Alder reaction (IEDDA),
hydrazone click chemistry and the newly emerging sulfur fluoride exchange (SuFEx)
reaction, has been a hot research topic in the field of chemistry since it was first reported
in 2001 (Zhang et al., 2021a; Ashe, 2022). Computer-aided drug design (CADD) has attracted
a lot of attention for its potential to accelerate and reduce the cost of the drug development
process (Wu et al., 2020). In addition, natural products provide a variety of lead compounds
and novel drugs, are worthy of further development. Furthermore, early and late-stage
development of new drugs may be slowed down by problems such as poor target selectivity or
side effects, toxicity, resistance, inappropriate physicochemical and pharmacokinetic
properties. Therefore, we summarized the recent applications of click and computational
chemistry in drug development such as click to effectively synthesize druggable candidates,
synthesis and modification of natural products, targeted delivery systems including
hydrogels, nanoparticles (NPs), carbon nanotubes (CNT), etc, and computer-aided drug
discovery including molecular docking and molecular dynamics to identify target, virtual
screening (VS.) and pharmacophore to found and optimize lead compounds, ADMET
prediction as well as compounds synthesis, which are making a splash in new drug
development, hopefully, providing new insights for the discovery of new drug from click
and computational chemistry.
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Click chemistry

Click to efficiently synthesize druggable
candidates

The transformation of the active compound skeleton is a magic
weapon for researchers to break through patent restrictions and
improve the activity of compounds in the development of new
drugs. Copper-catalyzed 1,3-dipolar cycloaddition (CuAAC) to
form 1,2,3-triazoles is the most popular reaction in click chemistry.
Recently, 1,2,3-triazole backbones with hydrogen bonds, moderate
dipole moments and enhanced water solubility had been widely used
to generate drug candidates of anti-tumor (Brown et al., 2022;
Elganzory et al., 2022; Mohammed et al., 2022; Oekchuae et al.,
2022; Oliveira et al., 2022; Mironov et al., 2023), anti-seizure
(Bhattacherjee et al., 2022), anti-diabetic (Dhameja et al., 2022),
anti-parasitic (Aljohani et al., 2022), anti-bacterial (Daher et al.,
2022; Mokariya et al., 2022; Nsira et al., 2022) and anti-viral
(Kutkat et al., 2022; Tatarinov et al., 2022) via CuAAC click
chemistry (Figure 1A).

Synthesis and modification of natural
products

Natural products have provide abundant resources for drug
discovery. Recently, click chemistry had been adopted for synthesis
and modification of natural products, for instances, SPAAC was used
to modularly generate Bcl-xL inhibitor (Brauer et al., 2022), adjust
PEG chain length and targeting moiety to further improve half-life as

well as targeting IL-4 to arthritic joint (Figure 1B) (Spieler et al., 2020).
It was reported that poly (globalide-co-ε-caprolactone) could be
functionalized with N-acetylcysteine side chains via thiol-ene
reaction (Guindani et al., 2019). Furthermore, IEDDA could be
used to introduce aromatic heterocycles (Figure 1C) (Xu et al.,
2020) and triazines (Zhang et al., 2021b). Similarly, the synthetic
efficiency of biosynthesis of anti-fungal drug candidate Ilicicolin H
increased 3 × 105 times via IEDDA (Figure 1D) (Zhang et al., 2019).
Moreover, 5-fluorouracil-coumarin conjugation (Figure 1E) as anti-
cancer drug candidate (ópez et al., 2022) and pH responsive
doxorubicin delivery polymers nano-particles (Wallat et al., 2018)
for treatment of breast and ovarian cancer were generated by
modification of natural products via CuAAC. In addition,
quercetin-gold quantum dots for adenocarcinoma treatment
(Pansare et al., 2022) and chondroitin sulfate-multiarmed PEG
hydrogels for skin tissue engineering (Sousa et al., 2022) had been
developed by modification of natural products (Figure 1F).

Targeted delivery systems

Existing drugs may have dis-advantages such as low selectivity,
long synthetic routes, poor stability and side effects, thence the
development of targeted delivery systems make great sense.
Recently click-generated hydrogels had broad applications in the
fields of anti-tumor (Ali et al., 2022; Bonardd et al., 2022), wound
repair (Basurto et al., 2022) and long term regeneration therapy (Jang
et al., 2021) via IEDDA, CuAAC,thiol-ene reaction, and SuFEx,
respectively. Biomimetic stiffening of cell-laden hydrogels via
sequential thiol-ene and hydrazone click reactions (Chang et al.,
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FIGURE 1
Recent updates in click chemistry for drug discovery and development. (A) Reaction formula of CuAAC and some recent applications of CuAAC for
developing drug candidates containing 1,2,3-triazoles ring. (B) An example of natural product modification to improve half-life and target IL-4 to arthritic joint
via SPAAC. (C) An example of introduction aromatic heterocycles via IEDDA. (D) An example of efficient synthesis of natural products via IEDDA. (E) An
example of the generation of anti-cancer drug candidate bymodification of the natural product coumarin via CuAAC. (F)Catalyst-free click chemistry to
generate chondroitin sulfate-multiarmed PEG hydrogels for skin tissue engineering. (G) An example of the generation of MSCs-mediated deep tumor delivery
of gold nanorod for anti-tumor therapy via SPAAC. (H) An example of polymer nanomicelle platform for cancer treatment via CuAAC. (I) An example of the
generation of silver nanoparticle-supported polymer-encapsulated carbon nanotubes (CNTs) via IEDDA for nonenzymatic glucose sensing and antimicrobial
activity applications.
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2021). Furthermore, nanoscale covalent organic frameworks (COFs)
(Guan et al., 2022), Nisin-shelled nanoemulsion (Hashad et al., 2022),
and MSCs-mediated deep tumor delivery of gold nanorod (Figure 1G)
(Yun et al., 2022) had been synthesized for anti-tumor therapy via
thiol-ene reactions, SPAAC, and SPAAC, respectively. Moreover, pH-
sensitive polysaccharide-gold nanorod conjugate (Hou et al., 2019)
and polymer nanomicelle platform (Figure 1H) (Liao et al., 2021) were
reported to treat cancers via hydrazone click reaction and CuAAC,
respectively. In addition, silver nanoparticle-supported polymer-
wrapped carbon nanotubes (CNT) (Cao et al., 2022) for non-
enzymatic glucose sensing and antimicrobial applications (Figure
1I), COF-based nanoreactors for click-activated pro-drug delivery
and precise anti-vascular therapy (Wang et al., 2022) had been
synthesized via IEDDA, these click chemistry-based targeting

strategies may find widespread application in drug delivery in the
future.

Computational chemistry in drug
discovery

To effectively and efficiently design and develop new drugs,
computational methods had been applied for drug design including
target identification, seeking out and optimizing lead compounds
prediction of pharmacokinetic and toxicological properties as well
as compound synthesis by molecular docking and molecular
dynamics, virtual screening, pharmacophore and ADMET
prediction. Novel quinazoline derivative 1 as tubulin

FIGURE 2
The recent updates of computational chemistry in target identification, lead compound discovery and ADMET prediction for drug development.
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polymerization inhibitor (Dwivedi et al., 2022), PARP-1 inhibitor 2
(Syam et al., 2022), CDK2 inhibitor 3 (Qayed et al., 2022), HDAC-1-
3 inhibitor 4 (Cheshmazar et al., 2022), VEGFR-2 inhibitor 5
(Taghour et al., 2022) were identified for cancer therapies.
Furthermore, AChE inhibitor 6 (Macedo Vaz et al., 2022) for
treatment of Alzheimer’s disease and Mtb RNAP inhibitor 7
(Mekonnen Sanka et al., 2022) for antitubercular and antimicrobial
treatment were deserve further study. Moreover, a lead compound 8 of
DDP4 inhibitor (Maslov et al., 2022) and acetamide derivative 9 (Zhou
et al., 2022) as P2Y14R antagonist were considered as drug candidates
for treating type 2 diabetes and gout, respectively. Additionally,
potential SARS-CoV-2 main protease inhibitor 10 (Dong et al.,
2023) and carbazole alkaloids from Murraya koenigii (Wadanambi
et al., 2023) were identified as a promising drug candidates for
inhibiting coronavirus infection. Surprisingly, it had been reported
a computationally guided asymmetric total synthesis of resveratrol
dimers, which possessed a wide range of biological activities such as
antioxidant, anti-tumor and cardiovascular activities (Nakajima et al.,
2022), suggesting that computationally guided organic synthesis may
be a powerful strategy to advance the chemistry of natural products
(Figure 2).

Conclusion and prospects

In the review, we summarized recent updates in click chemistry
for drug discovery and development, including chemical click
synthesis of druggable candidates, synthesis and modification of
natural products, targeted delivery systems. In addition, we
introduced updated computational chemistry in drug discovery
for target identification, discovery and optimization of lead
compounds, compounds synthesis and prediction of
pharmacokinetic and toxicological properties. Click chemistry is a
very powerful tool in drug discovery, in which the synthesis of 1,2,3-
triazole ring as a pharmacophore, bioisostere via CuAAC has great
potential in the drug design for a variety of diseases, however, 1,2,3-
triazole ring itself is not a commonly used pharmacophore, and it is
rare in marketed drugs, indicating that the use of 1,2,3-triazole as
drug molecules still has certain limitations. Furthermore, the
CuAAC reaction introduces copper species into biological systems
and organisms, leading to potential toxicity issues while many Cu
chelation sites may inhibit catalyst activity. Moreover, Copper-free
cycloaddition SPAAC reaction and IEDDA reaction have their own
issues: for example, they are susceptible to side reactions with
nucleophilic residues (e.g., thiol residues in glutathione), and the
reactive (electrophilic) nature of the requisite cyclic alkynes/alkenes
may result in poor regiospecificity. Although computer molecular
docking and molecular dynamics have important applications for
target identification, however, the protein used for molecular

docking may have a huge unknown difference from the protein in
the pathological state due to site mutation. Additionally, computational
chemistry needs to be combined with more biological activity test and
mechanism exploration. In a word, although click and computational
chemistry have shortcomings, which still hold a great and unnegligible
potential for drug discovery and development, hopefully, this review can
stimulate new ideas for the development of drugs with high selectivity,
low toxicity, good stability and their clinical application in the near
future.
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Cancer is the second leading cause of death worldwide. Specially, the high
incidence rate and prevalence of drug resistance have rendered prostate
cancer (PCa) a great threat to men’s health. Novel modalities with different
structures or mechanisms are in urgent need to overcome these two
challenges. Traditional Chinese medicine toad venom-derived agents (TVAs)
have shown to possess versatile bioactivities in treating certain diseases
including PCa. In this work, we attempted to have an overview of
bufadienolides, the major bioactive components in TVAs, in the treatment of
PCa in the past decade, including their derivatives developed by medicinal
chemists to antagonize certain drawbacks of bufadienolides such as innate
toxic effect to normal cells. Generally, bufadienolides can effectively induce
apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by
regulating certain microRNAs/long non-coding RNAs, or by modulating key
pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles
and challenges using TVAs will be discussed and possible solutions and future
perspectives will also be presented in this review. Further in-depth studies are
clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic
effects and fully reveal their application. The information collected in this work
may help evoke more effects in developing bufadienolides as therapeutic agents
in PCa.

KEYWORDS

toad venom-derived bufadienolides, therapeutic application, prostate cancers, current
status, future directions

1 Introduction

The quality of life of cancer patients have been improved significantly due to the progress
of application of new technologies, including drug development, especially precision
medicine. Targeted therapies and the cutting-edge immunotherapies have reached a new
paradigm for cancer treatment, which work together with renovated surgery and
radiotherapy, etc., to markedly improve treatment outcomes. However, there are still
many challenges in treating certain types of cancer including prostate cancer (PCa)
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which has two unique characteristics. The first one is the high
prevalence since it’s one of the leading cancers in men and one of the
leading causes of deaths among men worldwide (Gomella, 2017;
Schatten, 2018; Zhang et al., 2022a). The second characteristic is the
high incidence of drug resistance, since more than 90% of PCa will
eventually develop resistance to androgen-depredation therapy
(ADT), termed as castration-resistant PCa (CRPC), and later
second resistance to subsequent chemotherapies (Armstrong and
Gao, 2015; Cohen et al., 2021; Liotti et al., 2021; Morel et al., 2021; Ji
et al., 2022; Peery et al., 2022). It’s known that various factors
contribute to the development of drug resistance in PCa, such as the
alteration/mutation of androgen receptor (AR) or oncogenes,
metabolism adaptation, overexpression of ATP-binding cassette
(ABC) transporters, apoptosis resistance, enhanced DNA repair
and cellular defensive systems against toxic inducers, etc. (Peery
et al., 2017; Wang et al., 2020a; de Leeuw et al., 2020; Messina et al.,
2020; Peery et al., 2020; Yang et al., 2020; Do and Webster, 2021;
Filon et al., 2022). Thus, structurally and mechanistically renovated
agents that can effectively suppress PCa and/or less likely develop
resistance are in urgent need.

Toad venom, also named as Chan-Su, is a traditional Chinese
medicine that has shown therapeutic efficacies in clinic (mainly in
China) and has been widely used for the treatment of cancer,
cardiovascular diseases, pain, and inflammation/inflammatory
diseases as shown in Figure 1 (Gao et al., 2017; Li et al., 2021a;
Xu et al., 2021; Zheng et al., 2022). Originally derived from the skin
and auricular glands of Chinese toad, toad venom is used to repel
toad’s natural enemies primarily, working as a protective agent.
Known for the toxic effects to cause cardiac arrhythmia, toad
venom-derived agents (TVAs) usually work as an inhibitor of

Na+/K+-ATPase and a regulator of calcium homeostasis, which
leads to seizure and coma, etc., thereby causing toxic effects
(Chen and Kovarikova, 1967; Bick et al., 2002; Lopez-Lopez
et al., 2008). In addition to toxic effects, however, toad venom
has therapeutic effects that can be applied to treat certain diseases.
Till now, due to its strict export ban to other countries by state law,
drugs that contain toad venom are only approved for clinical use in
China, such as Chansu injection, Liu Shen Wan, Xin Bao Wan,
Chan-Su Wan, Hua-Chan Wan (made of isolated cinobufagin in
toad venom), Kyushin, Zuo Xiang Bao Xin Wan, etc. (Morishita
et al., 1992). In addition to Chinese Chan-Su in the application of
cancer treatments, toad venom from other species has also been
reported, including Indian toad venom (Gomes et al., 2011),
although they have not been fully studied for its application.

In this review, we focused on the applications of bufadienolides,
especially those isolated pure compounds in TVAs, in treating PCa
in the past 10 years. While it is true that not too many studies have
been published as of December 2022, and that the research and
application of TVAs in cancer treatment are still at its early stage, the
information collected could certainly serve as a base for their further
exploration in PCa treatment.

2 Bufadienolides in toad venom and
their therapeutic implication in cancers

In total, several dozens of different components were identified
and characterized in toad venom (Zhang et al., 2005; Wang et al.,
2018a; Cao et al., 2019). Their pharmacological effects can be
majorly attributed to alkaloids (Dai et al., 2018a; Dong et al.,
2022) and bufadienolides which share steroids scaffold in
common (Qu et al., 2012). Both alkaloids and bufadienolides are
among the most prominent and most-studied compounds in toad
venom. Growing studies have confirmed that both alkaloids and
bufadienolides can work in treating cardiovascular diseases and
cancers (Chen et al., 2020). Our special and major interest in this
review falls in these bufadienolides (Figure 2).

There are several prominent members that are categorized as
bufadienolides (Figure 2) (Cunha-Filho et al., 2010; Zhang et al.,
2014), including Bufalin, (3β,14-dihydroxy-5β-bufa-20,22-
dienolide, shown as compound 1) (Zhang et al., 2020a), bufatalin
[(3β,14,16β-Trihydroxy-5β-bufa-20,22-dienolide) 16-acetate,
shown as compound 2] (Zhang et al., 2022b), cinobufagin, (3β-
Hydroxy-14,15β-epoxy-5β-bufa-20,22-dienolid-16β-yl acetate,
shown as 3) (Toma et al., 1987), resibufogenin [(3β,5β,15β)-
14,15-epoxy-3-hydroxy-bufa-20,22-dienolide, shown as 4] (Yang
et al., 2021a), and arenobufagin [(3β,5β,11α)-3,11,14-Trihydroxy-
12-oxobufa-20,22-dienolide, shown as 5] (Zhang et al., 2013). These
compounds are structurally related, and specially, all of them can be
regarded as bufalin’s derivatives, with minor differences at certain
position, which are shown and highlighted in Figure 2. It appears
that TVAs have broad-spectrum anticancer potential (Liu et al.,
2019; Niu et al., 2021; Jia et al., 2022). Research has indicated that
they, either by single use or as a mixture when combined with other
agents, are effective in treating acute myeloid leukemia (Hirasaki
et al., 2022), lung cancer (Xie et al., 2018; Li et al., 2021b; Meng et al.,
2021), colorectal cancer (Li et al., 2019; Bai et al., 2021; Meng et al.,
2021), liver cancer (Zhang et al., 2012; Zhao et al., 2019; Zhang et al.,

FIGURE 1
The origin, components, functions, toxicity and mechanisms of
toad venom. Originated from the skin and auricular glands of Chinese
toad, toad venom contains mostly alkaloids and bufadienolides,
functioning to treat heart disease, inflammation, infection, pain
and cancer through regulating Na+/K+-ATPase, SRC-3 and -1, etc.
Drugs containing toad venom are only approved in China.
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2020b; Yang et al., 2021b), breast cancer (Zhu et al., 2018), oral
cancer (Jo et al., 2021), gastric cancer (Xiong et al., 2019), Ehrlich
ascites carcinoma (Giri et al., 2018), melanoma (Pan et al., 2019;
Zhang et al., 2020c; Kim et al., 2020), nasopharyngeal carcinoma
(Pan et al., 2020; Hou et al., 2022), osteosarcoma (Cao et al., 2017;
Dai et al., 2018b; Zhang et al., 2019a), cholangiocarcinoma (Ren
et al., 2019), myeloma (Baek et al., 2015), etc.

3 Therapeutic application of
bufadienolides in PCa

3.1 Mono-therapy of TVAs in PCa

Bufalin is one of the most intensively studied compounds among
all TVAs (Wang et al., 2018b; Lan et al., 2019; Soumoy et al., 2022). A
study by Zhang et al. (2018) showed that bufalin worked as an
anticancer agent via a p53-mediated mechanism in PCa cells both
in-vitro and in-vivo. In p53-mutant DU145 cells and p53-wild type
LNCaP cells, bufalin (5–100 nM, 48 h) treatment could upregulate
the expression of cleaved poly (ADP-ribose) polymerase (PARP),
and downregulate steroid receptor co-activator 1/3 (SRC1/3), AR
and prostate specific antigen (PSA). This study showed that bufalin
increased p53 expression in LNCaP cells, but decreased p53 in
DU145 cells, however, cleaved PARP or p53 was not observed in
p53-null PC-3 cells although inhibited proliferation was identified,
suggesting a p53-mediated efficacy (Zhang et al., 2018). The
microarray detection of certain mRNA levels indicated that in
LNCaP cells, bufalin treatment increased p53 and its
transcriptional target P21CIP1, as well as mRNAs related to
cellular stress and DNA damage response, and certain
senescence-associated genes, such as CYR61/CCNI, CTGF/CCN2
and CDKN1A, which were then been validated by the subsequent
assays of cell cycle distribution (sub G0/1) and the presence of

senescence-like phenotype (Zhang et al., 2018). The knockdown
of p53 could attenuate bufalin-induced apoptosis as indicated by the
decreased level of cleaved PARP. Finally, in the in-vivo model of
LNCaP xenograft, bufalin (1.5 mg/kg body weight, IP, daily) for
9 weeks inhibited tumor growth, resulting in a 67% decrease as
compared to untreated group, without affecting body weight
significantly which might suggest a safe profile. More
importantly, in bufalin-treated tumors, phospho-p53 was
increased, confirming the on-target effect and a network of
bufalin with p53 (Zhang et al., 2018).

A recent study by Zhang et al. (2019) found that bufalin can alter
the expression of both microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) that are critical for PCa (Zhang et al., 2019b). In
CRPC DU145 and PC-3 cells, bufalin suppressed the cell viability in
a dose-dependent manner, with an IC50 value of 0.89 and 1.28 μM,
respectively. At lower than the corresponding IC50 (to be more
specific, at half of the corresponding IC50), bufalin could
significantly reduce the migration and invasion of DU145 and
PC-3 cells as confirmed by the wound healing assay and
transwell assay. The authors screened lncRNA alteration after
bufalin treatment (0.1–5 µM) using a lncRNA microarray, and
they identified that HOX transcript antisense RNA (HOTAIR)
was one of the mostly reduced (Zhang et al., 2019b). HOTAIR
targets and inhibits miR-520b as confirmed by RNA
immunoprecipitation assay; meanwhile, miR-520b can negatively
regulate the expression of fibroblast growth factor receptor 1 protein
(FGFR1) which plays a pivotal role in PCa progression and
metastasis (Yang et al., 2013; Wang et al., 2019). The authors
also investigated and confirmed the positive correlation of
HOTAIR and FGFR1 with PCa bone metastasis, and that the
overexpression of HOTAIR could reverse bufalin-induced cancer-
suppressing effects. Thus, this study indicated that bufalin can
inhibit PCa proliferation, migration and invasion via regulating
the HOTAIR-miR520b-FGFR1 loop (Zhang et al., 2019b).

FIGURE 2
The structures of bufalin and its derivatives found in toad venom which show cancer-suppressing effects. Structurally, bufalin can be regarded as a
parent compound, and all other TVAs are modified on bufalin at different positions. The structural differences are highlighted in red.
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MiRNA-181, composed with subunits miRNA-181a and b,
targets apoptosis-associated proteins such as Bcl-2 family
members, functioning as a tumor suppressor (Liu et al., 2017;
Pei et al., 2020). Zhai et al. (2013) found that in bufalin (10 μM,
24 h)-treated PC-3 cells, miRNA-181a, but not the others such as
miRNA-10b, −17, 18a, 20a, 21, −106, −155, −221 and −372, was
markedly upregulated (5-fold), which was later confirmed to be a
dose-dependent manner (1, 10 and 15 µM) (Zhai et al., 2013). In
PC-3 cells, bufalin (15 µM) significantly decreased the expression
of Bcl-2, an anti-apoptotic protein, accompanied with caspase-3
protein activation (via testing the level of cleaved caspase-3), which
is essential in promoting apoptosis (Kesavardhana et al., 2020). At
the same time, the rescue experiments showed that bufalin-
induced apoptosis and caspase-3 proteins activation can be
partially reversed by miR-181a inhibitor co-treatment (100 nM),
validating the targeted effects of bufalin toward miR-181a (Zhai
et al., 2013).

Structurally, bufalin is a hydrophobic compound that may
encounter poor absorption and bioavailability (Shao et al., 2021).
Thus, Liu and Huang (2016) constructed an amphiphilic
targeting brush-type copolymers that can deliver bufalin to
CRPC cells, which exhibited controlled drug release and
higher anticancer capability than free bufalin both in-vitro and
in-vivo (Liu and Huang, 2016). This constructed BUF-loaded
micellar nanoparticle BUF-NP-(G3-C12) was found to have an
IC50 value of 8.0 ng/mL, which was lower than that of free bufalin
(which was 13.3 ng/mL) in CRPC DU145 cells; and consistent
results were also observed in inducing apoptosis. In
DU145 xenograft model, when used by intravenous injection
iv) at an equivalent 1.0 mg bufalin/kg, BUF-NP-(G3-C12)
showed significantly higher tumor-inhibiting effects than that
of free bufalin. Importantly, it didn’t change body weight as
compared to vehicle control, suggesting its safety (Liu and
Huang, 2016). Further evaluation is clearly needed to develop
it as a drug candidate for PCa.

Chen et al. (2017) reported that arenobufagin, among five
bufadienolides including cinobufotalin, bufarenogin, 19-
oxocinobufotalin and 19-hydroxybufalin, showed the highest
potency in suppressing the progress of epithelial-mesenchymal
transition (EMT) in PC-3 cells, leading to decreased ability of
migration and invasion (Chen et al., 2017). Arenobufagin
(8 nM) time-dependently (24, 36 and 48 h) downregulated
EMT markers in PC-3 cells, including slug, zinc finger E-box
binding homeobox 1 (ZEB1), snail, N-cadherin, vimentin and
Twist1 as confirmed by the Western bolt experiment. In
addition, β-catenin was reduced at both mRNA and
expression levels by arenobufagin, which then lead to the
downregulation of its downstream genes including Met, LEF,
TCF, c-Myc and cyclin D1. These effects can be reversed by β-
catenin overexpression, suggesting the network of arenobufagin
with β-catenin. Arenobufagin (1 mg/kg) reduced tumor growth
without altering the body weight or causing harms to major
organs including heart, liver, spleen, lung and kidney. In the in-
vivo PC-3 cells pulmonary metastases model, arenobufagin
markedly reduced the number and size of tumor metastatic
foci in lung tissues, suggesting its dual role in preventing
tumor growth and metastasis, warranting further study (Chen
et al., 2017).

Niu et al. (2018) reported the anticancer effects and the mode
of action of another TVA, cinobufagin, in CRPC PC-3 cells.
Cinobufagin could significantly suppress PC-3 cells proliferation,
with an approximately IC50 of 100 nM (24 h) or 50 nM (48 h),
suggesting a dose- and time-dependent manner. When tested in
colony formation, cinobufagin possessed a much lower IC50

(slightly lower than 5 nM). Mechanistically, cinobufagin
induced apoptosis of PC-3 cells via down-regulating anti-
apoptotic MCL-1 protein (Niu and Qin, 2018). Cinobufagin
appears to be much more potent than bufalin, which has an
IC50 of 1.28 μM in PC-3 cells.

3.2 Combinational therapy of TVAs in PCa

In addition to its role in working alone to suppress PCa, TVA
bufalin has also been found to work as a chemo-sensitizer when
combined with other conventional therapeutics.

Bufalin was identified as a possible DNA topoisomerase II (Top
II) inhibitor (Hashimoto et al., 1997; Pastor and Cortes, 2003).
Previous in-vitro studies showed that sequential administration of
different Top isomer inhibitors exhibited improved outcomes as
compared to simultaneous administration, suggesting a feasible
combinational strategy (Cho and Cho-Chung, 2003; Griffith and
Kemp, 2003). Recently, Gu and Zhang (2021) investigated the
combination of low-dose (0.4–0.8 mg/kg) bufalin with
hydroxycamptothecin, a Top I inhibitor (Gu and Zhang, 2021). In
this study, CRPC DU145 cells xenograft model in nude mice were
constructed and treated by hydroxycamptothecin (2 mg/kg)
combined with 0.4 mg/kg, 0.6 mg/kg or 0.8 mg/kg bufalin,
respectively. The results showed that among all treatments, the
combination of hydroxycamptothecin with 0.6 mg/kg bufalin
showed the strongest tumor-reducing effect (93% inhibition) than
the other two combinations or monotherapy, bufalin at 1 mg/kg
(~30% inhibition) or hydroxycamptothecin at 2 mg/kg (58%
inhibition), without altering body weight significantly (Gu and
Zhang, 2021). This combination, named as H6B, induced
significantly higher apoptosis but reduced proliferating cell nuclear
antigen (PCNA) proteins in the tumors than the other treatments as
confirmed by the TUNEL assay and immunohistochemistry,
respectively. Western blot assay showed that H6B increased pro-
apoptotic proteins such as Bax, p53 and programmed cell death
protein 4 (PDCD4); whereas it decreased anti-apoptotic proteins such
as Bcl-XL and p-AKT (Gu and Zhang, 2021). While this study
presented a possible combinational treatment that was safe and
can be further validated in other models and even in humans, it
remains unclear if H6B inhibit Top I/II in the treated tumor tissue.

4Other therapeutic implication of TVAs
in PCa

Growing evidence has suggested that TVAs may have other
therapeutic application in treating PCa.

Firstly, both cinobufagin and bufalin could inhibit
P-glycoprotein (P-gp, also named as ABCB1 or multidrug
resistance mutation 1, MDR1) (Yuan et al., 2017; Madugula and
Neerati, 2020; Zhan et al., 2020; Neerati and Munigadapa, 2022).
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Since P-gp plays an essential role, and sometime the leading role in
inducing anticancer drug of both conventional and targeted
therapies resistance via transporting them out of cancer cells
(Robey et al., 2018; Wang et al., 2020b; Feng et al., 2020; Thomas
and Tampe, 2020; Wang et al., 2021), cinobufagin and bufalin may
likely have potentials in sensitizing certain conventional
chemotherapeutics that are substrates of P-gp. In addition, as all
of these bufadienolides possess the same pharmacophore which
indicates that they may have similar bioactivities, it is reasonable to
predict that other TVAs (in addition to cinobufagin and bufalin)
may also impact P-gp and may have synergistic/sensitizing effects in
PCa treatment when used by combination (Wu et al., 2020a; Gao
et al., 2020; Chen et al., 2021), warranting further exploration.
Furthermore, it’s also worth studying whether TVAs impact
other members of ABC transporters. Thus, a broader screening
and validation is necessary to explore their full potential.

Secondly, TVAs can induce cytochrome P450 3A in the
pharmacokinetic (PK) study (Jiang et al., 2012; Dai et al., 2019),
suggesting that they may affect other drugs metabolism and requiring
a real-time monitor of PK profiles when used by combination.

Thirdly, since TVAs could alleviate cancer-related pain, it is
meaningful in trying optimal combinational strategies with certain
anticancer drugs (Xu et al., 2019).

Furthermore, there are several bufalin-derived TVAs that
show better inhibitory effect in PCa cells than bufalin,
including compound 6 (Figure 2), a de-hydroxyl bufalin,
showed higher AR binding affinity but lower inhibition on the
Na+/K+-ATPase, which may suggest a higher cytotoxic effect to
PCa cells but lower toxic effect to heart, warranting further
evaluation (Tian et al., 2014).

While several TVAs derivatives also exhibited promising
anticancer effects in PCa and other cancer types (Yuan et al.,
2014; Meng et al., 2021; Sampath et al., 2022), their application
remains to be fully exploited. It’s also noteworthy that except for
bufalin, arenobufagin, and cinobufagin, very few studies of bufotalin
and resibufogenin in PCa have been reported in the past decade.

5 Toxic and potential adverse effects of
TVAs

One of themajor challenges in using TVAs is the toxic effect, which
may significantly cripple their application potential in PCa. Thus, the
toxic effects and the associated mechanism are discussed briefly.

5.1 Cardiac toxic effects via regulating Na+/
K+-ATPase

Several TVAs have been confirmed to induce cardiac toxicity.
Resibufogenin (0.2 mg/kg, iv) could significantly increase heart
burden as indicated by contractile force in rabbit, cat and dog,
leading to delayed afterdepolarization and triggered arrhythmias
(Xie et al., 2001). These effects were partially mediated by its
disturbance of Na+/K+-ATPase which caused calcium (Ca+)
overload (Xie et al., 2001). Similarly, in human cardiomyocytes
model, bufalin (30–300 nM) showed a biphasic effect on the
contractility, which was strengthening contractility, accelerating

conduction, and increasing beating rate at the earlier stage, while
in the opposite when at the later stage (Li et al., 2020).

5.2 Neuron toxicity due to inhibit voltage-
gated potassium channels

TVAs are known to cause neuron toxicity as reported previously
(Brubacher et al., 1999; Dasgupta, 2003;Ma et al., 2007). In addition to
the inhibition of Na+/K+-ATPase, in rat hippocampal neurons (Wang
et al., 2014a), both resibufogenin and cinobufagin could also inhibit
outward delayed rectifier potassium current (Hao et al., 2011), which
may work together to induce toxicity in neuron system. However, we
believe that more studies are needed to reveal the doses or
concentrations on inducing human neuron cells related toxicity.

5.3 Drug-drug interactions due to the
inhibition of human cytochrome P450 3A4
(CYP3A4)

A study by Li et al. (2009) found that bufalin had an inhibitory
toward recombinant human CYP3A4 in vitro, with an IC50 of
14.52 μM, leading to increased elimination half-time, peak plasma
level of midazolam (a substrate of CYP3A4) in the rat model. Thus,
when being used with combination, adverse effects due to
CYP3A4 inhibition of TVAs should be monitored and prevented.

5.4 The narrow therapeutic window

It’s known that in mouse model the median lethal dose (LD50) of
bufalin in nude mice is 2.2 mg/kg (Tu et al., 2000), which is pretty
close to the doses of achieving therapeutic effects of tumor inhibition
(normally not more than 1 mg/kg), suggesting a very narrow
therapeutic window, and that the accumulative TVAs may
further worsen certain toxic effects. Thus, when being tested in
humans, a close monitor of serum concentration is necessary.

6 Discussion and future perspectives

Cancers have become a great burden to modern people due to
high prevalence and high cost in treatment and care (Desai et al., 2021;
Wells, 2021). Cancer-related deaths rank the second among all deaths
caused by different diseases (Siegel et al., 2022). As our major research
interest, PCa stands out for three reasons, the most diagnosed cancer
in men, the secondmost cancer deaths inmen globally, and extremely
high rate of drug resistance (Wade and Kyprianou, 2018). Currently,
effective therapeutic strategies for PCa include surgery, cytotoxic
chemotherapy agents, AR inhibitors, PARP inhibitors, and
radiopharmaceuticals, etc. (Do and Webster, 2021). Unfortunately,
the vast majority of PCa patients will develop acquired resistance to
most of these therapeutic agents (Moreira-Silva et al., 2022).

Toad venom is a traditional Chinesemedicine that has been applied
(mostly used by certain extraction/mixture in combination with other
drugs) in clinic for hundreds of years in China (Li et al., 2021a). It
should be mentioned that all the approved drugs contain the extraction
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of toad venom but not the isolated active components such as these
discussed bufadienolides in this review. For example, while Chansu
injection, an approved drug in China for infective diseases, has been
evaluated for its potential in cancer treatment, its effectiveness and
safety among cancer patients are yet to be proved (Jia et al., 2022). A
clinical study, published in 2016 in stage III-IV patients of non-Hodgkin
lymphoma, showed that the combination of Chansu injection with
EOAP (etoposide, vincristine, cytosine arabinoside and prednisone)
failed to improve the therapeutic effect when compared to EOAP group
(Niu et al., 2016). Another clinical evaluation showed that while Chansu
injection might enhance the treatment effects of certain anticancer
agents (Ma et al., 2018), we believe that further broader clinical trials are
still needed to validate the efficacy.

It’s assumed that bufadienolides have several advantages over those
approved drugs, because 1) bufadienolides are new therapeutic agents
with distinct structures, and laboratory studies have suggested that PCa
cells are sensitive to them. Thus, it’s likely that PCa cells may not be able
to quickly develop resistance. 2) The above mentioned approved drugs
are all single-targeted agents, which can be antagonized by adaptation of
PCa cells. Bufadienolides are known for multi-targeted compounds,
rendering them hard to develop resistance by PCa cells. 3) Reports have
shown that P-gp can induce resistance of some PCa drugs including
docetaxel (Kato et al., 2015), PARP inhibitor talazoparib (Naito et al.,
2021; Teyssonneau et al., 2022), etc. As P-gp is one of bufadienolides’
targets, thus, to reverse or achieve sensitizing effects, it’s reasonable to
use combinational regimens, including combination composed with
approved drugs in PCa. However, cautions remain since 1) the efficacy
and safety of pure isolated bufadienolides in human is unknown; 2)
bufadienolides may have intensive drug-drug interactions as they have
interactions with cytochrome P450 3A (Jiang et al., 2012; Dai et al.,
2019); and 3) it’s unclear of the exact targets.

Though these components have been extensively studied in the
past decade, none of them have been approved. The application of
TVAs in PCa is still at early stage but is attracting more attentions
recently.

6.1 Summary of TVAs in PCa

The above literature review has summarized the application of
TVAs in PCa (Table 1; Figure 3). Generally, TVAs could suppress

PCa cells proliferation via inducing apoptosis and regulating certain
miRNAs and lncRNAs; meanwhile, they also show activity in
reducing PCa cells migration and invasion in-vitro and in-vivo
through negatively regulating critical players involved in
metastasis. It’s known that bufalin targets steroid receptor
coactivators SRC-3 and SRC-1 (Wang et al., 2014b), while
growing evidence suggests that bufalin is a multi-targeting or
multi-functional agent, especially in the treatment of cancers.

By far, except for bufalin that has been extensively studied, the
therapeutic applications of other TVAs in PCa are yet to be fully
revealed. While we suspect that since they all share a very similar
scaffold, there may be limited differences of the underlying
mechanisms, requiring further validations.

It also comes to our notice that TVAs have been approved and/or
under active clinical evaluations only in China. Currently,
combinational therapies of using some of TVAs are also actively
tested in clinical trials, such as the combination of thalidomide with
cinobufagin to treat lung cancer cachexia (Xie et al., 2018). Other TVAs-
related clinical trial was either conductedmore than 10 years ago (Meng
et al., 2009), or using formulations made of toad venom extraction
rather than isolated single component (Meng et al., 2012; Wu et al.,
2020b; Tan et al., 2021). Since both the active components (major and
minor) and the associated mechanisms remain largely elusive, thus,
these formulations will likely meet many obstacles to be approved in
other countries outside China due to different new drugs regulations.
More studies using corresponding isolated pure compounds are in
urgent need to support their further evaluation in humans.

6.2 Future perspectives

While the anticancer of TVAs in PCa can be confirmed in lab
(in-vitro and in-vivo), much more works are needed before they can
be eventually applied in patients worldwide. The authors propose
that six future directions are worth trying.

(1) Rational design of TVAs derivatives or analogs via the assistance
of computer-aided drug design (CADD). These structures of
bufadienolides can serve as leading compounds that may
undergo structural modification for improved target-binding
and anticancer effects. By far, this research area is extremely

TABLE 1 Key facts of bufadienolides in the treatment of PCa (as of August 2022).

TVAs Mechanisms/Targets Effects Ref

Bufalin Suppressing p53 Reducing tumor growth (1.5 mg/kg, IP) Zhang et al. (2018)

Regulating HOTAIR Inhibiting PCa cells metastasis Zhang et al. (2019b)

Regulating miRNA181a/apoptotic proteins Inducing PC-3 apoptosis Zhai et al. (2013)

Un-defined Inhibiting DU145 cells in-vitro and in-vivo Liu and Huang (2016)

Inhibiting Top II and inducing apoptosis Sensitizing hydroxycamptothecin Gu and Zhang (2021)

Arenobufagin Down-regulating EMT Inhibiting PC-3 metastasis in-vivo Chen et al. (2017)

Cinobufagin Down-regulating MCL-1 Killing PC-3 cells Niu and Qin (2018)

Inhibiting P-gp Sensitizing drugs that are P-gp substrates Griffith and Kemp (2003)

Note: HOTAIR, HOX, transcript antisense RNA; EMT, epithelial-mesenchymal transition; P-gp, P-glycoprotein.
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undeveloped. Very few studies have been published, andmost of
them are focusing on the modification of hydroxyl groups at
different positions (Sampath et al., 2022). Further and varied
structural modification at other positions and functional groups
are necessary.

(2) In-depth pharmacological/mechanistic study for target(s)
identification and verification. While bufadienolides appear to
regulating multifaceted signal pathways and targets in PCa, it
remains elusive regarding the decisive factor. Proteomics study
and gene sequence after TVAs treatment along with the
associated pharmacological and validation studies is required.

(3) Following the pharmacological/mechanistic study, toxicological
mechanisms, beside their inhibition on Na+/K+-ATPase or other
ion channels, are needed. In addition, it is also possible that
certain metabolites of TVAs may contribute to toxic effects,
requiring further validation.

(4) PK study. The PK study can answer the time-course of the
absorption, distribution, metabolism and elimination, as well as
toxicity of bufadienolides, which may offer solutions for the
doses and frequency of administration in PCa patients.
Unfortunately, there is no PK data using isolated TVAs in
humans. Recently in 2019, a PK study using bufalin in rats were
published (Wei et al., 2019). It is shown that bufalin (10 mg/kg,
oral administration) reached the peak serum concentration
(14.722 ± 4.681 ng/mL) after only 15 min, which had a half
time of 5.7 ± 3.06 h (Wei et al., 2019). Bufalin could quickly
undergo metabolism into more than nine different metabolites.
This study provided very useful information of using bufalin in
rats, which may help to design and develop protocols in
monitoring metabolism of TVAs in humans. In addition,
these identified metabolites may help to reveal potential
pharmacological effects as well as toxic effects in humans.

(5) More in-vivo models validation of bufadienolides in PCa. In
addition to in-vitro models, in-vivo models including patient-

derived xenograft models are warranted. Furthermore, due to its
innate toxic effects, the combinational regimens of low-dose
bufadienolides with certain conventional chemotherapeutics
will be promising.

(6) Deciphering associated resistance reasons and developing
combinational strategy. Drug resistance is a major obstacle in
PCa treatment (Do andWebster, 2021; Zhao et al., 2021). While
we suspect that PCa cells may not develop resistance to
bufadienolides easily, it’s largely unknown when and how, as
well as the resistance rate and resistant mechanisms. For the full
application and indications, more studies are needed to reveal
resistant reasons.

Finally, more clinical trials in PCa are necessary to test the
efficacies of TVAs including their pharmaceutical formulations.

7 Conclusion

PCa, due to its high incidence rate and prevalence of drug
resistance, is one of the leading threats to men’s health. Chinese
traditional medicine toad venom and TVAs have emerged as
promising therapeutic agents in PCa, which have been validated
by cell- and animal-based models. Further in-depth studies are also
clearly needed for the underlying mechanisms, toxicology, and for
exploring combinational therapies in PCa.
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FIGURE 3
TVAs suppress cancer growth via various pathways. TVAs appear
to be able to suppress P-gp, activate p53, and regulate critical players
in EMT, inhibit Top II and modulate certain mi/lncRNA, leading to PCa
cells apoptosis which thereby suppressing cancer progression.
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N- Demethylsinomenine (NDSM), the in vivo demethylated metabolite of
sinomenine, has exhibited antinociceptive efficacy against various pain models
and may become a novel drug candidate for pain management. However, no
reported analytical method for quantification of N- Demethylsinomenine in a
biological matrix is currently available, and the pharmacokinetic properties of N-
Demethylsinomenine are unknown. In the present study, an ultra-high
performance liquid chromatography with tandem mass spectrometry (UPLC-
MS/MS) method for quantification of N- Demethylsinomenine in rat plasma
was developed and utilized to examine the preclinical pharmacokinetic profiles
of N- Demethylsinomenine. The liquid-liquid extraction using ethyl acetate as the
extractant was selected to treat rat plasma samples. The mixture of 25% aqueous
phase (0.35% acetic acid-10 mM ammonium acetate buffer) and 75% organic
phase (acetonitrile) was chosen as the mobile phases flowing on a ZORBAX
C18 column to perform the chromatographic separation. After a 6-min rapid
elution, NDSM and its internal standard (IS), metronidazole, were separated
successfully. The ion pairs of 316/239 and 172/128 were captured for detecting
N- Demethylsinomenine and IS, respectively, using multiple reaction monitoring
(MRM) under a positive electrospray ionization (ESI) mode in this mass
spectrometry analysis. The standard curve met linear requirements within the
concentration range from 3 to 1000 ng/mL, and the lower limit of quantification
(LLOQ) was 3 ng/mL. The method was evaluated regarding precision, accuracy,
recovery, matrix effect, and stability, and all the resultsmet the criteria presented in
the guidelines for validation of biological analysis method. Then the
pharmacokinetic profiles of N- Demethylsinomenine in rat plasma were
characterized using this validated UPLC-MS/MS method. N-
Demethylsinomenine exhibited the feature of linear pharmacokinetics after
intravenous (i.v.) or intragastric (i.g.) administration in rats. After i. v. bolus at
three dosage levels (0.5, 1, and 2 mg/kg), N- Demethylsinomenine showed the
profiles of rapid eliminationwithmean half-life (T1/2Z) of 1.55–1.73 h, and extensive
tissue distribution with volume of distribution (VZ) of 5.62–8.07 L/kg. After i. g.
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administration at three dosage levels (10, 20, and 40mg/kg), N-
Demethylsinomenine showed the consistent peak time (Tmax) of 3 h and the
mean absolute bioavailability of N- Demethylsinomenine was 30.46%. These
pharmacokinetics findings will aid in future drug development decisions of N-
Demethylsinomenine as a potential candidate for pain analgesia.

KEYWORDS

pharmacokinetics, bioavailability, N-demethylsinomenine, UPLC-MS/MS, rats

1 Introduction

Chronic pain usually refers to pain that persists or relapses for
more than 3 months (Treede et al., 2019), which affects the physical
and psychological health of patients in their daily life (Attal et al.,
2018). Conventional oral analgesics are often chosen as the primary
treatment for their fast action, low cost, and relative safety (Hylands-
White et al., 2017). Although there are many analgesics available for
clinical use, they all have some shortcomings such as limited efficacy
or unexpected effects. Non-steroidal anti-inflammatory drugs
(NSAIDs) are usually used as a starting medicine in treating
pain, but they have limited efficacy against neuropathic pain and
have a range of adverse effects related to the gastrointestinal, renal,
and cardiovascular systems (Harirforoosh et al., 2013). Opioids are
the most effective analgesics, but their broad unexpected effects can
be serious and even lethal (Szigethy et al., 2018). Therefore, there is
an urgent clinical need to discover new and effective analgesics with
fewer side effects for the control of pain.

Traditional Chinese medicine (TCM) has a long history of
human use and medicinal plants have been the sources of many
successful modern medicines. Modern research on TCM has mostly
focused on extracting and studying the pharmacology and
mechanisms of ingredient compounds in TCM. Previous studies
have found that sinomenine, a morphinan alkaloid, has significant
analgesic properties in multiple chronic pain models (Zhao et al.,
2012; Gao et al., 2013; Gao et al., 2014; Pertovaara, 2014; Zhu et al.,
2016). However, clinical use of sinomenine is limited by its
unexpected effects such as allergic and gastrointestinal reactions
caused by strong histamine release and sedative effects (Zhang et al.,
2018). N-Demethylsinomenine (NDSM), the demethylated
derivative of sinomenine, is one of the bioactive ingredients of
traditional Chinese herb Sinomenium acutum, and also an active
metabolite of sinomenine (Cheng et al., 2007; Yi et al., 2012).
Previous studies in our laboratory have shown that NDSM has
analgesic effects against postoperative pain (Ou et al., 2018) and
chronic pain (Zhou et al., 2021) without a sinomenine-like
peripheral allergic reaction, and its sedative effect is far less than
sinomenine (see Supplementary Figure S1 and Supplementary Table
S1), suggesting that NDSM may be more advantageous than
sinomenine for pain management.

Given the importance of pharmacokinetic profiling in
preclinical drug development (Singh, 2006; Zheng et al., 2022),
we aimed to continue our research into NDSM by extending the
understanding of its pharmacokinetic profiles to rats. In the present
study, a fast, accurate, and sensitive ultra-high performance liquid
chromatography with tandem mass spectrometry (UPLC-MS/MS)
method was established and certified to quantitatively detect NDSM
in rat plasma. This method was utilized to investigate

pharmacokinetics of NDSM after successful intravenous or oral
administration.

2 Materials and methods

2.1 Chemicals and reagents

NDSM (purity >98.0% by HPLC purity analysis) was
synthesized in-house and confirmed by NMR spectroscopy,
which conformed to a previous report (Cheng et al., 2007). The
internal standard (IS) metronidazole (purity >98.0%) was purchased
from Beijing InnoChem Science and Technology Co., Ltd. (Beijing,
China). Methanol and acetonitrile provided by Tedia (Fairfield, OH,
United States) meet the requirements for mass spectrometry
analysis. Chromatographic grade acetic acid, ammonium acetate,
and ethyl acetate were purchased from Aldrich-Sigma (St Louis,
MO, United States of America). Deionized water was provided by a
Milli-Q ultrapure water preparation system (Millipore, MA,
United States). Other reagents were all analytical grades.

2.2 Animals

Male and female Sprague-Dawley rats, weighing 200–250 g,
were obtained from the Laboratory Animal Center of Nantong
University (Nantong, China). Animals were acclimated under a
controlled environment including humidity between 50%–70%,
temperature of 25°C, and a 12-h light/dark cycle. All rats were
subjected to overnight fasting with free access to water prior to the
experiments. The animal protocols were approved by the Institution
for Animal Care and Use Committee of Nantong University and
followed the United States National Institutes of Health Guide for
the Care and Use of Laboratory Animals (eighth edition).

2.3 Instruments and UPLC-MS/MS
conditions

The UPLC-MS/MS system comprised an Agilent 1290 series
UPLC system (Agilent Technologies, CA, United States) and a
SCIEX 5500 QTrap triple quadrupole/linear ion trap hybrid mass
spectrometer outfitted with an electrospray ionization (ESI) source
(Applied Biosystems/MDS Sciex, ON, Canada). Equipment control,
data, and analysis were acquired and manipulated by the Analyst
1.6.2 software (Applied Biosystems/MDS Sciex, ON, Canada).

Chromatography was conducted on an Agilent Eclipse XDB-
C18 column (5 μm, 4.6 × 150 mm) attached to a guard column,
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Agilent Eclipse XDB-C18 (5 μm, 4.6 × 12.5 mm). The temperature
of the chromatographic column was kept at 30°C, and a 6-min
isocratic elution program was conducted under aqueous phase A
(10 mM ammonium acetate containing 0.35% acetic acid) and
organic phase B (acetonitrile): 0–6 min (75% B). The flow rate
was set as 0.3 mL/min, and 2 µL of analyte was injected into the
analysis system.Mass spectrometry under ESI positive ionmode was
conducted under the settings optimized as follows: nitrogen as the
nebulizer gas, gas ion source 1 (50 psi), gas ion source 2 (50 psi),
source temperature (350°C), and ion spray voltage (4000 V).
Collision energy (CE), declustering potential (DP), collision exit
potential (CXP), and entrance potential (EP) were optimized at 27,
160, 12, and 10 V for NDSM and 19, 103, 9, and 10 V for IS,
respectively.

Quantitative detection was conducted based on multiple
reaction monitoring (MRM) mode with parent-daughter ion
transitions of m/z 316→239 for NDSM and m/z 172→128 for IS,
respectively.

2.4 Standard solution and quality control
(QC) samples

Stock solutions of NDSM (1 mg/mL) and IS (1 mg/mL) were
prepared accurately in methanol and stored at −20°C. The standard
working solutions (0.03, 0.1, 0.3, 1, 3, and 10 μg/mL) and QC solutions
(0.06, 0.6, and 8 μg/mL) were acquired by serially diluting the stock
solution of NDSM in methanol. The plasma standard samples (3, 10,
30, 100, 300, and 1000 ng/mL) used for the calibration curve were
prepared by mixing 90 μL of blank rat plasma and 10 μL of standard
working solutions. QC samples (6, 60, and 800 ng/mL, respectively)
were prepared in the same way. The IS working solution was prepared
in methanol to yield an ultimate concentration of 30 ng/mL.

2.5 Sample preparation

Ethyl acetate was selected as the extractant for liquid-liquid
extraction (LLE). First, 100 µL of plasma samples spiked with 10 µL
of IS working solution and 10 µL of 1M NaOH were vortexed for
1 min to mix. Subsequently, 1000 µL of ethyl acetate were added in
two batches, each swirled for 8 min, followed by being centrifuged at
10,000 rpm for 10 min. The supernatant was transferred into a new
centrifuge tube and then dried under nitrogen stream with water
bath at 30°C. The residue was redissolved with 110 µL of 75%
acetonitrile/water and then was centrifuged (12,000 rpm for
12 min) again. Finally, 80 µL of the supernatant was moved into
an autosampler vial for analysis.

2.6 Method validation

To demonstrate the rationality of the UPLC-MS/MS method,
the sensitivity, specificity, linearity, precision and accuracy, matrix
effects, extraction recovery, and stability of NDSM in rat plasma
were validated following the regulations and standards outlined by
the Food and Drug Administration (FDA) in the United States
(Kadian et al., 2016).

2.6.1 Specificity and sensitivity
The chromatograms of mixed blank plasma from six different

healthy rats and six replicated standard plasma samples at the lower
limit of quantification (LLOQ) spiked with IS (at final concentration
of 30 ng/mL) was compared to assess the specificity and sensitivity
of this method. In addition, the in vivo plasma samples after an oral
dosage of NDSM (20 mg/kg) were also detected to assess whether
this method with validated LLOQ was sensitive enough to cover all
the in vivo plasma samples.

2.6.2 Linearity
In order to evaluate the linearity, six NDSM concentrations

(3–1000 ng/mL) were calibrated and detected for six uninterrupted
days. The linear equation was built up using least squares linear
regression by plotting the peak area ratios of NDSM to IS on the
ordinate (Y-axis) versus the concentration of NDSM on the abscissa
(X-axis). Plasma samples spiked with NDSM at a final concentration
of 3 ng/mL (LLOQ) represented the sensitivity of this method with
the signal/noise (S/N) ≥ 10. The detection limit of NDSM was
determined as 1 ng/mL (S/N ≥ 3).

2.6.3 Precision and accuracy
To evaluate the precision and accuracy of the UPLC-MS/MS

method, simulated plasma samples were analyzed at LLOQ and
QC levels (3, 6, 60, and 800 ng/mL) with five replicates in each
level on the same day and on three consecutive days, respectively.
For LLOQ level, the precision (expressed as percent form of
relative standard deviation, %RSD) must be within ±20%, and
the accuracy (expressed as percent form of relative error, %RE)
must be within ±20%. For QC levels, the precision should be
within 15%, and the accuracy should range between −15%
and 15%.

2.6.4 Recovery and matrix effect
The extraction recovery was tested by comparing the peak

areas of NDSM from the extracted QC samples with those from
the extracted blank plasma samples spiked with
standard solutions at equivalent QC levels (6, 60, and 800 ng/
mL). The matrix effect was investigated by comparing the peak
areas from the extracted blank plasma samples spiked with
standard solutions to those from methanol standard
solutions at equivalent QC levels (6, 60, and 800 ng/mL). All
QC samples were run in five replicates. The evaluation method
for matrix effect and recovery of IS (30 ng/mL) was consistent
with NDSM.

2.6.5 Stability
The stability of NDSM in the biological matrix was analyzed

at QC levels under various storage conditions: untreated samples
preserved at room temperature for 6 h (short-term stability), or in
the −20°C for 30 d (long-term stability), or after three freeze-thaw
cycles from −20°C to 25°C (freeze-thaw stability), and processed
samples in the 4°C autosampler for 24 h (autosampler stability).
Five independent samples were prepared for each concentration,
and the %RSD and %RE were calculated. The judgment that
samples were stable could be made if the deviation between the
measured concentration and the nominal concentration was
within 15.0%.
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2.6.6 Dilution integrity
Simulated plasma samples were prepared at a concentration of

2000 ng/mL, which was higher than the upper limit of quantification
(ULOQ). The simulated plasma samples were diluted with blank rat
plasma. The precision and accuracy of the diluted samples were not
affected.

2.7 Pharmacokinetic application

To evaluate the bioavailability and pharmacokinetic profiles of
NDSM, the plasma concentration of NDSM was measured after a
single oral or intravenous administration at different dose levels. Six
groups of rats were allocated randomly, each consisting of six rats,
three male and three female, by oral gavage (10, 20, 40 mg/kg) or
intravenous injection (0.5, 1, 2 mg/kg), respectively. Blood samples
(approximately 0.4 mL) were collected from the tail vein into
anticoagulant tubes at 0.083, 0.167, 0.333, 0.75, 1, 2, 3, 4, 6, 8,
12, and 24 h after intragastric administration (i.g.), and at 0.033,
0.116, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, and 8 h after intravenous
administration (i.v.). According to the results from the
concentration-dependent time curves obtained from our
preliminary experiment, we designed this blood collection
schedule to include all the absorption, distribution, and
elimination phases. During the blood collection, the internal
blood volume of rats was maintained by intravenously injecting
1 mL of normal saline to rats every three sampling intervals. Blood
samples were centrifuged at 4000 rpm for 10 min, and then plasma
supernatants were stored at −20°C.

The pharmacokinetics parameters were calculated by the
PKSolver software with a non-compartmental model (Zhang
et al., 2010). The oral absolute bioavailability was calculated
according to a previous report (Zheng et al., 2022). Statistical
analyses were performed by one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc analysis using GraphPad
Prism 8.4 Software (San Diego, CA).

3 Results and discussion

3.1 Method development and optimization

3.1.1 Mass parameters and chromatography
conditions

In this study, metronidazole, which also has nitrogen-containing
heterocycles, was selected as the IS to avoid the interference of
NDSM metabolites. The quasi-molecular ion (Q1 scan mode) and
the major product ion fragments (MS2 scan mode) of NDSM and IS
were obtained by injecting their net standard solution in methanol
into the mass spectrometer coupled with electrospray ion source
(Figure 1). The MRM with the transitions at m/z of 316→239 and
172→128 were selected for quantification of NDSM and IS,
respectively, owing to their good separation and better peak
intensity. Better peak shape and suitable retention time were
obtained while the mobile phase was 10 mM ammonium acetate
containing 0.35% acetic acid and acetonitrile. The total running time
was 6 min, which was relatively quick and could be suitable for the
detection of a large number of samples.

FIGURE 1
The chemical structure and full scan product ionmass spectra ofN-demethylsinomenine (NDSM) (A) and the internal standard (IS)metronidazole (B)
with monitoring at m/z 316→239 for NDSM and m/z 172→128 for IS.
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3.1.2 Comparison of the performance of sample
preparation approaches

Endogenous compounds present in the biological matrix, such
as phospholipids, proteins, and salts, can co-elute with the target
analytes, and can interfere with mass spectrometric ionization,
leading to ion enhancement or suppression (Desfontaine et al.,
2018). We compared protein precipitation methods with
methanol or acetonitrile (Wawrzyniak et al., 2018), salting-out
assisted liquid-liquid extraction with ammonium acetate (Li
et al., 2021), liquid-liquid extraction with ethyl acetate (Bao et al.,
2017; Kanu, 2021), and solid-phase extraction (SPE) with
C18 column (Lin et al., 2021).

After protein precipitation by adding three times the volume of
methanol or twice the volume of acetonitrile to the simulated plasma
sample containing IS, the extraction recovery rates of NDSM were
higher than 95%, but both showed obvious suppressive matrix effect
(4.68%), which led to poor sensitivity and so could not meet the
requirements.

SPE is one of the key technologies for purifying complex
biological fluids that can achieve good matrix effects (Lin et al.,
2021). Acetonitrile containing 0.35% acetic acid was chosen as
the eluent for C18 SPE column (Welch, Shanghai, China) to
improve the elution capacity. Under a vacuum solid-phase
extraction device (Merck, United States), we found that
slowing down the elution rate and increasing the elution
capacity of eluent could be beneficial for improvement of
recovery, but it still could not achieve good extraction
recovery (<60%).

Liquid-liquid extraction is a simple method with excellent
extraction performance. In recent years, water-soluble solvent-
assisted LLE methods, in which salts or sugars rather than
hydrophobic solvents are used to treat biological samples, have
been developed (Zhang et al., 2009). However, corrosion and
clogging of mass spectrometry equipment caused by salt or sugar
crystallization cannot be ignored. Compared to nonvolatile salts
such as phosphate, this experiment used mass spectrometry-
friendly ammonium acetate salting out assisted liquid-liquid
extraction, but it was not effective in improving the recovery
and matrix effect.

Previous studies have indicated that the addition of NaOH to
plasma samples can slightly enhance the recovery of alkaloids (Xu
et al., 2013). In this paper, 10 µL or 20 µL of 1 M NaOH was added
into 100 µL plasma samples plus 10 µL IS solution to yield the
ultimate concentration of 0.083 M or 0.154 M NaOH, then under
these cases the recovery rates and matrix effects of NDSM were
measured and compared. Finally, the results showed that twice
liquid-liquid extraction using ethyl acetate to extract solvent
when the plasma sample contained about 0.083 M NaOH can
simultaneously achieve great recovery rate (78.98%) with no
obvious matrix effect (93.43%), which met the requirements of
detection (Figure 2).

3.2 Method validation

3.2.1 Selectivity, specificity, and sensitivity
The chromatograms of blank plasma, blank plasma spiked with

NDSM at the LLOQ level and IS, and rat plasma samples after oral
administration of NDSM (20 mg/kg) were demonstrated in Figure 3.
No endogenous interference in the plasma was observed at the
retention time of NDSM and IS, and the peak area of the blank signal
recorded at abovementioned retention times was less than 5% that of
NDSM (LLOQ level) and IS (30 ng/mL), showing good selectivity
and specificity. So, the LLOQ was validated at 3 ng/mL, which was
sensitive enough for the detection of the last time-point sample
concentration.

3.2.2 Linearity and calibration curve
The standard curve exhibited superb linearity over the

concentration range of 3–1000 ng/mL. The typical regression
equation of the standard curve was Y = 0.00827X - 0.00652 (the
correlation coefficient: 0.99955, weighting: 1/x).

3.2.3 Precision and accuracy
Table 1 summarized the results of intra-day and inter-day

precision and accuracy of NDSM at the LLOQ and QC sample
levels. The precision was expressed by %RSD, and the accuracy was
represented by %RE. Both the %RSD and %RE values were below
15%, suggesting the outcomes were satisfactory.

3.2.4 Recovery and matrix effect
The matrix effect and extraction recovery for three QC

samples of NDSM and IS were shown in Table 2. The findings
demonstrated that the mean extraction recovery rate ranged from
73.55% to 81.88% for NDSM and was 94.19% for IS, suggesting
that a high rate of extraction recovery was achieved. Importantly,

FIGURE 2
Comparison of the effect of different sample preparation
approaches on matrix effect and recovery for NDSM. (A), protein
precipitation with acetonitrile showed high recovery rate (87.65% ±
19.10%), but matrix effect (4.68% ± 0.14%) did not meet the
requirements; (B), salting-out assisted liquid-liquid extraction with
ammonium acetate showed poor recovery rate (58.75% ± 5.30%) and
matrix effect (26.45% ± 3.07%); (C), liquid-liquid extraction with
ultimate concentration of 0.083M NaOH and ethyl acetate met the
requirements for recovery rate (78.98% ± 2.74%) and matrix effect
(93.43% ± 6.32%); (D), liquid-liquid extraction with ultimate
concentration of 0.154M NaOH and ethyl acetate exhibited high
recovery rate (88.32% ± 5.42%), but the matrix effect (66.56% ± 1.88%)
was not as good as method (C); (E), solid-phase extraction (SPE) of
plasma sample anticoagulated by heparin exhibited low recovery rate
(19.84% ± 1.65%); (F), SPE of plasma sample anticoagulated by EDTA
showed higher recovery rate (51.40% ± 14.80%) than method (E) but
still did not meet the standard.
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the extraction efficiency was independent of concentration and
the precision was 2.41%–7.59% for NDSM and 2.38% for IS,
suggesting it was stable and reproducible. Meanwhile, the mean
matrix effect ranged from 92.95% to 103.96% for NDSM and was
89.73% for IS, which suggested no notable matrix effect on the
determination.

3.2.5 Stability
The stability of short-term, long-term, freeze-thaw, and

autosampler conditions was shown in Table 3. The accuracy (%
RE) and precision (%RSD) of the stabilities were well within the
acceptable limit (±15%), suggesting that there are no obvious
problems in stability under the test conditions.

FIGURE 3
Chromatograms of NDSM (MRM 316/239) and IS (MRM 172/128) in rat plasma samples. (A) blank plasma sample; (B) blank plasma spiked with NDSM
at the LLOQ level and IS; (C) plasma sample at 24 h after oral administration of NDSM (20 mg/kg). No interference peak in blank plasma samples was
observed at the retention time of NDSM (4.5 min) and IS (4.8 min).

TABLE 1 Precision and accuracy of NDSM in rat plasma.

QC conc.
(ng/mL)

Intra-day (n = 5) Inter-day (n = 15, 3 days)

Mean ± SD
ng/mL

Precision
(RSD,%)

Accuracy
(RE,%)

Mean ± SD
ng/mL

Precision
(RSD,%)

Accuracy
(RE,%)

3 (LLOQ) 3.30 ± 0.33 10.05 9.93 3.25 ± 0.41 12.52 8.43

6.00 5.52 ± 0.42 7.68 −7.92 6.44 ± 0.71 10.96 7.31

60.00 62.43 ± 3.60 5.77 4.04 59.87 ± 4.20 7.01 −0.22

800.00 820.68 ± 29.51 3.60 2.58 787.65 ± 54.51 6.92 −1.54

Frontiers in Chemistry frontiersin.org06

Yu et al. 10.3389/fchem.2023.1222560

98

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1222560


3.2.6 Dilution integrity and residue effect
The dilution integrity was measured when the plasma

concentration of the in vivo sample was higher than the upper
limit of quantification (ULOQ, 1000 ng/mL) of this method. The
accuracy (%RE) and precision (%RSD) of the dilution integrity both
were less than 15%, which met the requirements of quantitation.
Furthermore, no obvious residue effect was observed when a blank
sample was loaded after the calibration sample with the highest
concentration.

3.3 Pharmacokinetics and bioavailability of
NDSM

The UPLC-MS/MS method was developed and applied to study
the pharmacokinetics of NDSM after intragastric administration
(i.g.) and intravenous administration (i.v.) in rats. In our previous
reports, intraperitoneal injection (i.p.) of 20 mg/kg NDSM exhibited
significant antinociceptive effects against postoperative pain (Ou
et al., 2018) and neuropathic pain (Zhou et al., 2021). In this study,
three dosage levels of 10, 20, and 40 mg/kg were selected for i. g.
administration. In a preliminary study, we found that the plasma

concentration of many in vivo samples exceeded ULOQ (1000 ng/
mL) if intravenous dosage was higher than 2 mg/kg. Thus, we chose
three dosage levels at 0.5, 1, and 2 mg/kg for intravenous
pharmacokinetic study.

Figure 4 presented the average plasma concentration-time
profiles and Table 4 summarized the main pharmacokinetic
parameters of the non-compartment model for NDSM. In these
concentration-time curves, the ratio of AUC0-t to AUC0-∞ was
greater than 90% and the concentration of the last time point sample
was under 1/10 of Cmax, denoting that sampling schedule was
appropriate and AUC0-∞ was reliable.

The pharmacokinetic profiles after i. v. administration at
dosage of 0.5, 1, and 2 mg/kg showed similar average
elimination half-life (T1/2Z of 1.55–1.73 h), mean residence time
(MRT of 1.52–1.81 h), volume of distribution (VZ of
5.62–8.07 L/kg), and systemic clearance (CLZ of 2.51–3.34 L/kg/
h), which had no significant differences between different dosage
levels (p > 0.05). Similarly, the average elimination half-life (T1/2Z

of 2.92–4.23 h) and mean residence time (MRT of 5.21–6.30 h) of
the pharmacokinetic curves after oral administration of 10, 20, and
40 mg/kg also had no significant differences between different
dosage levels (p > 0.05). We also analyzed the relationship of

TABLE 2 Extraction recovery and matrix effect of NDSM (n = 5).

QC conc. (ng/mL) Extraction recovery Matrix effect

Mean ± SD (%) RSD (%) Mean ± SD (%) RSD (%)

NDSM 6.00 73.55 ± 2.75 3.74 97.65 ± 10.73 10.99

60.00 78.44 ± 1.89 2.41 92.95 ± 7.78 8.37

800.00 81.88 ± 6.21 7.59 103.96 ± 2.78 2.68

IS 30.00 94.19 ± 2.24 2.38 89.73 ± 0.42 0.47

TABLE 3 Stability data of NDSM in rat plasma (n = 5).

Conditions QC conc. (ng/mL) Mean ± SD ng/mL Precision
(RSD,%)

Accuracy
(RE,%)

Short-term stability (at room temperature for 6 h) 6.00 5.53 ± 0.43 7.80 −7.75

60.00 57.39 ± 1.04 1.81 −4.35

800.00 761.50 ± 43.19 5.67 −4.81

Autosampler stability (processed samples at 4 °C autosampler
for 24 h)

6.00 6.57 ± 0.31 4.79 9.39

60.00 63.62 ± 3.59 5.64 6.03

800.00 821.64 ± 63.04 7.67 2.70

Long-term stability (at −20 °C for 30 days) 6.00 5.67 ± 0.72 12.74 −5.46

60.00 57.37 ± 2.72 4.75 −4.38

800.00 814.75 ± 33.02 4.05 1.84

Freeze-thaw stability (3 cycles) 6.00 5.74 ± 0.76 13.26 −4.34

60.00 57.51 ± 1.66 2.88 −4.16

800.00 793.01 ± 28.26 3.56 −0.87
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AUC from zero time to infinite (AUC0-∞) versus dose after
intravenous and oral administration by linear regression
analysis using GraphPad Prism 8.4 Software. As shown in
Figure 5, results showed that the regression equation of AUC
versus dose for intravenous administration was Y = 451.8X - 80.54
(r2 = 0.9768, p = 0.0973), as well as Y = 157.6X - 820.6 (r2 = 0.9768,
p = 0.0693) for oral administration. According to the correlation
coefficients (r2) > 0.95 and the associated values of p > 0.05, it
indicated a linear relationship between AUC and dose (Srinivas
NR., 2015). These results indicated that the half-life of NDSM was
independent of the dosage and did not extend with the increase of
the dosage, while AUC0-∞ increased in proportion to the dose,
suggesting that the elimination of NDSM was rapid and consistent
with the linear kinetic characteristics.

The volume of distribution (VZ of 5.62–8.07 L/kg) far exceeding
the total body fluid volume (0.6 L/kg) of rats (Zheng et al., 2022)
demonstrated that the tissue distribution and extravascular uptake

of NDSM was extensive. The total clearance (CLZ of 2.51–3.34 L/kg/
h) of NDSM was close to the rat hepatic flow velocity (3.3 L/kg/h)
(Zheng et al., 2022), suggesting a quick clearance rate in rats.

The oral absolute bioavailability of 10, 20, and 40 mg/kg
NDSM was calculated as 26.24% ± 4.91%, 32.44% ± 6.73%, and
32.69% ± 7.15%, respectively. The mean oral absolute
bioavailability of NDSM was 30.46%, suggesting its suboptimal
oral absorption. Additionally, NDSM showed a consistent time for
peak plasma concentration (Tmax) of 3 h after oral administration
at the abovementioned three dosage levels. The oral half-life of
NDSM (2.92–4.23 h) is longer than that of intravenous injection
(1.55–1.73 h), which may be tentatively explained by the
deconjugation of NDSM glucuronide through the enterohepatic
circulation (Ohtani et al., 1994). In a previous study, the Tmax, T1/2

and oral bioavailability of rats after a single oral administration of
90 mg/kg sinomenine were 0.66h, 5.5h, and 79.6%, respectively,
which demonstrated that sinomenine has fast oral absorption and

FIGURE 4
Mean plasma concentration profiles of NDSM after oral administration of 10 mg/kg (i.g. L), 20 mg/kg (i.g.M), and 40 mg/kg (i.g. H) and intravenous
administration of 0.5 mg/kg (i.v. L), 1 mg/kg (i.v. M), and 2 mg/kg (i.v. H) (mean ± SD, n = 6). More details can be obtained in Table 4.

TABLE 4 The estimated mean pharmacokinetic parameters of NDSM after oral or intravenous administration (mean ± SD, n = 6).

Parameters (unit) Oral administration Intravenous administration

10 mg/kg 20 mg/kg 40 mg/kg 0.5 mg/kg 1 mg/kg 2 mg/kg

Cmax (ng/mL) 226.42 ± 56.77 345.30 ± 89.68 1063.07 ± 242.20 - - -

C2 min (ng/mL) - - - 262.33 ± 42.62 598.98 ± 201.02 1243.18 ± 483.02

Tmax (h) 3 ± 0 3 ± 0 3 ± 0 - - -

T1/2Z (h) 3.45 ± 2.59 4.30 ± 1.12 2.92 ± 1.12 1.73 ± 0.71 1.70 ± 0.38 1.55 ± 0.76

AUC(0-t) (ng/mL*h) 923.80 ± 163.96 1958.50 ± 517.98 5416.40 ± 1100.90 176.03 ± 82.48 301.90 ± 54.87 828.34 ± 209.16

AUC(0-∞) (ng/mL*h) 954.70 ± 163.98 2033.39 ± 573.54 5583.96 ± 1203.10 185.52 ± 85.74 310.99 ± 56.69 843.11 ± 215.07

AUC(0-t)/AUC(0-∞) 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.02 0.94 ± 0.06 0.97 ± 0.02 0.98 ± 0.02

MRT (h) 5.21 ± 1.61 6.30 ± 1.48 5.35 ± 1.35 1.81 ± 0.67 1.71 ± 0.38 1.52 ± 0.36

VZ (L/kg) - - - 7.99 ± 5.78 8.07 ± 1.98 5.62 ± 3.63

CLZ (L/h/kg) - - - 3.26 ± 1.51 3.34 ± 0.83 2.51 ± 0.67

F (%) 26.24% ± 4.91% 32.44% ± 6.73% 32.69% ± 7.15% - - -
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high oral bioavailability (Liu et al., 2005a). Based on the longer
half-life, a single oral administration of sinomenine (150 mg/kg)
can maintain the effective drug concentration in rat plasma for a
long time, but many adverse reactions were observed around
60 min after drug administration (Liu et al., 2005b). The studies
on the metabolism and excretion of sinomenine found that
sinomenine experienced phase I biotransformation and active
hepatobiliary excretion, which was mainly regulated by
P-glycoprotein (Tsai and Wu, 2003). NDSM, a phase I
metabolite of sinomenine in urine, had a longer Tmax (3 h) and
a shorter T1/2Z (2.92–4.23 h) than sinomenine after oral
administration. Furthermore, the oral bioavailability of NDSM
was less than half that of sinomenine. These changes may be due to
the fact that the polarity and hydrophilicity was enhanced when
sinomenine was metabolized to be NDSM. It was reported that
sinomenine could not be transformed to demethylated metabolites
by intestinal microbes in vitro due to its benzazepine structure (He
et al., 2017). Whether the transmembrane absorption of NDSM in
the stomach is less than that of sinomenine needs further
investigation.

In addition, no gender differences were found in rats after
intravenous or oral administration of NDSM (see Supplementary
Tables S2–S7).

4 Conclusion

In this study, for the first time we have reported a rapid, simple, and
sensitive UPLC-MS/MS method for the quantification of
N-demethylsinomenine (NDSM) in rat plasma. Metronidazole was
selected as IS to avoid confusion with potential metabolites and
analogues of NDSM, improving the confidence of the assay. The
method has a good linear relationship in the concentration range of
3–1000 ng/mL, while the LLOQ is 3 ng/mL. Themethod also meets the
requirements in precision, accuracy, selectivity, and stability. The
recovery rate and matrix effect can be satisfied by LLE with ethyl
acetate twice. The method has been successfully applied to the
preclinical pharmacokinetic study of NDSM in rats. By comparing
AUC data from oral and intravenous administration, the mean oral
absolute bioavailability of NDSM is determined as 30.46%. The current
results provide useful data for further development of NDSM as a
potential clinical candidate for the management of chronic pain.
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FIGURE 5
The relationship between half-life (T1/2z) and dose of NDSM after single intravenous (A) and oral administration (B), and the relationship between the
area under the plasma concentration-time curve (AUC) and dose of NDSM after single intravenous (C) and oral administration (D) (mean ± SD, n = 6). The
word “ns” indicated no differences for the half-life among the three dose levels (p > 0.05). The regression equation of AUC from zero to infinite (AUC0-∞)
versus dose was Y = 451.8X - 80.54 (r2 = 0.9768, p = 0.0973) for intravenous administration, and Y = 157.6X - 820.6 (r2 = 0.9768, p = 0.0693) for oral
administration. These results indicated that the half-life of NDSM was independent of the dosage and did not extend with the increase of the dosage,
while AUC0-∞ increased in proportion to the dose.
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Introduction: Leukemia is a global health concern that requires alternative
treatments due to the limitations of the FDA-approved drugs. Our focus is on
p53, a crucial tumor suppressor that regulates cell division. It appears possible to
stabilize p53 without causing damage to DNA by investigating dual-acting
inhibitors that target both ligases. The paper aims to identify small molecule
modulators of Mdm2 and Pirh2 by using 3D structural models of p53 residues and
to further carry out the synthesis and evaluation of hit candidates for anti-cancer
potency by in vitro and in silico studies.

Methods: We synthesized structural analogues of MMs02943764 and
MMs03738126 using a 4,5-(substituted) 1,2,4-triazole-3-thiols with 2-chloro
N-phenylacetamide in acetone with derivatives of PAA and PCA were
followed. Cytotoxicity assays, including MTT, Trypan Blue Exclusion, and MTS
assays, were performed on cancer cell lines. Anti-proliferation activity was
evaluated using K562 cells. Cell cycle analysis and protein expression studies
of p53, Mdm2, and Pirh2 were conducted using flow cytometry.

Results: As for results obtained from our previous studies MMs02943764, and
MMs03738126 were selected among the best-fit hit molecules whose structural
analogues were further subjected to molecular docking and dynamic simulation.
Synthesized compounds exhibited potent anti-proliferative effects, with PAC
showing significant cytotoxicity against leukemia cells. PAC induced cell cycle
arrest and modulated p53, Mdm2, and Pirh2 protein expressions in K562 cells.
Molecular docking revealed strong binding affinity of PAC to p53 protein, further
confirmed by molecular dynamics simulation.
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Discussion: The study presents novel anticancer compounds targeting the
p53 ubiquitination pathway, exemplified by PAC. Future perspectives involve
further optimization and preclinical studies to validate PAC’s potential as an
effective anticancer therapy.

KEYWORDS

leukemia, MDM2, p53, cancer therapy, drug discovery, small molecule modulators

1 Introduction

Cancer stands as a predominant global cause of mortality,
wsitnessing a surge in affected individuals worldwide in recent
years. This surge imposes substantial financial, emotional, and
physical burdens on individuals, families, communities, and
healthcare systems. Among the myriad forms of cancer, leukemia is
anticipated to rank as the 11th most prevalent in terms of both
incidence and cancer-related mortality. The hematologic
malignancy arises from disrupting blood cell production in the
bone marrow, where stem cells mature into red and white blood
cells and platelets, (Prager et al., 2018). The uncontrolled proliferation
of aberrant blood cells impedes the normal developmental process. The
etiology of most leukemias remains largely spontaneous, with elusive
causative factors. However, scientific investigations indicate a frequent
association between these cancers and genetic abnormalities,
immunosuppression, as well as exposure to risk factors such as
ionizing radiation, carcinogenic chemicals, and oncogenic viruses
(Hassan and Seno, 2020). Leukemia is commonly addressed
through therapeutic modalities such as chemotherapy, targeted
therapy, and stem cell transplantation. Additionally, ongoing
research explores the potential of immunotherapy and emerging
treatments in leukemia management. Despite the availability of
FDA-approved treatments for leukemia, these therapies often result
in adverse effects, including fatigue, edema, and muscle cramps.
Notable treatments include APR-246 (Eprenetapopt), Nutlins (e.g.,
RG7112), and Idasanutlin (RG7388).Long-term use of these drugs can
lead to hepatic and cardiac problems. Based on their unique
mechanisms of action, anticancer drugs have been categorized into
four groups: monoclonal antibodies, hormones, anti-tubulin and
DNA-interactive hybrids, and antimetabolites. In the ongoing
search for less harmful and more effective leukemia treatment
strategies, additional therapeutic tumor suppressor paths must be
explored (Marei et al., 2021).

Tp53 is known as a tumor suppressor, p53 is useful when it is
activated in response to various cellular stressors such as DNA damage
or oncogene activity. When it comes to cancer, proper regulation of
p53 is essential because it is essential in limiting the unchecked
proliferation and survival of cells containing genetic damage or
mutations. p53 acts as a protective mechanism, limiting the
unregulated proliferation of cells containing genomic defects that
may eventually lead to cancer by coordinating cell cycle arrest, DNA
repair, and apoptosis (Dittmar and Winklhofer, 2020). The canonical
homo-tetrameric p53α protein, widely recognized as the “Guardian of
the genome,” emerges as a formidable tumor suppressor encoded by the
Tp53 gene. p53 is a transcription factor that regulates numerous cell
cycle pathways with previously unheard-of potency in the complex field
of leukemia. Its profound ability to regulate essential cellular functions,
maintain genomic integrity, and delay the onset of carcinogenesis,

makes it indispensable in the context of leukemia. p53 is a major
molecular actor that protects cellular homeostasis, and it plays an
important function in the treatment of leukemia. There are more than
500 known p53 DNA response elements (REs), which are 20-base pair
sequences found in the promoter and enhancer regions of genes
(Dittmar and Winklhofer, 2020). These REs are essential for
interpreting the complex binding patterns of p53 and coordinating a
range of cellular responses that impact outcomes including cell destiny,
differentiation, DNA repair, and other physiological processes under
stress conditions. The intricate network that controls the Tp53 gene
family is influenced by microRNAs (miRNAs), which are crucial for
maintaining the integrity of the genome. About 60% of coding genes are
regulated by miRNAs, which have an impact on mRNA stability and
translation. Research indicates that there is an increasing number of
miRNAs that either directly or indirectly affect the Tp53 gene family.
This intricate circuitry ismostly responsible for tumor prevention and is
genetically modifiable. While treatment alternatives using miRNAs
could be effective in fighting cancer, they are plagued by problems
including poor cellular uptake, which emphasizes the need for efficient
delivery methods and close observation for any side effects. This work
focuses on the control of p53, which is regulated by several significant
post-translational modifications, including phosphorylation and
ubiquitination (Shin, 2023; Li and Zhang, 2022). Phosphorylation
activates p53 and modifies its structural makeup, whereas
ubiquitination is a more complex process that occurs only at lysine
residues and impacts the fate of the substrate protein by forming
polyubiquitin chains with distinct effects. It is challenging yet
essential to comprehend the intricate interactions between p53 and
various ubiquitinating E3 ligases, such as Mdm2 and Pirh2, to create
effective anticancer drugs (Daks et al., 2022). Even though little research
has been done on specific proteins like p53, Mdm2, and Pirh2, a deeper
understanding of the protein-protein interaction network offers crucial
insights into putative druggable hot spots, facilitating the development of
novel modulators for therapeutic interventions against cancer (Daver
et al., 2023). The development of dual-acting inhibitors that target both
Mdm2 and Pirh2 E3(Ub)-ligases, with a focus on their promiscuous
binding, can help overcome resistance and have a synergistic effect on
p53 stabilization (Li et al., 2021). The potential of this method for
treating cancer without causing DNA damage. This research aims to
exploit a variety of chemical libraries and computational drug discovery
techniques to create and identify small compounds that target the
interactions between Pirh2 and Mdm2-p53.

The in silico results obtained from your previous studies
Niazi and Purohit, 2015 were taken into consideration for
synthesizing the potential anti-cancer molecules were synthesized
using the standard protocol (Haronikova et al., 2021). Therefore,
in the present investigation we synthesized structural analogues
of MMs02943764 and MMs03738126 using a 4,5-(substituted)
1,2,4-triazole-3-thiols with 2-chloro N-phenylacetamide in
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acetone with derivatives of PAA and PCA were characterized by
employing infrared (IR), 1H nuclear magnetic resonance (NMR)
and Mass spectral studies. The aim of this study is to identify small
molecule modulators capable of targeting Mdm2 and Pirh2, two
critical regulators of the tumor suppressor protein p53, utilizing 3D
structural models of specific p53 residues. Further synthesized
compounds were subjected to in vitro activities to evaluate their
cytotoxicity profile. A computational docking method and
molecular dynamics (MD) simulations are used to validate and
modify promising hit candidate, ensuring their structural stability
and potential efficacy of a synthesized compound (Devi et al., 2022).

2 Materials and methods

2.1 Chemicals

Chemical agents used in the present study included (DMEM
and DMSO; S.D. Fine chemicals Ltd., Bengaluru, India), (Trypsin-
EDTA Solution; SRL Chemicals, Mumbai, India), (FBS; Sigma,
Bengaluru, India), (Camptothecin; Sigma, Bengaluru, India),
(Antibodies; Abcam, Waltham, Boston, United States), (37°C
incubator with humidified atmosphere of CO2; Healforce,
China), (Cell line: K562—procured from NCCS, Pune, India).
HT microplate spectrophotometer reader was purchased from
BioTek (Gujarat, India).

2.2 Synthesis of structural analogues of the
MMs02943764 and MMs03738126

The structural analogues of MMs02943764 and
MMs03738126 consisting of 1, 2, 4 triazole scaffold derived from
molecular docking were synthesized as per the Scheme-1 and
molecular physicochemical properties of 1, 2, 4-triazole
derivatives are presented in (Table 1).

2.2.1 General experimental procedure for
synthesizing 2-(4, 5-substituted) 1, 2, 4-triazole-3-
ylthio)-N-(p-substituted)-phenyl acetamide
derivatives of PAA and PCA

To a solution of appropriate 4, 5-(substituted) 1, 2, 4-triazole-3-
thiols, (0.001 mol) in 30 mL acetone, appropriate 2-chloro
N-phenylacetamide, (0.001 mol) was added. The mixture was
vortexed under reflux condition for 3–5 h in the presence of
anhydrous K2CO3 (0.005 mol, 0.69 g). The reaction was monitored
by TLC using a mixture of ethyl acetate and hexane in 1:1 ratio as the
mobile phase. The reaction mixture was filtered and poured into a
beaker containing ice cubes. The precipitate formed was filtered,
rinsed with cold water and recrystallized from ethanol to obtain

2-(4, 5substituted)-1, 2, 4-triazole-3-ylthio)-N-(p-substituted)-
phenyl acetamide derivatives (Ali et al., 2021).

2.3 Characterization of
synthesized compounds

Perkin Elmer FT-IR type 1650 spectrophotometer was used to
record the infrared spectra of the synthesized compounds within the
range of 4000–400 cm−1 considering the Potassium bromide pellets.
The 1H-NMR was analyzed using a Bruker AV-500 spectrometer
and DMSO-d6 was used as a solvent and tetramethylsilane was used
as internal standard. The mass spectroscopy of synthesized
compounds was analyzed using Agilent technologies (HP)
5973 mass spectrometer with an ionization potential of 70 eV.

2.4 Cytotoxicity assay

2.4.1 MTT assay
The evaluation of cytotoxicity was performed using MTT assay.

The K562 cells were plated in a 96-well culture plate with various
concentrations (25 µM–160 µM) of the methanol extract and fractions.
The cultured plates were incubated for 24, 48, and 72 h at 37°C and 5%
CO2. Following incubation, 20 µLMTT solution in phosphate-buffered
saline (PBS) was added to each well at a final concentration of 0.5 mg/
mL followed by further incubation for 3 h at 37°C. The medium was
then removed, and 100 µL DMSO was added to each well for
solubilizing the formazan. The absorbance was measured at 490 nm
(630 nm as a reference) using an ELISA reader (SkanIt™ Software,
Microplate Readers, Thermo Fisher Scientific). Three independent
experiments were carried out, and 8 replicates were taken for each
experiment. The concentration of the methanol extract and fractions
which resulted in a 50% reduction of cell viability, the half maximal
inhibitory concentration (IC50 value), was calculated using the
following formula: % inhibition = (control abs - sample abs)/
(control abs) × 100. Paclitaxel was used as a positive control at the
concentration of 0.2–50 μg/mL (Ghasemi et al., 2021).

2.4.2 Trypan blue exclusion assay
To evaluate the antiproliferative effects of the novel PAC and PAA

compound, the trypan blue exclusion assay was performed. Cell
K562 were seeded into 12-well plates at a density of 2 × 10̂4 cells/
well. After 24 h, cells were exposed to the tested compounds at
concentrations corresponding to their respective IC50 values and
then incubated for 72 h. Subsequently, cells were harvested and
centrifuged at 500 g for 5 min. Following centrifugation, the
supernatant was discarded, and the cell sediment was dissolved in
0.2 mL of PBS. Next, 10 µL of the cell solution was mixed with 10 µL of
trypan blue dye. Cell counting was performed using an automatic cell

TABLE 1 Molecular physicochemical properties calculated for the synthesised 1, 2, 4-triazole analogues of PAA and PCA.

Compound
code

miLogP TPSA (A2) No. of atoms HBA HBD Lipinski’s
violations

Rotatable
bonds

Volume (A3)

PAC, 8(a) 4.89 69.05 31 6 1 1 8 380.96

PAA, 8(e) 4.21 69.05 30 6 1 0 8 367.43
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counter (Countessa). The data obtained were expressed as the mean ±
standard deviation (SD), and the mean percentage of viable cells was
calculated from three independent experiments, each performed in
triplicate (Tavares-Carreón et al., 2020).

2.4.3 MTS assay
The cytotoxicity of synthesized compounds was evaluated by MTS

assay using the K562 cancer cell line. The cancer cells were cultured in
DMEM (Gibco, United States) supplemented with 10% FBS (Gibco,
United States) at 37°C with 5% CO2. Briefly, a total of 2000 K562 cells
for each well were cultured overnight in a 96-well plate. Then, the novel
PAC and PAA compound or Doxorubicin were added to each well at
varied concentrations (0.01 μM, 0.1 μM, 1 μM, 10 μM, 100 μM). After
4 days, MTS and PMS were added to the cell culture and incubated at
37°C for 2–3 h. The absorbance wasmeasured at 490 nm to quantify the
viable cells. The growth ratio of treated cells was calculated by
comparing the absorbance to the non-treated cells (Ma et al., 2022).

2.5 Anti-proliferation activity

The K562 cells (1 × 106 cells/well) were procured from ATCC.
The stock cells were cultured in DMEMwhich is supplemented with
inactivated FBS (10%), penicillin (1%; 100 IU/mL), and
streptomycin (100 μg/mL) was added in a humidified atmosphere
containing CO2 (5%) at 37°C until confluent. The cells are
dissociated with TPVG solution having a composition of trypsin
(0.2%), EDTA (0.02%), and glucose (0.05%) dissolved in PBS. The
viability of the cells is then checked using trypan blue and
centrifuged. Further, 5.0 × 104 cells/well were seeded in a 96 well
plate and finally incubated for 24 h in CO2 (5%) incubator at 37°C.

The monolayered cell culture was trypsinised. The cell count was
brought to 5.0 × 105 cells/mL by using the medium containing 10%
FBS. Next, 100 µL of diluted cell suspension was added to each well of
the microtiter plates. After 24 h, when the monolayer is formed, the
supernatant is removed. 100 μL of different experimental compounds
added to the wells containing themonolayer. These plates were kept for
incubation in CO2 (5%) incubator for 24 h at 37°C and cells will be
periodically checked for physical changes such as granularity,
shrinkage, and swelling. After 24 h of incubation, the sample
solution was removed from the wells. 100 μL of MTT (5 mg/10 mL
of MTT in PBS) was added to the wells. The plates were gently shaken
and incubated for 4 h at 37°C under the CO2 (5%) environment. The
supernatant was removed and DMSO (100 µL) was added. The plates
were again gently shaken to solubilize the formazan produced in the
viable cells. The absorbance values were taken from the microplate
reader at a wavelength of 590 nm. The percentage growth inhibition
has been calculated as per the protocol (Tian et al., 2022).

2.6 Cell cycle analysis by flow cytometry

To analyze the cell cycle phase distribution, K562 cells (1 ×
106 cells/well) were seeded in a 6- well plate for 48 h and then
exposed to the experimental compounds (PAC (68.44 μM) and
standard drug, Calprotectin (25 μM)) and control. After incubation
for 48 h, the untreated and treated cells were rinsed 2x with PBS. The
cells are then fixed in 70% ethanol at −20°C for 30 min. The fixed

cells were again washed with PBS and 50 μL of RNase solution was
added. 400 μL of PI solution/million cells added directly to the cell’s
RNase A suspension. Mixed well and incubated for 20–30 min at
room temperature in the absence of light. The cell cycle was
measured with BD FACSCalibur™ and the percentages of cells
(10,000 cells in total) in the different phases (G1, S, and G2)
were calculated by the Cell Quest software (BD Biosciences)
(Bunney et al., 2017).

2.7 p53, Mdm2, and Pirh2 protein expression
studies using flow cytometry

The K562 cells (1 × 106 cells/well) was seeded in a 6-well plate
and incubated under CO2 atmosphere at 37°C for 24 h. After 24 h,
the cells were cultured in a medium containing required
concentrations of experimental compounds and controls for
24 h. Cells were then washed twice with PBS and 200 μL of
trypsin-EDTA solution was added. The mixture was then
incubated at 37°C for 3–4 min. To this, 2 mL culture medium
was added, and the cells were harvested directly into the 12 ×
75 mm polystyrene tubes followed by centrifugation and 1xPBS
wash. PBS was decanted completely, and the cells were fixed with
70% chilled ethanol followed by incubation at −20°C for 30 min
20 μL of primary antibody (p53/Mdm2/Pirh2) was added (Parrales
et al., 2016). The cells were washed with 2xPBS and treated with
20 µL of secondary fluorescent antibody Phycoerythrin (PE) and
incubated for 30 min at room temperature in dark condition. The
cells were then rinsed with 1xPBS to remove unbound secondary
antibody and re-suspended in the 0.5 mL of PBS. The cells were
analyzed for p53, Mdm2, and Pirh2 proteins expression by using
BD FACSCalibur™. At least ten thousand cells were counted for
each sample (Bunney et al., 2017).

2.8 Computational analysis

2.8.1 Ligand preparation
The 3D structures of the predicted bioactive ligand (PAC) were

meticulously prepared utilizing the Ligand Prep module within the
Schrödinger suite. Through this process, the ligands were subjected
to minimization procedures to optimize their conformations. The
resulting refined ligands were subsequently assessed for their
binding affinity through molecular docking analyses (Bunney
et al., 2017).

2.8.2 Protein preparation and binding site analysis
The Structure of Human MDM2 Protein (PDB ID: 3LBK) was

retrieved from the Protein Data Bank and prepared using Maestro’s
Protein Preparation Wizard. This involved meticulous refinement,
including the removal of atomic clashes, water molecules, and
unnecessary atoms, as well as the addition of missing atoms and
hydrogen. The Sitemap tool in Maestro was then employed to
generate the binding site, facilitating precise analysis of potential
targets within the TP53 pathway. These procedures, employing
advanced computational tools, establish a robust foundation for
elucidating protein interactions and exploring therapeutic strategies
within the TP53 pathway (Hatami et al., 2023).
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2.8.3 Molecular docking
The docking study utilized the Glide (Grid-based Ligand Docking

with Energetics) protocol, as described by Friesner et al., in 2004. A two-
tier docking approach was employed, involving standard precision (SP)
and extra precision (XP). The compoundswere docked usingGlide, and
the resulting conformers were systematically evaluated using the Glide
score reprise (Ban et al., 2018).

2.8.4 Molecular dynamic simulation
The compounds underwent filtration based on criteria such as

Glide score (Kcal/mol), protein-ligand non-bonded interactions,
ligand-active site complementarity, and a review of relevant
literature. The top complex, selected through this screening
process, underwent further scrutiny via MD Simulations utilizing
the Desmondmodule within the Schrödinger Suite 2022-23 (https://
newsite.schrodinger.com/platform/products/maestro/). The
analysis aimed to evaluate intermolecular interactions and the
stability of the complex across varying time scales. For system
construction, the TIP3P solvent model and an orthorhombic
water box shape were chosen, with the addition of counter ions
for system neutralization. The resulting model system was loaded
into the molecular dynamics work panel, and the simulation run
time was set at 200 ns. Post-simulation, the complexes were analyzed

using the simulation interaction diagram panel within the Desmond
module (Du et al., 2016; Kaushik et al., 2018).

2.9 Statistical analysis

All experiments were conducted in triplicate, data were
presented as mean ± standard error of the mean (SEM).
Student’s t-test was employed for comparing between two groups
in the in vitro assay. To assess the statistical significance of the data,
one-way analysis of variance (ANOVA) was utilized, with a
significance level set at p < 0.05. Statistical analysis was
performed using GraphPad Prism 8.0 (Aly et al., 2020).

3 Results and discussion

3.1 Synthesis and characterization of
compounds consisting of 1, 2, 4triazole
scaffolds of PAA and PAC

The free mercapto group present in the 1,2,4-triazole intermediate
readily reacts with appropriate chloroacetamide under dry conditions

TABLE 2 Experimental physical data of the synthesized 1, 2, 4 triazole.

Compound code Molecular formula (S) M.W (gm) M.P. (°C) Rf % yield

PAC, 8(a) C25H24N4O3 450.94 164 0.37 41.73

PAA, 8(e) C23H20N4O2 416.00 111 0.34 58.32

FIGURE 1
IR spectrum of PAC.
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FIGURE 2
1H NMR spectrum of PAC.

FIGURE 3
13C NMR spectrum of PAC.

Frontiers in Chemistry frontiersin.org06

Niazi et al. 10.3389/fchem.2024.1366370

109

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1366370


to yield the final compounds of PAA and PAC. The synthesized
compounds of PAA and PAC were characterized by determining
physical constants (Rf values and melting points) and different
spectroscopic methods such as IR, 1H NMR, 13C NMR, Mass
spectroscopy and single crystal XRD. The experimental physical
data of the synthesized compounds of PAA and PAC is provided
in Table 2 and the calculated values of molecular physicochemical
properties are shown in Table 1 (see materials and methods section).

IR spectra of all the synthesized compounds of PAA and PAC
showed stretching absorption bands around regions 1550–1570 cm−1

due to N=N and 1560–1640 cm−1 due to C=N functions confirming
the presence of 1,2,4-triazole ring. The absence of absorption band
around 2576 cm−1 which corresponds to–SH group and retaining of
absorption band −750 cm−1 corresponded to C-S function confirms
the coupling of triazole ring with acetamides via. reactive -SH group.
The spectral characterization by 1HNMR spectra of all the synthesized
compounds of PAA and PAC showed the chemical shift signals in the
range of δ 6.77–6.9 ppm (Ar-H) resonated as multiplet for aromatic
protons. The NH proton corresponded to the amide group resonated
as a singlet and showed the chemical shift signal around 10.3 ppm.

FIGURE 4
Mass spectrum of PAC.

FIGURE 5
1H NMR spectrum of PAA.
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FIGURE 6
Mass spectrum of PAA.

FIGURE 7
The cell viability inhibition of K562 cell lines against PAC and PAA synthesized compounds for about 48 h using MTT assay. The cell viability inhibition
of K562 cell lines upon treatment of (A) PAC and (B) PAA in concentration dependent manner for about 48 h using MTT assay. One-way ANOVA followed
by Dunnett’s multiple comparison test was used to identify significant differences by multiple comparisons. Data are expressed as mean ± SEM (n = 3),
****p < 0.0001 represents the comparison between respective groups with doxorubicin.
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Also, the chemical shift signals at δ 4.1 ppm and δ 5.0 ppm resonated
singlet peaks corresponded to that of α-proteins S-CH2- C=O and
O-CH2-C=N respectively. Mass spectrum of the compounds of PAA
and PAC showed intense molecular ion peak [M]+ and [M+1]+ peak
for chloro-substituted compounds which are consistent to with
respective molecular weights. All the screenshots of the spectral
data collected for the compounds of PAA and PAC are provided
as Figures 2–7. Analysis of overall spectroscopic data for the
compounds of PAA and PAC suggests the formation of desired
chemical scaffolds (Table 2) (Volkov et al., 2022).

N-(4-chloro phenyl)-2-((5-(phenoxy methyl)-4-phenyl-4H-1, 2,
4-triazol-3 yl)thio) acetamide (8a; PAC): IR (νmax, cm-1): 1666
(C=O), 2924 (Ali C-H), 3032 (Ar C-H), 3232 (N-H), 1172 (C-N),
756 str (C-Cl), 1550 (N=N, triazole), 1597 (C=N, triazole); 1H NMR

(400 MHz, CDCl3) δ 10.482 (s, -NH-, 1H), 7.561-6.844 (m, Ar-CH-,
14H), 5.053 (s, O-CH2-, 2H) 3.962 (s, S-CH2-, 2H); 13C NMR
(100 MHz, CDCl3) δ 166.43, 157.34, 136.89, 132.12, 130.68, 130.03,
129.59, 129.07, 128.85, 126.74, 122.01,120.97, 114.84, 59.71, 36.26;
Mass: Exact mass calculated for C23H19ClN4O2S, 450.09; found (m/
z), 451.13 [M + H] + (Figures 1–4).

2-((5-(phenoxy methyl)-4-phenyl-4H-1, 2, 4-triazol-3-yl)thio)-
N-phenyl acetamide (8e; PAA): IR (νmax, cm−1): 1666 (C=O), 1550
(Ar C=C), 2931 (Ali C-H), 3055 (Ar C-H), 3240 (N-H), 1172
(C-N),763 str (C-S), 1550 (N=N, triazole), 1597 (C=N, triazole);
1H-NMR (400 MHz, DMSO-d6) δ 10.323 (s,-NH-, 1H), 7.533–6.816
(m, Ar-CH-, 15H), 5.048 (s, O-CH2-, 2H), 4.162 (s, S-CH2-, 2H);
Mass: Exact mass calculated for C23H20N4O2S, 416.50; found (m/z),
417.05 [M+] (Figures 5, 6).

3.2 In vitro evaluation

3.2.1 MTT assay
The cytotoxicity active of the synthesized PAC and PAA

compounds was tested against K562 cell lines using MTT assay.
As shown is Figure 7 the PAC shows the better cytotoxic effect when
compared to PAA and standard drug doxorubicin in a concentration
and time—dependent manner with 48 h of exposure. The results

TABLE 3 Results of antiproliferation activity of selected compounds
performed on the MCF 7, Reh, Nalm6, K562 cell lines.

Compound code K562 IC50(µM48 h)

Control -

PAC 35.264

PAA 54.40

FIGURE 8
The effect of synthesised PAC (A) and PAA (B) compounds upon K562 cell lines on total cell number and viability (%) was measured by trypan blue
assay. One-way ANOVA followed by Dunnett’s multiple comparison test was used to identify significant differences by multiple comparisons. Data are
expressed as mean ± SEM (n = 3), ****p < 0.0001 represents the comparison between respective groups with doxorubicin.

FIGURE 9
The cell viability inhibition of K562 cell lines against PAC and PAA synthesized compounds for about 48 h using MTS assay. The cell viability inhibition
of K562 cell lines upon treatment of (A) PAC and (B) PAA in concentration dependent manner for about 48 h using MTT assay. One-way ANOVA followed
by Dunnett’s multiple comparison test was used to identify significant differences by multiple comparisons. Data are expressed as mean ± SEM (n = 3),
****p < 0.0001 represents the comparison between respective groups with doxorubicin.
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confirm that, upon increase in concentration up to 160 μg/mL could
decrease the cell viability (<0.05).

3.2.2 Trypan blue exclusion assay
Trypan Blue Exclusion Assay was used to analyse the total

viability of cells after exposure of PAC and PAA compound
upon IC50 concentration of MTT assay (Table 3). K562 cells
were incubated for about 72 h. The PAA compound and
standard drug doxorubicin done not show any significantly
affect, whereas PAC compounds shows better cell inhibition
as shown in Figure 8.

3.2.3 MTS assay
Cytotoxicity active of the synthesized compounds was evaluated by

MTS assay using the K562 cancer cell line. The PAC treatment has

caused a dramatic fall in the expression levels of both Mdm2 and
Pirh2 oncoproteins as compared to the untreated K562 cells. As shown
in Figures 9, 10 the PAC shows the better cytotoxic effect when
compared to PAA and standard drug doxorubicin in a
concentration and time—dependent manner with 48 h of exposure.
The results confirm that, upon increase in concentration up to 100 μg/
mL could decrease the cell viability (<0.05) (Jiao et al., 2020).

3.3 Cell cycle study: PAC induces K562 cell
cycle arrest predominantly at the SubG0/
G1 and S phases

Since PAC exhibited relatively better anti-proliferation activity in all
the tested cancer cell lines, therefore, it was further selected for cell cycle

FIGURE 10
Photomicrographic images of untreated K562 colonies and the drug treatment induced inhibition of proliferation and subsequent inhibition of
growth in K562 cells as obtained from MTS assay. Both (A) PAC and (B) PAA induced the dose dependent inhibition of proliferation in K562 human
leukaemia cell lines.
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studies. The cell cycle study was conducted on K562 cells in order
to decipher the growth phase which is prone to the PAC treatment.
The results indicated that the higher percentage of K562 cells are
arrested at SubG0/G1 and S phases as evident. A marked increase
in the percentage of gated cell populations which are in SubG0/G1,
S and G2 phases was detected as compared to that in control
K562 p53 null cells. This implies that PAC induces cell cycle arrest
predominantly at the SubG0/G1, S and G2 phases. This also
suggests an increased level of p53 due to inhibition of Mdm2/
Pirh2 by PAC in K562 p53 null cells has occurred thus blocking cell
cycle progression since p53 also acts at the G1 checkpoint during
G1/S transition phase of the cell cycle and induces the expression
of cyclin-dependent kinase (cdk) inhibitor. The cdk inhibitor
inactivates the Cdk-G1/S cyclin complex, which later blocks cell
cycle progression. These facts suggest that PAC rescues p53 by
inhibiting ubiquitination by Mdm2/Pirh2 in K562 p53 null cells
(Sane and Rezvani, 2017).

Whereas, in case of cells treated with Camptothecin (CPT;
25 µM), the highest percentage of cells got arrested during G2/M
phase (30%) which suggests CPT induces arrest G2/M phase of the
cell cycle by a distinct mechanism.

3.4 Flow cytometric analysis revealed PAC
induces expression of p53 and suppress
Mdm2 and Pirh2 proteins expressions

Since PAC and its analogues have been designed in silico to
modulate the ubiquitination of p53 by both Mdm2 and
Pirh2 E3 enzymes, hence its impact on the expression levels
of p53, Mdm2 and Pirh2 proteins have been studied by flow
cytometry. The expression levels of p53 and Mdm2 and
Pirh2 proteins were measured in K562 cells under control
and treated conditions. In the histogram graphs Figures 5C–H, the

TABLE 4 Description of the different cancer cell lines used to test anti-proliferation activity.

Cell
line

ATCC Cancer type TP53 status p53 variant TP53_Allele
type

Comments

K562 CCL-
243™

Myeloid erythrocytic
leukemia cell line

c.406 407ins1 p. Q136fs* 13 (sourced from
COSMIC database)

Homozyg ous p53-null Consists of mdm2 SNP309 T/G
allele No overexpression of Mdm2

FIGURE 11
(A) CPT and PAC induced K562 cell cycle arrest. Both the synthesized compounds, CPT and PAC were treated against K562 cell lines with different
concentrations for about 48 h. The degraded cells were recounted with PI stain during sub G0/G1, S, and G2/M phase using flow cytometry.(B) Overlay
graphs showing the DNA content of cell cycle progression in K562 leukaemia cells of control (untreated), CPT, and PAC treated groups. The percentage
content of DNA in various phases of the cell cycle (G1, S, G2/M and subG1 phase) after 48 h of incubation have been analysed by using Cell Quest
software (BD Biosciences). Left panels (C,E, G) histograms and the right panels (D,F, H) overlay graphs of flow cytometric analysis of p53, Mdm2 and
Pirh2 protein expression in K562 cells.
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M1 region represents lower expression levels of p53, Mdm2, and
Pirh2 protein while the M2 region represents normal to high
expression levels.

Generally, K562 cells express a negligible amount of p53,
and the results obtained from the flow cytometric analysis has
also indicated the lower expression of the p53 tumour
suppressor protein under control conditions. Interestingly,
exposure of the K562 cells to the indicated concentrations of
CPT (reference) and PAC has caused a dramatic increase in the
p53 levels. Quantitatively, the exposure of K562 cells to CPT,
which is a topoisomerase inhibitor derived from natural
source, has triggered ~10 folds rise in the p53 level, while
the PAC treatment has caused ~4-fold rise in the
p53 levels (Figure 7).

Generally, the expression level of Mdm2 is not affected in
K562 cancer cells (Table 4), and the status Pirh2 expression in
K562 cancer cell lines has not been documented till date. However,
Mdm2 serves as a primary negative regulator of p53 expression whereas
Pirh2 serves as secondary. Hence, it may be presumed that the
expression level of Mdm2 is slightly high as compared to the Pirh2.
In an agreement, the flow cytometric analysis indicated that
Mdm2 expression was slightly high when compared to Pirh2 in
control group of K562 cell population (see Figures 11E–H, 13),
which reinforces the notion that Mdm2 is a primary negative
regulator of p53. On the other hand, CPT, a reference molecule
which is a topoisomerase inhibitor, has less influence on Mdm2 and
Pirh2 expressions in K562 cells. Strikingly, the PAC treatment has
caused a dramatic fall in the expression levels of both Mdm2 and

FIGURE 12
Pie charts illustrating the percentage of gated cells at SubG0/G1, G0/G1, S and G2/M.

FIGURE 13
Histograms representing the flow cytometric analysis of p53, Mdm2 and Pirh2 expression levels in control, K562 cells treated with an
IC50 concentration of test compound (PAC) and CPT (15 µM). phase of K562 cell proliferation under treated (CPT and PAC) and control conditions.
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Pirh2 oncoproteins as compared to the untreated K562 cells (see
Figure 7). These data partly suggest that PAC inhibits Mdm2 and
Pirh2 oncoproteins which resulted in the rise in p53 tumour suppressor
protein in K562 cells. On the other hand, the induction of p53 levels by
CPT in K562 p53 null cells may be due to distinct mechanisms. Results
of the overall in-vitro analysis suggest that PAC exhibited good
anticancer activity against all the tested cancer cell lines. Enzyme
binding studies are required to further validate the Mdm2 and
Pirh2 promiscuous binding nature of PAC and its analogs. (Figures
11–13) (Astalakshmi et al., 2022).

3.5 Molecular docking

Through our molecular docking experiment, we discovered that
PAC is efficient. As a result, PAC had the highest ratings for Glide
(−8.312 kcal/mol) and binding affinity −49.601 kcal/mol). The
docked complex analysis revealed that the residues HIE96,
TYR100 bonded with hydrogen bonding. Lys 173 was interacting
with the ligand at the hydration site The Glide ratings for PAA
were −7.216 kcal/mol, and the binding affinity was recorded
as −42.371 kcal/mol. Analysis of the docked complex indicated

TABLE 5 2D interaction diagram of the Ligands with their interactions with the protein 3LBK.

Ligands Two-dimensional inter-molecular interaction Docking
score

Active site
residues

PAC −8.574 HIE96, TYR100

PAA −7.096 TYR100
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the occurrence of hydrogen bonding between PAA and the residues
TYR100 exhibited superior docking scores and binding affinity
compared to PAA. Consequently, additional investigations and
studies were conducted specifically focusing on PAC. (Table 5)
(Vettoretti et al., 2016).

3.6 Molecular dynamic simulation

A simulation study was conducted using molecular dynamics
(MD) to confirm the stability of the receptor-ligand complex, validate

the predicted binding mode, and examine potential interactions.
These aspects had been previously investigated through Glide XP
docking. In the present investigation, we ran a 200 ns MD simulation
of the PAC—3LBK complex. This extended simulation duration
enabled the examination of molecular and atomic-level changes
crucial for understanding the stability of the protein-ligand
complex and the dynamic behavior of the ligand. Using the
Desmond tool from the Schrödinger suite, a 200 ns simulation was
conducted, and resulting trajectories were analyzed with the
simulation interaction diagram panel to comprehend deviation
fluctuation and intermolecular interactions. The root mean square

FIGURE 14
(A) RMSD graphs of Receptor-ligand complexes in MD simulations. (B) RMSF plot of Protein.
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deviation (RMSD) value was calculated to assess the deviation in the
protein’s backbone throughout the 200 ns simulation period. The
RMSD plot of the PAC—3LBK complexes are shown in Figure 12A,
demonstrating slight conformational fluctuations in the complexes
between 135 and 160 ns. RMSD levels range from 1.8 Å to 2.7 Å
Around 8 Å. Similarly, there was a modest fluctuation in the ligand
RMSD between 0 ns and 30 ns, with RMSD ranging from 0.6A to
2.7 around 2.1 Å. Despite these variations, the PAC—3LBK complex
remained stable. The Root Mean Square Fluctuations (RMSF) aid in
characterizing local protein alterations. These variations were used to
identify the residue in the complex that contributes to structural
fluctuations. The region of proteins was represented by peaks that vary
throughout the process of simulation. The N and C terminal of
protein tails changes more when compared to any other regions of
protein. The alpha helices and beat chain are stronger than the
unstructured regions of the protein and hence they alter less when
compared to loop regions. The alpha and beat regions are represented
in red and blue color. These regions were specified by helices or
strands that continue 70% of simulation time. The proteins that are
interacted with ligand are represented in green color with slight
fluctuations, conforms the protein ligand complex are stable.
(Figures 14A, B) (Li and Zhang, 2022).

4 Conclusion

In conclusion, our research focuses on developing and testing new
anticancer drugs based on a 1,2,4-triazole scaffold. These chemicals
were painstakingly crafted to alter the ubiquitination of the tumour
suppressor protein p53, which is regulated by the E3 ubiquitin ligases
Mdm2 and Pirh2. Notably, the principal chemical, PAC, demonstrated
significant anti-proliferative effects across a range of cancer cell lines,
with a particularly strong effect on leukemia cells. PACmodulates p53-
mediated pathways by inhibiting Mdm2 and Pirh2, leading to the
stabilization of p53.PAC promotes cell cycle arrest at the SubG0/G1, S,
and G2 phases, indicating its ability to disturb normal cell cycle
progression, according to cell cycle analyses. According to flow
cytometry studies, PAC increases p53 expression while decreasing
Mdm2 and Pirh2 levels in K562 cancer cells. A molecular dynamics
simulation of PAC with the TP53 protein revealed sustained
connections lasting 200 ns, highlighting its potential as a powerful
anticancer therapy. Our complete technique combines manual design,
organic synthesis, in vitro testing, and molecular dynamics modelling.
This multidisciplinary strategy attempts to identify and characterize
novel chemicals for cancer therapy. The compounds were created
without the use of artificial intelligence, and the study highlights PAC’s
potential as a game-changing anticancer treatment due to its
multifaceted impact on cell cycle regulation and molecular
interactions. This work contributes to the larger goal of producing
effective and tailored cancer medicines, highlighting the need of varied
approaches in drug discovery and development.
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