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Ning Liu 4* and Kai Zhang 1*

1Department of General Surgery, The Second Hospital of Jilin University, Changchun, China, 2Gastroenterology and Center

of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, China, 3 Research Center of Natural Drugs,

School of Pharmaceutical Sciences, Jilin University, Changchun, China, 4Department of Central Laboratory, The Second

Hospital of Jilin University, Changchun, China

As the most common gastrointestinal malignancy, colorectal cancer (CRC) remains

a leading cause of cancer death worldwide. Although multimodal chemotherapy has

effectively improved the prognosis of patients with CRC in recent years, severe

chemotherapy-associated side effects and chemoresistance still greatly impair efficacy

and limit its clinical application. In response to these challenges, an increasing

number of traditional Chinese medicines have been used as synergistic agents for

CRC administration. In particular, ginseng, quercetin, and tea, three common dietary

supplements, have been shown to possess the potent capacity of enhancing the

sensitivity of various chemotherapy drugs and reducing their side effects. Ginseng, also

named “the king of herbs”, contains a great variety of anti-cancer compounds, among

which ginsenosides are the most abundant and major research objects of various anti-

tumor studies. Quercetin is a flavonoid and has been detected in multiple common foods,

which possesses a wide range of pharmacological properties, especially with stronger

anti-cancer and anti-inflammatory effects. As one of the most consumed beverages,

tea has become particularly prevalent in both West and East in recent years. Tea

and its major extracts, such as catechins and various constituents, were capable of

significantly improving life quality and exerting anti-cancer effects both in vivo and in vitro.

In this review, we mainly focused on the adjunctive effects of the three herbs and their

constituents on the chemotherapy process of CRC.

Keywords: colorectal cancer, ginseng, quercetin, tea, chemotherapy, chemoresistance

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer globally and one of the leading
causes of health burden on society (1). The latest epidemiological data show that the incidence
of CRC is rapidly increasing year by year, and the number of young patients aged 20–40
years old has increased quickly (2). For early-stage CRC, surgical resection of the primary
tumor is the main treatment method, and adjuvant chemotherapy can prolong the survival
times of patients (3, 4). In terms of advanced CRC or metastatic CRC, the survival rate is
less than 10%, and the primary treatment strategies include radiotherapy and chemotherapy.
CRC represents a heterogeneous disease with distinct disease mechanisms and prognoses.
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It has been confirmed that multiple factors were involved in
CRC development and progression, such as genetic alterations,
gut microbiota, chronic inflammation, environmental influence,
and others (1, 3). However, the exact mechanisms underlying
the onset of colorectal cancer are still unknown. With the
development of precision medicine and personalized medicine,
chemotherapy plays an increasingly important role in CRC
administration. Especially for advanced patients, chemotherapy
offers the only possibility of a cure. However, the clinical
application of chemotherapeutic regimens is mainly limited by
their side effects and toxicity. Therefore, urgent research is
needed to discover more adjuvant chemotherapy compounds to
enhance the tumoricidal effects at low doses (5).

Over the last decades, traditional herbal medicines have been
widely utilized for modern drug development. More and more
studies have indicated that a daily intake of these herbal products
could improve the life quality of patients (6, 7). Notably, a
growing body of research suggests that traditional Chinese herbal
can be regarded as effective adjuvant chemotherapy agents for
improving the efficacy of cancer chemotherapy. In this review,
ginseng, quercetin, and tea are the main research objects. The
reasons why we have focused on these herbs are described as
follows. First, these herbs are the most widely used traditional
herbal medicines both in the East and West, and their beneficial
effects have been extensively advertised. Another reason that has
led us to pick these phytochemicals is that they are common in
dietary supplements and have been confirmed to improve the
life quality of hosts. The last and most important reason is that
their multiple pharmacological properties, such as anti-oxidant,
anti-inflammatory, and anti-cancer properties, have been widely
recognized. Based on the above findings, we reviewed a large
body of literature and concluded that all these herbs could
effectively improve the effects of CRC chemotherapy. It should
be noted that the chemical and pharmacological properties
of ginseng, quercetin, and tea are completely independent of
each other. Therefore, to avoid confusion, we discussed their
properties and functions in great detail separately, as shown in
Figure 1.

CHEMOTHERAPY OF CRC

With improvements in CRC treatment, multiple
chemotherapeutic agents have been used in routine clinical
practice; the chemotherapeutic agents, mainly including 5-
fluorouracil (5-FU), irinotecan, oxaliplatin, and capecitabine,
can be used either alone or in combination with each other,
(8). Among them, 5-FU has historically been considered
the foundation of the therapy for CRC, which has been
used in clinical treatment for more than 60 years (9). An
increasing number of clinical trials have demonstrated that
5-FU administered alone or in combination with other
chemotherapeutic agents can significantly improve the survival

Abbreviations: CRC, colorectal cancer; 5-FU, 5-fluorouracil; PD, panaxadiol;

PPD, protopanaxadiol; EGCG, (–)-epigallocatechin-3-gallate; EGC,

(–)-epigallocatechin; ECG, (–)-epicatechin-3-gallate.

rate of patients with CRC (10, 11). The response rate of 5-
FU administered alone is only approximately 10–15% (12).
However, combining 5-FU with other chemotherapeutic agents
can effectively enhance curative effects and has been regarded
as the first routine clinical practice. For example, leucovorin, a
folinic acid derivative, can enhance the therapeutic response rate
to 37% by suppressing the activation of thymidylate synthase
(13). However, like many other common chemotherapy drugs,
5-FU also has many side effects, mainly including leukopenia,
nausea, vomiting, hematopoietic depression, bone marrow
suppression, neurotoxicity, and cardiotoxicity (14). In particular,
leukopenia has been reckoned major dose-limiting toxicity of
5-FU administration occurs in approximately 93% of patients
(15). In recent years, with a deepening understanding of drug
properties, 5-FU has also shown stronger anti-cancer efficacy in
clinical combinations with new-generation chemotherapy drugs.
In conclusion, although 5-FU is an essential agent for treating
both advanced and early-stage patients with CRC, its side effects
cannot be ignored. Therefore, it is necessary to overcome these
therapeutic challenges.

Capecitabine, an oral 5-FU prodrug that has been
used in treating CRC for 20 years, can be enzymatically
transformed into 5-FU at colorectal tumor sites after oral
administration (16). Moreover, it has been demonstrated that
even along administration of capecitabine exerts stronger
chemotherapy effects and lower incidence of side effects
than combined administration of 5-FU and leucovorin (17).
However, capecitabine also has deficiencies, in particular the
significantly increased incidence of the hand-foot syndrome
and hyperbilirubinemia (18). As the most commonly used
chemotherapy drugs for various malignant diseases, platinum-
based agents have also been used in CRC treatment. Oxaliplatin,
a third-generation platinum anti-cancer agent, is also a novel
first-line treatment for metastatic CRC. It can inhibit the growth
of tumor cells by inducing the formation of platinum-DNA
adducts and eliciting a DNA damage response (19). The
typical side effects include hematologic toxicity, gastrointestinal
symptoms, and peripheral neuropathy (20).

Irinotecan is approved as second-line therapy for treating
advanced/metastatic CRC, especially for patients who do not
respond to the first-line 5-FU therapy (21). Its active metabolite
SN-38, a camptothecin-based agent, can promote DNA damage
and tumor cell apoptosis by binding with topoisomerase
I, an important mediator of DNA transcription (22). The
most common side effects of irinotecan treatment include
myelosuppression, delayed-type diarrhea, cholinergic syndrome,
vomiting, constipation, and neutropenia (23, 24). As shown
above, each chemotherapeutic agent has its own properties
and side effects. Over the past decade, sequential combination
therapy with multiple chemotherapeutics has been the most
standard chemotherapeutic treatment for CRCmanagement; this
therapy can promote the synergy of different agents and improve
chemotherapy resistance using different action mechanisms (8,
25). For instance, the combined administration of oxaliplatin and
irinotecan can be used as a salvage therapy for patients failing
to respond to single-agent 5-FU treatment and is a first-line
sequential treatment option for advanced CRC (26, 27). Although
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FIGURE 1 | The role of ginsenoside protopanaxatriol (one major extract of ginseng), quercetin, and (–)-epigallocatechin-3-gallate (one major extract of tea) in

enhancing chemotherapeutic efficacy of various chemotherapy drugs, and together reducing their side effects. After oral administration of these compounds, they can

be biotransformed to stronger components and play a synergistic role with various chemotherapy drugs.

chemotherapeutic therapies have greatly improved the outcomes
of patients with CRC, serious side effects and drug resistance are
still major clinical challenges. In recent years, more and more
drugs, especially traditional Chinese medicines, have been used
to alleviate various side effects and improve chemoresistance.

GINSENG

Ginseng is one of the most common traditional herbal medicines,
which has been discovered in both East (Asian ginseng) and
West (American ginseng) (28, 29). With the recent developments
in the extraction process, multiple active components have
been isolated from ginseng, mainly including ginsenosides,
ginseng polysaccharides, flavonoids, polysaccharides, and
ginseng polypeptides (30). Since ancient times, ginseng has
been found to possess multiple pharmacological effects and
has been used to treat various diseases, such as inflammation,
cancers, metabolic syndromes, and autoimmune diseases. The
anti-cancer effect of ginseng has attracted increasing interest
and attention in the fields of various cancers, including ovarian
cancer, CRC, breast cancer, lung cancer, prostate cancer, and
liver cancer (31–34). Many in vitro and in vivo studies have
demonstrated that ginseng or its extracts could significantly
decrease the incidence of CRC and inhibit tumor growth
(35). For example, Rg3, one of the most abundant and active
ginsenosides can effectively inhibit the proliferation of CRC

cells by suppressing the activity of the C/EBPβ/NF-κB signaling
pathway (36). Similarly, another study also reported that
ginsenoside Rg3 could inhibit the proliferation, migration and
invasion of CRC cells and promote the apoptosis of these tumor
cells by downregulating the expression of lncRNA CCAT1 (37).
Other chemical compounds extracted from ginseng, such as
flavonoids and polysaccharides, have been confirmed to have
anti-CRC effects (38, 39). Recent studies further proposed that
ginseng and its various constituents could improve the status of
patients with CRC by increasing the efficiency of chemotherapy
drugs (40, 41).

Asian Ginseng, American Ginseng, and
Panax Notoginseng
Ginseng and its extracts have great potential as chemotherapy
adjuvant agents due to their low toxicity and strong anti-cancer
properties (42). In particular, ginseng or its active components
can enhance the sensitivity of chemotherapy and reduce its
side effects. For instance, Fishbein et al. proposed that Asian
ginseng could improve the anti-cancer function of 5-FU on
HCT-116 human CRC cells (43). In addition, Panax notoginseng
root extract, a remedy anti-cancer medicine, can also improve
the chemopreventive functions of 5-FU and irinotecan in
experiments in vitro (SW480) (44). These results are consistent
with previous studies that notoginseng can enhance tumor
radiosensitivity to the cytotoxic effect of ionizing radiation (45).
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In addition, another study reported that Panax notoginseng could
increase the anti-proliferative ability of 5-FU on HCT-116 cells
and significantly decrease the dosage of 5-FU required by CRC
administration (46). Moreover, Li et al. reported that American
ginseng berry extract could enhance the chemopreventive effect
of 5-FU during CRC treatment both in vivo and in vitro (SW480,
HCT-116 and HT-29), possibly by increasing cell arrest at S and
G2/M phases (47).

Nausea and vomiting may be the most common adverse
events in cancer chemotherapy treatment. For patients with
oxaliplatin-based regimens, the incidence of nausea and vomiting
is more than 70% (48). Previous studies reported that Korean red
ginseng total extract could effectively attenuate cisplatin-induced
nausea and vomiting in a ferret model (49). Further studies
proposed that the anti-emetic effect of ginseng or its extracts
was achieved by the antagonism of the 5-HT 3A receptor (50,
51). In a recent clinical trial, scholars investigated the curative
effect of ginseng on nausea and vomiting induced by oxaliplatin-
based regimens during CRC treatment, and they found that
the administration of ginseng combined with some traditional
medicines was capable of suppressing nausea and vomiting (52).
In a randomized clinical phase III trial, Kim et al. proposed
that Korean red ginseng administration could alleviate cancer-
related fatigue in CRC patients with chemotherapy (53). Cancer-
related fatigue, a common side effect of cancer chemotherapy
treatment is a subjective physical feeling and can interfere with
the sleep, mood, concentration, work, and daily life quality
of patients (54). In this trial, 219 patients with mFOLFOX-
6 administration chemotherapy were included in the Korean
red ginseng treatment group, and other 219 patients treated
with placebos were included in the control group. After 16-
week administration, the results showed that Korean red ginseng
treatment effectively improved fatigue, inhibited deterioration of
fatigue-related life quality, and reduced the stress of these CRC
patients receiving chemotherapy.

Ginsenosides
Panaxadiol (PD), a diol-type ginsenoside derived from Panax
ginseng or Panax pseudoginseng can also enhance the anti-
cancer effects of 5-FU on CRC (55). The results showed that
the combined administration of 5-FU and PD significantly
exerted stronger anti-proliferative and pro-apoptotic abilities
in the HCT-116 human CRC cell line than treatment with 5-
FU alone. These results are consistent with a previous clinical
study (56). Moreover, another in vitro study (HCT-116 and
SW480) showed that PD could also enhance the anti-cancer
effects of irinotecan, which might be achieved via inducing
tumor cell apoptosis (57). This synergistic administration can
effectively reduce the dose of irinotecan and the rate of side
effects, indicating that some natural products are beneficial for
CRC chemoadjuvant treatment.

Ginsenoside Rg3, a tetracyclic triterpenoid saponin with
strong anti-cancer properties can inhibit the proliferation,
invasion and migration of various tumors (58). For instance,
one study reported that Rg3 could block the progression
of colon cancer and promote the apoptosis of HT-29
colon cells by inhibiting the stemness of cancer stem

cells, reducing tumor angiogenesis, and upregulating the
AMPK pathway (59). In recent studies, scholars further
proposed that Rg3 administration could significantly
enhance the anti-cancer function of 5-FU both in vivo
and in vitro (SW620 and LOVO) (60). After treatment
with Rg3 and 5-FU together, this synergistic therapy was
found to effectively suppress the proliferation, development
and metastasis of tumors by activating the PI3K/Akt
signaling pathway.

Protopanaxadiol (PPD), a secondary ginsenoside induced by
a gut microbiome, can be bio-transformed by intestinal flora
from ginseng extracts such as Rb1 and compound K (61, 62).
According to a recent study, in addition to being able to inhibit
tumor development directly, PPD can effectively enhance the
effects of 5-FU on patients with CRC (62). It was found that
the co-administration of PPD and 5-FU exerted stronger anti-
proliferative and pro-apoptotic effects on HCT-116 human CRC
cells than PPD or 5-FU alone treatment. A further in vivo
experiment also confirmed that this co-administration could
markedly reduce the tumor size in a dose-related manner.

QUERCETIN

Quercetin (3, 3
′

, 4
′

, 5, 7-pentahydroxyflavone), a well-studied
flavonoid in various vegetables and fruits is easily dissolved in
the glacial acetic acid and aqueous solution (63). Hydrophilic
glycoside, one of the most common constituents of quercetin
extracts, cannot be directly absorbed by the host body and
has to be transformed into quercetin metabolites by interacting
with intestinal flora and key enzymes in digestive systems (64).
Multiple pharmacological effects, including anti-inflammatory,
anti-oxidative, anti-atherosclerosis, and anti-cancer effects, have
been discovered in quercetin or its extracts (65). Further study
demonstrated that quercetin could exert anti-cancer effects
through various mechanisms, including inhibiting the activity of
tyrosine kinase, regulating pathways involved in tumorigenesis,
and interacting with specific proteins or receptors (66). It was
found that quercetin and its derivatives could effectively inhibit
tumor initiation and progression in both in vivo and in vitro
CRC models (67). The molecular mechanisms are very complex
and incompletely understood. According to previous studies,
multiple signaling pathways were involved in the anti-cancer
processes, such asWnt/β-catenin, MAPK/JNK, NF-κB, and other
related pathways (67). For instance, quercetin was reported to
suppress the growth of multiple CRC cell lines (such as HT-29,
Caco-2, DLD-1, and HCT-15) by blocking the activity of the
AKT pathway (68–70). Another study further indicated that 3,
4-dihydroxyphenylacetic acid, a major derivative of quercetin,
was capable of exerting CRC protective effects by reducing
reactive oxygen species responses (71). In addition, recent studies
reported that quercetin could be used as an effectively adjuvant
chemotherapy agent for various cancer administration (65, 72–
74). Especially in CRC chemotherapy, the synergistic effect of
polyphenols has achieved relatively good potentiating effects.

A study in 1994 first reported that the combined
administration of quercetin and 5-FU could significantly
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inhibit the growth of CRC cell line COLO 320DM cells (75).
Recent studies further indicated that quercetin could increase
the bioavailability of drugs by regulating the expression of key
proteins associated with the development of drug resistance (76).
Based on the above findings, Atashpour et al. proposed that
quercetin treatment could enhance the cytotoxicity and apoptosis
induction of doxorubicin in CRC stem cells and HT-29 cells by
arresting tumor cells at the G2/M phase (77). Moreover, Han
et al. reported that quercetin pretreatment could significantly
promote the apoptosis of HT-29 cells induced by cisplatin, thus
improving the anti-cancer functions of cisplatin during CRC
administration (78). Further studies found that the combination
of quercetin and cisplatin could directly activate the NF-κB
signaling pathway to suppress cell proliferation and induce
apoptosis (78). A recent study suggested that the combination
of quercetin and luteolin, a member of the flavone group of
flavonoids, could effectively increase the anti-cancer functions
of 5-FU in HT-29 cells (79). Compared with the control group,
this combination exerted stronger anti-proliferative and pro-
apoptotic effects. This phenomenon was caused by suppressing
angiogenesis and vasculogenesis. This combination modulated
the apoptotic pathways and minimized the toxic effects of 5-FU.

P-glycoprotein-mediated multidrug resistance has been
considered one of the most fundamental factors of cancer
chemotherapy. Quercetin has been regarded as an inhibitor
of P-glycoprotein-mediated multidrug resistance, which can
overcome CRC resistance to chemotherapy via molecular
mechanisms. For example, Zhou et al. reported that quercetin
could effectively increase the cytotoxicity of doxorubicin to
P-glycoprotein-overexpressed SW620/Ad300 cells by blocking
D-glutamate metabolism and reducing the solute carrier family
1 member 5 (80). The CRC with microsatellite instability is
resistant to 5-FU administration, which remains a clinical
challenge. Xavier et al. first reported that quercetin treatment
could effectively enhance the sensitivity of 5-FU on CO-115 and
HCT-15 cells (81). After treatment with quercetin and 5-FU
together, they found that the ratio of apoptotic cells significantly
increased, which might be caused by special activation of the
mitochondrial pathway.

Quercetin has been recognized as the most representative
drug of flavonoids. In addition to quercetin, other flavonoids,
such as epigallocatechin-3 gallate and isoflavone genistein,
also possess chemopreventive properties (82, 83). Howells et
al. further investigated whether the chemical modification of
flavonol structures could enhance the pharmacological and
toxicological properties of other flavonoids. They hypothesized
that a flavonol molecule had no hydroxyl group on the A ring
and only methoxyl groups on the B ring, which might possess
cancer chemopreventive efficacy (84). To test this hypothesis,

they produced a new compound, 3
′

, 4
′

, 5
′

-trimethoxyflavonol,
a quercetin analog. Then, they compared the preclinical
cancer chemopreventive properties of the new compound
with those of two naturally flavonol congeners, quercetin
and fisetin, in vivo (human-derived HCT-116 adenocarcinoma-
bearing nude mice) and in vitro (APC10.1 cells derived
from adenomas of ApcMin mice). The result showed that

the synthesized 3
′

, 4
′

, 5
′

-trimethoxyflavonol could significantly

inhibit tumor proliferation and promote apoptosis by increasing
wild-type p53 expression in two mouse models. The above
studies also demonstrated that chemical modification might
be an effective way to generate safe and efficacious cancer
chemopreventive agents.

Moreover, one study reported that quercetin treatment
could also effectively enhance the radio sensitivity of CRC
in addition to improving the chemotherapy sensitivity. They
found that the pretreatment of quercetin enabled colorectal
cells to be more sensitive to radiotherapy by downregulating
the ataxia–telangiectasia-mutated-related signaling pathways
and promoting irradiation-induced γ-H2AX and 53BP1 focus
formation (85). A recent study indicated that the combination of
quercetin and ionizing radiation could have greater therapeutic
potential for CRC, which is consistent with the above results
(86). The detailed mechanism included directly suppressing the
Notch-1 signaling pathway and targeting colon cancer stem
cells, one group of rare immortal cells involved in radiation
therapy resistance.

TEA

Tea is a commonly consumed beverage derived from the leaves
and leaf buds of the Camellia sinensis. Tea has been studied
extensively in health and disease fields, such as preventing
hypertension and cardiovascular diseases, reducing obesity,
treating metabolic syndromes, mediating gut microbiotas, and
preventing and treating cancers (87). There are many types of
tea, such as black tea, green tea, Pu-erh tea, white tea, yellow
tea, oolong tea, and dark tea, all of which were produced via
different methods (88). For instance, green tea, also named non-
fermented tea is produced from dried green tea leaves. Black
tea also named most or fully fermented tea is obtained from
extensively solid-state fermentation involving microorganisms.
The partially fermented tea is named oolong tea (89). In the
last few years, various chemical components, mainly including
catechin derivatives, polysaccharides, pigments, theophylline,
glycosides, phenolic acids, and alkaloids have been isolated from
tea. Catechins, such as (–)-epigallocatechin-3-gallate (EGCG),
(–)-epigallocatechin (EGC), (–)-epicatechin-3-gallate (ECG),
and (–)-epicatechin, have been studied extensively in cancer
prevention and administration. Previous studies reported that
tea and its components could exert anti-cancer effects through
various signaling and metabolic mechanisms, such as inhibiting
tumorigenesis, promoting apoptosis, regulating proliferation
transformation, and targeting key transmembrane receptors or
kinases (87). It has been confirmed that EGCG could inhibit
CRC initiation and progression by reducing oxidative reaction
and promoting tumor cell apoptosis (90). Some meta-analyses
also showed that tea consumption was closely associated with
CRC risk (91, 92). Based on these results, some scholars further
proposed that tea and tea polyphenols could be used as promising
chemopreventive agents for CRC treatment (93).

EGCG and EGC
(–)-epigallocatechin-3-gallate is a major green tea polyphenol
and is regarded as an important tumor inhibitor in various
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cancers (94). It has been shown that the combinations of
EGCG and other catechins can exert relatively strong anti-cancer
effects in both in vitro and in vivo experiments (95). Some
studies indicated that EGCG could improve chemoresistance
and reduce tumor recurrence. For instance, Toden et al.
found that EGCG treatment could sensitize chemoresistant CRC
cells (HCT-116 and SW480) to standard 5-FU administration.
Specific chemopreventive activities include increasing 5-FU-
induced cytotoxicity and suppressing the growth of tumor cells
by triggering apoptosis and promoting cell cycle arrest (96).
La et al. reported that EGCG administration could effectively
increase the chemosensitivity of 5-FU in HCT-116 and DLD1
cell lines by suppressing tumor growth, promoting apoptosis,
and causing DNA damage, which is consistent with the above
results (97). According to further mechanistic studies, EGCG can
upregulate the expression of NF-κB and miR-155-5p by blocking
GRP78 activity, further suppressing the protein expression of
MDR1 and increasing the 5-FU accumulation in CRC cells. In
another study, Shimizu et al. proposed that EGCG could exert
chemopreventive effects by inhibiting the activity of signaling
pathways related to receptor tyrosine kinases, such as EGFR, IGF-
1R, and VEGFR2 signaling pathways (98). Moreover, combining
EGCG with cisplatin or oxaliplatin could significantly inhibit the
proliferation of DLD-1 and HT-29 cells and reduce cytotoxic
effects by regulating autophagy-related signaling pathways (93).

Irinotecan is a common DNA-damaging chemotherapeutic
agent for CRC treatment, the use of which is limited by its low

solubility and high toxicity. Combined with the previous studies,
they found that the co-administration of EGCG and Gefitinib or
Bleomycin could reduce their dose and resistance (99, 100). Wu
et al. further investigated the synergy of EGCG and irinotecan on
CRC treatment (101). They treated CRC cells RKO and HCT116
with EGCG and irinotecan together, and the results showed that
the combined administration exerted relatively strong inhibitory
effects on the proliferation, migration, and invasion of tumor
cells. The specific molecular mechanism includes inducing S-
or G2-phase arrest and causing more extensive DNA damage.
Moreover, a study reported that EGCG and EGC could increase
the chemosensitivity of low-dose doxorubicin both in vivo and in
vitro (SW620) by blocking the activation of protein kinase C, a
drug resistance-related protein (102). According to some studies,
in addition to directly improving chemotherapy responses, tea
nanoparticles can be used to deliver chemotherapeutic agents for
cancer treatment. For instance, Wang et al. proposed that tea
nanoparticles, a safe nanocarrier with good biocompatibility and
low toxicity could load doxorubicin into tumors, thus enhancing
its intertumoral accumulation and improving its chemotherapy
efficacy in an animal study (103).

Chemopreventive Effects
The view that drinking tea can prevent cancer has been
proposed for many years. For instance, Shimizu et al. reported
that consuming proper green tea every day could inhibit
the recurrence of CRC (104). Another study showed that

TABLE 1 | The synergistic effects of ginseng, quercetin, and tea on chemotherapy treatment of colorectal cancer.

Herbs or their composition Studied objects Chemotherapeutics Effects Refs.

Asian ginseng HCT-116 5-fluorouracil Improving efficacy of chemotherapy. (43)

Panax notoginseng root extract SW-480 5-fluorouracil Irinotecan Improving efficacy of chemotherapy. (44)

Panax notoginseng HCT-116 5-fluorouracil Improving efficacy of chemotherapy. (46)

American ginseng berry extract SW-480, HCT-116 HT-29, Animal model 5-fluorouracil Improving efficacy of chemotherapy. (47)

Korean red ginseng Animal model Cisplatin Reducing side effects of chemotherapy. (49)

Asian ginseng Clinical trial Oxaliplatin Reducing side effects of chemotherapy. (52).

Korean red ginseng Clinical trial mFOLFOX-6 Reducing side effects of chemotherapy. (53)

Panaxadiol HCT-116 5-fluorouracil Improving efficacy of chemotherapy. (55)

Panaxadiol HCT-116, SW-480 Irinotecan Improving efficacy of chemotherapy. (57)

Ginsenoside Rg3 SW620, LOVO, Animal model 5-fluorouracil Improving efficacy of chemotherapy. (60)

Protopanaxadiol HCT-116 5-fluorouracil Improving efficacy of chemotherapy. (62)

Quercetin COLO 320 DM 5-fluorouracil Improving efficacy of chemotherapy. (75)

Quercetin HT-29 Doxorubicin Improving efficacy of chemotherapy. (77)

Quercetin HT-29 Cisplatin Improving efficacy of chemotherapy. (78)

Quercetin HT-29 5-fluorouracil Improving efficacy of chemotherapy. (79)

Quercetin SW620, Ad300 Doxorubicin Increases sensitivity to chemotherapy (80)

Quercetin CO-115, HCT-15 5-fluorouracil Increases sensitivity to chemotherapy (81)

(–)-epigallocatechin-3-gallate HCT116, SW480 5-fluorouracil Increases sensitivity to chemotherapy (96)

(–)-epigallocatechin-3-gallate HCT-116, DLD1 5-fluorouracil Increases sensitivity to chemotherapy (97)

(–)-epigallocatechin-3-gallate DLD-1, HT-29 CisplatinOxaliplatin Reducing side effects of chemotherapy. (93)

(–)-epigallocatechin-3-gallate RKO and HCT-116 Irinotecan Improving efficacy of chemotherapy. (101)

(–)-epigallocatechin-3-gallate SW620 Doxorubicin Increases sensitivity to chemotherapy (102)

Tea nanoparticle Animal model Doxorubicin Improving efficacy of chemotherapy. (103)
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green tea catechins could prevent CRC through multiple
molecular mechanisms, including decreasing detergent-insoluble
membrane domain, inhibiting the activity of the specific receptor
tyrosine kinases (such as EGFR, IGF-1R, and VEGFR-2), and
reducing the expression of hypoxia-inducible factor 1a (HIF1a),
IGF-1, IGF2, and EGF (98, 105). In a randomized controlled
trial, Henning et al. proposed that tea polyphenols could be
transformed into phenolic metabolites by the colonic microflora,
thus playing a significant role in CRC prevention (106). Ku-
jin tea, a very popular beverage in the world, is an essential
anti-inflammatory and anti-oxidative regulator and can also play
chemopreventive effects on CRC. In a CRC rat model induced
by azoxymethane, Bi et al. found that long-term treatment with
Ku-jin tea could significantly decrease the number of aberrant
crypts, aberrant crypt foci (ACF), and crypts/foci in rats through
regulating metabolism-associated pathways, further indicating
that Ku-jin tea can be used as a promising chemopreventive agent
for CRC chemoprevention (107).

PERSPECTIVES AND CONCLUSIONS

The synergistic therapy of herbal medicines combined with
chemotherapy may revolutionize cancer treatment. With the
development of precision medicine, chemotherapy has played
an increasingly important role in clinical cancer treatment
(108, 109). Especially for CRC, various chemotherapeutic
regimens have been proposed and have achieved remarkable
clinical efficacy. For example, for lymph node-positive patients,
the FOLFOX regimen (5-FU, leucovorin, and oxaliplatin) is
recommended (110). In terms of locally advanced rectal cancer,
neoadjuvant chemoradiation therapy with 5-FU and radiation
therapy should be considered for the patients. For patients with
metastatic CRC, FOLFOX, or FOLFIRI (5-FU, leucovorin, and
irinotecan) regimens are recommended as standard first-line
treatment choices (111).

Traditional herbal medicines, exerting huge therapeutic
potential in various diseases, are promising adjuvant
chemotherapy agents. In this review, to allow readers to
quickly know this field, we selected the three most studied
herbs (ginseng, quercetin, and tea) as representative drugs to

conclude their synergies in CRC chemotherapy administration
(Table 1). By summing up the points, we discovered that most
studies were focused on investigating the synergistic effects of
the three herbs on 5-FU, the most commonly used chemotherapy
drug for CRC treatment. As expected, we found that all the
three herbs and their major extracts could significantly enhance
the chemopreventive functions of 5-Fu and reduce its side
effects. In terms of ginseng, there are three most common
species, including Asian ginseng, American ginseng, and Panax
notoginseng, all of which have been confirmed to possess
synergistic effects. Their major components, such as ginsenoside
Rg3, PPT, and PPD, also possess stronger pharmacological and
biological effects. In addition, the synergistic effects of them and
other chemotherapy drugs, such as irinotecan, have also been
studied both in vivo and in vitro. Quercitrin is commonly found
in plant foods used to treat various diseases, especially, which

has been identified to be an effectively antitumor agent. Herein,
we have summarized that quercetin treatment could enhance the
cytotoxicity of 5-FU, cisplatin, and doxorubicin by regulating
different molecular mechanisms. The research on tea was mainly
focused on EGCG, a major tea polyphenol, which can improve
the chemotherapy efficacy of 5-FU, irinotecan, cisplatin, and
oxaliplatin and play chemopreventive effects both in vivo and
in vitro. However, its detailed mechanisms, mainly including
promoting proliferation and inhibiting apoptosis by regulating
related signaling pathways, are not fully understood.

Although many preclinical studies have been performed,
the clinical applications of these herbs are still limited due
to too many unknown variables. In the future, an increasing
number of studies should be performed to clarify specific
mechanisms and develop more effective chemopreventive agents
for CRC administration.
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Colorectal cancer (CRC) is a worldwide disease threatening people’s lives.

Surgery and chemotherapy are still the main methods for CRC treatment.

However, the side e�ects and chemotherapeutic drug resistance restrict the

application of chemotherapy. Trametes Robiniophila Murr, also known as

Huaier, is a traditional Chinese medicine that has been used for more than

1,600 years. Huaier extracts have promising anti-cancer e�ects on hepatoma,

breast cancer, and gastric cancer. Nowadays, the tumor inhibition of Huaier

on CRC has attracted more and more attention. This review mainly provides

the possible anti-tumor mechanisms of Huaier for CRC treatment in apoptosis

and inhibiting proliferation of tumor cells, preventing epithelial-mesenchymal

transformation (EMT), weakening proliferation and di�erentiation of CRC stem

cells, decreasing the vessel density in tumor tissues, and enhancing the

immune system and chemotherapeutic e�cacy. Huaier extract may be a

good candidate for CRC treatment, especially when combined with other

chemotherapeutic agents.
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Introduction

Colorectal cancer (CRC) is a common malignant tumor in the digestive tract, and

its incidence is increasing. The mortality of CRC is on the rise and ranks third among

all malignancies (1) that seriously endanger the health of people. Surgery is still the

most important current treatment method for CRC, but the average 5-year survival

rate is < 50%, and about 30% of patients may develop tumor recurrence after surgery

(2). Chemotherapy and radiotherapy are still the most commonly used methods to

prevent the post-surgical tumor recurrence or treat the advanced CRC that is unsuitable

for surgical resection. However, the side effects of chemotherapy and radiotherapy

cannot be restricted nowadays. Therefore, developing new anti-cancer drugs with low
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toxicity and drug resistance is urgent. More and more

researchers are focusing on the effects of Chinese medicine in

postoperative adjuvant therapy for many years. Post-surgical

adjuvant therapy by Chinese medicine can effectively enhance

the effect of chemotherapy, reduce the toxic side effects of

chemotherapy and adverse reactions caused by surgery, etc., and

improve the survival rate and the quality of life of CRC patients

(3, 4).

Trametes Robiniophila Murr, also known as Huaier, has

a history of more than 1,600 years as traditional Chinese

medicine. Huaier granules are common clinical pharmaceutical

agents. Huaier is a medicinal fungus that grows on acacia,

locust tree, sandalwood and many other trees, and it contains

various organic components and more than 10 minerals. The

main ingredient of Huaier is the fungal matter, which includes

polysaccharides, proteins, ketones, and alkaloids, and the active

ingredient is polysaccharide-protein (5). Huaier granules have

shown promising tumor inhibitory effects on many kinds of

cancers, including hepatic cancer (6), breast cancer (7), and

gastric cancer (8). It is reported that Huaier extracts can

effectively inhibit the proliferation of colon cancer cells (9) and

prevent the progression of colon tumors in nude mice (10).

These findings may provide new aspects for CRC treatment.

However, the concrete mechanisms of Huaier against CRC are

not clear. As a result, this review mainly provides the possible

anti-tumormechanisms of Huaier for CRC treatment (Figure 1).

The role of Huaier in CRC cells

Promoting apoptosis and inhibiting
proliferation of tumor cells

Huaier can inhibit the proliferation of CRC cells by inducing

tumor apoptosis. It is reported that Huaier extract can induce

G0/G1 and S phrases arrest, and the proliferation ability

of tumor cells is weakened and the ability of apoptosis is

enhanced (11, 12). Studies have shown that wild-type p53

protein encoded by the p53 gene inhibits cell growth, induces

apoptosis, and repairs damaged cells. These functions are

related to genomic stability, cell cycle progression, apoptosis,

and DNA damage repair (13). Bcl-2 can regulate tumor cell

apoptosis and inhibit cancer cell proliferation through the

mitochondrial pathway (14). Lin et al. found that Huaier extract

can improve the severity of inflammatory bowel disease-related

tumors, induce apoptosis of related tumor cells, and inhibit

tumor cell proliferation in CRC mouse model. In addition, the

apoptosis-associated protein levels, including p53 and Bcl-2,

show significant differences when treated with Huaier in CRC

cell lines (15). Therefore, Huaier may possess good properties to

induce apoptosis of CRC cells by activating and upregulating p53

and downregulating Bcl-2/Bax genes. Sun et al. have reported

that Huaier granules can significantly decrease the tumor

development in nude mice transplanted with HT-29 colon

carcinoma cell line by downregulating the expression of PI3KR1,

Akt, Wnt1, CTTNB1, and Notch genes (9). It is reported that

chromosomal maintenance protein is a target for Huaier in

hepatocellular carcinoma, and Huaier inhibits the cell cycle

of liver cancer cells by regulating chromosomal maintenance

proteins, thereby inhibiting tumors (11). In addition, Huaier

extracts can inhibit proliferation and induction of apoptosis

in two tuberous sclerosis complex cell models by inhibiting

JAK2/STAT3 and MAPK signaling pathways (16). However, the

above mechanisms of Huaier should be further investigated in

CRC cell lines or animal models.

Inhibiting epithelial-mesenchymal
transformation

Epithelial-mesenchymal transformation (EMT) refers to the

biological process by which epithelial cells are transformed into

cells with interstitial phenotypes through specific procedures

(17). EMT is always associated with tumor invasion and

distant metastasis (18). Matrix metalloproteinase (MMP) plays

an essential role in the EMT by influencing the degradation

and remodeling of the extracellular matrix, increasing local

invasion of tumor cells, and improving distant metastasis (19).

Researchers found that Huaier can decrease the expressions

of Bcl-2, MMP-2, and MMP-9 in the MKN-45 cell line, thus

inducing apoptosis and preventing the invasion of tumor

cells (20). Huaier may reduce the invasion and metastasis of

CRC cells by inhibiting EMT. The effects may be associated

with the regulation of the expression of messenger RNA

and the transcription factors. Furthermore, Huaier extracts

can slow the growth of pancreatic cancer and decrease the

invasion, migration, and EMT of pancreatic cancer cells by

suppressing Wnt/beta-catenin pathway (21). However, the

inhibitory effect of Huaier on EMT in CRC treatment remains

to be further studied.

The role of Huaier in CRC stem cells

CRC stem cells have a stronger ability to proliferate,

infiltrate, and metastasize than CRC cells (22). Inhibiting the

proliferation, invasion, and migration of tumor stem cells

can decrease the proportion of stem cells transformed into

cancer cells, thus preventing the recurrence and migration of

tumors (23). The proliferation, differentiation, and self-renew

ability of CRC stem cells are regulated by multiple signaling

pathways. The expression of messenger RNA associated with

tumor proliferation in CRC stem cells treated with Huaier

granules is significantly downregulated, and the proliferation of

stem cells is inhibited (9). Huaier extracts inhibit the migration

of CRC and may be achieved by down-regulating the expression
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FIGURE 1

Mechanisms of Trametes Robiniophila Murr for CRC treatment.

of messenger RNA of key genes or proteins to attenuate the

properties of cancer stem cells. Detailed mechanisms about the

effect of Huaier on CRC stem cells need to be further verified.

The role of Huaier in tumor
angiogenesis

Neovascularization is a typical feature of tumors and is a

necessary process for tumor invasion and distant metastasis (24,

25). Neogenesis in tumors is regulated by various angiogenesis

factors, such as vascular endothelial growth factor (VEGF)

and its regulatory gene hypoxia inducing factor 1α, human

macrophage metal elastase (26, 27). The overexpression of

VEGF is strongly associated with poor treatment outcomes and

reduced survival rates in cancer patients (28, 29). Therefore,

inhibiting the proliferation of vascular endothelial cells induced

by VEGF is the key to preventing tumor invasion andmigration.

Zheng et al. found that Huaier polysaccharide (TP-1) can reduce

the expression of hypoxia-inducible factor and VEGF in tumor

tissues in mice bearing hepatocellular carcinoma SMMC-7721

tumors model (30). Huaier extracts can not only decrease

VEGF levels in mouse mammary tumor cells but also decrease

microvessel density in tumor tissues (31). Huaier granules can

suppress the infiltration of tumor-associated macrophages, and

inhibit the angiogenesis of macrophages, thereby inhibiting

tumor progression in RAW264.7 murine macrophage cell line

(32). However, this effect has not been tested in CRC.

Huaier extracts can inhibit the invasion and migration of

CRC by inhibiting neovascularization in the tumor, which may

be the focus of future clinical research and can be applied

in the clinical treatment of CRC. However, more experiments

are needed to validate and explore the possible molecular

mechanisms of the effects of Huaier on tumor angiogenesis.

The role of Huaier in the immune
system

The balance between tumor-specific immunity and tolerance

affects the health of the host. Under the protection of

the immune system, a normal organism can prevent the

deterioration of mutated tumor cells. However, cellular immune

function in CRC gradually decreases and continues to

deteriorate with tumor progress, recurrence, and distant

metastasis (33, 34). Therefore, it is of great significance to

protect and enhance the immune defense ability to increase

the efficacy of anti-tumor therapy for CRC patients. As a

traditional Chinese medicine, Huaier extracts can act as an

effective immune enhancer and modulator by fully mobilizing

cellular and humoral immunity, thus reducing the cachexia

caused by chemotherapy (5, 35). Huaier granules can enhance

the phagocytosis of macrophages, increase the number and

activity of natural killer cells, and enhance the body’s immunity

to effectively induce the death of tumor cells (19, 36). Huaier

granules can promote the maturation of dendritic cells, and the

dendritic cells treated by Huaier can significantly stimulate the

proliferation of CD4+T cells and promote their differentiation

into the Th1 subgroup (37). In one study, the researchers found

that Huaier polysaccharides can decrease the nephrotoxicity

caused by cisplatin chemotherapy and protect renal function

by regulating PI3K/Akt/mTOR signaling pathway in vitro, thus

enhancing the immune ability of patients (38). Huaier extracts

can perform the anti-tumor effects by enhancing the immune

system, but detailed mechanisms still need further study.

Enhancing chemotherapeutic
e�cacy

Clinically, the main causes of tumor deaths are metastasis

and recurrence (39, 40). Tumor metastasis is a multistep

process in which tumor cells penetrate stromal tissue, blood,

or lymph node metastasis, adhere to the basement membrane,

and invade the target organ (41, 42). Although chemotherapy,

radiotherapy, and targeted therapy can decrease the recurrence

and metastasis of cancer, there are still some problems that

need to be solved, such as insensitivity to chemotherapy drugs

and drug resistance. Chemotherapy still plays a dominant

role in the comprehensive treatment of CRC, so it is

significant to enhance chemotherapy sensitivity. The inhibition

of EMT can increase the chemotherapy sensitivity of CRC

to oxaliplatin (43). It is reported that Huaier extracts

can prevent EMT (21), which may be used to increase
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chemotherapy sensitivity. Studies have shown that Huaier

plays an effect on the reversal of chemotherapeutic agents

resistance, thus increasing the chemotherapy effects (44, 45).

The efficacy of Huaier combined with paclitaxel in treating

BT474 andMDA-MB-231 breast cancer-bearingmice is superior

to that of paclitaxel alone. The combination of Huaier

and paclitaxel can reduce the levels of PI3K and p-AKT

(46). In one meta-analysis, the researchers concluded that

Huaier granules can enhance the chemotherapeutic efficacy

of gastric cancer (8). Huaier granules can increase the

sensitivity of chemotherapy and inhibit the recurrence and

metastasis of tumors. However, a large number of basic and

clinical studies need to confirm its effect on CRC and its

specific mechanism.

Conclusions and perspectives

There are still some problems that need to be solved

to be widely applied in CRC treatment. (1) The active

ingredient of Huaier for tumor treatment has not been

determined. (2) Although increasing studies have focused on

the direct effects of Huaier on cancer cells, few studies have

explored its molecular and immunomodulatory mechanisms.

(3) Whether the inhibitory effect of Huaier granules on

the invasion and migration of CRC is related to the

influence of intestinal flora needs further study. (4) More

basic and clinical studies should be performed to provide a

more convincing basis for applying Huaier in the treatment

of CRC.

In conclusion, Huaier extracts may inhibit the progression

of CRC in various ways, include inducing apoptosis and

inhibition of tumor cell proliferation, blocking epithelial

mesenchymal transition (EMT), attenuating proliferation and

differentiation of CRC stem cells, reducing vascular density in

tumor tissue, and enhancing the immune system. Therefore,

Huaier may be an excellent candidate to enhance the

sensitivity of chemotherapy while enhancing the immune

system and decreasing side effects. The genes, signaling

pathways, and related molecular mechanisms involved in the

interaction between Huaier extracts and CRC are the focuses of

future research.
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Anti-colorectal cancer e�ects of

seaweed-derived bioactive
compounds
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Hao Yue1, Kai Zhu1, Zifeng Pi1* and Yulin Dai1*

1Changchun University of Chinese Medicine, Changchun, China, 2Jilin Academy of Agricultural

Machinery, Changchun, China

Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They

constitute a number of the most significant repositories of new therapeutic

compounds for human use. Seaweed has been proven to possess diverse

bioactive properties, which include anticancer properties. The present review

focuses on colorectal cancer, which is a primary cause of cancer-related

mortality in humans. In addition, it discusses various compounds derived

from a series of seaweeds that have been shown to eradicate or slow

the progression of cancer. Therapeutic compounds extracted from seaweed

have shown activity against colorectal cancer. Furthermore, the mechanisms

through which these compounds can induce apoptosis in vitro and in vivo

were reviewed. This review emphasizes the potential utility of seaweeds as

anticancer agents through the consideration of the capability of compounds

present in seaweeds to fight against colorectal cancer.

KEYWORDS

colorectal cancer, therapeutic compounds, Chlorophyta, Rhodophyta, Phaeophyta

Introduction

Colorectal cancer (CRC) is the most common type of cancer throughout the world,

accounting for approximately 10% of all new cancer cases and mortality, as projected

in GLOBOCAN 2020 (1). The prevalence rates of CRC are increasing among nations

with a medium human development index, such as Brazil, Russia, and countries of

Latin America (2). The pathology of CRC includes carcinogenesis of the rectum,

colon, appendix, and anus (3). Familial and environmental factors contribute to the

risk of CRC from two well-defined causes particularly amenable to dietary influence

(4). In the clinical situation, chemotherapy is a common treatment modality for CRC

(5). Nevertheless, the majority of current chemotherapeutic drugs for the therapy of

advanced-stage CRC, for instance cisplatin, have been repeatedly reported to elicit

adverse side effects and are comparatively less effective (6). Several lines of scientific

evidence, from molecular mechanisms to clinical trials, show that herbal medicines have

anti-CRC potential and have been used for therapy and recovery (7).

Seaweeds have been utilized for food and medicinal herbs since ancient times in

Asia (8). It has been consumed as a food for over 1,700 years, which can be dated

back to Japan in the fourth century and China during sixth century. Particularly, people
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living long in coastal areas frequently used seaweed as a main

dish, side dish, or soup (9). Consumption of seaweed supplies

sufficient macro and micronutrients, which are essential to

maintaining human health (10). Besides nutritional effects,

seaweed has long been adopted as a drug in Traditional East

Asian Medicine to alleviate the progression of multiple cancers

(11). Seaweeds as large multicellular marine organisms are

classified into three major groups based on their pigments and

the origin of sulfated polysaccharides: green (Chlorophyta), red

(Rhodophyta), and brown (Phaeophyta) (12, 13). They represent

a main source of bioactive compounds, yielding primary

metabolites essential for natural growth and many secondary

metabolites, which include polysaccharides, polyunsaturated

fatty acids, phenolics, vitamins, pigments, minerals, terpenes,

and phytosterols (14). Due to their various constituents,

seaweeds have shown diverse biological activities, including

anticancer activity (15).

Seaweeds have long been recognized as a therapeutic

option of cancer (16). Accumulating evidence advocates that

the anticancer effects of bioactive ingredients extracted from

seaweed are produced via multiple mechanisms of action,

including inhibition of growth, invasion, and metastasis of

cancer cells, and through the stimulation of apoptosis in

cancer cells (17). Among the East Asian population, people

who regularly consumed seaweed reduced their risk of CRC

development by half (10). Several researches have suggested that

CRC can be effectively treated with marine natural products

(18). According to one such report, brown seaweed Turbinaria

decurrens has the potential as an anti-CRC agent (19). The

highly cytotoxic and antiproliferative activities of seaweeds from

the Portuguese coast have been proven in a model of Caco-

2 CRC cells in vitro (20). Sargassum oligocystom significantly

decreased cell viability in SW742, HT-29,WiDr, and CT-26 CRC

cells through activation of the APC gene (21). Although several

studies have reported the therapeutic properties of seaweed in

CRC, its mechanism of action and active ingredients are still

unclear and unclassified. In this review, we summarize the

various effects of diverse compounds derived from seaweed

on CRC.

Categorization of anti-CRC
compounds isolated from seaweeds

Polysaccharides

The polysaccharides present in seaweeds are many and

diverse (22). They are hydrophilic molecules with high

solubility in water and a repeating structure (23). The

polysaccharides in seaweed are divided into sulfated (fucoidan,

carrageenan, and ulvan) and non-sulfated (agarose and

laminarin) (24). Chlorophyta, Phaeophyta, and Rhodophyta

contain polysaccharides of varied chemical composition and

structure (25).

Previous studies suggested that polysaccharides from

seaweed showed strong anti-CRC and preventive activities.

They can either directly inhibit cancer cells or affect various

phases of carcinogenesis and the progression of tumor through

the regulation of the balance between proliferation and

programmed cell death and can also be potentially used

for cancer prophylaxis (26). Three polysaccharide fractions

isolated from Porphyra haitanensis exerted inhibitory effects

on growth in the HT-29, LoVo, and SW-480 colon cancer

cell lines (27). Other active components contained in seaweed

that exhibit similar effects against CRC are shown in Table 1.

Another study reported on an evaluation of the anti-CRC

activity of sulfated glucuronorhamnoxylanpolysaccharides from

Capsosiphon fulvescens (28). Polysaccharides from Jania rubens

upregulated the gene expression of Bax, caspase 8, and P53

in human colon cancer Caco-2 cells (29). A summary of

mechanisms for other active components from seaweed on

anti-CRC is shown in Table 2.

Agarose

Red algae cell walls mainly consist of agarose which is

composed of alternative units of D-galactose and 3,6-anhydro-

L-galactose (AHG) linked by alternating α-1,3- and β-1,4-

glycosidic bonds (62). After being consumed, agarose is digested,

fermented, and metabolized by intestinal microbiota in the

human large intestine, which makes it unique among red algal

polysaccharides (63). Clinical trials have suggested that people

in Asia who regularly consume red seaweeds are at a lower risk

of CRC, which is relevant to their daily intake of seaweeds (64). It

is speculated that this effect may be related to biologically active

agarose components enriched from red seaweed. Upregulation

of caspase-3, Bax, and caspase-9 expression and downregulation

of Bcl-2 and Bcl-xL were observed in HCT-116 cells after AHG

treatment (30). Therefore, the growth of human colon cancer

HCT-116 cells was effectively suppressed by AHG, indicating

that AHG is a potential alternative as an anti-CRC agent.

Ulvan

The sulfated polysaccharide known as “ulvan” is extracted

from green algae of the ulva species (35). Ulvan mainly consists

of cellulose, xyloglucan, and glucuronanwith various other types

of sugars (65). It is reported to possess diverse physiological and

bioactive activities, including anticancer activity (66). Ulvan has

been demonstrated to decrease viability in cancer cells while

leaving healthy cells unaffected (65). The current study has

categorically proven that biogenic silver nanoparticles (AgNP),

which were generated via an extract of the marine alga Ulva

lactuca, can induce p53-dependent apoptosis in colon cancer

HCT-116 cells (31, 32).
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TABLE 1 The e�ects of active components isolated from seaweeds on colorectal cancer.

Seaweed Division Therapeutic

ingredients

Cell line IC50 References

Sphaerococcus coronopifolius Rhodophyta Dichloromethane extract Caco-2 21.3 µg/mL (20)

Sargassum oligocystom Phaeophyta Hydroalcoholic extract CT-26 - (21)

Porphyra haitanensis Rhodophyta PHP-F1, PHP-F2 and PHP-F3 HT-29 664.4 µg/mL, 575.1

µg/mL and 578.3

µg/mL

(27)

Capsosiphon fulvescens Chlorophyta SPS-CF HT-29 - (28)

Jania rubens Rhodophyta J. rubens polysaccharide Caco-2 20 mg/mL (29)

Red Seaweeds Rhodophyta AHG HCT-116 - (30)

Ulva lactuca Chlorophyta AgNP HCT-116 142µM (31)

Ulva lactuca Chlorophyta Ulvan polysaccharide HCT-116 22.65 µg/mL (32)

Fucus evanescens Phaeophyta Laminarin HCT-116 200 µg/mL (33)

Kappaphycus alvarezii Rhodophyta κ-carrageenan HCT-116 HT-29 -

73.87 µg/mL

(34, 35)

Fucus vesiculosus Phaeophyta Fucoidan HT-29 HCT-116 200 µg/mL

-

(36–38)

Fucus evanescens Phaeophyta Fucoidan HCT-116 - (39)

Sargassum mcclurei Phaeophyta SmF1, SmF2 and SmF3 DLD-1 - (40)

Sargassum glaucescens Phaeophyta SG4 HT-29 272 µg/mL (41)

Sargassum cinereum Phaeophyta Fucoidan Caco-2 250 µg/mL (42)

Halimeda opuntia Chlorophyta Carotenoids, chlorophyll a HT-29 45.23 µg/mL (43)

Laminaria japonica Phaeophyta Fucoxanthin HCT-116 - (44)

Sargassum angustifolium Phaeophyta Fucosterol HT-29 70.41 µg/mL (45)

Pterocladiella capillacea Rhodophyta Mertensene HT-29 56.5 µg/mL (46)

Cystoseira usneoides Phaeophyta Meroterpenoids HT-29 7.8–36.9 µg/mL (3)

IC50 , the half-maximal inhibitory concentration.

Laminarin

Laminarin, sometimes referred to as laminaran, which is an

essential biodegradable and non-toxic polysaccharide isolated

from the cell wall reservoirs of brown algae, has caught the

interest of researchers (67). Laminarins are essentially a group

of low-molecular-weight storage β-glucans consisting of (1,3)-

β-D-glucan (68). (1,3)-β-D-glucopyranose residues with a few

6-O-branching on the main chain, and also several β-(1,6)-

intra-chain links, which are abundant in their structures (69).

β-glucans can promote cell apoptosis of colon cancer, and they

may be beneficial natural agents for colon cancer treatment

and chemoprevention (70). Additionally, certain studies have

suggested that the biological activity of laminarin can be

strengthened with particular chemical modifications (71). For

example, Ji et al. (71) demonstrated that laminarin treated with

sulfated provided a stronger antitumor effect compared with

unmodified laminarin in human colorectal adenocarcinoma

cells. The cell survival rate was significantly decreased after

culturing with sulfated laminarin in LoVo cells. Apparently,

peculiarities of the polysaccharide structure and sulfation

contribute to the anticancer activity of laminarins. Malyarenko

et al. (33) found that the antiproliferative activity of laminarins

from Fucus evanescens was comparable to that of their sulfated

derivatives. The anticancer effect of laminarin isolated from

F. evanescens was stronger than that of its sulfated derivatives

in HCT-116 colon carcinoma cells. Ji et al. (72) proved that

laminarin increased the intracellular reactive oxygen species

(ROS) level, increased intracellularCa2+, decreased intracellular

pH, and induced LoVo apoptosis through a mitochondrial

pathway. A further study revealed that the expression of

procaspase-8 and−3 was downregulated and the activity of

caspase-8,−3,−6, and−7 was increased in human colon cancer

LoVo cells through the TRAIL/DR pathway after treatment with

laminarin (73). Thus, laminarin induces apoptosis in human

colon cancer via the mitochondrial and DR pathways, indicating

that laminarin is a potent anticancer agent.

Carrageenan

A set of sulfated polysaccharides generically described

as carrageenan is present in red algae, which is the major

ingredient of cell walls and interstitial spaces, acting as
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TABLE 2 Properties of active components isolated from seaweed against colorectal cancer.

Therapeutic ingredients

(Seaweed)

Cell line Mechanism Cell cycle

arrest

References

Hydroalcoholic extract (Sargassum

oligocystom)

CT-26 Upregulate APC and P53 + (21)

PHP-F1, PHP-F2 and PHP-F3

(Porphyra haitanensis)

HT-29 Induce oxidative stress and apoptosis G0–G1 (27)

SPS-CF (Capsosiphon fulvescens) HT-29 Upregulate caspase-8,−9,−3 and cleavage of poly (ADP-ribose)

polymerase (PARP), induce DNA fragmentation, disrupt MMP

G2/M (28)

Polysaccharide (Jania rubens) Caco-2 Upregulate Bax, caspase 8 and P53 + (29)

AHG (Red Seaweeds) HCT-116 Upregulate Bax, caspase-3,−9 and P53, downregulate Bcl-2 and Bcl-xL + (30)

AgNP (Ulva lactuca) HCT-116 Upregulate Bax, P53 and P21, downregulate Bcl-2 + (31)

Ulvan polysaccharide (Ulva lactuca) HCT-116 Upregulate P53, downregulate Bcl-2 + (32)

Laminarin (Fucus evanescens) HCT-116 Anti-Proliferation, inhibit MMP-2 and MMP-9 activity - (33)

κ-carrageenan (Kappaphycus alvarezii) HCT-116 Induce apoptotic cell death, nuclear fragmentation and apoptosome

formation, downregulate XIAP and PARP-1

G1 (34)

Fucoidan (Fucus vesiculosus) HT-29 HCT-116 Increase Bax, caspase-3, PARP-1 and P21, decrease Bcl-2, Cyclin D1

and E, CDK2 and CDK4

G1 (36, 38, 47)

Fucoidan (Fucus evanescens) HCT-116 Decrease TOPK kinase activity, inhibit phosphorylation of TOPK (Thr

9)

- (39)

SG4 (Sargassum glaucescens) HT-29 Increase cytochrome c release, caspase-9,−3 and DNA fragmentation,

disrupt MMP

sub-G1, S, and

G2/M

(41)

Fucoidan (Sargassum cinereum) Caco-2 Increase ROS, induce chromatin condensation - (42)

Fucoxanthin (Undaria pinnatidfida) Caco-2 DLD-1

HT-29

Upregulate apoptosis, downregulat DNA fragmentation - (48)

Fucoxanthin (Laminaria japonica) WiDr HCT-116 Upregulate cell cycle arrest and apoptosis, up-regulation of

p21WAF1/Cip1, downregulat proliferation

G0/G1 (44)

Fucoxanthin (Marine algae) HCT-116 HT29 Upregulate DNA damage + (49)

Fucoxanthinol (Brown algae) DLD-1 HCT-116 Upregulate anoikis and integrin β1, downregulat PPARγ, Akt

activation

G1 (50)

Astaxanthin (Marine source) WiDr Downregulat proliferation, inhibiting the MYC-mediated

downregulation of microRNA-29a-3p and microRNA-200a

- (51)

ω-3 PUFAs LOVO Anti-Proliferation, induce phosphorylation of YAP - (52)

EPA HCT-116 Suppress EGFR and VEGFR activation pathways, downregulate VEGF

and HIF1α

- (53)

DHA HCT-8 HT-29

HCT-116 SW480

Upregulate TNFα, ERdj5 and caspase-4, downregulatemicroRNA-21,

inhibit RIP1 kinase and AMP-activated protein kinase α

- (54, 55)

ARA HT-29 Induce ER stress and apoptosis, inhibit SREBP-1 activity and DNA

replication

G1/S (56, 57)

LA LOVO CT-26 Upregulate microRNA-494, cytochrome c release, caspase-9,−3 and

ROS, downregulateMYCC and PGC1α

S and G2/M (58, 59)

Fucosterol HT-29 Anti-Proliferation, upregulate P53, decrease cell viability + (60)

Fucosterol (Sargassum angustifolium) HT-29 Induce cytotoxicity - (45)

Mertensene (Pterocladiella capillacea) HT-29 Upregulate caspase-3 and cleavage of poly (ADP-ribose) polymerase

(PARP), inhibit phosphorylation of P53, Rb, cdc2 and chkp2

G2/M (46)

Meroterpenoids (Cystoseira usneoides) HT-29 Inhibit phosphorylation of ERK, JKN and AKT G2/M (3)

Phloroglucinol HT-29 HCT-116 Upregulate caspase-3 and caspase-8, inhibited the expression of Ras,

Raf, mitogen-activatedprotein kinase, extracellular-signal regulated

kinase phosphorylation, PI3K and Akt

G0/G1 (61)

+, effects reported; −, no effects reported.
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structural compounds and supplying intercellular adhesion and

signaling. The structural units of these natural polysaccharides

are a mixture of sulfated linear galactans, which consist

of disaccharides of α-(1,4)-linked D-galactopyranose (D)

residues or 3,6-anhydrogalactopyranose (DA) and β-(1,3)-

linked D-galactopyranose (G) residues (74). According

to the concentration, position, and sulfation of 3,6-

anhydrogalactose, they are categorized into κ, λ, ι, ν, m,

and θ types (75). Polysaccharides with a molecular weight

ranging from 500 to 1,000 kDa are present in most of them;

however, up to 25% of them may contain polysaccharides

at a molecular weight of <100 kDa (76). The significant

anticancer and antitumor activities were found in the

low-molecular-weight κ- and λ-carrageenan, probably

attributed to their antiviral and antioxidant effects as well

as the stimulation of immunity against tumors (77). Some

studies have reported that the risk of colon cancer appears

to be minimized with low-molecular-weight carrageenan,

a type of functional food ingredient (34). Carrageenans

from Gigartina pistillata (78), Apostichopus japonicus (79)

and Kappaphycus alvarezii (80) have an anti-CRC effect

on the colon cancer HT-29 cell line. Native carrageenan

exerted high cell suppressive activity in colon cancer cells

compared with commercial carrageenan. Raman et al. (34)

examined the role of the κ-carrageenan-containing soluble

dietary fiber fraction of red algae in human colon cancer

HCT-116 cells.

However, conflicting studies have suggested that colitis

and inflammation may be induced by carrageenan (81). Wei

et al. (82) suggested that the existing intestinal inflammation

was magnified and TNBS-induced intestinal inflammation was

aggravated by κ-carrageenan via activating the TLR4-NF-κB

and MAPK/ERK1/2 pathways, which indicates it might act

as a potential pro-inflammatory factor. In addition, further

studies from their group revealed that the LPS-induced

inflammation can be synergistically activated by κ-carrageenan

through the Bcl10-NF-κB pathway, as illustrated by the

aggravation of Citrobacter freundii DBS100-induced colitis

in mice treated with it (83). Mi et al. (84) investigated the

effectiveness of the carrageenan intake form and host intestinal

microecology on toxicity in C57BL/6J mice. The severity

of colitis in high-fat diet-fed mice could be increased by

native carrageenan from drinking water via decreasing the

abundance of the anti-inflammatory bacterium Akkermansia

muciniphila and increasing that of harmful bacteria. The

inflammatory effect and secretion of proinflammatory

cytokines in HT-29 cells can be increased and promoted

by using the fermentation supernatants of κ-carrageenan

oligosaccharides (85). The inflammatory property of κ-

carrageenan oligosaccharides in the context of gut microbiota

was evidenced by these results.

Fucoidan

Sulfated L-fucose present in the fibrous cell walls and

intercellular spaces of brown seaweeds is a major component

of fucoidan, which belongs to a large family of marine sulfated

polysaccharides (86, 87). Fucoidan is a heparin-like molecule

with a simple chemical structure composed of a repeating unit

of disaccharides containing α-1,3-linked fucose and α-1,4-linked

fucose with branches linked at the C2 positions (86). Generally,

L-fucose polymerized with sulfated ester groups is present

substantially in fucoidan, while galactose, glucose, mannose,

xylose, and glucuronic acid residues are found in only a small

proportion (88). Derivatives of fucoidanwith a molecular weight

varying from 40 to 330 kDa have been examined for their

anticancer activities (89). Numerous experiments have shown

that tumor cell proliferation and its growth or metastasis can

be counteracted by fucoidan via eliciting cell apoptosis and

suppressing angiogenesis (90). Health can be promoted and

gut dysbiosis can be treated by fucoidan, a potential intestinal

microbiota modulator. In addition, the effects of induced

apoptosis in CRC cells by fucoidan have been evaluated (91).

In HT-29 colon cancer cells, cell viability was reduced

by fucoidan in a dose- and time-dependent manner through

reducing the expression of CDK2, CDK4, and Cyclin D1 (36).

Apoptosis was also mediated by fucoidan via inhibition of

the IGF-I/IGF-IR/IRS-1/PI3K/AKT (92) and PI3K-Akt-mTOR

signaling pathways (37). A further study found that cell cycle

arrest at G1-phase was induced by fucoidan via the upregulation

of p21WAF1 and downregulation of Cyclin D1/CDK4 and

Cyclin E/CDK2 expression (47).

In HCT-116 human colon cancer cells, CDK activity was

suppressed by fucoidan via combining the CDK inhibitor

proteins p21 and p27 with the Cyclin/CDK complexes (38).

EGF-induced neoplastic cell transformation was significantly

inhibited by fucoidan from F. evanescens via suppressing the

TOPK/ERK1/2/MSK 1 signaling axis (39). In colon cancer cells

DLD-1, fucoidan from Sargassum mcclurei was observed to be

less cytotoxic and inhibited colony formation (40).

Fucoidan strongly regulated the mitochondrial membrane

in cancer cells. The evidence found that apoptosis was caused

by fucoidan through MMP loss, an increase in cytochrome c

release and DNA fragmentation, activated caspase-9 and−3, and

an increasing percentage of early and late apoptotic cells in HT-

29 cells. Other biological studies indicated that apoptosis was

induced by SG4 via involvement of the Akt/mTOR/S6 pathway

in HT-29 cells (41). Another report showed that fucoidan from

Sargassum cinereum suppressed the proliferation of Caco-2 cells

in a dose-dependent manner, increased ROS production, and

augmented mitochondrial membrane permeability (42).

In an animal model, tumor morbidity and average

tumor weight were reduced and cellular apoptosis was

increased by the treatment of dietary fucoidan in 1,2-
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dimethylhydrazine (DMH)-induced colorectal carcinogenesis

in rats. The expression of β-catenin, C-Myc, Cyclin D1, and

Survivin was reduced by treatment with fucoidan, whereas the

Hippo pathway was highly activated and the phosphorylation

levels of Mst1, Mst2, LATS1, LATS2, and YAP were significantly

upregulated (91).

Pigments

Generally, marine seaweed and animals are rich in

pigments, which are widely used in functional food and

pharmaceutical industries (93). There are mainly three types of

pigments in seaweed involving chlorophylls, carotenoids, and

phycobiliproteins (94). The seaweed color was determined by

the content and type of pigments (95). For instance, chlorophylls

a and b contribute to the green color in green seaweed, whereas

allophycocyanin and c-phycoerythrin are responsible for the

red color in red seaweed. β-carotene and fucoxanthin (Fx) are

commonly observed in brown seaweed (96).

Tumor cells from CRC patients grow uninhibited in the

body and enter the blood vessels to spread systemically

(97). The apoptosis mechanism is strongly associated with

antioxidant properties. Hence, anticancer compounds generally

have antioxidant, antiangiogenic, and anti-inflammatory effects

to regulate tumor development (98). A recent report showed

that the strong antioxidant activity of carotenoids and

chlorophyll a from green seaweed Halimeda opuntia against

HT-29 human colorectal adenocarcinoma was investigated. The

finding suggests that natural pigments are potential anticancer

ingredients (43).

Carotenoids give seaweed colors from yellow to orangish

(99), which of them possess strong activities involving

Fx, astaxanthin (AXT), and violaxanthin (100). The

evidence showed that carotenoids inhibited the PI3K/Akt

apoptosis pathway, eventually integrating the mitochondrial

membrane (101).

Fx is one of the most famous lipophilic carotenoids in brown

algae, which is responsible for the strong antitumor property.

Clinical trials reported that Fx decreased the causing risk of

CRC, which has been found to Fx possess potential anti-CRC

activity via downregulation of tumor-related proteins (102).

In cell experiments, Fx caused a markably decrease of the

survival rate in Caco-2, HT-29, DLD-1 (48), and HCT-116

colorectal carcinoma cells (103). It was found that the activation

of apoptosis and fragmentation of DNA contributes to the

anticancer effect of Fx. Fx showed a significant antiproliferative

effect by controlling the level of signaling proteins such as

MAPK, NF-κB, and caspase family (99, 104). The disruption

of cell cycle arrest causes cell apoptosis. Researchers found that

Fx regulated sub-G1 cell cycle arrest in WiDr colon cancer

cells (44). Furthermore, Fx stimulated cell cycle arrest at the

G0/G1 or G2/M phases and caused programmed cell death

(104). It is deduced that Fx induced cell cycle arrest and

caused programmed cell death through enhancing intercellular

communication between tumor cells.

The derivative compound of Fx was found that exists

stronger anticancer activity than Fx. Chemical structural factors

significantly influence the antiproliferative properties of Fx. The

anti-CRC effect of Fx-degrading compounds was evaluated in

Caco-2 cells and its activitymay result in partial structures (105).

The 13-cis and 13′-cis isomers of Fx showed a markably cancer-

preventive effect compared to other derivatives (106). In another

study, the antiproliferative effects of 5-fluorouracil (5-Fu) and

Fx were determined and compared in HCT-116 and HT-29

cells (49). Fucoxanthinol (FxOH) is the deacetylated type of Fx,

which can induceDLD-1 cell apoptosis into anoikis-like changes

through the distribution of FAK and integrin β1 expression (50).

The mechanism of the anti-CRC effect of FxOH was evaluated

via regulation of MAPK and STAT apoptosis pathways in HT-

29 and HCT-116 cell lines (107), and through inhibiting NF-κB

activation in CRC cells (108). According to the previous reports,

we found that the anti-CRC activity of FxOH is stronger than

Fx, and FxOH induced cancer cells through downregulation of

MAPK, STAT, and NF-κB apoptosis pathways. The anticancer

effects of Fx and FxOH on six types of CRC cell lines and twenty

kinds of tissues from surgically resected clinical CRC specimens

were determined as well (109).

In a CRC model animal experiment, a continuous 5-week

oral administration of Fx-rich fraction strongly inhibited the

number of colorectal adenocarcinomas in DSS-treated male

mice (110). Additionally, Fx significantly suppressed colon

cancer in azoxymethane-dextrane sodium sulfate (AOM/DSS)

carcinogenic model mice (111). In an inflammation-associated

CRCmouse model, after a 4-month period of Fx administration,

the multiplicity of colorectal adenocarcinoma was strongly

decreased via upregulated anoikis-like integrin β1low/−/cleaved

caspase-3high cells in colonicmucosal crypts (112). Additionally,

Fx also markedly decreased HSP70 protein in colorectal

mucosal crypts for 15-week administration (113). In a 14-week

administration in a CRC mouse model, Fx markedly decreased

CCR1, pAKT(Ser473), Cyclin D1, and pSmad2 compared with

untreated mice (114). Therefore, Fx had chemopreventive

potency and therapy ability in the progression of colorectal

carcinogenesis in mice.

AXT is mainly contained in seaweed, and showed anti-

metastatic activity through inhibiting microRNA-29a-3p and

microRNA-200a, thereby downregulating MMP2 and ZEB1

(51). Natural AXT isolated from Haematococcus pluvialis

showed a significantly anti-CRC effect in a dose-dependent

manner in HCT-116 cells by regulating the ratio of Bax/Bcl-2

and upregulating the phosphorylation of p38, JNK, and ERK1/2

(115). AXT induced programmed cell death in DMH-induced

rat colon carcinogenesis by modifying NF-κB, COX-2, MMPs-

2/9, Akt, and ERK-2 expressions (116). A finding observed that

AXT inhibits the progression of colonic premalignant lesions in
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an obesity-associated colorectal carcinogenesis animal model by

attenuating oxidative stress, reducing inflammation and NF-κB

activation in the colonicmucosa (117). Hence,AXT is a potential

cancer-preventive compound in the therapy of CRC.

Polyunsaturated fatty acids

Seaweeds are known as low-energy food. Despite their low

lipid content, seaweeds contain ω-3 and ω-6 polyunsaturated

fatty acids (PUFAs) as a significant portion of their lipids (118).

PUFAs are the precursors of eicosanoids and all cell membrane

components, which can effectively reduce the risk of cancer

(119). Several studies have demonstrated that the colorectal

tissue distribution of PUFAs is associated with CRC prognosis

(120). There are studies suggesting the potential use of some

oxidized metabolites of PUFAs as biomarkers of CRC (121).

ω-3 PUFAs

PUFAs in seaweeds contain a substantial amount of ω-3

fatty acids as major components. Eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA) in seaweed are important

ω-3 fatty acids in the marine environment (122). At present,

more and more epidemiology and experiments have verified the

antitumor activity of ω-3 PUFAs (123). Consumption of diets

rich in ω-3 PUFAs not only inhibits the proliferation of CRC

cells, but also can be combined with chemotherapy to enhance

their sensitivity (124).

PUFAs have pro-apoptotic and growth-inhibitory effects on

cancer cells. In LoVo and RKO colon cancer cells, PUFAs can

reduce the synthesis of PGE2 and LTB4, inhibit the expression

of ALOX5, LTB4, mPGES, COX-2, and PGE2, and increase the

expression of LXA4, thereby promoting apoptosis and inhibiting

the growth of LoVo and RKO colon cancer cells (125).

In an animal model, dietary supplementation of ω-3 PUFAs

increased CRC cell apoptosis and decreased the tumor incidence

in AOM/DSS-induced CRC in mice. ω-3 PUFAs treatment

activated the hippo pathway, with increased cytoplasmic

retention and phosphorylation of YAP (mediated by LATS1 and

MST1/2) and the levels of epoxydocosapentaenoic acids (52).

Notably, dietary ω-3 PUFAs treatment suppressed the growth

of MC38 colorectal tumors. In C57BL/6 mice, ω-3 PUFAs

modulate eicosanoid and fatty acid metabolite profiles (126).

Huang et al. (127) demonstrated thatω-3 PUFAs reduced tumor

incidence in rats by regulation of the DNA methylation process.

Together, these results support the notion thatω-3 PUFAsmight

contribute to the anti-CRC effects of seaweed.

EPA

There is evidence of the utility of ω-3 PUFA EPA in the

treatment of CRC (128). In a clinical study, patients with familial

adenomatous polyposis (FAP) were randomized to receive free

fatty acid (FFA). Experimental data proved that EPA 2 g daily in

the form of FFA has chemo-preventive efficacy in FAP patients

(129). Recently, it has been shown that EPA can prevent FAP-

related CRC by acting on several molecular mechanisms (129,

130).

The increased risk of colitis-associated colorectal cancer

(CAC) is strongly associated with inflammatory bowel disease,

but the effectiveness of dietary EPA-FFA in anti-inflammatory

and anticancer activities is unclear. In EPA-FFA-treated AOM-

DSS mice, Piazzi et al. (131) found an enrichment of

Lactobacillus species in the gut microbiota, as well as restored

Notch signaling and decreased nuclear β-catenin expression,

while tumor cell apoptosis increased. Morin et al. (53) reported

that the eicosapentaenoic acid monoglyceride (MAG-EPA)

treatment increased HCT-116 cell apoptosis and decreased the

tumor of a mouse xenograft model of HCT-116 via activating

the vascular endothelial growth factor (VEGF) receptor pathway

and decreasing the epidermal growth factor receptor (EGFR).

DHA

As an ω-3 PUFA, DHA has various biological properties,

including anticancer activity (132). The anticancer effect of

DHA might be a consequence of its ability to regulate the

production of proinflammatory mediators in cancer cells and/or

host cells, changing the inflammatory status of the systemic

or tumor microenvironment (54, 133). Numerous studies

have demonstrated that in CRC cells, the activity of DHA-

triggered caspase family members is associated with apoptosis

(134). Mechanisms including DHA-induced cellular protein

expression explain the antitumor activity of DHA (55).

Fluckiger et al. (54) reported that the TNFα-dependent

manner triggers apoptosis in HCT-116, HCT-8, and human

CRC cells in DHA-mediated, and cells induced with DHA

increased TNFα mRNA content by downregulating microRNA-

21 expression, stating that the effect of TNFα on DHA-

mediated apoptosis of colon cancer cells. Sarabi et al. (135)

demonstrated that DHA could specifically attenuate promoter

DNA methylation and VEGF protein levels of microRNA-126

in HCT-116, Caco-2, and CRC cells. Fasano et al. (55) reported

that DHA treatment induced apoptosis in HT-29, HCT-116,

and SW480 colon cancer cell lines and inhibited their total and

surface GRP78 expression, suggesting that pERK1/2 could be

the first upstream target of DHA. These studies offer insight

into the epigenetic mechanisms by which DHA influences gene

expression regulation in CRC cells.

ω-6 PUFAs

The ω-6 PUFAs contained in seaweeds include mostly

linoleic acid (LA) and arachidonic acid (ARA) (136). Previous

studies have suggested that, unlike ω-3 PUFAs, the ω-6 PUFAs,

especially ARA, are generally associated with many adverse

effects on the human body, including the promotion of multiple
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cancer types, such as CRC (137, 138). However, there is little

in vitro evidence to show that ARA exerts anticancer activity

in CRC cells. Bae et al. (56) and González-Fernández et al.

(57) evidenced that ARA may inhibit DNA replication and

G1/S cell cycle transition and induce endoplasmic reticulum

stress in HT-29 CRC cells, thereby suppressing cell viability and

inducing apoptosis.

Research evidence shows that LA may be involved in both

pro- and anticancer activities (137). Lu et al. (139) and Ohmori

et al. (140) reported that LA at low concentrations (100-200µM)

reduced caspase-3 activation in CRC cells and promoted tumor

cell proliferation. LA at high concentrations (above 300µM)

enhanced ROS generation, caused mitochondrial dysfunction

and inhibited tumor cell growth (58). A recent report from

Ogata et al. (59) suggested that LA induced quiescence

by promoting microRNA-494 expression, resulting in the

dormancy of CT-26 CRC cells. Therefore, it is speculated that

LA can inhibit the growth of CRC cells.

Phytosterols

Phytosterols are the major nutritional components of

seaweed and the most important chemical constituents of algae

(141). Phytosterols are the major lipid components of plant

cell biofilms. In the marine environment, brown algae are a

major source of phytosterols, including brassicosterols with a

small amount of plant cholesterol and fucosanols (142). Not

only can phytosterols lower cholesterol, they also have strong

anticancer activity, and several studies have shown that foods

rich in phytosterols may help control the growth of many types

of tumors (143).

β-Sitosterol

β-Sitosterol, isolated from seaweed, is the most common

dietary phytosterol and has a proven potential role in the

treatment of CRC (144, 145). Shathviha et al. (146) reported

on the evaluation of AgNP synthesized using β-sitosterol and

its cytotoxic potential in HT-29 human colon cancer cells. β-

Sitosterol-mediated AgNP treatments induced p53 expression

and early apoptosis in HT-29 cells. Arul et al. (147) investigated

the β-Sitosterol significantly reduces fecal bacteria and colonic

bioconverting enzymes in mice with DMH-induced colon

cancer, thereby preventing colon cancer development. Amplified

activities of colonic biotransformation enzymes are considered

hallmarks of colon carcinogenesis. Hence, β-sitosterol is a

potential chemopreventive agent in colon carcinogenesis.

Fucosterol

Themajor phytosterol in brown seaweed is fucosterol, which

has various biological activities, including anticancer activity

(148). A previous study indicated that oxygenated fucosterol

inhibited HCT-116 human colon cancer cell growth with higher

cytotoxicity than commercial cytotoxic drugs (149). Ramos et

al. (60) reported that the combination of fucosterol with 5-

Fu can enhance the toxic effect in HT-29 cells. Furthermore,

fucosterol is not toxic to normal cells, indicating specificity for

cancer cells. The hexane fraction of fucosterol produced by

Sargassum angustifolium confirmed its cytotoxic activity against

HT-29 (45).

Terpenes

Within the marine environment, terpenes synthesized by

algae and secreted to the outside of cells to resist environmental

insults are major secondary metabolites from seaweeds (150).

It is a chemical compound that contains one or more isoprene

units with strong anticancer activity (15). Epidemiological and

experimental studies suggest that terpenes may be helpful in

curbing the growth of a variety of cancer cells, including colon

cells, and provide additional opportunities for cancer therapy

(151). Terpenes can modulate pathophysiological processes

such as the cell cycle, invasion, migration, proliferation, and

apoptosis in different types of tumor cells (152), exhibiting a

wide spectrum of antitumor activities (153).

Previous studies have reported that a pentahalogenated

monoterpene, halomon, isolated from the red seaweed Portieria

hornemannii, exhibited strong anticancer activity (154).

The halogenated monoterpene mertensene from the red

seaweed Pterocladiella capillacea (S.G. Gmelin) Santelices &

Hommersand inhibited LS174 and HT-29 human colorectal

adenocarcinoma cell lines by activating caspase-3 and NF-κB,

Akt, andMAPK ERK-1/-2 pathways vitality (46). Terpenes from

the brown seaweed Cystoseira usneoides have anticancer effects

on HT-29 colon cancer cells by reducing the phosphorylation

levels of JNK and ERK and inhibiting the ERK/JNK/AKT

signaling pathway (3). These reports demonstrate the potential

of terpenes as drug candidates for the treatment of colon cancer.

Phenolics

Phenolic agents are one of the most active compounds

in seaweed. Polyphenols with their high molecular weight,

such as phlorotannins, specifically exist in brown algae (155).

Phlorotannins are composed of a number of phloroglucinol

(Ph) monomeric units (156). Those active compounds play

a pivotal role in anti-CRC effects, for instance, as apoptotic,

anti-metastatic, and antiangiogenic proprieties. They inhibited

CRC cell growth directly or indirectly through attenuated

inflammatory cytokines and oxidative stress (157). In other

reports, the anticancer effects of Ph on insulin-like growth

factor-1 receptor signaling in HT-29 human colon cancer cells
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have been investigated. In addition, Ph inhibited the levels

of Ras, mitogen-activated protein kinase, and mTOR (158).

The polyphenol-rich agent showed a lower survival rate in

CRC cells than the non-polyphenol-rich agent from seaweeds

involving Laminaria japonica, U. lactuca, and Porphyra tenera.

Additionally, the polyphenol-rich agent caused G0/G1 cell cycle

arrest in HCT-116 cells (159). Phlorofucofuroeckol A (PFF-A)

(160) and Ph (161), isolated from brown seaweed, decreased

survival rates via activating the apoptosis pathway in CRC cells.

Further, Ph decreased the survival rate dose-dependently and

induced apoptosis in HT-29 cells, altering Bcl-2 and caspase

family proteins (61). The evidence proved that phenolic agents

play an important role in understanding the development of

colon CRC.

Vitamins

Seaweed is an important source of various vitamins, among

which vitamin C and vitamin D have strong anticancer activity

(162). A previous study indicated a potential interplay of vitamin

D and immune cells in the tumor microenvironment reduces

CRC risk (163). Moreover, some research groups have reported

an inverse association between vitamin D3 levels and CRC

incidence, and that higher vitamin D3 levels reduce polyp

recurrence and improve overall survival in CRC patients (164,

165). Tumor migration and proliferation were inhibited by

vitamin D and its analogs in the colon of C57Bl/6 mice (166).

Rawson et al. (167) suggested that vitamin D may alter CRC

risk by mediating extracellular inhibition. Ferrer-Mayorga et

al. (168) indicated that the vitamin D metabolite calcitriol

promotes vitamin D receptor expression and inhibits fibroblasts

(associated with colon cancer), resulting in anti-CRC effects.

There is also a study on vitamin C from Yun et al. (169),

who found that cultured CRC cells harboring KRAS or BRAF

mutations were selectively killed when exposed to high levels of

vitamin C.

Minerals

The minerals in seaweed are 10–20 times those of land

plants and are easily bio-accumulated from seawater (12,

170). The macronutrients (e.g., magnesium, potassium, calcium,

and sodium) and microelements (e.g., selenium, iodine, iron,

manganese, and zinc) contained in seaweed are important

for normal physiological functioning of the body and have

potential relevance in cancer treatment (171, 172). Numerous

clinical and epidemiological studies indicated that the risk of

CRC may be reduced with a higher intake of calcium and

magnesium (173). Ali et al. (174) evaluated the antitumor

effect of selenium against DMH-induced CRC in BALB/C

mice and its effect on apoptosis and angiogenesis. The group

treated with DMH plus selenium exhibited significantly lower

expression of cloned caudal-type homeobox gene-2 and VEGF

but a higher caspase-3 expression level than the DMH-

treated group.

Conclusions

Many studies have demonstrated the effect and mechanism

of red, green, and brown seaweeds in CRC-prevention and

therapy. Various therapeutic compounds from seaweed

involving large molecular polysaccharides and small molecular

pigments, fatty acids, phytosterols, terpenes, phenolics,

vitamins and minerals induce programmed cell death via

various signaling pathways. Such treatments can alter the

protein expression of Bax, caspases, Bcl-2, MAPK, NF-κB,

VEGF, DNA methylation, and CDK inhibitor and induce

changes in the cell cycle and the CRC cellular functions

of adhesion, migration, and invasion. Important anti-CRC

agents such as polysaccharides and fatty acids existed for

their antiproliferative and anti-metastatic effects in vivo.

Furthermore, terpenes and pigments inhibited CRC cell survival

rate and induced programmed cell death via regulation of the

Akt signaling pathway.

A few molecular alterations in human CRC cells were

correspondingly observed in CRC animal models treated with

seaweed. Consecutive studies in vitro will be important as

the basis for clarifying the molecular mechanisms underlying

cancer prevention in humans with CRC and CRC animal

models. CRC animal models, AOM-DSS, BALB/C, and C57BL/6

mice, have been the vehicles for many discoveries concerning

the anti-CRC effects of seaweed. The oxidation, inflammation

and gut microbiota, which are significant factors associated

with colorectal carcinogenesis, have been reported to be prime

targets of various therapeutic compounds from seaweed. In

addition, the administration of Fx induced anoikis in CRC

animal models. However, the detailed molecular mechanisms

underlying the cancer chemopreventive effect in animals remain

poorly understood.

Finally, this review highlights the importance of seaweed

as a potential agent candidate for preventing CRC. However,

the underlying mechanisms remain elusive. Further clinical

investigations are needed to assess the anticancer effect of

seaweed in humans.
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Tumor recurrence and chemotherapy resistance are mainly responsible

for poor prognosis in colorectal cancer (CRC) patients. Cancer stem cell

(CSC) has been identified in many solid tumors, including CRC. Additionally,

CSC cannot be completely killed during chemotherapy and develops

resistance to chemotherapeutic drugs, which is the main reason for tumor

recurrence. This study reviews the main mechanisms of CSC chemotherapy

resistance in CRC, including activation of DNA damage checkpoints,

epithelial-mesenchymal transition (EMT), inhibition of the overexpression

of antiapoptotic regulatory factors, overexpression of ATP-binding cassette

(ABC) transporters, maintenance of reactive oxygen species (ROS) levels, and

the dormant state of CSC. Advances in research to reverse chemotherapy

resistance are also discussed. Our study can provide the promising potential

for eliminating CSC and preventing tumor progression for CRC treatment.

KEYWORDS

colorectal cancer, cancer stem cell, chemotherapy resistance, stem cells, reverse

Introduction

Colorectal cancer (CRC) is a worldwide disease, with 2.2 million CRC patients and

1.1 million deaths expected by 2030 (1, 2). Additionally, CRC is the most common

malignant tumor of the lower digestive tract, with distinct genetic, epigenetic and

phenotypic heterogeneity of tumor cells (3). Despite rapid advances in diagnosis

methods, surgery, and chemotherapeutic agents, the prognosis of CRC patients remains

poor (4). Tumor recurrence and cancer chemotherapy resistance are leading causes

of poor prognosis (5). Inhibition of tumor apoptosis, changes in targeted sites of

chemotherapeutic agents, tumor cell heterotrophy, and cancer stem cells (CSCs) can lead

to chemotherapy resistance, while CSCs are the key factor for chemotherapy resistance

(6). Accounting for about 5% of total tumor cells, CSC is a special cell population capable

of self-renewal, multi-lineage differentiation, cloning, tumor initiation, maintenance

of tumor characteristics, metastasis, and proliferation (7). In addition, CSC has been
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identified in various cancers, including breast, colorectal,

pancreatic, lung, prostate and brain cancers (8, 9).

Chemotherapy resistance in the CRC stem cell (CRCSC) have

diverse mechanisms (Figure 1), mainly including activation of

DNA damage checkpoints, epithelial-mesenchymal transition

(EMT), inhibition of the overexpression of antiapoptotic

regulatory factors, overexpression of ATP-binding cassette

(ABC) transporters, and maintenance of reactive oxygen species

(ROS) levels. In recent years, more and more researchers have

focused on natural drug extracts and CSC-related inhibitors,

which can effectively remove CSC and reverse chemotherapy

resistance (10). This study reviews the mechanism and the

reversal of CRCSC chemotherapy resistance.

Mechanisms of CRCSC
chemotherapy resistance

Activation of DNA damage checkpoints

CSC can activate DNA damage checkpoints preferentially in

response to DNA damage caused by DNA toxic drugs, thereby

improving DNA repair. For example, CD133+ hepatic stem cells

preferentially express survival proteins related to the Akt/PKB

and Bcl-2 pathways, thereby leading to the chemotherapy

resistance of cancer cells to adriamycin and 5-fluorouracil (5-

FU) (11, 12). Additionally, DNA damage response may act

as a target for sensitizing CSC to overcome chemotherapy

resistance (13). Another study suggested that 70% of ovarian

cancer patients developed relapse and resistance after platinum-

based chemotherapy (14). Methoxyphenyl chalcone can play a

role in DNA damage signal-evoking potential that can reverse

the chemotherapy resistance. Moreira et al. found that induction

of DNA double-strand breaks can effectively kill CSCs, which

is vital for overcoming multiple conventional chemotherapy

resistance in CRC (15).

EMT

The association between EMT and chemotherapy resistance

has been discussed for a long time, but the mechanism is still

elusive. Some researchers hold the opinion that cells undergo

EMT process have a stem-cell like property, thus sharing

the key signaling pathways and drug resistance characteristics

with CSC (16, 17). Other important mechanisms related to

EMT-induced drug resistance mainly include the gain of

cellular resistance to drug-driven apoptosis (18) and associated

tumor microenvironment (19). For example, cancer-associated

fibroblasts and hypoxia can activate the EMT process of

cancer cells and induced drug resistance (18). EMT plays an

important role in epigenetic changes in CRC cells and is also

associated with the self-renewal ability, tumor heterogeneity,

and chemotherapy resistance of CSC. A study showed that

hyaluronic acid synthases led to the loss of epithelial traits

in tumor cells, which further induced malignant tumors and

created a suitable niche for CSC generation (20). The study

indicated the fundamental role of EMT in tumor progression

and chemotherapy resistance of CSC. Pathak et al. found

that downregulation of the mitochondrial Na+/Ca2+/Li+

exchanger (NCLX) facilitated the metastasis of CRC cells, EMT

changes, hypoxia, chemoresistance, and stem cell pathways (21).

However, the study did not reveal a direct mechanism between

EMT changes and chemoresistance of CSC.

Inhibition of the overexpression of
antiapoptotic regulatory factors

When CSC is exposed to chemotherapeutic agents in vivo,

some special regulatory mechanisms will be activated; pi3-

K, MAPK and other pathways will be cascade-activated, and

then the anti-apoptotic protein myeloid cell leukemia-1 (McL-

1) will increase to inhibit the apoptosis of tumor cells (22).

Many studies have suggested that inhibiting the activity of CSCs

can increase the apoptosis of tumor cells (23–25). In another

study by Zhang et al., CRCSCs were inhibited by pitavastatin,

and the apoptosis of colon carcinoma cells was increased (26).

However, detailed mechanisms of CSC against the expression of

antiapoptotic regulatory factors remain unknown.

Overexpression of ABC transporters

Another potentially important mechanism of CSC leading

to chemotherapy resistance is the high expression of ABC

transporters. In CSC, the high expression of the ATP-dependent

efflux pump ABCG2 enabled it to effectively extract Hoechst

33342, which is a kind of DNA minor groove binder used

fluorochrome for visualizing cellular DNA, from cells (27, 28).

This export ability is provided by the ABC transporter, which

helps to resist cytotoxic drugs. The ABC transporter can export

certain chemicals and drugs from cells, resulting in multidrug

resistance (29). Stem-like side population tumor cells are key

to the cause of drug resistance. A study indicated that the

expression of ABCG2 in side population cells within tumors

with stem-like properties was higher than that in non-side

population tumor cells. Glucose in the microenvironment could

further up-regulate the expression of ABCG2 (30). Because the

high expression of ABC transporter allowed cells to effectively

pump traditional chemotherapeutic drugs out of cells, the high

ABCG2 level in the side population made it resistant to many

chemotherapeutic drugs (30). Therefore, inhibition of ABC

pump function may be a potential strategy to overcome CSC

resistance. Although many ABC transporter inhibitors have

been shown to sensitize cancer cells to chemotherapeutic drugs
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FIGURE 1

Mechanisms on chemotherapy resistance of CRCSCs. CRCSCs, colorectal cancer stem cells; EMT, epithelial-mesenchymal transition; ABC,

ATP-binding cassette; ROS, reactive oxygen species; CSC, cancer stem cell.

in vitro, their effectiveness has failed to demonstrate in most

clinical trials (31).

Maintenance of ROS levels

ROS, such as superoxide anion and hydrogen peroxide, is

the product of normal oxidative metabolism and is involved in

many cellular signaling processes. High ROS levels can promote

cell migration and differentiation, which impairs the long-term

reproduction and survival of tumor cells (32). Normally, ROS

maintains at a low level in CSC by increasing glycolysis and

reducing mitochondrial oxidation and ROS production (33, 34).

Chemotherapy resistance caused by overexpression ofmultidrug

resistance molecules can be overcome by inhibiting glycolytic

consumption of cellular ATP (35). Low ROS levels in CSC

can support its survival; conversely, excessively high ROS levels

may trigger the death of CSC (36). The low ROS level in CSC

is partly due to the high expression of free radical scavenger

molecules such as glutathione (37). Glutathione participates in

cell detoxification by binding to toxic chemicals and certain

chemotherapeutic agents (such as cisplatin) and facilitating

their export from cells (38, 39). A recent study indicated

that intravenous vitamin C combined with traditional cancer

treatment significantly decelerated cancer progression (40).

Vitamin C promoted oxidation by increasing intracellular ROS

levels, inducing endoplasmic reticulum stress, and inhibiting

the production of angiogenic factors and insulin-like growth

factors. As a result, high-dose vitamin C alone or in combination

with chemotherapy (e.g., paclitaxel, cisplatin, carboplatin, and

azacytidine) may increase ROS levels in CRCSC and CRC to

inhibit tumor.

The dormant state of CSC

Another factor contributing to the drug resistance of CSC

is the quiescent or dormant state (41, 42). A metabonomics

analysis of CRC showed a significantly down-regulated synthesis

of protein in colo205 CD133+ CRC cells compared with

CD133 cells and the reduced synthesis of nucleotides such

as cholesterol and glucose-dependent lipid (43). The unique

metabolic characteristics of CRCSC exhibit a slow circulation

property that leads to chemotherapy resistance. Because many

chemotherapeutic drugs preferentially kill fast-growing cells,

tumor cells are more active in DNA replication and are highly

sensitive to DNA damage agents. In contrast, relatively dormant

CRCSCs are unlikely to induce non-replicating functional DNA

in non-circulating cells, so they are insensitive to DNA damage

agents (44). Moreover, CSC will have more time to repair DNA
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damage and stay alive. Therefore, even though most circulating

tumor cells can be killed by chemotherapy, residual CSCs can

enter the cell cycle and cause tumor recurrence (45).

The research progress of reverse
transformation

Natural agents

Curcumin, a plant polyphenol, is the most important

component of ginger (46). Recent studies have not only proved

the effect of turmeric in traditional Chinese medicine but also

suggested some new pharmacological effects, such as anti-

inflammatory, antioxidant, oxygen free radical scavenging, anti-

human immunodeficiency virus, liver and kidney protection,

anti-fibrosis and anti-cancer effects (47). In recent years, the

chemotherapy resistance reverse effect of curcumin in CRC

has attracted increasing attention. Kanwar et al. confirmed that

curcumin combined with traditional chemotherapeutic agents

5-FU and oxaliplatin reduced the expression of CD44 and

CD166 in chemo-resistant colon cancer cells, inhibited tumor

growth, and promoted apoptosis in tumor tissue (48). Detailed

results of mechanisms revealed that curcumin combined with

5-FU and oxaliplatin could prevent the growth of CSC-

enriched chemo-resistant CRC cells by inhibiting epidermal

growth factor receptor (EGFR) and insulin-like growth factor

1 receptor (IGF-1R) signaling pathways. Curcumin has been

proved to enhance the sensitivity of drug-resistant CRC cells

to many traditional chemotherapeutic agents by eliminating

CSC (49, 50). Another study demonstrated that curcumin

could enhance the chemotherapy efficacy of 5-FU on HCT116

cells, indicating that curcumin may help to treat CRC and

overcome chemotherapy resistance (51). Further insights into

the mechanism demonstrated that curcumin could inhibit

multiple CSC pathways, suggesting its anti-CSC potential in

CRC treatment (49).

Salvianolic acid B (SALB), a water-soluble phenolic

compound extracted from Salvia miltiorrhiza, can reverse

chemotherapy resistance and improve the clinical treatment

effect of CRC. Guo et al. developed a nude mouse model bearing

human colon CSCs and investigated the effect of SALB on

chemotherapy resistance reversal and related mechanisms (52).

The nude mice were transplanted with LoVo and HCT-116

colon CSCs to establish an animal model that could exhibit

chemotherapy resistance. The results revealed that SALB

reversed chemotherapy resistance to 5-FU and oxaliplatin

and inhibited tumor growth by suppressing the expression of

stemness markers, such as CD44, CD133, and the transcription

factor sox-2 (SOX2). In addition, SALB has been proven to

target CSCs in vitro and in vivo and prevent tumor progression

by modulating the IL-6/STAT3/NF-κB signaling pathway (53).

Aloysia polystachya (AP) is a medicinal plant extract widely

used to treat various diseases. Additionally, CSC is highly

associated with tumor invasiveness, chemotherapy resistance

and cell death. It was found that AP significantly reduced the

invasiveness of HCT116 and CT26 cell lines and the number

of tumorspheres compared with the control group (54). When

HCT116 and CT26 cells were treated with 5-FU and AP, their

sensitivity to low concentrations of 5-FU was increased by AP.

These results suggested that the inhibition effect of AP on CSC

might be one of the mechanisms to reverse 5-FU resistance.

Inhibitors

Regorafenib is an approved specific multikinase receptor

inhibitor for the treatment of metastatic CRC. Cai et al.

developed two 5-FU resistance CRC cell lines, HCT-116R and

DLD-1R, to evaluate regorafenib inhibition of CRCSCs (55).

Combined with 5-FU, regorafenib suppressed tumorigenesis

and stemness markers in DLD-1R cell lines. Moreover,

regorafenib increased the miR-34a levels and induced the

reverse transformation of drug resistance. In another study,

researchers implanted human colon cancer cells KM12SM and

mesenchymal stem cells (MSCs) into the cecal wall of nude

mice, which could provide tumors with abundant stromal

components and improve invasion and metastasis ability and

drug resistance (56). The results indicated that regorafenib could

affect the interaction of tumor cell-MSCs and further inhibit

CRC progression.

Conclusion

CSC has been found in many solid tumors, such

as CRC, breast cancer, pancreatic cancer, and lung

cancer, and is considered a promising target for cancer

treatment (7, 8). It cannot be completely killed during

chemotherapy and develops resistance to chemotherapeutic

drugs, which is mainly responsible for tumor recurrence,

metastasis and poor prognosis. This study reviews the

main mechanisms of CSC chemotherapy resistance in

CRC, including activation of DNA damage checkpoints,

EMT, inhibition of the overexpression of antiapoptotic

regulatory factors, overexpression of ABC transporters,

maintenance of ROS levels, and the dormant state of CSC.

Natural plant extracts (e.g., curcumin, SALB, and AP) and

specific multikinase receptors (e.g., regorafenib) exhibit

promising potential in eliminating CSC and preventing

tumor progression.

More work is needed for CRCSC chemotherapy reverse

transformation. First, researchers should find more specific

markers to distinguish CSC from normal stem cells because

CSC shares molecular similarities with embryonic stem cells and
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MSCs, which limits the potential for targeted therapy. Second,

more research should be performed to significantly improve the

delivery efficiency of effective drugs to targeted cells and reduce

the side effects of chemotherapy, which provides a new direction

for targeted therapy of CRC. Third, more natural drugs and

their extracts should be studied to screen out the best natural

drug, drug dosage and delivery mode and use in the modern

treatment of CRC patients. Fourth, studies on inhibitors of

related enzymes for treating CRC should receive more attention.

Fifth, more animal and clinical studies should be performed

to provide a theoretical basis for the reverse transformation of

chemotherapy resistance of CRCSC using specific natural agents

and inhibitors.
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Tumor budding (TB), a powerful, independent predictor of colorectal cancer

(CRC), is important for making appropriate treatment decisions. Currently, TB

is assessed only using the tumor bud count (TBC). In this study, we aimed

to develop a novel prediction model, which includes different TB features,

for lymph node metastasis (LNM) and local recurrence in patients with pT1

CRC. Enrolled patients (n = 354) were stratified into training and validation

cohorts. Independent predictors of LNM and recurrence were identified to

generate predictive nomograms that were assessed using the area under

the receiver operating characteristic (AUROC) and decision curve analysis

(DCA). Seven LNM predictors [gross type, histological grade, lymphovascular

invasion (LVI), stroma type, TBC, TB mitosis, and TB CDX2 expression] were

identified in the training cohort. LNM, histology grade, LVI, TBC, stroma type,

and TB mitosis were independent predictors of recurrence. We constructed

an LNM predictive nomogram with a high clinical application value using the

DCA. Additionally, a nomogram predicting recurrence-free survival (RFS) was

constructed. It presented an AUROC value of 0.944 for the training cohort.

These models may assist surgeons in making treatment decisions. In the high-

risk group, radical surgery with a postoperative adjuvant chemotherapy was

associated with RFS. Postoperative chemotherapy can be better for high-

risk patients with pT1 CRC. We showed that TB features besides TBC play

important roles in CRC pathogenesis, and our study provides prognostic

information to guide the clinical management of patients with early stage

CRC.

KEYWORDS

colorectal cancer, tumor budding, lymph node metastasis, predictive nomogram,
recurrence-free survival, CDX2, risk stratification
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Introduction

Owing to recent advances in diagnosis and treatment
techniques, endoscopic resection has become the first choice
of treatment for early stage colorectal cancer (CRC). However,
the optimal management of such excisable tumors is still
undefined because of potential metastases; thus, additional
surgical resection is necessary to assess nodal status, but the
frequency of lymph nodal metastasis (LNM) is relatively low
(1). Previous studies have presented guidelines and proposed
specific indicators for recommending completion surgery after
endoscopic excision to prevent LNM or recurrence (2, 3).
However, only approximately 10% (4–6) of patients who
were referred for additional surgery based on these guidelines
required it. Traditional pathological indicators are not sufficient
to identify the need for additional surgery (7). Therefore, reliable
criteria to assess patients requiring surgery are crucial.

Besides the resection margin, other promising indicators
for additional surgical intervention include the tumor grade,
lymphovascular invasion (LVI), and tumor budding (TB). The
latter is characterized by the dissociation of small tumor
complexes containing up to four cells that “bud” into the
intratumoral or peritumoral stroma. TB is associated with a
high risk of LNM in patients with pT1 CRC. Consequently,
patients with pT1 CRC marked by prominent TB may benefit
from additional surgical resection (8, 9). TB assessed in pre-
operative biopsies could predict tumor regression for neo-
adjuvant chemotherapy (10). Furthermore, high-level TB is a
high-risk factor for patients with stage II CRC, and thus can
warrant the consideration of adjuvant chemotherapy. Therefore,
further studies are needed to determine whether TB assessments
can help guide high-risk patients with pT1 CRC to undergo
postoperative adjuvant chemotherapy to improve outcomes.
The International Tumor Budding Consensus Conference
(ITBCC) guidelines provide a standardized counting system
for routine reporting. However, several factors should be
considered when using the ITBCC TB scoring system in
routine practice. First, the current ITBCC three-tier system
(Bd1, Bd2, and Bd3) is the same for all stages of CRC.
Both Bd2 and Bd3 are considered high-risk factors for
LNM in pT1 CRC, whereas in stage II CRCs, only Bd3
is a risk factor for poor survival. Second, reporting of the
absolute number of tumor buds is recommended, although
inconsistency in tumor bud counts among pathologists
may lead to differences in clinical management. Finally,
the current TB assessment system focuses only on the
tumor bud count and does not account for other features
of TB, including structure, location, cell atypia, stroma
type, tumor bud cell mitosis, and the immunohistochemical
phenotype of the tumor bud cells. Including these other
parameters in predictive models could improve the risk
stratification power and prognostic value of TB and its
various features.

In this retrospective study, we aimed to analyze
the clinicopathologic characteristics to evaluate the risk
stratification utility of TB features in early stage CRC.
Furthermore, we developed a novel nomogram, including
different characteristics of TB, to guide adjuvant chemotherapy
in patients with early stage CRC. This approach could be
combined with traditional clinicopathological indicators to
assist surgeons in choosing the most suitable operation for
patients with early stage CRC.

Materials and methods

Patients

This retrospective study included 354 consecutive patients
who were pathologically diagnosed with pT1 CRC and who
underwent radical surgery between January 2010 and December
2018 in the First Hospital of Jilin University (Changchun,
China). Sixty patients received chemotherapy with fluorouracil
plus oxaliplatin after surgery. We excluded patients who
(i) underwent only endoscopic excision; (ii) with missing
follow-up data; (iii) with specific histological subtypes of
adenocarcinomas, such as poorly cohesive carcinoma, signet-
ring cell carcinoma, micropapillary adenocarcinoma, mucinous
adenocarcinoma, and medullary adenocarcinoma; and (iv)
with more complicated or advanced CRC, higher than stage
T1. The study protocol was approved by the institutional
ethics committee of Jilin University First Hospital. The need
for written informed consent was waived because of the
retrospective nature of the study.

Histology

Hematoxylin and eosin-stained slides were reviewed by
two pathologists. All slides were reviewed in a double-
blinded manner, without knowledge of the corresponding
pathological diagnoses. The initial clinical and pathological
stages of the disease in all patients were revised according
to the American Joint Committee on Cancer staging system
(eighth edition). Histological type and grade were defined
according to the latest World Health Organization classification
system. In all specimens, the following histological features
were evaluated: the LVI, predominant structure of tumor
bud (cluster or single-cell), predominant location of TB
(peritumoral or intratumoral budding), and tumor bud cell
atypia (non-specific or anaplasia-like; anaplasia was defined
as any × 400 magnification field with ≥ 3 nuclei with
diameters equal to or greater than 5 lymphocyte nuclei)
(11), stroma type (inflammatory, fibrotic, or myxoid; the
predominant feature was recorded), mitosis in tumor bud cells,
and tumor bud count. TB was defined as the dissociation
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of small tumor complexes containing more than five cells
that “budded” into the intratumoral or peritumoral stroma.
TB was scored by two independent pathologists according to
the ITBCC guidelines (12). Hematoxylin and eosin-stained
sections were evaluated at medium magnification (× 10) to
determine the densest area of TB at the invasive tumor
front (“hotspot”). To reduce interobserver variability, TB
features were independently evaluated by two single-blinded
pathologists. The final classification of TB features was
determined based on agreement among at least two pathologists.

Immunohistochemistry

Immunohistochemistry was performed as described
previously (13). Tissue sections were stained using the
following primary antibodies: rabbit monoclonal CDX2 (EP25;
Zhongshan Golden Bridge Biotechnology LLC, Beijing, China;
ready-to-use); Ki-67 (30-9; Ventana, Tucson, AZ, United States;
ready-to-use), epidermal growth factor receptor (EGFR; EP22;
Zhongshan Golden Bridge Biotechnology LLC; ready-to-use),
p53 (4A4 + UMAB4; Zhongshan Golden Bridge Biotechnology
LLC; ready-to-use), BRAF V600E (VE1; Ventana; ready-to-
use), and microsatellite instability (MSI) proteins, including
MLH1 (ES05), PMS2 (EP51), MSH2 (RED2), and MSH6 (EP49)
(Zhongshan Golden Bridge Biotechnology LLC; ready-to-use).

CDX2 and EGFR immunohistochemical staining were
performed as described previously (14). The extent of tumor bed
cell staining (0–100%) and the staining intensity (0, negative;
1, weak brown; 2, brown; and 3, dark brown) were evaluated.
The final scores were defined as the product of the extent and
intensity scores. Next, each case was scored as high or low, using
the median final score as the cut-off point for the following
test. The immunohistochemical staining patterns of p53 were
classified into two subgroups: (a) wild-type pattern, indicated
by scattered nuclear staining in tumor cells, and (b) mutant-
type pattern, in which the majority of tumor cells (> 60%)
showed diffuse strong nuclear positivity or were completely
devoid of any staining. Only staining for the expression of
cytoplasmic BRAF V600E was considered positive. The MSI
status was classified into two subgroups: (a) MSI-high, if any
one of the four mismatch repair proteins (MLH1, PMS2, MSH2,
and MSH6) was nuclear negative in all tumor cells, but positive
in internal controls; and (b) MSI-low, if all four mismatch
repair proteins were positive in cancer cells. The p53- and
BRAF-staining patterns and MSI status were reported by two
single-blinded observers.

Statistical analysis

The clinicopathological findings of the CRC specimens
were compared using the chi-square or Fisher’s exact test for

categorical variables. The non-parametric Mann–Whitney U
test was used to analyze age, Ki67 labeling index, and TBC
datasets because of their non-normal distribution.

Multivariate logistic and Cox regression analyses were used
to identify significant independent factors for predicting LNM
or recurrence-free survival (RFS). Variables with P < 0.1
in the univariate analysis were included in the multivariate
analysis model. The RFS of the patients was analyzed
using the Kaplan–Meier method and log-rank test. P values
were obtained using two-tailed statistical analyses, and the
significance level was set at 5% (P < 0.05). R software
(version 4.1.01) was used for all statistical analyses. The
R statistical packages “rms,” “barplot,” “survival,” “Hmisc,”
“MASS,” and “pROC” were used to plot the distribution
of risk scores and recurrence or distant metastasis, plot
calibration, generate receiver operating characteristic curve,
build a nomogram, and draw Kaplan–Meier curves. The
package “rmda” was used to draw the decision curve
analysis (DCA) curves, and “forestplot” was used to draw
the forest plot.

Results

Demographic and clinicopathological
findings

The baseline clinicopathological characteristics of the
participants (n = 354) are summarized in Table 1. LNM
was present in 49 (13.8%) patients (mean age ± standard
deviation = 65.2 ± 10.3 years; range = 30–91 years). Recurrence
was observed in 38 (10.7%) patients, and the follow-up period
was 37.4 ± 16.3 months (range = 14.2–59.9 months).

Evaluation and validation of the lymph
node metastasis predictive nomogram

In total, 354 patients were included and randomly allocated
to a training cohort (n = 234) and validation cohort (n = 120)
at a ratio of approximately 2–1 based on the data splitting
approach. Based on the univariate logistic regression analysis
results of the training cohort, seven factors, namely general
tumor type, histology grade (Figure 1A), LVI (Figure 1B),
tumor bud stroma (Figures 1C,D), tumor bud count, tumor bud
cell mitosis (Figure 1E), and CDX2 expression (Figure 1F), were
linked to the LNM status (Figure 2A).

General tumor type [pedunculated vs. non-pedunculated;
odds ratio (OR) = 0.641; 95% confidence interval (CI) = 0.098–
4.185], histological grade (high-grade vs. low-grade; OR = 5.561;

1 www.r-project.org
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TABLE 1 Demographics of surgery of 354 patients with pT1 CRC who
underwent surgical resection.

Variable All patients

Age (years)* 65.2 ± 10.3 [30–91]

Sex Female 131 (37.0%)

Male 223 (63.0%)

LNM Absent 305 (86.2%)

Present 49 (13.8%)

Gross tumor type Non-pedunculated 161 (45.5%)

Pedunculated 193 (54.5%)

TP53 Wild-type 27 (7.6%)

Mutant-type 156 (44.1%)

- 171 (48.3%)

MSI MSI-high 11 (3.1%)

MSI-low 172 (48.6%)

- 171 (48.3%)

BRAF Absent 182 (51.4%)

Present 1 (0.3%)

- 171 (48.3%)

Ki67 (%)* 78.7 ± 13.2 [5.0–95.0]

Histology grade Low-grade 339 (95.8%)

High-grade 15 (4.2%)

Lymph-vascular invasion Absent 315 (89.0%)

Present 39 (11.0%)

TB construction Cluster 201 (56.8%)

Single 153 (43.2%)

TB location ITB 118 (33.4%)

PTB 236 (66.7%)

TB atypia Non-specific 311 (87.9%)

Anaplasia-like 43 (12.1%)

TB stroma Inflammation 100 (28.3%)

Fibrosis 192 (54.2%)

Myxoid 62 (17.5%)

TB mitosis Absent 298 (84.2%)

Present 56 (15.8%)

TB quantity* 10.7 ± 3.7 [0.0–18.0]

TB CDX2 status Negative 87 (24.6%)

Positive 267 (75.4%)

TB EGFR status Negative 50 (14.1%)

Positive 304 (85.9%)

Recurrence Absent 316 (89.3%)

Present 38 (10.7%)

*Data are mean ± standard deviation. MSI, microsatellite instability; TB, tumor budding.

95% CI = 1.933–16.003), LVI (present vs. absent; OR = 34.194;
95% CI = 9.511–122.930), tumor bud cell stroma type (myxoid
vs. inflammatory; OR = 6.746; 95% CI = 1.831–24.851), tumor
bud count (high vs. low; OR = 63.429; 95% CI = 14.623–
275.130), TB mitosis (present vs. absent; OR = 2.770; 95%
CI = 0.643–11.925), and TB CDX2 expression status (negative
vs. positive; OR = 15.919; 95% CI = 4.259–59.494) were

independent predictors of recurrence in the multivariate
analyses (Table 2 and Figure 2B).

The calibration curve of the LNM nomogram was highly
consistent with the standard curve, indicating the high reliability
of the predictive ability of the nomogram (Figures 2C,D). The
DCA curves for the developed LNM nomogram (Figure 2E)
and tumor bud count (Figure 2F) in the training and validation
cohorts indicated that the DCA of the predictive nomogram had
higher net benefits than the tumor bud count, indicating higher
clinical application value.

Evaluation and validation of the
recurrence-free survival prediction
nomogram

Cox univariate and multivariate regression analyses were
performed in the training cohort to identify the variables for
building the RFS predictive nomogram. RFS was significantly
associated with LNM, general tumor type, histology grade, LVI,
stroma type, tumor bud count, tumor bud cell mitosis, and
CDX2 expression status (Figure 3A). In the multivariate Cox
proportional hazards model, LNM, histology grade, LVI, TBC,
stroma type, and TB mitosis were independent predictors of
local recurrence (Table 3). These variables were used to build a
predictive nomogram for RFS (Figure 3B). Calibration curves
based on the six variables are shown in Figures 3C,D. There
was a positive agreement between the nomogram-predicted
and actual probabilities of 5-year RFS in the training and
validation cohorts, respectively. The predictive ability of the RFS
nomogram was evaluated by analyzing the area under the ROC
(AUROC). The nomograms displayed discriminatory power in
predicting the postoperative RFS in the training cohort. The
C-indices of the RFS nomogram and tumor bud count were
0.944 (95% CI = 0.934–0.952) and 0.689 (95% CI = 0.642–0.736),
respectively (Figures 3E,F).

Based on the nomogram score, patients were stratified into
low- (score ≤ 160) and high-risk (score > 160) for recurrence
and mortality, respectively. We used Kaplan–Meier curves and
the log-rank test to analyze RFS in patients with pT1 CRC
after stratification (low-risk vs. high-risk) using the nomogram
(p < 0.001; Figure 4A). In the high-risk group, patients who
only underwent radical surgery had a lower RFS (p = 0.029;
Figure 4B), compared to that of patients who underwent radical
surgery and a postoperative chemotherapy.

Discussion

Although the traditional TNM staging system remains
essential for risk stratification in patients with CRC, the
heterogeneity in survival rates within the same stages indicates
the need for additional prognostic biomarkers. Furthermore, the
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FIGURE 1

Histological and immunohistochemical features of pT1 colorectal cancer (CRC). (A) High histology grade; (B) lymph-vascular invasion observed
in a biopsy specimen; (C) inflammatory stroma surrounding tumor budding (TB); (D) myxoid stroma surrounding TB; (E) mitosis present in TB;
(F) CDX2 expression in tumor cells, while loss of expression in TB.

FIGURE 2

Predicted model of lymph node metastasis (LNM). (A) Forest plots to decipher the risk factors associated with LNM identified in the univariate
logistic regression analysis; (B) newly developed nomogram for predicting LNM in patients with pT1 CRC. The calibration curve for predicting
LNM of pT1 CRCs in the (C) training and (D) validation cohorts. Decision curve analysis of the nomogram and TB quantity alone for predicting
LNM in patients with pT1 CRC in the (E) training cohort and (F) validation cohort.
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TABLE 2 Multivariate logistic regression analysis of lymph node metastasis.

Training cohort Validation cohort
(n = 234) (n = 120)

OR (95% CI) P-value OR (95% CI) P-value

Gross tumor type

Non-pedunculated 1.000 1.000

Pedunculated 0.641 (0.098–4.185) 0.477 0.826 (0.124–4.079) 0.772

Histology grade

Low-grade 1.000 1.000

High-grade 5.561 (1.933–16.003) 0.002 4.403 (1.046–18.520) 0.043

LVI

Absent 1.000 1.000

Present 34.194 (9.511–122.930) 0.004 11.156 (2.186–56.912) 0.003

TB stroma

Inflammation 1.000 1.000

Fibrosis 1.667 (1.278–9.451) 0.527 1.206 (1.1412–6.216) 0.087

Myxoid 6.746 (1.831–24.851) 0.032 4.303 (1.945–15.933) 0.022

TBmitosis

Absent 1.000 1.000

Present 2.770 (0.643–11.925) 0.171 1.013 (0.926–2.618) 0.568

TB quantity 63.429 (14.623–275.130) 0.001 28.952 (4.010–208.990) 0.008

TB CDX2 status

Negative 15.919 (4.259–59.494) 0.021 17.350 (7.689–25.778) 0.003

Positive 1.000 1.000

CI, confidence interval; OR, odds ratio; MSI, microsatellite instability; LVI, lymphovascular invasion; TB, tumor budding.

invasive front morphology may be more representative of the
biological behavior of the tumor than the primary tumor core
morphology (15). Our study demonstrated that the morphology
and immunohistochemical features of TB in cases of early stage
CRC were predictive of tumor progression and local recurrence.
Among the various features, non-pedunculated gross type, high
histological grade, LVI, myxoid-type tumor bud stroma, high
tumor bud count, TB mitosis, and loss of CDX2 expression
were independent predictors of LNM, whereas LNM, histology
grade, LVI, TBC, stroma type, and TB mitosis were independent
predictors of local recurrence in patients with pT1 CRC.

TB is a morphological characteristic that reflects the high
aggressiveness of tumors at the invasion margin. A previous
study revealed that high-level TB correlated with mutated KRAS
or MSS/pMMR (16). Furthermore, patients with CRC who
have a KRAS mutation and MSS/pMMR tumor were part
of a group with the poorest prognosis (17). It is defined as
a morphologic surrogate of epithelial-mesenchymal transition
(EMT), a mechanism through which tumor cells acquire
motility and invasiveness (18). EMT facilitates the detachment
of cancer cells from the tumor mass and their subsequent
infiltration in the extracellular matrix as single cells or small
clusters (1, 9). TB has a strong risk stratification utility, so
much so that the ITBCC system can reliably predict the

prognosis of patients with CRC based on tumor bud count
alone (19). However, not all patients with a high tumor bud
count will have a poor prognosis; thus, further investigation
of the characteristics of TB could improve its value for risk
stratification. Our study is the first to improve the current
ITBCC system by exploring various features of TB to predict
LNM in patients with pT1 CRC, rather than limiting the input
parameters to the tumor bud count. Moreover, the nomograms
that we developed showed stronger discriminative ability than
tumor bud count in predicting LNM or local recurrence. Thus,
our easy-to-use predictive nomograms could be useful tools to
quantify the probability of RFS.

A high histological grade has also been shown to be
associated with aggressive tumor biology and to be of prognostic
significance; it has been associated with various informative
tumor parameters in human malignancies (20–25). Our results
agree with the findings of previous studies on non-CRCs and
indicate that a high histological grade is of prognostic value for
pT1 CRC. Additionally, we focused on the presence of atypia of
tumor bud cells, but it was not of statistical significance; it was
mainly present in the tumor center. Furthermore, tumor bud cell
mitosis was observed in 15.8% of the cases in the present study.
Mitosis results from rapid cell proliferation and is correlated
with tumor proliferation and invasiveness; it is associated with

Frontiers in Medicine 06 frontiersin.org

44

https://doi.org/10.3389/fmed.2022.991785
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-991785 September 9, 2022 Time: 14:40 # 7

Chen et al. 10.3389/fmed.2022.991785

FIGURE 3

Prediction model for recurrence-free survival (RFS). (A) Forest plots to decipher the risk factors associated with RFS identified in univariate Cox
regression analysis; (B) RFS predictive nomogram. The calibration curve of postoperative RFS in patients with pT1 CRC in the (C) training cohort
and (D) validation cohort. Predictive accuracy of RFS-nomogram in the (E) training cohort and (F) validation cohort.

adverse clinical outcomes in other cancer types (26), although
its prognostic value in CRC has not yet been defined. A previous
study revealed that a decrease in mitosis is associated with high-
level TB (27), which may represent the potential decrease in the
mitosis of tumor bud cells because of fibroblastic cells around
TB during the EMT process in an effort to slow down tumor
invasion. Thus, mitosis in TB may reflect tumor biology and may
provide valuable prognostic information.

Unlike the tumor core, the environment at the tumor
front is not static; inflammatory, fibrotic, and myxoid stroma
are histologic features representing snapshots of the dynamic
process of extracellular matrix remodeling. The immature or
myxoid stroma desmoplastic reaction has been recognized as
an independent prognostic predictor in CRC (28). This feature,
however, has not been routinely adopted in pathology reports
for clinical care. Furthermore, myxoid stroma is associated
with the absence of tumor-infiltrating lymphocytes in CRC
(29), which enhance tumor immune escape. Some studies have
demonstrated that the immature myxoid stroma is associated
with a high degree of tumor budding (30). The myxoid stroma

surrounding the tumor buds that appear at the tumor front
is regarded as an immature stroma with a high potential to
disseminate and metastasize (31). Consistent with the findings
of a previous study (32), in the current study, myxoid stroma
was significantly associated with the presence of LNM and local
recurrence in patients with pT1 CRC.

In addition to the histological characteristics of TB, we
also investigated the immunophenotype of TB. We observed
a loss of CDX2 expression in 6.6% of tumor buds, which
differed from the tumor core. Notably, CDX2 inhibits EMT
and metastasis of CRC by regulating Snail and β-catenin
expression (33). CDX2, an intestine-specific transcription factor,
has been strongly implicated in the development of the intestinal
mucosa (34). Emerging evidence suggests the crucial role of
CDX2 as a tumor suppressor during colorectal carcinogenesis.
CDX2 expression is inversely associated with tumor grade
in CRC (35, 36). Consistent with the findings of a previous
study, the downregulation of CDX2 expression was associated
with LNM in patients with pT1 CRC. The lack of CDX2
expression in tumor buds may indicate that they are in a
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TABLE 3 Multivariate COX regression analysis of recurrence.

Training cohort Validation cohort
(n = 234) (n = 120)

HR (95% CI) P-value HR (95% CI) P-value

LNM

Absent 1.000 1.000

Present 32.292 (14.401–72.407) < 0.0001 16.331 (6.007–58.260) < 0.0001

Gross tumor type

Non-pedunculated 1.000 1.000

Pedunculated 0.733 (0.171–2.153) 0.337 0.891 (0.432–3.014) 0.547

Histology grade

Low-grade 1.000 1.000

High-grade 1.622 (1.002–2.627) 0.049 1.548 (0.771–3.107) 0.218

LVI

Absent 1.000 1.000

Present 2.686 (1.162–6.208) 0.021 2.958 (1.160–7.541) 0.023

TB stroma

Inflammation 1.000 1.000

Fibrosis 1.256 (0.449–1.632) 0.551 1.192 (0.312–1.880) 0.715

Myxoid 1.719 (0.264–1.955) 0.001 1.280 (0.950–2.819) 0.151

TBmitosis

Absent 1.000 1.000

Present 1.022 (0.540–1.933) < 0.0001 1.567 (0.615–2.673) 0.094

TB quantity 1.703 (1.055–2.750) 0.029 1.563 (0.838–2.914) 0.020

TB CDX2 status

Negative 0.935 (0.520–1.679) 0.216 1.789 (0.711–4.502) 0.799

Positive 1.000 1.000

Statistical analyses were conducted using log-rank tests and a Cox proportional hazards model. CI, confidence interval; LVI, lymphovascular invasion; RFS, recurrence-free survival;
TB, tumor budding.

FIGURE 4

Survival curves for subgroup analysis in patients with different risk of postsurgical recurrence stratified by nomogram score. (A) Kaplan–Meier
survival curves for RFS according to the risk status in all patients; (B) RFS according to different therapy in high-risk cohort.
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state of EMT; thus, it could predict poor prognosis in patients
with CRC. Moreover, because these features are associated with
LNM, they can be applied to endoscopic biopsy specimens
to better predict tumor progression behavior. To the best
of our knowledge, these findings have not been previously
reported. Additional studies with larger cohorts are required
to validate the prognostic implications of the histological and
immunohistochemical features of TB that may help predict the
prognosis or occurrence of LNM.

Our novel nomogram can effectively stratify the recurrence
risk in pT1 CRC patients, and the KM survival curve
shows that the RFS of high-risk patients is much shorter
than that of the low-risk. Furthermore, our data revealed
that adjuvant chemotherapy is necessary in the high-risk
group. Therefore, adjuvant chemotherapy is recommended
for high-risk patients even if they do not have LNM. Our
method could be applied to determine risk stratification
strategies for patients with pT1 CRC; for example, to identify
low-risk patients to avoid unnecessary additional treatment,
while identifying high-risk patients to enable timely and
effective treatment. Low-risk patients could extend their follow-
up periods, improving their quality of life and reducing
postoperative complications and financial costs. However, this
study had some limitations. First, the statistical power was
limited because this was a single-center retrospective study.
Second, owing to the retrospective study design, potential
selection biases could not be ruled out. Finally, although the
study focused on identifying the most significant predictors of
LNM and local recurrence, it is unclear whether these findings
can be generalized.

In conclusion, tumor bud count and other features of
TB are associated with LNM and poor prognosis in patients
with pT1CRC. Although tumor bud count, stroma type, and
the CDX2 expression status in tumor buds were identified as
risk factors for LNM, only tumor bud count was significantly
correlated with local recurrence in patients with pT1 CRC. Thus,
these features of TB should be incorporated into the routine
evaluation of CRC, as they may provide valuable information to
guide clinical therapy. Additional studies in a multi-institutional
setting are needed to confirm these findings.
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Colorectal cancer (CRC) is a common clinical disease with a poor prognosis

and a high recurrence rate. Chemotherapy is important to inhibit the

post-surgical recurrence of CRC patients. But many limitations restrict

the further application of chemotherapy. In this study, sorafenib (Sor) and

metformin (Met) co-loaded poly(ethylene glycol)-block-poly(L-glutamic

acid-co-L-phenylalanine) [mPEG-b-P(Glu-co-Phe)] micelles were

developed. The characterizations, drug release, in vivo biodistribution,

and pharmacokinetics of the micelles were analyzed. The treatment e�cacy

of the dual-drug loaded micelles was evaluated in a subcutaneous colon

cancer mice model. Sor is a common molecular target agent that can inhibit

the mitogen-activated protein kinase (MAPK) pathway to treat solid tumors.

Met can also regulate the MAPK pathway and inhibit the expression of the

phosphorylated extracellular signal-regulated kinase (p-ERK). Moreover,

both Sor and Met play important roles in cell cycle arrest. The integration

of these two drugs aims to achieve synergistic e�ects against colon cancer.

The micelles can be targeted to cancer cells and possess longer blood

circulation time. The two agents can be released rapidly in the tumor sites.

The in vivo study showed that the micelles can prevent tumor progression by

inhibiting the expressions of p-ERK and cyclin D1. This study indicated that

the Sor/Met-loaded micelles are suitable for CRC treatment.

KEYWORDS

colorectal cancer, drug delivery system, chemotherapy, micelles, tumor environment

(TME)

Introduction

Colorectal cancer (CRC) threatens people’s health seriously worldwide. Despite the

advanced development in CRC diagnosis and surgical intervention, tumor recurrence

tends to happen in lots of patients (1). Systematic chemotherapy is another method

to extend the survival of CRC patients (2). However, the concentration of traditional
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chemotherapy agents within tumor sites is always not effective

for tumor killing (3). In addition, patients with CRC are always

intolerant of the side effects of systematic chemotherapy (4). As a

result, achieving better therapeutic effects on CRC is important.

Nanotechnology, an emerging science, has promoted

the development of pharmacy (5). The nanosized drug

delivery systems can overcome the disadvantages of systematic

chemotherapy (6). Nowadays, researchers are focusing on

developing polymeric nanoparticles, such as vesicles (7, 8) and

micelles (9, 10), for tumor therapy. The nanomaterials-based

drug carriers not only protect the encapsulated agents during

blood circulation but also increase the accumulation in the

tumor site (11). Furthermore, co-drug-loaded nanoparticles to

deliver combination therapy for CRC treatment have attracted

more and more attention (12). Encapsulating chemotherapeutic

agents with synergistic effects can increase the antitumor efficacy

against CRC (13).

Sorafenib (Sor) can decrease the phosphorylated

extracellular signal-regulated kinase (p-ERK) levels and

block the mitogen-activated protein kinase (MAPK) pathway

to inhibit tumor progression (14, 15). The MAPK pathway

in tumor cell lines is associated with tumor development,

including tumor growth, differentiation, and apoptosis (16, 17).

ERK is a key component in the MAPK pathway, and tumor

cell proliferation depends on p-ERK (14). In addition, Sor

also exhibits anti-proliferative activity in tumors by inhibiting

cyclin D1 expression (18). Sor is approved for the treatment

of hepatoma clinically. Recent studies also showed that

CRC patients may be benefited from Sor (19) and Sor could

prevent the proliferation and metastasis of CRC cell lines (20).

Metformin (Met), a safe hypoglycemic agent, has been proved of

tumor inhibition effect (21), and can also inhibit the expression

of p-ERK (22, 23) and cyclin D1 (24, 25). Therefore, we

hypothesize that the integration of Sor and Met can increase the

synergistic effects of CRC treatment. Delivering the two drugs

while decreasing the side effects is crucial for tumor therapy.

In this study, poly(ethylene glycol)-block-poly(L-glutamic

acid-co-L-phenylalanine) [mPEG-b-P(Glu-co-Phe)] micelles

were prepared, followed by the encapsulation of Sor and

Met. Herein, the copolymers can be self-assembled, and

different components of the copolymer possess different

functions to deliver Sor and Met. The PEG shell mainly

provides the protective effects for the loading agents. Glutamic

acid units assist in electrostatic interaction between the

glutamic acid carboxyl group and the Met amino group.

Sor is hydrophobic and can be loaded into the nanocarrier

by physical embedding. Phenylalanine units increase the

hydrophobic/aromatic interaction within the inner core of

micelles (6). The characteristics of the dual-drug-loaded

micelles were analyzed in vivo and in vitro. A subcutaneous

colon cancer mice model was applied to evaluate the treatment

efficacy of the Sor and Met co-loaded micelles. Sor and Met

were successfully delivered to the tumor sites. Sor and Met

loaded mPEG-b-P(Glu-co-Phe) micelles (NSM) showed a

better synergistic effect against colon cancer compared with

free Sor and Met treatment. Figure 1 shows the preparation

process of Sor and Met co-loaded micelles and the mechanisms

against CRC.

Materials and methods

The materials, synthesis of mPEG-b-P(BLG-co-Phe)

and mPEG-b-P(Glu-co-Phe) copolymers, preparation of

mPEG-b-P(Glu-co-Phe)/Sor/Met micelles, characterizations of

copolymers, NSM stability, in vitro drug release, cytotoxicity

assays, and cellular uptakes are shown in the Supplementary File.

Animal study

This study was approved by the Jilin University Animal

Center (KT202002042). BALB/c mice (male, 8–12 weeks) and

Sprague-Dawley rats (male, 180–200 g) were used and bought

from Jilin University.

The subcutaneous animal model was established by injecting

CT26 cells (0.1mL, 100 × 104 mL−1) into the right flanks

of BALB/c mice. When the tumors were about 300 mm3, the

animals were divided into three groups with six animals in each

group, i.e., normal saline (control), free Sor and Met (SM), and

NSM at Sor dose of 10mg kg−1 and Met dose of 40mg kg−1.

Then, 100 µL normal saline, SM solution, or NSM solution was

applied through the tail vein five times every 3 days.

In vivo biodistribution

Twelve mice in the subcutaneous colon cancer mice model

with a tumor volume of about 300 mm3 were selected and were

divided into NSM and SM groups. The mice in the SM group

were treated with SM saline solution via tail vein injection with

Sor dose of 20mg kg−1 and Met dose of 80mg kg−1. The mice

in the other group were treated with NSM solution with the

equivalent amounts of Sor and Met to those in NSM solution.

The mice were euthanized at 6 or 12 h after injection. The tumor

tissues and other major organs were resected. The Sor and Met

in different tissues were determined with the HLPC method.

Pharmacokinetic detections

Sprague-Dawley rats were divided into NSM and SM groups

(n = 3). NSM or SM solutions (2mL) with equivalent Sor

dose of 20mg kg−1 and Met dose of 80mg kg−1 were injected

via tail vein. Blood samples were collected at different time
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FIGURE 1

Synthesis of Met/Sor-loaded mPEG-b-P(Glu-co-Phe) micelles and their mechanisms of CRC prevention.

points. The Sor and Met concentrations were analyzed with the

HLPC method.

In vivo antitumor e�ciency assessment

The largest diameter (L) and smallest diameter (S) of tumors

were measured every day, and the tumor volume was calculated

with Equation (1).

V (mm3) =
L× S2

2
(1)

After 14 days post-treatment, all the mice were euthanized.

The tumor growth rate (TGR) was calculated by the ratio of the

tumor volume at 14 days post-treatment and the tumor volume

before treatment. Blood samples were collected and the levels of

ALT, AST, CK-MB, BUN, andD-Lac were analyzed by the ELISA

method. The tumor weight of each sample was recorded.

Histopathological study

The tumor tissues and other major organs were stained

with hematoxylin and eosin (H&E). The immunohistochemical

assays were also applied to evaluate ERK, p-ERK, and

cyclin D1 levels in tumor tissues. The positive cells were

stained brown-yellow, and the relative positive area was

analyzed by Image J (National Institutes of Health, Bethesda,

Maryland, USA).

Frontiers inMedicine 03 frontiersin.org

51

https://doi.org/10.3389/fmed.2022.1009496
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2022.1009496

TABLE 1 DLC and DLE of Sor and Met of NSM.

Feed ratio (w/w/w)

(Polymer/Sor/Met)

DLC Sor (%) DLE Sor (wt.%) DLCMet (%) DLEMet (wt.%)

45:05:15 2.1 77.2 6.6 86.6

40:08:20 4.9 74.8 11.4 85.4

35:15:25 12.3 54.8 18.8 63.6

30:20:30 20.2 46.4 25.6 51.2

Statistical analyses

One-way ANOVA and Student’s t-test were used. P < 0.05

indicated statistically significant, and P < 0.01 and P < 0.001

indicated highly statistically significant.

Results and discussions

Preparation of NSM and characterizations

Figure 1 shows the NSM preparation and the mechanisms

for the CRC therapy.

The FT IR and GPC analyses indicated the successful

development of mPEG-b-P(Glu-co-Phe) copolymers

(Supplementary Figure S1). Relevant results are shown in

the Supplementary File.

As shown in Figure 1, NSM is prepared in an aqueous

solution, utilizing the electrostatic interaction between glutamic

acid carboxyl group and the Met amino group. Sor is loaded

within the nanocarrier by a simple physical embedding method.

The mPEG-b-P(Glu-co-Phe) copolymers self-assembled in

aqueous solutions and entrap Sor and Met within micelles. The

electrostatic interactions between the drugs and polymers would

benefit the release of drugs. The electrostatic interactions will be

damaged in the acidic environment within tumor tissues, thus

resulting in drug-releasing (6). As shown in Table 1, when the

Sor and Met feeding ratios were 11.2 and 29.4%, satisfactory

DLCs andDLEs of Sor andMet could be obtained. A higher drug

feeding ratio resulted in slightly increased DLC, while DLE was

decreased remarkably. As a result, the DLCs of 4.9 and 11.4%

of Sor and Met, respectively, were applied to obtain a rationale

DLC and a high DLE. The DLEs of Sor and Met of NSM were

74.8 and 85.4 wt.%, respectively. The polymeric chemotherapy

drug delivery systems were acceptable for DLC ranging from

1 to 20% (26).

The micelles’ morphology is observed under TEM

examination (Figure 2A), demonstrating that NSM is

homogeneously spherical with narrow size distribution.

The size distributions of NSM were evaluated with DLS in this

study. The size distribution results are similar to TEM, in which

all the micelles show a pretty narrow distribution (Figure 2A).

The average diameter of NSM is 67.3 ± 8.9 nm as observed

by DLS analysis. The diameter of nanoparticles of 100 nm is

suitable to enhance the permeability and retention (EPR) effect

(27, 28). The diameter of NSM is slightly smaller than 100 nm,

and the nanoparticles of this size are also suitable for tumor

therapy (6).

The stability of drug delivery systems is crucial in drug

delivery. As shown in Figures 2B,C, the incubation time lasts

for 7 days, but no obvious size changes are observed in both

incubation mediums. The NSM shows excellent stability in the

neural environment in this study.

In vitro drug release

The release profiles of Sor and Met were studied in PBS

solution at pH 7.4, 6.8, and 5.5 at 37◦C. The amounts of

released drugs were examined with HPLC. The release behavior

of Sor was similar to that of Met in which three different

release conditions could be observed. As shown in Figures 2D,E,

a rapid release happened in the first 24 h, followed by a

slower release at 24–48 h and a sustained release at 48–72 h.

There are 48.7 ± 3.1% and 57.7 ± 2.6% amounts of Sor and

Met released after 72 h of incubation at pH 7.4, respectively

(Figures 2D,E). About 50 and 40% amounts of Sor and Met

are not released because the electrostatic interaction within

the micelles was not seriously weakened at pH 7.4 possibly

(29). Besides, hydrophobic phenylalanine units enhanced the

stability of micelles, resisting the micelles’ dissociation (6). As

a result, there were still some drugs not released from the

inner core of the micelles. The release profiles of Sor and

Met are pH responsive with more Sor and Met released in an

acidic environment. There are 69.4 ± 2.7% and 85.8 ± 1.9%

amounts of Sor released after 72 h of incubation at pH 6.8 and

5.5, respectively (Figure 2D). The amounts of released Met are

82.3 ± 2.6% and 94.9 ± 2.5% after 72 h incubation at pH 6.8

and 5.5, respectively (Figure 2E). The release of Sor and Met

happened simultaneously, but Met was released a little faster

than that of Sor at the same pH value. The increased acidity

of the tumor microenvironment could facilitate the disruption

of electrostatic interaction and promote the instability of

micelles, thus facilitating more drug release for tumor

therapy (6).
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FIGURE 2

Characterizations of mPEG-b-P(Glu-co-Phe) micelles. (A) TEM and DLS analyses. NSM stability in (B) PBS and (C) BSA solution. Release profiles

of (D) Sor and (E) Met in PBS solution at di�erent pH values. In vitro cytotoxicity analyses on (F) H22 cells and (G) HLL-5 cells at di�erent Met and

Sor concentrations in di�erent groups. Cellular uptakes of (H) Sor and (I) Met of SM and NSM after incubation with H22 cells for 1, 4, and 6h.

Scale bar = 50nm. *, **, *** represent P < 0.05, P < 0.01, and P < 0.001, respectively.
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In vitro cytotoxicity and cellular uptakes

After 48 h, the cell viabilities of CT26 cells are all above

90% (Figure 2F), indicating that the copolymers possess good

compatibility and low cytotoxicity. As for the drug-loaded MTT

assay, both SM and NSM exhibit dose-dependent cytotoxicity

effects toward CT26 cells (Figure 2F). When the concentration

of Met is more than 0.063mM, and Sor is more than

0.004mM, the cell viability is lower in the NSM group than

that in the SM group (P < 0.05) and control group (P

< 0.001), demonstrating that NSM possesses stronger cell

proliferation inhibition efficiency than SM. However, NSM did

not show severe cytotoxicity to normal human intestinal mucosa

endothelial cells HIEC. The viability of HIEC cells was all above

85% and there was no significant difference in cell viability

among all groups (Figure 2G). The in vitro cytotoxicity was

repeated three times.

Efficient cellular uptakes of drugs can increase antitumor

activity. The cellular uptakes of Sor (Figure 2H) and Met

(Figure 2I) in SM andNSM groups are evaluated with the HPLC.

The general cellular uptakes of Sor andMet are higher in the SM

group than in the NSM group at 1 h, which may be attributed to

the fact that free Met and Sor can be rapidly uptaken by CT26

cells during the first hour. At 4 h, the cellular uptake of Sor is

slightly higher in the SM group than that in the NSM group

(∗P < 0.05). However, there is no significant difference in the

cellular uptake of Met between the two groups at 4 h. There is no

difference in the Sor cellular uptake at 6 h between SM and NSM

groups. The cellular uptake of Met is higher in the NSM group

than that in the SM group at 6 h (∗P< 0.05). Thismay be because

free SM and NSM may have different cellular uptake methods,

and mPEG-b-P(Glu-co-Phe) may increase the ability of Sor and

Met to enter the cell. The cellular uptakes of Met and Sor in the

NSM group are all above 90% at 6 h. The high cellular uptakes

of Sor and Met could benefit the synergistic chemotherapeutic

effects against CRC.

Biodistribution studies

The biodistributions of Met and Sor in different tissues were

detected with the HPLC method in this study.

FIGURE 3

Biodistribution and pharmacokinetics studies of Met and Sor. Biodistribution of (A) Met and (B) Sor in subcutaneous colon cancer mice model.

Plasma pharmacokinetics of (C) Met and (D) Sor in SM and NSM groups.
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The amounts of Met and Sor were at higher levels in the

tissues at 6 h post-injection than that at 12-h post-injection.

There were more Met and Sor accumulated in the NSM groups

than in the SM group. Met and Sor are mainly located in liver

and tumor tissues in the subcutaneous colon cancer mice model

(Figures 3A,B). At 12-h post-injection, Met only accumulates

in the kidney and disappears from tumor tissues in the SM

group. In the NSM group, amounts of Met in tumor tissues can

also be observed. The amounts of Met and Sor are statistically

higher in tumor tissues after NSM treatment than after SM

injection, indicating that the NSM can target the tumor site. The

sustained release ofMet and Sor from themicelles within tumors

contributed to the accumulation of drugs.

Pharmacokinetic detections

Plasma pharmacokinetics of Met and Sor in SM and

NSM are evaluated with HPLC post-intravenous administration

(Figures 3C,D). The Met and Sor concentrations in the SM

group decrease dramatically in the first 30min and slowly

decrease after that. The burst drug concentrations decrease was

not evident in the NSM group, and the drug concentrations

decreased much slower than that in the SM group. As a

result, the blood circulation time of NSM could be significantly

enhanced compared to SM. The Met and Sor clearance

in mPEG-b-P(Glu-co-Phe) micelles decreased due to the

increased stability of polymeric micelles and sustained drug

delivery possibly.

In vivo anticancer e�ciency

The subcutaneous colon cancer mice model was performed

to evaluate the anticancer efficiency of NSM. After the sacrifice

of mice, the tumors are carefully resected to further assess the

in vivo antitumor efficiency, and the tumor weights are also

recorded. The tumor weight is the least in the NSM group,

and the difference is significant between SM and NSM groups

(P < 0.001) (Figure 4A). Consistent with the tumor weight

FIGURE 4

Antitumor e�cacy of NSM in subcutaneous colon cancer mice model. (A) Tumor weight. (B) Tumor volume. (C) Body weight of mice. * and ***

represent P < 0.05 and P < 0.001, respectively.
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results, the tumor volume is also the least in the NSM group

(Figure 4B). There is a significant difference between SM and

NSM groups in tumor volume. In addition, the TGRs of NSM,

SM, and Control groups are 4.13 ± 0.61, 2.42 ± 0.35, and

1.59 ± 0.22, respectively. NSM group presents a higher TGR

compared with SM group (P < 0.05) and Control group (P <

0.01). As shown in Figure 4C, there was no obvious weight loss

or increase in body weight in the SM group, which indicates

that even the free SM treatment seems to be well-tolerated

and causes no weight loss. The mice show an evident increase

in body weight in the control group and the NSM group.

The body weight of the control group increased gradually and

was the highest compared with the other two groups. This

may also be explained by the growing tumor and little drug

toxicity effect. The difference is significant in body weight

between the SM and NSM groups (P < 0.05). The general body

conditions of animals are good after NSM treatment due to

small toxicity. The results demonstrated that NSM possessed

higher tumor inhibition efficiency over SM treatment. This is

because of the increased accumulation of NSM and the fast

release of Met and Sor from the micelles within the tumor

tissues possibly.

Biochemical analyses

Biochemical analyses were applied to evaluate the general

conditions of major organs. Besides, the toxicity of Met was

evaluated by testing D-Lac levels, which were inclined to induce

lactic acidosis (30).

Figure 5 shows the biochemical analyses of the subcutaneous

colon cancer mice model. There was no statistical difference in

ALT, AST, CK-MB, BUN, and D-Lac levels among all the groups,

indicating that obvious liver, heart, and kidney injuries are not

caused by the NSM and SM treatment. Also, the application

of Met in free SM solution or NSM micelles does not increase

D-Lac levels or induce lactic acidosis.

Histopathological evaluations

H&E analysis of tumor sections was performed to assess

the tumor inhibition efficiency of NSM (Figure 6A). The

relative necrosis area of the tumor was analyzed with the

Image J software. The necrosis area is small in the control

group, indicating rapid proliferation of tumor cells (Figure 6B).

However, various necrosis degrees can be found in SM and NSM

groups. NSM shows the least necrosis tumor area, and there is a

significant difference between SM and NSM groups (P < 0.05)

(Figure 6B).

The biological values of ALT, AST, CK-MB, BUN, and D-Lac

are first tested in this study. The results do not reveal apparent

damage in normal organs. H&E analysis of major organs is

performed to analyze the security of NSM further. In the control

group, the H&E staining of organs shows the normal histological

structure (Figure 6C). No obvious pathological changes are

FIGURE 5

Biochemical analyses in subcutaneous colon cancer mice model.
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FIGURE 6

Histopathological analysis. (A) H&E staining and (B) relative necrosis area of tumor tissues. (C) H&E analysis of major organs. Scale bars =

100µm. * and ** represent P < 0.05 and P < 0.01, respectively.

found in SM and NSM groups, indicating the high security of

NSM in CRC treatment.

Immunohistochemical analyses

The ERK, p-ERK, and cyclin D1 levels were analyzed to

reveal the anticancer mechanism of NSM.

The MAPK/ERK pathway is one of the key pathways for

solid tumor development. The inhibition of the MAPK/ERK

pathway could not phosphorylate ERK, reducing the

proliferation of tumor cells (31, 32). Immunohistochemical

studies first test the expression levels of ERK and p-ERK. All

three groups show similar amounts of positive cells for ERK

evaluation. However, the most and least amounts of p-ERK are

found in the control and NSM groups, respectively (Figure 7A).

The immunohistochemical results are confirmed with the

semi-quantitative analyses (Figures 7B,C).

Cyclin D1 is one of the most important regulators of the

cell cycle (33). The upregulation of cyclin D1 could lead to

cell cycle disorders and highly promote cell proliferation (33).

The expressions of cyclin D1 are tested to determine whether

NSM treatment was associated with cell cycle arrest. The

immunohistochemical staining and semi-quantitative analyses

show that the expressions of cyclin D1 are most inhibited in the

NSM group (Figures 7A,D).

The above results demonstrate that NSM mainly performs

its tumor inhibition efficiency through downregulating the

expressions of p-ERK and cyclin D1, thus inhibiting the

MAPK/ERK pathway and influencing the cell cycle. As a result,

the proliferation of tumors can be prevented.

Conclusion

In this study, an mPEG-b-P(Glu-co-Phe) copolymer-based

drug delivery system was developed. Sor and Met were
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FIGURE 7

Immunohistochemical analyses of tumor tissues. (A) Immunohistochemical staining of ERK, p-ERK, and Cyclin-D1 in tumor tissues. Relative

positive areas of (B) ERK, (C) p-ERK, and (D) Cyclin-D1. Scale bar = 100µm. * and *** represent P < 0.05 and P < 0.001, respectively.

loaded in the mPEG-b-P(Glu-co-Phe) micelles to achieve the

chemotherapeutic effect. NSM can be targeted to cancer cells

and release Sor and Met rapidly within tumors. A subcutaneous

colon cancer mice model was developed to assess the anticancer

efficacy of NSM. NSM can inhibit tumor proliferation through

the synergistic effect of Sor andMet on blocking theMAPK/ERK

pathway and arresting the cell cycle of colon cancer cells. All

these results demonstrated the superiority of Sor/Met loaded-

mPEG-b-P(Glu-co-Phe) micelles in the treatment of CRC.
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University, Changchun, China, 4Department of Radiology, China-Japan Union Hospital of Jilin
University, Changchun, China

Cuprotosis, a newly proposed mechanism of cell death, can trigger acute

oxidative stress that leads to cell death by mediating protein lipidation in

the tricarboxylic acid cycle. However, cuprotosis-related long non-coding

RNAs (CRLNCs) and their relationship with prognosis and the immunological

landscape of colorectal cancer (CRC) are unclear. We have developed a

lncRNA signature to predict survival time, immune infiltration, and sensitivity

to chemotherapy. CRLNCs were screened using the Cor function of the R

software and the differentially expressed lncRNAs were collected with the

limma package. Differentially expressed long non-coding RNAs (lncRNAs)

associated with prognosis were selected using univariate regression analysis.

A prognostic signature was developed using the least absolute shrinkage and

selection operator (LASSO) and multivariate regression analysis. Patients with

CRC were divided into two groups based on the risk score. The low-risk group

had a more favorable prognosis, higher expression of immune checkpoints,

and a higher level of immune cell infiltration compared with the high-risk

group. Furthermore, there was a close association between the risk score

and the clinical stage, tumor mutational burden, cancer stem cell index, and

microsatellite instability. We also assessed chemotherapy response in the two

risk groups. Our study analyzed the role of CRLNCs in CRC and provided novel

targets and strategies for CRC chemotherapy and immunotherapy.

KEYWORDS

colorectal cancer, cuprotosis, prognostic signature, immune infiltration,
immunotherapy, chemotherapy sensitivity
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Introduction

Colorectal cancer (CRC) is responsible for approximately
10% of cancer cases and related deaths worldwide (1). Only in
developed countries does the incidence of CRC show a stable
or declining trend, which is primarily due to the widespread
use of large-scale screening and colonoscopy, as well as the
continuous improvement of people’s living and eating habits.
It is estimated that there will be 25 million new cases of CRC
worldwide by 2035 (2). In addition to surgery, radiotherapy
and chemotherapy are still widely applied to reduce recurrence
and improve survival. Chemotherapy, which involves the
application of chemical compounds to inhibit the growth of
tumor cells, is an indispensable part of the treatment process.
Currently, platinum-based chemotherapy in combination with
5-fluorouracil is the first-line treatment option in treating
patients with CRC (3, 4). However, different patients respond
differently to the same chemotherapy regimen, leading to large
variations in patient prognoses (5, 6). Exploring new, specific,
and effective targets related to chemotherapy sensitivity, as well
as recognizing individualized and precise treatment, is therefore
critical for CRC therapy.

Copper homeostasis is an ancient phenomenon in living
organisms. Copper is an indispensable trace element for
the homeostasis of the internal environment (7). Copper
contributes to the progression of tumors, such as breast and lung
cancer, where it is involved in tumor angiogenesis, epithelial-
mesenchymal transition, and cell proliferation and metastasis
(8, 9). Therefore, copper-chelating agents have been studied
and reported to inhibit tumor growth in some clinical trials
(10). Meanwhile, copper can also promote oxidative stress to
mediate cell death (11, 12). Copper-specific ionophores can
transport copper into cells at specific sites, increasing the copper
level in tumor cells, and then mediating the toxicity of copper
overload, which results in cell death (10). The role of copper
in the treatment of tumors is complex and versatile. Mutations
in lncRNAs are believed to mediate several forms of tumor
development along with protein-coding genes (13).

LncRNAs can regulate immune and inflammatory responses
at the transcriptional and posttranscriptional levels by
interacting with proteins, RNA, and DNA (14). At the same
time, lncRNAs have a close relationship with the tumor
microenvironment (TME) (15). Several lncRNAs, including
TUG1, MALAT1, H19, GAS5, LINC00152, UCA1, CUDR, and
AA174084, have been identified as predictive biomarkers of
CRC. Investigating such lncRNAs as potential targets for CRC
therapy is of long-term value. GAS5 is involved in regulating
chemotherapy resistance in CRC. The other lncRNAs require
further investigation. To determine whether cuprotosis-related
long non-coding RNAs (CRLNCs) play a role in CRC, a
prognostic signature of the immune infiltration and survival of
patients with CRC was developed. A different prognosis was
revealed by the Kaplan-Meier analysis. Various methodologies,

such as XCELL, TIMER, and ssGSEA, were also used to
analyze the immune infiltration in patients with CRC. The
analyses of immune checkpoints, clinicopathological data,
tumor mutational burden (TMB), cancer stem cells (CSCs),
microsatellite instability (MSI), and chemotherapy response
were also performed.

Materials and methods

Datasets and samples

The transcriptome, mutation, and clinical data for COAD
containing 32 healthy tissues and 375 tumors were downloaded
from The Cancer Genome Atlas (TCGA) database. Six fresh
frozen CRC and paracancerous paired tissues were obtained
from the Second Hospital of Jilin University. The cuprotosis-
related genes (CRGs) are shown in Supplementary Table 1.

Identification of differentially
expressed cuprotosis-related long
non-coding RNAs

To identify lncRNAs closely related to CRGs, we performed
a screen using the Cor function of the R software, with
the filter conditions set to require a correlation coefficient
of >0.3 with a false discovery rate of <0.001. Subsequently,
differentially expressed CRLNCs between the 32 normal and 375
tumor samples were selected using the limma package (| log
Foldchange| > 1 and false discovery rate < 0.05).

Construction and validation of a
prognostic long non-coding RNA
signature

The Supplementary material provide details about the
construction and validation of the prognostic lncRNA signature.

Gene set enrichment analysis and
nomogram construction

The gene set enrichment analysis (GSEA) and nomogram
are presented in the Supplementary material.

Immune landscape, immune
checkpoints, and clinical data analyses

Analyses of the immune landscape, immune checkpoints,
and clinical data are presented in the Supplementary material.
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Analyses of tumor mutational burden,
cancer stem cells, and microsatellite
instability

Tumor mutational burden is an essential marker of
immunotherapy response and prognosis. Therefore, we
compared genetic mutations in samples from low-risk and
high-risk groups. The mutational burdens from all samples
were then calculated and compared. A correlation analysis was
applied to determine the significant relationships between the
risk scores, TMB, and immune infiltration. We also explored the
link between CRGs and risk scores. MSI could reflect the effect
of immunotherapy. Therefore, the association between MSI and
risk score was analyzed. We compared patients’ survival times
between MSI-H and MSS/MSI-L. We also integrated MSI into
the signature for survival analysis.

Drug sensitivity analysis and
identification of differential genes

The limma package was used to identify the differentially
expressed genes (DEGs) (| log Foldchange| > 1 and false
discovery rate < 0.05). To further search for the hub genes,
we used the CytoNCA plugin in Cytoscape software. Based
on the scores of Betweenness, Closeness, Degree, Eigenvector,
LAC, and Network, we screened the DEGs twice to obtain core
genes. Furthermore, Gene Ontology and Kyoto Encyclopedia
Genes and Genomes pathway enrichment analyses were used to
explore the functional pathways based on the DEGs. Finally, to
investigate the differences in response to chemotherapy, we used
the pRRophetic package to predict drug sensitivity.

Quantitative real-time PCR

Total RNA was extracted from CRC tissues using Trizol
reagent (Invitrogen, Carlsbad, CA, United States). We used a
reverse transcription kit (Takara, Tokyo, Japan) to synthesize
cDNA. The SYBR Premix Ex TaqTM kit (Takara, Japan) was
used to perform the quantitative real-time PCR (RT-qPCR).
The expression level of LINC00412, AC016737.1, AC026782.2,
AC090204.1, AC129507.1, and AC116914.2 was normalized
using glyceraldehyde-3-phosphate dehydrogenase. The data
were analyzed using the 2−11Ct method. The primers of the
seven genes are listed in Supplementary Table 2.

Statistical analyses

All statistical analyses were performed using R version 4.1.1.
P < 0.05 was considered significant.

Results

Analysis of differentially expressed
cuprotosis-related long non-coding
RNAs

The study design is presented in Supplementary Figure 1.
The Cor function was performed to select 880 CRLNCs. The
association between CRGs and lncRNAs is shown in Figure 1A.
We discovered 487 CRLNCs that were differentially expressed,
with 445 being upregulated in CRC and 42 being downregulated
(Figures 1B–C).

Construction and validation of the
prognostic signature

As a result of the univariate regression analysis, six
CRLNCs were discovered to be linked with the prognosis
of patients with CRC (Figure 2A). We then selected the
genes corresponding to the smallest lambda value for
the multivariate Cox regression analysis (Figures 2B–C).
Finally, LINC00412, AC016737.1, AC026782.2, AC090204.1,
AC129507.1, and AC116914.2 were screened to construct
the risk signature. The formula of the risk signature is as
follows:

Riskscore = (−1.73912912346949∗expression of LINC00412)

+ (0.6423027570568∗expression of AC016737.1)

+ (0.927870667759444∗expression of AC026782.2)

+ (0.306445754811284∗expression of AC090204.1)

+ (2.09976593806317∗expression of AC129507.1)

+ (−0.802467801481654∗expression of AC116914.2).

High-risk lncRNAs included AC016737.1, AC026782.2,
AC090204.1, and AC129507.1. Low-risk lncRNAs included
LINC00412 and AC116914.2 (Figure 2E). We found that
LINC00412, AC016737.1, AC026782.2, and AC090204.1 were
highly expressed in CRC. AC129507.1 was downregulated
in CRC (Figure 2C). The relationship between CRGs and
the lncRNAs is displayed in Figure 2D. The low-risk group
showed better survival outcomes than the high-risk group
(Figures 2E, 3A). The training group and test group confirmed
this conclusion (Figures 3B–E). The area under the curve
(AUC) values demonstrated that our prognostic signature
had moderate performance (Figure 3F). The AUC values
of age, gender, grade, and tumor stage were 0.575, 0.524,
0.558, and 0.586, respectively, indicating that the risk model
had the best predictive ability (Figure 3G). The Kaplan-
Meier survival curve further proved that this risk signature
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FIGURE 1

(A) Network of long noncoding RNAs and cuprotosis-related genes. (B) Differential expression of cuprotosis-related long non-coding RNAs
(CRLNCs) between normal and tumor tissues. (C) The volcano plot of CRLNCs. Red represents upregulated CRLNCs; green represents
downregulated CRLNCs. CRGs, cuprotosis-related genes; CRLNCs, cuprotosis-related long non-coding RNAs.

applied to patients of any age, gender, grade, and TNM stage
(Figures 4A–G).

Gene set enrichment analysis and
nomogram construction

The results of the GSEA showed that the main functional
pathways in the high-risk group were the calcium signaling
pathway, GAP junction, extracellular matrix receptor
interaction, and complement and coagulation cascades.
The main functional pathways in the low-risk group were

homologous recombination, neuroactive ligand-receptor
interaction, retinoic acid-inducible gene-I-like receptor
signaling pathway, and RNA degradation (Figure 4H).
The univariate regression analysis showed that age (hazard
ratio [HR]: 1.003–1.039; P < 0.05), stage (HR: 1.193–1.833;
P < 0.001), and risk score (HR: 1.054–1.125; P < 0.001) were
associated with prognosis (Figure 5A). It was demonstrated
that age (HR: 1.011–1.049; P < 0.001), stage (HR: 1.233–2.075;
P < 0.001), and risk score (HR: 1.059–1.129; P < 0.001)
were found to be independent prognostic factors (Figure 5B).
A prognostic nomogram was also developed for the prediction
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FIGURE 2

(A) Univariate Cox regression analysis. (B) The LASSO algorithm further selected the most crucial genes and LASSO coefficient profiles.
(C) Expression of risk lncRNAs between normal and tumor tissues. (D) Sankey diagram showing the relationship between CRGs and lncRNAs.
(E) Heatmap showing the expression of risk lncRNAs between low- and high-risk groups, and the ranked dot plot showing the risk score
distribution in all samples. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant). LASSO, least absolute shrinkage and selection operator;
CRGs, cuprotosis-related genes.

of the survival time (Figure 5C). The calibration curves for the
1-, 3-, and 5-year survival rates confirmed the accuracy of the
nomogram (Figure 5D). The decision curve analysis indicated
that the nomogram had a better predictive ability for survival
time than the stage, age, and risk score (Figure 5E). The AUC
values of the stage, age, risk score, and nomogram were 0.590,
0.571, 0.679, and 0.716, respectively (Figure 5F).

Analyses of immune infiltration,
immune checkpoints, and clinical data

The low-risk group had more immune cell infiltration
(Figure 6B). Additionally, we discovered that some immune
cell types had positive correlations with risk scores while others

had negative correlations (Figure 6A). The results of ssGSEA
indicated that some activities, such as inflammation promotion,
were upregulated in the high-risk group (Figures 6C–D). There
was a differential expression of 17 immune checkpoints, of
which 16 (94.12%) had higher expression levels in the low-risk
group (Figure 7A). Meanwhile, higher risk scores were observed
in late-stage CRC (Figure 7B).

Characteristics of tumor mutational
burden, cancer stem cells, and
microsatellite instability

Both low- and high-risk groups had the same top five
mutated genes. However, the low-risk group demonstrated
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FIGURE 3

(A) Survival curve of low- and high-risk groups in all samples. The survival analysis of low- and high-risk groups in the training group (B) and the
test group (C). Heatmap displaying the expression of risk lncRNAs between low- and high-risk groups, and the ranked dot plot showing the risk
score distribution in the training group (D) and the test group (E). (F) The AUC values of 1-, 3-, and 5-year survival. (G) Comparison of AUC
between risk signature and age, gender, grade, and stage. AUC, area under the curve.

a higher mutation probability (Figures 7C–D). TMB was
high in the low-risk group (Figure 7F). TMB and risk score
were inversely correlated (Figure 7G). Differences in TMB
between the two groups may be related to endothelial cells
and neutrophils (Figure 7H). Patients with high-risk scores had
lower RNA and higher DNA markers in CSCs than patients
with low-risk scores (Figures 7I–J). Figure 7E illustrates the
relationship between risk scores and CRGs. MSS/MSI-L was
strongly associated with higher risk scores (Figures 8A–B).
There was no association between survival rates and MSS/MSI-
L and MSI-H status. However, the MSI-H + low-risk score

had the most favorable prognosis compared with the MSS/MSI-
L + high-risk score, the MSS/MSI-L + low-risk score, and the
MSI-H + high-risk score groups (Figure 8D).

Analyses of chemotherapeutic drug
sensitivity and differential genes

After running the limma package, we selected 140 DEGs
(Figure 8E), including 131 overexpressed and 9 underexpressed
genes (Figure 8F). Based on the scores of Betweenness,
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FIGURE 4

Kaplan–Meier analyses of age (A), gender (B), grade (C), T stage (D), N stage (E), M stage (F), and stage (G). (H) GSEA of low- and high-risk
groups. GSEA, gene set enrichment analysis.

Closeness, Degree, Eigenvector, LAC, and Network, we
performed two screenings and obtained eight core genes
(Figures 8G–I). The Gene Ontology and Kyoto Encyclopedia

Genes and Genomes analyses based on the 140 DEGs showed
that the cGMP-PKG signaling pathway, heparin binding, and
contractile fiber may be the main biological functions. Finally,
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FIGURE 5

(A) Univariate Cox regression analysis. (B) Multivariate regression analysis. (C) Nomogram to predict the 1-, 3-, and 5-year survival probability for
patients with CRC. (D) The calibration curves of 1-, 3-, and 5-year survival. (E) Decision curve analysis comparing stage, age, risk score, and the
nomogram. (F) AUC values of the stage, age, risk score, and nomogram. CRC, colorectal cancer; AUC, area under the curve.

we screened a total of 37 chemotherapeutic drugs to evaluate the
differences in sensitivity between the two groups. Out of these
37 chemotherapeutic drugs, 32 (86.49%) had higher IC50 values

in the low-risk group than in the high-risk group. This suggests
that high-risk patients may be more sensitive to chemotherapy
drugs, contributing to a more favorable prognosis (Figure 9).
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FIGURE 6

(Continued)
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FIGURE 6

(A) Correlation between risk score and immune cells. (B) XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, and CIBERSORT to analyze the
immune landscape of patients with CRC. (C,D) ssGSEA analysis. CRC, colorectal cancer; GSEA, gene set enrichment analysis.

Discussion

Numerous studies have demonstrated that cell death
is related to tumor occurrence and progression (16). The
known mechanisms of cell death mainly include ferroptosis,
pyroptosis, necroptosis, apoptosis, and autophagy (17–21).
Tsvetkov et al. first described cuprotosis, a new mechanism of
cell death (12). However, the relationship between cuprotosis
and CRC is unclear, especially CRLNCs. In this study, we
identified CRLNCs using bioinformatics studies. Six lncRNAs
(i.e., LINC00412, AC016737.1, AC026782.2, AC090204.1,
AC129507.1, and AC116914.2) were then used to construct
a prognostic model for survival time prediction, immune
infiltration, and chemotherapy drug sensitivity of CRC.

LINC00412 was included in the 10 biomarkers for the
construction of the cardia cancer prognostic model and
contributed to the modification of the prognostic models by Xin
et al. (22). Taniguchi-Ponciano et al. found that LINC00412 was
upregulated in all kinds of pituitary tumors (23). Zhang et al.
provided evidence that AC016737.1 was associated with the
inflammatory response of CRC, and this association was later
validated by constructing a prognostic model (24). Chen et al.
used hypoxia-related lncRNAs, which included AC016737.1,
to construct a model for predicting the outcome of CRC.
AC016737.1 was also used in the m6A-modified lncRNA
prognostic nomogram by Song et al. and the immune-related
lncRNA pair model by Shenglei et al. for CRC prognosis. Zha
et al. discovered that AC129507.1 played a role in predicting
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FIGURE 7

(A) Expression of immune checkpoints in the two risk groups. (B) Clinical features of the model. Somatic mutations in the low-risk group (C) and
the high-risk group (D). (E) Association between risk score and CRGs. (F) TMB of the two risk groups. (G) The relationship between TMB and risk
score. (I,J) Correlation between CSC and risk score. (H) Circle picture displaying the relationship between TMB and immune cells. CRGs,
cuprotosis-related genes; TMB, tumor mutational burden; CSC, cancer stem cell;

prognosis and multiple tumor-related pathways in CRC (25).
AC129507.1 was also used in the exosome-related lncRNA
CRC prognostic model by Li et al. as well as in the survival
prediction model of gastroesophageal junction adenocarcinoma
by Song et al. AC116914.2 was involved in autophagy, m6A
RNA methylation, and hypoxia in head and neck squamous
cell carcinoma. Meanwhile, AC116914.2 was associated with

survival and immune cell infiltration (26–28). The results of
q-RT PCR showed that AC016737.1, AC026782.2, AC090204.1,
and AC129507.1 were highly expressed in tumor cells compared
with normal cell, while LINC00412 and AC116914.2 were
low expressed using Tukey’s HSD posttest as the method of
multiple comparisons. This is consistent with the fact that
AC016737.1, AC026782.2, AC090204.1, and AC129507.1
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FIGURE 8

(A,B) Relationship between MSI and risk score. (C) Correlation between survival time and MSS/MSI-L and MSI-H. (D) Survival analysis integrating
MSI status and risk signature. (E) Differentially expressed genes (DEGs) between the two risk groups. (F) Volcano plot of DEGs. (G–I) Core DEGs
in the two risk groups. (J) Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs. MSI, microsatellite instability.

were high-risk genes, and LINC00412 and AC116914.2
were low-risk genes.

The tumor microenvironment is well known to be the site
of tumor survival, with multiple components interacting to
form a complex and polymorphic environment (29). Immune
cell infiltration is one of the key components of TME.
Comprehensive analysis of immunological signatures in the
TME could facilitate the progress of native and effective
immunotherapeutic strategies, as well as the discovery of highly
effective biomarkers (30). TME also plays an important role
in regulating tumor sensitivity to treatment (31). B cell is the

most crucial humoral immune cell, mediating the antitumor
response. It is associated with a favorable prognosis and
immunotherapy response (32). Notably, the low-risk group
had a higher infiltration level of B cell, B cell memory, B
cell plasma, and naïve B cell. CD4 + T cells can kill tumors
either directly by destroying the tumor cells or indirectly by
mediating TME regulation. In addition, CD4 + T cells also can
promote gene expression and differentiation of CD8 + T cells
(33–35). As a result, we found that some T cell types, including
T cell CD4 + memory and T cell gamma delta, were present
in higher levels in the low-risk group than in the high-risk
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school. The first line of defense in identifying tumors is the
ability of CD8 + T cells to recognize MHC class I molecules
expressed by tumor cells. CD8 + T cells are the most efficient
immune cells against cancer (36). In this study, the infiltration
level of CD8 + T cells and CD8 + central memory T cells
were higher in the low-risk group than in the high-risk group.
Cancer-associated fibroblasts (CAFs) in the TME have been
shown to promote the proliferation of multiple tumors by
secreting a variety of biological factors to suppress the immune
response (37). Various molecules, such as epidermal growth
factor and interleukin-6, can be secreted by CAFs to enhance
cell proliferation, tumor invasion and metastasis, and epithelial-
mesenchymal transition. Notably, a higher infiltration level of

CAFs was observed in the high-risk group than in the low-risk
group, possibly resulting in the difference in prognosis between
the two groups. Meanwhile, we also discovered that the patients
with low-risk scores obtained higher immune scores and lower
stromal scores than those with high-risk scores, which further
gives a reasonable explanation for the difference in prognosis
between the two groups.

Immune checkpoint inhibitors have become a promising
treatment strategy in almost all kinds of malignant tumors.
Several clinical trials involving nivolumab, pembrolizumab,
ipilimumab, avelumab, and durvalumab have either been
completed or are currently being conducted. In the low-
risk group, we found the overexpression of 16 immune

FIGURE 9

(Continued)
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FIGURE 9

Drug sensitivity analysis between high- and low-risk groups.

checkpoints, which could reveal potential immune therapy
targets and help develop combination therapies and
predictive biomarkers.

Cancer genomics studies have found that most cancers
develop with the accumulation of somatic gene mutations (38).
In this study, a higher mutation probability was detected in the
low-risk group than in the high-risk group. It is widely known
that TMB and MSI are predictive biomarkers of immunotherapy
response. High TMB and MSI-H appear to be associated with
favorable immunotherapy response and prognosis (39, 40). Our
findings also confirmed this conclusion and may contribute to
revealing potential therapeutic targets.

We also found that patients in the low-risk group were more
sensitive to chemotherapy than patients in the high-risk group.
Fluorouracil-based adjuvant chemotherapy is recommended
for resected stage III and some stage II colon cancers to
improve patient survival. Several studies have concentrated on
the addition of oxaliplatin to fluorouracil as a novel standardized
CRC chemotherapy (41–44). The standard course of adjuvant
chemotherapy is 6 months. A major disadvantage of oxaliplatin
chemotherapy is cumulative sensory neuropathy. In a clinical
trial, 3-month adjuvant chemotherapy in low-risk stage III
(not T4 or N2) colon cancer did not compromise treatment
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efficacy but reduced drug toxicity (such as neuropathy) (45).
Chemotherapy sensitivity is vital for CRC treatment (46).
Our prognostic signature can help make chemotherapy more
effective or tailor treatment to each individual, which is
critical for survival.

Our study also had several limitations. Comprehensive and
detailed in vitro and in vivo experiments are still needed to
further validate our conclusion. Also, more clinical samples
need to be included.

Conclusion

Based on CRLNCs, a prognostic signature was constructed
to predict the survival and chemotherapy sensitivity of patients
with CRC. In summary, our study analyzed the role of
CRLNCs in CRC and provided new targets and strategies
for CRC therapy.
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1Central Laboratory, Second Hospital, Jilin University, Changchun, China, 2Clinical Laboratory,

China-Japan Union Hospital, Jilin University, Changchun, China

Background: 5-Fluorouracil (5-FU) is one of themost common chemotherapy

drugs used to treat colorectal cancer (CRC), which often develops resistance

in more than 15% of patients. Curcumin, an active component of Curcuma

longa, has been reported to show antitumor activity in CRC and, furthermore,

enhance the e�ect of chemotherapy against colorectal cancer cells. However,

the molecular mechanisms underlying the sensitizing e�ect of curcumin on

5-FU have not been largely elucidated. In this study, we aimed to systematically

investigate the role of curcumin as a chemosensitizer for the treatment of CRC,

along with the key events responsible for its pharmaceutical e�ect, which may

lead to better clinical outcomes.

Methods: A high-resolution 2DE-based proteomics approach was used to

characterize global protein expression patterns in CRC cells treated with 5-FU

both in combination with curcumin or without. The di�erentially expressed

proteins were obtained from the 2DE analysis and subsequently identified by

MALDI-TOF MS or nano-ESI-MS/MS, some of which were validated by the

Western blot. Intracellular reactive oxygen species (ROS) were measured to

assess the change in the redox environment resulting from the drug treatment.

Results: A series of proteins with altered abundances were detected and

identified by MALDI-TOF or nano-MS/MS. From a total of 512 isolated

proteins, 22 proteins were found to be upregulated and 6 proteins were

downregulated. Intracellular ROS was significantly elevated after curcumin

treatment. Furthermore, mass spectrometry data revealed that some of the

proteins appeared to have more oxidized forms upon curcumin treatment,

suggesting a direct role for ROS in the chemosensitizing e�ect of curcumin.

Conclusion: The e�ect of curcumin in enhancing chemosensitivity to 5-FU

is a complex phenomenon made up of several mechanisms, including

enhancement of the intracellular level of ROS. Our findings presented here

could provide clues for a further study aimed at elucidating the mechanisms

underlying the chemosensitizing e�ect of curcumin.

KEYWORDS
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Introduction

Colorectal cancer is a common malignant tumor of

the digestive tract with a complicated and multifaceted

parthenogenesis (1). It has been well-recognized that both

genetic factors and living environment can induce the

occurrence of colorectal cancer. Nowadays, the incidence and

mortality of colorectal cancer have shown a rapid increase

all over the world (2). In China, with the changes in the

living environment and dietary habits, the mortality rate

of colorectal cancer is also rising rapidly. The incidence

rate of colorectal cancer in China has become equal to the

world average (3, 4). Currently, methods for the treatment

of colorectal cancer include radical surgery, postoperative

radiotherapy, and chemotherapy (5–7). Early colorectal

cancer can be treated with radical surgery, while in advanced

metastatic colorectal cancer, the opportunity for surgery

is lost and only chemoradiotherapy and other treatment

means can be used though the prognosis is often poor with

a 5-year survival rate of only 11%. At present, the clinical

treatment of early colorectal cancer is mainly surgical radical

resection, followed by 5-fluorouracil (5-FU) combined with

other chemotherapy drugs (oxaliplatin, irinotecan, etc.) as

postoperative adjuvant chemotherapy, which can further

improve the disease-free survival (DFS) and/or overall

survival (OS) of patients (8–10). Unfortunately, multiple

chemotherapies often lead to drug resistance, which is also

a major obstacle affecting the efficacy and prognosis of

chemotherapy (11, 12). Curcumin, an active component

extracted from Curcuma longa, has been shown to affect the

sensitivity of tumor cells to chemotherapeutic drugs, including

5-FU (13). However, the molecular mechanisms underlying

the sensitizing effect of curcumin on chemotherapeutic drugs

have not been largely explored, which will eventually contribute

to the establishment of new treatment strategies to improve

drug efficacy, which is of great significance to improving

clinical efficacy.

Curcumin and its anti-tumor effects has been subject

to extensive exploitation as a third-generation cancer

chemopreventive drug for several malignant tumors such

as gallbladder cancer, liver cancer, and gastrointestinal cancer

(14–16). Although curcumin as an anti-cancer agent has entered

the stage of clinical trials, the outcome from some of the clinical

trials was not very satisfactory for a variety of reasons (17).

Some clinical trials failed because of the low concentration

of curcumin adopted in the treatment, while others using

high doses of curcumin displayed serious toxic reactions due

to its genotoxicity and long-term effects (18). Therefore, it

is very urgent for researchers to systematically investigate

the detailed mechanisms underlying the pharmaceutical

potentials of curcumin as an efficient anti-cancer agent in

clinical applications.

Since the concept of the proteome was first proposed in

1994, the field of proteomics has been developing rapidly,

providing a high-throughput technological platform for in-

depth and systematic research on various life phenomena

and their mechanisms, as well as the pathogenesis of various

major human diseases, from a dynamic, multidisciplinary, and

holistic perspective (19–21). At present, extensive proteomic

investigations have been carried out in multiple human

tumor tissues or cell lines, including colorectal cancer (CRC),

whereas limited proteomic studies have focused on the

anti-tumor effect of curcumin on CRC. For example, Lee

et al. compared the proteomes of primary and metastatic

colorectal cancer cell lines, SW480 and SW620, respectively,

which were treated with different chemotherapy agents and

natural compounds. The results showed that oxaliplatin,

ginsenoside 20(S)-Rg3, and curcumin displayed significant anti-

tumor activity, which mainly affected fatty acid synthase and

histone H4 (22). In another example using an analog of

curcumin with an alkyne moiety that can be conjugated with

functional moieties through click chemistry, a list of proteins

in HCT116 cells that were bound to curcumin were identified,

suggesting that curcumin may target EIF2, eIF4/p70S6K,

and mTOR signaling pathways. In addition, mitochondrial

dysfunction could be induced by curcumin (23). Although

some achievements have been made by several proteomics

studies on the anti-cancer potential of curcumin, the underlying

multifaceted mechanisms remain unclear and need to be

further explored.

In the present study, we adopted 2DE coupled with mass

spectrometry to systematically identify the key proteins, as

well as the key events, involved in the chemosensitizing effect

of curcumin on the CRC cells treated with 5-fluorouracil

(5-FU), aiming to further decipher the underlying

molecular mechanisms that may eventually lead to better

clinical outcomes.

Methods

Cell culture

Human CRC SW480 cells were cultured in DMEM

supplemented with 1% penicillin-streptomycin and 10% fetal

bovine serum (FBS) at 37◦C in 10-cm dishes under a humidified

5% CO2 atmosphere. Curcumin, as well as 5-fluorouracil,

dissolved in DMSOwas added into the culture media at different

final concentrations.

Cytotoxicity assay

The cytotoxic activities of the two compounds, namely,

curcumin and 5-fluorouracil, toward SW480 cells were
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FIGURE 1

Cytotoxicity of 5-FU in SW480 cells is enhanced by curcumin. (A) Cytotoxicity of curcumin was determined after exposure of SW480 cells to

curcumin with di�erent concentrations (0, 10, 20, 50, and 100µM) and di�erent times (12h, 24h, and 48h). Cell viability was measured with the

MTT analysis. (B) Cytotoxicity of 5-FU was determined after exposure of SW480 cells to 5-FU alone and 5-FU in combination with 5µM

curcumin for 48h. Cell viability was measured with the MTT analysis. The results are provided as mean values with standard deviations from at

least three independent experiments.

measured using the MTT assay. Briefly, 1 × 104 cells per well

were seeded into 96-well culture plates and cultured for 48 h at

37◦C. Then, the culture media were replaced with fresh DMEM

containing curcumin and/or 5-fluorouracil and incubated for

an additional 48 h. The culture media were then replaced by

freshly prepared media containing 0.5 mg/ml MTT. After 4 h

of incubation, the resulting insoluble purple formazan was

dissolved with 200 µl DMSO. A microplate reader was used to

measure the absorbance at 570 nm to calculate the cytotoxicity

of the drugs. Triplicate measurements were performed for each

concentration of the drugs.

Protein sample preparation

The cells that were used for proteomics analyses were

washed with a Tris-buffered 250mM sucrose solution and

collected using a cell scraper. Then, the cells were lysed with

a freshly prepared lysis buffer (8M urea, 4% w/v CHAPS,

and 50mM DTT), which was supplemented with a cocktail of

protease inhibitors. The protein samples were obtained from cell

lysates by ultracentrifugation at 16,000 × g at 4◦C for 30min.

The samples were subjected to a DC-RC protein assay and then

stored at−80◦C until used for 2DE.

2DE

The protein samples that were subjected to 2DE were

prepared by dilution of 0.5mg protein into 300 µl with

rehydration solution, followed by loading into IPG strips (24 cm,

pH 3–10 nonlinear, Amersham) for 12 h. Isoelectric focusing

was carried out for a total of 70,000 V-h. Then, the IPG strips

were equilibrated, and the proteins in the IPG strips were

separated by the second-dimensional SDS electrophoreses. After

2DE separation, the gels were detached from glass plates and

fixed immediately in 10% TCA for 60min. The proteins in the

gels were stained with Coomassie Brilliant Blue G-250. The gel

images were scanned with a scanner. The PDQuest software was

used to analyze the gel images, by which the total density on

each gel was normalized to accurately compare spot quantity

between gels.

Frontiers inMedicine 03 frontiersin.org

78

https://doi.org/10.3389/fmed.2022.1032256
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yang et al. 10.3389/fmed.2022.1032256

FIGURE 2

A pair of protein 2DE images of SW480 cells treated with 5-FU alone (A) and those treated with both 5-FU and curcumin (B) with sample loading

of 0.5mg protein each. The isoelectric focusing was carried out on 24cm IPG strips with a nonlinear pH range of 3–10. Then, the proteins in the

IPG strips were separated by the second-dimensional SDS electrophoreses. The gels were stained by Colloidal Coomassie blue G-250. Numbers

associated with the spots on the gel images refer to the identified proteins listed in Table 1.
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TABLE 1 Summary of di�erentially expressed proteins (DEP) in SW480 cells in response to 5-FU and curcumin treatment.

Spot

number

Accession

number

Protein information Gene

name

Observed

pI/Mw (kDa)

Sequence

coverage%

Theoretical

pI/Mw (kDa)

Upregulated proteins in response to curcumin treatment

1 P27797 Calreticulin CALR 4.02/47.4 28 4.29/48.14

2 Q04917 14-3-3 protein eta YWHAH 4.90/25.3 24 4.76/28.2

3 P10809 60 kDa heat shock protein,

mitochondrial

HSPD1 5.25/55.4 31 5.7/61.02

4 P49720 Proteasome subunit beta type-3 PSMB3 6.45/22.3 6.13/22.95

5 P15559 NAD(P)H dehydrogenase

[quinone] 1

NQO1 8.45/35.5 24 8.91/30.87

6 P30041 Peroxiredoxin-6 PRDX6 5.45/23.0 19 6.0/25.03

7 P25788 Proteasome subunit alpha type-3 PSMA3 5.35/25.5 27 5.19/28.43

8 Q14152 Eukaryotic translation initiation

factor 3 subunit A

EIF3A 5.33/24.0 27 6.38/116.57

9 P52565 Rho GDP-dissociation inhibitor 1 ARHGDIA 5.24/22.2 5.01/23.21

10 Q5EBM0 UMP-CMP kinase 2,

mitochondrial

CMPK2 6.42/49.8 35 6.57/49.45

14 P17987 T-complex protein 1 subunit alpha TCP1 5.88/61.5 22 5.8/60.34

15 Q15366 Poly(rC)-binding protein 2 PCBP2 6.41/42.4 6.33/38.58

16 P05386 60S acidic ribosomal protein P1 RPLP1 4.35/12.4 4.21/11.51

17 P06733 Enolase 1 ENO1 6.92/47.7 34 7.01/47.17

18 P07237 Protein disulfide-isomerase P4HB 4.90/59.3 39 4.76/57.12

19 P32322 Pyrroline-5-carboxylate reductase

1, mitochondrial

PYCR1 7.01/30.7 35 7.18/33.36

20 P09972 Aldolase C, fructose-bisphosphate ALDOC 6.10/40.9 26 6.14/39.46

21 P15531 Nucleoside diphosphate kinase A NME1 6.27/20.0 31 5.81/17.15

22 P60660 Myosin light polypeptide 6 MYL6 5.11/18.1 26 4.56/16.93

Downregulated proteins in response to curcumin treatment

24 P39023 60S ribosomal protein L3 RPL3 10.00/42.8 26 10.19/46.11

25 P22626 Heterogeneous nuclear

ribonucleoproteins A2/B1

HNRNPA2B1 9.02/39.3 32 8.97/37.43

26 P33316 Deoxyuridine 5′-triphosphate

nucleotidohydrolase,

mitochondrial

DUT 5.95/20.5 38 6.15/17.75

27 P12429 Annexin A3 ANXA3 5.89/35.8 24 5.62/36.38

28 P52597 Heterogeneous nuclear

ribonucleoprotein F

HNRNPF 5.08/47.0 33 5.37/45.67

In-gel digestion and MS analysis

The protein spots of interest were destained and then

subjected to in-gel digestion by TPCK-trypsin for 12 h at

37◦C. The tryptic peptides were purified by ZipTip C18

tips before the MS analysis. Most of the tryptic peptide

samples were analyzed using a Voyager DE STR MALDI

TOF mass spectrometer (Applied Biosystems). A saturated

CHCA solution was used as a matrix, which was mixed

with peptide samples and then loaded on the sample plate.

Besides MALDI TOF MS, nano-ESI-MS/MS was performed

on some of the tryptic peptide samples by using a QSTAR

mass spectrometer (Applied Biosystems). The tryptic peptide

sample was loaded onto a PicoTip emitter and then ionized

through an external nanoelectrospray ion source. The ions

with multiple charge states were manually selected for MS/MS
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FIGURE 3

Western blotting analysis of three di�erentially expressed

proteins: PRDX6, PDI, and dUTPase. Di�erential expression of

the protein of interest between SW480 cells treated with 5-FU

(20µM) in combination with or without curcumin is normalized

to actin level.

analysis to obtain the data for their fragment ions. Both MS

and MS/MS data were searched against the human subset in the

SwissProt database using the MASCOT software to identify the

protein spots.

Western blot

For validation of the results from proteomics analyses, the

cell lysates obtained in urea/thiourea lysis buffer (refer to the

“Cytotoxicity assay” section) were mixed 1:1 with denaturing

loading buffer and subjected to SDS-PAGE 12%. The separated

proteins were then transferred onto PVDF membranes.

Proteins of interest on the membranes were probed using

primary antibodies such as anti-PRDX6 polyclonal antibody

(Invitrogen), anti-PDI monoclonal antibody (Santa Cruz

Biotechnology), and anti-dUTPase monoclonal antibody (Santa

Cruz Biotechnology), followed by incubation with properly

diluted secondary antibodies conjugated with horseradish

peroxidase. The signals of each protein were then visualized

using an ECL reagent.

ROS assay

A DCFH-DA probe was used to detect intracellular ROS

levels. The DCFH-DA probe can be captured by cells and enter

the cell. After cell metabolism, it is oxidized by intracellular

ROS to generate fluorescent products, which can be detected

by FCM (flow cytometry). SW480 cells were seeded in six-well

plates for 24 h, then curcumin and 5-FU were added to each

well at different concentrations (0, 20, 50, and 100µM), and

the culture was continued for 48 h. Triplicate the cells for each

concentration of the drug. Then, the cells were collected and

washed three times with PBS. The DCFH-DA probe was added

to the cell suspension and incubated for 20min in the dark. The

cells were washed three times with PBS, resuspended with PBS,

and the fluorescence signal intensity was assayed using FCM

(flow cytometry).

Results and discussion

Curcumin can increase the cytotoxicity
of 5-FU on SW480 cells

Tomeasure the inhibitory effect of curcumin on the viability

of SW480 cells, we used MTT analysis to test the viability of

SW480 cells treated with different concentrations (0, 10, 20,

50, and 100µM) of curcumin for different incubation times

(12, 24, and 48 h). The results showed that with the increase in

curcumin concentration, the growth inhibition rate of SW480

cells decreased significantly. The inhibitory effect of curcumin

was maximal after 48 h of incubation. The IC50 of curcumin

was 30µM at 48 h. No inhibition of the viability of SW480

cells was observed at the concentration of 5µM. The results

are shown in Figure 1A. Then, we tested the inhibitory effect

of different concentrations (0, 10, 20, 50, and 100µM) of

5-FU on the viability of SW480 cells with or without low

concentration (5µM) curcumin for 48 h. The results showed

that, compared with those treated with 5-FU alone, the viability

of SW480 cells decreased significantly with the increase of 5-FU

concentration in a dose-dependent way: in the cells treated with

5-FU alone, when the concentration of 5-FU was 10µM, the

growth inhibition rate was significantly inhibited. When the

concentration of 5-FU was 100µM, the growth inhibition rate

was at its maximum, and the IC50 value was about 40µM.

In the cells treated with both 5-FU and 5µM curcumin, the

growth inhibition rate was significantly enhanced compared

with those treated with the same concentration of 5-FU, and

the IC50 value was reduced to 20µM. The results are shown in

Figure 1B.

Proteomics analysis identified relevant
proteins targeted by curcumin treatment

We performed proteomic analysis on the SW480 cells

treated with 20µM 5-FU alone and those treated with 20µM

5-FU and 5µM curcumin. Total proteins were extracted from

the collected cells and then separated by high-resolution 2DE

(Figure 2). The PDQuest software was used to compare the

protein spot patterns of the gel images. A total of 28 differentially

expressed protein spots between the two experimental groups

were detected to be responsible for curcumin treatment.
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FIGURE 4

A peptide DQGTYEDYVEGLR (82–94) from myosin light polypeptide 6 was identified through MS/MS spectrum of a doubly-charged peak at m/z

772.8 (A), whereas its oxidized form, in which the tyrosine (Y) is oxidized, was identified through MS/MS spectrum of a doubly charged peak at

m/z 780.7 (B).

Among these proteins, 22 proteins were upregulated and

6 proteins were downregulated upon treatment with a

combination of 5-FU and curcumin. These protein spots were

subjected to MALDI-TOF-MS or nano-ESI-MS/MS analyses

and subsequently identified by database searching (Table 1).

From the identified protein candidates, peroxiredoxin-6

(PRDX6), protein disulfide-isomerase (PDI), and deoxyuridine

5’-triphosphate nucleotidohydrolase (dUTPase) were validated

by Western blot analysis, and the expression changes were

consistent with the 2DE results as shown in Figure 3.

Through an in-depth examination of the mass spectra of

some differentially expressed proteins, evidence of the oxidized

form of some peptides was discovered in cells treated with

a combination of curcumin and 5-FU, implying an elevated

oxidative environment in these cells. For example, in the samples

treated with a combination of curcumin and 5-FU, myosin light

polypeptide 6 appeared to be oxidized at a tyrosine residue

within its peptide DQGTYEDYVEGLR (82–94), as shown in

Figure 4.

Intracellular ROS level was significantly
increased upon curcumin treatment

In the process of apoptosis mediated by the mitochondrial

pathway, with the increase of the degree of mitochondrial

membrane potential depolarization, the occurrence of an

oxidative stress response will be activated, leading to an increase

in ROS level and promotion of the process of apoptosis.

Therefore, ROS levels are an important marker of mitochondrial

pathway-mediated apoptosis. In this study, ROS levels were

measured in SW480 cells treated with different concentrations

of 5-FU (0, 20, 50, and 100µM). For the cells treated with 5-FU

alone, the ROS level of SW480 cells was slightly higher than

that of the cells untreated, in a dose-dependent way, as shown

in Figure 5A(a–d). As indicated in the “Curcumin can increase

the cytotoxicity of 5-FU on SW480 cells” section, curcumin

could significantly enhance the inhibitory effect of 5-FU on the

viability of SW480 cells. Therefore, we also measured the ROS

level of SW480 cells treated with different concentrations (0,
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FIGURE 5

Curcumin can increase the ROS level in SW480 cells treated with 5-FU. [(A): a–d] ROS level in SW480 cells treated with 5-FU (0, 20, 50, and 100)

alone was slightly higher than that of the cells untreated, in a dose-dependent way. [(A): i–iv, (B)] ROS level in SW480 cells treated with 5-FU (0,

20, 50, and 100µM) and curcumin increased significantly compared to those in the cells treated with 5-FU alone in a dose-dependent manner.

20, 50, and 100µM) of 5-FU and 5µM curcumin. The results

showed that ROS levels in the cells treated with both 5-FU and

curcumin increased significantly compared to those in the cells

treated with 5-FU alone in a dose-dependent manner, as shown

in Figures 5A(i–iv),B.

Curcumin is a natural phenolic compound extracted from

turmeric. It has been proven that curcumin has multiple

biological activities, such as antioxidant, hypotensive, anti-

inflammatory, and immune enhancement, especially with high

anti-tumor activity. Existing studies have found that curcumin

has a significant inhibitory effect on colorectal cancer, thyroid

cancer, and liver cancer. Chemotherapy plays a vital role in the

comprehensive treatment of tumors, especially in patients with

advanced tumors. Curcumin can promote the chemosensitivity

of a variety of cancers by multiple mechanisms, including

enhancement of the production of intracellular ROS (24–26).

Oxidative stress, which is caused by harmful stimulation,

intracellular reactive oxygen species (ROS) level, broken

oxidative balance, and excessive ROS, can affect mitochondrial

function, inhibit the cell cycle, and, through the mitochondria,

cause endoplasmic reticulum stress, the death of receptor

regulation pathways, cause DNA damage, and induce cell

apoptosis (27). Previous studies have found that curcumin can

cause an increase in ROS levels and oxidative stress in CRC cells,

thereby inducing cell apoptosis (28). Studies have found that

curcumin can significantly increase the ROS level in SGC7901

gastric cancer cells, upregulate the protein expression of Bax and

P53, downregulate the protein expression of Bcl-2, and activate

the apoptosis mediated by the JNK regulatory pathway (29). The

increase in ROS induced by curcumin can also cause ER stress

and induce cell apoptosis. Studies have found that curcumin can

affect the upregulation of ER stress regulatory protein CHOP
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and glucose regulatory response protein GRP78 expression in

SUNE1 cells of nasopharyngeal carcinoma, activate ER stress,

and thus induce cell apoptosis (30).

Conclusion

The underlying mechanisms of the chemosensitizating

activity of curcumin are complicated and multifaceted; the

intracellular reactive oxygen species are recognized to play a

key role, as revealed by the identification of some oxidized

protein targets upon treatment by curcumin in the present

study. However, the detailed mechanisms within which these

oxidative modifications play a role in the chemosensitazing

effect of curcumin have not been well established and need

further in-depth investigations in vitro and in vivo. Overall, our

findings in the present study could provide a new direction for

further elucidating the sensitization mechanism of curcumin.
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Introduction: Colorectal cancer (CRC) is the third most common and second

most deadly malignancy in the world with an estimated 1. 9 million cases and

0.9 million deaths in 2020. The 5-year overall survival for stage I disease is 92%

compared to a dismal 11% in stage IV disease. At initial presentation, up to 35%

of patients have metastatic colorectal cancer (mCRC), and 20–50% of stage II

and III patients eventually progress to mCRC. These statistics imply both that

there is a proportion of early stage patients who are not receiving adequate

treatment and that we are not adequately treating mCRC patients.

Body: Targeted therapies directed at CRC biomarkers are now commonly

used in select mCRC patients. In addition to acting as direct targets, these

biomarkers also could help stratify which patients receive adjuvant therapies

and what types. This review discusses the role of RAS, microsatellite instability,

HER2, consensus molecular subtypes and ctDNA/CTC in targeted therapy and

adjuvant chemotherapy.

Discussion: Given the relatively high recurrence rate in early stage CRC

patients as well as the continued poor survival in mCRC patients, additional

work needs to be done beyond surgical management to limit recurrence and

improve survival. Biomarkers o�er both a potential target and a predictive

method of stratifying patients to determine those who could benefit from

adjuvant treatment.

KEYWORDS

adjuvant chemotherapy, targeted therapies, colorectal cancer, individualized

medicine, biomarkers

Introduction

Colorectal cancer (CRC) is the third most common and second most deadly

malignancy in the world with an estimated 1.9 million cases and 0.9 million deaths in

2020 (1). With improved screening and enhanced surgical options, the overall survival

in patients with CRC has improved over time with a current overall relative survival of

65% at 5 years (2). However, this survival varies greatly as the disease progresses. The

5-year overall survival for stage I disease is 92% compared to a dismal 11% in stage IV

disease (3). At initial presentation up to 35% of patients have metastatic colorectal cancer

(mCRC) with 20–50% of stage II and III patients eventually progressing to mCRC (4).
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Current recommendations suggest that patients with stage III

(lymph node-positive) colon cancer undergo surgical resection

followed by adjuvant chemotherapy. There continues to be

controversy about the survival benefit of chemotherapy in

patients with stage II disease (5). The intention of adjuvant

chemotherapy is to decrease the chances of recurrence in the

setting of curative resection. As stage II disease is node-negative,

there is a presumption of local disease without metastases.

Current recommendations suggest that stage II patients do

not receive adjuvant therapy, however up to 23% will have

a recurrence within 5 years indicating we are not currently

capturing a population who may indeed have initial early spread

and would benefit from additional therapy (6). Therefore, some

argue that “high risk” stage II patients should receive adjuvant

therapy in hopes of rescuing this population who will eventual

relapse. Some high risk factors in stage II disease that have been

suggested as warranting adjuvant treatment include T4 tumors,

<12 lymph nodes harvested at surgery, presence of bowel

obstruction or perforation, poorly differentiated tumors, and the

presence of lymphovascular/perineural invasion (7). Of these,

only T4 disease has been validated to help identify the subset of

stage II patients who benefit from adjuvant chemotherapy (8).

Standard adjuvant treatment regimens for high risk stage II

or stage III disease include combination therapies of CAPEOX

(capecitabine and oxaliplatin) and FOLFOX (leucovorin,

fluorouracil (5-FU), and oxaliplatin). However, only 20% of

patients benefit from adjuvant chemotherapy, exposing 80%

of patients to unnecessary toxicity (9). In addition to these

combination therapies of classic chemotherapy agents, newer

targeted agents exist and may confer benefits in specific

patient populations. Better biomarkers that stratify patient

risk (prognostic) and predict therapeutic responses (predictive)

could reduce the exposure of patient populations to unnecessary

toxicity and increase the likelihood of eliminating the chance

of recurrence in patients after resection. Biomarkers could aid

in defining the optimum regimen of adjuvant chemotherapy,

the duration of treatment, the utility of additional targeted

treatments, and which patient populations should receive it

(Table 1).

Microsatellite instability

High microsatellite instability (MSI-H) is the phenotype of

a deficient mismatch repair (dMMR) system and is present in

about 15% of colorectal cancers.Microsatellites are short tandem

repeats of single nucleotide or di-, tri-, or tetra-nucleotides

in DNA sequences found throughout the tumor genome and

are a marker of a hypermutable phenotype. The mismatch

repair (MMR) system functions to rectify errors that may occur

during DNA replication. With the inactivation of at least one

of the DNA MMR genes (MLH1, MSH2, MSH6, and PMS2)

through either mutations or transcriptional silencing, the MMR

system is unable to function leading to an accumulation of

errors in the DNA (10). This inactivation stems from either

germline mutations in the MMR genes themselves or somatic

hypermethylation of CpG islands surrounding the promotor

region in the genes. Germline mutations in MMR lead to

hereditary non-polyposis colorectal cancer (HNPCC or Lynch

Syndrome) which causes ∼3% of all CRCs (11). The somatic

hypermethylation of CpG islands is known as the CpG island

methylator phenotype (CIMP). These CIMP tumors comprise

the majority of sporadic MSI-H CRCs (12). These CIMP

tumors are in contrast to tumors with chromosomal instability

(CIN) which follow the more traditional pathway of initial

APC mutation causing a tubular adenoma with subsequent

accumulated mutations leading to cancer (13).

MSI-H/dMMR is more common among stage II tumors

compared with stage III CRCs and relatively uncommon in stage

IV (metastatic) CRCs suggesting MSI-H/dMMR tumors are less

likely to metastasize. Indeed, MSI-H/dMMR is independently

associated with improved survival compared with tumors with

proficient MMR (pMMR) (14). In addition, MSI-H/dMMR

tumors also have lower recurrence rates compared with pMMR

tumors (15). It has also been shown that MSI-H/dMMR tumors

do not respond well to 5-FU-based adjuvant chemotherapy

(16). Indeed, cells require a competent MMR system for 5-

FU to be effective (17). Current recommendations suggest that

patients with stage II colon cancer with MSI-H/dMMR should

not receive adjuvant 5-FU-based chemotherapy based on this

known favorable prognosis and lack of response to therapy.

Unlike 5-FU, oxaliplatin leads to DNA-cross linking and

inhibits DNA synthesis and transcription. This damage is not

recognized by the MMR system and dMMR tumors should

not be resistant to oxaliplatin. The MOSAIC trial revealed

improvement in 5-year DFS and 6-year OS for stage III colon

cancers with the addition of oxaliplatin to 5-FU regardless of

MMR status (18). Ten year follow up of the MOSAIC trial

confirmed the benefit of oxaliplatin as adjuvant therapy in stage

II/III colon cancers. More recent work has revealed a potential

benefit to the addition of oxaliplatin to fluoropyrimidines in

adjuvant chemotherapy for MSI-H stage III colon cancer (19).

In addition to standard chemotherapy, additional treatment

options exist that may specifically benefit in MSI-H/dMMR

patients. As previously discussed, MSI-H/dMMR have a baseline

improved clinical course compared to tumors with pMMR. This

may be due to their hypermutable phenotype contributing to

the production of abnormal peptides that serve as neoantigens,

producing specific antitumor immune responses leading to

decreased tumor growth and metastasis (20). Sporadic MSI-

H CRC have a distinct phenotype that includes right colon

predominance, increased prevalence in women and poor

differentiation/mucinous histology. MSI-H tumors also exhibit

an elevated number of tumor-infiltrating lymphocytes (TILs),

supporting this neoantigen hypothesis (21). This baseline local

immune control contributes to improved patient survival in
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TABLE 1 Emerging and established biomarkers.

Biomarker Targeted drugs Resistance Chemotherapy

Microsatellite instability Pembrolizumab Nivolumab (PD-1

inhibitors) Ipilimumab (CTLA4

inhibitor)

Stage II dMMR patients have not been

shown to benefit from 5-FU

adjuvant therapy Oxaliplatin may have a

benefit in MMR tumors

RAS Small molecules targeting G12C variant Confers anti-EGFR agent

resistance

BRAF BRAF inhibitors Negative predictor of response to

anti-EGFR therapies

HER2 Trastuzumab Lapatinib Pertuzumab

Trastuzumab deruxtecan

Predict resistance to anti-EGFR

therapies

HER2 high patients may benefit from

adjuvant chemotherapy

APC Tankyrase inhibitors

CEA CEA high patients may benefit from

adjuvant chemotherapy

NTRK Enterctinib Larotrectinib

Biomarkers offer targets for directed drug therapy as well as potential markers of resistance. In addition, biomarkers can be used to help guide chemotherapy decisions.

MSI-H CRC and also sensitizes tumors in these patients to

immune checkpoint inhibitors targeting either programmed cell

death-1 protein (PD-1) or cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4). PD-1 is expressed on T cells, and binding

of its ligands (PD-L1 and PD-L2) downregulates T cell effector

function. In that context, tumors can escape immune detection

by upregulating expression of programmed death ligand 1 (PD-

L1) (22). Inhibitors of PD-1 block the receptor from interacting

with its ligands, promoting tumor cell killing by effector T cells.

Inhibitors of PD-1, pembrolizumab (Keytruda) and nivolumab

(Opdivo), are FDA-approved for patients with mCRC with

dMMR or MSI-H and confer a significant survival benefit

when used (23, 24). An additional target, CTL-4, is transiently

expressed on activated T cells with its expression inhibiting

the production of cytokines and providing a negative feedback

signal to T cells prompting T cell cycle arrest. Inhibition of

CTLA-4 may lead to reactivation of T cells allowing them to

overcome tumor-induced immune tolerance (25). Ipilimumab

(Yervoy) is an anti-CTLA-4 antibody used in metastatic

dMMR/MSI-H patients in combination with nivolumab (26).

This combination of nivolumab and low-dose ipilimumab

produced an objective response rate of 64%, complete response

rate of 9%, and disease control rate of 84%, all of which were

durable (27). While the results of immune checkpoint blockade

in dMMR/MSI-H CRC patients have been encouraging, single

agent checkpoint inhibitors are not efficacious in patients with

pMMR which makes up the majority of CRC patients (28). In

addition, while immune checkpoint inhibitors are approved in

mCRC dMMR/MSI-H disease, their utility as adjuvant therapy

in localized disease and their efficacy in combination are being

explored (29, 30). The use of dMMR/MSI-H as a biomarker in

determining the need for adjuvant therapy, the type of adjuvant

chemotherapy and the addition of an immune checkpoint

inhibitor could better optimize the alignment of treatment

groups and therapies.

MAPK pathway (Ras-Raf-MEK-ERK)

Gain or loss of function mutations in proteins in the

mitogen-activated protein kinase (MAPK) pathway lead to

dysregulated proliferative cell signaling ultimately driving

tumorigenesis. The first protein to be activated in the pathway

is RAS, a commonly mutated protein in CRC (31). In the

normal cell, activation of RAS begins with an extracellular ligand

binding to a receptor-linked tyrosine kinase like epidermal

growth factor receptor (EGFR). This binding activates the

tyrosine kinase in the cytoplasmic domain of the receptor

causing phosphorylation of EGFR and interaction with RAS.

This triggers RAS, a GTPase, to exchange a GDP molecule for

GTP, activating the pathway and initiating a kinase cascade

leading to the activation of Raf, MAPK/ERK (MEK1 or 2) and

ultimately MAPK (32).

RAS (KRAS, NRAS, and HRAS) is the most frequently

mutated gene family in cancers with the most common

oncogenic mutant of the RAS family being KRAS G12C.

KRAS mutations are present in 30–50% of CRC with NRAS

mutated in 3–5% and HRAS mutated in <1% (33, 34). KRAS

mutations account for up 45% of mCRC and ∼15–37% of

early stage tumors (35, 36). Historically, RAS was considered

“undruggable” due to its picomolar affinity for GTP/GDP, the

absence of identified allosteric regulatory sites, and the necessity

of wild type RAS in normal biologic functions. However, small
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molecules that specifically inhibit the G12C variant have been

identified, making RAS a potential therapeutic target (37).

Monoclonal antibodies targeting EGFR, including

cetuximab and panitumumab, are routinely used in mCRC.

These monoclonal antibodies compete with the endogenous

EGFR ligand and after binding, block phosphorylation,

leading to internalization and degradation of the receptor.

Cetuximab has been approved as a first-line treatment in

mCRC patients with wild-type KRAS in combination with

chemotherapy (38). Unfortunately, the addition of cetuximab

to FOLFOX failed to improve disease-free or overall survival

in post-resection stage III colon cancer patients (39). There is

emerging evidence of the effectiveness of combining EGFR and

KRAS G12C inhibitors in advanced disease. EGFR signaling

has been identified as the primary mechanism of resistance to

KRAS G12C inhibitors and this combination may overcome this

resistance (40). The combination of anti-EGFR and KRAS G12C

inhibitors is effective in cell lines, patient-derived organoids,

and xenografts (41).

One downstream effector target of RAS is the RAF family,

made up of c-RAF1, BRAF, and ARAF. Of these, BRAF is

the most frequently mutated in tumors (42). Outside the

constitutive activation of RAS, mutations in codon 600 of the

BRAF gene produce RAS-independent activation of the MAPK

pathway, leading to increased cell proliferation and survival.

Sporadic MSI CRCs often show increased co-occurrence of

BRAFV600E mutations compared to CRCs overall (43). These

somatic BRAFV600E mutations increase BRAF/MEK/ERK

signaling leading to the CIMP which silences MLH1, ultimately

resulting in dMMR. The presence of a BRAF mutation indicates

a sporadic MSI tumor and virtually excludes the diagnosis of

Lynch syndrome (44). Patients with BRAFmutations experience

poorer survival compared to patients with wild-type BRAF

(45). BRAF mutations are associated with more right-sided

primary tumors and with an increased risk of metastasis to the

peritoneum and distant lymph nodes (46). BRAF and KRAS

mutations are not coincident in tumors, and many KRAS wild

type mCRC have BRAF mutations. These mutations identify

tumors that are unresponsive to anti-EGFR therapies when

combined with chemotherapy (47).

BRAF inhibitors are used extensively in BRAFV600E

melanomas with positive treatment results (48). While BRAF

inhibitor monotherapy in BRAFV600 melanoma leads to

response rates of >50%, only ∼5% of BRAFV600 CRC

patients respond (49). Since EGFR mediates resistance to BRAF

inhibitors, the differing expression of EGFR in CRC, compared

to melanoma, may explain this difference in response rates. In

CRC, BRAF inhibition leads to feedback activation of EGFR

which increases proliferation even in the presence of BRAFV600

inhibition (50). In contrast, simultaneous blockade of EGFR

and BRAF produced synergistic inhibition of tumor growth

in murine CRC models through enhanced MAPK suppression

(51). Dual treatment with EGFR and BRAF inhibitors in

previously-treated patients with BRAF V600E mCRC improved

overall survival and progression-free survival compared to

standard chemotherapy (52). Moreover, triple therapy inhibiting

BRAF, EGFR, and MEK is effective against BRAFV600 tumors

(53, 54).

HER2

HER2 (human epidermal growth factor receptor 2) is a

transmembrane receptor that acts as an intracellular tyrosine

kinase. Homo- or heterodimerization of HER2 with an

additional member of the EGFR family (EGFR/HER2/ERBB)

leads to the activation of either the RAS-RAF-ERK or PI3K-

PTEN-AKT pathway leading to increased cellular proliferation.

The amplification of the HER2 gene or overexpression of the

HER2 protein has been targeted in solid tumor malignancies

other than CRC.While therapies that block HER2 (trastuzumab,

lapatinib, and pertuzumab) have gained prominence in treating

patients with HER2-overexpressing tumors in these other

malignancies, there are no HER-2-directed therapies approved

by the FDA to treat CRC.

Preclinical work initially showed that HER2-amplified

tumors were responsive to dual HER2-directed therapies, but

not individual agents alone. Using this information, a phase

2 trial examining dual HER2 therapy comprising a tyrosine

kinase inhibitor and anti-HER2 monoclonal antibody in KRAS

wild-type, HER2-positive mCRC patients demonstrated that

30% of patients had objective responses and 44% had stable

disease (55). A phase 2 trial of trastuzumab deruxtecan, a

HER2-targeted antibody-drug conjugate, in patients who had

previously progressed on at least two previous treatment

regimens, showed an objective response rate of 45.3% (56).

In quadruple WT populations (KRAS, NRAS, BRAF, and

PIK3CA WT) treated with anti-EGFR therapies, the HER2

pathway may function as a bypass leading to resistance to anti-

EGFR agents (57) (Figure 1). Indeed, HER2 expression predicts

unresponsiveness to EGFR-targeted therapies in mCRC (58).

In addition to predicting response to HER2 and EGFR

directed therapies, HER2 expression could help identify which

patients may have a benefit from adjuvant chemotherapy.

One study showed that among HER2 high patients, those

who received chemotherapy had better OS and DFS than

chemotherapy naïve patients. They showed no difference in

outcomes among chemo-treated and chemo-naïve patients in

the HER2 low group (59). This implies HER2 expression in CRC

can be used as a direct target as well as a biomarker of resistance,

and even eventually a guide in chemotherapy.

APC

In most CRCs Wnt/β-catenin signaling is activated by

loss-of-function mutations in the adenomatous polyposis coli
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FIGURE 1

Epidermal growth factor signaling pathways. Multiple potential targets for therapy exist along epidermal growth factor receptor (EFGR) and

human epidermal growth factor receptor 2 (HER2) pathways. In addition, amplification of HER2 has been implicated in anti-EGFR therapy

resistance as activation of the HER2 pathway may bypass blockade of EGFR. Created with BioRender.com. Adapted from Crutcher et al. (37)

Overview of predictive and prognostic biomarkers and their importance in developing a clinical pharmacology treatment plan in colorectal

cancer patients, Expert Review of Clinical Pharmacology.

(APC) gene. The β-catenin-dependent Wnt signaling pathway

is initiated by the binding of secreted cysteine-rich Wnt

glycoproteins to LRP5/6 receptors and FZD receptors. The

secretion of Wnt ligands depends on acylation by Porcupine

(PORCN) (60). Binding of the Wnt ligands to LRP5/6 and

FZD receptors on the cell surface induces disheveled (DVL)

which leads to suppression of glycogen synthase kinase 3β

(GSK3β). Together GSK3β, axin, and casein kinase 1 (CK1a)

form a destruction complex which is stabilized by APC

and phosphorylates β-catenin, priming it for degradation

by the ubiquitin-proteosome pathway. In the presence of

Wnt, and suppression of GSK3β, un-phosphorylated β-catenin

accumulates in the cytosol, translocates to the nucleus,

and interacts with TCF/LEF transcription factors to trigger

expression of Wnt targets like c-Myc, cyclin D1, and CDKN1A

(61). Inactivating mutations of APC de-stabilize the destruction

complex, leading to activation of the Wnt signaling pathway

which drives tumorigenesis.

While dysregulation of theWnt/β-catenin signaling pathway

is common in CRCs, this pathway lacks druggable molecular

targets. Tankyrases (TNKSs) are members of poly-ADP-ribose

polymerases (PARPs) family that poly-ADP-ribosylate and

downregulate axins resulting in an overexpression of β-catenin.

Tankyrase inhibitors (TNKSi) have been developed as potential

therapeutic agents in CRC (62). APC may effect response to

tankyrase inhibitors. It has been shown that drug-sensitive CRC

cells had truncated forms of APC that lacked all seven β-catenin-

binding 20-amino acid repeats (AARs) resulting in cell response

to TNKSi. Conversely, drug-resistant CRC cells had longer

forms of APCs with two of more 20AARs (63). Identification

of APC status could be prognostic in determining potential

response to TNKSi.

CEA

Carcinoembryonic antigen (CEA) is a cell adhesion

molecule that is elevated in the serum of patients with a

variety of cancers, including CRC. CEA levels have been used

postoperatively in surveillance and higher preoperative CEA

levels have been shown to be an independent predictor of

both overall and disease-free survival rates. In addition, patients

with node-negative colon cancer but elevated preoperative CEA

levels have a poor prognosis similar to those with node-positive
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disease (64). These patients may be candidates for adjuvant

chemotherapy. As previously discussed stage II colon cancers

do not typically receive adjuvant chemotherapy. However those

stage II patients with high risk features may benefit from

adjuvant therapy but there has been difficulty in defining this

group. Studies have shown that CEA levels could potentially

be used to risk stratify stage II patients and inform treatment

decisions (65).

NTRK

Neurotrophic tyrosine receptor kinase (NTRK) gene fusions

are extremely rare in CRC occurring in less than 1% of tumors

(66). However, they are more frequently found in patients

with dMMR (67). The FDA has approved two tropomyisin

receptor kinase (TRK) inhibitors, entrectinib, and larotrectinib,

for use in patients with NTRK fusion-bearing cancers in either

a worsening metastatic setting or locally advanced unresectable

tumors (68). This is an example of tissue agnostic treatments that

can be used in any solid tumor, not just CRC.

Consensus molecular subtypes

An additional method of categorizing CRCs that may help

guide treatment decisions are the Consensus Molecule Subtypes

(CMS). CMS1 or MSI immune tumors account for 14% of

CRCs. They have a high rate of mutations, with frequent BRAF

mutations, and sizeable immune infiltration. The majority of

MSI tumors fall in this category and, as previously discussed,

these tumors are responsive to immune checkpoint inhibitors.

In addition, the BRAFV600E mutation predisposes resistance to

treatment with anti-EGFR agents. CMS2 or canonical tumors

make up 37% of tumors and have upregulated Wnt/Myc

signaling. These tumors stem from the canonical adenoma-

to-carcinoma sequence typified by the initial loss of APC, a

following activating mutation in KRAS, and an ultimate loss

of TP53. CMS3 or metabolic tumors comprise 13% of cases

and have frequent KRAS mutations and dysregulation of cancer

metabolic pathways. As discussed previously, KRAS mutation

may indicate a poor response to anti-EGFR therapy. CMS4 or

mesenchymal tumors form 23% of cases and are characterized

by transforming growth factor beta (TGFβ) pathway activation,

enhanced angiogenesis, stromal activation and inflammatory

infiltrates (69).

These four molecular subtypes can be broadly divided into

“hot” and “cold” CRCs based on immune infiltration. The

high immune infiltration of CMS1/MSI-H tumors has been

discussed, as well as their responsiveness to treatment with

immune checkpoint inhibitors. While CMS4 tumors also have

increased immune cell infiltrates, responses to immunotherapy

may be altered by TGFβ signaling. In comparison to the anti-

tumor immune environment of CMS1 tumors, the CMS4 tumor

microenvironment is pro-inflammatory (70). Indeed, TGFβmay

be immunosuppressive and drive immune evasion in CRC

(71). Alternatively, CMS2 and CMS3 tumors are “cold” tumors

reflecting low immune cell infiltrates. CMS2 and CMS3 tumors

may respond to alternative immunogenic stimuli, like vaccines

or co-stimulatory compounds, but do not respond to immune

checkpoint inhibitors. CMS2 and CMS3 tumors also respond to

anti-VEGF agents (72). CMS classification has the potential to

provide prognostic information, since CMS2 and CMS3 tumors

have a better prognosis than CMS1 and CMS4. One study

examining CMS status among stage II CRC found adjuvant

chemotherapy had no benefit in CMS1 subtype tumors, and a

significant decrease in DFS for CMS4 tumors (73). In contrast,

stage II and III patients with either the CMS2 or CMS3 have

benefit from adjuvant therapy (74). While not currently used

in clinical practice CMS subtypes may eventually help guide

targeted and chemotherapy decisions.

Circulating tumor cells (CTCs) and
circulating tumor DNA (ctDNA)

The concept of a “liquid biopsy” for solid tumors has recently

emerged, reflecting sampling convenience and its ability to

capture the varying molecular markers of a solid tumor. Liquid

biopsies have multiple advantages over tissue biopsies, such as

assessing molecularly divergent metastatic lesions, capturing the

heterogeneity of a tumor, and evaluating potential resistance

mutations in real time as treatment progresses. Circulating

tumor cells (CTCs) are individual, or clusters of, cancer cells

circulating in the bloodstream resulting from passive shedding

or intravasation from the primary lesion or metastases (75). The

amount of detectable CTCs detected is associated with treatment

outcomes and overall survival (76). In contrast to CTCs, cell-

free circulating tumor DNA (ctDNA) comprises somatic and

epigenetic DNA alterations from tumor cells released into

bloodstream following apoptosis or necrosis. ctDNA is more

abundant within the bloodstream than CTCs but both can be

detected and interrogated for actionable treatment targets and

emergent resistant sub-clones, therefore assisting in treatment

decisions before and after initiation of therapy.

There is an established relationship between ctDNA and

tumor burden, with ctDNA positivity increasing with CRC

stage (77). In this sense, ctDNA could identify high risk

early stage patients. In addition, as discussed earlier, there are

several biomarkers that can predict prognosis or treatment

response in CRC such as MSI-H/dMMR (susceptibility to

immune checkpoint inhibitors) as well as KRAS/BRAF (anti-

EGFR resistance). A study interrogating the emergence of

mutated KRAS alleles in ctDNA during anti-EGFR therapy

revealed that these alleles decline when treatment is suspended,

demonstrating that liquid biopsies can be used to track

treatment resistance (78). The ability to accurately capture these
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markers prior to the initiation treatment could help tailor

therapeutic planning. Furthermore, the ability to track these

markers during treatment could both ensure treatment response

and monitor for developing resistance.

Currently, there is controversy as to what proportion

of stage II CRC patients should receive adjuvant therapy.

While some high risk characteristics have been suggested,

these are not validated and there is no consensus (79). In

stage II CRC, post-operative patients who were positive for

ctDNA were at extremely high risk for recurrence when not

treated with adjuvant chemotherapy (80, 81). A study surveying

ctDNA status in patients after curative-intent surgery revealed

that 100% of patients with ctDNA detected after treatment

completion ultimately recurred (82). In patients with resectable

colorectal liver metastases, patients with ctDNA detected after

surgery had a significantly poorer relapse-free survival and

overall survival. In addition, all patients with persistently

detectable ctDNA after adjuvant chemotherapy recurred (83). A

study in stage I-III patients revealed that in the majority, ctDNA

identified relapse after definitive treatment. The same study also

showed that ctDNA status was independently associated with

relapse after adjusting for other clinicopathologic risk factors

(84). ctDNA could potentially be used as an adjunct to the

traditional TNM staging and other potential prognostic markers

in determining which patients receive adjuvant therapy.

Summary

Despite improvements in screening and surgical

interventions, CRC has remained the second most common

cause of cancer-related death in the United States. While it

has an overall favorable relative survival 5 year survival of

65%, inadequacies in treatments are revealed when stage by

stage prognosis is examined (2). The 5-year overall survival for

stage I disease (small, no lymph node spread) is 92% compared

to 11% in stage IV (metastatic) (3). Approximately 35% of

patients have metastatic disease at initial presentation with

20–50% of stage II and stage III patients eventually progressing

to metastatic disease (4). These survival statistics illuminate

multiple areas for improvement in the treatment of CRC. The

high recurrence rates among patients who present with localized

disease indicates missed opportunities for curative treatment

in some patient populations. Currently, adjuvant therapy is

consistently given to patients with stage III disease (positive

lymph nodes) with some controversy in stage II disease. Again,

the high recurrence rates among this population suggest there

could be additional benefit from adjuvant treatment.

Further, much like innovations in targeted therapy, strides

have been made in novel sampling techniques. ctDNA in

the blood of CRC patients reflects the entire tumor genome.

Increasing levels of ctDNA have been shown to be correlated

with worse survival showing ctDNA could potentially be

included in staging algorithms (85). In addition to sampling at

diagnosis in order to stage and determine molecular markers,

ctDNA levels and mutation expression can be followed to

monitor for recurrence or emerging treatment resistance. While

CMS subtypes currently are not recommended for use in clinical

practice, this may change as a greater understanding of their

biology emerges.
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Colorectal cancer (CRC) is the third most prevalent form of cancer in the

United States and results in over 50,000 deaths per year. Treatments for

metastatic CRC are limited, and therefore there is an unmet clinical need

for more effective therapies. In our prior work, we coupled high-throughput

chemical screens with patient-derived models of cancer to identify new

potential therapeutic targets for CRC. However, this pipeline is limited by

(1) the use of cell lines that do not appropriately recapitulate the tumor

microenvironment, and (2) the use of patient-derived xenografts (PDXs),

which are time-consuming and costly for validation of drug efficacy. To

overcome these limitations, we have turned to patient-derived organoids.

Organoids are increasingly being accepted as a “standard” preclinical model

that recapitulates tumor microenvironment cross-talk in a rapid, cost-

effective platform. In the present work, we employed a library of natural

products, intermediates, and drug-like compounds for which full synthesis

has been demonstrated. Using this compound library, we performed a high-

throughput screen on multiple low-passage cancer cell lines to identify

potential treatments. The top candidate, psymberin, was further validated,

with a focus on CRC cell lines and organoids. Mechanistic and genomics

analyses pinpointed protein translation inhibition as a mechanism of action

of psymberin. These findings suggest the potential of psymberin as a novel

therapy for the treatment of CRC.

KEYWORDS

patient-derived organoids, patient-derived models of cancer, precision medicine,
psymberin, high-throughput screening, protein translation
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Introduction

Colorectal cancer (CRC) is the third most commonly
occurring form of cancer in the United States and is the
cause of over 50,000 deaths per year (1). At initial diagnosis,
approximately 20% of patients will have distant metastasis,
and another 25–30% of patients with stage II/III disease will
develop metastasis (2). Currently, the use of chemotherapy
in the metastatic setting can palliate symptoms and improve
survival, but do not result in cures for patients. If left untreated,
patients with colorectal metastasis can expect an overall survival
of approximately 9 months, but with combination therapy,
survival can be improved to greater than 24 months (3, 4).
The last two drugs that have been approved by the U.S. Food
and Drug Administration for the treatment of refractory CRC
were regorafenib (5) in 2014 and lonsurf (6) in 2015. Despite
these improvements, there remains a lack of new drugs for the
treatment of advanced CRC. Unfortunately, the failure rate for
new cancer drugs is more than 80% in Phase II and 50% in
Phase III trials (7). As a result, despite our advances, CRC still
remains an incurable and debilitating disease, and there is an
unmet clinical need to develop new therapeutics for CRC.

In our previous work, we developed a precision medicine
pipeline to facilitate the identification and validation of new
therapies in CRC and other solid tumors (8–11). These studies
highlighted the utility of a precision medicine pipeline to
identify, test, and characterize novel therapeutics using patient-
matched low passage cell lines and patient-derived xenografts
(PDXs). Cell lines provide a rapid and low-cost resource to
test thousands of compounds and perform genomics studies,
while matched PDXs provide robust in vivo models to validate
top candidate therapies. Despite the utility of this platform, it
is limited by (1) the reliance on the generation of cell lines,
which can take months to establish and characterize and do
not faithfully recapitulate the tumor microenvironment and (2)
the establishment of PDXs, which are costly and often time-
consuming to produce and maintain.

Given the limitations of our current pipeline, we have
turned to patient-derived organoids. Patient-derived organoids
are increasingly being accepted as a “standard” preclinical model
that is both more representative of in vivo tumor physiology
than cell lines and a low-cost rapid alternative to PDXs (12–14).
We have therefore adapted our precision medicine pipeline to
incorporate the use of patient-derived organoids (Figure 1A).
Using this new pipeline, we first performed a high-throughput
drug screen using a compound library on a panel of early-
passage cell lines from multiple solid tumors to identify potential
therapeutic agents. From this screen, we identified psymberin as
one of the top small molecules with potent growth inhibition
activity.

Psymberin, also known as irciniastatin A, belongs to a
group of biologically active natural products called polyketides.
Psymberin was independently discovered in 2004 by the

research groups of Crews and Pettit from the sponges
Psammocinia sp. and Ircinia ramose, respectively, and it has been
a marine natural product of immense interest since its isolation
(15–18). Psymberin has been tested against 60 cancer cell lines
and displayed potent cytotoxicity against melanoma, breast, and
colon cancer cell lines (LC50 < 2.5 × 10−9 M). While these
studies pinpoint psymberin as an effective anti-cancer agent, its
molecular mechanisms are not extensively understood.

Identification of psymberin as a top hit in our screens
prompted us to further characterize the activity and mechanisms
of action for psymberin. RNA-Seq on cells treated with
psymberin identified negative enrichment of protein translation
as a potential mechanism of action. The impact on translation
was verified using a fluorescence-based assay of translation
inhibition. The rapid inhibition of protein translation within
hours was concomitant with the activation of p38, a stress
response pathway, and cell cycle arrest. Together, our results
pinpoint psymberin as a potent protein translation inhibitor
with anti-cancer properties in CRC.

Materials and methods

Establishment and maintenance of
low-passage cell lines and organoids

Colorectal cancer patient tissue samples were collected
under a Duke Institutional Review Board approved protocol
(Pro00089222), obtained from the National Cancer Institute’s
Cooperative Human Tissue Network or obtained through Duke
University BioRepository and Precision Pathology Center. CRC
cell lines were established from patient tissue samples as
previously described (8). Briefly, patient samples were processed
and injected into SCID beige mice to grow as PDXs. After
the tumors grew to ∼0.5 cm3, tumors were then harvested,
homogenized, and grown in tissue-culture treated dishes,
with subsequent clonal selection as indicated (8). Low-passage
osteosarcoma lines were generated as described previously (9).
All cell lines were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) media supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin.

To establish organoids from existing cell lines, 2 × 106 cells
from each line were subcutaneously injected into SCID beige
mice. After the tumors grew to∼0.5 cm3, mice were euthanized
following Duke Institutional Animal Care and Use Committee
(IACUC)-approved protocols, and the tumor was then
harvested. Tumors were mechanically digested in C-tubes with
10 mL of DMEM using a gentleMACS Dissociator (Miltenyi
Biotec) and running the m_impTumor_01.01 protocol twice.
Cells and tissue fragments were filtered through 70 µm
filters and centrifuged at 500 g for 5 min. The supernatant was
aspirated. 1.25× 105 cells were plated in 50 µL domes composed
of 30% cell suspension in media and 70% Matrigel (Corning).
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FIGURE 1

Identification of psymberin as a potential anti-cancer therapeutic agent for colorectal cancer (CRC). (A) Tumor samples or low-passage cell lines
from patients are used to establish organoid cultures ex vivo. These organoids are then used in drug screens. (B) A high-throughput screen with
400 compounds in six cell lines. Blue indicates a negative average percent killing (net growth) and red indicates a high average percent killing.
Compounds that were not tested for a cell line are shown in gray. (C) The top ten hits from the high throughput screen in the same six cell lines.
Some compounds were synthesized in multiple batches and were therefore tested more than once. (D) Dose-response comparison between
oxaliplatin and psymberin in the same CRC cell line (left) and comparison of psymberin IC-50 values across different CRC cell lines (right).

CRC organoids were maintained in CRC media, which consisted
of DMEM F12 media supplemented with 10 mM HEPES, 1X
Glutamax, 100 µ/mL Penicillin/Streptomycin, 500 nM A83-01,
1X B27 without vitamin A, 50 ng/mL EGF, 10 nM Gastrin-1,
1.25 mM N-Acetylcysteine, 10 mM Nicotinamide, 100 ng/mL
Noggin, 100 µg/mL Primocin, 10 nM Prostaglandin E2,
100 ng/mL R-Spondin 1, and 3 µ M SB20210.

All cell lines and organoids were maintained at 37◦C in a
humidified incubator at 5% CO2.

High-throughput drug screen

Cells from six early passage cell lines (16–159 colon,
CRC119, CRC057, 13–789 RCC, D418 canine osteosarcoma,
and 17-3X human osteosarcoma) were provided to the Duke
Functional Genomics Core Facility for testing with a compound
library of 400 natural products, intermediates, and drug-like
compounds. A subset of compounds was synthesized in multiple
batches and were therefore tested more than once to ensure
reproducibility across different batches. The high-throughput
screen was performed as previously described (8). Briefly, 384-
well plates were stamped with each of the compounds from the
library at a final concentration of 1 µM. Cells from each of
the lines were plated in these pre-stamped plates at a density
of 1 × 103 cells/well. Cell viability was assessed using the
Cell Titer-Glo luminescent Cell Viability Assay kit (Promega,

Madison, WI, USA) after 72 h. Percent killing was calculated as
follows: 100∗[1–(average Cell Titer-Glodrug/average Cell Titer-
GloDMSO)].

Cell line drug sensitivity assays

Does response curves for psymberin and oxaliplatin were
performed in the following six cell lines: CRC057, CRC119,
CRC240, CRC247, CRC401, and CRC16-159. Stock solutions
at 10 µM for psymberin and oxaliplatin were made in
DMSO and phosphate buffered saline (PBS), respectively.
Once cells were 70% confluent, they were plated into 96-
well plates at a concentration of 4 × 103 cells per well and
incubated for 24 h. Cells were then treated with a series of 10
different concentrations in media (DMEM + 10% FBS + 1%
penicillin/streptomycin) of psymberin or oxaliplatin starting
from 1 µM and 300 µM, respectively, with a serial dilution
factor of three. Five replicates were performed for each drug
concentration. After incubation in the presence of the drug
for 2 days, cell viability was evaluated using the Cell Titer-Glo
luminescent Cell Viability Assay kit (Promega, Madison, WI,
USA). All drug sensitivity assays were performed in triplicate.
Half maximum inhibitory concentration (IC50) values were
calculated using a non-linear curve fit with the log(inhibitor) vs.
response (3 parameters) function in GraphPad Prism (La Jolla,
CA, USA).
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Organoid drug sensitivity assays

Organoids were grown in 24 well plates at 37◦C for
approximately 3 days, after which they were re-plated in 96-
well plates for drug sensitivity assays. To do this, media was
aspirated from the wells and 1 mL of PBS was added to each
well to detach the Matrigel domes from the bottom of the wells.
After collecting the Matrigel, wells were washed again with
500 µL of PBS to collect any remaining Matrigel. The Matrigel
and PBS was centrifuged for 7 min at 400 × g. Supernatants
were removed and 500 µL of Trypsin was added to each tube
and incubated for 2 min to dissolve the Matrigel. Trypsin was
neutralized by the addition of DMEM with 10% FBS and the
whole contents were centrifuged for another 3 min at 400 × g.
Pellets were collected and cells were counted after resuspension
in CRC media. Cells were then mixed with Matrigel in a 1:1
ratio and 5 µL of mixture containing 2 × 103 cells was added
to the center of each well in a 96-well plate. The 96 well plates
were incubated for 10–15 min to allow the Matrigel to solidify
before adding 50 µL of CRC media to each well and incubating
at 37◦C for 72 h. Organoids were treated with a series of six
different concentrations of psymberin starting from 1 µM with
a dilution factor of five. After incubation in the presence of the
drug for 2 days, cell viability was quantified via the Cell Titer-
Glo luminescent Cell Viability Assay (Promega, Madison, WI,
USA). All drug sensitivity assays were performed in triplicate.
IC50 values were calculated using a non-linear curve fit with the
log(inhibitor) vs. response (3 parameters) function in GraphPad
Prism (La Jolla, CA, USA).

Protein synthesis assays

Nascent protein synthesis was quantified in the CRC119 cell
line using Click-iT R© HPG Alexa Fluor

R©

488 Protein Synthesis
Assay Kit (Thermo Fisher Scientific). CRC119 cells were plated
into 96-well plates at the concentration of 4 × 103 cells/well
in drug-free medium and allowed to recover overnight before
treating them with either 1% DMSO, 3X psymberin IC50, or
50 µM cycloheximide. Drug-containing medium was removed
at 1 and 6 h intervals, and medium containing 50 µM
l-homopropargylglycine (Click-iT

R©

HPG) was added in the
dark. After incubation for 30 min, medium containing Click-
iT

R©

HPG was removed, and cells were washed once with PBS.
Cells were fixed in 3.7% formaldehyde and permeabilized with
0.5% Triton

R©

X-100 in PBS. HPG incorporation was detected
using the Click-iT

R©

reaction cocktail prepared according to the
vendor’s guidelines. Plates were incubated for 30 min at room
temperature followed by washing wells with ClickiT

R©

reaction
rinse buffer and PBS. Plates were imaged using an Incucyte

R©

S3 live cell imaging system. Luminescence was quantified in
FIJI/ImageJ.

Protein isolation and western blotting

CRC119 cells were treated with psymberin at 3X their
IC50 at different time points. Cells were lysed in radio-
immunoprecipitation assay buffer supplemented with protease
and phosphatase inhibitors (Thermo Fisher Scientific). Protein
concentration was assessed by using the BCA Protein Assay
(Bio-Rad). A total of 60 µg of total protein from each sample
was electrophoretically separated on 4–20% sodium dodecyl
sulfate polyacrylamide gels (Bio-Rad, USA) and transferred
to polyvinylidene difluoride (PVDF) membranes (Bio-Rad).
After blocking the membranes with blocking buffer (Bio-Rad),
membranes were incubated overnight with primary antibodies
for phospho-p38, p38, poly (ADP-ribose) polymerase (PARP),
or cleaved PARP. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as a loading control. Appropriate secondary
antibodies were added subsequently. Blots were scanned using a
Licor Odyssey imaging system.

Cell cycle analysis

CRC119 and CRC16-159 cells were seeded at 3 × 105

cells per well in 6-well plates and incubated until they reached
60% confluence. Cells were treated with either 3X their IC50

of psymberin or 0.1% DMSO. After 24 and 48 h, cells were
harvested and washed two times with PBS followed by fixing
in 80% ethanol for 30 min. Subsequently, cells were washed
twice more with PBS and resuspended in cell staining buffer
(0.1% Triton X-100, 0.1 mM EDTA disodium, 50 µg/mL
RNAse A, and 50 µg/mL PI in PBS) immediately prior to
flow cytometry. Flow cytometry-based cell cycle analysis was
performed by the Duke University Flow Cytometry Shared
Resource. A Chi-square test was used to estimate statistical
reliability of the observations.

RNA-seq

A total of 8 × 104 CRC119 and 16–159 cells were plated
in 6-well plates and allowed to incubate overnight. Cells were
then treated with 3X their IC50 of psymberin and RNA was
extracted after 16 h using the RNEasy Mini Kit (Qiagen).
RNA-Seq data was processed using the TrimGalore toolkit (19)
which employs Cutadapt (20) to trim low-quality bases and
Illumina sequencing adapters from the 3′ end of the reads.
Only reads that were 20 nt or longer after trimming were kept
for further analysis. Reads were mapped to the GRCh37v75
version of the human genome and transcriptome (21) using
the STAR RNA-seq alignment tool (22). Reads were kept for
subsequent analysis if they mapped to a single genomic location.
Gene counts were compiled using the (23) tool (“HTSeq: High-
throughput sequence analysis in Python”). Only genes that had
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at least 10 reads in any given library were used in subsequent
analysis. Normalization and differential expression was carried
out using the DESeq2 (24) Bioconductor (25) package with
the R statistical programming environment (“The R Project
for Statistical Computing”) (26). The false discovery rate was
calculated to control for multiple hypothesis testing. Gene set
enrichment analysis (27) was performed to identify differentially
regulated pathways and gene ontology terms for each of the
comparisons performed. False discovery rate cutoffs for positive
and negative enrichment were <0.25 and <0.15, respectively.
Normalized enrichment score cutoffs for positive and negative
enrichment were >0 and < −1.8, respectively. Upset plots and
heatmaps were constructed in R using the ComplexUpset and
ComplexHeatmap packages.

Determination of apoptosis using the
IncuCyte R© annexin V green reagent

The IncuCyte R© Annexin V Green Reagent (Sartorius), which
is a highly-selective phosphatidylserine (PS) cyanine fluorescent
dyes that enables real-time evaluation and quantification of cell
death, was used. CRC 119 and CRC 16–159 cell lines were seeded
into 96-well plates at the concentration of 4,000 cell/well in drug
free medium and incubated for 24 h to allow for attachment.
Cells were treated with either Psymberin or Cisplatin (as a
positive control for inducing apoptosis in CRC) at 3X their
IC50 dose. Annexin V Green Reagent was added to the wells
at the same time according to manufacturer’s protocol. An
automated platform (Incucyte

R©

) was used for imaging plates
at the beginning and 24 h after the treatment. PS exposure on
the extracellular surface following apoptosis, enables binding
of the IncuCyte Annexin V Reagent resulting in a bright and
photostable fluorescent signal.

Drug sensitivity assays using
MicroOrganoSpheres

CRC404 and CRC420 organoids were grown in 50 µL
Matrigel domes in CRC media at 37◦C in a humidified
incubator at 5% CO2. Once the organoids were confluent,
the media was aspirated from the wells and 1 mL of PBS
was added to each well to detach the Matrigel dome from
the bottom of the well. The Matrigel was centrifuged at
750 g for 5 min. Matrigel was dissolved, organoids were
broken down using 1 mL of TrypLE Express (Gibco) and the
mixtures were incubated for 5 min. TrypLE was neutralized
by adding 5 mL of DMEM F12 media with 10% FBS and 1%
penicillin/streptomycin. After centrifuging at 750 g for 5 min,
the media was aspirated. Organoid cell suspensions were used
to make MicroOrganoSpheres as previously described (28).

Stock solutions for psymberin and two analogs (psy-064 and
psy-076) were made at 1 mM in DMSO. MicroOrganoSpheres
were plated in 96-well plates at a concentration of 100
MicroOrganoSpheres/well with 1X of each component in the
RealTime Glo MT Cell Viability Assay kit (RTG; Promega,
Madison, WI, USA). MicroOrganoSpheres were treated with
each of the three compounds in a nine-point dilution series
starting from 1 µM with a dilution factor of three and five
replicates per dose. Fluorescence was measured every day for
3 days using a Varioskan Lux plate reader (Thermo Fisher
Scientific). IC50 values were calculated using a non-linear curve
fit with the log(inhibitor) vs. response (3 parameters) function
in GraphPad Prism (La Jolla, CA, USA).

Results

A high-throughput natural product
screen identifies psymberin as a
potential anti-cancer compound

To identify potential anti-cancer therapeutic agents, we
performed a high-throughput drug screen on six early passage
cell lines using a library of natural products and drug-like
compounds. The six cell lines included three CRC lines (16–159,
CRC119, and CRC057) (8), one renal cell carcinoma line (13–
789 RCC), and two osteosarcoma lines (D418 canine and 17-3X
human) (9). Less than 10% of the compounds were effective
across the entire panel of cell lines, with the 17-3X human
osteosarcoma cell line the most broadly sensitive to the library
and the 16–159 CRC cell line the most broadly resistant (see
Figure 1B). Across the cell lines, compounds with an average
percent killing above 50% included nine compounds against 16–
159 CRC cells, 10 compounds in CRC119 cells, 6 compounds in
CRC057 cells, 4 compounds in 13–789 RCC cells, 1 compound
in D418 canine osteosarcoma cells, and 3 compounds in 17-
3X human osteosarcoma cells. To identify the most effective
drugs, we focused on compounds with the highest average
percent killing across the entire panel of cell lines. A subset
of the compounds was synthesized in different batches and
tested more than once to ensure reproducibility across different
batches. In these cases, analysis of the screen data identified
some compounds more than once as consistent top hits, which
provides further support for these hits (Figure 1C). Among
these top hits, FK228 and psymberin had an average percent
killing ≥50% in all but one cell line (see Figure 1C). FK228,
also known as romidepsin, has already been approved for the
treatment of lymphoma (29), suggesting our screening strategy
is capable of identifying natural products with efficacy as anti-
cancer agents. Since FK228 is already approved as an anti-cancer
agent, we focused on psymberin for further validation.

To understand the relative potency of psymberin against
CRC, we compared dose response curves for psymberin and
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FIGURE 2

RNA-Seq analysis of psymberin treatment in colorectal cancer (CRC) cell lines. (A) Upset plot showing overlap of up- and down-regulated
genes after psymberin treatment between two CRC cell lines: CRC119 and CRC16-159. Red indicates the number corresponding to upregulated
genes consistent between both lines; blue indicates the number of genes consistently downregulated in both lines. (B) Same as 3A with coding
genes only. (C) Most significant positively enriched pathways after psymberin treatment, determined using gene set enrichment analysis.
(D) Most significant negatively enriched pathways after psymberin treatment, determined using gene set enrichment analysis. *Corresponds to
Reactome, **Kegg, and ***Hallmark.

oxaliplatin, a standard-of-care drug for the treatment of CRC.
These analyses indicated that psymberin is over 2,000 times
more potent than oxaliplatin, with an IC50 of approximately
15 nM (Figure 1D). The low nanomolar IC50 values were
consistent across six CRC lines, with IC50 values below 25 nM
for every line and below 10 nM for four of the six lines
(Figure 1D and Supplementary Figure 1).

Psymberin inhibits protein synthesis

To better understand the mechanism of action for
psymberin, we performed RNA-Seq on two low-passage
CRC cell lines (CRC119 and CRC16-159) treated with
psymberin. At the gene level, we observed substantial overlap
in all mRNAs (non-coding and protein-coding mRNAs)
(Figure 2A) and mRNAs of protein-coding genes (Figure 2B)
for both CRC119 and CRC16-159 lines. At the pathway level,
we observed a consistent positive enrichment in pathways
related to differentiation, NF-κB signaling, and pathways
relevant to tumor-immune cross-talk (IL-10 signaling, cytokine
receptor interaction) (Figure 2C) and negative enrichment in
multiple pathways, including eukaryotic protein elongation and
ribosome pathways (Figure 2D).

The observation that psymberin inhibits mRNAs involved
in translation and protein synthesis is consistent with previous
studies suggesting translation inhibition as a proposed

mechanism of action for psymberin (30, 31). To further confirm
this, we used a fluorescent reporter of protein synthesis in
which the incorporation of a methionine analog into newly
synthesized proteins can be quantified by “click” chemistry
(Thermo Fisher Scientific). Using this system, we observed rapid
inhibition of protein synthesis as early as 1 h after treatment
with psymberin, with nearly complete loss of signal by 6 h
(Figure 3A).

Previous studies have shown a connection between
translation inhibition and cellular stress pathways (32, 33),
such as p38/MAPK activation. Consistent with these studies,
we observed a rapid increase in levels of phospho-p38 upon
treatment with psymberin, with the greatest increase at 2 h post
treatment (Figure 3B). Cell cycle analysis on CRC401, CRC119,
and CRC16-159 cells treated with psymberin indicated that
psymberin led to significant G1 arrest in the cell line models
and G2 arrest in the CRC404 organoid model (Supplementary
Figure 2). Despite this protein translation inhibition and cell
cycle arrest, however, analysis of apoptosis pathway markers
by western blotting revealed low levels of cleaved PARP during
treatment with psymberin (Figure 3C). Similarly, we observed
no change in annexin uptake during treatment with psymberin
for up to 24 h (Figure 3D). This is in contrast to cisplatin, which
induced both cleaved caspase and increased annexin uptake.
Together, these results suggest that psymberin inhibits protein
synthesis, induces phosphorylation of p38, and leads to cell
cycle arrest.
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FIGURE 3

Psymberin induces protein synthesis inhibition and p38 activation. (A) Protein synthesis assay in CRC119 cells that were treated with 20 nM
psymberin for one and 6 h (top). Quantification of fluorescence in protein synthesis assay (bottom) *p < 0.05. (B) Western blot for phospho-p38
in CRC119 cells treated with 20 nM psymberin at different time points. Total p38 and GAPDH are included as loading controls. (C) Western blot
for cleaved PARP in CRC119 cells treated with 20 nM psymberin at different time points. GAPDH is included as a loading control. (D) Annexin V
staining for protein translation in CRC119 and CRC16-159 at 0 and 24 h after treatment with psymberin.

Psymberin inhibits growth of
colorectal cancer patient-derived
organoids

To further validate the effectiveness of psymberin to induce
CRC cell growth inhibition, we performed dose response assays
with psymberin across a panel of six CRC patient-derived
organoids (Figure 4). With the exception of one organoid line
(CRC401; IC50 ∼ 70 nM), the IC50 values were all below
20 nM. Morphologically, organoids treated with a low dose of
psymberin appear rounded, with refractile spheres throughout
the culture. Conversely, organoids treated with higher doses
(1 µM) of psymberin are dark and condensed, with few to no
viable cells (Figure 4). Comparison of psymberin treatment in
CRC240 grown as monolayer cell lines and organoids showed no
difference in the IC50 values between the two growth conditions.

Psymberin subunits do not inhibit the
growth of colorectal cancer
patient-derived organoids

In addition to psymberin, we also quantified the cytotoxicity
of two truncated psymberin analogs, Psy-064 and Psy-076
(Figure 5A). Both analogs are portions of the original

psymberin compound, and Psy-064 itself is a component of
Psy-076 (Figure 5A). To validate the effectiveness of the
psymberin analogs, dose response assays were performed on
CRC MicroOrganoSpheres using psymberin and both of its
analogs. Consistent with our previous analyses, psymberin
treatment of CRC MicroOrganoSpheres resulted in an IC50 ∼

3.6 nM and visible inhibition of organoid growth, as noted
by the reduction in size and collapse in spherical structure
of the MicroOrganoSpheres (Figure 5B); however, the analogs
had no negative impact on cell viability either in RealTime
Glo fluorescence assays or observed visually (Figure 5B
and Supplementary Figure 3). This suggests that the three-
dimensional conformation of psymberin and the psymberic acid
side chain may be required for its activity.

Discussion

Patient-derived models of cancer, such as early-passage cell
lines, PDXs, and organoids, have increasingly been accepted as
“standard” preclinical models of cancer (8, 12–14). Each model
has its own benefits and drawbacks. For example, early-passage
cell lines are the cheapest to maintain of the three models (34).
However, cells in monoculture are not representative of cancer
growth in the human body and are not able to replicate the
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FIGURE 4

Psymberin has IC-50 values in the nanomolar level across multiple colorectal cancer (CRC) patient-derived organoids. Dose response curves
are shown for six different CRC patient-derived organoids. Each experimental repeat is depicted in a different curve with different IC-50 values
listed on the side of each curve. Images beside each graph show organoids from each line treated with 320 pM (left) and 1 µM (right) of
psymberin.

complexity of the tumor microenvironment (13, 35). Moreover,
successful establishment of cell lines from patient tissue is
extremely rare, regardless of cancer type (34). On the other

hand, PDXs more closely model the tumor microenvironment
(14) and tumor heterogeneity (14, 35). One major drawback to
PDXs, however, is the high cost and time required to maintain
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FIGURE 5

The entire structure of psymberin is important for its activity. (A) Structural comparison of psymberin and two of its analogs, Psy-064 and
Psy-076. (B) Dose response curves for psymberin, Psy-064, and Psy-076 in CRC404 organoids. Images below each graph show organoids from
each line treated with 1 µM (top) and 0.0002 µM (bottom) of that compound.

these models (34). For these reasons, patient-derived organoids
are growing in popularity because they are (1) able to model
tumor heterogeneity (12, 13, 36); (2) have a higher uptake rate
compared to cell lines (12, 34); (3) can be used to model the
tumor microenvironment (36); and (4) are cheaper and faster
to grow and maintain than PDXs (34).

We have previously used early passage cell lines and PDXs
to develop a precision medicine pipeline to determine patient-
specific targets for treatment (10). In this study, we utilize the
latest version of our precision medicine pipeline, coupling cell
lines and organoids to identify, test, and characterize a natural
product library for potential anti-cancer compounds to treat
CRC (Figure 1A). Using our pipeline, we identified psymberin
as a potential anti-cancer agent for CRC (Figures 1B,C).

Psymberin, also known as irciniastatin A, was independently
isolated by Pettit et al. and Cichewicz, Valeriote, and Crews in
2004 (15, 16). It was later confirmed by Jiang et al. (37) that
the compounds isolated by both groups were, in fact, identical,
despite being from two different types of sponges: Psammocinia
sp. and Ircinia ramosa (15, 16). Both groups showed that
psymberin was active against multiple cancer types, including
CRC (15, 16). Moreover, multiple studies, including ours, have
shown that psymberin is an extremely potent compound, with

IC50 values in the low nanomolar range [Figures 1D, 4 and
Supplementary Figure 1; (15, 16, 30, 38)].

The biological properties of psymberin have drawn
considerable attention from research groups to develop a
complete synthesis of the compound and identify its molecular
mechanisms (18, 38, 39). Psymberin has previously been
shown to inhibit translation in human leukemia (30) and lung
carcinoma cells. This correlates with our data demonstrating
that psymberin inhibits translation in CRC (Figures 2D, 3A).
The inhibition of translation is connected to cellular stress
pathways (32, 33). One such cell stress pathway involves
p38/MAPK activation. Both Chinen et al. (30) and we have
shown that psymberin induces p38 activation (Figure 3B).

Strong activation of p38 through phosphorylation has
been associated with apoptosis, senescence, and terminal cell
differentiation (40, 41). Our data suggest that by activating
p38, psymberin may lead to G1 cell cycle arrest in CRC
(Figures 3C,D and Supplementary Figure 2). While some
studies have shown that psymberin induces apoptosis in other
cancer types (30, 42), our results are consistent with previous
studies linking p38 activation to G1 arrest (43–45).

Overall, psymberin is an extremely effective drug against
CRC, both in cell line and organoid form, with IC50 values below
10 nM. Our results suggest that psymberin may inhibit protein
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translation in CRC and induces the upregulation of p38, leading
to cell cycle arrest. Future studies should focus on evaluating
toxicity and anti-tumor efficacy in in vivo settings.
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SUPPLEMENTARY FIGURE 1

Psymberin has IC-50 values in the nanomolar level across multiple
colorectal cancer cell lines. Dose response curves are shown for six
different colorectal cancer cell lines. Each experimental repeat is
depicted in a different curve with different IC-50 values listed on the
side of each curve.

SUPPLEMENTARY FIGURE 2

Psymberin treatment leads to G1 cell cycle arrest in CRC cells. (A) Cell
count for cells in different phases of cell cycle when untreated and
treated with psymberin. The P5 label refers to G1, P6 refers to S phase,
and P7 refers to G2. (B) Percent of cells in different phases of cell cycle
in untreated and psymberin-treated cells. (C) Cell cycle analysis by flow
cytometry in the CRC404 patient-derived organoid. (D) Quantification
of cell cycle analysis based on the gates shown in panel (C). ∗p < 0.05
by chi-square test.

SUPPLEMENTARY FIGURE 3

The entire structure of psymberin is important for its activity. Dose
response curves for psymberin, Psy-064, and Psy-076 in CRC420
organoids. Images below each graph show organoids from each line
treated with 1 µM (top) and 0.0002 µM (bottom) of that compound.
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