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Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Keywords: cotton, CPR5 genes, co-expression network analysis, gene expression, trichome development
INTRODUCTION
Trichomes have been found in most terrestrial plants and been proved to be the first barrier to protect from insects while being harmless to the environment. (Konarska and Lotocka, 2020; Kitagawa and Jackson, 2022). The special structure of trichomes, which are generally unicellular and multicellular, make trichomes a unique model to study the cell development process on plants (Kusstatscher et al., 2020; Ghazalli et al., 2021). During the past decades, the research on the formation mechanism of plant trichomes showed that multiple genes participate in the regulation of trichome initiation and elongation, such as genes involved with classical bHLH-MYB-WD40 complex (Liu et al., 2021; Li et al., 2022). However, various genes which also play important roles in trichome formation had been not studied deeply, such as CPR5 (constitutive expressor of pathogenesis-related genes 5) (Bowling et al., 1997).
Cotton trichomes are mainly distributed on the surface of the seed, leaf, and stem. The trichomes located on the seed coat of cotton, also known as cotton fiber, are the main economic harvest product. Cotton leaf and stem surface trichomes are similar to cotton fiber in structure, and the development process is regulated by genes related to fiber development (Bao and Hua, 2014; Wan et al., 2014). GhTCP14 was mainly expressed in cotton fiber, especially during the initiation and elongation of cotton fiber cells. When GhTCP14 was overexpressed in Arabidopsis thaliana, the number and length of trichomes were significantly increased. Overexpressed Arabidopsis thaliana plants having GhPIN1a, GhPIN6, and GhPIN8 had more and longer epidermal trichomes on the leaves (Zhang et al., 2017). GbML1 and GhMYB25, related to fiber development, shared a similar expression pattern and function on trichomes density and length in Arabidopsis thaliana (Zhang et al., 2010). GbML1 and GhMYB25 form a physical interaction through the START-domain (GbML1) and SAD-domain (GhMYB25) (Walford et al., 2012). Therefore, it was speculated that GbML1 may act as a molecular chaperone to regulate the development of fibroblasts by enhancing the expression of GhMYB25. GaHOX1 of Gossypium hirsutum had high homology with Gl2, which was mainly expressed in fiber at the early stage of development (Wang et al., 2013). GaHOX1 could complement the phenotypic defects of Arabidopsis mutant Gl2 and make it grow again. Overexpression of GhHOX3 in Gossypium hirsutum could make the cotton fiber longer and silencing the gene could lead to a reduction of more than 80% of the cotton fiber length (Hu et al., 2018). There is a similarity between the mechanism of hairiness control and cotton fiber development. The research on the mechanism of trichome elongation and development can provide a reference for revealing the mechanism of cotton fiber development to a certain extent.
According to the gene function annotation, there were five genes involved with constitutive expression of pathogenesis-related (PR) genes, CPR1 with F-box domain, CPR5, CPR6, CPR20, and CPR21 (Wei et al., 2019; Anisimova et al., 2021). All of them had been detected as participating in signal transduction pathways involved in plant defense, but not sharing the same domain. Besides, only CPR5 was found to relate with the trichome development process (Kirik et al., 2001; Peng et al., 2020), which made it more important to determine the resistance to biotic and abiotic stress in plant species.
CPR5 was identified as a defense response gene with a striking feature 5’ C-terminal transmembrane segments (TMSs) in a 1 + 4 TMS arrangement (Van Dingenen, 2022). Generally, the TMSs structure of CPR5 protein C-terminal showed their function on being a nuclear membrane protein as a component of nuclear pore complex (NPC) and regulating the effector-triggered immunity (ETI) and programmed cell death (PCD) on plants (Yoshida et al., 2002; Peng et al., 2020). For the C-terminal parts of the CPR5 protein, a previous study indicated that three parts existed: nuclear localization signals clusters, casein kinase phosphorylation sites clusters, and alternative mutation sites (Gu et al., 2016). CPR5 participated in various pathways, including plant growth, bacterial and fungal resistance, and trichome development (Jing et al., 2007; Jing and Dijkwel, 2008).
According to past research, the CPR5 was nearly found in plans, such as Vitis vinifera, Theobroma cacao, Qryza sativa, Gossypium hirsutum, and Triticumm aestivum (Orjuela et al., 2013; Pinel-Galzi et al., 2016). Various CPR5 homologous genes were present in different plant species. The numbers of most CPR5 genes were consistent with the genome numbers of the host plants. The CPR5 gene was first cloned in an Arabidopsis mutant line which showed resistance to Pseudomonas syringae and abnormal trichomes (Kirik et al., 2001). Based on the research of CPR5 sequence and structure, CPR5 was found to be a transmembrane protein and sustain the balance between homeostasis, cell division, and cell death by gating multiple transcription factors entering the nucleus (Deuschle et al., 2001; Gao et al., 2011; Gu et al., 2016). The involvement of CPR5 with plant disease defense had been deeply studied in Arabidopsis. The study showed that CPR5 played important roles in signaling pathways, such as CKI-RB-E2F cell cycle signaling pathway, activated immune responses, and ROS signal transduction (Borghi et al., 2011; Chen et al., 2022). CPR5 was also found to be involved with multiple plant hormones signaling pathways, such as salicylic acid and ethylene (Clarke et al., 2004). Besides the CPR5 function to disease resistance, the mechanism of trichomes development also been detected in CPR5 mutant plants, such as Arabidopsis, Soybean, and Mucuna (Okuma et al., 2014; Meng et al., 2017). The study showed that CPR5 was a downstream gene controlled by two CKI signaling pathway genes, SIM and SMR1. SIM SMR1 double loss mutant produced a cell death and branchless trichomes in Arabidopsis (Yi et al., 2014; Kumar et al., 2015). Another study showed that UVI4 and OSD1 interacted with CPR5 to regulate the trichomes development, indicating that CPR5 was essential in cell cycle progression (Heyman et al., 2011). Those studies had showed that CPR5 was involved in trichomes development, but the mechanism was still unclear.
Currently, we performed the genome wide analysis of CPR5 genes in cotton and explored their role in trichome development. Expression levels of the CPR5 gene in different tissues suggests that Ghe02G17590 might be the true candidate gene that plays a very important role in trichome development.
MATERIALS AND METHODS
Identification of CPR5 Gene Family Members From Cotton, Arabidopsis thaliana, Oryza sativa, Theobroma cacao, and Vitis vinifera
In order to identify CPR5 genes, the sequences of one At5g64930 protein was retrieved from the A. thaliana genome and was subsequently used for determining the CPR5 genes in the genomes of Gossypium arboreum (A1), Gossypium herbaceum (A2), Gossypium anomalum (B1), Gossypium sturtianum (C1), Gossypium thurberi (D1), Gossypium raimondii (D5), Gossypium stocksii (E1), Gossypium longicalyx (F1), Gossypium australe (G2), Gossypium rotundifolium (K2), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5). Besides, four other plant species (Arabidopsis thaliana, Oryza sativa, Theobroma cacao, Vitis vinifera) via reciprocal blast with BLASTP program (Altschulet al., 1997). The default parameters with E-values of less than 1 E−10 were set in the BLASTP searches (Supplementary Table S1).
Data Acquisition
The genome, protein, and structure information of Gossypium herbaceum (A1, version WHU_V1), Gossypium arboretum (A2, version WHU_updated_V1), Gossypium raimondii (D5, version JGI_V2_a2.1), Gossypium hirsutum (AD1, version HAU_V1.1), Gossypium barbadense (D5, version HAU_V2_a1), were downloaded form Cottongen (https://www.cottongen.org/). The data for the other ten cotton species were obtained from NCBI (https://www.ncbi.nlm.nih.gov/). Data for rabidopsis thaliana, Oryza sativa, Theobroma cacao, and Vitis vinifera were obtained from phytozome database 12 (https://phytozome-next.jgi.doe.gov/).
Phylogenetic Analysis of CPR5 Genes
The protein sequences of all the discovered CPR5 genes from the cotton species as well as Arabidopsis thaliana, Oryza sativa, Theobroma cacao, and Vitis vinifera were aligned via Clustal X using default parameters (Larkin et al., 2007). The phylogenetic tree of CPR5 from each species was constructed using the numerous sequence alignments imported and displayed in MEGA seven using the neighbor joining approach. For statistical reliability, tree nodes were calculated using the Bootstrap method with 1,000 repeats (Tamura et al., 2007).
Gene Structure and Chromosomal Location and Collinearity Analysis of CPR5 Genes
The gene structure of CPR5 genes was examined by GSDS 2.0 (https://gsds.cbi.pku.edu.cn/) using the Genomic DNA and CDS sequence of each species (Hu et al., 2015). CottonFGD genome annotation files were used to identify the chromosome locations of CPR5 genes in these species. This information was also used to construct chromosomal mapping which were then displayed by TBtools (Chen et al., 2020). All of the proteins sequences were submitted to the online motif and domain identification tool MEME (http://meme-suite.org/) in order to discover the conserved domains present in the CPR5 proteins (Bailey et al., 2009). The motif search was carried out using a total count of 15 motifs. The MAST tool was used to show the protein database for the identified motifs. Multicollinearity ScanToolkit was used for analyzing the synteny relationship between and within four cotton species, G. hirsutum and G. barbadense, G. herbaceum, and G. raimondii. The collinearity among orthologs and paralogs genes were displayed by TBtools (Chen et al., 2020).
Subcellular Localization Prediction
The protein sequences of CPR5 genes were uploaded to WoLF PSORT online website (https://wolfpsort.hgc.jp) for subcellular localization prediction.
Analysis of Cis-Regulatory Elements of CPR5 Genes
The promoter regions up to 2000 bp upstream in the CPR5 genes were downloaded from the cotton database (www.cottonfgd.org) and used to analyze potential cis-regulatory elements by the online tool PlantCARE (Lescot et al., 2002) (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/).
Transcriptome Profiling of G. arboreum and G. herbaceum
G. arboreum and G. herbaceum were used for the transcriptome sequencing. The RNA-Seq libraries were prepared by a previously described method (Wang et al., 2018), and a 1% agarose gel was used to check for contamination and degradation of RNA. First, the purity of RNA was analyzed using a Nano Photometer® spectrophotometer (IMPLEN, CA, United States). Next, estimating RNA concentration was performed using a Qubit® RNA Assay Kit and a Qubit® 2.0 Fluorometer (Life Technologies, CA, United States). Finally, RNA integrity was checked using an Agilent Nano 6000 assay kit (Santa Clara, California, United States). Reads counting features (genes, in this case) were performed using HTSeq v0.6.125. Gene lengths and read counts mapped to genes were used to calculate FPKM values (Mortazavi et al., 2008). The original data was uploaded to NCBI (PRJNA833579).
The differentially expressed genes (DEGs) between diploid and tetraploid were identified with the DESeq R package (Andino et al., 2016), and Benjamini–Hochberg-adjusted p-values < 0.05 were considered statistically significant (Benjamini and Hochberg, 1995; Anders and Huber, 2010).
Gene Ontology and Protein-Protein Network Analysis of CPR5
The gene ontology information of all CPR5s was obtained by using online genome-wide functional annotation tool EGGNOG-MAPPER (http://eggnog-mapper.embl.de/) and displayed by TBtools. The amino acid sequences of Arabidopsis CPR5 genes were used as query sequences to obtain the protein-protein network by using STRING website (https://cn.string-db.org/).
Prediction of Putative miRNA Targeting Gossypium CPR5 Genes
The gene sequences of the Gossypium CPR5 genes were used as candidate genes to identify possible miRNAs via observing against the existing Gossypium reference of miRNA sequences via the psRNATarget database (https://www.zhaolab.org/psRNATarget/analysis?function=2, accessed on 5 May 2022) with default parameters (Raza et al., 2021). Cytoscape (V3.8.2, https://cytoscape.org/download.html, accessed on 5 May 2022) software was used to build an interaction network between the identified miRNAs and the equivalent target Gossypium CPR5 genes.
Coexpression Network Analysis of CPR5 Genes
We used RNA-Seq data of G. arboreum with trichomes and G. herbaceum with no trichomes to study the expression patterns of the CPR5 gene family. The links between genes involved in trichome development were examined by coexpression network analysis. A coexpression regulation network was created using the Cytoscape software (version 3.7.2) (Shannon et al., 2003). The threshold for the coexpression network map was set as p > 0.99. The topological coefficient of each node with a degree >20 was used to identify the network as hub genes.
Virus Induced Gene Silencing of GheCPR5.1
A 285 bp fragment from the CDS sequence of GheCPR5.1 was selected to detect the gene function in regulation of trichome development. The TRV: 00 plasmid was digested with the restriction enzymes EcoRI and BamHI and combined with the target fragment to generate TRV: GheCPR5.1. TRV: GhCHL1 was used as the positive control. TRV: 00, TRV: GheCPR5.1, TRV: GhCHL1 were transformed in Agrobacterium tunefaciens LBA4404 and infiltrated into the cotyledons of 10-day-old Dianya-10. Three biological replicates (each with 20 plants) were performed. Cotton seedlings were grown in the plastic pot filled with solid culture medium (vol/vol, sterile sand: vermiculite: nutritious soil = 1:1:2) in incubators at 25°C during the day and 20°C at night, with 60% relative humidity and a 16/8 h light/dark photoperiod. The leaf blenching phenotype appeared in the TRV: GhCHL1 plants at 15–25 days, the trichome phenotype appeared in wild type plants at 20 days, we selected 25 days as the time to investigate the phenotype and VIGS silencing efficiency. The primers used for vector construction and RT-qPCR are listed in Supplementary Table S2. The number of trichomes present of the petiole of wild type, TRV: 00 and TRV: GheCPR5.1 was counted under a Stereo microscope and classified as either villi (trichomes are extremely short and prostrate) or hairs (trichomes are long and upright). For each individual, the numbers of hair type trichomes were counted. The number of trichomes will be only counted on one side of petiole. The data was analyzed and displayed by Graphpad prism seven software.
RT-qPCR Assay and Expression Analysis of CPR5 Genes
The gene expression profiles of GheCPR5.1 were analyzed from RNA-Seq data. The FPKM values were used to present the GheCPR5.1expression levels. RNA was extracted by TIANGEN kit following the protocol guidelines and was reverse transcribed into cDNA-by-cDNA synthesis SuperMix for qPCR (one step for gDNA removal). Finally, quantitative RT-qPCR was analyzed using the SYBR Green SuperMix kit according to the instruction manual. The experiment was performed using three technical and biological replications. The relative expression data were calculated using the 2−ΔΔCT method (Schmittgen and Livak, 2008). The primers used in the experiment are designed via NCBI (https://www.ncbi.nlm.nih.gov/) and Ghactin7 (LOC107959437) gene was used as an internal control (Supplementary Table S2).
RESULTS
Identification of CPR5 Genes
In total, 33 CPR5 family members were detected in the plant species mentioned before four CPR5 family members were found in Oryza sativa and Gossypium barbadense, three CPR5 family members were found in Gossypium hirsutum, Gossypium mustelium and Gossypium darwinii, two were found in Gossypium tomentosum, 1 was found in Arabidopsis, Vitis vinifera, Theobroma cacao, and all ten diploid cotton species, respectively. After filtering the splicing transcripts of CPR5s, the result showed that all tetraploid cotton species included only two CPR5s, including O. sativa. The tetraploid cotton species contain twice the number of CPR5 genes as compared to diploid cotton. The result showed the conserved process of CPR5 gene family duplication during cotton whole genome duplicated events. The CPR5 gene family were renamed according to their positions on chromosomes and the number of splicing viraties. Ghe, Gar, Ghir, Gbar, Gtom, Gmus, Gdar, Gano, Gstu, Gthu. Grai, Gsto, Glon, Gaus, and Grot, were used as prefixes before the names of CPR5 genes, respectively.
Among all 26 CPR5 genes in Gossypium, the amino acid length ranged from 401 amino acid (G. hirsutum and G. barbadanse) to 610 amino acid (G. thurberii). PI (isoelectric point) ranged from 8.56 (GlonCPR5.1) to 9.26 (G.thurberi), MW (molecular weight) ranged from 30379.1 (GlonCPR5.1) to 68467.08 (GthuCPR5.1), Instability index ranged from 37.26 (GlonCPR5.2) to 52.08 (GtomCPR5.2). Most of the CPR5 genes were predicted to be located in the plasma membrane. Physical and chemical properties of CPR5 genes in Gossypium were given in (Supplementary Table S1).
Phylogenetic Analysis of CPR5 Genes
To better understand the evolutionary relationship among CPR5 genes in Gossypium species mentioned in materials part and O. sativa, T. cacao, A. thaliana, the amino acid sequences were aligned with Clustal X software, and an unrooted phylogenetic tree was constructed using MEGA seven software (Figure 1). For the phylogenetic tree among eleven plant species, the 33 CPR5s were divided into five clades (clade A to E) depending on the common conserved CPR5 features. Clade E and D were the largest clades containing 13 and 10 CPR5s genes respectively and interestingly all of them belong to Gossypium species. Clade C with five CPR5 genes showed more associations with Vitis vinifera and Theobroma cacao. Clade A contains only one CPR5 gene belonging to Arabidopsis. Meanwhile clade B had four CPR5 genes belonging to O. sativa. The results suggested that Gossypium CPR5s show a closer relationship with CPR5s from Vitis vinifera and Theobroma cacao. The phylogenetic analysis suggests that the cotton CPR5 genes are more closely linked to each other. For example, pairs of homologous genes, GheCPR5.1/GarCPR5.1, GhirCPR5.1/GbarCPR5.3 were clustered in one group.
[image: Figure 1]FIGURE 1 | Phylogenetic tree of CPR5 proteins from A. thaliana, O. sativa, Vitis vinifera, and Theobroma cacao. The CPR5 were divided into five groups (A–E) on the clustering of the protein sequences. Cluster A contains one protein from A. thaliana, cluster B contains four proteins from O. sativa. Cluster C contains the proteins from G. herbaceum, Gossypium mustelium, Gossypium darwinii, Gossypium tomentosum, Gossypium hirsutum, Gossypium sturtianum, Gossypium austral, Gossypium rotundifolium. T. cacao, and Vitis vinifera, whereas, clades (D,E) contains 10 and 13 genes each belonging to Gossypium species.
Gene Architecture and Motif Analysis
We investigated the genetic architecture of CPR5 proteins by studying the exon-intron structural distribution (Figure 2). The number and size of introns and exons of genes were usually conserved in plant species. The conserved features could be used to detect the evolutionary relationship among the gene family. The results showed that CPR5s of all Gossypium species which we used in this study harbored four introns and five exons except the variety splicing CPR5 genes, such as GbarCPR5.2 and GhirCPR5.1.
[image: Figure 2]FIGURE 2 | Motif and gene structure analysis of CPR5 genes. On the left side is the distribution of the CPR5 conserved motifs in cotton and rice. Five motifs, i.e., motifs 1, 2, 6, 7, and 13 were conserved motifs, shown by green, yellow, purple, light green, and magenta. Right side: intron and exon structure of cotton and rice CPR5 genes. Exons and the UTR are shown as green and yellow boxes, respectively whereas introns are represented as grey lines.
By analyzing the protein sequences of CPR5 genes in Gossypium species using the MEME online tool, 15 motifs with significant E-values were found. The most five conserved motifs, motif 1, 2, 6, 7, and 13 were observed in all CPR5s. According to the CPR5 motif function annotation in Arabidopsis, these five motifs were identified as five transmembrane features, which played an essential role in regulating multiple pathways of CPR5. Motifs 4, 10, 11, 12, and 14 were only found in Gossypium species. Those five motifs sites in Arabidopsis were predicted as Mobidblt-Consensus Disorder region, which was identified as containing putative nuclear localization signal sites. Most CPR5 genes clustered in the same group shared the same motif features. For example, the CPR5s lacking motifs 2, 6, 7, and 13 were only observed in group 2. The result of motif analysis was consistent with the phylogenetic relationship. The clades with special motifs likely shared different functions.
Chromosomal Mapping of CPR5 Genes
The gene distribution of CPR5 genes on the chromosomes varies between the tetraploid and diploid cotton species (Figure 3). For diploid Gossypium species, G. herbaceum, G. arboretum, and G. raimondii, the CPR5 genes were only found on chromosomes 2. For tetraploid Gossypium species, the CPR5 genes were only found on chromosomes 2 and chromosomes 3. The gene distribution of G. herbaceum, G. arboreum, and G. raimondii was shown to be highly conserved and consistent with the A and D subgenome of G. hirsutum and G. barbadense, indicating the CPR5s conserved the evolution pattern between diploid cotton and tetraploid cotton. All CPR5 genes were found on the two end sides of chromosomes in cotton.
[image: Figure 3]FIGURE 3 | Distribution of the CPR5 genes on chromosomes of different cotton species i.e., A1, A2, AD1, AD2, D5. (A) A1 (Gossypium herbaceum). (B) A2 (Gossypium arboreum). (C) AD1 (Gossypium hirsutum). (D) AD2 (Gossypium barbadense). (E) D5 (Gossypium raimondii). The scale bar represents the chromosome length. The yellow bar indicates the chromosomes. The gene on each chromosome is highlighted in red.
Evolutionary Relationship and Systemic Association of CPR5s in Cotton
The gene duplication was the main reason to produce and expand the gene family. Three events were observed in plant species gene duplication, including tandem (a chromosomal region within 200 kb containing two or more genes is defined as a tandem duplication event), segmental (multiple genes through polyploidy followed by chromosome rearrangements), and whole genome duplication (the process by which a region of DNA coding for a gene creates additional copies of the gene). The gene duplication events may influence the gene function diversity among plant species. In this study, we used two tetraploid cotton species, G. hirsutum (AD1) and G. barbadense (AD2), and two diploid cotton species. G. herbaceum (A2) and G. raimondii (D5) to demonstrate the evolutionary relationship and syntenic association of CPR5s in cotton. Synteny analysis between G. hirsutum (AD1), G. herbaceum (A2) and G. raimondii (D5) revealed that the CPR5s were reserved among three species (Figure 4). For within genome synteny analysis, two duplication gene pairs, GhirCPR5.1/GhirCPR5.3 and GbarCPR5.4/GbarCPR5.1, were found in G. hirsutum and G. barbadense, respectively (Figures 4C,D).
[image: Figure 4]FIGURE 4 | Syntenic relationships among CPR5 genes in A2, D5 and AD2 and AD1 and AD2. (A, B) CPR5 genes are plotted against their projected complements in the five species. The chromosomes of AD1 are shown as number A1‐A13, and the chromosomes of D5 are shown as D2-01 to D2-13 whereas in AD2 the chromosomes were shown as Gbar A1-Gbar-A13. The grey lines indicate the collinear blocks between different species. The blue lines represent the collinear CPR5 gene pairs between A2, D5 and AD2. The orange line represents the collinear CPR5 gene pairs between AD1 and AD2. (C, D) The CPR5 collinear gene pairs on A2, D5 and AD2 chromosomes. Red line represents a pair of collinear genes.
Cis-Regulatory Elements Analysis
The cis-elements analysis results showed that the TCA-element and TATA-box motifs were distributed in all CPR5 genes of Gossypium species (Figure 5). Compared with other diploid cotton species, the number of TCA-elements and TATA-box motifs were higher in tetraploid cotton species. The results revealed that these two cis-elements have essential roles in CPR5 function in disease resistance and stress response. All cis-elements predicted from cotton species are mostly involved in stress environment response, such as light response, low temperature, wound, and multiple hormone pathways, such as salicylic acid, abscisic acid, auxin, and gibberellin. Generally, the light response elements and salicylic acid response elements are distributed in most CPR5s.
[image: Figure 5]FIGURE 5 | Predicted cis-elements in CPR5 promoters. Promoter sequences (2,000 bp upstream regions) of 18 CPR5 genes were examined online at PlantCARE web server. Diverse colors were used for representing different cis-elements, as given in on the right side.
Gene Ontology and Protein-Protein Network Analysis of CPR5
To identify the function of 26 CPR5 family genes, we performed the GO annotation and enrichment analysis based on their biological process, molecular function, and cellular component classes. The GO annotation results showed that several GO terms were enriched in biological processes and cellular components (Figure 6A). The GO-biological process enrichment results suggested that 10 terms were highly enriched, such as biological process involved in interspecies interaction between organisms (GO: 0044419), biological regulation (GO: 0065007), developmental process (GO: 0032502), immune system process (GO: 0002376), multicellular organismal process (GO: 0032501), response to stimulus (GO: 0050896), etc., These terms confirmed the function of CPR5 genes in the disease defense and immune system regulation of plants. The GO-cellular component enrichment results suggested that one term was highly enriched, the cellular anatomical entity (GO: 0110165). This result also was consistent with the subcellular localization prediction of CPR5 proteins. To further identify the potential biological functions of CPR5 in Arabidopsis, the protein-protein interaction analysis was performed and 10 potential interactors were detected (Figure 6B). Notably, several trichomes development related proteins (SIM, LGO, and GRL) directly interacted with CPR5, suggesting its regulatory role in trichomes formation. Moreover, CPR5 showed a highly closed relationship with several hormone response proteins, such as Salicylic acid signaling pathway regulators (SSI2, ACD6, EDS16, PAD4, and EDS1), Auxin signaling pathway regulator (AXR4).
[image: Figure 6]FIGURE 6 | Gene ontology and protein-protein network analysis of CPR5. (A)- Gene ontology analysis of CPR5 genes. (B)- Protein-protein analysis of CPR5 in Arabidopsis. Colored nodes: query proteins and first shell of interactors. Red lines: gene fusions. Green lines: gene neighborhood. Black lines: co-expression. Blue lines: gene co-occurrence.
Genome-Wide Analysis of miRNA Targeting Gossypium CPR5 Genes
It has been reported previously that miRNAs dependent regulations have significant impacts on plant growth and regulation. Thus, to strengthen our understanding of the miRNAs associated with the regulation of Gossypium CPR5 genes that are involved in the development of trichomes, we identified nine putative miRNAs targeting 25 Gossypium CPR5 genes (Figure 7). The detailed information of the miRNA targeted sites is presented in Supplementary Table S3. We found that ghr-miR7490 interacts with one gene GlonCPR5.2, ghr-miR7496a, b interacts with GanoCPR5.1, ghr-miR7504a interacts with GraiCPR5.1, ghr-miR7484a,b interacts with GarCPR5.1 and GrotCPR5.1, ghr-miR7499 interacts with GtomCPR5.1, GausCPR5.1, GhirCPR5.1, GthuCPR5.1, GstuCPR5.1, and GheCPR5.1. Ghr-miR7488 interacts with GrotCPR5.1, GausCPR5.1, GarCPR5.1, GthuCPR5.1, GstuCPR5.1, and GheCPR5.1. Whereas ghir-miR7493 interacts with all the CPR5 genes except GlonCPR5.2 (Figure 7; Supplementary Table S3).
[image: Figure 7]FIGURE 7 | A network representation of the regulatory connections among the predicted miRNAs and Gossypium CPR5 genes. Different colors highlight the interacting miRNAs. Similarly, different node colors and shapes clearly represent the interaction among miRNAs and Gossypium CPR5 genes.
Transcriptome Profiling and Co-Expression Network Analysis for Hub Gene Identification
In total, 9,673 differentially expressed genes were identified between G. arboreum with a high density of trichomes and G. herbaceum with barely any trichomes. A co-expression network analysis was performed by using the differentially expressed genes, to identify the hub genes linked to trichomes development and elongation (Figure 8). Correlation based relationships were plotted using a Pearson correlation coefficient greater than 0.99. A threshold level of >20 edges was considered as hub genes from the analysis. Owing to this, we found Ghe02G17590 (GheCPR5.1) as a hub gene that might be involved in the trichome development.
[image: Figure 8]FIGURE 8 | The Pearson correlation network analysis. Co-expression network of DEGs. The gene in the center of the network with red color and octagonal shape is represented as a hub gene.
Tissue Specific Expression of CPR5 Genes in Different Cotton Species
Expression of all identified CPR5 genes was recorded in roots, stems, leaves and petioles of different cotton species (Figure 9A). Results suggested that higher expressions were recorded in the petioles as compared to the other tissues. Moreover, we noticed that the expression of GheCPR5.1 was higher in the cotton species with trichomes.
[image: Figure 9]FIGURE 9 | Expression of CPR5 genes in different cotton species. (A)- Differential expression of all the CPR5 genes in roots, stem, leaves and petioles. (B)- Expression analysis of GheCPR5.1 in different tissues of G. arboretum and G. herbaceum. (C)- Density of trichomes in G. arboretum and G. herbaceum. (D)- Trichome density in all the Gossypium species used in this research work.
Expression Analysis of GheCPR5.1 in Different Tissues of G. arboreum and G. herbaceum
RT-qPCR was performed to check the expression patterns of GheCPR5.1 which was identified as a hub gene in the co-expression network analysis (Figure 9B). Expression was recorded in different tissues, i.e., of root, stem, leaves, and petiole of G. arboreum and G. herbaceum. We also performed the RT-qPCR to validate the expression of our candidate gene and the authenticity of RNA-seq data. G. arboreum with trichomes have higher expressions of GheCPR5.1in all the tissues, specifically petiole, as compared to G. herbaceum which has no trichomes. The RT-qPCR data was consistent with the RNA-seq data.
Virus Induced Gene Silencing of GheCPR5.1 for its Potential Role in Trichome Development and Elongation
The VIGS assay was performed to investigate the GheCPR5.1 function related with the trichome development and elongation. The VIGS vector TRV: GheCPR5.1 was injected into G. arboreum (Dianya-10, the long trichome line), to generate the GheCPR5.1-silenced plants. Twenty days after inoculation, the blenching phenotypes were observed on TRV: GheCPR5.1. The expression level of GheCPR5.1 in wild type, negative control plant TRV: 00, and receptor plants TRV: GheCPR5.1 were detected by RT-qPCR. No significant variations were observed in the expression of the GheCPR5.1 gene in WT and TRV: 00. The expression of GheCPR5.1 in TRV: GheCPR5.1 lines was significantly lower than that of wild type and TRV: 00, indicating the success of the VIGS experiment Figure 10. The GheCPR5.1-silenced Dianya-10 plants exhibited a significant low density of long trichomes, compared with wild type and TRV: 00. These data suggest that GheCPR5.1 plays a key role in trichome elongation in cotton.
[image: Figure 10]FIGURE 10 | Virus induced gene silencing to elucidate the role of GheCPR5.1 in trichome development and elongation. (A)- Visual images of trichomes after gene silencing. (B)- The blenching phenotypes were observed on TRV: GheCPR5.1 plants. (C)- Relative expression level of GheCPR5.1 in root stem and leaves of silences plants. (D)- Trichome density in the leaves and petioles after GheCPR5.1 silencing in cotton.
DISCUSSION
In recent years, trichomes have been proven to be important for their involvement in multiple development pathways in various plant species, such as Arabidopsis, soybean, tomato, and tobacco (Lam and Pedigo, 2001; Choi et al., 2012; Cox and Smith, 2019; Fumin Wang et al., 2021). The trichomes functions of disease response, biotic stress defense, and maintaining the normal plant growth process have been deeply studied (Zhou et al., 2011; Yang and Ye, 2013; Zhou et al., 2013; Papierowska et al., 2020). Based on those results, lots of functional genes and signaling response pathways involved in trichomes initiation and elongation had been reported (Zhou et al., 2013; Yuan et al., 2019; Yu et al., 2021; Yuan et al., 2021). CPR5 was first isolated from an Arabidopsis disease response mutant line, and its function to non-normal trichomes development had been identified in 1997 (Bowling et al., 1997). Compared with a classical WD40-MYB-bHLH complex (Zhao et al., 2013; Zhao et al., 2019; Yang et al., 2021) and other genes involved in trichomes development (Zhang et al., 2005; Zhang et al., 2019; Yu et al., 2021), the mechanism of CPR5 regulating trichomes was still not clear. Furthermore, the cell structure of trichomes and fiber had been proved to share most similarity in cotton (Wang et al., 2004; Yang and Ye, 2013). Few research efforts focused on the genes regulating both trichomes and fiber and their function to cotton development (Shangguan et al., 2008; Shan et al., 2014).
In past few years, more research had been done on CPR5 gene function analysis, especially in Arabidopsis. Research demonstrated multiple CPR5 roles in plant growth (Kirik et al., 2001; Gao et al., 2011), plant immunity (Faisal et al., 2020; Van Dingenen, 2022), and trichome development by using mutant lines constructing, gene overexpression, and yeast split ubiquitin assay (Aki et al., 2007; Campbell et al., 2019). Previous results provided basic information of CPR5 gene location, function, and its regulatory factors, but did not suggest their roles in different plant species evolutionary processes. In this study, we first identified all 26 CPR5s in Gossypium species, including four cultivars and seven wild species. Previous studies showed that CPR5 genes were identified in both monocotyledons and dicotyledons. There were few CPR5s genes and their number varies in various plant species, such as six in Triticum aestivum, three in Brassica rapa, two in Populus trichocarpa and one in Vitis vinifera. Our results suggested that the CPR5 genes number is consistent with the genomes number of plant species. Generally, only one copy of the CPR5 gene is distributed in a diploid plant species, which indicated that CPR5 is a classical single copy gene.
Unlike the traditional method of only reserving the longest transcript sequence for each gene identified through blastP, in this study, we chose the differential splicing CPR5 sequences for the following analysis. The differential splicing alterations had been proved to produce numerous protein structures and function variances from one gene (Reddy, 2007; Park et al., 2013; Rehman et al., 2021). In the current study, we had identified multiple protein isoforms from one or two CPR5 genes in some Gossypium species, GhirCPR5.2/GhirCPR5.3,GbarCPR5.1/GbarCPR5.2/GbarCPR5.3, GmusCPR5.2/GmusCPR5.3, GdarCPR5.2/GdarCPR5.3, GlonCPR5.1/GlonCPR5.2. Between different cotton species, the differential splicing sequences shared similarities among amino acid sequence length, subcellular location, and motifs distribution. For example, the amino acid sequence length of GhirCPR5.3 and GbarCPR5.2 both were 401 aa and GmusCPR5.3 was 409 aa. The same results were also seen for the CDS lengths of the genes mentioned above. Meanwhile, the subcellular location suggested that all the genes were located in the nucleus. Combining the gene structure results, the genes located in the nucleus did not possess the motif 2, motif 6, motif 7, and motif 13, which were predicted as four transmembrane features. Previous study suggested that a truncated CPR5 protein could be located at the plant cell nucleus (Perazza et al., 2011), which is consistent with our results.
Many previous studies had indicated that the single copy gene could be used as a molecular marker in understanding the phylogenetic relationships of closely related species (Sudmant et al., 2010; Sun and Komatsuda, 2010; Ananda et al., 2021). In this study, we constructed an unrooted phylogenetic tree by using all 33 CPR5 genes identified from Arabidopsis thaliana, Oryza sativa, Vitis vinifera, Theobroma cacao, and Gossypium species. In this phylogenetic tree, the CPR5 gene of Arabidopsis was present in clade A, the CPR5 genes of Oryza sativa were present in clade B. Furthermore, we found the CPR5 genes of Vitis vinifera, Theobroma cacao, and Gossypium species were grouped in the same clade C. The general evolutionary relationship indicated that Vitis vinifera and Theobroma cacao show a closer relationship with Gossypium as compared with Arabidopsis and Oryza (Chen et al., 2016). These results were consistent with the phylogenetic analysis between the already mentioned four genera. As for the evolutionary relationship within the 26 Gossypium species that were displayed in our phylogenetic tree, the CPR5 genes that were identified from G. rotundifolium (K genome) and G. australe (G genome) showed a closer relationship with Theobroma, which is one of closest genera to Gossypium (Udall et al., 2019). Previous studies on phylogenetic relationships within Gossypium species also supported out results (Tang et al., 2015; Conover et al., 2019). According to these studies, G. herbaceum was closer to G. arboreum, G. barbadense and G. hirsutum were closer to G. darwinii., G. tomentosum, and G. mustelinum (Applequist et al., 2001; Renny-Byfield et al., 2016). The same phenomenon was also found in our study that GheCPR5.1 and GarCPR5.1 were grouped in one branch and GhirCPR5.3, GbarCPR5.4, GtomCPR5.1, GmusCPR5.1, and GdarCPR5.2 were grouped in closer branches. The CPR5 genes which share similar structures and motifs were also grouped together.
In this study, we chose five Gossypium species to display the CPR5 genes chromosome location and the result showed that only one copy of the CPR5 gene was located on chromosome 2 (G. arboreum A02 and G. raimondii D02) for all two diploid cotton species. For tetraploid species, all CPR5 genes were found to be located on chromosomes A02 and D03. Previous study suggested that the tetraploid cotton species were formed by a hybridization process between A genome species and D genome species (Gong et al., 2012; Renny-Byfield and Wendel, 2014). These results indicated that the CPR5 genes number of tetraploid cotton was twice than the number in diploid cotton, resulting in a whole-genome duplication event during the cotton polyploidization process.
The cis-elements including enhancers and promoters have been had their regulating mechanism of gene expression and function proven (Shan et al., 2014; Zhao et al., 2018). By identifying the Cis-element gaining and losing, it was critical to provide the source of morphological evolution influenced by gene function diversity (Li et al., 2020; Mengarelli and Zanor, 2021). In this study, several cis-elements of CPR5 genes were predicted in Gossypium species. The same cis-elements, TCA-element, and TATA-box motifs, showed their core role in regulating CPR5 gene expression. The studies showed that TCA-element is essential to regulating the genes expression to exogenous salicylic acid response in Oryza sativa (Nakshatri and Chambon, 1994; Rai et al., 2004). As for TATA-box, the function to the control transcriptional modulation mediated by miRNA have been identified in plant species (Yang et al., 2017; Lee et al., 2020; Ramalingam et al., 2021). Current results showed that the same CPR5 genes regulate different regulatory mechanisms by various cis-elements distribution in plant species. The salicylic acid response element was mostly found in CPR5 genes of Gossypium species. The CPR5 gene has had its function proven to modulate salicylic acid to regulate pant growth and stress responses (Jirage et al., 2001; Lemarié et al., 2015). Those results revealed that CPR5 would be regulated by multiple hormones, especially the salicylic acid. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, and multicellular organismal process Xiaojing Wang et al., 2021.
MicroRNAs (miRNAs), that are a group of single-stranded, non-coding micro RNAs, are involved in post-transcriptional gene regulation (Cui et al., 2020). Various miRNAs have been identified via genome-wide analysis that are involved in growth and development in cotton (Zhang et al., 2007; Kwak et al., 2009; Ayubov et al., 2019). The current study identified nine miRNAs belonging to different families (ghr-miR7493, ghr-miR7484a, ghr-miR7484b, ghr-miR7488, ghr-miR7490, ghr-miR7496a, ghr-miR7496b, ghr-miR7499, ghr-miR7504a) targeting 25 Gossypium CPR5 genes (GheCPR5.1, GarCPR5.1, GhirCPR5.1, GbarCPR5.2, GausCPR5.1, GbarCPR5.1, GtomCPR5.1, GbarCPR5.3, GdarCPR5.2, GmusCPR5.2, GmusCPR5.3, GmusCPR5.1, GstuCPR5.1, GdarCPR5.3, GdarCPR5.1, GrotCPR5.1, GthuCPR5.1, GlonCPR5.1, GanoCPR5.1, GlonCPR5.2, GhirCPR5.2, GbarCPR5.4, GtomCPR5.2, GhirCPR5.3, GraiCPR5.1). Discussed miRNAs in the current study are all involved in the cotton plant growth and development and trichome development as reported earlier (Guan et al., 2014; Xue et al., 2014; Li and Zhang, 2016; Wang et al., 2017; Xiaojing Wang et al., 2021). These studies suggest that these Gossypium-miRNAs might play potential roles in plant growth and trichome development by modifying the transcript level of the CPR5 genes in Cotton.
In the current research based on transcriptome analysis of G. arboretum with trichomes and G. herbaceum with no trichome and co-expression network analysis we found that Ghe02G17590 is the hub gene. This gene is also a CPR5 gene and it has higher expressions in G. arboretum with trichomes and G. herbaceum with no trichomes (Yonekura-Sakakibara and Saito, 2013).
Virus induced gene silencing of Ghe02G17590 confirms that this might be the true candidate gene that is involved in the trichome development and elongation. Virus induced gene silencing is an important method to predict the function of a candidate gene and previously many studies on cotton have been published to confirm the role of candidate genes (Zhao et al., 2021).
Keeping in view the importance of CPR5 genes in plant growth and development and its role in trichome development further functional characterizations are needed to understand the molecular and genetics mechanisms of trichome development in cotton.
CONCLUSION
The CPR5 genes have a significant impact on crop tolerance to biotic and abiotic stress. Currently, we performed the genome wide identification, transcriptome analysis, co-expression, and RT-qPCR profiling and proved that CPR5 genes have potential roles in trichome development. The co-expression network analysis and RT-qPCR results showed that GheCPR5.1 is the hub gene and is involved in trichome development. Virus induced gene silencing of Ghe02G17590 confirms its potential role in trichome development and elongation. This gene might have a positive contribution in trichome development in G. hirsutum. The importance of CPR5 genes in plant growth, development, and trichome formation is summarized in this study and more functional characterization of GheCPR5.1 is needed for conclusive findings at molecular levels.
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Drought has been identified as a major threat for global crop production worldwide. Phosphofructokinase (PFK) is vital for sugar metabolism. During phosphorylation, plants have two enzymes: ATP-dependent phosphofructokinase (PFK) and pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP). Genome-wide identification led to the identification of 80 PFK genes, 26 genes in G. hirsutum and G. barbadense, and 14 genes in G. arboreum and G. raimondii. Phylogenetic, gene structure, and motif analyses showed that PFK genes were grouped into two main categories, namely, PFK and PFP, with 18 and 8 genes in the allotetraploid species and 10 PFK and 4 PFP genes in the diploid species, respectively. Using the RNA-seq expressions of 26 genes from GhPFK, a co-expression network analysis was performed to identify the hub genes. GhPFK04, GhPFK05, GhPFK09, GhPFK11, GhPFK13, GhPFK14, and GhPFK17 in leaves and GhPFK02, GhPFK09, GhPFK11, GhPFK15, GhPFK16, and GhPFK17 in root tissues were found as hub genes. RT-qPCR analysis validated the expressions of identified hub genes. Interestingly, GhPFK11 and GhPFK17 were identified as common hub genes, and these might be the true candidate genes involved in the drought stress tolerance. In the KEGG enrichment analysis, amino acids such as L-valine, L-histidine, L-glutamine, L-serine, L-homoserine, L-methionine, L-cysteine, and gluconic acid were significantly upregulated, whereas sugars, mainly fructose-1-phosphate, D-mannitol, D-sorbitol, dulcitol, and lactose, were significantly downregulated during drought stress. Genome-wide analysis paves the way for a deeper understanding of the PFK genes and establishes the groundwork for future research into PFK’s role in enhancing drought stress tolerance and sugar metabolism in cotton.
Keywords: cotton, phosphofructokinase, drought stress, sugar metabolism, RNA-Seq, RT-qPCR
INTRODUCTION
Cotton is an appealing model for investigating polyploid origins, evolution, and domestication. Diversity in Gossypium increased by transoceanic, long-distance dispersal and broad hybridization among lineages that are currently geographically separated. Gossypium hirsutum L. (AD1) and Gossypium barbadense L. (AD2) are two cultivated tetraploids that resulted through transoceanic hybridization (Zhang et al., 2015). They are developed separately and are domesticated in different parts of the world. G. hirsutum, which has been domesticated, shows greater adaptability and high production, whereas G. barbadense produces uniquely high-quality fibers (Wang et al., 2019). G. hirsutum is the main economical essential fiber crop, the primary source of renewable textile fibers, rich in protein and oilseed production. It was one of the first genetically modified crops to be widely used, and human-mediated breeding has resulted in current upland varieties with increased production and fiber quality (Su et al., 2016; Nazir et al., 2020).
Drought stress is a frequent abiotic stress that restricts crop growth and yield around the globe (Yao and Wu, 2016). In plants, drought triggers a complex set of molecular responses that starts with stress detection, progresses through a signal transduction cascade, and ends with physio-morphological changes at the cellular level, such as stomatal closure, cellular respiration activation, and inhibition of cell growth and photosynthesis (Lamaoui et al., 2018; dos Santos et al., 2022). Plants can also generate and accumulate certain metabolites that are specifically engaged in stress tolerance when they are subjected to drought (da Silva et al., 2017).
Glycolysis is a metabolic activity in which enzymes convert glucose into two molecules of pyruvate in the availability of oxygen or two molecules of lactate without oxygen. Anaerobic glycolysis, the latter pathway, is thought to be the first natural method to create adenosine triphosphate (ATP) (Plaxton, 1996). Because mitochondria are absent in few cells, like mature red blood cells, glycolysis is the sole way to produce ATP. It is a cytoplasmic method for converting glucose into two three-carbon molecules, which generates energy. Phosphorylation of glucose with the enzyme hexokinase traps glucose. All cells in the body use it to generate energy. In aerobic situations, glycolysis creates pyruvate, while in anaerobic ones, it produces lactate. To produce extra energy, pyruvate enters the Krebs cycle (Givan, 1999; Ohlendieck, 2010).
The glycolysis and pentose phosphate pathways have a significant impact on crop tolerance and abiotic stress. Phosphofructokinase (PFK) is a range-limiting enzyme in the carbon-flow controlling pathways of biological activities (Yao and Wu, 2016). The phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, a crucial regulatory step, is catalyzed by PFK, a glycolytic enzyme. The transfer of a phosphoryl group from ATP, which is mediated by enzymes, is a vital step in numerous biological activities (Ros and Schulze, 2013).
In crops, phosphofructokinase is vital for sugar metabolism. During phosphorylation, plants have two enzymes such as: ATP-dependent phosphofructokinase (PFK) and pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP) (Lü et al., 2019). PFK gene families have been characterized and a number of genes have been identified in some crops, such as eleven genes in Arabidopsis thaliana (Mustroph et al., 2007), fifteen PFK genes in rice (Kato-Noguchi, 2002), fourteen genes in white pear (Lü et al., 2019), thirteen genes in cassava (Wang et al., 2021), and studies were also performed in spinach and Saccharum (Chen et al., 2017).
The sugar required for root growth and metabolism is transported from leaves, enhancing the sucrose transport from leaves to roots is conducive to maintaining root growth under drought stress (Xu et al., 2015). In line with this, a higher root/shoot (R/S) ratio was pronounced under drought stress in soybeans. It increased the contents of soluble sugar and sucrose in the leaves, but decreased starch content; in the roots, all of these parameters were increased. This may be related to the enhanced carbohydrate metabolism activity under drought stress, including notable changes in the activities of sugar metabolism enzymes and the expression levels of genes in soybeans (Du et al., 2020). Sugar metabolism is an important process for root development under drought stress (Xu et al., 2015; Du et al., 2020).
Drought stress has a negative impact on cotton yield and productivity. Like other abiotic stresses, it is one of the most significant environmental elements influencing cotton production and growth, as well as fiber quality, due to inadequate cellulose cell formation in the bolls (Azhar and Rehman, 2018). Drought has put cotton growers’ future prospects in jeopardy; thus, finding a solution to this challenge is critical (Zahid et al., 2021).
In this research, using published genome as a reference, we performed genome-wide identification and expression analyses on the four cotton species. Phylogenetic tree, gene structure, motif analysis, chromosomal location, gene ontology, subcellular localization, protein–protein interaction, and promoter analysis along with the RNA-seq validation by RT-qPCR analysis were performed to analyze the evolution and potential of the PFK gene family under drought stress tolerance and sugar metabolism. The identified drought stress response genes, as well as the PFK gene family in general, will be used to better understand genomic architecture and functional structure, as well as to characterize the PFK gene family in cotton drought tolerance and sugar metabolism studies.
MATERIALS AND METHODS
Planting Materials and Stress Treatments
The seeds of three cotton species were obtained from the Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Mehari et al., 2021a). The seeds were soaked in water overnight. They were sown for about 7 days in a filter paper until good germination and then transferred to a greenhouse with 16 h of light and 8 h of darkness. When the plants grew to the three true leaves stage, the seedlings were subjected to PEG-6000. The leaf and root tissues at 0 h, 24 h, and 48 h were collected. The samples were promptly frozen in liquid nitrogen and kept at −80°C until the RNA extraction was completed (Mehari et al., 2021b).
PFK Gene Identification in Cotton
To identify the PFK genes in different cotton genomes, the PF00365 number was used to search the cotton sequence database, and G. hirsutum from NAU assembly, G. barbadense from HAU assembly, Gossypium arboreum from CRI assembly, and Gossypium raimondii from JGI assembly were filtered from CottonFGD (http://www.cottonfgd.org/search/) database (Zhu et al., 2017).
Phylogenetic Analysis of PFK Genes
The ClustalX2 software was used to align the protein sequences of all the identified PFK genes from the four cotton species, that is, G. hirsutum, G. arboreum, G. barbadense, and G. raimondii as well as A. thaliana and Theobroma cacao using default parameters. The phylogenetic analysis of PFK from all species was constructed using the numerous sequence alignments imported and displayed in MEGA 7.0 using the neighbor joining approach. For statistical reliability, tree nodes were calculated using the Bootstrap method with 1,000 repeats (Tamura et al., 2011).
Gene Architecture and Chromosomal Location of PFK Genes
GSDS 2.0 (https://gsds.cbi.pku.edu.cn/) was used to illustrate the gene structure of PFK genes using Genomic DNA and CDS sequences of each species (Hu et al., 2015). The CottonFGD genome annotation files were used to identify the chromosomal locations of PFK genes in G. hirsutum, G. arboreum, G. barbadense, and G. raimondii. This information was also used to construct chromosomal mapping which was then displayed by TBtools (Chen et al., 2020). The PFK protein sequences of the four cotton species were submitted to the online motif and domain identification software MEME (http://meme-suite.org/) to determine the conserved domains found in the proteins. The motif search was carried out using a total count of 10 motifs. The MAST tool was used to show the protein database for the identified motifs (Bailey et al., 2009).
Gene Ontology and Subcellular Localization Prediction
The Gene ontology analysis was performed by using the data downloaded from CottonFGD (www.cottonfgd.org) and the figure was visualized using the graphPad prism program (Zhu et al., 2017). The protein sequences of PFK genes were uploaded to the WoLF PSORT online website (https://wolfpsort.hgc.jp) for predictions of subcellular localization.
Cis-Regulatory and Protein–Protein Interaction Analysis of PFK Genes
The PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) online tool was used to search putative cis-regulatory elements in the PFK genes’ promoter regions up to 2,000 bp upstream, which were retrieved from the CottonFGD database (Lescot et al., 2002). The TBtools software was used to create a circular heatmap of cis elements (Chen et al., 2020). The amino acid sequences of the common hub genes GhPFK11 and GhPFK17 were used as query sequences to obtain the protein–protein interaction network by using the STRING website (https://cn.string-db.org/).
Expression Analysis of PFK Genes and RT-qPCR Assay
To study the expression of PFK genes, the gene expression profiles were obtained from previously published RNA-Seq data (NCBI accession: PRJNA663204) in the leaf and root tissues of different G. hirsutum races under drought stress. The FPKM values were used to present the PFK expression levels. RNA was extracted by TianGEN kit following the protocol guidelines and was reverse transcribed into cDNA by cDNA synthesis SuperMix for qPCR (one step for gDNA removal). Finally, the SYBR Green SuperMix kit was used to perform quantitative RT-qPCR as directed in the instruction manual. Three technical and biological replications were used in the experiment. The 2−ΔΔCt approach was used to calculate the relative expression data (Schmittgen and Livak, 2008). The primers used in the experiment were designed via NCBI (https://www.ncbi.nlm.nih.gov/) and shown in the Supplementary Table S1.
RESULTS
PFK Gene Family Identification in Cotton Species
The CottonFGD database (www.cottonfgd.org) was used to identify the PFK encoding genes in both diploid and tetraploid cotton species. The four cotton species were found to have a total of 80 genes, with 26 genes in G. hirsutum and G. barbadense and 14 genes in the diploid species of G. arboreum and G. raimondii. The CDS length of the cotton species ranges between 372 and 1854 bp, 1302 and 1851 bp, 372 and 1851 bp, and 840 and 1854 bp in G, hirsutum, G. barbadense, G. arboreum, and G, raimondii, respectively. Similarly, 299–617 aa, 299–617 aa, 299–617 aa, and 299–617 aa protein length was observed in the above four cotton species successively. Correspondingly, molecular weight distributes between 14.192–67.555 kDa and 47.844–67.38 kDa were recorded in G. hirsutum and G. barbadense, while 14.208–67.41 kDa and 30.493–67.568 kDa were recorded in both G. arboreum and G. raimondii successively. In case of molecular charge, similar distributions were observed, −0.5–15, −1–19, −1.5–18, and −3.5–19.5, in G. hirsutum, G. arboreum, G. raimondii, and G. barbadense, correspondingly. The GRAVY nature of the four cotton species was low and negative (Tables 1–4). This implies that the PFK proteins are hydrophilic.
TABLE 1 | Transcript and physiochemical features of PFK genes in G. hirsutum.
[image: Table 1]TABLE 2 | Transcript and physiochemical features of PFK genes in G. arboreum.
[image: Table 2]TABLE 3 | Transcript and physiochemical features of PFK genes in G. raimondii.
[image: Table 3]TABLE 4 | Transcript and physiochemical features of PFK genes in G. barbadense.
[image: Table 4]Phylogenetic Analysis of PFK Proteins
The evolution analysis and patterns of cotton PFK proteins were exhibited by building a phylogenetic tree in G. hirsutum, G. barbadense, G. arboreum, G. raimondii, A. thaliana, and T. cacao. The phylogenetic tree of PFK proteins was composed of two main categories, namely, PFK and PFP group (Figure 1). To construct the tree, ClustalX was used to align 97 protein sequences from G. hirsutum, G. barbadense, G. arboreum, G. raimondii, A. thaliana, and T. cacao. From this, 18 PFK and 8 PFP proteins each from G. hirsutum and G. barbadense, 10 PFK, and 4 PFP proteins from G. arboreum and G. raimondii, 7 PFK with 2 PFP from A. thaliana and 6 PFK with 2 PFP from T. cacao were used to build the tree via MEGA 7.0.
[image: Figure 1]FIGURE 1 | Phylogenetic tree analysis of PFK genes in G. hirsutum, G. barbadense, G. arboreum, G. raimondii, A. thaliana, and T. cacao. The tree analysis categorized the PFK gene family into two big groups of PFK and PFP which are highlighted in blue and violet colors.
Genetic Architecture and Motif Analysis
The genetic architecture of PFK proteins was demonstrated by studying the exon-intron structural distribution in the four cotton species. The lowest exon number was recorded in genes GaPFK01 and GaPFK05 in G. arboreum, GrPFK06 in G. raimondii, GhPFK03, GhPFK05, and GhPFK14 in G. hirsutum, and GbPFK12 in G. barbadense with 2 exons while the highest number of exons “18” was present in GaPFPA1 in G. arboreum, GrPFPA1 in G. raimondii, GhPFPA1 and GhPFPA2 in G. hirsutum, GbPFPA1 and GbPFPA2 in G. barbadense. In relative to gene length, 10,005 bp, 8536 bp, 8008 bp, and 8016 bp were observed in GhPFK18, GbPFK18, GaPFK10, and GrPFK10 in the four species, respectively (Figure 2A). This showed us the lowest exon numbers in PFK gene group and the highest exon numbers which harbors the PFP gene group. By analyzing the protein sequences of the PFK gene family using the MEME online tool, 10 conserved motifs were predicted. The identified motifs varied between 6 and 10 in G. hirsutum, 3 and 10 in G. arboreum, 3 and 10 in G. raimondii, and 5 and 10 in G. barbadense. The lowest number of motifs were observed in GaPFK01 with motif numbers of 4, 3, and 1 and GrPFPB1 with 8, 5, and 9 motifs. The PFP subgroup has lower number of motifs between 3 and 6, with motif number 1 as a common motif (Figure 2B). Generally, the FPK proteins have highly conserved motifs and as a result, proteins with comparable structures are likely to have similar functional tasks.
[image: Figure 2]FIGURE 2 | Gene architecture and motif enrichment analysis of PFK proteins in Gossypium species. I. G. hirsutum; II. G. barbadense; III. G. arboreum; IV. G. raimondii. (A–C) stands for phylogenetic relationship, gene structure, and motif identification in all the Gossypium species, respectively.
Chromosomal Mapping of PFK Genes
The distribution of PFK genes on chromosomes varies between the tetraploid and diploid cotton species. In the allotetraploid species of G. hirsutum and G. barbadense, At01, At03, At04, At08, At09, At12 from At subgenome and Dt01, Dt04, Dt08, Dt09, and Dt12 from Dt subgenome had no genes on any chromosome. The gene distribution was between 1 and 4 genes among the rest 15 chromosomes with two scaffolds on the G. hirsutum At subgenome (Figure 3). Similarly, in the diploid cotton species of G. arboreum and G. raimondii, A04, A08, A09, A12 and D02, D04, D06, D08, D12 chromosomes did not possess any PFK genes. The PFK genes were irregularly distributed among the 9 and 8 chromosomes of G. arboreum and G. raimondii, successively between 1 and 4 genes (Figures 3A–F).
[image: Figure 3]FIGURE 3 | Chromosomal location of the PFK genes. (A) G. hirsutum At subgenome; (B) G. hirsutum Dt subgenome; (C) G. barbadense At subgenome; (D) G. barbadense Dt subgenome; (E) G. arboreum; (F) G. raimondii.
Gene Ontology Enrichment Analysis
Gene ontology enrichment studies were performed on the genes of G. hirsutum, G. barbadense, G. arboreum, and G. raimondii to better realize the functional annotations of PFK family genes in Gossypium species. Gene ontology analysis proved their glycolytic process (79 genes) and fructose-6-phosphate metabolic process (77 genes) as biological function and 6-phosphofructokinase activity (80 genes), diphosphate-fructose-6-phosphate 1-phosphotransferase activity (23 genes), and ATP binding (73 genes) in the molecular function category in all PFK genes of the Gossypium species (Figure 4).
[image: Figure 4]FIGURE 4 | Gene ontology enrichment analysis using CottonFGD for the PFK gene family. (A) G. hirsutum; (B) G. barbadense; (C) G. arboreum; (D) G. raimondii. Bar graph was done using PrismPad; the scale indicates the number of genes enriched in each function.
Subcellular Localization Prediction of PFK Proteins
According to the online subcellular localization prediction in the WoLF PSORT (https://wolfpsort.hgc.jp/) tool, the four Gossypium species were expected to be localized in various cell sections (Supplementary Table S2), primarily in the chloroplast, cytoplasm, cytoskeleton, and nucleus. A small number of genes were also found in the mitochondria, plastids, and perisome cells (Figure 5).
[image: Figure 5]FIGURE 5 | Subcellular localization prediction of the PFK genes of Gossypium species (A) G. hirsutum; (B) G. arboreum; (C) G. raimondii; (D) G. barbadense.
Cis-Regulatory Element Analysis
CottonFGD (www.cottonfgd.org) was used to identify cis-regulatory components in the 2,000 base pair of the 5′ upstream region. The findings revealed that cis-acting components fall into numerous categories such as defense and stress responsiveness, abscisic acid responsiveness, light responsiveness, anaerobic induction elements, MeJA-responsiveness, hormone-responsive elements, low-temperature responsiveness, and in drought inducibility elements were identified in the promoter regions of both the tetraploid and diploid cotton species (Figure 6, Supplementary Table S3). In addition, the promoter regions of G. hirsutum, G. barbadense, G. arboreum, and G. raimondii contained five elements important in drought and stress reactivity, including TC-rich repeats, MBS, ABRE, ARE, and WUN-motif.
[image: Figure 6]FIGURE 6 | Cis-regulatory elements analysis of the PFK gene family. (A) G. hirsutum; (B) G. barbadense; (C) G. arboreum; (D) G. raimondii.
Protein–Protein Interaction Analysis of PFK Genes
Protein–protein interaction analysis was used to further identify the potential biological activities of PFK hub genes, and 10 putative interactors were discovered (Figure 7). Notably, several sugar metabolism-related proteins that play a key role in glycolysis and gluconeogenesis (FBA4, FBA7, and FBA8) were found. AT5G42740 and PGI1 encode glucose-6-phosphate and plastid phospho-glucose isomerase which encode for defense response and accumulation of starch in root cap cells. TIM and TPI proteins also encode plastidic triose phosphate and triosephosphate isomerase enzymes.
[image: Figure 7]FIGURE 7 | Protein–protein interaction analysis of PFK hub proteins. (A). Interaction network of GhPFK11 gene; (B). Interaction network of GhPFK17 gene; Colored nodes: query proteins and first shell of interactors; Red lines: gene fusions; Green lines: gene neighborhood; Black lines: co-expression; Blue lines: gene co-occurrence.
RT-qPCR and Gene Co-Expression Network Analysis
Transcriptome analysis was performed in G. hirsutum races to observe the expression potential of PFK genes in response to drought stress tolerance. The results of the RNA-seq revealed that in both leaf and root tissues the genes of PFK family showed higher expressions in response to drought stress. GhPFK02, GhPFK04, GhPFK05, GhPFK09, GhPFK11, GhPFK13, GhPFK14, and GhPFK17 in the leaf tissue, GhPFK02, GhPFK06, GhPFK09, GhPFK11, GhPFK15, GhPFK16, and GhPFK17 in the root tissue showed consistent upregulation in all the three cotton races at all time points (Figures 8A,C). To validate the transcriptome results, RT-qPCR analysis was performed in 26 PFK genes in similar tissues and time points as the transcriptome. The RT-qPCR analysis verified a similar trend of expression with high correlation (R2 = 77.5% in the leaf and R2 = 64.9% in the root) of both transcriptomes and RT-qPCR analysis results.
[image: Figure 8]FIGURE 8 | RNA-seq, RT-qPCR, and Co-expression network analysis of PFK genes. (A). RNA-seq and RT-qPCR expression analysis of the PFK genes in the leaf tissue of G. hirsutum races; (B). Co-expression analysis and hub gene identification from leaf expression; (C). RNA-seq and RT-qPCR expression analysis of the PFK genes in the root tissue of G. hirsutum races; (D). Co-expression analysis and hub gene identification from leaf expression. Genes in the center of the network analysis with red color are hub genes.
For gene co-expression network analysis, a total of 26 genes were used from the PFK gene family. We used the RNA-sequencing data from both leaf and root tissues of G. hirsutum races. A correlation analysis of these genes was performed via a correlation calculator. After evaluating the correlation of the genes, the co-expression network analysis was established by cytoscape v.3.7.2 (Shannon et al., 2003). In both leaf and root tissues, 26 nodes (genes) and 325 edges (correlation) were observed. In leaf tissue expressions, there were 191 positive and 134 negative correlations and in root tissue expressions 174 positive and 151 negative correlations were identified. Results indicated that GhPFK04, GhPFK05, GhPFK09, GhPFK11, GhPFK13, GhPFK14, and GhPFK17 were found as hub genes in leaves. Similarly, in roots, GhPFK02, GhPFK09, GhPFK11, GhPFK15, GhPFK16, and GhPFK17 were found as hub genes via the cytohubba analysis (Figures 8B,D. Supplementary Table S4). Surprisingly we found that GhPFK11 and GhPFK17 are common hub genes in both leaves and roots.
Metabolite Enrichment Analysis
KEGG enrichment analysis was performed in the G. hirsutum races to identify the significant metabolites that are crucial for drought stress tolerance. Biosynthesis of amino acids, carbon metabolism, fructose and mannose metabolism, and galactose metabolism were all shown to be significantly enriched for the PFK genes (Supplementary Table S5). In the biosynthesis of amino acids and carbon metabolism, most of the amino acids like L-valine, L-histidine, L-glutamine, L-serine, L-homoserine, L-methionine, L-cysteine, and gluconic acid were significantly upregulated, whereas in fructose and mannose, metabolism and galactose metabolism sugars mainly fructose-1-phosphate, D-mannitol, D-sorbitol, dulcitol, and lactose were significantly downregulated under drought stress (Figure 9). In summary, amino acids were upregulated, whereas sugars were downregulated under drought stress treatment.
[image: Figure 9]FIGURE 9 | Metabolite enrichment analyses of PFK genes during drought stress. (A). Biosynthesis of amino acids; (B). Carbon metabolism; (C). Galactose metabolism; (D). Fructose and mannose metabolism. Heatmap was visualized by TBtools using the log2 data normalization of the metabolite expression.
DISCUSSION
Cotton (genus Gossypium) is a valuable crop that produces the majority of the world’s natural fiber. It is a significant crop that has seen substantial production increases during the last century (Aslam et al., 2020; Grover et al., 2020). Gossypium contains more than 50 wild species that are related to cultivated cottons. These species are divided into groups of nearly related species arranged “A-G″ and “K” for diploids and “AD” for tetraploids, and they could provide biotic and abiotic stress tolerance. (Wendel and Grover, 2015; Li et al., 2021). In this study, we used G. arboreum and G. raimondii from the diploid species category of A and D genomes and G. barbadense and G. hirsutum, belonging to the AD-genome tetraploid category (Zhang et al., 2008). G. barbadense and G. hirsutum now account for >95% of the world’s cotton production (Fang et al., 2014; Li et al., 2015).
In the four Gossypium species, we identified a total of 80 PFK genes with a majority of PFK (56 genes) and 24 genes from PFP subfamily. The PFP gene subfamily was also categorized as PFPA (Alpha) with 6 genes and PFPB (Beta) with 18 genes. Similarly, in other researched crops, the gene family was divided between PFK and PFP groups. The PFK gene family has eleven members in A. thaliana: four belongs to AtPFP and seven to AtPFK. Rice has fifteen PFK genes, five of which belong to OsPFP and ten to OsPFK. The white pear (Pyrus bretschneideri) has fourteen members in the PFK family, ten of which are PbPFK and four of which are PbPFP. PFK is a crucial protein in plant growth and development with a wide range of functions, with 13 members of the PFK family in cassava (Manihot esculenta Crantz) (Wang et al., 2021).
According to a subcellular localization analysis of PFK genes, five MePFKs in chloroplast, two in cytoplasm, and four MePFPs were predicted to be localized at the cytoplasm in cassava (M. esculenta Crantz). MePFK03 and MePFPA1, which are expected to be found in the chloroplast and cytoplasm, successively, were chosen to generate GFP fusion proteins to support the abovementioned conclusion. GFP images revealed that they were present in the chloroplast and cytoplasm, successively (Wang et al., 2021).
The discovery of cis-regulatory elements unveiled that the PFK genes contain several essential cis-regulatory elements that protect cells from harmful environmental stimuli. Box 4, CGTCA-motif, DRE1, DRE core, ERE, GARE-motif, G-Box, GATA-motif, GT1-motif, LTR, MBS, MYB-like sequence, MYB recognition site, MYB, MYC, STRE, W-box, WRE3, and WUN-motif were some of the vital regulatory elements identified in the PFK family. OMT genes contain W-box, MYB, MYC, DRE, ABRE, G-Box, and MBS. The W-box regulates gene expression and binds WRKY transcription factors. Plants need WRKY TFs to protect themselves from drought, chilling, wounding, heat, and salinity stress (Hafeez et al., 2021).
Cis-regulatory elements belong to numerous classifications such as stress responsive, hormone responsive, and light responsive. They were encoded in the promoter regions of G. hirsutum, G. arboreum, G. raimondii, and G. barbadense. Furthermore, four abiotic stress-responsive promoter elements were found in two diploid and two tetraploid cotton species, including LTRs, TC-rich repeats, MBSs, and WUN motifs confirming their role in abiotic stress tolerance (Rehman et al., 2021). ABRE, CGTCA-motif, TCA-element, TGACG-motif, GARE-motif, TATC-box, P-box, and other phytohormone linked abscisic acid, gibberellin, auxin, methyl jasmonate (MeJA), and salicylic acid were identified in the SOD family of Brassica napus in a similar study. Stress response (drought, cold, light, and anaerobic) elements such as ARE, chs-CMA1a, LAMP-element, LTR, MBS, TCT-motif, G-box, GT1-motif, and MBS were also found (Su et al., 2021).
Drought is one such negative environmental cue that hinders photosynthetic carbon fixation and impacts sugar transport by reducing the cellular osmotic potential. Sugar transporters are a group of proteins that aid in the transit of sugar within cells. The influx/outflow of different sugars and their metabolite intermediates that enable plant growth and development is determined by these transporter proteins. Sugar distribution across the cellular and subcellular compartments is reprogrammed as a result of abiotic stress, particularly drought stress-induced damage (Kaur et al., 2021).
Glycolysis is a metabolic process that converts glucose into pyruvate in the availability of oxygen or lactate molecules without oxygen via enzyme-catalyzed processes. Anaerobic glycolysis, the latter pathway, is thought to be the first natural method to create adenosine triphosphate (ATP) (Mayes and Bender, 2003). It is a crucial metabolic mechanism in all living things. Glycolysis helps cells adjust to abiotic conditions including lack of oxygen, cold, and drought by providing energy for cell and sugar metabolism (Wang et al., 2021).
Sugars are plants’ basic products, and the hexose sugars glucose and fructose provide the starting material for almost all metabolic pathways in crops. Hexose sugars are necessary to be phosphorylated before they can be digested. Hexokinases and fructokinases are the only two families of enzymes found in plants that catalyze the necessary permanent phosphorylation of glucose and fructose. These enzymes appear to coordinate sugar synthesis with water, sunlight, nutrients, and CO2 absorption (Granot et al., 2014). In plants, fructose was formed as a breakdown product of both primary sucrose-cleaving enzymes. A fructokinase phosphorylates fructose before it enters metabolism. The phosphofructokinase B family, which includes known FRKs, is a heterogeneous group of carbohydrate/purine kinases (Riggs et al., 2017). The primary step of fructose phosphorylation in plants is catalyzed by two types of fructokinases: cytosolic and plastidic fructokinases (Stein et al., 2016). Fructokinases have an impact on long-lasting developmental processes such as sugar, nutrients, and water transport (Granot et al., 2014).
Metabolite enrichment analysis was used to directly investigate a group of functionally related metabolites that are significantly enriched. Biosynthesis of amino acids, carbon metabolism, fructose and mannose metabolism, and galactose metabolism were significantly enriched during drought stress. Many amino acids response to abiotic stressors have been discovered to play vital functions in plant growth. Amino acids also serve as precursors for a variety of primary and secondary metabolites, and they play an important role in human nutrition (Trovato et al., 2021). In both normally watered and drought-stressed plants, exogenous addition of amino acids can improve nutritional traits like phenol, total protein, proline, and several important amino acids like glutamic acid, glutamine, and asparagine. By reducing the negative effects of drought stress on cabbage, amino acids were found to be efficient in boosting physiological and nutraceutical parameters. Thus, the use of amino acids proved successful in reducing the impacts of drought stress and boosting nutritional value in drought stress situations (Haghighi et al., 2020). Overall, The above results widen our understanding about the role of Gossypium PFK genes on drought stress tolerance and sugar metabolism.
CONCLUSIONS
The glycolysis and pentose phosphate pathways have a significant impact on crop tolerance under abiotic stress. Genome-wide identification, co-expression, RT-qPCR profiling, and metabolite enrichment analysis indicated that PFK gene family has potential in drought stress tolerance by involving in biosynthesis of amino acids and sugar metabolism activity (Figure 10). Important amino acids like L-valine, L-glutamine, L-methionine, and gluconic acid were significantly upregulated, while sugars like D-mannitol, D-sorbitol, and dulcitol were significantly downregulated during drought stress. The co-expression and RT-qPCR results showed that GhPFK04, GhPFK09, GhPFK13, GhPFK14, GhPFK16, and GhPFK17 are hub genes and consistently upregulated in both leaf and root tissues during the stress condition. GhPFK11 and GhPFK17 were identified as common hub genes and these might be the true candidate genes involved in the drought stress tolerance in G. hirsutum. The current study lays the groundwork for the importance of PFK gene family in drought stress tolerance and sugar metabolism in cotton and opens doors to functional characterization of hub genes. Therefore, further functional validation of the hub genes is needed in order to better understand their involvement in the drought stress tolerance and sugar metabolism mechanisms at molecular and genetic levels.
[image: Figure 10]FIGURE 10 | A graphic model for the role of PFK genes under drought stress. Drought stress induces biosynthesis and upregulation of amino acids production and activates the plant osmo regulation activity. Additionally, PFK involves in sugar metabolism and acts as the energy source for root development during plant drought stress tolerance.
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Wheat is one of the most important food crops worldwide. Even though wheat yields have increased considerably in recent years, future wheat production is predicted to face enormous challenges due to global climate change and new versions of diseases. CRISPR/Cas technology is a clean gene technology and can be efficiently used to target genes prone to biotic stress in wheat genome. Herein, the published research papers reporting the genetic factors corresponding to stripe rust, leaf rust, stem rust, powdery mildew, fusarium head blight and some insect pests were critically reviewed to identify negative genetic factors (Susceptible genes) in bread wheat. Out of all reported genetic factors related to these disease, 33 genetic factors (S genes) were found as negative regulators implying that their down-regulation, deletion or silencing improved disease tolerance/resistance. The results of the published studies provided the concept of proof that these 33 genetic factors are potential targets for CRISPR/Cas knockdowns to improve genetic tolerance/resistance against these diseases in wheat. The sequences of the 33 genes were retrieved and re-mapped on the latest wheat reference genome IWGSC RefSeq v2.1. Phylogenetic analysis revealed that pathogens causing the same type of disease had some common conserved motifs and were closely related. Considering the significance of these disease on wheat yield, the S genes identified in this study are suggested to be disrupted using CRISPR/Cas system in wheat. The knockdown mutants of these S genes will add to genetic resources for improving biotic stress resistance in wheat crop.
Keywords: S genes, crispr/cas, stripe rust, leaf rust, powdery mildew, biotic stress, wheat, genetic resources
INTRODUCTION
Wheat (Triticum aestivum L.) is grown in 89 countries and consumed by 2.5 billion people due to its dietary values (CGIAR, 2019). Each growing season, wheat is exposed to a wide range of diseases and pests that affect the crop yield (Gulnaz et al., 2019). Among biotic stresses, pathogenic fungi pose a serious threat to global wheat production. Stripe rust, stem rust, leaf rust, powdery mildew, and head blight are the primary diseases of wheat (Simón et al., 2021). Stripe rust has historically caused and continues to cause catastrophic losses in sensitive wheat cultivars globally (Gad et al., 2019). According to a recent estimate, 21.5% wheat yield losses are due to pests and diseases (Savary et al., 2019). Thus far, various breeding methods and biotechnological tools have exploited resistant genes (R genes) to breed biotic stress tolerant wheat varieties over different periods of time (Supplementary Figure S1). However, susceptible genes (S genes) are not yet explored to improve resistance against pests and diseases.
The advent of CRISPR/Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) system such as CRISPR/Cas9 and CRISPR/Cas12 for precise genome editing presents great scope of targeting S genes to improve economical traits in crops including wheat (Mubarik et al., 2021). As an allohexaploid, however, wheat has three closely linked sub genomes that were passed down from three homoeologous ancestors, with 2n = 6x = 42, AABBDD (Petersen et al., 2006). The A, B, and D genomes each contain three copies of a gene that is functionally redundant and complementary. As a result, it is extremely unlikely that natural selection or induced mutagenesis will result in the simultaneous mutation of genes in the human genomes A, B, and D. Consequently, compared to other cereals like rice and maize, wheat’s complicated polyploid structure has hampered the development of functional genomics and breeding (Char et al., 2017), and the failure to eliminate all of a gene’s duplicates may not necessarily result in phenotypic changes due to genome buffering. On the other hand, wheat’s genome is massive (∼17 Gb) and contains a high proportion of repetitive DNA (80%–90%), making targeted modifications extremely difficult. However, with the availability of novel Cas orthologues, gRNA design in the CRISPR/Cas systems has grown more flexible and can be easily created to target a variety of genes (Char and Yang 2020; Gürel et al., 2020).
To date, Cas9 and Cas12a, have been used for genome editing in wheat to create new alleles and disrupt gene’s function (Kefale & Getahun 2022). Due to their unique pros and cons, Cas9 and Cas12a have made the applications of CRISPR/Cas system highly versatile. Cas12a, has certain advantages over Cas9, in its ability to be used for multiplex genome editing and production of staggered DSB (double-stranded break), which promotes HDR (homology-directed repair) instead of NHEJ (non-homologous end joining).
Continuous improvement in genetic resources for biotic stress resistance is pre-requisite for sustained increase in yield potential of newly developing wheat varieties (Alemu, 2019). This report intends to provide a guide for exploiting S genes through CRISPR/Cas knockdowns to develop new genetic resources for breeding biotic stress resistant wheat varieties. The genetically stable knockdown-mutants the S genes could provide new genetic resources for enhancing biotic stress tolerance in future wheat varieties.
RESISTANCE (R) VERSUS SUSCEPTIBLE (S) GENES
Plants have evolved a sophisticated immune system through co-evolution with diseases, while pathogens have developed counter-defense mechanisms. The pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin or viral double-stranded RNAs are detected by PRRs on the cell surface, activating PAMP-triggered immunity (PTI). PTI causes dynamic changes in the defense-responsive transcriptome, reactive oxygen species (ROS) generation, and antimicrobial peptide/compound release in the apoplast (Jighly et al., 2016). Pathogens release virulence proteins or effectors and other poisons to reduce PTI (Huerta-Espino et al., 2011). These effector chemicals also change plant physiology to aid infection. Plants have evolved R genes that may detect effector activities and trigger effector triggered immunity (ETI). Strong defensive responses often cause localized cell death or hypersensitivity (Sharma et al., 2015; Alemu, 2019). S genes, on the other hand, are required for pathogen infection and consequently for suitable plant–pathogen interactions. They help in host identification and penetration, pathogen growth and spread, and negative modulation of immunological signals (Zaidi et al., 2018). While R genes are dominant, disease resistance offered by S genes is recessive and comes with a fitness penalty. S-gene-mediated disease resistance is pathogen specific when the damaged pathway is required for pathogen entry, penetration, or post-penetration. A suitable host surface state is essential for bacterial adhesion or fungal/oomycete spore germination prior to penetration. Pathogens enter their hosts in a variety of ways. Direct penetration through physical or chemical barriers, and indirect penetration through natural cell openings like stomata. Pathogens invade host cells after penetration by avoiding plant monitoring systems and/or dampening numerous levels of defense (Zaidi et al., 2018). In the same way, the target S gene involved in protracted or constitutive defense responses can be broad-spectrum. We use genome editing to target S-gene-mediated pathogen resistance.
SELECTION OF TARGET S GENES AND THEIR FUNCTIONS IN WHEAT
The target S genes were selected based on critical review of research papers published from well-known labs. The genes/genetic factors whose absence, down regulation, reduced expression, silencing or loss of function mutation improved resistance against one or more than one of the diseases or insect pests were considered as S genes. Out of >100 genes reported to be associated with stripe rust, leaf rust, stem rust, powdery mildew and fusarium head blight, 33 were selected as S genes with strong concept of proof (Supplementary Table S1). The R genes or the genes without any functional concept of proof were not included in this mini review. Herein, 20 target S genes were selected for stripe rust. For powdery mildew, fusarium head blight, aphides and leaf rust, 4, 7, 1 and 1, target S genes were selected, respectively. Besides improving resistance to disease, the knockdowns of these S genes could cause some yield penalty or negatively affect some other agronomic traits. For example, the knockdown of TaNAC21/22 gene produces necrotic and shorter leaves which can lead significant yield penalty. The side effects of knockdowns of the S genes can be recovered by subsequent backcrossing with wild plants. The CRISPR/Cas knockdowns of these genes to develop null mutants will create valuable genetic resources for breeding against disease in wheat. Further, the orthologs of the selected S genes from Zea mays, Oryza sativa, were also searched to confirm their similar functions in maize and rice using NCBI-BLASTp (https://blast.ncbi.nlm.nih.gov) and phytozyme database (https://phytozome-next.jgi.doe.gov/). Based on their homology, complete sequence information of the selected 33 S genes were extracted from NCBI.
MAPPING OF SELECTED S GENES
To map the selected S genes Wheat URGI (https://wheat-urgi.versailles. inrae. fr) (Appels et al., 2018) database was used. All the retrieved sequences were matched using public blast. Once the alignment was retrieved, chromosomes to be mapped were selected using IWGSC RefSeq v2.1. The map was constructed based on the highest similarity score and lowest E-values (Figure 1).
[image: Figure 1]FIGURE 1 | Mapping of selected S genes on wheat genome using URGI tool.
MULTIPLE SEQUENCE ALIGNMENT AND PHYLOGENETIC ANALYSIS OF THE SELECTED S GENES
For multiple sequence alignment (MSA) of the selected S genes, Clustal W software (Thompson et al., 1994) was used (Supplementary Figure S2). The Molecular Evolutionary Genetics Analysis (MEGA) program is a computer tool that lets you to compare homologous genetic sequences from many classes or multi - gene families, with a focus on implying evolutionary links and patterns of DNA and protein evolution (Kumar et al., 2018). For phylogenetic analysis of the S genes MEGA software (Kumar et al., 2018) was used (Supplementary Figure S3).
All the coding sequences were retrieved from NCBI database and homology between the negative regulator genes was identified. Based on the phylogenetic analysis pathogens causing strip stripe rust, powdery mildew, leaf rust, and fusarium head blight were predicted to have common conserved motifs and to be closely related from evolution perspective.
FUTURE PERSPECTIVES
The CRISPR/Cas9 genome-editing technique has made a big splash in plant genetics. It is the most sophisticated gene - editing system ever built due to its remarkable versatility in attacking any DNA sequence with the greatest specificity and modification effectiveness (100%). Furthermore, unlike typical transgene-carrying GMOs, CRISPR/Cas9 doesn’t really incorporate foreign genes into the plant genome, so genetically altered plants are not (yet) subject to legal constraints. Since its first use in plants 4 years ago, this approach has proven to be an innovative tool for increasing critical mating targets including yield, quality, herbicide tolerance, and biotic/abiotic stress resistance. This method is also utilized to change the patterns and architecture of plant inflorescences, as well as to manipulate gene expression through transcriptional regulation.
CRISPR-based genome editing and CRISPR, when combined with other breakthroughs such as the better transgenic technologies and generation of high-quality genome sequences, would propel rational design-based molecular breeding of polyploid wheat and functional genomics to the forefront of wheat biology. Gene-edited wheat and transgene-free, we believe, will play a crucial role in addressing environmental challenges while boosting maintainable agriculture. This is important to note that it is not a substitute for conventional breeding; rather, it is one of the strategies for speeding up wheat biology and developing wheat breeding programs.
CONCLUSION
Herein, 33 S genes were selected as potential targets for CRISPR/Cas9 knockdowns. The genetically stable knockdown mutants can be used as valuable parents for designing crosses to breed disease resistant cultivars in wheat. The MSA and phylogenic analysis of the selected genes revealed that the S genes related to a specific disease such as stripe rust share some common conserved motifs and have high sequence similarities. Using this information new S genes could be identified using relevant bioinformatics tools and validated in wet lab experiments.
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Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Keywords: brassinosteroid signaling, bioinformatics tools, gene expression, gene promoters, in silico analysis, Oryza sativa
INTRODUCTION
Brassinosteroids (BRs) are a class of steroidal plant hormones that control many physiological and developmental processes, such as seed development, germination, plant growth in the dark (skotomorphogenesis), transition to photomorphogenesis, cell division and elongation, differentiation of the tracheary system, reproduction, as well as plant yield (Wei and Li, 2016; Gao et al., 2019; Gruszka, 2020). It is also known that BR influences plant response to environmental (biotic and abiotic) stresses (Bajguz et al., 2020; Liu et al., 2021). Over the last 3 decades, studies have identified and characterized various components of the BR signaling in the dicot model species Arabidopsis thaliana, which is now one of the best described molecular signaling pathways in plants (Gruszka, 2020). Furthermore, the BR signaling components are potential targets for rational molecular design to boost plant growth and response to environmental stresses (Liu et al., 2021).
In contrast, our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process in Arabidopsis. Therefore, identifying new BR signaling components in monocots, including cereals, is an ongoing process and it has already resulted in identifying some monocot-specific components of the BR signaling (Gruszka, 2020). Among the monocots, the BR signaling mechanism has been described to the most significant degree in rice (Oryza sativa) and serves as a model and reference for other monocots (Gruszka, 2018; Liu et al., 2021). Rice is one of the staple foods for 50% of the world population (Hussain et al., 2022). Several studies have been conducted to identify the BR signaling components in rice and other monocot species, based on the rice genome sequence information available in the public domains. However, the list of identified and functionally characterized BR signaling genes is still limited, particularly in other monocot crop species (Liu et al., 2021).
Forward and reverse genetics approaches were used to characterize the components of the BR signaling (Vriet et al., 2012; Zhang et al., 2014; Gao et al., 2021). The studies conducted in rice allowed for the identification of key players in the BR signaling pathway, including Brassinosteroids-Insensitive 1 (OsBRI1), and its coreceptor BRI1-Associated Receptor Kinase1 (OsBAK1), Glycogen Synthase Kinase 1 and 2 (OsGSK1/2) and Brassinazole-Resistant 1 (OsBZR1) transcription factor. The results confirmed that the BR signaling is conserved between monocotyledonous and dicotyledonous plants (Tanaka et al., 2009; Tong and Chu, 2018). It is interesting to note that several BR signaling components in rice, such as Leaf and Tiller Angle Increased Controller (OsLIC), DWARF and Low-Tillering (OsDLT), Enhanced Leaf inclination and Tiller number1 (ELT1)), Taihu Dwarf1 (OsTUD1), Erect Leaf1 (ELF1), OsRAVL1, GrainWidth5 (OsGW5), and OsPRA2, do not have orthologs in Arabidopsis what suggests that in monocots the BR signaling components may have specific functions or that there might be some redundancy between them (Liu et al., 2017; Tong and Chu, 2018). In rice, another component of BR signaling the ABI3/VP1 RAV-Like1 (RAVL1) gene enhances the expression of BRI1 and many BR biosynthesis genes (Je et al., 2010) which is rather unique among regulatory mechanisms of the BR-dependent gene expression. On the other hand, in Arabidopsis there are also components of the BR signaling that have not been identified in rice, such as the Protein Phosphatase 2A (PP2A) and BRI1-Supressor1 (BSU) phosphatases (Liu et al., 2017; Tong and Chu, 2018). To date, 39 BR signaling genes have been identified and characterized in rice by different researchers and using various approaches. The genes and their functions were described in a review by Gruszka (2020) and a list of these genes is given in (Supplementary Table S1).
The identification of monocot-specific components of the BR signaling is a very important issue, taking into account that cereal crop mutants with defects in the BR signaling may be applied in breeding programs due to their favorable traits, such as erect stature which allows dense planting or enhanced tolerance to stress conditions (such as drought). Importantly, several studies have been published regarding mutants deficient in the BR metabolism in the last few years, suggesting that the mutants defective in the BR biosynthesis or signaling are more tolerant to drought (Feng et al., 2015; Gruszka et al., 2016; Gruszka, 2020). The OsBRI1 gene, the first of the BR signaling components, was shown to encode a functional BR receptor using forward genetics in rice, which revealed typical BR-defective phenotypes, such as erect leaves and dwarfism in plants carrying mutations of this gene (Nakamura et al., 2006). Loss-of-function mutants of the second BR signaling gene—OsBAK1, which encodes a component of the BR receptor complex, also show the phenotype of erect leaves and BR insensitivity (Li et al., 2009). However, the loss-of-function mutations in the OsGSK1/2 genes of rice, which encode homologs of the major negative regulator of the BR signaling in Arabidopsis—BIN2, enhance BR sensitivity in lamina inclination test and plant height, indicating the conserved functional role of the GSK proteins in the BR signaling in rice (Gao et al., 2019). In addition, TaGSK genes with point mutations display hypermorphic effects in wheat (Triticum aestivum), which may be an effective strategy to overcome redundancy among the GSK genes in manipulating the BR signaling in wheat (Hou et al., 2019). Recently, mutations of the newly identified gene OsBHS1 have been generated by the CRISPR/Cas 9 approach (Zhang et al., 2022). These mutants exhibited BR hypersensitivity regarding the bending angle of the lamina joint. The BR signaling components have been functionally characterized mainly in rice, which helps modern agriculture in order to get desired phenotypes like semi-dwarfism, stress tolerance, high yields, and erect leaves in other cereals. Plant hormone research focuses on these traits in cereals, because they serve as potential targets for improving crop yields (Hwang et al., 2021; Manghwar et al., 2022). Insight into the mechanisms regulating the coordinated expression of the BR signaling genes in rice during plant development and reaction to environmental stresses will allow for a better understanding of the BR signaling and response during plant development and adaptations to constantly changing environmental conditions.
Therefore, this study was aimed at conducting in silico analysis of promoter sequences of the rice genes encoding components of the BR signaling, expression profiles of these genes in various tissues, at different developmental stages, and in reaction to various environmental stresses, as well as predicting interactions between the encoded proteins. Recently, in silico analysis of 40 different Germin-like proteins (OsGLP) gene promoters was conducted in rice. The study indicated that genes which contained promoters belonging to the same clade displayed a similar pattern of gene expression across various transcription factor binding sites (TFbs). As a result of the evolution, the promoter regions of the OsGLP genes have become neofunctionalized to cope with various biotic and abiotic stresses (Das et al., 2019). Similarly, in silico approaches were followed to study the presence of cis-elements in promoters of the Pathogenesis related (PR) genes (Kaur et al., 2017). It was reported that cis-elements could be utilized to manipulate expression patterns in the desired manner, which further opens up the possibility of plant genetic engineering to protect crops from environmental challenges. Additionally, the natural resistance-associated macrophage protein (OsNRAMP) family of transporter proteins was characterized using in silico methods and tools (Mani and Sankaranarayanan, 2018). In addition, the osr40c1 promoter region was used to discover multiple stress-responsive cis-acting regulatory elements in the indica rice variety “Pokkali”, which were shown to be induced by both drought and abscisic acid (ABA). Therefore, the isolated promoter sequences could be employed in rice genetic transformation to regulate the expression of abiotic stress-induced genes (de Silva et al., 2017).
The above reports indicate that the in silico analyses of promoter sequences of genes involved in various biological processes in plants may provide valuable information about mechanisms which regulate their expression and coordinated action during plant development and in response to environmental cues. Therefore, we decided to perform this kind of in silico analysis of promoter sequences, gene expression profiles, and prediction of protein interaction model for the 39 BR signaling components in rice, in order to get insights into developmental and environmental factors and mechanisms which regulate their coordinated action during plant development and adaptation to environmental conditions (Figure 1). This is particularly important taking into account the importance of rice as a crop and model species (for other monocots, including cereals) and the potential application of semi-dwarf mutants of cereals defective in the BR signaling in breeding programs, based on their erect growth habit and enhanced drought tolerance. Finally, this kind of analysis may also allow a deeper insight into the role of BR in the regulation of important aspects of plant biology.
[image: Figure 1]FIGURE 1 | Systematic representation of current study.
MATERIALS AND METHODS
Retrieval of the BR Signaling Genes and Their Structure Analysis
This study was performed on 39 promoter sequences and genes which have been identified through functional characterization as being involved in the BR signaling processes in rice based on published literature data mining (Supplementary Table S1). Full-length sequences of these genes, as well as their coding sequences (CDS), and sequences of encoded proteins, were retrieved from Rice Genome Annotation Project (RGAP) (http://rice.uga.edu/cgi-bin/gbrowse/rice/). All gene sequences were verified using Phytozome v 13. (https://phytozome-next.jgi.doe.gov/) and cross-checked with the UniProtKB database (https://www.uniprot.org/uniprot/Q7XI96). Gene Structure Display Server 2 (GSDS2) (http://gsds.cbi.pku.edu.cn) was used to illustrate the exon/intron structure of the rice BR signaling genes.
Chromosomal Localization of Genes and Phylogenetic Analysis Using 1.5 kb Upstream Promoter Sequences
We retrieved 1.5 kb upstream regions encompassing promoter sequences of the 39 BR signaling genes from Phytozome v 13 and verified them against NCBI (Supplementary file S1). A chromosomal map of the 39 BR signaling genes was built with the Rice Database Oryzabase-Shigen (https://shigen.nig.ac.jp/rice/oryzabase/) using the Chromosome Map Tool (http://viewer.shigen.info/oryzavw/maptool/MapTool.do). In order to conduct the phylogenetic analysis, the 39 promoter sequences (1.5 kb upstream regions) of the analyzed BR signaling genes were analyzed by the neighbor-joining method using the p-distance model in the MEGA 7 software (Kumar et al., 2016). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) was calculated. We provided the unique identification (unique ID) for each BR signaling gene to perform and interpret these analyses (Table 1).
TABLE 1 | Information about the genes involved in the BR signaling in rice and their encoded proteins.
[image: Table 1]Analysis of Transcription Factor Binding Sites (TFbs), the CpG/CpNpG Islands, and Tandem Repeats Within the 1.5 kb Upstream Promoter Sequences
Transcription factor binding sites (TFbs) were identified within the promoter regions to elucidate their interactions with various groups of transcription factors during the regulation of expression of the BR signaling genes. The PlantPAN 3.0 software (http://plantpan.itps.ncku.edu.tw/promoter.php) was used to identify TFbs in the promoter regions of the 39 BR signaling genes. The Multiple promoter analysis program (http://plantpan2.itps.ncku.edu.tw/gene_group.php?#multipromoters) was used to identify the common TFbs in different promoter regions. Furthermore, the PlantPAN 3.0 was also utilized for the analysis of CpG/CpNpG islands and tandem repeats (TRs) within the 39 (1.5 kb upstream) promoter sequences (Chow et al., 2016). CpG islands based on their DNA sequence must fulfil three conditions 1) GC content above 50%, 2) ratio of observed-to-expected number of CpG dinucleotides above 0.6 and 3) length greater than 200 bp.
Identification of Conserved Motifs and Cis-regulatory Elements in the 1.5 kb Upstream Promoter Sequences
The 1.5 kb upstream promoter regions of the 39 BR signaling genes in O. sativa were selected to identify the key cis-regulatory elements. The PlantCARE database of plant cis-acting regulatory elements (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to detect cis-regulatory elements in these sequences (Lescot et al., 2002). Moreover, the MEME tool (http://meme-suite.org/index.html) (Bailey et al., 2009) was used to determine the conserved motifs, which were visualized using the TBtools v0.6655 (Chen et al., 2020). We set the number of motif sites at 10 per sequence and the number of motifs at zero or one for each sequence.
Analysis of Expression Profiles of the BRs Signaling Genes
In order to characterize expression patterns of the BR signaling genes in rice, the following tissues and developmental stages were analyzed: seed (72 h after imbibition), embryo (after germination) and endosperm (7, 14, and 21 days after pollination), root and shoot (stage with 2 tillers), radicle (after emergence in the dark and light), stem (heading stage, 5 days before heading), leaf and flag leaf (4–5 cm young panicle, 5 days before heading, 14 days after heading, and young panicle at stage 3), sheath (young panicle at stage 3), spikelet (3 and 5 days after pollination), panicle (4–5 cm young panicle, young panicle at stage 3, 4, and 5, and panicle at heading stage). The expression profiling data were extracted from the CREP database (http://crep.ncpgr.cn/) (Wang et al., 2010). Furthermore, the expression profiles of the BR signaling genes in response to different abiotic stresses (cold, heat, drought, and salt stress) were also analyzed. The expression profiling data related with responses to the abiotic stresses were extracted from the Plant Public RNA-seq Database (http://ipf.sustech.edu.cn/pub/plantrna/). The expression profiles of the BR signaling genes under different abiotic stresses were used to generate a hierarchical cluster analysis of the complete method with log2 value. The heatmap was prepared using the TBtools (Toolbox for biologists) v0.6655 with red/black and green color scheme markers.
Analysis of Interactions Among Proteins Encoded by the BR Signaling Genes of Rice
Protein-protein interactions were predicted using the STRING v11.0 (https://string-db.org/) tool accessed on 20 February 2022 with a high confidence score of 0.7 (Szklarczyk et al., 2015). The functional enrichment analysis of the interactome was done through the level of 0.01.
RESULTS
Analysis of the BR Signaling Genes in Rice and Characterization of Their Structures
Using the above-mentioned, various computational resources and previously published literature, we have verified genome annotation of 39 genes of rice which have been so far functionally characterized as participating in the BRs signaling in this species (Supplementary Table S1) and retrieved their sequences. The genomic information such as chromosomes in which the genes are localized, full length of the gene in the rice genome, number of introns and exons in each gene, and length of encoded proteins have been described in detail in Table 1.
The position and distribution of exons and introns are fundamental characteristics in gene structure analysis. The ratio of intron:exon architecture of the 39 BR signaling genes was checked graphically to compare the impact of evolution on the conversion of size and number of introns and exons within the BRs genes. Our results suggested that the numbers of exons: introns varied from 21:20 to 01:00. Furthermore, the gene size of 39 BRs genes ranged from the longest 11075 bp (LOC_Os06g11330, OsMADS55) to the lowest 438 bp (LOC_Os04g54900, OsILI1) (Table 1, Supplementary Figure S1).
Chromosomal Localization and Phylogenetic Analysis of Promoter Sequences of the 39 BR Signaling-Related Genes
The chromosome mapping of the 39 BR signaling gene promoters indicated that they are unevenly distributed on 9 out of 12 chromosomes (Figure 2A). Based on the phylogenetic analysis of the 1.5 kb-long upstream sequences of the 39 BR signaling genes, they were divided into 5 different clades using the bootstrap value from 0 to 1000. Out of the 5 clades, clade I was divided into two clusters in which cluster 1 contained 7 gene promoters and cluster 2 had 2 promoter sequences (Figure 2B). Clade II comprised of two clusters in which cluster one contained 3 gene promoters (OsBRs5-4, OsBRs3-6, and OsBRs6-3) and cluster 2 also consisted of 3 gene promoters (OsBRs5-1, OsBRs5-5, and OsBRs3-4). Clade III was the smallest clade consisting of 4 gene promoters (OsBRs2-1, OsBR3-4, OsBRs5-2 and OsBRs6-6). Clade IV was found to be the largest clade with two clusters. There were 5 gene promoters in cluster 1, while cluster 2 comprised 10 gene promoters. Clade V was second the smallest clade, after clade III with 5 genes from chromosomes 3, 5, 7 and 12. The phylogenetic analysis of the 39 BR signaling-related gene promoters revealed that the promoters on chromosome 6 named OsBRs6-5 and OsBRs6-2 have high homology, up to 99 percent with each other (Figure 2B).
[image: Figure 2]FIGURE 2 | (A) Graphical representation of the chromosomal distribution of the 39 promoter sequences of the BR signaling genes in rice. (B) Phylogenetic relationship of the 1.5 kb upstream promoter sequences of the 39 BR genes. The sequences were aligned using ClustalOmega, and the tree was constructed by MEGA 7 using the neighbor-joining method.
Identification of Common TFbs in Promoters of the BR Signaling Genes
The promoter sequences of 39 BR signaling genes were used to find common TFbs using PlantPAN 3.0. The database released 26,077 TFbs collected from input queries (Supplementary Table S2). We identified different TFs involved in regulation of growth and development stages, as well as reaction to biotic and abiotic stresses, with the link to the BR signaling (TCP, WRKY, bHLH, NAC, BES1, bZIP, MYB, GATA and AP2/ERF). From 26,077 TFbs, we have collected common TFbs present in all targeted gene promoters (Supplementary Table S3). The results suggest that the most common (present in all input query genes) and the most represented of TFbs was the TCP-binding site (4620 TFbs in total). In the 39 BRs signaling gene promoters, the highest number of TCP TFbs was found in OsMADS22, followed by the OsSMOS1 with 227 and 222, respectively. The second most common TFbs was AP2/ERF-binding site (1756) and the highest numbers of these TFbs were present in OsLIC (197) and OsAK3 (194). The other three TFbs, bHLH-binding site, bZIP-binding site, and MYB-binding site were also common in all 39 gene promoters, 1145, 995, 874, respectively. The highest number of bHLHbs (142) was found in the OsOFP1 promoter region, bZIPbs (93) in the OsDLT promoter, while MYBbs (78) in the OsGSK1 gene promoter. The NACbs (281 in total) were present in most of the gene promoters except three gene promoters (OsGAMYBL2, OsILI1, OsAK3). The WRKYbs were found 593 times in total, except eleven gene promoters (OsBU1, OsLIC, OsPPKL3, OsMADS47, OsMADS22, OsMADS55, OsILI1, OsAK3, OsBHS1, OsELT1 and OsRGA1). The WRKYbs were present in the highest number (73) in promoter region of the OsPPKL2 gene. The GATAbs were found 585 times in total and most frequent in the OsMADS47 (49) promoter region, whereas they were not present in the OsOFP1, OsBHS1, OsELT1 and OsGSK1 gene promoters. Surprisingly, among the analyzed TFbs the lowest number (33) was found for the BES1 transcription factor (one of the major regulators of the BR-dependent gene expression) which was present in 17 promoters out of 39 targets, and the highest number (4) of the BES1 TFbs was present in the three (OsBRI1, OsDLT, OsTUD1) gene promoters (Supplementary Table S3). Furthermore, our analysis indicated that promoters belonging to the same class of genes, such as ARF11 and ARF19 (which encode auxin-response transcription factors) have a different pattern of TFbs. Similarly, another group of genes belonging to the same family, OsPPKL3 and OsPPKL2 (which encode protein phosphatases), also showed significant differences in the pattern of TFbs in their promoters. These results indicate that the differences in the same class of gene promoters may provide a basis for their sub- or neofunctionalization which will be discussed below.
In the current study, among the 9 common TFbs within promoters of the 39 BR signaling-related genes, the highest number of TFbs was present in the OsOFP1 upstream region, while the lowest number of TFbs was found in the OsILI1 gene promoter (Figure 3, Supplementary Table S3). Our results of the occurrence and frequency of the TFbs suggest that the expression of some of the BR signaling genes (OsBRI1, OsBZR1, OsDLT, OsTUD1, OsARF11, OsGAP1, OsPPKL1, OsPUB24, OsBU1, OsWRKY53, OsEMF1, OsRAVL1) is regulated by a particularly diverse group of transcription factor families (their promoter regions contain all 9 common TFbs (Figure 3, Supplementary Table S3). This result indicates that the expression of these genes may be regulated by a particularly broad group of hormonal, developmental and environmental factors. Our analysis of promoters of the BR signaling genes identified several TFs which are involved in various hormonal and physiological regulatory mechanisms. However, further experimentations are still needed to understand the biological importance of the BRs signaling genes with the high and low number of TFbs in their promoters.
[image: Figure 3]FIGURE 3 | Different numbers of TFbs in each 1.5-kb upstream promoter sequence. Different colors represent different TFbs.
Tandem Repeats and CpG/CpNpG Analysis Within Targeted Gene Promoters
It is important to understand the epigenetic regulatory mechanisms, such as DNA methylation, chromatin rearrangement, or histone modifications which may influence gene expression and consequently modify plant physiology and development. In plants, DNA is methylated in 5′-CG-3′ symmetrical dinucleotides, 5′-CNG-3′ symmetrical trinucleotides (where N denotes any nucleotide), as well as in 5′-CNN-3′ asymmetrical trinucleotides (where N stands for A, T or C). In the present study the 1.5 kb upstream promoter regions of the 39 BR signaling-related genes were analyzed to identify the CpG/CpNpG motifs. In the present study, we have checked each gene promoter and found that CpG/CpNpG islands were present in 30 out of 39 analyzed promoter regions, except for OsGSK1, OsGSK2, OsELT1, OsGW5, OsPRA2, OsBSK3, OsIBH1, OsMAPKK4, and OsAK3. These genes encode proteins which show different enzymatic activity and participate in various stages of the BR signaling pathway. The highest length of CpG island was observed in the OsBZR1 gene promoter (1500 bp) showing similarity in length to the targeted query (1500bp) (Table 2). The presence of CpG/CpNpG islands in 30 of the analyzed BR signaling gene promoters may hint toward their transcriptional repression due to methylation influencing the gene expression. However, there are rice BR signaling genes in which the CpG/CpNpG islands were not detected, suggesting that in these promoters, expression of the genes is not repressed due to cytosine methylation and/or gene regulation may occur via a different epigenetic regulation mechanism, such as post-translational histone modifications. The targeted promoters in which methylation levels of the CpG islands were absent need to be investigated in future studies. These promoters could be the potential target of further analysis for functional validation to investigate the relationship between methylation levels of the CpG islands and their gene expression levels (Table 2).
TABLE 2 | List of promoter regions of the BRs signaling-related genes containing the CpG/CpNpG motifs.
[image: Table 2]Tandem repeats (TRs), also called satellite DNA, are repeated sequences adjacent to one another in a head-to-tail pattern at a higher frequency than the surrounding genome region. A DNA sequence containing tandem repeats indicates a greater propensity for mutation, and genes containing tandem repeats in their promoters exhibit higher rates of transcriptional divergence (Vinces et al., 2009). We used 1.5 kb upstream promoter sequence of 39 BR signaling genes to identify the presence of TRs. TRs may be categorized into three groups based on the length of each repeat. The repeat unit less than 6 nucleotides in length is called microsatellite as group one. The second group is minisatellites with 6–100 bp-long repeat units. The third group is megasatellites having longer units, with more than 135 nucleotides. In the present study, promoters of 8 genes (OsDLT, OsELT1, OsARF11, OsPPKL3, OsOFP8, OsEMF1, OsGRF4 and OsBHS1) were found to contain repeats of less than 9 nucleotides in length, falling into the microsatellites group. In promoters of 8 genes (OsBAK1, OsRLA1, OsPPKL1, OsPUB24, OsBU1, OsMADS22, OsMAPK6 and OsMAPKK4) minisatellite repeats were identified. The promoter sequence of the OsGSK1 gene is the only which contains repeats of the unit which is longer than 100 nucleotides called as megasatellites (Table 3). The results indicated that TRs were present in 17 gene promoters out of 39, suggesting that they have an increased potential for accumulation of mutations during replication (so called polymerase slippage). The presence of TRs in these promoters can be used for mutational study, and it might also participate in gene expression regulation.
TABLE 3 | List of promoter regions of the BRs signaling-related genes containing tandem repeats.
[image: Table 3]Common Cis-Regulatory Elements and Conserved Motifs
We identified trans-acting regulatory elements in the 1.5-kb upstream promoter sequences of the 39 BR signaling genes. The obtained result revealed that 97 cis-regulatory elements were identified in all targeted gene promoters. Out of 97 in total, we have identified 59 cis-elements that were present at least in 10% of the analyzed gene promoters (Supplementary Table S4, Supplementary Table S5). Out of the 59 cis-elements, few were present in more than 70% of the analyzed promoter regions: CAAT-box (100%), TATA-box (97%), STRE (92%), AT ∼ TATA-box (87%), ABRE (82%), ARE (79%), G-box (79%), MYC (77%), and WRE3 (74%) (Figure 4, Supplementary Table S5). Furthermore, cis-acting elements were involved in different categories, such as hormones, light, stress responsiveness, growth development stages (seed, endosperm, meristem, metabolism) and anaerobic induction.
[image: Figure 4]FIGURE 4 | A graphical representation of commonly present cis-regulatory elements in 1.5-kb upstream promoter sequences of the 39 BR signaling genes in O. sativa. Abbreviations/Functions: ABRE: ABA-responsive element; ERE: Ethylene-responsive element; ARE: Anaerobic response element; LTR: Low temperature-responsive element; STRE: stress-responsive element; MRE: Myb-related element: DRE: dehydration-responsive element; GARE: thymine- and cytosine-rich repeats.
The stress-responsive cis-elements were common in all promoters of the BR signaling-related genes. The stress-responsive elements were categorized into biotic and abiotic stress-responsive elements, but not ascribed to any category. The abiotic stress-related cis-elements were represented by ARE, CCAAT-box, DRE core, MBS, MYB recognition site, Myb-binding site, MYB-like sequence, MYB, MYC, STRE, TC-rich repeats, LTR, MBSI, GC-motif, DRE1, and AT-rich element, whereas the biotic stress-related cis-elements included box S, WRE3, W-box, and WUN-motif. In terms of frequency of occurrence in the promoter sequences, the stress-responsive elements in all targeted promoters ranged from the highest in OsSMOS1 (29) to the lowest in OsMAPKK4 (6). The second most common category of cis-elements included light-responsive cis-elements (AE-box, G-Box, I-box, Sp1, Box 4, GT1-motif, TCCC-motif, TCT-motif, ATCT-motif, MRE, GA-motif, GATA-motif). These cis elements were identified in 39 promoters of the BR signaling genes. Few other light-responsive cis-elements were also present in several gene promoters, for example AT1-motif was present in promoters of the OsBRI1 and OsMAPKK4 genes, the ACE motif was present in promoter sequences of the OsDLT, OsRGA1, OsBU1 and OsBHS1 genes, the Box II motif was identified in the promoter of the OsRGA1 gene, the 3-AF1 binding site was found in promoters of the OsGW5, OsRGA1, OsMADS47, and OsGAMYBL2 genes, whereas the Pc-CMA2c motif was present in the promoter of the OsAK3 gene. Similarly, each promoter of the BR signaling-related genes contained several hormone-responsive cis-elements ranging from the highest number (20) in OsDLT to the lowest (1) in the OsBHS1 and OsEMF1 genes promoter (Figure 5). Our results revealed that several cis-elements which are intricate in hormonal regulation, such as ABRE (abscisic acid), CGTCA-motif and TGACG-motif (MeJA), TCA-element (salicylic acid), TGA-element and AuxRR-core (auxin), ERE (ethylene), as well as P-box and GARE-motif (gibberellin) were present in promoters of all BR signaling genes (Supplementary Table S4).
[image: Figure 5]FIGURE 5 | Different categories of cis-regulatory elements according to their biological functions.
We have also identified cis-elements related to developmental stages such as seed, endosperm, meristem, and metabolism. Our results identified that seed, endosperm, meristem, and metabolism were regulated by the RY-element, AACA_motif and GCN4_motif, CAT-box, and O2-site, respectively (Figure 5, Supplementary Table S4). We have observed some cis-elements which were common in our targeted gene promoters, however, with an unknown function, such as ABRE3a, ABRE4, AAGAA-motif, CCGTCC motif and CCGTCC-box, including some still unnamed (Unnamed__1,2,4), but present in more than half of our targeted genes. We can predict that these cis-elements could be potential targets for further investigation within the 39 BR signaling genes (Figure 4, Supplementary Table S4).
We have also searched conserved motifs within the promoter region of the 39 BRs signaling gene promoters. The results showed that motif 1, motif 3, and motif 9 were highly conserved in all 39 gene promoters. Motif 5 was absent in the OsBSK3 gene promoter. Similarly, motif 2 was absent in promoters of the OsBSK3 and OsPRA2 genes, and motif 4 was absent in promoters of the OsGW5, OsPRA2, OsGRF4 and OsILI1 genes. In addition, motifs 2, 4, 5, 6, 7, 8, and 10 were present in 94%, 89%, 97%, 84%, 66%, 12%, 89% of the BRs signaling gene promoters, respectively (Figures 6A,B and Supplementary Table S6).
[image: Figure 6]FIGURE 6 | (A) Localization of conserved motifs within promoters of the BR signaling genes. (B) Logo of the conserved motifs within promoters of the BR signaling genes.
Expression Pattern of the BR Signaling Genes in Different Tissues in O.sativa and During Reaction to Environmental Stresses
We examined the expression patterns of the BR signaling genes at 22 developmental stages using microarrays data from the CREP database. In the expression database, probes were available for 37 out of 39 BR signaling genes. The 37 BRs signaling genes in the array were used for expression profiling, and probes with higher signal values were retrieved.
Based on hierarchical clustering, expression patterns of 37 BR signaling genes were classified into 2 groups. Group 1 includes 15 genes, and all the genes were differentially expressed at different developmental stages. All genes from group 1 showed the highest expression at different panicle development stages and lowest expression at leaf and flag leaf stages. This trend indicates that genes of group 1 play an essential role in panicle development. In the remaining tissues, such as stem, root, sheath, radicle shoot, seed, and endosperm, the genes of group 1 showed intermediate expression except for OsOFP8 and OsBRI1, which were highly expressed in the seed development stage (Figure 7). In addition, we have found that the OsRGA1 gene showed intermediate expression at all development stages.
[image: Figure 7]FIGURE 7 | Expression pattern of the BR signaling genes in rice. Abbreviations: YP: Young panicle; HS: Heading stage; DBH: Days before heading; YPS3: Young panicle at stage 3; S2T: Stage with 2 tillers; ADE After dark emergence; ALE: after light emergence; DAP: Days after pollination; DBH: Days before heading; DAH: Days after heading; AI: after imbibition.
Group 2 comprised 22 genes and their expression patterns indicated that OsMAPK6, OsMADS55/22, OsPPKL1/2/3, OsBSK3, OsLIC, OsBAK1, and OsGSK1 genes were highly expressed in panicle, stem, sheath, and root. Moreover, OsMADS55/22, OsPPKL1/2/3, OsBSK3, OsWRKY53, and OsMAPKK4 genes were highly expressed in leaf and flag leaf, while half of the genes (OsLIC, OsBAK1, OsGSK1, OsGAP1, OsPUB24, OsMADS47, OsAK3, OsPRA2, OsRAVL1, OsGAMYBL2 and OsEMF1) showed high expression level in the seed and endosperm tissues. The OsGAP1, OsPUB24, OsMADS47, OsAK3 and OsPRA2 genes have the highest expression level in stem, sheath, and radicle. Interestingly, the OsIBH1 gene showed particularly low expression during panicle development. Two genes, OsGAP1 and OsPUB24, showed higher expression in almost all tissues except for panicles, indicating their role in the vegetative growth of rice plant. The genes of group 2 in the remaining tissues showed differential, intermediate expression patterns (Figure 7). Our gene expression analysis concluded that most of the genes from group 1 were highly expressed in different stages of panicle development, while group 2 genes at endosperm and leaf development stages, respectively.
In addition, we also examined the expression patterns of the BR signaling genes in response to various abiotic stresses (cold, heat, drought, and salt stress). Importantly, 19 out of the analyzed 39 genes showed opposite expression patterns in response to cold and heat stresses. The following genes: OsPPKL2, OsMAPKK4, OsARF11, OsPPKL1, OsARF19, OsPPKL3, OsMADS47, OsMAPK6, OsTUD1, and OsBSK3 showed up-regulation in reaction to cold stress. Interestingly, these genes were down-regulated in response to heat stress. Conversely, the following genes: OsELT1, OsGW5, OsOFP8, OsEMF1, OsGAP1, OsPUB24, OsAK3, OsIBH1, and OsBHS1 showed up-regulation during the heat stress response, however, they were down-regulated under the cold stress conditions (Figure 8).
[image: Figure 8]FIGURE 8 | Expression pattern of the BR signaling genes in response to abiotic stresses.
As far as reaction to drought and salt stresses is concerned, the vast majority of the analyzed genes (except OsMAPKK4, OsTUD1, OsOFP8, and OsDLT) showed similar expression patterns in response to these stresses. Out of the analyzed genes, 20 and 22 genes were up-regulated in reaction to the drought and salt stress, respectively. On the other hand, 14 and 12 out of the analyzed genes were down-regulated in response to the drought and salt stress, respectively. Interestingly, a group of the analyzed genes, including OsGSK2, OsRAVL1, OsRGA1, OsMADS22, OsILI1, OsGSR1, OsGAMYBL2, OsGSK1, and OsLIC showed specific expression pattern—they are upregulated during response to the drought and salt stresses, but down-regulated under both thermal stresses (cold and heat). Noteworthy, the two major negative regulators of the BR signaling (OsGSK1 and OsGSK2) represent the above-mentioned group of genes. Interestingly, the OsBRI1 and OsBAK1 genes encoding two protein kinases, which cooperate during formation of the transmembrane BR receptor complex, showed very similar expression profiles in response to the analyzed stress conditions (Figure 8).
Protein-Protein Interaction Among the BR Signaling Components in Rice
A model of protein-protein interaction (PPI) of 39 BR signaling proteins was predicted using the STRING database. The obtained result indicates that 26 out of 39 proteins revealed strong interaction, and the interaction had 37 nodes with 55 weighted edges followed by an enrichment p-value <0.01. The average node degree among the adjacent proteins was 2.97. Based on the PPI results, most proteins interact with more than one protein, except OsRGA1 and OsBHS1, which associate with OsTUD1, whereas OsGAP1 interacts with OsPPKL1. The interaction shows complexity within the BR signaling process and proves the versatile nature of the proteins (Figure 9). The results predicted complicated (and in some cases previously unknown) interactions of the analyzed proteins to regulate plant growth and development, stress responses, hormonal regulation, etc. Additionally, the detailed annotation of network proteins is described in (Supplementary Table S7), even though further investigation is needed.
[image: Figure 9]FIGURE 9 | Protein-protein interactions among the BR signaling components in rice.
DISCUSSION
The BR signaling pathway is one of the best characterized molecular relays in plants. Moreover, BRs are one of the most significant growth-promoting hormones and play an essential role in controlling yield-related phenotypic features, such as leaf angle, tillering, plant height, and grain filling in rice (Vriet et al., 2012; Sadura et al., 2019; Gruszka, 2020). However, our knowledge about mechanisms that regulate the coordinated expression of genes which encode the BR signaling components during plant development and reaction to various environmental stresses is still limited. Recently, Zheng et al. (2021) analyzed 11 rice BR signaling genes as queries to compare them with their orthologues from the Rosaceae family. The BR signaling-related genes from Rosaceae vary from their rice homologs in various characteristics, including gene length, conservation of domains and secondary structures in the encoded proteins, and reactions to external signals in terms of changes in their expression profiles. Therefore, in the present study, we used various online bioinformatics tools to conduct the in silico analysis of promoters sequences of 39 BR signaling genes from rice to find characteristics that can be used as a model for other crops, such as chromosomes in which the genes are localized, the total length of the gene in the rice genome, the number of introns and exons in each gene, and length of encoded proteins (Table 1, Supplementary Figure S1). Moreover, the results of our analysis provided vital information on the putative cis-elements and their corresponding TFs involved in regulatory mechanisms and interdependencies that influence the BR signaling during growth, development, and stress response. This kind of data may be important for interpreting the involvement of the BR signaling in the regulation of developmental and stress-adaptation processes in other monocots (including cereal crops).
The In-Silico Analysis of Common TF Binding Sites Within Promoters of the BR Signaling Genes
In rice and other crop species, the TF families (NAC, WRKY, bHLH, bZIP, MYB, and AP2/ERF) are classified depending on their respective pathways (Lindemose et al., 2013; Das et al., 2019). We identified binding sites of several TFs (TCP, WRKY, bHLH, NAC, BES1, bZIP, MYB, GATA, and AP2/ERF) which are involved in the regulation of growth, reactions of plant to environmental stresses, and developmental processes within promoters of the analyzed BR signaling-related genes. Our results indicated that the most common TFbs in all 39 rice BR gene promoters was the TCP-binding site (4620 TFbs in total in all analyzed promoter sequences). These TFbs are helpful to regulate germination, plant growth and development, and reactions to the abiotic and biotic stresses (Li, 2015; Danisman, 2016; Lan and Qin, 2020). Our study indicated that the highest number of the TCP TFbs is present in the OsMADS22 and OsSMOS1 gene promoters (Supplementary Table S3), suggesting that they may be potential candidates for the regulation of plant development corresponding to the TCP TFbs. For example, the gene AtTCP14 in Arabidopsis is involved in controlling gene expression during seed germination (Tatematsu et al., 2008). Overexpression of the OsMADS22 gene leads to shorter stems and delayed senescence at maturity. However, knockout of this gene did not result in any changes in coleoptile elongation, lamina joint inclination or stem elongation (Sentoku et al., 2005; Lee et al., 2008). The OsSMOS1 gene is necessary for OsBZR1 function to rescue the dwarf phenotype (Qiao et al., 2017). Moreover, TFs such as TCP14/15 have been shown to promote cell growth via the modulation of the expression of 9 genes during GA-mediated germination (Xu et al., 2020). Interestingly, it should be mentioned that the OsSMOS1 and OsMADS22 genes play contrasting roles in the regulation of BR-dependent gene expression. The OsSMOS1 is a positive regulator of this process, whereas OsMADS22 represses the BR signaling and response (Lee et al., 2008; Qiao et al., 2017; Gruszka, 2020). This indicated that the TCP transcription factor in rice may regulate the expression of these two target genes having opposite effects on the BR response.
The second largest and most common TFbs was the AP2/ERF-binding site (1756 in all analyzed gene promoters). These TFs are involved in several stress-responsive mechanisms in various plant species, because many stress-responsive processes in plants are closely associated with members of the ERF family. Therefore, these TFbs may be particularly common in promoters of stress-related genes (Lindemose et al., 2013). Several studies have shown that over-expression of the AP2/ERF genes, either in a root-specific or constitutive manner, enhances water use efficiency and various other environmental responses without affecting grain yield (Karaba et al., 2007; Yang et al., 2010). In the present study, the highest number of AP2/ERF TFbs was reported in promoters of the OsLIC (197) and OsAK3 (194) genes (Supplementary Table S3), indicating that they may be involved in the coordination of plant growth and BR response during plant reaction to stress conditions. In addition, the expression of gibberellin-deactivating genes was upregulated in several ERF family candidates under high-salinity stress, leading to reduced levels of endogenous gibberellic and improved stress tolerance (Magome et al., 2008). It has been reported that AP2/ERF TFs stimulated the production of ethylene, salicylic acid, and jasmone acid in response to biotic stress (Dar et al., 2017). Since the AP2/ERF TFs promote accumulation of the stress hormones, the high number of the AP2/ERF binding sites in the promoter of the OsLIC (one of the major negative regulators of the BR response) may indicate that AP2/ERF enhances expression of the OsLIC gene during plant reaction to stress conditions in order to reduce response to BRs (which are mainly growth promoting phytohormones) and promote response to the stress-related phytohormones. The other TFbs such as bHLH (1145), bZIP (995), MYB (874), WRKY (593), GATA (585), NAC (281) and BES1 (33) were commonly present in 39 BRs signaling gene promoters. The highest number of the bHLHbs was reported in the OsOFP1 gene promoter (142), whereas the bZIP TFbs were present in the highest number (93) in promoter of the OsDLT gene (Figure 3, Supplementary Table S3). The function of certain members of the bHLH family of transcription factors in rice is crucial for iron absorption and utilization, while other members of this TF family play a role in regulation of the anthocyanin and anthocyanidin biosynthesis (Sakamoto et al., 2001; Ogo et al., 2006). Furthermore, the bHLH TFs regulate gene expression during salicylic acid and jasmonic acid biosynthesis in agricultural plants. Their functions are essential to the regulation of stress responses, as well as the ROS scavenging mechanism (Huang et al., 2013). A recent study found that overexpression of gene encoding the BES1-Interacting MYC-like Protein1 (OsBIM1), which belongs to the bHLH family, in rice resulted in an increase in leaf angles. However, the T-DNA knockout mutant of osbim1 and wild type showed similar leaf inclination (Tian et al., 2021). Interestingly, the OsOFP1 transcription factor in rice is a positive regulator of the BR-dependent gene expression, but a negative regulator of the gibberellic acid accumulation. Thus, the bHLH-mediated regulation of expression of the OsOFP1 gene may impact on responses to both phytohormones.
Another essential TF family, called bZIP, regulates several plant developmental processes, such as seed development, growth, plant maturity, and reaction to abiotic stresses (Jakoby et al., 2002). In our study, the presence of bZIP TFbs in all targeted gene promoters suggested it might be helpful for various regulatory mechanisms which influence growth, development, and stress response. The positive effect of transcription factors belonging to the bHLH family on the BR response in rice may also be mediated by the aforementioned OsDLT transcription factor (promoter of this gene includes the highest number of the bZIP TFbs) which positively regulates the BR-dependent gene expression.
The WRKY transcription factors comprise a conserved, plant-specific family that play a significant role in plant growth, development, and stress challenges, especially in drought stress in rice, rapeseed, Arabidopsis, and other species (Chen et al., 2022; Lee et al., 2022). In our study the WRKYbs were found 593 times in total, except eleven gene promoters, including OsPPKL3. On the other hand, the WRKYbs were present in the highest number (73) in the promoter region of the OsPPKL2 gene. It is important to note that a neofunctionalization among homologous OsPPKL proteins occurred within the rice genome. There are three paralogs of genes encoding the OsPPKL proteins in the rice genome (Gao et al., 2019). Interestingly, two of these homologs, OsPPKL1 and OsPPKL3, play a negative role in the regulation of grain length, whereas OsPPKL2 has a positive effect on the grain length in rice (Zhang et al., 2012). Therefore, the significant difference in the occurrence of the WRKYbs within promoters of the OsPPKL3 and OsPPKL2 genes may provide a basis for this neofunctionalization. Similarly, our analysis indicated that promoters of genes belonging to another class, ARF11 and ARF19, which encode auxin-response transcription factors, have a different pattern of TFbs. It is known that the OsARF11 and OsARF19 transcription factors constitute points of crosstalk between the auxin and BR signaling pathways. However, they are differently regulated by these hormones. The expression of both genes is induced by auxin, whereas only the OsARF19 gene’s expression is stimulated by BR (Sakamoto et al., 2013b; Zhang et al., 2015; Liu et al., 2018). The above-mentioned results indicate that the differences in the same class of gene promoters may provide a basis for their sub- or neofunctionalization in terms of differential pattern of expression during plant development and/or reaction to hormonal stimuli. Another important TFs MYB plays an essential role in nearly all plant growth and development aspects and responds to diverse abiotic and biotic stresses (Ponce et al., 2021; Wang et al., 2021). MYB TF is the third most common TFbs present in all targeted gene promoters in the current study (Figure 3, Supplementary Table S3).
As far as the GATA TFbs are concerned, these TFbs were absent in four gene promoters (OsBHS1, OsGSK1, OsELT1, and OFP1) and present in the remaining 35 BR signaling gene promoters. There are still limited numbers of reports available about the role of GATA TFs in regulation of plant development and physiology. For example, role of these TFs in response to anaerobic germination is not well studied yet (Gupta et al., 2017; Mohanty, 2022). However, it is known that genes related with stress-response, metabolism, and hormone signaling are controlled by the GATA TFs (Gupta et al., 2017).
In the present study, NAC TFbs were present in 36 gene promoters which can be potentially used to reveal their biological significance. The NAC transcription factors are well-known plant-specific transcription factors and members of this family affect plant growth, development, and stress responses (Yuan et al., 2019). Six NAC transcription factors respond to Tomato yellow leaf curl virus (TYLCV) infection in resistant and susceptible tomato cultivars (Huang et al., 2017). Recent functional studies demonstrated that several NAC TFs function as positive or negative regulators of plant immunity to biotrophic, hemi-biotrophic or necrotrophic pathogens (Yuan et al., 2019). This may indicate that apart from being (mainly) growth-promoting phytohormones, BR may also regulate plant response to these environmental stresses.
Interestingly, the lowest number of TFbs (33) was found for the BES1 transcription factor (one of the major regulators of the BR-dependent gene expression). Moreover, occurrence of the BES1 TFbs per promoter (range 0–4) was the lowest among all analyzed TFbs. The BES1 TFbs were present in 16 promoters out of 39 targets, and the highest number (4) of the BES1 TFbs was present in the three (OsBRI1, OsDLT, OsTUD1) genes promoters. It is known that the BES1 (and BZR1) TFs coordinate the BR-dependent gene expression and constitute hubs of various interconnecting signaling pathways (Gruszka, 2018). However, an in-depth understanding of the BES1 function is lacking in rice and other monocot crops, especially when compared with Arabidopsis (Giovannoni et al., 2017). It seems that in Arabidopsis BES1 remains the major negative regulator of expression of the BR biosynthesis-related genes with relatively little impact on the BR signaling-related genes. Our results are in accordance with data gathered in Arabidopsis where BES1 negatively regulates expression of the BRI1 gene in a feedback manner (Yu et al., 2011; Gruszka, 2013). However, in our study of the promoters of the BR signaling genes in rice, several other components of the BR signaling seem to be regulated in the BES1-dependent manner. It may suggest that apart from the fact that during evolution of monocots some components of the BR signaling emerged which are not present in Arabidopsis (Zhang et al., 2014; Gruszka, 2020), but additionally the BES1-dependent regulation of the BR signaling genes may be broader than in Arabidopsis. Therefore, our promoter analysis of 39 BRs signaling genes indicated that the presence of BES1 TFbs in 17 gene promoters might have a role in the BR-dependent gene expression which needs to be functionally validated. Additionally, results of our study indicated that promoters of several genes (OsBRI1, OsBZR1, OsDLT, OsTUD1, OsARF11, OsGAP1, OsPPKL1, OsPUB24, OsBU1, OsWRKY53, OsEMF1, OsRAVL1) contain all 9 common TFbs from our analysis.
Identification of CpG Islands and Tandem Repeats Within Promoters of the BR Signalling Genes
DNA sequences that were not methylated in the plant genomes and rich in G and C nucleotides are classified as CpG islands. The role of CpG island in promoter region facilitates nucleosome remodeling and recruitment of transcription factors. The methylation status of CpG islands may be determined using several methods that assume the same methylation level over the whole CpG island (Barrera and Peinado, 2012; Villicaña and Bell, 2021). In this study we have found that CpG/CpNpG islands were present in 30 out of 39 analyzed promoters, except for OsGSK1, OsGSK2, OsELT1, OsGW5, OsPRA2, OsBSK3, OsIBH1, OsMAPKK4, and OsAK3 (Table 2). The obtained results should follow the criteria previously explained by (Kaur et al., 2017). Those promoters in which CpG islands were absent suggest that gene expression is not repressed by cytosine methylation and/or gene regulation may occur via a different epigenetic regulation mechanism, such as post-translational histone modifications. However, this needs to be further investigated. Tandem Repeats consist of repetitive DNA motifs which help to regulate gene expression (Vinces et al., 2009; Reinar et al., 2021). We also checked the TRs in our targeted promoters and TRs were present in 17 of them with variations in length, suggesting that these variations could be due to the addition and deletion of TFbs (Table 3). The presence of TRs in these promoters can be used for mutational study, and it might have participated in gene expression regulation.
In Silico Analysis of Common Cis-Regulatory Elements Within Promoters of the BR Signalling Genes
In our study 97 trans-acting regulatory elements were identified in all 39 targeted gene promoters (Supplementary Table S5, Supplementary Table S6). Several cis-elements, such as ABRE, ARE, AT ∼ TATA-box, CAAT-box, MYC, STRE, TATA-box, WRE3 and G-box were present in more than 70% of the analyzed promoter sequences, what suggested that these cis-elements play a role in regulation of expression of these genes during growth and development of rice and in response to light, hormone, and stress stimuli (Figure 4). The stress-responsive cis-elements were common in all BRs signaling gene promoters. The stress-responsive elements were categorized into biotic and abiotic stress-responsive components. The abiotic stress-related cis-elements included the following motifs ARE, CAAT-box, DRE core, MBS, MYB recognition site, Myb-binding site, MYB-like sequence, MYB, LTR, MYC, STRE, TC-rich repeats, MBSI, GC-motif, DRE1, AT-rich element, whereas the biotic stress-related motifs included box S, WRE3, W-box, and WUN-motif. The GC-motif is an enhancer-like element engaged in anoxic-specific inducibility and the AT-rich sequence is connected to elicitor-mediated activation during stress responses (Brown et al., 2003). The Anaerobic responsive elements (ARE) motif is an essential regulatory element for anaerobic induction in plants. According to structure analysis of ARE, these bipartite components are made up of GT and GC motifs (Dolferus et al., 2001). MYB transcription factors are essential for plant growth, secondary metabolism, hormone signal transduction, abiotic stress tolerance, and disease resistance (Li et al., 2015). The drought-responsive gene regulation in plants is influenced by several cis-regulatory elements, such as the STRE, DRE, LTR, and MBS motifs (Niu et al., 2020). The W-box is a fungal elicitor-responsive transcription factor that interacts with WRKY TFs (Liu et al., 2016).
The second most common group of cis-regulatory elements which were present in the analyzed promoters were the light-responsive motifs (AE-box, G-Box, I-box, Sp1, Box 4, GT1-motif, TCCC-motif, TCT-motif, ATCT-motif, MRE, GA-motif, GATA-motif). BRs and light signals have essential roles in plant development and play an opposite role in controlling the transition from skotomorphogenesis in the dark to photomorphogenesis in the light (Cao et al., 2022). The presence of light responsive elements in the targeted promoter sequences which is reported in the present study, needs to be further investigated to check its correlation with the light/dark conditions. Numerous cis-elements, including G-Box, ACE, Box-4, Sp1, TCT-motif, and GATA motif, have also been previously found in promoters of the drought-, salinity-, cold-, and heat-related genes (Shariatipour and Heidari, 2020). In the present study, the G-box and Box-4 motifs were found the most abundant cis-elements of this category. These motifs exist in the regulatory regions of genes whose transcriptional activity is light-dependent. The Box-4 element is abundant in soybean WRKY genes, indicating that it is essential for light-regulated transcriptional activity. The G-box motif has been implicated in photosynthesis, hormone signaling (ethylene and ABA), and stress responses (Ma et al., 2013; Yin et al., 2013).
The hormone responsiveness cis-elements (ABRE, CGTCA-motif, TGACG-motif, TCA-element, TGA-element, AuxRR-core, P-box, ERE, ERE, and GARE-motif) were common in all 39 BRs signaling gene promoters. Among them, the ABRE cis-elements, which are frequent in promoters of genes which are regulated in the stress-inducible, ABA-dependent manner (Bray, 2002), were predominant. It suggests that the regulation of expression of the BR signaling genes in rice may proceed in this way (Figure 5, Supplementary Table S4). The bZIP TFs are mainly bound by the ABRE core, and several bZIP TFs are implicated in the regulation of the ABA-dependent stress response (Banerjee and Roychoudhury, 2017; Yao et al., 2020). Importantly, in the present study, it was also confirmed that bZIP TFbs and the ABRE core motif both were common in 32 out of 39 analyzed gene promoters. These results indicated that the bZIP TFbs and ABRE motif are tightly mutually connected with the regulation of plant development. This study indicated that presence of the bZIP TFbs and the ABRE core motif in gene promoters are also interdependent in regulation of plant development in the BR signaling-dependent manner. All promoter sequences contained hormone-related elements, including the ABA, salicylic acid, methyl jasmonate, and auxin-responsive elements (Banerjee et al., 2013). It indicated that the expression of the BR signaling-related genes in rice is regulated by a vast group of hormones, which most probably allows for inter-hormonal coordination of developmental and physiological processes.
Expression Profiling of the BR Signalling Genes
Microarray methodology provides a rich resource for investigating the evolution of gene expression. The temporal and spatial expression patterns of the BR signaling genes provide useful information for establishing their putative functions (Zhao et al., 2010). Our microarray analysis indicated that the expression patterns of 37 BR signaling genes are differentially regulated. Based on clustering, 37 genes were classified into two groups (Group 1 and Group 2) (Figure 7). All genes from group 1 showed the highest expression at different panicle development stages and lowest expression at leaf and flag leaf stages. This would provide discrimination in predominant expression between generative and vegetative tissues. Interestingly, OsGRF4 was preferentially expressed in developing panicles and the highest levels of expression were found in panicles of 7 cm in length. On the other hand, there was less transcript accumulation in the hull, root, stem and leaf sheath (Sun et al., 2016). The higher expression levels in panicles and low expression levels in roots were observed in a novel component of the BR signaling in rice—OsBHS1 (Zhang et al., 2022) and in present study also showed a similar pattern of gene expression in roots and panicles. Furthermore, in the remaining tissues, such as stem, root, sheath, radicle, shoot, seed, and endosperm, the genes of group 1 showed intermediate expression except for OsOFP8 and OsBRI1, which were highly expressed at the seed development stage. However, in grapevines, the VviBRI1 gene showed the low expression level at seed development stage (Parada et al., 2022). In addition, we have found that the OsRGA1 gene showed intermediate expression at all developmental stages. The Rht orthologue of rice OsRGA1 gene in wheat shows a very low expression level in different vegetative tissues (root, stem, flag leaf, young leaf and leaf blade) at jointing stages and intermediate expression level in flag leaf, leaf sheath and spike at grain-filling stages (Chai et al., 2021).
The expression pattern of group 2 indicated that the OsMAPK6, OsMADS55/22, OsPPKL1/2/3, OsBSK3, OsLIC, OsBAK1 and OsGSK1 genes were highly expressed at the development stages of panicle, stem, sheath, and root. In contrast, the TaPPKL1/2/3 genes showed lower expression levels in root and stem during wheat growth (Yang et al., 2019). Moreover, Lee et al. (2008) confirmed that expression levels of the OsMADS55/22 genes indicate the diversified roles in age-dependent BR responses. Based on the gene expression analysis, we concluded that most of the genes from group 1 were highly expressed during panicle development, while group 2 genes were expressed at endosperm and leaf development stages.
Furthermore, in this study, the expression patterns of the 39 BR signaling genes in response to various abiotic stresses were analyzed. Importantly, 19 out of the analyzed BR signaling-related genes showed opposite expression patterns in response to cold and heat stresses. Thus, it may be inferred that the groups of genes which displayed the opposite expression patterns under these thermal stress conditions (Figure 8) may be regarded as representatives of the BR signaling pathway which play important role during adaptation of rice plants to the thermal stresses. It is known that BRs are mainly growth promoting hormones. However, it is also known that BRs regulate plant tolerance to the environmental stresses, but the underlying mechanisms remain largely unknown (Gruszka et al., 2018). However, several studies indicated that expression of genes related with cold tolerance may be increased by exogenous BRs. It has recently been demonstrated that the BR signaling genes play a critical role in the response of plants to cold stress. It was also reported that accumulation of BRs and dephosphorylated form of the BZR1 transcription factor might be induced by chilling (Fang et al., 2019). In Arabidopsis plants, overexpression of the TaBRI1 gene, which encodes the BR receptor of wheat (Triticum aestivum), greatly enhanced their resistance to cold stress. It also increased the accumulation of dephosphorylated BZR1 during the cold stress, which led to an increase in the transcription of the cold response genes (CBFs), and consequent regulation of cold signaling (Singh et al., 2016). Interestingly, a recent study conducted in another monocot crop species—barley (Hordeum vulgare) indicated that mutants defective in the BR biosynthesis or signaling showed a higher tolerance to high temperatures, but reduced tolerance to low temperatures than respective wild type cultivars (Sadura et al., 2019). Thus, it may be inferred that genes encoding components of the BR signaling pathway may indeed participate in molecular mechanisms of adaptation to the thermal stresses, as it was shown in the gene expression analysis of the BR signaling genes in rice (our study). Effective adaptation of plant to the thermal stresses may be achieved through differential expression of both groups of genes which in our study displayed the opposite expression patterns in reaction to the cold and heat stresses.
Interestingly, in our study the vast majority of the analyzed genes showed similar expression patterns in response to drought and salt stresses. It may illustrate that fact that both stresses result in the same physiological consequence—a decrease in water potential within plant cells. Noteworthy, several genes showed the specific expression pattern—they are upregulated during response to the drought and salt stresses, but down-regulated under both thermal stresses (cold and heat) (Figure 8). It may indicate that this group of the BR signaling genes functions as specific regulators of the plant response to drought and salt stresses, and that different environmental stresses activate various subgroups of the BR signaling genes. It corresponds with the fact that proteins involved in various stages of the BR signaling pathway are interconnected with various signaling pathways of other phytohormones and stress responses in a crosstalk manner (Gruszka, 2018; Gruszka, 2020). Importantly, the above-mentioned group of genes which showed the specific expression pattern (drought/salt vs. cold/heat) includes two major negative regulators of the BR signaling—OsGSK1 and OsGSK2. Involvement of the GSK proteins in plant reaction to abiotic stresses has been reported in several model and crop species (Li et al., 2021). In Arabidopsis, the BIN2 kinase from the GSK family stabilizes the TINY and RD26 transcription factors, which positively regulate the drought tolerance (Jiang et al., 2019; Xie et al., 2019). However, in the same species, the GSK proteins are negative regulators of the salinity stress response, with BIN2 playing the major role (Li et al., 2020). In rice, apart from being involved in the BR signaling, OsGSK1 may also participate in the stress response. It was reported that T-DNA insertional mutation of the OsGSK1 gene resulted in the increased tolerance to several abiotic stresses, including salinity and drought. It indicated that OsGSK1 is a negative regulator of rice response to these abiotic stresses (Koh et al., 2007; Zhang et al., 2014). The different effects of the GSK proteins on tolerance to abiotic stresses in the various dicot and monocot plant species may result from subfunctionalization which occurred among the members of the GSK protein family (Li et al., 2021). However, our study indicated that the OsGSK1 and OsGSK2 genes are mainly up-regulated during reaction of rice plants to the drought and salt stresses, whereas their expression is down-regulated under both thermal stresses. Again, it may indicate that different environmental stresses may differentially regulate expression of various subgroups of the BR signaling genes what allows fine-tuning of plant reaction to the stress conditions.
In the present study different cis-elements associated with various stress responses were identified in promoter sequences of the BR signaling genes. The highest number of the stress-responsive elements was reported in the OsRLA1/OsSMOS1 gene, whereas the lowest number was identified in promoter sequence of the OsMAPKK4 gene. In the gene expression analysis the OsRLA1/OsSMOS1 was highly upregulated under the drought stress conditions, which may be due to the presence of the highest number of stress-responsive elements. In contrast, the OsMAPKK4 gene was down-regulated in reaction to drought stress, and it may be explained by the lowest number of stress-responsive elements in this gene. It may indicate that the stress-responsive elements which were present in the different numbers in promoters of the OsRLA1/OsSMOS1 and OsMAPKK4 genes are mainly associated with the drought response. Overall, our analysis provided insights into the role of many BR signaling genes during abiotic stress responses. This information can be employed in future studies which will be performed on other plant species.
Analysis of Protein-Protein Interactions
In this study the network of interactions among the proteins encoded by the BR signaling genes in rice was predicted. Models of interactions among proteins participating in the BR signaling pathways were recently described for Arabidopsis and rice (Nolan et al., 2017; Gruszka, 2018; Gruszka, 2020). However, it should be emphasized that in our analysis, several newly identified components of the BR signaling pathway in rice were included, such as OsAK3 (Adenylate kinase) and OsBHS1 (kinesin-13a), which have not been analyzed in any previous study of this kind. The protein interaction model predicted in this study confirmed previously reported interactions among the BR signaling proteins (Gruszka, 2020), however, it also provided new information about the protein interactions which will be discussed below.
In our study, the newly identified component of the BR signaling in rice, OsBHS1, was predicted to interact with OsTUD1 (Figure 9) which functions as a co-activator of the BR signaling relay which may be parallel or partly overlapping with the main OsBRI1-mediated pathway (Sakamoto, et al., 2013a; Hu et al., 2013). Moreover, in our study it was predicted that the OsTUD1 protein interacts with the OsILI1 transcription factor which inactivates through heterodimerization the OsIBH1 transcription factor, which functions as a negative regulator of the BR response (Zhang et al., 2009; Zhang et al., 2014). Although it was previously reported that the OsRGA1 and OsTUD1 proteins initiate the BR response process (Sakamoto, et al., 2013a; Hu et al., 2013), however, the downstream stages of this pathway remained largely unknown (Gruszka, 2020). Our study indicates that the BR response pathway, which is initiated by the OsRGA1 and OsTUD1 proteins, may proceed through the newly identified OsBHS1 protein and the OsILI1 transcription factor.
Moreover, our analysis indicated that the OsDLT protein which functions as a transcription factor which positively regulates the BR response in rice, may interact with the OsARF11 and OsARF19 transcription factors. It is known that expression of the OsARF11 gene is induced by auxin, and the OsARF19 gene expression is stimulated by auxin and BR. Thus, the OsARF11 and OsARF19 transcription factors constitute points of crosstalk between the auxin and BR signaling pathways (Sakamoto et al., 2013b; Zhang et al., 2015; Liu et al., 2018). The results of our study indicate that the crosstalk between the auxin and BR signaling pathways may be also mediated by the predicted interactions between the OsDLT, OsARF11, and OsARF19 transcription factors.
Additionally, our analysis indicated that the OsPPKL proteins (OsPPKL1 and OsPPKL2) which function as negative regulators of the BR signaling in rice, as they enhance stability of the OsGSK proteins, may interact with the OsBSK3 protein which represses activity of the OsGSK proteins (Gao et al., 2019). Interactions between the positive regulators (OsPPKL1 and OsPPKL2) and negative regulator (OsBSK3) of the OsGSK proteins’ activity have not been previously reported (Gruszka, 2020). Therefore, the results of our study provided novel information about this aspect of the BR signaling. Moreover, the results of our analysis indicated that the OsPPKL proteins may interact with the OsPRA2 protein, which is a negative regulator of the BR signaling initiation (Zhang, et al., 2016). Previous report indicated that activity of OsPRA2 is stimulated only by the OsGAP1 protein (Song et al., 2017). The results of our analysis indicate that regulation of the OsPRA2 protein may also be mediated by the OsPPKL proteins.
Finally, results of our study indicated that the OsMADS22, OsMADS55 and OsMADS47 transcription factors may interact with the OsMAPK6 mitogen-activated protein kinase (Figure 9). It is known that the OsMADS22, OsMADS55 and OsMADS47 transcription factors are negative regulators of the BR signaling (Duan et al., 2006; Lee et al., 2008). However, so far molecular mechanisms regulating activity of these transcription factors were largely unknown (Gruszka, 2020). Moreover, according to our predictions the OsMADS22, OsMADS55, and OsMADS47 transcription factors may also interact with the OsEMF1 transcription regulator, which previously was reported to repress expression of the OsMADS58 gene in rice during palea development (Yan et al., 2015; Zheng et al., 2015). However, other functions of the OsEMF1 transcription regulator were not known (Gruszka, 2020). Thus, results of our analysis provided novel and interesting information about putative protein interactions during the BR signaling in rice which may become an input for further functional analyses in this and other species.
CONCLUSION
BRs signaling genes play an important role in the growth and development of plants. However, a comprehensive analysis of promoter regions of the BRs signaling genes has not been performed. Therefore, in the present study the in silico approaches were followed using different bioinformatics tools for a comprehensive analysis of 39 BR signaling genes in terms of their chromosomal distribution, phylogenetic relationships, transcription factor binding sites (TFbs), cis-regulatory elements, and identification of tandem repeats and CpG/CpNpG islands in promoter regions. Additionally, expression patterns of these genes in different tissues during rice development and in reaction to several environmental stresses were analyzed. These analyses revealed the presence of different types and frequencies of TFbs and cis-elements in each gene promoter. Microarray data indicated that up or downregulation of the BR signaling genes is necessary in some aspects of plant growth and diversifies vegetative and generative organs. Our analysis also allowed for predicting differences in the BR-dependent expression of the BR signaling genes between Arabidopsis and rice. Moreover, the significant difference in the occurrence of the WRKYbs within promoters of the OsPPKL3 and OsPPKL2 genes, which regulate grain length in rice in opposite manner, may provide a basis for this neofunctionalization. This is the first report on in silico analysis of the BR signaling genes in O. sativa. Although further research is needed to clarify these complicated aspects, results of this study provided insights into various regulatory mechanisms and interdependencies which involve the BR signaling genes and influence growth, development, and stress response of rice and potentially other cereal crops.
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Potato (Solanum tuberosum L.) is an important staple food around the world, and potato virus Y (PVY) is a major constraint for potato production. The VPg protein of PVY interacts with the translation initiation factor eIF4E of the host that works as a susceptibility factor during infection. The interaction between eIF4E and VPg was disrupted by CRISPR/Cas9. The homozygous conserved region of eIF4E of the potato variety “Kruda” was mutated by CRISPR/Cas9. Tracking of insertion, deletion, and conversion events was performed by Sanger sequencing with ∼15% editing efficiency. Truncated and mutated eIF4E proteins were unable to interact with VPg, and the virus was not able to exploit the host machinery for replication and systemic spreading. Mutated eIF4E lines showed enhanced resistance to PVYO strain. DAS-ELISA and RT-PCR were used for validation of the observed resistance. PVY resistance in tetraploid lines via CRISPR/Cas9 provides a route to develop novel resistant potato cultivars.
Keywords: potato viruses, CRISPR-Cas9, eIF4E, PVY, DAS-ELISA, RT-PCR, VPg-EIF4E protein interaction
1 INTRODUCTION
Potato (Solanum tuberosum L.) belongs to the family Solanaceae and is a significant vegetative food crop grown on 19 million hectares worldwide. Asia is the largest potato-producing region (FAOSTAT, 2021; http://www.fao.org/faostat/en/#search/Potatoes). A potato reference genome was recently reassembled and annotated with updated gene annotation tools, which revealed more genetic diversity than can be monitored by molecular markers (van Lieshout et al., 2020). These markers help in identifying genetic variability, quantitative trait loci (QTLs), population structure, useful traits, and phenotypic variations (Sharma et al., 2018).
Sustainable potato production is greatly affected by biotic and abiotic constraints. Among biotic factors, RNA viruses significantly threaten crop yield. Potato virus Y (PVY), potato leaf roll virus (PLRV), potato virus A (PVA), potato mop-top virus (PMTV), potato virus X (PVX), and potato virus S (PVS) are the prominent potato viruses (Ali et al., 2002). Several non-recombinant (PVYN, PVYO, and PVYC) and recombinant strains (PVY, PVYNW, PVYN:O, and PVYNTN) of PVY have been reported. PVY has a global distribution and a broad host range. It is non-persistently transmitted by almost 50 different aphid species, with Myzus persicae as the main vector (Quenouille et al., 2013).
PVY encodes a replicase, a coat protein, a viral genome-linked protein (VPg), and a movement protein for systemic spread (Shukla et al., 1991; Gao et al., 2014; Wang et al., 2015). The ssRNA-potyviruses highjack translation initiation factors and related machinery of hosts for viral protein synthesis. The eIF4E protein plays a crucial role in the translation of the viral genome. Some natural allelic variations in this protein at the cap-binding site can confer virus resistance (Cavatorta et al., 2011). The mechanism of eIF4E-mediated recessive resistance against PVY has been explained (Moury et al., 2014a). These natural antiviral eIF4E variants affect the interaction of potyviruses with the host without disrupting the viability and cellular signaling. It has been previously reported that overexpression of the eIF4E-1-encoding pvr-1 gene from Capsicum provided resistance against Tobacco etch virus in Solanum lycopersicum (Kang et al., 2005). The potato eIF4E differs from pepper eIF4E allele Pvr-1 in an amino acid substitution in the cap-binding domain which is essential for interacting with the RNA of PVY that ultimately disturbs the VPg–eIF4E complex formation (Kang et al., 2005; Kang et al., 2007). Furthermore, over-expressing the modified eIF4E and suppressing the susceptible allele transcript have provided potential resistance against PVY (Gutierrez Sanchez et al., 2020).
The recent advancements in targeted genome engineering via CRISPR/Cas have unprecedented potential to improve crops (Zhang et al., 2019; Dong et al., 2020; Liu et al., 2020; Zafar et al., 2021). Although genetic improvement in potato has limitations due to its genome complexity, it still presents a good opportunity to engineer useful traits. CRISPR/Cas9 is a widely adopted and sophisticated tool for crop genome engineering that specifically targets the desired gene(s) (Zafar et al., 2020a; Ibrahim et al., 2021). It can produce insertions, deletions, substitutions, or point mutations (SNPs) at a specified location in the target gene. Susceptibility genes provide potential targets for genome editing against viral, bacterial, and fungal pathogens as well as abiotic stresses (Zaidi et al., 2018; Zafar et al., 2020a). In this study, we used CRISPR/Cas9 to mutate the susceptibility gene eIF4E for engineering broad-spectrum resistance against PVY in an elite tetraploid potato cultivar ‘Kruda’. The mutated lines of the eIF4E gene showed enhanced resistance against PVY and can be used as a new genetic resource for the development of disease-resistant potato cultivars.
2 RESULTS
2.1 Construct Assembly
The plant codon-optimized Streptococcus pyogenes Cas9 (spCas9) was expressed under the 35S promoter in the binary expression vector pK2GW7. Two constructs (PK2GW7-Cas9-E1 and PK2GW7-Cas9-E2) were developed to target the eIF4E gene (Table 1). The eIF4E gene was amplified by specific primers (Figure 1A), and gRNAs were designed on the conserved region of exon-1 (sequencing data in Supplementary Figure S1A). The PCR product confirmed the presence of the gRNA cassette (U6 promoter, gRNA, and gRNA scaffold) in the vector (Figure 1B). The 545-bp bands were eluted from a chimeric plasmid cloning vector and transferred to the expression vector pK2GW7 by HindIII restriction-ligation reactions (Figures 1C,D). The PCR results confirmed the presence of Cas9 (∼4.1 kb; Supplementary Figure S4A). The final constructs were confirmed by Sanger sequencing (Figures 1E,F). A complete diagrammatic illustration of the vector map is shown in Figure 1G.
TABLE 1 | eIF4E gRNA sequences.
[image: Table 1][image: Figure 1]FIGURE 1 | (A) Amplification of eIF4E gene and the 4.5-kb fragment; (B) amplification using the PCF/PCR primer set and the 556-bp fragment; (C) confirmation of gRNA in each construct by restriction analysis with the Bbs1 site in p. chimera vector; (D) the gRNA cassette confirmation in the Pk2GW7-Cas9 vector (uncropped gel pictures with +ve and −ve controls are present in Supplementary Figures S4A–C); (E) pK2GW7E1;; (F) pk2GW7E2 through Sanger sequence confirmation of the gRNA cassette; (G) schematic diagram of the construct used for genome editing. All gRNAs targeting eIF4E were cloned in the same manner. The construct was expressing gRNA under the At-U6 promoter. The plant codon-optimized Cas9 was expressed under the 35S CaMV promoter.
2.2 Transgenic Plant Development
Agrobacterium-mediated transformation (GV3101 strain) generated 25 transgenic lines for gRNA1 and 15 lines for gRNA2 targeting the eIF4E gene. The mutated lines were confirmed by Sanger sequencing and multiplied before shifting to soil (Figure 2).
[image: Figure 2]FIGURE 2 | (A) Callus induction and development stage; (B) callus development and selection; (C) callus growth; (D) shooting stage; (E–G) shoot and root growth; (H) plants shifted to the glass house.
2.3 Editing Confirmation
The editing by Cas9 was tested by PCR amplification of the targeted regions of eIF4E and Sanger sequencing. Initially, PCR was performed to confirm the integration of Cas9 and the gRNA cassette into the plant genome and was followed by sequencing. We sequenced a total of 40 PCR-positive transgenic lines. In 25 of the 40 lines, eIF4E was targeted with gRNA1, and with gRNA2 in the other 15. The targeting efficiency of the CRISPR/Cas9 system in “Kruda” cultivar was around 15%. The targeted region of eIF4E was sequenced to determine the mutations. The purified PCR product was ligated into the pTZ57R/T vector by TA cloning, and 20 clones from each line were sequenced. The target regions were successfully mutated by insertion/deletion (Indels) and incorporation of single-nucleotide polymorphisms (SNPs). The gRNA1 targeted the most conserved region of the eIF4E gene near 5′-UTR. In the mutated lines K_E1.8, K_E1.9, K_E1.16, and K_E1.46, eIF4E was targeted with gRNA1, and the editing events were characterized by Sanger sequencing, which confirmed large deletions in one of the alleles of 25 bp, 15 bp, and 139 bp and insertion of 10 bp, 35 bp, and 42 bp in the K_E1.16 and K_E1.46 lines, respectively (shown in Table 2; Supplementary Figures S1A–D). We found that the SNPs in the coding regions in K_E1.46 generate stop codons that ultimately truncate the protein synthesis. The gRNA2 targeting eIF4E generated SNPs in K_E2.9 and K_E2.13 lines (Supplementary Figures S1E,F). In K_E2.9, a nucleotide with single base pair polymorphism and 3-bp deletions was observed, while in K_E2.13, three different events (a 1-bp addition and 3- and 1-bp deletions) were observed (Table 2, with gRNAs in red, PAM in purple, and editing events in green). These are synonymous mutations. We validated the resistance/tolerance capacity of these mutated alleles by ELISA and reverse transcription–polymerase chain reaction (RT-PCR).
TABLE 2 | Editing events confirmation at allelic base through Sanger sequencing.
[image: Table 2]2.4 Phenotyping and DAS-ELISA
The resistance level of the mutated alleles was validated by ELISA and RT-PCR. Sixty-day mature mutated and wild-type lines were inoculated with PVY. Visual symptoms such as mosaic pattern on the leaves were observed on the wild-type plants (Figure 3). At 7, 15, 30, and 60 days post-infection (dpi), DAS-ELISA was performed. The analysis provided co-relating results with phenotypic observations: the wild-type lines exhibited common symptoms of PVY infection such as stunting, leaf mottling, crinkling, yellowing, and necrosis of leaves, while the mutated lines remained healthy without any visual symptoms of infection (Figure 3). The specificity and sensitivity of DAS-ELISA for PVY detection were confirmed by testing the extracts from PLRV-, PVX-, PVA-, PVS-, and PVM-infected potato samples along with negative controls. The negative results indicated the specificity and sensitivity of DAS-ELISA for PVY. The PVY titer was estimated through visual (yellow) observation and by ELISA-reading at 405 nm (Figure 3). Compared to the wild-type plants, all mutated lines showed a gradual decrease in virus titer and showed resistance at 60 dpi of PVY inoculation. The mutated lines K_E1.8, K_E1.9, K_E1.16, and K_E1.46 showed stronger resistance compared to K_E2.9 and K_E2.13 (Figure 3). Tubers were collected from PVY-resistant and PVY-tolerant lines, as shown in Supplementary Figures S2A,B. Phenotypically strong resistance was achieved by gRNA1 in lines K_E1.8, K_E1.9, K_E1.16, and K_E1.46, while tolerance was gained against PVY by gRNA2 in lines K_E2.9 and K_E2.13.
[image: Figure 3]FIGURE 3 | PVY Inoculation and symptoms appearance on control and mutated lines. (A) Inoculation of PVY into the control plant; (B) virus mosaic pattern appearance on the control plant at 45 dpi; lines (C) K_E1.8, (D) K_E1.9, (E) K_E1.16, and (F) K_E1.46 showing strong resistance, and lines (G) K_E2.9 and (H) K_E2.13 showing tolerance against PVY. (I) Determination of PVY titer using DAS-ELISA; The assay was performed to check the PVY titer at regular intervals of 7, 15, 30, and 60 dpi. The control lines showed high titer, while the mutated eIF4E lines K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 showed virus titer only after 60 days, which was lower than all others.
2.5 Relative Expression of eIF4E and Cas9 in Mutated Lines
Real-time PCR (RT-PCR) was performed to determine the functional expression of eIF4E and Cas9 in tetraploid plants. The plants were treated with PVY and classified into the following: 1) non-inoculated wild-type Kruda as negative control; 2) PVY-inoculated wild-type Kruda as positive control; and 3) PVY-inoculated K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 eIF4E mutated lines. After 20 days of inoculation, symptoms appeared on the inoculated wild-type Kruda plants. Samples were collected at 20 and 30 dpi from PVY-resistant mutated and wild-type lines. The presence of virus in the samples was confirmed by DAS-ELISA. Total RNA was isolated, and cDNA was synthesized for the quantification of the relative expression of eIF4E and Cas9 genes (Supplementary Figure S3A). To determine the functional expression of Cas9 in these mutated lines, the relative expression of Cas9 in mutated lines K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 was determined by using specific primers (shown in Table 3). The relative expression of Cas9 gene is shown in Figure 4. The relative expression of eIF4E was higher in the wild-type control plant than in mutated lines, as determined by the 2−ΔΔCT method (using primers shown in Table 3). The quantitative expression of eIF4E in mutated lines K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 was many folds lower than that in the wild-type (Figure 4), as indels caused the frameshift for the expression of eFI4E.
TABLE 3 | Primers sequences used in RT-PCR.
[image: Table 3][image: Figure 4]FIGURE 4 | (A); RNA-isolation. (B,C): Stranded amplification curve for titre determination. (C); The relative expression of Cas9 in mutated lines (E1.8, E1.9, E1.16, E1.46, E2.9, E2.13) with wild-type control. (D); The relative expression of Cas9 gene in mutated lines (E1.8, E1.9, E1.16, E1.46, E2.9, E2.13) (E); The relative expression of eIF4E gene in mutated lines (E1.8, E1.9, E1.16, E1.46, E2.9, E2.13) with wild-type control. (F): The absolute quantification of viral accumulation in mutated lines and wild-type susceptible control line after regular interval of 15dpi, 30dpi.
2.6 Validation of Absolute Quantification Assay for Determination of PVY Titer in eIF4E Mutated Lines
The PVY pathosystem in ‘Kruda’ cultivar was validated by determining the viral load in the mutated lines and quantified by quantitative reverse transcription PCR (RT-qPCR). The optimal thermal cycling conditions were used to obtain the standard curve, with almost equal efficiency of amplification of the samples as shown in Supplementary Figure S3B. The mutated lines K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 of eIF4E and wild-type plants were inoculated with PVY. The copy number of PVY was determined by RT-qPCR, which indicated low or very low titer in mutated lines, compared to inoculated wild-type plants. The serial dilutions for RT-qPCR are shown in Table 4. The mutated lines E1.46 and E1.16 showed very low to zero virus accumulation and transmission at regular intervals. Interestingly, a decrease in the intensity of viral titer was observed in the E1.8 line at 45 dpi, compared to the wild-type plants (Figure 4). The confirmed resistant mutated lines were shifted from pots to soil to collect the tubers.
TABLE 4 | Serial dilution of plasmid.
[image: Table 4]3 DISCUSSION
Plant viruses recruit the host’s cellular machinery to translate their viral genome. It has been reported that positive-sense RNA viruses are facilitated by the eIF4E protein, which enables translation initiation of the viral genome and systemic spreading of the virus (Sanfaçon, 2015). The interaction between the eIF4E protein and VPg is required for the onset of viral genome protein synthesis and systemic dissemination of disease (Charron et al., 2008; Moury et al., 2014b).
Resistance can be established through mutations in the viral VPg gene. Plum pox virus strain C (PPV-C) is infectious to Nicotiana but non-infectious to Arabidopsis and Chenopodium species. PPV-C and PPV-D chimeric clones with VPg gene mutations are unable to interact with the eIF4E protein. These VPg gene changes have resulted in host-specific incompatibility, which leads to non-host resistance (Calvo et al., 2014). Introgression and overexpression of resistance genes (R-genes), alteration of susceptibility genes (S-genes), and host-derived resistance have all been identified as key strategies for inducing resistance in potato (Ellis et al., 2020).
This is the first study to use CRISPR/Cas9 to mutate the eIF4E susceptibility gene in tetraploid potato cv. Kruda to generate resistance to PVY. Interaction was disrupted between VPg and eIF4E by the application of CRISPR/Cas9 that mutated eIF4E in tetraploid potato genome (Figures 5A,B). Previously, the CRISPR/Cas9 technology was used to inhibit the function of the recessive eIF4E gene, resulting in viral resistance in cucumber (Cucumis sativus L.) (Chandrasekaran et al., 2016). It has been reported that Eva1, a variant of eIF4E-1, provides resistance to PVY in S. tuberosum, S. chacoense, and S. demissum. Because Eva1 is unable to interact with VPg, which is required for pathogenesis to begin, intragenic potato cultivars with Eva1 are resistant to PVY (Duan et al., 2012). In the yeast two-hybrid system, the new variation Eva1 failed to interact with VPg (Duan et al., 2012). We mutated the eIF4E gene with CRISPR/Cas9 such that it could no longer interact with the VPg of PVY, resulting in PVY resistance (Figures 5A,B).
[image: Figure 5]FIGURE 5 | (A) Positive interaction of eIF4E protein of potato and VPg of PVY. (B) Genome editing efficiency of CRISPR/Cas and how it mutates the eIF4E and blocks the VPg–eIF4E interaction.
Using CRISPR/Cas9 followed by NHEJ-repair, we obtained several editing events in “Kruda” lines that resulted in insertions, deletions, point mutations, and SNPs. The NHEJ re-ligation is prone to errors, increasing the likelihood of insertions and deletions (indels) (Song and Stieger, 2017). NHEJ is the most common repair process in somatic cells. It is constitutively active throughout the cell cycle and is particularly efficient at fixing DSBs due to the efficiency of repair proteins ku70 and ku80. The CRISPR/Cas9 approach followed by NHJE-repair has been widely utilized to generate resistance in agricultural plants, such as in rice against bacterial blight, in cucumber against cucumber vein yellowing virus, and in tomato against powdery mildew (Chandrasekaran et al., 2016; Nekrasov et al., 2017; Shibata et al., 2018; Zafar et al., 2020b).
Editing all alleles in a polyploid genome simultaneously is complex and challenging. We exploited the Arabidopsis U6 promoter for expressing the CRISPR-array and obtained 15% mutation efficiency in targeting conserved tetraploid, homozygous regions of eIF4E homologs. The homozygous and hemizygous mutations in all alleles were confirmed through Sanger sequencing in the 6 mutated lines. However, we did not find any SNPs and somaclonal variations in tetraploid wild-type lines. Therefore, these mutated lines were generated through the potential activity of Cas9 endonuclease. We targeted the most conserved coding regions of eIF4E near the start of exon-1 that ultimately altered the open reading frame, leading to generation of truncated eIF4E proteins and slowing down of the onset of PVY disease. We also obtained some SNPs in potato that were synonymous mutations that had no effect on the protein’s open reading frame in lines E2.9 and E2.18; these lines showed minor resistance to PVY. Non-synonymous SNPs in the watermelon gene eIF4E have resulted in resistance to Zucchini yellow mosaic virus (Ling et al., 2009).
Previously, Andersson et al. (2018) exploited CRISPR/Cas9 to target the potato granule-bound starch synthase (StGBSS) gene. The mutagenesis frequency was 25%, while up to 9% indels were detected. Moreover, the authors reported a frequency of 2–3% mutations in all four alleles (Andersson et al., 2018). Furthermore, overexpression of the variant Potato4E: pvr12 resistance allele resulted in resistance against PVY. This variant of the eIF4E gene differed from the susceptible allele by three point mutations and caused downregulation in endogenous susceptible eIF4E. No adverse effects were observed in plant growth (Cavatorta et al., 2011).
The adverse physiological effects of PVYo were examined on the mutated lines. The mutated lines provided resistance against all tested PVY strains. We measured the virus titer by DAS-ELISA at regular intervals. The phenotypic data revealed that control plants exhibited the typical symptoms of PVY infection, whereas mutated lines K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 of eIF4E showed resistance at 10, 15, 25, 30, and 60 dpi. Furthermore, the virus accumulation in leaves was analyzed by RT-qPCR. Sensitive detection by RT-qPCR for addressing the viral load in mutated and control lines indicated high titers in the control plants compared to mutated lines. Previously, resistance against three strains of PVY (PVYO, PVYN:O, and PVYNTN) was developed by modifying eIF4E in the two potato varieties Atlantic and Russet Noekotah (Arcibal et al., 2016).
In tetraploids, genome heterogeneity, haplotype differences, and copy number variations (CNVs) may play a role in differential gene expression during biotic and abiotic stresses (Pham et al., 2017). The CRISPR/Cas9 constructs resulted in diverse allelic mutations in the eIF4E gene paralogs, and while these editing events provided resistance or tolerance against the devastating PVY, the physiology of the plants remained normal. This study is an experimental proof that the CRISPR/Cas9 system can be established in tetraploid potato. However, more studies are needed for developing Cas9-free lines against all strains of PVY. Furthermore, multiplex genome editing can be exploited for simultaneous targeting of multiple regions in eIF4E and other interacting isoforms, for developing broader resistance.
Conceivably, advanced bio-informatics tools could be exploited for deciphering the mechanism of protein–protein interaction of local cultivars and VPg of PVY strains. The specific amino acids that are involved in these interactions may be changed by using the variants of CRISPR/Cas9 such as cytidine base editing (CBE), adenine base editing (Zong and Gao, 2019), or prime editing (Wang et al., 2021). Thus, there is considerable scope to move forward from the proof-of-concept reported here, to verifying the findings with more varieties and additional editing methods.
4 CONCLUSION AND PROSPECTS
Clonal propagation of potato crop by tubers increases the possibility of virus accumulation in tubers. The CRISPR/Cas9 technology was used to create resistance to PVY, and resistant plants produced virus-free tubers. The CRISPR/Cas9 system-generated indels and SNPs in the potato eIF4E gene conferred resistance against a lethal strain of PVY. Therefore, CRISPR/Cas9 may be used to achieve targeted and beneficial varietal development. The establishment of broad-spectrum resistance against PVY could be a sustainable approach to fulfil the food demands of the growing population. However, the establishment of a transgene-free genome editing protocol—like the one using ribonucleoproteins (RNPs)—in potato is required for the development of globally accepted potato varieties, as the tetraploid nature of potato makes it challenging to recover a Cas9-free mutated line.
5 MATERIALS AND METHODS
5.1 Plant Material
The tetraploid Kruda cultivar of potato was selected for establishing PVY resistance. Control plants were obtained from the Gene Transformation Lab (National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan). Two days prior to transformation, the internodal stem cuttings from control plants were placed on MS medium (Murashige and Skoog, 1962) in a growth chamber with a photoperiod of 16 h and a temperature of 22°C (±1°C). DAS-ELISA (Andersen and Johansen, 1998) was performed against single-stranded RNA (ssRNA) viruses for confirmation of virus-free parental lines.
5.2 gRNA Designing and Construct Development
In this study, Solanum tuberosum cv. Kruda plants were used. To find out the exact sequence of the susceptibility gene eIF4E, primers were designed on the NCBI-available sequence (NM_001288431) to amplify the coding region of the gene (Table 5). CTAB and Trizole (Invitrogen, United States) were used to extract genomic DNA (Doyle, 1990) and RNA, respectively, for the amplification of the coding region. PCR products of 635 bp for the coding sequence of eIF4E was amplified by using specific primers (Table 5, P1) according to the manufacturer’s standard PCR conditions (Catalog # K1082).
TABLE 5 | Primers sequences.
[image: Table 5]This coding sequence was cloned into Ptz57R/T (Catalog# K1213, Thermo Fisher Scientific, United States) for sequencing. The 20-bp gRNAs were designed on the conserved regions of exon1 of the eIF4E gene. All gRNAs were designed manually and screened for potential off-targets using the online Cas-OFFinder tool (http://www.rgenome.net/cas-offinder/). The gRNAs were cloned into the BbsI site of the p. chimera vector under the A. thaliana-U6 promoter. The Pk2GW7-Cas9 construct was obtained from the Laboratory for Genome Engineering and Synthetic Biology, Centre for Desert Agriculture, KAUST, Saudi Arabia. The binary PK2GW7-Cas9 vector was designed with a unique Hind III site, and the gRNA cassette was inserted into the Pk2GW7-SpCas9 vector using Hind III restriction and ligation methods. Plant codon-optimized spCas9 (approximately 4.1 kb) was amplified by using high-fidelity polymerase (M0530S) following the manufacturer’s instructions, and further confirmation of Cas9 was performed using the diagnostic primer for Cas9 (Table 5).
5.3 Potato Transformation and Growth Conditions
The Kruda internode cuttings were placed on MS medium for 2 days prior to transformation by Agrobacterium-mediated transformation (GV3101 strain) harboring constructs. For each gRNA, approximately 100 cuttings were transformed. Each construct was grown independently with rifampicin and spectinomycin antibiotic selection. Optical density (O.D600) of the bacterial liquid culture was measured, and 0.6 O.D. was used for the transformation of the internodes. The liquid culture was pelleted down with 4430 g for 5 min and washed three times with liquid MS medium, and final O.D. was measured for transformation. A time duration of 20–25 min was used for the incubation of internodes in the liquid MS medium with the Agrobacterium construct. The cuttings were placed in a dark room overnight at 25–28°C for potato transformation. After overnight incubation, the transformed internodal cuttings were washed with timentin and then placed on kanamycin medium (50 mg/L) for selection. The transformed lines were transferred to callus induction medium (CIM) for callus induction. The cuttings were transferred continuously on a weekly basis for up to 40 days. The surviving calli were then transferred to regeneration medium, and regenerated plantlets were transferred to shooting medium followed by rooting medium with variable amounts of plant growth hormones. Before transferring to soil (clay and sand), the mutated lines were multiplied in a growth chamber, and three clonal replicates of each mutated line were transferred to sand and kept in a greenhouse under controlled conditions (25°C (±1°C) temperature, light period for 16 h, and with insect/pest proof). After 2 weeks of hardening, the lines were shifted into large pots for tuber development and phenotypic assays.
5.4 Confirmation of Transgenic and Mutated Lines
The transgenic lines were confirmed for the presence of Cas9 and the gRNA cassette. DNA was extracted from the mutated and control lines using the CTAB method. P. chimera forward (PCF) and reverse (PCR) primers (Table 5), Cas9 primers, and pNeomycin phosphotransferase II (NptII) gene (responsible for kanamycin resistance) primers (Table 5) were used for the gRNA cassette, Cas9 gene, and NptII confirmation, respectively. For the identification of insertion/deletions (Indels), 188 bp sequences consisting of eIF4E target regions were amplified by primers (Table 5) and cloned into the pTZ57R/T vector, and 20 clones from each line were sent for sequencing.
5.5 Phenotypic Screening Against PVY Resistance
The screening of mutated lines for resistance against PVY was carried out in a glass house under controlled environmental conditions. The mutated and wild-type lines were hardened for 2 weeks in pots containing a mixture of sand and peat moss. Triple superphosphate (CaH2PO4·2H2O) at 128 kg per hectare and muriate of potash (KCl) at 485 kg per hectare were applied to strengthen the potato lines. After 2 months of maturation, mutated plants from each line were selected for inoculation of PVY virus by applying viral sap mixed with carborundum powder on the lower side of the leaves. The experiment was conducted in three batches. The control wild-type lines were arranged with six mutated lines and treated with PVY, despite the fact that the control line was PVY susceptible (Hull, 2009). All these lines were screened for PVY resistance using a local virulent PVY strain. The inoculum was prepared to infect the wild-type control and transgenic plants with the virus. The leaf sap of PVY-infected plants was extracted by crushing the leaves in 0.5% sodium acetate solution. The transgenic plants were inoculated with the filtered leaf sap after mixing with carborundum (1 mg/ml) powder. The control lines were inoculated in the same pattern as the mutated lines. PVY from the crude extract was applied to the wild-type plants at various concentrations (1:60 dilutions) to determine the sensitivity of PVY detection. At 7, 15, 30, and 60 dpi, the response of the mutated plants was examined, and data were recorded by observing the mosaic pattern on leaves. Further confirmation was carried out by DAS-ELISA, and the quantitative expression of eIF4E in mutated lines was analyzed by RT-qPCR.
5.6 ELISA for PVY Confirmation
Screening of PVY was performed by DAS-ELISA in the wild-type and mutated Kruda lines. Leaves from the infected non-transgenic control plants and tolerant/resistant plants mutated for PVY resistance were collected. About 1 g of leaves was ground in distilled water and then the kit-protocol (Catalog# V093) was followed for titer confirmation of PVY in the mutated and control lines. The DAS-ELISA was performed at regular intervals of 7, 15, 30, and 60 dpi. DAS-ELISA was performed for PVS, PLRV, PVA, and PVM with PVY to find out the screening sensitivity of DAS-ELISA.
5.7 RNA Extraction, cDNA Synthesis, and Relative Expression
Total RNA was extracted from the inoculated potato leaves using Trizol reagent (Invitrogen, United States) following the manufacturer’s instructions. The extracted RNA was treated with gradient DNase I (Thermo Fisher Scientific, United States) as per the manufacturer’s instructions for the removal of DNA contamination. Complementary DNA (cDNA) was synthesized using the RevertAid First Strand cDNA synthesis kit (Thermo Fisher Scientific, United States). The cDNA was synthesized by using oligo (dT18) primers and gene-specific Cas9-reverse primers for eIF4E and Cas9, respectively. The expression of eIF4E upon PVY treatment was analyzed in both mutated and control plants by observing relative expression via RT-PCR. The eIF4E transcripts were amplified using St-IF4E RT-F and eIF4E RT-R primers (Table 3), and the functional Cas9 transcripts were analyzed by using Cas-RT-F and Cas-RT-R primers (Table 3). Reaction mixtures of a volume of 25 µl were prepared using 12.5 µl SYBR Green Real-Time PCR Master Mix (Thermo Fisher Scientific, United States), 0.1 pmole of F&R primers, 2 µl cDNA, and 9.5 µl water. The reaction was performed under optimized conditions using a Bio-Rad iQ5 thermal cycler (Bio-Rad, United States). The actin-97 gene was used as an endogenous control for expression using an actin-F/actin-R primer set (Table 3). The quantification results were analyzed by the 2−ΔΔCT method (Livak and Schmittgen, 2001). To find the virus copy number, analysis of the absolute expression was performed and each treatment was replicated three times.
5.7.1 Preparation of PVY Templates for Standard Curve Construction for Absolute RT-qPCR
For the quantification of PVY titer in the control and mutated lines, specific stranded templates were generated. The VPg of PVY was amplified by primers (P#4, Table 5) and cloned into a TA-cloning vector. Serial dilutions were prepared to achieve specific nucleic acid quantification values as shown in Table 4, and standard curve was generated by using primers in VPg-RT-F/R (Table 3).
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In the published article, there was an error in Figure 3 as published. We neglected to provide figure labels. The corrected Figure 3 and its caption appears below.
[image: Figure 3]FIGURE 3 | PVY Inoculation and symptoms appearance on control and mutated lines. (A) Inoculation of PVY into the control plant; (B) virus mosaic pattern appearance on the control plant at 45 dpi; lines (C) K_E1.8, (D) K_E1.9, (E) K_E1.16, and (F) K_E1.46 showing strong resistance, and lines (G) K_E2.9 and (H) K_E2.13 showing tolerance against PVY. (I) Determination of PVY titer using DAS-ELISA; The assay was performed to check the PVY titer at regular intervals of 7, 15, 30, and 60 dpi. The control lines showed high titer, while the mutated eIF4E lines K_E1.8, K_E1.9, K_E1.16, K_E1.46, K_E2.9, and K_E2.13 showed virus titer only after 60 days, which was lower than all others.
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Novel genetic variations can be obtained by inducing mutations in the plant which help to achieve novel traits. The useful mutant can be obtained through radiation mutation in a short period which can be used as a new material to produce new varieties with high yield and good quality wheat. In this paper, the proteomic analysis of wheat treated with different doses of 12C and 7Li ion beam radiation at the seedling stage was carried out through a Tandem Mass Tag (TMT) tagging quantitative proteomic analysis platform based on high-resolution liquid chromatography-mass spectrometry, and the traditional 60Co-γ-ray radiation treatment for reference. A total of 4,764 up-regulated and 5,542 down-regulated differentially expressed proteins were identified. These proteins were mainly enriched in the KEGG pathway associated with amino acid metabolism, fatty acid metabolism, carbon metabolism, photosynthesis, signal transduction, protein synthesis, and DNA replication. Functional analysis of the differentially expressed proteins showed that the oxidative defense system in the plant defense system was fully involved in the defense response after 12C ion beam and 7Li ion beam radiation treatments. Photosynthesis and photorespiration were inhibited after 12C ion beam and 60Co-γ-ray irradiation treatments, while there was no effect on the plant with 7Li ion beam treatment. In addition, the synthesis of biomolecules such as proteins, as well as multiple signal transduction pathways also respond to radiations. Some selected differentially expressed proteins were verified by Parallel Reaction Monitoring (PRM) and qPCR, and the experimental results were consistent with the quantitative results of TMT. The present study shows that the physiological effect of 12C ion beam radiation treatment is different as compared to the 7Li ion beam, but its similar to the 60Co-γ ray depicting a significant effect on the plant by using the same dose. The results of this study will provide a theoretical basis for the application of 12C and 7Li ion beam radiation in the mutation breeding of wheat and other major crops and promote the development of heavy ion beam radiation mutation breeding technology.
Keywords: 12C ion beam, 7Li ion beam, proteomics, TMT, wheat
INTRODUCTION
Common wheat (Triticum aestivum) is one of the major cereal crops in the world and its grains contain energy-rich carbohydrates content with useful nutrients and proteins. Mutagenesis plays a significant role in breeding and variety development in cereal (Li et al., 2022). The study of heavy-ion beams had been started in the 1970s in the field of nuclear physics and in 1993 it had been started for plant mutation breeding by using 12C and 7Li ion beams (Bradshaw, 2017). Recently it has been widely used in cereal crops, especially wheat, rice, and maize for the development of new high-yield varieties (Morishita et al., 2003; Kikuchi et al., 2009; Cabanos et al., 2012; Dong and Li, 2012). The 7Li ion beam mutagenesis technology is used for the deletion of susceptible genes, which aids in the understanding of gene function and the development of disease-resistant plants, ultimately accelerating crop improvement (Hase et al., 2012; Fitzgerald et al., 2015).
Both heavy ion beams (7Li and 12C) and 60Co-γ-ray radiation belong to physical agents used for induced mutagenesis. These physical mutagens have been used to create point mutations and small deletions in the genome, as well as DNA methylation variations (Sikora et al., 2011). In contrast, heavy-ion beam-induced mutations are more frequent and more diverse. In addition to point mutations such as single nucleotide base substitutions, insertions, inversions, translocations, and small deletions, 12C ion beam radiation can also induce larger deletions, insertions, and chromosomal rearrangements (Shikazono et al., 2005; Nawaz and Shu, 2014). Similarly, 7Li ion beam radiation can also induce mutations by disrupting the hydrogen bonds in the DNA double helix structure (Xiong et al., 2020). In plant cells, the mutation-induced by heavy-ion beam radiation is not consistent with the traditional 60Co-γ ray radiation.
Proteomics has been widely used in the study of the interaction between cells and the environment, oftenly considered as an effective research method for revealing the regulatory mechanism at the molecular level of cells. For example, the low-temperature resistance of cotton plant is enhanced by increased protein abundance of osmoregulation, cell wall loosening, and cytoskeletal homeostasis (Zheng et al., 2012). Using TMT quantitative protein labeling technology to study the level of enzymes in the theanine synthesis pathway in tea roots under nitrogen deficiency conditions is inhibited, while a large number of enzymes in flavonoid metabolism are up-regulated at the transcriptional level (Wang et al., 2021). According to the proteomic analysis, salt stress increased the accumulation of γ-amino acids in soybean germinated in the dark and improved soybean salt tolerance by the synthesis of reactive oxygen species scavenging enzymes and antioxidants (Yin et al., 2018). Chen et al. (2017) used yeast two-hybrid assay to identify the activation of heat shock protein 21 (HSP21) expression after heat stimulation of Arabidopsis thaliana. HSP21 stabilizes the thylakoid structure by interacting with photosystem II at the thylakoid membrane, which contributes to Arabidopsis thaliana’s increased heat tolerance (Chen et al., 2017). The analysis of the chloroplast proteome of wheat induced by UV light revealed that differentially expressed proteins were involved in photosynthesis, detoxification, and antioxidant reactions, as well as signal induced transduction pathways and three UV-B protective proteins (Gao et al., 2019). There are many reports available that analyzed protein level change under high temperature, low temperature, drought, high salinity, and UV stress environments, while the changes in proteome caused by ion beam and ray radiation treatments are less studied.
In this study, winter wheat (Triticum aestivum) “Heyou 1” and untreated seeds treated with different doses of 12C, 7Li ion beam, and 60Co-γ-ray irradiation were used as materials used for mutagenesis. Proteins contents were extracted from 5-day-old seedlings. The protein level difference between the wheat response to heavy-ion beam and traditional ray radiation was analyzed by the TMT labeling method, which provided a theoretical basis for revealing the regulation mechanism of the wheat response to heavy-ion beam stress.
MATERIAL AND METHODS
Plant Materials
Winter wheat (Triticum aestivum L.) variety Heyou 1 (HY1) and seeds of HY1were treated with different doses of 12C ion beam, 7Li ion beam, and 60Co-γ ray.
Radiation Based Mutagenic Treatment
Seeds were irradiated with 60Co-γ rays at the Peking University Radiation Center (Beijing, China) at doses of 0, 100, 150, and 250 Gy at a dose rate of 7.5 Gy/min; 12C ion beam irradiation was given at the Institute of Modern Physics of the Academy of Sciences (Lanzhou, China) with doses of 0, 40, 60, and 80 Gy, respectively, at a dose rate of 20 Gy/min. Similarly, 7Li ion beam radiation treatment was performed at the China Institute of Atomic Energy (Beijing, China) with doses of 0, 25, 50, 75, and 100 Gy at the rate of 8 Gy/min. Each dose was repeated three times with 0 Gy (unirradiated) treated samples as a control.
Phenotypic Identification and Photosynthetic Parameter Determination
Sixty seeds were taken from each of the 10 radiation-treated and untreated HY1 groups. The seeds were soaked in distilled water at 4 C for 16 h, placed in a germination bag, transferred to a light incubator, and cultured for 7 days at 21 C, 3,000 Lux light, and a light-dark ratio of 16 h:8 h, and the seedling height and root length were measured. The wheat materials used for the determination of photosynthetic parameters were vernalized at 4 C for 35 days, and 30 plants of the treatment group and the control group were transplanted into pots, at a temperature of 20–25 C, a humidity of 50–70%, and supplemented light for 16 h. After culturing for 3 weeks under greenhouse conditions, the photosynthetic parameters of leaves were measured using a MultispeQ instrument (PhotosynQ Inc., East Lansing, MI, United States). One fully expanded leaf was selected for each plant, and the measurement was repeated three times. The data obtained were processed in Excel and plotted with GraphPad Prism8.
Protein Extraction and Trypsin Digestion
The 5-day old seedlings of the control group and 10 experimental groups were quick-frozen with liquid nitrogen, each group was divided into three biological replicates and completely ground into dry powder, and placed in a 5 ml centrifuge tube. Protein extraction was performed according to Wu (2022). Four times the powder volume of dithiothreitol and protease inhibitor formulated phenol extraction buffer was poured into each group of samples for sonication. The same volume of Tris-equilibrated phenol was poured into a centrifuge tube (4°C, 5,000 g, 10 min). The supernatant was transferred to a new centrifuge tube and 5 volumes of 0.1 M ammonium acetate/methanol were added to precipitate overnight. The final precipitate was reconstituted with 8 M urea, and the protein concentration was determined using BCA Protein Assay Kit (BCA Protein Assay Kit, Beyotime, Shanghai, China). The main process of protein trypsin digestion is that an equal amount of each sample protein is added to an appropriate amount of standard protein, and the pH of the sample is adjusted to about 7.0 with triethylammonium bicarbonate (TEAB). Dithiothreitol (DTT) was added to a final concentration of 5 mM and reduced at 56 C for 30 min 0.5 M iodoacetamide (IAA) was added to the samples to 11 mM and incubated for 15 min at room temperature in the dark. Finally, each sample was diluted with TEAB to a final concentration not higher than 2 M urea. Trypsin was added at a mass ratio of 1:50 (protease: protein) for enzymatic hydrolysis overnight. Then trypsin was added at a mass ratio of 1:100 (protease: protein), and the enzymatic hydrolysis was continued for 4 h. Digestion was terminated by acidifying the samples to pH 3 with trifluoroacetic acid (TFA).
Analysis of TMT-Labeled Proteins by Liquid Chromatography-Mass Spectrometry
For TMT labeling of peptides followed the method of Wu et al., (2020). The enzymatic fragments were desalted with Strata X C18 (Phenomenex) solid-phase extraction, the column was washed and the samples eluted, and the eluted samples were freeze-dried in the tube. The labeling reagent was taken out from −80°C, placed at room temperature for more than 20 min, the labeling reagent was equilibrated to room temperature, and centrifuged in a mini centrifuge for 3 min. After the peptides were taken out from −20°C, centrifuge at 12,000 g at 4v°C for 3 min, add label buffer to the vortex to dissolve the peptide fragments, and centrifuge at 12,000 g for 3 min at 4°C. Add ACN and vortex to dissolve the TMT reagent, and centrifuge in a mini centrifuge for 5 s. Transfer the TMT reagent to the EP tube containing the peptide fragment, vortex to mix, centrifuge in a mini centrifuge for 5 s, and place at room temperature for 2 h. Each peptide sample was resuspended in 0.5 M TEAB and anhydrous acetonitrile was added. Labeling reagents were added to each corresponding peptide sample at a TMT/peptide ratio of 2:1 (w/w) and incubated for 2 h at room temperature. Each TMT-labeled sample was mixed, desalted, and lyophilized in vacume. The digested peptides were separated by high pH reverse-phase liquid chromatography and separated on an Agilent 300Extend C18 column. The peptide fragments were reconstituted with liquid separation chromatography mobile phase A (0.1% (v/v) formic acid aqueous solvent), and the EASY-nLC 1,000 ultra-high performance liquid phase system was used to separate the peptide fragments at different levels. The separated peptide fragments were ionized into TMT reporter ions using an NSI ion source, which were then analyzed on the Orbitrap Fusion LumosTM mass spectrometer. Peptide precursor ions and their secondary fragments were used with an Orbitrap mass spectrometer. The mass spectrometry proteomics data is deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier ID: PXD033767.
Database Search
MS data were comprehensively searched using Maxquant (v1.5.2.8). The enzyme digestion method of Trypsin/P was adopted; the number of missed cleavage sites was 2; the minimum length of the peptide was 7 amino acid residues; the maximum number of peptide modifications was set to 5. Cysteine alkylation was set as fixed modification, Oxidation (M), Acetyl (Protein N-term), and Deamidation (NQ) were set as variable modification. The quantitative method was set to TMT-10 plex, and the FDR of protein identification and PSM identification were set to 1%.
Bioinformatics Analysis for Proteins Characterization
Proteins were annotated using KEGG Automated Annotation Server (KASS) (v.2.0 http://www.genome.jp/kaas-bin/kaas_main). Pathway analysis was performed with KEGG Mapper (V2.5 http://www.kegg.jp/kegg/mapper.html). Subcellular subcellularization of differential proteins were performed by Wolf PSORT (v.0.2 http://www.genscript.com/psort/wolf_psort.html) and CELLO (v.2.5 http://cello.life.nctu.edu.tw/) position (Horton et al., 2007). Perl module was used (v.1.31 https://metacpan.org/pod/Text :: NSP :: Measures :: 2D :: Fisher) Progressive protein function wealth analysis. R Package was used for heat map visualization result (v.2.0.3 https://cran.rproject.org/web/packages/cluster/). For Fuzzy c-means algorithm categorization method, Progressive table categorical analysis, R package Mfuzz Progressive visualization (v.2.32.0 https://www.rdocumentation.org/packages/Mfuzz/versions/2.32.0) was used (Gao et al., 2017). Protein interaction network analysis was performed using Blast, R package networkD3 (v.0.4 https://cran.rproject.org/web/packages/networkD3/), and Cytoscape was used for visualization. cricos diagrams were drawn on the online analysis platform CIRCOS (http://circos.ca/) (Rasche and Hiltemann, 2020).
Targeted Protein Quantification by Parallel Reaction Monitoring
Refer to the method of Wei et al. (2020) for PRM validation of proteins (Wei et al., 2020). Peptides were ionized and analyzed using Q Exactive™ Plus mass spectrometry. The protease was set to Trypsin (KR/P), the maximum number of missed cleavage sites was set to 0, and the peptide length was set to 7–25 amino acid residues.
qRT-PCR Validation of Some Differentially Expressed Protein Genes
RNA was extracted using TRNZOL (TIANGEN, China) (Vennapusa et al., 2020). The CDS sequences of the corresponding protein genes were obtained by searching the wheat genome database. Following primers used for qRT-PCR:
TraesCS4A02G116400
(Forward primer: TTG​TAA​CTA​TCA​AAG​GGT​GCC​AT,
Reverse primer: CTT​TTA​TTT​CCG​GGC​AAA​ACC​AT).
TraesCSU02G105300
(Forward primer: TGG​CAT​TCC​ACT​CAA​CTA​CAG​G,
Reverse primer: ACT​TCA​CAC​CAC​ATG​TAG​GCT​T).
TraesCS3A02G260100
(Forward primer: CTG​CTA​TAA​CCA​GAG​GCC​GTT​C,
Reverse primer: TCG​CCA​CGC​CAT​TGT​TAC​AGT).
We performed Quantitative real-time PCR using One-Step gDNA Removal, PerfectStart Green qPCR SuperMix (TransGen Biotech, China), and CFX 96 Real-Time System (Bio Rad, United States). ACTIN was selected as the internal reference gene, and at least three technical replicates were performed for each sample (Zhang et al., 2022).
RESULTS
Protein Extraction and Seedling Phenotype After Heavy-Ion Beam Irradiation
HY1 was treated with a12C ion beam at 0, 40, 60, and 80 Gy, 7Li ion beam at 25, 50, 75, and 100 Gy while 60Co-γ ray at 100, 150, and 250 Gy were used for the seedling stage. 12C ion beam radiation treatment had inhibitory effects on the seedling height and root length of HY1, and a similar effect had been observed with 60Co-γ ray. 7Li ion beam irradiation treatment resulted in phenotypic variation such as curling and streak albino in wheat leaves, and all four doses resulted in 100% leaf curling and albino streak (Figures 1A,B). The photosynthesis index showed that the relative chlorophyll content (SPAD) in the high-dose 12C ion beam radiation treatment group 80 Gy and the 60Co-γ-ray treatment group 250 Gy were significantly lower than those in CK. However, the SPAD values of each dose of 7Li ion beam irradiation treatment groups were significantly different from those of CK. The photoprotective chemical quenching index φNPQ of the low-dose 12C ion beam irradiation group 40 Gy was significantly higher than that of CK, while the φNPQ value of the high-dose group was significantly decreased (Figure 1C).
[image: Figure 1]FIGURE 1 | Phenotypic data. (A) Growth of HY1 treated with 12C ion beam, 7Li ion beam and 60Co-γ irradiation for 7 days; (B) Data of seedling height and root length; (C) Photosynthetic parameters SPAD and φNPQ values of 21 days.
Untreated and treated Heyou-1 5 days seedlings were subjected to protein extraction, identification, mass spectrometry analysis, and bioinformatics analysis such as functional enrichment, expression pattern cluster analysis, and protein interaction analysis (Figure 2A). We performed a macroscopic analysis of the entire proteome in the identified unirradiated and irradiated groups (Figure 2B). Cirocs plots are a collection of protein counts and depths for each treatment sample, the frequency distribution of individual protein counts, quantitative mass spectrometry data for common proteins, and differential protein data for each dose of radiation treatment compared to CK. The amount and depth of protein quantified in the three irradiation-treated HY1 seedlings were inconsistent, the highest in the 60Co-γ treatment group was 12,000, the 12C ion beam treatment group was between 11,000 and 12,000, and the 7Li ion beam treatment group was at 11,000; Deep represents the higher frequency of occurrence in each treatment group; the fourth circle is the second-ranking of the common proteins of each treatment group according to the quantitative information; the fifth circle is the same protein in each treatment group that has a difference in protein expression with the CK group (Figure 2B). By connecting the lines, it was found that there were more differentially shared proteins between the 12C ion beam treatment group and the 60Co-γ treatment group, while the 7Li ion beam treatment group had less differentially shared proteins. However, in the regions with low frequencies of identified proteins, there were more differentially shared proteins between the 7Li ion beam treated group and the control (Figure 2B).
[image: Figure 2]FIGURE 2 | Proteomic Analysis. (A) The flow chart of proteomics analysis; (B) The Circos diagram (the first circle is the sample name, the second circle is the first-level ranking of the number and depth of proteins, the third circle is the statistics of the occurrences of proteins in each sample group, The darker the color, the higher the counting frequency, the second order of quantitative shared proteins in the fourth circle, and the difference between each radiation treatment group and CK in the fifth circle).
Differentially Expressed Proteins and KEGG Enrichment Analysis
Untreated HY1 was used as the control for the ratio of the expression level of each protein in all 10 treatment groups. Differential expression fold ≥1.3 or ≤ −1.3 as the threshold and p-value < 0.05 as the screening criterion, a total of 4,764 up-regulated differentially expressed proteins (DEPs) and 5,542 down-regulated DEPs were obtained in the 10 radiation treatment groups (Figure 3A).
[image: Figure 3]FIGURE 3 | Bioinformatics Analysis. (A) Overall map of differentially expressed up-regulated and down-regulated proteins in each dose of radiation treatment group; (B) KEGG classification statistics of 12C ion beam radiation treatment group, 7Li ion beam radiation treatment group and 60Co-γ ray radiation treatment group. (C) 12C ion beam radiation treatment group KEGG classification statistics of down-regulated differential proteins (left side) and up-regulated differential proteins (right side) in radiation treatment group and 7Li ion beam radiation treatment group, where A is amino acid metabolism, B is fatty acid metabolism, C is carbon metabolism, D is photosynthesis, E is signal transduction, F is protein synthesis, G is DNA replication. (D) Subcellular localization results of each dose of radiation treatment group.
We also analyzed the KEGG enrichment of differentially expressed proteins in different doses of radiation treatment groups, and the differential proteins in the 12C ion beam radiation group were significantly enriched in ß-alanine metabolism, arginine, and proline metabolism, DNA replication, ascorbic acid, alginate metabolism and pentose phosphate pathway. Differential proteins in the 7Li ion beam irradiation group were significantly enriched in base excision repair, fructose and mannose metabolism, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and plant-pathogen response. Similarly, differential proteins in the 60Co-γ irradiation group were significantly enriched in valine, leucine, and isoleucine metabolism, cyano amino acid metabolism, and propionate metabolism (Figure 3B).
We broadly divided the enriched KEGG pathways into seven types for analysis (amino acid metabolism (A), fatty acid metabolism (B), carbon metabolism (C), photosynthesis (D), signal transduction (E), protein synthesis (F) and DNA replication (G)). The proteins up-regulated for 12C ion beam radiation treatment was mainly concentrated in the KEGG pathway of A, B, C, and E types, with a high proportion of A and C types. The down-regulated proteins were mainly concentrated in the KEGG pathway of A, C, D, F, and G types. The up-regulated proteins after 7Li ion beam irradiation were mainly concentrated in the KEGG pathways of types A and C, while the down-regulated proteins are mainly concentrated in the KEGG pathways of types C, E, and F. The number of proteins in each KEGG pathway was less, and there was no difference in some pathways (Figure 3C).
For further understanding of the intracellular distribution of the identified proteins, subcellular localization analysis was also performed. The subcellular localization of the differentially expressed proteins in the 12C ion beam and 60Co-γ-ray irradiation groups was mainly in the chloroplast and cytoplasm, while the proportion of the differentially expressed proteins for the 7Li ion beam showed less in the chloroplast and cytoplasm (Figure 3D).
Co-Clustering Analysis of Differential Proteins in Groups Treated With Heavy Ion Beam and Gamma-Ray Irradiation
Co-clustering analysis of 12C ion beam and 60Co-γ-ray irradiation treatment group together enriched 10 KEGG pathways including A, C, D, G, F, and D types (“photosynthesis”). Among the 10 differential pathways, the 12C ion beam irradiation group was significantly clustered in the “pentose phosphate pathway” (C) and the “MAPK signaling pathway” (E), while the 60Co-γ-ray treatment group was significantly clustered in the “valine, leucine and “Isoleucine metabolism” (A), “cyanoamino acid metabolism” (A) and “propionate metabolism” (B) (Figure 4A). The 21 differential pathways included A, B, C, E and F types, the 7Li ion beam irradiation group was enriched to 8 KEGGs including “starch and sucrose metabolism” (C) and “MAPK signaling pathway” (E), while 60Co-γ-ray treatment group was enriched in 13 pathways including “propionate metabolism” (B), “porphyrin and chlorophyll metabolism” (D) (Figure 4B).
[image: Figure 4]FIGURE 4 | KEGG heat map. (A) KEGG heat map of 12C ion beam radiation treatment group and 60Co-γ-ray radiation treatment group. (B)co-clustering KEGG heat map of 7Li ion beam radiation treatment group and 60Co-γ-ray radiation treatment group.
Cluster Analysis of Differentially Expressed Protein
In this study, the Mfuzz method was used to perform cluster analysis on protein abundance transformation under different consecutive samples, including the comparison group of 12C ion beam and 60Co-γ ray irradiation treatment (I), and the comparison group of 7Li ion beam and 60Co-γ ray irradiation treatment group (II). Similarly, a comparison group (III) of 12C ion beam and 7Li ion beam irradiation treatments (Figure 5).
[image: Figure 5]FIGURE 5 | Expression pattern clustering and protein network interaction map. From left to right are the cluster analysis of 12C ion beam and gamma ray treatment comparison group, 7Li ion beam and gamma ray treatment comparison group, and carbon ion beam and 7Li ion beam beam treatment comparison group.
The comparison group consists of 6 clusters. The number of proteins in cluster 1 and 5 were higher and the trend of protein abundance decreased with increasing dose in both 12C ion beam and 60Co-γ-ray irradiation groups, and the KEGG pathway was significantly enriched in photosynthesis and carbon metabolism. The changing trend of protein abundance in cluster 4 was different from that of cluster 1 and 5, and the KEGG pathway was significantly enriched in amino sugar and nucleotide sugar metabolism (C), MAPK-signaling pathway (E), and phytohormone signal transduction (E). The changing trends of protein abundances in Clusters 2, 3, and 6 were opposed to all other clusters for 12C ion beam and 60Co-γ-ray irradiation, and the KEGG pathway was enriched to arginine metabolism (A), glycerophosphate metabolism (B) and Protein trafficking in the endoplasmic reticulum (F).
There were 4 clusters in comparison group II. The protein abundance in clusters 2 and 3 decreased with increasing dose after 7Li ion beam irradiation and increased with increasing dose after 60Co-γ ray irradiation. The KEGG pathway was enriched to glutamate metabolism (A), amino sugar and nucleotide sugar metabolism (C), and phytohormone signaling (E). The trend of protein abundance in clusters 1 and 4 was opposite to that in clusters 2 and 3, and the KEGG pathway was enriched in photosynthesis (D), carbon fixation (C), and ribosomes (F).
In comparison to group III, 4 clusters were also developed. The protein abundances in clusters 1 and 2 decreased with increasing dose after 12C ion beam irradiation and increased with increasing dose after 7Li ion beam irradiation. The KEGG pathway was enriched to photosynthesis (D), ribosomes (F), and carbon fixation (C). The changing trend of protein abundance in Clusters 3 and 4 is opposite to that in clusters 1 and 2. The KEGG pathway is enriched to phenylpropane synthesis (A), amino sugar and nucleotide sugar metabolism (C), and MAPK-signaling pathway (E).
Protein Interaction Analysis
The interaction analysis of differentially expressed proteins was carried out for each dose of 12C and 7Li ion beams irradiation treatment groups. The results showed that the 12C ion beam radiation treatment group had more interactions between protein synthesis and transport-related proteins with relatively more interactions between photosynthesis-related proteins and carbon metabolism-related proteins (Supplementary Figure S1). In the 7Li ion beam irradiation group, there were fewer interactions among different metabolisms with fewer PPI interactions, and only two interactions (between signal transduction and protein synthesis; between amino acid metabolism and carbon metabolism) (Supplementary Figure S2).
PRM and qRT-PCR Validation Results
Mass spectrometry-based targeted protein validation (PRM) is a high-resolution, high-precision mass spectrometry-targeted quantification technology that achieves relative or absolute quantification of target proteins/peptides through selective detection of target proteins/peptides. We selected A0A1D5UL37, A0A1D6SEV8, A0A1D5YAL5, A0A1D5YT77, A0A077RXE4, A0A1D6SA87, A0A1D6CB88, A0A1D5U440, and W5A6A7 from 10 groups of 10306 differentially expressed proteins for PRM validation. In each dose of 12C ion beam, 7Li ion beam irradiation treatment group and 60Co-γ ray treatment group, the TMT and PRM results of the changes in the abundance of these 9 proteins were consistent (Figure 6A). We selected three differential proteins, including the disease process-related protein (A0A341TFF2), chitinase (A0A023W4F1) and catalase (A0A1D6SEV8) corresponding genes TraesCS4A02G116400, TraesCS3A02G260100 and TraesCSU02G105300 for qRT-PCR verification. The expression levels of three protein-coding genes increased in the 40 Gy, 60 Gy, and 80 Gy 12C ion beam treatment groups, and the results were consistent with the data obtained by proteomic analysis (Figure 6B).
[image: Figure 6]FIGURE 6 | PRM verification. (A) Water drop diagram of quantitative comparison results between TMT and PRM of 9 proteins. (B) qRT-PCR results of the corresponding genes of three differentially expressed proteins.
qRT-PCR Results of Differentially Expressed Protein Genes
We selected three differential proteins, including the disease pathogenesis-related protein (A0A341TFF2), chitinase (A0A023W4F1) and catalase (A0A1D6SEV8) corresponding genes TraesCS4A02G116400, TraesCS3A02G260100 and TraesCSU02G105300 for qRT-PCR verification. The expression levels of three protein-coding genes increased, and the results were consistent with the data obtained by proteomic analysis (Supplementary Figure 3).
DISCUSSION
Plant Defense Systems Are Fully Mobilized in Response to Radiation Treatment
Generally, when plants signalled abiotic stress, a complex, and efficient defense systems are activated, such as enzymatic antioxidants, non-enzymatic antioxidants, osmotic regulators, and glyoxalase systems (Kim et al., 2010). Stresses such as high salt, drought, UV radiation, heavy metals, and extreme temperatures will eventually led to oxidative stress, increasing the content of antioxidant enzymes, such as catalase (CAT), peroxidase (POD) in antioxidant defense mechanisms, superoxide dismutase (SOD) (Gill and Tuteja, 2010; Anjum et al., 2016). In our study, the proteomic data of the 12C, 7Li ion beam, and 60Co-γ-ray radiation-treated groups, the main antioxidant systems involved in the radiation response included the antioxidant GSH, glutamate metabolism, and the aldolase system (Figure 7). Glutamine synthase (GS) catalyzes the production of GSH from glutamylcysteine and glycine (Vaish et al., 2020). Glutathione peroxidase (GPX) and glutaredoxin (GRX) oxidize H2O2 and disulfide (R-S-S-R′) to (H-S-S-R), H2O, and GSSG in the presence of GSH (Xiao et al., 2019). The ascorbic acid-glutathione cycle (AsA-GSH) plays the role of “core of redox signaling” in stress-threatened plants and is involved in key processes of hydrogen peroxide metabolism, and its key enzymes include ascorbic acid peroxide (APX) and monodehydroascorbate reductase (MDHAR) (Foyer and Noctor, 2011; Tanaka et al., 2021). In response to radiation, wheat seedlings scavenge H2O2 and disulfide P (SSG) through GSH-dependent GPX, GRX, and GS, as well as the ascorbic acid-glutathione cycle. Glutamate (Glu) metabolism also plays an important role in stress resistance. Under the action of glutamate decarboxylase (GAD) and delta-1-pyrroline-5-carboxylic acid synthase (P5CS), glutamate is converted into antioxidants gamma-aminobutyric acid (GABA) and proline, respectively (Pro), maintains intracellular redox homeostasis (Kaur and Asthir, 2015). GABA in turn generate succinate under the action of succinate semialdehyde dehydrogenase (SSADH) and return to the TCA cycle (Hijaz et al., 2018). The expressions of GAD, P5CS, and SSADH were up-regulated after irradiation, indicating that multiple antioxidant pathways related to glutamate metabolism were also involved in the oxidative stress response induced by radiation. In addition, aldolase I (GLY I) and DJ-1 (GLY III) were differentially upregulated in the aldolase detoxification system. The GSH-dependent aldolase detoxification system consists of GLY I and GLY II, and the independent pathway is a shorter, metal-independent and GSH-independent pathway, which is acted by the DJ-1 protein (Banerjee et al., 2020). Methylglyoxal (MG), which is easy to form toxic substances, is converted into pyruvate by the acetylase system and enters the TCA cycle, and is reused (Bhowal et al., 2020).
[image: Figure 7]FIGURE 7 | Schematic diagram of differential proteins involved in heavy ion beam radiation stress response. MG: Methylglyoxal; HTA: Hemithioacetal; SLG: S-d-lactosylglutathione; SSADH: Succinic semialdehyde dehydrogenase; GAD: Glutamate decarboxylase; GS: Glutamine synthase; GRX: Glutaredoxin; GPX: Glutathione peroxidase; APX: Ascorbate peroxidase; MDHAR: Monodehydroascorbate reductase; GLYI: Acetalase I; DJ-1: GLY III; PYL: ABA receptor; SnRK2: SNF1-related protein kinase; PR-1: pathogenesis-related protein; MAKK5: Mitogen-activated protein kinase5; ChiB: chitinase; CAT: Catalase. Red indicates differentially up-regulated proteins.
We selected representative proteins related to antioxidant effects after radiation treatment for PRM verification, including the above-mentioned POD, CAT, GAD, APX, P5CS, SSADH, GLY I, and GLY III. The expression changes of these proteins were correlated with the quantitative results of TMT. consistent (Figure 6A).
The Effects of 12C and 7Li Ion Beam Irradiation Treatments on Photosynthesis and Photorespiration Were Different
Photosynthesis is the most basic and complex physiological process in plants, including photosynthetic pigments and photosystem, electron transport system, and CO2 reduction pathway, so damage caused by any level of stress may reduce the overall photosynthetic capacity of green plants (Ashraf and Harris, 2013). For example, UV-B irradiation reduces photosynthetic pigments in wheat and damages photosystem response center proteins (Zu et al., 2004; Qiu et al., 2007; Joshi et al., 2011; Henderson et al., 2013). Low-dose stress maintains a higher concentration of chlorophyll to tolerate the stress, while high-level stress inhibits the synthesis and accumulation of chlorophyll (Agathokleous et al., 2020). In addition, the photorespiration cycle interacts with photosynthesis and amino acid metabolism and also functions to remove toxic metabolites. Research showed that photorespiration is inhibited under high temperature, strong light, drought, and salt stress (Liu et al., 2019; Timm et al., 2019).
Our results showed that 12C ion beam and 60Co-γ-ray irradiation treatment resulted in down-regulated expression of proteins related to photosynthesis and photorespiration, while the 7Li ion beam irradiation treatment group had no difference. For example, photosystem I, photosystem II, and electron carriers are involved in the light reaction in photosynthesis, ribulose-1,5-bisphosphate carboxylase (Rubisco) involved in the dark reaction, and NADPH-pro, a key enzyme in chlorophyll synthesis. Chlorophyll oxidoreductase (POR) and protoporphyrinogen IX oxidase (PPO) were differentially downregulated. Glycerate-3-kinase (GLYK), ferredoxin-dependent glutamate synthase (GOGAT), CAT, glutamate: glyoxylate aminotransferase (GGT), glycine decarboxylase (GDC), and serine hydroxymethyltransferase (SHMT) were differentially downregulated. The light and dark reactions of photosynthesis and photorespiration were inhibited after 12C ion beam and 60Co-γ-ray irradiation treatment, which slowed down the growth rate of wheat seedlings, showing that the damage rate of seedling height and root length increased with the increase of treatment dose. Increased dose effect. However, 7Li ion beam treatment had less effect on photosynthesis and photorespiration, and the physiological damage effect on wheat seedling growth was different from 12C ion beam and 60Co-γ-ray irradiation.
The Synthesis of Biological Macromolecules Such as Proteins Is Affected by Radiation
The heat shock protein family consists of constitutive and stress-inducible types, including small HSP, HSP40, HSP70, HSP90, and their related molecular chaperones (Kampinga et al., 2009). HSP/chaperones are major components of multiple stress responses, of which HSP70 and HSP90 are involved in signal transduction, protein targeting, and degradation (Jacob et al., 2017). Under heat stress conditions, HSP70 interacts with phospholipase to regulate phospholipid metabolism, while HSP90.1 plays a role in plant heat tolerance by interacting with autophagy receptors to mediate degradation (Song et al., 2021; Thirumalaikumar et al., 2021). Our results indicated that multiple heat shock proteins were differentially expressed in the three radiation-treated groups, including HSP90, HSP70, HSP83, HSP26, smHSP, and smHSP24.1, smHSP23.6, smHSP23.2, smHSP 22.3, and HSP17.9. Therefore, protein quality control plays an important role in the recovery of wheat seedlings after radiation stress.
12C Ion Beam Radiation Treatment Induces Activation of the MAPK Signaling Pathway
The mitogen-activated protein kinase cascade (MAPK cascade) acts downstream of receptors/signal receptors to coordinate cellular responses for normal plant growth and development, immune responses, and responses to abiotic stresses (Meng and Zhang, 2013; Xu and Zhang, 2015; Zhang et al., 2018). MKK4/5 activates MPK3/6 in MAPK signaling (Cai et al., 2014; Zipfel, 2014; Langner and Gohre, 2016; Giese et al., 2018). In addition, UV-B, heat stress, etc. can activate MPK3/6 signaling, act on the downstream transcription factor EIN3 to induce the accumulation of chitinase or activate the expression of disease process-related proteins (PR) and CAT-encoding genes (Rakwal et al., 2004; Yoo et al., 2008; Bethke et al., 2009; An et al., 2010; An et al., 2021; Kumar et al., 2021). 12C ion beam radiation treatment resulted in differential upregulation of mitogen-activated protein kinase 3 (MPK3), mitogen-activated protein kinase 5 (MKK5), disease process-related protein (PR1), chitinase (ChiB) and CAT, while 7Li PR1 and ChiB were differentially downregulated in the ion beam treated group. We selected PR1 (TraesCS4A02G116400), ChiB (TraesCS3A02G260100) and CAT (TraesCSU02G105300) genes for qRT-PCR validation (Figure 6B). The expression of PR, ChiB, and CAT genes increased in the 12C ion beam irradiation group, suggesting that the accumulation of PR, ChiB and CAT proteins may be the result of transcriptional regulation (Figure 7).
In addition, SNF1-related protein kinase (SnRK2) is a positive regulator in the ABA signal transduction pathway, and the ABA receptor PYL activates SnRK2 by blocking the action of its inhibitor PP2C and regulates the expression of downstream ABA-related defense genes (Gong et al., 2020; Maszkowska et al., 2021). We also selected the SnRK2 protein involved in signal transduction for PRM verification, which was consistent with the quantitative results of TMT. Therefore, SnRK2 and ABA receptor (PYL) were differentially up-regulated in the 12C ion beam radiation treatment group, which may activate the ABA signal transduction, and initiate the stress response, induce related functional genes to make various adaptive responses to alleviate the cellular damage.
CONCLUSION
In conclusion, whether it is the phenotypic effect or the distribution and functional classification of differentially expressed proteins in the proteome, the physiological effect of 12C ion beam irradiation in the growth period of wheat seedlings is closer to that of 60Co-γ ray, but the effect is deeper at the same dose. However, the physiological effects of 7Li ion beam radiation treatment are quite different from the former, which are related to the different action principles of different types of heavy-ion beam radiation on organisms.
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The main function of histone protein is to provide support to the structure of chromosomes. It helps in binding a long thread of DNA into a more condensed shape to fit into the nucleus. From histone variants, histone H3 (HH3) plays a crucial role in plant growth and development. Characterization of histones has not been reported in Glycine max till now. The objective of this study was to characterize the HH3 gene family for molecular breeding of G. max. In this study, 17 HH3 members in G. max were identified by performing local BLASTp using HH3 members from Arabidopsis as a query. Phylogenetic analysis classified HH3 genes in seven clades. Sequence logo analysis among Arabidopsis thaliana, Oryza sativa, and Glycine max showed a higher level of similarity in amino acids. Furthermore, conserveness of G. max HH3 genes was also confirmed by Gene Structure Display. Ten paralogous gene pairs were identified in GmHH3 genes in the Glycine max genome by conducting collinearity analysis. G. max HH3 genes have experienced strong purifying selection pressure, with limited functional divergence originating from the segmental and whole-genome duplication, as evidenced by the Ka/Ks ratio. The KASP marker was developed for GmHH3-3 gene. Genotyping was performed on 46 G. max genotypes. This differentiation was based upon the presence of either GmHH3-3-C or GmHH3-3-T allele in the CDS region. The results showed that G. max accessions containing the GmHH3-3-T allele at respective locus showed higher thousand seed weight than that of those accessions that contain the GmHH3-3-C allele. This research provides the basic information to further decipher the function of HH3 in soybean.
Keywords: histone H3, marker-assisted breeding, KASP, drought, Glycine max
INTRODUCTION
Histone proteins provide structural support to chromosomes and assist in binding long strands of DNA into a more compressed shape to reside in the nucleus. Some of the histone variants are associated with gene expression regulation. These DNA folding proteins are present in the chromosomes of all studied eukaryotic cells. Histones are highly conserved and are categorized into five extensive classes named HH1/H5, HH2A, HH2B, HH3, and HH4. On the basis of gene expression analysis, histone genes are classified into three basic classes, replication-dependent histones, replication-independent histones, and tissue-specific histones (Elsaesser, Goldberg, and Allis, 2010). The replication-dependent histones express highly just before the initiation of S-phase and are suppressed at the termination of DNA replication, while during the whole cell cycle, the replication-independent histone variants continuously express themselves; hence, they are also named as replacement histones (Filipescu, Müller, and Almouzni, 2014).
Mainly, all histone proteins are involved in the folding of chromosomes, but HH3 is associated with the chromosome structure (Bhasin, Reinherz, and Reche, 2006). In the case of histone H3, three different strains of HH3 proteins are found in both animals and plants: H3.1, H3.3, and the centromere-specific CENP-A (CENH3) (Stroud et al., 2012). H3.1 and H3.3 have the same length and amino acid sequence, while the CenH3 variants differ from these two by a large and extensive tail at the N-terminal (Malik and Henikoff, 2003).
The role of H3 protein in transcription has been demonstrated by genome-wide profiling of histone H3.3 variants in mammalian Drosophila (Deal, Henikoff, and Henikoff, 2010; Goldberg et al., 2011). Enrichment of H3.3 in pericentric heterochromatin and telomers has also been explored by other research (Wong et al., 2010). Histone H3 protein plays its peculiar role in distinct functions involving gene silencing, gene inactivation, genomic instability, and sex chromosome inactivation (Celeste et al., 2003; Fernandez-Capetillo et al., 2003). Genome-wide identification in Arabidopsis resulted in the identification of a male gamete–specific gene named AtMGH3 (Okada et al., 2005). Similarly, genome-wide analysis of two HH3 variants HH3.1 and HH3.3 highlighted similar genomic localization schemes with certain unique attributes in Arabidopsis (Stroud et al., 2012). H3.3 has been shown to be highly correlated with transcriptional activity in the transcribed regions, although H3.3 at promoters is often unrelated to transcription. (Shu et al., 2014). Genome-wide characterization of HH3 in cotton reported that GhHH3 genes were most appropriately expressed in the tissues of the ovule (Qanmber et al., 2019a). At present, no comprehensive report on the characterization of the HH3 gene family in soybean is available. We believe that this gene family has the potential to be used in the molecular breeding of soybean.
Soybean (G. max) is a leguminous crop with prime economic importance. Several studies reported the phenotypic differences between G. max and G. soja (ancestor of G. max), but both the species have the same number of chromosomes with normal meiotic chromosomal pairing and are cross-compatible.
In accordance with the importance of soybean, the present study aims for genome-wide characterization of the histone H3 gene family in G. max. This gene family has been broadly characterized in Gossypium hirsutum (Du et al., 2006; Qanmber et al., 2019a), Arabidopsis thaliana (Okada et al., 2005; Stroud et al., 2012), and Oryza sativa (Du et al., 2006; Hu and Lai, 2015), but currently there is no extensive and detailed study reporting the genome-wide characterization of HH3 genes in G. max. The whole-genome sequencing of soybean in the past decade (Wollmann et al., 2012; Qi et al., 2014) has opened the way to study various gene families in soybean by using modern genome-wide approaches. The availability of pan-genome is expected to pave the way for molecular breeding in soybean. Although quantitative trait loci and SNP-based markers have been reported (Seo et al., 2022), continuous searching for genes underpinning yield and its director contributing traits should continue for sustainable development in the research sector.
In the current study, we identified HH3 gene members in G. max. Gene structure, gene duplication via collinearity analysis, sequence logo analysis, chromosome duplication, and domain architecture were predicted by using different structural and functional approaches. Evolutionary analysis was also performed by constructing a phylogenetic tree. Tissue-specific expression analysis was also checked, and a heat map was constructed based on the fragments per kilobase of transcript per million mapped reads (FPKM) values. An SNP-based high-throughput KASP molecular marker for the candidate gene GmHH3-3 was also developed by exploring the pan-genome of soybean.
MATERIALS AND METHODS
Sequence Identification
AtHH3 protein sequences were used as a query to retrieve the sequences of HH3 from G. max. HH3 protein sequences were also extracted from other species by using the respective databases for Gossypium raimondii (V-2.0), Solanum tuberosum (V-10), Theobroma cacao (V-10), Oryza sativa (V-10), Zea mays (V-10), Chlamydomonas reinhardtii (V-5.5), Selaginella moellendorffii (V-1.0), Ananas comosus (V-3.0) Vitis vinifera (V-10), Chlamydomonas reinhardtii (V-5.5), and Cicer arietinum (V-2.0). Local BLASTp search was performed to extract the desired sequences. Databases for all organisms were extracted from Phytozome v11 (https://phytozome.jgi. doe.gov/pz/portal.html). For further confirmation of the retrieved HH3 protein sequences, bioinformatics techniques including InterProScan 63.0 (Jones et al., 2014) (http://www.ebi.ac.uk/InterProScan/) and SMART (Letunic, Doerks, and Bork, 2015) (http://smart.embl-heidelberg.de/) were used. Biophysical properties such as isoelectric point, protein length, and molecular weight were computed by using the ExPASy ProtParam tool (https://web.expasy.org/protparam/). Sub-cellular localization was predicted by using Softberry (http://www.softberry.com/).
Conserved Sequence and Phylogenetic Analysis
In order to perform phylogenetic analyses, complete protein sequences of HH3 genes of the aforementioned species were extracted from the Phytozome (https://phytozome.jgi. doe. gov/pz/portal.html). For the construction of a phylogenetic tree, ClustalW program from MEGA-X (Kumar et al., 2018) was used to perform sequence alignment, and then the tree was generated using the maximum likelihood method. Amino acid sequences of A. thaliana, O. sativa, and G. max were aligned by multiple sequence alignment using Clustal X 2.0 (http://www.clustal.org/clustal2/) to create a sequence. Logos were generated by using the online tool WEBLOG (Crooks et al., 2004).
Domain Architecture, Gene Structure, and Cis-element Analysis
To perform domain architecture analyses, the full-length protein sequences of GmHH3 genes were subjected to MEME software (Crooks et al., 2004) (https://meme-suite.org/meme/tools/meme), as described in previous studies (Li et al., 2019). For gene structure analyses, genomic and conserved DNA sequences were downloaded from the Phytozome and Newick file obtained by aligning protein sequences in MEGA-X using the CLUSTAL-W approach. This Newick file genomic and CDS sequences were subjected to GSDS 2.0 (Hu et al., 2015). The PlantCARE database (Li et al., 2019) was used to analyze cis-elements up to the 2 kb promoter region, and anticipated cis-elements were categorized in accordance with their functional divergence, as stated previously (Pandey et al., 2016).
Chromosomal Localizations, Ka/Ks Ratio, and Collinearity Analysis
Chromosomal mapping of GmHH3 genes was identified first by the soybean genome annotation file (https://www.soybase.org/genomeannotation/), and then we extracted gff3-files. Paralogous gene pair data were obtained from collinearity analysis as described earlier (Yang et al., 2017), and then a figure was created by using CIRCOS (Krzywinski et al., 2009) to express the outcomes of synteny analysis. Duplicated gene pair sequences were aligned by using Clustal X 2.0, and synonymous and non-synonymous (Ks, Ka) and divergence level ratios were measured. Finally, Ka and Ks values were computed using the CODEML program by using the PAML package (Yang, 2007) and used to determine dispersed, segmental, and/or whole-genome duplication in soybean for GmHH3.
Tissue Specific Expression Pattern of GmHH3
To investigate the gene expression pattern of GmHH3 in different tissues at different growth stages, the FPKM values were extracted from the ePlant/soybase database (https://bar.utoronto.ca/eplant_soybean/). After taking log10 of each FPKM value, a heat map was constructed using TB-Tools (Chen et al., 2003) to express the transcript level of GmHH3 genes based on (FPKM) values.
Isolation of Candidate GmHH3 Genes From Soybean PAN-Genome
The PAN-genome was used to identify polymorphic sites in GmHH3s. For this, the whole-genome sequences (WGSs) of three cultivars of Glycine max (Willliams-82 (Wm82. a4), Lee (Lee.a1), and Zhonghuang-13 (ZH13. a1) were downloaded from SoyBase (https://soybase.org/). Local BLAST was used to identify GmHH3 sequences in the abovementioned three cultivars. The SeqMan program (Swindell, 1997) in the DNAstar Lasergene software package (Burland, 2000) was used for assembling of the genes to obtain the consensus sequence of every gene.
Phenotyping and Genotyping
A set of 46 G. max accessions was collected from the gene bank of the MNS University of Agriculture, Multan, (MNSUAM). These accessions were planted in two different environments, that is, under “well water” and “water limited” conditions following an augmented design (check = UAM-SB-200) at the research farm of MNSUAM, Spring 2021. The “well water” experimental units were irrigated after an interval of ∼15 days, whereas for “water limited” experimental units, the soybean accessions were subjected to drought stress conditions, especially at the flowering stage. Each accession was planted on two beds on both sides. The dimensions of each bed were length × width = 15 × 2.5 ft. Seeds were planted with plant-to-plant distance of 1 ft with two seeds at one place, thinning was practiced to eradicate the unhealthy one, and healthy plants were retained. Phenotypic data were collected from six plants of each soybean accession for plant height (inches), number of pods plant−1, pod length (cm), number of seeds pod−1, seed weight plant−1 (g), thousand seed weight (g), seed length (mm), seed width (mm), and seed thickness (mm) from both water regime conditions.
The genomic DNA of the studied soybean germplasm was extracted from young leaves (one leaf per soybean accession) following the CTAB method (Aboul-Maaty and Oraby, 2019). DNA quality was initially checked by using a NANO-Drop (K5800C Micro-Spectrophotometer) followed by running the extracted DNA on 1% agarose gel. Out of 17 GmHH3s, only one gene (GmHH3-3) showed polymorphic site. CDS sequences of GmHH3-3 along with SNP sites from three cultivars are given in (Supplementary Table 1). A typical KASP assay (http://www.lgcgenomics.com) was designed on the SNP present in the C-terminal region of the gene. From the PAN-genome, we came to know that Williams-82 possessed the GmHH3-3-T allele at 165 nt, while LEE and Zhonghuang-13 contained the GmHH3-3-C allele at 165 nt. Hence, a KASP assay on the SNP (at 165 nt C/T) was developed. Two allele-specific reverse primers and one common forward primer were designed to perform allele calling (Supplementary Table 1).
One reverse complement allele-specific primer was designed for “T” base (detected by FAM), and another reverse complement allele-specific primer was designed for “C” base (detected by HEX). DNA of some accessions (Williams-82 and Lee), in which the target gene had been sequenced, were initially selected to counter-check the reliability of molecular markers. The primer mixture contained 12 µl of each tailed primer (100 µM), 30 µl common primer (100 µM), and 46 µl double distilled water. A KASP assay was performed in 96-well PCR plates and set up ∼5 µl reaction mixture. The recipe of the mixture for 1X is given in (Supplementary Table 2). PCR conditions were as follows: hot start at 95°C for 15 minutes, followed by 10 touch-down cycles (95°C for 20 s; touch-down at 61°C initially and decreasing by 0.6°C cycle-1 for 25 s), followed by 32 more cycles of annealing (95°C for 15 s, 57°C for 1 min). Genotyping (PCR) was performed by using the CFX Connect Real-Time PCR detection system (Bio-Rad® laboratories Inc. United States). The PCR plate was also read by the QuantStudio 7 Flex Real-Time PCR system.
Association Analyses
Microsoft Excel 2019 was used to perform descriptive statistics and variance estimations. P 0.05 was used to determine whether a marker-trait correlation was statistically significant. The effects of each allele of GmHH3-3 at 165 nt from CDS were also analyzed by using Student’s t test at p < 0.05.
RESULTS
Sequence Identification
A total of 139 HH3 proteins among 12 species were identified. Out of the studied 139 HH3 members, 14 are from Arabidopsis (6-H3.1, 7-H3.3, and 1-centromeric variant); 13 members from G. raimondii (8-H3.1 and 5-H3.3 variants); 17 G. max members; 13 O. sativa members; nine T. cacao members; 14 S. tuberosum members, 12 C. arietinum members, 16 Z. mays members; 10 A. comosus members, 11 C. reinhardtii members, six S. melanodorffii members, and four V. vinifera members. We found that almost all selected plants have a minimum of 4-HH3 genes, and from these G. max has the most 17) HH3 genes, while V. vinifera has only four, demonstrating that HH3 genes have undergone a bigger-scale expansion. (Supplementary Table 3). As our main focus was on G. max, so other biophysical properties were also determined including locus ID, coding sequence (CDS), gene length, molecular weight (MW), protein length, isoelectric point (pI), subcellular localization, and chromosome position (Supplementary Table 4). GmHH3-7 had the maximum length of coding region (798 bp) followed by GmHH3-15 which had 561 bp of coding sequence, while all other GmHH3 members had coding sequence lengths of 411bp. However, it was predicted that all the GmHH3 genes are localized in the nucleus.
Sequence Alignment and Phylogenetic Analysis
Phylostatum analysis was performed, and it showed that HH3 genes were present in primitive plant ancestry as these genes are present in C. reinhardti, an older plant; lineage. HH3 genes are located in monocots, dicots, lycophytes, chlorophytes, and angiosperms showing the large-scale expansion of HH3 genes across the plant kingdom (Figure 1A). An evolutionary tree was constructed to estimate the deeper relation of HH3 genes among the studied organisms including dicotyledons (A. thaliana, G. raimondii, G. max, S. tuberosum, V. vinifera T. cacao, and C. arietinum), monocotyledons (O. sativa and, Z. mays), C. reinhardtii (chlorophyte), S. moellendorffii (lycophyte), and A. comosus (angiosperm). The prefixes At, Gr, Gm, St, Tc, Vv, Ca, Zm, Cr, Sm, Os, and Ac were used in place of the names of HH3 genes from G. max, A. thaliana, G. raimondii, S. tuberosum, T, cacao, V. vinifera, C. arietinum, O. sativa, Z. mays, C. reinhardtii, S. melaonodorfii, and A. comosus, respectively.
[image: Figure 1]FIGURE 1 | Phylogenetic analyses of the HH3 gene in different organisms. (A) Phylostratum analysis of HH3 genes. (B) Phylogenetic tree divided members of HH3 genes in seven clades; green color shows clade-a, yellow colors shows clade-b, maroon color shows clade-c, brown color shows clade-d, and blue color shows clade-e.
The evolutionary tree (Figure 1B) shows that all 139 genes from the studied organisms were naturally classified into seven Clades, that is, Clade a-g. Clade-a contains most of the HH3 genes (53 genes) followed by clade-d (21 genes), clade-e and clade-f (15 genes), clade-c (14 genes), clade-b (13 genes), and clade-g (9 genes). HH3 clade-a contains genes from all the studied species with maximum members showing that the HH3 gene family is highly conserved among all species. Clade-b, d, and f contain members from O. sativa, G. max, A. thaliana, G. raimondii, Z. mays, T. cacao, A. comosus, C, arietinum, and S. tuberosum. Clade-c contains fourteen members from eight species excluding members from T. cacao, C. reinhardtii, V. vinifera, and S. moellendorffii. Clade-e contains 15 members from S. tuberosum, G. raimondii, Z. mays, A. thaliana, T. cacao, O. sativa, and G. max; Clade-g contains nine members from A. thaliana, Z. mays, C. reinhardtii, S. moellendorffii, O. sativa, and C. arietinum. All members from clade-g have evolved separately. All clades from a–g contain members from both monocots and dicots showing that the HH3 gene family evolved before monocot and dicot separation. Phylogenetic analysis in this study showed gene enlargement in G. max. Moreover, orthologous gene pairs extracted from similar branch nodes were noticed in almost all studied species. During the evolutionary process, GmHH3 genes have undergone duplication events, which resulted in the paralogous gene pair’s formation, although this duplication was irregular in all clades and different studied organisms.
Conserved Amino Acid Residue Analysis
To explore the amino acid residues (AARs), conservation multiple sequence alignment was conducted to perceive the homologous domain sequence in GmHH3 genes. This alignment was conducted in model plants including A. thaliana, O. sativa, and in our studied crop G. max. Results showed high similarity ratio in logos of all three species. For example, few AARs including M [1], A [2], R [3], Q [4], A [6], R [7], P [8], P [10], P [13], G [14], T [15], V [16], A [17], L [18], R [19], I [21], R [22], K [23], Y [24], Q [25], K [26], T [28], R [29], K [30], L [31], P [32], Q [33], A [36], V [37], A [38], L [39], Q [40], A [41], E [42], F [44], E [45], D [46], T [47], L [48], C [49], A [50], H [51], A [52], K [53], 4 [54], T [56], I [57], M [58], P [59], K [60], Q [62], L [63], and A [64] were found to be highly conserved, showing that HH3 protein is having a highly conserved pattern of distribution without any discrimination of the N or C terminal (Figure 2).
[image: Figure 2]FIGURE 2 | Sequence logos of conserved amino acid residues generated for three species.
Chromosomal Localizations, Ka/Ks Ratio, and Collinearity Analysis
The GFF3 files were utilized to map studied GmHH3 genes onto their corresponding chromosomes. Paralogous gene pairs were identified in G. max in order to inspect the locus relationships among GmHH3 genes, (Figure 3). The results of synteny analysis confirmed that most of the gene loci are significantly conserved. A total of 10 paralogous gene pairs were recognized, of which all studied GmHH3 genes except GmHH3-1, GmHH3-2, GmHH3-8, and GmHH3-16 had undergone whole-genome or segmental duplication (WGD). GmHH3-1 and GmHH3-2 showed dispersed duplication, while GmHH3-8 and GmHH3-16 showed tandem duplication (Supplementary Table 5). Non-functionalization, neo-functionalization, and sub-functionalization are the functional divergences in genes that can result during the process of evolution. The extent and nature of selection can be determined by calculating Ka/Ks values of these duplicated genes. In the case of neutral selection, the Ka/Ks value is always equal to 1; for positive selection, the Ka/Ks value is always greater than 1, while duplicated genes having Ka/Ks ratio less than 1 express the ability for purifying selection.
[image: Figure 3]FIGURE 3 | Gene duplication analyses of GmHH3. Red lines show the duplication of genes on different chromosomes.
The results of our study showed that all GmHH3 genes showed Ka/Ks values less than 1. We can conclude that GmHH3 genes have experienced strong purifying selection pressure with a little functional deviation because of segmental and whole-genome duplication.
Domain Architecture, Gene Structure, and Cis-element Analysis
The plantcare database was used to explore cis-elements present in 2 kb upstream of GmHH3 genes. Results showed that all GmHH3 genes carry various motifs for growth and development, light responses, and for several stress responses. For growth and development, important motifs are GCN-4 motif, TATA box, CAAT box, and circadian. GA-motif, GATA-motif, and Box-4 are for light responses. ABRE, AuxRR, MYB, and WUN–motif are for several stress responses. Various cis-elements performing their functions in different responses are given (Supplementary Table 6).
The evolution of a plant species is always associated with its gene structure. In order to explore the evolutionary relationship of all GmHH3, the gene structure along with its phylogenetic tree was constructed (Figure 4). Out of 17 GmHH3 members, 12 members have no introns and have only one exon. The remaining genes showed different exon/intron patterns (Figure 4). Moreover, all GmHH3 genes showed a significantly similar motif pattern as all the genes except GmHH3-15 and GmHH3-7 have the same motifs. Overall, all GmHH3 genes displayed a highly conserved pattern of motif distribution and gene structure (Figure 5).
[image: Figure 4]FIGURE 4 | Exon/intron structure display of GmHH3. Pink box shows CDS regions, green box shows upstream/downstream regions, and black line shows introns.
[image: Figure 5]FIGURE 5 | Conserved motifs in GmHH3.
Expression Profiling of GmHH3 Genes in Different Tissues
The biological function of a gene can be predicted by its expression. So, the expression of GmHH3 genes was inspected in different soybean tissues based on FPKM values. To examine the expression of GmHH3 genes in enormous plant tissues at different growth stages, the transcript level values were obtained from the ePlant/soybase database (https://bar.utoronto.ca/eplant_soybean/), and a heat map was created for different tissues in all 17 GmHH3 genes (Figure 6). We observed that all GmHH3 genes (except GmHH3-7, GmHH3-8, GmHH3-14, and GmHH3-15) were widely expressed in young leaves, and all genes except these four genes show their expression in all tissues. Data were recorded on the following parameters including young leaf, flower, pod (1 cm), pod shell 10 DAF (Days after flowering), nodule, root, pod shell (14 DAF), seed (10 DAF), and seed (25 DAF) explaining that GmHH3 genes are involved in enormous biological functions. From all GmHH3 genes, GmHH3-16 is showing higher expression than others. All of the genes with identical expression patterns were discovered to be clustered together.
[image: Figure 6]FIGURE 6 | Tissue-specific expression profiling based on FPKM values. DAF, days after fertilization.
Sequence Polymorphism Assay and Development of the KASP Marker for GmHH3-3
The soybean PAN-genome was used to explore the polymorphic sites for all GmHH3 genes. Except for GmHH3-3, no gene showed sequence polymorphism and hence were excluded from further marker-trait association analyses. For GmHH3-3, the SNP at 165 nt (T/C) was identified in exon with no change in amino acid. The scatter plot for the developed KASP assay displays the clustering of soybean accessions on X-HEX and Y-FAM axes. Accessions colored blue contain the GmHH3-3-T allele, whereas accessions colored red have the GmHH3-3-C allele (Figure 7).
[image: Figure 7]FIGURE 7 | Allelic discrimination plot. KASP assay of GmHH3-3 along X- and Y-axes. Blue dots represent accessions carrying the FAM type allele, and red dots show accessions having the HEX-type allele. Black box shows the non-template control.
Association Analysis of GmHH3-3 Allelic Variations and Morphological Traits
For GmHH3-3, 41.3% of the studied germplasm possessed GmHH3-3-T, while 58.6% possessed GmHH3-3-C. Association analysis was performed on all the aforementioned traits in both growing conditions, and non-significant statistical differences were recorded in all studied traits except for thousand seed weight. Association analysis exhibited that at unique field sites, the allele T of GmHH3-3 was linked with higher thousand seed weight under both water regime conditions (Figure 8 A, B) indicating that the GmHH3-3-T allele has a superiority over GmHH3-3-C and hence can be used for future soybean breeding programs.
[image: Figure 8]FIGURE 8 | Phenotypic comparison of two GmHH3-3 allelic variations in two environments. (A) Phenotypic comparison under well-watered and (B) under water-limited conditions.
DISCUSSION
The biological function of HH3 genes and histone modifications in various species has already been investigated in a number of publications. (Bhasin, Reinherz and Reche, 2006; Elsaesser, Goldberg and Allis, 2010; Wollmann et al., 2012; Hu and Lai, 2015). Till now, no comprehensive assessment of G. max HH3 genes has been carried out. We presented a detailed analysis of HH3 genes in G. max in order to investigate the role of the HH3 gene in G. max and establish a platform for future research.
In our study, we performed evolutionary analysis of 12 different organisms including monocotyledons dicotyledons, chlorophytes, lycophytes, and angiosperms. The HH3 gene family’s phylostratum analysis revealed the earliest plant lineage, with HH3 genes found in C. reinhardtii (chlorophyte), showing that HH3 genes came from the phylostratum of early land plants and that probable orthologous genes of HH3 are found across the plant kingdom. All HH3 genes can be categorized into seven primary clades, according to phylogenetic analysis. This analysis showed that all HH3 genes are highly conserved and have evolved before the differentiation of monocots and dicots. The existence of HH3 genes in each organism, with 17 HH3 genes in G. max and just four genes in V. vinifera, revealed that HH3 genes are evolutionarily conserved and have expanded widely in plants.
Multiple sequence alignment was utilized to construct sequence logos of conserved AARs for dicots (A. thaliana and G. max) and monocots (O. sativa). Furthermore, regardless of the N or C terminus, the sequence logos of all three identified species were largely conserved. Previous research has found that histone proteins are substantially conserved among studied plant species, despite the discovery of a number of variants depending on amino acid differences in their sequences. These variations could be as small as a few amino acids or as vast as a major percentage of a protein. The histone variation H3 has been linked to gene transcription in a favorable way. HH3 enrichment was previously identified toward promoters and transcription termination sites in a genome-wide investigation (Stroud et al., 2012; Wollmann et al., 2012; Shu et al., 2014). In sequence logo analysis, the AARs such as M, A, R, Q, R, P, P, G, T, V, A, L, R, I, R, K, Y, Q, K, T, R, K, L, P, Q, A, V, A, and others were highly conserved.
All the GmHH3 genes displayed a nearly identical pattern of cis-elements linked to soybean growth and development, as well as light and stress responses, in their promoter sequences. Several studies have shown that light has a significant impact on plant development. Cis-elements such as heat stress response elements (Díaz-Martín et al., 2005), abscisic acid (ABA) responsive elements (Narusaka et al., 2003), and dehydration-response elements (Song et al., 2005) have been identified in different organisms. More cis-elements such as ARE, CGTCA-motif, GARE-motif, and TGACG-motif were identified for different stress responses (Singh, Foley, and Oñate-Sánchez, 2002), Box 4, Box I, Box II, G-box, and GA-motif were identified for light responses. These elements are found in a number of GmHH3 genes, with typical traits confirming their predicted activities in growth, development, hormonal, and abiotic stresses.
Except for a few, all GmHH3 genes had very comparable gene structures and protein motif distributions, specifying that GmHH3 genes were evolutionarily conserved. Introns were said to have an integral part in the evolution of many plant species based on the gene structure (Roy and Gilbert, 2006). It is well-known that there were more introns during the early growth phase, which experienced decline over time (Roy and Penny, 2007). These research studies claim that more advanced species’ genomes have fewer introns (Qanmber et al., 2019b). The creation of novel functions is aided by the presence of more or larger introns. Tandem duplications result in a rise in introns, which leads to the emergence of additional genes. As two GmHH3 genes experience tandem duplication so that these genes have three or four introns. From 17 GmHH3 genes, 12 genes have no introns. These findings were in line with those of past studies. The GmHH3 gene family is relatively old, with introns lost over a period of time, showing the evolutionarily conserved activities of this gene family soybean growth and development, based on the lower number of introns.
Crop breeding merely on a morphological basis is comparatively ineffective (Ur Rehman et al., 2019), and effective selection using the SNP-based molecular markers will definitely put the breeding process on the fast-track (Rasheed et al., 2017). Genomic studies in soybean were dependent to some extent on comparative genomics approaches with other members of model organisms. At present, the release of soybean PAN-genome has revolutionized the approach and paved a smooth way for genomic studies in soybean. The absence of polymorphism in all the GmHH3 genes except GmHH3-3 is possibly due to allele fixation during evolution or domestication. The other probable reason might be the investigation of a smaller number of soybean accessions for the identification of polymorphic sites.
Since 1923, the soybean genetic gain is estimated to be ∼0.34 bu/ac (Rincker et al., 2014). This genetic gain has largely been achieved by breeding for grain yield. Advanced molecular breeding tools can certainly be helpful in the improvement of genetic gain. Fast forward genetic gain can be achieved by coupling the marker-assisted selection with a lower generation turnaround time period. In this study, GmHH3-3-T showed a significant association with thousand grain weight in both environments, suggesting that the use of this allele could be instrumental for the higher thousand grain weight selection. Gel-free KASP assays (high-throughput) can considerably fast-track soybean breeding programs. Application of the SNP-based functional markers will be more efficient for plant yield improvement and has been recommended by different researchers (Semagn et al., 2014; Rasheed et al., 2016). The gene identified here and the molecular marker developed here to identify the allelic variation might be helpful for marker-assisted breeding for higher thousand grain weight which can be utilized alone or in combination with the other reported functional markers.
CONCLUSION
We identified 139 HH3 genes in 12 different organisms. Phylogenetic analyses, gene structure, and motif analysis revealed the conserveness of HH3 genes across the species. Cis-element analysis predicted the role of HH3 genes in soybean growth and development and as well as in light response and various stress responses. Collinearity analysis indicated that the soybean HH3 gene family had undergone WGD, segmental, and tandem duplication. Marker trait association analysis confirmed that GmHH3-3-T had superiority over GmHH3-3-C regarding thousand grain weight.
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Jatropha curcas is a tropical species that has been recognized as a promising biodiesel plant. During 2018–2021, researchers at Forest College and Research Institute, Mettupalayam, elicited information on Jatropha’s biochemical characteristics, growth performance, variability, and association studies for biometric variables using five backcross (BC4F1) hybrid clones of Jatropha with a control variety TNMC 7. In terms of seed yield, two hybrid clones, CJH 13 (1,218.60 g) and CJH 12 (1,034.40 g), outperformed the other hybrid clones. The seed oil content was higher in CJH 5 (34.19%). The seed oil content had moderate PCV (16.49%) and GCV (16.39%) values, as well as high heritability (99%) and genetic advance (33.56%) as a percentage of the mean. The number of fruits per bunch (0.845 and 0.850) and the number of bunches per branch (0.771 and 0.788) had significant positive phenotypic and genotypic correlations with seed yield, respectively. The iodine numbers, cetane numbers, and saponification values of all hybrid clones were acceptable and satisfactory and were in good compliance with Indian and international biodiesel standards.
Keywords: Jatropha, genetic analysis, correlation, heritability, biochemical analysis
INTRODUCTION
Automobile pollution, which causes climate change, has greatly accelerated environmental degradation. Numerous studies conducted in this area have focused on alternative fuels that can increase efficiency and reduce emissions (Seela et al., 2019). According to the British Petroleum statistical review report, nearly 80% of the world’s energy needs are met by fossil fuels. Between 2015 and 2019, fossil fuels accounted for an average of 85.16% of primary energy consumption; their consumption could reach 143 and 191 MT by 2025 and 2030, respectively, based on an increase of 6% per annum (Sayyed et al., 2022). India is a rapidly growing country with a population predicted to outgrow the rest of the world. India, as a country with limited fossil fuel sources, relies on imports of fossil fuels, the most common of which is crude oil. While rising fuel consumption has prompted a thorough assessment of alternate energy sources, fossil fuel reserves are being depleted (Witze, 2007). The government of India approved a National Policy on Biofuels in 2009, which established a non-mandatory target of 20% blending of biodiesel by 2017 (Bandyopadhay, 2015). India imports 40–50% of its edible oil for human use, making the utilization of edible oil resources for biofuel generation unfeasible. Under such circumstances, it is imperative to seek alternate, non-edible sources for biodiesel production.
In India, more than 100 species of tree-borne oilseeds have been identified as sources of biodiesel. Among these, the tropical physic nut tree (Jatropha curcas), a non-edible oil-bearing tree, has gained the attention of several development agencies and the Planning Commission of India. The genus Jatropha belongs to the family Euphorbiaceae, which originated in Central and South America and is distributed across tropical and subtropical regions of Africa and America. J. curcas is widely considered as a potential source for biodiesel production because of its short gestational period, small canopy suitable for high-density planting, convenience of seed collection, high seed oil content, ease of propagation through seeds and cuttings, drought hardiness, long productive period (40 years), rapid growth, resistance to animal grazing, productivity in both good and degraded soils, and widespread adaptability (Basha and Sujatha, 2007). The seeds are high in protein and are a key source of oil. The protein content of J. curcas seed meal has been shown to compare favorably to soybean meal, with a decent balance of essential amino acids (excluding lysine) (Basha and Sujatha, 2007).
J. curcas is valuable to consider because it does not compete with the food industry. The required amount of production is attainable, given that J. curcas has a productive life of roughly 50 years and reaches its peak productivity after only 4–5 years (Divakara et al., 2012). Additionally, this species has demonstrated the capacity to adapt to various agroclimatic situations, including infertile soils, making it appropriate for growing in damaged soils while guarding against erosion. These traits make the cultivation of J. curcas appropriate for conventional agriculture in marginal lands, where it could raise farmers’ socioeconomic standing and quality of life, especially in developing nations (Bekalu and Fekad, 2020).
Jatropha breeding programs are limited in comparison to other oil seed species such as soybean, cotton, peanut, sunflower, and castor, and there is inadequate research that precisely and scientifically authenticates the effect of field activity on the seed yield of J. curcas (Che Hamzah et al., 2020). Interspecific hybridization, in combination with backcross breeding, is a powerful tool for transferring a desired gene into a cultivar and can be used with a variety of plants. Interspecific hybridization with sexually compatible species facilitates the introgression of desirable characters, such as high oil content, oil quality, resistance to insect pests and diseases, reduced toxicity, and improved growth in problematic sites (Sujatha, 2020). Hence, Forest College and Research Institute (FC&RI) initiated an interspecific hybridization program using J. curcas as the female recipient; other Jatropha species, including Jatropha integerrima, Jatropha podagrica, Jatropha villosa, Jatropha tanjorensis, Jatropha gossypifolia, Jatropha glandulifera, Jatropha multifeda, and Jatropha maheswari, were used as pollen donors, resulting in novel hybrids with high production potential, root rot resistance, and frost tolerance. Among the several crossings, J. curcas and J. integerrima generated successful hybrids with higher seed sets, whereas others failed to produce seeds due to crossability barriers in the pre-zygotic or post-zygotic states (Parthiban et al., 2011). The F1 progeny of successful hybrids exhibited robust growth but had small fruit resembling J. integerrima. The resulting successful hybrid was backcrossed with J. curcas to produce offspring with distinct fruit, yield, and oil characteristics (Parthiban et al., 2009).
The most reliable and efficient method of evaluating genetic diversity is to study morphometric features in field trials. Because analyzed genetic differences are the best input for breeding and conservation efforts, field trial data are crucial (Eriksson et al., 1995). Since trees have high levels of variability, tree-improvement programs require comprehensive studies of variation. In Jatropha, such extensive research on backcross hybrids is lacking. Any crop-improvement program requires knowledge of existing genetic variability and of the relationships between various yield-related factors. In Jatropha, research on genetic variability and heritability in terms of growth and yield qualities is still in its early stages. Most traits of economic importance are complexly inherited, and the component characters show different types of associations with other traits. As a result, it is worthwhile to investigate the relationship between yield and yield related attributes, which indicated the yield contributing characters, for which systematic investigations in backcross Jatropha hybrids are insufficient.
Jatropha seed is higher in protein, carbohydrate, and lipid content than other seeds, and it is well known for its high fuel value. It has a 40–50 percent oil content. The chemical properties of oil (viz., acid number, free fatty acid content, iodine number, saponification value, and cetane number) directly influence the quality of oil for biodiesel production. However, such reports are inadequate in backcross hybrid clones of Jatropha. Against this backdrop, the current study investigated aspects of backcross (BC4F1) hybrid clones of Jatropha. It aimed 1) to evaluate BC4F1 clones for growth and yield attributes through clonal tests, 2) to analyze the genetic parameters and study the associations among the growth and yield attributes, and 3) to determine the oil content and oil quality of the promising clones.
MATERIALS AND METHODS
The genus Jatropha belongs to the family Euphorbiaceae and contains 176 species, of which J. curcas L.—variously denoted as physic nut, ratanjot, or Barbados nut—is assumed to be the original form, from which other Jatropha species have evolved with variations in vegetative and reproductive characters (Dehgan and Webster, 1978). The plant is native to South America and Africa but was later distributed to other countries around the world by the Portuguese colonizers (Gübitz et al., 1999). Today, it is found in almost all the tropical and subtropical regions of the world. The botanist Carl Von Linne first classified the plant in 1753, giving it the botanical name “Jatropha curcas” from the Greek word “Jatros” (meaning a “Doctor”) and “trophe” (meaning “nutrition”). The plant is considered to be a shrub or small tree, with a height generally up to 5 m. The lifespan of the plant is up to 50 years (Azam et al., 2005). The shrub produces fruits in winter, when it is leafless, and it may produce several crops during the year if the soil moisture is good and temperatures are acceptable. Flowering in J. curcas depends on its locality and agroclimatic conditions. In Tamilnadu, flowering and fruiting occur nearly all year, but in North India, flowering generally occurs from August to December. Fruits mature within 2 months of flowering (Paramathma, 2010). Jatropha seeds may be harvested after 5 months of age, and the productivity is steady after 1 year of age. Jatropha seeds contain viscous oil, having seed oil content of 30–48.5%, which is a promising source of biodiesel (Parthiban et al., 2009).
The material for the present study consisted of five BC4F1 backcross hybrid clones of Jatropha: CJH 3, CJH 5, CJH 9, CJH 12, and CJH 13. The successful hybrid clones were developed through interspecific crosses between J. curcas and J. integerrima. The promising F1 plants (11.1% fruit setting with small fruit size) were then backcrossed with J. curcas (TNMC 7) to increase seed size (Parthiban et al., 2011). The resultant BC1F1 progenies were raised to the second generation and investigated for flowering and fruiting character. The superior hybrid clones of BC1F1 progenies (clones) were backcrossed with J. curcas, which resulted in BC2F1 hybrids. The superior hybrid clones of BC2F1 hybrids (clones) were further backcrossed with J. curcas, resulting in BC3F1 hybrids. The superior BC3F1 hybrid clones were backcrossed again with J. curcas, resulting in BC4F1 hybrids. From successive and continued back crossing (Figure 1), five BC4F1 backcross derivative clones were identified by their superior growth, seed, and oil yield. These were multiplied using apical shoot cuttings and are termed hybrid clones. The seeds were used to raise the first generation, and the first-generation apical shoot cuttings were used to develop clonal plantlets. The plantlets were deployed in field trials at FC&RI in Mettupalayam (11˚19′ N; 76˚56′ E; 300 m above MSL), along with the control variety (TNMC 7), in a randomized block design with four replications with 3 m × 3 m spacing. The hybrid clones were pruned once per year after fruiting season; the cumulative seed yield provided in the table represents 6–7 harvests per year.
[image: Figure 1]FIGURE 1 | Thematic representation of breeding program.
The following observations (viz., plant height, basal diameter, sturdiness quotient, number of primary branches, number of secondary branches, number of male flowers, number of female flowers, male-female flower ratio, number of fruits per bunch, number of bunches per branch, seed yield per plant, hundred-fruit weight, fruit length, fruit width, fruit aspect ratio, hundred-seed weight, shelling percent, seed length, seed width, seed aspect ratio, kernel oil content, and seed oil content) were recorded for 3 years. The seed oil was extracted via solvent extraction, using hexane (40–60°C) as a solvent (A.O.A.C., 1975).
Determination of the acid value and free fatty acid content
The acid number and free fatty acid content of oil were determined by the procedures of A.O.A.C. (1975):
[image: image]
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where
V = volume of KOH used.
N = normality of KOH.
W = weight of the sample (g).
Determination of the saponification number
The saponification number was assessed per the method of A.O.A.C. (1975): 
[image: image]
where
b = ml of 0.5 N HCL required by the blank.
a = ml of 0.5 N HCL required by the sample.
Determination of the iodine number
The iodine number was determined by the Hanus iodine method (A.O.A.C., 1975):
[image: image]
where
B = ml of 0.1 N sodium thiosulfate required by blank.
S = ml of 0.1 N sodium thiosulfate required by sample.
N = normality of sodium thiosulfate solution.
Determination of the cetane number
The cetane number of the Jatropha methyl esters was predicted per Krisnangkura (1986):
[image: image]
where
SN = saponification number.
IV = iodine value.
Statistical analysis
The data for growth performance, variability, association analysis, and biochemical features of seed oil were analyzed using one-way analysis of variance (ANOVA), and Duncan’s multiple range test was employed to compare treatment means. The data was analyzed using the IBM-SPSS analytical software program, version 20.0 (IBM Corporation, USA). Correlation coefficients were utilized to assess the relationships between the various variables in the experiment (F-test) (Goulden, 1936). The genotypic correlation coefficients were divided into direct and indirect effects using path coefficient analysis (Dewey and Lu, 1959).
RESULTS
Variation in growth and yield attributes
Duncan’s multiple comparison study for growth performance differed significantly (p = 0.05) across different hybrid clones over 3 years, as shown in Tables 1 and 2.
TABLE 1 | Mean performance in growth parameters of Jatropha hybrid clones.
[image: Table 1]TABLE 2 | Mean performance in fruit and seed attributes of Jatropha hybrid clones.
[image: Table 2]The mean performance of 5 Jatropha hybrid clones, along with the control variety, in their growth and yield attributes is presented in Table 1. The hybrid clone CJH 13 exhibited superiority in characteristics including plant height (131.72 ± 6.09 cm) and the number of fruits per bunch (26.25 ± 0.84). The number of fruit bunches per branch was higher in CJH 12 and CJH 13. The seed yield from the hybrid clones collected for the third year (7 harvests) varied significantly and ranged from 1,218.60 ± 21.91 g (CJH 13) to 653.66 ± 16.12 g (TNMC 7).
Variability in fruit and seed characters
CJH 13 exhibited superiority in terms of hundred-fruit weight (116.81 ± 4.36 g) and hundred-seed weight (63.61 ± 1.70 g), whereas TNMC 7 showed an advantage in terms of fruit length, fruit width, and shelling percent. Seed oil content varied between 34.19 ± 0.37 percent (CJH 5) and 21.92 ± 0.62 percent (TNMC 7). The kernel oil content ranged between 54.80 ± 0.80 percent (CJH 3) and 35.40 ± 0.26 percent (TNMC 7).
Genetic estimates of growth, yield, and yield-contributing characters
The male–female flower ratio demonstrated moderate PCV (21.22%) and GCV (21.10%), followed by seed yield, number of primary branches, number of secondary branches, number of male flowers, and number of fruits per bunch (Table 3). All the traits recorded high heritability (>60%). The genetic advance as percent over the mean was moderate for the male–female flower ratio (43.22%) and seed yield (32.85%). Among the fruit’s physical attributes, fruit yield exhibited moderate PCV (19.14%) and GCV (19.11%) values. All traits recorded high heritability (>60%), except for fruit aspect ratio (31%) and fruit width (54%). Fruit yield (39.32%) alone recorded high genetic advance as a percentage of mean compared to other parameters. Among the seed parameters, seed oil content registered moderate PCV (16.49%) and GCV (16.39%) values. All parameters recorded high heritability (>60%), except for seed length (43%) and seed width (46%). Seed oil content (33.56) alone recorded high genetic advance as a percentage of mean (Table 3).
TABLE 3 | Genetic estimates of hybrid clones for biometrical, fruit, and seed characters.
[image: Table 3]Association between yield and yield-contributing characters
Highly significant and positive phenotypic and genotypic correlations were recorded between the number of fruits per bunch (0.845 and 0.850) and the number of bunches per branch (0.771 and 0.788) on seed yield, followed by the number of female flowers (0.555 and 0.557), respectively (Table 4). Significant and negative phenotypic and genotypic correlations were recorded between the number of male flowers (–0.843 and –0.852) and male–female flower ratio (–0.760 and –0.765) on seed yield, respectively. The number of female flowers was positively correlated with the number of fruits per bunch (0.739 and 0.745) (Table 4).
TABLE 4 | Phenotypic and genotypic correlation coefficients among biometrical traits on seed yield.
[image: Table 4]At both the phenotypic and genotypic levels, correlation studies found that hundred-fruit weight (0.540 and 0.605) had a positive relationship with fruit output. Except for fruit length (–0.720) and fruit aspect ratio (–0.838), which had significant negative correlations with fruit yield at the genotypic level, all other fruit parameters were negative and non-significant (Table 5). At both the phenotypic and genotypic levels, seed width (0.325 and 0.464) had a positive connection with seed oil content. The link between seed oil content and all other seed parameters was negative and non-significant (Table 6).
TABLE 5 | Phenotypic and genotypic correlation coefficients among fruit attributes on fruit yield.
[image: Table 5]TABLE 6 | Phenotypic and genotypic correlation coefficients among seed attributes on seed oil content.
[image: Table 6]Biochemical properties of Jatropha hybrid clones
The acid value ranged between 7.05 ± 0.20 (CJH 12) and 5.18 ± 0.00 (TNMC 7). Free fatty acid content differed significantly among the different hybrid clones, ranging from 3.54 ± 0.16 percent (CJH 12) to 2.60 ± 0.05 percent (TNMC 7). Saponification values ranged between 203.36 ± 5.35 (CJH 12) and 201.12 ± 1.85 (TNMC 7). Iodine value extended from 116.64 ± 1.93 (CJH 13) to 107.56 ± 3.39 (CJH 3). The hybrid clones varied from 49.20 ± 0.69 (CJH 3 and TNMC 7) to 47.12 ± 0.18 (CJH 13) in terms of the cetane number (Table 7).
TABLE 7 | Biochemical Properties of Jatropha hybrid clones.
[image: Table 7]DISCUSSION
Variation in growth and yield attributes
Through selection and further deployment in evaluation programs, any tree-improvement program utilizes existing genetic variability (Chaturvedi and Pandey, 2001). In this study, the plant height, basal diameter, sturdiness quotient, number of primary branches, number of secondary branches, number of male flowers, number of female flowers, male–female flower ratio, number of fruits per bunch, and number of bunches per branch all changed considerably under field settings. For various growth characteristics, the hybrid clones CJH 13 and CJH 5 recorded much higher values. Paramathma (2010); Maurya et al. (2013); Subashini et al. (2014); and Gawali et al. (2013) found comparable and considerable variance in growth indices in J. curcas.
J. curcas is a monoecious tree with a minimal number of female flowers relative to its numerous male flowers, which is the key reason for its low yield. Increasing the number of female flowers in the inflorescence may result in increased fruit set and, in turn, increased seed yield. In the present study, CJH 5 demonstrated superiority in terms of the number of female flowers (38.75) and registered a lower male–female flower ratio (6.52) compared to the other hybrid clones. Similar noteworthy studies on the floral characters of J. curcas were previously conducted by Paramathma (2010); Maurya et al. (2013) and Subashini et al. (2014) and lend support to the current investigation.
The seed yield of a tree is influenced by biometric traits (viz., number of branches, crown diameter, and age). In the present investigation, two hybrid clones, CJH 13 (1,218.60 g) and CJH 12 (1,034.40 g), showed significant performance for seed yield per plant at early stages of growth and development. These two hybrid clones are prominent, and the consistency and fidelity expressed by these hybrid clones could be useful for future improvement programs. Parthiban et al. (2011) observed that the fruit yield of Jatropha hybrid clones ranges from 131.78 to 857.51 g per plant. Divakara et al. (2012), in the case of Pongamia pinnata, also reported that not only plant growth characters but also environmental factors have vital roles in seed yield. Biabani et al. (2012) evaluated different Jatropha populations and reported that the seed yield per plant was highest in Indonesia, which recorded 46, 399, and 222 (g) for the first, second, and average years’ harvests, respectively. Indonesia was closely followed by the Philippines, with values of 35 (g) for the first year, and Malaysia, with values of 262 and 146 (g) for the second and average years’ harvests, respectively.
Variability in fruit and seed characters
Nature offers plants with enormous energy potential. Jatropha is one of the most significant species that can be utilized in the form of biodiesel. The basic aim for any tree-breeding program is to exploit the available natural variability within a species, ultimately resulting in higher production in terms of yield. In the present investigation, significant differences were observed in the fruit’s physical traits (viz., fruit length, fruit width, fruit aspect ratio, and hundred-fruit weight). The hybrid clone CJH 13 recorded the highest significant values for hundred-fruit weight (116.81 g), whereas TNMC 7 exhibited superiority in terms of fruit length (2.37 cm), fruit width (1.80 cm), and fruit aspect ratio (1.33). Similar variability in the physical fruit parameters of J. curcas was previously recorded (Gawali et al., 2013), affirming the findings of the current study.
The study of seed parameters, along with oil content, is often considered to be a suitable step in the study of genetic variability in case of tree-borne oil seeds. Thus, seeds from trees with higher seed weights and oil content may be used for further improvement programs (Kaushik et al., 2007). The hybrid clone CJH 13 recorded the highest significant values for seed width (0.81 cm) and hundred-seed weight (63.61 g), CJH 5 registered the highest significant value for seed oil content (34.19%), and CJH 3 recorded high kernel oil content (54.80%). Comparable findings in J. curcas were previously reported by Tripathi et al. (2015) and Singh et al. (2016), which supports the results of present study.
Genetic estimates of growth, yield, and yield-contributing characters
Variation describes noticeable changes across individuals for a specific trait. These differences are partially due to genetic control and partially due to the influence of the environment. All the growth attributes under study exhibited higher heritability values (0.80–0.99), suggesting that these traits are under strong genetic control. Lower heritability for vegetative characters and moderate-to-high heritability for reproductive characters have been reported in backcross populations of Jatropha (Subashini et al., 2014). There were high significant variations among the populations with regard to the yield and yield components, and results of ANOVA on these traits indicated highly significant variation among populations for first, second, and average years of harvesting (Biabani et al., 2012). Ghosh and Singh (2011) identified similar phenotypic variations in seed length, seed width, hundred-seed weight, oil content, seed yield, oil content percentage, and seed oil yield among J. curcas populations. Traits such as the number of branches, number of female flowers, number of fruits per bunch, and seed yield exhibited higher heritability (0.99) with moderate genetic advance; hence, these traits are under strong genetic control. The current findings corroborate earlier studies in Jatropha (Reeja, 2018), suggesting that the traits involved in high heritability with moderate genetic gain may be due to the presence of additive genes.
Phenotypic correlation is a product of the interaction between genotype and environment, whereas genotypic correlation is an assessed value. The complexity of seed yield is mostly influenced by the quantity of characteristics, which in turn affects the production of oil. In order to create a valuable and feasible breeding program for increasing seed yield, knowledge of the associations between these traits would be very supportive.
Fruit yield recorded high PCV (19.14) and GCV (19.11), and high heritability (0.99) and maximum genetic advance (39.32), followed by fruit length and hundred-fruit weight. Hence, this parameter could be used as a reliable trait for selection. The hundred-fruit weight, fruit length, fruit width, and fruit aspect ratio recorded low PCV and GCV, which agrees with the result of Gawali et al. (2013) in J. curcas. The seed oil content demonstrated higher phenotypic (16.49) and genotypic (16.39) coefficients of variation. The seed aspect ratio, seed length, seed width, shelling percent, and hundred-seed weight documented low PCV and GCV. Similar results have been observed in J. curcas (Gawali et al., 2013) and in backcross populations of Jatropha (Subashini et al., 2014), which corroborates the current findings. In the present investigation, seed oil content expressed high heritability (0.99), which indicated additive gene action and moderate heritability for seed length and seed width, showing that they are governed partly by additive gene actions. The distinctly higher heritability can be regarded as a key feature for Jatropha improvement because of its strong genetic control.
Association between yield and yield-contributing characters
Correlation studies are important in determining the suitability of numerous traits for selection since selection of particular traits may bring desirable or undesirable changes in the related traits. For all the traits investigated, the genotypic correlation coefficient was higher than the corresponding phenotypic correlation coefficient, indicating that in the majority of cases, the environment has not appreciably influenced the associated traits. The number of fruits per bunch and the number of bunches per branch showed positive and significant correlations with seed yield, whereas the number of male flowers and male–female flower ratio showed negative and significant correlations with seed yield. Such positive and highly significant correlations in Jatropha can be used for further breeding programs. Comparable positive and significant correlations have been observed by Subashini et al. (2014) and Parthiban et al. (2011) in J. curcas and by Chauhan et al. (2005) in neem, which supports the results of current study. In addition, the basal diameter, sturdiness quotient, number of primary branches, number of secondary branches, number of male flowers, number of female flowers, male–female flower ratio, number of fruits per bunch, and number of bunches per branch showed strong correlation among themselves, signifying that some genes governing these characters may be closely associated with each other.
The number of male flowers, male–female flower ratio, number of fruits per bunch, and number of bunches per branch could serve as good predictors of seed yield in Jatropha. The traits of fruit length and fruit aspect ratio showed negative and significant correlations with fruit yield at the genotypic level only. Comparable results have been documented in J. curcas (Gawali et al., 2013; Singh et al., 2013). Seed width registered positive but non-significant correlation with seed oil content, which indicated that this parameter has contributed significantly to seed oil content and hence could act as a reliable index in Jatropha improvement programs. In contrast, all other seed parameters registered negative and non-significant correlations with seed oil content, which specified that these characters showed independent genetic control.
Biochemical properties of Jatropha hybrid clones
Chemical properties are the vital properties that determine the present condition of oil (Nzikou et al., 2009). Several chemical properties of biodiesel permit it to burn cleanly and improve the combustion of diesel in blends. Some of the primary chemical properties which determine the suitability of oils for the utilization of biodiesel are acid value, iodine value, cetane number, free fatty acid content, and saponification value. Standards for these properties have been established worldwide and in India; the Bureau of Indian Standards has specified standards (IS:15,607, 2006). In this study, significant variations were documented for acid value of the seed oil of Jatropha hybrid clones. All the five hybrid clones recorded significantly higher acid values compared to the control variety, which was still higher than the standard value (0.5).
The properties of triglycerides and biofuels depend upon the degree of fatty acids (unsaturated and saturated) present in the molecules. Free fatty acid percentage differed significantly among the different hybrid clones deployed in the current investigation. The free fatty acid percentage ranged from 3.54% (CJH 12) to 2.60% (TNMC 7), and the increase in free fatty acid content could be due to oil storage. High free fatty acid content (>1%) results in soap formation and hence difficulty in the splitting of products, leading to low recovery of biodiesel (Crabbe et al., 2001). The free fatty acid and moisture content influence the transesterification of glycerides with alcohol using a catalyst. High free fatty acid percentage (2.23%) has been recorded earlier in Jatropha oil seeds (Goodrum, 2002).
Saponification value is an indicator of the extent of fatty acids present and rests on the molecular weight and percentage concentration of fatty acid components in the oil. Apart from biodiesel purposes, a high saponification value indicates that oils can be used in the production of liquid soap and shampoo. Only one hybrid clone (viz., CJH 12 (203.36)) recorded significantly higher saponification values compared to the control variety TNMC 7 (201.12). Similar studies on the saponification value of J. curcas hybrids have been reported by Ntaganda (2014).
The iodine value reflects the degree of the unsaturation of fats and oils. Higher iodine values indicate higher unsaturation of fats and oils (Knothe, 2002). The iodine value ranged from 116.64 (CJH 13) to 107.56 (CJH 3). These values indicate that the oils of hybrid clones are well below the limit of 115 set by the European standards (EN:14,214, 2008). Hence, all the hybrid clones deployed in the current investigation are qualified to produce biodiesel with respect to iodine value. The iodine values of Jatropha lie in the semi-drying oil group. Jatropha’s higher iodine value is due to the presence of high amounts of unsaturated fatty acids, such as oleic acid and linoleic acid.
The ignition quality of a fuel can be inferred through its cetane number (Azam et al., 2005). A fuel with high ignition quality also has a high cetane number, in which the ignition delay period between the start of fuel injection and the onset of auto ignition is short. These fuel properties are significant in deciding diesel engine operating features such as fuel conversion efficiency, smoothness of operation, misfire, smoke emissions, noise, and ease of starting. The cetane value was found to be significantly higher for CJH 3 and TNMC 7 (49.20), which is near the acceptable minimum standard value of 51, per the IS:15,607 (2006) biodiesel specification of the Bureau of Indian Standards. The minimum acceptable cetane number, per the American standards for biodiesel, is 47, and most of the hybrid clones recorded significantly higher cetane numbers compared to the American standard (ASTM D6751, 2002). All the hybrid clones deployed in the current investigation recorded cetane numbers in the range of 47–49, indicating their usability as biodiesel and substantiating the study of Sivaramakrishnan and Ravikumar (2012).
CONCLUSION
Through a holistic analysis, the current study identified the superiority of two hybrid clones (viz., CJH 13 and CJH 12) for productivity of seeds and one hybrid clone (viz., CJH 5) for higher seed oil content. The study also found that all the hybrid clones were amenable for biodiesel production due to their acceptable and satisfactory biofuel quality. Hence the hybrid clones with higher seed yield and superiority in chemical properties could be selected for further commercial exploitation to produce biofuel. The research has an excellent application value both in the biofuel sector and in the farming sector. A Jatropha-based multifunctional agroforestry system can act as an alternate and sustainable land-use system, while helping to generate significant income for farmers. It has an excellent application value for creating new start-ups and business enterprises in the form of seed processing, establishment of oil processing plants, and creation of decentralized transesterification plants at the rural level. These establishments will create self-reliance in the green energy sector, thereby extending their significant application value. However, the current research still needs further investigation into the performance of hybrid clones under different agroclimatic zones, coupled with associated physical, chemical, and other biodiesel properties, in order to successfully deploy Jatropha hybrid clones for biodiesel production on a commercial scale.
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Chickpea yield is severely affected by drought stress, which is a complex quantitative trait regulated by multiple small-effect genes. Identifying genomic regions associated with drought tolerance component traits may increase our understanding of drought tolerance mechanisms and assist in the development of drought-tolerant varieties. Here, a total of 187 F8 recombinant inbred lines (RILs) developed from an interspecific cross between drought-tolerant genotype GPF 2 (Cicer arietinum) and drought-sensitive accession ILWC 292 (C. reticulatum) were evaluated to identify quantitative trait loci (QTLs) associated with drought tolerance component traits. A total of 21 traits, including 12 morpho-physiological traits and nine root-related traits, were studied under rainfed and irrigated conditions. Composite interval mapping identified 31 QTLs at Ludhiana and 23 QTLs at Faridkot locations for morphological and physiological traits, and seven QTLs were identified for root-related traits. QTL analysis identified eight consensus QTLs for six traits and five QTL clusters containing QTLs for multiple traits on linkage groups CaLG04 and CaLG06. The identified major QTLs and genomic regions associated with drought tolerance component traits can be introgressed into elite cultivars using genomics-assisted breeding to enhance drought tolerance in chickpea.
Keywords: genetic mapping, ddRAD-seq, single nucleotide polymorphism (SNP), quantitative trait locus (QTL), root system architecture
INTRODUCTION
Chickpea (C. arietinum L.) is an important cool-season legume crop cultivated largely in the semi-arid and arid regions of Asia and sub-Saharan Africa (Gaur et al., 2012). It is a diploid (2n = 2x = 16) and self-pollinated crop with a genome size of ∼738 Mb (Varshney et al., 2013a) and serves as a rich source of nutrients such as proteins (23%), carbohydrates (40%), vitamins, essential amino acids, and free from anti-nutritional factors (Jukanti et al., 2012; Roorkiwal et al., 2021). In spite of its economic importance and its role in improving human health, chickpea production is falling short of meeting the dietary needs of the burgeoning human population, mainly because of low productivity due to biotic and abiotic constraints (Thudi et al., 2014; Roorkiwal et al., 2020; Kushwah et al., 2021a). Among the abiotic stresses, drought alone causes up to 60% of annual yield losses in chickpea (Sabaghpour et al., 2006; Toker et al., 2007; Varshney et al., 2010; Hajjarpoor et al., 2018; Barmukh et al., 2022). The impact of global warming and climate change has emphasized researchers’ need to study the effect of drought stress on crop development and yield. Thus, it has become imperative to develop cultivars, which can attain their maximum potential under drought stress or rainfed environments.
Usually, drought stress adversely affects the plants through a transient or terminal drought (Li et al., 2018; Varshney et al., 2021). In general, it is a terminal drought that can terminate or reduce the reproductive phase to drastically reduce the crop yield. Drought tolerance is a complex quantitative trait affected by significant genotype by environment (G × E) interactions (Kashiwagi et al., 2008; Varshney et al., 2014; Barmukh et al., 2022), which hampers direct selection of genotypes with higher yield under drought conditions. Drought stress is well-known for reducing crop growth, thus affecting yield components, such as total biomass, pod number, seed number, seed weight, seed quality, and yield per plant (Toker et al., 2007; Krishnamurthy et al., 2013). Understanding the genetic basis of drought tolerance is difficult due to multiple underlying mechanisms used by plants to survive, such as drought escape, drought avoidance, and drought tolerance (Tuberosa & Salvi, 2006). The close association between several morphological and physiological traits (e.g., crop growth rate, leaf area index, canopy temperature depression, shoot biomass, phenology, etc.) with grain yield under drought was revealed in a previous study (Purushothaman et al., 2016). Early flowering in chickpea can be advantageous for enhancing the seed yield by shortening the vegetative phase and completing the crop life cycle prior to the onset of terminal drought stress (Kushwah et al., 2020b). Several other physiological traits, such as membrane permeability index, photosynthetic efficiency, relative leaf water content, chlorophyll content, proline accumulation, and ABA content, and morphological traits, such as days to germination, days to flowering, plant height, biomass, and 100-seed weight, have been proposed for the selection of drought-tolerant chickpea genotypes (Gaur et al., 2008; Kashiwagi et al., 2013; Purushothaman et al., 2016; Maqbool et al., 2017).
To further understand the drought tolerance mechanisms, screening of chickpea germplasm has led to the selection of genotypes with extensive root systems and better productivity under drought stress (Kashiwagi et al., 2005). Phenotypic attributes of the root system have gained more importance as they are expected to have a direct effect on transpiration in plants under drought stress (Ye et al., 2018). A profuse root system is expected to extract more soil water than a less extensive root system under drought stress (Zaman-Allah et al., 2011). Detailed studies on various root traits are difficult due to low heritability and complex mechanisms of these traits, variable expression across diverse soil environments, and the labor-intensive nature of the studies (Gaur et al., 2008; Varshney et al., 2011). Association studies have revealed positive associations (Kell, 2011; Bishopp & Lynch, 2015) and negative or neutral associations (Zaman-Allah et al., 2011; Schoppach et al., 2013) of profuse root systems with grain yield.
Considering the challenges associated with breeding drought-tolerant varieties, the identification of quantitative trait loci (QTLs) for drought tolerance component traits can be a judicious approach in a chickpea breeding program. For instance, QTLs identified in previous studies have helped in dissecting the genetic basis of drought tolerance-related traits in chickpea (Varshney et al., 2014; Sivasakthi et al., 2018). Furthermore, during the last decade, chickpea researchers have deciphered the chickpea genome (Varshney et al., 2013a; Jain et al., 2013) and developed several genomic (Roorkiwal et al., 2017; Roorkiwal et al., 2020) and transcriptomic resources (Hiremath et al., 2011; Kudapa et al., 2014; Mashaki et al., 2018) that have transformed chickpea from an “orphan crop” to a “genomics resource-rich crop” for faster genetic gains in chickpea (Varshney, 2016). Rapid advances in next-generation sequencing technologies have enabled the use of sequencing-based genotyping platforms for unraveling the genetic basis of several complex traits. The double digestion restriction site-associated DNA sequencing (ddRAD-seq) approach, developed by Peterson et al. (2012), can adjust the number of fragments by utilizing two different restriction enzymes (Puritz et al., 2014) and exclusively uses size selection for recovering the appropriate number of regions, which are arbitrarily distributed throughout the genome and maximizes the ability of multiplexing of numerous samples.
Due to the comparatively narrow genetic base of chickpea (Stephens et al., 2014) and relatively low levels of polymorphism, interspecific RIL populations from C. arietinum and C. reticulatum have been used efficiently for genetic studies (Singh et al., 2008; Barmukh et al., 2021a). The amount of polymorphism varied from 16% to 36% in an interspecific mapping population compared to only 9.5% in an intraspecific mapping population (Nayak et al., 2010). Interspecific populations have been proven to be useful for the construction of high-density genetic maps as well as trait dissection (Thudi et al., 2011; Roorkiwal et al., 2017; Barmukh et al., 2021a).
In the present study, an interspecific mapping population derived from a cross between GPF 2 (C. arietinum) and ILWC 292 (C. reticulatum) was used to identify key genomic regions associated with drought tolerance component traits. Some promising RILs were also detected for yield, morpho-physiological, and root-related traits under rainfed conditions for use in breeding programs. Identification and development of markers for drought tolerance component traits will be useful for deploying genomics-assisted breeding for the development of drought-tolerant improved chickpea varieties.
MATERIALS AND METHODS
Plant material and experimental sites
A set of 187 RILs (F8 generation) segregating for drought tolerance component traits was developed from an interspecific cross of drought-tolerant genotype GPF 2 (C. arietinum) with drought-sensitive accession ILWC 292 (C. reticulatum) using a single seed descent method as described in Kushwah et al. (2021b). Chickpea cultivar GPF2 is a semi-erect, medium-tall cultivar recommended for cultivation in Punjab state and in the North-Western Plains Zone of India. Apart from its drought tolerance characteristics, GPF2 is also resistant to Fusarium wilt and Ascochyta blight (Kushwah et al., 2021c). The accession ILWC 292 (C. reticulatum) has a semi-prostrate growth habit. It is sensitive to drought and susceptible to Ascochyta blight but resistant to botrytis grey mold and chickpea cyst nematode. Although ILWC 292 is a drought-sensitive genotype, it possesses some desirable drought tolerance-related traits such as higher root length density, root to shoot ratio, and membrane permeability index (Singh et al., 1996).
The RIL population and the parental genotypes were grown during the 2017–18 crop season, in an alpha lattice design (17 × 12) under irrigated (non-stress) and rainfed (drought-stress) conditions at two locations in India (Ludhiana and Faridkot), with three replications. Each RIL was planted in 2 m long paired rows with 30 cm × 10 cm spacing. The Ludhiana (30.9010°N, 75.8573°E) and Faridkot (30.6769°N, 74.7583°E) sites are categorized as semi-arid sub-tropical and semi-arid dry regions, respectively. Both sites consist of loamy sand with 59.8% sand and 16.5% clay (Typic Ustorthents). The average annual rainfall is 700 mm at Ludhiana and 450 mm at Faridkot, of which more than 70% occurs from July to September (Yadav et al., 2007; Kang et al., 2009).
Phenotyping for morphological and physiological traits under field conditions
Sowing under field conditions was performed during November–April of the 2017–18 crop season on the residual soil moisture, which was sufficient for good germination, as recommended for chickpea sowing in this region. Soil moisture was measured at the time of sowing, after 70, 90, 110, and 130 days of sowing, and at the time of maturity in irrigated and rainfed conditions at both the locations. In the case of rainfed plots, the soil moisture was ideal for drought conditions for chickpea crop. As a result of the drastic reduction in soil moisture content at 90, 110, and 130 days after sowing in rainfed plots as compared to irrigated plots, sufficient drought stress was induced at the reproductive (flowering and pod formation) and pod development stages at both the locations.
Phenotypic data were collected for 21 traits including 12 morphological and physiological traits, namely, days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), number of pods per plant (NPP), biomass (BIO), yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC), and nine root-related traits. Five randomly selected plants were used to record observations on PH, NPP, BIO, and YLD in each plot. The data for DG, DFI, DFF, DHF, and HSW were recorded on a plot basis. HI was calculated as follows:
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MPI was determined according to the method of Premchandra et al. (1990), and modified by Sairam (1994), as follows:
[image: image]
where C1 is the initial electrical conductivity at 40°C and C2 is the final electrical conductivity at 100°C.
RLWC was calculated using the formula (Slavik, 1974):
[image: image]
where FW is the fresh weight, DW is the dry weight, and TW is the turgid weight.
Phenotyping for root-related traits
A total of nine traits, i.e., root length (RL), shoot length (SL), root to shoot ratio (RSR), root length density (RLD), fresh root weight (FRW), fresh shoot weight (FSW), root dry weight (RDW), shoot dry weight (SDW), and the ratio of root dry weight to total plant dry weight (RDW/TDW) were recorded in the present study. A polyvinyl chloride (PVC) pipe-based cylinder culture approach was used for phenotyping root-related traits. Chickpea plants were grown in PVC cylinders (18 cm in diameter and 120 cm in height) with three replications. The PVC cylinders, except for the top 15 cm, were filled with an equi-mixture (w/w) of vertisol and sand, mixed with 0.07 g·kg−1 diammonium phosphate. The soil water content of the mixture was equilibrated to 70% field capacity to create conditions similar to those in the field at sowing when the soil is not fully saturated with water. A mixture of soil and sand was used to decrease the soil bulk density and facilitate root growth and extraction. Sampling was carried out at 35 days after sowing (DAS), avoiding physically damaged plants. This is because maximum variations in root-related traits among genotypes were best detected at 35 DAS and variation decreased after 41 DAS (Krishnamurthy et al., 1996).
Root samples were collected using steel soil-coring tubes (50 mm in diameter) to a depth of 120 cm at the flowering stage. Each RIL sample comprised three soil cores, which were pooled to increase the sample size. The soil cores for each sample were soaked overnight in water, and the roots were recovered by passing the suspension through a 2 mm wire mesh sieve. Chickpea roots were separated manually from the debris and weed roots. Total RL and FRW were measured, and roots were then oven-dried at 70°C for 72 h before measuring RDW. Likewise, FSW was measured, and then shoots were oven-dried at 70°C before measuring SDW. The RLD (cm−3) was measured as root length (cm)/volume of soil core (cm3), while the root to shoot ratio (RSR) was calculated using root and shoot lengths.
Statistical analysis
Analysis of variance (ANOVA) was computed for individual environments using mixed model analysis to estimate the contribution made by each factor to the total variation using SAS software version 9.3 (SAS Institute, Cary, NC). The data from irrigated and rainfed conditions were used to estimate the best linear unbiased predictors (BLUPs) using the residual maximum likelihood algorithm (ReML) in the R package lmer (Bates et al., 2015). BLUPs were estimated for all 21 morpho-physiological traits, and scatter plots were drawn for all the traits using BLUPs to find the correlation between the two locations evaluated, i.e., Ludhiana and Faridkot.
QTL analysis
The RIL population was genotyped with ddRAD-seq (Peterson et al., 2012), which uses PstI and MspI restriction enzymes (Thermo Fisher Scientific, MA, United States). The ddRAD-seq data analysis of RILs for SNP discovery and development of linkage map was performed as described previously (Kushwah et al., 2021c).
QTL analysis was performed with the composite interval mapping (CIM) method executed in the Windows QTL Cartographer V2.5 software package (Wang et al., 2007). The CIM analysis was conducted using forward and backward stepwise regression. For each trait, experiment-wise significance thresholds (p ≤ 0.05) were determined with 1,000 permutations for QTL detection. The position of the QTLs was identified on the basis of its logarithm of odds (LOD) peak location with a 95% confidence interval. The percentage of phenotypic variance and additive effect described by QTLs was also estimated. QTLs explaining total phenotypic variance (PVE) >10% were classified as major-effect QTLs, whereas those with PVE <10% were regarded as minor-effect QTLs (Varshney et al., 2014). The phenotypic contribution (R2) was estimated as the percentage of variance explained by each QTL in proportion to the total phenotypic variance, while the additive effect was estimated to find the positive or negative effect for the respective trait.
RESULTS
Phenotypic variation among the RILs and parental genotypes
The RILs along with parent genotypes were evaluated under irrigated (non-stress) and rainfed (drought-stress) conditions at Ludhiana and Faridkot locations in India. Significant variation was observed among the RILs and their parents for multiple morphological, physiological, and root-related traits under irrigated and rainfed conditions (Tables 1, 2). Phenotyping data analysis for all the traits in parental lines depicted highly significant differences under irrigated and rainfed conditions. All of the measured morphological, physiological, and root-related traits were significantly affected by drought stress, except for HI, RL, RLD, and FRW. Under rainfed conditions, the RILs had slightly higher mean values (8.68%) for DG, while values for DFI, DFF, and DHF decreased by 16.11, 14.48, and 13.76%, respectively, when compared to irrigated conditions. Similarly, RILs possessed significantly lower mean values for PH (30.91%), NPP (42.50%), BIO (40.15%), and YLD (44.18%) under rainfed conditions. A moderate reduction in the mean performance of HSW (18.28%) and RLWC (19.53%) was observed under rainfed conditions relative to irrigated conditions. The rainfed conditions significantly increased the mean values of RILs for MPI (16.34%), while HI was least affected by water deficit with only a 0.09% reduction, relative to the irrigated conditions (Table 1). In the case of root-related traits, water deficit significantly reduced the mean values of RILs for SL (13.93%), FSW (25.40%), and SDW (14.05%), and slightly reduced for FRW (0.82%), relative to the irrigated conditions. A significant increase in the mean performance of RILs for RSR (18.40%), a moderate increase for RDW (6.09%) and RRDWTDW (9.30%), and a slight increase for RL (1.39%) and RLD (0.21%) were observed under rainfed conditions relative to the irrigated conditions (Table 2).
TABLE 1 | Mean performance of chickpea RIL population for various morphological and physiological traits under irrigated (IR) and rainfed (RF) conditions (Ludhiana and Faridkot pooled).
[image: Table 1]TABLE 2 | Mean performance of chickpea RIL population for root-related traits under irrigated (IR) and rainfed (RF) conditions.
[image: Table 2]The pooled ANOVA for all the morphological and physiological traits showed highly significant differences between genotypes at both locations in the irrigated and rainfed conditions. Significant differences were also observed for genotype × environment (G × E) interactions for these traits, except for DG, DFI, DFF, and DHF (Table 1). The scatter plots showed a highly significant relationship between locations for most of the traits except PH, HI, and RLWC which showed a moderately high correlation coefficient (Supplementary Figure S1). In the case of root-related traits, pooled ANOVA for variation in genotypes and G × E interactions showed highly significant differences for the RIL population under irrigated and rainfed conditions at both locations (Table 2). Under irrigated conditions, PH, NPP, BIO, YLD, HSW, HI, MPI, and RLWC had higher broad-sense heritability (79.40–90.40%), while low to moderate heritability (25.10–56.40%) was observed for DG, DFI, DFF, and DHF. By contrast, under rainfed conditions, all traits had high heritability (87.50–90.10%), except for DG (42.40%) (Table 1). The root-related traits had high broad-sense heritability under both irrigated (78.80–97.40%) and rainfed conditions (85.50–97.10%) (Table 2). A significantly high correlation coefficient between the irrigated and rainfed conditions was observed for all root-related traits, except RLD (Supplementary Figure S2).
Selection of promising lines
A total of 17 out of 187 RILs were found to be highly promising for yield, morpho-physiological, and root-related traits under rainfed conditions (Tables 3, 4). Of these 17 lines, five lines showing early flowering were also promising for yield-related traits (Table 3).
TABLE 3 | List of promising recombinant inbred lines for various morphological and physiological traits under rainfed conditions (Ludhiana and Faridkot pooled).
[image: Table 3]TABLE 4 | List of promising recombinant inbred lines for various root-related traits under rainfed conditions at Ludhiana.
[image: Table 4]QTLs for drought tolerance component traits
A total of 1,365 polymorphic SNPs were used for linkage map construction (Kushwah et al., 2021c). Genotypic data on 1,365 informative SNPs, linkage map distances, and BLUP values for 21 traits evaluated at two locations were used to identify QTLs for drought tolerance component traits. A total of 31 QTLs at Ludhiana and 23 QTLs at Faridkot were identified for 12 morphological and physiological traits, except root-related traits, evaluated under irrigated and rainfed conditions (Tables 5, 6; Figure 1; Supplementary Figure S3). Out of 31 QTLs identified at Ludhiana, 14 were classified as major-effect QTLs and 17 as minor-effect QTLs. Likewise, out of 23 QTLs identified at Faridkot, 15 were major-effect QTLs and seven were minor-effect QTLs.
TABLE 5 | Summary of QTLs associated various morphological and physiological traits evaluated at Ludhiana.
[image: Table 5]TABLE 6 | Summary of QTLs associated with various morphological and physiological traits evaluated Faridkot.
[image: Table 6][image: Figure 1]FIGURE 1 | Genomic regions with QTLs for morphological and physiological traits. For traits evaluated at Faridkot, (A) QTLs for days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), harvest index (HI), and relative leaf water content (RLWC) were mapped on CaLG04; while (B) QTLs for days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), yield (YLD), harvest index (HI), and membrane permeability index (MPI) were mapped on CaLG06. For traits evaluated at Ludhiana, (C) QTLs for days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), yield (YLD), harvest index (HI), membrane permeability index (MPI), and relative leaf water content (RLWC) were mapped on CaLG04; whereas (D) QTLs for days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), number of pods per plant (NPP), biomass per plant (BIO), 100-seed weight (HSW), membrane permeability index (MPI), and relative leaf water content (RLWC) were mapped on CaLG06.
A total of eight consensus QTLs were identified for DFI, DFF, DHF, HI, MPI, and RLWC at both the locations evaluated. Nine QTL clusters containing QTLs for DG, DFI, DFF, DHF, NPP, BIO, YLD, HSW, HI, MPI, and RLWC traits evaluated at Ludhiana were identified on linkage groups CaLG04, CaLG06, and CaLG07. Furthermore, seven QTL clusters were identified containing QTLs for DFI, DFF, DHF, NPP, YLD, HSW, HI, MPI, and RLWC traits evaluated at Faridkot on linkage groups CaLG02, CaLG04, and CaLG06. Four QTL clusters were identified on linkage groups CaLG04 and CaLG06 for traits evaluated at both the locations and contained QTLs for DG, DFI, DFF, DHF, BIO, YLD, HSW, HI, MPI, and RLWC traits. All of these QTLs were distributed on linkage groups CaLG02, CaLG04, CaLG06, and CaLG07, while linkage groups CaLG01, CaLG03, CaLG05, and CaLG08 did not contain any QTL for any location. Maximum QTLs were present on linkage group CaLG04 followed by linkage group CaLG06. The highest phenotypic variation was observed for DG (18.37%) at Ludhiana and MPI (21.05%) at Faridkot. The highest LOD value was observed for DFI (6.85) at Ludhiana and DFF (5.56) at Faridkot. The QTLs having positive or negative additive effects for a particular trait implied that an increase in the proportion of the phenotypic variation of that particular trait was contributed by the allele from GPF 2 or ILWC 292, respectively.
In the case of root-related traits, a total of seven QTLs were identified for four traits, namely, RSR, RLD, RDW, and RDW/TDW, evaluated under irrigated and rainfed conditions (Table 7; Figure 2; Supplementary Figure S4). Of these, two were major-effect QTLs and five were minor-effect QTLs. One QTL cluster located on linkage group CaLG04 for RDW also contained QTLs for YLD, HI, MPI, and RLWC on the same genomic position. A maximum number of QTLs (four QTLs) for root-related traits were observed for RSR on four different linkage groups. All of these QTLs linked with root-related traits were distributed on linkage groups CaLG02, CaLG04, CaLG05, CaLG06, and CaLG07, while linkage groups CaLG01, CaLG03, and CaLG08 harbored no QTL. The highest phenotypic variation was observed for RDW (11.56%), and the highest LOD value was observed for RLD (5.13).
TABLE 7 | Summary of QTLs associated with the identified root-related traits under drought stress.
[image: Table 7][image: Figure 2]FIGURE 2 | Genomic regions with major-effect QTLs for root-related traits. (A) QTLs for root to shoot ratio (RSR) and root dry weight (RDW) were mapped on CaLG04. (B) QTLs for root to shoot ratio (RSR) and the ratio of root dry weight to total plant dry weight (RDW/TDW) were mapped on CaLG05.
QTLs for phenological traits
In the case of phenological traits, two QTLs each were detected for DG, DFI, and DHF, while four QTLs were identified for DFF at Ludhiana, having PVE in the range of 6.41–18.37%. Likewise, one QTL for DG and four QTLs each for DFI, DFF, and DHF were identified at Faridkot, having 9.15–18.64% PVE.
QTLs for physiological traits
In the case of physiological traits, two QTLs each were identified for MPI and RLWC traits evaluated at Ludhiana, with a PVE of 5.89–14.71%. In addition, three QTLs were detected for MPI and one QTL for RLWC at Faridkot location and had PVE in the range of 8.12–21.05%.
QTLs for yield and yield-related traits
Yield and yield-related traits contained two QTLs for HSW, three QTLs each for BIO and HI, four QTLs for NPP, and five QTLs for YLD evaluated at Ludhiana, with a PVE ranging from 6.41% to 15.29%. In addition, one QTL each for NPP, HSW, and YLD and three QTLs for HI were identified for phenotypic data collected at Faridkot, which possessed PVE in the range of 6.52–10.36%.
QTLs for root-related traits
In the case of root-related traits, one QTL each for RLD, RDW, and RDW/TDW and four QTLs for RSR were identified, which had PVE ranging from 6.17% to 11.56%.
DISCUSSION
Drought represents one of the most significant abiotic stresses that causes up to a 60% reduction in chickpea yields (Kumar et al., 2015; Hajjarpoor et al., 2018; Barmukh et al., 2022). Drought tolerance is highly influenced by several parameters such as days to germination, days to 50% flowering, days to maturity, biomass, and yield as morphological traits; transpiration efficiency, membrane permeability, and relative leaf water content as physiological traits; and root depth, root length density, root weight, and root to shoot ratio as root-related traits (Varshney et al., 2011). Due to these factors and unknown mechanisms underlying drought tolerance, molecular mapping for drought tolerance is complicated. Therefore, for genetic dissection of drought tolerance, evaluation of drought tolerance component traits and identification of molecular markers tightly linked to these traits will facilitate the selection of drought-tolerant genotypes and eventually introgression of these traits into elite cultivars through genomics-assisted breeding programs. Thus, it is imperative to study the complex nature of drought stress for identifying key genomic regions associated with drought tolerance component traits for the selection of drought-tolerant genotypes.
In this study, drought stress significantly affected all of the measured morphological, physiological, and root-related traits, except HI, RL, RLD, and FRW. A total of 17 lines were found to be promising for yield and yield-related traits as well as root-related traits under rainfed conditions. Out of these 17 lines, five lines showing early flowering and better yield contributing traits are being evaluated under multi-location trials in India. It has been found in earlier studies that traits such as early flowering, phenological plasticity, and a profuse and deep root system could be beneficial under drought stress (Saxena, 2003; Berger et al., 2006), which is in accordance with our results. Early flowering can be a good option as more pods are set before the occurrence of drought stress, and thus genotypes can escape drought stress (Kushwah et al., 2020b). Breeding programs for developing drought-tolerant genotypes in chickpea were focused on accelerating flowering and maturity to escape terminal drought stress (Upadhyaya et al., 2012). The primary adaptive strategy identified by several chickpea breeding programs for tolerance to terminal drought stress is drought escape via early flowering (Kumar & Abbo, 2001; Berger et al., 2006; Gaur et al., 2008; Purushothaman et al., 2014) in spite of the fact that selection pressure for drought tolerance and drought escape per se are different from each other (Berger et al., 2016). However, some previous studies have observed that early flowering is negatively correlated with seed yield under drought stress (Kumar et al., 2005; Yucel et al., 2006). Hence, there is a need to develop drought-tolerant, high-yielding chickpea genotypes with early maturity.
Previous studies show that root traits, such as root length density, root depth, and root dry weight, could be promising for improving drought tolerance in chickpea (Kashiwagi et al., 2006; Zaman-Allah et al., 2011; Purushothaman et al., 2017; Barmukh et al., 2022). The present study also showed that root length density was non-significantly affected by drought stress. Prolific root systems are likely to influence transpiration, biomass, and harvest index under drought conditions through the utilization of deep soil moisture (Zaman-Allah et al., 2011; Kashiwagi et al., 2013; Purushothaman et al., 2016). Despite the significance of prolific root systems for drought stress, only a few advances have been made in this direction, mainly because root studies are laborious and time consuming. Shoot and root vigor are reciprocally advantageous as the production of shoot biomass depends on the exploitation of soil moisture by the root system (Pinheiro et al., 2005; Purushothaman et al., 2017; Sivasakthi et al., 2018) and root vigor depends on the production of photo-assimilates by shoots (Wasson et al., 2014). This suggests that further improvements in root-related traits could advance drought stress tolerance in chickpeas as higher yields and harvest index can be attained with a strong root system. A high correlation coefficient was observed between the irrigated and rainfed conditions for all root-related traits except RLD. Our results are in accordance with a previous study (Zaman-Allah et al., 2011) in which RLD did not differ between sensitive and tolerant chickpea genotypes under drought stress and had no correlation with seed yield.
In the present study, the pooled ANOVA for all measured traits, including root-related traits, showed highly significant differences between genotypes under irrigated and rainfed conditions at both locations. Combined ANOVA in several studies also showed significant differences for various morphological and physiological traits (Hamwieh et al., 2013; Pang et al., 2017; Purushothaman et al., 2017; Sachdeva et al., 2018) and for root-related traits (Varshney et al., 2014; Purushothaman et al., 2017). Significant differences were also observed for genotype × environment (G × E) interactions for almost all the measured traits including root-related traits. Both the locations have almost similar trends of rainfall patterns under rainfed conditions with little differences. Thus, significant G × E interaction could be due to other factors other than the available soil moisture. To encounter these differences, BLUP values for genotypes for both the locations were also estimated taking location as a random effect. BLUP values of the RIL population for both locations showed high correlations with each, thus showing that these can be used for further QTL analysis to find consistent QTLs at both the locations. BLUPs were also estimated from phenotypic data across the years and locations by several researchers for statistical analysis and QTL mapping (Thudi et al., 2014; Li et al., 2018; Sivasakthi et al., 2018).
Due to polygenic control and high G × E interaction, quantitative traits like drought tolerance are complex in nature. Because of this, little progress could be made to breed cultivars harboring these traits through conventional breeding approaches. Thus, identifying the QTLs for complex drought tolerance component traits is an important requirement for understanding their genetic architecture and precise transfer in the background of elite cultivars. In the present study, QTLs having a positive additive effect indicated that the donor parent allele (GPF 2) contributed toward increasing the trait value; while those with a negative additive effect indicated that the recipient parent allele (ILWC 292) conferred a higher trait value. A total of 31 QTLs at Ludhiana and 23 QTLs at Faridkot were identified for the 12 morphological and physiological traits excluding root-related traits using BLUPs in the RIL population evaluated under irrigated and rainfed conditions. Out of these, eight consensus QTLs for DFI, DFF, DHF, HI, MPI, and RLWC were identified at both locations. QTLs responsible for early flowering have an advantage of more pod setting before the occurrence of drought stress due to a comparatively longer period of reproductive growth. Early flowering genotypes follow the mechanism of drought escape by reducing the duration of crop maturity under drought stress (Krishnamurthy et al., 2010; Purushothaman et al., 2016), which indicated that this trait is a useful selection criterion for drought tolerance. The consensus QTLs for DFI, DFF, and DHF harbor on linkage groups 4 and 6, suggesting that these loci confer flowering time in chickpea.
A total of three QTLs and two QTLs for seed yield were reported earlier by Jingade and Ravikumar (2015) and Rehman et al. (2011), respectively, on CaLG01. Likewise, one QTL on CaLG04 (Cobos et al., 2007) and four QTLs on linkage groups CaLG04, CaLG06, CaLG07, and CaLG08 (Verma et al., 2015) for seed yield were also identified. Some QTLs for seed yield were also mapped in the present study, which were located on linkage groups CaLG04, CaLG06, and CaLG07. Similarly, two QTLs on CaLG04 and CaLG08 (Cobos et al., 2009), two QTLs on CaLG06 and CaLG07 (Gupta et al., 2015), and one QTL on CaLG04 (Jamalabadi et al., 2013) for seed weight were identified. Recently, major-effect QTLs for seed weight were identified on CaLG06 and CaLG04 in chickpea (Barmukh et al., 2021b). In the present study, three QTLs were identified for seed weight on linkage groups CaLG02, CaLG06, and CaLG07. Several QTLs for plant height, number of pods per plant, 100-seed weight, biomass, harvest index, and yield were also identified in some previous studies (Gowda et al., 2011; Varshney et al., 2014) which were also at the same locus as identified in our study.
Solute leakage from the cell membrane is used to estimate the damage caused by drought stress (ElBasyoni et al., 2017). Drought-tolerant genotypes show less cell membrane damage, and thus, the membrane permeability index can be used as an effective selection criterion against drought stress. Likewise, RLWC indicates the equilibrium between water content in the leaf tissues and transpiration rate (Lugojan & Ciulca, 2011). Thus, RLWC is also a key indicator of water status present in plants and helps in the efficient selection of drought-tolerant genotypes. Consequently, QTLs representing genotypic differences in the RIL population for both MPI and RLWC traits can be used in genomics-assisted breeding programs for improving drought tolerance in chickpea.
While roots represent the first plant parts to be exposed to drought conditions in the soil, improvement of root-related traits holds the potential to enhance soil water extraction under drought scenarios. Breeding strategies should concentrate on the improvement of root-related traits for the efficient utilization of available soil water. In the present study, a total of seven QTLs were identified for four root-related traits, namely, RSR, RLD, RDW, and RDW/TDW, in the RIL population evaluated under irrigated and rainfed conditions. In the past, Varshney and colleagues (2014) identified robust main-effect QTLs for root traits such as root length density, root surface area, and root dry weight/total plant dry weight ratio, explaining up to 16.67% PVE. Furthermore, Thudi et al. (2014) identified 15 significant molecular markers closely associated with root length density, root dry weight, rooting depth, root surface area, and root volume. Due to the lack of precise and high-throughput phenotyping for root-related traits, breeding for the advancement of drought tolerance appears to be a difficult task. In the present study, molecular mapping of root-related traits will be helpful for the introgression of the genomic regions associated with root traits into elite cultivars by using genomics-assisted breeding approaches (Varshney et al., 2021).
Four QTL clusters were consistently identified at both Ludhiana and Faridkot locations, containing QTLs for DG, DFI, DFF, DHF, BIO, YLD, HSW, HI, MPI, and RLWC at the same genomic position on CaLG04 and CaLG06. One QTL cluster located on CaLG04 possessed QTLs for RDW, YLD, HI, MPI, and RLWC traits. Several genomic regions having co-localized/pleiotropic QTLs can be scrutinized to identify closely linked molecular markers, which will be helpful for introgressing this region into elite cultivars through marker-assisted breeding programs. Previously, Varshney et al. (2014) identified a total of nine QTL clusters for drought tolerance-related traits, out of which one major cluster on CaLG04 was referred to as a “QTL hotspot”. Importantly, the “QTL-hotspot” region was found to contain 13 major QTLs for 12 drought tolerance component traits and explained up to 58.20% PVE (Varshney et al., 2014). The estimated size of this “QTL hotspot” was refined from 29 cM to 14 cM using a genotyping-by-sequencing approach (Jaganathan et al., 2015) and then to ∼300 kb using a bin mapping approach (Kale et al., 2015). Notably, fine mapping of the “QTL-hotspot” region led to the identification of CaTIFY4b as the candidate gene regulating drought responses in chickpea (Barmukh et al., 2022). In the recent past, introgression of the “QTL-hotspot” region into different genetic backgrounds of elite cultivars led to the development and release of molecular breeding lines with enhanced drought tolerance (Varshney et al., 2013b; Bharadwaj et al., 2021). In a similar way, the QTL clusters identified in the present study can be targeted for introgression into elite cultivars for enhancing drought stress tolerance. These identified QTLs will serve as a potential tool for detecting candidate genes with the recent advances in genomics and transcriptomics resources in chickpea.
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Supplementary Figure S1 | Scatter plots of drought tolerance-related traits showing a relationship between Ludhiana and Faridkot locations. FDK, Faridkot; LDH, Ludhiana.
Supplementary Figure S2 | Scatter plots of root-related traits showing a relationship between Ludhiana and Faridkot locations. FDK, Faridkot; LDH, Ludhiana.
Supplementary Figure S3 | Genomic regions with QTLs for morphological and physiological traits. For traits evaluated at Faridkot, (A) QTLs for days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), number of pods per plant (NPP), and 100-seed weight (HSW) were mapped on CaLG02; while (B) QTL for membrane permeability index (MPI) was mapped on CaLG07. (C) QTLs for days to germination (DG), number of pods per plant (NPP), biomass per plant (BIO), yield per plant (YLD), and 100-seed weight (HSW) were mapped on CaLG07 for Ludhiana.
Supplementary Figure S4 | Genomic regions with QTLs for root-related traits. QTLs for root to shoot ratio (RSR) mapped on (A) CaLG02 and (B) CaLG06. (C) QTL for root length density (RLD) mapped on CaLG07.
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Grain appearance is one of the most important attributes of rice. It is determined by grain size, shape, and weight, which in turn influences the rice yield and market value. In this study, QTLs for grain length, grain width, grain length/width ratio, and grain weight were mapped using the high-throughput indica/indica SNP platforms. The population of the mega indica variety IR64 and the high-quality aromatic variety Sadri from Iran was phenotyped. Based on this phenotypic data, plants of 94 F2:3 families including both parents were selected. A linkage map analysis of 210 SNP markers identified 14 QTLs controlling the grain length, grain width, length/width ratio, and 1,000 grain weight. Among these 14, one important region containing the QTLs for all the four studies’ traits was mapped on chromosome 8. It was derived from Sadri for the decreased length/width ratio and increased grain weight. This study demonstrated the speed and efficiency in using multiplex SNP genotyping for QTL analysis. Moreover, this study identified four novel QTLs (qGL8, qTGW8, qLWR8, and qGW8) sharing the same position on chromosome 8 which were linked with grain quality characteristics between one indica and one aromatic variety. It will enable more precise marker-assisted selection for grain weight, shape, and size. Further in-depth studies are required to dissect this region of interest and identify the related gene(s).
Keywords: grain weight, QTL mapping, SNP markers, grain size, genotyping
INTRODUCTION
Rice is one of the most important cereal crops. The grain quality of rice has several components: biochemical characteristics, cooking quality, flavor, milling efficiency, grain shape, appearance, and nutritional value. Among these, grain size (length and width), grain shape (length/width ratio), and weight are the main components of yield. Grain size is becoming target breeding traits for improving the rice yield (Xing and Zhang, 2010). Grain appearance is also important to capture the higher market value of rice. Global preferences for grain size and grain shape vary widely, some preferring long and cylindrical grain is preferred in some regions (e.g., United States and Europe), while short and round grain is preferred in other parts of the world (e.g., China, Japan, and Korea) (Bai et al., 2010). Across large regions of South East Asia, IR64 has been widely grown and accepted by consumers for desirable grain quality. Likewise, in some countries, such as Iran, consumers prefer aromatic varieties of rice such as the Sadri. The grain shape and size are quantitative traits (McKenzie and Rutger, 1983), and several individual studies have identified a number of QTLs for grain size and grain weight (Tan et al., 2000; Wan et al., 2008; Huang et al., 2013; Nagata et al., 2015; Wang et al., 2015; Gao et al., 2016; Cabral et al., 2018; Wu et al., 2020). A large number of grain length QTLs were reported by Wan et al. (Shao et al., 2010) and Zhang et al. (Yan et al., 2011) on chromosomes 2, 3, 5, 7, and 9 explaining the percentage of phenotypic variation ranging from 5.8 to 35.6 in three different environments based on SSR and EST markers in the cross of japonica (IR24)/Japonica (Asominori). Six QTLs were reported by Wan et al. (2008) which affect grain width in four different environments and found qGW5 as the major QTL on chromosome 5 with phenotypic variation ranging from 22.2 to 25.9% in different environments using F7 RILs derived from indica and japonica cross. Liang-Qiang et al. (2006) detected the gene Lk-4 (t) controlling the grain length of chromosome 4 with the help of SSR and CAPs markers in BC2F2 population derived from Shuhui527 and Xiaoli. Two QTLs were also mapped on chromosome 7, in two independent studies using populations derived from indica and japonica varieties, qGL7 (Bai et al., 2010) and qGL7-2 (Shao et al., 2010). Recently, many QTLs have been cloned for grain shape and size such as GS3, GW2, and qGW5 (Yan et al., 2011). The major gene GS3 identified on the precentromeric region of chromosome 3 was shown to have a major effect on grain length and weight whereas a minor effect on grain weight, the results showed that all these traits are correlated (Fan et al., 2006). Song et al. (2007) identified a gene GW2 on chromosome 2, which encodes a RING-type protein with E3 ubiquitin ligase activity controls grain width and grain weight. Yan et al. (2011) found that GW2 and qGW5 positively regulate the expression of GS3. The small and round seed1 (SRS1) gene was identified as effecting grain size, which is the same as previously reported gene dense and erect panicle 2 (DEP2) (Abe et al., 2010). Molecular markers, especially SSRs, have been successfully used to identify gene/QTLs for complex traits across a variety of germplasm. However, there are some limiting factors because SSR markers can have multiple alleles and it is difficult to multiplex the SSR markers to screen large populations. SSR marker results also vary by laboratory, germplasm, and population size because of its multiallelic nature causing a higher probability of detecting heterozygosity (Lee et al., 2022) [98]. Additionally, SSR markers are difficult to align a diverse array of alleles in the database because the rate of mutation is much higher (10–10,000 times more frequent than single nucleotide substitutions per generations (Morales et al., 2020) [99]). It is because with the intervention of the technological advances, millions of bi-allelic markers have been identified in the rice genome as single-nucleotide polymorphic (SNP) markers, allowing the construction of high-quality genetic linkage maps and to identify and fine map of QTL/genes (McCouch et al., 2010). SNP markers have improved the methods for QTL/gene identification and have recently been widely used in marker-assisted selection (MAS) (Phing Lau et al., 2016), genome-wide diversity, and association analysis (McCouch et al., 2010). SNP markers are easy to multiplex, which reduces time and cost. To apply these markers, different platforms have been developed with different sets in terms of SNP marker density, such as 96, 384, 1536, and 44,000-plex (McCouch et al., 2010; Thomson et al., 2021). All of these SNP markers are bi-allelic, so results from different studies can be easily combined and shared between laboratories. For the Illumina BeadXpress reader, 94 and 384-plex SNP sets were used to develop a linkage map and identify QTLs for indica/indica, indica/japonica, and japonica/japonica combination (Thomson et al., 2012). Naveed et al. (2018) also reported that SNP markers are a useful tool to identify gene/QTLs controlling complex traits. Populations derived from indica x indica were studied by Niu et al. (2021), and 23 QTLs were detected in all 12 chromosomes except chromosomes 1, 3, and 9. All these studies confirm the significant role of SNP markers in QTL identification. This study was designed with the aim to identify QTLs affecting the grain appearance and grain weight in the population developed from Sadri (aromatic) and IR64 (non-aromatic) with the help of SNP markers by using the Illumina BeadXpress system. In addition to 10 other QTLs, a major QTL with a strong effect on grain length and grain shape was found on chromosome 8 and reported the allele from the donor parent effect the grain length and grain length to width ratio.
MATERIALS AND METHODS
Population development
Sadri (ACC 32339) was crossed with IR64 (paternal: pollens were used) at IRRI Philippines. F1 and F2 populations were advanced by self-fertilization. Phenotypic trait data were measured for each plant in the F2 population. In total, 140 F2 plants were harvested to measure the grain length and width. These data were recorded by using 30 randomly selected grains with their bran intact through a HP 8200 Digital Flatbed scanner and repeating it three times, and grain images were then analyzed by the computer software application GIMP 2.8 (http://www.gimp.org/) to measure the grain length, width, and length–width ratio. Thousand-grain weights per family at the 12% moisture level were measured using a digital balance. Based on the phenotypic data in F3 of these 140 plant progenies, 94 were selected for further molecular analysis.
DNA extraction
DNA was extracted from these 94 F3 progenies for molecular analysis and approximately 100–150 plants of each progeny were pooled together to represent the true genotype of F2 progeny. DNA was extracted by using a slightly modified protocol reported by Murray and Thompson (1980). Rice leaves were ground in liquid nitrogen in a mortar and pestle. The powder was placed in 2 ml centrifuge tubes, followed by the addition of 2x CTAB buffer (CTAB 20 g, 100 mM Tris-HCL [pH 8.0], 50 mM EDTA [pH 8.0], and 500 mM NaCl) with 2% SDS, chloroform extraction, and final precipitation by 2-propanol (Murray and Thompson, 1980). DNA was dissolved in 100 μl TE buffer with 1 µl of 10 mg/μl of RNAse. DNA samples were quantified with the help of a NanoDrop spectrophotometer and normalized to 70 ng/μl concentration. The DNA samples were run on 1% agarose gel to check the quality of DNA.
SNP genotyping by using Illumina BeadXpress
GoldenGate assay through VeraCode technology was used for the genotyping (Manly et al., 2001; Lin et al., 2009). VeraCode technology uses cylindrical microbeads that barcode the unique oligo-nucleotide sequence to corresponding SNP loci which hybridized with the labeled (cy3/cy5 dye) polymerized product (Lin et al., 2009). The SNP markers were designed and prepared by following the “GoldenGate Genotyping Assay for VeraCode Manual Protocol’’ (Illumina Part # 11275211) and manufacturer’s instructions. For population genotyping, 96-well plates with a total volume of 5 µl of 70 ng/μl of the DNA sample were used. Amplification was performed in a G-Strom (Surrey, United Kingdom) thermal cycler through a universal primer amplification step (Thomson et al., 2012). After the amplification step, the BeadXpress reader scanned the VeraCode beads hybridized to each address sequence. For each SNP, homozygous genotypes were represented by a single fluorescent dye, i.e., Cy3 or Cy5, whereas the appearance of both colors in the equal amount at that particular locus indicated the presence of the heterozygous genotype.
Data analysis
All SNP data generated by BeadXpress were analyzed by Illumina GenomeStudio (v2010. 1) software on the basis of the ratio cy3/cy5 signal intensities, and data were exported by using the ALCHEMY-Illumina plug-in (v1. 0). Following the procedure applied in the Human Genome Project, ALCHEMY software (hhtp://alchemy.sourceforge.net) was used for GenomeStudio to optimize more heterozygous results. Illumina Gene Call software generated the graphical display for each SNP marker (only SNP id4009024 is shown in Supplementary Figure S1). The data points color codes for the call are (AA = red, AB = purple, and BB = blue) based on the ratio of the cy3/cy5 dye signal. Genotypes are called for each sample (dots) by their signal intensity (norm R, y-axis) and allele frequency (Norm Theta, x-axis) relative to the conical cluster position (dark shading) for a given SNP marker (Supplementary Figure S1). ALCHEMY requires three files: 1) a sample format; 2) an SNP intensity report (generated by GenomeStudio); and 3) an SNP map file. A linkage map was developed with the help of Map Manager QTX (Manly et al., 2001), and the file was exported to QTL Cartographer v2. 5 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) (Wang, 2006). The data on 94 F2 families with 213 SNP markers and four traits were analyzed by Composite Internal Mapping (CIM) with 1000 permutation tests for all traits at the significance level of 0.05. LOD score was set at 3 as a threshold level. R-Cropstat was used for the calculation of the correlation coefficient.
RESULTS
Grain size, grain shape, and grain weight phenotypic variation
IR64 has been one of the most popular nonaromatic varieties under cultivation in various parts of the world for several decades for its various characteristics including its long-grain size while Sadri is an aromatic land race cultivated in Iran. Significant differences in all four traits related to grain appearance were recorded between the two parents. F3 seeds from 140 F2 individuals were phenotyped and showed normal distributions across all four traits (Figure 1). IR64 has a higher trait value for grain length and length/width ratio, whereas Sadri showed higher trait values for grain width and grain weight.
[image: Figure 1]FIGURE 1 | Frequency distribution of grain size, grain shape, and grain weight in F2 population.
Correlation coefficient
The correlation coefficient of grain length, grain weight, grain thickness, and thousand-grain weight showed that these traits highly correlated with each other (Table 1). The grain length has a significant negative correlation (−0.32) with the grain width, while it has a significant positive correlation (0.69) with the length–width ratio. Grain length has a positive but minor correlation (0.15) with grain weight (p < 0.05). Grain width has a strong negative correlation (−0.89) with the length–width ratio and has a significant positive correlation (0.49) with thousand-grain weight.
TABLE 1 | Correlation coefficient by Pearson’s product-moment correlation.
[image: Table 1]Linkage map construction
The rice SNP set of 384-plex named RiceOPA (oligo pool assay) 2.1 was made for indica/indica comparison and RiceOPA3.1 (indica/japonica). Thomson et al. (2012) showed 210 and 190 polymorphic SNPs, respectively, in both parents. Using RiceOPA 2.1, polymorphic markers vary across 12 chromosomes (Chr.) of rice ranging from 9 (Chr. 5) to 29 (Chr. 1) as shown in Table 2. All markers were the same in order according to the physical order of the Nipponbare genome except two markers (wd8001854 and ud8001072) on chromosome 8.
TABLE 2 | Number of markers per chromosome and chromosome length in centiMorgen (cM).
[image: Table 2]QTL mapping
Using the high-throughput SNP platform BeadXpress, 14 QTLs controlling grain shape, grain size, and grain weight were identified. The QTL cartographer was run with 1,000 permutations at a threshold level of 3.0 LOD. Four QTLs (qGL4, qGL7, qGL8, and qGL11) for grain length (GL) were identified on chromosomes 4, 7, 8, and 11, respectively. Among these QTLs, qGL4 (id4008430-id4009024) had a 3.41 LOD score and explained 3.47% of the phenotypic variation, QTL qGL7 (id7003359-id7003748), with a 4.14 LOD score, explained 8.05% phenotypic variation. Two major QTLs, i.e., qGL8 (id80006789-id8007301) and qGL11 (id11007488-id11008036), with 5.37 and 4.32 LOD scores, explained 29.61% and 16.84% of phenotypic variation, respectively.
Four QTLs (qGW1a, qGW1b, qGW7, and qGW8) for grain width (GW) were detected on chromosomes 1, 7, and 8. Two QTLs, qGW1a (id1024972-id1052983) and qGW1b (id1052983-id1028304) were detected on chromosome 1, having 3.18 and 5.11 LOD and explaining 13.62% and 11.58% phenotypic variation, respectively. The QTL qGW7 (id7002051-id7002105) was identified on chromosome 7, having 3.69 LOD score and explaining 9.77% of the phenotypic variation. The QTL qGW8 (id80006789-id8007301) was identified on chromosome 8 having the highest LOD score of 11.19 and explaining 9.77% of the phenotypic variation.
Three QTLs (qLWR1, qLWR8, and qLWR9) for the length width ratio (LWR) were identified on chromosomes 1, 8, and 9. The QTL qLWR1 (id1000556-id1001073) had a 4.56 LOD score and explained 2.88% of the phenotypic variation. The QTL qLWR8 (id80006789-id8007301), with a 14.55 LOD score, explained 21.90% phenotypic variation. QTL qLWR9 (id9001297-id9001352), with a 3.45 LOD score, explained 5.91% phenotypic variation.
Three QTLs (qTGW1, qTGW3, and qTGW8) for thousand-grain weight (TGW) were identified on chromosomes 1, 3, and 8. QTL qTGW1 (id1024972-id1025983) had a 5.49 LOD score and explained 32.52% of the phenotypic variation. QTL qTGW3 (id3013765-id3014401), with a 3.05 LOD score, explained 8.83% phenotypic variation. QTL qTGW8 (id8006789-id8007301), with a 5.28 LOD score, explained 2.01% phenotypic variation.
Interestingly, chromosome 8 harbor QTLs for all the four traits under consideration. Careful analysis revealed that all these QTLs (qGL8, qGW8, qLWR8, and qTGW8) are located between the marker interval id80006789-id8007301, indicating that this locus is involved in all of these four traits. The LOD score of all traits varies from low 5.37 (qGL8) to 14.55 (qLWR8) as shown in Figure 2. The QTLs identified on the different chromosome are shown in Figure 3 and the LOD, their share in explaining the phenotypic variation, and marker interval are given in Table 3.
[image: Figure 2]FIGURE 2 | LOD and additive effect of QTLs on chromosome 8 of all four traits.
[image: Figure 3]FIGURE 3 | Linkage map showing the QTL location on chromosomes.
TABLE 3 | QTLs for grain length, grain width, grain length–width ratio, and grain weight.
[image: Table 3]DISCUSSION
The correlation coefficient analysis among the four studied traits showed a significant correlation among each other at significance levels of 0.001, 0.01, and 0.05 (Table 1). The negative correlation of the grain length with grain width while its positive correlation with grain length–width ratio are in accordance with previous reports by Bai et al. (2010) and Wan et al. (2006). Interestingly some other studies like Liu et al. (2010) have shown the contradictory correlation between GL and GW, indicating toward a complex relationship between the two trials. Our study found that grain length showed a positive but minor correlation with grain weight (p < 0.05). The results showed grain width had a negative effect on the grain length–width ratio, while positive correlation with 1,000 grain weight; similar results were reported previously (Liang-Qiang et al., 2006; Wan et al., 2008). The length/width ratio showed a significant negative correlation with 1,000 grain weight, in accordance with previous observations reported by Liu et al. (2010). The result showed that grain size (length and width) is an important agronomic trait for rice breeding because it indirectly influences the grain yield by affecting the grain weight. Interestingly, based on the significance level, grain width contributed more in 1,000 grain weight in this population than the length.
In this study, an F2:3 population of 94 individuals derived from IR64 (indica) and Sadri (aromatic) from Iran was used for mapping with high-throughput SNP markers. The rice SNP set of 384-plex named RiceOPA (oligo pool assay) 2.1 made for indica/indica comparison and RiceOPA3.1 (indica/japonica) found 213 and 190 polymorphic SNPs, respectively. RiceOPA 2.1 was used for genotyping of F2 population because indica and Aus are closer than japonica and aromatic reported by Thomson et al. (2012). The genetic map covering the 1783.4-cM genomic region was constructed with an average marker interval of 8.37 cM which is below the minimum required interval (20 cM) for QTL mapping (Lander and Botstein, 1989; Bogdan and Doerge, 2005).
A genetic linkage map of the 1635.9-cM genome region was constructed using 164 SSR markers for RIL population derived from Nanyangzhan and Chuan7 parents by Bai et al. (2010). Liu et al. (2010) constructed a linkage map of 1,371.4 cM length using evenly distributed 133 SSR markers on a RIL population. The linkage map covering 2005 cM was contracted using 175 polymorphic RFLPs by Huang et al. (1997). The difference in different reported studies was found, which was due to the variation in the genetic background and recombination rate in the developed population.
Diversity analysis results confirmed the previous reports by Garris et al. (2005) that both the studied lines were genetically very distant from each other. IR64 and Sadri belong to the indica group and aromatic, respectively, as shown in Supplementary Figure S2.
Grain length and width can be simply categorized visually. The grain shape is mainly determined by the length/width ratio. Using the high-throughput BeadXpress SNP platform, 14 QTLs were detected controlling the rice grain shape, grain size, and grain weight in cross between IR64 and Sadri.
Out of four QTLs of grain length, a QTL qGL8 was not previously reported for this trait based on a comparison of genetic position and/or physical position but reported for grain breadth and grain shape by Rabiei et al. (2004) in indica/indica cross using Iran traditional varieties. The second grain length QTL qGL7 was near to qGL7-2 (Shao et al., 2010) but having a low LOD score. Two major QTLs, qGL7 (Bai et al., 2010) and qGL7-2 (Shao et al., 2010) reported on chromosome 7, were showing positive additive effects on grain length 0.30 and 0.24, respectively, in indica/japonica cross.
Four additive effect QTLs were detected for GW by using the SNP marker on chromosomes 1, 7, and 8. Two QTLs qGW1a (LOD 3.11) and qGW1b (5.11) were detected first time on chromosome 1 having a phenotypic variation of more than 11% between the interval of id1024972-id1052983 and id1052983-id1028304, respectively. These QTLs were not reported previously in this region. The QTL qGW8 was previously reported between the interval of RM256 and RM230 by using two traditional Iranian rice cultivars and also positively affect the grain breadth (Rabiei et al., 2004). Yang et al. (2021) also found a QTL of grain width at the bottom end of chromosome 8 by substitution mapping.
Three QTLs for the length/width ratio were identified on chromosomes 1, 8, and 9. The minor QTL qLWR1 explains 2.88% phenotypic variation with the LOD of 4.56 on the tip of the chromosome 1, which was previously reported by Jiang et al. (2005), using double haploid (DH) population derived from the indica (Zhenshan 97) and japonica (WYJ-2), at the same position. The QTL on chromosome 8 between marker intervals of id80006789-id8007301 had an LOD score of 14.55 with a phenotypic variation of 22.90%. A similar region was also reported by Rabiei et al. (2004) using indica/indica population. Bazrkar-Khatibani et al. (2019) also found a QTL of grain width at the bottom end of chromosome 9 by using RIL population derived from a cross of Ali-Kazemi (A) and Kadous (K) between the marker intervals of RM23904 and RM24432.
For 1000 grain weight, three QTLs were detected, out of which QTL qTWG1 on chromosome 1 explained 32.52% of phenotypic variation. The allele of IR64 at the locus qTWG1 had a major effect on 1000 grain weight. Two QTLs were detected on chromosomes 3 and 8 with 8.83% and 2.01% of phenotypic variation, respectively. Liu et al. (2010) reported two QTLs on chromosome 3, between the marker intervals RM3400–RM3646 (PVE: 24%) and RM3436–RM5995 (PVE: 19.6%) in cross between Minghui63 and Teqing (indica/indica).
Most of the QTLs found in this study were not previously reported because the previous studies for grain size and shape were performed using indica/indica or indica/japonica crossed populations. However, in this study, a population derived from long grain indica and aromatic indica varieties was used to investigate grain-related traits. The important finding of this study is a major QTL on chromosome 8 which was controlling both grain size and grain weight with a high phenotypic variation. This QTL was previously reported for grain breath and shape by Iranian scientists (Rabiei et al., 2004; Nili et al., 2017; Qiu et al., 2017), while using Iranian traditional varieties. We identified SNP alleles for grain-related traits in the genetic background of non-aromatic varieties; furthermore, these SNP markers can be used for QTL mapping studies and can be substituted by SSR or other molecular markers.
CONCLUSION
QTL mapping analysis for grain size, grain shape, and grain weight by using F2:3 population derived from IR64 and Sadri revealed 14 QTLs for all four traits. Interestingly, one region in chromosome 8 contained QTLs for all the 4 studied traits (1 for each trait), making this a good candidate for the fine map to identify candidate genes for grain-related traits. The study generates reliable information about the SNP map and contributes for mapping QTLs in biparental population.
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Kun Chen1,2,3†, Yuhui Zhuang3,4†, Lihui Wang1,2,3, Huaqi Li2, Taijie Lei2, Mengke Li2, Meijia Gao2, Jiaxian Wei2, Hao Dang3, Ali Raza3, Qiang Yang1,3, Yasir Sharif1,2, Huan Yang3, Chong Zhang, Huasong Zou2* and Weijian Zhuang1,2,3*
1State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
2College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
3Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
4College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
Edited by:
Yuanhu Xuan, Shenyang Agricultural University, China
Reviewed by:
Mei Qiong, Shenyang Agricultural University, China
Elaine Chan, The University of Hong Kong, Hong Kong SAR, China
* Correspondence: Huasong Zou, hszou@fafu.edu.cn; Weijian Zhuang, weijianz@fafu.edu.cn
†These authors have contributed equally to this work
Specialty section: This article was submitted to Plant Genomics, a section of the journal Frontiers in Genetics
Received: 10 June 2022
Accepted: 18 July 2022
Published: 22 August 2022
Citation: Chen K, Zhuang Y, Wang L, Li H, Lei T, Li M, Gao M, Wei J, Dang H, Raza A, Yang Q, Sharif Y, Yang H, Zhang C, Zou H and Zhuang W (2022) Comprehensive genome sequence analysis of the devastating tobacco bacterial phytopathogen Ralstonia solanacearum strain FJ1003. Front. Genet. 13:966092. doi: 10.3389/fgene.2022.966092

Due to its high genetic diversity and broad host range, Ralstonia solanacearum, the causative phytopathogen of the bacterial wilt (BW) disease, is considered a “species complex”. The R. solanacearum strain FJ1003 belonged to phylotype I, and was isolated from the Fuzhou City in Fujian Province of China. The pathogen show host specificity and infects tobacco, especially in the tropical and subtropical regions. To elucidate the pathogenic mechanisms of FJ1003 infecting tobacco, a complete genome sequencing of FJ1003 using single-molecule real-time (SMRT) sequencing technology was performed. The full genome size of FJ1003 was 5.90 Mb (GC%, 67%), containing the chromosome (3.7 Mb), megaplasmid (2.0 Mb), and small plasmid (0.2 Mb). A total of 5133 coding genes (3446 and 1687 genes for chromosome and megaplasmid, respectively) were predicted. A comparative genomic analysis with other strains having the same and different hosts showed that the FJ1003 strain had 90 specific genes, possibly related to the host range of R. solanacearum. Horizontal gene transfer (HGT) was widespread in the genome. A type Ⅲ effector protein (Rs_T3E_Hyp14) was present on both the prophage and genetic island (GI), suggesting that this gene might have been acquired from other bacteria via HGT. The Rs_T3E_Hyp14 was proved to be a virulence factor in the pathogenic process of R. solanacearum through gene knockout strategy, which affects the pathogenicity and colonization ability of R. solanacearum in the host. Therefore, this study will improve our understanding of the virulence of R. solanacearum and provide a theoretical basis for tobacco disease resistance breeding.
Keywords: Ralstonia solanacearum, tobacco, bacterial wilt, disease resistance, effector proteins, genome sequencing, Rs_T3E_Hyp14
INTRODUCTION
Bacterial wilt disease (BWD) caused by Ralstonia solanacearum is a devastating soil-borne disease (Cheng et al., 2021). Owing to its large genetic diversity, it is also known as the R. solanacearum species complex (RSSC). RSSC damages numerous economically important crops, such as tobacco (Xiao et al., 2018), peanut (Chen et al., 2021), tomato (Im et al., 2020), potato (Tan et al., 2019), and pepper (Xianyang et al., 2018), thus resulting in substantial economic losses. Upon infection, RSSC can invade the host plant’s vascular tissues of roots through the intercellular spaces, where it multiplies and secretes exopolysaccharides that block the vascular tissue, thus causing the death of the host plant (Xiaoqiang, 2018). RSSC also lurks in some asymptomatic hosts to prepare for its subsequent transmission (Genin and Denny, 2012). According to classical taxonomic classification, RSSC can be classified into four phylotypes (Ι, II, III, and IV) (Paudel et al., 2020). However, based on genomics and proteomics, RSSC was reclassified into three phylotypes (I, II, and III) (Prior et al., 2016). Particularly, phylotypes I and III belong to the first type, while phylotypes II and IV belong to the second and third types, respectively. This classification has been accepted by several scholars and used for further experimentations.
Tobacco (Nicotiana tabacum L.) is an economically important global crop and a model plant for transgenic research. BWD is the third most damaging factor affecting tobacco productivity after black root rot and black shank disease (Liu et al., 2007). Ralstonia solanacearum invades tobacco through root wounds or natural cracks and then continues to infect xylem tissue, resulting in blockage of the host vascular bundle system and finally wilting and death (ZHOU et al., 2012). Tobacco bacterial wilt is widely occurring in the main tobacco-growing areas of China. Its incidence rate is about 80%, and in extreme cases, the crop is out of production, resulting in great economic losses to farmers (Wang, 2018).
The virulence factors of R. solanacearum responsible for promoting BWD mainly include exopolysaccharides, plant cell wall degrading enzymes, type III secretion system (T3SS), and type IV secretion system (T4SS) (Genin & Denny, 2012). Among them, the type III effector proteins (T3Es) secreted by T3SS are vital in the pathogenesis of R. solanacearum. Among bacteria, R. solanacearum has the most T3Es; with 60–75 of them existing in a single R. solanacearum genome (Genin and Denny, 2012; Peeters et al., 2013). Due to the large number of T3Es, R. solanacearum has a larger host range than other bacteria (Coll and Valls, 2013). Nonetheless, most T3Es are virulent, with only a few avirulent ones (Landry et al., 2020).
The whole-genome study of R. solanacearum gave novel insights into this complex species for further investigations. Previously, since the whole genome of the strain GMI1000 was sequenced first (Salanoubat et al., 2002), it is also known as the model strain. To date, 291 strains have complete genome assemblies and annotations in the NCBI database (https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/490/). Most of them consist of only one chromosome, with only a few having an additional small plasmid. Tobacco was the host of both Rs10 and CQPS-1 among the sequenced strains (https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/490/).
Therefore, this study reports the genome sequence of the FJ1003 strain of R. solanacearum isolated from tobacco in Fujian Province of China and analyzes its evolution, comparative genomics, and specific genes. The functions of Rs_T3E_Hyp14 were also investigated. Our findings provide a theoretical basis for the control and pathogenic mechanism of tobacco BWD and enrich the genomic information of R. solanacearum.
MATERIALS AND METHODS
Strain preparation and extraction of genomic DNA
The highly pathogenic R. solanacearum strain “FJ1003” (Zhang et al., 2017; Zhang et al., 2019) was provided by Professor Liu Bo from the Fujian Academy of Agricultural Sciences, Fuzhou, China (isolated from tobacco growing areas in Fujian Province). The strain was cultured on the bacteria peptone glucose (BG) solid medium (peptone 1.0%, yeast extract 0.1%, casamino acid 0.1%, glucose 1.0%, agar 1.4% and pH 7.4), and 50 ml BG liquid medium (peptone 1.0%, yeast extract 0.1%, casamino acid 0.1%, glucose 1.0%, pH 7.4) was used for single clone culturing at 28°C, 200 rpm overnight. The bacterial genome extraction kit (TIANGEN, Beijing, China) was used to extract the genomic DNA from the bacterial culture solution of R. solanacearum for subsequent sequencing experiments.
Genome sequencing and assembly
The constructed bacterial genome library was sequenced using the single-molecule real-time (SMRT) sequencing technology by Biomarker Biosciences Co., Ltd. (Beijing, China) (Eid et al., 2009; Faino et al., 2015). Low-quality filtering was performed on the original reads obtained by sequencing; reads with a read length less than 100 bp and average read quality less than 0.7 were removed. The longest reads were selected as seed reads, and the remaining reads were compared to seed reads. Seed reads are converted into highly accurate pre-assembled reads for genome assembly. The complete genome was obtained by assembling the filtered subreads using the MHAP software with the default parameter (Chin et al., 2013; Berlin et al., 2015). The splicing and assembly are carried out in an overlapping manner, and the result is in the form of a scaffold sequence. Mainly through the overlap-layout-consensus method, the rectified high-quality pre-assembled reads sequences were assembled de novo. The quality of the assembly was verified using a probabilistic algorithm to determine the final gene sequence, and the ends of the assembled sequence were trimmed to circularize the genome.
Genomic component analysis
We used the Repeat Masker (Tarailo Graovac and Chen, 2009) software to screen the repeated sequences in the bacterial genome. All coding genes and non-coding RNAs were predicted using the Prodigal software (Hyatt et al., 2010). GeneWise (Birney et al., 2004) was used to predict the presence of pseudogenes in the genome. The prophages and genomic islands were predicted using the PhiSpy (Akhter et al., 2012) and IslandPath-DIOMB (Bertelli and Brinkman, 2018) software, respectively. Furthermore, the PILLERCR software (Edgar, 2007) was used to predict the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the genome.
Functional annotation
The predicted gene sequences were BLASTed using functional annotation databases like COG (Tatusov et al., 2000), KEGG (Kanehisa, 2004), GO (Ashburner et al., 2000), Swiss-Prot (Consortium, 2018), NR (Deng et al., 2006), and PHI (http://www.phi-base.org/index.jsp). The functions of the genes were analyzed using the COG, KEGG metabolic pathways, GO, and PHI enrichment analysis.
Gene family and unique gene analysis
OrthoMCL (Li et al., 2003) software was used to cluster the protein sequences of FJ1003, and the reference genome (GMI1000, CMR15, UW551, PSI07, CQPS_1, RS10) was used to discover the unique gene families of the strain. Based on sequence similarity, OrthoMCL can classify a set of proteins, such as genome-wide proteins, into ortholog groups. A total BLAST database was built using the protein sequences. All these sequences were run using BLASTP against the local database to get the results with an e-value < 1e−5. The percentage match length of the alignments was calculated using a 50% cut-off value. All ortholog, in-paralog, and co-ortholog pairs, and their normalized weight values, were entered into the MCL program for clustering.
Analysis of evolutionary relationship among species
The protein sequences of the endoglucanase genes from FJ1003 and the reference genome were obtained using the annotation information. All the protein sequences used to build the RS_T3E_Hyp14 phylogenetic tree were downloaded from the T3Es (https://iant.toulouse.inra.fr/bacteria/annotation/site/prj/T3Ev3/) and NCBI (https://www.ncbi.nlm.nih.gov/) database. The evolutionary history was inferred using the maximum likelihood method based on the JTT (Jones-Taylor-Thornton) matrix-based model (Jones et al., 1992). The tree with the highest log-likelihood was shown. The percentage of tree in which the related taxa were clustered together was shown next to the branches. Initial tree(s) for the heuristic search were automatically obtained by applying the neighbor-joining (NJ) and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model and then selecting the topology with a superior log-likelihood value. The tree was drawn to scale, with the branch lengths measured in the number of substitutions per site. All positions containing gaps and missing data were eliminated. Finally, evolutionary analysis was performed in MEGA7 (Kumar et al., 2016).
Collinearity analysis
Collinearity analysis was performed using the Multiple Collinearity Scan Toolkit (MCScanX) (Wang et al., 2012) to find the collinear genes between FJ1003 and the reference genome. Using the FJ1003 genomic protein sequences as a database and the reference genomic protein sequences as queries, the FJ1003 and other reference genomic protein sequences were compared by BLASTP. Finally, the file obtained after BLASTP was used as an input in MCScanX with the default parameters to visualize the results.
Construction of mutant and complementary strains of Ralstonia solanacearum
The construction of mutant and complementary strains was carried out following the method of GUI et al. (2021), with slight modifications. Using the genomic DNA of R. solanacearum as a template, the upstream 440 bp and downstream 469 bp fragments of Rs_T3E_Hyp14 were amplified by specific primers (F1:5′-TCAACCGCAGCTACATCAGCTGCATG-3′,R1:5′-GTTACCGGACAGCGAAGAGCCAGCATTTGTGCAACTCCGTTACTGAGATCG-3′,F2:5′-CGATCTCAGTAACGGAGTTGCACAAATGCTGGCTCTTCGCTGTCCGGTAAC-3′,R2:5′-AAGAGCCGCTCTTTGCACTCCGATCA-3′). The upstream and downstream fragments were linked by overlapping PCR, digested by restriction enzymes XbaI and SphI (Takara, Shiga, Japan), and then ligated into the PK18 vector (PK18-U-D) by T4 DNA ligase enzyme (Takara, Shiga, Japan) and transformed into R. Solanacearum FJ1003, by homologous recombination. The Rs_T3E_Hyp14 in R. solanacearum was removed, and the Rs_T3E_Hyp14 mutant (ΔRs_T3E_Hyp14) was obtained that was confirmed by specific primers. For the complementary strains of Rs_T3E_Hyp14, the fragment U-Rs_T3E_Hyp14-D was amplified from the genomic DNA of R. solanacearum by the F1 and R2 primers. The fragment “U-Rs_T3E_Hyp14-D” was ligated into the PK18 vector (PK18-U-Rs_T3E_Hyp14-D) by T4 DNA ligase enzyme and transformed into the mutant strain. The complementary strain (CRs_T3E_Hyp 14ΔRs_T3E_Hyp14) was obtained by homologous recombination.
Inoculation of Ralstonia Solanacearum and investigation of disease index
The R. solanacearum was cultured in BG medium until OD600 = 0.5 and then resuspended with sterile water. A susceptible tobacco variety, Honghua Dajinyuan (HD), was grown in plastic pots filled with nutrient soil to four-leaf stage. A sterilized scalpel was taken and inserted into the pot, causing mechanical damage to the roots. Then, 5 ml of bacterial solution was added to each pot and continued to culture in a greenhouse at 28°C. According to the classification and investigation methods of tobacco diseases and insect pests in China (GB/T23222—2008) (China, 2008), the disease index of infected tobacco plants was investigated at different time points. Three days after inoculation with R. solanacearum, 1 g of stem samples were ground in 1 ml sterile water, applied on BG medium after gradient dilution, and the number of colonies was calculated.
RESULTS
Genome sequencing, assembly, and annotations
Using the SMRT sequencing technique, we sequenced the R. solanacearum FJ1003 strain isolated from tobacco at an average depth of 150X-250X, and obtained 1.38 Gb of high-quality sequencing data. We obtained three scaffolds, one bacterial chromosome, and two bacterial plasmids with a total length of 5.90 MB using the MHAP (Chin et al., 2013; Berlin et al., 2015) software (Table 1). Upon comparing the sequencing data to the assembled genome, the scaffolds were close to QV50 (Supplementary Figure S1), suggesting that we assembled a complete genome sequence.
TABLE 1 | Statistical results of genomic characteristics of FJ1003 strain.
[image: Table 1]The (G + C) content in prokaryotes is generally higher than in eukaryotes. The (G + C) content of the FJ1003 sequenced genome was ∼67%. The statistical results of the genomic characteristics are presented in Table 1. In short, the FJ1003 genome contained 5133 coding genes, of which 3446, 1564, and 123 genes were located on the chromosome, the megaplasmid, and the small plasmid, respectively. The FJ1003 genome also had 447 non-coding RNAs (4 miRNAs, 35 tRNAs, and 408 rRNAs) and 21 pseudogenes. CRISPR is an important component of the immune system in prokaryotes that helps resist foreign plasmids and phage sequences. It holds the potential to recognize and silence the invading functional elements (Zhong et al., 2021). The predicted CRISPR sequences in the sequenced species are described in Supplementary Table S1. At the same time, based on the sequence and assembly results of the genome, we developed a circular genome map (Figure 1).
[image: Figure 1]FIGURE 1 | Circular map showing the genome of the R. solanacearum strain FJ1003. The outermost circle indicates the marker of genome size, with each scale of 0.1 Mb; the second and third circles indicate the genes on the positive and negative strands of the genome, respectively, and different colors represent the different functional categories of COG; the fourth circle represents repetitive sequences, and the fifth circle is tRNAs. The innermost layer indicates the GC content.
Furthermore, we performed the functional annotation analysis of identified genes in the FJ1003 genome using the GO, NR, and COG databases. Among them, 3913 genes were annotated by the COG database, and 3855 genes by the GO database (Figure 2). In the NR database, 5064 genes were annotated, of which 4827 (94.81%) genes were highly conserved in R. solanacearum (Figure 3A). Similarly, the predicted results were used to BLAST against the PHI database to obtain the enrichment results (Figure 3B).
[image: Figure 2]FIGURE 2 | COG and GO functional categories of protein-coding genes in the R. solanacearum FJ1003 genome. (A) Statistical results of COG classification; the abscissa indicates the content of COG classification; the ordinate is the number of genes. (B) Clustering results of GO annotation; the abscissa indicates the content of each GO classification; the left side of the ordinate indicates the percentage of the number of genes, and the right side indicates the number of genes.
[image: Figure 3]FIGURE 3 | Enrichment analysis results based on the NR and PHI databases. (A) Statistical results of species distribution by the NR database. Different colors represent different homologous species. (B) The gene enrichment annotation to the PHI database. Different colors represent different types of disease-related genes.
Comparative analysis of the virulence factors in FJ1003
R. solanacearum has many virulence factors, among which the T3Es secreted by the T3SS, are considered the primary virulence factors (Landry et al., 2020). Based on the R. solanacearum T3Es (Peeters et al., 2013) and the NCBI database, we predicted 76 T3Es and compared them with T3Es from four other isolates (Table 2). Although RipBP and RS_T3E_Hyp6 were absent from the six other reference genomes, they were mainly found in the NCBI database searches of other R. solanacearum genomes. Notably, we found that five of the FJ1003 strain genes in the T3Es were absent from the model strain GMI1000. Although both CQPS-1 and FJ1003 infect tobacco, 19 T3Es were present in FJ1003 and were absent from CQPS-1 (Table 2).
TABLE 2 | Summary of type III effector proteins genes (Coverage%/Identity%) in FJ1003 and other strains.
[image: Table 2]The R. solanacearum T3SS family is considered to contain more than 20 structural genes. Therefore, we compared the FJ1003 T3SS with GM1000 T3SS and other virulence factors such as exopolysaccharides, cell wall degrading enzymes, and swimming ability-related genes (Supplementary Table S2). These virulence factors were conserved within the bacterial genome. The pehB, FliO, FliN, FliS, FliT, and FliK genes were 99% identical, while the remaining genes were 100% identical (Supplementary Table S2).
Evolutionary relationship among species
The detailed genome information of the genome sequences of the different phylotypes of R. solanacearum obtained from the NCBI database is presented in Supplementary Table S3. The phylogenetic tree (Figure 4) was drawn based on the sequence similarity among the endoglucanase genes from different genomes (Villa et al., 2005). Phylogenetic analysis revealed that the FJ1003 strain belonged to the same branch as the other phylotype I strain. Phylotypes I and III were closely related, while II and IV belonged to two independent branches, indicating that the “proteomics-genomics” method of classifying R. solanacearum into three classes is better suited for its classification. Despite belonging to the same phylotype, the genetic relationships between strains may vary depending on their host or geographical origin.
[image: Figure 4]FIGURE 4 | Molecular phylogenetic analysis between FJ1003 and other strains. This figure is mainly based on the sequence similarity of endoglucanase in different genomes. The percentage of tree in which the associated taxa were clustered together, is shown next to the branches. The tree is drawn to scale, with the corresponding branch lengths indicating the number of substitutions per site. The pink font on the far right is the name of the different species of R. solanacearum.
Some genes are specific to the FJ1003 genome
To find which genes are specific to the FJ1003 genome, we compared it with those of four other different strains from different phylotypes. The results showed that 73 genes were specific to the FJ1003 strain (Figure 5A; Supplementary Tables 4, S5-1). They included unknown functional proteins, transposable enzymes, twitching mobility, and plasmid replication initiation proteins. At the same time, we also analyzed the FJ1003 protein sequences with two other strains (CQPS-1 and RS10) with the same phylotype and host and found that 90 genes were unique to FJ1003 (Figure 5B; Supplementary Table S5-2). These unique genes included hypothetical proteins, hemagglutinin-like secreted proteins, membrane proteins, and integrases. Therefore, our results suggest that the genome of R. solanacearum is relatively complex and has high genetic diversity.
[image: Figure 5]FIGURE 5 | Venn diagrams showing the number of specific and shared genes among the R. solanacearum strain FJ1003 and other bacterial species. (A) Venn diagrams of the sequenced strains and reference strains from different phylotypes. (B) The hosts of the three strains are tobacco. Note: the overlapping regions in the figure indicate the number of gene families shared among the different species, while the regions that do not overlap with other species indicate the number of gene families specific to that species.
Genomic collinearity analysis
The analysis of collinear genes with other reference genomes (GMI1000, CMR15, PSI07, UW551, and CQPS_1, RS10) showed that there was similarity among the whole genomes of the different strains of R. solanacearum. However, there were some cases of local non-collinearity, indicating that there were a few inverted and ectopic genome rearrangements (Figure 6). We also found some blank regions in the genome, indicating that there was dissimilarity among the sequences of the various strains, possibly with the specific genes of a particular strain.
[image: Figure 6]FIGURE 6 | The collinear relationship between the FJ1003 strain and other strains. The genome location coordinates of the reference near-source species are measured on the left, while the assembled genome location coordinates are on the right. The lines in the figure represent the collinear regions between the two species. Lines of different colors represent different collinear areas between different chromosomes. The color of the lines is automatically assigned by the software.
Horizontal gene transfer is widespread in the genome
In terms of microbial evolution, horizontal gene transfer (HGT) is referred to as the transfer of genetic material between non-parental organisms, either interspecifically or intraspecifically, making it a fairly widespread phenomenon with a vital role in the evolutionary processes (Villa et al., 2005; Shutian, 2020). A genetic island (GI) acts as an integrated moving element on the host population gennome by facilitating gene exchanges within or between species. Using HGT between different hosts, the acceptor strains obtain large DNA fragments, increasing their versatility and adaptability. During the process of bacterial HGT, mild bacteriophages transfer the donor genes to the recipient, and this transferred genetic fragment which is integrated into the recipient, is called a prophage. The FJ1003 genome contains 23 GIs and five Prophages (Supplementary Table S6). RipP2, RipP3, RipBP, and RS_T3E_Hyp14 are present in the prophages, whereas Rs_T3E_Hyp14 and RS_T3E_Hyp6 are located on the GI (Supplementary Table S6).
RS-T3E-Hyp14 is involved in the pathogenicity of Ralstonia solanacearum
Notably, Rs_T3E_Hyp14 is present on prophage and GI both, proposing that this gene might have been acquired from other bacteria via HGT. We predict the tertiary structures of Rs_T3E_Hyp14 using SWISS-MODEL (https://swissmodel.expasy.org/interactive/PW9vQ4/models/) (Figure 7A) and found it to be a typical feature of T3E AvrRpt2 (a C70 family cysteine protease) from Erwinia amylovora. At the same time, through NCBI and T3E database comparison, we found that 14 strains of Ralstonia solanacearum had Rs_T3E_Hyp14 gene, and by blastp analysis, the Rs_T3E_Hyp14 gene of five strains was 100% similar to that of FJ1003 (Supplementary Table S7). We constructed an evolutionary tree of Rs_T3E_Hyp14 of these 14 strains using the ML method and found that the genetic distances of Rs_T3E_Hyp14 in most of the phylotype I strains were similar (Supplementary Table S7, Figure 7B). There is no report on the function of RS-T3E-Hyp14. The pathogenicity of R. solanacearum on tobacco is significantly reduced after we knockout RS-T3E-Hyp14, and the colonization of R. solanacearum on a host is also affected (Figures 7C–E). The phenotype of complementary strains is consistent with that of wild strains (Figures 7C–E). These results suggest that RS-T3E-Hyp14 is a virulence factor in the pathogenic process of R. Solanacearum FJ1003, which affects its pathogenicity.
[image: Figure 7]FIGURE 7 | Functional identification of RS-T3E-Hyp14 (A) Tertiary structures of Rs_T3E_Hyp14 in FJ1003. (B) Molecular phylogenetic analysis of predicted RS-T3E-Hyp14 effectors. The phylogenetic tree was constructed by the maximum likelihood method. (C) Symptoms of tobacco after 8 days of inoculation with Ralstonia solanacearum. (D) Disease index of Ralstonia solanacearum at different time after inoculation (E) Colonization of Ralstonia solanacearum in tobacco stems after inoculation for 3 days. Values are means ± SE for three replicates. (WT: wild type strains FJ1003, M: mutant strains ΔRs_T3E_Hyp14, C: complementary strains CRs_T3E_Hyp 14ΔRs_T3E_Hyp14).
DISCUSSION
Bacterial wilt caused by R. solanacearum is a common bacterial disease affecting tobacco production. It is rapidly spreading and very destructive during all growing stages of tobacco (Lin, 2018). R. solanacearum demonstrates high genetic diversity and host specificity. FJ1003 is a strain isolated from tobacco and has not been reported to affect other host species. To date, 291 strains of R. solanacearum have been sequenced and assembled, among which both the RS10 and CQPS-1 strains were isolated from tobacco. Upon comparing the protein sequences of FJ1003 and four other reference strains, 73 genes were found to be FJ1003-specific, while the other two tobacco isolates (RS10 and CQPS-1) all had their specific genes. These results may further prove that R. solanacearum is genetically diverse. Moreover, subsequent whole-genome sequencing of the R. solanacearum isolated from tobacco from different geographical regions could shed light on this point of view for future investigations.
Using the syringe-like T3SS, R. solanacearum can inject multiple toxic effector proteins into the host cells, thereby disturbing the host immune system and finally causing host disease. Effector proteins have a wide variety of functions, including the effector proteins (RipM, RipS1, RipQ, RipG3, RipD, RipAD, and RipAU) that inhibit the plant immune response triggered by the bacterial flg22 (Landry et al., 2020). Upon injection of the bacterial effector protein RipTPS into the plant cell, trehalose-6-phosphate is synthesized in planta to provide nutrition for the reproduction of R. solanacearum in the host (Poueymiro et al., 2014). RipN can adversely alter the NADH/NAD + ratio and inhibit the immune response triggered by pathogen-associated molecular patterns (PAMPs) (Sun et al., 2019). RipI can modulate plant metabolism to enhance γ-aminobutyric acid (GABA) production (a signalling molecule) in plant cells, which R. solanacearum uses as a nutrition source during its reproductive process in plants, thus finally causing plant disease (Xian et al., 2020). Few effector proteins, like RipP1 and RipP2, function as avirulence proteins (Landry et al., 2020). Thus, these results indicate that FJ1003 contains 76 T3Es, with the function and pathogenesis of most effector proteins still being unknown, and further research is needed. The functional annotation by the PHI database indicates that some effector proteins related to the host-pathogen interaction may play a key role in the pathogenesis of R. solanacearum.
HGT, the exchange of genetic material between individuals, is an important factor behind microbial evolution and diversity (Syvanen, 1985). We detected five prophages (a total of 316 genes) and twenty-three GIs (a total of 252 genes) in the R. Solanacearum FJ1003 genome. Interestingly, RS-T3E-Hyp14 is present in both prophages and genomic islands, suggesting that this gene is associated with HGT. The function of RS-T3E-Hyp14 has not been reported. We identified the function of RS-T3E-Hyp14 and found that it could significantly reduce the pathogenicity of Ralstonia solanacearum and play an important role in the pathogenic process of R. solanacearum. Further studies on the pathogenesis of RS-T3E-Hyp14 and its interaction with tobacco are needed.
Most prokaryote genomes contain the CRISPR-Cas system, mainly containing CRISPR sequences (Louwen et al., 2014). This system is developed throughout the long-term struggle of prokaryotes against harmful foreign substances. It is a mechanism for protecting prokaryotes from harmful foreign agents. The current study predicted three copies of 100-bp CRISPR sequences in the FJ1003 genome. The widespread presence of HGT and CRISPR sequences in R. solanacearum may be one of the reasons for its wide host range, biological diversity, and strong pathogenicity.
The PHI database contains the pathogenic genes, virulence genes and effector protein genes of pathogens that have been verified by experiments or reported in the literature (http://www.phi-base.org/index.jsp). Inactivation or reduced expression of most of these genes can possibly result in the reduction or even the complete loss of the pathogenic ability of the pathogen in the corresponding host. The annotation of 869 genes in the FJ1003 genome by the PHI database falls under seven different modules (reduced virulence, unaffected pathogenicity, loss of pathogenicity, mixed outcome, lethal, increased virulence, effector, and chemistry target). These genes may play different roles in the host-pathogen interaction (ZANG et al., 2021). Therefore, further research is needed to provide an important theoretical basis for the screening and functional verification of pathogenic proteins.
CONCLUSION
In this study, we sequenced the genome of a plant pathogen, Ralstonia Solanacearum strain FJ1003, isolated from Fujian province, China. Analysis showed that the genome consists of a chromosome, a megaplasmid, and a small plasmid. The evolutionary analysis provided that FJ1003 belonged to phylotype I and this strain contained 76 T3Es. Horizontal gene transfer was widespread in this strain, and the RS-T3E-Hyp14 existed in both prophages and genomic islands. This study is the first report on the genetic functions of RS-T3E-Hyp14. The knockout mutants of RS-T3E-Hyp14 significantly reduced the pathogenicity of R. solanacearum and weakened its colonization in the host. Results provide valuable information for the control of bacterial wilt in tobacco plants.
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Genomic regions governing days to heading (DH), grain filling duration (GFD), grain number per spike (GNPS), grain weight per spike (GWPS), plant height (PH), and grain yield (GY) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association studies (GWAS) panel was genotyped using a 35K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 27 Bonferroni-corrected marker-trait associations (MTAs) on 15 chromosomes representing all three wheat subgenomes. The GFD showed the highest MTAs (8), followed by GWPS (7), GY (4), GNPS (3), PH (3), and DH (2). Furthermore, 20 MTAs were identified with more than 10% phenotypic variation. A total of five stable MTAs (AX-95024590, AX-94425015, AX-95210025 AX-94539354, and AX-94978133) were identified in more than one environment and associated with the expression of DH, GFD, GNPS, and GY. Similarly, two novel pleiotropic genomic regions with associated MTAs i.e. AX-94978133 (4D) and AX-94539354 (6A) harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the SNPs were located on important putative candidate genes such as F-box-like domain superfamily, Lateral organ boundaries, LOB, Thioredoxin-like superfamily Glutathione S-transferase, RNA-binding domain superfamily, UDP-glycosyltransferase family, Serine/threonine-protein kinase, Expansin, Patatin, Exocyst complex component Exo70, DUF1618 domain, Protein kinase domain involved in the regulation of grain size, grain number, growth and development, grain filling duration, and abiotic stress tolerance. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).
Keywords: wheat, GWAS, SNPs, candidate genes, mapping, yield component traits
INTRODUCTION
Bread wheat (Triticum aestivum L., 2n = 6x = 42) is one of the most important staple food and the world’s highest-grown and traded cereal. It provides about 21% of calories and 19% of day-to-day protein to approximately 4.5 billion global populations (Braun et al., 2010). The annual gain in wheat yield should be increased from the current level of around 1%–1.6% to meet the food demand of the estimated global population of 9 billion by the year 2050 (Wheat Initiative, 2013; FAO, 2017). The available resources likely be reduced to a great extent; the problem will be further complicated by the erratic rainfall, reduced water table, change in temperature, and reduced soil health. For sustainable crop production, we need to increase the yield potential, and multiple stress tolerance and improve input use efficiency along with climate-smart agronomic practices (Giraldo et al., 2019). Integration of modern plant breeding tools like marker-aided selection (MAS), marker-assisted recurrent selection (MARS), genomic selection, and speed breeding with conventional breeding approaches is of paramount importance to enhance yield gain in wheat (Krishnappa et al., 2021).
Grain yield is a genetically complex trait and is an outcome of the combined effect of several agro-morphological and physiological traits (Chen et al., 2012; Sukumaran et al., 2018). Agro-morphological traits include grain number per spike, thousand kernel weight, biomass, harvest index, productive tillers number, spike length, grain weight per spike, and plant height has a significant effect on wheat grain yield along with phenological traits like days to heading, maturity, and grain filling duration (Sun et al., 2017; Wang et al., 2017; Liu et al., 2018; Ma et al., 2018; Jamil et al., 2019; Li et al., 2020). Unlike grain yield, many of the yield component traits have high heritability and are easier to select particularly during the early stages of breeding cycles. The yield plateaus may be avoided by selecting the yield components, as they offer additional avenues for genetic gain enhancement. It is suggested for trait-based breeding using elite and genetically complementary genotypes to enhance wheat yield improvement (Liu et al., 2015; Reynolds et al., 2017). The grain yield and its component traits are complex and quantitative, as each of these traits is controlled by several genes with small effects. Furthermore, most of the traits have low to moderate heritability with significant genotype × environment interactions (Kaya and Akcura, 2014). Molecular breeding is a potential strategy to improve complex traits like yield and its contributing traits, but a better understanding of genetic architecture is important for the effective utilization of molecular tools. Therefore, genetic dissection of agro-morphological traits is essential for the improvement of wheat yield.
Two approaches i.e. genome-wide association studies (GWAS) and quantitative trait loci (QTL) mapping are widely used methods to dissect the genetic basis of complex quantitative traits in crop plants. In the past decade, extensive efforts have been made to identify QTLs associated with grain yield and its component traits (Gao et al., 2015; Zhang et al., 2016; Jin et al., 2020; Isham et al., 2021; Kang et al., 2021; Li et al., 2022) in wheat through bi-parental populations based QTL mapping. Conventional QTL mapping mainly depends on structured populations like recombinant inbred lines (RIL), back-crosses (BC), and doubled haploids (DH). The several shortcomings associated with QTL mapping are low resolution due to one or few cross-overs and low marker density (Korte and Farlow, 2013). Recent advances in sequencing technologies created valuable genomic resources including high-quality genome data (Brenchley et al., 2012; Chapman et al., 2015), as result, several high throughput SNP arrays have been developed and utilized in wheat. GWAS becomes a complementary strategy to QTL mapping to dissect complex traits, particularly after the availability of large-scale genomic resources (Saidou et al., 2014). Unlike bi-parental population-based QTL mapping, GWAS consists of more genetically diverse lines that harbor several historical and ancestral recombination events. Additionally, the use of diverse germplasms as study materials has the potential to capture superior alleles that have been missed by breeding practices. GWAS is based on the linkage disequilibrium (LD) that has formed in a population over the generations, the genomic regions harboring QTLs can be detected even in the absence of inclusion of causal mutations among the set of available molecular markers.
The two common limitations (i.e. limited allelic diversity and low genomic resolution) associated with the bi-parental QTL mapping methods can be overcome in the GWAS approach (Brachi et al., 2011). However, the major challenge for GWAS is the control of false positives caused by population structure and family relatedness (Kaler et al., 2020). Incorporation of these two confounding factors as covariates in the mixed linear model (MLM) addressed the issue of false positives (Price et al., 2006), however, false negatives have been significantly increased which might exclude the important loci. To overcome the false negatives, multi-locus GWAS methods like multi-loci mixed linear model (MLMM), fixed and random model circulating probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) have been developed (Zhang et al., 2019). The statistical power of BLINK is superior and gives reduced false-positive discovery compared to many available GWAS models including SUPER and FarmCPU, as BLINK removes the assumption of equal distribution of causal genes in the whole genome (Huang et al., 2019).
GWAS has been successfully used in wheat to dissect the genetic basis of yield and its component traits. In previous studies, GWAS panels have been phenotyped in a range of production conditions including drought, irrigated, and salt stress to identify QTLs. Several drought-tolerance QTLs associated with grain yield and its component traits have been identified (Edae et al., 2014; Ain et al., 2015; Gahlaut et al., 2019; Suliman et al., 2021; Bennani et al., 2022; Said et al., 2022). Similarly, genomic regions governing yield and its attributing traits in normal irrigated production conditions were also identified (Sukumaran et al., 2015; Sun et al., 2017; Godoy et al., 2018; Liu et al., 2018; Ma et al., 2018; Sukumaran et al., 2018; Bajgain et al., 2019; Jamil et al., 2019; Li et al., 2019; Rahimi et al., 2019; Sheoran et al., 2019; Ward et al., 2019; Ali et al., 2020; Alqudah et al., 2020; Pang et al., 2020; Alemu et al., 2021; Eltaher et al., 2021; Gao et al., 2021; Malik et al., 2021; Saini et al., 2022; Zhang et al., 2022). Also, QTLs were identified in hostile soils under salt stress conditions for yield and related traits (Hu et al., 2021). Similarly, MTAs were also identified for biotic stresses (Vikas et al., 2022) and quality traits (Sandhu et al., 2021; Rathan et al., 2022) in wheat. Although several marker-trait associations (MTAs) were identified in different GWAS studies for yield and its component traits, there might be several false positives in most of the studies due to a very low threshold (−log10 p-value ≥ 3.0) fixation to consider the MTA as a significant. In only a few GWAS (Gahlaut et al., 2019; Eltaher et al., 2021; Malik et al., 2021; Zhang et al., 2022), the threshold–log10 p values were adjusted by the calculation of the corresponding Bonferroni correction at a significance level of 5% to reduce the false positives. In wheat, many QTLs/MTAs have been identified; however, additional genetic studies are warranted using different genetic materials, as we have not reached a saturation point (Singh et al., 2021). Thus, more efforts are required to dissect the genetic mechanisms of yield and component traits in wheat and to devise marker-based breeding approaches that involve marker-assisted selection or genome-wide selection to obtain increased genetic gains. The present study aimed to identify the genomic region (s) associated with grain yield and component traits i.e. days to heading (DH), grain filling duration (GFD), grain number per spike (GNPS), grain weight per spike (GWPS), grain yield (GY), and plant height (PH) in a panel of diverse bread wheat genotypes in a range of environments through the GWAS approach and the putative candidate genes associated with the SNPs.
MATERIALS AND METHODS
Plant material and field experiments
A set of 280 diverse bread wheat genotypes (Supplementary Table S1) consisting of advanced breeding lines and commercial cultivars were used for GWAS analysis. The GWAS panel of 280 genotypes was selected from the All India Coordinated Research Project on Wheat and Barley. The GWAS panel was evaluated at five different environments: E1- University of Agricultural Sciences, research farm, Dharwad (15°29′20″N, 74°59′3″E, 750 m AMSL), E2- ICAR-Indian Agricultural Research Institute, New Delhi (28°38′30″N, 77°09′58″E, 228 m AMSL), E3- ICAR-Indian Agricultural Research Institute, Jharkhand (24°16′58.4″N, 85°21′16.1″E, 651 m AMSL), E4- ICAR-Indian Institute of Wheat and Barley, Karnal (29°41′8″N, 76°59′25″E, 250 m AMSL), and E5- Punjab Agricultural University, Ludhiana (30o54’ N, 75o48′E, 247 m AMSL). The crop was sown in the first fortnight of November during the 2020–21 Rabi (winter) season under irrigated conditions. The genotypes were planted in an augmented block design with only the checks (DBW187, MACS6222, WH1124, and WH1142) repeated in a 2 row of 2 m length with a row spacing of 20 cm.
Phenotyping and phenotypic data analysis
All the genotypes of a GWAS panel were phenotyped for six quantitative traits i.e. GWPS (gm), GNPS (number), GY (gm), DH (days), GFD (days); PH (cm) at Dharwad (E1), IARI-Delhi (E2) (except GNPS), IARI Jharkhand (E3), Karnal (E4) (except GNPS) locations. However, the GWAS panel was phenotyped for only three traits i.e. GWPS (gm), GY (gm), and PH (cm) at the Ludhiana location. Plant height (PH) was recorded at physiological maturity as the average of randomly selected three plants of each genotype by measuring from the soil surface to the spike tip excluding awns. Days to heading (DH) were recorded as the number of days from the planting when more than 50% of the plants in each plot showed the emergence of spikes. Physiological maturity was recorded when the majority of plants in the plot showed a complete loss of green colour from the flag leaf. The difference between the days to physiological maturity and the days to heading was used to compute the grain filling duration (GFD). Grain number per spike (GNPS) was calculated as the average of grain number in the main stem spikes of ten randomly selected plants from each genotype. Similarly, grains of all the randomly selected 10 spikes of each entry were weighed separately and the average of 10 spikes was recoded as grain weight per spike (GWS). Grain yield (GY) in grams for each genotype was recorded after harvesting the whole plot. Phenotypic data were analyzed using the R package ‘augmentedRCBD’ (Aravind et al., 2021).
Genotyping and quality control (QC)
Cetyl Trimethyl Ammonium Bromide (CTAB) method (Murray and Thompson, 1980) was used to extract the genomic DNA from the leaves of 21 days-old seedlings. The GWAS panel was genotyped using Axiom Wheat Breeder’s Genotyping Array (Affymetrix, Santa Clara, CA, United States) having 35,143 genome-wide SNPs. The monomorphic, markers with minor allele frequency (MAF) of <5%, missing data of >20%, and heterozygote frequency >25% were removed from the analysis. The remaining set of 14,790 high-quality SNPs was used in GWAS analysis (Supplementary Table S2).
Population statistics and GWAS
The pair-wise LD values (r2) between the SNPs located in each chromosome were calculated with Trait Analysis by aSSociation Evolution and Linkage (TASSEL) version 5.0 (Bradbury et al., 2007). The LD block size in the whole genome and three subgenomes was estimated by keeping the r2 threshold at half LD decay. The principal component analysis (PCA) and Kinship relationship were done through GAPIT (Lipka et al., 2012) to understand the structure of the population used in the GWAS model.
The phenotypic values of GWPS, GNPS, GY, DH, GFD, and PH of 280 diverse genotypes along with corresponding genotyping data were used in GWAS analysis. Significant MTAs were identified using the BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway) model (Huang et al., 2019) implemented in Genome Association and Prediction Integrated Tool (GAPIT) version 3.0 (Wang and Zhang, 2021) in the R software package. Determining the correct p-value threshold for statistical significance is critical to differentiate the true positives from false positives. To determine the statistical significance threshold in GWAS, Bonferroni correction has been employed. To estimate Bonferroni correction, α was set to 0.05 which is divided by the total number of SNPs. The Bonferroni-corrected SNPs were considered for significant association and R2 was used to describe the percentage variation explained (PVE) by significant MTAs.
In silico analysis
The sequence information of the significant SNPs was used to search for putative candidate genes with the Basic Local Alignment Search Tool (BLAST) using default parameters in the Grain Gene database (https://wheat.pw.usda.gov/GG3/) of the bread wheat genome (Wheat Chinese Spring IWGSC RefSeq v2.1 genome assembly (2021)). The genes found in the overlapping region and within the region of 0.1 Mb intervals flanking either side of the associated marker were considered putative candidate genes and their molecular functions were determined. In addition, their expression patterns were investigated using the Wheat Expression database (http://www.wheat-expression.com/) and potential links to phenotypes were determined using the Knetminer tool integrated with the Wheat Expression database. The role of the identified putative candidate genes in the regulation of GWPS, GNPS, GY, DH, GFD, and PH was also determined by the previous reports.
RESULTS
The environment-wise heritability and variance components of the GWAS panel are presented in Table 1. All the studied traits recorded a wider distribution across the environments i.e. DH, GFD, GNPS, GWPS, PH, and GY ranging from 50.4 to 116.4 days, 19.6–55.3 days, 11.6–80.1 number, 0.2–4.6 gm, 57.6–134.8 cm, and 133.8–752.3 gm, respectively. The percent CV of all the studied environments is less than 10.0%, except GFD in E3 (11.1%) and GWPS in E2 (10.8%). The trend of heritability is more environment-specific than trait per se, as none of the environments recorded either only low or high performance for the studied traits. There is much variation in the trait’s heritability, which ranged from 50.5% to 97.2%.The genotypic variance ([image: image]) and environmental variance ([image: image]) are presented in Table 1.
TABLE 1 | Descriptive statistics, variance, and heritability estimates of grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
[image: Table 1]The trait and environment-wise mean values are illustrated graphically through boxplots and presented in Figure 1. The location means of DH were recorded as similar and highest for E2 and E4 followed by E3, and E1, whereas, E1 and E2 were recorded as similar and highest followed by E4 and E3 for GFD. The E4 recorded the highest mean for GWPS followed by E3, E1, E5, and E2. The expression of PH is also similar to DH, as the highest and lowest are recorded by E4 and E1 respectively. The highest yields were recorded by E4 and E5, which is higher than the grand pooled mean, followed by E2, E1, and E3. The general yield trend of E4 and E5 are similar and higher than the pooled mean, the trend was exactly the opposite in E1 and E3 as both of them are similar, which are lower than the grand pooled mean. Whereas, the grain yield of E2 hovers around the pooled mean (Figure 1). The frequency distribution of grain yield and component traits in the GWAS panel evaluated at E1–E5 during 2020–2021 is presented in Figure 2. The genotypes in the GWAS panel showed continuous frequency distributions for all the studied traits. Pearson’s correlation coefficient (r2) of DH, GFD, GNPS, GWPS, PH, and GY was determined and presented in Table 2. The grain-related traits i.e. GNPS and GWPS were a significant positive association with GY in all the environments and pooled mean except E2, where the association was neutral. A similar trend of significant positive association was observed between GY and PH in all the environments and pooled mean, except E4 and E5, where the association was neutral. However, the correlation between DH and GFD is consistent and significant negative in all the environments and pooled mean.
[image: Figure 1]FIGURE 1 | Boxplots of grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
[image: Figure 2]FIGURE 2 | Frequency distribution of grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
TABLE 2 | Estimates of phenotypic correlation coefficients for grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
[image: Table 2]Genome-wide SNP markers distribution
The 35K SNP array was processed to obtain high-quality SNPs, as a result, a set of 14,790 cured genome-wide SNPs was selected. These high-quality set of SNPs along with phenotypic data were further used for GWAS analysis. The highest number of SNPs were mapped on the B subgenome (5649) followed by the D subgenome (4590), and the A subgenome (4551). Chromosome-wise highest SNPs were mapped on 1B (1077), followed by 2B (992), 1D (986), 2D (951), 5B (863), 6B (766), 7B (760), 2A (756), 1A (751), 7A (750), 3B (726), 5A (699), 5D (657), 3D (648), 7D (625), 3A (587), 6A (515), 4A (493), 4B (465), 6D (459), and 4D (264).
Population structure and linkage disequilibrium
The PCA analysis (Figure 3) indicated that there were no clear distinct sub-populations in the GWAS panel. The LD was estimated by calculating the squared correlation coefficient (r2) for all the SNPs. The LD decay for the whole genome was 4.9 cM and it was found that the decay was rapid in the A genome (3.6 cM) followed by the D genome (5.2 cM) and B genome (5.7 cM).
[image: Figure 3]FIGURE 3 | Population structure of GWAS panel. (A) Three-dimensional plot of the first three principal components. (B) Heat map of pair-wise kinship matrix.
Genome-wide association studies
A total of 27 Bonferroni-corrected MTAs were identified for DH, GFD, GNPS, GWPS, PH, and GY. The details of the identified MTAs are presented in Table 3 and illustrated in Manhattan plots in Figures 4A,B. The Q-Q plots depicting the observed associations of SNPs of DH, GFD, GNPS, GWPS, PH, and GY compared to the expected associations after accounting for population structure are presented in Figures 4A,B.
TABLE 3 | Marker trait associations for grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
[image: Table 3][image: Figure 4]FIGURE 4 | (A) Manhattan and respective-QQ plots for days to heading, grain number per spike, and grain filling duration in GWAS panel phenotyped at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021. (B)Manhattan and respective-QQ plots for grain weight per spike, plant height, and yield in GWAS panel phenotyped at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
MTAs for grain-related traits
A total of seven significant MTAs were identified for GWPS in E1, E3, and E4 along with pooled mean on chromosomes 1D, 4D, 5A, 6A, 6B, and 7A, explaining the phenotypic variation ranging from 6.6% to 17.1%. The major MTA (AX-94539354) on 6A chromosome located at 599.2 Mb explained the highest phenotypic variation of 17.1%. Similarly, two more MTAs (AX-94602474 and AX-94883693) were identified in E1, which were mapped at 15.6 Mb and 40.5 Mb and explained 11.4% and 14.0% of PVE, which were located on 7A and 1D, respectively. Two MTAs i.e. AX-94978133 and AX-95105308 were respectively mapped at 465.7 and 113.4 Mb on 4D and 6B chromosomes in the E4 environment. One MTA each on chromosome 6B (AX-94387482) and 5A (AX-94469473) were mapped at 337.9 and 521.0 Mb, respectively with the phenotypic variation of 11.0% and 11.4% at pooled mean and E3 environment. Genome-wise, a total of three significant MTAs were identified in the A genome while B and D genomes had two each.
A total of three significant MTAs were identified for GNPS in E1 and pooled mean on chromosomes 4A, 4D, and 6A. One MTA (AX-94539354) was mapped at 599.2 Mb on 6A in both E1 and pooled mean and explained 16.3% and 15.6% PVE, respectively. The remaining two MTAs (AX-94658573 and AX-94978133) were identified in E1 and mapped at 715.5 and 465.7 Mb on 4A and 4D, explaining more than 10.0% PVE. Genome-wise, two significant MTAs were identified in the A subgenome and one in the D subgenome, however, there is no representation of the B subgenome.
For GY, four significant MTAs (AX-94473624, AX-94483483, AX-94709904, and AX-94978133) were identified on 1D, 4D, and 7A chromosomes in E3 and E5 along with pooled mean. Three MTAs i.e. AX-94483483, AX-94709904, and AX-94978133 were identified in E3 and mapped at 206.1 Mb, 728.2 Mb, and 465.7 Mb with percent PVE of 8.1, 10.8, and 9.3, respectively. The remaining MTA (AX-94473624) was identified in E5 and mapped at 19.3 Mb with a percent PVE of 12.5. Also, one consistent MTA (AX-94978133) was identified in both E3 and pooled mean. Genome-wise, three significant MTAs were identified in the D subgenome and one in the A subgenome, however, there is no representation of the B subgenome.
MTAs for agro-morphological traits
A total of two MTAs (AX-94724456 and AX-95024590) were identified for DH in E4 and E3 along with pooled mean. One MTA i.e. AX-95024590 was identified in two environments (E3 and E4) along with pooled mean. The other MTA (AX-94724456) was identified in E4 and mapped at 484.4 Mb on the 5D chromosome, which explained a PVE of 14.6%. All the MTAs explained more than 14.0% PVE and were located on the D subgenome only. For PH, all three MTAs (AX-94452759, AX-94498579, and AX-94796636) were identified in E4 with low percent PVE, which ranged from 5.0 to 7.2. Genome-wise, two significant MTAs were identified in the D subgenome and one in the B subgenome, however, there is no representation of the A subgenome.
The highest number of MTAs (8) were identified for GFD in E2, E3, and E4 along with pooled mean on 1A, 2B, 4A, 4B, 5A, and 5B chromosomes. A maximum of four MTAs i.e. AX-94425015, AX-94702510, AX-94794189, and AX-95210025 were identified in E4 and mapped at 2.0 Mb, 776.2 Mb, 356.1 Mb, and 585.4 Mb on 4B, 2B, 5B, 5A chromosomes, respectively with PVE ranging from 18.2% to 20.4%. A total of three MTAs i.e. AX-94598412, AX-94691261, and AX-95181791 were identified in E3 and mapped at 5.0 Mb, 505.5, and 584.6 Mb on 4A, 1A, and 5A chromosomes, respectively with PVE ranging from 15.9% to 18.1%. Two MTAs (AX-94425015 and AX-95210025), which was identified for pooled mean, which was mapped at 2.0 and 585.4 Mb on 4B and 5A chromosomes, respectively with PVE of 16.7% and 15.4%. E2 environment is represented with one MTA (AX-95107750) on the 1A chromosome and mapped at 112.9 Mb with a PVE of 9.1%. Genome-wise, five significant MTAs were identified in the D subgenome and three in the B subgenome, however, there is no representation of the D subgenome.
Stable and co-localized MTAs
A total of five consistent MTAs were identified on 3D, 4B, 5A, 6A, and 4D chromosomes for DH, GFD, GNPS, and GY. One MTA i.e. AX-95024590 was identified in two environments (E3 and E4) along with pooled mean for DH, which was mapped at 152.5 Mb with PVE ranging from 14.4% to 21.1%. Similarly, two MTAs i.e. AX-94425015 and AX-95210025 were mapped at 2.0 and 585.4 Mb with the PVE ranging from 15.4% to 20.4%, respectively, which were consistently identified both in E4 and pooled mean for GFD. One each consistent MTA was identified for GNPS (AX-94539354) and GY (AX-94978133) on 6A and 4D chromosomes, respectively, which were mapped at 599.3 and 465.7 Mb with PVE ranging from 9.3% to 16.3%. The GNPS MTA was identified in both E1 and pooled mean, whereas, GY MTA was identified in E3 and pooled mean. Furthermore, two co-localized MTAs were identified on 6A and 3D chromosomes. One co-localized MTA (AX-94978133) was identified on the 4D chromosome for all the three-grain related traits (GNPS, GWPS, and GY), which was mapped at 465.7 Mb with the PVE ranging from 9.3% to 15.4%. The other co-localized MTA (AX-94539354) was identified on the 6A chromosome for GNPS and GWPS, which was mapped at 599.2 Mb with the PVE ranging from15.6% to 17.1%.
Putative candidate genes associated with MTAs
The significant SNPs associated with GWPS, GNPS, GY, DH, GFD, and PH were used to identify the putative candidate genes using the annotated wheat reference sequence (Wheat Chinese Spring IWGSC RefSeq v2.1 genome assembly (2021)) and are presented in Table 4. AX-94724456 associated with DH found to encode F-box-like domain superfamily (TraesCS5D03G0939000). Similarly, SNPs i.e. AX-95107750, AX-94598412, AX-94598412, AX-95181791, AX-95181791, AX-94691261 associated with GFD and encodes Lateral organ boundaries, LOB (TraesCS1A03G0271300), Thioredoxin-like superfamily (TraesCS4A03G0014500), Glutathione S-transferase (TraesCS4A03G0014500), RNA-binding domain superfamily (TraesCS5A03G0929100), UDP-glycosyltransferase family (TraesCS5A03G0929200), Serine/threonine-protein kinase (TraesCS1A03G0779800), respectively. Another SNP (AX-94978133) associated with GNPS found to encode Expansin (TraesCS4D03G0700700). Also, one SNP i.e. AX-94883693 associated with GWPS found to encode Patatin (TraesCS1D03G0131800). Two SNPs (AX-94452759 and AX-94796636) associated with PH found to encode DUF1618 domain (TraesCS2D03G0036000) and Protein kinase domain (TraesCS5D03G0455800). Similarly, AX-94473624 associated with GY found to encode Exocyst complex component Exo70 (TraesCS1D03G0081100).
TABLE 4 | Putative candidate genes for grain yield and component traits.
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Although the phenotype-based selection in conventional breeding has improved wheat yield for several decades, genotype-based strategies may further complement the varietal improvement programmes. Recent efforts to sequence the wheat genome could promote the rapid improvement of varieties through molecular breeding by using genetic resources. In wheat, many QTLs/MTAs have been identified for yield and component traits, however additional genetic studies are warranted using different genetic materials, as we have not reached a saturation point (Singh et al., 2021). Due to the genetic complexity of the wheat genome, there is always possibility to identify novel genomic regions with different genetic materials. Understanding the genetic basis of complex traits such as grain yield and component traits through GWAS with a diverse panel of genotypes can significantly improve QTL mapping resolution compared to bi-parental populations-based QTL mapping. Using the genome-wide SNPs and multi-environment data, several significant SNPs were identified in this study. Furthermore, stable and co-localized MTAs were also identified.
The significant effect of environment and genotype-environment interactions (GEI) was observed in the expression of all the studied traits. Among all traits, GFD was the most environment-sensitive trait, whereas, GNPS was relatively the most stable with minimum environmental influence. The greater magnitude of the environment and GEI have also been reported in previous studies for the expression of yield and component traits in wheat (Eltaher et al., 2021; Malik et al., 2021; Said et al., 2022). The GWAS panel has been tested in diverse production conditions, as the magnitude of GEI is a key factor in the identification of environment-specific QTL(s) as well as stable QTL(s). The highest and lowest heritability was recorded for GNPS and GFD, respectively, the trend for the percent contribution of environmental variation for the expression of GNPS and GFD was also exactly similar. Generally, the grain-related traits (GNPS and GWPS) and PH showed a significant positive association with GY in all the environments and pooled mean. However, the association between DH and GFD is consistent and significant negative in all the environments and pooled mean. The strong positive association of GY with GNPS, GWPS, and PH was further supported by the identification of two co-localized MTAs (AX-94978133 and AX-94539354), associated with the same traits i.e. GNPS, GWPS, and GY. Significant correlations found in this study have also been reported in earlier studies (Juliana et al., 2018; Baye et al., 2020; Ullah et al., 2021). In crop improvement programmes, significant associations of yield and component traits in desired direction are always beneficial for simultaneous improvement of the associated traits. Furthermore, for negatively associated traits, it is advised to adopt breeding methods that could break the undesirable linkages, so that the traits can be independently improved.
PCA result of the filtered SNP data showed the allele frequencies of the genotypes were evenly distributed without any distinct sub-populations in the GWAS panel. The even distribution of allele frequencies in the GWAS panel was achieved by carefully selecting advanced breeding lines for different wheat growing zones in India, representing five agro-ecological zones, namely the Northern Hills Zone and North Western-Plains, North-Eastern Plains Zone, Central Zone, and Peninsular Zone. The various factors including size of the population, genetic drift, admixtures, selection, mutation, non-random mating, pollination behavior, and recombination frequency may affect the LD, therefore, LD may vary in different populations (Gupta et al., 2005; Vos et al., 2017). Self-pollinated crops like wheat usually have larger LD blocks and hence decay slowly (Yu et al., 2014), whereas, LD decays rapidly in outcross crop species such as maize (Dinesh et al., 2016). The presence of high LD across the genome would reduce the QTL mapping resolution and vice versa (Dadshani et al., 2021). Under such situations, a better QTL resolution may be achieved by using genome-wide SNPs. The LD decay was found to be high and comparable in the B and D subgenomes (∼5 cM) compared to the A subgenome, which had a shorter decay distance of around ∼3 cM. A similar pattern of LD decay was also observed in other GWAS studies in wheat (Sukumaran et al., 2015; Rahimi et al., 2019; Sheoran et al., 2019). Therefore, marker density and population size are two important determinants in GWAS studies and vary in self and cross-pollinated crops due to varied LD decay.
A total of 27 Bonferroni-corrected MTAs were identified for GWPS (7), GNPS (3), GY (4), DH (2), GFD (8), and PH (3). The highest number of MTAs were identified for A subgenome (11) followed by the D subgenome (10) and the B subgenome (6). A similar trend on MTAs identified in the A subgenome for yield and yield-contributing traits (Ain et al., 2015; Godoy et al., 2018; Alemu et al., 2021). A high level of stringency through Bonferroni-correction has been followed to consider MTA as significant, therefore, these MTAs could be valuable for their further validation in different genetic backgrounds to use them in MAS.
The identified MTAs (7) for GWPS on chromosomes 1D, 4D, 5A, 6A, 6B, and 7A in this study were novel as the earlier reported MTAs on the same chromosomes were identified at different positions. Although many grain-related traits like thousand kernel weight have been thoroughly studied, GWPS is comparatively less explored. Edae et al. (2014) identified an MTA on the 1D chromosome located at 88.5 cM and on the 7A chromosome located at 107.1 cM. A total of three significant MTAs were identified for another grain-related trait i.e. GNPS on 4A (599.2 Mb), 4D (715.5 Mb), and 6A (465.7 Mb) chromosomes. MTAs for GNPS in the different chromosomes were identified in different GWAS panels in previous experiments (Edae et al., 2014; Sun et al., 2017; Godoy et al., 2018; Jamil et al., 2019). However, Russell et al. (2020) identified an MTA in the same chromosome of 4D at 479.5 Mb, which was similar to that of AX-94978133 located on the 4D chromosome and mapped at 465.7 Mb, which explained 11.1% of phenotypic variation. All the identified MTAs explained more than 10% PVE for both the traits (GNPS and GWPS) except AX-95105308, which explained only 6.6% PVE.
The fundamental breeding objective of any wheat breeding program is the higher gains for GY, a highly complex and environmentally-sensitive economic trait. In the present study, a total of four significant MTAs were identified on 1D, 4D, and 7A chromosomes for GY. MTAs in the same chromosomes were also identified in different GWAS panels in previous studies on 1D (Bajgain et al., 2019; Jamil et al., 2019), 7A (Jamil et al., 2019; Ward et al., 2019; Russell et al., 2020) at different chromosomal locations. However, one MTA (S7A_720744946) on 7A chromosome was mapped at 720.7 Mb position, which is similar to the MTA identified in the present study i.e. (AX-94709904) on the 7A chromosome, which was mapped at 728.2 Mb. Furthermore, MTAs for GY were also identified in different chromosomes in different GWAS studies with diverse genetic material (Edae et al., 2014; Ain et al., 2015; Godoy et al., 2018; Li et al., 2019; Rahimi et al., 2019; Alemu et al., 2021; Suliman et al., 2021).
GWAS of yield component traits including DH, PH, and GFD led to the detection of 13 genetic loci associated with these traits. Two MTAs were identified for DH on 3D (152.5 Mb) and 5D (484.4 Mb) chromosomes. Previous reports identified MTAs mostly on different chromosomes, for instance, 3B (Edae et al., 2014; Ain et al., 2015; Gahlaut et al., 2019; Russell et al., 2020), 2D (Jamil et al., 2019), 1A, 4A, 5A, and 6A (Godoy et al., 2018) chromosomes. Three MTAs for PH were identified on 2D (88.9 Mb), 3B (824.4 Mb), and 5D (294.5 Mb) chromosomes. Previous reports also identified MTAs on the same chromosomes 2D (Ward et al., 2019; Alemu et al., 2021), 3B (Edae et al., 2014; Gahlaut et al., 2019) and also on different chromosomes (Ain et al., 2015; Sun et al., 2017; Godoy et al., 2018; Li et al., 2019; Russell et al., 2020) for PH. Jamil et al. (2019) identified an MTA on the same chromosome 3B at 824.6 Mb, which was similar to that of AX-94498579 located on the 3B chromosome and mapped at 824.4 Mb. The rate of grain filling and the length of grain filling period are two important determinants of final grain yield under different production conditions. In the present study, the maximum number of MTAs (8) was identified for GFD on 1A, 2B, 4A, 4B, 5A, and 5B chromosomes. Previous studies also identified on same chromosomes i.e. 1A (Edae et al., 2014; Jamil et al., 2019), 2B (Jamil et al., 2019), 5B (Edae et al., 2014; Jamil et al., 2019; Alemu et al., 2021) but different positions and different chromosomes (Godoy et al., 2018; Rahimi et al., 2019) for GFD.
A total of two co-localized MTA were identified, which are associated with multiple traits including GNPS, GWPS, GY, and DH. One co-localized MTA (AX-94978133) was identified on 4D associated with three traits (GNPS, GWPS, and GY). This MTA encodes expansin genes found to have a key role in wheat grain growth dynamics in wheat (Lizana et al., 2010; Calderini et al. (2020), increasing capsule number in tobacco (Chen et al., 2016). The other co-localized MTA (AX-94539354) identified on 6A was associated with two traits (GNPS and GWPS). Pleiotropic MTAs that are associated with multiple traits were also identified for grain yield and the biological yield on 1A, 4B, and 6B (Ain et al., 2015). Similarly, Co-localized QTLs associated with yield and component traits were detected (Alemu et al., 2021; Bennani et al., 2022). Such co-mapped SNPs will be much useful in marker-assisted selection for simultaneous improvement of correlated traits. Similarly, five consistent MTAs were also identified for grain yield and component traits in the present study. These co-located and stable MTAs will be suitable candidates for further validation and utilization in MAS-based varietal improvement programmes.
The various putative candidate genes underlying MTAs with high phenotypic variation for DH, GFD, GNPS, and GWPS were identified through BLAST search (Table 4). The MTAs identified in various chromosomes were located in gene coding regions related to transcription factors, a transmembrane protein, and kinase-like superfamilies. For example, AX-94978133 associated with GNPS encodes expansin (TraesCS4D03G0700700) genes found to have a role in wheat grain growth dynamics including grain size (Lizana et al., 2010). Calderini et al. (2020) demonstrated that the targeted over-expression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. Similarly, constitutive expression of TaEXPA2, an α-expansin gene in tobacco improved seed production by increasing capsule number without having any effect on plant growth patterns (Chen et al., 2016).
One SNP i.e. AX-95181791 associated with GFD encodes an important RNA-binding domain superfamily (TraesCS5A03G0929100) that extends grain filling duration in barley. Glycine-rich RNA-binding protein (HvGR-RBP1) and a NAC transcription factor (HvNAM1) extend grain filling duration and improve agronomic performance in malt barley (Alptekin et al., 2021). Similarly, AX-94691261 was associated with GFD encodes Serine/threonine-protein kinase (TraesCS1A03G0779800). The role of wheat protein kinase gene i.e. TaSnRK2.9-5A was studied and found to be significantly associated with high thousand kernel weight, whereas, Hap-5A-4 was associated with high grains per spike (Ur Rehman et al., 2019). Another SNP (AX-95181791) for GFD encoding UDP-glycosyltransferase family (TraesCS5A03G0929200) has also been identified. The role of UDP-glucosyltransferase studied by Dong et al. (2020) suggests that UDP-glucosyltransferase regulates grain size and abiotic stress tolerance in rice. One MTA (AX-95107750) on 1A associated with GFD which encodes Lateral organ boundaries, LOB (TraesCS1A03G0271300) has a role in floral organs development in Arabidopsis (Shuai et al., 2002). One MTA (AX-94883693) on a 1D chromosome associated with GWPS encodes Patatin (TraesCS1D03G0131800). The role of Patatin was studied by Huang et al. (2001) and found its role in seed size in Arabidopsis. One SNP (AX-94473624) on the 1D chromosome associated with grain yield encodes Exocyst complex component Exo70 (TraesCS1D03G0081100) has been found to have a role in plant growth and development including tissue-specific expression in wheat for biotic and abiotic stress (Zhao et al., 2018), seed development in soybean (Wang et al., 2016), and pollen development in Arabidopsis (Markovic et al., 2020). Similarly, two SNPs (AX-94452759 and AX-94796636) on 2D and 5D chromosomes associated with plant height encodes the DUF1618 domain (TraesCS2D03G0036000) and the protein kinase domain (TraesCS5D03G0455800) are involved in various plant developmental processes. DUF1618 domain has been found to have a role in the development and fitness of rice (Wang et al., 2019), and protein kinase domain regulates plant height and yield in rice (Liu Y. et al., 2019).
CONCLUSION
The study with 280 diverse set of bread wheat GWAS panel has shown that DH, GFD, GNPS, GWPS, PH, and GY were quantitatively inherited traits. The strong positive correlation between GY and GNPS, GWPS, and PH suggested the possibility of improving these traits simultaneously. A total of 27 MTAs including 7 for GWPS, 3 for GNPS, 4 for GY, 2 for DH, 8 for GFD, and 3 for PH were identified through the GWAS approach. A total of five stable MTAs were identified in more than one environment and associated with the expression of DH, GFD, GNPS, and GY. Also, two novel pleiotropic genomic regions harboring co-localized QTLs governing two or more traits were also identified. The environment-specific and pooled-data MTAs identified in the present investigation represented novel genomic regions associated with trait expression. Several putative candidate genes encoding important molecular functions such as regulation of grain size, grain number, growth and development, grain filling duration, and abiotic stress tolerance were identified. Further validation and functional characterization of the candidate genes to elucidate the role of these genes in wheat is envisaged. The identified SNPs, particularly stable (AX-95024590, AX-94425015, AX-95210025, AX-94539354, AX-94978133) and pleiotropic SNPs (AX-94978133 and AX-94539354) could be useful in marker-assisted selection programs to develop wheat varieties with increased grain yield.
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NAC proteins constitute one of the largest plant-specific transcription factor (TF) families and play significant roles in plant growth and development. In the present study, three TaNAC020 homoeologous genes located on chromosomes 7A, 7B, and 7D were isolated from wheat (Triticum aestivum L.). TaNAC020s were predominantly expressed in developing grains. The developed transgenic rice lines for TaNAC020-B showed higher starch density and lower amylose contents than those of the wild type (WT). Sequence polymorphism studies showed seven and eight SNPs in TaNAC020-A/B, making three and two haplotypes, respectively. No sequence polymorphism was identified in TaNAC020-D. Association analysis revealed that HAP-2 of TaNAC020-A and TaNAC020-B was the favored haplotype for higher thousand kernel weight and length. Geographic distribution and allelic frequency showed that our favored haplotype experienced strong selection in China, and likewise, diversity increased in TaNAC020s during wheat polyploidization. The results obtained in this study demonstrate that TaNAC020s positively influence starch synthesis and accumulation and are one of the key regulators of the kernel (seed) size and kernel number and have the potential for utilization in wheat breeding to improve grain yield. Molecular markers developed in this study stand instrumental in marker-assisted selection for genetic improvement and germplasm enhancement in wheat.
Keywords: thousand kernel weight, kernel length, KASP markers, TaNAC020, marker–trait association
INTRODUCTION
Common wheat is one of the most important cereal crops worldwide. Breeding for higher yield remains the major breeding objective due to the global population surge. In general, wheat yield is associated with kernel weight and kernel number per unit area (Kumbhar et al., 1982), while grain weight is the most important component of the grain yield. In China, merely a 1-g increase in thousand kernel weight (TKW) can result in almost 150 kg ha−1 increase in grain yield (Tian et al., 2006). Several genes influencing grain-related traits have been cloned, and their functional markers have been developed, such as TaTGW6-A1, TaSnRK2.3-1A/1B, TaFlo2-A1, TaSnRK2.9-5A, TaZIM-A1, and TaCKX (Hanif, et al., 2016; Miao et al., 2017; Sajjad et al., 2017, Ur Rehman et al., 2019; Liu et al., 2019; Shoaib, et al., 2020). However, the genes influencing kernel weight and the underlying molecular mechanism governing kernel weight in wheat still require more exploration. Hence, the continuous investigation on genes underpinning the kernel and direct yield–contributing traits is in progress.
Transcription factors (TFs) are involved in different developmental stages of crop plants. Although numerous NAC TFs have been functionally characterized in model plants such as Oryza sativa and Arabidopsis thaliana, the functions of most of the NAC family members are yet to be explored. About 263 NAC genes (http://planttfdb.gao-lab.org) have been identified in different crop plants, which show diverse expression patterns and are involved in multiple aspects of development and stress. It has been recently reported that three NAC TF–encoding genes—OsNAC020, OsNAC023, and OsNAC026—express mainly during seed development in rice (Mathew et al., 2016). The family name NAC is derived from the first three such transcription factors identified, namely, NAM (no apical meristem, Petunia), ATAF1-2 (Arabidopsis transcription activation factor) (Souer et al., 1996), and CUC2 (cup-shaped cotyledon, Arabidopsis), all of which have similar DNA binding domains (Aida et al., 1997; Souer et al., 1996) and comprise a large protein family. The NAC proteins are associated with biological functions, including embryonic, floral, and vegetative development (Souer et al., 1996), lateral root formation and auxin signaling (Xie et al., 2000), defense (Hegedus et al., 2003), and abiotic stress. In wheat, TF members are distributed across 40 families and 84 subfamilies. Likewise, other TFs in wheat, the plant-specific NAC family, also regulate several biological processes. Only a proportion of NAC proteins have been studied to date.
In crop genetics, the development and application of DNA markers have recently attained significant attention. SNPs are abundant in genomes and are regarded as the best markers for molecular breeding. Although the latest sophisticated genotyping platforms have considerably improved gene discovery studies by lowering the time and cost to do genotyping of large populations, still their usage in practical crop breeding is limited. The rate of historical genetic gains has illustrated that relying only on traditional breeding methods is not enough to fulfill the need for ever-increasing selection intensity and accuracy (Rutkoski et al., 2014). Two wheat varieties, Zhongmai 1062 and Jimai 23, have been developed using marker-assisted selection (MAS), which will be of great importance in achieving fast-forward genetic gain. Hence, genetic markers are ideal for the identification and selection of superior haplotypes in marker-assisted breeding for the improvement of crop plants.
Wheat genetic variations are determined by various factors such as polyploidization (Choulet et al., 2014), gene flow (Luo et al., 2007), the secondary center of origin (Zhou et al., 2018), domestication (Tanno and Willcox, 2006), and post–domestication selection (Cavanagh et al., 2013). During domestication and modern breeding, wheat experiences strong but artificial selection for the traits related to grain yield, quality, stress tolerance, and environmental adaptability (Cavanagh et al., 2013). Genes under artificial selection are usually associated with complex and vital agronomical traits (Zhou et al., 2018). Hence, information regarding genetic variability during crop improvement can give valued parameters for wheat breeding (Cavanagh et al., 2013).
NACs are mostly reported in response to abiotic and biotic stresses in plants. Increasing evidence reveals that NACs are also involved in various developmental processes in crop plants (Chen, 2017). In this study, a potential starch synthesis regulator in wheat, TaNAC020, was selected by co-expression analysis. The main objectives of this study were to 1) identify basic gene function by developing and studying phenotypes of transgenic rice, 2) to characterize sequence polymorphisms at TaNAC020-A/B/D loci on chromosome 7A/B/D, for the development of functional markers to characterize variation in the given genes, 3) evaluate the association of haplotypes with yield-contributing traits, and 4) to explore the geographic distribution of haplotypes among wheat accessions from China.
MATERIALS AND METHODS
Plant materials and trait phenotyping
Thirty-six highly diverse hexaploid wheat accessions (Supplementary Table S1) were used to identify the DNA sequence polymorphism of TaNAC020-A/B/D. Chinese wheat landraces (157 accessions) from the mini-core collection (Population-1) and 348 Chinese modern wheat (Triticum aestivum L.) cultivars (Population-2) (Supplementary Table S1) were used for association analysis between wheat germplasm and yield-related phenotypes. These populations were planted at Luyong, Henan province, China, during the 2002-03 and 2005-06 cropping seasons and at Shunyi, Beijing, China, in the 2010-11 cropping season. Field trials were conducted in a randomized complete block design (RCBD) with three replicates at all locations. Each plot consisted of three 2-m rows spaced 20 cm apart. The collection of agronomic traits data was followed as described by Zheng et al. (2014). Ten plants from the center of each plot were randomly sampled. Morphological traits included heading date (HD), maturity date (MD), spikelet number per spike (SNPS), thousand kernel weight (TKW), plant height (PH), spike length (SL), grain number per spike (GPS), effective tiller number (ETN), kernel length (KL), kernel width (KW), and kernel thickness (KT). Population-1 and population-2 were also investigated for allelic variation, selection pattern, and geographic distribution of identified SNP/haplotypes in China.
Sixty accessions of wheat and their wild relatives (diploid and tetraploid wheat) were used to assess the evolutionary behavior of the targeted genes (Supplementary Table S1). A set of nullisomic–tetrasomic and ditelosomic lines of “Chinese Spring” was employed to confirm the chromosomal location of TaNAC020-A/B/D.
Isolation and sequencing of TaNAC020s and its basic function characterization through rice transformation
In co-expression analysis of TFs with starch synthesis genes in developing endosperms, we retrieved the sequence information of TaNAC020s. Full-length sequences of the three homoeologous genes were obtained by performing BLAST in the Chinese Spring Reference Genome 1.0. TaNAC020-B cDNA was amplified by C17720-2-1EF (F-‘TCTAGAATGGCAGACCACCTTCAAGTTC’) and C17720-2-984ER (R-‘GTCGACTCAGTAGTTCCACATGCCATCCA’) primers, and the target fragments were then ligated with pEASY-Blunt Cloning Vector. After sequencing, two endonuclease enzyme cutting sites for Xbal1 and Sal1 were added upstream and downstream of the ORF, respectively. A 30-bp MYC-tag sequence was inserted between the Xbal1 site and the first ATG of TaNAC020-B, followed by sub-cloning into the binary vector pC2300-Actin1-ocs cut with corresponding enzymes. The construct was then transferred into wild type rice (Kittakee) by the agrobacteria-mediated method after the transformation of the target gene into agrobacteria EHA105. Positive transgenic plants were initially screened by PCR, followed by sequencing for reconfirmation. T3 pure lines were used for phenotyping. The transgenic lines and the WT plants were planted at the Institute of Crop Sciences, Experimental Station in Beijing. Initially, rice seeds were germinated in Petri plates for 5 days, followed by transplantation into plastic tanks (L × W × H = 80 × 35 × 30 cm).
For morphological characterization of transgenic rice lines, T3 pure transgenic rice lines and WT plants were planted in an RCBD manner in triplicates. The morphological traits included PH, TKW, ETN, spike length (SL), and grains per spike (GPS). For the observation of starch granules, developing and mature grains of T3 transgenic rice seeds were dried completely under low pressure and cut across the short axis with a razor blade. The cross-sections were stammer coated with gold and observed by scanning electron microscopy (SEM) (HITACHI SU8000). Micrographs of each sample were taken with a magnification of ×600.
RNA extraction and normalized fold expression
Various tissue samples (leaves, developing grains, stems, and roots) were collected at different developmental stages from Chinese Spring. Total RNA was extracted using RNAprep Pure Plant kit (Tiangen, Beijing, China). For each sample, approximately 2 µg of RNA was used for reverse transcription with a FastQuant RT Kit (Tiangen, Beijing, China). The qRT-PCR assays were carried out using SYBR Premix Ex Taq (Takara, Dalian, China) with Roche Light Cycler 96-well Real-Time PCR system (Roche, Switzerland). The transcript level of TaNAC020 was also studied in T3 transgenic rice. Each experiment was triplicated using the SYBR Green PCR Master Mix Kit (Takara, Japan). The rice Tubulin and wheat Actin transcripts were used as an internal control to quantify the normalized fold transcript levels. The normalized fold expression levels were calculated using the 2−ΔΔCT method (Livak and Schmittgen 2001). The primers used in this study are listed in Supplementary Table S2.
Detection of TaNAC020 diversity in wheat and related species
Genomic DNA from thirty-six highly diverse hexaploid wheat accessions was extracted from young leaves by the CTAB method. For the DNA polymorphism study, the wheat accessions from our previously reported studies were used (Su et al., 2011; Zhang et al., 2020). Three pairs of primers (TaNAC7A-1-F1/R1, TaNAC7B-1-F1/R1, and TaNAC7D-1-F1/R1) were selected to amplify TaNAC020-A, TaNAC020-B, and TaNAC020-D genomic sequence in wheat “A/B/D” genomes. Detailed information for PCR amplification is given in Supplementary Table S2. PCR products were checked on agarose gel (1%), and the desired bands were isolated and extracted using the Biomega gel purification kit, followed by cloning into the pEASY-Blunt vector. Ten positive clones for each sample were selected for sequencing on DNA Analyzer 3730xl (Applied Biosystems). To get a full-length desired sequence of the targeted genes, M13 forward and reverse primers and overlapping sequencing primers were used for sequence walking (Supplementary Table S2). The SeqMan program in the DNASTAR Lasergene software package was used to obtain the sequence of each clone by assembling it. The genomic origin of each sequence was confirmed by comparing it with the reference genome sequence obtained from URGI (https://urgi.versailles.inra.fr/blast/blast.php).
To study phylogeny, TaNAC protein members were aligned with NAC family members from other species. A neighbor-joining phylogenetic tree for TaNAC020s and NAC family members in wheat and other species was constructed, and the significance of the inferred relationships was determined by bootstrap analysis (1,000 replicates).
Functional marker development
Two gel-free KASP markers (TaNAC020-A-KASP1 and TaNAC020-A-KASP2) were developed based on two selected polymorphism sites in the order of 612 nt (C/T) and 878 nt (T/G) of TaNAC020-A by following standard KASP guidelines (http://www.lgcgenomics.com). The allele-specific primers were developed with standard HEX and FAM tails with a targeted SNP at the 3′ end. The PCR reaction mixture consisted of 30 µL common primer (100 µM), 12 µL of each tailed primer (100 µM), and 46 µL ddH2O. The KASP assay was tested in ∼5 µL reaction mixture [2.4 µL 25 ng/μL DNA, 2.5 µL of 2 × KASP master mix, 0.06 µL primer mixture (all three primers), and 0.04 µL MgCl2].
A KASP marker (TaNAC-B-KASP) was developed based on the selected polymorphism site, 819 nt (C/T) for TaNAC020-B. The PCR reaction mixture and conditions are aforementioned. KASP primers information is given in Supplementary Table S3. Allelic discrimination plots were created using the QuantStudio™ 7 Flex (Applied Biosystems by Life Technologies), and data were visualized using the QuantStudio™ Real-Time PCR software v.1.3 (Applied Biosystems by Life Technologies).
Marker trait association analysis
Descriptive statistics and estimates of variance were conducted using the SPSS system for Windows version 16.0 (http://www.-01.ibm.com/software/analytic/spss/). To determine phenotypic differences between genotypes, based on analysis of variance (one-way ANOVA), we used Student’s t-test at a significance level of p < 0.05. The polymorphic information content (PIC) and heterozygosity values (He) were calculated using www.gene-calc.pl/pic website across entire wheat populations.
RESULTS
Identification and genetic characterization of TaNAC020s
Co-expression pattern based on RNA sequencing results suggests that TaNAC020 was expressive in 2, 11, 15, and 25 days after pollination (http://www.wheat-expression.com/) (Supplementary Figure S1). TaNAC020-A, TaNAC020-B, and TaNAC020-D encode proteins containing 204, 327, and 153 amino acid residues (AARs), respectively. The two homoeologous genes TaNAC020-A/B consist of a single intron and two exons, while TaNAC020-D endures intron-less structure with a single exon due to retro-transposition/duplication events that might have occurred during evolution. The genomic sequence lengths of TaNAC020-A, TaNAC020-B, and TaNAC020-D were 2009, 2027, and 2185 bps, respectively. Phylogenetic analysis revealed that TaNAC020-A/B/D has higher homology among them (Supplementary Figure S2A). Scan site analysis showed that TaNAC020-A/B/D have two regions, i.e., N-terminal region contains a NAM superfamily domain that is conserved across both monocots and dicots and acts as a DNA-binding domain, and the C-terminal transcription activation region which is remarkably divergent. The N-terminal region ranges from 17 to 143 AARs while having a diverse C-terminal region (Supplementary Figure S2B). The potential transmembrane-spanning region is absent.
By aligning to the genomic sequence of Chinese Spring (International Wheat Genome Sequencing Consortium, 2014), three homoeologous genes were mapped on chromosomes 7A, 7B, and 7D. Moreover, to determine the chromosomal location of TaNAC020-A/B/D, genome-specific primers (Supplementary Table S2) were designed. PCR amplification of the respective primers for each genome in diploid, tetraploid, nullisomic–tetrasomic, and ditelosomic lines revealed that TaNAC020-A, TaNAC020-B, and TaNAC020-7D were located on the short arm of the seventh chromosome of their respective genomes (Supplementary Figure S3).
Overexpression of TaNAC020-B promotes starch synthesis and reduces amylose contents in rice
To test whether the starch granules in the endosperm were affected by TaNAC020-B overexpression in rice, transgenic rice plants (T3) were first screened on hygromycin plates, followed by reconfirmation with qRT-PCR. Three overexpressing (TaNAC020-B) transgenic rice lines were selected for morphological assays. The average data were recorded from six plants of each transgenic rice line and WT. The overexpressing rice lines showed higher TKW and KPS (Table 1). The over-expressed rice lines showed higher starch density and lower amylose contents than the wild type when seed cross-sections were examined under SEM. These results indicate that TaNAC020-B affects starch synthesis, amylose contents, kernel number, and TKW (Figure 1).
TABLE 1 | Descriptive statistics based on mean and standard error for over-expressing transgenic rice lines to wild type. WT, wild type; O.E 1–O.E 3, transgenic rice lines; PH, plant height; KPS, kernel per spike; TKW, thousand kernel weight; TN, tiller number; SPL, spike length, NS, non-significant.
[image: Table 1][image: Figure 1]FIGURE 1 | TaNAC020-B over-expressed rice heading color and kernel demonstrate their positive effects on starch synthesis and accumulation. (A) Starch content in wild type (WT) and over-expressing (OE) lines. (B) Amylose content in WT and OE lines. (C–F) Starch density and amylose content in WT and OE under scanning electron microscopy.
TaNAC020s are mainly expressed in developing grains
For the expression pattern of TaNAC020-A/B/D, qRT-PCR was employed in different tissues at different developmental stages of wheat. TaNAC020-A/B/D were highly expressed in grains, whereas substantially lower expressions were observed in leaves, stems, and roots (Figure 2). The higher expression was observed at the caryopsis stage (5 days post-anthesis) and peaked at the medium milking stage (15 days post-anthesis) followed by declined expressions at the soft dough stage (Figure 2).
[image: Figure 2]FIGURE 2 | Gene expression pattern. (A) Tissue and stage-specific expression profile of candidate genes (Wheat-Exp database and qRT-PCR). (B) Normalized fold expression of TaNAC020-A/B/D at different stages of the day after pollination (DAP). Error bar denotes SE.
Association analyses and genetic effects of TaNAC020s haplotypes on yield contributing traits
Seven SNPs were identified in the target fragment of TaNAC020-A, eight SNPs were identified in the target fragment of TaNAC020-B, whereas no SNP was identified in the target fragment of TaNAC020-D. Two functional markers were developed to distinguish the haplotypes of TaNAC020-A based on the chosen SNP sites (Figure 3). Identified SNPs formed three haplotypes (HAP), namely, HAP-1 (TG), HAP-2 (CT), and HAP-3 (CG). To distinguish TaNAC020-B haplotypes, one KASP marker was developed based on the selected SNP site, resulting in the formation of two haplotypes (Figure 3).
[image: Figure 3]FIGURE 3 | Molecular marker development for TaNAC020-A/B/D. (A) Gene structure, SNP sites, and KASP markers for TaNAC020-A. (B) Gene structure, SNP sites, and KASP marker for TaNAC020-B. (C) Gene structure of TaNAC020-D. Red = upstream of ATG, yellow = exon, black line = intron, and blue = downstream of TGA. Scatter plot for KASP assays showing clustering of accession on X-(HEX) and Y-(FAM) axes, and the black square represents non-template control.
Accessions containing HAP-2 of both TaNAC020-A and TaNAC020-B showed higher TKW and KL in all environments and both wheat populations (Figures 4, 5). These results suggest that both haplotypes might be superior haplotypes for higher TKW and KL in the studied Chinese wheat germplasm. To investigate the evolutionary history of TaNAC020s, we analyzed the given genes in wheat progenitors. An increasing trend in the values of PIC and He were observed from tetraploid to hexaploid wheat (Supplementary Table S4).
[image: Figure 4]FIGURE 4 | Phenotypic comparison of TaNAC020-A haplotypes and their distribution in 10 Chinese major wheat production zones. (A) Phenotypic comparison and geographic distribution of haplotypes in Chinese wheat landraces. (B) Phenotypic comparison and geographic distribution of haplotypes in Chinese modern wheat cultivars. *p < 0.05, **p < 0.01, error bar denotes SE. The size of the pie chart is directly proportional to the number of accessions from the agroecological zone.
[image: Figure 5]FIGURE 5 | Phenotypic comparison of TaNAC020-B haplotypes and their distribution in 10 Chinese major wheat production zones. (A) Phenotypic comparison and geographic distribution of haplotypes in Chinese wheat landraces. (B) Phenotypic comparison and geographic distribution of haplotypes in Chinese modern wheat cultivars. *p < 0.05, **p < 0.01, error bar denotes SE. The size of the pie chart is directly proportional to the number of accessions from the agroecological zone.
Geographic distribution of TaNAC020s haplotypes in china
Variations in favored alleles tend to accumulate during the process of artificial selection. To evaluate comprehensively and systematically the distribution of all TaNAC020s haplotypes and to determine whether the favored haplotypes were selected in wheat breeding, we investigated the geographic distribution in China. China has three major wheat-growing regions which are further divided into 10 agroecological zones. The frequencies of favored haplotypes of TaNAC020-A/B were higher in all major wheat-growing regions in modern Chinese wheat cultivars than in landraces illustrating the strong positive selection of favored haplotypes during wheat breeding (Figures 4, 5). From landraces to modern cultivars, the frequency of favored haplotype of TaNAC020-A increased remarkably from 10.5 to 53.7% in zone I and 5.7–56.4% in zone II. These results indicated that the favored haplotype experienced strong positive selection in Chinese wheat breeding progress, and it positively regulated TKW and KL. For TaNAC020-B, the frequencies of favored haplotype for TKW and KL also increased from 48 to 75% in zone I and 42.8–70.9% in zone II (Figure 5). As TKW and KL are direct yield contributing traits, simultaneous selection of these traits for yield improvement led to their similar selection frequencies.
DISCUSSION
Plant-specific NAC transcription factors have been reported to play a diverse role in developmental processes in different crop plants, such as cell wall biosynthesis, leaf senescence, root development, seed development, stay-green, and nutrient remobilization (Christiansen et al., 2011; Zhang et al., 2019). In this study, we identified TaNAC020s in common wheat. N-terminal myristoylation is vital for protein function in mediation membrane association in plant responses to external factors (Podell and Gribskov 2004). The N-terminal myristoylation region has been identified in this study, and in plants, these regions are involved in protein–protein interaction and respond to abiotic stresses. In this study, TaNAC020 expression patterns during wheat grain development were studied from 5-DAP to 25-DAP. The expression peaked at 15-DAP, followed by downregulation, suggesting that NAC transcription factors influence processes that promote the synthesis of photosynthetic machinery instead of degradation since NAC is reduced following leaf senescence. Expression analysis also indicated that TaNAC020s have a grain-specific expression pattern. TaNAC020 homoeologous genes were highly expressed in grains at the medium milking stage, the period during which starch is being synthesized in the endosperm. Amyloplast synthesis is completed in 15–20 days post-anthesis, but starch synthesis can be detected even at 35–40 days post-anthesis in the endosperm in major wheat production regions in China. The expression of TaNAC020-A and TaNAC020-B positively correlates with starch synthesis–related genes. Moreover, TaNAC020s have higher sequence similarities (>98%) and play a similar function. In this study, overexpression of TaNAC020-B in T3 rice lines has shown higher TKW and KN than the wild type.
Sub-function differentiation of three homoeologous (TaNAC020-A/B/D) in wheat
Plant breeding coupled with phenotypic and genotypic selections will accelerate the future breeding process. Haplotype blocks combining two or more SNPs in strong linkage disequilibrium are more explanatory than bi-allelic SNPs (Stephens et al., 2001). Brinton et al., 2020 have also supported the haplotype-led approach as an efficient tool for precise wheat breeding. Beyond bi-allelic SNP variations, the haplotype data could capture associations that evade identification by solitary SNPs (Lorenz et al., 2010). Haplotype-based analyses are still rare in wheat, with few exceptions (Li et al., 2016; Miao et al., 2017; Ur Rehman et al., 2019). Identification of haplotypes with improved phenotypes could accelerate genetic gain in crop improvement. Haplotypes can also capture epistatic interactions between SNPs. Hence, haplotype-based approaches could boost prediction accuracies (Bevan et al., 2017). Considering the genetic variations, most of the variabilities in complex traits, that is, grain yield, are influenced by polymorphisms in the regulatory gene rather than in the structural gene (Pflieger et al., 2001). Sequence polymorphisms in the genes encoding transcription factors are considered to be an important resource for developing functional markers (FMs). The challenge is, therefore, to link these sequence polymorphisms with agronomic traits. Thus, the significance of the contrast between TaNAC020-A/B haplotypes and the agronomic data obtained in three growing seasons was calculated.
Although domestication and modern-day breeding contribute to the development of various ecotypes and cultivars, genetic variation of genes governing phenotypic traits has also increased. We cloned and characterized TaNAC020-A/B/D in wheat. SNPs were identified in TaNAC020-A and TaNAC020-B, while no sequence polymorphism was identified in TaNAC-D. Aegilops L. genus, the “B” genome donor of Triticum aestivum, often supports a cross-pollination mechanism (Yuan et al., 2017) that might be the cause of a higher number of polymorphisms. It has been well documented that wheat “D” genome is more conserved when compared to “A” and “B” genomes because “A” and “B” sub-genomes of wheat experienced a transition from diploid to tetraploid (Cavanagh et al., 2013; Li et al., 2016; Miao et al., 2017; Ur Rehman et al., 2019; Hao et al., 2020). Wheat “A” genome possesses more agronomic trait-related genes than the “B” genome, and the selection pressure to “A” genome is stronger than the “B” genome (Peng et al., 2003). The probable reasons for no sequence polymorphism in TaNAC020-D are 1) TaNAC020-D might become more fixed because of artificial selection pressure, 2) the genetic diversity of accessions examined here is still not big enough to explore more SNPs, 3) the self-pollinating nature of wheat “D” genome donor ancestors.
Prospective molecular markers in wheat breeding
SNPs are abundant in genomes and are regarded as the best markers. At the same time, FMs derived from polymorphic sites contained by genes causally involved in agronomic trait variation can be utilized to fix alleles in numerous genetic backgrounds deprived of additional calibration (Andersen and Lubberstedt 2003; Bagge et al., 2007). However, it is challenging to develop FMs in wheat due to the allo-hexaploidy nature (Bagge et al., 2007). At least three copies of ∼75% of wheat genes are present on homoeologous chromosomes having identical nucleotide sequences, which causes further difficulties in characterizing them separately (Hao et al., 2020). For a better understanding, the pattern of sequence polymorphism permits plant breeders to identify new alleles for breeding. Therefore, the present study investigated the genetic diversity for TaNAC020s in the Chinese wheat agroecological zone to facilitate wheat breeding and the use of developed molecular markers in marker-assisted breeding.
In this study, we developed SNP-based (KASP) markers. These markers are suitable and reliable for characterizing TaNAC020 haplotypes in wheat germplasms in a simple, quick, and cost-effective (30–45% less expensive than other available conventional methods) manner. These are helpful in marker-assisted breeding aimed at grain yield (Rasheed et al., 2016). However, more work is required to exploit the aforementioned probabilities in a more diverse wheat germplasm. Also, bioinformatics algorithms and tools could be used to further explore the current polymorphism data for the desired yield-related traits under biotic and abiotic stress environments.
Agronomic and physiological traits associated with TaNAC020s haplotypes
TKW and KL are among the most important agronomic traits and are often under high selection pressure. In wheat, kernel weight and kernel size have a positive correlation between them (Ali et al., 2020). High heritability values of TKW have proved that it is phenotypically a stable yield parameter, which continuously attracts wheat breeder attention because TKW has continuously improved during evolution, and this improvement may be due to the accumulation of preferred haplotypes associated with this trait. Likewise, accessions containing favored haplotypes of TaNAC020-A and TaNAC020-B are associated with higher TKW and KL. The aforementioned outcomes indicate that TaNAC020 plays its role in governing TKW and KL in wheat.
Our haplotype association analysis also illustrated that HAP-2 of TaNAC020-A was significantly associated with shorter PH. In addition, PH decreased while TKW increased continuously over decades of Chinese wheat breeding history (Ur Rehman et al., 2019). PH is a trait easy to measure and remains constant after anthesis. Plant breeders prefer wheat PH ranging between 85 and 100 cm (Cui et al., 2011; Zhang et al., 2011). TKW and KN association is population dependent; a positive correlation has been reported between the aforementioned traits in Chinese modern wheat cultivars (Zhang et al., 2012). Since 1950, wheat varieties in China have changed 4 to 6 times, with approximately a 10% yield increment in each cycle (Zheng et al., 2014). In the 1960s, yield increase in wheat arose from the introduction and wide usage of Rht1 and Rht2 (Hedden, 2003). The yield increase in China has largely depended on higher TKW with semi-dwarf PH. In this study, HAP-1 of TaNAC020-A was the predominant haplotype (67.52%) in Chinese wheat landraces, whereas its frequency decreased to 18.97% in Chinese modern wheat cultivars. The frequency of HAP-2 increased remarkably from Chinese wheat landraces to Chinese modern wheat cultivars, suggesting a positive selection for HAP-2 in the regions during modern wheat breeding. Thus, trends for haplotype selection changed from HAP-1 in landraces to HAP-2 in modern Chinese cultivars, indicating the positive selection for HAP-2 having plants with reduced PH and higher TKW in modern wheat breeding practices. For TaNAC020-B–favored haplotypes, HAP-2 was found prominent in surplus water areas and highly associated with TKW. Thus, a cumulative effect of these superior haplotypes for TKW and KL caused a balancing effect in their selection frequencies from Chinese wheat landraces to modern wheat cultivars. Advancements in agro-industries in China strongly impacted grain yield. Small grains were replaced with larger grain sizes by intensive breeding with advancing technologies of milling.
The wheat germplasm panel selected in this study has high He and PIC, indicating higher polymorphism (Supplementary Table S4). Furthermore, TaNAC020-B had higher He and PIC, followed by TaNAC020-A, consistent with previous reports regarding higher polymorphism in the wheat B genome (Yuan et al., 2017).
Functional markers of several yield-related genes have been reported. Pyramiding preferred alleles of these genes with MAS will be instrumental in wheat breeding by enhancing additive genetic variation. Plant breeding through phenotypic selection is a time-consuming and relatively inefficient process (Gedye et al., 2012). Recently, remarkable progress has been made in developing FMs for marker-assisted selection in wheat for important agronomic traits, such as TKW, KN, and PH (Zheng et al., 2014; Hanif et al., 2016; Li et al., 2016; Miao et al., 2017; Sajjad et al., 2017; Ur Rehman et al., 2019; Shoaib et al., 2020; Ur Rehman et al., 2021). This study provides KASP FMs for TaNAC020-A/B genes with potential application in wheat breeding.
CONCLUSION
The results indicate that TaNAC020 exhibits multiple functions for grain development with increased kernel length and TKW. We also established high throughput and cost-effective molecular markers for TaNAC020-A/B genes. The genes identified here and molecular markers developed to identify haplotypes are useful for marker-assisted breeding for kernel length and high TKW. These markers can be used alone or in combination with other functional markers. Thus, TaNAC020s have the potential to be used in wheat yield improvement programs due to their key importance in plant growth and development.
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To evaluate the application potential of high-density SNPs in rice distinctness, uniformity, and stability (DUS) testing, we screened 37,929 SNP loci distributed on 12 rice chromosomes based on whole-genome resequencing of 122 rice accessions. These SNP loci were used to analyze the DUS testing of rice varieties based on the correlation between the molecular and phenotypic distances of varieties according to UPOV option 2. The results showed that statistical algorithms and the number of phenotypic traits and SNP loci all affected the correlation between the molecular and phenotypic distances of rice varieties. Relative to the other nine algorithms, the Jaccard similarity algorithm had the highest correlation of 0.6587. Both the number of SNPs and the number of phenotypes had a ceiling effect on the correlation between the molecular and phenotypic distances of varieties, and the ceiling effect of the number of SNP loci was more obvious. To overcome the correlation bottleneck, we used the genome-wide prediction method to predict 30 phenotypic traits and found that the prediction accuracy of some traits, such as the basal sheath anthocyanin color, glume length, and intensity of the green color of the leaf blade, was very low. In combination with group comparison analysis, we found that the key to overcoming the ceiling effect of correlation was to improve the resolution of traits with low predictive values. In addition, we also performed distinctness testing on rice varieties by using the molecular distance and phenotypic distance, and we found that there were large differences between the two methods, indicating that UPOV option 2 alone cannot replace the traditional phenotypic DUS testing. However, genotype and phenotype analysis together can increase the efficiency of DUS testing.
Keywords: rice, genotype, phenotype, SNP, correlation analysis, DUS, distinctness, genomic prediction
INTRODUCTION
Rice (Oryza sativa L.) is one of the most important staple food crops for half of the population across the world (Hu et al., 2002). Rice production in China accounts for about 28.22% of the world’s total production (Food and Agriculture Organization, 2020). China is not only the largest rice producer and consumer, but it also has advanced rice breeding techniques and plenty of rice varieties. As of 1 April 2021, China had a total of 10,702 certified rice varieties, of which 3,243 varieties were under the protection of plant variety rights (Ministry of Agriculture and Rural Affairs of People’s Republic of China, 2021).
Distinctness, uniformity, and stability (DUS) are the basic requirements for the certification of a plant variety. In the DUS testing process, uniformity testing and stability testing are the foundation and distinctness testing is the core. Currently, rice DUS testing requires at least two independent growth cycles as per the standard DUS testing protocols. The current DUS testing is only based on phenotypic trait analysis. Although morphological analysis is very direct, it is easily affected by environmental conditions. The phenotypes of the same variety may vary significantly depending on time and location; in addition, morphological analysis is time consuming, laborious, and inefficient. Moreover, as a result of the consistent breeding goals, breeders often use backbone parents with the similar genetic relationships for cross-breeding, which results in low genetic diversity of the bred varieties (Liu and Zhang, 2010) and brings challenges for phenotypic testing. However, in comparison with morphological characteristics, molecular markers can be used at various developmental stages and they are not affected by the environment. Moreover, molecular markers are abundant and genetically stable, and they are most widely used for genetic diversity analyses in almost all crops (Hayward et al., 2015; Hong et al., 2021). Molecular markers have diverse applications in breeding programs, such as F1 confirmation, cultivar/hybrid purity testing, DNA finger printing (Gangurde et al., 2017), foreground and background selection (Shasidhar et al., 2020), marker-assisted selection (Cockram et al., 2012; Wagh et al., 2021), and genetic mapping (Dodia et al., 2019; Jadhav et al., 2021). Molecular markers are also widely used in the identification of rice varieties.
Pourabed et al. (2015) reported that SSR markers could assist in rice DUS testing. Zheng et al. (2022) reported that 40 SNP markers could be used to successfully discriminate between indica and japonica rice, with a correlation coefficient of 0.86 with Cheng’s index method. Steele et al. (2021) developed a set of KASP markers for rapid genotyping and identification of basmati rice varieties.
The International Union for the Protection of New Varieties of Plants (UPOV) also proposed three options to incorporate molecular marker technology into DUS testing (UPOV INF/18/1, 2011): prediction of phenotypic characteristics by using linked diagnostic markers (option1); calculation of molecular distance thresholds to reproduce phenotypic distinctness determination (option 2); and use of an unlimited number of molecular markers to reconstruct a new test system (option 3). In the case of option 1, because the current development of diagnostic markers for rice mainly focuses on important agronomic traits, such as yield, quality, and disease resistance, and there are few additional studies on other non-major agronomic traits, there are not enough diagnostic markers to evaluate and analyze this option. In the case of option 3, there is also much controversy because setting the threshold for determination of distinctness at 1 base pair difference could lead to impractical determination in uniformity and stability testing. Currently, research into rice DUS testing is mainly focused on option 2, which is based on a high correlation between the molecular and phenotypic distances of varieties. Previous studies have conducted in-depth research on option 2. By using 3,072 SNP markers for barley variety-distinct analysis, Jones et al. (2013) found that the correlation between the molecular and phenotypic distances of barley varieties was between 0.557 and 0.637. It was also believed that the correlation was affected by kinship and the number of molecular markers. Liu et al. (2019) used morphological traits and SSR markers to analyze the genetic diversity of peanut varieties and found that the correlation between them was 0.36. Guan et al. (2020) used 384 SNPs to perform maize DUS testing and found that the correlation was only 0.21. The results of previous studies showed that the correlations between phenotypic distances and molecular distances were generally not significantly high, which directly affected the application of UPOV option 2.
With the advances in sequencing technologies and the reduction of sequencing costs, SNP markers have become popular molecular markers in genome research. They have been widely used in genetic structure analysis (Ebana et al., 2010), genome-wide association analysis (Huang et al., 2012; Gangurde et al., 2020; Pujar et al., 2020; Wang et al., 2020), and genome-wide selection (Cui et al., 2020). Compared with SSR markers, SNPs have the advantages of genome-wide distribution and high density, and they are more suitable for efficient automated analysis. In the present study, on the basis of whole-genome sequencing of 122 rice accessions, we analyzed the correlation between the molecular and phenotypic distances of rice varieties by screening 37,929 SNP loci, and we also evaluated UPOV option 2 for the DUS testing of rice.
MATERIALS AND METHODS
Experimental Materials
A total of 122 japonica rice varieties, most from China and Japan (Table 1), were used as the main experimental materials. These rice varieties were provided by the China National Rice Research Institute and the National Engineering Research Center of Plant Space Breeding of South China Agricultural University. The varieties selected for this study contained both elite lines and landraces, as well as breeding lines, some of which were sister lines. As all varieties were phenotypically distinct from each other, these varieties were suitable to evaluate UPOV option 2 for the DUS testing of rice.
TABLE 1 | Rice accessions used in the present study.
[image: Table 1]Extraction of Genomic DNA and SNP Calling
In this study, 30 plump seeds per accession were selected, sterilized with 1% sodium hypochlorite for 10 min, and then reconstituted three times with distilled water. The sterilized seeds were placed in germination bottles, an appropriate amount of distilled water was added, and then the bottles were placed in a germination box at 28°C for 14 days. High-quality genomic DNA was then extracted from 25 seedlings of each line by using a plant genomic DNA extraction kit (TIANGEN, China), and the quality was checked on a Nano-drop spectrophotometer. A Covaris sonicator was used to break the qualified DNA samples into approximately 350-bp fragments. An NEB Next® Ultra DNA Library Prep Kit (NEB, United States) was then used to prepare a DNA library, which included the processes of end repair, polyA tail addition, and ligation of adapter. Finally, the constructed library was sequenced with an Illumina NovaSeq PE150 sequencer at a sequencing depth of 10×. According to the alignment results of sequencing data on the rice reference genome (MSU-RGAP 7.0), SNPs were called by using the GATK software toolkit (McKenna et al., 2010). Furthermore, VCFtools software (Danecek et al., 2011) was used to filter 738,341 SNPs with a minimum allele frequency (MAF) greater than 0.05 and missing rate less than 0.2. Finally, after comparing these SNPs with the 3K rice core SNPs (The 3K RGP, 2014), we selected a total of 37,929 SNPs (Supplementary Table S1) to evaluate UPOV option 2 in rice.
Morphological Survey
The experimental rice varieties were planted during September–December 2021 at the Wushan experimental base of South China Agricultural University, according to the requirements of the UPOV test guide for rice (UPOV TG/16/8, 2004; UPOV TG/16/9, 2020). Each plot was 1.5 m long and 1 m wide, with a row spacing of 20 cm and a plant spacing of 10 cm. Phenotypic data were recorded for 30 morphological traits (Table 2; Supplementary Table S2). Among them, visual traits were investigated by inspection and recorded with grade codes 1–9, and quantitative traits were measured with scale tools and converted into grade codes 1–9 based on standard varieties (UPOV TG/16/8, 2004; UPOV TG/16/9, 2020).
TABLE 2 | 30 Morphological traits used for the DUS testing of rice.
[image: Table 2]Statistical Analysis
In this study, Admixture software (Alexander et al., 2009) was used to analyze the population structure of accessions based on 37,929 SNPs. First, the number of clusters K of the tested materials was set to be 1–10, and then the cross-validation error (CVE) rate for each number of clusters was calculated. Finally, the K value corresponding to the minimum cross-validation error rate was determined as the optimal number of clusters. Principal component analysis (PCA) was performed by using the GCTA software (Yang et al., 2011), first by using the parameter “--make-grm” to obtain a genetic relationship matrix (GRM) and then by performing a plot analysis based on the first two principal components.
A phenotype 0–1 matrix was constructed based on investigation data of morphological traits. The variety that occurred on the level i of a trait was recorded as 1; otherwise, it was recorded as 0. Similarly, the SNP 0–1 matrix of rice varieties was constructed based on the SNP loci information, and the missing loci were filled with mode. Loci with the same information as the reference genome were marked as 0; otherwise, they were marked as 1, and heterozygous loci were marked as 0.5. R software (R Core Team, 2012) was used for statistical analysis. Initially, the Euclidean, Manhattan, Gower, Canberra, Harmonic_mean, Jaccard, Squared_euclidean, Person, Cosine, and Dice distances of morphological traits and SNP loci were calculated with the R package “philentropy” (Drost, 2018). Furthermore, the correlation between molecular and phenotypic distances of rice varieties was calculated, and the optimal similarity algorithm was screened. On the basis of the above analysis, the effect of trait number and SNP loci number on the correlation was analyzed. Then, 10%, 20%, 40%, 60%, 80%, and 100% of phenotypic distances were set as the thresholds to compare with the corresponding molecular distances (Jones et al., 2013), and UPOV option 2 was evaluated according to the efficiency of reproducibility. In this study, the R package “dendextend” (Galili, 2015) was used to analyze the phenotypic and molecular clustering results.
The rrBLUP (ridge regression best linear unbiased prediction) data package (Endelman, 2011) was used to perform genome-wide prediction analysis on 30 DUS traits based on 37,929 SNP loci. The formula is [image: image], where y is the best linear unbiased predictor vector for the trait of the tested variety, µ is the population mean, α is the additive effect of the markers, X is the genotype matrix, and e is the residual term. The training group comprised 90 randomly selected varieties, and the remaining 32 varieties were used as the testing group. The analysis was performed 100 times to calculate the prediction value of each trait. The correlation coefficient between the predicted value and the actual observed value for the trait in the testing group was used as the prediction accuracy.
RESULTS
Analysis of Sequencing Results and Distribution of SNP Loci
A total of 699.14 Gb of raw data was generated by whole-genome sequencing 122 rice varieties, with an average of 5,730.7 Mb of data per sample. After filtration, 697.56 Gb of clean data was recovered, with an average of 5,717.7 Mb per sample; Q20 (the base call accuracy is 99%) was greater than 96%, and Q30 (the base call accuracy is 99.9%) was greater than 91% (Supplementary Table S3). On the basis of sequencing, a total of 37,929 SNPs were then obtained by alignment to the reference genome. Most of the SNP loci were low heterozygosity (Figure 1) and uniformly distributed in the genome with an average distribution density from 6.20 to 20.26 kb/SNP (Table 3; Supplementary Figure S1). For these SNPs, 33.87% of the inter-loci distances were in less than 1kb, and 45.68% were in more than 3 kb (Figure 2A). In addition, most of the SNP loci were located in intergenic regions, and the rest were in introns, coding regions, and UTR regions (Figure 2B).
[image: Figure 1]FIGURE 1 | A histogram showing the normal distribution of heterozygosity of 37,929 SNPs.
TABLE 3 | Chromosome distribution of SNP loci used for calculating the molecular distance.
[image: Table 3][image: Figure 2]FIGURE 2 | Genome-wide SNP density and distribution of 37,929 SNPs. (A) Interval statistics between SNPs. (B) Illustration of the ratio of SNPs in the intergenic region and different positions in the gene region.
Diversity Analysis Based on SNP Loci
Using Admixture software (Alexander et al., 2009), the genetic structure of 122 accessions was analyzed based on 37,929 SNPs. The results showed that the CVE showed a downward trend with an increase of the K value. When the K value was 4 and 8, the CVE reached the valley value (Figure 3B), and after further combination with PCA (Figure 3C), phylogenetic tree analysis (Figure 3D), and material source information, the tested materials were finally divided into four subgroups (Figure 3A). Among them, the composition of the POP1 subgroup was more complex, with 25 accessions from eight countries including China, Japan and the United States. The POP2 subgroup had 23 accessions, mostly from China. The POP3 subgroup had 28 accessions, mainly from Japan. The 46 accessions of the POP4 subgroup were mainly from Japanese breeding lines. According to the analysis results, varieties from the same country tended to be clustered together.
[image: Figure 3]FIGURE 3 | Details of population structure analysis by using 37,929 SNPs based on 122 rice genotypes. (A) Population structures. (B) Cross-validation error value of different subgroups. (C) Principal component analysis. (D) Evolutionary tree diagram. Red, green, orange, and blue represent POP1, POP2, POP3, and POP4, respectively.
Comparison of the Correlations Between Molecular and Phenotypic Distances of Rice Varieties by Different Similarity Algorithms
We used 10 different similarity algorithms to analyze the correlation between the molecular and phenotypic distances of rice varieties and found that the algorithms had a significant impact on the correlations. Among them, the Jaccard algorithm had the highest correlation of 0.6587, whereas the correlation of the Pearson algorithm was only 0.5541 (Figure 4A). Furthermore, we found that some variety pairs showed small molecular distances but higher phenotypic distances, or small phenotypic distances but higher molecular distances (Figure 4B), suggesting that the phenotypic differences did not match the molecular differences. This might be an important reason for the low correlation.
[image: Figure 4]FIGURE 4 | Correlations between the molecular and phenotypic distances based on different algorithms. (A) Correlations based on 10 similarity algorithms. (B) Correlation between the molecular and phenotypic distances of varieties based on the Jaccard algorithm. The red oval represents small molecular distances but large phenotypic distances, and the yellow oval represents small phenotypic distances but large molecular distances. P is the significance level, and r is the correlation coefficient.
Effect of Numbers of SNP Loci and Phenotypic Traits on the Correlation Between Molecular and Phenotypic Distances
To investigate the factors that influence the correlation between molecular and phenotypic distances, we analyzed the effect of the numbers of SNP loci and phenotypic traits on the correlation by using the Jaccard algorithm. The results showed that as the number of SNP loci increased, the correlation increased rapidly at the beginning and became consistent at approximately 6.5; after that, the correlation did not change significantly even when the loci number continued to increase (Figure 5A). In terms of the number of phenotypic traits, there was also a plateau effect. The correlation initially increased with an increasing number of traits and then gradually leveled off (Figure 5B). The above results suggest that a certain number of SNP loci or phenotypic traits were enough to effectively improve the correlation between the molecular and phenotypic distances.
[image: Figure 5]FIGURE 5 | Scatter plot of the effect of different numbers of SNPs and traits on the correlation. (A) A scatter plot of the correlation between molecular and phenotypic distances shows that the correlation improves as the number of SNP loci increases until a ceiling is reached. (B) A scatter plot of correlation between molecular and phenotypic distances shows the correlation growth trend with an increasing number of traits; the blue line shows a gradual increase of correlation and the red line shows a reduced increase.
Correlation Analysis of DUS Traits in Rice
Analysis results of the correlations of 30 DUS traits (Figure 6) showed that there was a positive correlation between the color of brown rice and the coloration of anthocyanins in the leaves, basal leaf sheaths, and stem nodes. Strong positive correlations were observed among grain length, grain aspect ratio, heading date, flag leaf width, stem length and thickness, and panicle length. The pubescence of the lemma was negatively correlated with the heading date, flag leaf width, stem length and thickness, and panicle length. The above results indicated that many phenotypic traits were closely related, and too strong a correlation might have a negative impact on the phenotypic clustering analysis of varieties.
[image: Figure 6]FIGURE 6 | Correlation analysis of trait expression. Only values with a correlation greater than 0.35 or less than −0.35 are displayed.
Genome-Wide Prediction Analysis of DUS Traits in Rice
To further analyze the effect of SNP loci on trait expression, we used the correlation coefficient between the predicted trait value and the actual phenotypic value as the standard of prediction accuracy. We used 37,929 SNP loci to predict 30 DUS traits (Table 4) with rrBLUP. The results showed that the prediction results of morphological traits were quite different, and the prediction accuracy ranged from 0.102 to 0.840, with an average of 0.479. Traits such as stem length and stem thickness showed an accuracy of over 0.8, and the accuracy of stem length was the highest at 0.840. Traits such as the basal sheath anthocyanin color, glume length, and intensity of green color of the leaf blade showed an accuracy of less than 0.2, and the accuracy of the intensity of green color of leaf blade was only 0.102.
TABLE 4 | Correlation between predicted and true values of traits achieved by using rrBLUP.
[image: Table 4]To analyze the effect of different traits on the correlation, we divided the phenotypic traits into A and B groups with a prediction accuracy threshold of 0.443 (Table 4). The prediction accuracy of group A was less than 0.443, with an average of 0.310, and the prediction accuracy of group B was more than 0.443, with an average of 0.648. Furthermore, we performed correlation analysis between the molecular and phenotypic distances separately (Figure 7). The results showed that the correlation in group A (0.3786) was significantly less than that in group B (0.7098), suggesting that the key to improving the correlation between molecular and phenotypic distances of rice varieties was to improve the resolution of traits.
[image: Figure 7]FIGURE 7 | Correlation between molecular and phenotypic distances in different groups. (A) Correlation based on 15 traits with predicted values less than 0.443. (B) Correlation based on 15 traits with predicted values more than 0.443. P is the significance level, and r is the correlation coefficient.
Evaluation and Analysis of UPOV Option 2
The key to UPOV option 2 is to reproduce the phenotype distinctness determination by setting molecular distance thresholds. As all varieties were phenotypically distinct from each other, we conducted distinctness determination analysis separately by setting different gradients of phenotypic distances and molecular distances, and we then counted the number of shared “D” varieties (phenotypically or molecularly distinct varieties according to artificially set distances). Finally, UPOV option 2 was evaluated based on the above method. The results (Table 5) showed that to identify 12 or 24 phenotypic “D” varieties, at least 72 molecular “D” varieties were needed, whereas to identify 48, 72, and 96 phenotypic “D” varieties, 122 molecular “D” varieties were needed. Furthermore, phenotypic and molecular clustering analyses were performed on the 122 varieties based on the Jaccard distance (Figure 8). The results showed that only nine pairs of cultivars (A29 and A32, A43 and A45, A42 and A50, A41 and A72, A79 and A80, A83 and A84, A105 and A107, A106 and A108, A114 and A115) had the same cluster analysis results. Among them, A79 and A80 were a pair of varieties from Japan, their molecular distances were very small, and the phenotypic differences were mainly reflected in the stem height and the attitude of the flag leaf blade. The phenotypic and molecular clustering results of A105, A106, A107, and A108 were the same; A107 and A108 were from the same breeding institutes. The phenotypic differences for the four varieties were mainly reflected in the heading date, stem length, and panicle length.
TABLE 5 | Comparisons of distinctness decisions made by using either morphological or molecular distances.
[image: Table 5][image: Figure 8]FIGURE 8 | Correspondence between molecular (left of figure, calculated by using the Jaccard distance) and phenotypic (right of figure, calculated by using the Jaccard distance) cluster analysis. Identical colored lines indicate the same cluster results.
These results suggested that the determinations based on phenotypic distances and molecular distances were quite different, and phenotype distinctness testing could not be reproduced by setting molecular distance thresholds. Therefore, UPOV option 2 would not be sufficient for DUS testing in rice.
DISCUSSION
DUS testing is an important scientific basis for the authorization of new plant varieties. In order to improve the testing efficiency and quality, researchers have conducted in-depth studies on the correlation between molecular distances and phenotypic distances of varieties (Jones et al., 2013; Hong et al., 2021). Earlier reports showed that there was low correlation between phenotypic and molecular distances (Gupta et al., 2018; Guan et al., 2020), which might be related to the low number of molecular markers. With the development of sequencing technology and the reduction of sequencing costs, SNPs have become important molecular markers for diversity analysis. SNPs can be used to perform genome-wide association studies (Huang et al., 2012; Wang et al., 2020) and the rapid identification of high-throughput varieties (Yuan et al., 2022). In this study, based on the whole-genome resequencing of 122 rice germplasms, the screened 37,929 SNP loci were used to analyze the correlation between the molecular and phenotypic distances of rice varieties. The results showed that as the number of SNP loci increased, the correlation rapidly increased up to a level of approximately 6.5 and then entered a plateau phase. This finding indicated that although the number of SNP loci had an impact on the correlation, it could not be the most critical factor influencing the correlation. In addition, we also analyzed the effect of statistical algorithms on the correlation between the molecular and phenotypic distances. The results showed that relative to the other nine algorithms, the Jaccard similarity algorithm could achieve a higher correlation.
To decipher the ceiling effect of the correlation, we used the genome-wide prediction method to predict 30 phenotypic traits and found that the prediction accuracy of some traits, such as the basal sheath anthocyanin color, leaf blade anthocyanin color, stigma color, awn length, glume length, and intensity of green color of the leaf blade, was low. Furthermore, in combination with group comparison analysis, we found that the key to overcoming the correlation ceiling effect was to improve the resolution of low predictive value traits. In fact, we also screened SNPs near many known genes, such as Chr6_5311542 near the key anthocyanin regulator OSC1 (Ithal and Reddy, 2004), Chr8_23986899 near the awn growth factor GAD1 (Jin et al., 2016), and Chr5_16510158 near the chlorophyll synthase YGL1 (Wu et al., 2007). However, the phenotype prediction effect of these SNPs in the above traits was not ideal. The reason for this problem was not only related to the low heritability of some traits (Jones and Mackay, 2015) but also to the expression state setting of some traits. For example, the setting of the expression state of the anthocyanin color in the basal leaf sheath was not linear, including both the degree of anthocyanin deposition and the presence or absence of purple lines. Therefore, it is necessary to further analyze this in future research.
The purpose of UPOV option 2 is to reproduce phenotypic distinctness determinations by calibrating molecular distances. Therefore, a high correlation between molecular and phenotypic distances is the key to implementing this option. Jones et al. (2013) found that when the correlation was lower than 0.6, the distinctness determination using the phenotypic distance differed by 80% compared to that using the molecular distance. Our study also found that even when the correlation reached 0.6587, there was still a large difference in the determination results. Therefore, at the current research level, the phenotypic and molecular distances cannot match perfectly, and UPOV option 2 is not able to replace the traditional phenotypic DUS testing for the time being (Guan et al., 2020). However, we also found that the genome-wide prediction method could be used to predict some traits more accurately. Therefore, in order to improve the application level of UPOV option 2, the whole-genome prediction method should be combined into the option. On the other hand, with the rapid reduction of sequencing costs, large numbers of SNP loci are being continually developed, and UPOV options 1 and 3 have also attracted much attention. For UPOV option 1, the functional marker Pi54 MAS was used to improve the rice blast-resistant restorer line (Ramalingam et al., 2020). Selection analysis was conducted for rice grain size based on the novel functional markers of 14 genes (Zhang et al., 2020). A new mutation site was identified through sequence analysis of the rice SD1 gene. On this basis, a new functional molecular marker for marker-assisted selection was developed by Bhuvaneswari et al. (2020). Since the current development of functional molecular markers in rice mainly focuses on important agronomic traits such as yield, quality, and resistance, and there are few studies on other non-major agronomic traits, the application of UPOV option 1 in rice variety distinctness testing has not yet been reported. In addition, there may also be a certain relationship between the effect of functional molecular markers and the genetic background of the material. Studies have shown that there is a close linkage between the color of the apiculus and stigma in rice (Zhao et al., 2016; Tong et al., 2021). However, Zhao et al. (2016) transferred the chromogen for anthocyanin OSC1 to the japonica variety Kitaake (white apiculus and stigma) and found that the apiculus of the transgenic plant exhibited red coloration but the stigma was achromatic. Therefore, the combination of UPOV options 1 and 2 for DUS testing is of great significance for the development of molecular identification technology.
For option 3, although variety authorization can be completed within a few weeks by using this option, the distinctness of a variety defined by molecular markers is meaningless if the variety is not phenotypically unique. In addition, for rice varieties, it is normal and acceptable to have a certain number of off-type plants. If molecular markers are used for uniformity testing, it will be hard to evaluate the heterogeneity (Xu, 2014). Therefore, to establish a test system based entirely on molecular markers, it is necessary to fully consider the influences of various factors such as traits, distinctness thresholds, variety protection purposes, and sampling methods. This is why there is much controversy (UPOV INF/18/1, 2011) about UPOV option 3.
CONCLUSION
In this study, based on the whole-genome resequencing of 122 rice accessions, the 37,929 SNP loci screened were used to analyze the correlation between the molecular and phenotypic distances of rice varieties, and UPOV option 2 was also evaluated. The results showed that statistical algorithms, the number of phenotypic traits, and the number of SNP loci all affected the correlation between the molecular and phenotypic distances of the rice varieties. Among the statistical algorithms, the Jaccard similarity algorithm had the highest correlation of 0.6587. In terms of the number of SNP loci and phenotypic traits, we found that the correlation between the molecular and phenotypic distances had a ceiling effect, and the ceiling effect for the number of SNPs was more obvious. Furthermore, to overcome the ceiling effect of correlation, we predicted 30 DUS traits by using genome-wide prediction and performed a comparative analysis based on prediction accuracy. The results suggested that improving the resolution of traits with low predictive value might be the key to overcoming the ceiling effect of correlation. In addition, we also used molecular distances and phenotypic distances to analyze the distinctness of rice varieties, and we found that the results of the two methods were quite different, indicating that UPOV option 2 could not be used alone for DUS testing, whereas genotype and phenotype analysis together could improve the efficiency of DUS testing.
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Lodging is one of the major abiotic stresses, affecting the total crop yield and quality. The improved lodging resistance and its component traits potentially reduce the yield losses. The section modulus (SM), bending moment at breaking (M), pushing resistance (PR), and coefficient of lodging resistance (cLr) are the key elements to estimate the lodging resistance. Understanding the genetic architecture of lodging resistance–related traits will help to improve the culm strength and overall yield potential. In this study, a natural population of 795 globally diverse genotypes was further divided into two (indica and japonica) subpopulations and was used to evaluate the lodging resistance and culm strength–related traits. Significant diversity was observed among the studied traits. We carried out the genome-wide association evaluation of four lodging resistance traits with 3.3 million deep resolution single-nucleotide polymorphic (SNP) markers. The general linear model (GLM) and compressed mixed linear model (MLM) were used for the whole population and two subpopulation genome-wide association studies (GWAS), and a 1000-time permutation test was performed to remove the false positives. A total of 375 nonredundant QTLs were observed for four culm strength traits on 12 chromosomes of the rice genome. Then, 33 pleiotropic loci governing more than one trait were mined. A total of 4031 annotated genes were detected within the candidate genomic region of 33 pleiotropic loci. The functional annotations and metabolic pathway enrichment analysis showed cellular localization and transmembrane transport as the top gene ontological terms. The in silico and in vitro expression analyses were conducted to validate the three candidate genes in a pleiotropic QTL on chromosome 7. It validated OsFBA2 as a candidate gene to contribute to lodging resistance in rice. The haplotype analysis for the candidate gene revealed a significant functional variation in the promoter region. Validation and introgression of alleles that are beneficial to induce culm strength may be used in rice breeding for lodging resistance.
Keywords: GWAS, association mapping, rice (Oryza sativa L.), lodging resistance, culm strength, genetic architecture
1 INTRODUCTION
Rice (Oryza sativa L.), as one of the main staple food crops, is very important for food security worldwide (Meng et al., 2021). Among the various biotic and abiotic stresses, lodging is a major factor, causing significant reduction in grain yield and quality by decreased photosynthesis and nutrient transportation (Berry et al., 2004; Islam et al., 2007). The modern high yielding varieties bred for long spikes and high grain weight become vulnerable to stem lodging (Hirano et al., 2017). The field management with more fertilizer consumption and high planting density leads to reduced culm strength and an increased risk of lodging (Shah et al., 2019). Previously, reduced plant height with semi-dwarf gene sd1 caused a green revolution and decreased the risk of lodging in cereals (Peng et al., 1999; Sasaki et al., 2002). However, the clear genetic architecture of lodging resistance is still unclear.
There are two main types of lodging in rice, that is, stem lodging and root lodging. The current study focused on the traits associated with lodging resistance of rice culm. The significant association of lodging resistance with culm strength has been reported in rice (Meng et al., 2021). Culm strength is one of the complex quantitative traits that are contributed by multiple traits, including culm morphology, diameter, thickness, plant height, and stem stress bearing capacity, due to accumulation of macromolecules like lignin and carbohydrates (Kashiwagi and Ishimaru, 2004; Kashiwagi et al., 2006; Yano et al., 2015; Fan et al., 2018; Sowadan et al., 2018). Culm lodging can be further classified as culm-breaking and culm-bending types. Both of the culm strength indicators often occur in transplanting cultivation. The culm-breaking can be estimated by the bending moment at breaking (M), which is the measure of culm thickness calculated as section modulus (SM) and culm stiffness calculated as bending stress (BS) (Ookawa et al., 2010; Chigira et al., 2020). Meanwhile, the culm flexibility can also be evaluated as the coefficient of lodging resistance (Grafius and Brown, 1954).
Some studies and breeding trials have been conducted to improve the culm strength, but they have not succeeded due to the negative correlation of culm strength (tallness and thickness) and yield parameters (Hirano et al., 2017). Exploitation of potential genetic resources, identification of novel loci governing the culm strength, and gene pyramiding are the promising solution to improve yield and strength simultaneously (Meng et al., 2021). Recently, various genes/QTLs governing lodging resistance and/or its contributing traits have been reported. The QTLs SCM1 and SCM2 were reported to induce culm strength. SCM2, similar to the APO1 gene, controls the culm diameter and culm morphology by encoding an F-box domain containing protein (Ookawa et al., 2010; Rashid et al., 2016). A QTL SCM3 was reported to control the culm morphology by affecting the strigolactone signaling pathway (Yano et al., 2015; Meng et al., 2021). The gnla mutant could improve the lodging resistance by increasing culm diameter (Tu et al., 2022). The COBRA protein encoding gene BC1 was reported to contribute the culm strength by cell wall cellulase microfilaments elongation and cell wall thickening (Li et al., 2003). The sd1 gene and TUT1 allele es1-1 were reported for short stature, resulting in lodging resistance. In addition to these genes, the genetic studies on internode length, grain weight, panicle length, and tiller angle (Rashid et al., 2022) have also been observed to contribute to culm strength, leading to lodging resistance in rice.
In recent years, rice researchers widely used the genome-wide association studies (GWASs) to investigate the complex traits of agronomic and commercial importance including yield parameters, flowering time (Huang et al., 2010; Huang et al., 2012; Rashid et al., 2022), and abiotic stresses like drought (Al-Shugeairy et al., 2015) and salinity (Kumar et al., 2015). Nonetheless, a few GWAS studies were conducted for lodging resistance (Hu et al., 2013; Meng et al., 2021) in crops. In this research, a genome-wide association study (GWAS) was conducted for the SM, M, PR, and cLr. The regression models, such as general linear model (GLM), mixed linear model (MLM), and compressed mixed linear model (cMLM), were used to estimate the marker trait association (MTA). The 1000-times permutation test was also used to remove false-positives. Moreover, the combination of various regression models in GWAS helped to control false positives (Wu et al., 2016; Misra et al., 2017; Zhang et al., 2018). This study clearly aimed to explore the genomic regions associated with lodging resistance in the whole rice genome. We investigated the genetic variation and heritability among lodging resistance traits, their statistical and biological correlation, significantly associated loci, pleiotropic loci, and candidate genes. The research will not only provide a deep insight into the genetic basis of lodging resistance but also point toward improving yield potential in rice breeding programs.
2 MATERIALS AND METHODS
2.1 Plant material and field management
The study was conducted by using a natural population of 795 genetically and geographically diverse rice genotypes selected from a full population of 3,000 rice genome projects (3KRGP) (Li J. Y. et al., 2014; Li Z. et al., 2014). The germplasm was selected as a representative population including the rice mini-core collection from China Agricultural University (CAU) China and 525 diverse breeding lines from the Chinese Academy of Agricultural Sciences China as previously described (Zhao et al., 2018a; Zhao et al., 2018b; Rashid et al., 2022). The genetic purity and homozygosity of germplasm was confirmed by growing the plants through a single seed descent (SSD) approach for 3 years (2013–2016). The experimental plant material was grown in a randomized complete block design (RCBD) in three replications for 3 consecutive years. Two experimental blocks at the bird-net secured experimental farm of China Agricultural University, Sanya, Hainan (18 oN, 109 oE), China. Three lines of 1 m length for each genotype were grown, and seven seeds per line were maintained. Sampling and phenotyping were performed on three guarded plants from each line. The average value of three replicated plants from each block during 3 years (Yu et al., 2007) was used for analysis. The standard cultural practices as per local area requirements were kept constant.
2.2 Phenotyping
The lodging resistance of three guarded plants from each of two experimental blocks was calculated by the standard lodging resistance parameters, including section modulus (SM), pushing resistance (PR), bending moment at breaking (M), and coefficient of lodging resistance (cLr). SM was measured in cubic-millimeters (mm3) by the formula (Ookawa et al., 2010):
[image: image]
where a1 is the culm outer diameter of the minor axis in an oval cross-section, b1 is the outer diameter of the major axis in an oval cross-section, a2 is the inner diameter of the minor axis in an oval cross-section, and b2 is the inner diameter of the major axis in an oval cross-section. The whole plant’s pushing resistance (PR), also known as bending stress at breaking (BnS), was measured in grams per centimeter-square (g/cm2) with a lodging meter at the maturity stage, according to a method reported previously (Kashiwagi and Ishimaru, 2004). The bending moment (M) of the basal internode at breaking (g/cm) was calculated as follows as previously described (Ookawa et al., 2016):
[image: image]
The coefficient of lodging resistance (cLr) value of the plant was determined in g/cm according to the method described by Grafius and Brown (Grafius and Brown, 1954). The average value of ten individual plants was considered the final reading for the succeeding analysis.
2.3 Germplasm genotyping and population structure evaluation
The second generation of whole-genome high-throughput sequences with ∼13-fold coverage was obtained by Illumina sequencing, and the sequence reads were aligned against japonica cv. Nipponbare reference genome. The direct comparison with corresponding regions in the reference sequence produced 10 million raw SNPs. The SNP screening was performed with threshold criteria of missing rate more than 20 percent and at least 5% minor allele frequency. The completed set of selected SNP markers distributed over the 12 chromosomes of the rice genome were used to calculate the population structure parameters.
The population structure (Q-matrix), principal components (PCs) and kinship (K) matrix were calculated by the GAPIT program (http://www.maizegenetics.net/GAPIT). The 795 individuals in the full population could be divided into two sub-populations as japonica and indica based on PCs and K-matrix. Later on, the kinship matrix and the principal components were re-estimated for each sub-population to be used as covariates in the mixed linear model (MLM) of regression analysis. To map the known genes and candidate loci, their physical positions were acquired from the online available rice database (http://rapdb.dna.affrc.go.jp).
2.4 Statistical analysis of phenotypes
The statistical descriptive for phenotypic or morphological data was calculated by SPSS version 19 (http://www-01.ibm.com/software/analytics/spss/). The F-distribution test was performed to evaluate the significance of available diversity among genotypes. The analysis of variances (ANOVA) was performed to estimate the genotypic variance (Vg) and environmental variance (Ve). The interaction variances were estimated by using the STATISTICA software (StatSoft 1995; Tulsa, OK, United States). The experimental repeatability (r2) and the broad-sense heritability (h2) (Sukumaran et al., 2015) were estimated by using genotypic variance (Vg), error variance (Ve), and interaction variances as previously described (Rashid et al., 2022). All the variance components were estimated by ANOVA in the F-distribution test. The frequency distribution–based data normality was confirmed by the Q-Q plot drawn by the SPSS program and GAPIT scripts in the R-program.
2.5 Genome-wide association analysis
The average value of ten plants for each genotype was used as the final estimate of each trait. For the marker trait association for lodging resistance related traits, two regression models, viz, general linear model (GLM) and compressed mixed linear model (cMLM) were applied to three sets of populations as (i) whole population, (ii) indica sub-populations, and (iii) japonica sub-populations. In the GLM model, the population structure (PCAs) was incorporated as a covariate. The population structure (Q-matrix) and kinship matrix (K) were included as fixed and random effects, respectively, to conduct a compressed mixed linear model (cMLM). The 1,000-permutation test by the mixed linear model MLM was performed for detection and screening of false SNP signals.
2.6 Identification of significant QTLs, candidate genes, and pleiotropic loci
The QTL regions were strictly defined by linkage disequilibrium (LD) blocks of 167 kb and 123 kb left and right genomic regions of significant SNPs (SNP ± LD) for japonica and indica subpopulations, respectively, and 170 kb for the whole population, as previously reported (Huang et al., 2010; Huang et al., 2012; Zhao et al., 2018a; Zhao et al., 2018b). To estimate a significance threshold level, we used the formula “−log10 (0.01/effective number of SNPs with a p-value less than 0.01),” that is, the threshold at a significance level of 1% after Bonferroni-adjusted multiple test correction (Zhao et al., 2018b). The QTLs with no annotated loci were removed. The significant QTLs were further screened by deletion of non-coding SNPs residing other than CDS or promoter regions of annotated loci. The significant loci identified for more than one lodging resistance parameter were considered pleiotropic loci.
2.7 Functional annotation and pathway enrichment analysis
All the candidate loci within the QTL range of pleiotropic loci were subjected to detect their functional annotation. The candidate genes list was submitted to ShinyGo 0.76 (Ge et al., 2019) (http://bioinformatics.sdstate.edu/go/) for gene ontological analysis and the same list was submitted to the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (Sherman et al., 2022) for functional pathway evaluation based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2020) pathway database.
2.8 In silico and in vitro expression estimation
The in silico expression profile of top candidate genes was further evaluated in the rice gene expression database (RED) (http://expression.ic4r.org/). Total RNA was isolated from the stem part collected at fourth internode of the strong and weak plants using the RNA-prep pure plant kit (TIANGEN) and reverse transcribed using HiScript II QRT SuperMix (Vazyme) (Chun et al., 2020). Quantitative real-time PCR for selected candidate genes in a pleiotropic QTL on chromosome 7 was performed using SYBR green mixture on an ABI 7500 real-time PCR detection system. Rice Ubiquitin gene was used as an internal control for normalization (Chun et al., 2020). All primer sequences are listed in Supplementary Table S1.
2.9 Haplotyping of candidate genes
The total gene length of candidate genes were obtained and SNPs in the promoter and coding gene region were extracted. All the significant and non-significant SNPs in the promoter and CDS regions of selected loci were used to evaluate their functional haplotypes (Rashid et al., 2016). The SNP markers were aligned and arranged in a Microsoft Excel sheet and saved as a text file in FASTA format. The program DnaSP was used for haplotype analysis, and the results were visualized by Prism 8 software (Librado and Rozas, 2009).
3 RESULTS
3.1 Trait diversity and heritability among lodging resistance traits
The globally diverse population of 795 genotypes was evaluated for four lodging resistance traits, viz., SM, M, PR, and cLr. The existence and extent of natural variation among these traits was estimated. A high level of divergence among genotypes and a strong correlation among the traits were observed for all studied traits. An identical and positively semi-skewed frequency distribution was observed for all traits in three populations (Figure 1; Table 1), which showed their suitability for the genome-wide association study. The statistical descriptive of studied traits were compared among the whole population, japonica subpopulation, and indica subpopulation. The ranges and average values of all studied traits for the whole population were similar to japonica subpopulation, while their ranges in indica subpopulation were shorter (Table 1). The average value of SM, M, and PR was higher in japonica subpopulation than that of indica, which may indicate the greater strength of the available japonica germplasm. A significant variation among the genotypes of the natural population was observed by two-way analysis of variance (ANOVA) and coefficient of variation (Table 1, Table 2). The genotypes showed a variable phenotypic response in various environments (years and blocks). There was no variation in SM among various years, and there was no interaction of genotypes with annual ecological and metrological conditions (Table 2). The genotypes showed a significantly variable phenotypic response in different blocks except for PR and M, while there was a significant interaction of blocks with genotypes. The significantly high values (0.87–0.97) of the repeatability parameter (r2) along with broad sense heritability (h2) demonstrated the genotypes as the main source of variation for lodging resistance, which was consistent in all three populations. The heritability in SM and cLr was relatively low, whereas the genotype effect (Table 1) as the main cause of variation was confirmed by the higher repeatability estimate.
[image: Figure 1]FIGURE 1 | Frequency distribution and Q-Q plots of 795 genotypes of a globally diverse population for four lodging resistance traits.
TABLE 1 | Statistical descriptive of four culm lodging resistance–related traits in whole population and japonica and indica subpopulations.
[image: Table 1]TABLE 2 | Analysis of variance among the 795 genotypes of globally diverse population for lodging resistance traits.
[image: Table 2]The studied traits showed a significant positive correlation among them. However, the correlation between PR and cLr was nonsignificant (Table 3). The highest correlation was between PR and M. On the other hand, M and PR showed relatively less correlation with cLr (0.266 and 0.023) and SM (0.293 and 0.608), respectively. A similar correlation pattern was observed among traits in indica subpopulation, while in japonica subpopulation, the cLr was observed to be highly correlated with PR and M (0.799).
TABLE 3 | Pearson correlation coefficient (r) calculated between 10 pairs of lodging-related traits in structured rice population of 795 accessions.
[image: Table 3]3.2 Population structure and relative kinship
A genetically, morphologically, and geographically diverse sample of a large population was used in this study. The whole population was genotyped and resulted in 3.3 million SNPs after cleaning and filter screening. These SNPs covered almost 373,245,519 bp of the whole rice genome with an average SNP density of 12.3 SNPs per kb. The 3.3 million SNPs from the whole population of 795 genotypes were evaluated to estimate the kinship matrix and principal components (PCs) and resulted in a strong population structure. The PC1 revealed the maximum variation, which divided the whole population into two distinct groups. The same results were supported by a phylogenetic tree and a kinship matrix (Supplementary Figure S1). The group-I was composed of 289 japonica accessions, while the group-II framed the 506 indica genotypes, hence denoted as japonica and indica subpopulations, respectively. The other structural features were consistent with those previously reported (Zhang et al., 2009; Zhang et al., 2011).
3.3 Association mapping and QTL analysis
The GWAS was conducted to detect the genomic regions associated with lodging resistance in rice. Depending upon population structure, GLM and cMLM regression analysis were adopted. In the first step, the association of SNP markers to lodging resistance traits was estimated by GLM and cMLM models for japonica, indica subpopulations, and the whole population separately (Figure 2, Supplementary Figures S2-S4). Then, the 1,000-time permutation with randomized phenotypes was performed by MLM to validate the GWAS results and to remove the false positives. The threshold–log10 (p) ≥ 4 was set for calling the significant associations. It is suggested that more association signals in a common region are caused by linkage disequilibrium (LD) decay, while the lower LD decay rate can reduce the power of association analysis for complex traits. The 0.28 and 0.25 LD decay rate with the 167 kb and 123 kb genome-wide R2 reduction for japonica and indica subpopulations has already been reported (Huang et al., 2010; Huang et al., 2012). Hence, in this study, the genomic region containing a minimum of three significant SNPs within a 170 kb range was defined as a QTL. By these criteria, a total of 55, 113, 140, and 67 QTLs were observed for SM, PR, M, and cLr, respectively, which were defined by 2210, 766, 3548, and 383 significant SNPs (Table 4, and Supplementary Table S2). Among these QTLs, 15, 80, 70, and 11 QTLs were commonly observed in various populations and statistical models (Table 4).
[image: Figure 2]FIGURE 2 | Manhattan plot for bending moment at breaking M, indicating the regression values for SNP markers in japonica, indica subpopulations, whole population, and whole population after 1000-times permutation with the (A) general linear model (GLM) and (B) compressed mixed linear model (cMLM), the dotted lines showed the threshold level at -log(P) ≥ 4.
TABLE 4 | Summary of QTLs identified for lodging resistance traits in three populations by different regression models.
[image: Table 4]3.4 Biological correlation and pleiotropic QTLs
For the studied traits, some QTL regions were commonly detected for multiple phenotypes, which indicated the biological correlation among lodging resistance parameters. Among all of the identified QTLs, 33 QTL regions were found to be overlapped for more than one trait (Table 5). The QTL regions may be considered the potential pleiotropic loci for lodging resistance–related traits. The PR and M were observed as the most associated traits revealed by Pearson coefficient of correlation (Table 3, Table 5) and showed the maximum biological correlation with 20 overlapping QTLs. The one-third (Chigira et al., 2020) of total 33 QTLs were pleiotropically governing at least three lodging resistance traits. The maximum number of pleiotropic QTLs was found on chromosome 1, followed by chromosomes 7 and 11 with five and four QTLs, respectively. There was one genomic region of 316 kb on chromosome 7 (qSM7-1, qPR7-1, qM7-2, qcLr7-1), that was significantly associated with all four lodging related traits.
TABLE 5 | List of QTLs with pleiotropic effect, situating at common QTL regions in the rice genome for lodging resistance traits.
[image: Table 5]3.5 Candidate gene identification
To evaluate the available candidate loci in identified QTLs, the SNPs in the physical range of annotated loci or their promoters were observed. A total of 4,031 annotated loci in a total of 30.1 Mb of the genomic region (Table 5) were revealed for pleiotropic loci in promoter and coding sequence (CDS) regions (Supplementary Table S3). The commonly identified QTL on chromosome 7 possesses 59 candidate genes. As per functional annotations, three out of a total of 59 genes, viz., OsFBA2, OsFBX222, and LTPL84-protease inhibitor may be considered the candidate loci for LR-related traits (Supplementary Table S3).
3.6 Functional annotations of candidate genes
All of the candidate loci for pleiotropic QTLs were subjected to finding the functional annotations. Among the various biological process-related gene ontological (GO) terms, ‘Transmembrane transporter activity’ and ‘Localization’ were observed as the top enriched GO terms. Among the cellular components, ‘membrane’, and among molecular functions, ‘Biological regulation’ were the top enriched GO terms (Figures 3A,C). Similarly, among the KEGG pathways, ‘Ion binding,’ ‘catalytic activity,’ ‘membrane’, ‘localization,’ and ‘transportation’ related pathways were significantly enriched (Figure 3B).
[image: Figure 3]FIGURE 3 | Top enriched gene ontological (GO) terms (A), top enriched KEGG pathways (B) annotated for the candidate genes within the genomic regions of 33 pleiotropic QTLs detected for four lodging resistance traits, and Venn diagram (C) indicating the overlapping genes among GO terms including biological processes (BP), cellular components (CC), and molecular functions (MF).
3.7 In silico and in vitro (qRT-PCR based) expression validation of candidate loci
We further evaluated the candidate genes on chromosome 7 for their expression analysis. One strong and thick stem plant, IRAT109, and a weak and thin stem plant, YueFu, were used to analyze the expression of these three genes. The results showed a significant increase in expression levels of OsFBA2 in strong plants, but the expression levels of LTPL84-proteae inhibitor and OsFBX222 varied non-significantly. These results were consistent with the database of in silico expression analysis conducted on tissue-wise expression data extracted from the Ricexpro database (https://ricexpro.dna.affrc.go.jp/category-select.php). Moreover, OsFBA2 has the most obvious difference in expression between the two germplasm (Figure 4). Hence, this gene may not only be considered a candidate for future studies on lodging resistance but also validated the authenticity of results from the current study.
[image: Figure 4]FIGURE 4 | Gene expression analysis of three candidate genes in a pleiotropic QTL on chromosome 7 of the rice genome. NS; no significant difference, ** p < 0.01 based on two-tailed Student’s t-tests.
3.8 Haplotype identification
A total of 463 genotypes and 10 SNPs (two SNPs in CDS and eight SNPs in promoter regions) were used to find the possible haplotypes of candidate genes. Consequently, the total gene pool could be classified with the availability of four haplotypes. Among these four haplotypes, Hap1 and Hap2 represented the indica sub-population, while Hap3 and Hap4 were mainly distributed in the japonica sub-population (Figure 5A). Among the four haplotypes, Hap3 was prominent, with significantly high values of M and SM (Figures 5B–D). Hence, the SNP marker at 5248026 bp physical position on chromosome 7 was considered a functional SNP to induce lodging resistance (Figure 5).
[image: Figure 5]FIGURE 5 | Haplotype identification of OsFBA2. (A) Candidate genomic region and haplotypes of OsFBA2 from 463 rice cultivars, where Tej; temperate japonica population, Trj; tropical japonica population, Ind; indica population. (B–E) Phenotypic variation comparison among various haplotypes for bending moment at breaking (B,D), section modules (C,E). NS; no significant difference, * p < 0.05, ** p < 0.01 based on two-tailed Student’s t-tests.
4 DISCUSSION
Lodging is one of the major abiotic stress factors affecting yield loss of rice, especially in developing Asian countries (Khush, 1997). Historically, the direct and fundamental method to improve the breeding material for complex quantitative traits was morphological marker-assisted selection, where the frequency of favorable alleles could be increased within a specific population over multiple cycles of selection. Since the pre-green revolution, many breeding efforts have been made to improve lodging resistance with improved yield in rice (Meng et al., 2021). Nonetheless, the lodging resistance in rice crop showed negative correlation to some of the yield parameters as large spike for high yield made the genotypes prone to lodging (Hirano et al., 2017), dwarfism limits the total yield potential (Islam et al., 2007; Rana et al., 2021), and high fertilizer application with dense planting made the genotype vulnerable to lodging in windy and rainy seasons (Shah et al., 2019). Hence, the identification of potential QTLs and/or genes associated with lodging resistance traits and their manipulation in breeding material is the best way to achieve sustainable improvement. It has been reported that the culm strength for lodging resistance could be contributed by stem diameter (SD), stalk bending strength (SBS), and the pushing resistance in field conditions (Ishimaru et al., 2008; Hu et al., 2013), as a significant negative correlation of culm lodging rate with these three traits has been observed. Understanding the genetic basis of these traits will help to induce lodging resistance in the breeding gene pool.
In this study, a geographically and genetically diverse population of 795 rice genotypes was used to uncover the genetic architecture of culm lodging resistance in rice. The genotype heterogeneity within a genotype was removed, and purity was confirmed for 3 years by the SSD approach, and then phenotypes were investigated for 3 years. The wide-range, optimum normal frequency distribution and significant phenotypic diversity in the population for studied traits showed the polygenic control of traits. A significant genetic potential of genotypes for lodging resistance was observed by high heritability values. The high-resolution genotyping with 13X sequencing and 12.3 SNPs per kb markers density enhanced the power of genome-wide association analysis by improving mapping resolution and imputation efficiency (Huang et al., 2010). Hence the deep sequence data from a significant number of landraces acquired the maximum genetic diversity, which was a key target to reveal in GWAS (Rashid et al., 2022).
A genome-wide association study is an effective tool to dissect the genetic basis of complex traits like lodging resistance and its components. However, it is always pretentious due to the occurrence of false positives and true negatives (Atwell et al., 2010). In different studies on human and plant genomes, two factors, as estimation of population structure and genetic control, were observed to be suitable to avoid the detection of false-positive signals (Devlin and Roeder, 1999; Marchini et al., 2004; Yu et al., 2006). In the current study, the whole population was divided into indica and japonica subpopulations on the basis of population structure, Q-matrix, kinship-matrix, and PCs. Then, the marker trait association was separately and recurrently evaluated for the whole population and indica and japonica subpopulations with multiple regression modals including GLM, MLM, and cMLM. This approach has previously been reported to reduce false positives (Yang et al., 2010; Yang et al., 2011). The detection of a clear population structure as in indica and japonica subpopulations, the use of multiple regression models for association estimation, and the 1000-time permutation test significantly reduced the detection of false positives. Furthermore, GWAS resolution can be judged by LD estimation (Flint-Garcia et al., 2003). The 167 kb and 123 kb LD decay rate in japonica and indica subpopulations has been reported in previous studies (Huang et al., 2010; Huang et al., 2012). Thus, in this study, the threshold criteria of at least three SNPs in a 170 kb LD block were followed for defining the QTLs to enhance the power of GWAS resolution. Eventually, we mapped the 375 genomic regions significantly associated with lodging resistance traits in rice. The recurrently identified genomic regions for different traits showed their significant association with lodging resistance. These regions may be candidates for further gene cloning and marker-assisted breeding studies.
Previous genetic research studies on lodging traits used the GWAS approach and successfully identified the major QTLs explaining 65.7% of the variance for maximum load to breaking moment and critical mass (Hu et al., 2013). The identification of SCM1, SCM2, SCM3, and SCM4 governing culm strength endorsed the contribution of SM, M, PR, and cLr to lodging resistance (Ookawa et al., 2010). Hence, we looked for the pleiotropic loci for these traits and found 33 overlapping QTLs for more than one trait. A strong correlation among traits was also observed from the phenotypic data. To confirm the analysis, a pleiotropic QTL on chromosome 7 governing all four studied traits was evaluated for candidate genes. Among the 59 open-reading frames in this QTL range, three genes, including F-box domain protein genes OsFBA2, OsFBX222, and a LTPL84-proteae inhibitor genes, were identified. We further evaluate the qRT-PCR based in vitro expression of candidate genes in thick-culm and thin-culm plants. The results showed the significantly high expression levels of LTPL84-proteae inhibitor and OsFBA2 in strong plants, which confirmed the role of these genes in culm strength and lodging resistance. The F-box domain protein genes like SCM2 have already been known to contribute to the culm strength in rice. We further evaluate the qRT-PCR based in vitro expression of candidate genes in strong and weak genotypes. A significant reduction in the expression level in weak genotypes confirmed the role of these genes in culm strength and lodging resistance. Hence, it could be proposed as a candidate gene for further investigation. The identification of candidate genes and their expression-based validation proved the accuracy and reliability of analytical methodology in current research. The isolation and manipulation of candidate genes in pleiotropic loci may be beneficial to enhance the culm strength, leading to lodging resistance in rice. Furthermore, using the same approach for other pleiotropic and non-pleiotropic loci, multiple candidate genes could be extracted (Supplementary Table S3).
The GO analysis of candidate genes from all pleiotropic QTLs supported the results for lodging resistance as the gene ontological terms for biological processes ‘transmembrane transport activity’ and ‘localization’ in cellular component ‘membrane’ were the most enriched, while ‘biological regulation’ was the most enriched molecular function. Similar research studies as strigolactone signaling (Sang et al., 2014; Yano et al., 2015) and the lignin accumulation (Yoon et al., 2015) to enhance the culm strength have been reported. These results were reinforced by the identification of the ‘Biosynthesis of Cofactors,’ ‘Sphingolipid Metabolism,’ and ‘Pyrimidine Metabolism’ pathways, which had their role in cellular localization and required for cell proliferation (Siddiqui and Ceppi, 2020).
The pyramiding of the candidate genes with other genes of agronomic importance may enhance the overall yield and culm strength in rice. Nonetheless, due to the epistatic nature of some genes, it may be necessary to find the most favorable alleles of candidate genes. Hence, we performed the haplotype analysis to reveal the functional allele for the candidate gene OsFBA2 and observed that Hap3 was the most promising haplotype in japonica sub population. These genes have not been reported to contribute to culm strength. Hence, we speculate that OsFBA2 is the most likely candidate gene for pleiotropic QTL-19 on chromosome 7 (Table 5). Further studies such as gene cloning and functional analysis for these two and the other identified candidate genes in this study will be helpful in understanding their genetic mechanism to enhance culm strength.
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The high performance and stability of wheat genotypes for yield, grain protein content (GPC), and other desirable traits are critical for varietal development and food and nutritional security. Likewise, the genotype by environment (G × E) interaction (GEI) should be thoroughly investigated and favorably utilized whenever genotype selection decisions are made. The present study was planned with the following two major objectives: 1) determination of GEI for some advanced wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab, India; and 2) selection of the best genotypes with high GPC and yield in various environments. Different univariate [Eberhart and Ruessll’s models; Perkins and Jinks’ models; Wrike’s Ecovalence; and Francis and Kannenberg’s models], multivariate (AMMI and GGE biplot), and correlation analyses were used to interpret the data from the multi-environmental trial (MET). Consequently, both the univariate and multivariate analyses provided almost similar results regarding the top-performing and stable genotypes. The analysis of variance revealed that variation due to environment, genotype, and GEI was highly significant at the 0.01 and 0.001 levels of significance for all studied traits. The days to flowering, plant height, spikelets per spike, grain per spike, days to maturity, and 1000-grain weight were specifically affected by the environment, whereas yield was mainly affected by the environment and GEI. Genotypes, on the other hand, had a greater impact on the GPC than environmental conditions. As a result, a multi-environmental investigation was necessary to identify the GEI for wheat genotype selection because the GEI was very significant for all of the evaluated traits. Yield, 1000-grain weight, spikelet per spike, and days to maturity were observed to have positive correlations, implying the feasibility of their simultaneous selection for yield enhancement. However, GPC was observed to have a negative correlation with yield. Patiala was found to be the most discriminating environment for both yield and GPC and also the most effective representative environment for GPC, whereas Ludhiana was found to be the most effective representative environment for yield. Eventually, two NILs (BWL7508, and BWL7511) were selected as the top across all environments for both yield and GPC.
Keywords: grain protein content, stability analysis, G × E interaction, univariate analysis, multivariate analysis, wheat
INTRODUCTION
Bread wheat (Triticum aestivum L.) is considered to be the most valuable source of calories and protein across the world (Pal et al., 2022). It is widely grown in different parts of the world, including India, where it is an important staple crop, particularly in the northern region (mainly Punjab State). In many studies, grain protein content (GPC) has been observed to be the most important factor influencing end-use quality and thus has a significant impact on the economic importance of wheat (Saini et al., 2020). As a direct consequence, GPC improvement in wheat has become a top priority in wheat breeding research projects, particularly for those looking at improvement in nutritional quality (Shewry, 2009; Gudi et al., 2022), especially for the people who cannot afford supplements to fulfill their daily recommended intake of protein. Since a negative association is generally observed between GPC and grain yield, developing an elite wheat cultivar having higher yield potential and GPC is considered a major challenge, taking the current growing rate of food requirements into consideration. Breeders can target desirable stable genotypes having high yield potential and GPC based on the results of selection in different environments and more advanced approaches such as genomic selection (Sandhu et al., 2021a, 2021b; Gill et al., 2021, 2022; Saini et al., 2022). Biotic as well as abiotic stresses usually play a considerable role in grain yield and GPC fluctuations, which are closely associated with the immediate response of cultivars to environmental changes (Verma et al., 2015). This type of inconsistency or alteration is known as genotype by environment interaction (GEI), and it has been observed in several crops, including wheat (Ahmed et al., 2011; Mengesha et al., 2019; Ahakpaz et al., 2021).
Wheat breeders have always faced difficulty integrating both high grain yield and high GPC into individual wheat genotypes, mainly because of the following factors: 1) grain yield and GPC are highly influenced by the environment; 2) GPC and grain yield typically have a negative correlation with each other; and 3) both yield and GPC have low to moderate level of heritability and are controlled by a large number of genes (Khazratkulova et al., 2015). Further, the wide range of environmental dependent variables that are available in wheat growing regions brings up the idea that there might be a strong directional interaction present between genotype and environment. This interaction, therefore, occurs whenever the yield potential of individual plant is significantly influenced by the environment in which they are evaluated (Malosetti et al., 2013). To study GEI, two major steps are always considered to be performed: 1) phenotypic characterization of the germplasm in a multi-location trial, which subsequently demonstrates the possible existence of environmental diversity available in growing regions; and 2) analysis of the observed data to explain the structure of the current interaction between genotype and environment and consequently to display the possible environmental-related parameters that help predict the behavior of genotypes in untested environments (Hilmarsson and Roi, 2021). As a result, rather than selecting according to the average performance of cultivars conferring a wider level of adaptation, it is preferred to arrange environments with identical G x E performances into mega-environments to select individual plants conferring local adaptations to different environmental circumstances (Gauch and Zobel, 1997; Gauch, 2013). Moreover, designing a multi-environmental trial to verify the stability and performance (mainly in terms of yield) of wheat genotypes is a critical requirement for successfully developing and releasing elite wheat varieties.
Analysis of variance (ANOVA) is generally performed to ascertain the presence of GEI utilizing the data collected from the multi-environment trials. These measures are further used to distinguish between random (including location, replication, year, and environment) and fixed effects (such as genotypes). Nonetheless, one of ANOVA’s major flaws is its inability to distinguish genotypic variances in a non-additive base as an interaction between genotype and environment (Shahriari et al., 2018). In the literature, different statistical methods have been used to explain different parts of GEI. These methods have led to the identification of stable genotypes across locations by measuring genotypic stability. Two different approaches, including univariate (Eberhart and Ruessll’s models, Perkins and Jinks’ models, Wricke’s Ecovalnece, and Francis and Kanenberg’s model) and multivariate (AMMI and GGE biplot) stability prediction procedures, are generally utilized to better understand the phenotypic stability patterns. Pattern analysis, cluster analysis, principal component analysis (PCA), and biplot analysis are commonly utilized multivariate techniques for discovering trends of GEI (Myint et al., 2019). The biplot techniques are currently applied to diagrammatically represent the complex relationships available between the variables (genotypes, environments, and GEI) as well as to determine relatively stable genotypes throughout the environments and similarly prove the interaction structures (Shahriari et al., 2018). Singular value decomposition (SVD) and visual presentation of two-way matrices, such as the GEI statistical data, are used to develop biplots. The two most commonly used biplot analysis methods are as follows: 1) the additive main effects and multiplicative interaction (AMMI) model and 2) the genotype main effects and GE effects (GGE) model (Gauch, 2008). Furthermore, plant breeders are more interested in the above-mentioned statistical methods (AMMI and GGE) because these methods can be applied to any two-way measure, which can come from a variety of experiments. The AMMI model employs ANOVA to examine the main effects of genotypes and environments, as well as PCA to look at residual interaction features (Singh et al., 2019). In AMMI1, the PCA1 and substantial effect of the trait are represented by the abscissa line and ordinate, respectively. But AMMI2 is a graphical depiction of summarized information based on both PC1 and PC2 values, which has significant privileges as compared to regression-based statistical tools. The GGE biplot provides a more significant diagrammatical depiction as compared to AMMI model to identify genotypes conferring best performance across all the environments under study (Shrestha et al., 2021).
Furthermore, as the environment in specific areas becomes more unpredictable over time, yield stability and broad adaptability are becoming increasingly important (Singh et al., 2019). In cereals, the AMMI technique was used in multi-environment experiments to characterize the most stable cultivar(s) (Sabaghnia et al., 2008; Sharifi et al., 2017). Several other studies have been successfully implemented cultivar stability analysis using both genotype and environmental assessments, as well as the GGE biplot-adopted multi-environment test, with great success (e.g., Mostafavi et al., 2011; Bishnoi and Om Perkash, 2020; Ruswandi et al., 2021). On the other hand, Gauch et al. (2008), criticized the GGE biplot structure for decomposing G + GxE, but still reported that biplots interpret G + GxE more accurately than AMMI matrices. GGE biplot analyses have widely been utilized to characterize mega-environments, examine genotype rankings, and further identify discriminativeness and representativeness in evaluated environments (Verma et al., 2015). In a multi-dimensional environment, AMMI can better identify GEI and depict it using a biplot. Both GGE and AMMI analysis models have been utilized successfully in many studies to investigate interaction patterns in multi-environment trials to discover stable genotypes of different cereals, including wheat (Singh et al., 2019; Hilmarsoon and Rio, 2021; Khan et al., 2021). The objectives for this study were to examine GEI, the performance and stability of advanced wheat genotypes, the correlation of grain yield with GPC and agronomic traits, and to ascertain the representativeness and discriminativeness abilities of the environments where wheat is grown.
MATERIALS AND METHODS
Plant materials
The current research was conducted in the Department of Plant Breeding and Genetics, Punjab Agricultural University (PAU), Ludhiana, Punjab, India. For this study, a total of 13 wheat genotypes, including 9 near isogenic lines (NILs) and 4 checks, including one advanced breeding line (BWL6228), and three commercial wheat varieties (PBW761, PBW725 and HD3086), were utilized. A set of NILs was previously generated in Department of Plant Breeding and Genetics, PAU, with an aim to introgress Gpc-B1 gene from GLUPRO into the background of a high-yielding wheat variety (PBW550). PBW550 was released by Punjab Agricultural University, Ludhiana, for cultivation under timely sown irrigated condition of north western plain zone (NWPZ), including Punjab. The variety is known for its short duration, bold, hard, and amber colored shiny grain with above average quality parameters. From this set of developed NILs, we selected the 9 most agronomically superior wheat NILs for the present study (information on pedigree of these NILs is provided in Table 1). Subsequently, the presence of Gpc-B1 in the above-mentioned NILs using the appropriate KASP marker (data not provided) was also confirmed. For the purpose of the analysis, all the NILs and checks were termed as genotypes.
TABLE 1 | List and pedigree of the selected genotypes (nine NILs, one advanced breeding line and three released varieties) evaluated in the present study.
[image: Table 1]Testing environments and crop management practices
The research trials were conducted across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab for two consecutive main crop seasons (2019–20 and 2020–21) in Punjab, India. Temperature, rainfall (Table 2) and other ecological conditions differed significantly across the environments (integration of location and time). In each environment, the experiment was conducted in a randomized block design (RBD) with three replications. Each genotype was planted in a separate plot of size 5.4 m2 (4.5 m long with six rows, and the distance between two rows was 20 cm). One experimental trial was sown at the wheat experimental area, wheat section, Department of Plant Breeding and Genetics, PAU, Ludhiana, and the other three were sown at the regional research stations (RRSs) of PAU located in Ballowal, Patiala, and Bathinda, respectively. All the trials were sown from November 10—November 25 in both the years 2019–20 and 2020–21. In each year, during the cropping season, weeding, irrigation, fertilizer application, and all other field management activities were applied according to the standard agronomical package recommended by PAU (https://www.pau.edu/content/ccil/pf/pp_rabi.pdf). The standard rate of fertilizer prescribed by PAU (N = 50 kg/acre, p = 25 kg P2O5/acre, and K = 12 kg K2O/acre) was applied for raising the crop. In each research location, the field was mechanically prepared in accordance with the local farmers’ interests. Furthermore, insect and disease prevention practices were implemented wherever required. Similarly, manual weeding was practiced as per requirement, and weeds were controlled with herbicide application prior to and after field preparation and also across the surrounding marginal areas of the experimental field.
TABLE 2 | Details of environmental condition for the experimental locations (Ludhiana, Ballowal, Patiala, and Bathinda) during two consecutive years (2019–20, and 2020–21).
[image: Table 2]Data collection
Data was recorded on different traits including number of days to flowering (DTF), number of days to maturity (DTM), plant height (cm; PH), number of spikelet per spike (SPS), number of grains per spike (GPS), thousand grain weight (g; TGW), grain yield (kg/plot), and grain protein content (%; GPC). These traits have an immediate and positive impact on grain yield and quality. Pre-harvest (viz., DTF, DTM, PH) and post-harvest (viz., GPS, SPS, TGW, yield and GPC) data were collected in the field, wheat quality laboratory, and molecular wheat laboratory, wheat section, Department of Plant Breeding and Genetics, PAU. Five randomly selected individual plants from each plot were considered for data recording. Data on the various traits was collected on wheat genotypes for two consecutive years (2019–20 and 2020–21) in the following manner: The DTF was recorded when 75% of the spikes emerged from boots in each plot. The DTM was recorded as the number of days from sowing to date when 75% of the spikes in plots turned yellow. PH was measured using the meter rod by placing the meter along the plant from base to tip of the ear at maturity. SPS was determined by counting the number of total spikelets on each spike. The GPS was measured by threshing the representative spikes individually and collecting, cleaning, and counting the grains manually. From harvested grains, 1000 seeds were taken from each plot, and their weight was recorded as a TGW. After threshing of each plot, the grain was weighted and considered as yield per plot. The whole grain analyzer “Infratec1241” (M/S Foss Analytical AB, Sweden) was used to measure the GPC in the grains. It is based upon the principle of near-infrared light, which is transmitted through the grains. The 200 g grain samples were scanned with a bandwidth of 7 nm in the range of 850–1050 nm, and there were 100 data points per scan.
Statistical analysis
Using different packages of R software version 4.0.5, the data on different quantitative traits was subjected to a combined ANOVA to determine whether there was any variation among all the variables considered during the current study. Environments were considered random variables, while genotypes were treated as fixed variables. The Pearson correlation along with the pattern were prepared using “corroplot” package of R software, using the following model given as:
[image: image] Where cov (A, B) indicates the covariance present between independent and dependent traits, and var (A), and also var (B) shows the genetic difference of independent and dependent trait (Sandhu et al., 2021a). For further analysis, we only utilized the data on GPC and grain yield, as they are both considered the critical traits in terms of total wheat production and nutritional security. To study the GEI, first, the univariate stability analysis of the genotypes under study was conducted using regression analysis based on the six different univariate stability measures: Eberhart and Russell’s (1966) regression coefficient (bi) and deviation from regression (S2di) determine the performance of a genotype across different environments (Changizi et al., 2014). The Eberhart and Russell’s (1966) stability model is given as: Yij = μi + βiIj + δij, where the Yij indicates the evaluation of ith (i = 1, 2, 3,……, x) genotype across the jth (1, 2, 3,……, n) environment, μi is the genotype mean, βi indicates the regression coefficient, δij shows the deviation from the regression coefficient, and Ij is the environmental index identified by subtracting the total mean from each environmental mean (Francis and Kanenberg’s 1978). coefficient of variability, which shows the CV% of every individual genotype as a stability parameter. Perkins and Jinks (1968), regression coefficient (Bi) and deviation from regression (DJi), using the following model as represented here: Yij = μ + AGi + AEj + GEij + ERij, where Yij is the performance of ith genotype in the jth environment, μ represents general mean over all the genotypes and environments, AGi is additive genetic portion of ith genotype, AEj shows the additive environmental portion of jth environment, GEij represents the GEI of ith genotype in jth environment, and ERij is the experimental error for ith genotype in the jth environment. Furthermore, the Wricke’s (1962) ecovalence (Wi), which indicates the GEI for individual genotypes across all the tested environments. Ecovalence, is used identify the effective contribution of the genotypes to the overall GEI, and calculated through the given formula: [image: image], where Xij is the evaluation of ith genotypes in jth environment, Xi. = total sum of ith genotype across all the studied environments, X. i = total sum of ith environment for all the studied genotypes, q is all the environments, and p shows all the genotypes. Then the multivariate approaches for stability analysis were conducted according to AMMI and GGE biplot using different statistical packages available in R studio. The “metan” package of R studio was applied for AMMI analysis, while the GGEBiplotGUI package was employed for GGE biplot based analysis. In the AMMI model, the ANOVA and PCA are merged together into an individual statistical package. Therefore, GEI is subjected to PCA analysis only when primary verification has already been completed using ANOVA (Neisse et al., 2018). The equation for AMMI model is given as below: Yge = μ + αg + βe + Σnλnγgnδen + ρge, where in case of the additive factors, Yge is showing the grain yield for a particular (g) genotype in an (e) environment, where μ stand for grand mean, αg indicates deviation of genotype from the mean, βe is deviation of environment from the mean, λn stands for singular value of n component, γgn indicates the value of eigenvector for genotype (g) and δen is the value of eigenvector for e and ρge; which is known as residual (Rad et al., 2013). Furthermore, the equation for GGE biplot model is represented as: Pij = (yij—μ—δj)/λj = (βi + ϵij)/λj, where Pij is the matrix for genotype i and environment j, μ represents the grand mean, δj is the column (environment) main effect, λj is an evaluating factor, βi is the row (genotype) main effect, and ϵij represents GEI, and yij is G and E two-way table (Yan and Tinker, 2006). Also, the GGE biplot involves a group of bioplot-based platforms for the interpretation of interactions present between the genotype and the environment. In general, in both GGE biplot and AMMI, the graphical images are used to answer the critical queries about G x E evaluation on a visual basis (Pour-Aboughadareh et al., 2022). In addition, in both the biplot analyses, the results are further interpreted based on the criteria mentioned by Khan et al. (2021).
RESULTS
Correlation
Figure 1 provides information regarding the correlation values and patterns among the different traits in question with a particular focus on yield and GPC across all the environments. Yield was observed to have a highly significant negative correlation with GPC (−0.52), while conferring a highly significant positive correlation with TGW (0.66), DTM (0.57). GPC had a highly significant negative correlation with DTF (−0.55), PH (−0.57), DTM (-0.83), TGW (−0.75), and yield (−0.52).
[image: Figure 1]FIGURE 1 | Pattern of correlation and level of significance observed among different traits across all the environments in 13 bread wheat genotypes. DTF, Number of days to flowering; PH, Plant height; SPS, Number of spikelets per spike; GPS, Number of grain per spike; DTM, Number of days to maturity; TGW, 1000-grain weight; GPC, Grain protein content.
Pooled analysis of variance for yield, grain protein content and their related traits
The pooled ANOVA was performed to unravel the main effect and determine the interaction present within and among the sources of variations that are analyzed during the present study. The pooled ANOVA concerning all the eight traits is presented in Table 3. The variance due to genotype (G), location (L), year (Y), G × Y, G × L, and G × Y × L for all the eight traits was highly significant, either at 0.001% or at 0.01% level of significance. A high level of variability was observed in wheat genotypes for key traits related to yield and GPC.
TABLE 3 | Combined analysis of variances for grain protein content, yield and key yield-related traits of 13 bread wheat genotypes across eight environments.
[image: Table 3]Univariate analyses
The data for different regression stability analyses is presented in Table 4 (concerning GPC, and yield) and Supplementary Table S1 (concerning DTF, DTM, SPS, GPS, TGW, and PH). In this study, we focused specially on yield and GPC. For yield, based on the Eberhart and Russell (1966) model, the deviations from the regression (S2di) indicated that, BWL7495, BWL7509, and PBW761 are stable genotypes and, accordingly, the coefficient of regression (bi) showed that they are adaptable, particularly to unfavorable environments (bi = 0.7491 for BWL7495, bi = 0.5863 for BWL7509, and bi = 0.607 for PBW761), but BWL7511 showed adaptability specific to high-yielding environments (bi = 1.1432). The genotypes, BWL7495, BWL7509, PBW725, HD3086, and PBW761 are categorized in the class of stable and high-yielding genotypes, which are adapted particularly to low-performing environments. These genotypes are grouped in this class based on their regression values, which is lower than one. Based on mean grain yield, the BWL7497, BWL7509, PBW761, and PBW725 showed the highest yield and, therefore, were preferred over other genotypes. These genotypes are grouped based on their mean in the high-yielding class. Based on Perkins and Jinks regression analysis, the genotype BWL6964 had a positive coefficient, but the genotypes, BWL7495, BWL7509, and PBW761 had negative coefficient values. Consequently, BWL6964 was observed to be stable due to its highest regression value and adapted specifically to high-yielding environments. Furthermore, the variation in the mean value for yield could be described by the respective responses of genotypes across environments. The regression value close to 1 confirms that genotypes perform in a stable manner across all the environments. The genotypes BWL7508 (bi = 1.15, CV = 16.6%, Bi = 0.15, mean = 2.83 kg/plot; Table 4, and Supplementary Table S2) and BWL7511 (bi = 1.14, CV = 14.87%, Bi = 0.14, mean = 2.81 kg/plot; Table 4, and Supplementary Table S2) were selected as the most stable and producing high yield.
TABLE 4 | Six univariate stability parameters and standard deviation for (A) yield and (B) GPC of 13 wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years 2019–20, and 2020–21. (A) Yield and (B) Grain protein content (GPC).
[image: Table 4]In the case of GPC, the (S2di) showed that BWL6228, BWL6964, PBW761, and PBW725 are the genotypes with high stability, and based on (bi) they are considered to have specific adaptation to low-yielding environments (bi = 0.862 for BWL6228, bi = 0.996 for BWL6964, bi = 0.65 for PBW761, and bi = 0.134 for PBW725), but BWL7511 is observed to be particularly adapted to high-yielding environments (bi = 1.2088). The genotypes BWL6228, BWL6964, BWL7497, BWL7506, PBW761, PBW725, and HD3086 are grouped as the high-GPC and stable genotypes and showed specific adaptability to unfavorable environments because they had regression value of less than 1 (bi < 1). On the other hand, BWL6964, BWL7504, BWL7508, and BWL7509 had GPC greater than the average mean, and therefore, they could be more desirable than other genotypes. They are considered as high-GPC genotypes based on their GPC mean. According to Perkins and Jinks’ regression model, the genotype BWL7495 showed a positive regression value, but the genotypes BWL6228, BWL6964, BWL7511, PBW761, and PBW725 showed negative regression values. Therefore, BWL7495 was recorded as a stable genotype because of its highest coefficient value (Bi = 0.705) and therefore, it was adapted particularly to favorable environments. The regression value near to 1 indicates that genotypes perform at a stable level across all the environments. The genotypes BWL7508 (bi = 1.06, CV = 6.53%, Bi = 0.06, mean = 13.94%), and BWL7511 (bi = 1.20, CV = 7.17, Bi = 0.20, mean = 13.63%) were identified as the most stable genotypes and had high GPC.
Additive main effects and multiplicative interaction based analysis of variance for yield, grain protein content and their related traits
The AMMI based ANOVA involving all the eight traits evaluated in the present study is given in Table 5. The results revealed that the DTF, PH, SPS, GPS, TGW, yield, GPC, and DTM are significantly influenced at a 0.001% level of significance by G, E, and GEI. The environment explained more than 50% of the total variation for all the traits except yield, GPC, and PH. For instance, the proportion of total variation contributed by G, E, and GEI for grain yield was 43.78, 4.4, and 51.83%, respectively. In the case of GPC, genotype, GEI, and E contribution explained 52.64, 17.84, and 29.52% of the total phenotypic variation, respectively. The genotype contributed less than 35% of the total observed variation for all the traits except GPC.
TABLE 5 | AMMI-based ANOVA for yield, GPC and their related traits of 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years 2019–20, and 2020–21.
[image: Table 5]Genotype × environment interaction based on additive main effects and multiplicative interaction model
It allowed us the opportunity to look at the biplot graph when it was chosen to apply AMMI-based analysis to examine both the adaptability and stability of genotypes. The predicted variation among and within the main effects of either G or E, as well as the multiplicative interaction of the GEI, are efficiently used to explain the biplot graphs. In a biplot graph, the main effects (mean performance of tested genotypes) are displayed by the abscissa, while the possible interaction among the axes (IPCA1 and IPCA2) is represented by the ordinate (Oliveira et al., 2014). Thus, the higher PCA1, the higher the proportion of GEI and, consequently, the lower stability of lines under study or vice versa. By keeping this in view, a high-yielding genotype with an IPCA1 score adjacent to the zero line is preferred. On the other hand, poor stability is related to low performance of the trait, hence this genotype is not preferred. Different responses of environment to genotypic stability for the tested genotypes were observed in the present study. Figure 2 represents the AMMI1 based analysis of 13 genotypes and 8 environments for yield, and GPC. Based on PCA1 value, the ENV4 is determined as the major player to the stability performance of genotypes in case of yield and GPC. On the other hand, BWL7495 and PBW761 for yield (Figure 2A), BWL7504 for GPC (Figure 2B) secured an IPCA1 value of close to zero suggesting minor environmental effect on these genotypes.
[image: Figure 2]FIGURE 2 | The “AMMI1” graphs displays the main effect and IPC1 effect values describing relationship among examined genotype and environment of 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and 2020–21) for (A) yield (kg/plot) and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
For AMMI2, the biplot graph representing the environment and genotype stability performance of yield and GPC is provided in Figure 3. In case of AMMI2, the genotypes and environments with lower IPCA1 and IPCA2 value that are securing a closer position to the origin are considered as the most stable ones which explained lower interaction between environment and genotype. In the present study, the BWL7508, BWL7509, and BWL7511 for instance, considered as the most stable wheat genotypes in terms of yield (Figure 3A), based on the their positions near to the origin. In case of GPC, the BWL7497, BWL7504, and BWL7511 are suggested as the most stable ones (Figure 3B). On the other hand, ENV2 and ENV4 secured positions near to origin and considered the most stable environments for all the genotypes in terms of yield and GPC, respectively.
[image: Figure 3]FIGURE 3 | The “AMMI2” graphs displays both the axes of interaction (IPCA1 and IPCA2) values for genotype effect and genotype by environment interaction effect of 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20 and 2020–21) for (A) yield (kg/plot) and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
GGE biplot based evaluation of genotype × environment interaction
The predominant control of the genotype and its interaction with the environment is considered the fundamental origin of variations whenever, evaluating the genotypes across the multi-location trials. The three important indicators which could be determined by biplot are considered to be capable of defining the GEI are as follows: 1) the “which-won-where” graph, which is an efficient pattern to display the principle of GEI; 2) the stability vs. genotype mean performance across different environments tested in the study; and 3) the representativeness and discriminating abilities of the tested environments.
“Which-won-where” approach
The polygon-view of a GGE biplot analysis illustrates the which-won-where structure of a multi-environment experiment, which is consequently the most efficient and simplest manner of characterizing the genotype and its further interaction with the environment. Figures 4A,B describe the which-won-where structure of biplot analysis for yield and GPC of 13 wheat genotypes distributed over all the 6 sectors/sections, while the 8 tested environments are distributed over 4 sectors for yield and 3 sectors for GPC. In terms of yield, sector 1 consists of ENV1 and ENV5 along with wheat genotypes BWL7497, BWL7506, and BWL7511; sector 2 contains ENV2 and ENV6 with BWL6964 and BWL7493; sector 5 carries ENV4 and ENV7 with BWL7508 and PBW726; and sector 6 consists of ENV3 and ENV8 with BWL6228 (Figure 4A). The genotypes are more suitable and confer a high level of performance and stability in the environment within the same sector. The elite variety PBW725 is observed to be the most away from the biplot origin and also the polygon vertex line, indicating that PBW725 confers a high level of adaptability and yield performance specific to ENV4 and ENV7, but shows poor stability across all other tested environments. In case of GPC, sector 2 carries ENV1 with BWL7509, sector 3 contains ENV2, ENV3, ENV4, ENV5, ENV6, and ENV7 along with wheat genotype BWL7511, and sector 4 carries ENV8 with BWL6964, BWL7504, BWL7506, and, BWL7508 confirming that these genotypes are more suitable and confer a high level of performance and stability in the environment within the same sector, but less stable and poor performance across environments in different sectors. In case of GPC, the genotype BWL7506 showed the longest distance from the biplot center and the polygon vertex line which indicates that BWL7506 confers high stability and has good performance as well as good adaptation specifically to ENV8, but poor adaptation to other environments (Figure 4B). Furthermore, the genotype with close contact to the vertex line of the polygon in a section where the environments are also observed in that section showed that the observed genotype conferred higher performance and adaptation in that particular environment. In case of GPC, for instance, the genotype BWL7497 was in close contact with vertex line, therefore, had high-GPC performance and adaptability specifically to ENV1. A genotype connected to a polygon vertex line where no environment is observed indicates that the genotype is providing lower yield or performance over all the environments. Even more, the genotypes inside the polygon are less affected by the environment than the genotypes at the corners are.
[image: Figure 4]FIGURE 4 | The polygon view of “Which-won-where” model of GGE biplot representing the performance of 13 bread wheat genotypes and their interactions with environment across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and 2020–21) based on (A) yield (kg/plot and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
Means versus stability model of GGE biplot and evaluation of wheat genotypes
After the which–won–where model of GGE biplot recommended the dominating wheat genotypes under certain environments, it became essential to evaluate the average stability and performance of all wheat NILs before making a selection choice. The performance and stability of the genotypes are graphically represented by the GGE biplot using average environmental coordinates (AEC). If single value portioning (SVP) is equal to 1, the AEC line crosses through the origin of the biplot. This biplot graph is made up of two lines which are perpendicular to each other: 1) the AEC abscissa and 2) the AEC ordinate. The arrowhead in Figures 5A,B represents the AEC, which is the average of the first and second PCA values of the evaluated environments. The AEC abscissa is the line crossing through the origin and arrowhead, pointing to higher mean performance of certain traits, and its length indicates the magnitude of the genotype’s performance for a particular trait, which is either above or below the average performance of the genotype with respect to the right or left side of the origin point, respectively. The ordinate is the line perpendicular to the abscissa at the origin point, and its length determines the GE interaction associated with the genotype, where a longer ordinate is associated with greater variability and poor stability.
[image: Figure 5]FIGURE 5 | The “mean versus stability” model describing the interaction effect of 13 bread wheat genotypes evaluated across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and 2020–21) for (A) yield (kg/plot) and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
Figure 5A indicates that the wheat genotypes BWL7497, BWL7508, and BWL7511 have above-average yield and greater stability, while BWL6228, BWL7506, and PBW725 also have above-average yield, but show poor stability. On the other hand, genotypes BWL7495, BWL7504, BWL7509, and BPW761 are stable but show yield below the average and BWL6964, BWL7493 and HD3086 have yield below-average and show less stability. The Figure 5B shows that the.
BWL6964, BWL7497, BWL7504, BWL7506, BWL7508, BWL7509, and BWL7511 have above-average GPC and higher stability whereas BWL7493, and BWL7495 also have above-average GPC, but show less stability. Furthermore, the BWL6228, PBW761, PBW725, and HD3086 have GPC below-average and show more stability. Based on mean versus stability model, ideal genotypes line on the arrowhead, conferring the best performance and maximum stability while the distance between arrowhead and other genotypes determines their specific trait potential. Figures 5A,B indicate that BWL7508, and BWL7511 are the most desirable genotypes for yield and GPC, respectively, which are greatly close to the arrowhead, followed by BWL7497 for yield and BWL7504 for GPC.
Ranking the ideal wheat genotypes
The arrowhead contains the best performing genotypes, but it is not always possible to be the ideal one. Two coordinate axes are sketched to rank the genotypes (Figures 6A,B): a straight line connecting the arrowhead with the origin of the graph (first axis) and a line exactly perpendicular to the first axis at the origin (second axis). The genotypes may then be ranked based on involvement in the circles and position located away from the arrowhead in the ordinate by viewing circles anywhere along the arrowhead. Using the ranking graph of biplot, the best and ideal genotype could be detected. The PBW725 variety is close to the arrowhead, which is considered the ideal genotype for grain yield (Figure 6A), followed by BWL7506 and so on. In the case of GPC (Figure 6B), BWL7511 is noted as the best genotype due to its closeness to the arrowhead, followed by BWL7509 and BWL7504. If we rank all the genotypes for yield based on biplot ranking decisions, it would be as follows: PBW725 > BWL7506 > BWL7508 > BWL7511 > BWL7497 > BWL6228 > BWL7509 > PBW761 > BWL6964 > BWL7493 > BWL7504 > HD3086 > BWL7495 (Table 6). Furthermore, the ranking of genotypes for yield and GPC based on biplot decision is consistent with the average performance of the genotypes for these two and other concerning traits over all the 8 environments (Supplementary Table S2).
[image: Figure 6]FIGURE 6 | The “ranking genotypes” model of biplot assess other genotypes against the ideal genotype conferring genotype interaction and GEI for 13 bread wheat genotypes evaluated across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and 2020–21) for (A) yield (kg/plot), and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
TABLE 6 | Ranking of 13 bread wheat genotypes based on yield and GPC mean and biplot decision.
[image: Table 6]Discriminativeness vs. representativeness of the environments
Identifying the ideal environment for testing of genotypes is more challenging for a successful breeding project aimed to select the best genotypes. Discriminativeness (an environment’s capacity to discriminate among the genotypes) and representativeness (an environment’s potential to represent all other environments evaluated) are two characteristics that indicate how perfect the tested environments are. The Figures 7A,B describes the “descriminitiveness vs. representativeness” model of biplot. The GGE biplot tests discriminativeness using the environmental vectors; the longer the environment vector, the larger the standard deviation within the environment, suggesting more discriminative ability. The selection of better genotypes is ideal in an environment with a long vector that makes a narrower angle with the AEC abscissa line. Consequently as illustrated in Figures 7A,B, ENV1 for yield and ENV3 for GPC have relatively longer vectors and narrower angles with AEC abscissa lines indicating that these environments have a better discriminating and representing capacities for yield and GPC. However, the average of grain yield and GPC were higher in ENV1 and ENV5 as compared to other environments (Supplementary Tables S3, S4). The cosine of the angle between the AEC line, and the environment vector is almost equal to the correlation coefficient between the mean performance of genotype over the environment and the genotype values in that environment. The narrower the angle between the AEC line and the environment vector (used to test the genotype), the better the environment in comparison to those that confer larger angles. The direction of the AEC abscissa line is shown by an arrow, whereas the environment mean is indicated by a tiny circle, and the length of the test environment vector reflects the discriminating accuracy level. The length of each environment vector indicates how good (discriminating capacity) it is for distinguishing genotypes in the environment.
[image: Figure 7]FIGURE 7 | The “Discrimitiveness vs. Representativeness” model of biplot evaluate the genotypes anianst the ideal genotypes conferring genotype interaction and GEI for 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and 2020–21) for (A) yield (kg/plot) and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
DISCUSSION
India is considered one of the major countries in terms of wheat production and consumption in the world. In the present study, the AMMI and pooled-based analysis of variance showed a high and significant amount of variation among 13 wheat genotypes based on eight different traits. The high level of genetic variation, which is significantly observed in the present as well as in previously published studies, using near-isogenic lines confirmed the availability of a golden opportunity to employ the near-isogenic population for wheat improvement programmes with a special focus on GPC and yield (Bányai et al., 2017; Kokhmetova et al., 2017). In this study, we particularly focused on yield and GPC for the following reasons: 1) wheat grain yield is very important since it is a stable source of food for the world’s population 2) GPC is an important determinant of food quality 3) combining higher grain yield and higher GPC in an individual wheat variety is considered as an important determinant of food and nutritional security in the world.
The yield had a strong positive correlation with 1000-grian weight (0.66). This finding is consistent with results previously reported in wheat (Mecha et al., 2017; Baye et al., 2020). The positive association of yield with 1000-grian weight suggests that it could be possible to effectively select for both the traits concurrently. Yield also showed a positive correlation with SPS (0.33), DTF (0.45), PH (0.13), and DTM (0.57). Ojha et al. (2018) reported a positive correlation between yield and plant height. A similar positive correlation between yield and spikelet per spike and the number of days to maturity was reported by Dutamo et al. (2015). Similarly, the positive correlation between yield and the number of DTF was previously reported in wheat (Gelalcha and Hanchinal, 2013). On the other hand, the significantly negative correlation between yield and GPC is in agreement with the results previously reported by some other studies (Brevis and Dubcovsky, 2010; Blanco et al., 2012). This is mostly due to a shorter grain filling period and early senescence which comes as a linked trait when introgressing Gpc-B1 gene.
In comparison to the effects of environment (29.52%) and GEI (17.84%), the effect of genotype (52.64%) highly contributed to the total variation in GPC. As a result, the genotypic component of variation explained a significant portion of the total variation for the GPC, implying that genotypes differed more than environments. However, for the remaining traits except yield, the contribution of environmental effects was higher than the effect of both the genotype and GEI to the total variances for DTF (71.37%), PH (41.54%), SPS (54%), GPS (81.21%), DTM (78.56%), and TGW (63.87%). The effect of GEI (51.83%) was higher than the effect of both the environment (43.78%) and genotype (4.4%) for yield. The greater contribution of GEI and environment to the total variation in grain yield was also observed in several earlier studies in wheat (e.g., Amare et al., 2015; Verma et al., 2015; Singh et al., 2019) and in some other crops (e.g., Rakshit et al., 2012; Mukuze et al., 2020). The highly significant contribution of the GEI effect to the total differences in yield indicates that the response of various wheat genotypes to variation in environmental factors was entirely different, implying that selection of environment-specific genotypes is required. Furthermore, the greater contribution of GEI to variation in yield over genotype suggests that there may be some different mega-environments available across the examined environments (Enyew et al., 2021). On the other hand, much larger environmental effect shows that a MET needs to be done to find stable, and high-yielding genotypes that are more adaptable and can be used in specific agro-climatic conditions.
Previously, Finlay and Wilkinson (1963) used a number of stability metrics, such as linear regression analysis, as a stability indicator. In GEI, Eberhart and Russell (1966) underlined the significance of incorporating both linear and nonlinear variables when determining the stability of a genotype. Based on this approach, the term “stable genotype” refers to a genotype that behaves uniformly under all studied conditions/environments. Consequently, the stable genotype has a high mean performance (bi = 1.0) and the lowest deviations from regression (S2di = 0). The regression value explains the adaptability of the evaluated genotypes across the assessed environments. The desirable stability required for a genotype is considered as a regression value approaching 1, and a higher mean performance is superior. A genotype having a lower mean performance, a regression value of less than one, and non-significant S2di does not adapt effectively to favorable environments, and therefore might be marked as a genotype with adaptability to low-yielding environments (Shrestha et al., 2021). On the other hand, genotypes having a higher mean performance, a regression value greater than one, and a non-significant S2di are considered as low-stable genotype. These groups of genotypes effectively perform across high-yielding conditions but not so well in low-yielding environments. Consequently, they are able to effectively adapt across different conditions (Shrestha et al., 2021). In the case of yield, the genotypes BWL6964, BWL7493, BWL7497, BWL7504, BWL7506, and BWL7511 possess regression values greater than 1, which indicates that they are suited to high-yielding environments, while the genotypes BWL6228, BWL7495, BWL7509, PBW761, PBW725, and HD3086 possess regression values less than 1, which implies that they are suited to low-yielding environments (Table 4). Similar results were also obtained by (Tanin and Gupta, 2018) in Indian mustard and by Shrestha et al. (2021) in maize. For GPC, the genotypes BWL 7493, BWL7495, BWL7504, BWL7508, BWL7509, and BWL7511 had regression values greater than 1, which implied that they adapted to favorable environments, while the genotypes BWL6228, BWL6964, BWL7497, BWL7508, PBW761, PBW725, and HD3086 had regression values less than 1, which confirmed that they are more desirable for unfavorable environments (Table 4).
In this case, the observed variation related to genotype and GEI facilitated the selection process of the ideal genotypes for desired characters, and in such cases, reducing the possible influence of environmental component effects is important (Singh et al., 2019). In this case, the AMMI2 model was considered the most effective analysis pattern to explain the genotypic stability of yield, genomic based variance available among the genotypes, and further provide interesting knowledge regarding the GEI (Oliveira et al., 2014). In addition, if the environments possess smaller IPCA1 and IPCA2 values (near to the origin of biplot), they provide a larger contribution to genotypic stability but contribute a smaller proportion to the GEI (Hilmarsson and Rio, 2021). As a result, ENV2 and ENV4 were the major players in the genotypic stability of grain yield and GPC, respectively. In the AMMI2 biplot, genotypes with the longest distance from the centre of the biplot located near to an evaluated environment are recorded as high-yielding genotypes with great adaptability in such a tested environment (Enyew et al., 2021). In the case of grain yield, the genotypes BWL7495 and BWL7504 were located close to ENV2 in the present study, implying their strong yield potential and greater adaptability specific to this environment as compared to other environments. Similarly, the genotypes BWL6964, BWL7493, and BWL7497 had better performance in ENV6. For GPC, the genotypes BWL7506, and PBW725 were placed close to ENV8, indicating their high GPC potential and better adaptability specific to this environment over other environments. Also, the genotype BWL7493 was observed to have greater GPC performance in ENV3. Whenever different genotypes respond differently to different environments, it strongly suggests the presence of GEI and the existence of variation among environmental components such as soil fertility, precipitation, and temperature. As a result, the selection of wheat genotypes specific to each environment across various agro-climatic conditions is suggested. Environment-specific genotypes with high-yielding and high-GPC potential have already been reported in wheat (Groos et al., 2003; Singh et al., 2019) and other cereal crops (Bantayehu et al., 2011; Solonechnyi et al., 2018).
The “which-won-where” model of GGE biplot was applied to select the top-performing genotypes by explaining the GEI, mega-environment clustering, and environment or genotype specific adaptation (Bishwas et al., 2021; Khan et al., 2021). The genotypes with the longest distance from the origin of biplot are considered the best across all or some of the evaluated environments, and were classified as environment-specific genotypes, because they showed more variation in regards to change in environmental components (Singh et al., 2020). The “which-won-where” model of biplot grouped all the evaluated environments into three and two mega-environments involving different genotypes with high-potential for grain yield and GPC, respectively. In terms of yield, mega-environments 1 contained ENV1, and ENV5 where BWL7506 was considered the best high-yielding genotype, mega-environments 2 contained ENV2, and ENV6 where BWL7493 was recorded as the top yielding genotype, mega-environments 3 contained ENV3, and ENV8, where BWL6228 was observed as the most high-yielding genotype, and mega-environments 4 contained ENV4, and ENV7 where PBW725 was considered the high-performing genotype. On the other hand, for GPC, mega-environment 1 contained only ENV1 where BWL 7509 was observed as the high-GPC genotype, while mega-environment 2 involved ENV2, ENV3, ENV4, ENV5, ENV6, and ENV7 where BWL7511 were recorded as the top-performers, and mega-environment 3 involved only ENV8 where BWL7506 and BWL7508 were observed as top-GPC genotypes. The examined environments were grouped into mega-environments and further identification of mega-environment specific genotypes is the sustainable method to use GEI according to the interests of breeders (Yan and Tinker, 2005). Investigation of mega-environments has been previously reported in different cereals, including wheat (Gerrish et al., 2019), rice (Krishnamurthy et al., 2017), maize (Pererira et al., 2021), and barley (Hernandez-Segundo et al., 2009).
The ranking model of GGE biplot is capable of identifying the high-ranking genotypes with great stability based on AEC decisions (Singh et al., 2020). The AEC based ranking model of biplot recorded the genotypes BWL7497, BWL7506, BWL7508, BWL7511, and PBW725 as the high-ranking for yield, and the genotypes BWL6964, BWL7504, and BWL7508, BWL7509, and BWL7511 as the high-ranking for GPC. However, in the case of yield, the BWL6228, BWL7497, BWL7509, and BWL7511 were recorded as poorly stable genotypes because of the effect of GEI components. Also, for GPC, BWL6228, BWL6964, BWL7497, and BWL7508 were observed as the genotypes with lower stability, which is associated with a GEI effect. Previously published studies on wheat also reported that top-performing genotypes are not always the stable ones (Bassi and Sanchez-Garcia, 2017; Popevic et al., 2020). One of the most useful features of the GGE biplot is the graphical representation of genotypes with the best mean performance and stability. Based on the mean vs. stability model of GGE biplot, the genotypes with the highest AEC prediction (top mean) combined with the shortest stability vector (greatest stability) are considered the best genotypes (Farshadfar et al., 2012; Khan et al., 2021). Accordingly, BWL7508, and BWL7511 were selected as high-performers and highly stable genotypes for yield and GPC. Based on all this, it is concluded that the GGE biplot is the best analysis method as compared with AMMI model for the identification and selection of top genotypes with the most efficient stabilities and the highest performing capabilities. This method has already been used in many studies to identify the top-performing and well-stable genotypes in wheat (Bishwas et al., 2021) and some other cereals, including rice (Mostafavi et al., 2011), maize (Ruswandi et al., 2021) and barley (Ghazvini et al., 2021).
GGE biplot analysis identified the genotypes BWL7497, BWL7506, BWL7508, BWL7511, and PBW725 as the high-yielding and, similarly, BWL6964, BWL7504, BWL7509, and BWL7508, BWL7511 as the top performing genotypes for GPC across all environments. Among all the genotypes, BWL7508, and BWL7511 were selected as ideal genotypes for their great stability, top mean yield, and GPC across all the environments. It is true that these two traits are negatively correlated, but if we deal with a large number of segregants during development of the material, a few lines can be identified combining both GPC and yield. Balancing yield and quality together in a wheat cultivar is a tedious task and can be achieved through some inter-trait trade-offs. The reduction in yield is primarily mediated through a reduction in 1000-grain weight in the Gpc-B1 positive lines. But in such cases, the number of effective tillers and grins per spike is adjusted to compensate for the yield. A similar result is observed in some previously conducted studies in the wheat germaplasm with Indian origin (Vishwakarma et al., 2014, 2016; Gupta et al., 2022). The present study remarkably identified that the acceptable level of stability and top-performing potential in one genotype for a character are not the same in other characters. This could be due to the role of different genes in the regulation of the different characters or may be because of variation in expression patterns of genes in different genotypes as a direct effect of different environmental factors, such as different abiotic stresses. Several earlier studies have reported similar results in wheat (Du et al., 2020), soybean (Chaves et al., 2017) and rice (Balakrshnan et al., 2016).
In this study, it was found that different univariate, AMMI, and GGE biplot analyses showed somewhat consistent results in terms of the stability potential of the genotypes. The high ranking genotypes were somewhat different, but we selected the genotypes based on their stable performance for both the yield and GPC, and similar results were obtained across all the univariate and multivariate analyses. The AMMI and GGE biplot showed different results in terms of the discriminating potential of environments. As a result, the environments in the AMMI model were closer to the origin than in the GGE biplot. Keeping the discriminating potential of the AMMI model in view, the GGE biplot model is also successfully employed to examine the multi-location data for stability analysis of wheat and rice genotypes (Khan et al., 2021). In the present study, the GGE biplot model observed the genotype and GEI more efficiently as compared to the AMMI model. The same result was recently reported by Khan et al. (2021). Furthermore, in this study, the biplot graph was extremely successful in mega environment classification, identification of representative and discriminative environments, and genotype ranking. A similar result was observed by Oladosu et al. (2017), where the stability performance of rice genotypes was analyzed. The GGE biplot is considered an extremely valuable statistical technique to deeply understand the GEI in a multi-environmental test. However, the decisions for genotypic stability were similar in both the univariate and multivariate analyses. These results are consistent with the results reported in some previously published studies (e.g., Singh et al., 2019; Bishwas et al., 2021). This type of dissimilarity is not avoidable due to different statistical analysis models that were employed in the present study.
CONCLUSION
In the present study, a multi-environmental investigation was conducted to evaluate 13 wheat genotypes across different environments to select ideal genotypes. We provided detailed information on the effect of GEI, the stability and adaptability of genotypes to specific environments, and the ability of environments to distinguish between DTF, DTM, PH, SPS, GPS, yield, TGW, and GPC in Punjab State, India. Of these traits, we focused on grain yield and GPC because of their importance to food and nutritional security in the world. These two traits were significantly influenced by environmental, genotype, and GEI effects. Based on the results of this study, it is clearly observed that the wheat near-isogenic lines are the best breeding materials that carry potential variation to improve yield and GPC in wheat. The GGE biplot and AMMI were reported to be the best models to show the effects of GEI in a graph and select the best genotypes with the most adaptability and the best performance. Among the genotypes, BWL7508, and BWL7511 were observed to be highly stable and well performed in terms of yield and GPC across all the environments. In the case of yield, ENV1 and ENV3 were identified as the most representative and discriminating environments for yield, respectively. On the other hand, for GPC, ENV3 and ENV7 were observed to be the most discriminating and representative environments, respectively. Thus, these environments could be further used for the identification of the best genotypes and the selection of high-performing genotypes with environment specific adaptability.
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Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat
Rao Waqar Ahmad Khan1, Rao Sohail Ahmad Khan2, Faisal Saeed Awan2*, Ahmed Akrem3, Arslan Iftikhar4, Farhana Naureen Anwar5, Hind A. S. Alzahrani6, Hameed Alsamadany7 and Rana Khalid Iqbal1*
1Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
2Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
3Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
4Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
5Department of Pharmacy Practice, Bahauddin Zakariya University, Multan, Pakistan
6Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
7Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
Edited by:
Karansher Singh Sandhu, Bayer Crop Science, United States
Reviewed by:
Farhat Abbas, South China Agricultural University, China
Sajid Fiaz, The University of Haripur, Pakistan
Muhammad Azhar Nadeem, Sivas University of Science and Technology, Turkey
* Correspondence: Faisal Saeed Awan, faisal.saeed@uaf.edu.pk, awanfaisal@yahoo.com; Rana Khalid Iqbal, khalid.iqbal@bzu.edu.pk
Specialty section: This article was submitted to Plant Genomics, a section of the journal Frontiers in Genetics
Received: 18 May 2022
Accepted: 20 July 2022
Published: 07 September 2022
Citation: Khan RWA, Khan RSA, Awan FS, Akrem A, Iftikhar A, Anwar FN, Alzahrani HAS, Alsamadany H and Iqbal RK (2022) Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat. Front. Genet. 13:946869. doi: 10.3389/fgene.2022.946869

Salinity is one of the significant factors in decreasing wheat yield and quality. To counter this, it is necessary to develop salt-tolerant wheat varieties through conventional and advanced molecular techniques. The current study identified quantitative trait loci in response to salt stress among worldwide landraces and improved varieties of wheat at the seedling stage. A total of 125 landraces and wheat varieties were subjected to salt treatment (50, 100, and 150 mM) with control. Morphological seedling traits, i.e., shoot length, root length, and fresh and dry shoot and root weights for salinity tolerance were observed to assess salt tolerance and genetic analysis using SNP data through DArT-seq. The results showed that, at the seedling stage, 150 mM NaCl treatment decreased shoot length, root length, and fresh and dry weights of the shoot and root. The root length and dry root weight were the most affected traits at the seedling stage. Effective 4417 SNPs encompassing all the chromosomes of the wheat genome with marker density, i.e., 37%, fall in genome B, genome D (32%), and genome A (31%). Five loci were found on four chromosomes 6B, 6D, 7A, and 7D, showing strong associations with the root length, fresh shoot weight, fresh root weight, and dry root weight at the p < 0.03 significance level. The positive correlation was found among all morphological traits under study.
Keywords: genome-wide, association mapping, wheat, salinity, seedlings
INTRODUCTION
Crops grown in saline soils are always in constant threat of the salinity effect on their yield. Saline conditions in the soil do appear when excessive salts accumulate on the surface of the soil or in the plant’s root zone and are unable to leach down. Excessive use of salty water for irrigation and precipitation of the underground salts are the two major causes of salinity in the soil (Ali and Rab, 2017). High salt concentration in the root zone of the plant increases the osmotic pressure of the root cells, resulting in toxicity of ions in the cells. Saline stress causes a decrease in the water potential of cells and the unavailability of nutrients from the soil to the plant. This stress hampers the process of photosynthesis, transpiration, and metabolism, ultimately resulting in decreased plant growth and yield (Ali and Rab, 2017).
Wheat (Triticum aestivum L.) is a major staple crop, which is consumed mainly in Asia and 1/3rd population of the world. It is among the major cereal crops that show moderate tolerance to salt stress compared to rice and barley (Munns, James, and Läuchli, 2006). With the rapid development in DNA sequencing and its use in DNA marker identification, several quantitative trait loci (QTLs) have been identified for traits in wheat against salt tolerance, e.g., QTLs for yield traits (Eleuch et al., 2008; Xue et al., 2009; Fiaz et al., 2021), seedling and crop maturity (Lindsay et al., 2004; Quarrie et al., 2005; Zhao, Ma, and Ren, 2007; Genc et al., 2010), plant survival (Zhou et al., 2012), and salt exclusion in the shoot (Shavrukov et al., 2010). Generally, the traditional QTL mapping was found less sufficient in detecting genetic variation in wheat for salt tolerance (Shi et al., 2017).
The genome-wide association study (GWAS) emerged as a powerful tool, in which hundreds of individuals were genotyped, having a less genetic relationship. In this technique, the genotype data are associated with phenotype data on a trait of interest to identify significant marker-trait associations (Long et al., 2013; Turki et al., 2015; Sandhu et al., 2022) in field crops. The major sources of the erroneous connections are population structure and family relatedness/kinship, and these associations are avoided in the improved GWAS models by including the population structure and kinship matrix components. GWAS has been rapidly used since the initial association mapping in wheat for analyzing the genetic basis of several significant characteristics (Sandhu et al., 2021). The implementation of this approach is hampered by the fact that the majority of QTLs discovered using the GWAS are population-specific, have a small effect, and are difficult to estimate precisely. Nowadays, various types of molecular markers such as DArT and SNPs are commonly used by molecular breeders. The advancement in next-generation sequencing (NGS), higher genome coverage, and continuous reduction in the cost of genome sequencing, automated data acquisition, and analysis make SNPs a marker of choice for association studies. These markers are playing a significant role to speed up the process of marker-assisted selection (MAS). Genetic markers are also used to dissect the linkage disequilibrium (LD), population structure, and genome-wide marker-trait association among various polygenic traits of interest (Metzker, 2010). Salt-tolerant genes and QTLs for both abiotic stresses are identified in wheat and barley. They suggested that drought and salinity are the major abiotic stresses that threaten food security in the world (Nevo and Chen, 2010).
Wheat genotypes were screened out against salinity using different experiments, e.g., hydroponic, greenhouse, and field (Xu et al., 2013; Oyiga et al., 2018; Hussain et al., 2020). Many phenotypic traits for salt tolerance had, previously, been searched against NaCl at several concentrations (Ma et al., 2007; Genc et al., 2010; Oyiga et al., 2018). This study will be a fine attempt to explore the power of GWAS and SNP markers to dissect the genetic bases of salt stress in the wheat crop at the seedling stage.
MATERIALS AND METHODS
Plant materials
To study the effect of salt stress at the seedling stage in wheat, the experiment was conducted using a completely randomized design (CRD) with three replications. In this experiment, 125 worldwide landraces and improved varieties of wheat (Supplementary Table S1) were evaluated twice at three level of salinity i.e., 0, 50, 100, and 150 mM NaCl).
Experimental design
The seedling stage experiment was conducted in a glasshouse using plastic bags filled with soil. Saline water was applied for 40 days. All plants were harvested with the care that roots were not damaged. Plants were removed from plastic bags in running water, and excessive water was removed with tissue papers. Shoot length, root length, and fresh weights of shoot and root were taken. Dry weights of shoots and roots were recorded after drying all plants in the oven for 48 h.
Phenotypic trait measurement
1) Shoot length (SL) and root length (RL): it was recorded with a scale at 6 weeks after sowing.
2) Fresh shoot weight (FSW) and fresh root weight (FRW): shoot and root weights were measured on an electrical balance just after harvesting.
3) Dry shoot weight (DSW) and dry root weight (DRW): the shoot and root were placed in the oven for 48 h at 60°C. Dry weight was measured on an electrical balance.
4) Percentage of increase or decrease: Percentage of increase or decrease for each characteristic was calculated by the difference (increase or decrease) between the two numbers (comparing), then dividing the increase or decrease by the original number, and multiplying the answer by 100.
[image: image]
X1 = initial value, and X2 = final value of the characteristic.
Genotyping
DNA was extracted from leaves of wheat plants and sown under salt treatments for marker analysis. In short, the cetyltrimethylammonium bromide (CTAB) method was adopted for the extraction of the genomic DNA from leaves which were collected, transferred in liquid nitrogen at the time of sampling, and stored at F02D80°C. DNA was quantified with a Nano-Drop 8000 spectrophotometer (V.2.1.0). The DNA collected was genotypically characterized through the DArTseq™ technology (http://www.diversityarrays.com/dart-application-dartseq) of the Genetic Analysis Service for Agriculture (SAGA) service unit at the CIMMYT headquarters (Texcoco, Mexico). These SNPs were further assigned chromosomes, orders, and genetic distances, according to the 100K marker DArT-seq consensus map available at the Diversity Arrays Technology Pty Ltd. (DArT) (http://wwwdiversityarrays.com/sequence-maps).
Statistical analysis
Analysis of variance (ANOVA) was calculated by Prism (version 9). Data for the SNP density plot, phenotypic histograms, Manhattan plot, and correlation plot were visualized in RStudio software. The structure of the population was determined using STRUCTURE (v.2.3.4.) (Pritchard, Stephens and Donnelly, 2000) based on an admixture model as in the model, the K-values ranged from 2 to 9 with five independent runs, the burn-in period was set at 100,000, and Markov chain Monte Carlo (MCMC) repetitions after burn-in were set at 100,000. The STRUCTURE HARVESTER (http://taylor0.biology.ucla.edu/structureHarvester/) was used to extract and analyze the results of the structure for an estimate of the optimal value of K using the delta (K) method. Genome-wide association analysis on phenotypic data was analyzed by using a mixed linear model (MLM) through TASSEL v 5.2.43 (Bradbury et al., 2007). The MLM can be represented (Sandhu et al., 2021) as
[image: image]
where Y is a matrix of phenotypic information, SNP represents the matrix of markers, Q represents the population structure, and Kinship represents the relationship matrix between the individuals included in the model. SNP and Q are set as fixed effects, while kinship is a random effect in the model (Yu et al., 2006).
RESULTS
Phenotypic correlations and ANOVA
Treatments are highly significant, indicating the negative impact of salt on seedling-related traits (Table 1 and 2). Varieties and their interaction with salt treatments showed a high degree of variation for SL, RL, and FSW and were non-significant for FRW, DSW, and DRW (Table 1; Supplementary Figure S1, S2). It was observed that seedling-related traits under study were decreased when plants were exposed to high salts. A maximum percentage decrease (44.59%) was observed in RDW, followed by RL (40.15%) and FSW (38.28%) (Table 2), while the minimum was observed in FRW (21.45%). Strong significant correlations were found among all seedling-related traits (Figure 1, Supplementary Table S2).
TABLE 1 | Mean square calculated through ANOVA for wheat genotypes and salinity treatments.
[image: Table 1]TABLE 2 | Range, mean, and percentage change in seedling traits of 125 genotypes under control (0 mM) and salinity (150 mM).
[image: Table 2][image: Figure 1]FIGURE 1 | Correlation among seedling-related traits.
SNP density on the genome
A total of 4417 SNPs were found encircling all chromosomes of the wheat genome. Chromosomes varied in their length, and different numbers of SNPs were mapped on them. A minimum of 106 SNPs were observed at chromosome 4B, and a maximum of 333 SNPs were observed at chromosome 7D with a mean of 208.19 SNPs per chromosome. The chromosomal length varied between 0.148 cM (chromosome 4B) and 0.491 cM (chromosome 7D) (Figures 2A,B). The marker density was also not uniform among genome-like maximum markers; about 37% fall in genome B, followed by genome D (32%) and genome A (31%) (Figure 2C, Supplementary Table S3).
[image: Figure 2]FIGURE 2 | SNP density plot of the (A) SNPs mapped to the wheat genome in wheat lines; (B) the number of SNP sites present on each chromosome; (C) genome-wise distribution of SNPs.
Analysis of the population structure
To reduce the possibility of unauthentic associations, all loci were selected to analyze the population structure of wheat varieties. The structure result at K = 4 found the best separator, which provides the highest delta k (∆k) value (Figure 3). Structure results divided the population into four sub-groups, and the overlapping phenomenon occurs between sub-groups because of wheat breeding material in the current study.
[image: Figure 3]FIGURE 3 | Determination of the (A) optimal value of K = 4 and (B) population structure of 79 wheat genotypes using DArT-seq SNP markers.
Marker-trait associations
It was found that five different loci exist on four different chromosomes 6B, 6D, 7A, and 7D, and they showed strong associations with the RL, FSW, FRW, and DRW (Figure 4; Table 3). These significant loci were associated (at p < 0.03 significance level) with R2, ranging between 0.14 and 0.22 for FSW and FRW, respectively (Table 3). The marker RS#1008453 was strongly associated with RL, present at chromosome 6B (Figure 4), while the marker RS#1067078 on chromosome 6D was associated with FSW (R2 = 0.14). Chromosome 7A has two marker sites, i.e., RS#1100610 and RS#2255164 associated with FRW, and explained 0.22 and 0.17 of variation, respectively. A marker (RS#1074330) on the 7D chromosome associated with DRW (R2 = 0.16) affects the dry root weight (Figure 3; Table 3). For the seedling growth stage, no marker was found to be significantly correlated with SL and DSW.
[image: Figure 4]FIGURE 4 | Genome-wide association analysis of seedling-related trait loci in the A, B, and D genomes of wheat. SL: shoot length; RL: root length; FSW: fresh shoot weight; FRW: fresh root weight; DSW: dry shoot weight; DRW: dry root weight.
TABLE 3 | Five trait loci significantly associated with salt-related seedling traits.
[image: Table 3]Linkage disequilibrium
The distribution of LD based on 4417 SNP markers showed extensive LD decay, as in the entire marker population. The range of linkage disequilibrium revealed elevated LD measures (average R2 = 0.5) over ranges as long as 200 Kb (Figure 5). The depreciation rate of LD was very slow and decayed to as low as R2 = 0.18. This indicates that pinpointing candidate genes in such a long-range LD is a tedious task and results in an exhaustive list. The overall LD decay in wheat lines was relatively low as it passes 100 Kb, and a few markers showed R2 ≥ 0.8. In total, 4417 SNP markers showed complete LD (R2 = 1), although a huge LD block was observed on chromosome 4.
[image: Figure 5]FIGURE 5 | Linkage disequilibrium (LD)-measured (A) R2 plotted vs. the physical map (bp) between pairs of SNP markers in wheat genotype and (B) LD decay on chromosome 4.
DISCUSSION
Indicators used to evaluate the salt tolerance of plant germination include the seed germination rate, shoot length, and root length, so salt tolerance at the germination and seedling stage is very important. In the current study, seedling-related traits (shoot and root length (SL and RL) and dry and fresh weights of the shoot and root (FSW, FRW, DSW, and DRW) of 125 wheat accessions under salt stress demonstrated variation. Morphologically, germplasm showed a significant decrease in all traits measured at the seedling level. It is observed that fresh and dry weights of the root and shoot were decreased at high salt levels. The behavior of the root and shoot showed separate responses when the plant was subjected to salt stress (Lin et al., 2004). Shoots largely contain photosynthetic biomass including palisade mesophyll cells, thick cell wall, and epidermal layers, which do not degrade completely upon drying. On the other hand, roots largely comprise vascular bundles containing xylem and phloem with large spaces, and upon drying, they lose greater biomass; hence, differences between fresh and dry weights of roots are greater than those in case shoots. Generally decrease in the root length is considered to be a strong indicator of salt stress, but it was observed that alongside root length, the root dry weight may also be used as one of the key selection criteria for screening wheat lines against salinity, which is ultimately used in breeding programs. However, the concluded results are not always reliable due to different response patterns of some genotypes, which showed tolerance at the seedling stage but were unable to grow under continuous stress (Turki et al., 2015). The phenotypic positive correlation was found to be significant between seedling traits, which indicates the salt tolerance in wheat is not influenced (Mano and Takeda, 1997; Munns and Tester, 2008).
In wheat, numerous loci for salt tolerance have been identified in field- and hydroponic-based experiments against yield traits. There is no genome-wide study on wheat seedlings, especially keeping the shoot length, root length, and dry and fresh weights of the shoot and root as tolerance indicators for the association study. However, this phenomenon has also been reported in some crops, e.g., rice (Shi et al., 2017; Batayeva et al., 2018; Islam et al., 2022), flax (Li et al., 2022), Camelina (Luo, Szczepanek, and Abdel-Haleem, 2020), and barley (Ahmadi-Ochtapeh et al., 2015).
In the current study, it was found that the marker RS#1008453 is present at chromosome 6B for root length and the marker RS#1067078 for fresh shoot weight, located at the 6D chromosome. The loci RS#1100610 and RS#2255164 on chromosome 7A are associated with fresh root weight. Ma et., al (2007) found the locus Qpdws-2A.2/Qsfws-2A.1 for plant biomass in wheat. RS#1074330 was present at chromosome 7D for dry root weight. Liu et al. (2018) identified gwm251 on chromosome 4B as it was associated with fresh root weight at the seedling stage which was near QTL QTdw-4B controlling the total dry weight, as explored by Xu et al., 2013. Numbers of QTL for salinity tolerance in the various mapped populations of wheat have been detected for yield contributing traits (Ma et al., 2007; Genc et al., 2010; Xu et al., 2013; Ghaedrahmati et al., 2014). Association studies emerged as an efficient technique for detecting QTLs for desired traits in the same population at the same time. This technique creates opportunities for breeders for marker-assisted breeding (Liu et al., 2018). Five identified QTL regions, reported in the current study, have not been previously detected and could be used in future efforts to achieve a better plant selection against salt tolerance at the early stage (Zhu et al., 2008; Zhang et al., 2010, 2012). However, larger-scale multilocation field research would be necessary to confirm those identified SNPs.
CONCLUSION
Genome-wide association studies provide an effective way to capture superior alleles that were not explored by conventional breeding methods. Introgression of these alleles into breeding germplasm supports breeders in using marker information in developing new varieties. In this study, we evaluated the salt tolerance of wheat accessions at the seedling stage and screened salt-tolerant germplasms. The salt stress significantly reduced the fresh and dry weights of the shoot and root. The 4417 SNPs were detected from the GWAS of salt tolerance-related traits of wheat accessions during the seedling stage. These SNPs were distributed as 31, 37, and 32% in three genomes A, B, and D, respectively. Important loci for important traits were found on chromosomes 6B, 6D, 7A, and 7D. Information about salt-tolerant loci is very important in improving and developing salt-tolerant wheat genotypes. It is important to have information about salt-tolerant loci in improving and developing salt-tolerant genetic breeding material using marker-assisted selection. However, to examine the genotype and environment interaction and to confirm those found SNPs, larger-scale multilocation field experiments in subsequent multiple years would be required.
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Genome-wide analysis of IQD proteins and ectopic expression of watermelon ClIQD24 in tomato suggests its important role in regulating fruit shape
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The plant-specific IQ67 domain (IQD) is the largest class of calmodulin targets found in plants, and plays an important role in many biological processes, especially fruit development processes. However, the functional role of IQD proteins in the development of watermelon (Citrullus lanatus) shape remains unknown, as the IQD protein family in watermelon has not been systematically characterized. Herein, we elucidated the gene structures, chromosomal locations, evolutionary divergence, and functions of 35 IQD genes in the watermelon genome. The transcript profiles and quantitative real-time PCR analysis at different stages of fruit development showed that the ClIQD24 gene was highly expressed on 0 days after pollination. Furthermore, we found that the ectopic overexpression of ClIQD24 promoted tomato fruit elongation, thereby revealing the significance of ClIQD24 in the progression of watermelon shape. Our study will serve as a reference for further investigations on the molecular mechanisms underlying watermelon fruit shape formation.
Keywords: watermelon, IQD family, ClIQD24, ectopic expression, fruit shape
INTRODUCTION
Plants activate a series of signal transduction pathways to coordinate physiological and metabolic responses to adapt to adverse environmental conditions. Calcium (Ca2+) is a secondary messenger, and spatial and transient changes in cytoplasmic Ca2+ levels are triggered by abiotic stress and perceived by the Ca2+ sensor (Aldon et al., 2018). Calmodulin (CaM) is one of the most intensively studied Ca2+ sensors that mediate Ca2+ signal transduction into cellular responses through the modulation of various target proteins (Yuan et al., 2022). The plant-specific IQ67 domain (IQD) protein is the largest class of CaM targets and has been identified in many plants (Rehman et al., 2021).
IQD proteins were originally identified in Arabidopsis thaliana. They are a type of CaM binding protein, which has been identified in many species from lower bryophytes to higher angiosperms (Abel et al., 2005). IQD proteins are characterized by the presence of a conserved IQD consisting of 67 amino acid residues, which recruits CaM and serves as a Ca2+ sensor (Rehman et al., 2021). Generally, the IQD is composed of 1 - 3 tandem repeats of CaM-binding IQ motifs, each containing two conserved isoleucine (I) and glutamine (Q) amino acid residues. Currently, two types of IQDs have been found in plants, the Ca2+-independent IQ motif (IQxxxRGxxxR and I/L/VQxxxRxxxxR/K) and Ca2+-dependent IQ motifs (1-5-10 and 1-8-14 motifs) (Wu et al., 2011). Moreover, IQD proteins have been annotated in several plant species, including tomato, cotton, and potato (Mei et al., 2021).
With the development of sequencing technology, IQD proteins have been found to play vital roles in various cellular processes, including host defense, cell shaping, and drought resistance (Yuan et al., 2019; Liu et al., 2020). The AtIQD1 gene from Arabidopsis thaliana was found to regulate glucosinolates (a class of defense-related metabolites). It has been reported that the overexpression of AtIQD1 can stimulate glucosinolate accumulation and plant defenses in transgenic Arabidopsis (Levy et al., 2005). Additionally, AtIQD11, AtIQD14, and AtIQD16 regulate plant growth and cell shape through unknown mechanisms that may be related to the CaM-dependent Ca2+ signaling pathway (Bürstenbinder et al., 2017). Two other IQD genes from Arabidopsis and rice have also been found to regulate plant growth and development (Duan et al., 2017; Sugiyama et al., 2017). Collectively, these findings show that IQD genes play important roles in plant growth and development. IQD protein interacts with microtubules to regulate the progression of organ shape (Lazzaro et al., 2018). Moreover, IQD proteins serve as scaffolding proteins and have been linked to Ca2+ signals in some organelles, regulating plant growth (Burstenbinder et al., 2017). In addition, the IQD protein IQD1 reportedly interacted with KLCR1 and CaM, which induced kinesin and Ca2+ secondary messenger signaling, thereby participating in cargo transport (Kong et al., 2015).
IQD protein families have been comprehensively analyzed in many crops including Arabidopsis, Solanum lycopersicum, Oryza sativa, Glycine max, Phyllostachys heterocycla, Brachypodium distachyon, and Populus trichocarpa (Zhou et al., 2010; Filiz et al., 2013; Huang et al., 2013; Feng et al., 2014; Ma et al., 2014; Wu et al., 2016). Subsequently, the functions of IQD proteins were investigated and found to play important roles in many pathways, including plant defense responses, the regulation of microtubules organization, plant growth and development, and cell shape (Burstenbinder et al., 2017). In Arabidopsis, except for the function of plant defenses, AtIQD1 also resulted in glucosinolate accumulation, which enhanced herbivory resistance (Levy et al., 2005). AtIQD22 has been shown to negatively regulate plant responses to GA (gibberellin) (Zentella et al., 2007). In tomato, a 24 kb chromosome fragment repeat increased SlSUN12 expression (a homologous gene of IQD) and copy numbers, which led to fruit elongation (Xiao et al., 2008). SlSUN24 regulates tomato seed germination by participating in the ABA signaling pathway (Bi et al., 2018). CsSUN, a homolog of tomato fruit shape gene SUN, regulates cucumber fruit shape (Pan et al., 2017). In soybean, 24 GmIQD III genes were regulated by MeJA (methyl jasmonate) stress (Feng et al., 2014). Similarly in Populus trichocarpa, the expression of 12 selected IQD members was regulated by PEG (polyethylene glycol electrolyte solution) and MeJA treatments (Ma et al., 2014).
As a member of Cucurbitaceae, watermelon (Citrullus lanatus) is grown widely and is very popular with consumers all over the world. It has 11 chromosomes (2n = 2X = 22) with a 425 Mb reference genome size approximately. The watermelon reference genome “97103” v1 was sequenced and released in 2013 (Guo et al., 2013). Subsequently, the “Charleston Gray” reference genome and “97103” v2 were also been released (Wu et al., 2019). Although the genome sequencing of watermelon has been completed, only a few studies have reported the IQD proteins in watermelon. Only the ClFS1 gene, which belongs to the IQD protein family, had been identified to regulate fruit shape. The 159 bp deletion in the ClFS1 gene was responsible for elongated fruit (Dou et al., 2018). Additionally, the watermelon IQD protein family has not been systematically analyzed. The function of IQD during watermelon development was unknown. In this study, we elucidated the gene structures, chromosomal locations, evolutionary divergence, and functions of 35 IQD genes in the watermelon genome. Furthermore, the transcript profile of the 35 ClIQD genes was analyzed at 0 DAP (days after pollination), 7 DAP, and 14 DAP. We found that ClIQD24 was highly expressed only in ovary development. The ectopic expression of ClIQD24 in tomato promoted fruit elongation, indicating that ClIQD24 proteins play important roles in watermelon fruit development. The findings of this study will serve as a reference for future investigations on the function of ClIQD genes in watermelon.
MATERIALS AND METHODS
Identification of the ClIQD proteins in watermelon
To identify ClIQD genes in the watermelon genome, two database searches were performed. First, we retrieved 33 IQD protein sequences from TAIR (Arabidopsis Information Resource, https://www.arabidopsis.org/). Then the 33 IQD proteins were used as queries to perform a BLAST-P search against the NCBI database (http://www.ncbi.nlm.nih.gov). Secondly, all selected proteins were used as queries to perform BLAST-P searches in the Watermelon Genome Database (http://cucurbitgenomics.org/). The SMART online database and the Pfam database (http://pfam.xfam.org/search/) were used to confirm that all putative non-redundant sequences contained the canonical consensus. Finally, we identified 35 IQD proteins in the watermelon genome. Details of the watermelon ClIQD sequences, including the number of exons, open reading frame (ORF) lengths, amino acid sequence lengths, chromosome location, and isoelectric point (PI), were obtained from the Expasy Proteomics Server (http://web.expasy.org/compute_pi/) (Supplementary Table S1).
Bioinformatics analysis of the ClIQDs in watermelon
The ClIQD genes were renamed based on the gene IDs from chromosomal 0 to chromosomal 11. According to the chromosomal localization data on the chromosome, the ClIQD genes were mapped to the chromosomes using MapInspect software (http://mapinspect.software.informer.com/1.0/) (Zhang et al., 2013). Exon-intron organization of the watermelon IQD genes was illustrated using the Gene Structure Display Server (GSDS2.0, http://gsds.cbi.pku.edu.cn/) by comparing genomic sequences with their corresponding coding DNA sequence (CDS). The online MEME program (http://meme.nbcr.net/meme/cgi-bin/meme.cgi) was used to analyze conserved motifs of the watermelon IQD proteins (Bailey and Elkan, 1955). Pfam was used for motif annotation with the following parameters: optimum motif width 6–100 residues, the maximum number of motifs 10 (based on many times comparisons and settings, Supplementary Table S2).
According to the available information, 33, 28, and 33 IQD amino acid sequences of Arabidopsis thaliana, rice, and tomato were retrieved from their reference genomes, respectively (Huang et al., 2013; Ma et al., 2014). Information on these amino acids is presented in Supplementary Table S3. According to the sequence alignments, a phylogenetic tree was constructed using MEGA7.0 software (Shi et al., 2016). The NJ (neighbor-joining) method was used to generate a model using Poisson’s correction, 1000 bootstrap replicates, and pairwise alignment (Wei et al., 2019).
RNA-seq library construction, sequencing, and reads mapping
The watermelon accessions WM102 is a homozygous inbred line, that was manually self-pollinated for at least five generations in this study. All watermelons used in this study were sown in nursery trays, and the seedlings were transplanted to greenhouses at the Science and Education Park of Henan Agricultural University, Zhengzhou, China. To study the ClIQD gene expression differences during fruit development, fruit at different development periods (0 DAP, 7 DAP, 14 days DAP) were used for RNA-seq analysis (Biomarker Technologies Co. Ltd., Beijing, China).
Total RNA was extracted from fresh watermelon rind samples using the CTAB method. Samples (1.0 g) with three biological replicates were collected during each developmental stage (0 DAP, 7 DAP, 14 DAP). RNA concentrations and quality were determined and assayed using a NanoDrop 2000 (Thermo) and 1.5% agarose gel, respectively. The RNA-seq library was used to prepare the sample libraries based on the constructed flow path, and then the RNA was sequenced on an Illumina HiSeq 2000 platform. The raw sequencing data from the RNA-seq were used for subsequent analysis. Clean reads were obtained by filtering, contaminated sequences, and low-quality reads and then aligned to the watermelon reference genome “97103” v1 (Guo et al., 2013) according to HISAT2 (Kim et al., 2015). The transcript data were assembled using Stringtie software (Pertea et al., 2016). ClIQD expression was analyzed using the FPKM method (Mortazavi et al., 2008). A heatmap was generated using TBtools. The RNA-seq data (Liu et al., 2020) are available in the NCBI database (accession no. PRJNA549842) (Supplementary Table S4).
Quantitative real-time PCR (qRT-PCR) analysis
To verify RNA-seq results, watermelon rind samples were collected at different developmental periods (0DAP, 7DAP, 14DAP) and used for RNA extraction to investigate the expression patterns of the ClIQD genes during fruit developmental. Total RNA was extracted using a plant RNA purification kit (Omega) following the manufacturer’s instructions. The RNA quantity and quality of RNA samples were determined and assayed using a NanoDrop 2000 (Thermo) and 1.5% agarose gel, respectively. The cDNA was synthesized using reverse transcriptase M-MLV (RNase H-) following the instructions of the manufacturer (Takara, Japan). The primers used for qRT-PCR were designed to amplify products ranging from 100–250 bp using Primer 5.0 online software. The Actin gene primer (Kong et al., 2015) and 35 ClIQD gene primers are listed in Supplementary Table S5.
The expression patterns of the ClIQD genes were evaluated by qRT-PCR using the system of LightCycler480 RT-PCR system (Roche). The PCR reaction system had a total volume of 20 μL, consisting of 10 μL 2× Master Mix (Roche), 1 μL each of 10× primers, and 100 ng of genomic cDNA. All amplifications were carried out on a LightCycler 480 High-Resolution Melting Master system. The PCR reaction was as follows: 94°C for 10 min; 45 cycles at 95°C for 15 s, 60°C for 20 s, 72°C for 25 s; 72°C for 10 min; High-Resolution Melting was performed under the following conditions: 95°C for 1 min, 40°C for 1 min, 65°C for 10 s, continuous 95°C. Normalized, temp-shifted melting curves from CyP2C2 amplicons carrying a sequence variation were evaluated using LightCycler 480 Gene Scanning Software. Experiments were performed in triplicate with three technical replicates. The relative expression pattern was performed and calculated using the 2-△△CT method (Dou et al., 2018).
Ectopic expression of ClIQD24 in tomato
To verify the regulation of ClIQD24 during watermelon fruit development, the ClIQD24 overexpression vector was constructed using the pRI101 vector. The pRI101 vector was cleaved at the restriction endonuclease cleavage site of, ScaI and XbaI, and then the amplified CDS sequence of the ClIQD24 gene was inserted into a linearized pRI101 vector. The primers used for vector construction are listed in Supplementary Tables S6. The overexpression vector ClIQD24-pRI101 was fused into Agrobacterium using the heat shock method and then transformed to tomato Micro-Tom (Sun et al., 2006; Ding et al., 2019). The Micro-Tom seeds were sterilized as follows: 75% ethanol for 20 s, rinsed with ddH2O 3 times, 10% sodium hypochlorite for 1–2 h, and dried on sterile filter paper. Transgenic positive plants were grown in a tissue culture room at 25°C, 75% relative humidity, and 250 μmol m−2 s −1 light intensity under a 14/10 days/night photoperiod. Plants were grown in nutrient bowls until the plants had three leaves and one heart. We measured the fruit length (cm), width (cm), and fruit shape index during the fruit ripening period of overexpression-positive tomato plants. Each individual had five fruits measured as biological replicates.
Prediction of miRNA targeting watermelon ClIQD24 gene
The sequence of ClIQD24 was used as candidate gene to identify possible miRNAs based on the psRNATarget database (https://www.zhaolab.org/psRNATarget/analysis?function=2. Accessed on 5 August 2022) with default parameters (Raza et al., 2021; Wang et al., 2022). Moreover, the interaction network between ClIQD24 and the identified miRNAs was bulided using the software Cytoscape (V3.8.2, https://cytoscape.org/download.html. Accessed on 3 August 2022).
RESULTS
Identification and annotation of watermelon IQD genes
In the Arabidopsis genome, 33 IQD protein sequences are easily available on 8 chromosomes (TAIR, https://www.arabidopsis.org/) (Abel et al., 2005). The 33 Arabidopsis IQD proteins were used as query sequences to search watermelon IQD protein sequences in the NCBI database and Cucurbitaceae Genome Database (http://cucurbitgenomics.org/). Then, the multiple sequence alignment analysis was performed using the MEGA 7.0 software. Conserved domains of the candidate protein sequences were analyzed using SMART (http://smart.embl-heidelberg.de/smart/) and Pfam (http://pfam.xfam.org/search/) online software. Finally, 35 watermelon IQD genes were identified by deleting repetitive and incomplete domain sequences. The number of IQD genes identified in watermelon was slightly larger than the numbers previously reported in Arabidopsis (33), rice (28), and tomato (33) (Abel et al., 2005; Choi et al., 2005; Ma et al., 2014). To unify the naming of watermelon IQD genes, the 35 watermelon IQD genes were named ClIQD1 - ClIQD35 (Supplementary Tables S1, S2).
The physical and chemical properties such as the molecular weight, length, and isoelectric point (pI), of all ClIQD proteins were obtained by importing them into the EPasy site (Supplementary Table S1). The amino acid lengths of the ClIQD genes ranged from 64 to 1073 with an average length of 443 amino acids. The molecular weights ranged from 7.3 kD to 117.1 kD with an average weight of 49.6 kD. These parameters are similar to those in Arabidopsis and rice (Choi et al., 2005). In addition, most watermelon ClIQD proteins had relatively high pI and other important physical and chemical properties except the ClIQD32. The pI of ClIQD32 was 5.08 with a length of 1073 amino acids and a molecular weight of 117.1 kD (Supplementary Table S1).
Phylogenetic analysis of IQD genes in watermelon, arabidopsis, rice, and tomato
To further investigate the evolutionary relationships and classify genes to obtain potential functions of the ClIQD proteins from previous studies, a total of 129 IQD genes containing 33 AtIQDs from Arabidopsis thaliana (Abel et al., 2005), 33 SlSUNs from tomato (Huang et al., 2013), 28 OsIQDs from rice (Choi et al., 2005) and 35 ClIQDs from watermelon were used to construct a phylogenetic tree. The full-length IQD amino acid sequences were aligned and the phylogenetic analysis was conducted using the neighbor-joining (NJ) method implemented in MEGA 7.0. The 129 IQD proteins were classified into four distinct subfamilies (group I, group II, group III, and group IV) (Figure 1). Among these four subfamilies, group I contained the largest number of IQD protein members (13 ClIQD proteins) from watermelon, while group II had the least 5 ClIQD proteins IQD classifications suggested that the ClIQDs may serve different functions in different groups.
[image: Figure 1]FIGURE 1 | Phylogenetic relationships of Arabidopsis, rice, tomato, and watermelon IQD members. The full-length amino acid sequences of 129 IQD proteins were aligned using ClustalX 1.83. The phylogenetic tree was constructed using the neighbor-joining (NJ) method by MEGA 5.0. Each IQD class is indicated by the specific line color. Redline, class I; Pink line, class II; Blue line, class III; Green line, class IV.
The IQD members consisting of four different species in the same subfamily had a closer evolutionary relationship than different subfamilies consisting of the same species (Figure 1). Further analysis showed that dicotyledonous plants, including Arabidopsis thaliana, tomato, and watermelon, had more similar evolutionary relationships among the IQD domains. The IQD proteins’ evolutionary relationships between monocotyledonous (rice) and dicotyledonous plants (Arabidopsis thaliana, tomato, and watermelon) were not far, which was consistent with previous reports (Feng et al., 2014; Cai et al., 2016). Collectively, these findings showed that the evolutionary process of IQD proteins in watermelon was consistent with monocotyledonous and dicotyledonous plants.
Chromosomal locations of the ClIQD genes
Based on the location information of ClIQD genes in the Cucurbitaceae Genome Database, the location information of 35 ClIQD genes was obtained and the genes were mapped to the 11 watermelon chromosomes using MapInspect chromosome positioning software. The physical location information and distribution of the ClIQD genes across the 11 chromosomes are shown in Figure 2. The 35 ClIQD genes were widely distributed across the 11 watermelon chromosomes, while the distribution within each chromosome was uneven. Seven ClIQD genes were distributed on chromosome 5, which was the greatest number of genes among the 11 chromosomes, while only one ClIQD gene was distributed on chromosome 2 and chromosome 8, respectively. Of these 35 ClIQD genes, five (ClIQD8, ClIQD11, ClIQD12, ClIQD15, ClIQD34) have a far relationship, other 30 ClIQD genes have homologous genes with each other (Figure 2). The location patterns of the ClIQD genes in watermelon were similar to OsIQD genes in rice but differed from AtIQD genes which were evenly distributed across the eight Arabidopsis chromosomes (Abel et al., 2005; Rodriguez et al., 2011).
[image: Figure 2]FIGURE 2 | Chromosomal distribution and duplication events of watermelon IQD genes. The 35 ClIQD genes are widely mapped to the 11 watermelon chromosomes. Duplicated paralogous pairs of ClIQD genes in segmentally duplicated blocks are connected with black dashed lines. The chromosome number is located at the top of each vertical bar. The chromosomal position of each maize IQD gene is indicated by the gene name. Colored boxes to the left of the gene name represent the corresponding subfamily to which the gene belongs.
Conserved motif identification and gene structure analysis of the ClIQD genes
To comprehensively understand the evolutionary relationships and diversification of watermelon ClIQD proteins, the conserved motifs and exon-intron organization of the 35 ClIQDs were analyzed using MEME online software (https://meme-suite.org/meme/), (Figure 3, Figure 4). There were multiple conserved motifs in the ClIQDs amino acid sequence, squares with different colors represented different conserved motifs (Figure 3; Supplementary Table S2). The conserved motifs were analyzed by SMART (http://smart.embl-heidelberg.de/smart/) and Pfam (http://pfam.xfam.org/search/) online software. Motif 1 and motif 6 were the core sequences of the ClIQD proteins and were widely distributed across the watermelon ClIQD proteins. The other eight motifs with unknown functions were also identified. The proteins with relatively close evolutionary relationships had the same composition motif pattern e. g, ClIQD24/ClIQD26, ClIQD17/ClIQD21 indicating that proteins from the same ClIQD subfamily had functional similarity (Figure 3). Some differences were also detected in the motif composition among different subfamilies. For example, motif 10 was only detected in subfamily IV, which indicated that ClIQD proteins in different subfamilies may serve different functions.
[image: Figure 3]FIGURE 3 | Motif patterns of the 10 conserved motifs in ClIQD proteins. Each motif is represented by different colored boxes with the serial number located in the center of the box. The colored boxes were ordered manually based on the MEME server results. The length of each colored box does not represent the virtual motif size of the corresponding proteins.
[image: Figure 4]FIGURE 4 | The phylogenetic relationships and exon/intron distributions of the 35 ClIQD genes. (A) The unrooted phylogenetic tree generated by the MEGA 7.0 program using the full-length amino acid sequences of the 35 ClIQD proteins. The tree was generated using the maximum-likelihood (ML) method with 1000 bootstrap replicates. (B) Exon/intron organization of the 35 ClIQD genes. Exons and introns are represented by green boxes and black lines, respectively.
The exon-intron structures of the 35 ClIQD genes in watermelon are shown in Figure 4. There was a structural similarity between the genes with a close evolutionary relationship. The 35 ClIQD genes had length differences and diverse structural types. The number of introns among the 35 ClIQD genes ranged from 0 to 8. The total number of genes with less than or equal to 3 introns was 15, accounting for 42.86% of the 35 ClIQD genes. The total number of genes with less than or equal to 5 introns was 32, accounting for 91.43% of the 35 ClIQD genes. In addition to ClIQD8 with 0 introns, there was an intron detected in the conservative domains of most ClIQD genes.
Transcript profiles and qRT-PCR verification of the ClIQD genes during watermelon fruit development
Previous studies have reported on IQD regulation during fruit development (Choi et al., 2005; Xiao et al., 2008; Rodriguez et al., 2011; Cai et al., 2016; Bi et al., 2018; Wu et al., 2018; Yang et al., 2020). To preliminary investigate the functions of ClIQD genes during watermelon fruit development (0 DAP, 7 DAP, 14 DAP), nine RNA-seq libraries were constructed and sequenced from watermelon WM102 rind samples, which included three independent biological replicates. A heat map of 35 watermelon ClIQD genes was constructed using the fragments per kilobase of exon million mapped fragments (FPKM) values from the RNA-seq data to estimate the gene expression levels (Figure 5; Supplementary Table S4). The heat map showed that the 35 watermelon ClIQD genes clustered into three groups. Cluster A contained 18 members of 35 ClIQD genes, which were mainly upregulated during fruit development. Cluster B contained 12 members of 35 ClIQD genes, which were mainly upregulated only at 7 DAP. While Cluster C contained only 5 members of 35 ClIQD genes, which were mainly downregulated during fruit development. Therefore, we concluded that these ClIQD genes may serve different functions in different groups during watermelon fruit development.
[image: Figure 5]FIGURE 5 | The heatmap analysis of the 35 ClIQD genes during three periods of fruit development (0 days after pollination, 7 days after pollination, 14 days after pollination). Samples were collected during each period in triplicate.
To verify the RNA-seq results, the fruit rind samples were extracted at 0 DAP, 7 DAP, and 14 DAP and placed in a −80°C freezer for future RNA extraction using three independent biological replicates per time point. The gene expression patterns are shown in Figure 6. ClIQD12 gene was not expressed in each period during fruit development, indicating that it did not function in fruit development. As fruit developed, the expression of three genes (ClIQD9, ClIQD24, ClIQD32) were decreased gradually; the expression of 13 genes (ClIQD2, ClIQD5, ClIQD6, ClIQD7, ClIQD8, ClIQD10, ClIQD13, ClIQD14, ClIQD19, ClIQD27, ClIQD28, ClIQD29, and ClIQD30) were increased gradually and the expression of 16 CIIQD genes (ClIQD1, ClIQD4, ClIQD11, ClIQD15, ClIQD16, ClIQD17, ClIQD18, ClIQD20, ClIQD22, ClIQD23, ClIQD25, ClIQD26, ClIQD31, ClIQD33, ClIQD34 and ClIQD35) was increased at first and then decreased during fruit development. These results are consistent with the RNA-seq results. The expression of ClIQD21 decreased at 0 and 7 DAP and then increased during fruit development. Thus, we concluded that these genes may play important roles during fruit development. Moreover, the highest expression level of ClIQD24 was found only in the ovaries at 0 DAP but had low expression during other periods, which indicated that ClIQD24 may play an important role in ovary development and morphological completion.
[image: Figure 6]FIGURE 6 | Expression patterns of the 35 ClIQD genes during three periods of fruit development were analyzed by quantitative real-time (qRT-PCR). Error bars represent the standard deviations of three independent replicates. Y-axis represents for expression level.
Ectopic expression of ClIQD24 in tomato
ClIQD24 is a homologous gene of the SUN, which was previously reported to regulate fruit shape (Wu et al., 2011; Yang et al., 2020). To verify the function of ClIQD24 in regulating watermelon fruit shape, the overexpression vector, ClIQD24-pRI101, was transformed to tomato Micro-Tom. A total of seven transgenic positive plants were obtained. The expression levels of ClIQD24 in the overexpression (OX) lines greatly increased compared to the control (Figure 7A), indicating that the overexpression vector, ClIQD24-pRI101, was transformed to tomato successfully. The phenotypes of fruit length, width, and shape indices were measured and calculated at the fruit maturity using three overexpression (OX) lines (Figure 7), five fruits from each line were randomly measured. The fruit length of the overexpressed lines increased when compared to the control, but no significant differences were detected in the fruit width between the overexpression lines and control (Figures 7B,C). Our results are consistent with previous studies on other crops (Rodriguez et al., 2011; Bi et al., 2018; Wu et al., 2018), which suggests that ClIQD24 may play an important functional role in regulating watermelon fruit elongation.
[image: Figure 7]FIGURE 7 | Phenotypic characterization of 35S:ClIQD24 transgenic plants in tomato. (A) The expression level of ClIQD24 in the control and three transgenic lines. (B) Phenotype of ClIQD24 overexpression in Mic-Tom tomato. (C-D) The statistical analysis of fruit width and length (10 individuals were evaluated for each line), the unit of measurement was cm.
Analysis of miRNA targeting watermelon ClIQD24 gene
As reported earlier that the miRNAs reliant regulations have a major effect on plant growth as well as regulation. Hence, enhance our knowledge of the miRNAs related regulation of watermelon ClIQD24 gene that participates in the regulation of cell shape and growth, we identified six putative miRNAs (miR159b, miR5630a, miR5630b, miR5014b, miR5016, miR8177) targeting ClIQD24 gene (Figure 8). In-depth details of the miRNA targeted sites are presented in Supplementary Table S7.
[image: Figure 8]FIGURE 8 | The network representation of the regulatory connections among the predicted miRNAs and ClIQD24 genes. Different colors highlight the interacting miRNAs.
DISCUSSION
The importance of IQD proteins in the regulation of cell shape and growth has been elucidated in various plants (Feng et al., 2014). IQD proteins regulate cell shape and growth through CaM-dependent Ca2+ signaling in Arabidopsis (Burstenbinder et al., 2017). Additionally, the overexpression of wheat TaIQD in Arabidopsis caused cotyledons to become narrow and long and affected the spatial arrangement of late pods (Abel et al., 2013). Furthermore, the BFS encoding IQD protein was overexpressed in round fruits when compared to long cylindrical fruits during the ovary formation, thus uncovering the involvement of IQD proteins in the shape of wax gourd fruits (Cheng et al., 2021). However, its functional role in watermelon remains unknown. In our study, 35 IQD genes were identified in watermelon and named ClIQD1- ClIQD35 after a genome-wide analysis. We found that the ClIQD genes were unevenly distributed across the 11 chromosomes, which contained 64–1073 amino acids and had a molecular weight ranging from 7.3 kD to 117.1 kD. Compared to 33 AtIQDs, 28 OsIQDs, and 33 SlSUNs, we found that the number of IQD genes in watermelon was higher. Subsequently, based on the phylogenetic analysis of the IQD genes in watermelon, Arabidopsis, Oryza sativa, and tomato, the ClIQDs were classified into four distinct subfamilies (group I, group II, group III, and group IV), which was supported by the motif and gene structure analyses. Our data indicated that the ClIQD genes in different subfamilies may have different functions.
Recently, IQD genes have been documented to play vital roles in plant development, drought tolerance, and fruit shape (Knaap et al., 2014; Guo et al., 2020). For instance, the tomato IQD gene, SlSUN24, promotes seed germination through ABA signaling (Bi et al., 2018). In addition, SUN was identified to encode a member of the IQD family belonging to CaM-binding proteins that are involved in fruit elongation (Guo et al., 2020). Moreover, deletion of ClFS1 encoding IQD proteins reportedly contributed to the watermelon fruit shape (Dou et al., 2018). To further determine the exact role of IQD proteins in watermelon, we evaluated the expression of ClIQD genes during fruit development. We found that 18 ClIQD genes were mainly upregulated during fruit development, 12 ClIQD genes were mainly upregulated only at 7 DAP, and 5 ClIQD genes were mainly downregulated during fruit development. These findings suggested that ClIQD genes acted as crucial regulators of watermelon fruit development.
To comprehensively investigate the role of ClIQD genes during watermelon fruit shape development, we conducted a qRT-PCR assay to evaluate the expression patterns of 35 ClIQD genes during fruit development. No transcription was detected in the expression of the ClIQD12 gene during each period of fruit development. The expression of ClIQD3, ClIQD9, ClIQD24, and ClIQD32 was decreased gradually during fruit development. The expression of 13 ClIQD genes in Cluster A of RNA-seq was increased gradually during fruit development, and the expression of 16 ClIQD genes in Cluster B of RNA-seq was increased at first and then decreased during later fruit development stages. While the expression of the ClIQD21 gene decreased at first and then increased during fruit development. These data implied that the ClIQD genes may play prominent roles during the development of watermelon fruit shapes.
Since the ClIQD24 gene was only mostly expressed in ovaries period during fruit development, we concluded that ClIQD24 may play an important role during ovary development and morphological completion in watermelon. Therefore, we focused on elucidating the role of ClIQD24 in the development of watermelon fruit shapes. ClIQD24 is a homologous gene of the SUN, which is upregulated during flowering and fruit development, as well as affects the shape of tomato through the regulation of cellular Ca2+ signal transmission and cell extension (Clevenger et al., 2015). Herein, through the ectopic expression of ClIQD24 in tomato, we found that the overexpression of ClIQD24 increased the length of tomato, which corroborates the findings of a previous study that ClIQD24 participates in the regulation of cellular elongation (Rodriguez et al., 2011). And ClIQD24 was the potential target gene of miR159 which had been identified to regulate the development of reproductive organs (Hou et al., 2018). All the results revealed that ClIQD24 plays a vital role in the modulation of fruit elongation in watermelon.
MicroRNAs (miRNAs), that are a group of single-stranded, non-coding micro RNAs, are involved in post-transcriptional gene regulation (Cui et al., 2020). Various miRNAs have been identified via genome-wide analysis that are involved in growth and development in plants (Zhang et al., 2007; Kwak et al., 2009; Ayubov et al., 2019). The current study identified six miRNAs belonging to different families (miR159b, miR5630a, miR5630b, miR5014b, miR5016, miR8177) targeting ClIQD24 gene. Discussed miRNAs in the current study are all involved in the plant growth and development as reported earlier (Li and Zhang, 2016; Wang et al., 2017; Wang et al., 2021). These studies suggest that these identified miRNAs might play potential roles in the regulation of cell shape and growth by modifying the transcript level of the ClIQD24 gene in watermelon.
In summary, we elucidated the bioinformatics analysis of 35 IQD genes, including their structures, chromosomal locations, evolutionary divergence, and functions in watermelon. We found that the overexpression of ClIQD24 promoted the fruit elongation in tomato, uncovering the importance of ClIQD24 in the progression of watermelon fruit shape. Our findings lay a foundation for future studies on the molecular mechanism of watermelon fruit shape formation and will serve as a reference for investigations on the fruit shape of other crops.
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A meta-analysis of QTLs associated with grain protein content (GPC) was conducted in hexaploid and tetraploid wheat to identify robust and stable meta-QTLs (MQTLs). For this purpose, as many as 459 GPC-related QTLs retrieved from 48 linkage-based QTL mapping studies were projected onto the newly developed wheat consensus map. The analysis resulted in the prediction of 57 MQTLs and 7 QTL hotspots located on all wheat chromosomes (except chromosomes 1D and 4D) and the average confidence interval reduced 2.71-fold in the MQTLs and QTL hotspots compared to the initial QTLs. The physical regions occupied by the MQTLs ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb. Nineteen MQTLs and two QTL hotspots were also found to be co-localized with 45 significant SNPs identified in 16 previously published genome-wide association studies in wheat. Candidate gene (CG) investigation within some selected MQTLs led to the identification of 705 gene models which also included 96 high-confidence CGs showing significant expressions in different grain-related tissues and having probable roles in GPC regulation. These significantly expressed CGs mainly involved the genes/gene families encoding for the following proteins: aminotransferases, early nodulin 93, glutamine synthetases, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains containing proteins. Further, eight genes including GPC-B1, Glu-B1-1b, Glu-1By9, TaBiP1, GSr, TaNAC019-A, TaNAC019-D, and bZIP-TF SPA already known to be associated with GPC were also detected within some of the MQTL regions confirming the efficacy of MQTLs predicted during the current study.
Keywords: mQTLs, QTL hotspots, candidate gene, expression analysis, wheat
INTRODUCTION
The hexaploid bread wheat (Triticum aestivum L.) is the major food crop for approximately one-third of the world population with 760.93 million thousand tonnes of production from a growing area of over 219 million thousand hectares (https://www.fao.org). It constitutes the 20 percent dietary component of both calories and protein in the human diet (Peng et al., 2011; Pal et al., 2022). The tetraploid durum wheat (Triticum turgidum L. subsp. Durum Desf.) is mainly used for pasta making. The most extensively produced species is common wheat (95%) followed by durum wheat accounting for the remaining 5%. Given the ever-increasing emphasis on health among consumers, wheat breeding efforts have recently shifted their focus from enhancing production to enriching quality end products with high nutritional value (Saini et al., 2020). Wheat quality is a versatile and complex phenomenon involving various factors (Peng et al., 2022). Both protein content, as well as the quality of processed wheat products, is primarily governed by grain protein content (GPC) and protein quality (protein profile). Wheat proteins are challenging to define due to their tremendous complexity in genetic factors and diverse environmental influence with one another.
Wheat grain storage proteins are a complex mixture of various polypeptide chains that have typically been categorized based on their solubility or composition and structure (Peng et al., 2022). GPC has an important role in determining the crop’s commercial worth by altering the end-use quality and nutritional content of flour/semolina. Given that mature wheat grains typically contain 8–16% protein (Žilić et al., 2011), one of the breeders’ key goals is to find stable QTLs and superior alleles that can be successfully introgressed from high GPC lines to low GPC lines but superior in terms of agronomic traits (Kumar et al., 2018). The quantitative nature makes it a challenging task to improve GPC, as it is governed by several genes and affected by surrounding factors and crop management operations (Saini et al., 2020). With the genotypes, locations, and computational analysis, the heritability of GPC ranged from 0.41 to 0.70 (Giancaspro et al., 2019). Quality and quantity of protein have long been important considerations in wheat breeding. However, the negative association betwixt grain productivity and GPC, considerable environmental effects, and the narrow genetic base existing within the cultivated species of gene pool all complicate the increase in GPC (Iqbal et al., 2016). GPC improvement through traditional breeding procedures has mostly yielded mediocre results.
The combination of modern genetic tools such as DNA markers, genetic linkage maps, and high throughput phenomics platforms with genomic resources i.e. high quality wheat genome sequence and comparative genomics analysis with model species has speed up the genetic dissection of GPC in wheat cultivars (Saini et al., 2020; Gill et al., 2022). Several GPC-QTLs have been reported and located across all the chromosomes of both common wheat (e.g., Boehm et al., 2017; Krishnappa et al., 2017; Cook et al., 2018; Su et al., 2020; Jiang et al., 2021) and tetraploid wheat (Conti et al., 2011; Blanco et al., 2012; Marcotuli et al., 2017; Fatiukha et al., 2020; Ruan et al., 2021). However, very few reported QTLs could be successfully employed in molecular breeding programs mainly owing to the large confidence intervals (CIs), small phenotypic variation explained (PVE) by individual QTLs, and discrepancies in mapping results due to variations in the genetic backgrounds and environmental effects.
A meta-analysis of the QTLs identified in different experiments can be effective in refining the numbers and positions of the QTLs and detecting stable and consensus QTLs or meta-QTLs (MQTLs). It has been found that this is the most dynamic approach for the identification of genomic regions for a particular trait effectively by reducing the CI’s and therefore enhancing the detection of candidate genes (CGs) underlying the causative genomic regions (Goffinet and Gerber, 2000; Sosnowski et al., 2012; Shafi et al., 2022). Significant genomic regions are associated with several economically important traits such as grain yield and its attributing parameters (Saini et al., 2022c), nitrogen physiology (Sandhu N. et al., 2021b; Saini et al., 2021), tolerance to environmental stresses (Kumar et al., 2021; Pal et al., 2021), single disease resistance such as leaf rust and multiple disease resistance (Amo and Soriano, 2022.; Pal et al., 2022; Saini et al., 2022a) in wheat and other cereal crops. The MQTLs related to nutritional and quality traits have been reported in durum and bread wheat (Quraishi et al., 2017; Soriano et al., 2021; Gudi et al., 2022). The very first study conducted by Quraishi et al. (2017) discovered six and eight MQTLs associated with GPC and baking quality traits respectively, utilizing 155 original QTLs obtained from only eight linkage-based QTL mapping studies published before the year 2013. In the second study, Soriano et al. (2021) utilized 171 QTLs for meta-analysis and identified several MQTLs associated with different quality-related traits such as mineral contents, yellow pigment, and a few shared MQTLs for GPC in durum wheat. Most recently, Gudi et al. (2022) detected several shared MQTLs each associated with different quality traits using the studies published after the year 2013. Overall, all three above-mentioned studies utilized only a fraction of QTLs available for GPC either in durum or bread wheat; none of the studies considered all the available QTLs from both bread and durum wheat, simultaneously. Therefore, the present study was planned to integrate all the available QTLs associated with GPC in durum and bread wheat and to perform a meta-analysis for the identification of the most robust MQTLs associated with GPC.
In addition to the above, with the advancements in the next-generation sequencing (NGS) technology, high throughput genotyping strategies i.e. GBS, RAD sequencing, SNP array, and advancements in GWAS approaches, it becomes very easy to identify the significant genomic loci associated with quantitative traits in crop plants (Halder et al., 2019; Sidhu et al., 2020; Sandhu et al., 2021a; Sandhu et al., 2021b; Saini et al., 2022b). The integration of meta-analysis with GWAS has been utilized in several studies for the investigation of key genomic regions associated with economic traits (Bilgrami et al., 2020; Saini et al., 2022a; Saini et al., 2022b). The overall goal of this meta-analysis was to combine QTLs associated with GPC in tetraploid and hexaploid wheat with the aim of identification of consensus genomic regions and their confirmation through GWAS, which can be used in MQTL-assisted breeding, and to consolidate thorough information for developing novel wheat cultivars with high GPC. MQTL genes were discovered and functionally characterized. RNA-seq and microarray datasets were also used to find high-confidence CGs with significant expressions in relevant wheat tissues. The findings of this study may help in the identification of diagnostic markers and their utilization in marker-assisted breeding (MAB) or genomic selection (GS) in wheat to improve GPC.
MATERIALS AND METHODS
Collection of data on QTLs associated with grain protein content
The research articles pertaining to GPC in durum and bread wheat were collected from different repositories/databases including PubMed (https://www.pubmed.ncbi.nlm.nih.gov), Google Scholar (https://scholar.google.com/). The information on (i) markers flanking the individual QTLs (ii) peak positions and confidence intervals (CI’s) of the individual QTLs (iii) kind and size of the segregating population used in the individual studies (iv) LOD score and phenotypic variation explained (PVE) or R2 values were collected for each QTLs linked with GPC. Whenever the peak position of the QTLs was not given, the mid-values of the two flanking markers were used to estimate the peak positions. When there was no information on LOD scores, the threshold LOD of 3.0 was used and unique identities were assigned to individual QTLs for analysis.
The mapping studies utilized 49 different mapping populations (including 37 RILs, 11 DH, and one NIL population) with the size ranging from 82 to 306 (Supplementary Table S1). The size of 37 RIL populations ranged from 93 to 302, the size of 11 DH populations ranged from 95 to 414 and the size of the NIL population was 120. SSR and SNP markers were mostly utilized for mapping in these linkage-based mapping studies in wheat. As many as 459 GPC-QTLs were available from these 48 studies. Of these 459 QTLs, 133 and 326 QTLs belonged to durum and hexaploid wheat, respectively (Figure 1A).
[image: Figure 1]FIGURE 1 | Salient features of GPC-QTLs considered during the present study. (A) Species-wise distribution of QTLs, (B) chromosome-wise distribution of QTLs, (C) Confidence intervals (D) LOD scores, and (E) PVE values of the QTLs.
Construction of consensus linkage map
During present study, the markers information from previously published high-quality linkage maps used for QTL mapping in durum and common wheat for grain protein content was utilized for the development of a consensus genetic map these high-quality linkage maps are as follows- (i) the ‘Wheat, Consensus SSR, 2004’ with 1,258 marker loci (Somers et al., 2004), (ii) the ‘ITMI_SSR map’ involving 1,398 marker loci (Röder et al., 1998; Somers et al., 2004), (iii) an integrated map of durum wheat composed of 30,144 markers (Marone et al., 2013) (iv) the “Illumina iSelect 90 K SNP Array”-based genetic map with 40,267 loci (Wang et al., 2014) (v) the “AxiomR, Wheat 660 K SNP array”-based genetic map with 119,566 markers (Cui et al., 2017). The information on markers from individual investigations was used for consensus map development. The LPMerge R package was used for the development of a consensus linkage map (Endelman and Plomion, 2014). LPmerge utilizes linear programming to reduce the mean absolute error between the linkage maps and consensus maps as effectively as possible. This minimization is done under the constraints of linear inequality, which ensures that the order of the markers in the linkage maps is maintained. When linkage maps have incompatible marker orders, a minimum set of ordinal constraints is removed to resolve the problems.
QTL projection and meta-QTL analysis
Two different files i.e., QTL file and map file were prepared from the individual QTL mapping studies. The QTL file contains the following informations: name of the QTLs, chromosomes number, linkage group, LOD scores, PVE value of individual QTLs, genetic positions of the markers flanking the QTLs, and peak positions of QTLs. Whereas, the map files mainly included the following information-population type, size, mapping function considered for mapping, chromosome-wise markers, and their respective genetic positions. These QTL files and map files were uploaded to the BioMercator V4.2 software (Sosnowski et al., 2012) and QTL projection was performed following the guidelines given in the manual (https://www.ebi.ac.uk/eccb/2014/eccb14.loria.fr/programme/id_track/ID10-summary.pdf). In the QTLs for which CI information was not available, the CI (95%) was computed from the following empirical formulas for different types of mapping populations:
CI (95%) = 530/N x R2 for backcross and F2 populations (Visscher and Goddard., 2004)
CI (95%) = 287/N x R2 for doubled haploid lines (Liu et al., 2009)
CI (95%) = 163/N x R2 for RIL lines (Guo et al., 2006)
Where N denotes the number of individuals of the concerned mapping populations utilized for mapping and R2 is the percentage of phenotypic variation explained (PVE) by an individual QTL. Values 530, 287, and 163 are the constants derived from simulations considering some parameters such as the proportion of recombination per cM, size of the mapping population, etc. (Visscher and Goddard, 2004; Weller and Soller, 2004; Guo et al., 2006).
The meta-QTL analysis was performed via the Veyrieras two-step algorithm available from the software BioMercator V4.2 for individual chromosomes. The optimal QTL model was chosen in the first step when the lowest criterion values were obtained in at least three of the five selection models [Akaike Information Criterion (AIC), Corrected AIC, AIC model-3, Bayesian Information Criterion, and Average Weight of Evidence Criterion]. In the second step, a model was used to determine the number of MQTLs on each chromosome. Finally, the consensus locations and 95% CI of the MQTLs were calculated using the variances of initial QTL positions and their intervals, respectively (Sosnowski et al., 2012).
Determination of the physical position of the meta-QTLs
The nucleotide sequences of the MQTLs flanking markers were used for the determination of individual MQTLs physical coordinates. The flanking markers nucleotide sequences were retrieved from either of the following databases-(i) database for Triticeae and Avena (GrainGenes; https://wheat.pw.usda.gov/) for the markers such as SSR and ISSR (ii) JBrowse WHEAT UGRI (https://urgi.versailles.inra.fr/jbrowseiwgsc/) and CerealsDB for the SNP markers (https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php). These sequences were BLASTed against wheat reference genome “Chinese Spring (RefSeq v1.0)” accessible at the EnsemblPlants database (https://plants.ensembl.org/index.html) to ascertain the physical positions of the markers flanking the MQTLs.
Checking the efficacy of meta-QTLs with genome wide association study
The physical positions of significant SNPs/marker-trait associations (MTAs) related to GPC identified through 15 GWAS studies published during 2017–2022 were compared with the MQTLs genomic coordinates reported in the present study. The overlapping of MQTLs with at least one significant SNP/MTA was considered as GWAS verified MQTLs.
The 15 GWA studies involved different association panels of wheat such as spring wheat, winter wheat (hard and soft), and durum/emmer wheat. The statistic regarding the type of wheat, population size, and SNPs with GPC in wheat from different GWA studies are given in (Supplementary Table S5).
Candidate genes and their expression analysis
The MQTLs comprising at least three initial QTLs were considered promising MQTLs which were further analyzed for candidate genes (CGs) identification. MQTLs with less than 2 Mb physical intervals were straightway examined for accessibility of gene models; whereas for the MQTLs with more than 2 Mb physical intervals, the first peak physical positions of MQTLs were estimated as per the formula used by Saini et al. (2022c) then, 2 Mb regions around the MQTL peaks were utilized for the detection of gene models. Information on genes available from each MQTL was retrieved using the BioMart tool available in the EnsemblPlants database.
Gene models detected as above were further subjected to in silico expression analysis using the ‘Wheat Expression Browser-expVIP’ (Expression Visualization and Integration Platform) (http://www.wheat-expression.com) (Ramírez-González et al., 2018). Relevant datasets (Gillies et al., 2012; Li et al., 2013; Pfeifer et al., 2014; Pearce et al., 2015; Clavijo et al., 2017) including expression datasets related to grains and related tissues were utilized for this purpose. Further, considering the importance of flag leaf senescence in regulating the protein contents in grains, datasets including expression data on genes showing expression during a time course of flag leaf senescence (Cantu et al., 2011; Borrill et al., 2019) were also utilized for the expression analysis. Gene models with more than 2 transcripts per million (TPM) expressions in relevant wheat tissues were considered in the current study. Further, heat maps were constructed by using the software “Morpheus” (https://software.broadinstitute.org/morpheus/) to exhibit the patterns of expressions of different genes in different tissues.
Over and above that, the nucleotide sequences of earlier associated known genes with GPC were subjected to BLAST analysis against the IWGSC RefSeq v1.0 accessible at the EnsemblePlants database. The physical coordinates of known genes were retrieved and compared with the genomic positions of MQTL regions to discover their co-localization.
RESULTS
QTLs associated with grain protein content
Forty-eight (48) linkage-based mapping studies (involving 11 studies on tetraploid wheat and 37 on hexaploid wheat) pertaining to GPC-QTLs were reviewed and considered for the present study (Supplementary Table S1). The number of mapping studies, type of mapping population, and population size are described above. The chromosome-wise analysis revealed that the QTLs distribution across all the three sub-genomes was not uniform (Figure 1B). Sub-genomes A (180 QTLs) and B (182 QTLs) carried almost same number of QTLs associated with GPC, whereas, sub-genome D carried a small fraction of QTLs (only 97 QTLs). As many as 164 QTLs had a CI of less than 5 cM, whereas, the remaining QTLs had a CI of more than 5 cM with 88 QTLs possessing a CI of more than 20 cM (Figure 1C). LOD score of individual QTLs varied from ≤ 3.0 to a maximum of 31.8 with 23 QTLs having LOD scores of >10 (Figure 1D). As many as 306 QTLs contributed less than 10% variation to total phenotypic variation. There were 35 QTLs that had a PVE value of >20% (Figure 1E).
Consensus genetic map of wheat
The wheat consensus map constructed during the present study depicted significant variation for individual chromosomes with respect to genetic length (Supplementary Table S2). The consensus map covered a distance of 9,882.15 cM (chromosomal length ranging from 294.84 cM for 4D to 743.48 for 5A with an average of 470.58 cM) which accommodated 137,845 molecular markers mainly including SNPs, SSR, and other markers such as DArT, RFLP, ISSR, and AFLP. The sub-genomes A, B and D covered 4011.64, 2979.21 and 2891.3 cM genetic distances, respectively. The number of markers mapped on individual chromosomes varied from 361 markers on 4D to 18,944 markers on 3B. The sub-genome B possessed a maximum number of markers (62,780 markers) followed by subgenome A with 59,963 and subgenome D with 15,102 markers (Figure 2). The marker densities also differed among the three sub-genomes with sub-genome B showing a maximum density of 21.07 markers/cM and sub-genome D exhibiting a minimum density of 5.22 markers/cM.
[image: Figure 2]FIGURE 2 | Marker density on consensus genetic map used for meta-QTL analysis in the current study. The number of loci mapped on individual chromosome.
QTLs projected on the consensus map and meta-QTLs predicted for grain protein content
From the 459 QTLs retrieved from 48 mapping studies, 304 QTLs could be projected onto the consensus genetic map. Due to some of the obvious reasons mentioned previously, the remaining 155 QTLs were unable to be projected onto the consensus map (Pal et al., 2022; Gudi et al., 2022). After QTL projection, a meta-analysis was performed which resulted in the identification of 65 potential genomic regions [including 57 MQTLs (each involving at least 2 QTLs derived from different studies) and 7 QTL hotspots (each involving multiple QTLs derived from a single study)] associated with GPC (Figures 3, 4A) based on 233 initial QTLs leaving 45 initial QTLs as singletons (single QTLs) and 26 QTLs with peaks outside the supporting intervals of identified potential genomic regions. Out of 57 MQTLs, a total of 24 MQTLs were predicted on sub-genome A, the maximum number of MQTLs was found on chromosome 7A, where there were seven MQTLs, followed by chromosome 5A which contained 4 MQTLs. In contrast, chromosomes 1A, 2A, 3A, and 4A each contained three MQTLs, and chromosome 6A had just one MQTL (Supplementary Table S3, Figure 4B).
[image: Figure 3]FIGURE 3 | Distribution of MQTLs and QTL hotspots on different wheat chromosomes. GWAS-validated MQTL and QTL hotspots are shown with red boxes.
[image: Figure 4]FIGURE 4 | Key characteristics of MQTLs and QTL hotspots. (A) Proportion of MQTLs and QTL hotspots associated with GPC, (B) chromosome-wise distribution of MQTLs, (C) Number of QTLs involved in MQTLs and QTL hotspots, (D) LOD scores of the individual MQTLs, (E) PVE values of the MQTLs, (F) Fold reduction in CI of QTLs after meta-analysis.
There were 25 MQTLs available on sub-genome B, making it the sub-genome with the maximum number of MQTLs. Chromosome 2B was found to have the maximum number of 5 MQTLs. This was followed by chromosomes 1B and 4B each with 4 MQTLs, and chromosomes 3B, 5B, 6B, and 7B each with 3 MQTLs. On sub-genome D, a total of 9 MQTLs were predicted; chromosome 2D had the most, three MQTLs, followed by two MQTLs on each of chromosomes 3D, and 6D, but only one MQTL on each of chromosomes 5D and 7D, whereas, no MQTL was detected on chromosomes 1D and 4D. The number of QTLs per MQTL varied from 2 in 28 MQTLs to ≥5 QTLs in the 16 MQTLs including MQTL7A.2 involving 10 QTLs and MQTL3A.2 involving 13 QTLs (Figure 4C). Among the 7 QTL hotspots, 4 QTL hotspots were mapped on chromosome 5D and one each on chromosomes 2A, 4A, and 4B.
The average LOD score of the identified MQTLs varied from 2.80 (MQTL7D.1) to 18.40 (MQTL6B.2) (Supplementary Table S3, Figure 4D). The average PVE for MQTLs ranged from 3.80 (MQTL3B.3) to 21.34% (MQTL7D.1) (Figure 4E). The 57 MQTL and 7 QTL hotspots chromosome wise physical position, LOD score and PVE and CI are given (Tables 1, 2). Of the identified 57 MQTLs, nine MQTLs (viz., MQTL2B.1, MQTL2D.1, MQTL3A.2, MQTL3B.1, MQTL4A.1, MQTL4A.4, MQTL6A.1, MQTL7B.2, and MQTL7D.1) had more than 15% of PVE. Whereas the average PVE for QTL hotspots ranged from 6.60 to 24.78% and the number of QTLs involved in each hotspot ranged from 2 to 4 (Supplementary Table S4). With an average of 4.6 cM, the CI ranged from 0.3 to 17.71 cM for the reported MQTLs and QTL hotspots (Figure 4F). The CI reduction among the different wheat chromosomes varied significantly, with the average CI of MQTLs and QTL hotspots being 2.71 times less than that of original QTLs. The mean CI of MQTLs present on 4A reduced by 8.31 times followed by 5.23 and 5.15 times of MQTLs located on 3B and 5A, while, a slight reduction in CI was observed for MQTLs present on 3A (0.93 times) and 7D (0.77 times). The physical regions covered by MQTLs ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb (Supplementary Table S3).
TABLE 1 | MQTLs associated with GPC in wheat identified in the present study.
[image: Table 1]TABLE 2 | QTL hotspots associated with GPC in wheat identified in the present study.
[image: Table 2]Verification of meta-QTLs with genome wide association study
The genomic positions of the MQTLs and QTL hotspots were compared with the genomic locations of marker-trait associations (MTAs) or significant SNPs identified in 15 earlier GWA studies (Supplementary Table S5) which utilized the association panels of hexaploid wheat (spring and winter type) and tetraploid wheat (durum and wild emmer type). This comparison enabled the identification of 19 MQTLs and 2 QTL hotspots which co-localized with 41 MTAs/SNPs identified in these previous studies (Supplementary Table S6, Figure 3). The number of MTAs/SNPs co-localized with an individual MQTL also differed. Of the 19 MQTLs, MQTL1B.4 co-localized with a maximum of 7 MTAs/SNPs identified in 5 GWA studies (Rapp et al., 2018; Muhu-Din Ahmed et al., 2020; Jiang et al., 2021; Lou et al., 2021; Leonova et al., 2022), followed by MQTL2B.1 co-localized with 6 MTAs/SNPs detected in 4 GWA studies (Liu et al., 2018; Chen J. et al, 2019; Liu et al., 2019; Rathan et al., 2022) and MQTL4A.1 co-localized with 4 MTAs/SNPs identified in one GWA study (Liu et al., 2018). Three MQTLs viz., MQTL3D.1, MQTL5B.3 and MQTL7B.2 coincided with three MTAs/SNPs identified in different GWA studies.
Candidate gene and expression analysis associated with identified meta-QTLs
A total of 32 promising MQTLs based on at least three original QTLs from different studies were chosen and investigated further for the identification of available gene models. This investigation enabled the identification of 705 gene models, with a maximum of 70 gene models available from MQTL2D.2 and a minimum of only one available from MQTL1A.2, MQTL1B.3, and MQTL7A.2 each (Supplementary Table S7). The expression analysis of 705 genes resulted in the detection of 285 significantly expressed genes with more than 2 TPM expressions in relevant wheat tissues such as leaves, spikes, and grains (Supplementary Table S7). Ninety-six promising candidate genes (CGs) believed to be associated with GPC in wheat were selected (Supplementary Table S7, Figure 5) from the significantly expressed genes which encode different types of proteins such as aminotransferases, early nodulin 93, glutamine synthetases, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, Sec31, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, protein kinases, glycoside hydrolases, and EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, zinc finger, basic-leucine zipper, and homeobox domains containing proteins.
[image: Figure 5]FIGURE 5 | Expression patterns of selected high-confidence candidate genes in different wheat tissues.
Further, a comparison of known genes for GPC with genomic regions identified through meta-analysis may also assist the efforts being made to unravel the molecular mechanisms regulating GPC in wheat. Therefore, the association of known GPC genes with MQTLs and QTL hotspots was also investigated during the present study. Five such MQTLs (viz., MQTL1B.4, MQTL3A.3, MQTL3D.1, MQTL6B.3, and MQTL6D.2) and 2 QTL hotspots (QTLhotspot_4B and QTLhotspot_5D.4) were found to be associated with eight genes known to regulate GPC in wheat (Supplementary Table S8). These genes include the following- Glu-B1-1b (encoding for HMW glutenin subunit), Glu-1By9 (HMW glutenin subunit), TaNAC019-A (endosperm-specific transcription factor), TaNAC019-D (endosperm-specific transcription factor), GSr (glutamine synthetase), bZIP transcription factor SPA (Basic leucine zipper TF), GPC-B1 (NAC transcription factor), and TaBiP1 (endoplasmic reticulum chaperone binding protein).
DISCUSSION
GPC is an essential trait that affects end-use quality and the economic worth of common and durum wheat (Kumar et al., 2018). Improvement in GPC content is the utmost breeding objective in wheat as chapatti making, bread making, and pasta preparation largely depend upon the GPC in both bread wheat and durum wheat. Conventional breeding techniques have been used to improve the GPC, but the expected rate of improvement has not been reached because of the strong environmental influence, the lack of a positive relationship betwixt grain yield and GPC, and the quantitative nature of the trait and low heritability (Balyan et al., 2013). With the introduction of molecular markers and next-generation sequencing, as well as other biotechnological interventions, multiple genomic regions (genes/QTLs) linked to GPC have been discovered in wheat using several mapping populations (Prasad et al., 2003; Zhao et al., 2010; Wang et al., 2012; Kumar et al., 2018; Ruan et al., 2021). Furthermore, it has been noted in several studies that QTLs found in one population may not be useful for improving traits in a different mapping population.
Meta-analysis is a novel and powerful tool which can help in integrating QTL information generated in multiple studies involving different types of populations and enable the identification of reliable and stable MQTLs linked with the target traits (Quraishi et al., 2017). Meta-analyses for different traits have been reported in major food crops such as rice, wheat, maize, etc., (Quraishi et al., 2017; Hu et al., 2021; Prakash et al., 2022). In wheat, meta-analyses have been performed for several traits which include yield and yield-associated parameters (Saini et al., 2022c), quality traits (Quraishi et al., 2011; Shariatipour et al., 2021; Soriano et al., 2021; Singh et al., 2022; Gudi et al., 2022); disease resistance (Liu et al., 2009; Soriano and Royo, 2015; Venske et al., 2019; Liu et al., 2020; Jan et al., 2021; Saini et al., 2022a) and abiotic stress tolerance (Kumar et al., 2021; Pal et al., 2021; Soriano et al., 2021). Previously, meta-analyses of QTLs linked with quality attributes in wheat were also undertaken (Quraishi et al., 2017; Soriano et al., 2021; Gudi et al., 2022).
Quraishi et al. (2017) found six MQTLs for GPC and eight MQTLs for baking quality utilizing only 155 QTLs in hexaploid wheat for the first time. Recently in 2021, Soriano et al. utilized 171 QTLs associated with different quality traits (viz., arabinoxylan, β-glucan, flour yellow color, grain mineral contents, GPC, SDS-sedimentation volume, and yellow pigment content) and identified 17 shared MQTLs (including QTLs for different quality traits, biotic and abiotic stress parameters) in durum wheat (Soriano et al., 2021). Most recently in 2022, Gudi et al. utilized QTLs reported after the year 2013 and identified several shared MQTLs for GPC (co-localized with different processing quality traits, dough rheology attributes, and nutritional traits). These earlier studies primarily involved the prediction of MQTLs for different traits taken together for different quality traits, biotic and abiotic stress parameters, and no effort was made to identify MQTLs for GPC utilizing all the available QTLs from both bread and durum wheat, thus reducing their utility in wheat breeding.
In contrast, the present study includes the projection of 304 QTLs out of 459 QTLs collected from literature published to date for GPC. The proportion of GPC QTLs projected on the consensus map in the current study is much greater than in earlier studies (Quraishi et al., 2017; Soriano et al., 2021; Gudi et al., 2022), which could be attributed to the presence of many QTLs and the use of a highly dense consensus map in the current study. In the present study, 57 MQTLs and 7 QTL hotspots associated with GPC were identified which were distributed across the three sub-genomes. The detection of 57 MQTLs and 7 QTL hotspots from 304 QTLs resulted in a 4.68-fold (304/65) reduction in the number of QTLs or genomic regions linked with GPC in wheat. Physical positions of four MQTLs (MQTL1B.4, MQTL4B.3, MQTL7B.2, and MQTL7B.3) predicted during the current study were reported to be overlapped with four MQTLs (durumMQTL1B.3, durumMQTL4B.4, durumMQTL7B.1, and durumMQTL7B.9) earlier identified to be associated with GPC in durum wheat (Soriano et al., 2021).
From a breeding viewpoint, it is important to determine the most reliable and robust MQTLs each based on numerous initial QTLs found in the various populations and environments. In the current study, 16 MQTLs each based on more than 5 original QTLs were observed. There were up to 13 initial QTLs associated with GPC in one MQTL on chromosome 3A (MQTL3A.2), which is significantly more than what was reported in earlier meta-analyses (Quraishi et al., 2017; Soriano et al., 2021; Gudi et al., 2022). The present study compiled extensive data on QTLs from different mapping populations. It effectively reduced the QTLs' CIs, enhancing the reliability of CG detection from potential MQTL regions. The mean CIs of MQTLs were 2.71 times lower than the CIs of the original QTLs included in the meta-analysis. As many as 15 MQTLs had CIs of less than 2 cM.
Validating meta-QTLs/QTL hotspots with genome wide association study
GWAS is an efficient approach for the dissection of complex traits by utilizing natural genetic diversity (Korte and Farlow, 2013). It is based on the principle of linkage disequilibrium which provides high-resolution power and allows the identification of significant MTAs or SNPs by utilizing high throughput genotyping and precise phenotypic data (Gupta et al., 2005). Meta-QTL analysis and GWAS both have their advantages and limitations that can complement each other. There were significant overlaps between the MQTLs predicted in this study and the MTAs identified by GWAS for GPC in wheat. Out of the 57 predicted MQTLs and 7 QTL hotspots, 19 MQTLs and 2 QTL hotspots overlapped with MTAs identified for GPC in recent GWA studies in wheat. In some of the earlier studies of meta-analysis, MQTLs for other traits of economic importance have also been validated using this method (Aduragbemi and Soriano, 2021; Gudi et al., 2022; Saini et al., 2021; Pal et al., 2022; Yang et al., 2021). In these earlier studies, only 38.66, 47.22, 78.57, 58.33, 69.23, and 61.37% of the physically anchored MQTLs were confirmed using GWAS data.
The number of MQTLs found in the current study that was confirmed by GWAS is within the range of MQTLs found in earlier studies. The varying proportions of MQTLs validated by GWAS-based MTAs/SNPs in different studies may be due to either of the following reasons: (i) the genetic material utilized in interval mapping (eventually in meta-analysis) and GWAS was completely different, (ii) neither method fully accounted for the genetic variations present in the gene pool for the target trait(s), (ii) GWAS is intended to detect MTAs with a minor allele frequency of more than 5%; nevertheless, linkage-based mapping studies can uncover rare alleles with more severe phenotypic effects, (iv) there were varying number of GWAS-MTAs available for analysis, (v) accuracy of physical positions of MQTLs to be compared with MTAs.
MQTL-assisted breeding for grain protein content improvement in wheat
Individual MQTL LOD scores varied from 2.80 to 18.40, with a mean of 5.15, whereas PVE values ranged from 3.80 to 21.34 percent, with a mean of 10.14 percent. Based on the above findings, the MQTLs were further filtered to identify some of the promising MQTLs for breeding, which we termed breeders' MQTLs, based on the following criteria: (a) CI less than 2.5 cM, (ii) PVE more than 10%, (iii) LOD more than 3.5, and (iv) dependency on at least three original QTLs from multiple studies; this effort enabled the detection of six breeder’s MQTLs (viz., MQTL2B.1, MQTL2D.1, MQTL3B.2, MQTL4A.1, MQTL4B.3, and MQTL5A.2) each located on different chromosomes 2B, 2D, 3B, 4A, 4B, and 5A (Supplementary Table S9). Three of these MQTLs (viz., MQTL2B.1, MQTL3B.2, MQTL4A.1) were also validated by GWA studies. The selected breeder’s MQTLs could be effectively utilized in MQTL-assisted breeding for the genetic enhancement of GPC in wheat. Two other MQTLs (viz., MQTL3A.2 and MQTL3B.1) located on chromosomes 3A and 3B, respectively, explained more than 15% of the phenotypic variations but had large CIs (8.56 and 5.26 cM, respectively) making them unsuitable for breeding programs. Although, these MQTLs could be considered for fine mapping and cloning in future studies.
Candidate genes associated with grain protein content
In the present study, a total of 705 gene models available from 32 promising MQTL regions were detected. Out of these 705 gene models, as many as 285 gene models (available from 30 MQTLs) showed significant expressions in different wheat tissues. The MQTL2D.2 had the maximum number of 35 significantly expressed genes, whereas, MQTL1B.3, MQTL7A.2 had no significantly expressed gene. Among the 285 significantly expressed genes, 96 high-confidence CGs were selected based on their probable roles in the regulation of GPC in wheat (Table 3). These genes encode for different proteins such as follows-aminotransferases, early nodulin 93, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and EamA, CBS, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains containing proteins. In an earlier study, Quraishi et al. (2017) identified three genes Triticin, Gliadin, Tri-ribulose-1,5-bisphosphate carboxylase/Viviparous as the candidates for three MQTLs located on chromosomes 1A, 2A, and 3A. Most recently in the year 2022, Gudi et al. identified 44 CGs for different quality traits in wheat. The majority of these genes were linked to proteins that bind metal ions, Zn-transporters, small hydrophilic seed proteins, amino acid transporters, sweet-sugar transporters, UDP-glucuronosyl/UDP-glucosyltransferases, sugar/inositol transporters, and other proteins (Gudi et al., 2022).
TABLE 3 | High-confidence candidate genes associated with GPC in wheat.
[image: Table 3]The association of these high-confidence CGs with GPC may be discussed as follows- (i) Protein accumulation during the grain-filling stage is aided by the remobilization of amino acids from vegetative tissues, a procedure that is predicted to involve both amino acid importers and exporters. In a recent study in wheat, the UMAMIT family of transporters was characterized, with the majority of them carrying EamA domains. Gene TaUMAMIT17 exhibited significant amino acid export activity and played a key role in the enhancement of GPC (Fang et al., 2022). (ii) In a more recent study, semi-dominant alleles for a class III homeodomain-leucine zipper TF, HOMEOBOX DOMAIN-2 (HB-2) were identified which generate more flower-bearing spikelets and significantly improve GPC. (iii) Aminotransferases are known to enhance root absorption of a range of amino acids and to affect GPC positively (Peng et al., 2014). (iv) The endoplasmic reticulum produces the seed storage proteins glutelin and beta-globulin, which are then put into protein storage vacuoles. Small GTPase Sar1, which transports secretory proteins from the endoplasmic reticulum to the Golgi apparatus, is known to act as a molecular switch to regulate the assembly of coat protein complex II (Tian et al., 2013). (v) CBS domain-containing proteins are believed to have regulatory functions; therefore, such proteins may be functional in improving GPC in wheat grains (Leonova et al., 2022). (vi) Secretory24 (Sec24) and Sec31 (Sec31) promote anterograde transport of newly generated proteins from the endoplasmic reticulum to distinct compartments in the plant endometrium through shell protein complex II (Lv et al., 2021). (vii) Glutamine synthetases are known to play key roles in plant nitrogen assimilation and ammonium detoxification thereby regulating GPC in durum wheat (Nigro et al., 2016). (viii) Several members of the basic leucine zipper (bZIP) family have been identified to play a key role in the regulation of wheat grain storage protein synthesis (Li et al., 2020; Pfeifer et al., 2014). (ix) ENOD93 encodes early nodulin 93 proteins which are known to regulate nitrogen use efficiency in different crops including rice and wheat (Kant et al., 2010; Saini et al., 2021), thereby believed to play key roles in the regulation of GPC in wheat grains. Some of the key CGs discovered in this study may be validated or functionally characterized utilizing various methods such as over-expression, genome editing, knockout techniques, etc.
Comparing genomic regions identified through meta-analysis to known GPC genes can assist researchers in better comprehending the genetic architecture underpinning GPC. As a result, during the current study, a connection of MQTLs with known GPC genes was also explored. This study detected the co-localization of eight functionally known GPC genes with different MQTL regions, including Glu-B1-1b (Ravel et al., 2006), Glu-1By9 (Chen J. et al., 2019), GPC-B1 (Uauy et al., 2006), TaBiP1 (Zhu et al., 2014), GSr (Bernard et al., 2008), TaNAC019-A (Gao et al., 2021), TaNAC019-D (Gao et al., 2021), and bZIP-TF SPA (Boudet et al., 2019). MQTL1B.4 contained the Glu-B1-1b and Glu-1By9 genes, which are precursors of high-molecular-weight glutenin subunits, which produce glutenin when combined with low-molecular-weight subunits. Gluten proteins, which account for over 80% of total GPC, are produced by roughly the same amount of glutenins and gliadin (Ravel et al., 2006; Chen Q. et al., 2019). MQTL6B.3 contained the major gene GPC-B1 which encodes a NAC TF that causes 10–15% increase in GPC in wheat (Uauy et al., 2006). TaBiP1, co-localized with MQTL6D.2, encodes an important functional protein i.e., endoplasmic reticulum chaperone binding protein which is involved in the bio-synthesis of subunit types of high molecular weight-glutenin subunit (Zhu et al., 2014). GSr, which is co-localized with QTLhotspot_4B, encodes glutamine synthetase, which is important in absorbing ammonia at the key stages of nitrogen remobilization to the grain, hence regulating the GPC in wheat grains (Bernard et al., 2008). TaNAC019-A and TaNAC019-D, available from MQTL3A.3 and MQTL3D.1, respectively, encode NAC TFs that regulate starch and glutenin accumulation and its elite allele increases grain quality in wheat (Gao et al., 2021). bZIP transcription factor SPA, co-localizing with QTLhotspot_5D.4, is known to repress glutenin synthesis in common wheat (Boudet et al., 2019).
CONCLUSION
The current work is the first thorough meta-analysis of GPC QTLs in common and durum wheat. The meta-analysis identified 57 MQTLs and 7 QTL hotspots associated with GPC, of which 19 MQTLs and 2 QTL hotspots were also validated with GWA studies. Within these MQTL regions, 705 gene models were detected; of these genes, 285 genes displayed significant expression across different wheat tissues analyzed; and 96 high-confidence genes were chosen based on functional annotation, expression analysis, and literature survey and proposed for future basic studies. Additionally, data on the markers flanking the MQTLs can be included in genomic selection models to increase the precision of GPC predictions in wheat. Wheat breeders may make greater use of selected breeder’s MQTLs (viz., MQTL2B.1, MQTL2D.1, MQTL3B.2, MQTL4A.1, MQTL4B.3, and MQTL5A.2) and CGs uncovered in this study for genetic improvement of GPC in wheat.
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Cyclophilins (CYPs) are a group of highly conserved proteins involved in host-pathogen interactions in diverse plant species. However, the role of CYPs during disease resistance in wheat remains largely elusive. In the present study, the systematic genome-wide survey revealed a set of 81 TaCYP genes from three subfamilies (GI, GII, and GIII) distributed on all 21 wheat chromosomes. The gene structures of TaCYP members were found to be highly variable, with 1–14 exons/introns and 15 conserved motifs. A network of miRNA targets with TaCYPs demonstrated that TaCYPs were targeted by multiple miRNAs and vice versa. Expression profiling was done in leaf rust susceptible Chinese spring (CS) and the CS-Ae. Umbellulata derived resistant IL “Transfer (TR). Three homoeologous TaCYP genes (TaCYP24, TaCYP31, and TaCYP36) showed high expression and three homoeologous TaCYP genes (TaCYP44, TaCYP49, and TaCYP54) showed low expression in TR relative to Chinese Spring. Most of the other TaCYPs showed comparable expression changes (down- or upregulation) in both contrasting TR and CS. Expression of 16 TaCYPs showed significant association (p < 0.05) with superoxide radical and hydrogen peroxide abundance, suggesting the role of TaCYPs in downstream signaling processes during wheat-leaf rust interaction. The differentially expressing TaCYPs may be potential targets for future validation using transgenic (overexpression, RNAi or CRISPR-CAS) approaches and for the development of leaf rust-resistant wheat genotypes.
Keywords: bread wheat, genome-wide identification, cyclophilin, leaf rust resistance, reactive oxygen species
1 INTRODUCTION
Bread wheat (Triticum aestivum L.) is considered as one of the most important cereal crops in the world. Various biotic and abiotic stresses severely hamper the production and productivity of the wheat crop. Among the biotic stresses, rusts constitute the most critical biotic stress. Out of three rusts affecting the wheat crop, leaf rust caused by Puccinia triticina L. is the most prevalent in almost all wheat-growing regions. Approximately 50% yield reduction has been reported when conditions are favourable for leaf rust infection (Huerta-Espino et al., 2011). The loss caused by leaf rust can be prevented by deploying resistant wheat cultivars possessing leaf rust resistance genes (Qiu et al., 2020). To date, ∼82 genes have been designated for leaf rust resistance in wheat (Mcintosh et al., 2014, 2017; Qiu et al., 2020; Kirti et al., 2020; Bariana et al., 2022), of which seven Lr genes have also been cloned, including seedling resistance (SR) genes such as Lr1 (Cloutier et al., 2007), Lr10 (Feuillet et al., 2003), Lr21 (Huang et al., 2003), Lr22a (Thind et al., 2017) and Lr42 (Lin et al., 2022) and adult plant resistance genes (APRs) such as Lr34 (Krattinger et al., 2019) and Lr67 (Moore et al., 2015). Cyclophilins (CYPs) are a group of highly conserved proteins crucial in pathogenesis (A. Singh et al., 2017). The CYPs, along with FKBPs (FK506-binding proteins) (Harding et al., 1989) and the parvulins family (Gething, 1997) proteins, are members of the immunophilins group that have peptidylprolyl cis-trans activity (PPIase). In plants, the differential gene expression of CYPs has been observed in response to biotic stresses such as viral and fungal infection (Pandian et al., 2020; Olejnik et al., 2021) and abiotic stresses like drought, salinity, and temperature (Sharma and Taganna, 2020; Godoy et al., 2000; Marivet et al., 1992; Romano et al., 2004). Additionally, hormones such as salicylic acid (Marivet et al., 1992), jasmonic acid, methyl jasmonate (Wasternack and Strnad, 2016; Yan et al., 2016), abscisic acid (Godoy et al., 2000), and auxin (Bari & Jones, 2009), which are also known to be involved in signaling pathways during plant–pathogen interactions, have been reported to be involved in the regulation of CYP genes. For instance, in soybean, the expression of the CYP gene CYP82A3 was found to be regulated by MeJA, which was also induced by different fungal infections (Yan et al., 2016).
Furthermore, the role of CYP gene family is well known in signaling pathways during plant–pathogen interactions, including M. oryzae (Wilson and Talbot, 2009), Phytophthora (Gan et al., 2009), and Leptosphaeria maculans (K. Singh et al., 2014), and during the Arabidopsis-P. syringeae interaction (Coaker et al., 2005). In Arabidopsis, the CYP gene was activates the bacterial effector AvrRpt2, leading to RPS2-mediated disease resistance against Pseudomonas syringae (Coaker et al., 2005).
The availability of complete genome sequencing data in public databases has paved the way for systematically identifying and annotating ∼16,000 CYP gene sequences in plant species (Gan et al., 2009; Pemberton & Kay, 2005; H. Singh et al., 2019; K. Singh et al., 2014). The CYP gene family has been characterized in Arabidopsis thaliana, Oryza sativa, Glycine max, Zea mays, Solanum lycopersicum, and Gossypium hirsutum (Gasser et al., 1990; Romano et al., 2004; Ahn et al., 2010; Mainali et al., 2014; Chen et al., 2019; Wang et al., 2020). In addition, several CYP genes involved in resistance against different biotic stresses have been reported in plants, including 1) Nicotiana benthamiana: overexpression of GmCYP82A3 provides resistance to the black shank (Phytophthora parasite) and gray mold (Botrytis cinerea), 2) Capsicum annum: CaCYP1 showed involvement in the hypersensitive response (HR) once plants were infected with Xanthomonas axonoposis, and 3) Arabidopsis: AtCYP76C2 associated with hypersensitive cell death during infection with Pseudomonas syringae. Additionally, in wheat, a CYP member encoding for CYP709C3v2 was found to be upregulated in the resistant genotype during Fusarium head blight infection caused by Fusarium graminearum, thereby indicating the role of CYP gene members during biotic stress tolerance in wheat.
The present work was planned to identify and characterize the CYP gene family in wheat during wheat-leaf rust interactions. Detailed in silico analysis was also conducted at the protein level, and essential motifs were identified that might be involved during resistance against leaf rust in wheat. The correlation of qRT-PCR expression data with reactive oxygen species (ROS) abundance, suggests a prominent role of TaCYPs in downstream signaling processes during wheat-leaf rust interaction.
2 MATERIALS AND METHODS
2.1 Genome-wide scanning of CYP genes in wheat
To identify the potential candidate CYP genes in the wheat genome, the protein sequences of CYP candidate genes from Arabidopsis, rice, and soybean were retrieved from TAIR (https://www.arabidopsis.org/index.jsp), The Rice Annotation Project database rap-db (https://rapdb.dna.affrc.go.jp), and PlantGDB database (http://www.plantgdb.org/) for Glycine max, respectively, were used as queries to find the homologs in wheat. Amino acid sequences of the previously reported A. thaliana cyclophilin-like peptidylprolyl cis-trans isomerase genes AtCYP18-3 (Coaker et al., 2005) and AtCYP19-1 (Pogorelko et al., 2014) were used as queries in a BLASTp algorithm to identify all the potential wheat CYP genes (TaCYPs) containing single or multiple domains. The BLASTp search was performed against the T. aestivum IWGSC (https://www.wheatgenome.org/) (protein) data, available on EnsemblPlants release 47 (https://plants.ensembl.org/index.html). All the protein sequences with an E-value below 1.0 and showing >85% similarity were retrieved. For the sequences with more than one transcripts, the primary transcript with the longest length was preferred as the emissary of genes (Hurali et al., 2021; Bhurta et al., 2022). The two databases, InterPro (Finn et al., 2017) and PROSITE (Sigrist et al., 2012), were used to identify the specific domains in all three recognized TaCYP proteins. The genomic sequences, DNA sequences, and coding domain sequences (CDSs) of all the identified TaCYP genes were downloaded from the EnsemblPlants release 47 (https://plants.ensembl.org/index.html) data set using the assigned Ensemble transcripts Ids.
2.2 Physical mapping of TaCYP genes on wheat chromosomes
All the identified TaCYP genes were physically mapped onto seven homoeologous chromosome groups using information available in public repositories, including IWGSC-URGI (https://wheat-urgi.versailles.inra.fr/) and EnsemblPlants release 47 (https://plants.ensembl.org/index.html).
2.3 Gene structure boundary prediction and conserved motif distribution
DNA sequences and coding domain sequences (CDSs) of all the identified TaCYP genes were used for gene structure analysis. A tool, Gene Structure Display Server (Hu et al., 2015), was used to predict the gene structure and exon–intron boundaries. Full-length protein sequences of predicted TaCYP genes were analyzed by MEME version 5.0.2 software (Bailey et al., 2009, 2015) to determine conserved motifs at the following parameters: 15 as the maximum number of motifs, with a restricted motif width of a minimum of 6 aa and maximum of 50 aa, while the other settings were default (Bhurta et al., 2022).
2.4 Phylogenetic analysis
Phylogenetic analysis was conducted to study the evolutionary relationship among the identified TaCYPs and the earlier CYPs reported in other plants. For this purpose, the CYP protein sequences of Arabidopsis (25 CYPs), rice (16 CYPs), and soybean (28 CYPs) were downloaded from TAIR (https://www.arabidopsis.org/), rap-db (https://rapdb.dna.affrc.go.jp/) and EnsemblPlants (https://plants.ensembl.org/index.html), respectively. Multiple sequence alignment (MSA) of amino acid sequences was performed using the ClustalW tool (http://ebi.ac.uk/Tools/msa/clustalW2). Evolutionary distances were measured using Molecular Evolutionary Genetics Analysis (MEGA 6.0). A phylogenetic tree was constructed using the neighbor-joining (NJ) algorithm with the substitution model, uniform rates, and pairwise deletion (Saitou and Nei, 1987), with bootstrap values for 1,000 iterations calculated and expressed as percentages (Felsenstein, 1985).
2.5 Identification of miRNAs and network analysis of miRNAs and TaCYP genes
The full-length genomic sequences of all the identified TaCYPs were mined as an input on the homology search-based psRNATarget server (Dai and Zhao, 2011) to determine the miRNAs targeting the TaCYPs with a selection of updated wheat miRNA libraries in the background. The potential miRNAs targeting the TaCYPs were identified with the following parameters embedded: maximum expectation: 2.0, length for complementarity scoring (HSP size): 19, penalty G:U pairs: 0.5, seed region: 2–13 nt, and extra weight in seed region: 1.5 (Kumar et al., 2019; Hurali et al., 2021; Bhurta et al., 2022). A desktop app of Cytoscape 3.5.1 (Shannon et al., 2003) was used to render the interaction network of miRNAs targeting TaCYP genes.
2.6 Physiochemical properties and subcellular localization of TaCYP genes
The amino acid sequences of all the selected TaCYP genes were screened for their physiochemical properties and subcellular localization. An automated ProtParam server available on the Expasy website (https://web.expasy.org/protparam/) (Gasteiger et al., 2005) was used to calculate the different physiochemical properties, including average residue weight (g/mol), charge, isoelectric point (IP), molecular weight (Mw), theoretical prediction of PI, instability index (II), aliphatic index (AI), grand average of hydropathicity (GRAVY) and stability. The subcellular localization of the identified TaCYP proteins was predicted by BUSCA (http://busca.biocomp.unibo.it) (Savojardo et al., 2018).
2.7 In silico tissue-specific expression analysis
Transcriptome expression data from expVIP (http://www.wheat-expression.com/) for two biotic stress treatments (stripe rust and powdery mildew) were used to compare the relative expression of the TaCYPs. A heatmap was generated using a wheat expression browser powered by expVIP (http://www.wheat-expression.com).
2.8 Plant materials
2.8.1 Wheat genotypes
The leaf rust-susceptible wheat genotype “Chinese spring (CS)” and the CS-Ae. Umbellulata derived resistant IL “Transfer (Sears, 1956)” were used for differential gene expression analysis using qRT–PCR. TR wheat has a dominant seedling leaf rust resistance gene “Lr9.”
2.9 Pathogen
A single spore-derived inoculum of one of the most prevalent and virulent pathotypes, 77–5 (syn. 121R63–1) of P. triticina Eriks. was procured from Regional Station, Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, India. The pathotype is avirulent against the seedling leaf rust resistance gene Lr9 carried by TR and was used for inoculating the seedlings of the two wheat genetic stocks.
2.10 Inoculation at the seedling stage and collection of leaf samples
Wheat seedlings of CS (susceptible line) and TR (resistant line) were sown and raised in growth chambers under standardized, controlled conditions at the National Phytotron Facility, Indian Agricultural Research Institute (IARI), New Delhi (Prabhu et al., 2012). Seedlings were inoculated using the method described by (Dhariwal et al., 2011) and incubated for 48 h in a humid chamber (23 ± 2°C temperature). Standard conditions were restored for the seedlings after incubation. Random leaf samples were collected from seedlings of the CS and TR wheat lines 1) before inoculation, i.e., at 0 HBI (Hours Before Inoculation, uninoculated control), and 2) after seedling inoculation (HAI), i.e., at 24 HAI and 72 HAI with leaf rust pathotype 77–5.
The leaves of the two genotypes (CS and TR) were sampled at 24 HAI and 72 HAI to quantify superoxide radicals (SOR) and hydrogen peroxide (H2O2) localisation following the methodology described earlier (Qiao et al., 2015; and Bhurta et al., 2022). The spectrophotometric assay method described by (Chaitanya and Naithani 1994) was used to quantify SOR in fresh leaf tissue. The amount of NBT (nitroblue tetrazolium chloride) that was reduced by SOR was measured. Leaf samples (1 g) were ground in 0.2 M phosphate buffer (precooled, pH 7.2) and centrifuged at 10,000 g for 30 min at 4°C. The supernatant was collected, and an assay mixture was prepared (0.1 mM EDTA, 0.075 mM NBT, 13.33 mM L-methionine, 25 mM Na2CO3, 250 µl of supernatant in a final volume of 3 ml). The absorbance at 540 nm was measured using the assay mixture.
Leaf samples (1 g) were crushed in liquid nitrogen and homogenized in a 10 ml cooled acetone solution for H2O2 estimation. The homogenized solution was filtered using Whatman no. 1 filter paper, and the filtrate was mixed with a 5:4 ratio of ammonium solution (5 ml) and titanium reagent (5 ml). After centrifugation at 10,000 g for 10 min, the precipitated titanium-hydro peroxide complex was dissolved in 10 ml of 2 M H2SO4 and re-centrifuged. The supernatant was collected, and the spectroscopic absorbance was measured at 415 nm (Rao et al., 1997).
2.11 RNA isolation and cDNA preparation
Leaf tissue (50–100 mg) was collected from wheat CS (susceptible line) and TR (resistant line) seedlings for RNA isolation. Sigma’s TRI reagent kit was used to isolate RNA. RNase-free DNase I was used to treat total isolated RNA (Qiagen). According to the manufacturer’s instructions, a total of 2.0 μg isolated, purified RNA was used for cDNA synthesis (reverse transcription) using the Promega M-MuLV Reverse Transcriptase kit.
2.12 Primer design, quantitative real-time (qRT–PCR) and correlation of ROS with gene expression
The software Primer Express version 3.0 (Applied Biosystems, https://primer-express.software.informer.com/3.0/) was used to design primers for RT–PCR. The 81 TaCYP genes were grouped on the basis of their localisation on homoeologous chromosomes, length of amino acids, and the number of exon intron. A set of 25 primers were designed using the Primer Express program version 3.0 (Applied Biosystems) (length; 18–25 bases, GC content; 40%–60%, and Tm = 60 ± 1°C, product size; 70 and 150 bp) and used for qRT–PCR. The CFX96™ Real-time PCR Detection System (BioRad) performed qRT–PCR with Applied Biosystems SYBR Green PCR Master Mix. Each qRT–PCR was run (containing two biological replicates and three technical replicates each) with a total 20 μl reaction mixture, including 10 μl SYBR Premix Ex Taq, 2 μl cDNA, 0.8 μl forward primer, 0.8 μl reverse primer, and 6.4 μldd H2O in a 96-well optical plate, and was amplified according to the following thermal cycling conditions: 95°C for 10 s, followed by 40 cycles of 5 s at 95°C and 30 s at 60°C. The PCR product was heated from 65 to 95°C (0.5°C/5 s) to draw the melting curve, and the raw Ct values were obtained. The endogenous control gene of wheat (TaAct2), expressed constitutively, was used to normalize the data. Fold change values (2−ΔΔCt) for gene expression were calculated for both stress conditions vs. the control as explained by Thomas D Schmittgen (2008), as follows: 
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 The transcript abundance for each gene was normalized to the internal control. Significance in the differential expression due to leaf rust infection (24 HAI and 72 HAI) was estimated through a paired t test using SPSS ver 16.0. Correlation of gene expression with ROS was estimated, and correlation values were depicted in the form of corrplot using the corrplot package (Friendly, 2002) available in R software.
2.13 Homology modeling and structure evaluation
Homology, also known as comparative modeling, is a powerful tool for predicting protein structure and function (Kumar et al., 2016). The 3D structure of TaCYP proteins was predicted using a homology modeling-based method, with solved structures of homologous proteins available in the Protein Data Bank (PDB) (https://www.rcsb.org/). Position-Specific Iterated BLAST (PSI-BLAST) (Altschul et al., 1997) was used against the PDB to identify suitable homologous template structures with a high score and lower e-value. Other criteria were previously described in (Gautam et al., 2019; Kumar et al., 2019; Mathpal, 2021). The TaCYP protein 3D structure was simulated using the Swiss-Model server (Arnold et al., 2006; Biasini et al., 2014). UCSF CHIMERA 1.10, a protein structure visualizer package (Pettersen et al., 2004), was used to render the predicted 3D structures in various 3D coordinates. To assess the expected structure models, a Ramachandran plot was calculated for each protein model by analyzing phi (Φ) and psi (Ψ) torsion angles and covalent bond quality using consensus algorithms from the PSVS (http://psvs-1.5-dev.nesg.org/) and SAVES servers (http://nihserver.mbi.ucla.edu/SAVES/).
3 RESULTS
3.1 Identification of TaCYP gene members in wheat genome
Using the BLASTp search against the T. aestivum IWGSC (protein) data available on EnsemblPlants release 47 (https://plants.ensembl.org/index.html), a total of 81 TaCYP genes distributed on 21 bread wheat chromosomes were identified. According to their chromosomal positions, the 81 TaCYP genes were named TaCYP1 to TaCYP81. All 81 identified sequences were further verified for their conserved domain using secondary databases, including InterPro and PROSITE (Table 1). Table 1 contains all 81 TaCYPs identified, including transcript ID, length of coding sequences (CDS) and amino acids (aa), chromosome location, coordinates, splice variants, and subcellular location. The size of the CDS of all 81 TaCYPs ranged from 465 bp (TaCYP75) to 2,550 bp (TaCYP50, and TaCYP55), and the corresponding aa length ranged from 154 aa (TaCYP75) to 849 aa (TaCYP50, and TaCYP55) (Table 1).
TABLE 1 | Details of 81 TaCYP genes with their gene ID, length, chromosome location, coordinates, splice variants, and subcellular location.
[image: Table 1]3.2 Physical mapping of TaCYP genes
Information on the physical mapping of all 81 identified TaCYP genes to all 21 wheat chromosomes is depicted in Figure 1. The minimum number of TaCYP genes was mapped on homoeologous group 1, and the maximum was located on homoeologous group 7. The range of identity between the three homeologues of each TaCYP gene was 70.95%–99.57% for coding sequence, 70.95%–99.57% for amino acid sequence, and 70.95%–99.57% for gene sequence. On the other hand, two TaCYP genes (TaCYP8 and TaCYP11) mapped on chromosomes 2B and 2D did not have any homoeologous loci on chromosome 2A (Figure 1 and Table 1).
[image: Figure 1]FIGURE 1 | Physical mapping of 81 identified wheat TaCYPs based on the image obtained from EnsemblePlants release 47 after BlastN analysis.
3.3 Gene structure of TaCYPs with the distribution of conserved motifs
Gene structure predicted using CDS and gDNA sequences of wheat TaCYP genes showed diversification between all 81 TaCYP genes. The number of exons/introns was highly variable, exon number varied from 1 (TaCYP13-3A, TaCYP25-4A, TaCYP33-4D, TaCYP35-4D, TaCYP44-6A, TaCYP47-6A, TaCYP48-6A, TaCYP49-6B, TaCYP52-6B, TaCYP53-6B, and TaCYP54-6D) to 14 (TaCYP50-6B, TaCYP55-6D, TaCYP64-7A, TaCYP71-7B and TaCYP79-7D) (Figure 2). As shown in Figure 2, most TaCYP members of a cluster exhibited the same exon/intron boundary patterns, including intron phase, intron number, and exon length.
[image: Figure 2]FIGURE 2 | A representative figure depicting the grouping of the predicted gene structure of all 81 TaCYP genes identified.
The MEME analyses of the protein sequences of a set of 81 TaCYP genes led to the discovery of 15 distinct conserved motifs (1–15) with a width of 15–41 (Supplementary Figure S1). The location of predicted motifs showed that CYP domains carried a minimum 2 (TaCYP32, 39, and 81) to a maximum of 12 (TaCYP35, 30, 25, 64, 71, and 79) conserved predicted motifs. Motif 4 was conserved in 77 of 81 identified TaCYPs. Out of 81 TaCYPs, 27 TaCYPs showed a conserved distribution pattern for 8 predicted motifs: motif 11 followed by motifs 3, 1, 5, 6, 2, 4, and 10. Group III members contained maximum number (6–12) of motifs, followed by Group II (7–11 motifs), and group I members (2–7 motifs). Seven motifs (motifs 3, 1, 5, 6, 2, 4, and 10) existed in all members of group II (except TaCYP45, which lacked motifs 3 and 1) (Supplementary Figure S1) and Group II (except TaCYP21, 26, 34, and 80, those lacked motif 5). The log-likelihood ratio, information content, and relative entropy ranges of the 15 identified motifs ranged from 646-3550, 32-152.8, and 30.2-155.2, respectively (Table 2). The distribution patterns of the 15 identified conserved motifs among the TaCYPs are presented in Supplementary Figure S1.
TABLE 2 | Details of the discovered motif (MEME).
[image: Table 2]3.4 Phylogenetic analysis
Phylogenetic analysis using an unrooted maximum likelihood algorithm revealed the clustering of 81 TaCYP proteins into three different groups based on their conserved domains. All TaCYP proteins carry a highly conserved CLD (cyclophilin-like domain) domain with three variants; namely, TLP-40, ABH, and Ring U-Box (Figure 3). For instance, 17 TaCYP proteins (out of 81) that contained the TLP-40 domain were clustered into group I; 37 TaCYP proteins with the ABH domain were clustered into group II, and the remaining 27 TaCYP proteins, which included the ring U box domain, were clustered into group III. Group II was the largest group, with the maximum number of TaCYP members (45.67%). The phylogenetic relationship among the identified TaCYP proteins is given in Figure 3. The phylogenetic relationship between the identified TaCYP proteins and the earlier CYPs reported in other plants is shown in Supplementary Figure S2. Domain analysis of wheat TaCYP proteins and CYP proteins from other crops revealed that all the clustered CYP proteins in the phylogenetic tree carried a conserved domain CSA_PPIASE_2.
[image: Figure 3]FIGURE 3 | Phylogenetic classification and grouping of all 81 TaCYP proteins with conserved protein domains into three groups: GI, GII, and GIII. GI contains all the members with the TLP-40 domain, GII clusters all members containing the ABH domain, and GIII contains all TaCYPs with the Ring U Box domain.
3.5 Network of miRNAs targeting TaCYPs
Network analysis revealed the multiplicity behavior of miRNAs, i.e., one miRNA can target more than one member of the TaCYP gene family (Supplementary Figure S3). For instance, tae-miR1127a targets four TaCYP genes (TaCYP36, TaCYP41, TaCYP67, and TaCYP70), tae-miR1137a targets two TaCYP genes (TaCYP24 and TaCYP64), and tae-miR1130a targets five TaCYP genes (TaCYP61, TaCYP62, TaCYP43, TaCYP76, and TaCYP81). Similarly, one member of TaCYP gene is a target for more than one miRNA, such as TaCYP24, targeted by three miRNAs: tae-miR1128, tae-miR1137a, and tae-miR1137b-5p (Supplementary Table S1).
3.6 In silico expression analysis under biotic stress
In silico expression analysis of 81 TaCYP genes revealed significant expression changes due to infection with powdery mildew. Out of 81 TaCYP genes, only three homoeologous transcripts (TaCYP44, located on 6A; TaCYP49, located on 6B; and TaCYP54, located on 6D) showed high expression (8.65–10.37 tpm) against foliar disease infection with powdery mildew at three spans of inoculation (24 and 72 HAI). (Figure 4). The relative expression of each TaCYP gene is presented as a heatmap generated from the relative abundance of transcripts (per 10 million reads) for each gene.
[image: Figure 4]FIGURE 4 | Expression analysis of 81 TaCYP genes under abiotic/biotic stress conditions retrieved from the expVIP database using RNA-Seq data.
3.7 Gene expression using qRT–PCR analysis
A total of 25 primers associated with 81 TaCYP genes were selected for qRT–PCR analysis based on the grouping of the 81 TaCYP genes into 8 groups (seven groups for chromosome 1 to chromosome 7 and one group for sequences with unknown genomic locations). Twenty-three (23) out of the 25 genes belonged to the 7 homeologous groups, whereas 2 genes belonged to unknown chromosomes (for details, see Supplementary Table S2). Eighteen (18) out of the above 25 TaCYPs primers [TaCYP-1 (associated with TaCYP1/2/3), 2 (associated with TaCYP4/6/9, 4 (associated with TaCYP7/10), 5 (associated with TaCYP12/16/19), 6 (associated with TaCYP14/17/22), 9 (associated with TaCYP25/30/35), 10 (associated with TaCYP26/34), 11 (associated with TaCYP37/40/42), 12 (associated with TaCYP38/41/43), 13 (associated with TaCYP44/49/54), 14 (associated with TaCYP45/50/55), 15 (associated with TaCYP46/51/56), 16 (associated with TaCYP57/72), 17 (associated with TaCYP58/65/73), 19 (associated with TaCYP 60/67/75), 21 (associated with TaCYP62/69/77), 24 (associated with TaCYP80), and 25 (associated with TaCYP81) were downregulated in both the contrasting genotypes, whereas three TaCYP primers associated with genes TaCYP15/18/23, TaCYP24/31/36, and TaCYP59/66/74 were upregulated in both genotypes under the disease conditions. However, four TaCYP primers associated with genes TaCYP5/8/11, TaCYP61/68/76, TaCYP63/70/78, and TaCYP64/71/79 showed significant upregulation in resistant lines. Furthermore, TaCYP24/31/36 showed maximum upregulation (∼100 FC) in the resistant line compared to the control (Figures 5A,B).
[image: Figure 5]FIGURE 5 | Expression profiling of 81 TaCYP genes in leaf rust-resistant genotype transfer (TR) and susceptible genotype Chinese spring (CS) after inoculation with leaf rust pathogens (race 77-5). The mean value of six replicates, with error bars indicating standard error (SE), is presented. SE. Significant changes (based on paired t test) in gene expression are indicated by * (p > 0.05), **(p > 0.01) or & ***(p > 0.001).
3.8 Physiochemical properties
Details of the estimated values of different physiological parameters are given in Table 3. All the selected TaCYPs varied for the calculated values, such as the isoelectric points (pIs) from 4.5089 (TaCYP13) to 107.231 (TaCYP77), the molecular weights (Mws) from 102.434 (TaCYP19) to 115.157 g/mol (TaCYP71), the theoretical pI from 4.73 (TaCYP13) to 12.05 (TaCYP29), the instability index (II) from 14 (TaCYP57) to 106.61 (TaCYP45), the aliphatic index from 40.28 (TaCYP45) to 100.04 (TaCYP7), and the predicted GRAVY score from −1.44 (TaCYP45) to 0.197 (TaCYP12). Out of 81 TaCYP proteins, 46 proteins (58%) had a stable nature, while the remaining 35 proteins (42%) were unstable at the sequence level.
TABLE 3 | Details of 81 TaCYP proteins, including average residue weight g/mol, charge, isoelectric point, molecular weight, theoretical PI, instability index, aliphatic index, grand average of hydropathicity (GRAVY) and stability.
[image: Table 3]Prediction of subcellular localization analysis indicated that TaCYP proteins are localized throughout the cell, including different cell organelles. Maximum TaCYP proteins were localized in the nucleus (27 TaCYPs), followed by the extracellular space (13 TaCYPs), cytoplasm (9 TaCYPs), chloroplast thylakoid lumen (8 TaCYPs), organelle membrane (7 TaCYPs), mitochondrial membrane (4 TaCYPs), chloroplast thylakoid membrane (3 TaCYPs), endomembrane system (3 TaCYPs), mitochondrion (2 TaCYPs), chloroplast (2 TaCYPs), chloroplast outer membrane (2 TaCYPs), and plasma membrane (1 TaCYP) (Table 4). TaCYP genes located in the nucleus (e.g., TaCYP5, TaCYP8, TaCYP 11, TaCYP64, TaCYP71, and TaCYP79) showed longer exon–intron architecture (coding exons: 14), while the TaCYP genes located in the extracellular space (TaCYP44, TaCYP49, TaCYP54, TaCYP57, TaCYP72) and chloroplast thylakoid membrane (TaCYP12, TaCYP16, TaCYP19) showed the shortest exon–intron (coding exons: 1 or 2) frame.
TABLE 4 | Subcellular location of all 81 identified TaCYP genes.
[image: Table 4]3.9 Homology modeling
The 3D structures of fifteen (15) representative TaCYP proteins were modeled based on the homology modeling approach. Modeled 3D structures of TaCYP proteins shared a high similarity up to 100% with template structures. The obtained percentage of protein similarity was adequate for annotating protein 3D structures that were predicted using an automated Swiss-Model server. As per the homology modeling method rule, a good protein model should be more than 30% similar to the template structure (Kumar et al., 2019). Modeled 3D structures were further interactively visualized in CPK by UCSF CHIMERA (Figure 6). Calculated 3D structures of fifteen (15) representative proteins depict <1 Å RMSD values for suitable template structures upon superposition.
[image: Figure 6]FIGURE 6 | 3D structures of 15 representative proteins simulated using the SWISS-MODEL server.
Ramachandran plot calculation is crucial to evaluate the quality of protein 3D structure and trend. As evident from Supplementary Figure S4 and Supplementary Table S3, the evaluated Ramachandran plots of torsion angles for phi (Φ) and psi (Ψ) revealed the excellent geometry of the predicted 3D structures of TaCYPs. The calculated Ramachandran plots of TaCYPs showed up to 90.2% residues in most favored regions and up to 21.6% in additional allowed regions. In contrast, up to 2.6 residues in generously allowed regions follow the suitable quality parameters of the PROCHECK algorithm (Supplementary Figure S4). The fruitful utilization of the Ramachandran plot has been demonstrated in several recent findings (Arnold et al., 2006; Kumar et al., 2016; 2018b).
3.10 Accumulation of ROS
The results suggest an ROS burst, as indicated by the localization and accumulation of ROS [SOR and H2O2] contents in wheat seedlings. The presence of H2O2 was confirmed via the appearance of the brown-colored product, while the development of dark blue colour indicated the presence of SOR (Figure 7). The spectrophotometric assay and tissue localisation indicates more SOR and H2O2 in CS w.r.t. TR at 24 and 72 HAI (Figure 7). The correlation heatmap showed that the accumulation of H2O2 and SOR positively correlated with the TaCYP genes during the span of infections (24HAI and 72 HAI) in CS. On the other hand, the accumulation of H2O2 showed a negative correlation with the TaCYP genes, which showed downregulation during 24 HAI and upregulation with the 72 HAI span of infection (Supplementary Figure S5) in TR.
[image: Figure 7]FIGURE 7 | Effects of leaf rust pathogen on the localization and content of reactive oxygen species, hydrogen peroxide (A,B) and superoxide radical (C,D). CS; Chinese spring and TR; Transfer.
4 DISCUSSION
A significant area of varietal development is the breeding of wheat varieties that are resistant to the rust disease, and continuing research is being carried out in this direction. Understanding the molecular basis of leaf rust resistance will be aided by characterising genes involved in downstream signaling during wheat-leaf rust infection. The allelic information of regulatory genes can then be utilized to create functional markers for leaf rust resistance molecular breeding. In order to develop wheat cultivars resistant to leaf rust, it was planned for the current study to characterise CYP genes on a genome-wide scale and identify important CYP candidate genes that may serve as possible targets for allele mining and functional marker development.
Our initial genome-wide search revealed 81 members of the CYP gene family, and it was discovered that these 81 members were dispersed throughout all 21 bread wheat chromosomes, indicating more sequence divergence. The same number of introns/exons and nearly identical length of CDS/aa displayed by the TaCYPs on the chromosomes of the same homoeologous group can be attributed to the CYP members conservation between homoeologous chromosomes or to major structural rearrangements. This implies that among these known TaCYPs, mutation and selection are evolutionarily conserved (Yu et al., 2022). This is also supported by an earlier study that found intron sites that are likely preserved (ancestral) throughout multiple kingdoms (including animals, plants, and fungi) (Fedorov et al., 2002). The chromosomal locations of all identified TaCYPs revealed an intriguing pattern of clustering, with TaCYPs clustered on one chromosome and their paralogs clustered on the other. These results indicate segmental duplication, which has been demonstrated to be crucial in the evolutionary analysis of several other gene families (Moore et al., 2015), is also involved in the chromosomal areas harbouring TaCYP genes.
Further, the phylogenetic analysis revealed the following interesting findings: 1) In the evolutionary tree, 66 of the 81 TaCYP proteins were clustered into a group of three (22 pairs) and the remaining 15 TaCYPs were placed as a separate branch, 2) multidomain (MD) wheat cyclophilin genes (MD-TaCYPs) were clustered together, and 3) a correlation was observed between the clustering pattern of TaCYPs and their subcellular localization. For example, genes predicted to be found in the chloroplast, nucleus, and mitochondria were found to be divided into three distinct clusters based on their predicted location. Maximum TaCYP genes in a specific group in the phylogenetic tree matched exon-intron numbers, intron phases, and other characteristics (Figure 3).
The sub-organelle membrane is the location of the majority of the CYP members clustered with the TLP40 domain. It has been reported that TLP40 (MD) cyclophilins play a significant function in the photosynthetic membrane of chloroplasts by acting as negative regulators of the thylakoid membrane protein phosphatase (Fulgosi et al., 1998; Vener et al., 1999; Olejnik et al., 2021). For instance, they influence the dephosphorylation of a number of crucial proteins in photosystem II, which is engaged in light reactions during photosynthesis (Fulgosi et al., 1998), and hence play a significant role in chloroplast biogenesis and intracellular signalling. Because leaf rust is known to have a major impact on photosynthesis rate and diminish grain production (Yahya et al., 2020), the presence of this crucial domain may help in increasing photosynthesis in wheat varieties that have been affected. Additionally, AtCYP38 in Arabidopsis is a homolog of TLP40 in spinach (Fulgosi et al., 1998), and in the current study, AtCYP38 formed a cluster with all CYP genes (with TLP40 domain) located in the sub-organelle membrane.
The CYPs in a particular group also had a similar pattern of conserved motifs. Overall, the CYP contained 15 conserved regulatory motifs, which confirms previous reports for CYPs in Arabidopsis and rice (Romano et al., 2004; Singh et al., 2019). However, some motifs exclusively appeared in a particular group of TaCYP proteins; motifs 9, 13, and 14 were present in the members of group III, and upregulated genes (TaCYP24) along with their homeologus genes (TaCYP31 and TaCYP36) contain two copies of motif 14 compared to other genes, which may provide specificity during resistance. The motif distribution among TaCYPs suggested that the proteins in the same group perform identical functions (Schaeffer et al., 2016).
The range of the protein instability index, which is variable, may be an indication of the variability in the stability of wheat TaCYP proteins under a variety of environmental conditions, including potential biotic stresses. The degree of thermal stability demonstrated by a protein under a range of stresses is indicated by the aliphatic index derived in the current study for various TaCYP proteins. As a result, proteins with higher values of the aliphatic index may be more thermostable than those with lower values of the aliphatic index (Rashid and Salih, 2022). The aliphatic index of TaCYP proteins in the current study ranged from 40.28 to 100.04, demonstrating that these TaCYP proteins are thermostable under a spectrum of conditions.
Protein stability at the sequence and structure levels play important role in controlling the plant immune system in response to biotic stress (Holt et al., 2005). Most (76 out of 81) of the identified TaCYP proteins had a negative GRAVY value, indicating the hydrophilic nature of the proteins. Only five proteins (TaCYP12, TaCYP16, TaCYP19, TaCYP48, and TaCYP52) show a hydrophobic nature, suggesting a high level of stability of the identified TaCYP proteins. Protein localization results revealed the clustering of most genes in the nucleus (27 TaCYPs), It is not surprising given that the nucleus is where active signaling genes are most frequently targeted (Peng and Gao, 2014; Robles and Quesada 2021). The identified homoeologous TaCYP genes shared a similar pattern of exon–intron structure and intron phrase in the same sub cell organelle, e.g., TaCYP4(2A), TaCYP6 (2B), and TaCYP9 (2D) are localized in the chloroplast thylakoid membrane; similarly, TaCYP24(4A), TaCYP31(4B), and TaCYP36(4D) are members of subcellular organelle cytoplasm, confirming structural rearrangements or conservation of CYP members between homoeologous chromosomes. The present study revealed that a highly upregulated group of TaCYP genes (TaCYP24, TaCYP31, and TaCYP36) are localized in the cytoplasm, which also receives support from an earlier study involving the Arabidopsis-P. syringeae pathosystem, where the overexpressed AtCYP19 and AtCYP57 genes were also localized in the cytoplasm and their overexpression induced resistance against Pseudomonas syringae (Pogorelko et al., 2014). Therefore, we believe that the above three upregulated genes (TaCYP24, TaCYP31, and TaCYP36) in the present study may have a potential role in providing resistance against leaf rust infection; however, future studies involving overexpression or suppression through suitable approaches will lead to a better understanding of the role of these genes during wheat-leaf rust interactions.
When the genes were analysed for expression using qRT-PCR, the amplicon from primer XTaCYP-8 (derived from the genes TaCYP24, TaCYP31, and TaCYP36) located on similar location of homoeologous chromosomes 4A, 4B, and 4D exhibited a significant upregulation (100FC) in the resistant line as compared to the control. Additionally, these were found to be an ortholog of the peptidyl-prolyl cis-trans isomerase gene that has been previously identified in a variety of crops, including rice (OsCYP65), Arabidopsis (AtCYP65), Sorghum bicolor (SORBl3001G466700), Brassica napus (BnaC03g48580D), Hordeum vulgare (HORVHr1 (AET4Gv20643700). It is a protein that functions as a RING-type E3 ubiquitin transferase isomerase in the folding, peptidyl-prolyl isomerization, and polyubiquitination of proteins. It has been previously reported that wheat’s E3 ubiquitin ligase participates in the defence response against the Bgt fungus and against salt stress (Li et al., 2014; Zhu et al., 2015).
In addition, a leaf rust-resistant QTL Lr. ace-4A, conferring resistance at the seedling stage and tightly linked with the stem rust-resistant QTL QSr.ace-4A, has also been identified and mapped on the short arm of chromosome 4A within a QTL interval of 37, 813, 793 bp–581,470,783 bp (Aoun et al., 2019). An in silico study revealed that the identified wheat TaCYP24 is also located at 37,302,555 bp–37,306,196 bp on chromosome 4AS, indicating that the differentially expressed TaCYP24 gene is a strong candidate or some cis-regulatory element involved during resistance through a leaf rust-resistant QTL (Lr.ace-4A) that maps to this region. Earlier, it was also demonstrated that variation in sequences near candidate genes is often responsible for the prominent differences in expression (Mozhui et al., 2008).
The in silico experiment filtered out three highly expressed transcripts of homoeologous genes, TaCYP44, TaCYP49, and TaCYP54, at the leaf disease stage against powdery mildew. The qRT–PCR experiment also showed that the gene associated with primer XTaCYP-13 (designed from the cluster of TaCYP44, TaCYP49, and TaCYP54) displayed the differential expression in contrasting lines. Further, the TBLASTN confirmed that Arabidopsis ROTAMASE CYCLOPHILIN 1 (ROC1) (AtCYP18-3; used as a query sequence in the present study) has three orthologous genes in wheat: TaCYP44 (6A), TaCYP49 (6B), and TaCYP54 (6D). It has been validated that the AtROC1 modulates the immunity specified by R proteins NLRs, RPM1 and RPS2 and concludes that prolyl-peptidyl isomerase activity is required for immune response regulation (Trupkin et al., 2012; Li et al., 2014). Additionally, it has been confirmed that effector AvrRpt2 is activated by binding of host CYP that results in proper folding of AvrRpt2 by virtue of prolyl isomerization catalyzed by host CYP. Activation of AvrRpt2 leads to the cleavage of RIN4, which further activates RPS2 (R protein) and the subsequent orchestration of defense responses (Day et al., 2005). Therefore, the function of the CYP homeologues on chromosome six can be linked to their involvement in leaf rust resistance.
The miRNA targeting wheat TaCYP search resulted in the identification of miR1137 targeting TaCYP24. The role of isomiRs of the miR1137 family has also been reported in targeting anthranilate synthase (AS) (Ravichandran et al., 2019), which helps to catalyze the first reaction branching from the AAA pathway (aromatic amino acid pathway of plants, fungi, and bacteria) toward the biosynthesis of tryptophan and has been studied for its role against pathogens and herbivores. An increase in steady-state AS mRNA levels during/after infiltration helps in the production of secondary metabolites and provides resistance against bacterial pathogen infection (Pal and Gardener 2006; Pusztahelyi et al., 2015). In view of the above, it has been suggested that the low expression of miR1137 in resistant varieties results in a higher accumulation of the target gene TaCYP24, TaCYP31, and TaCYP36 transcripts. Furthermore, miR1137 is downregulated during stripe rust infection in resistant lines (Ramachandran et al., 2020), supporting that the expression of these genes could be regulated through miR1137. However, further study needs to be conducted to explore the detailed role of miR1137 during leaf rust resistance.
ROS production is often the earliest manifestation of the host defense response (Wojtaszek 1997; Dietz et al., 2016; Sewelam et al., 2016). Several studies have suggested that plant-derived ROS generated by membrane-bound Nox and apoplast-secreted peroxidase are involved in the host defense response to cereal rust fungi (Fofana et al., 2007; Dmochowska-Boguta et al., 2013). Our results on SOR localization in response to leaf rust showed maximum accumulation at 72 HAI. In an earlier study, the localization of SOR was observed in the case of the incompatible race but not in the compatible race (Doke, 1983). A recent study demonstrated that Puccinia triticina (Pt) generates ROS, and ROS are critical in the virulence of the wheat leaf rust fungus Puccinia triticina (Wang et al., 2020). The upregulated TaCYP24/31/36 genes also showed maximum expression at 72 HAI. Additionally, an earlier study showed that overexpression of CMPG1–V (in transgenic wheat) provided resistance against powdery mildew in wheat and was associated with an increase in the expression of H2O2 accumulation (Zhu et al., 2015). Previously, the overexpression of AtCYP19 was reported to be involved in ROS production (Olejnik et al., 2021). The fact that the TaCYP genes (TaCYP24, TaCYP31, and TaCYP36) grouped with AtCYP19 in the current study displayed upregulation at 72 HAI compared to 24 HAI suggests that these genes play a role in the control of ROS during rust infection. On the other hand, the ROC1/AtCYP18-3 orthologous gene in wheat [TaCYP44 (6A), TaCYP49 (6B), and TaCYP54 (6D) showed a downregulated expression pattern], confirming the negative regulation of these CYP genes during wheat rust interaction. The correlation of TaCYP gene expression and ROS accumulation at 24 HAI and 72 HAI after inoculation in TR and CS indicates a significant association (Supplementary Figures S5A,B). For example, as depicted in the correlation heatmap, the expression of most of the downregulated TaCYPs showed a positive correlation with H2O2 and SOR accumulation in CS and a negative correlation in TR.
5 CONCLUSION
In the present study, we report genome-wide analysis to identify the role of TaCYP genes against wheat leaf rust. The TaCYP24/31/36 genes located on homoeologous chromosome 4, were maximally upregulated in the leaf rust resistant line compared to the susceptible line and will be potential targets for further validation and molecular breeding approaches. Also the current presents a significant correlation of CYPs gene expression nad and the accumulation of SOR and H2O2 during leaf rust infection in wheat. The current findings significantly extend previous conclusions about the role of CYP genes and reveal their critical role in minimizing the effect of leaf rust disease in the world’s second most important cereal crop.
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Association mapping and candidate genes for physiological non-destructive traits: Chlorophyll content, canopy temperature, and specific leaf area under normal and saline conditions in wheat
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Wheat plants experience substantial physiological adaptation when exposed to salt stress. Identifying such physiological mechanisms and their genetic control is especially important to improve its salt tolerance. In this study, leaf chlorophyll content (CC), leaf canopy temperature (CT), and specific leaf area (SLA) were scored in a set of 153 (103 having the best genotypic data were used for GWAS analysis) highly diverse wheat genotypes under control and salt stress. On average, CC and SLA decreased under salt stress, while the CT average was higher under salt stress compared to the control. CT was negatively and significantly correlated with CC under both conditions, while no correlation was found between SLA and CC and CT together. High genetic variation and broad-sense-heritability estimates were found among genotypes for all traits. The genome wide association study revealed important QTLs for CC under both conditions (10) and SLA under salt stress (four). These QTLs were located on chromosomes 1B, 2B, 2D, 3A, 3B, 5A, 5B, and 7B. All QTLs detected in this study had major effects with R2 extending from 20.20% to 30.90%. The analysis of gene annotation revealed three important candidate genes (TraesCS5A02G355900, TraesCS1B02G479100, and TraesCS2D02G509500). These genes are found to be involved in the response to salt stress in wheat with high expression levels under salt stress compared to control based on mining in data bases.
Keywords: Triticum aestivum L., GWAS, salinity, physiological traits, candidate genes
INTRODUCTION
Wheat (Triticum aestivum L.) is the most important strategic crop, with a production of 761.5 million tons worldwide (FAOSTAT 2019). Due to its nutritional value, wheat is ranked first for 36% of the world’s population and representing the most important staple food. It provides 20% of calorie supplies and 55% of carbohydrate demands globally, as well as containing pivotal micronutrients (Chattha et al., 2017; Mourad et al., 2019). In many developing countries, wheat contributes more than 50% of the calorific supply daily (Cakmak et al., 2010; Bhavani et al., 2021). It was predicted that wheat will not meet the production demands by 2050 and that climate stresses will further exacerbate this problem (Reynolds et al., 2021). The global productivity of wheat should be increased by nearly 70% to meet the high demand for wheat by 2050. However, wheat production and productivity are threatened by various abiotic stresses. Among other abiotic stresses, salinity is a major problem to agriculture. More than 20% of agricultural land is currently affected by salinity, and it is already affecting almost 954 million hectares of the world’s total land area (Shahid et al., 2018; Bhavani et al., 2021; Hafeez et al., 2021). For developing economies such as Egypt, this critical situation has an enormous impact. The current production demand for wheat in Egypt is not being met. Thus, expanding wheat growth is necessary in newly reclaimed areas due to limited areas of agricultural land. However, these newly reclaimed areas suffer from some abiotic stresses, especially salinity. Wheat is a moderately salt-tolerant crop (Chattha et al., 2017; Dawood et al., 2021; Hafeez et al., 2021) and has wide genotypic differences in salinity tolerance (Saqib et al., 2005). Recent studies state that physiological traits have the potential to improve crop performance under abiotic stress. The physiological basis for salinity tolerance is still poorly understood. Therefore, a better understanding of the genetic basis of physiological trait variability will improve the efficiency of wheat for salinity tolerance. In general, the expression of any physiological trait is influenced by the underlying genetic make-up (G), the surrounding environment (E), and their interactions (G×E).
Destructive evaluation techniques for chlorophyll content (CC) and specific leaf area (SLA) are laborious, time-consuming, and expensive. These techniques became less suitable, as the ultimate goal of the breeding program is to select more resilient genotypes by screening large numbers of genotypes for various desirable traits, including morphophysiological traits. Therefore, non-destructive techniques, such as spectral reflectance, chlorophyll measurement, stomatal conductance, and SLA estimation are more relevant for this task because they are fast, cheap, and reliable. Phenotyping for breeding for physiological traits includes genetically complex physiological traits, such as osmotic adjustment, accumulation and remobilization of stem reserves, superior photosynthesis, heat- and desiccation-tolerant enzymes, canopy temperature, and root system architecture, as well as phenomics and genomic approaches (Reynolds & Langridge, 2016). To improve genetic gains for different desirable traits, spectral-based measurement can be employed as a selection tool in plant breeding (Babar et al., 2006).
To screen for salinity tolerance in wheat, chlorophyll content and leaf elongation are non-destructive and quick parameters (Munns & James, 2003). It is important to select an index for salinity tolerance in wheat (Ma et al., 2006). Chlorophyll content is degradable under salinity stress. Thus, it has been employed as a selection criterion for salt tolerance in cereal crops such as barley and rice (Mahlooji et al., 2018). It can be used to indirectly select high-yielding genotypes under salinity stress in wheat (Kiani-Pouya and Rasouli, 2014). Retaining a high level of chlorophyll contributed to salinity tolerance in rice (Nounjan et al., 2020). The canopy temperature (CT) is cost-effective, quick, non-destructive, and easy to use to estimate the whole-plant response. However, the reasonability of CT varied when tested under different environments (Royo et al., 2002). Under various stressful environments, CT exhibited a strong correlation with yield-related attributes in wheat. Thus, CT can be used as an indirect indicator to select for yield improvement under stressful environments (Pierre et al., 2010). Under drought stress, CT explained 60% of yield variation, indicating that it is a suitable tool to select for yield attributes in the recombinant inbred line (RIL) wheat population (Trethowan and Reynolds, 2007), and it is a potential parameter to select for salinity tolerance in bermudagrasses (Tran et al., 2018). As a non-destructive trait, CT discriminated the salt-tolerant from the salt-sensitive wheat cultivars (Munns & James, 2003). In terms of salinity tolerance, two contrasting wheat cultivars exhibited different CT values under salinity stress, with the sensitive cultivars having a low osmotic adjustment that showed an increase in CT compared with the tolerant cultivars that had a high osmotic adjustment (Sharbatkhari et al., 2016). In contrast to Egyptian wheat cultivars (application of infrared thermal imagery for monitoring salt tolerant of wheat genotypes), CT negatively and significantly correlated with the status of plant water under salinity stress. Under stressful growth conditions such as moisture, CC values measured by Soil Plant Analysis Development (SPAD), along with CT, are suitable screening tools (Jain et al., 2014).
Possessing a high green SLA in the post-anthesis stage maintains carbon assimilation and contributes to grain-filling (Rahimi et al., 2011). SLA has been successfully used to discriminate the salinity tolerance in desert grass versus bermudagrasses (Marcum et al., 2005). Similarly, SLA has been considered to be a reliable selective criterion for salt tolerance in wheat under both field and greenhouse conditions (Elahi et al., 2020). Leaf area was found to be positively correlated with grain-related traits, such as thousand-grain weight and panicle weight in cereals (Yue et al., 2006).
The genome wide association study is considered to be one of the most useful approaches that aims to identify candidate genes for biotic and abiotic stress tolerance (Abou-Zeid & Mourad, 2021; Ahmed et al., 2021; Mourad et al., 2018; Moursi et al., 2020; Thabet et al., 2021, 2021b). It tests the significant association between the genomic regions and marker (such as SNP) with a target trait in the tested populations. Subsequently, these markers are used to identify candidate genes that tailor to the variation of the trait(s) of interest (Alqudah et al., 2020). Several quantitative trait loci were identified under various abiotic stresses in wheat for CC. Seventeen QTLs were mapped on chromosomes 2A, 2B, 2D, 5B, and 7A in a recombinant inbred line (RIL) population under heat stress (Quarrie et al., 2006). Likewise, under salinity stress, several sets of QTLs were mapped in populations with different genetic backgrounds. Two QTLs were detected on chromosomes 3D and 7A in a recombinant inbred line population (Ma and Li, 2018). Similarly, four QTLs were localized for chlorophyll content on chromosomes 2D, 5A, 5B, and 5D in a DH population (Genc et al., 2019). Seven QTLs were identified for CC on chromosomes 2B, 6B, 7B, 5A, and 7D in a RIL population (Ghaedrahmati et al., 2014). Five QTLs on chromosomes 1A, 2B, 3D, 7A, and 7A were recently mapped in a RIL population under salinity stress at the seedling stage (Luo et al., 2021).
For CT, several QTL sets were identified under various growth conditions, especially heat and drought. Five QTLs for CT were mapped on chromosomes 2D, 3B, 3B, 5D, and 7A under heat stress in a DH population (Pinto et al., 2010). The authors of this study found that two QTLs were controlling the yield attributes, as well as CT. In another study, six QTLs were detected for heat and drought and were controlling agronomic and physiological traits, including CT. In three RIL populations, 12 QTLs for canopy activity and yield traits clustered together under non-stressful conditions (Li et al., 2021). Five QTLs were mapped on chromosomes 2A, 5A, and 7D for CT under moisture deficient conditions (Puttamadanayaka et al., 2020). No QTLs have been reported for CT under salinity stress to the best of our knowledge. In durum wheat, the QTLs for CC and CT co-localized at the same genomic regions under drought stress. Moreover, the authors found that the QTLs for CT and yield attributes co-localized at the same genomic regions on chromosomes 1B, 2A, 3B, 4B, 5A, 5B, 6A, 6B, and 7B (Diab et al., 2008).
Many QTLs have been mapped under different abiotic stresses for SLA. Twenty QTLs for leaf area-related traits were mapped in a RIL wheat population under diverse water treatments (Yang and Miao, 2010). A QTL on chromosome A7 for yield was found to attribute a variation in SLA and CC under drought in a biparental DH population. In association with higher flag leaf chlorophyll content and wider leaves, alleles of this QTL contributed a 20% yield increase per spike (Quarrie et al., 2006). However, only a few validated QTLs have been reported for physiological traits for the ease, efficiency, and availability of the tools to use physiological traits as phenotyping indicators (Sukumaran et al., 2015; Edae et al., 2018).
Our knowledge about the genetic control of these physiological traits (CC, CT, and SLA) under salinity, as well as the number of QTLs identified for CC, CT, and SLA in wheat, is rather limited compared to other abiotic stresses such as drought and heat so far. Therefore, the objectives of the current study are to 1) estimate the genotypic variation of these physiological traits under salinity stress, and 2) map the QTLs and candidate genes for the corresponding traits.
MATERIALS AND METHODS
Plant material
A set of 153 highly diverse spring wheat (Triticum aestivum L.) genotypes that are adapted to Egyptian conditions (Ahmed Sallam, personal communications) were used in this study (Mourad et al., 2020). The diverse collection represented 14 different countries, including Egypt, and was obtained from the USDA-ARS worldwide core collection. The list of material is presented in Supplementary Table S1.
Phenotypic evaluation
The pots experiment was carried out in 2020/2021 winter season in the Experimental Farm of Faculty of Agriculture, Sohag University, Sohag, Egypt. After sowing the grain, all pots were watered with tap water (having EC of 300 ppm) for 20 days. After that, two irrigation treatments (up to field capacity) were applied. The first group of pots was irrigated with tap water (as a control) and the second was irrigated with 5,000 ppm of saline water. The plants were imposed with salinity stress from day 20 until the termination of the experiment. All treatments were replicated four times and arranged in a completely randomized block design. Each replication consisted of six grains sown in a 12 kg capacity plastic pot (30 cm in diameter × 32 cm in depth) containing a combination of clay and sandy soil (2:1). The plastic pots were maintained in a greenhouse under natural light, and the temperature was 17–30°C during the day and 6–18°C at night. The saline water used was prepared by adding weighted amounts of NaCl salt to potable water to accomplish the required salinity levels. Fertilizers were uniformly mixed in the soil before filling the pots to provide the equivalent of 238 kg ha−1 ammonium nitrate (33.5% N), 75 kg ha−1 calcium superphosphate (15.5% P2O), and 58 kg ha−1 potassium sulfate (48% K2O). Each pot contained 12 kg of fertilized soil. The analysis of soil was performed according to Page et al. (1985) (Supplementary Table S2). Post-anthesis and per replicate, five plants were chosen randomly, and data were recorded for CC (mg cm−2) using a chlorophyll meter (Soil Plant Analysis Development, SPAD-502, Minolta, Osaka, Japan), CT using an infrared thermometer, and SLA (cm2 produced g−1 leaf dry weight plant−1).
Statistical analysis
The analysis of variance (ANOVA) was computed under both conditions to evaluate the genotype × treatment (G × T) interaction according to the following equation:
Yijk = μ+ gi + rj + tk + gtik + tgrijkWhere Yijk is the observation of a genotype i in a replication r tested under treatments k (control vs. salinity stress), µ is the general average, and gi, tk, and rj refer to the eﬀects of genotypes treatment, and replications, respectively. gtik is genotype × treatment interaction. grtijk is the genotype replication × treatment (error).
The broad-sense heritability (H2) for the measured traits was calculated according to the equation of (Rasmusson and Lambert, 1961) as follows:
[image: image]
where, σ2G is the variance of genotypes (accessions), σ2G × treatment (T) is the variance component of the interaction between genotypes G × T, σ2e is the variance of error, and r is the number of replicates.
The ANOVA, 
[image: image]
, and phenotypic correlations were computed using PLABSTAT A3 (Utz, 1997).
The figures and presentation of the phenotypic data were performed and plotted using http://www.bioinformatics.com.cn, R software, and Microsoft Excel 2016.
Genetic analysis
DNA extraction and genotyping-by-sequencing
The DNA was extracted from two leaves (2-weeks old seedlings) from all genotypes. The extraction was performed using BioSprint 96 DNA Plant Kits (Qiagen, Hombrechtikon, Switzerland). Following this, all samples were sent to Kansas State University for GBS according to Elshire et al. (2011). DNA was initially digested using the PstI and MspI enzymes. The sequencing of the pooled libraries was generated by the Illumina, Inc. NGS platforms. The SNP calling was performed using TASSEL 5.0 v2 software GBS pipeline (Bradbury et al., 2007). For SNP calling, the Chinese Spring genome v1.0 was used for a reference genome from the International Wheat Genome Sequencing Consortium (IWGSC). The GBS tags were aligned using Burrows-Wheeler Aligner 43. Generated SNPs were filtered for minor allele frequency (MAF) at less than 5% and the missing data was at less than 20%. All heterozygous loci were considered missing data. After filtration, a final set of 103 genotypes and 11,362 SNPs remained and were used for further genetic analysis.
Genome wide association study
The genome wide association study (GWAS) between markers and the phenotypic data of CC, CT, and SLA under both conditions was carried out using TASSEL version 5.0 in the current study (Bradbury et al., 2007). The analysis of population structure was extensively studied by Mourad et al. (2020). The general linear model (GLM) + principal component analysis (PCA) model were used in GWAS. A Bonferroni correction with a suggestive p-value of 1% (1/total number of markers) was used to test the statistical significance of marker-trait associations (Duggal et al., 2008). Phenotypic effects at the marker loci were calculated as differences between the means of the marker classes. The positive values indicate that the specified marker allele increases the trait, while a negative value indicates that this allele is associated with decreasing the trait. The phenotypic variance explained (R2) by significant makers was determined using TASSEL 3.0. All significant QTLs and their position on the chromosomes were illustrated using PhenoGram (http://visualization.ritchielab.org/).
The linkage disequilibrium (r2) among significant markers located on the same chromosome was calculated using TASSEL v 5.0. The gene annotation for the significant markers was performed to detect the candidate genes using EnsemblPlants (https://plants.ensembl.org/Triticum_aestivum/Info/Index). If the significant SNP was located within the candidate gene, it was selected to examine its gene expression. The gene expression at the heading date under abiotic stresses including salt stressed wheat was compared based on the wheat expression database (http://bar.utoronto.ca/).
RESULTS
Phenotypic variation
Salinity stress affected the estimated traits differently, as the population’s mean values for CT increased, while they decreased for CC and SLA (Table 1). The mean values of CC were 40.87 mg cm−2 under the control and 29.51 mg cm−2 under salinity. For CT, the mean values were 27.87°C and 34.23°C under the control and salinity, respectively. For SLA, the mean values were 90.49 cm2 g−1 for the control and 85.54 cm2 g−1 for salinity (Tale 1). The minimum and maximum values for all traits under control and salinity are listed in Table 1. The traits CC and CT showed normal distribution, while SLA was relatively skewed (Figure 1).
TABLE 1 | Ranges, means, standard deviation (SD), coefficient of variation (CV) and analysis of variance (ANOVA) for all traits scored on wheat under control and salinity. Min stands for minimum, Max for Maximum and STI for Salt Tolerance Index.
[image: Table 1][image: Figure 1]FIGURE 1 | Histogram illustrating the distribution of (A) chlorophyll content (CC, mg cm-2), (B) canopy temperature (C) and specific leaf area (cm2)in wheat under control and salinity stress.
Analysis of variance, heritabilities, and correlation
A wide variation has been observed for all traits. The genotypic variation of all traits was always higher than the variation attributed to the genotype-environment interaction. However, high significant genotype treatment interaction was observed for all traits (Table 1). The effect of the treatment was very significant for CC and CT compared to SLA. CC showed the highest variation attributed for all variation parameters, including treatment effect, genotype effect, and genotype environment interaction. The broad-sense heritability estimates were extremely high for all traits, with values of 98.64, 94.97, and 82.02 for CC, CT, and SLA, respectively (Table 1).
Correlation coefficients for all traits are illustrated in Figure 2. No positive significant correlations were observed among the traits under the control or salinity. Meanwhile, negative significant correlations were observed under the control between chlorophyll content under control (CC_C) and canopy temperature under control (CT_C) (CT_C) (r = -0.65**), as well as between chlorophyll content under salinity (CC_S) and canopy temperature under salinity (CT_S) (r = -0.63**). Across both the control and salinity treatments, the elements of each trait showed significant positive correlations for chlorophyll content under control (CC_C) and chlorophyll content under salinity (CC_S) (r = 82**), CT_C and CT_S (0.64**), and specific leaf area under control (SLA_C) (SLA_C) and specific leaf area under salinity (SLA_S) (0.18*) (Figure 2).
[image: Figure 2]FIGURE 2 | Correlations of the estimated traits, Chlorophyll content (CC), Canopy Temperature (CT), Specific Leaf Area (SLA) in wheat under control and salinity. Red square = Correlations under Salinity stress, Blue square = correlations under control, Green square = Correlations under Salinity. C refers to control, while S refers to salinity.
Genome-wide association study
Genome wide association mapping was performed between the 11,362 SNPs and all traits under control and salt stress conditions. The quantile-quantile plots for all traits under the control and salinity using GLM + PCA are presented in Supplementary Figures S1A and S1C. The GWAS analysis revealed 14 significant SNPs distributed on 1B, 2B, 2D, 3A, 3B, 5A, 5B, and 7B (Figure 3A). One significant SNP was located on 1B (CC_S), 2D (SLA_S), 3A (CC_C), and 7B (CC_S). Chromosomes 2 and 3B had two SNPs associated with SLA_S and CC_C, respectively. Three SNPs were located on chromosomes 5A and 5B. Seven SNPs were found to be highly associated with CC under control conditions, while three and four significant SNPs were associated with CC_S and SLA_S under salt stress, respectively. The Manhattan plot for marker-trait association is illustrated in Figure 3B for each trait. No significant SNPs were found to be associated with CT under both conditions and SLA_C. Detailed results of the GWAS are presented in Table 2. The p-values ranged from 6.27E-06 (S1B_687090072, CC_S) to 7.77E-05 (S5A_557328543, SLA_S) (Table 2; Figure 4A). The allele effects of the target allele associated with increased traits are presented in Figure 4B. The phenotypic variation explained by each marker (R2) ranged from 24.88% to 28.67%, 25.15%–30.90%, and 20.26%–22.08% for CC_C, CC_S, and SLA_S, respectively (Figure 4C).
[image: Figure 3]FIGURE 3 | (A) The distribution of the significant SNPs detected by GWAS on wheat chromosomes, (B) Manhattan plot for all p-values in the three traits. Gold star refers to a marker with pleiotropic effects. CC and SLA refer to chlorophyll content under C (control) and S (salinity).
[image: Figure 4]FIGURE 4 | The range of p-values (A), allele effects (B), and phenotypic variation explained by markers (R2) (C) for all significant markers detected by GWAS for chlorophyll content under control (CC_C), chlorophyll content under salinity (CC_S), and specific leaf area under salinity (SLA_S).
TABLE 2 | Genome-wide association analysis for chlorophyll content (CC) and specific leaf area (SLA) scored under control (C) and salinity (S) conditions.
[image: Table 2]Among all SNPs, one significant SNP associated with CC_S and CC_C (Figure 5). This SNP was located on chromosome 5A. Allele A was associated with increased CC and SLA under both conditions. The effect of this allele was higher under salinity (15.09%) conditions compared to the control (14.16%). Moreover, it had a higher R2 value under salinity (27.16%) conditions compared to the control (24.44%).
[image: Figure 5]FIGURE 5 | Number of individual and common significant SNPs detected by GWAS for chlorophyll content under control (CC_C), chlorophyll content under salinity (CC_S), and specific leaf area under salinity (SLA_S).
The linkage disequilibrium was calculated among SNPs located on the same chromosome. A high and complete LD (r2 = 1) was found among all SNPs located on chromosomes 5B, 3B, and 2B (Figure 6).
[image: Figure 6]FIGURE 6 | I,inkage disequilibrium r2 among significant SNPs located on the same chromosome. Red refers to complete 1.1)
To confirm the association between markers and traits, all SNPs were annotated in the wheat genome. Three out of 14 SNPs fell into three gene models (Table 2). The expression levels of these three genes were obtained from the wheat expression database (http://bar.utoronto.ca/). The SNP marker (S5A_558304350 SNP) associated with chlorophyll content under control (CC_C) and chlorophyll content under salinity (CC_S) was found to fall within the TraesCS5A02G355900 gene model. This gene encodes P-loop containing nucleoside triphosphate hydrolase that was found to have a high expression in the flag leaf after the heading date under salt stress compared to the control (Figure 7A). Moreover, the SNP marker (S1B_687090072) associated with CC_S was located within the TraesCS1B02G479100 gene model which encodes the Guanine nucleotide-binding protein (G-protein) alpha subunit. After the heading date, this protein showed a remarkably high expression under salt stress compared to the control with more than three folds (Figure 7B) in the flag leaf stage. The S2D_601971008 SNP controlling SLA_S was found to fall within TraesCS2D02G509500, which encodes the Wall-associated receptor kinase (WAK), galacturonan-binding domain. No expression data was found for this protein under either the control or salt stress.
[image: Figure 7]FIGURE 7 | (A) Gene expression of TaesCs5AG355900 at flag leaf under different abiotic stress after heading date. (B) Gene expression of InesCS1B026479100 at flag leaf under different abiotic stress after heading date.
It is noteworthy that the SNP marker (S5A_558304350) showed a plausible constitutive expression pattern because it exhibited an association with CC_C and CC_S (Table 2; Figure 3A, Figure 3).
DISCUSSION
Genetic variation in chlorophyll content, canopy temperature, and specific leaf area under normal and salinity conditions
Improving salt tolerance is a great challenge as it is a very complex trait that is under polygenic control. More study is required on more morphological and physiological traits to understand the complexity of salt tolerance (Mourad et al., 2019; Moursi et al., 2020; Mondal et al., 2021; Thabet et al., 2021). The high genetic variation existing among genotypes in the three traits was extremely useful for plant breeders in selecting genotypes with increased CC_S and decreased CT_S in the current study. The high significant G ×T interaction indicated the different responses of the genotypes to different saline conditions. The high significant differences between the control and salinity conditions indicated that the genetic variation was maintained in the current collection. The high genetic variation and heritability of the studied traits indicated that CC, CT, and SLA could all be selected under salinity conditions. Such high heritability for the traits were due to the accurate measurements conducted by digital equipment. In addition, the experiment was semi-controlled with very slight changes in temperature and humidity which did not affect the repeatability of data across the three replication in the two treatments.
The CT increased, whereas the CC decreased in the plants treated with salinity compared to the control (Table 1). This finding agrees with what was found in soybean plants concerning the increase in CT and decrease in CC due to salinity stress (Chung et al., 2020). Excessive salinity causes a reduction in the CC of leaves and, subsequently, the net photosynthesis (Sheng et al., 2008; Chung et al., 2020).
The significant negative correlations between CC and CT under both the control and salinity conditions (Figure 2) are explained by the ability of the plants to keep the stomata open to sustain photosynthesis, resulting in the CT being lowered. Salinity stress decreased the net photosynthesis and transpiration but increased the CT. The reduction in CC caused a reduction in photosynthesis. CT is a good indicator for plant status under abiotic stresses, as it indicates the variation of photosynthesis and transpiration rates. Similar results were reported in soybean plants (Chung et al., 2020). The salt-tolerant wheat genotypes revealed high levels of CC compared to the salt-sensitive group. Thus, chlorophyll content would be useful in screening large numbers of genotypes (Mansour et al., 2020). Genotypes showing a ‘cooler’ CT had a better water status and were found to be associated with yield traits (Mahlooji, 2021).
However, salinity stress reduced CC more than SLA, and they are negatively correlated, which might be due to the disintegration of chlorophyll pigment under salinity. The leaf area was slightly affected. In peanut plants under drought stress, SLA correlated negatively and significantly with chlorophyll content (Wang et al., 2004; Mansour et al., 2020). The authors concluded that SLA and CC are reasonable selection criteria for drought stress.
Several studies reported that both CC and CT contribute positively to the final yield. The grain yield per plant had a significant positive correlation with CT, as well as CC (Elahi et al., 2020). The authors suggest that these traits can be used as selection tools for yield improvement under drought. The flag leaf width was found to be associated with grain yield per ear, as well as the number of grains per ear (Reynolds et al., 2005; Quarrie et al., 2006), suggesting a positive role for leaf-related attributes in the final grain yield. High net photosynthesis rates per unit SLA were observed without any alteration in the distribution of CC or SLA during grain filling. This could explain the negative and significant correlations between SLA and CC across both treatments (Reynolds et al., 2005). The SLA_S was reduced in the current study, and our findings agree with the results that were reported in other plant species, such as the melon, hop pepper, spinach, purslane, and wheat (Rahimi et al., 2011; Sarabi et al., 2017; Ziaf et al., 2021). This reduction in SLA can be explained as an adaptation to salinity stress by reducing the transpiration rate and water loss. Low SLA is associated with salt tolerance via the accumulation of high levels of dry matters, as well as secondary metabolites per unit of leaf area, enabling plants to cope with prolonged stressful conditions (Wang et al., 2016; Tabassum et al., 2017).
Genome wide association study
The GWAS used 11,362 SNP markers covering the wheat genome to identify candidate genes associated with CC, CT, and SLA in this study. The genotyping-by-sequencing method generates thousands of SNPs that can be used to genetically dissect the complexity of target traits such as salt tolerance, which is one of its advantages (Hussain et al., 2017; Mourad et al., 2018; Eltaher et al., 2021).
The analysis of population structure for the current population was extensively described by Mourad et al. (2020), revealed three subpopulations. Therefore, GLM + PCA was used in this study to avoid spurious association resulting from the structure. The mixed linear model (MLM) + kinship was also used to test the association. However, the QQ plot revealed that this model overcorrected the population structure (Supplementary Figures S1B and S1D). As a result, GLM + PCA was the appropriate model for the GWAS as the observed and expected p values of all markers are on or near the middle line between the x-axis and the y-axis except the significant markers. All significant markers were detected using Bonferroni correction, which controls false positive association.
The GWAS in this study revealed 14 marker trait associations for CC_C, CC_S, and SLA_S. All SNPs had R2 > 20%, indicating they had a major effect on the CC under both treatments and SLA_S. QTL with an R2 > 10% can be considered as having major effects on the target traits (Gouy et al., 2014; Maccaferri et al., 2015; Sallam et al., 2016; Hussain et al., 2017; Liu et al., 2019; Mourad et al., 2020). All significant SNPs located on the same chromosome were in a complete LD indicating that these SNPs tend to be co-inherited together and represent the same genomic region, whereas the other significant SNPs represent an individual QTL.
CC at the anthesis stage is an important physiological trait under abiotic and biotic stress conditions, as it plays a critical role in the efficiency of plant photosynthesis (Mourad et al., 2018; Dawood et al., 2020). The GWAS revealed seven QTLs controlling CC under the normal condition on chromosomes 3A, 5B, 5A, and 3B in this study. The SNPs located on chromosomes 5B (three SNPs) and 3B (two SNPs) were in high LD. On the other hand, three QTLs were found under salt stress conditions at the anthesis stage and were located on chromosomes 1B, 5A, and 7B. Many QTLs were reported for CC at the early and vegetative stages, but very few were reported at the anthesis stage under salinity stress. Chaurasia et al. (2021) reported one QTL (AX-94820097) with minor effects (R2 = 3.16%–7.82%) for the salt tolerance index of CC at the anthesis stage. This QTL was located on chromosome 6D. A recent study of Alotaibi et al. (2021) found 10 QTLs associated with CC under both low and high salinity conditions at the anthesis stage on chromosomes 7A, 2B, 4A, 5B, 7B, and 5A. The R2 of these QTLs ranged from 5.12% to 12.19% under low salinity conditions and from 7.11% to 14.53% under high salinity conditions. Interestingly, we reported a significant SNP (S5A_558304350) located on chromosome 5A (558304350 bp) in this study. This SNP marker (S5A_558304350 SNP) showed a constitutive gene expression as it exhibited an association with CC under both control and salinity stress (Table 2; Figure 3A, Figure 3). This indicates that this SNP is highly valuable due to its ability to be targeted for selection even under control conditions.
The QTL (BS00075959_51) revealed by Alotaibi et al. (2021) on chromosome 5A was located at 588741059, near the SNP found in this study. The significant SNP marker (S5A_558304350) was found to be associated with CC under both conditions, indicating that there was a strong association under different conditions. Allele A of this SNP was associated with increased CC_C (14.06%) and CC_S (15.09%). On average, this allele increased CC_S by 6.8%. This SNP was associated with gene model TraesCS5A02G355900. This gene was found to be highly expressed under salt stress in Arabidopsis plants (Kocourková et al., 2011; Chen et al., 2015). Various abiotic stresses, including salt stress, increased the transcription level of phosphatase (Abscisic Acid) ABA Insensitive-2 and a transcriptional activator CBF1(At4g25490) exclusively in the leaves of Arabidopsis plants (Kreps et al., 2002). The TraesCS5A02G355900 encodes P-loop containing nucleoside triphosphate hydrolase, which is involved in the response to salt stress (Zhao et al., 2007). Remarkably, this gene had a higher level of expression under salt stress than control conditions in the flag leaf at the heading stage in wheat. Likewise, it had a higher expression under heat and drought compared to salt stress, indicating the critical role it plays in alleviating the effect of various abiotic stresses on wheat leaves (Kocourková et al., 2011; Chen et al., 2015). Another important SNP marker (S1B_687090072), located in the TraesCS1B02G479100 gene model (GPA1 gene), encodes the G-protein alpha subunit. The G-protein enhances salt tolerance in Arabidopsis plants (Lu et al., 2018). Interestingly, this gene was found to have a remarkably high expression under salt stress compared to other abiotic stresses and the control in flag leaves at the heading stage. The SNP marker (S1B_687090072) was located on chromosome 1B at 687090072 pb. In Oyiga et al. (2018) study, a wsnp_Ex_c955_1827719 SNP marker was found to be associated with leaf chlorophyll fluorescence with R2 = 4.8% and was located on chromosome 1B at 688768186 pb near the SNP (S1B_687090072) detected in our study. Five significant SNPs associated with salt tolerance index for leaf CC at the vegetative stage were located on chromosomes 2A, 2B, 3B, 4A, and 7A (Chaurasia et al., 2020).
Four significant SNPs were found to be associated with SLA_S. No earlier studies reported GWAS results for this trait. Therefore, these four QTLs can be considered as new and novel in controlling this important trait under salinity in spring wheat. The two SNPs located on chromosome 2B had a complete linkage and represented the same genomic regions/QTLs. All QTLs detected for SLA_S had minor effects. Out of the four SNPs, one SNP (S2D_601971008) was found to be within the TraesCS2D02G509500 gene model, which encodes the WAK galacturonan-binding domain. The role of WAK is still experimentally unknown, although it has been shown to contribute to the salt stress response (Liu et al., 2021). This was confirmed by lacking gene expression experiments under salt and control conditions (Wheat eFP Browser (utoronto.ca)). It was recently reported that salinity stress-induced de-methyl-esterification of pectin activates stress signaling pathways, which may provide direction in studying the roles of WAKs in the salt stress response (Gigli-Bisceglia et al., 2020). Therefore, reporting the association of this gene with SLA_S could provide a valuable and novel piece of information on the role of WAKs in enhancing salt tolerance in wheat leaves.
The SNP markers detected in this study specifically (S5A_558304350, S1B_687090072, and S2D_601971008) can be converted to Kompetitive allele-specific PCR (KASP) markers for further genetic validation and association with salt tolerance under different genetic backgrounds.
The results of GWAS provided SNP markers for important physiological traits associated with wheat yield under salt stress. The results of this study can be used to improve salt tolerance in wheat and further genetic studies such as genomic selection which can be predict performance of other genotypes using significant markers resulted from genome-wide association study (Sandhu et al., 2021)
CONCLUSION
Understanding the genetic control of physiological traits under salinity conditions is a particularly important task for improving salt tolerance in wheat at the anthesis stage, which is important for grain filling duration. Important SNPs controlling CC_S were reported and found to be very similar to previously published genomic regions associated with leaf CC in wheat at the anthesis stage. Novel significant SNPs were detected in SLA_S for the first time in this study. The results of gene annotation and expression highlighted two important SNPs, S5A_558304350 and S1B_687090072, which fell within two gene models that had an extremely high expression under salinity conditions. These results shed light on the power of GWAS analysis used to detect important genes controlling some physiological traits under salinity conditions in this study. The markers detected should be converted to KASP markers for further validation before using them in marker-assisted selection (MAS).
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Domestication of wheat started with the dawn of human civilization. Since then, improvement in various traits including resistance to diseases, insect pests, saline and drought stresses, grain yield, and quality were improved through selections by early farmers and then planned hybridization after the discovery of Mendel’s laws. In the 1950s, genetic variability was created using mutagens followed by the selection of superior mutants. Over the last 3 decades, research was focused on developing superior hybrids, initiating marker-assisted selection and targeted breeding, and developing genetically modified wheat to improve the grain yield, tolerance to drought, salinity, terminal heat and herbicide, and nutritive quality. Acceptability of genetically modified wheat by the end-user remained a major hurdle in releasing into the environment. Since the beginning of the 21st century, changing environmental conditions proved detrimental to achieving sustainability in wheat production particularly in developing countries. It is suggested that high-tech phenotyping assays and genomic procedures together with speed breeding procedures will be instrumental in achieving food security beyond 2050.
Keywords: domestication, hybrid wheat, NGS, CRISPR, genomic selection (GS), climate change, food security
INTRODUCTION
Wheat (Triticum aestivum L.) is cultivated in 89 countries to feed around 2.5 billion people—one-fifth of the total world population. Bread wheat is grown on about 95% of the total wheat cropped area while the remaining 5% area is covered by the durum wheat (Mastrangelo and Cattivelli, 2021). The contribution of durum wheat in total wheat production is also around 5%.
Wheat domestication and human civilization evolved simultaneously in the history of mankind. Among the cereals, it is one of the most important crops with relatively more potential to get adapted in challenging environments. With the increasing food demand and depleting agricultural land, it is pivotal to enhance the grain yield in a sustainable way to feed the increasing human population beyond 2025. Nearly 100% increase in wheat production is inevitable to meet the global food requirements by the end of 2050 (Senker, 2011). Concerning the advancements in research and development, all the major events and technologies that paced up wheat research and have a plethora of contributions towards wheat improvement after its domestication as a cereal crop have been described in this article.
ORIGIN AND DOMESTICATION OF WHEAT
The hexaploid wheat (AABBDD) contains three different genomes each derived from different diploid species viz., Triticum urartu (AA genome), Aegilops speltoides (controversial, BB genome), and Aegilops tauschii (DD genome) (Feldman et al., 1995; Nesbitt and Samuel, 1996). According to the archeological records, wheat originated in Southeast Turkey. Initially, the progenitor species containing AA and BB subgenomes were discovered (Aaronsohn, 1910) and these were hybridized followed by a doubling of chromosomes which resulted in tetraploid fertile wheat, T. turgidum (AABB) (v. Tschermak and Von, 1914). Then the T. turgidum, wild emmer, was domesticated in Fertile Crescent. Afterward, T. turgidum hybridized with a diploid specie A. tauschii (Kihara, 1944; McFadden, 1944; McFadden and Sears, 1946) which resulted in the formation of hexaploid wheat (AABBDD). The hexaploid bread wheat evolved in the Fertile Crescent (Figure 1). It is worth mentioning that tetraploid ancestors spread into the natural range of diploid species Ae. tauschii. Because of its high acceptance as an ultimate source of calories, it was spread into different parts of the world via different routes (Figure 1). After domestication, hexaploid wheat was cultivated and selected in diverse geographical regions for centuries which resulted in present-day cultivated bread wheat (McFadden and Sears, 1946; Dubcovsky and Dvorak, 2007). Among diploids, einkorn wheat, Triticum monococcum, is considered the first domesticated hulled wheat. The historical record shows that it was domesticated  12,000—c. 8,500 years ago in the Pre-Pottery Neolithic period (Zaharieva and Monneveux, 2014). However, cultivated tetraploids Triticum dicoccum (wheat emmer) and Triticum durum (tetraploid durum), both arose from wild ancestors.
[image: Figure 1]FIGURE 1 | Routes showing the migration of wheat from the center of origin-Fertile Crescent-to other continents of the world. The green color indicates Fertile Crescent and the red lines indicate different known routes (Pont et al., 2019). Post-Domestication to Mendel’s Era.
Initially, the wheat was spread to Greece, Cyprus, India, and Egypt followed by other countries around the world (Cooper, 2015). Domesticated wheat had large-sized hulled seeds attached to the ear as compared to its wild species. The wheat grain in primitively cultivated species was long, thin, and small in size. The first naturally mutated traits in the wild germplasm were non-brittle rachis and naked grain that were responsible for the domestication of wheat (Pourkheirandish et al., 2018). The process of natural selection played a significant role in shaping the present-day cultivated wheat. Selections were made by the early farmers on the basis of phenotypic traits such as grain size, grain color and non-shattering type (Eckardt, 2010). Seeds from the best plants were used to grow the next generation while inferior quality seeds were discarded (Charmet, 2011).
During the 1800s, several wheat varieties were developed by selecting superior lines by the wheat breeders. Wheat growers or distributors were used to select different wheat spikes with desirable quality followed by assigning a new fancy name to the selected spikes such as ‘Thomas Rust Resistant’ for wheat variety resistant to rust and ‘Landretti’s Hard Winter’ for resistance to changing climate (Spennemann, 2001).
In the 18th century, wheat ‘rust’ was scientifically described for the first time (Eriksson and Henning, 1896). Efforts were made to improve wheat varieties mainly for high yield and resistance to diseases. Similarly, wheat breeding for protein content and baking quality was initiated by William James Farrer (Wrigley et al., 1981). Then in 1873, interspecific hybridization between rye and wheat was successfully made, and thereafter enormous valuable hybrids of wheat showed significant improvements in yield and other traits such as early maturity, rust-resistance with stiff straws, gluten content, and non-shattering traits were developed (Beach, 1923).
WHEAT GENETICS IN POST-MENDELIAN ERA
In the late 19th century, Mendel published data pertaining to his historic experiments conducted on pea plants. In the early 1900s, his work was re-discovered which provided him recognition as the “Founder of Genetics” (Wrigley et al., 1981). Since then, breeding based upon scientific knowledge started and the whole research perspective was shifted towards improving desirable traits such as plant height, seed color, and seed shape instead of the plant as a whole (Biffen, 1905). In 1916, the first hard wheat variety ‘Yeoman’ having low protein content was developed through hybridization. It was discovered that for achieving genetic stability, more than 10 generations were required for fixing the traits (Bajaj, 1990). In 1920, the stem rust gene, Sr2 was incorporated into wheat from tetraploid emmer wheat (Singh and McIntosh, 1984). Following several hybridization experiments, Italian landraces and inbred lines were crossed with the Japanese variety ‘Akakomugi’. Resultantly, new varieties harboring improved resistance to rust diseases, early flowering, and early maturing were developed. These varieties were used in other wheat breeding programs, and laid down a firm foundation for achieving green revolution (Salvi et al., 2013). During the early period of hybridization-based breeding programs, varieties depicting high yield potential were developed without focusing on improving resistance to biotic stresses. Another winter wheat variety ‘Turkey red’ was also developed and cultivated in the United States (Olmstead and Rhode, 2002). Drought resistance was incorporated from landraces to ‘Aragon 03’ (Royo and Briceño-Félix, 2011). Later on, wheat varieties with high Zn and protein content as well as biotic and abiotic stress tolerance were also developed through conventional breeding.
THE ERA OF MUTAGENESIS
By the process of mutagenesis, novel genetic variability in plants was induced by exposing them to physical or chemical mutagens (de Oliveira Camargo et al., 2000). Over the last century, physical mutagens, for example, gamma rays, UV rays, fast neutrons, and the chemical mutagens such as sodium azide, N-methyl-N-nitrosourea, ethyl methansulfonate and hydrogen fluoride have been widely used. Biological mutagens like Agrobacterium are also being used (Krishnan et al., 2009). Recently, the mutant population was developed by exposing the seeds of a wheat cultivar ‘Punjab-11’ to gamma-rays. The developed mutants were found to be resistant to either leaf rust, yellow rust or, stem rust (Hussain et al., 2021). Few of these mutants also demonstrated high grain quality traits as compared to wild type (Zulfiqar et al., 2021).
Mutation breeding techniques were resurrected during early years of the 21st century due to a better understanding of mutagens, their use, the process of mutagenesis, and its application in related disciplines. Nowadays, traditional approaches being used for the selection of mutants in second and third generations have provided high yielding as well as better quality varieties (Singh and Balyan, 2009; Albokari, 2014). Consequently, a huge number of varieties with improved traits have been released through mutation induction which reveals the economic impact of this technology (Micke et al., 1990; Jankowicz-Cieslak et al., 2017). To date, ∼ 3400 mutant varieties have been produced through mutagenesis directly or indirectly, including 265 varieties of bread wheat (https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx) (Figure 2). However, the majority of the varieties (∼85%) are the result of mutation inductions through gamma rays. All these varieties released through mutation breeding are high yielding, with better tolerance to pests, diseases, and biotic and abiotic stresses.
[image: Figure 2]FIGURE 2 | Percentage of mutant wheat varieties developed through mutagenesis in various decades (Data source: https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx).
The use of chemical mutagens on a large scale has been started in 2000. Ethyl methanesulphonate (EMS) –the most commonly used mutagen-generates random point mutations in the entire genome (Brini and Masmoudi, 2014). For example, a single nucleotide polymorphism (SNP) in Lr21 was identified in one of the resistant mutants (to leaf rust) of ‘NN-Gandum-1’. This mutation caused a substitution of glutamic acid with alanine (Hussain et al., 2018). Few of these mutants also demonstrated better tolerance to drought stress as compared to wild type (Zahra et al., 2021). It is suggested that mutagenesis experiments are effective in inducing useful mutations in wheat which can be used in forward and reverse genetic studies for gaining insights into the important biological traits of the complex wheat genome.
In the beginning of the 21st century, an advanced method, Targeting Induced Local Lesions IN Genomes (TILLING) was used for identifying point mutations in targeted genes of mutants and or genetic stocks (Henikoff and Comai, 2003). In 2009, through TILLING, complete waxy wheat was bred by crossing Wx-A1 and Wx-D1 truncation mutant whereas Wx-B1was naturally null in both of them (Dong et al., 2009). Similarly, a waxy gene GBSS-I (granule-bound starch synthase I) in near null waxy mutant was identified (Slade et al., 2012). In 2012, the wheat mutant gene MNR220 was identified that carried resistance locus to powdery mildew and other types of rust. The mutant population resulted after TILLING with many novel alleles that could be a good genetic resource for improvement of wheat (Chen et al., 2012). Novel genetic variations in the SBEIIa gene for amylose content, TaAGP gene for starch biosynthesis and, TaMlo gene for durable resistance against powdery mildew were also identified through TILLING (Slade et al., 2012; Acevedo-Garcia et al., 2017; Guo et al., 2017).
INTROGRESSION WHEAT BREEDING
Among cereals, a lot of introgression work was done on wheat (Dempewolf et al., 2017), resulting in significant improvement in the genetic diversity of wheat (Lu and Ellstrand, 2014). The genetic sources of wheat, consisting of wild relatives, landraces, and close relatives have contributed significantly to adding novel genetic variations to modern wheat cultivars (Molnar-Lang et al., 2016). In 1930, stem rust resistance Sr2 gene was introgressed into cultivated wheat from its wild relative emmer wheat cultivar “Yaroslav” (McFadden and Sears, 1946). Several genes against biotic stresses such as Ug99 were found in Aegilops. Genes for stem rust including Sr33, Sr45, Sr45, Sr46, and SrTA1662 were introgressed and localized into the genome of cultivated wheat (Olson et al., 2013).
Secale cereale, commonly known as rye, is one of the most important wheat relatives which was used for incorporating several genes into the cultivated wheat. After hybridization with rye, translocations and substitutions played a role in transferring genes responsible for high yield and disease resistance (Rabinovich, 1998). The most important non-Triticum introgressions in the wheat genome were 1BL/1RS, 1DL/1RS and 1AL/1RS translocations that contained biotic and abiotic stress resistance genes (Rabinovich, 1998; Mago et al., 2015). The 1BL/1RS translocation between wheat chromosome ‘1B’ and rye chromosome ‘1R’ carrying genes for leaf rust (Lr26), stem rust (Sr31), stripe rust (Yr9), and powdery mildew (Pm8) improved the resistance to fungal diseases in wheat (Singh et al., 1990; Friebe et al., 1996; Friebe et al., 1999; Baffes, 2005). The wheat lines containing the 1RS chromosomal arm exhibited a substantial increase in the root length and spike length (Liu et al., 2020a). Likewise, introgression of 4R and 6R chromosomes from rye cultivar ‘Kriszta’ resulted in a significant increase in protein content (Schneider et al., 2016). A novel stem rust resistant gene Sr59, yellow rust resistant gene Yr83, and powdery mildew resistant gene Pm56 from rye were introgressed into wheat as a 2DS:2RL and 6AL:6RS Robertsonian translocations, respectively (Table 1) (Rahmatov et al., 2016; Hao et al., 2018)
TABLE 1 | List of genes/translocations successfully transferred from wild relatives into wheat.
[image: Table 1]Deficiency of essential micronutrients also called as hidden hunger has affected around two billion people in the world. As a major staple crop, wheat provides almost 20% protein and energy to mankind. Hence, wheat is an ideal candidate for biofortification. Improvement of protein content in wheat grain has been remained a major breeding objective of several wheat groups around the globe. In wild emmer wheat, a Gpc-B1 locus was discovered which can enhance the content of protein, Zn and Fe; hence can be incorporated into cultivated wheat to increase its nutritional value (Uauy et al., 2006). This gene was introgressed into two cultivars HUW468 and HUW234 through marker assisted backcrossing (Vishwakarma et al., 2014; Mishra et al., 2015). The introgression of Gpc-B1 gene for increasing grain protein content has also been achieved in 10 elite wheat cultivars (Kumar et al., 2011). Moreover, introgression of Gpc-B1 gene was also performed in different spring wheat cultivars (Carter et al., 2012; Tabbita et al., 2012; Eagles et al., 2014), where grain protein contents were substantially increased. Tolerance to salt, and (1,3;1,4))-β-D-glucan content were also transferred in wheat as a 7BS.7HS wheat/barley Robertsonian translocation (Türkösi et al., 2018). Recombinant inbred wheat lines were developed by introgression with A. caudate; newly developed lines showed improved disease resistance. Also, resistance to the take-all disease was incorporated in the 2NS/2D substitution line of bread wheat by making a cross with Psathyrostachys huashania Keng (Table 1) (Bai et al., 2020). Recent technological advancements in genomics and cytogenetics offer new avenues for transferring alien genes to wheat, avoiding issues like linkage drag.
THE ERA OF THE GREEN REVOLUTION IN WHEAT PRODUCTION
In 1950, photoperiod insensitive (ppd1 and ppd2) genes were transferred into wheat for expanding germplasm usage globally (Rajaram, 2001). After the wheat rust epidemic (1951–1954) in North America, research for the development of rust-resistant modern cultivars was initiated by the CIMMYT (International Maize and Wheat Improvement Center, Mexico). Another initiative that prevented the outbreak of the famine in 1970s was the introduction of genes which resulted in a significant reduction of plant height in wheat. These genes were derived from a wheat genotype ‘Norin-10’. The semi-dwarf “Norin-10” was about 60 cm in height, more responsive to nitrogen fertilizer, resistant to rust, and had lodging resistance. Norin-10 was estimated to be cultivated on 15–18 million acres worldwide (Reitz and Salmon, 1968). The genes responsible for conferring short height were named Rht-B1 and Rht-D1 (Khush, 1999). The introduction of these genes in wheat paved the way for wheat breeding aimed at enhancing yield potential which ultimately helped in alleviating hunger and poverty across the globe. These varieties brought a green revolution in several developing countries like Pakistan, India, Turkey, Afghanistan, etc. Dr. Norman Borlaug was awarded Nobel Peace Prize for his brilliant work (Borlaug, 2007).
After the Green revolution, the wheat yield increased many folds (Figure 3), however, the nutritional quality was compromised (Ortiz-Monasterio et al., 2007). Increasing the nutritional quality of cultivated wheat became another challenge for wheat breeders. Also, the other disadvantage of the green revolution was that many old varieties disappeared, and many of these led to extinction (Eliazer Nelson et al., 2019). Almost 63% of wheat varieties released in the 21st century contain “Green revolution” alleles (Würschum et al., 2017). But the performance of varieties having these alleles was not satisfactory in dry and warm regions owing to arrested growth of coleoptile and seedling emergence (Rebetzke et al., 2014). An alternative dwarfing allele, Rht18 was identified that has no impact on coleoptile length, and hence can be used to replace previous dwarfing genes in target environments (Pearce, 2021). In the post-green evolution era, stem rust had also threatened these short-statured varieties. So, during this period, Sr2, Sr5, Sr6, Sr7a, Sr7b, Sr8a, Sr9b, Sr9d, Sr9e, Sr9g, Sr10, Sr11, Sr12, Sr17, Sr24, Sr26, Sr30, Sr31 and Sr36 genes were incorporated into wheat (Knott, 1988). However, later on, new devastating rust races evolved that became a serious threat to wheat germplasm, globally. Stem rust race Ug99 and its variants caused 80–100% yield losses in different countries of the world (Khan et al., 2013). These fast-evolving races of rust put the attention of breeders toward pyramiding two or three major genes to induce durable resistance in wheat. Later on, different varieties having minor genes for stem rust, leaf rust, and yellow rust were developed to avoid the issue of resistance breakdown (Figure 4).
[image: Figure 3]FIGURE 3 | Worldwide wheat production after the green revolution (FAOSTAT, 2022).
[image: Figure 4]FIGURE 4 | Timeline of historical developments in wheat research since its domestication.
HYBRID WHEAT: FUTURE PROSPECTS
Breeding hybrids remains instrumental in uplifting the production of several crop species including corn. There is a dire need to breed for adding resilience to changing environments and high-yielding wheat varieties to address the pressing issue of global food security. The exploitation of hybrid vigor may entail the desired increase in wheat yield (Longin et al., 2013), biotic/abiotic stress tolerance as well as grain quality (Gowda et al., 2012; Longin et al., 2013; Longin et al., 2014; Mühleisen et al., 2014; Longin et al., 2015; Jiang et al., 2017; Thorwarth et al., 2018);
The development of wheat hybrid is entirely dependent upon manual crossing between the two inbred lines. Efforts to develop hybrid wheat have a long history, however, the success rate is very slow because of its autogamous nature and tedious procedure of making crosses. Heterosis was first time reported in wheat in 1919, since then several efforts have been attempted to establish a well-defined hybrid production system in wheat (Freeman, 1919; Pickett, 1993). During the 1950s and 1980s, hybrid wheat breeding showed 10% mid-parent heterosis for grain yield. For hybrid development, cytoplasmic male sterility (CMS) and chemical hybridizing agents (CHA) were two methods practiced for removing pollens of the lines used as female (Kihara, 1951). The CMS and restorer genes were derived from T. timopheevii (Wilson, 1962). The research efforts being done in hybrid breeding could not be continued in real spirit owing to the maintenance of three lines, and some genetic issues related to complete restoration of fertility as well as the undesirable effect of alien cytoplasm (Singh et al., 2010).
Recent years witnessed the cloning of several male sterility genes which provided new tools for producing hybrid seeds in wheat. The dominant male-sterility gene Ms2 present in common bread wheat facilitated the evolution of several lines and cultivars, and could further be utilized in developing a high-throughput hybrid production system (Ni et al., 2017). The cloning of a nuclear recessive male sterility gene Ms1 also provides a new resource for large-scale commercial hybrid seed production (Wang et al., 2017). In addition, orthologous male sterile genes identified in grasses could help to understand the male sterile trait in wheat. In total, three homoeoalleles of OsNP1 showed similar expression to OsNP1 and ZmIPE1 in wheat. The optimized CRISPR/Cas9 mediated triple homozygous Tanp1 mutant displayed complete male sterility and only one wild type of TaNP1 gene was sufficient for the maintenance of male fertility (Li et al., 2022). This work provided an optimized CRISPR/Cas9 vector system in wheat, elucidated the highly conserved function of TaNP1 genes, and produced complete male sterile mutants which can be used in hybrid seed production. This genetic male sterile line will lead to two-line hybrid seed production in wheat. The two-line system will be free of negative effects associated with alloplasms, cytoplasm, and restorer line. This two-line system is relatively simple and potentially more efficient as compared to the existing 3-lines hybrid system; which demands a high cost of maintenance with a limited level of success in restoring fertility in F1 hybrids (Li et al., 2020). Despite several limitations, different attempts to develop wheat hybrids were made but still, hybrid breeding is not completely established.
During the 1990s, hybrid wheat programs were re-initiated by the CIMMYT-Monsanto joint project. Over the last few decades, global area under hybrid wheat is increasing; in Europe hybrid wheat cultivation impressively increased from 100,000 ha to 560,000 ha during 2017–2018. The success of hybrid wheat production can be witnessed in winter wheat variety ‘Hystar’ produced by the joint collaboration of Germany and Portugal. Moreover, several public and private companies have launched programs for the development hybrid wheat such as CROPCO’s program in the United Kingdom. Syngenta claims for the release first wheat hybrid in India in near future. In China, more than 50 wheat hybrids having 10–20% increased yield potential have been developed; out of these, seven hybrids (Yunza 6, Yunza 3, Jingmai 6, Mianyang 32, Jingmai 7, Yunza 5, Mianzamai 168) were approved. In another study, 3000 wheat lines were evaluated for hybrid wheat production which highlighted the importance of hybrid wheat production targeted at multiple traits (Baenziger et al., 2019). The recent studies suggest that recurrent genomic selection may help in achieving long-term selection gain of hybrid breeding (Rembe et al., 2019). By reducing the cost of hybrid seeds production, a better understanding of heterosis, developing heterotic groups, and incorporating novel technologies for fertility restoration, wheat hybrids can be developed in the future.
USE OF DNA MARKERS IN WHEAT BREEDING
Research on the development of DNA markers started in the early 1980s (Figure 4). In 1984, the restriction fragment length polymorphism (RFLP) assay was deployed for developing linkage and physical maps and studying the extent of genetic diversity among the wheat genotypes (Chao et al., 1989; Lagudah et al., 1991). Subsequently, PCR-based fingerprinting assays including random amplified polymorphic DNA (RAPD), sequence characterized amplified regions (SCAR), and simple sequence repeats (SSRs) were used for the amplification of desired DNA fragments. These DNA markers were associated with several traits including disease resistance, kernel traits, lodging, vernalization response, etc. (Galiba et al., 1995; Keller et al., 1999a; Keller et al., 1999b; Shahid et al., 2002; Campbell et al., 1999; Rahman et al., 2004; Marza et al., 2006). Consequently, several quantitative trait loci (QTLs) associated with heat stress and drought stress were identified which were located on different chromosomes (Malik and Malik, 2015; Sarkar et al., 2021). The use of DNA markers in marker-assisted breeding paved the way for the identification and selection of desirable genotypes/cultivars. Vrn, Ppd, and Rht were frequently used in marker-assisted selection to develop wheat cultivars/lines. By using RAPD and SCAR molecular markers, Dn 2 genes linked to Russian aphid resistance were identified which were used in developing new resistant wheat cultivars. The SSRs for Fusarium head blight resistance (FHB), pre-harvest sprouting tolerance, and mildew resistance were identified and used in marker-assisted selection in wheat (Del Blanco et al., 2003; Kottearachchi et al., 2006; Tucker et al., 2006). Similarly, SSR markers were also used in marker-assisted backcross breeding (MABB) for introducing traits such as grain protein content and drought tolerance in wheat (Davies et al., 2006; Rai et al., 2018).
Single nucleotide polymorphism (SNPs) is an efficient marker system (Gupta et al., 1999) that is found in abundance throughout the genome. Recently, technological advancements have resulted in the identification of important SNPs linked to traits such as tiller number, spikelets per spike, plant height, spike length, protein content, and grain yield per spike (Marcotuli et al., 2017; Chai et al., 2018; Wang et al., 2018).
DEVELOPMENT AND UTILIZATION OF SNP CHIPS IN WHEAT BREEDING
The SNPs-based platforms, containing informative SNPs are attractive and powerful tools used for studying the genetic diversity in wheat. The diversity array technology (DArT) was among the initial array-based technologies that generated hundreds of anonymous markers in wheat (Allen et al., 2011). A 9K SNP chip was developed for genotyping 2994 wheat lines. The generated information was used in genome-wide association studies (Cavanagh et al., 2013). The development of Illumina 90K gene-associated SNPs array designed to identify polymorphism in wheat, and KASP assays accelerated the use of SNP markers in wheat breeding (Allen et al., 2011; Wang S. et al., 2014). For detecting polymorphism in primary, secondary, and tertiary pools, an 820 K Affymetrix Axiom SNP array was developed (Winfield et al., 2016). The Wheat Breeders’ 35K Axiom array was later derived from the Wheat 820K SNP array (Allen et al., 2017). Another genome-specific and widely used 660K SNP array was fabricated for studying the polymorphism among the wheat genotypes (Sun et al., 2020). Moreover, some other SNP chips including 15K SNP (Boeven et al., 2016; Qaseem et al., 2019), and 55K SNP developed from 660K has been widely used for GWAS in wheat (Ye et al., 2019; Jin et al., 2020).
WHOLE GENOME SEQUENCING OF WHEAT
The huge size of the wheat genome (∼17.6 Gb) contains approximately 90% repetitive DNA which was the main hurdle in sequencing the whole genome (Li et al., 2004; Wanjugi et al., 2009). The International Wheat Genome Sequencing Consortium (IWGSC) was initiated to sequence the complex genome of wheat (Gill et al., 2004). Finally, in 2012, the first whole genome sequencing information of a Chinese Spring wheat variety “CS42” was released by deploying the short gun whole genome sequencing technique (Brenchley et al., 2012). Afterward, one chromosome at a time was sequenced and the genome assembly of 10.2 billion bases was constructed (IWGSC: The International Wheat Genome Sequencing Consortium, 2014). In the third attempt, 12.7 billion bases were assembled (Clavijo et al., 2017). Eventually, in the year, 2017–2018, the wheat genome of Chinese spring wheat was sequenced and released as the first reference wheat genome. With the rapid advancements in sequencing and assembly tools, many wheat cultivars were resequenced including the Chinese wheat-rye 1RS.1BL translocation cultivar “Aikang 58” (Ru et al., 2020), French bread wheat cultivar “Renan” (Aury et al., 2022), transformation-amenable common wheat cultivar “Fielder” (Sato et al., 2021), etc.
GENOME EDITING AS AN EMERGING TECHNIQUE
Genome editing can specifically modify the genome by inducing insertions, deletions, substitutions, and or targeted mutations (Zhang J. et al., 2018). Earlier genome editing tools such as zinc finger nucleases (ZNFs) and transcription activator-like effector nucleases (TALENs) have been replaced with Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 (CRISPR Cas/9). CRISPR/Cas9, a highly precise genome editing tool is used to induce specific double-stranded breaks in the genome (Azhar et al., 2021). This assay is relatively more economical and user-friendly than other editing assays including ZNFs and TALENs (Razzaq et al., 2021). Previously, CRISPR/Cas9 and transcription activator-like effector nucleases (TALEN) were used to knock out Mildew Locus O (Mlo) gene for enhancing resistance to powdery mildew (Wang C. et al., 2014).
Due to allohexaploid nature of wheat, it is very difficult to target three or more genes simultaneously. After successful development of stable plants in wheat, α-gliadin genes were targeted to decrease the gluten content (Sánchez-León et al., 2018). Similarly, TaGW2 homeologs were knocked out to develop mutant lines containing high protein content and grain weight (Zhang Y. et al., 2018). Furthermore, EDR1 homeologs and TaEDR1 lines showed resistance to powdery mildew (Zhang et al., 2017). To understand meiotic crossover, TaZIP4-B2 was targeted (Rey et al., 2018). Likewise, through Agrobacterium-mediated CRISPR/Cas9, each of the Qsd1 homeo alleles was targeted to suppress pre-harvest sprouting (Abe et al., 2019). Haploid wheat was developed by editing matrilineal (TaMTL) that triggers haploid production and centromere-specific histone H3 (CENH3I) gene that plays a vital role in the segregation of chromosomes during cell division (Liu et al., 2020b).
GENOMIC SELECTION
Genomic selection (GS) helps to select superior genotypes by integrating genotypic and phenotypic data of a training population (TP) to predict breeding values (GEBVs) of a breeding population (BP) (Meuwissen et al., 2001). On the basis of these GEBVs, better performing plants can be selected for use as parent genotypes in the next breeding programs. The similarity index of the molecular marker profile of these individuals with TP allows us to predict the best performing plants. Over time, GS has been efficiently used in wheat breeding due to its high accuracy. In the wheat breeding program, genotype-by-sequencing (GBS) was used to detect polymorphisms followed by the estimation of prediction accuracy (Poland et al., 2012). Relatively, low to moderate prediction accuracy (0.28 and 0.42) was recorded that was higher than the established marker platforms. Another study showed that Fusarium head blight resistance showed moderate to high prediction accuracies (0.67–0.82) making it a promising approach for improving resistance to Fusarium (Arruda et al., 2015). In GS, the prediction accuracy for grain quality ranged from 0.27 to 0.81, thus showed its potential for deploying in a wheat breeding program (Sandhu et al., 2021).
SPEED BREEDING—A WAY TO ACCELERATE BREEDING CYCLES
Conventional wheat breeding systems take several years to release a stable variety which hinders the breeding progress. However, speed breeding made it possible to harvest up to 4–6 generations of spring/winter wheat per year (Watson et al., 2018). The photoperiod of wheat has been extended to accelerate the developmental stages of plants. Plants grown under controlled environment chambers (speed breeding) reach the anthesis and heading stage almost half the time earlier than the plants grown under natural field conditions. The plant grown under light supplemented glasshouses have been evaluated on the basis of their germination rate.
Speed breeding is instrumental in advancing 5–6 generations per year. Thus, speed breeding can help in lessening the time required for each breeding cycle (Watson et al., 2018). Several protocols have been proposed for undertaking phenotypic characterization of wheat plants which can add synergism to speed breeding. For instance, grain dormancy to tolerate sprouting after harvesting (Hickey et al., 2009, 2010), resistance to stripe rust in wheat (Hickey et al., 2011), screening of root traits for improving adaptation to drought stress (Richard et al., 2015), resistance to yellow spot disease (Dinglasan et al., 2016), and leaf rust resistance traits (Riaz et al., 2016) were targeted through speed breeding in wheat. Several other traits including disease related traits, plant height, root traits, and flowering time have also been screened through speed breeding in wheat (Alahmad et al., 2018; Ghosh et al., 2018). Genomic selection together with speed breeding was used to increase genetic gain (Watson et al., 2019). Recent advancements in high-throughput phenotyping further reduced the obstacles in the progress of plant breeding and genetics. Hence, speed breeding coupled with high-throughput phenotyping can help in discovery of novel and desirable traits in a more sustainable way (Al-Tamimi et al., 2016). For instance, selection of some root and seedling traits through speed breeding helped in rapid selection of mature plants with improved root architecture (Richard et al., 2015).
HIGH THROUGHPUT PHENOTYPING
High throughput phenotyping assays have been used to monitor and measure several traits in a large number of plants, simultaneously. These techniques take advantage of the latest automated sensors and imaging tools. Through HTP approaches, non-destructive data can be collected more accurately from trials. The unmanned aerial vehicle (UAV)-based RGB imagery HTP approach was used to estimate wheat plant height (Volpato et al., 2021). The UAV was used to select wheat genotypes for grain yield in early selection cycles (Hu et al., 2020). In addition, complex traits such as lodging were also assessed using a UAV system which proved that HTP can be used to study complex traits (Singh et al., 2019).
DEVELOPMENT OF GENETICALLY MODIFIED WHEAT
In 1992, the first transgenic wheat conferring tolerance to herbicide was developed (Vasil et al., 1992). The complex nature of the wheat genome together with its acceptability by the public remained a major challenge in extending research on the development of transgenic wheat (Shewry Jones, 2005). Initially, transgenic wheat was developed using the biolistic method. Later on, Agrobacterium-mediated transformation approach was used. In 2004, the first genetically modified wheat round-up ready (MON- 71800) was developed by Monsanto through the introduction of the CP4 Esps gene—conferring resistance to glyphosate (herbicide). Several transgenic lines were developed containing avidin gene conferring resistance to insect pests (Abouseadaa et al., 2015). Moreover, transgenic wheat lines containing DREB1A, HDG11, WRKY2, TaSHN1, NAC, and bZIP2 were produced which had a high tolerance to drought and increased yield potential (Pellegrineschi et al., 2004; Xue et al., 2011; Li et al., 2016; Bi et al., 2018; Gao et al., 2018; Luang et al., 2018) Similarly, heat resistant transgenic wheat was produced which were overexpressing TaHsfA6f, TaFER-5B, TaHsfC2a genes (Xue et al., 2015; Zang et al., 2017; Hu et al., 2018). Some other researchers produced wheat lines conferring resistance to viruses, showing high nutritional quality and improved yield (Sivamani et al., 2000; Xue et al., 2004; Tamás et al., 2009). In 2020, Argentina was the first country to approve drought-resistant GM wheat Bioceres HB4 (Sheridan, 2021). Recently, Brazil also approved HB4 developed by Argentina for consumption as flour.
CONTRIBUTION OF WHEAT TOWARDS GLOBAL FOOD SECURITY IN CHANGING CLIMATES
Wheat is consumed by 2.5 billion people as a staple crop and it contributes to global food security by providing 20% calories and proteins. Escalating temperature can severely affect the average wheat yield across the globe. It was projected that a 1°C rise in temperature can suppress yield by 10%. In the coming years, the impact of changing environmental conditions and wheat production to feed extra 3 billion people will be the major challenges for wheat breeders (Curtis and Halford, 2014). The annual yield should be increased to 1.6% to meet the increasing demand of the human population under the scenario of changing environments (Ray et al., 2013; Wheeler and Von Braun, 2013; FAO, 2017). Another major menace is the limited or non-availability of irrigation water which is required for maintaining normal wheat growth. It has been reported that drought alone can reduce yield by up to 86%, and the condition can be worsened under the changing environmental conditions (Shafeeq and Zafar, 2006; Joshi et al., 2007; Prasad et al., 2011). Development of resilient wheat varieties that can demonstrate high yield potential is required for sustaining wheat production worldwide. Also, the changing climate can foster the evolution of new strains of pathogens and diseases. For example, new races/strains of rust disease can overcome the available resistance in cultivated wheat varieties. Rust diseases can cause 15%–20% wheat yield losses worldwide (Figueroa et al., 2018). The incorporation of rust-resistant genes against evolving pathogens into high-yielding wheat varieties is very important for sustainable wheat production. Thus, new resilient wheat varieties under the changing environmental conditions can ensure global food security.
Increasing grain yield to ensure food security
Grain yield (Y)-a complex quantitative trait-is affected significantly by biotic and abiotic stresses. Grain yield is dependent on biomass (B) and grain harvest index (HI) (Yield = B × HI). During the green revolution, HI was improved by about 60% by the incorporation of height-related genes in old wheat varieties. Yield can be improved by increasing photosynthetic area or capacity (Parry et al., 2011). Canopy architecture, large-spike, and spike fertility can also contribute to high yield (Gaju et al., 2009; Murchie et al., 2009; Reynolds et al., 2009). For pyramiding all these traits in one cultivar, DNA markers can be used for monitoring the introgression of these traits. Likewise, wheat hybrid breeding can also enhance wheat production in the future.
Eradication of malnutrition by quality improvement
Micronutrient deficiency is also a major challenge, almost three billion people are affected by these deficiencies globally (Welch and Graham, 2004). Children and females in developing countries are more prone to Zinc (17%) and Iron (33%) deficiencies worldwide (Wessells and Brown, 2012; Kassebaum et al., 2014). To address micronutrient deficiencies, wheat is the best candidate crop as it is consumed by a large population globally. It has been reported that Zn and Fe concentration is relatively high in closely related wild wheat species (Çakmak et al., 2004). Provitamin content has been increased by expressing bacterial CrtB and CrtI gene through transgenic methods. Similarly, protein content has been enhanced by expressing Amaranthus albumin gene and Fe content by the soybean ferritin gene in wheat (Cong et al., 2009; Wang C. et al., 2014). However, varieties expressing high-quality traits have relatively low yield potential. For wider acceptability, support price (premium) for such varieties should be announced by the regulators for encouraging their cultivation. Alternatively, some transgenic wheat lines expressing high Zn and Fe contents should be allowed for cultivation in restricted parts of wheat-growing countries that can be mixed in flour of non-transgenic wheat varieties.
Enhancing resilience to stresses
Development of varieties having high yield potential and resilience to stresses is the need of the hour (Juliana et al., 2019). Wild relative of wheat such as Aegilops tauschii (DD) is a good source for climate resilience because it can easily be crossed with durum (AABB) or bread wheat (AABBDD) to generate synthetic wheat (Elbashir et al., 2017). Hybrid wheat is another promising approach as it has higher yield stability and tolerance to stresses. Hybrids in wheat have been produced with resistance to Fusarium head blight, frost resistant, leaf rust resistance and, Septoria tritici blotch resistance showing hybrid wheat potential with context to climate change (Longin et al., 2013; Miedaner et al., 2017).
CONCLUSION
Wheat is one of the ancient crops and it is the crop of the future. Since its domestication, breeders and farmers have modified wheat continuously through selections and by incorporating different genes for short plant height, and biotic and abiotic stresses. Despite the extensive research, still there is a gap between the total wheat production and consumption, particularly in developing countries. The current rate of genetic gain is alarming which would not help in meeting the food demand of the growing human population in 2050. Changes in climatic conditions may further worsen the situation by inviting new pests and diseases, reducing yield due to terminal heat, and altered rainfall patterns may reduce the cultivated area of wheat in several countries. Under such circumstances, genes conferring resilience to rust diseases, terminal heat, drought, and salinity are required to be introduced into wheat cultivars. For increasing yield potential by 30%, it is extremely important to find new genetic solutions for tackling the issue of male sterility and restoration in hybrid wheat. For example, the adoption of new technologies including high throughput phenotyping, gene editing, speed breeding, molecular breeding, and selection strategies can accelerate the magnitude of genetic gains of the newly developed varieties. Thus, wheat production can be sustained beyond 2050.
AUTHOR CONTRIBUTIONS
SG and SZ prepared a preliminary draft; MS edited gave critical inputs; JL helped in editing the MS; JW conceived and edited the MS. MR prepared the outlines and edited extensively primary and subsequent draft of the article; All authors read and approved the article.
FUNDING
This work was supported by the Shandong Provincial Natural Science Foundation project (ZR2021ZD31).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Aaronsohn, A. (1910). Agricultural and botanical explorations in Palestine. Washington, DC: US Government Printing Office. 
 Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., et al. (2019). Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell. Rep. 28, 1362–1369. doi:10.1016/j.celrep.2019.06.090
 Abouseadaa, H. H., Osman, G. H., Ramadan, A. M., Hassanein, S. E., Abdelsattar, M. T., Morsy, Y. B., et al. (2015). Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects. BMC Plant Biol. 15, 183–188. doi:10.1186/s12870-015-0570-x
 Acevedo‐Garcia, J., Spencer, D., Thieron, H., Reinstädler, A., Hammond‐Kosack, K., Phillips, A. L., et al. (2017). mlo‐based powdery mildew resistance in hexaploid bread wheat generated by a non‐transgenic TILLING approach. Plant Biotechnol. J. 15, 367–378. doi:10.1111/pbi.12631
 Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y. S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7 (1), 1–11. doi:10.1038/ncomms13342
 Alahmad, S., Dinglasan, E., Leung, K. M., Riaz, A., Derbal, N., Voss-Fels, K. P., et al. (2018). Speed breeding for multiple quantitative traits in durum wheat. Plant methods 14 (1), 36–15. doi:10.1186/s13007-018-0302-y
 Albokari, M. (2014). Induction of mutants in durum wheat (Triticum durum desf cv. samra) using gamma irradiation. Pak. J. Bot. 46, 317–324. 
 Allen, A. M., Barker, G. L., Berry, S. T., Coghill, J. A., Gwilliam, R., Kirby, S., et al. (2011). Transcript‐specific, single‐nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 9, 1086–1099. doi:10.1111/j.1467-7652.2011.00628.x
 Allen, A. M., Winfield, M. O., Burridge, A. J., Downie, R. C., Benbow, H. R., Barker, G. L., et al. (2017). Characterization of a Wheat Breeders’ Array suitable for high‐throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 15, 390–401. doi:10.1111/pbi.12635
 Ardalani, S., Mirzaghaderi, G., and Badakhshan, H. (2016). A Robertsonian translocation from Thinopyrum bessarabicum into bread wheat confers high iron and zinc contents. Plant Breed. 135, 286–290. doi:10.1111/pbr.12359
 Arruda, M. P., Brown, P. J., Lipka, A. E., Krill, A. M., Thurber, C., and Kolb, F. L. (2015). Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome 8. doi:10.3835/plantgenome2015.01.0003
 Aury, J.-M., Engelen, S., Istace, B., Monat, C., Lasserre-Zuber, P., Belser, C., et al. (2022). Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience 11, giac034. doi:10.1093/gigascience/giac034
 Azhar, M. T., Atif, R. M., Israr, M., Khan, A. I., Khalid, S., and Rana, I. A. (2021). A discussion on cotton transformation during the last decade (2010–2021); an update on present trends and future prospects. J. Cotton Res. 4 (1), 1–14. 
 Baenziger, P., Belamkar, V., Easterly, A., Garst, N., Stoll, H., Ibrahim, A., et al. (2019). Developing the tools for hybrid wheat: American perspective. EWG Breed. methods-workshop hybrid wheat held Febr. 19, 2019. 
 Baffes, J. (2005). The “cotton problem”. World Bank Res. Observer 20, 109–144. doi:10.1093/wbro/lki004
 Bai, S., Yuan, F., Zhang, H., Zhang, Z., Zhao, J., Yang, Q., et al. (2020). Characterization of the wheat-psathyrostachys huashania Keng 2ns/2D substitution line H139: A novel germplasm with enhanced resistance to wheat take-all. Front. Plant Sci. 11, 233. doi:10.3389/fpls.2020.00233
 Bajaj, Y. (1990). “Biotechnology in wheat breeding,” in Wheat ( Springer), 3–23.
 Beach, F. M. (1923). Hybridization of wheat. 
 Bi, H., Shi, J., Kovalchuk, N., Luang, S., Bazanova, N., Chirkova, L., et al. (2018). Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions. Plant Cell. Environ. 41, 2549–2566. doi:10.1111/pce.13339
 Biffen, R. H. (1905). Mendel's laws of inheritance and wheat breeding. J. Agric. Sci. 1, 4–48. doi:10.1017/s0021859600000137
 Boeven, P. H., Longin, C. F. H., Leiser, W. L., Kollers, S., Ebmeyer, E., and Würschum, T. (2016). Genetic architecture of male floral traits required for hybrid wheat breeding. Theor. Appl. Genet. 129 (12), 2343–2357. doi:10.1007/s00122-016-2771-6
 Borlaug, N. (2007). Feeding a hungry world. Am. Assoc. Adv. Sci. 318, 359.
 Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D’Amore, R., Allen, A. M., et al. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705–710. doi:10.1038/nature11650
 Brini, F., and Masmoudi, K. (2014). “Biotechnology for drought and salinity tolerance of crops,” in Physiological mechanisms and adaptation strategies in plants under changing environment ( Springer), 97–113.
 Cainong, J. C., Bockus, W. W., Feng, Y., Chen, P., Qi, L., Sehgal, S. K., et al. (2015). Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet. 128, 1019–1027. doi:10.1007/s00122-015-2485-1
 Çakmak, İ., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A., et al. (2004). Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. plant Nutr. 50, 1047–1054. doi:10.1080/00380768.2004.10408573
 Campbell, K. G., Bergman, C. J., Gualberto, D. G., Anderson, J. A., Giroux, M. J., Hareland, G., et al. (1999). Quantitative trait loci associated with kernel traits in a soft× hard wheat cross. Crop Sci. 39, 1184–1195. doi:10.2135/cropsci1999.0011183x003900040039x
 Carter, A. H., Santra, D. K., and Kidwell, K. K. (2012). Assessment of the effects of the Gpc‐B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest Region of the USA. Plant Breed. 131 (1), 62–68. doi:10.1111/j.1439-0523.2011.01900.x
 Cavanagh, C. R., Chao, S., Wang, S., Huang, B. E., Stephen, S., Kiani, S., et al. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U. S. A. 110, 8057–8062. doi:10.1073/pnas.1217133110
 Chai, L., Chen, Z., Bian, R., Zhai, H., Cheng, X., Peng, H., et al. (2018). Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor. Appl. Genet. 131, 2621–2637. doi:10.1007/s00122-018-3177-4
 Chao, S., Sharp, P., Worland, A., Warham, E., Koebner, R., and Gale, M. (1989). RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78, 495–504. doi:10.1007/BF00290833
 Charmet, G. (2011). Wheat domestication: Lessons for the future. C. R. Biol. 334, 212–220. doi:10.1016/j.crvi.2010.12.013
 Chen, L., Huang, L., Min, D., Phillips, A., Wang, S., Madgwick, P. J., et al. (2012). Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS One 7, e41570. doi:10.1371/journal.pone.0041570
 Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., Wright, J., et al. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885–896. doi:10.1101/gr.217117.116
 Cong, L., Wang, C., Chen, L., Liu, H., Yang, G., and He, G. (2009). Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J. Agric. Food Chem. 57, 8652–8660. doi:10.1021/jf9012218
 Cooper, R. (2015). Re-discovering ancient wheat varieties as functional foods. J. Tradit. Complement. Med. 5, 138–143. doi:10.1016/j.jtcme.2015.02.004
 Curtis, T., and Halford, N. (2014). Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 164, 354–372. doi:10.1111/aab.12108
 Danilova, T. V., Friebe, B., Gill, B. S., Poland, J., and Jackson, E. (2018). Development of a complete set of wheat–barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theor. Appl. Genet. 131, 377–388. doi:10.1007/s00122-017-3008-z
 Danilova, T. V., Poland, J., and Friebe, B. (2019). Production of a complete set of wheat–barley group-7 chromosome recombinants with increased grain β-glucan content. Theor. Appl. Genet. 132, 3129–3141. doi:10.1007/s00122-019-03411-3
 Danilova, T. V., Zhang, G., Liu, W., Friebe, B., and Gill, B. S. (2017). Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor. Appl. Genet. 130, 549–556. doi:10.1007/s00122-016-2834-8
 Davies, J., Berzonsky, W. A., and Leach, G. D. (2006). A comparison of marker-assisted and phenotypic selection for high grain protein content in spring wheat. Euphytica 152, 117–134. doi:10.1007/s10681-006-9185-5
 de Oliveira Camargo, C. E., Neto, A. T., Ferreira Filho, A. W., and Felicio, J. C. (2000). Genetic control of aluminum tolerance in mutant lines of the wheat cultivar Anahuac. Euphytica 114, 47–53. doi:10.1023/a:1003993320432
 Del Blanco, I., Frohberg, R., Stack, R., Berzonsky, W., and Kianian, S. (2003). Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor. Appl. Genet. 106, 1027–1031. doi:10.1007/s00122-002-1137-4
 Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C., and Guarino, L. (2017). Past and future use of wild relatives in crop breeding. Crop Sci. 57, 1070–1082. doi:10.2135/cropsci2016.10.0885
 Dinglasan, E., Godwin, I. D., Mortlock, M. Y., and Hickey, L. T. (2016). Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209, 693–707. doi:10.1007/s10681-016-1660-z
 Dong, C., Dalton‐Morgan, J., Vincent, K., and Sharp, P. (2009). A modified TILLING method for wheat breeding. Plant Genome 2. doi:10.3835/plantgenome2008.10.0012
 Dubcovsky, J., and Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866. doi:10.1126/science.1143986
 Eagles, H. A., McLean, R., Eastwood, R. F., Appelbee, M. J., Cane, K., Martin, P. J., et al. (2014). High-yielding lines of wheat carrying Gpc-B1 adapted to Mediterranean-type environments of the south and west of Australia. Crop Pasture Sci. 65 (9), 854–861.
 Eckardt, N. A. (2010). Evolution of domesticated bread wheat. American Society of Plant Biologists. 
 Elbashir, A. A. E., Gorafi, Y. S. A., Tahir, I. S. A., Kim, J.-S., and Tsujimoto, H. (2017). Wheat multiple synthetic derivatives: A new source for heat stress tolerance adaptive traits. Breed. Sci. 67, 248–256. doi:10.1270/jsbbs.16204
 Eliazer Nelson, A. R. L., Ravichandran, K., and Antony, U. (2019). The impact of the Green Revolution on indigenous crops of India. J. Ethn. Food. 6, 8–10. doi:10.1186/s42779-019-0011-9
 Eriksson, J., and Henning, E. J. (1896). Die getreideroste, ihre geschichte und natur sowie massregeln genen dieselben: Bericht über die am experimentalfelde der Kgl. schwedischen landbau-akademie in den jahren 1890-93 mit staatsunten stützung ausgeführte untersuchung. Stockholm: PA Norstedt & söner. 
 FAO (2017). The future of food and agriculture–Trends and challenges. Annu. Rep. 296, 1–180. 
 FAOSTAT (2022). The food and agriculture organization of the united nations. 
 Fedak, G., Chi, D., Wolfe, D., Ouellet, T., Cao, W., Han, F., et al. (2021). Transfer of fusarium head blight resistance from Thinopyrum elongatum to bread wheat cultivar Chinese Spring. Genome 64, 997–1008. doi:10.1139/gen-2020-0151
 Feldman, M., Lupton, F., and Miller, T. (1995). “Wheats,” in Evolution of crop plants ed . Editors J. Smartt, and N. w. Simmonds. 2nd (London: Longman Scientific), 184–192.
 Figueroa, M., Hammond‐Kosack, K. E., and Solomon, P. S. (2018). A review of wheat diseases—A field perspective. Mol. Plant Pathol. 19, 1523–1536. doi:10.1111/mpp.12618
 Freeman, G. F. (1919). The heredity of quantitative characters in wheat. Genetics 4, 1–93. doi:10.1093/genetics/4.1.1
 Friebe, B., Jiang, J., Raupp, W., McIntosh, R., and Gill, B. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 91, 59–87. doi:10.1007/bf00035277
 Friebe, B., Kynast, R., Hatchett, J., Sears, R., Wilson, D., and Gill, B. (1999). Transfer of wheat-rye translocation chromosomes conferring resistance to hessian fly from bread wheat into durum wheat. Crop Sci. 39, 1692–1696. doi:10.2135/cropsci1999.3961692x
 Gaju, O., Reynolds, M., Sparkes, D., and Foulkes, M. (2009). Relationships between large‐spike phenotype, grain number, and yield potential in spring wheat. Crop Sci. 49, 961–973. doi:10.2135/cropsci2008.05.0285
 Galiba, G., Quarrie, S. A., Sutka, J., Morgounov, A., and Snape, J. W. (1995). RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 90, 1174–1179. doi:10.1007/BF00222940
 Gao, H., Wang, Y., Xu, P., and Zhang, Z. (2018). Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front. Plant Sci. 9, 997. doi:10.3389/fpls.2018.00997
 Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzalez, R. H., Yanes, L., Mendoza-Suárez, M., et al. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13 (12), 2944–2963. doi:10.1038/s41596-018-0072-z
 Gill, B. S., Appels, R., Botha-Oberholster, A.-M., Buell, C. R., Bennetzen, J. L., Chalhoub, B., et al. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168, 1087–1096. doi:10.1534/genetics.104.034769
 Gowda, M., Longin, C. F. H., Lein, V., and Reif, J. C. (2012). Relevance of specific versus general combining ability in winter wheat. Crop Sci. 52, 2494–2500. doi:10.2135/cropsci2012.04.0245
 Guo, H., Yan, Z., Li, X., Xie, Y., Xiong, H., Liu, Y., et al. (2017). Development of a high-efficient mutation resource with phenotypic variation in hexaploid winter wheat and identification of novel alleles in the TaAGP. L-B1 gene. Front. Plant Sci. 8, 1404. doi:10.3389/fpls.2017.01404
 Gupta, P., Varshney, R., Sharma, P., and Ramesh, B. (1999). ReviewMolecular markers and their applications in wheat breeding. Plant Breed. 118, 369–390. doi:10.1046/j.1439-0523.1999.00401.x
 Hao, M., Liu, M., Luo, J., Fan, C., Yi, Y., Zhang, L., et al. (2018). Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci. 9, 1040. doi:10.3389/fpls.2018.01040
 Henikoff, S., and Comai, L. (2003). Single-nucleotide mutations for plant functional genomics. Annu. Rev. Plant Biol. 54, 375–401. doi:10.1146/annurev.arplant.54.031902.135009
 Hickey, L. T., Dieters, M. J., DeLacy, I. H., Christopher, M. J., Kravchuk, O. Y., and Banks, P. M. (2010). Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica 172, 183–195. doi:10.1007/s10681-009-0028-z
 Hickey, L. T., Dieters, M. J., DeLacy, I. H., Kravchuk, O. Y., Mares, D. J., and Banks, P. M. (2009). Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica 168, 303–310. doi:10.1007/s10681-009-9929-0
 Hickey, L. T., Lawson, W., Platz, G. J., Dieters, M., Arief, V. N., German, S., et al. (2011). Mapping Rph20: A gene conferring adult plant resistance to Puccinia hordei in barley. Theor. Appl. Genet. 123, 55–68. doi:10.1007/s00122-011-1566-z
 Hu, X. J., Chen, D., Lynne Mclntyre, C., Fernanda Dreccer, M., Zhang, Z. B., Drenth, J., et al. (2018). Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA‐mediated regulatory pathway. Plant Cell. Environ. 41, 79–98. doi:10.1111/pce.12957
 Hu, Y., Knapp, S., and Schmidhalter, U. (2020). Advancing high-throughput phenotyping of wheat in early selection cycles. Remote Sens. 12, 574. doi:10.3390/rs12030574
 Hussain, M., Gul, M., Kamal, R., Iqbal, M. A., Zulfiqar, S., Abbas, A., et al. (2021). Prospects of developing novel genetic resources by chemical and physical mutagenesis to enlarge the genetic window in bread wheat varieties. Agriculture 11, 621. doi:10.3390/agriculture11070621
 Hussain, M., Iqbal, M. A., Till, B. J., and Rahman, M.-u.-. (2018). Identification of induced mutations in hexaploid wheat genome using exome capture assay. PLoS One 13, e0201918. doi:10.1371/journal.pone.0201918
 Jang, J. H., Jung, W. J., Kim, D. Y., and Seo, Y. W. (2017). cDNA-AFLP analysis of 1BL. 1RS under water-deficit stress and development of wheat-rye translocation-specific markers. N. Z. J. Crop Hortic. Sci. 45, 150–164. doi:10.1080/01140671.2016.1269018
 Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J., and Till, B. J. (2017). Biotechnologies for plant mutation breeding: Protocols. Springer Nature. 
 Jiang, Y., Schmidt, R. H., Zhao, Y., and Reif, J. C. (2017). A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49, 1741–1746. doi:10.1038/ng.3974
 Jin, J., Duan, S., Qi, Y., Yan, S., Li, W., Li, B., et al. (2020). Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat. Theor. Appl. Genet. 133 (7), 2063–2073. doi:10.1007/s00122-020-03577-1
 Johansson, E., Henriksson, T., Prieto-Linde, M. L., Andersson, S., Ashraf, R., and Rahmatov, M. (2020). Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat. Front. Plant Sci. 11, 1067. doi:10.3389/fpls.2020.01067
 Joshi, A., Chand, R., Arun, B., Singh, R., and Ortiz, R. (2007). Breeding crops for reduced-tillage management in the intensive, rice–wheat systems of South Asia. Euphytica 153, 135–151. doi:10.1007/s10681-006-9249-6
 Juliana, P., Poland, J., Huerta-Espino, J., Shrestha, S., Crossa, J., Crespo-Herrera, L., et al. (2019). Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 51, 1530–1539. doi:10.1038/s41588-019-0496-6
 Kassebaum, N. J., Jasrasaria, R., Naghavi, M., Wulf, S. K., Johns, N., Lozano, R., et al. (2014). A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624. doi:10.1182/blood-2013-06-508325
 Keller, M., Karutz, C., Schmid, J., Stamp, P., Winzeler, M., Keller, B., et al. (1999a). Quantitative trait loci for lodging resistance in a segregating wheat× spelt population. Theor. Appl. Genet. 98, 1171–1182. doi:10.1007/s001220051182
 Keller, M., Keller, B., Schachermayr, G., Winzeler, M., Schmid, J., Stamp, P., et al. (1999b). Quantitative trait loci for resistance against powdery mildew in a segregating wheat× spelt population. Theor. Appl. Genet. 98, 903–912. doi:10.1007/s001220051149
 Khan, M. H., Bukhari, A., Dar, Z. A., and Rizvi, S. M. (2013). Status and strategies in breeding for rust resistance in wheat. Agric. Sci. 4, 292–301. doi:10.4236/as.2013.46042
 Khush, G. S. (1999). Green revolution: Preparing for the 21st century. Genome 42, 646–655. doi:10.1139/g99-044
 Kihara, H. (1944). Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hort. 19, 13–14. 
 Kihara, H. (1951). Substitution of nucleus and its effects on genome manifestations. Cytologia 16, 177–193. doi:10.1508/cytologia.16.177
 King, J., Grewal, S., Othmeni, M., Coombes, B., Yang, C.-y., Walter, N., et al. (2022). Introgression of the Triticum timopheevii genome into wheat detected by chromosome-specific kompetitive allele specific PCR markers. Front. Plant Sci. 13, 919519. doi:10.3389/fpls.2022.919519
 Knott, D. (1988). “Using polygenic resistance to breed for stem rust resistance in wheat,” in Breeding strategies for resistance to the rusts of wheat (Mexico: El Batan). Chapter 4. 
 Kottearachchi, N., Uchino, N., Kato, K., and Miura, H. (2006). Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs. Euphytica 152, 421–428. doi:10.1007/s10681-006-9231-3
 Krishnan, A., Guiderdoni, E., An, G., Hsing, Y.-i. C., Han, C.-d., Lee, M. C., et al. (2009). Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 149, 165–170. doi:10.1104/pp.108.128918
 Kumar, J., Jaiswal, V., Kumar, A., Kumar, N., Mir, R. R., Kumar, S., et al. (2011). Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res. 123 (3), 226–233. doi:10.1016/j.fcr.2011.05.013
 Lagudah, E., Appels, R., Brown, A., and McNeil, D. (1991). The molecular–genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34, 375–386. doi:10.1139/g91-059
 Li, H., Dong, Z., Ma, C., Tian, X., Qi, Z., Wu, N., et al. (2019). Physical mapping of stem rust resistance gene Sr52 from Dasypyrum villosum based on ph1b-induced homoeologous recombination. Int. J. Mol. Sci. 20, 4887. doi:10.3390/ijms20194887
 Li, J., Wang, Z., He, G., Ma, L., and Deng, X. W. (2020). CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J. Genet. Genomics 47 (5), 263–272. doi:10.1016/j.jgg.2020.05.004
 Li, L., Zheng, M., Deng, G., Liang, J., Zhang, H., Pan, Z., et al. (2016). Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.). Mol. Breed. 36, 23. doi:10.1007/s11032-016-0447-1
 Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., et al. (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455–460. doi:10.1038/s41586-022-04395-9
 Li, W., Zhang, P., Fellers, J. P., Friebe, B., and Gill, B. S. (2004). Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 40, 500–511. doi:10.1111/j.1365-313X.2004.02228.x
 Liu, H., Tang, H., Ding, P., Mu, Y., Habib, A., Liu, Y., et al. (2020a). Effects of the 1BL/1RS translocation on 24 traits in a recombinant inbred line population. Cereal Res. Commun. 48, 225–232. doi:10.1007/s42976-020-00027-y
 Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., et al. (2020b). Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 71, 1337–1349. doi:10.1093/jxb/erz529
 Liu, W., Koo, D.-H., Xia, Q., Li, C., Bai, F., Song, Y., et al. (2017). Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor. Appl. Genet. 130, 841–848. doi:10.1007/s00122-017-2855-y
 Longin, C. F. H., Gowda, M., Mühleisen, J., Ebmeyer, E., Kazman, E., Schachschneider, R., et al. (2013). Hybrid wheat: Quantitative genetic parameters and consequences for the design of breeding programs. Theor. Appl. Genet. 126, 2791–2801. doi:10.1007/s00122-013-2172-z
 Longin, C. F. H., Mi, X., Melchinger, A. E., Reif, J. C., and Würschum, T. (2014). Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat. Theor. Appl. Genet. 127, 2117–2126. doi:10.1007/s00122-014-2365-0
 Longin, C. F. H., Mi, X., and Würschum, T. (2015). Genomic selection in wheat: Optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor. Appl. Genet. 128, 1297–1306. doi:10.1007/s00122-015-2505-1
 Lu, B. R., and Ellstrand, N. (2014). World food security and the tribe Triticeae (Poaceae): genetic resources of cultivated, wild, and weedy taxa for crop improvement, 52. Wiley Online Library, 661–666.
 Lu, H., Rudd, J. C., Burd, J., and Weng, Y. (2010). Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL. 1RS wheat‐rye translocations. Plant Breed. 129, 472–476. 
 Luang, S., Sornaraj, P., Bazanova, N., Jia, W., Eini, O., Hussain, S. S., et al. (2018). The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Mol. Biol. 96, 543–561. doi:10.1007/s11103-018-0713-1
 Mago, R., Zhang, P., Vautrin, S., Šimková, H., Bansal, U., Luo, M.-C., et al. (2015). The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 1, 1–13. doi:10.1038/nplants.2015.186
 Malik, S., and Malik, T. A. (2015). Genetic mapping of potential QTLs associated with drought tolerance in wheat. JAPS J. Animal Plant Sci. 25 (4). 
 Marais, G., Badenhorst, P., Eksteen, A., and Pretorius, Z. (2010). Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica 171, 15–22. doi:10.1007/s10681-009-9973-9
 Marchal, C., Zhang, J., Zhang, P., Fenwick, P., Steuernagel, B., Adamski, N. M., et al. (2018). BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 4, 662–668. doi:10.1038/s41477-018-0236-4
 Marcotuli, I., Gadaleta, A., Mangini, G., Signorile, A. M., Zacheo, S. A., Blanco, A., et al. (2017). Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. Int. J. Mol. Sci. 18, 1329. doi:10.3390/ijms18061329
 Marza, F., Bai, G.-H., Carver, B., and Zhou, W.-C. (2006). Quantitative trait loci for yield and related traits in the wheat population Ning7840 x Clark.Theor. Appl. Genet. 112, 688–698. doi:10.1007/s00122-005-0172-3
 Mastrangelo, A. M., and Cattivelli, L. (2021). What makes bread and durum wheat different?Crop Pasture Sci. 26, 677–684. doi:10.1071/cp14106
 McFadden, E. S., and Sears, E. R. (1946). The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81 107–116. doi:10.1093/oxfordjournals.jhered.a105590
 McFadden, E. (1944). The artificial synthesis of Triticum spelta. Rec. Genet. Soc. Am. 13, 26–27. 
 Meuwissen, T. H., Hayes, B. J., and Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi:10.1093/genetics/157.4.1819
 Micke, A., Donini, B., and Maluszynski, M. (1990). Induced mutations for crop improvement. 
 Miedaner, T., Schulthess, A. W., Gowda, M., Reif, J. C., and Longin, C. F. H. (2017). High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid-parent values in wheat. Theor. Appl. Genet. 130, 461–470. doi:10.1007/s00122-016-2826-8
 Mishra, V. K., Gupta, P. K., Arun, B., Chand, R., Vasistha, N. K., Vishwakarma, M. K., and Joshi, A. K. (2015). Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted backcross breeding. 
 Molnar-Lang, M., Ceoloni, C., and Dolezel, J. (2016). Alien introgression in wheat cytogenetics, molecular biology, and genomics. Cereal Res. Commun. 44, 535–536. 
 Mühleisen, J., Piepho, H.-P., Maurer, H. P., Longin, C. F. H., and Reif, J. C. (2014). Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor. Appl. Genet. 127, 309–316. doi:10.1007/s00122-013-2219-1
 Mukhtar, S., Rahman, M., and Zafar, Y. (2002). Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128 (3), 417–425. 
 Murchie, E., Pinto, M., and Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytol. 181, 532–552. doi:10.1111/j.1469-8137.2008.02705.x
 Nesbitt, M., and Samuel, D. (1996). “From staple crop to extinction? The archaeology and history of the hulled wheat,” in Hulled Wheats, Promoting the conservation and used of underutilised and neglected crops ed . Editors S. Padulosi, K. Hammer, and J. Heller (Rome: IPGRI), 40–99. 
 Ni, F., Qi, J., Hao, Q., Lyu, B., Luo, M.-C., Wang, Y., et al. (2017). Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat. Commun. 8, 1–12. doi:10.1038/ncomms15121
 Niu, Z., Klindworth, D. L., Friesen, T. L., Chao, S., Jin, Y., Cai, X., et al. (2011). Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187, 1011–1021. doi:10.1534/genetics.110.123588
 Olmstead, A. L., and Rhode, P. W. (2002). The red queen and the hard reds: Productivity growth in American wheat, 1800–1940. J. Econ. Hist. 62, 929–966. doi:10.1017/s0022050702001602
 Olson, E. L., Rouse, M. N., Pumphrey, M. O., Bowden, R. L., Gill, B. S., and Poland, J. A. (2013). Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theor. Appl. Genet. 126, 1179–1188. doi:10.1007/s00122-013-2045-5
 Ortiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., and Pena, R. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal Sci. 46, 293–307. doi:10.1016/j.jcs.2007.06.005
 Othmeni, M., Grewal, S., Walker, J., Yang, C.-y., King, I. P., and King, J. (2022). Assessing the potential of using the Langdon 5D (5B) substitution line for the introgression of Aegilops tauschii into durum wheat. Front. Plant Sci. 13, 927728. doi:10.3389/fpls.2022.927728
 Parry, M. A., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X.-G., et al. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62, 453–467. doi:10.1093/jxb/erq304
 Pearce, S. (2021). Towards the replacement of wheat ‘Green Revolution’genes. J. Exp. Bot. 72, 157–160. doi:10.1093/jxb/eraa494
 Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R. M., Almeraya, R., Yamaguchi-Shinozaki, K., et al. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47, 493–500. doi:10.1139/g03-140
 Pickett, A. A. (1993). Hybrid wheat-results and problems. Germany: Fortschritte der Pflanzenzüchtung. 
 Poland, J. A., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., et al. (2012). Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5, 113. doi:10.3835/plantgenome2012.06.0006
 Pont, C., Leroy, T., Seidel, M., Tondelli, A., Duchemin, W., Armisen, D., et al. (2019). Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911. doi:10.1038/s41588-019-0393-z
 Pourkheirandish, M., Dai, F., Sakuma, S., Kanamori, H., Distelfeld, A., Willcox, G., et al. (2018). On the origin of the non-brittle rachis trait of domesticated einkorn wheat. Front. Plant Sci. 8, 2031. doi:10.3389/fpls.2017.02031
 Prasad, P., Pisipati, S., Momčilović, I., and Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF‐Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441. doi:10.1111/j.1439-037x.2011.00477.x
 Przewieslik-Allen, A. M., Burridge, A. J., Wilkinson, P. A., Winfield, M. O., Shaw, D. S., McAusland, L., et al. (2019). Developing a high-throughput SNP-based marker system to facilitate the introgression of traits from Aegilops species into bread wheat (Triticum aestivum). Front. Plant Sci. 9, 1993. doi:10.3389/fpls.2018.01993
 Qaseem, M. F., Qureshi, R., Shaheen, H., and Shafqat, N. (2019). Genome-wide association analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions. PLoS One 14 (3), e0213407. doi:10.1371/journal.pone.0213407
 Rabinovich, S. V. (1998). Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica 100, 323–340. doi:10.1023/a:1018361819215
 Rahman, M., Chowdhary, M. A., Iqbal, M. J., and Zafar, Y. (2004). Application of random amplified polymorphic DNA (RAPD) technique for the identification of markers linked to salinity tolerance in wheat (Triticum aestivum l.). Pak. J. Bot. 36 (3), 595–602. 
 Rahmatov, M., Rouse, M. N., Nirmala, J., Danilova, T., Friebe, B., Steffenson, B. J., et al. (2016). A new 2DS· 2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor. Appl. Genet. 129, 1383–1392. doi:10.1007/s00122-016-2710-6
 Rai, N., Bellundagi, A., Kumar, P. K., Kalasapura Thimmappa, R., Rani, S., Sinha, N., et al. (2018). Marker‐assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. em Thell). Plant Breed. 137, 514–526. doi:10.1111/pbr.12605
 Rajaram, S. (2001). “Prospects and promise of wheat breeding in the 21 st century,” in Wheat in a global environment ( Springer), 37–52.
 Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one 8, e66428. doi:10.1371/journal.pone.0066428
 Razzaq, A., Zafar, M. M., Ali, A., Hafeez, A., Batool, W., Shi, Y., et al. (2021). Cotton germplasm improvement and progress in Pakistan. J. Cotton Res. 4 (1), 1–14. doi:10.1186/s42397-020-00077-x
 Rebetzke, G. J., Verbyla, A. P., Verbyla, K. L., Morell, M. K., and Cavanagh, C. R. (2014). Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol. J. 12, 219–230. doi:10.1111/pbi.12130
 Reitz, L., and Salmon, S. (1968). Origin, history, and use of Norin 10 wheat. Crop Sci. 8, 686–689. doi:10.2135/cropsci1968.0011183x000800060014x
 Rembe, M., Zhao, Y., Jiang, Y., and Reif, J. C. (2019). Reciprocal recurrent genomic selection: An attractive tool to leverage hybrid wheat breeding. Theor. Appl. Genet. 132, 687–698. doi:10.1007/s00122-018-3244-x
 Ren, T., Ren, Z., Yang, M., Yan, B., Tan, F., Fu, S., et al. (2018). Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol. Breed. 38, 101–109. doi:10.1007/s11032-018-0856-4
 Ren, T., Tang, Z., Fu, S., Yan, B., Tan, F., Ren, Z., et al. (2017). Molecular cytogenetic characterization of novel wheat-rye T1RS. 1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant Sci. 8, 799. doi:10.3389/fpls.2017.00799
 Rey, M.-D., Martín, A. C., Smedley, M., Hayta, S., Harwood, W., Shaw, P., et al. (2018). Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Front. Plant Sci. 9, 509. doi:10.3389/fpls.2018.00509
 Reynolds, M., Foulkes, M. J., Slafer, G. A., Berry, P., Parry, M. A., Snape, J. W., et al. (2009). Raising yield potential in wheat. J. Exp. Bot. 60, 1899–1918. doi:10.1093/jxb/erp016
 Riaz, A., Periyannan, S., Aitken, E., and Hickey, L. (2016). A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12, 17. doi:10.1186/s13007-016-0117-7
 Richard, C., Hickey, L., Fletcher, S., Chenu, K., Borrell, A., and Christopher, J. (2015). High-throughput phenotyping of wheat seminal root traits in a breeding context. Procedia Environ. Sci. 29, 102–103. doi:10.1016/j.proenv.2015.07.179
 Royo, C., and Briceño-Félix, G. A. (2011). Spanish wheat pool. World Wheat Book 2, 121–154. 
 Ru, Z., Juhasz, A., Li, D., Deng, P., Zhao, J., Gao, L., et al. (2020). 1RS. 1BL molecular resolution provides novel contributions to wheat improvement. New York: bioRxiv. 
 Sheridan, C. (2021). Questions swirl around failures of disease-modifying Huntington’s drugs. Nat. Biotechnol. 39, 650. doi:10.1038/s41587-021-00955-y
 Salvi, S., Porfiri, O., and Ceccarelli, S. (2013). Nazareno strampelli, the ‘prophet’of the green revolution. J. Agric. Sci. 151, 1–5. doi:10.1017/s0021859612000214
 Sánchez‐León, S., Gil‐Humanes, J., Ozuna, C. V., Giménez, M. J., Sousa, C., Voytas, D. F., et al. (2018). Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902–910. doi:10.1111/pbi.12837
 Sandhu, K. S., Aoun, M., Morris, C. F., and Carter, A. H. (2021). Genomic selection for end-use quality and processing traits in soft white winter wheat breeding program with machine and deep learning models. Biology 10, 689. doi:10.3390/biology10070689
 Sarkar, S., Islam, A. A., Barma, N., and Ahmed, J. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South Afr. J. Bot. 138, 262–277. doi:10.1016/j.sajb.2021.01.003
 Sato, K., Abe, F., Mascher, M., Haberer, G., Gundlach, H., Spannagl, M., et al. (2021). Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder. DNA Res. 28, dsab008. doi:10.1093/dnares/dsab008
 Schneider, A., Rakszegi, M., Molnár-Láng, M., and Szakács, É. (2016). Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor. Appl. Genet. 129, 1045–1059. doi:10.1007/s00122-016-2682-6
 Senker, P. (2011). Foresight: The future of food and farming, final project report. Taylor & Francis. 
 Shafeeq, S., and Zafar, Y. (2006). Genetic variability of different wheat (Triticum aestivum L.) genotypes/cultivars under induced water stress. Pak. J. Bot. 38, 1671–1678. 
 Shewry Jones, P. R. (2005). Transgenic wheat: Where do we stand after the first 12 years?Ann. Appl. Biol. 147, 1–14. doi:10.1111/j.1744-7348.2005.00009.x
 Singh, D., Wang, X., Kumar, U., Gao, L., Noor, M., Imtiaz, M., et al. (2019). High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front. Plant Sci. 10, 394. doi:10.3389/fpls.2019.00394
 Singh, N., and Balyan, H. (2009). Induced mutations in bread wheat (Triticum aestivum L.) CV.” Kharchia 65” for reduced plant height and improve grain quality traits. Adv. Biol. Res. 3, 215–221. 
 Singh, N., Shepherd, K., and McIntosh, R. (1990). Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet. 80, 609–616. doi:10.1007/BF00224219
 Singh, R., and McIntosh, R. (1984). Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. I. Genetic and linkage studies. Can. J. Genet. Cytol. 26, 723–735. doi:10.1139/g84-115
 Singh, S., Chatrath, R., and Mishra, B. (2010). Perspective of hybrid wheat research: A review. Indian J. Agric. Sci. 80, 1013–1027. 
 Sivamani, E., Brey, C. W., Dyer, W. E., Talbert, L. E., and Qu, R. (2000). Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene. Mol. Breed. 6, 469–477. doi:10.1023/a:1026576124482
 Slade, A. J., McGuire, C., Loeffler, D., Mullenberg, J., Skinner, W., Fazio, G., et al. (2012). Development of high amylose wheat through TILLING. BMC Plant Biol. 12, 69–17. doi:10.1186/1471-2229-12-69
 Spennemann, D. (2001). Wheat varieties grown in 19th century Australia. Wagga, NSW: Farrer Center. 
 Sun, C., Dong, Z., Zhao, L., Ren, Y., Zhang, N., and Chen, F. (2020). The Wheat 660K SNP array demonstrates great potential for marker‐assisted selection in polyploid wheat. Plant Biotechnol. J. 18, 1354–1360. doi:10.1111/pbi.13361
 Tabbita, F., Lewis, S. M., Vouilloz, J. P., Ortega, M. D. L. Á. H., Kade, M., Abbate, P. E., et al. (2012). The effects of GpcB1 locus on high grain protein concentration introgressed into Argentinean wheat germplasm. 
 Tamás, C., Kisgyörgy, B. N., Rakszegi, M., Wilkinson, M. D., Yang, M.-S., Láng, L., et al. (2009). Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell. Rep. 28, 1085–1094. doi:10.1007/s00299-009-0716-0
 Tanaka, H., Nabeuchi, C., Kurogaki, M., Garg, M., Saito, M., Ishikawa, G., et al. (2017). A novel compensating wheat–Thinopyrum elongatum Robertsonian translocation line with a positive effect on flour quality. Breed. Sci. 67, 509–517. doi:10.1270/jsbbs.17058
 The International Wheat Genome Sequencing Consortium (2014). International wheat genome sequencing Consortium.
 Thorwarth, P., Piepho, H. P., Zhao, Y., Ebmeyer, E., Schacht, J., Schachschneider, R., et al. (2018). Higher grain yield and higher grain protein deviation underline the potential of hybrid wheat for a sustainable agriculture. Plant Breed. 137, 326–337. doi:10.1111/pbr.12588
 Tschermak, V., and Von, E. (1914). Die Verwertung der Bastardierung für phylogenetische Fragen in der Getreidegruppe. Zeitschr. F. Pflanzenzüchtung. 2, 291–312.
 Tucker, D., Griffey, C., Liu, S., and Saghai Maroof, M. (2006). Potential for effective marker‐assisted selection of three quantitative trait loci conferring adult plant resistance to powdery mildew in elite wheat breeding populations. Plant Breed. 125, 430–436. doi:10.1111/j.1439-0523.2006.01233.x
 Türkösi, E., Darko, E., Rakszegi, M., Molnár, I., Molnár-Láng, M., and Cseh, A. (2018). Development of a new 7BS. 7HL winter wheat-winter barley robertsonian translocation line conferring increased salt tolerance and (1, 3; 1, 4)-β-D-glucan content. PLoS One 13, e0206248. doi:10.1371/journal.pone.0206248
 Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., and Dubcovsky, J. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301. doi:10.1126/science.1133649
 Vasil, V., Castillo, A. M., Fromm, M. E., and Vasil, I. K. (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat. Biotechnol. 10, 667–674. doi:10.1038/nbt0692-667
 Vishwakarma, M. K., Mishra, V. K., Gupta, P. K., Yadav, P. S., Kumar, H., and Joshi, A. K. (2014). Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant Biol. 1, 60–67. doi:10.1016/j.cpb.2014.09.003
 Volpato, L., Pinto, F., González-Pérez, L., Thompson, I. G., Borém, A., Reynolds, M., et al. (2021). High throughput field phenotyping for plant height using UAV-based RGB imagery in wheat breeding lines: Feasibility and validation. Front. Plant Sci. 12, 591587. doi:10.3389/fpls.2021.591587
 Wang, C., Zeng, J., Li, Y., Hu, W., Chen, L., Miao, Y., et al. (2014a). Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J. Exp. Bot. 65, 2545–2556. doi:10.1093/jxb/eru138
 Wang, R., Liu, Y., Isham, K., Zhao, W., Wheeler, J., Klassen, N., et al. (2018). QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol. Breed. 38, 135. doi:10.1007/s11032-018-0894-y
 Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., et al. (2014b). Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796. doi:10.1111/pbi.12183
 Wang, Z., Li, J., Chen, S., Heng, Y., Chen, Z., Yang, J., et al. (2017). Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. U. S. A. 114, 12614–12619. doi:10.1073/pnas.1715570114
 Wanjugi, H., Coleman-Derr, D., Huo, N., Kianian, S. F., Luo, M.-C., Wu, J., et al. (2009). Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome 52, 576–587. doi:10.1139/g09-033
 Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.-D., et al. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29. doi:10.1038/s41477-017-0083-8
 Watson, A., Hickey, L. T., Christopher, J., Rutkoski, J., Poland, J., and Hayes, B. J. (2019). Multivariate genomic selection and potential of rapid indirect selection with speed breeding in spring wheat. Crop Sci. 59 (5), 1945–1959. doi:10.2135/cropsci2018.12.0757
 Welch, R. M., and Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364. doi:10.1093/jxb/erh064
 Wessells, K. R., and Brown, K. H. (2012). Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PloS one 7, e50568. doi:10.1371/journal.pone.0050568
 Wheeler, T., and Von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508–513. doi:10.1126/science.1239402
 Wilson, J. (1962). Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevi cytoplasm. Wheat Int. Serv. 14, 29–30. 
 Winfield, M. O., Allen, A. M., Burridge, A. J., Barker, G. L., Benbow, H. R., Wilkinson, P. A., et al. (2016). High‐density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14, 1195–1206. doi:10.1111/pbi.12485
 Wrigley, C. W., Robinson, P. J., and Williams, W. T. (1981). Association between electrophoretic patterns of gliadin proteins and quality characteristics of wheat cultivars. J. Sci. Food Agric. 32, 433–442. doi:10.1002/jsfa.2740320503
 Würschum, T., Langer, S. M., Longin, C. F. H., Tucker, M. R., and Leiser, W. L. (2017). A modern Green Revolution gene for reduced height in wheat. Plant J. 92, 892–903. doi:10.1111/tpj.13726
 Xue, G.-P., Drenth, J., and McIntyre, C. L. (2015). TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J. Exp. Bot. 66, 1025–1039. doi:10.1093/jxb/eru462
 Xue, G.-P., Way, H. M., Richardson, T., Drenth, J., Joyce, P. A., and McIntyre, C. L. (2011). Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant 4, 697–712. doi:10.1093/mp/ssr013
 Xue, Z.-Y., Zhi, D.-Y., Xue, G.-P., Zhang, H., Zhao, Y.-X., and Xia, G.-M. (2004). Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 167, 849–859. doi:10.1016/j.plantsci.2004.05.034
 Yang, E., Li, G., Li, L., Zhang, Z., Yang, W., Peng, Y., et al. (2016). Characterization of stripe rust resistance genes in the wheat cultivar Chuanmai45. Int. J. Mol. Sci. 17, 601. doi:10.3390/ijms17040601
 Ye, X., Li, J., Cheng, Y., Yao, F., Long, L., Wang, Y., et al. (2019). Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC genomics 20 (1), 640. doi:10.1186/s12864-019-6005-6
 Zaharieva, M., and Monneveux, P. (2014). Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): The long life of a founder crop of agriculture. Genet. Resour. Crop Evol. 61, 677–706. doi:10.1007/s10722-014-0084-7
 Zahra, S., Shaheen, T., Hussain, M., Zulfiqar, S., and Rahman, M.-u. (2021). Multivariate analysis of mutant wheat (Triticum aestivum L.) lines under drought stress. Turk. J. Agric. For. 45, 617–633. doi:10.3906/tar-2106-73
 Zang, X., Geng, X., Wang, F., Liu, Z., Zhang, L., Zhao, Y., et al. (2017). Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol. 17, 14–13. doi:10.1186/s12870-016-0958-2
 Zhang, J., Zhang, H., Botella, J. R., and Zhu, J. K. (2018a). Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 60, 369–375. doi:10.1111/jipb.12620
 Zhang, W., Zhu, X., Zhang, M., Chao, S., Xu, S., and Cai, X. (2018b). Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor. Appl. Genet. 131, 2381–2395. doi:10.1007/s00122-018-3160-0
 Zhang, W., Zhu, X., Zhang, M., Shi, G., Liu, Z., and Cai, X. (2019). Chromosome engineering-mediated introgression and molecular mapping of novel Aegilops speltoides-derived resistance genes for tan spot and Septoria nodorum blotch diseases in wheat. Theor. Appl. Genet. 132, 2605–2614. doi:10.1007/s00122-019-03374-5
 Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., et al. (2017). Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714–724. doi:10.1111/tpj.13599
 Zhang, Y., Li, D., Zhang, D., Zhao, X., Cao, X., Dong, L., et al. (2018c). Analysis of the functions of Ta GW 2 homoeologs in wheat grain weight and protein content traits. Plant J. 94, 857–866. doi:10.1111/tpj.13903
 Zulfiqar, S., Ishfaq, S., Ikram, M., Nawaz, M. A., and Rahman, M.-u.-. (2021). Characterization of gamma-rays-induced spring wheat mutants for morphological and quality traits through multivariate and GT Bi-plot analysis. Agronomy 11, 2288. doi:10.3390/agronomy11112288
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Gohar, Sajjad, Zulfiqar, Liu, Wu and Rahman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 11 October 2022
doi: 10.3389/fgene.2022.1034921


[image: image2]
Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance
Komal Zia1†, Muhammad Junaid Rao2†, Muhammad Sadaqat1, Farrukh Azeem1, Kinza Fatima1, Muhammad Tahir ul Qamar1,3*, Abdulrahman Alshammari4 and Metab Alharbi4
1Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
2State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
3Department of Botany and Plant Sciences, University of California Riverside (UCR), Riverside, CA, United States
4Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Edited by:
Karansher Singh Sandhu, Bayer Crop Science, United States
Reviewed by:
Muhammad Noman, Zhejiang University, China
Hafiz Muhammad Rizwan, Fujian Agriculture and Forestry University, China
Parviz Heidari, Shahrood University of Technology, Iran
* Correspondence: Muhammad Tahir ul Qamar, tahirulqamar@gcuf.edu.pk
†These authors have contributed equally to this work
Specialty section: This article was submitted to Plant Genomics, a section of the journal Frontiers in Genetics
Received: 02 September 2022
Accepted: 27 September 2022
Published: 11 October 2022
Citation: Zia K, Rao MJ, Sadaqat M, Azeem F, Fatima K, Tahir ul Qamar M, Alshammari A and Alharbi M (2022) Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Front. Genet. 13:1034921. doi: 10.3389/fgene.2022.1034921

Cyclic nucleotide-gated channels (CNGC) gene family has been found to be involved in physiological processes including signaling pathways, environmental stresses, plant growth, and development. This gene family of non-selective cation channels is known to regulate the uptake of calcium and is reported in several plant species. The pangenome-wide studies enable researchers to understand the genetic diversity comprehensively; as a comparative analysis of multiple plant species or member of a species at once helps to better understand the evolutionary relationships and diversity present among them. In the current study, pangenome-wide analysis of the CNGC gene family has been performed on five Citrus species. As a result, a total of 32 genes in Citrus sinensis, 27 genes in Citrus recticulata, 30 genes in Citrus grandis, 31 genes in Atalantia buxfolia, and 30 genes in Poncirus trifoliata were identified. In addition, two unique genes CNGC13 and CNGC14 were identified, which may have potential roles. All the identified CNGC genes were unevenly distributed on 9 chromosomes except P. trifoliata had genes distributed on 7 chromosomes and were classified into four major groups and two sub-groups namely I, II, III, IV-A, and IV-B. Cyclic nucleotide binding (CNB) motif, calmodulin-binding motif (CaMB), and motif for IQ-domain were conserved in Citrus Spp. Intron exon structures of citrus species were not exactly as same as the gene structures of Arabidopsis. The majority of cis-regulatory elements (CREs) were light responsive and others include growth, development, and stress-related indicating potential roles of the CNGC gene family in these functions. Both segmental and tandem duplication were involved in the expansion of the CNGC gene family in Citrus Spp. The miRNAs are involved in the response of CsCNGC genes towards drought stress along with having regulatory association in the expression of these genes. Protein- Protein interaction (PPI) analysis also showed the interaction of CNGC proteins with other CNGCs which suggested their potential role in pathways regulating different biological processes. GO enrichment revealed that CNGC genes were involved in the transport of ions across membranes. Furthermore, tissue-specific expression patterns of leaves sample of C. sinensis were studied under drought stress. Out of 32 genes of C. sinensis 3 genes i.e., CsCNGC1.4, CsCNGC2.1, and CsCNGC4.2 were highly up-regulated, and only CsCNGC4.6 was highly down-regulated. The qRT-PCR analysis also showed that CNGC genes were highly expressed after treatment with drought stress, while gene expression was lower under controlled conditions. This work includes findings based on multiple genomes instead of one, therefore, this will provide more genomic information rather than single genome-based studies. These findings will serve as a basis for further functional insights into the CNGC gene family.
Keywords: CNGC, citrus, pan-genomics, drought stress, genome-wide analysis, molecular modeling
1 INTRODUCTION
Calcium is an important macronutrient for plant growth and development and is involved in signaling pathways as a secondary messenger. It also plays a key role in the defense mechanism of plants against abiotic stress (Lecourieux et al., 2006; Kudla et al., 2018). Calcium sensor proteins belong to three main families including calmodulin (CaM) and calmodulin-like proteins (CMLs) (Yang and Poovaiah, 2003; Bender and Snedden, 2013), calcineurin-B-like proteins (CBLs) (Luan, 2009), calcium dependent protein kinases (CPKs) and calcium and calmodulin dependent protein kinase (CCaMK) (Cheng et al., 2002; Wang et al., 2015). Calcium binding to these calcium sensors induces a conformational change that triggers either a particular target protein or directly stimulates kinase activity by taking into account CPKs (Ranty et al., 2016). In contrast, several families of ion channels regulate the uptake of calcium including Cyclic nucleotide-gated channels (CNGCs), two pore channel 1 (TCP1), ionotropic glutamate receptors, and several other channels (Demidchik et al., 2018).
CNGCs belong to the nonselective cation channels that are found in both animals and plants. Plant CNGCs was first discovered in 1998 while scanning calmodulin-conjugated transporters (HvCBT1) in barley (Mäser et al., 2001). CNGCs are ligand-gated channels that are calcium permeable and involved in the interaction of cyclic nucleotides and calcium dependent signaling pathways (Talke et al., 2003). CNGCs are calcium sensors in eukaryotes while calcium is important for plant growth, development, light signaling, drought and salt stress, and pathogen tolerance (Ranty et al., 2016). CNGCs get activated by the binding of cyclic nucleotides (cNMP) and their activity gets inhibited by Ca2+/CaM binding (Trudeau and Zagotta, 2002). Calcium is very helpful in regulating plant growth under stress conditions. There are 6 TM domains (S1-S6) and a pore region in CNGCs, fifth and sixth domains along with the Cyclic nucleotide-binding domain (CNBD) and CaM binding domains are present at C-terminal. CNBD comprises a phosphate binding cassette (PBC) and a hinge region (Duszyn et al., 2019). The PBC binds to phosphate and sugar moieties of cyclic nucleotide binding (CNB) ligand and the hinge region contributes to the efficacy of ligand binding and selectivity (Li et al., 2019). CNGCs are also involved in plants responses to various abiotic and biotic stress conditions. (Jha et al., 2016).
CNGC gene family has been reported in Arabidopsis thaliana (Mäser et al., 2001), Brassica oleracea (Kakar et al., 2017), Zea mays (Hao and Qiao, 2018), Ziziphus jujube Mill. (Wang et al., 2020), Nicotiana tobacum L. (Nawaz et al., 2018), Triticum aestivum L. (Guo et al., 2018), Oryza sativa (Nawaz et al., 2014), Brassica rapa (Li et al., 2019), Pyrus bretschneideri Rehd (Chen et al., 2015). and Solanum lycopersicum (Saand et al., 2015). On the basis of the phylogenetic classification in the aforementioned plants, this gene family is classified into four major groups and the fourth group is further divided into two sub-groups namely as; I, II, III, IV-A, IV-B. A single reference genome is not enough to capture diversity present among the members of a species (Golicz et al., 2016). Thus, it brings a bias to study gene family members in plants solely based on a single genome. Therefore, it is suggested to conduct pangenome-wide analysis for gene family characterization (Tahir Ul Qamar et al., 2019). The first ever concept regarding pangenome was introduced when the pangenome of Streptococcus agalacitae was developed (Tettelin et al., 2005). Pangenome of a species comprises core genes that are present in all members, accessory genes that are present in few but not in all members, and unique genes that are present only in specific members (Tahir ul Qamar et al., 2020; Ismail et al., 2022; Zanini et al., 2022).
Citrus is an economically important fruit crop as it is widely used both as a fruit and as a juice (Liu et al., 2019). It is perennial crop and mostly cultivated in China, Brazil, India, United States, Mexico, Spain, and Italy (Liu et al., 2012). Citrinae is a large group of citrus fruit trees that belong to the subfamily Aurantioideae and the family Rutaceae. Based on botanical features Citrinae is categorized into three types i.e., primitive citrus, near citrus, and true citrus (Wang et al., 2017). The well-known Citrus varities include; Atlantia buxfolia (Chinese box orange), Citrus sinensis (sweet orange), Citrus grandis (pummelo), Citrus recticulata (mandarin), Citrus limon (lemon), Citrus paradisi (grapefruit) and Poncirus trifoliata (Trifoliate orange) (Liu et al., 2019). Citrus varities widely influenced by drought stress as the productivity, growth, and yield of citrus get reduced after facing drought stress (Osakabe et al., 2014). However, few drought resistant varities are also reported which can withstand against this stress, including navel orange and trifoliate orange (Bhusal et al., 2002; Koshita and Takahara, 2004; Pingping et al., 2017).
In present study, C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata were selected for pangenome-wide analysis of CNGCs gene family, as they have good quality assembled genomes and their annotations are available at chromosome level. The quality of genome assembly or sequencing directly affects the quality of results (Vaattovaara et al., 2019), therefore, the aforementioned species were preferred to reduce the biasness. CNGCs gene family has been studied in several plant species at single genome-wide level (Mäser et al., 2001; Nawaz et al., 2014, 2018; Chen et al., 2015; Saand et al., 2015; Kakar et al., 2017; Guo et al., 2018; Hao and Qiao, 2018; Li et al., 2019; Wang et al., 2020), but no pan-genome-wide analysis has been performed before. Therefore, current study aims to provide a comprehensive pangenome-wide representation of CNGCs gene family in citrus species, which will serve as the foundation for future gene family researches.
2 MATERIALS AND METHODS
2.1 Identification of cyclic nucleotide-gated channel family genes in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata
20 CNGC protein sequences of A. thaliana taken from TAIR database (https://www.arabidopsis.org/) (Rhee et al., 2003) were used as query and BLASTp search was performed on Citrus pan-genome to breeding database (CPBD; https://citrus.hzau.edu.cn/) (Liu et al., 2022) against C. sinensis v2.0, A. buxfolia v2.0, P. trifoliata v1.0, C. recticulata v2.0, and Citrus grandis (L.) Osbeck. cv. Wanbaiyou v1.0. The resulting BLAST hits were manually processed to remove duplicates and isoforms and the final hits were used for further analyses.
To check the presence of specific domains, databases including SMART (https://smart.embl-heidelberg.de/) (Schultz et al., 2000), CDD (https://pfam.xfam.org/) (Marchler-bauer et al., 2011), and HMMER (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan) (Potter et al., 2018) were used. This eliminated those sequences that didn’t have specific conserved domains required for CNGC protein function. Domain architecture was constructed using the HMMER database. Molecular weight (MW), Theoretical isoelectric point (PI), Instability index (II), Aliphatic index (AI), and Grand average of hydropathy (GRAVY) were determined by using the web-based tool ProtParam available at the EXPASY server (https://web.expasy.org/protparam) (Gasteiger et al., 2003). Subcellular localization was determined using CELLO version 2.5 (https://cello.life.nctu.edu.tw/) (Yu et al., 2006).
2.2 Multiple sequence alignment and phylogenetic analysis
To comprehend the phylogenetic relationships of identified CNGCs, multiple sequence alignment of identified CNGC protein sequences of C. sinensis, A. buxfolia, C. recticulata, C. grandis, P. trifoliata along with already reported protein sequences of O. sativa (Nawaz et al., 2014), Z. jujuba (Wang et al., 2020), Z. mays (Hao and Qiao, 2018), A. thaliana (Köhler and Neuhaus, 2000) and P. bretschneideri (Chen et al., 2015) was done using ClustalW program and a phylogenetic tree was constructed by using online server IQ-tree (https://iqtree.cibiv.univie.ac.at/) (Nguyen et al., 2015) with Maximum Likelihood (ML) method and 1,000 replicates while other parameters were set to their default values. The tree was visualized and edited using the online server iTOL (https://itol.embl.de/) (Letunic and Bork, 2021).
2.3 Chromosomal location, gene structure, and conserved motif analysis
The chromosomal location, start and end sites of C. sinensis, A. buxfolia, C. recticulata, C. grandis, and P. trifoliata were retrieved from the CPBD database and a genetic linkage was constructed by using TBtools (Chen et al., 2020). The gene and CDS sequences of C. sinensis, A. buxfolia, C. recticulata, C. grandis, and P. trifoliata were retrieved from the sequence fetch option at the CPBD database (https://citrus.hzau.edu.cn/) (Liu et al., 2022). The GSDS v2.0 (https://gsds.gao-lab.org/) (Hu et al., 2015) was used for the visualization of gene structures of CsCNGCs, AbuCNGCs, CreCNGCs, CgCNGCs, and PtCNGCs. Conserved motifs were identified by using MEME (Multiple EM for Motif Elicitation) suite 5.4.1 (https://meme-suite.org/meme/db/motifs) (Bailey et al., 2009). All parameters were set to their default values except the number of motifs that were set to 10.
2.4 Gene duplication and promoter analysis
The location of CNGC genes in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata was retrieved from the CPBD database (https://citrus.hzau.edu.cn/) (Liu et al., 2022). All genes possessing ≥70% sequence identity were considered duplicated genes (Hu et al., 2021). DnaSP v6.0 (Librado and Rozas, 2009) offline tool was used to calculate the rate of Non-synonymous (Ka) and synonymous substitutions (Ks) of duplicated gene pairs. To calculate the selection pressure that assisted in the evolution of the CNGC gene family Ka/Ks ratio was used. The formula for calculating duplication time was the following: T = Ks/2x (where x represents substitutions per synonymous site per year and is equal to 6.56 × 10−9 for dicots) (He et al., 2016). The cis-elements in 2000bp coding regions of CsCNGCs, CreCNGCs, CgCNGCs, AbuCNGCs, and PtCNGCs were retrieved from the Citrus pan-genome to breeding database (CPBD, https://www.citrus.hzau.edu.cn/) (Liu et al., 2022). While the types, numbers, and functions of these cis-elements were analyzed by using PlantCare web-based tool (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al., 2002).
2.5 Putative miRNA target prediction, protein-protein interaction network, and gene ontology analysis of citrus Spp.
Plant microRNA Encyclopedia (PmiREN; https://pmiren.com) database was utilized to acquire mature miRNA sequences of C. sinensis. For putative miRNA target prediction CDS sequences of the potential target, CsCNGCs were utilized and were submitted at the psRNATarget server (https://www.zhaolab.org/psRNATarget/home) (Dai et al., 2018) along with the respective mature miRNA sequences of C. sinensis with default considerations. The regulatory association between target CsCNGCs and predicted miRNAs was visualized using Cytoscape software (Shannon et al., 1971). The interaction among members of the CNGC protein family and other proteins from the citrus plant was predicted using the STRING database (https://string-db.org/). 32 CsCNGC protein sequences were uploaded to the STRING database with ‘Citrus sinensis’ being selected as reference species. The level of connection used was sixth and other parameters were kept by default. PPI network was visualized and edited using Cytoscape software (Shannon et al., 1971). Citrus Pan-genome2breeding database (CPBD; http://citrus.hzau.edu.cn/) (Liu et al., 2022) was utilized to analyze gene ontology (GO) enrichment of Citrus Spp. using the gene IDs of CNGC genes.
2.6 Expression profiling of C. sinensis under drought stress
To demonstrate the expression of C. sinensis under abiotic stress (drought) in leaves, RNA-seq data was downloaded from the NCBI-SRA database (https://www.ncbi.nlm.nih.gov/sra) (BioProject: PRJNA792482). Reference genome and GFF3 files were downloaded from the Citrus pan-genome to breeding database (CPBD, https://citrus.hzau.edu.cn/) (Liu et al., 2022). To check the quality of paired-end data (in FASTQ format) FASTQC was utilized and Trimmomatic was used for trimming and improving the quality of reads. Then HISAT2 was used for the alignment of reads to the C. sinensis v2.0 genome. To normalize gene expression in terms of Fragments per kilobase of transcripts per million mapped reads (FPKM) Cufflinks were used. The heatmap was constructed using pheatmap function of R-language (Ihaka and Gentleman, 1996).
2.7 Drought stress treatment, ribonucleic acid isolation, and quantitative real-time reverse transcription–polymerase chain
Citrus plants were grown under controlled environmental conditions in a growth chamber (having 60 ± 3% humidity, 27 ± 2°C temperature, and 5000 LUX light intensity) with recommended fertilizer and water treatment. Four months old citrus plants were subjected to drought stress and leaves were collected and 0, 10, and 20 days of drought stress. Control and drought-stressed leaves were harvested for RNA extraction. Zomanbio (Cat no. ZP401-2) total RNA-pure reagent (Lot#200F12F) was used to extract total RNA and the complementary DNA (cDNA) was synthesized by using Zomanbio (M-MLV, ZR102-3) reverse transcriptase kit (Beijing, ZOMAN Biotechnology Co., Ltd.) according to the manufacturer instructions. For quantitative real-time polymerase chain reaction (qRT-PCR) ChamQ universal master mix SYBR (Vazyme, Q711-02) and LongGene (Model: q2000b) fluorescence quantitative PCR instrument (Langji Scientific instrument Co., Ltd.; Hangzhou, China) were used whereas citrus actin gene was used as an internal reference. 2^-(ΔΔCt) method was applied to analyze the qRT-PCR expression data in Excel (Microsoft Corp., Redmond, WA, United States). Statistix 8.1 (Tallahassee Florida, United States) statistical software was used for analyzing all qRT-PCR data and the Excel program was used for graphs. The qPCR primer information is characterized (Supplementary Table S1).
2.8 3D Structure prediction of cyclic nucleotide-gated channels in citrus spp.
Three-dimensional (3D) structures of 13 CNGC proteins were predicted, including 9 proteins from C. sinensis, one from A. buxfolia, and two from P. trifoliata. Among these 13 proteins, 3D structures of 12 CNGC proteins were predicted by using Alphafold2 (https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) (Jumper et al., 2021) Whereas, the 3D structure of CsCNGC1.4 was predicted by using trRosetta (https://yanglab.nankai.edu.cn/trRosetta/) (Du et al., 2021) due to its length i.e., 1427aa. Protein structures were visualized by using Pymol (Yuan et al., 2017). For validation of these predicted structures SAVES server (https://saves.mbi.ucla.edu) was used.
3 RESULTS
3.1 Identification of cyclic nucleotide-gated channel genes in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata
A total of 32 putative genes in C. sinensis, 27 genes in C. recticulata, 30 genes in C. grandis, 31 genes in A. buxfolia, and 30 in P. trifoliata were identified. The identified CNGC genes were named based on their phylogenetic relationships with CNGCs in Arabidopsis. Figure 1 is showing the homologs of Arabidopsis CNGC genes present in five species under study. Most of the identified members of Arabidopsis CNGCs are present in five species under study except for AtCNGC3, AtCNGC6, AtCNGC9, AtCNGC11, AtCNGC12, and AtCNGC20. All other members have a variable number of homologs present in five Citrus species. Further, two unique genes were identified: CNGC13 and CNGC14. CNGC13 is present in three plant species including C. sinensis, A. buxfolia, and P. trifoliata while absent in C. grandis and C. reticulata. CNGC14 is present in only one plant species, P. trifoliata while being absent in the other four species.
[image: Figure 1]FIGURE 1 | Bar Plot showing homologs of Arabidopsis CNGCs present in five Citrus species. Each species is having a variable number of members.
Conserved domains that were predicted in C. sinensis, A. buxfolia, C. recticulata, C. grandis, and P. trifoliata include Cyclic Nucleotide Binding Domain (CNBD or cNMP), Ion trans (IT), Cap family effector domain (CAP_ED) and other ion trans domains (Supplementary Table S2). Ion trans and cNMP binding domains were the most conserved among all. Domain architecture was constructed according to the prediction results of the HMMER database. cNMP binding domain was not present in CsCNGC1.1, CsCNGC1.2, CsCNGC1.5, CsCNGC1.7, CsCNGC1.8, CsCNGC1.9, CsCNGC2.1, CsCNGC2.2, CsCNGC4.1, CsCNGC7, CsCNGC15.2 and CsCNGC19 according to prediction results of HMMER database but SMART database prediction confirms the presence of cNMP binding domain in these proteins. The domain architecture of C. sinensis is given in (Figure 2).
[image: Figure 2]FIGURE 2 | Domain architecture of C. sinensis cyclic nucleotide-gated channels (CsCNGCs) proteins.
Ion trans domain was absent in CreCNGC1.2, and CreCNGC1.6 according to HMMER database prediction. While CDD prediction confirms the presence of the Ion trans domain in CreCNGC1.6. Results of the HMMER database demonstrate the absence of the cNMP binding domain in CreCNGC1.1, CreCNGC1.3, CreCNGC1.4, CreCNGC2.1, CreCNGC4.1, CreCNGC7, CreCNGC15.1, CreCNGC15.3, and CreCNGC19 according to prediction. Domains predicted by the SMART database indicated the presence of the cNMP binding domain in these proteins (Supplementary Figure S1).
The following proteins of C. grandis CgCNGC1.1, CgCNGC1.2, CgCNGC1.3, CgCNGC1.4, CgCNGC1.5, CgCNGC1.6, CgCNGC2.1, CgCNGC2.2, CgCNGC4.1, CgCNGC7, CgCNGC15.1, CgCNGC15.3, and CgCNGC19 didn’t have cNMP binding domain as per HMMER database prediction. Whereas, the cNMP binding domain was predicted to be present in all these proteins except CgCNGC1.3 as supported by SMART prediction (Supplementary Figure S2).
AbuCNGC1.1, AbuCNGC1.3, AbuCNGC1.5, AbuCNGC1.7, AbuCNGC1.8, AbuCNGC1.9, AbuCNGC2.1, AbuCNGC4.1, AbuCNGC7, AbuCNGC15.1, AbuCNGC15.3, and AbuCNGC19 are those aforementioned proteins of A. buxfolia that have cNMP binding domain absent in them according to the prediction of HMMER database. But taking into account the domains predicted in these proteins by the SMART database the cNMP binding domain was present in all of them. Prediction results of the HMMER, SMART, and CDD database demonstrate the absence of the Ion trans domain in AbuCNGC1.4 (Supplementary Figure S3).
PtCNGC proteins that have cNMP binding domain absent in them include PtCNGC1.1, PtCNGC1.3, PtCNGC1.4, PtCNGC1.5, PtCNGC2.1, PtCNGC2.2, PtCNGC2.3, PtCNGC2.4, PtCNGC4.1, PtCNGC7, PtCNGC14, PtCNGC15.1, PtCNGC15.3 and PtCNGC19 as predicted by HMMER database. But the cNMP binding domain was absent only in PtCNGC14 and present in all the other aforementioned PtCNGCs (Supplementary Figure S4). Details of CNGCs reported in other plants are shown in Table 1.
TABLE 1 | Summary of CNGCs reported in other plants.
[image: Table 1]3.2 Physiochemical properties and subcellular localization analysis of cyclic nucleotide-gated channels in citrus Spp.
The detailed physio-chemical properties of 150 CNGC proteins of five Citrus Spp. are shown in (Table 2). C. sinensis had protein length ranging from 492–1553aa, molecular weight (MW) ranging from 56.13–177.77 (KDa), and Isoelectric point (PI) ranging from 6.38–9.52, Instability index (II) was above 40 for 25 proteins of C. sinensis, indicating that most of the proteins were unstable. GRAVY values of 29 proteins of C. sinensis were negative indicating that the majority of proteins were hydrophilic. Results of subcellular localization suggested that all putative CsCNGC proteins were present in the plasma membrane.
TABLE 2 | Physiochemical properties of Citrus Spp.
[image: Table 2]The protein length of CreCNGCs ranged from 371–1513aa, molecular weight (MW) ranged from 43.15–173.29 (KDa), Isoelectric point (PI) ranged from 6.33–9.44, 21 CreCNGCs proteins were unstable as they have II above 40. GRAVY values of 24 CreCNGCs were negative indicating that maximum proteins were hydrophilic. Only CreCNGC1.3 was localized in the plasma membrane and nuclear compartments while the rest were found to be localized in the plasma membrane.
CgCNGCs have protein lengths ranging from 299–1289aa, molecular weight (MW) ranging from 34.21–147.32 (KDa), Isoelectric point (PI) ranging from 6.06–9.52, Most of the proteins (22) of C. grandis were unstable as these proteins have II greater than 40. GRAVY values for 27 proteins of C. grandis were negative suggesting that these proteins were hydrophilic. All of the CgCNGCs were found to be localized in the plasma membrane.
A. buxfolia had protein length ranging from 286–1335aa, molecular weight (MW) ranging from 33.62–766.01 (KDa), Isoelectric point (PI) ranging from 6.02–9.7, Instability index (II) was above 40 for 21 proteins of A. buxfolia revealing that most of the proteins were unstable in the test tube. 24 proteins of A. buxfolia were hydrophilic as their GRAVY values were negative while 7 proteins were hydrophobic as their GRAVY values were positive. Results of subcellular localization demonstrated that all AbuCNGC proteins were found to be present in the plasma membrane.
P. trifoliata’s protein length ranged from 575–1250aa, molecular weight (MW) ranged from 12.10–143.55 (KDa) for P. trifoliata, Isoelectric point (PI) ranged from 6.62–9.54, Instability index (II) was above 40 for 25 proteins of P. trifoliata suggesting that most proteins were unstable. 25 PtCNGC proteins were hydrophilic because GRAVY values for these proteins were negative. For P. trifoliata PtCNGC2.5 was localized in the plasma membrane as well as cytoplasmic and nuclear compartments while the rest were localized in the Plasma membrane. Hence, we can conclude that most of the proteins of Citrus Spp. were basic, unstable, hydrophilic, and localized in the Plasma membrane. The Citrus CNGC proteins that were stable can be used as a biomarker for further studies.
3.3 Phylogenetic analysis
In total, 20 AtCNGCs, 16 OsCNGCs, 12 ZmCNGCs, 21 PbrCNGCs, 15 ZjCNGCs, 32 CsCNGCs, 27 CreCNGCs, 30 CgCNGCs, 31 AbuCNGCs, and 30 PtCNGCs genes were classified into four groups and the fourth group was further classified into two sub-groups, I, II, III, IV-A, IV-B each containing the different number of members. The maximum number of members were present in Group IV (84 members) divided into the clade of Group IV-B with 71 members: two members from A. thaliana (AtCNGC2 and 4), three from O. sativa (OsCNGC2, 4a and 4b), three from Z. mays (ZmCNGC10,11 and 12), five from P. bretschneideri (PbrCNGC2, 4, 7, 8 and 9) three from Z. jujuba (ZjCNGC13, 14 and 15), 12 from C. sinensis (CsCNGC4.1-4.6 and CsCNGC2.1-2.6), 10 from C. recticulata (CreCNGC4.1-4.6 and CreCNGC2.1-2.4), 12 from C. grandis (CgCNGC4.1-4.6 and CgCNGC2.1-2.6), 9 from A. buxfolia (AbuCNGC4.1-4.6, AbuCNGC2.1-2.3) and 12 from P. trifoliata (PtCNGC4.1-4.6 and PtCNGC2.1-2.6) and Group IV-A with 13 members: two from A. thaliana (AtCNGC19 and 20), two from O. sativa (OsCNGC19a and 19b), one from Z. mays (ZmCNGC9), two from P. bretschneideri (PbrCNGC19 and 20), one from Z. jujuba (ZjCNGC12), one from C. sinensis (CsCNGC19), one from C. recticulata (CreCNGC19), one from C. grandis (CgCNGC19), one from A. buxfolia (AbuCNGC19) and one from P. trifoliata (PtCNGC19). The minimum number of members present in the clade of group II with 29 members two from Z. mays (ZmCNGC4 and ZmCNGC5), three from O. sativa (OsCNGC5a, OsCNGC5b, and OsCNGC5c), two from Z. jujube (ZjCNGC4 and ZjCNGC5), two from P. bretschneideri (PbrCNGC5 and PbrCNGC6), five from A. thaliana (AtCNGC5, AtCNGC6, AtCNGC7, AtCNGC8, and AtCNGC9), three from C. sinensis (CsCNGC5, CsCNGC7, and CsCNGC8), three from C. recticulata (CreCNGC5, CreCNGC7, and CreCNGC8), three from C. grandis (CgCNGC5, CgCNGC7, and CgCNGC8), three from A. buxfolia (AbuCNGC5, AbuCNGC7, and AbuCNGC8), three from P. trifoliata (PtCNGC5, PtCNGC7, and PtCNGC8). The number of members in other groups was also different as Group I had 66 members and Group III had 56 members in total (Figure 3).
[image: Figure 3]FIGURE 3 | Phylogenetic relationship among AtCNGCs, OsCNGCs, ZjCNGCs, PbrCNGCs, ZmCNGCs, CsCNGCs, CreCNGCs, CgCNGCs, AbuCNGCs and PtCNGCs. The Multiple Sequence Alignment (MSA) has been done by using ClustalW. To build a phylogenetic tree, the IQ tree was utilized using the Maximum Likelihood method with 1,000 bootstrap replicates. Group names are indicated in front of each group. Different symbols are used to represent particular plants.
CNGCs from every group shared a clade with Arabidopsis CNGC members that are a dicot, which demonstrates that CNGCs emerged after the divergence of monocots and dicots. The close association of CNGC members in Citrus Spp. with AtCNGCs demonstrates that these are orthologs of CNGCs in Arabidopsis. Members of the same group might have similar structures and functions. The results of phylogenetic analysis of CNGCs in Citrus Spp. were different than those in A. thaliana, O. sativa, T. aestivum, N. tobaccum, B. oleracea, B. rapa, P. bretschneideri, Z. jujuba as current analysis revealed that Group IV clade was largest with 84 members in total and the clade of group II was smallest with 29 members. The number of members in group IV was almost consistent with the previously reported number of members in Z. mays, which had 86 members in group IV. The minimum number of members present in the clade of group I was 25. Overall, the number of members was different in each group as compared to previously reported CNGC members in other plants.
3.4 Gene structure and conserved motif analysis
Gene structure analysis revealed that members from each subspecies are having their own set of exons and introns. Exons that belong to group I of CsCNGC ranged from 6 to 17 while exons that belong to group I of AtCNGCs ranged from 7 to 9. Exons that belong to group II of CsCNGC were 7 while exons that belong to group II of AtCNGCs ranged from 6 to 9. Exons that belong to group III of CsCNGC and AtCNGC ranged from 6 to 7. Exons that belong to group IV-A of CsCNGC were 12 while exons that belong to group IV-A of AtCNGC ranged from 10 to 11. Exons that belong to group IV-B of CsCNGC ranged from 7 to 14 while exons that belong to group IV-B of AtCNGC ranged from 8 to 9.
Ten motifs were identified in CsCNGCs and named motif 1 to motif 10. Motif 1 represents a combination of the Calmodulin binding motif (CaMB) and motif for the IQ domain. Motif 6 represents the hinge motif, while motif 9 represents the PBC motif. Both these motifs together constitute the cNMP/Cyclic nucleotide-binding domain (CNBD). Other motifs are responsible for unknown functions. The gene structure and logo of conserved motifs of C. Sinensis are given in (Figure 4, Supplementary Figure S5).
[image: Figure 4]FIGURE 4 | (A) Phylogenetic tree constructed at MEGA 7.0 based on Neighbor-Joining method with a bootstrap value of 1,000 replicates using protein sequences of AtCNGCs and CsCNGCs. Red colored circles represent CsCNGCs and green colored circles represent AtCNGCs. (B) Gene structures of AtCNGC and CsCNGC were determined by using GSDS v2.0. (C) Representation of conserved motifs in AtCNGCs and CsCNGCs determined by using MEME suite.
Group I of CreCNGCs contained exons ranging from 4 to 17, 5 to 7 exons exist in group II of CreCNGC, exons that exist in group III of CreCNGCs were 6–8, and 12 exons were present in group IV-A of CreCNGCs and 7 to 13 exons were present in group IV-B of CreCNGCs. Motif 5 represents the PBC motif and motif 2 contains the hinge motif, CaMB motif, and motif for the IQ domain. Other motifs were representing motifs of unknown function (Supplementary Figures S6A,B).
Group I of CgCNGC contained 4 to 17 exons, group II of CgCNGC contained 7 exons, group III of CgCNGC contained 6 to 8, and group IV-A of CgCNGC contained 12 exons and group IV-B of CgCNGC contained 7 to 14 exons. Motif 3 represents a combination of CaMB motif and motif for IQ-domain, motif 5 represents hinge region motif and motif 7 represents PBC motif (Supplementary Figures S7A,B).
In AbuCNGC exons of group I were ranging from 4 to 18, exons of group II were ranging from 6 to 7, exons of group III were ranging from 4 to 7, exons of group IV-A 12, and exons of group IV-B were ranging from 7 to 14. Motif 3 represents a combination of CaMB motif and motif for IQ-domain, motif 8 represents PBC motif and motif 2 contains hinge motif (Supplementary Figures S8A,B).
Exon number for group I of PtCNGC ranged from 6 to 16, exon number for group II of PtCNGC ranged from 7 to 12, exon number for group III of PtCNGC ranged from 6 to 9, and exon number for group IV-A of PtCNGC were 12 and exon number for group IV-B of PtCNGC ranged from 7 to 18. Motif 2 represents the CaMB motif and motif for the IQ domain, motif 3 represents the Cyclic nucleotide-binding domain that contains both PBC and hinge motif. The representation of motifs and logo of conserved motifs of P. trfoliata is displayed (Supplementary Figures S9A,B).
Hence, the PBC motif, hinge motif, CaMB motif, and motif for the IQ domain was conserved in 5 Citrus Spp. indicating that genes identified in the current study are truly CNGC genes.
3.5 Chromosomal mapping
In C. sinensis 32 genes were distributed unevenly on 8 out of 9 chromosomes. C. sinensis had maximum genes (10) at chromosome 9, minimum genes (2) at chromosomes 3, 6, and 8, and there was no gene on chromosome 7. The distribution of CsCNGC on chromosomes is given in (Figure 5).
[image: Figure 5]FIGURE 5 | Distribution of CsCNGC genes on chromosomes. Genes get mapped on chromosomes based on information available at the Citrus pan-genome to breeding database. Chromosome numbers are indicated at the top of each chromosome. The scale is given in Megabases (Mb).
27 genes were mapped unevenly at 8 out of 9 chromosomes in C. recticulata. In C. recticulata maximum genes (8) were present at chromosome 9, minimum genes (1) were present at chromosome 3, and no gene was present at chromosome 7 (Supplementary Figure S10). In C. grandis chromosome 9 carried maximum genes (8), chromosome 3 carried minimum genes (1), and none of the genes was present on chromosome 7 (Supplementary Figure S11). In A. buxfolia chromosome 9 contained maximum genes (8), chromosome 3 contained minimum genes (1) and none of the genes was present on chromosome 7 (Supplementary Figure S12). In P. trifoliata there were maximum genes (7) present at chromosome 9 and chromosome 1, there were minimum genes (2) present at chromosomes 2 and 8 and there was no gene present at chromosomes 4 and 5 (Supplementary Figure S13). Thus, it can be inferred that CNGC genes were distributed unevenly at 8 out of 9 chromosomes in Citrus Spp. except for P. trifoliata in which genes were distributed at 7 out of 9 chromosomes.
3.6 Gene duplication events
The duplication pairs resulting from segmental duplication in C. sinensis include CsCNGC2.3/CsCNGC2.4, CsCNGC2.3/CsCNGC2.5, CsCNGC2.3/CsCNGC2.6, CsCNGC2.4/CsCNGC2.5, CsCNGC2.4/CsCNGC2.6, CsCNGC2.5/CSCNGC2.6. The gene pairs that were tandemly duplicated in C. sinensis include CsCNGC1.1/CsCNGC1.8, CsCNGC1.8/CsCNGC1.9, CsCNGC2.1/CsCNGC2.2, CsCNGC7/CsCNGC8. The gene pairs of A. thaliana CNGCs that were tandemly duplicated include AtCNGC3/AtCNGC11, AtCNGC7/AtCNGC8, AtCNGC11/AtCNGC12, AtCNGC19/AtCNGC20. The gene pairs of A. thaliana CNGCs that were segmentally duplicated include AtCNGC3/AtCNGC13, AtCNGC5/AtCNGC8, AtCNGC6/AtCNGC7, AtCNGC6/AtCNGC9, AtCNGC10/AtCNGC13, AtCNGC14/AtCNGC17. Genes were duplicated segmentally as well as tandemly in both C. sinensis and A. thaliana indicating that both segmental and tandem duplications are involved in the expansion of CsCNGC genes. Moreover, the rate of non-synonymous substitutions (Ka), rate of synonymous substitutions (Ks), Ka/Ks, and duplication time (MYA) were calculated. The Ks of 6 segmental duplicates in C. sinensis ranged from 0.0118 to 0.8374, also Ks of 4 tandem duplicates ranged from 0.2099 to 2.0937, and duplication time of both segmental and tandem duplicates ranged from 0.89 MYA to 159 MYA. The Ka/Ks value of CsCNGC1.1/CsCNGC1.8, CsCNGC2.1/CsCNGC2.2, CsCNGC2.3/CsCNGC2.4, CsCNGC2.3/CsCNGC2.6, CsCNGC2.4/CsCNGC2.5, CsCNGC2.4/CsCNGC2.6, CsCNGC2.5/CSCNGC2.6 was less than 1 indicating the occurrence of purifying selection in duplication of these genes. The Ka/Ks value of CsCNGC1.8/CsCNGC1.9, CsCNGC2.3/CsCNGC2.5, CsCNGC7/CsCNGC8 was greater than 1 indicating the role of positive selection in duplication of these genes. Similarly, the Ks of 6 segmental duplicates in A. thaliana ranged from 0.2735 to 1.1835, and also the Ks value of 4 tandem duplicates ranged from 0.0504 to 0.9547, and the duplication time of both segmental and tandem duplicates ranged from 3.84 MYA to 90.20 million years ago (MYA) (Table 3).
TABLE 3 | Ka, Ks, Ka/Ks values calculated for homologous gene pairs of A. thaliana and C. sinensis.
[image: Table 3]In C. recticulata gene pairs that were the product of segmental duplication include CreCNGC2.2/CreCNGC2.4, CreCNGC2.3/CreCNGC2.4. The gene pairs that were the product of tandem duplication include CreCNGC2.2/CreCNGC2.3, CreCNGC7/CreCNGC8, and CreCNGC15.1/CreCNGC15.2. Altogether 5 gene pairs were duplicated and among these 3 gene pairs were tandemly duplicated indicating the role of tandem duplication in the expansion of CreCNGC genes. The Ks of 2 segmental duplicates in C. recticulata were 0.50, also Ks of 3 tandem duplicates ranged from 0.05 to 0.56, and the duplication time of both segmental and tandem duplicates ranged from 4.23 MYA to 42.74 MYA. The Ka/Ks value of CreCNGCs was less than 1 indicating that purifying selection has occurred in this duplication event (Supplementary Table S3).
The segmentally duplicated gene pairs of C. grandis include CgCNGC2.3/CgCNGC2.5, CgCNGC2.3/CgCNGC2.6, CgCNGC2.4/CgCNGC2.5, CgCNGC2.4/CgCNGC2.6, CgCNGC2.5/CgCNGC2.6. The tandemly duplicated gene pairs include CgCNGC1.5/CgCNGC1.6, CgCNGC2.1/CgCNGC2.2, CgCNGC2.3/CgCNGC2.4, CgCNGC7/CgCNGC8, CgCNGC15.1/CgCNGC15.2. Overall, 10 gene pairs were duplicated and out of these 5 gene pairs were segmentally duplicated and 5 were tandemly duplicated indicating the equal contribution of both events in the expansion of CgCNGC genes. The Ks of 5 segmental duplicates in C. grandis ranged from 0.03 to 0.74, also Ks of 5 tandem duplicates ranged from 0.02 to 0.44, and the duplication time of both segmental and tandem duplicates ranged from 1.71 MYA to 69.20 MYA. The Ka/Ks value of five gene pairs was less than 1 indicating the role of purifying selection in the duplication of these genes. The Ka/Ks value of four gene pairs was less than 1 indicating the role of purifying selection in the duplication of these gene pairs and one gene pair (CgCNGC2.3/CgCNGC2.4) greater than 1 indicating the role of positive selection in the duplication of this gene pair (Supplementary Table S3).
The gene pairs that were segmentally duplicated in A. buxfolia include AbuCNGC1.2/CreCNGC1.7, AbuCNGC1.2/AbuCNGC1.9, AbuCNGC1.3/AbuCNGC1.7, AbuCNGC1.3/AbuCNGC1.9, AbuCNGC2.2/AbuCNGC2.3. Tandemly duplicated gene pairs include AbuCNGC1.1/AbuCNGC1.8, AbuCNGC1.1/AbuCNGC10, AbuCNGC1.8/AbuCNGC1.9, AbuCNGC7/AbuCNGC8. In total 9 gene pairs were duplicated and among these 5 gene pairs were segmentally duplicated and 4 were tandemly duplicated indicating the role of segmental duplication in the expansion of AbuCNGC genes. The Ks of 5 segmental duplicates in A. buxfolia ranged from 0.85 to 2.55, also Ks of 4 tandem duplicates ranged from 0.14 to 1.85, and the duplication time of both segmental and tandem duplicates ranged from 11.36 MYA to 195 MYA. The Ka/Ks value of eight gene pairs was less than 1 indicating the role of purifying selection in the duplication of these gene pairs. While the Ka/Ks value of only one gene pair (AbuCNGC7/AbuCNGC8) was greater than 1 indicating the role of positive selection in the duplication of this gene pair (Supplementary Table S3).
The duplicated gene pairs that arise from segmental duplication in P. trifoliata include PtCNGC2.2/PtCNGC2.3, PtCNGC2.2/PtCNGC2.4, PtCNGC2.5/PtCNGC2.6, PtCNGC5/PtCNGC8. The gene pairs that arise from tandem duplication include PtCNGC1.4/PtCNGC1.5, PtCNGC2.1/PtCNGC2.3, PtCNGC2.1/PtCNGC2.4, PtCNGC2.3/PtCNGC2.4, PtCNGC14/PtCNGC1, PtCNGC15.1/PtCNGC15.2. A total of 10 gene pairs were duplicated and among them, 4 gene pairs were segmentally duplicated and 6 were tandemly duplicated indicating the role of tandem duplication in the expansion of PtCNGC genes. Moreover, the rate of non-synonymous substitutions (Ka), rate of synonymous substitutions (Ks), Ka/Ks, and duplication time (MYA) were calculated. The Ks of 4 segmental duplicates in P. trifoliata ranged from 1.09 to 1.83, also Ks of 6 tandem duplicates ranged from 0.06 to 1.45, and the duplication time of both segmental and tandem duplicates ranged from 4.81 MYA to 111.25 MYA. Mostly gene pairs have Ka/Ks value of less than 1 indicating the role of purifying selection in the duplication of these gene pairs. While the Ka/Ks value of PtCNGC1.4/PtCNGC1.5 was greater than 1 indicating the role of positive selection in the duplication of this gene pair (Supplementary Table S3).
3.7 Cis-regulatory elements/promoter analysis of citrus Spp.
To clearly understand the role of cis-regulatory elements (CREs) in CsCNGCs, CreCNGCs, CgCNGCs, AbuCNGCs, and PtCNGCs, and the cis-elements in 2 kb upstream of TSS were identified. The results suggested that cis-elements of four types were identified namely, hormone-responsive, light-responsive, stress-related cis-elements, and plant development-related cis-elements in CsCNGCs, CreCNGCs, CgCNGCs, AbuCNGCs, PtCNGCs.
It was observed that cis-elements responsible for light responsiveness were present abundantly in CsCNGCs. Overall, 24 cis-elements responsible for light responsiveness were determined out of which Box 4 element was present in 31 CsCNGCs, GT1-motif and G box elements were present in 22 CsCNGCs and 23 CsCNGCs and others were present in very few CNGCs. Among 11 hormone-related cis-elements, the ABRE element was present in 22 CsCNGCs, the CGTCA motif and TGACG motifs were present in 20 CsCNGCs, and 21 CsCNGCs, TCA element, and TATC box were present in 9 CsCNGCs and 11 CsCNGCs and other hormone-related elements were present in very few CsCNGCs. Among 5 stress-related cis-elements, MBS element (drought inducible) was present in 16 CsCNGCs, TC-rich repeats element (defense responsive) was present in 13 CsCNGCs and LTR, GC motif, WUN motif was present in very few CsCNGCs. Out of 8 development-related cis-elements, GCN4_motif and circadian were present in 7 CsCNGCs and O2 site element was present in 9 CsCNGCs and others were present in very few CsCNGCs. The results demonstrate that CsCNGCs are involved in plant growth, development, and response to abiotic stress. The graphical representation of the location and types of cis-elements present in CsCNGCs is given in (Figure 6).
[image: Figure 6]FIGURE 6 | Cis-elements analysis done on promoter regions of CsCNGC. (A) The different colors and numbers represent the number of promoter elements in CsCNGC genes. (B) Colored bars represent cis-elements of different types and their locations in each CsCNGC gene. The types, numbers, and locations of cis-elements in promoter regions 2 kb upstream of CsCNGC genes were checked by using the PlantCare database.
Cis-elements responsible for light responsiveness were present abundantly in CreCNGCs. Overall, 27 cis-elements responsible for light responsiveness were determined out of which Box4 was present in 25 CreCNGCs, G box was present in 22 CreCNGCs, and GT1 motif was present in 17 CreCNGCs and others were present in very few CreCNGCs. Among 10 hormone-related cis-elements, ABRE was present in 18 CreCNGCs, TGACG motif was present in 17 CreCNGCs, TCA element was present in 14 CreCNGCs and others were present in very few CreCNGCs. Among 4 stress-related cis-elements, LTR was present in 12 CreCNGCs, MBS was present in 10 CreCNGCs, TC-rich repeats element was present in 9 CreCNGCs, and GCmotif was present in 4 CreCNGCs. Out of 6 development-related cis-elements RY element, O2 site, and GCN4 motif were present in 6 CreCNGCs and others were present in very few CreCNGCs (Supplementary Figure S14).
CgCNGCs also contained a number of light-responsive CREs. Overall, 24 cis-elements responsible for light responsiveness were determined out of which Box4 was present in 28 CgCNGCs, G box was present in 25 CgCNGCs, and GT1 motif was present in 22 CgCNGCs and others were present in very few CgCNGCs. Among 9 hormone-related cis elements ABRE was present in 23 CgCNGCs, CGTCA motif was present in 17 CgCNGCs, TGACG motif was present in 18 CgCNGCs and others were present in very few CgCNGCs. Among 5 stress-related cis-elements, MBS was present in 18 CgCNGCs, TC rich repeats element was present in 13 CgCNGCs, LTR was present in 11 CgCNGCs and others were present in very few CgCNGCs. Out of 7 development-related cis-elements, circadian was present in 5 CgCNGCs, GCN4 motif was present in 5 CgCNGCs and others were present in very few CgCNGCs (Supplementary Figure S15).
Cis-elements responsible for light responsiveness were present abundantly in AbuCNGCs. Overall, 24 cis-elements responsible for light responsiveness were determined out of which G box was present in 26 AbuCNGCs, Box 4 was present in 26 AbuCNGCs, and GT1 motif was present in 21 AbuCNGCs, TCT motif was present in 21 AbuCNGCs and others were present in very few AbuCNGCs. Among 9 hormone-related cis elements ABRE was present in 25 AbuCNGCs, TGACG motif and CGTCA motif were present in 16 AbuCNGCs and others were present in very few AbuCNGCs. Among 4 stress-related cis-elements, MBS was present in 17 AbuCNGCs, TC-rich repeats element was present in 10 AbuCNGCs, and others were present in very few AbuCNGCs. Among 6 development-related cis-elements, circadian was present in 7 AbuCNGCs, O2 site was present in 5 AbuCNGCs and others were present in very few AbuCNGCs (Supplementary Figure S16).
Cis-elements responsible for light responsiveness were present abundantly in PtCNGCs. Overall, 24 cis-elements responsible for light responsiveness were determined out of which Box 4 was present in 25 PtCNGCs, G box was present in 21 PtCNGCs, and GT1 motif was present in 18 PtCNGCs and others were present in very few PtCNGCs. Among 10 hormone-related cis-elements, ABRE was present in 22 PtCNGCs, CGTCA motif and TGACG motif were present in 17 PtCNGCs and others were present in very few PtCNGCs. Among 5 stress-related cis-elements, MBS was present in 17 PtCNGCs, TC-rich repeats element was present in 11 PtCNGCs, LTR was present in 7 PtCNGCs and others are present in very few PtCNGCs. Among 7 development-related cis-elements, the RY element was present in 5 PtCNGCs, Circadian was present in 4 PtCNGCs and others were present in very few PtCNGCs (Supplementary Figure S17).
3.8 Pan-genome wide investigation of miRNAs targeting CsCNGC genes, protein-protein interaction, and gene ontology enrichment analysis
A total of 226 miRNAs were identified that targeted 32 CsCNGCs with expectation values ranging from 3.5 to 5 (Figure 7A). Only 1 miRNA was targeting CsCNGC17 with an expectation value of 3.5, while 16 miRNAs were targeting CsCNGC7 where all miRNAs have expectation value 5 except Csi-miRN925 with expectation value 4.5, 10 miRNAs were targeting CsCNGC1.1, CsCNGC2.3 and CsCNGC2.4, 4 miRNAs were targeting CsCNGC1.2, 9 miRNAs were targeting CsCNGC1.3, CsCNGC10 and CsCNGC13, 11 miRNAs were targeting CsCNGC1.4 and CsCNGC1.8, 5 miRNAs were targeting CsCNGC1.5, CsCNGC15.1 and CsCNGC2.1, 7 miRNAs were targeting CsCNGC1.6 and CsCNGC18, 13 miRNAs were targeting CsCNGC1.7, CsCNGC16 and CsCNGC8, 3 miRNAs were targeting CsCNGC1.9, CsCNGC15.2, CsCNGC2.6, CsCNGC4.3 and CsCNGC5, 2 miRNAs were targeting CsCNGC4.1, CsCNGC4.2 and CsCNGC19, 6 miRNAs were targeting CsCNGC2.2, 8 miRNAs were targeting CsCNGC2.5, CsCNGC4.4 and CsCNGC4.5, 6 miRNAs were targeting CsCNGC4.6. Detailed information related to these miRNAs regulated CsCNGCs is given in (Supplementary Table S4). Among these miRNAs, most of them were responsible for inhibiting the cleavage of target transcript while only a few were involved in inhibiting the translation of target genes.
[image: Figure 7]FIGURE 7 | (A) Network representation of regulatory association among miRNAs and CsCNGCs. The network has been constructed by using Cytoscape. The miRNAs involved in regulating CsCNGCs are colored blue. CsCNGC genes are colored red and black colored lines represent the regulatory relationship. (B) Network showing the interactions among CsCNGCs and other protein members predicted using STRING database. The nodes are colored according to the degree of interactions. The red color is showing the protein has a higher level of connectivity with other members, orange-colored nodes have a relatively lesser level of interactions with other proteins while yellow-colored nodes have the least interactions with other proteins. (C) Gene ontology enrichment statistics graph, the green color bar represents biological processes, the orange color bar represents a cellular component, and the blue color bar represents the molecular function.
The PPI network of CsCNGC proteins was constructed to reveal the interaction among these proteins and related proteins (Figure 7B) to understand their degree of connectivity and ultimately their functional relativity. It has been shown that the highest degree of connectivity was shown by syntaxin-121, a protein from the C. sinensis plant, which suggests that this protein may have some functional connectivity with the CNGC proteins. Similarly, other proteins including Membrin-11 and some vesicle-associated membrane proteins (acc: XP_006479311.1) also showed a higher degree of interaction. Among CNGC members, CsCNGC4.6, CsCNGC4.2, and CsCNGC4.3 had higher interactions with other CNGC members as well as other related proteins. CsCNGC2.3, CsCNGC4.1, CsCNGC4.4, CsCNGC16, CsCNGC18 and CsCNGC19 had relatively lesser interactions. This level of connectivity reveals that these proteins might be involved in similar pathways thus regulating particular reactions and performing similar functions.
GO enrichment analyses were carried out on 5 Citrus Spp. to increase our understanding of the dynamic roles of CNGCs genes at the molecular level (Figure 7C; Supplementary Table S5). Based on GO analysis genes are classified into three major categories: biological process (BP), cellular component (CC), and molecular function (MF). Genes were mostly related to biological processes (4), molecular functions (4), and then cellular components (1). In the biological process, category 147 out of 150 genes were involved in ion transport (GO:0,006,811) and transmembrane transport (GO:0,055,085), 59 genes were involved in potassium ion transport (GO:0,006,813), and only 2 genes were involved in trehalose biosynthetic process (GO:0,005,992). In the cellular component category, 147 genes were mainly found in the membrane (GO:0,016,020) which is consistent with the subcellular localization prediction result. In the molecular function category, 147 genes were involved in ion channel activity (GO:0,005,216), 59 genes out of 150 are involved in voltage-gated potassium channel activity (GO:0,005,249), 32 genes in protein binding (GO:0,005,515), and only 2 genes were involved in the trehalose-phosphatase activity (GO:0,004,805).
3.9 Expression profiling of C. sinensis under drought stress
RNA-Seq data analysis was performed for leaves sample of C. sinensis under drought stress in two cultivars namely Newhall navel (NHE) orange, and Gannanzao (GNZ) navel orange at 0,10 and 20 days. The results suggest that CsCNGC2.1 and CsCNGC1.4 were highly up-regulated in cultivar I (20 days) and CsCNGC4.2 (10 days). CsCNGC1.3, CsCNGC15.1, CsCNGC15.2, CsCNGC16 and CsCNGC18 were slightly up-regulated in cultivar II (Figure 8).
[image: Figure 8]FIGURE 8 | Heatmap representing the change in expression levels of CsCNGC genes in leaves under drought stress at 10 and 20 days. Red color represents up-regulation of CsCNGCs, Sky blue color represents downregulation of genes and the beige color represents no change in expression.
CsCNGC1.1 was slightly up-regulated in cultivar I (20 days) and cultivar II. CsCNGC2.2 was slightly up-regulated in both cultivars. CsCNGC1.2 was slightly up-regulated in cultivar I (20 days). CsCNGC1.7 was slightly up-regulated in cultivar I (10 days). CsCNGC2.2 was slightly up-regulated in both cultivars. CsCNGC2.3 was slightly up-regulated in cultivar I. CsCNGC2.4 was slightly up-regulated in cultivar I (10 days). The increase in the expression level of these duplicated genes suggests that they not only evolved in number but in function also. CsCNGC4.3 and CsCNGC4.4 were slightly up-regulated in cultivar I (10 days) and cultivar II. CsCNGC4.5 was slightly up-regulated in cultivar II. CsCNGC7 and CsCNGC8 were slightly upregulated in cultivar II. CsCsCNGC4.6 was highly down-regulated in cultivar I (20 days) and slightly down-regulated in cultivar I (10 days). CsCNGC1.4, CsCNGC1.5, CsCNGC1.9, CsCNGC2.1, CsCNGC2.3, CsCNGC2.4, CsCNGC2.5, CsCNGC2.6, CsCNGC4.2 and CsCNGC5 were slightly down-regulated in cultivar II. CsCNGC1.8 was slightly down-regulated in cultivar I (20 days). Most of these genes have evolved through duplication which suggests that they are involved in the stress modulating process either by upregulating or downregulating their expression level. This change in their expression level may contribute to modulating stress response in drought stress as well. CsCNGC10 was slightly down-regulated in cultivar I (10 days) and cultivar II. CsCNGC13 was slightly down-regulated in both cultivars. CsCNGC15.1, CsCNGC15.2, CsCNGC16 was slightly down-regulated in cultivar I. CsCNGC19 was slightly downregulated in cultivar I (20 days). CsCNGC1.1 and CsCNGC1.2 in cultivar I (10 days), CsCNGC1.3 and CsCNGC1.5 in cultivar I, CsCNGC1.6 in cultivar I (20 days) and cultivar II, CsCNGC1.7 in cultivar I at (20 days) and cultivar II, CsCNGC1.8 in cultivar I (10 days) and cultivar II, CsCNGC1.9 in cultivar I, CsCNGC10 in cultivar I (20 days), CsCNGC17 in both cultivars, and CsCNGC18 in cultivar I, CsCNGC19 in cultivar I (10 days) and cultivar II, CsCNGC2.1 in cultivar I (10 days), CsCNGC2.4 in cultivar I (20 days), CsCNGC2.6 in cultivar II, CsCNGC4.1, CsCNGC4.2, CsCNGC4.3 and CsCNGC4.4 in cultivar I (20 days), CsCNGC7 in cultivar I (10 days) and CsCNGC8 in cultivar I were those genes that have no change in expression after providing stress condition (Figure 8).
3.10 Expression validation of the citrus cyclic nucleotide-gated channel genes through quantitative reverse transcription-polymerase chain reaction
To explore the role and relationship between CNGC genes and drought stress, the citrus plant was treated with drought stress under different conditions (Figure 9). The results showed the expression level of different genes under no treatment and drought treatment at 10 and 20 days. According to the qRT-PCR results, the CsCNGC1.4 gene had higher expression after 10 and 20 days of drought treatment compared to the expression level when no stress was applied (Figure 9). The same pattern of gene expression was observed for other members including CsCNGC2.1, CsCNGC2.3, CsCNGC2.4, CsCNGC4.2, CsCNGC4.3, CsCNGC4.4 and CsCNGC5. The level of gene expression increased after 10 days of treatment and further increased after 20 days of treatment. CsCNGC4.6 had different expression patterns, where the level of gene expression under controlled conditions was higher. Drought treatment for 10 days decreased the level of gene expression, while the level of gene expression was again increased after 20 days of drought stress but still lesser than the controlled condition. Two unique genes CsCNGC13 and PtCNGC14 had the same expression pattern being lesser expression under controlled conditions while increased after treatment with drought stress. Results suggest that these members of the CNGC gene family were sensitive to stress conditions, and thus are involved in stress regulation.
[image: Figure 9]FIGURE 9 | The graphs represent the qRT-PCR results of CsCNGC genes under drought stress. 10-DDS: 10 days of drought stress; 20-DDS: 20 days of drought. Each column represents the mean of three biological replicates. The least significant difference was applied to compare the difference between control and dissimilar drought stress levels at p < 0.05 (a, b, c).
3.11 3D Structure prediction of CNGCs in citrus spp.
The protein structures that were predicted are having almost similar structures except for CsCNGC1.4 and PtCNGC14 which had unique structures (Figure 10). Three-dimensional structures of solely thirteen CNGC proteins were predicted because these were differentially expressed proteins. Predicted structures of all CNGC proteins were visualized in the interactive 1 preset of Pymol (Yuan et al., 2017) where different colors are used to represent alpha helices and beta sheets. Each CNGC protein contained alpha helices and beta sheets. The long spirals were representing alpha helices while wide arrows were representing beta sheets. The templates used by tRrosetta for modeling the structure of CsCNGC1.4 were 5VA1, 7NP4, 5U6O, and 6UQF. CsCNGC1.4 had 55 alpha helices, CsCNGC2.3 had 38 alpha helices, CsCNGC2.4 had 37 alpha helices, and CsCNGC4.3 had 18 alpha helices, CsCNGC4.6 had 41 alpha helices, PtCNGC14 had 24 alpha helices and PtCNGC13 had 28 alpha helices. While CsCNGC2.1 and CsCNGC4.4 contained 27 alpha helices, CsCNGC13 and AbuCNGC13 contained 26 alpha helices. CsCNGC1.4 had 14 beta sheets, PtCNGC14 had 2 beta sheets, CsCNGC2.1, CsCNGC13, and AbuCNGC13 contained 8 beta sheets while the rest contained 10 beta sheets. The predicted structures of all these CNGC proteins were almost similar except for CsCNGC1.4 and PtCNGC14 suggesting that these proteins are potentially functionally similar too.
[image: Figure 10]FIGURE 10 | Predicted 3D structures of 12 CNGCs in C. sinensis, A. buxfolia, and P. trifoliata using Alphafold2. CsCNGC1.4 has been predicted by using tRrosetta. Structures are displayed based on secondary structures. Spirals with red color represent alpha helices, wide arrows with yellow color represent beta sheets, and wires with green color represent the loops.
4 DISCUSSION
The CNGC family is characterized by the presence of a CNBD domain and 6 TM domains along with a pore region (Saand et al., 2015). In the present study, the CNGC gene family is reported in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata. The presence of Ion trans and CNBD domain in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata confirm the genes identified are true CNGC genes. Most of the proteins in B. oleracea (Kakar et al., 2017), O. sativa (Nawaz et al., 2014), Z. mays (Hao and Qiao, 2018), T. aestivum (Guo et al., 2018), Z. jujuba mill (Wang et al., 2020). were basic, unstable, hydrophilic, and localized to the plasma membrane and similar results were found for citrus spp. in the present study. The localization of citrus CNGC proteins to the plasma membrane means that these are ion channel proteins and are involved in the uptake of calcium across the membrane. Pangenome-wide analysis provides a comprehensive overview of diversity at the genomic level involving multiple species, which may lead to the identification of unique genes which are present in specific species instead of being present in all genomes under study (Tahir ul Qamar et al., 2020). Similarly, in this study two unique genes were identified including CNGC13 and CNGC14. The function of these members has not been yet identified in A. thaliana. Although, the function of these two members has been identified in O. sativa (Xu et al., 2017; Cui et al., 2020). The number of members in C. grandis and P. trifoliata is the same as the number of members in B. rapa while the number of members in Citrus Spp. is higher than that in Z. mays (12) (Hao and Qiao, 2018), Z. jujuba (15) (Wang et al., 2020), O. sativa (16) (Nawaz et al., 2014), S. lycopersicum (18) (Saand et al., 2015), A. thaliana (20) (Mäser et al., 2001), P. bretschneideri (21) (Chen et al., 2015), B. oleracea (26) (Kakar et al., 2017), and lower than that in N. tobacum (35) (Nawaz et al., 2018), T. aestivum (47) (Guo et al., 2018). The phylogenetic analysis classified the CNGC family members into four major groups and two sub-groups, I, II, III, IV-A, and IV-B that were the same as A. thaliana but some members were missing in Citrus Spp. The members that belong to the same group could have similar structures and functions. Group members in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata were named by the phylogenetic relationships with CNGC members of A. thaliana. However, CNGC1.1-1.5 and CNGC10 were present in group I of Citrus Spp. While CNGC13 which belongs to the same group was present only in C. sinensis, A. buxfolia, and P. trifoliata. CNGC5, CNGC7, and CNGC8 were present in group II of Citrus Spp. CNGC15.1-15.2, CNGC17, and CNGC18 were present in group III of Citrus Spp. While CNGC14 belongs to the same group and was only present in P. trifoliata, CNGC15.3 also belongs to the same group and was present in C. recticulata, C. grandis, A. buxfolia, and P. trifoliata except for C. sinensis. CNGC16 also belongs to the same group and was present in C. sinensis, C. recticulata, C. grandis, and P. trifoliata while CNGC16.1 and CNGC16.2 were present in A. buxfolia. CNGC19 was present in group IV-A of Citrus Spp., while CNGC2.1-2.3 and CNGC4.1-4.6 were present in Group IV-B of Citrus Spp. CNGC2.4, CNGC2.5, and CNGC2.6 also belong to the same group where CNGC2.4 was present in C. sinensis, C. recticulata, C. grandis, and P. trifoliata except A. buxfolia, CNGC2.5 and CNGC2.6 were present in C. sinensis, C. grandis and P. trifoliata except C. recticulata and A. buxfolia. In the current study Group IV constituted the largest clade with 84 members while the clade of group II was the smallest with 29 members. While, in A. thaliana (Mäser et al., 2001) clade of group I was the largest and the clade of group IV was the smallest. In B. rapa (Li et al., 2019) group I constituted largest clade and clade of group IV-B was smallest. In Z. mays (Hao and Qiao, 2018) clade of group IV-B was largest and clade of group I was smallest. In B. oleracea (Kakar et al., 2017) clade of group IV was largest and clade of group II was smallest. In P. bretschneideri (Chen et al., 2015) clade of group I was largest and clade of group II and IV-A was smallest. In O. sativa clade of group III was largest and group II was smallest.
Results of chromosomal mapping suggested that most of the genes were present on chromosome 9 in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and on chromosome 1 in P. trifoliata. Minimum genes were present in chromosomes 3, 6, and 8 in C. sinensis, chromosome 3 in C. recticulata, C. grandis, and A. buxfolia while chromosome 2 and chromosome 8 in P. trifoliata. The distribution of CNGC genes on chromosomes in Citrus Spp. was different as compared to other plants in which the gene family is already reported including B. oleracea (Kakar et al., 2017) in which maximum genes were present on chromosome 1 and 5 and minimum genes were present on chromosome 7. B. rapa (Li et al., 2019) in which maximum genes were present on chromosome 1 and minimum genes were present on chromosomes 6, 7, and 9, P. bretschneideri (Chen et al., 2015) in which maximum genes were present on chromosomes 1, 8, and 15, and minimum genes were present at 2, 9, 13, 16 and 17, N. tobaccum (Saand et al., 2015) in which chromosome 1 and 8 carried maximum genes and minimum genes were present at chromosome 22 and 11. The gene structures of C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata were somewhat similar to A. thaliana as the number of exons and introns of Citrus plants that are being studied were not exactly same as A. thaliana, O. sativa, and other plants. Conserved motif analysis suggested that motifs for IQ domain, CaM binding motif, and CNB motifs were present in C. sinensis, C. recticulata, C. grandis, A. buxfolia, P. trifoliata as reported in B. oleracea (Kakar et al., 2017) in which all the above-mentioned motifs were present. Z. jujube (Wang et al., 2020) also had a similar pattern of motifs. Others include N. tobaccum (Nawaz et al., 2018) in which CNB motif CaM binding motif and motif for IQ domain were present, and T. aestivum (Guo et al., 2018) in which Cyclic nucleotide binding motif and motif for IQ domain were present. In Z. mays (Hao and Qiao, 2018) motif 3 was the combination of both CaMB and motif for the IQ domain, while motif 4 was the CNB domain and motifs 1, 2, 5, 8, 9, and 10 were transmembrane domains. The motifs were closely related to CNGC motifs in Z. mays. Cis-regulatory elements (CREs) that were present in promoter regions of Citrus Spp. were mainly of four types light responsive, stress-related, hormone-related, and development related. In Z. mays (Hao and Qiao, 2018) hormones, stress, and development-related cis-regulatory elements were present. O. sativa (Nawaz et al., 2014), Z. jujuba (Wang et al., 2020), and N. tobaccum (Nawaz et al., 2018) also contained all these stress-responsive elements. Cis-regulatory element analysis shows that the CNGC gene family is involved in plant response to light, hormone, and abiotic Gene duplication mainly contributes to the expansion of a gene family in plant species. In P. bretschneideri mainly segmental duplication has played role in the expansion of the CNGC gene family (Chen et al., 2015). In Arabidopsis CNGCs both segmental and tandem duplications contributed to the expansion of the CNGC gene family. Similarly, both segmental and tandem duplications played a role in the expansion of the CNGC gene family in C. sinensis, C. recticulata, C. grandis, A. buxfolia, and P. trifoliata. In O. sativa (Nawaz et al., 2014) three gene pairs were found to be segmentally duplicated including OsCNGC1/OsCNGC2, OsCNGC10/OsCNGC11, OsCNGC15/OsCNGC16, and one gene pair was found to be tandemly duplicated including OsCNGC2/OsCNGC3. Hence, both tandem and segmental duplications contributed to the expansion of the CNGC gene family in O. sativa (Nawaz et al., 2014). In N. tobacum the CNGC gene family was also considered to be expanded through both segmental and tandem duplications (Nawaz et al., 2018). Most of the OsCNGCs were upregulated under abscisic acid treatment (ABA) i.e., 12 and indole acetic acid (IAA) treatment i.e., 11, and very few genes were upregulated under kinetin (KN) i.e., 2 and ethylene (ETH) treatment i.e., 6, where genes belonging to same groups showed similar expression patterns. Under cold stress OsCNGCs that were present in phylogenetic groups I, II, and III were upregulated and those present in group IV were downregulated where OsCNGC6 exhibited the highest expression and OsCNGC16 exhibited the lowest expression. Under pathogen stress where two phytopathogens were inoculated with 4 weeks old rice seedlings including Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae (Xoo) the expression patterns of OsCNGCs demonstrated that except OsCNGC5 and OsCNGC6 all other OsCNGCs were up-regulated under Xoo while all the fourteen OsCNGCs were significantly up-regulated under P. fuscovagine inoculation. Thus, all the OsCNGCs that were duplicated were exhibiting similar expression patterns alongside relevance in their functions. OsCNGC1 and OsCNGC2 were duplicated genes and were also exhibiting similar expression patterns under abiotic stress i.e., Abscisic acid (ABA) and indole acetic acid (IAA) treatment and pathogenic stress that demonstrates that their functions were overlapping (Nawaz et al., 2014). The 10 duplicated gene pairs in C. sinensis exhibit similar expression patterns except CsCNGC2.1/CsCNGC2.2 where CsCNGC2.1 was highly up-regulated in cultivar I at 20 days drought stress and slightly down-regulated in cultivar II while that as not true for CsCNGC2.2. Among 10 duplicated gene pairs CsCNGC1.8 was slightly up-regulated in cultivar I at 20 days drought stress, CsCNGC1.9 was slightly down-regulated in cultivar II, CsCNGC2.3, CsCNGC2.4 and CsCNGC2.5 were slightly down-regulated in cultivar II, CsCNGC2.4 was slightly up-regulated in cultivar I at 10 days drought stress, CsCNGC2.6 was slightly down-regulated in cultivar I at 20 days drought stress while CsCNGC7 and CsCNGC8 in both cultivars and aforementioned genes in remaining cultivars were having no change in expression. Thus, we can hypothesize that duplicated genes exhibit similar expression patterns and function overlapping in Citrus Spp. too. It seems that some evolutionary events such as duplication could affect the members of CNGC gene family. On the other hand, mutations in the structure, including upstream/downstream site and coding sequence site of members could change the expression levels of CNGC genes (Abdullah et al., 2021; Faraji et al., 2021; Heidari et al., 2021). In T. aestivum (Guo et al., 2018), O. sativa (Nawaz et al., 2014), A. thaliana (Mäser et al., 2001), P. bretschneideri (Chen et al., 2015), Z. mays (Hao and Qiao, 2018), Z. jujuba (Wang et al., 2020), and S. lycopersicum (Saand et al., 2015) the CNGC family members were different indicating that gene duplications and gene losses have played an important role in the creation of new genes and functions. The increase in the number of CNGC gene family members was an important event that contributed to the ability of these plants to adapt to changing environmental conditions.
The miRNAs are non-coding RNAs that regulate gene expression. In this study, a total of 226 putative miRNAs were identified that targeted 32 CsCNGCs. Several miRNAs were targeting each gene except CsCNGC17 which was targeted by a single miRNA and CsCNGC7 was targeted by 16 miRNAs. In B. oleracea 14 miRNAs were identified that targeted 17 BoCNGCs (Kakar et al., 2017). After eliminating false positives based on a threshold value of 5 there remained 5 miRNAs that targeted 9 BoCNGCs. Out of these miRNAs, bol-miR838days had five target genes while the rest of them were targeting only one gene. The majority of the miRNAs were related to cleavage while only two miRNAs were involved in the inhibition of translation of target genes. In N. tobacum 162 tobacco miRNAs were identified that targeted 18 NtabCNGCs (Nawaz et al., 2018). After eliminating false positives based on a threshold value of 4 there remained 79 miRNAs. While, after applying a threshold value of 3 there remained 6 miRNAs from 3 families that comprised 8 NtabCNGCs. Most of the genes were having target sites for multiple miRNAs except NtabCNGC19 which contained the target site of a single miRNA. Prior studies support the evidence that miRNAs are involved in stress response and adaptation including topping and wounding in N. tobacum and miRNAs are also involved in drought signaling in rice (Root, 2016). The study done by (AAB et al., 2019) demonstrates a list of drought-tolerant plant crops with the involvement of genes of specific gene families and the role of their respective miRNAs. Hence, we can conclude that miRNAs in CsCNGCs will also be involved in their response to drought stress. PPI network analysis showed the interaction among citrus CNGC proteins as well as with the other citrus proteins. Higher connectivity was shown by CNGC and other genes which shows their involvement in pathways. The PPI results performed on BoCNGC proteins show that these proteins also have higher connectivity among themselves and with other proteins suggesting their integrated role in biotic, abiotic stress, and hyper-sensitivity resistance (Kakar et al., 2017). In maize, the PPI network analysis was conducted based on interactions found on STRING. Similarly, the ZmCNGC proteins also showed connectivity within the CNGC members as well as with the homologous proteins from Arabidopsis (Hao and Qiao, 2018). In cotton, the functional interaction analysis demonstrated that most of the GhCNGC proteins were found to have higher connectivity with a receptor kinase present in the plasma membrane, FLS2 that activates immune signaling. Several other proteins were showing interactions with RSTK, MOL, and TAD3 which are involved in growth and developmental functions (Zhao et al., 2022). These results regarding interactions of CNGC family members show their contribution of these genes to the functional as well as regulatory diversity in plants and might be helpful in future research to better understand the functions of CNGC genes. As CNGCs are ion channels, so according to GO enrichment these genes are present in the plasma membrane, act as transmembrane ion transporters, and are involved in ion channel activity, potassium and calcium ion transport activity, and protein binding activity. In Brassica oleracea, according to biological processes, the BoCNGCs are associated with ion channel activity for transmembrane transport, negative regulation of defense responses, salicylic acid biosynthesis, responses to chitin, and plant-type hypersensitive responses. BoCNGCs are present in the plasma membrane and participate in cellular activities related to transduction, binding, and transport (Kakar et al., 2017).
Expression patterns of CsCNGC in leaves samples under drought stress at 10 and 20 days indicated that three genes namely CsCNGC1.4, CsCNGC2.1, and CsCNGC4.2 were highly up-regulated while CsCNGC4.6 was highly down-regulated. Out of two unique genes identified in this study, one is present in C. sinensis, CsCNGC13. The expression analysis of this gene in two cultivars is down-regulated under drought stress which shows some specialty in terms of abiotic stress regulation. These results were similar to the ones demonstrated by earlier studies such as expression patterns of N. tobaccum showed that 18 CNGC genes (NtabCNGC2, 3, 5–7, 14, 16–21, and 29–34) were up-regulated under Calmodulin stress, 16 CNGC genes (NtabCNGC1, 3–7, 14, 16, 17, 26–28, and 30–33) under drought stress and 10 CNGC genes (NtabCNGC2, 3, 5–7, 14, 16, 17, 19 and 20) under cold stress and some genes were downregulated in response to these stresses (Nawaz et al., 2018). Expression patterns of O. sativa demonstrated that 10 OsCNGC genes were up-regulated under cold stress, and group IV members were down-regulated under cold stress (Nawaz et al., 2014). In Z. jujuba ZjCNGC10, 8, 2, and 15 were downregulated under cold stress (24 h), and ZjCNGC4 and 12 were up-regulated under cold stress (1 h). The majority of ZjCNGCs were down-regulated after being treated with salt stress, particularly group III members, and the same was the case for ZjCNGCs under alkaline stress (Wang et al., 2020). In B. oleracea 13 BoCNGCs genes were up-regulated under cold stress. However, more BoCNGCs were up-regulated under pathogen stress of Xanthomonas campestris pv. campestris (Xcc) as compared to those treated with cold stress (Kakar et al., 2017). Promoter and expression analysis revealed some genes that have variable expression under abiotic stress. It is hypothesized that several hormones and abiotic stress-related elements control the variable expression level of CsCNGCs under various abiotic stress conditions. As a result, this study confers that these genes can be used in future research due to their importance in abiotic stress response.
5 CONCLUSION
In this study, a total of 32 genes in C. sinensis, 27 genes in C. recticulata, 30 genes in C. grandis, 31 genes in A. buxfolia, and 30 in P. trifoliata were identified as belonging to the CNGCs gene family. CNGC genes were identified based on CNGC-specific motifs and domains. CsCNGCs, CreCNGCs, CgCNGCs, AbuCNGCs, and PtCNGCs have diversity in their functions, protein lengths, and gene structures. Previously, Genome-wide studies have been done on the CNGC gene family in other plants but the present study is illustratating a pangenome-wide representation of the CNGC gene family among five Citrus Spp. To the best of our knowledge, this is the first research implementing the concept of pangenome-wide analysis and will be helpful for further pan-genome wide studies on other plants in the future. This analysis provided a detailed explanation regarding the pattern of evolution of CNGCs in Citrus Spp. their intron-exon patterns, distribution of CNGC genes on chromosomes, prediction of CNGC specific motifs and domains, duplication type, along with promoter region analysis indicating which regulatory elements are more likely to influence the expression of particular genes. Phylogenetic analysis revealed that CNGCs of these five citrus species were clustered into four major groups and two sub-groups. A few CNGCs in the groups were missing or might be duplicated during evolution. CREs analysis reveals the association of gene families in response to abiotic stresses. The miRNAs also play a role in the response of CNGC genes to drought stress alongside regulating the expression of these genes. PPI network analysis also provided insights into their connectivity suggesting their involvement in functional regulation. GO enrichment was executed to understand the functions of CNGCs at the molecular level. Expression profiling was done on tissue-specific data of C. sinensis under drought stress that demonstrates that CsCNGC1.4, CsCNGC2.1, CsCNGC4.2 were highly upregulated and CsCNGC4.6 was highly downregulated under drought stress. Unique genes CsCNGC13 and PtCNGC14 also showed higher expression in drought stress. These genes can be used in further studies to develop stress-resistant crops. One can visualize and understand the genomic diversity among the Citrus species being examined. We have observed significant inter and intra-species diversity of the CNGC gene family members. The diversity observed could be due to differences in sequencing approaches. Therefore, further experiemnts are required to get deep insights.
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Genetic and morpho-physiological analyses of the tolerance and recovery mechanisms in seedling stage spring wheat under drought stress
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Drought is one of the complex abiotic stresses that affect the growth and production of wheat in arid and semiarid countries. In this study, a set of 172 diverse spring wheat genotypes from 20 different countries were assessed under drought stress at the seedling stage. Besides seedling length, two types of traits were recorded, namely: tolerance traits (days to wilting, leaf wilting, and the sum of leaf wilting), and recovery traits (days to regrowth, regrowth biomass, and drought survival rate). In addition, tolerance index, recovery index, and drought tolerance index (DTI) were estimated to select the most drought tolerant genotypes. Moreover, leaf protein content (P), amino acid (AM), proline content (PRO), glucose (G), fructose (F), and total soluble carbohydrates (TSC) were measured under control and drought conditions to study the changes in each physiological trait due to drought stress. All genotypes showed a high significant genetic variation in all the physio-morphological traits scored under drought stress. High phenotypic and genotypic correlations were found among all seedling morphological traits. Among the studied indices, the drought tolerance index (DTI) had the highest phenotypic and genotypic correlations with all tolerance and recovery traits. The broad-sense heritability (H2) estimates were high for morphological traits (83.85–92.27), while the physiological traits ranged from 96.41 to 98.68 under the control conditions and from 97.13 to 99.99 under drought stress. The averages of the physiological traits (proteins, amino acids, proline, glucose, fructose, and total soluble carbohydrates) denoted under drought stress were higher than those recorded under well-watered conditions except for proteins. In this regard, amino acids, glucose, and total soluble carbohydrates had a significant correlation with all morphological traits. The selection for drought tolerance revealed 10 tolerant genotypes from different countries (8 genotypes from Egypt, one from Morocco, and one from the United States). These selected genotypes were screened for the presence of nine specific TaDREB1 alleles. Six primers were polymorphic among the selected genotypes. Genetic diversity among the selected genotypes was investigated using 21,450 SNP markers. The results of the study shed light on the different mechanisms for drought tolerance that wheat plants use to tolerate and survive under drought stress. The genetic analysis performed in this study suggested the most suitable genotypes for selective breeding at the seedling stage under water deficit.
Keywords: drought tolerance, genetic variation, morphological traits, seedling stage, spring wheat, physiological traits, DREB genes
INTRODUCTION
Wheat (Triticum aestivum L.) is one of the most important cereal crops in the world. The main losses in wheat production are due more to abiotic stresses such as drought (Ballesta et al., 2020; Ahmad et al., 2022), salinity (Yousfi et al., 2016), and high temperatures (Posch et al., 2019) than biotic stresses. Drought stress affects plant development, growth, and crop production, especially in arid and semi-arid countries (Moursi et al., 2020). In 2013, approximately 65 million hectares of wheat production was affected by drought stress (Boliko, 2019). Drought stress can occur at any growth stage (germination, seedling, vegetative, flowering, and reproductive) depending on the local environment, and it affects almost every aspect of plant growth through alterations in metabolism and gene expression (Sallam et al., 2019). Early growth stages, such as the seedling stage, are critical and very sensitive stages to drought stress because they affect all the following stages, including grain yield (Samarah, 2005). Consequently, studying drought tolerance at these stages is very important to increase the selection efficiency for drought-tolerant varieties in the breeding programs (Hameed et al., 2010). With the consequences of climate change, the severity of drought stress is expected to increase at any growth stage, especially the seedling stage, which is fundamental to plant architecture and development.
Breeding for drought tolerance is a crucial solution to producing cultivars with high drought tolerance. Therefore, wheat breeders and geneticists aim to address the variation in drought tolerance by scoring new traits directly associated with drought tolerance. (Ehdaie et al., 1991; Ehdaie and Waines, 1993; Mwadzingeni et al., 2017). Various morphological traits have been used to measure the effect of drought on plant leaves at the seedling stage. Examples include, but are not limited to, leaf wilting, days to wilting, the sum of leaf wilting, regrowth biomass, and days to regrowth (Sallam et al., 2018b; Ahmed et al., 2021). These traits are very useful because they discriminate between tolerant and susceptible genotypes. Moreover, they measure the ability of plants to tolerate prolonged water shortages. In addition, they measure the plant’s ability to recover after drought exposure. Therefore they are very effective for selection in a breeding program to improve drought tolerance (Ahmed et al., 2021). A previous study by Sallam et al. (2018b) reported two types of traits recovery (regrowth) and tolerance in winter wheat under drought at the seedling stage. They found no correlation between the recovery and tolerance traits but a highly significant correlation among traits within each type. However, no physiological analyses were reported. Here, we applied the same protocol suggested by Sallam et al. (2018b) in a highly diverse spring wheat core collection (WCC) collected from 20 countries to investigate this relationship in the spring type.
In addition to morphological alterations by drought, there are many physiological changes that wheat plants make to withstand the effect of drought stress. The physiological changes due to drought stress differ by the growth stage and also by the genotype (Farshadfar et al., 2008; Sallam et al., 2019). The most important biochemical attributes that are widely accepted as fundamental traits related to drought stress are water content (Abid et al., 2018), proline (Ahmad et al., 2015; Mwadzingeni et al., 2016), chlorophyll content (Nikolaeva et al., 2010; Allahverdiyev et al., 2015), amino acids content (Abid et al., 2016), and photosynthesis efficiency (Ahmad et al., 2018). It was reported that tolerant genotypes tend to accumulate soluble sugars, accumulate amino acids, increase chlorophyll content in leaves, reduce the rate of water loss, reduce photosynthetic activity, and increase its proline content (Zali and Ehsanzadeh, 2018). Thus, evaluating the plant physio-morphological traits is very important for selection to improve drought tolerance in a breeding program due to their relation to the adaption for future climate scenarios (Bowne et al., 2012). Physiological analyses provide helpful information on understanding the mechanisms in plants to alleviate the effect of drought stress (Sallam et al., 2018a; Dawood et al., 2020; Mondal et al., 2021; Moursi et al., 2021). Such information can be used along with morphological traits for selecting the most drought-tolerant cultivars with high adaptability to drought stress at the seedling stage. Moreover, to validate the selection results, screening the selected tolerant genotypes using DNA molecular markers for specific drought genes such as dehydration-responsive element-binding protein (DREB) gene is highly recommendable to select the target candidate’s parents for future crossing in breeding programs. Also, crossing highly genetically diverse drought-tolerant genotypes will be fruitful in producing cultivars with a high drought tolerance level.
Thus, the objectives of the current study were to 1) assess the genetic variation in tolerance and recovery traits of a highly diverse spring wheat core collection, 2) understand the essential physiological changes under drought stress, and 3) select the most promising spring wheat genotypes with high drought tolerance at the seedling stage for the future breeding program.
MATERIALS AND METHODS
All experiments and activities conducted in this study were illustrated in Supplementary Figure S1.
Plant material
The plant material consisted of 172 highly diverse spring wheat genotypes (Supplementary Table S1) and two checks; Wesley (a drought susceptible cultivar) and Harry (a drought tolerant cultivar) (Hussain et al., 2018; Sallam et al., 2019). Out of the 172 genotypes, 20 were from Egypt, while the remaining 152 genotypes were from 19 different countries. These genotypes represent 20 different countries covering wide geographic regions around the world, including Egypt, Afghanistan, Algeria, Australia, Canada, Ethiopia, Germany, Greece, Iran, Kazakhstan, Kenya, Morocco, Oman, Saudi Arabia, Sudan, Syria, Tunisia, United Kingdom, and the United States. Moreover, the genotypes represented the following continents: Africa, Asia, Europe, North America, and Australia and were collected from the U.S National Plant Germplasm, United States Department of Agriculture, United States. The number of genotypes used from each country is presented in Supplementary Figure S2. These genotypes showed good performance with high adaptation to the Egyptian environmental condition (Ahmed Sallam, personal communication).
Drought assessment
Assessment of morphological traits at the seedling stage
Experimental layout
Drought experiments were conducted in the Plant Genetics Lab, Faculty of Agriculture, Assiut University. The drought stress was applied to all genotypes based on the protocol described by Sallam et al. (2018b) with few modifications (drought stress period). The experimental layout was a randomized complete block design (RCBD) with seven replications. A set of 84 Cell Plant Tray (65 × 37 cm) was used. Each cell was filled with 50 g of fertilized sand soil. In each replication, four seeds from each genotype were sown in 2 cells with two seeds/cell. A final of 28 grains/genotypes were scored. The sand filtering process was used to calculate the volume of water used for each irrigation (Supplementary Figure S3A,B).
All genotypes grown in tray cells were firstly irrigated with 16 ml distilled water (100% soil water capacity). Then, all genotypes were irrigated with 8 ml in the second irrigation (50% soil water capacity) to prepare the genotypes for drought stress. The temperature and humidity data during the experiment were recorded daily (Supplementary Figure S4). The temperature ranged from 20 to 23 °C, and air humidity ranged from 37 to 56.6%. When the first leaf emerged (seedling emergence) after 7 days from sowing, the drought treatment was applied by water withholding. The drought treatment was stopped when 70% of plants were fully wilted (after 13 days), thus, all plants of each genotype remained without water for 13 days.
Traits scoring
The seedling length (SL), tolerance (TT) traits, and recovery (RT) traits were recorded on each plant as described by Sallam et al. (2018b). At the end of drought treatment (after 13 days from water withholding), the shoots (leaves and stem) of all plants/genotype were cut at the soil surface and then irrigated to test their ability to regrow after prolonged drought stress. The time from the cutting the plants to the end of experiment was 17 days as we did not observe any regrowth after that. The experiment lasted for 37 days.
1) Seedling length (SL) was measured (for each genotype) in centimeters (cm) from the beginning of the soil surface to the end of the plant. This trait was scored before water withholding (before drought stress).
2) The tolerance traits (TT) included:
A) Days to wilting (DTW) was scored as the number of days from starting water withholding until 50% of seedlings/genotype started to wilt. High values indicated tolerance to drought stress.
B) Leaf wilting (LW) was visually scored on each seedling/genotype during drought treatment when the plants started to wilt and scored every 2 days using a scale ranging from 1 (no wilting) to 9 (fully wilted). The wilting degree as a visual score was recorded as previously described by Ahmed et al. (2021). The total visual scores of LW from the start of withholding water until the end of drought treatment (during the entire drought duration (13 days)) were done five times. Low values indicated high tolerance to drought stress.
C) Sum of leaf wilting (S_LW). The five scores of LW were summed up to form one trait to evaluate the wilting symptoms for each genotype during the drought period. This trait ranged from 5 (no wilting) to 45 (fully wilted). Low values indicated high tolerance to drought stress.
3) The recovery traits (RT) included:
A) Days to Regrowth (DTR) was determined for each seedling after their cutting (shoots), and this trait was counted as the number of days from the beginning of cutting plants (shoots) until the regrowth of plants where each uprooted seedling started to produce the first new leaf. This trait estimated the ability of cut plants to produce new shoots after exposure to 13 days of drought stress when re-watered. Low values of DTR indicated high tolerance to drought stress. All scores of DTR traits were converted or transformed to the disposition to regrowth [from 0 to 90] as described by both Roth and Link (2010); Sallam et al. (2018b) according to the following equation:
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where xi number of days for each cutting plant (leaves) from the beginning of cutting until the production of the first new shoot, µx = average number of days for those plants that produced new shoot after re-watering. Plants that cannot form or produce a new shoot after the drought was considered to be lifeless plants and had a score of 90.
B) Regrowth biomass (RB) was scored for each regrowth plant on the last day of the experiment by re-cutting the leaves and shoots of plants that regrowth after drought stress when re-watering and weighed (g). High values indicated high tolerance to drought stress.
C) Drought survival rate (DSR) was estimated in each replication for each genotype by calculating the number of surviving plants from cut plants (number of plant/genotypes = 4) by dividing the number of surviving plants from cut plants to the number of cut plants where high values of DSR indicated tolerance to drought stress.
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Selection index for drought tolerance.
Three selection indices were calculated, as shown in Falconer and Mackay (1996), to better select or determine the most drought-tolerant genotypes (Falconer, 1996).
The tolerance index (TI), which represented the tolerance traits and was used to better describe S-LW (X1) using two auxiliary traits: DTW (X2) and SL (X3) as:
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Where, b1 = 0.7429, b2 = -0.3808, b3 = 0.0186.
Recovery Index (RI), which represented recovery traits and was used to better describe DTR (X1) using two auxiliary traits: RB (X2) and DSR (X3) as:
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Where, b1 = 0.6424, b2 = -0.1389, b3 = -0.0267.Where b1, b2, and b3, b4, are the index coefficients. The vector of Smith-Hazel index coefficient b was calculated as shown in Baker (1986).b = P −1 G, where P −1 is the inverse of the phenotypic variance-covariance matrix for the traits; G is a matrix including the estimates of genotypic and covariance.
Drought Tolerant Index (DTI) was calculated by combining both TI and RI as follow:
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Where SDTI and SDRI are the phenotypic standard deviation of the TI and RI, respectively. The low DTI values indicated high tolerance to drought stress.
Assessment of physiological traits at the seedling stage
At the end of the drought experiment, the shoot of each genotype across the seven replications was dried and pooled for physiological analysis. Along with this, the same genotypes were sown in three replications under control conditions (normal irrigations) and after 13 days, the leaves were cut and dried. The shoot dry matter for each genotype under both treatments was used for assessing the different physiological parameters. Six physiological traits were estimated, protein content (PC), total soluble carbohydrates (TSC), glucose (G), fructose (F) and amino acid (AM) contents, and proline content (PRO).
1) Protein content (P)
The protein content of the aqueous extract was determined using an alkaline reagent solution according to the method of Lowery et al. (1951) where the Folin solution was used as an indicator for protein detection.
2) Total soluble carbohydrates (TSC)
Glucose (G) and fructose (F) mg/g DW were estimated in the aforementioned extract using the anthrone-sulfuric acid method for both Halhoul and Kleinberg (1972), while the total soluble carbohydrate (TSC) in the same extract (mg/g DW) was estimated by False (1951).
3) Amino acids (AM)
The ninhydrin method described by Moore and Stein (1948) was followed to estimate the total amino acid in leaves, and a diluent Solvent was used as standard.
4) Proline content (PRO)
To estimate the proline content in the leaves, an extract was made by grinding dried leaves (0.05 g) in 3 ml of 5% sulfosalicylic acid. The extract was filtered, and the supernatant was used to determine the proline following the method by Bates et al. (1973).
Statistical analysis of the phenotypic data
The analysis of variance, covariance, boreas-sense heritability, Spearman rank correlation, and genotypic correlation were perfomed using PLABSTAT software (Utz, 1997). Two statistical models were used. First model was used to analyze the morphological traits scored under drought stress using the following model.
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Where Yij is the observation of genotype i in replication j, µ is the general average, gi and rj are the main effects of genotypes and replication, respectively, and the error is the interaction between genotype i and replication j. For seedling data, genotypes and replications were considered random effects. Broad-sense heritability (H2) estimates for each trait were calculated by PLABSATA using the following equation:
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where [image: image] refers to genotypic variance, while [image: image] refers to the phenotypic variance.
Second, another statistical model was used to analyze the physiological traits that were measured under control and drought stress using the following model
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where Yijk is the observation of genotype i in replication j in treatment k (control vs. drought), k, μ is the general mean; gi, rj, and tk are the main effects of genotypes, replications, and treatments, respectively. tgik is genotype × treatment interaction. tgr ijk is genotype × replications × treatment interaction (error). Treatments were considered fixed effects, while replications and genotypes were considered random effects.
The Spearman rank correlation coefficient was imputed by PLABSTAT to estimate the phenotypic correlation between traits. The genetic correlation coefficient was estimated for all traits using covariance analysis and GENOT-a command with PLABSTAT software, to allow the construction of optimum selection indices. Microsoft Office Excel 2010 and R software (R Core Team, 2014) were used to make some graphical of the results of the analysis, such as a histogram to show the normal distribution of genotypes on traits.
The change (increase or reduction) in each trait due to drought stress was calculated for all physiological traits that were scored in this study based on the average of each trait using the following equations for Sallam et al. (2018a). If the mean of the trait for all genotypes under control conditions are higher than the mean under drought stress, then the reduction due to drought stress in the trait (RDD) was calculated according to the following equation: 
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If the mean of the trait for all genotypes under drought stress is higher than the mean under control conditions, then the increase in the trait due to drought stress (IDD) was calculated according to the following equation:
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where XD and XC are the means of a trait for each genotype under drought stress and control conditions, respectively.
Genetic analysis of the most drought-tolerance genotypes
Screening the most drought-tolerance genotypes with specific DREB genes
The most drought-tolerant genotypes (N = 10) were selected, and DNA was extracted from two to three leaves of six old seedlings. The DNA extraction was performed in the Biotechnology laboratory in the Genetics Department, Faculty of Agriculture, Assiut University. DNA was extracted from each genotype from two to three leaves using the Thermo Scientific GeneJET Plant Genomic DNA Purification Mini Kit protocol. Nine primer combinations of dehydration-res element binding proteins (nine fixed forward primers in combination with nine reverse primers) developed by Liu et al. (2018) were tested with the ten drought–tolerance genotypes. Primer codes and sequences of the forward and reverse primers are shown in Table 1. A gradient PCR was performed in order to determine the optimal annealing temperature for each primer used. The gradient test was performed using a gradient annealing temperature of 70 < 60 >50. The method of Thermo scientific PCR Master Mix protocol (Scientific, 2012) was followed for PCR reactions; each amplification reaction was carried out in a total volume of 20μL, containing 1x PCR reaction mix buffer (10 μL), 0.2 of each forward and reverse primer and 1 μL of template DNA, 8.6 μL H2O. Polymerase chain reactions (PCRs) were carried out using the following program: initial denaturation at 94°C for 5 min, 35 cycles, while denaturation at 94°C for 30 s, annealing at 52–69.6°C for 30 s, 72°C for 60 extensions, and a final extension at 72°C for 5 min. The PCR products of each reaction (20 µl) and a 1,000 bp ladder marker (1 µl) were electrophoresed onto submerged agarose gel of 1% concentration containing 0.05 μL Supper Saffa in 50 ml TBE buffer (50X). Electrophoresis was carried out under a constant voltage of around 80 V for approximately 2–2.5 h. The banding patterns were visualized under Transilluminator and photographed using a gel documentation system (Ultra-Violet Product, Upland, CA, USA).
TABLE 1 | Primer codes and sequences of the forward (F) and reverse (R) primers used in the DREB analysis.
[image: Table 1]Genotyping-by-sequencing (GBS) and genetic diversity among the selected genotypes
The DNA of the most drought-tolerant genotypes selected in this study was sent to Trait Genetics for GBS using a 25 K wheat Infinium array at Trait Genetics, Gatersleben, Germany. Extensive details on the development of the 25 K wheat Infinium array were reported in Soleimani et al. (2020). The result of array genotyping revealed 21,450 SNP markers that were used for calculating genetic distance among the selected genotypes using R-package ‘ade4’ (Lobry et al., 2012). The genetic distance was calculated using a simple matching coefficient.
RESULTS
Genetic variation at the seedling stage under drought stress
Genetic variation analysis of the morphological traits
Analysis of variance (ANOVA) results for the morphological (tolerance and recovery) traits scored in this study at the seedling stage are presented in Table 2 and Supplementary Table S2. The results showed a highly significant variation (p < 0.01) among the genotypes for all traits measured under drought stress. For the tolerance traits, the highest and lowest p-values among the genotypes were for LW5 and LW1, respectively. For the recovery traits, RB (11.52**, p > 0.01) had the highest p-value, while DSR (6.24**, p > 0.01) had the lowest. All traits had a wide range of heritability (H2), and the estimates for the tolerance traits ranged from 69.02 (LW1) to 87.76 (LW5), while it ranged from 83.98 (DSR) to 91.32 (RB) in recovery traits. The heritability estimates for the recovery traits were higher than those for the tolerance traits. The drought tolerance index (including TI and RI) had the highest H2 among the selection indices at 90.71, while seedling length (SL), which was scored before the drought, had an H2 value of 92.27.
TABLE 2 | Descriptive statistics and F-values among genotypes for all morphological traits scored at the seedling stage.
[image: Table 2]The distribution of all genotypes in relation to all traits scored under drought stress is presented in Supplementary Figure S5A,B. Three drought indices were calculated to better describe drought tolerance in wheat. The phenotypic variation among the genotypes for three drought indices (RI, TI, and DTI) is illustrated in Figure 1 and Supplementary Figure S5C. The drought tolerance index (DTI) divided the genotypes into three categories: tolerant (13 genotypes), intermediate (55 genotypes), and susceptible (104 genotypes) (Figure 1). Based on the DTI, the Egyptian cultivar Shandweel-1 (DTI = 2.7) was identified as the most drought tolerant, while the United Kingdom cultivar Little Tich was the most susceptible (DTI = 6.6).
[image: Figure 1]FIGURE 1 | The phenotypic variation among genotypes in drought tolerance index (DTI).
Genetic variation in the physiological traits
The physiological traits were scored under drought and control conditions, and the ANOVA showed highly significant differences among all genotypes (Table 3 Supplementary Table S3). The ANOVA analysis also showed highly significant differences between treatments (control vs. drought). The differences among the three biological replicates were insignificant except for the protein and proline contents. The interaction between genotypes and treatments was highly significant. The F-values among the genotypes for all of the physiological traits were higher under drought stress when compared to the control (Table 4 Supplementary Table S4), except for those of fructose content. All physiological traits showed very high heritability estimates in both conditions, as the heritability estimates under drought were higher than in the control condition except the fructose trait had an H2 of 97.42 and 96.98 under control and drought, respectively. Under control conditions, the heritability varied from 96.41 for Protein to 98.68 for proline, while under drought stress the heritability ranged from 96.98 for Fructose to 99.9 for proline (Table 4).
TABLE 3 | Analysis of variance (ANOVA) for the physiological traits scored under control and drought conditions.
[image: Table 3]TABLE 4 | Descriptive statistics and F-values among genotypes for all physiological traits scored under control and drought conditions.
[image: Table 4]Generally, the averages for all the physiological traits under drought stress were higher than those under well-watered conditions (Control), except in protein content (Table 4 and Supplementary Figure S6). The physiological changes in the leaves (reduction or increase) due to drought stress are illustrated in Figure 2. On average, all physiological traits increased due to drought stress, ranged from 1.07% (F) to 33.6% (Pro), except the protein content, which had a reduction of 10.12%. Amino acid, total soluble carbohydrate, and glucose increased by 3.8, 12.8, and 13.68 mg/g DW, respectively.
[image: Figure 2]FIGURE 2 | Changes in physiological traits of all tested genotypes (%) due to frought stress at the seedling stage.
Phenotypic and genotypic correlations
Correlations among the morphological traits
The phenotypic and genotypic correlations among all traits are presented in Table 5. The genotypic correlations among the traits were higher than those of the phenotypic correlations. The phenotypic and genotypic correlations among the recovery traits were higher than the correlations among the tolerance traits. SL, which was scored before exposing the plants to drought, was found to be highly and significantly associated with all traits scored in this study. For the tolerance traits, SL was found be positively correlated with S_LW (r = 0.50**) and negatively correlated with DTW (r = −0.68**). The SL showed a significant correlation with the recovery traits as it was positively correlated with DTR (r = 0.51**) and negatively correlated with both RB (r = −0.55**) and DSR (r = −0.56**). Moreover, SL had a positive and significant correlation with three selection indices.
TABLE 5 | Phenotypic (bold font) and genotypic (normal font) correlations among all traits scored in this study.
[image: Table 5]For tolerance traits, the sum of leaf wilting (S_LW) was negatively phenotypic and genotypic correlated with DTW r phenotypic (p) = -0.79**, p < 0.01, (r genotypic (g) = -0.86++). Tolerance traits had a high significant correlation with all three selection indices.
For recovery traits, on the other hand, highly significant phenotypic and genotypic correlations were found among the recovery traits scored after irrigating the drought-stressed plants. Days to regrowth had negative phenotypic (rp) and genotypic correlations (rg) with RB (rp = −0.87**, rg = −0.92++) and DSR (rp = −0.95**, rg = −1.00++). Regrowth biomass had high phenotypic and genotypic correlations with DSR (rp = 0.90**, rg = 0.95++). The recovery traits also had highly significant correlations with the three selection indices.
By looking at the phenotypic and genotypic correlations between the tolerance and recovery traits, it was observed that there was a significant correlation between the two groups of traits (Table 5). Sum of leaf wilting (S_LW) was negatively correlated with RB and DSR but positively correlated with DTR. Days to wilting (DTW) had a lower significant phenotypic and genotypic correlation size with the recovery traits compared to SLW. Sum of leaf wilting (S_LW) was found to have the same phenotypic correlation with DTR (rp = 0.57**) and DSR (rp = −0.57**), while DTW had the same correlation with DTR (r p = −0.49**) and RB (r p = 0.49**).
The tolerance index (including S_LW, DTW, and SL) had a higher significant phenotypic and genotypic correlation with tolerance traits than recovery traits. Likewise, the recovery (including DTR, RB, and DSR) index was found to have highly significant phenotypic and genotypic correlations with the recovery traits compared with the tolerance traits. The recovery index was positively and significantly correlated with the tolerance index, with a correlation value of 0.59**. Interestingly, DTI (including TI and RI) was highly and significantly correlated with all traits (tolerance and recovery traits) assessed in this study. The highest correlation between DTI and the tolerance traits was for S_LW (r = 0.88**), while DTR, among the recovery traits, had the highest correlation with DTI (r = 0.88**). The DTI had the same significant phenotypic correlation with RI and TI (r phenotypic = 0.89**).
Correlation between the physiological and morphological traits under drought stress
The correlation coefficients between all morphological and physiological traits under drought stress are shown in Table 6. The physiological, protein (P), proline (PRO), and fructose (F) did not have any significant correlations with any of the morphological traits. Amino acid (AM) had positive and significant correlations with S-LW (r = 0.27**), SL (r = 0.24**), and DTR (r = 0.36**). Furthermore, AM had negative correlations with DTW (r = −0.26**), RB (r = −0.38**), and DSR (r = −0.39**). A positive and significant correlation was found between AM and the three selection indices (TI, RI, and DTI). Notably, both G and TSC had similar association trends with the morphological traits, as they had negative and significant correlations with S_LW, SL, and DTR (Table 6) and positive significant correlations with DTW, RB, and DSR. The selection indices had negative and significant correlations with G and TSC.
TABLE 6 | Correlations between morphological and physiological traits under drought stress at the seedling stage.
[image: Table 6]Phenotypic selection
Morphological traits
To select the most promising genotypes with high drought tolerance from both the tolerance and recovery traits at the seedling stage, the genotypes were sorted for all traits based on the direction of drought tolerance from most tolerant to susceptible. Then, the 20 most tolerant genotypes in each trait were selected. Finally, genotype was selected from the top 20 genotypes if it was tolerance criteria in at least five traits and DTI. A set of 13 genotypes were ultimately identified as drought tolerant (Supplementary Table S1). Six of these 13 tolerant genotypes (MISR1, SAKHA93, Shandweel-1, PI525434, SIDS13, and Hutch) were among the 13 most drought-tolerant genotypes for nine traits, while three (SIDS12, Gimmeiza-12, and Sohag-3) were among the 13 most drought-tolerant genotypes in eight traits. The genotypes Beni Swief-5 and Beni Swief-7 were tolerant to drought for seven and six traits, respectively (Table 7). The ramming two genotypes (Gimmeiza 11 and Gimmeiza-07) were tolerant to drought in five traits. All 13 genotypes had a short height, high days to wiling, regrowth biomass after drought, and high survival rate after drought, and low levels of wilt. Finally, based on the number of traits and the value of DTI, the 10 most drought-tolerant genotypes were selected, and their physiological changes to drought and specific drought genes were investigated (Table 7).
TABLE 7 | The most promising spring wheat genotypes with high drought tolerance and the 10 most drought susceptible genotypes at the seedling stage.
[image: Table 7]Important physiological changes among tolerant and susceptible genotypes
In addition to the 10 most drought tolerant genotypes at the seedling stage, the 10 most susceptible genotypes were also selected to give a reliable image of the main differences between the tolerance and susceptible genotypes (Table 7).
Comparisons between the 10 most drought tolerant and susceptible genotypes (Figures 3A,B), showed that the drought-tolerant genotypes had increased G, TSC, P, and PRO traits, but decreased F and AM traits under drought stress (Figure 3A). For the tolerant genotypes, the soluble proteins, proline content, glucose, and total soluble carbohydrate content increased under drought stress compared to the control. In contrast, F and AM decreased under drought stress compared to the control, whereas PRO increased by 53% compared to control. While F and AM were decreased by drought stress competed with the control conditions (Figure 3A). The susceptible genotypes also had increased PRO, AM, and G under drought stress, while there was a notable decrease in TSC, F, and P compared to the control (Figure 3B). The highest increase in AM was identified in the susceptible group.
[image: Figure 3]FIGURE 3 | The variation between the most tolerant (A) and susceptible (B) genotypes in the content of the physiological traits under control nd drought stress.
Genetic analyses of the selected genotypes
Screening of the tolerant genotypes for drought DREB-specific genes
The 10 most drought-tolerant genotypes (Table 7) in this study were tested for the presence of nine specific DREB alleles. The genotyping revealed the amplification of only six DREB genes, as three primers did not give any specific bands (Figure 4). For the six amplified primers, the presence/absence of each gene was scored in each genotype (Table 8). The six primers showed clear polymorphism among the 10 most tolerant genotypes. MISR1 and SAKHA93 had six different DREB genes, while the American genotype Huch had one (DREB1-D1). The SIDS12, Gimmeiza-12, Shandweel-1, Beni Swief-5, and SIDS13 genotypes each contained five genes, while the Sohag-3 and PI525434 genotypes contained three.
[image: Figure 4]FIGURE 4 | Agarose gel electrophoresis of DREB genes used in this study. Names of genotype are mentioned in Table 8.
TABLE 8 | The total number of DREB genes present in each of the ten drought-tolerant genotypes.
[image: Table 8]Genetic distance and dendrogram analyses of the tolerant genotypes
The genetic distance among the most tolerant genotypes was calculated using 21,450 SNP markers (Figures 5A,B, and Supplementary Table S5). The analysis of the dendrogram divided the tolerant genotypes into three different branches. The branch I included eight Egyptian genotypes and one from Morocco. Branches II and III each included one genotype, Sohag 3 (Egypt) and Hutch (USA), respectively. The genetic distances among the genotypes ranged from 0.189 (Gimmeiza-12 and SIDS13) to 0.488 (MISR1 and Sohag-3). Sohag-3 had a genetic distance of >0.46, and Hutch had a genetic distance of >0.39 when compared with all genotypes.
[image: Figure 5]FIGURE 5 | (A) The total number of DREB genes present in each of the ten tested genotypes. (B) Dendrograms analysis showing the relationship among the most ten drought-tolerance genotypes based distance, blue color refer to egyptian genotypes, yellow color refer to Moroccan genotyes and red color refer to American genotype.
DISCUSSION
Genetic variation in morpho-physiological traits associated with drought tolerance at the seedling stage
Morphological traits
The high significant genetic variation among the genotypes in all traits was believed to be due to the diversity among these genotypes, as they were from 20 different countries covering all continents (except Antarctica). The germplasm used in this study could be utilized to detect a large amount of genetic variation related to drought tolerance in wheat at the seedling stage and could thus be fruitful for plant breeders to help discriminate between tolerant and susceptible genotypes.
Two types of drought tolerance trait, tolerance, and recovery, were scored in this investigation, and the data provided will help to identify the different mechanisms of drought tolerance in wheat at the seedling stage (Sallam et al., 2018b; Sallam et al., 2022).
Tolerance traits reflect the ability of a plant to tolerate prolonged drought stress. Leaf wilting and days to wilting are tolerance traits which directly associated with drought tolerance (Bowne et al., 2012; Muir and Thomas-Huebner, 2015; Drira et al., 2016; Sallam et al., 2019). Leaf wilting indicates a deficiency in soil moisture and subsequent water uptake and transport to the shoots (Sanad et al., 2016). To better reflect the symptoms of water deficiency on the leaves, all five scores (LW1, LW2, LW3, LW4, and LW5) were summed up. SLW is an important accumulative trait that reflects the effects of drought stress on plant leaves. Many previous studies only scored leaf wilting once during the drought treatment (Sayed et al., 2012; Pathan et al., 2014). However, scoring leaf wilting multiple times during the drought treatment enables the precise evaluation of drought tolerance for each respective genotype over time (Sallam et al., 2019). In this investigation, both traits showed large variation among the genotypes, ranging from 14 to 24 and 4–9 days for SLW and DTW, respectively.
In contrast, recovery traits describe a plant’s ability to regrow and recover after irrigation following prolonged drought stress. Bearing in mind that these traits were scored after cutting and reirrigating the drought-stressed plants. Therefore, these traits not only tested the drought tolerance in plants but also reflected their ability to produce new shoots after drought stress. These essential traits should be considered together when scoring plants after irrigation. It was noted that some genotypes started to regrow only a few days after irrigation, such as Gimmeiza-07 and SIDS12, but at the end of the experiment, these genotypes had very little regrowth. Therefore, selection should be made carefully for genotypes that regrow after a few days but also have high regrowth biomass at the end of the drought experiment. Regrowth in wheat after drought conditions has been scored at the seedling stage. Previous studies, such as Pearce (1985), scored the regrowth of wheat seedlings after drought by measuring leaf height before and after rewatering within a few hours and on subsequent days.
The results from this investigation indicate that three selection indices (TI, RI, and DTI) should be utilized to select the most drought-tolerant genotypes. The drought-tolerant index was the main index, as it included both indices. The most important feature of the selection index developed by Falconer (1996) is the possibility of including more than one target trait. In this investigation, high levels of variation were found among all genotypes based on the three selection indices, which could thus be utilized to select promising drought-tolerant genotypes.
The high H2 levels found for all traits scored in this study promise effective selection by which to improve drought tolerance in wheat at the seedling stage. SLW and DTW had H2 values of 0.84 and 0.83, respectively. Sallam et al. (2018b) reported approximate heritability for SLW with an H2 of 0.82, while their DTW value for H2 was 0.72, which was lower than that reported in this study. High heritability estimates were also identified for the recovery traits (0.84–0.91), and they were higher than those reported by Sallam et al. (2018b) (0.74–0.88). Likewise, the heritability of the three selection indices reported in this study was also higher than those reported by Sallam et al. (2018b). These results differed due to the nature of the populations used in the two studies. The diverse population of this study possessed higher genetic diversity and variation when compared with the biparental population tested by Sallam et al. (2018b) for drought tolerance. Recovery and tolerance traits were recently reported under drought stress by Sallam et al. (2022) in a diverse winter wheat population at the seedling stage. They reported that the recovery traits had higher H2 (0.75–0.89) estimates than the tolerance traits (0.71–0.84). These results further support the H2 results obtained in this study on spring wheat.
Selection of the most promising drought-tolerant genotypes
As described, high levels of genetic variation and heritability estimates allow for selecting the most drought-tolerant genotypes for further improvement through plant breeding programs. Most earlier studies depended on single trait selection to improve tolerance to stress which is not recommendable (Sallam et al., 2019). Instead, multiple trait selection is more fruitful when selecting the target genotypes.
The 13 genotypes selected were from Egypt (11), the USA 1) and one genotypes was from Morocco country. The tolerant genotypes had diversity in the traits correlated to their tolerance. Identifying different genetic resources to investigate drought tolerance will undoubtedly help to improve this trait in spring wheat at the seedling stage and expand the circle of genetic diversity in Egypt. Thus, genotypes could be selected from this set and used as candidate parents for crossing into future breeding programs to improve drought tolerance. Of the 13 genotypes, Shndweel-1, PI525434, Sakha 93, Hutch, Sids 13, Misr 1, Sids 12, Sohag 3, Gimmieza 12, and Beni Swief 5, were selected as the ten most drought tolerant for both the tolerance and recovery traits. They could thus be used in future breeding programs to accelerate the improvement of drought tolerance in wheat. These ten highly drought-tolerant genotypes had the lowest DTI (Table 7). The DTI provides a valuable method by which to truly select the most drought-tolerant genotypes with superior performance in more than one trait. These ten genotypes were used for further physiological and genetic studies.
Physiological analyses under drought stress
In this study, the physiological changes at the seedling stage were evaluated by assessing six physiological traits (protein, amino acids, proline, glucose, fructose, and total soluble carbohydrates) to understand the biochemical changes that occur in wheat leaves in response to drought stress and consequently, how to alleviate this stress. All these physiological traits had a direct relation to drought stress, and some previous studies, such as Abid et al. (2018), used these traits to study this trait at the tillering and jointing stages, respectively.
These high levels of genetic variation among genotypes in all physiological parameters could provide an extremely useful resource for both breeders and geneticists to efficiently understand the changes in the physiological parameters that occur in plants to alleviate the effects of drought stress. Moreover, the high levels of genetic variation indicated that there was also variation in the ability of the different genotypes to make substantial changes to their physiological parameters. The presence of significant differences between the two different treatments indicated that drought affects the performance of the genotypes when compared to their performance under the control conditions. Previous studies, such as Nowsherwan et al. (2018), stated that the performance of the genotype varies according to the different conditions and stages. Moreover, it was observed that the genotype responses differed with the different treatments, and this was shown by the presence of significant variation between the G × T interactions in all physiological traits. This effect can be observed by estimating the changes in the physiological parameters due to drought stress in the genotypes (Figure 2). The most significant change was in the proline content, which increased by 33.6% under drought stress, and its accumulation was reported in stressed plants compared to non-stressed plants (Sallam et al., 2018a; Dawood et al., 2020). In the current study, the physiological traits all had high H2 estimates under both control and drought conditions, but they were higher under drought conditions when compared with the control. These higher heritability estimates (H2) suggested that using physiological traits to improve drought tolerance would be more successful.
On average, for each population in this investigation, the physiological traits increased under drought stress compared to the control, except for protein content (Table 4 and Supplementary Figure S6). This indicates that the genotypes use different mechanisms by which to deal with and adapt to drought stress fluctuations. This result was expected due to the high levels of genetic diversity in the tested genotypes, which were collected from 20 different countries. In addition, studying the physiological changes that occur because of drought stress was useful as they provided information on the different ways in which plants function to counteract and relieve stress. The study of these changes showed that the content of all physiological traits increased or accumulated in the leaves except protein content. The soluble protein content decreased by 10.12%, indicating that the protein content was the trait most affected by drought stress. It is clear in this study that the protein content was decreased in favor of the proline and amino acid increases (Figure 2). Gilbert et al. (1998) reported that the protein reduction could be associated with an increase in amino acids that may serve as a readily available energy source or as a nitrogen source during limited growth and photosynthesis and the detoxification of excess ammonia under periods of stress.
Physiological and developmental plant responses to drought were shown to occur by reprogramming gene expression and metabolism (Reddy et al., 2004; Chaves et al., 2009; Hayano-Kanashiro et al., 2009; Zhang et al., 2014). Responses to drought stress depend on plant species, the stage of development, the rate of dehydration, and the duration and severity of stress (Reddy et al., 2004; Chaves et al., 2009). To elucidate a plant’s ability to survive under drought conditions, it is important to study the physiological, biochemical, and genetic basis of adaptation and tolerance as well as the mechanisms of recovery under drought stress. The physiological modifications in response to water stress were studied, herein, in terms of soluble proteins, amino acids, proline, glucose, fructose, and total soluble carbohydrate contents, which were analyzed under drought and control conditions to understand the biochemical changes in shoot metabolites in spring wheat plants. The average amount of glucose, fructose, and total soluble sugars (as the average of 172 cultivars or genotypes) increased in response to water stress, but for fructose, the increase was very slight. The accumulation of sugars in response to drought stress was not uniform, indicating that there were categorical tasks in charge of each sugar component. Fructose only slightly responded to the drought stress.
Correlation analyses
Correlations among morphological traits
The phenotypic and genetic correlations among all traits scored in this study shed light on the different drought tolerance mechanisms. Overall, the genetic correlations among the traits were higher than the phenotypic correlations, and these results corresponded with those obtained by Sallam et al. (2018b). Genetic correlation is an informative analysis as it provides predictions for the selection response in one or more traits to be made when selection is another trait (Hill, 2013).
The high level of genetic and phenotypic correlations among all traits promises fruit selection for a group of traits that are directly associated with drought tolerance. It was noted that the tolerance and recovery traits had very high and significant correlations within each group. While there was also a significant correlation between the tolerance and recovery traits, the correlation size was smaller than that within each group. The correlation between RI and TI was higher than the correlation between the traits in the two groups. This indicates that including more than one trait in a selection index could be more beneficial for selecting target traits. Interestingly, DTI had high and significant levels of correlation with all traits in both groups. These results highlighted the importance of using a selection index to improve target traits and optimize the selection to improve drought tolerance. The phenotypic correlations reported by Sallam et al. (2018b)showed that there were no correlations between the tolerance and recovery traits. Even after creating a selection index for each group, RI and TI showed no significant correlation, suggesting that different genetic mechanisms controlled these traits. The absence of correlation between the tolerant and recovery traits was also validated in a highly diverse winter wheat population by Sallam et al. (2022), conducting QTL mapping (winter biparental population) and GWAS (diverse winter wheat population). The study’s results revealed that each group of traits was controlled by different QTLs and concluded that both types of traits were controlled by different genetic mechanism different genetic mechanisms. The gene and SNP networks analysis supported this notion (Sallam et al., 2022). It should also be considered that Sallam et al. (2018b) tested winter genotypes which are completely different from the spring wheat genotypes used in this study. Winter wheat, for example, has a crop coefficient of 0.7 for nonfrozen soil, while the spring wheat crop coefficient is 0.3. The lower the crop coefficient, the lower the water demand and water stress (Allen and Zaplachinski, 1994), consequently, spring wheat is more tolerant than winter wheat. The relationship among these traits expanded our knowledge and understanding of the drought tolerance mechanisms in both spring and winter wheat; both appeared to possess different genetic mechanisms by which to alleviate the effects of drought stress. This information will be valuable for wheat breeders and geneticists as it can be utilized for the selection of drought tolerance in spring and winter wheat.
It was of note that seedling height had a significant correlation with tolerance and recovery traits in this investigation. This indicates that shorter plants were more drought tolerant. This trait could thus be used to predict and select drought tolerance as this trait was scored before exposing plants to drought stress. The same trait did not correlate with recovery and tolerance traits in winter wheat (Sallam et al., 2022).
Correlations between morphological and physiological traits
The correlation between morphological traits (tolerance and recovery) and physiological traits helps elucidate the changes in wheat plants at the seedling stage to alter and alleviate the effects of drought stress. Fructose was previously reported to be associated with secondary metabolite synthesis and not osmoprotectants (Younes et al., 2019). In this investigation, fructose was found to only slightly respond to drought stress conditions. It was thus determined that fructose was not involved in osmotic adjustments, which was also indicated by the correlation data, as it did not correlate with any of the studied traits for wilting or recovery. Younes et al. (2019) demonstrated that fructose might be related to the synthesis of substrates related to phenolic compound synthesis. Glucose, in contrast, which acts as a substrate for cellular respiration or osmolytes to maintain cellular homeostasis, was found to accumulate in the shoots of drought-treated plants, implying that glucose is associated with osmotic adjustments under drought stress conditions, as was reported by Misra and Gupta (2005). It is of note that glucose was found to be negatively associated with witling traits. Thus, a positive relationship was found between days to wilting and glucose content indicating that the tolerant genotypes accumulated high levels of glucose to tolerate a prolonged period of drought. The significant correlations between glucose and the recovery traits indicated that increased glucose accumulation levels improved survival and recovery after reirrigation. This result provides a clear explanation of the importance of glucose as an osmotic against drought stress. The above-described tendencies for glucose were observed for the total soluble carbohydrates, which contributed to the osmotic adjustment of wheat plants exposed to prolonged drought stress. In conformity, carbohydrates can contribute to 30–50% of the osmotic adjustment in glycophyte plants (Al-Thani and Yasseen, 2018).
The nitrogenous components of the stressed shoots showed that the soluble protein content was reduced in favor of the accumulation of free AM and proline. This increase in AM and proline under stress conditions may result from the degradation of proteins, affect their synthesis, inactivate major enzymes, and destroy membranes (Fahad et al., 2017; Sallam et al., 2018a; Dawood et al., 2020). Increased levels of free amino acids and proline were identified in different plants under abiotic stress (Sadak, 2016b, 2016a; Tawfik et al., 2017; Sallam et al., 2018a). It was concluded that these compounds have an important role in enhancing the tolerance of plant cells to various abiotic stresses by increasing the osmotic pressure in the cytoplasm and increasing the relative water content, which is essential for plant growth and different metabolic processes. The average proline levels identified for the 172 tested cultivars showed no correlation with any of the studied morphological or recovery-r traits. The collection used covered a wide range of cultivars and included variants susceptible to drought stress. Of note is that most of the studied cultivars ranged from moderately tolerant to sensitive, and only 24 cultivars were tolerant. Thus, the categorization of these cultivars based on their drought responses will likely provide a reliable image of their physiological behavior in relation to the recovery and tolerance traits.
The AM was positively correlated with three drought indices (drought susceptibility). In this regard, the high levels of amino acid content may be associated with the degradation of proteins which were found to be reduced in response to drought. Thus, drought stress instigated the solubilization of proteins, which may have negative effects on the main enzymes related to various physiological processes. The production of high levels of amino acids under stress conditions could impact multiple processes. The high synthesis rates of the amino acids can result from proteolysis, or their consumption can be restricted due to a decrease in protein synthesis or secondary metabolite production (Silva et al., 2019). Araújo et al. (2011) reported that amino acids can be utilized as alternative respiratory substrates and provide stressed plants with an additional energy source during an energy deprivation situation. In situations with insufficient carbohydrate supply due to a decrease in photosynthesis rates, which usually occurs during stress conditions, plants can utilize amino acids as alternative substrates for mitochondrial respiration (Braun et al., 2015; Hildebrandt, 2018). The degradation pathways of some amino acids have been identified as essential factors for dehydration tolerance in Arabidopsis (Pires et al., 2016). Overall, the general metabolism of the studied cultivars was found to be shifted toward energy saving and stress defense, which leads to an arrest of growth and development. Plants start to invest their energy resources into the production of protective secondary metabolites and osmolytes to counteract the effects of drought stress.
To understand the physiological changes that occurred in plants to alleviate the effect of drought stress, their physiological characteristics were studied in the most drought-tolerant and susceptible genotypes (Figures 3A,B). The increase or decrease of each physiological trait because of drought stress in both the tolerant and susceptible genotypes was estimated. The increase or decrease in physiological components differed according to the stage in which the stress occurs, the duration and severity of the stress, as well as the performance of the genotypes (Reddy et al., 2004; Chaves et al., 2009). The ability of tolerant plants to respond to drought tolerance depends on the genotype. For example, the drought tolerance mechanisms of some genotypes include the accumulation of soluble sugars, proline content, amino acids, chlorophyll content, and enzymatic and nonenzymatic antioxidant activities (Abid et al., 2016). In this study, clear differences were observed between the drought-tolerant and susceptible genotypes for these physiological components, and there was no clear trend as some traits increased and others decreased. These genetic differences in the physiological components between genotypes can be used to effectively identify the genes controlling the physiological traits and accelerate the genetic improvement of drought tolerance (Bowne et al., 2012). The drought-tolerant genotypes showed apparent increases in their protein, proline, and sugar content and decreased their amino acid levels compared to the control, and the opposite occurred in the drought-susceptible genotypes (Figures 3A,B). The most important characteristic distinguishing the tolerant genotypes from the susceptible genotypes under drought stress is a significant increase in proline content, which increased by 50%, while amino acids were reduced by 65%. The drought-tolerant genotypes accumulated more proline in their leaves under drought stress at the expense of other free amino acids. In contrast, the drought-susceptible genotypes increased the amino acids in their leaves at the expense of their proline content. This indicated that the tolerant genotypes possessed genetic plasticity that allowed them to accumulate increased levels of proline under drought conditions, and this was utilized as a self-protection mechanism by which to counteract drought stress. Previous studies, such as Basudeb et al. (2019), reported that the presence of proline is a common trait in most cereals under drought stress Zali and Ehsanzadeh (2018) previously stated that only a few plant species can produce enough proline to notably reduce abiotic stress effects and thus utilize proline as another tolerance mechanism against drought stress. Moreover, proline is a source for several amino acids and nitrogenous compounds (Britikov et al., 1970). It also contributes to the stabilization of subcellular structures, the scavenging of reactive oxygen species, and the buffering of cellular redox potential under stress (Ashraf and Foolad, 2007).
Genetics analysis for the most drought tolerant genotypes
Screening the tolerant genotypes for drought using DREB-specific genes
Integrating specific DNA molecular markers for target traits in the breeding program will help in accelerating the breeding program. In this study, nine specific primers associated with nine different allelic variants of TaDREB1 genes developed by Liu et al. (2018) were used to screen the most drought tolerant genotypes for the presses of DREB genes. DREB genes constitute a large family and belong to transcription factors (TFs) that stimulate the expression of many functional genes (Agarwal et al., 2006; Samarah, 2016). A total of 210 DREB genes associated with abiotic stress tolerance (Niu et al., 2020). Identifying and validating new primers for these genes are very useful for breeding and genetics programs in wheat. Six specific DREB primers were polymorphic among the ten drought-tolerant genotypes (Table 8). The high polymorphism and diversity among the drought-tolerant genotypes indicated that the tolerant genotypes differed in the number of TaDREB1 gene haplotypes. It was reported that the drought-resistant materials showed inconsistent heterogeneity of TaDREB1 gene haplotypes and the nucleic acid polymorphisms of the TaDREB1 gene in wheat (Yousfi et al., 2016). In the present study, it was observed that the largest number of TaDREB1 alleles was present in both the Egyptian genotypes MISR1 and SAKHA93 (six genes), while the lowest number of these genes was present in foreigner genotypes such as Moroccan genotype PI525434 (three genes) and American genotype Hutch (one gene). The result also revealed that the Egyptian genotypes were higher drought tolerance than the Moroccan and American genotypes. By looking at the DTI of these genotypes, the correlation between number of TaDREB1 and DTI was negative (r = -0.66**), indicating that some of high tolerant genotypes may contain other drought genes and TaDREB1 alleles not only the source of drought tolerance in the selected genotypes. PI525434 (Morocco) and Hutch (USA) ranked fifth and sixth among the ten drought-tolerant genotypes, respectively. Therefore, they probably included other drought genes than those used in this study. These two genotypes can be utilized for crossing with the Egyptian genotypes to genetically improve drought tolerance at the seedling stage in spring wheat. Further molecular analyses should be done on these cultivars to discover more genes related to drought stress. The results of genotyping confirmed that primers of TaDREB1 alleles used in this study were effective and valuable for marker-assisted selection to test the presence of TaDREB1 alleles in a large number of genotypes in a short time as an alternative to breeding methods traditional.
Genetic distance and dendrogram analyses of the tolerant genotypes
The genetic distance analysis among the ten drought-tolerant genotypes provides valuable information on the diversity among these genotypes. Such information can be useful in selecting the candidate’s parents for future breeding programs (Eltaher et al., 2018; Mourad et al., 2020). Here, although the ten drought-tolerant genotypes included eight genotypes from Egypt, the genetic distance among them is still useful for the breeding program. Out of the ten genotypes, Sohag-3 was positioned in a separate cluster and had a genetic distance of >0.649 from all other genotypes. Unexpectedly, the two foreigner genotypes, Hutch (USA) and PI525434 (Morocco), were included in the cluster with the other seven Egyptian genotypes. Hutch had a higher range of genetic distance with the Egyptian genotypes than PI525434. The highest genetic distance was found between MISR one and Sohag-3 (0.664); however, including Hutch and PI525434 in the crosses with the Egyptian genotypes (e.g. Sohag-5) may be more fruitful for two reasons (I) increasing the genetic diversity among the Egyptian wheat gene pool and (II) the two genotypes may have other drought-tolerant genes rather than DREBs and the crossing with the Egyptian genotypes could produce wheat cultivars having more drought tolerance at the seedling stage. Genetic diversity is essential for plant survival in nature against the consequences of climate change and crop improvement (Bhandari et al., 2017). Including new plant genetic resources such as Hutch and PI525434 will undoubtedly provide the opportunity for wheat breeders in Egypt to develop new and improved wheat cultivars not only for drought tolerance but also for other desirable characteristics such as agronomic yield traits, quality traits, tolerance to biotic and abiotic stress tolerance, etc. (Al-khayri et al., 2019; Baenziger et al., 2021; Bhavani et al., 2021)
CONCLUSION
The visual scoring of the traits used in this study is effective in evaluating a large number of genotypes and measuring their tolerance to drought stress in the least time and efficiently. To avoid errors and obtain results as accurately as possible, it is recommended that one induvial score the traits as this method depends on the accuracy and skill of the individual who is recording the traits. Scoring both types of morphological traits (tolerance and recovery) are very important in understanding the different mechanism, as well as identifying the most promising genotypes that can tolerate and survive drought. It is also useful to study morphological traits in addition to the physiological traits because they provide us with different information that helps us to understand the changes that occur in the plants to know the different mechanisms that the plant uses to reduce the severity of drought stress in addition to enhancing the efficiency of selection. DTI was an effective tool and a very useful index for improving a group of traits and selecting the most drought-tolerant genotypes. The best ten drought-tolerant genotypes in this study are recommended to be evaluated in the field under drought conditions to test their yield attributes and then used for future breeding programs to produce wheat cultivars having more drought tolerance under Egyptian conditions. These genotypes have the highest accumulation of proline, glucose, total soluble sugars, and proteins concomitant with the lowest DTI. In addition, genetic analysis showed a high diversity among these genotypes in the number of tolerance genes present in each genotype. As these genotypes included eight genotypes from Egypt and two genotypes from other countries (Morocco and United States). Three candidate genotypes (MISR1, SAKHA93, and PI525434) for drought tolerance can be targeted in future breeding programs to increase diversity and genetic improvement of drought tolerance in wheat at early growth stages.
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Cotton is an important natural fiber crop; its seeds are the main oil source. Abiotic stresses cause a significant decline in its production. The WUSCHEL-related Homeobox (WOX) genes have been involved in plant growth, development, and stress responses. However, the functions of WOX genes are less known in cotton. This study identified 39, 40, 21, and 20 WOX genes in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii, respectively. All the WOX genes in four cotton species could be classified into three clades, which is consistent with previous research. The gene structure and conserved domain of all WOX genes were analyzed. The expressions of WOX genes in germinating hypocotyls and callus were characterized, and it was found that most genes were up-regulated. One candidate gene Gh_ A01G127500 was selected to perform the virus-induced gene silencing (VIGS) experiment, and it was found that the growth of the silenced plant (pCLCrVA: GhWOX4_A01) was significantly inhibited compared with the wild type. In the silenced plant, there is an increase in antioxidant activities and a decrease in oxidant activities compared with the control plant. In physiological analysis, the relative electrolyte leakage level and the excised leaf water loss of the infected plant were increased. Still, both the relative leaf water content and the chlorophyll content were decreased. This study proved that WOX genes play important roles in drought stress and callus induction, but more work must be performed to address the molecular functions of WOX genes.
Keywords: cotton, WUSCHEL-related Homeobox genes, drought, regeneration, expression analysis, virus-induced gene silencing
INTRODUCTION
Cotton is the world’s most important fiber and oil crop (Campbell et al., 2010; Horiguchi et al., 2012). The upland cotton (Gossypium hirsutum L.) provides 35% of the fiber used worldwide (Abdelraheem et al., 2019). Cotton seed oil accounts for around 16% of the total weight of the seed (Liu et al., 2009). With global climate change, more and more environmental problems are threatening the growth and development of cotton, such as drought, salinization, and warming. Drought and heat stress have severely affected cotton production, leading to about 34% fiber yield loss (Ullah et al., 2017). Multiple interacting genes control drought tolerance to induce a morphological and physiological response, including cell membrane stability, chlorophyll levels, and relative water content (Gadallah, 1995). The development of stress-tolerance cotton is of great significance in sustaining world agriculture production. Drought stress-responsive genes comprise many groups based on their biological functions. Among these groups, transcription factors were more important because of their potential to regulate numerous downstream genes, such as DREB2, SNAC1, ABF, OsSIZ1, and AVP1 (Zhang et al., 2010; Liu et al., 2014; Kerr et al., 2018; El-Esawi and Alayafi, 2019).
WUSCHEL-related Homeobox (WOX) gene family is a plant-specific homeobox (HB) transcription factor family with a short stretch of amino acids (60–66 residues) that forms a DNA-binding domain known as homeodomain (Graaff et al., 2009). The homeodomain of WOX protein binds to DNA through a helix-turn-helix structure characterized by two α-helices and a short turn. Phylogenic analysis of WOX proteins in multiple higher plant species, including Arabidopsis, rice, soybean, and maize, showed that the WOX gene family could be classified into three clades which include the ancient clade, intermediate clade, and WUS clade (Kamiya et al., 2003; Haecker et al., 2004; Nardmann and Werr, 2006; Hao et al., 2019). Previous studies showed that WOX genes have important roles in many aspects of growth and development, including embryonic development and polarization, meristematic stem cell maintenance, later organ development, seed formation, and regeneration (Park et al., 2005; Liu et al., 2009; Shimizu et al., 2009; Zhang et al., 2010; Zhang et al., 2011; Chu et al., 2013; Xu et al., 2015; Segatto et al., 2016). In Arabidopsis thaliana, the WOX gene family comprises 15 members that play similar roles in the initiation and/or maintenance of diverse embryonic, meristematic cells, and organs (Haecker et al., 2004). AtWUS is necessary for stem apical meristem formation and maintenance (Gross-Hardt et al., 2002). In rice, the OsWOX4 gene regulates a number of pathways, including phytohormone signaling and cell development (Yasui et al., 2018). Overexpression of GmWOX18 increased the regeneration ability of clustered buds (Hao et al., 2019). VvWOX genes appeared to be key regulators of somatic embryogenesis in grapevine (Gambino et al., 2011). Agrobacterium-mediated genetic transformation of cotton was described in 1980s but is still time-consuming and genotype-dependent due to poor regeneration. Overexpression of AtWUS promoted somatic embryogenesis and induced organogenesis in cotton (Bouchabke-Coussa et al., 2013). Overexpression of GhWUS in Arabidopsis promoted shoot regeneration from the excised root without exogenous hormones (Xiao et al., 2018). In addition to the function of WOX genes in plant development and regeneration, some genes play important roles in abiotic stress. AtWOX6, also known as HOS9-1, plays an important role in freezing tolerance independent of the C-repeat binding factor pathway (Zhu et al., 2004). Overexpression of OsWOX13 in rice resulted in drought resistance and early flowering (Minh-Thuet al., 2018). Most of the WOX genes from rice were responsive to drought, salt, and cold treatment (Cheng et al., 2014). Most of the WOX genes in soybean responded to cold and drought stress treatments (Hao et al., 2019).
The roles of the WOX gene family have been well documented in Arabidopsis, maize, and rice. However, the functions of WOX genes in callus induction, regeneration, and abiotic stress are largely unknown in cotton. This study aimed to identify the WOX genes in cotton based on updated genome sequences of four species, examine their gene structure and expression profiles, and characterize their molecular roles in response to drought stress and callus induction.
MATERIALS AND METHODS
Plant material and germination
Three varieties of G. hirsutum with higher regeneration ability including Zhongmainsuo24 (ZM24), Coker312 (C312), and YZ-1, and one cultivar Texas Marker-1 (TM-1) with lower regeneration ability were selected based on previous reports (Jin et al., 2006; Zheng et al., 2014; Cao et al., 2017; Chen et al., 2022). All these seeds were obtained from the Mid-term GeneBank of the Institute of Cotton Research of Chinese Academy of Agricultural Science. Seeds were delinted and disinfected with 0.1% HgCl2 (W/V) by blending for 10 min, and then washed five times with sterilized distilled water for 2 min each time. To induce hypocotyl germination, 30 healthy seeds were placed on a sterilized filter paper in a petri plate, cultured in sterilized distilled water, and stored in a dark chamber for 48 h at 28°C (Kumar et al., 2015).
WOX gene characterization in Gossypium species
To identify cotton WOX genes, the full-length sequences of 15 AtWOX genes which were downloaded from the Arabidopsis genome database (https://www.arabidopsis.org) were used as queries for BLASTp in CottonFGD (www.cottonfgd.net). We further confirmed all WOX genes in cotton using Pfam (http://pfam.xfa.org). Protein length, weight, charge, isoelectric point (pI), and GRAVY were available from CottonFGD (Supplementary Table S1).
Chromosomal mapping, phylogenetic tree, gene structure, and conserved motif analysis of WOX genes
We used the GFF3 dataset from CottonFGD and gene IDs to assess the distribution of WOX genes across all chromosomes of G. hirsutum, G. barbadense, G. raimondii, and G. arboreum, and the result was visualized using the TBtools (Chen et al., 2020). ClustalX was utilized to perform multiple sequence alignment (Larkin et al., 2007). The neighbor-joining (NJ) strategy was used to decide the advancement distance with 1000 bootstrap replications by MEGA 5.0 (Tamura et al., 2011). The WOX gene structure was analyzed using the Gene Structure Display Server 2.0 (http://gsds.cbi.pku.edu.cn/). MEME (http://meme-suite.org) was used to discover the conserved motifs.
RNA sequencing data analysis
WOX gene IDs from G. hirsutum were retrieved from CottonFGD, and corresponding gene IDs from variety ZM24 were retrieved from GRAND (http://grand.cricaas.com.cn/home). Heml software was used to demonstrate the expression (Deng et al., 2014).
Medium preparation and callus induction
Seven-day-old seedlings have been divided into hypocotyl, cotyledon, and shoot tip. Individual hypocotyl and cotyledon were transplanted into Murashige and Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 0.5 mg/L) and kinetin (0.1 mg/L), and shoot tips were transplanted into MS medium containing 2,4-D (0.5 mg/L) and kinetin (0.2 mg/L) (Jin et al., 2006).
RNA extraction and qRT-PCR analysis
Total RNA was extracted from hypocotyls and callus using RNAprep Pure Plant Plus Kit (TIANGEN, Beijing, China), following the manufacturer’s instructions. RNA concentration and purity were measured using NanoDrop 2000. The RNA was reverse-transcribed to cDNA by using the transcript Reverse Transcriptase (TransGen, Beijing, China). The specific primers of WOX genes for qRT-PCR are listed in Supplementary Table S2. The ABI 7500 Fast Real-Time System (Applied Biosystems, Foster City, CA, United States) was used for the qRT-PCR experiment. Each reaction included 1 µL of cDNA, 2 µL of forward and reverse primers, 6 µL of RNA-free water, and 10 µL of SYBR solution. GhActin was employed as an internal control in three biological and technical replications. Gene expression levels were calculated using the 2−ΔΔCt method (Livak and Schmittgen, 2001).
Protein interaction network prediction
Interaction network analysis of WOX proteins was performed with STRING with default parameters (version 11.0, https://string-db.org/cgi/input.pl) on the foundation of the homologous proteins in Arabidopsis (Szklarczyk et al., 2019).
Transactivation activity assay
The GAL4 DNA-binding domain was fused with the cotton GhWOX4_A01 gene into pGBKT7. pGBKT7-GhWOX4_A01, pGBKT7, and positive control pGADT7-largeT + pGBKT7-p53 were transformed into the AH109 yeast by utilizing the Clontech technique to investigate auto-activation and toxicity. The transformed yeast cells were cultured on SD/-Trp, SD/-Trp + X-α-gal, or SD/-Trp/-His/-Ade media and incubated at 30°C for 3–5 days.
Virus-induced gene silencing of GhWOX4_A01 and drought treatment
A 339-bp fragment of GhWOX4_A01 was amplified from the cDNA of TM-1 by using gene-specific forward and reverse primers to construct a VIGS vector (Supplementary Table S2). The PCR product was then digested with Spe I and Acs I, and cloned into Spe I-Acs I -Cut pCLCrVA. The fusion vector was named pCLCrVA: GhWOX4_A01 and transformed into Agrobacterium tumefaciens strain LBA4404. The control vector pCLCrVA, pCLCrVA: GhWOX4_A01 and positive vector pCLCrVA: PDS were mixed with pCLCrVB at a 1:1 ratio (Gu et al., 2014). The mixed Agrobacterium tumefaciens solutions were injected into the two-week-old cotton cotyledons of G. hirsutum variety H177 on the abaxial side with a needle-free syringe. The plants were placed at room temperature in the dark overnight and grew at 23°C with a 16 h/8 h light/dark cycle. The study on Agrobacterium infection was carried out three times with 30 plants for each vector. After 4 weeks, the plants injected with empty control pCLCrVA and pCLCrVA: GhWOX4_A01 were subjected to drought treatment. For drought treatments, plants were irrigated with 15% PEG6000 (w/v) for 2 weeks to detect their drought response, while control plants were irrigated with 1/2 MS nutrient solution. Under control and drought circumstances, the concentrations of antioxidant enzymes catalase (CAT) and peroxidase (POD), and oxidants malondialdehyde (MDA) and H2O2 were determined in both control and silenced plants. After drought treatment, important parameters were investigated, including ion leakage, excised leaf water loss, chlorophyll concentration, and relative leaf water content. The experiments were performed with three independent biological repetitions.
Statistical analysis
GraphPad Prism (version 8.4.3; GraphPad Software, La Jolla California, United States) was used to analyze the quantitative data generated from the experiments. All the experiments were carried out with three replications. Analysis of variance (ANOVA) and multiple comparisons (Fisher’s LSD) were used to investigate the statistical significance of different treatments. The significance level for the different treatments was labeled as different letters under p < 0.05.
RESULT
Sequence analysis and chromosome mapping of WOX genes identified in four cotton species
We have identified 39, 40, 21, and 20 WOX (WUSCHEL-related Homeobox) genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively (Supplementary Table S1). In G. hirsutum, the amino acid length of WOX proteins stretches from 125 aa to 383 aa, and the molecular weight ranges from 14.10 to 42.90 kDa. The amino acid length of WOX proteins in G. barbadense ranged from 187 aa to 369 aa, and the molecular weight ranged from 21.78 to 41.93 kDa. In G. arboreum, the amino acids stretch from 77 aa to 364 aa, and molecular weight ranges from 9.17 to 41.77 kDa. In G. raimondii, the amino acids stretch from 188 aa to 377 aa, and their molecular weight is within the range of 21.89–41.73 kDa. All the WOX proteins in the four cotton species have negative GRAVY values, indicating that all proteins were hydrophilic.
WOX genes were not evenly distributed across the chromosomes in the four cotton species (Figure 1). In G. hirsutum and G. barbadense, chromosomes A05, D05, A10, and D10 possessed the highest number of WOX genes (3). In G. hirsutum, WOX genes were missing on chromosomes A04, D04, A06, D06, A09, and D09. Similarly, WOX genes were also missing on chromosomes A04, D04, A06, D06, A09, and D03 in G. barbadense. In G. arboreum, chr05 and chr10 had most of the genes (3). WOX genes were missing on chr03, chr04, chr06, and chr09 but had two genes on scaffolds in G. arboreum. In G. raimondii, chr09 and chr11 had the highest number of genes (3). WOX genes were missing on chr06 and chr10 in G. raimondii. The total number of WOX genes identified in the two diploid species was higher than that in the tetraploid G. hirsutum due to the hybridization of progenitors resembling G. arboreum and G. raimondii.
[image: Figure 1]FIGURE 1 | WOX genes position on the chromosome in Gossypium species. (A) G. hirsutum, (B) G. barbadense, (C) G. arboreum, and (D) G. raimondii.
Phylogenetic tree, gene structure, and conserved domain analysis of WOX genes
The phylogenetic tree result shows that all the WOX genes could be classified into three clades, which is consistent with the previous result in other species (Figure 2). Eight, eight, four, and four WOX genes from G. hirsutum, G. barbadense, G. arboreum, and G. raimondii were classified into the intermediate clade. Eight, eight, four, and four WOX genes from G. hirsutum, G. barbadense, G. arboreum, and G. raimondii were classified into the ancient clade. The modern/WUS clade includes 23, 24, 12, and 13 WOX genes from G. hirsutum, G. barbadense, G. arboreum, and G. raimondii. From the gene structure analysis result, we can find that most WOX genes have three or four exons, and those genes classified into the same clade tend to have similar gene structures (Supplementary Figure S1). The patterns of motifs were studied to elucidate the structural evolution of WOX proteins. Multiple motifs were identified, and results revealed that motif one was conserved in four species, while motif two was conserved in G. barbadense and G. raimondii (Supplementary Figure S2). We further found that motif four was conserved in the genes that were classified into the intermediate clade in all four species, and motif two and six were conserved in the genes that were classified into the ancient clade in G. hirsutum and G. barbadense. In contrast, motif three was conserved in the genes classified into the ancient clade in both G. arboreum and G. raimondii.
[image: Figure 2]FIGURE 2 | Phylogenetic tree of WOX genes in Gossypium species and Arabidopsis.
Expression analysis of WOX gene in G. hirsutum cultivar ZM24
Expression patterns of WOX genes in G. hirsutum variety ZM24 were analyzed, and eight genes that did not have expression in all these tissues are not shown in Figure 3. Sixteen genes have higher expression levels and 15 genes have lower expression levels in germinating hypocotyls, callus, and embryonic callus. We further analyzed expressions of these 16 WOX genes in callus in four different varieties (Figure 3).
[image: Figure 3]FIGURE 3 | RNA-seq data analysis of WOX genes in germinating hypocotyls, callus, and embryonic callus (EC) in ZM24.
Callus induction rate and expression of WOX genes in shoot tip, hypocotyl, and cotyledon-induced callus in four cotton varieties
Callus induction rate analysis was carried out on hypocotyl, cotyledon, and shoot tips (Figure 4). For 1-day, 2-day, 2.5-day, and 3-day callus induction, shoot tip and hypocotyl have much higher callus induction rates than cotyledon. Subculturing of calli after 2 weeks into the MS medium increased the size of the calli in different tissues of G. hirsutum. Callus with different textures, sizes, and appearances was fully observed among four cotton varieties (Supplementary Figure S3).
[image: Figure 4]FIGURE 4 | Callus induction rate in G. hirsutum. (A) 1-day hypocotyl callus induction for TM-1, (B) 2-day hypocotyl callus induction for ZM24, (C) 2.5-day hypocotyl callus induction for YZ-1, (D) 3-day hypocotyl callus induction for C312, (E) 1-day cotyledon callus induction for TM-1, (F) 2-days’ cotyledons callus induction for ZM24, (G) 2.5-day cotyledon callus induction for YZ-1, (H) 3-day cotyledon callus induction for C312, (I) 1-day shoot tip callus induction for TM-1, (J) 2-day shoot tip callus induction for ZM24, (K) 2.5-day shoot tip callus induction for YZ-1, and (L) 3-day shoot tip callus induction for C312.
To further analyze the expression profile of the above 16 WOX genes in callus, we examined the expression of selected genes in three types of callus induced from shoot tip, hypocotyl, and cotyledon in four varieties. The result showed that most genes were up-regulated in all three types of callus in four varieties, indicating that WOX genes play vital roles in callus induction (Figure 5). First, more genes have higher expression in callus induced from shoot tip than callus induced from hypocotyls and cotyledon. Second, WOX genes have similar expression patterns in callus induced from the same explants. In four varieties, Gh_A05G188600 was up-regulated in both three types of callus.
[image: Figure 5]FIGURE 5 | Expression profile of 16 WOX genes in shoot tip, hypocotyls, and cotyledon-induced callus in four different varieties. (A) Callus induced from hypocotyls in TM-1, (B) callus induced from hypocotyls in ZM24, (C) callus induced from hypocotyls in YZ-1, (D) callus induced from hypocotyls in C312, (E) callus induced from the shoot in TM-1, (F) callus induced from the shoot in ZM24, (G) callus induced from the shoot in YZ-1, (H) callus induced from the shoot in C312, (I) callus induced from cotyledon in TM-1, (J) callus induced from cotyledon in ZM24, (K) callus induced from cotyledon in YZ-1, and (L) callus induced from cotyledon in C312.
Network interaction prediction of WOX proteins
From the constructed protein interaction network, we can know that ten proteins have high predicted interaction levels with WOX4, including Clavata3, Homeobox8 (HB-8), Clavata3/Embryo Surrounding Region-Related (CLE) 44, and CLE41 (Supplementary Figure S4). The structure of the vascular meristem during secondary growth is influenced by a component of the Tracheary Element Differentiation Inhibitory Factor (TDIF)-TDIF Receptor (TDR)-WOX4 signaling pathway. Phloem intercalated with xylum (PYX) is a leucine-rich repeat receptor-like protein kinase that acts with CLE41 and CLE44. ATHB-8 is a homeobox-leucine zipper protein that may have a role in controlling vascular development, which shares 31.8% of identity with the WOX4 protein and is thought to promote precambial and cambial cell differentiation.
GhWOX4_A01 transcriptional activation assay
Three vectors including pGBKT7- GhWOX4_A01, pGBKT7, and pGADT7-largeT + pGBKT7-p53 were transformed into the AH109 yeast. All transformants could grow in SD/-Trp medium and turned blue in the SD/-Trp + X-α-gal medium but did not grow in the SD/-Trp-Ade-His medium (Supplementary Figure S5). This result indicated that GhWOX4_A01 has no activation activity.
GhWOX4_A01 silenced plants showed significant sensitivity to drought
The function of the GhWOX4_A01 (Gh_A01G127500) in drought tolerance was investigated using the VIGS approach. The indicator pCLCrVA: PDS showed an albino color, while the control plant had a normal color without visible change. The silenced plants pCLCrVA: GhWOX4_A01 showed complete shrinkage of the leaves, indicating total silencing of the gene (Figure 6A). qRT-PCR was used to analyze the expression level of GhWOX4_A01 (Figure 6B). Under control and drought circumstances, the concentrations of antioxidant enzymes (CAT and POD) and oxidants (MDA and H2O2) were determined in both control and silenced plants. Under control conditions, both the antioxidant enzymes and oxidants did not have a significant difference between control and silenced plants. After drought treatment, the oxidant concentrations were significantly higher, but the antioxidant enzymes were significantly lower in silenced plants than in respective controls (Figures 7A–D).
[image: Figure 6]FIGURE 6 | Phenotypic characterization of GhWOX4-A01 silenced plants. (A) Negative control, positive control, and GhWOX4_A01 silenced plants and (B) qRT-PCR analysis of GhWOX4_A01 in control and silenced plants under control conditions and after 10 days drought treatment. Different letters show significant differences at p < 0.05.
[image: Figure 7]FIGURE 7 | Physiological traits and enzyme activity in control and GhWOX4-A01 silenced plants under control conditions and after 10 days of drought treatments. (A) CAT, (B) POD, (C) H2O2, (D) MDA, (E) ion leakage percent, (F) chlorophyll content, (G) extracted leaf water lost, and (H) relative leaf water content percent. Each experiment was carried out three times. The error bar represents the standard deviation of the three biological replicates. The significant difference was indicated by different letters at p < 0.05.
The effects of GhWOX4_A01 on plant physiological changes during drought stress were investigated. Important parameters were investigated, including ion leakage, excised leaf water loss, chlorophyll concentration, and relative leaf water content. Compared to the control plant, the relative electrolyte leakage level of the infected plant (pCLCrVA: GhWOX4_ A01) increased by about 15% (Figure 7E). The chlorophyll content of infected plants decreased compared to control plants. However, in terms of excised leaf water loss, the infected plants increased significantly more than the control plants (Figures 7F,G). Under drought conditions, the relative leaf water content of the infected plant drops to 65%, compared to 86% for the control (Figure 7H).
DISCUSSION
Cotton is one economically important crop for the textile industry. WOX gene family is highly conserved in plants. Previous studies reported that WOX genes play important roles in stem cell regulation, embryo patterning, and abiotic stress (Breuninger et al., 2008; Dolzblasz et al., 2016; Minh-Thu et al., 2018). Although the function of WOX genes has been well studied in the model plant Arabidopsis, the specific roles of WOX genes in callus induction, regeneration, and stress response are not yet well understood. In this study, we found 39 WOX genes in G. hirsutum, which was different from previous research (Yang et al., 2017). For example, Gh_D01G1463 cannot be found based on the genome sequence used in this study, and we found this gene has a high identity with the intergenic sequence between Gh_D01G167200 and Gh_D01G167300 (Supplementary Table S3). Furthermore, the previous study could not find two genes in our study (Gh_A11G371100 and Gh_D12G289200). We believe all these differences were due to different versions of the G. hirsutum genome. Gene loss usually occurs due to hybridization and chromosome doubling (Paterson et al., 2004). In this study, we determined gene loss by comparing the number of WOX genes in G. hirsutum (39) and G. barbadense (40) with the sum of the gene numbers of its two progenitors (41). The orthologous gene of Gorai.002G178400 was lost in the Dt subgenome of G. hirsutum. The orthologous gene of Ga08G1116 was lost in G. raimondii, G. hirsutum, and G. barbadense, and this gene was also the minimum gene that only encoded 66 amino acids. Previous research has shown that the WOX gene family can be divided into the ancient, intermediate, and WUS clades. In this study, eight, eight, and 23 WOX genes from G. hirsutum were classified into the intermediate, ancient, and modern/WUS clades, respectively, which is consistent with previous research that the WUS clade was much higher than either the intermediate or ancient clade (Deveaux et al., 2008). Both the gene structure and conserved motif analysis showed that WOX genes classified into the same group tend to have similar structures and motifs, which strongly supported the close evolutionary relationships among the WOX genes within each subfamily.
The WOX genes have been pivotal in organ formation, embryo patterning, and stem cell maintenance (Deveaux et al., 2008; Nardmann and Werr 2012). RNA-seq and qRT-PCR data analysis showed that most genes are expressed in germinating hypocotyls, callus, and embryonic callus. Our result indicated that these genes might be involved in callus induction and regeneration. Previous studies showed that most WOX genes in rice and soybean were responsive to abiotic stress (Cheng et al., 2014; Hao et al., 2019). Overexpression of OsWOX13 resulted in drought resistance in rice (Minh-Thuet al., 2018). Abiotic stresses such as drought stress inhibit plant growth, including reducing the photosynthetic rate and electrolyte pressure (Magwanga et al., 2019; López et al., 2020). To determine if GhWOX4_A01 was involved in drought stress response in cotton, we have silenced its expression by VIGS and measured relative water content, ion leakage, excised water loss, and chlorophyll content in both the silenced plants and the negative control under normal and drought stress conditions. The finding revealed that the silenced plants showed more water loss and ion leakage, and the chlorophyll content was lower than that of the control under drought stress conditions. Reactive oxygen species (ROS) are by-products of cellular metabolism, which are usually produced under stress conditions. However, the plant developed effective mechanisms, including antioxidant molecules and antioxidant enzymes, to minimize the damage caused by ROS (Atkinson and Urwin, 2012). In this study, the knockdown plant (pCLCrVA: GhWOX4_A01) has higher MDA and H2O2 content than the control plants. CAT and POD levels were lower in the treated plants (pCLCrVA: GhWOX4_A01) than in the control plants (pCLCrAVA). These results indicated that GhWOX4_A01 might increase cotton tolerance to drought by maintaining homeostasis of ROS.
CONCLUSION
This study provides a genomic framework for the cotton WOX gene family, and 39, 40, 21, and 20 WOX genes were identified in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii. Moreover, gene loss events occurred in the WOX gene family in G. hirsutum and G. barbadense during the hybridization of two progenitors. Phylogenic analysis showed that all the WOX genes could be classified into the ancient, intermediate, and WUS clades. The WOX gene family in cotton was highly conserved at the DNA and protein levels. Most of the WOX gene expression level was up-regulated in germinating hypocotyls and callus. GhWOX4_A01 was highly expressed in embryonic callus than in regular callus. The silenced plants (pCLCrVA: GhWOX4_A01) have accumulated more oxidants and were more sensitive to drought treatment. Taken together, our results can enhance our understanding of the role of the WOX gene family in tissue regeneration and abiotic stress, and provide a reference for future molecular analysis.
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Transcriptome analysis reveals pathogenesis-related gene 1 pathway against salicylic acid treatment in grapevine (Vitis vinifera L)
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Salicylic acid (SA) is a well-studied phenolic plant hormone that plays an important role in plant defense against the hemi-biothrophic and biothrophic pathogens and depends on the living cells of host for the successful infection. In this study, a pathogenesis test was performed between Vitis davidii and V. vinifera cultivars against grape white rot disease (Coniella diplodiella). V. davidii was found to be resistant against this disease. SA contents were found to be higher in the resistant grape cultivar after different time points. RNA-seq analysis was conducted on susceptible grapevine cultivars after 12, 24, and 48 h of SA application with the hypothesis that SA may induce defense genes in susceptible cultivars. A total of 511 differentially expressed genes (DEGs) were identified from the RNA-seq data, including some important genes, VvWRKY1/2, VvNPR1, VvTGA2, and VvPR1, for the SA defense pathway. DEGs related to phytohormone signal transduction and flavonoid biosynthetic pathways were also upregulated. The quantitative real-time PCR (qRT-PCR) results of the significantly expressed transcripts were found to be consistent with the transcriptome data, with a high correlation between the two analyses. The pathogenesis-related gene 1 (VvPR1), which is an important marker gene for plant defense, was selected for further promoter analysis. The promoter sequence showed that it contains some important cis-elements (W-box, LS7, as-1, and TCA-element) to recruit the transcription factors VvWRKY, VvNPR1, and VvTGA2 to express the VvPR1 gene in response to SA treatment. Furthermore, the VvPR1 promoter was serially deleted into different fragments (−1,837, −1,443, −1,119, −864, −558, −436, and −192 ) bp and constructed vectors with the GUS reporter gene. Deletion analysis revealed that the VvPR1 promoter between −1837 bp to −558 bp induced significant GUS expression with respect to the control. On the basis of these results, the −558 bp region was assumed to be an important part of the VvPR1 promoter, and this region contained the important cis-elements related to SA, such as TCA-element (−1,472 bp), LS7 (−1,428 bp), and as-1 (−520 bp), that recruit the TFs and induce the expression of the VvPR1 gene. This study expanded the available information regarding SA-induced defense in susceptible grapes and recognized the molecular mechanisms through which this defense might be mediated.
Keywords: Salicylic acid, PR1, white rot, Cis-elements, transcriptomics, grapevine
INTRODUCTION
Grapevine (Vitis spp., family Vitaceae) is a commercially important fruit grown around the globe, and its history extends over 8,000 years (Fischer et al., 2004). Currently, most worldwide production is from the European grapevine (V. vinifera L.), which is the main table grape species in China. Because of the character of the East Asiatic climate (monsoon) with high precipitation and temperature, grapes are vulnerable to different fungal diseases (Wan et al., 2015; Pap et al., 2016; Sapkota et al., 2019). A major fungal disease affecting grapevine is grape white rot (caused by Coniella diplodiella (Speg.) Sacc.), which reduced the grape yield by at least 16.3% in grape-producing regions (Li et al., 2008). White rot disease infects the leaves, berries, and new shoots. The application of antifungal agents is recommended for successful grape production, but those agents have hazardous effects on the environment. At present, many grapevine cultivars are found resistant to grape white rot, especially the wild grape relative, making it an important source for grape white resistance through breeding.
Plants have sophisticated defense mechanisms for pathogen recognition. In the systemic acquired resistance (SAR) pattern recognition receptor (PRR)-triggered immunity, PTI is the first tier of plant immunity. PTI is governed by the recognition of pathogen-associated molecular patterns (PAMPs) and is very effective against most pathogens (Boller and Felix, 2009; Dodds and Rathjen, 2010; Dou and Zhou, 2012). However, to overcome the PTI, pathogens manufacture effector proteins and penetrate them in into the host cell to increase their survival in the host. Then, the plant mediates its second tier of immunity, effector-triggered immunity (ETI), to respond to the effector-triggered susceptibility through their resistance genes by recognizing pathogen effectors (van Loon et al., 2006; Wang et al., 2012; Sawinski et al., 2013). Pathogenesis-related proteins (PRs) are activated by abiotic and biotic factors and play vital roles in plant defense (Sels et al., 2008); the expression of PRs can increase plant resistance following infection by pathogenic bacteria (Wildermuth et al., 2001). A major protein in the PR family is PR1, that responds to disease resistance in plants against the environmental stress (Godiard et al., 1990). Jasmonic acid (JA) and SA perform a vital role in plant SAR through PR1 proteins, different transcription factors, and enzymes that control the expression of PR1 in these pathways (Després et al., 2000; Gu et al., 2002; Després et al., 2003; Lorenzo et al., 2004). It was also found that methyl jasmonate (MeJA) induced the defense genes expression through the MAPK pathway in grapevine (Rahman et al., 2022). PR1 proteins are considered to be antioomycete and antifungal proteins, and the function of PR1 is still enigmatic, in contrast to other PR proteins whose functions have been elucidated (Joshi et al., 2021; Kaur et al., 2022). Recently, tomato and tobacco PR1 protein sterol-binding activity has been found critical for its antimicrobial activity (Gamir et al., 2017). Plant resistance against pathogenic oomycetes and bacteria in tobacco has been found higher from the overexpression of the pepper basic PR1 gene (Sarowar et al., 2005). The promoters of pathogenesis-related genes contained some cis-regulatory elements responsible for their expression upon phytohormones signaling. For example, there are some SA-inducible cis-regulatory elements in promoters of some pathogenesis-related genes in Arabidopsis thaliana PR-1 and tobacco PR-1a, like activation sequence-1 (as-1). In the promoter of PR-1a, tobacco possesses an as-1-like element with inverted TGACG motifs, a binding site for TGA transcription factors (Strompen et al., 1998; Niggeweg et al., 2000; Grüner et al., 2003). The promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice (Ahmar and Gruszka, 2022).
SA is a well-studied phenolic plant hormone that plays an important role in plant defense against the hemi-biothrophic and biothrophic pathogens that depend on the living cells of host for the successful infection. Neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants (Vlot et al., 2009; Raza et al., 2022). SA biosynthesis may activate the resistance genes that initiate SAR through hypersensitive response by accumulating at the place of pathogen attack. They are then distributed to other plant parts as a mobile signal in the form of methyl salicylate to induce the defense response (Zhao et al., 2005). Many plants cannot effectively employ these mechanisms. It was found that exogenous SA application has induced PR proteins (Raskin, 1992), as SA effectiveness has been verified against bacteria (Mohan Babu et al., 2003; Mandal et al., 2013), fungi (He and Wolyn, 2005; Mandal et al., 2009), and viruses (Van Huijsduijnen et al., 1986). SA treatment in tobacco reduced the multiplication of bacteria and disease symptoms against Erwinia carotovora (Palva et al., 1994). The exogenous treatment of SA enhances the resistance of asparagus against Fusarium oxysporum f. sp. asparagi, with increases in the levels of lignifications, phenylalanine ammonia-lyase, and peroxidases (He and Wolyn, 2005). Similarly, in tomato roots, SA application induced the defense response against the F. oxysporum f. sp. Lycopersici and reduced vascular browning symptoms by increasing phenylalanine ammonia-lyase, peroxidases, β-1,3-glucanase, and lignifications (He and Wolyn, 2005; Mandal et al., 2009). PR proteins were also induced by the SA application in grapevine leaves [10]. The PR1 expression induced through exogenous application of SA against the alfalfa mosaic virus (A1MV) (Van Huijsduijnen et al., 1986). The SA master regulator NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), degraded from oligomer to monomer with the elevation of SA accumulation in the infected cell through NPR3 and NPR4, which results in the effector-triggered cell death; NPR1 also mediated SA resistance in the neighboring cells to promote cell survival (Fu and Dong, 2013; Yan and Dong, 2014). In addition, SA signaling engages a feedback circuit to amplify defense responses that are negatively regulated by EDR1, a MAPKKK (Frye et al., 2001; Xiao et al., 2005).
Previously, researchers analyzed the individual mechanisms for the evaluation of induced resistance involved in stress response. However, these techniques provide limited explanations for the defense mechanisms promoted by the elicitors. To evaluate the elicitors in plant defense, a large number of studies have been conducted on gene expression in response to different phytohormones. A transcriptome study performed on sorghum with exogenous SA treatment induced numerous defense genes, such as several PR genes, the JA pathway, and phenylpropanoid, that exhibit different pattern of synergistic as well as antagonistic effects between SA and JA. Exogenous SA application of on grapevine leaves induced different PR proteins (Renault et al., 1996), but no transcriptome study has been reported on the grapevine leaves in SA application. Our study compared the pathogenesis of grape white rot disease in V. vinifera L. cv. Zaotianmeiguixiang and Chinese wild grape species V. davidii, in which the wild grape cultivar showed resistance against white rot with higher levels of SA. Transcriptome analysis was performed on susceptible grapevine leaves against the SA treatment to investigate the important transcripts responsible for the defense response. This study was proposed to investigate the effect of exogenous SA application on the susceptible grapevine cultivar through the induction of SA marker genes by transcriptome analysis. For further functional analysis, a candidate gene, PR1, was selected for promoter analysis against the SA treatment through transient expression on tobacco leaves.
MATERIALS AND METHODS
Plant material
Grapevine 2-year-old “resistant” V. davidii accession 0940 and “susceptible” V. vinifera (Zaotianmeiguixiang) plants were grown in a greenhouse under controlled conditions (25 ± 5°C, 16-hour light/8-hour dark photoperiod, 65% relative humidity) at the Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Henan, China. Sand and peat (50/50, v/v) used as potting media, and the plants were watered twice in a week. Tobacco (Nicotiana benthamiana) plants were grown under greenhouse conditions (16-hour light/8-hour dark photoperiod, 65% relative humidity, 25 ± 5 °C) in potting media (vermiculite/perlite/moss, 2/3/5, v/v/v). The N. benthamiana plants were used for the Agrobacterium-mediated transient assay at the sixth-leaf stage.
Pathogenicity test and SA treatment
For the pathogenicity test, the causal organism of white rot (C. diplodiella, strain WR01) was taken from the Institute of Plant Protection, CAAS, and grown at 28°C on potato dextrose agar medium. The plants were inoculated with four mycelium gelose discs (diameter = 2 mm) of C. diplodiella on each leaf using small pins, and the leaf was covered with a plastic bag to retain the moisture throughout the infection period. After 72 h of post-inoculation (hpi), leaf samples were observed. Each treatment had three control replicates and four independent biological infected replicates. The susceptible V. vinifera (Zaotianmeiguixiang) plants were sprayed with 100 μM SA (Sigma-Aldrich Chemicals GmbH, Schnelldorf, Germany) solution containing 0.05% (v/v) Tween 20 treatment, and control plants were sprayed with 0.05% (v/v) Tween 20 (Yang et al., 2019). Three replications were taken for each treatment; each replication contained three leaf samples, and leaf samples were collected after 12, 24, and 48 h of treatment and immediately stored at −80°C before RNA extraction.
Salicylic acid measurement
Grapevine leaves were collected after 12, 48, and 72 h of after the white rot (C. diplodiella, strain WR01) inoculation and kept in liquid nitrogen. SA was measured according to the procedure detailed in Hu et al. (2019). A triple-quadrupole LC/MS system (1290 Infinity II-6470, Agilent Technologies, USA) was used for the measurement of SA content, as explained by Hu et al. (2019). Three independent replicates were used for this experiment.
Total RNA extraction, library construction of mRNA, and data analysis
The total RNA was extracted following the CTAB-pBIOZOL reagent and ethanol precipitation protocol recommended by the manufacturer (Mu et al., 2017). The mRNA was purified using oligo(dt) attached to magnetic beads. The mRNA was fragmented into small fragments with the fragment buffer at the appropriate temperature. The first strand of cDNA was synthesized through reverse transcription with a random hexamer primer; then second-strand cDNA was synthesized. A-Tailing Mix and index adapters were added to the mixture for end repairing of RNA. Previously synthesized cDNA fragments were amplified through PCR, purified by Ampure XP beads, and dissolved in the EB solution. The quality control of the product was validated on the Agilent Technologies 2100 bioanalyzer. For the final library, the double-stranded PCR product was denatured through heating and circularized by the splint oligo sequence. The single strand circular DNA (ssDNA) was considered as the final library. The final library was amplified with phi29 to make DNA nanoball (DNB), which had 300 copies of one molecule. DNBs were loaded into the patterned nanoarray, and pair end 100 bases reads were produced on DNBSeq platform (BGI-Shenzhen, China). This project used SOAPnuke (v1.4.0), the filtering software that was independently developed by BGI. First, the reads containing the unknown base N content greater than 5% and the reads containing the connector (connector contamination) were removed. The low-quality reads (those with a quality value of less than 15, which account for more than 20% of the total number of bases in the reads) were also removed. The filtered “clean reads” are saved in FASTQ format. To compare the RNA-seq reads with the reference genome of Vitis vinifera (http://plants.ensembl.org/Vitis_vinifera/Info/Index?db=core;g=VIT_08s0007g00570;r=8:1482803614830056;t=VIT_08s0007g00570.t01) (accessed on 10 January 2022), hierarchical indexing for spliced alignment of transcripts (HISAT) (v2.1.0) (Kim et al., 2015) software was used. Bowtie2 (v2.2.5) was used to calculate the mapping rate to align clean reads to the reference gene sequence, and RSEM was used to calculate the expression levels of genes and transcripts (Li and Dewey, 2011; Langmead and Salzberg, 2012). Bioinformatics analysis was performed on the successfully mapped clean reads on the reference genome.
Quantitative real-time PCR
A Roche Light Cycler 480 Real-Time PCR system and a Roche Light Cycler 480 SYBR Green I Master were used to run the qRT-PCR. The qRT-PCR conditions were as follows: 95°C for 30 s for denaturation, followed by 40 cycles of 5 s at 95°C, at 55°C for 30 s, and 72°C for 10 s with the primers (Supplementary Table S1). Three biological replicates were used for all of the reactions, and Bio-Rad CFX Manager software was used to determine the threshold cycle (Ct). The qRT-PCR method was used according to the manufacturer’s instructions. The relative quantitative expression level was calculated by the 2−∆∆CT method (Livak and Schmittgen, 2001). The gene expression level of grapevine level was analyzed using VvActin as the reference gene.
Promoter isolation of VvPR1 gene and sequence analysis
The genomic DNA was extracted from the grapevine leaves using a DN 15-Plant DNA Mini Kit according to the manufacturer’s instructions. The DNA concentration was measured using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). The primer pair for the promoter of VvPR1 (VIT_03s0088g00810) was designed from the reference sequence of V. vinifera (Supplementary Table S2). A region approximately 1900 base pairs upstream from the coding region was thought to be the putative VvPR1 promoter. The VvPR1 promoter was amplified using the Premix high-fidelity (Takara) enzyme, and the PCR conditions were followed according to Rahman et al. (2022). The PCR product was purified on 1.5% agarose gel, cloned on the pCE2 Blunt vector, and sequenced for the verification of the promoter sequence. The PlantCARE online tool was used to predict the cis regulatory elements in the VvPR1 promoter (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (accessed on 17 February 2022) (Lescot et al., 2002).
Construction of beta-glucuronidase vectors
The VvPR1 promoter serially deleted into the promoter fragments and cloned them into the pCE2 Blunt vector by designing primers of different lengths from promoter sequence (Supplemetary Table S2). Each forward primer contained the HindIII restriction site at the 5′ end, and the reverse primer contained the BamHI restriction site at the 5′ end. The PCR reaction was performed, and the PCR product was purified on the agarose gel using the gel extraction kit. Meanwhile, the expression vector (pBI-121) was also digested by restriction enzymes (HindIII and BamHI) for 2 hours and then subcloned with the purified PCR products. Seven promoter fragments (−1837 bp to ATG, −1,443 bp to ATG, −1,119 bp to ATG, −864 bp to ATG, −558 bp to ATG, −436 bp to ATG, and −192 bp to ATG) were separately fused into the expression vector pBI-121 with the GUS reporter gene, yielding pBI-121:pPR1 (Figure 1). The strong promoter CaMV35 in the expression vector pBI-121 was used as positive control, and pBI-101 with no promoter was used as a negative control. All recombinant vectors were cloned and propagated in Escherichia coli (DH5α strain). Then, the constructs of promoter/GUS fusion were inserted into the Agrobacterium tumefaciens strain GV3101 by heat shocks.
[image: Figure 1]FIGURE 1 | Schematic representation of the VvPR1 promoter. Constructs for assaying GUS (β-glucuronidase) expression in tobacco leaves. The constructs of serially deleted promoter fragments of the VdPR1 gene were fused to the GUS reporter gene in the vector pBI-121.
Agrobacterium-mediated transient expression assay with abiotic stress treatment
Agrobacterium was used for the transient expression, as mentioned by Yang et al. (2000). The serially deleted fragments of promoter:GUS harbored by Agrobacterium GV3101 were grown in the LB medium supplemented with the antibiotics rifampicin (60 μg ml−1) and kanamycin (50 μg ml−1). The Agrobacterium strains were cultured in 50 ml of LB broth at 28 °C overnight. The LB broth was centrifuged for 10 min at 6000× g to collect the Agrobacterium cells, which were then resuspended in infiltration media (10 mM MgCl2, 100 µM acetosyringone 10 mM MES, (pH 5.6), (Sigma-Aldrich)) and adjusted to an OD600 of 0.8. A needleless syringe was used to inject the infiltrate of Agrobacterium suspension into tobacco leaves, which were then placed in a moist chamber at 26°C for 24 h and then shifted to the growth room. SA (100 μM, 0.2% Tween-20) and ABA (100 μM, 0.2% Tween-20) treatment was applied to the tobacco leaves harboring the pBI-121:pPR1/GUS, and the control plants were only sprayed with 0.2% Tween-20. SA-treated and control plants were placed in the baskets and covered with the polyethylene-perforated plastic bags (having six holes (1 cm diameter) on each side and 0.03 mm thickness). Three replications were performed for each treatment, and each was also repeated three times for the transient GUS expression on the tobacco leaves. Samples were collected after 24 h of treatment.
GUS activity measurement
Histochemical staining analysis was performed to measure the GUS expression transiently as described by Jefferson et al. (1987). GUS staining solution was prepared as explained by Yu et al. [80]. Tobacco leaf discs were collected and dipped in a GUS staining solution (0.5 mg L−1 5-bromo-4-chloro-3-indolyl-b-D- glucuronic acid, 10 mM Na2EDTA, 100 mM NaH2PO4, 0.1% Triton X-100, and 0.5 Mm K4Fe(CN)6.3H2O (X-Gluc, Sigma-Aldrich, Shanghai, China), pH 7.0) and incubated at 37°C for 24 h. Leaf discs were incubated in 70% ethanol at 37°C to remove the chlorophyll contents for more clear observation and rinsed several times with ethanol. The quantitative GUS assay of promoter transiently expressed in tobacco leaves was measured as described by Jefferson et al. (1987). Microtubes were filled with leaf powder after grinding. The extraction buffer, phosphoric acid buffer (0.5M EDTA, TritonX-100(10%), 2M KPO4 (pH 7.8)), 80% glycerol, and beta mercapto ethanol (1 ml), was added to the microtube and vortexed. The material inside the microcentrifuge tube was centrifuged at 120,00× g for 15 min at 4°C, and the supernatant was transferred to a microcentrifuge tube already placed on ice. The whole fluorogenic reaction was performed at a volume of 1 ml mixed with extraction buffer in 1 mM 4-methylumbelliferyl-h-D-glucuronide (MUG) (Duchefa Biochemie, Haarlem, Netherlands), which also comprised an aliquot of protein extract at a volume of 0.1 ml. The standards of bovine serum albumin (BSA) were used for the quantification of protein extracts as explained by Bradford (1976). The results were found to be similar after measuring GUS three times.
Statistical analysis
Microsoft Excel (2016) was used for values calculation, and Student’s t-test was used for calculating differences among values. The significance levels are shown as follows: * represents p ≤ 0.05, and ** represents p ≤ 0.01. All experiments were repeated three times with three independent biological replicates.
RESULTS
Structure and disease symptoms of grapevine leaves
In this study, the grapevine leaves were inoculated with C. diplodiella, and disease symptoms were found to be higher in V. vinifera than the V. davidii after 72 h of inoculation (Figure 2A). The hypersensitive response (HR) occurred in V. davidii, where the sudden cell death happened at the site of infection and stopped the spreading of the pathogen infection. At the base of the leaf structure, there was no significant difference in leaf thickness between V. davidii and V. vinifera (Table 1). The endogenous SA contents were also measured after C. diplodiella inoculation, and SA contents were found to be higher in V. davidii than V. vinifera after specific time points of inoculation (Figure 2B).
[image: Figure 2]FIGURE 2 | (A) Symptoms of Coniella diplodiella infection on the leaf samples of Vitis vinifera Manicure Finger (Vv) and Vitis davidii accession 0940 (Vd). Two-week-old leaf samples were collected at the 3-4 position. Typical hypersensitive response (HR) symptoms were observed in Vd but not in Vv at 72 h post-infection (hpi). There were four replications of each species. (B) Endogenous measurement of SA from the V. davidii and V. vinifera after 0, 12, 48, and 72 h of white rot disease (Coniella diplodiella) inoculation.
TABLE 1 | Comparison of two Vitis species after Coniella diplodiella inoculation.
[image: Table 1]Transcriptomic analysis of SA-treated grapevine leaves at different time points
Transcriptome analysis was performed on the grapevine leaves treated with SA after 12 h and 48 h. As most disease attack happened on the aerial parts of the plants, SA treatment was applied to grapevines. An individual leaf sample comprised ≥6.3 Gb data with a Q20 ≥ 97.14% quality score. A total of 57.6 Gb clean data were mapped from twelve leaf samples (Table 2). On average, from each leaf sample, 88.17%–89.72% reads were uniquely mapped and aligned with reference genome V. vinifera L. The expression levels (p ≤ 0.05) of the control and the SA-treated samples were compared on the basis of a Cuffdiff analysis. For differentially expressed genes (DEGs), p-values (0.01) and log2-fold changes (log2FC) ≥ 1 or ≤−1 were used for threshold values after 12 h and 24 h of SA treatment. To identify the DEGs against the SA application after 12, 24, and 48 h, a volcano plot was designed against FC(log2) and −log10(significance) (Figures 3A–C). A Venn diagram was used to show the distribution and representation of DEGs after 12h and 48 h of SA treatment. The Venn diagram represents that 17, 114, and 155 genes were the unique set of genes that were expressed after 12, 24, and 48 h of SA treatment, respectively, and eight genes were coregulated at all time points (Figure 3D). A total of 511 DEGs were identified in which 12, 33, and 44 genes were downregulated, and 15, 183, and 240 genes were upregulated after 12, 24, and 48 h of SA treatments, respectively (Figure 3E).
TABLE 2 | Transcriptome raw data and differentially expressed genes.
[image: Table 2][image: Figure 3]FIGURE 3 | Distribution of DEGs from RNA-seq data. (A) Volcano graph of DEGs representing the downregulated genes with blue color and upregulated DEGs with red color after 12 h of SA treatment. (B) Volcano graph of DEGs representing the downregulated genes with blue color and upregulated DEGs with red color after 24 h of SA treatment. (C) Volcano graph of DEGs representing the downregulated genes with blue color and upregulated DEGs with red color after 48 h of SA treatment. (D) Venn diagram analysis of DEGs identified from all time points. (E) Total number of DEGs that were significantly down- or upregulated in response to SA treatment. Log2 FC ≥ 1 or ≤−1 and p < 0.01 FDR.
Gene ontology analysis
Gene ontology (GO) analysis of the DEGs after 12, 24, and 48 h of SA treatment was performed to classify them into three main domains of GO: biological process, cellular component, and molecular function. The biological process category contained nine GO terms, of which cellular process contained a significant number of enriched genes, followed by metabolic process. The cellular component contains three biological terms in which a cellular anatomical entity was enriched with significant DEGs. The molecular function has seven GO terms in which DEGs were significantly enriched in catalytic activity followed by binding (Supplementary Figure S1). More DEGs were enriched in the GO terms and domains after 48 of SA treatment. Three domains from three GO terms (cellular process, cellular anatomic entity, and catalytic activity) had the maximum number of downregulated genes (14, 32, and 25, respectively) and the maximum number of upregulated genes (83, 131, and 127, respectively) genes after the 48 h of SA treatment (Table 3).
TABLE 3 | Functional categorization of DEGs through GO analysis after SA treatment with different time points.
[image: Table 3]Kyoto Encyclopedia of Genes and Genomes analysis
To understand the biological pathways induced by SA in the grapevine leaves, all DEGs were mapped against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. DEGs mapped on the KEGG database revealed that most significant changes in response to SA treatment were related to the plant immune and defense response. According to KEGG, the metabolic pathway divided into five categories: environmental information processing, cellular processes, organic systems, genetic information processing, and metabolism. The highest number of KEGG pathways induced in grapevine leave were global and overview map (8, 47, and 49), signal transduction (3, 60, and 79), and immune system (4, 39, and 55) after 12, 24, and 48 h of SA treatment (Figure 4). The top 20 KEGG pathways comprised most of the defense and immune related pathways; among them, phenylalanine metabolism, MAPK signaling pathway, Ras signaling pathway, alanine aspartate, glutamate metabolism, and Toll-like receptor signaling pathway that have a crucial role in plant disease resistance (Supplementary Figure S2).
[image: Figure 4]FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of significantly expressed transcripts at all time points of SA treatment: (A) 12 h of SA treatment, (B) 24 h SA treatment, and (C) 48 h of SA treatment.
SA plant defense signaling
In plant defense, SA helps to encode the proteins related to antimicrobial activities through the induction of pathogenesis-related (PR) genes. To date, 17 PR families have been identified; among them, PR1, PR2, and PR5 are induced by biotrophic and semibiotrophic pathogens. Additionally, the expression of VvPR1 and VvPR2 was upregulated (1.14 to 2.44 fold) by the exogenous application of SA on grapevine leave after different time points (12, 24, and 48). A master regulator of SA-mediated plant defense is VvNPR1 (non-expresser of PR genes 1), and it regulates the VvPR1 gene through the binding with TGA transcription factors. VvNPR1 was upregulated (1.16 to 1.97 fold) at all time points after SA treatment, and VvTGA2 was also identified from the transcriptome data and upregulated (1.74 to 2.59 fold). VvWRKY1 and VvWRKY2, another transcription factor, was also upregulated (1.15 to 3.16 fold) after the 12, 24, and 48 h SA treatment on the grapevine leaves (Table 4; Figure 5).
TABLE 4 | DEGs involved in SA plant defense pathway after 12, 24, and 48 h of SA treatment.
[image: Table 4][image: Figure 5]FIGURE 5 | SA pathway related to plant defense. A higher SA level can induce the monomerization process of NPR1 and induced NPR1-dependent gene expression through direct interactions with TGA transcription factors. Meanwhile, direct binding with SA derepressed the suppression of NPR3 and NPR4 on SA-induced genes, which further enhanced SA-induced NPR1-dependent gene expression. Efficient turnover of monomeric NPR1 proteins in the nucleus is required for a rate-limited SA-induced gene expression, and this is also dependent on the homeostasis of NPR1-ubiquitination.
Verification of differential gene expression
The validation of the RNA-seq data was performed by selecting random transcripts from significantly expressed transcripts. We selected only nine genes for qPCR, of which five genes (VvPR1, VvPR2, VvTGA2, VvSTB-14, and VvNPR1) were continuously increasing their expression from all time points. The expression of VvWRKY2, VvEDS1, and VvCHI4D increased at 24 h of SA treatment, whereas the expression of VvBAK1 and VvTGA2 decreased at 24 h of SA treatment. The qPCR expression results were found consistent with transcriptome data (Figure 6). The most important plant defense gene, VvPR1, is a DEG that responds to different biotic and abiotic stress conditions, so this gene was selected for further functional validation in response to SA application.
[image: Figure 6]FIGURE 6 | Validation of RNA-seq data with RT-qPCR. RT-qPCR of the selected DEGs was used for the verification of RNA-seq data. Error bars indicate the standard error as mean +SD. Significant differences between the control and treated samples are indicated by an asterisk (*). The sign * represents p ≤ 0.05, and ** represents p ≤ 0.01.
VvPR1 promoter sequence analysis
About 1837 bp of VvPR1 upstream from the ATG was considered as a putative promoter and cloned in a pCE2 Blunt vector. The PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used for sequence analysis of the VvPR1 promoter and revealed many motifs, sequences, and cis-elements responsible for gene regulation and expression in many eukaryotic promoters (Supplementary Figure S3; Supplementary Table S3). The cis-elements related to defense, hormones, and stress were as found in other plant promoters. The VvPR1 promoter was enriched with CAAT-Box and TATA-box as follows: 1) light-responsive elements (AT1, LS7, AE-box, chs-CMA1a, Box4, and G-box), 2) stress-responsive elements (ARE, LTR, and MBS) respond to low temperature, drought, and anaerobic conditions 3) hormone-responsive elements (ERE, P-box, CGTCA-motif, and ABRE), 4) growth-associated elements (circadian and O2-site) that confer responsiveness to circadian control and zein metabolism regulation. Cis-acting elements (F-box and Unnamed-10) that had unclear functions were also found.
GUS expression of VvPR1 promoter against SA treatment
The serially deleted fragments of the VvPR1 promoter (−1,837 bp, −1,443 bp, −1,119 bp, −864 bp, −558 bp, −436 bp, and −192 bp) were cloned into the binary expression vector pBI121::GUS (Figure 7A). GUS expression was measured through histochemical staining and fluorometric assays in tobacco (N. benthamiana) plants. The above-mentioned constructs were infiltrated into the tobacco leaves and examined after 24 h of SA application by histochemical staining (Figure 7B) and fluorometric assays (Figure 7C). All deletion fragments of the promoter showed significantly higher GUS activity except −436 bp and −192 bp. The full-length promoter (−1,837 bp) exhibited the highest GUS protein activity, followed by the −864 bp, and −558 bp, which had shown significantly higher GUS activity with respect to the control. The −558 bp promoter fragment was found to be the shortest promoter fragment for the expression of the GUS reporter gene under SA treatment.
[image: Figure 7]FIGURE 7 | Schematic representation for the vector construction, histochemical staining, and fluorometric assay. (A) Promoter-GUS expression constructs showed the schematic structure. P(0); negative control; P(35S); positive control, and VvPR1 promoter in the forward orientation, respectively. (B) Histochemical staining analysis; GUS activity in transiently transformed N. benthamiana leaves with serially deleted VvPR1 promoter fragments (−1837, −1,443, −1,119, −845, −558, −436, and −192) bp against SA. (C) Fluorometric assay of VvPR1 promoter fragments (−1837, −1,443, −1,119, −845, −558, −436, and −192) bp in response to SA in tobacco leaves through transient expression. Different letters on the bars showed a significant difference between SA-treated fragments and the control according to the least significant difference (LSD) test (p < 0.05).
GUS expression of VvPR1 promoter against ABA treatment
The effect of another plant hormone, ABA, on the activation of the VvPR1 promoter was also investigated through a GUS assay in tobacco leaves harboring promoter-GUS chimeric constructs. The GUS expression of VvPR1 promoter fragments from −1837 bp to −192 bp had induced significantly higher GUS activity with respect to the control except for −1,119 bp and −436 bp (Figures 8A,B).
[image: Figure 8]FIGURE 8 | Histochemical staining and fluorometric assay of VvPR1 in response to ABA. (A) Histochemical staining analysis; GUS activity in transiently transformed N. benthamiana leaves with serially deleted VvPR1 promoter fragments (−1,837, −1,443, −1,119, −845, −558, −436, and −192) bp against ABA. (B) Fluorometric assay of VvPR1 promoter fragments (−1,837, −1,443, −1,119, −845, −558, −436, and −192) bp in response to SA in tobacco leaves through transient expression. Different letters on the bars showed a significant difference between the SA-treated promoter fragments and the control according to the least significant difference (LSD) test (p < 0.05).
DISCUSSION
Grape white rot disease is the major threat to Vitis species and grapevine cultivation in China. To identify the resistant germplasm for breeding and research purposes, pathogenesis tests were performed on the available germplasm. It was found that Chinese wild grape species V. davidii was resistant to the grape white rot disease (Figure 2) as was previously reported in our laboratory (Zhang et al., 2013; Zhang et al., 2019). Phytohormones such as SA have a key role in plants to respond to different environmental stresses and pathogen attacks (Alazem and Lin, 2015). The best defense-related hormone is known as SA (Ryals et al., 1994; Durrant and Dong, 2004a; Fu and Dong, 2013). When a pathogen attacks a plant, it induces the SA accumulation and the defense response (Vernooij et al., 1994; Sharma and Davis, 1997; Tsuda et al., 2008). In our current study, the amount of SA production in the resistant cultivar (V. davidii) was higher than in the susceptible (V. vinifera). We performed the transcriptome analysis on the susceptible grapevine cultivar treated with exogenous SA, hypothesizing that SA may induce the defense genes in grapevine plants. The RNA-seq analysis was conducted on SA-treated grapevine leaves and 511 DEGs were identified in which 12, 33, and 44 genes were down-regulated, and 15, 183, and 240 genes were upregulated after 12, 24, and 48 h of SA treatment, respectively. A higher number of DEGs were enriched in the GO terms and domains after 48 of SA treatment. Three domains from three GO terms, including cellular process, cellular anatomic entity, and catalytic activity, enriched a maximum number of downregulated and upregulated genes after 48 h of SA treatment on grapevine leaves. The top 20 KEGG pathways comprised most of the defense and immune related pathways; among them, phenylalanine metabolism, MAPK signaling pathway, Ras signaling pathway, Toll-like receptor signaling pathway, and alanine aspartate and glutamate metabolism that have a crucial role in plant disease resistance.
The SA level is elevated during the MTI and PTI response of the plant (Iwai et al., 2007; Garcion et al., 2008; Palmer et al., 2017). SA plays a vital role in the plant’s defense against biotrophic and semi-biotrophic pathogens (Fu and Dong, 2013). Moreover, exogenous SA treatment and its active analogs also induce defense mechanisms in plants against semibiotrophic and biotrophic pathogens (Lu, 2009). In plant defense, SA helps to encode the proteins related to antimicrobial activities through the induction of PR genes. To date, 17 PR families have been identified; among them, PR1, PR2, and PR5 are activated by biotrophic and semibiotrophic pathogens (Stintzi et al., 1993; Hoffmann-Sommergruber, 2000). SA also control the expression of PR1, PR2, and PR5 (Leah et al., 1991; Zhang et al., 2010); they are also used for the SA pathway as a marker. In the current study, PR1 and PR2 genes were upregulated after the SA treatment on the grapevine leaves at all time points. NPR1 is detected through the Arabidopsis mutants with an abolished expression of the PR gene (Cao et al., 1997). NPR1 is known as a master regulator of plant defense through the SA; it controls almost 98% of SA-mediated genes (Wang et al., 2006). In this study, NPR1 was also significantly upregulated from the leaf samples after the SA treatment. SA controls the translocation of NPR1 through the specific redox reactions (Mou et al., 2003). The oligomers of NPR1 formed by the intermolecular disulfide bond are found in the cytoplasm in the absence of infection or SA treatment, but after the SA treatment or infection, intermolecular bonds break, and monomers of NPR1 translocate into the nucleus, where they induce the expression of defense-related genes.
During the plant defense response, NPR1 regulated the expression of PR genes through cofactors known as TGAs because DNA-binding domains are missing on NPR1 (Zhang et al., 1999; Kesarwani et al., 2007). In Arabidopsis, it has been found that TGA2, 3, 5, 6, and 7 show interaction with NPR1 and NPR1 helps to bind TGA transcription factors on the as-1 element in the PR1 promoter region to induce the expression (Després et al., 2000; Després et al., 2003; Johnson et al., 2003). Additionally, VvTGA2 TF was identified from the DEGs after the SA treatment on the grapevine leaves that may bind the promoter of VvPR1 gene with VvNPR1 to activate the plant defense response. NPR3 and NPR4 also bind SA but have been identified as negative regulators of plant defense, in contrast to NPR1, which plays a vital role in SA signaling (Zhang et al., 2006; Fu et al., 2012). NPR1 also works as an SA receptor through SA binding (Wu et al., 2012; Ding et al., 2018). During the plant defense, the NPR1 paralogues, NPR3 and NPR4, are SA receptors that bind SA with different affinities and function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner (Fu et al., 2012). Meanwhile, Ding et al. claimed that SA-based plant immunity was also accomplished independently by NPR3 and NPR4 (Fu et al., 2012; Ding et al., 2018).
After the RT-PCR of the random DEGs from the RNA-seq data, the VvPR1 gene was selected for further study because PR1 is the SA marker gene for plant defense response. The promoter of the VvPR1 gene was isolated from grapevine, and it was found that the VvPR1 promoter was enriched with CAAT-boxes and TATA-boxes. Other cis-elements, such as stress, hormone, light, growth and development, and associated elements, were also detected from the VvPR1 promoter. In this study, the VvPR1 promoter was enriched with TATA boxes, especially up to −800 bs upstream from the ATG. TATA-boxes are abundant in stress-related genes and are absent in essential genes (Tirosh et al., 2006; Walther et al., 2007). They are important with a variable and rapid gene induction (Newman et al., 2006; Roelofs et al., 2010; Vos et al., 2015). A previous study of Arabidopsis found that the PR-1 promoter contains cis-acting regulatory elements responsible for its induction on exogenous 2,6-dichloroisonicotinic acid (INA) and SA (Lebel et al., 1998). Hormones, different stresses, and pathogens activate the pepper PR1 promoter, possibly by transactivating the CARAV1 and CAZFP1 transcription factors (Hong et al., 2005).
Phytohormones (SA, JA, and ABA) are well-known major signaling components in plant defense signaling networks (Dong, 1998). SA is an important biomolecule in disease resistance that recognizes the pathogen effectors directly or indirectly and induces local resistance and systematic resistance against the biotrophic pathogens (Durrant and Dong, 2004b). In this study, the VvPR1 promoter fragments showed high GUS induction from −1,837 bp to −558 bp against SA. The expression of GUS of the −1,443 bp of VvPR1 promoter increased 2.35-fold with respect to the control under the treatment of SA. In addition, the −1,119, −864, and −558 bp deletion fragments resulted in 1.85-, 3.60-, and 3.11-fold increases in GUS expression by the SA treatment, respectively. This indicated that the minimal cis-regulatory elements important for the molecular response to SA might be present in the 1282-bp region between −1837 and −558 of the VvPR1 promoter. The expression of the VvPR1 promoter upon the SA treatment may be due to the presence of the TCA-element, activation sequence-1 (as-1), and the LS7 cis-acting elements. In this study, the VvPR1 promoter contained the TCA-element, as-1 and LS7 cis-acting elements at -1,472 bp, −1,428 bp, and −520 bp, respectively. Previous studies provide strong evidence that the TCA element is involved in SA signaling and PR-1 promoter induction by providing the site for TGA transcription factors and recruitment of NPR1 (Pastuglia et al., 1997). On the accumulation of SA in the cell, NPR1 monomers translocate in the nucleus (Zhang et al., 1999; Kinkema et al., 2000; Zhou et al., 2000), where they interact with TGA transcription factors and activate the expression of the PR-1 gene and subsequently SAR activation (Zhang et al., 2003; Kesarwani et al., 2007). Activation sequence-1 (as-1) is an SA-inducible cis-element in promoters of some pathogenesis-related genes in Arabidopsis thaliana PR-1 and tobacco PR-1a. In the promoter of PR-1a, tobacco possesses an as-1-like element with inverted TGACG motifs, a binding site for TGA transcription factors (Strompen et al., 1998; Niggeweg et al., 2000; Grüner et al., 2003). Further studies have shown that LS7 is also involved in SA-inducible PR-1 gene expression (Pape et al., 2010).
ABA is an important plant hormone that responds to biotic and abiotic stresses (Ton et al., 2009; Sah et al., 2016; Alazem et al., 2017). On the application of ABA, several transcription factors bind to target genes and respond to the stress (Song et al., 2016). In this study, the GUS protein expression has been induced upon ABA treatment from all deleted fragments of VvPR1 except −1,119 and −436; this indicated that these regions might contain some ABA-repressing elements. The induction of GUS with ABA treatment may be due to the presence of ABRE (a cis-acting element involved in the abscisic acid responsiveness) (Shinozaki and Yamaguchi-Shinozaki, 1997) that is located at −163 bp upstream from the transcription initiation start site. It was also found that ABA promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana (Ding et al., 2016) that may express the PR-1 gene under ABA treatment. Overall, the GUS protein expression by the VvPR1 promoter under the treatment of ABA was found to be low compared to SA; this low activation may be due to the presence of the low number of ABRE cis-acting elements in the VvPR1 promoter.
CONCLUSION
In conclusion, SA levels were found to be higher in resistant grapevine (V. davidii) than in susceptible grapevine (V. vinifera) after a pathogenicity test against white rot disease. After the transcriptome analysis, the GO and KEGG pathway analysis revealed that DEGs include important genes related to the SA defense pathway known as VvPR1. The promoter of the VvPR1 gene was also analyzed through serial deletion of the VvPR1 promoter with the GUS reporter gene. Deletion analysis showed that the region between −1837 bp and −558 bp of the VvPR1 promoter expressed significantly high GUS protein with respect to the control. On the basis of these results, this region was deduced to be an important part of the VvPR1 promoter, which contained the most important cis-elements (TCA-elements, LS7, and as-1) responsible for VvPR1 gene expression in response to SA application (Figure 9). Overall, the current study validated the available information about SA-mediated defense responses in grapevine species that are susceptible to various diseases.
[image: Figure 9]FIGURE 9 | Flow chart of study pattern showing the different steps of inducing the pathogenicity of grape white rot, the RNA-seq data analysis, promoter analysis through serial deletion of promoter, and the conclusion.
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The widespread impacts of projected global and regional climate change on rice yield have been investigated by different indirect approaches utilizing various simulation models. However, direct approaches to assess the impacts of climatic variabilities on rice growth and development may provide more reliable evidence to evaluate the effects of climate change on rice productivity. Climate change has substantially impacted rice production in the mid-high latitudes of China, especially in Northeast China (NEC). Climatic variabilities occurring in NEC since the 1970s have resulted in an obvious warming trend, which made this region one of the three major rice-growing regions in China. However, the projections of future climate change have indicated the likelihood of more abrupt and irregular climatic changes, posing threats to rice sustainability in this region. Hence, understanding the self-adaptability and identifying adjustive measures to climate variability in high latitudes has practical significance for establishing a sustainable rice system to sustain future food security in China. A well-managed field study under randomized complete block design (RCBD) was conducted in 2017 and 2018 at two study sites in Harbin and Qiqihar, located in Heilongjiang province in NEC. Four different cultivars were evaluated: Longdao-18, Longdao-21 (longer growth duration), Longjing-21, and Suijing-18 (shorter growth duration) to assess the inter-relationships among grain-filling parameters, grain yield and yield components, and grain quality attributes. To better compare the adaptability mechanisms between grain-filling and yield components, the filling phase was divided into three sub-phases (start, middle, and late). The current study evaluated the formation and accumulation of the assimilates in superior and inferior grains during grain-filling, mainly in the middle sub-phase, which accounted for 59.60% of the yield. The grain yields for Suijing-18, Longjing-21, Longdao-21, and Longdao-18 were 8.02%, 12.78%, 17.19%, and 20.53% higher in Harbin than those in Qiqihar, respectively in 2017, with a similar trend observed in 2018. At Harbin, a higher number of productive tillers was noticed in Suijing-18, with averages of 17 and 15 in 2017 and 2018, respectively. The grain-filling parameters of yield analysis showed that the filling duration in Harbin was conducive to increased yield but the low dry weight of inferior grains was a main factor limiting the yield in Qiqihar. The average protein content values in Harbin were significantly higher (8.54% and 9.13%) than those in Qiqihar (8.34% and 9.14%) in 2017 and 2018, respectively. The amylose content was significantly higher in Harbin (20.03% and 22.27%) than those in Qiqihar (14.44% and 14.67%) in 2017 and 2018, respectively. The chalkiness percentage was higher in Qiqihar, indicating that Harbin produced good quality rice. This study provides more direct evidence of the relative changes in rice grain yield due to changes in grain-filling associated with relative changes in environmental components. These self-adaptability mechanisms to climatic variability and the inter-relationships between grain-filling and grain yield underscore the urgent to investigate and explore measures to improve Japonica rice sustainability, with better adaptation to increasing climatic variabilities. These findings may also be a reference for other global rice regions at high latitudes in addressing the impacts of climate change on future rice sustainability.
Keywords: high latitudes, climate variabilities, inter-relationships, grain-filling rate, rice yield, rice quality
1 INTRODUCTION
Six continents cultivate rice, except for Antarctica owing to its icy conditions year-round. About 90% of the world’s rice is produced in Asia (Wassmann et al., 2009; Krishnan et al., 2011), with 30% occurring in China as the largest producer worldwide (World Health Organization and Food and Agriculture Organization of the United Nations, 2010; Tang et al., 2014). In China, about 95% of rice cultivation is performed through conventional-flooded systems, which play a significant role in climate change (Tang et al., 2014; Katayama et al., 2015). Overall, the world’s population is growing rapidly; in China, rice production must increase by 20% by 2030 to ensure food security for the population (Farooq et al., 2022a, b), if per capita nutrition consumption is adjusted to the current level (Peng et al., 2008). Previous climate changes showed effects at global (Lobell and Field, 2007; Raza et al., 2019) and regional (Li et al., 2008; Schlenker and Roberts, 2009) scales. Previous reports indicate that rice production will decrease in southern China except for areas where supplementary irrigational sources are available, while yield will increase in northern China, assuming moisture needs are met (Rosenzweig et al., 2014).
The atmospheric temperature has been projected to increase by 1°C–3°C from current conditions by the end of the 21st century (Howe et al., 2019). Three major agents cause climate change: natural factors, human-caused changes (GHGs and CH4 emissions), and land-use changes. Human-based activities have resulted in an increased atmospheric concentration of carbon dioxide (CO2) from 284 to 410 ppm from 1832 to 2013 (Howe et al., 2019), leading to global warming. Climatic variability analyses for China have shown that overall climate changes became more rapid since the 1950s due to several factors, including abrupt temperature variations toward warming (Piao et al., 2010). In Northeast China (NEC), the highest latitudes globally experienced the most evident temperature warming, making it a major rice-growing region in China since the middle of the last century (Liu et al., 2005; Hu et al., 2019). In NEC, most of the obvious warming has been observed since the 1980s, with annual mean increases of 1.0–2.5°C relative to the previous decade (1960–1970). Decreased annual rainfall has also been observed, especially in summer, since the mid-1960s (Liu et al., 2005), while a decreasing trend in winter temperatures has caused winter warming (Samol et al., 2015). In NEC, the temperature showed a warming trend during the 1920s; then, after three decades, the temperatures started to decrease before increasing again during the 1970s–1980s (Masutomi et al., 2009). Globally and in China, semi-arid regions have become more vulnerable to climatic stresses due to drought stress following continuous decreases in water resources. In NEC, the daily maximum and minimum temperatures have changed significantly, with the former changing more drastically, which had greatly constricted the diurnal temperature values (Asseng et al., 2015).
Temperature variations toward warming or cooling greatly affect the grain-filling phase, leading to changes in the final grain yield. Increased warming intensity, frequency, and duration above the normal ranges (22–32°C) at critical growth stages such as anthesis and grain-filling in rice increases the spikelet sterility (Ali et al., 2022a) and shortens the filling duration for superior and inferior grains, thereby reducing grain production (Krishnan et al., 2011). The range of growing degree days (GDD) for a specific rice cultivar at flowering is nearly identical to this range when cultivated at different temperatures between the optimum and base temperatures. The growth of superior or inferior rice grains increases at higher temperatures, with an accompanying shorter filling duration (Oh-e et al., 2007; Hatfield and Prueger, 2015). A strong negative association has been reported between the ripening period and daily mean temperatures; therefore, temperatures above the optimum range will ultimately reduce the grain-filling, although high temperatures increase the grain-filling rate (Virk et al., 2020). Developmental and cellular processes are affected by high temperatures during anthesis, grain-filling, and ripening, which leads to poor grain quality (Fábián et al., 2019). Rice cultivars experiencing continuous high temperatures during the anthesis and grain-filling phases show poor grain-filling and ultimately low grain weight (Krishnan et al., 2007). Moreover, during the grain-filling stage, longer periods of high temperatures increase the demand for assimilates to avoid white kernels (Kobata and Uemuki, 2004; Shi et al., 2017). Meanwhile, longer periods of drought stress also adversely affect the final grain weight in both superior and inferior grains, consequently reducing the grain yield and quality (Alghabari and Ihsan, 2018).
Variations in ambient temperature during the grain-filling stage affect starch accumulation (Ahmed et al., 2008; Zhang et al., 2021) and the amylose-amylopectin contents of the rice endosperm (Jiang et al., 2003; Zhen-Zhen et al., 2015). Prevailing low-temperature stress during the grain-filling stage will prolong the grain-filling period from 32 days to >50 days (Ahmed et al., 2008). At temperature ranges between 12 and 22°C, the grain weight is comparatively stable and less sensitive to low-temperature stress (Ahmed et al., 2008); however, the grain weight decreases at temperatures below this range. Tillering is generally divided into two sub-processes that are collectively termed as the subsequent growth of axillary buds already produced on each leaf axil. High temperature ranges increase the overall tiller number. At 3–5 weeks after sowing, the relative growth and tillering rates are affected slightly; however, temperatures below the minimum (22°C) greatly affect the tillering rate (Peng et al., 2008).
The product of filling efficiency and sink capacity collectively produce the grain yield in cereals (Kato et al., 2007; Zhang et al., 2021). Wider breeding efforts globally have increased the grain sink capacity and maximized the size of sink organs likely to be harvested to further increase the grain yield primarily by enhancing the spikelet number on each panicle (Kato et al., 2007; Zhang et al., 2021). Consequently, cultivars with extra-heavy or large panicles with more spikelets on each panicle have been produced; for example, the “New Plant Type” produced by the International Rice Research Institute (IRRI) (Peng et al., 2008), “hybrid rice,” “super rice”, and super hybrid rice” (Wang and Peng, 2017). These varieties, however, usually do not reach their grain yield potential due to decreased grain-filling, mainly restricted filling rates and higher frequencies of poorly unfilled grains under varying temperature conditions. The grain weight accumulation and filling rate in rice greatly depend on the position of spikelets on the panicles. Typically, superior spikelets with earlier flowering and generally positioned on the apical primary branches show faster grain-filling, thereby producing large and heavy grains. In contrast, inferior spikelets with late flowering and generally situated at the proximal secondary branches show slow grain-filling or sterile spikelets, ultimately producing non-consumable grains (Fu et al., 2013).
There is a research gap to address the possible adaptation mechanisms for rice production systems against climatic stresses at high latitudes that have already been aggravated in face of climate-induced primary stresses like heat or cold temperature stress; shifts in precipitation; and secondary stresses such as drought, soil salinity, and submergence (Wassmann et al., 2009). Due to obvious warming since the 1960s, NEC has become an important rice-growing region in China. However, abrupt and irregular variations in temperature above the optimum range may adversely affect rice yields at high latitudes due to two major principles. First, temperatures exceeding the maximum range in combination with higher atmospheric relative humidity (RH) will result in the production of more sterile spikelets, leading to poor grain quality. Second, nighttime temperature exceeding the maximum may disturb the pathways of grain assimilate accumulation. Therefore, self-adaptability and response mechanisms at high latitudes in China might result in the development of improved rice germplasm with better resistance against climate-induced stresses. There is a need for the comparative assessment of the inter-relationships among rice grain-filling, grain yield, and grain quality with climatic variations at regional scales and specifically at high latitudes, which is currently the main gap in knowledge. Based on its origin, rice is a semiaquatic phylogenetic plant species that provide unique features of susceptibility and adaptation to climatic variability (Mohanty et al., 2013). Thus, there is a need to characterize the response mechanisms related to grain-filling, yield, and quality under different climate conditions at high latitudes to address the adaptation mechanisms for the sustainability of Japonica rice (Shahbaz Farooq et al., 2022). Remarkable risks and vulnerabilities are associated with the Japonica rice system due to irregular climate variabilities at mid-high latitudes. However, developing methods to address the effects of the response mechanisms of Japonica rice during critical growth stages due to environmental variabilities and implementing adaptation strategies can provide a sustainable rice system to invigorate the future widespread adaptation of Japonica rice at high latitudes (Challinor et al., 2007; Farooq et al., 2021).
Adaptation can be defined as social, ecological, and economic adjustments in response to current or projected climate stresses, or as specific changes in structures, processes, and practices to better exploit opportunities for the sustainability of a production system (Kaufmann et al., 2011). Studies at regional levels have been proposed to investigate response mechanisms and develop adaptation measures (Krishnan et al., 2007). Climate change inclusive of frequent disasters, e.g., floods and droughts, are important factors affecting crop systems, although these changes are further influenced by many secondary factors including market availability, policies, technical development, and natural resources. Therefore, to better understand the response mechanisms to different climatic conditions in Japonica rice and assess the inter-relationships among grain-filling rate and duration, yield, and quality, this study had the following objectives: 1) investigate the self-adaptability of different Japonica rice cultivars and the inter-relationships among the attributes of grain-filling, yield and yield components, and grain quality parameters at highest latitudes of China; and 2) identify and evaluate possible adjustments in agronomic approaches for the sustainability of Japonica rice system against the projected climate change in NEC.
2 MATERIALS AND METHODS
2.1 Study rationale and site descriptions
The study rationale was to determine how climatic variabilities are impacting Japonica rice growth, yield, and quality by assessing the inter-relationships among grain-filling, grain yield, and grain quality at high latitudes in China (Figure 1. Vast climate changes, especially climate warming, in the past have favored the expansion of rice cultivation areas in China, especially in Northeast China (NEC). The change in rice production in NEC occurred due to favorable shifts in climatic components such as precipitation and temperature. Climate change also led to natural hazards such as drought, flooding, and increased invasion of insects, pests, diseases, and weeds. NEC has the highest latitude globally and is one of three major rice-growing regions in China. This region is extremely vulnerable to projected climate change regardless of its undistinguished contributions to global warming. China greatly relies on rice cultivation to ensure the country’s food security, employment, and farmer incomes. Rice grain production has shown irregular changes over the last three decades, although the overall production has shown an increasing trend. Enhancing the Japonica rice adaptation process in mid-high latitudes against future projected warming trends compared to the present requires the assessment of the inter-relationships among grain-filling, grain yield, and grain quality in Japonica rice in response to external climatic driving factors. This understanding will inform targeted research and provide evidence for how Japonica rice may adapt at mid-high latitudes in China.
[image: Figure 1]FIGURE 1 | (A) Map of the study sites. (B) Rationale description of the study (site A: Harbin: site B: Qiqihar; ∆T: change in temperature: Atm Temp: atmospheric temperature; Rad: radiation; RH: relative humidity; RWC: relative water content).
The present study was performed in the Heilongjiang province of NEC, which is situated between 126.6629°E longitude and 45.7421°N latitude. Heilongjiang is the northernmost province of China with a population of 38.17 million and an area of 454,000 km2. The climate in this region is a continental monsoon with an annual average temperature ranging between 4°C and –4°C. Winter is generally long and frosty, whereas summer is short and cool. Most of the precipitation is concentrated in summer, with an average annual rainfall of 500–600 mm. Around 59% of the total province area is occupied by mountains. The altitude is low and the interior is relatively flat. Due to obvious climate warming since the last century and measures taken for land reclamation, Heilongjiang has become an important agricultural region for crops such as maize, rice, and sunflower. Two different experimental sites were selected in Heilongjiang province, namely, Harbin and Qiqihar. Harbin, the capital of Heilongjiang province, is situated between 45.7567°N latitude and 126.6424°E longitude. Harbin is dominated by low mountains and hills. The frost-free season lasts 130 days, the annual average rainfall is 400–600 mm, and the mean annual temperature is 3.20°C. Qiqihar, the second largest city in Heilongjiang province, is situated in the west-central part of the province at 47.35°N latitude and 123.91°E longitude. The annual average rainfall is nearly 415 mm, whereas the annual mean surface temperature is 3.95°C. In July, the 24 h average temperature is 23.2°C.
2.2 Data source
2.2.1 Experiment design
The present study was performed during the 2017 and 2018 rice-growing seasons. Four different Japonica rice cultivars were selected for the assessment of the impacts of climatic variations on rice grain filling, yield, and quality. The experiments applied a randomized complete block design (RCBD) with three replications. The net plot size was 6 m × 3 m. The cultivars selected for the assessment of impacts of different climates on the grain-filling process and ultimately on grain yield of Japonica rice for this experiment were Longdao-18 (V1), Longdao-21 (V2), Longjing-21 (V3), and Suijing-18 (V4). V1 and V2 are late-maturing cultivars whereas V3 and V4 are early-maturing. These Japonica rice cultivars were selected because they have been widely cultivated in the Heilongjiang province and have high grain yield capabilities. Cultivars with different growth durations were selected as rice growth duration is critical for determining the optimum plant production. Moreover, the estimation of a change in growth duration and rate during all growth stages due to changes in environmental components is essential for developing a sustainable Japonica rice system under projected climate change at high latitudes. Any additional change in the growth attributes of Japonica rice under varying climatic conditions are well known to drastically change the pliability of crop rotation and intensify the production systems under varying farming arrangements. The local recommended seed rate of 50–60 kg ha−1 was used in the rice nurseries for all varieties to attain a balanced planting density. Manual transplantation was conducted by taking 2–3 seedlings per hill at 20 × 20 row spacing and 15 × 15 plant spacing. Manual weeding was carried out three times: 15, 30, and 45 days after transplantation, respectively. A synthetic pesticide (Pendimethalin) was sprayed 8 days after transplantation under optimum field moisture conditions. Macronutrients, i.e., nitrogen (N), phosphorus (P), and potassium (K), were incorporated as basal and splitting doses at local recommended rates of 150–80–80 kg ha−1, respectively. Different organic and inorganic N-fertilizer sources were involved viz. synthetic urea (nearly 46% N) and compost manufactured from poultry manure (nearly 1% N). All compost doses were incorporated as basal input during land preparation at 5 t ha−1. Synthetic diammonium phosphate (DAP) containing 46% P and 18% N was used for P application. The percentages of N and P provided by compost were also calculated, with the remaining N and P provided using synthetic urea and DAP, respectively. The provision of N from DAP was also calculated and the remaining required N was satisfied using synthetic urea and applied in three balanced splits during land preparation (basal), at tillering, and during panicle initiation. To fulfill the K requirements, muriate of potash (MOP) also known as potassium chloride (KCl) was used, with 60% potash. Synthetic fertilizers for P and K were amended as basal input.
2.2.2 Crop data
For the measurement of yield and yield component data, 1 m2 areas were randomly selected from each plot of each block at both study sites to determine the grains per panicle, panicle length, and number of fertile tillers. Meanwhile, 1000 grains were randomly taken from each sub-plot three times and then averaged to estimate the 1000-grain weight for each cultivar. Phenological data records were made for both sites for each growth stage from sowing to harvesting. For the measurement of grain-filling data, 200 panicles were labeled at 0 days in each plot. The sampling for grain-filling data was performed at 1, 5, 10, 15, 20, 25, 30, 35, 40, and 45 days after labeling. Normally, 10 panicles were sampled each time, during which the number of inferior and superior grains was counted at secondary and primary branches, respectively. The rice grains directly positioned on the top three branches (primary) were considered superior grains, while those at the bottom of the three branches (secondary) were termed inferior grains. Later, the superior and inferior grains were oven dried after artificially stripping the hulls for dry weight calculation. The collected data were then fitted using Richard’s growth equation (Richard 1959) with reference to Singh and Jenner (1982) and the growth duration method as described by Zhu and Xianzu (1988).
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where W represents the grain weight; A represents the final grain weight; t is the time after anthesis (d); and B, k, and N are equation regression constant parameters. The grain-filling rate of endosperm cells, the average grain-filling rate (GFRavg), the maximum grain-filling rate (GFRmax), the time to reach the maximum grain-filling rate (Tmax), and the grain weight accumulation with the maximum grain-filling rate (Wmax) were calculated as derivatives of the Richard Equation Eq. 1:
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where W is the weight of the grain; A is the final grain weight; t is the time after flowering (d); and B, K, and N are the regression coefficients. The quality parameters were also calculated using standard procedures for brown rice percentage (%), fine rice percentage (%), length–width ratio, chalkiness percentage (%), protein content (%), and amylose content (%).
2.2.3 Meteorological data
The data for environmental variables were recorded during the entire rice crop season by installing automated weather stations at the Harbin and Qiqihar study sites. The weather stations conformed to the specific standards of the China Meteorological Association. Differences in major environmental components were recorded every 5 minutes. The weather data record included the average air temperature (°C), minimum air temperature (°C), maximum air temperature (°C), soil temperature at 5 and 10 cm depths (°C), solar radiation accumulation (MJ/m2), relative humidity (%), and daily precipitation (mm).
2.2.4 Statistical analysis
Statistical analysis of the collected data was conducted. Analysis of variance (ANOVA) and Tukey’s HSD test was used at a 0.05 probability level to calculate the relative differences in the means of the cultivars. Considering the difference among treatment means, Duncan’s multiple range test (DMRT) was also used to determine the relative differences between treatment means. The study was conducted under RCBD, where one-way ANOVA was run through Tukey’s HSD test to obtain the differences in the means of the treatments; however, this analysis lacked information on which means differed and to what extent. Therefore, DMRT was applied to identify certain differences between pairs of means. The inter-relationships among grain-filling, yield components, grain quality, and environmental variables were investigated through regression analyses, and the associations were evaluated using partial correlation and correlation analyses using binomial or linear formulas. For the statistical analyses of the collected data, Statistix-8.1, R, and Microsoft Excel 2016 were used. The figures were drawn using SigmaPlot-14.0, Adobe Illustrator, and Microsoft Excel 2016. ArcMap 10.6.1 was used to draw the map of the study sites.
3 RESULTS
3.1 Rice growth and grain-filling
The cultivars of Japonica rice showed great variations during different growth stages at both study locations. All cultivars showed reduced growth periods in Harbin due to the prevalence of higher temperatures during both years. Suijing-18 was the most affected cultivar, with 89, 61, and 150 and 87, 60, and 147 days from sowing to booting, booting to maturity, and total growing period in 2017 and 2018 growing periods, respectively. The Longjing-21, Longdao-21, and Longdao-18 cultivars also showed shorter growth periods in Harbin compared to those in Qiqihar, with these cultivars showing lower growth periods in Qiqihar by an average of 10 days. The phenological phase variations for all cultivars during both growing periods are shown in Table 1.
TABLE 1 | Comparability of growing periods (days) of rice cultivars in Harbin and Qiqihar, 2017 and 2018.
[image: Table 1]In the grain-filling process, Richard’s equation showed no clear differences in superior grains in all rice cultivars at both locations. However, in both study seasons, inferior grains showed obvious differences for all cultivars and between rice-growing regions. The weights of superior grains in Suijing-18 were quite similar between Harbin and Qiqihar during the 2017 and 2018 growing seasons (Harbin: 22.91 and 22.76, Qiqihar: 22.70 and 23.01, respectively). Assessment of the variation in weights between seasons showed a modest reduction in grain weight of superior grains in Harbin, while the superior grains of Suijing-18 showed higher weights in Qiqihar. The inferior grains of the same cultivar showed a difference of 5.56 in Qiqihar compared to Harbin. However, superior and inferior grains in Longjing-21 and Longdao-21 did not show significant differences between locations and growth years. However, Harbin showed the best grain weight in all cultivars during both years, while Qiqihar showed increased weights for inferior grains during both study years. Moreover, the superior grains of Longdao-18 had a value of 22.36 in Harbin and 20.88 in Qiqihar in 2017. Overall, the grain weights for all cultivars were slightly increased in Qiqihar compared to Harbin but the best grain-filling weights were observed in Harbin for superior grains. Regarding inferior grains, obvious differences were observed with higher values in Harbin (18.01 and 17.92) compared to those in Qiqihar (14.32 and 14.69) in 2017 and 2018 (Table 2.
TABLE 2 | Parameter estimation of Richard’s equation in the rice grain-filling process in Harbin and Qiqihar, 2017 and 2018.
[image: Table 2]We observed that the superior grains of Suijing-18 had higher initial growth at Harbin compared to that in Qiqihar (0.45 vs. 0.40) in 2017. Maximum grain-filling rates of 2.62 mg grain−1 day−1 and 1.63 mg grain−1 day−1 were observed in Qiqihar in 2017 and 2018, which were relatively higher than those observed in Harbin (1.63 mg grain−1 day−1 and 2.88 mg grain−1 day−1, respectively). In inferior grains comparisons, Qiqihar had lower grain-filling rates (0.78 and 1.68 mg grain−1 day−1 in 2017 and 2018, respectively) compared to those in Harbin (1.09 and 3.37 mg grain−1 day−1). However, the superior grains of Suijing-18 in Harbin showed maximum grain weights of 10.31 and 22.80 mg in 2017 and 2018, respectively, compared to 8.44 and 18.70 mg in Qiqihar. In contrast, Qiqihar had a higher average grain-filling rate compared to that in Harbin (1.95 vs. 1.10 mg grain−1 day−1) in 2017; however, the trend in 2018 differed as the cultivars in Qiqihar showed reduced grain-filling rates while those in Harbin increased incrementally. Meanwhile, superior grains of Suijing-18 required fewer grain-filling days than the inferior grains. Longjing-21 showed initial growths of inferior grain of 1.70 and 0.32 in Qiqihar and Harbin, respectively. Additionally, the superior grains of Longjing-21 showed a higher average grain-filling rate of 2.76 in Qiqihar in 2017, which decreased to 0.88 in 2018, whereas the trend for week grains in Qiqihar was entirely different, as shown in Table 3. The average grain-filling value was higher in comparison to all cultivars and among both locations. In 2017, Longdao-21 showed lower maximum grain-filling rates in Harbin and Qiqihar, at 0.87 and 0.98 mg grain−1 day−1, respectively (Table 3). Inferior grains in Longdao-18 showed the lowest rate of maximum grain-filling potential of 0.88 and 0.49 mg grain−1 day−1 in Harbin and Qiqihar, respectively. The inferior grains of this cultivar required the maximum grain-filling periods of 52.60 and 71.49 days among the other cultivars in 2017 and 2018, respectively. The variations in overall grain-filling characteristics in Harbin and Qiqihar in 2017 and 2018 are shown in Table 3.
TABLE 3 | Comparisons of the rice grain-filling characteristics of Japonica rice under varying climatic conditions in Harbin and Qiqihar, 2017 and 2018.
[image: Table 3]3.1.1 Grain weight accumulation and grain-filling rate
The dry weight accumulations of superior and inferior grains at both study sites in 2017 and 2018 are shown in Figures 2, 3, respectively. The grain-filling rates at both study sites in 2017 and 2018 are shown in Figures 4, 5, respectively. The dry weight accumulation in superior grains showed an S-shaped trend curve with higher grain-filling rates whereas the dry weight accumulation in inferior grains showed low filling rates. In Harbin, the grain-filling phase overall required 45 days; in contrast, because of the prevalence of stressful environmental conditions during the grain-filling phase, the phase showed a fragmented curve in Qiqihar, although the duration was nearly the same as that in Harbin. During both study years, V2 showed a higher trend for dry weight accumulation in both superior and inferior grains, followed by V3 and V4. Meanwhile, V1 showed a reduced dry weight accumulation (Figure 2, 3). However, inferior grains showed an increasing trend during the last weeks of grain-filling for dry weight accumulation, with increased rates during the grain-filling phase and weights nearly the same as those for superior grains at the end of the grain-filling phase in both study regions. Analysis of the weight accumulation among all cultivars in Harbin and Qiqihar in 2018 showed low weight accumulation of the cultivars, with calibrated values of nearly 14 g grain−1 for the superior grains.
[image: Figure 2]FIGURE 2 | Variations in dry weights (mg grain−1) of superior and inferior grains in 2017 in Harbin and Qiqihar.
[image: Figure 3]FIGURE 3 | Variations in dry weights (mg grain−1) of superior and inferior grains in 2018 in Harbin and Qiqihar.
In Qiqihar, inferior grains had low dry weight accumulation due to unsuitable alterations in the 24-hour mean temperatures during the grain-filling phase, whereas dry weight accumulation was comparatively higher in Harbin in both study years. Moreover, the variation curve showed the same increasing and decreasing trends in both 2017 and 2018; however, the mean dry weights among all cultivars were relatively higher in 2017. The variation extent in environmental parameters prevailed during the grain-filling phase in both study years (Table 4). The dry weights for V3 and V4 showed different irregular trend curves that were rather S-shaped, with relatively lower grain weight accumulation and grain-filling values during both study years. Inferior grains had low filling rates which could not necessarily be ascribed to varying temperatures experienced by superior and inferior grains, as the maximum and minimum temperatures during different study seasons were relatively constant, generally during 2018. In addition, poor filling rates resulted in slower assimilates accumulation in grain, leading to incomplete and poor grain-filling in inferior grains, causing a constant increase in grain weights until harvest, especially in Qiqihar. Thus, boosting grain yield requires increasing the dry weight accumulation through evaluation of adaptability mechanisms amongst anthesis, grain-filling, and yield at high latitudes to ensure increased filling rates through agronomic and breeding approaches.
TABLE 4 | Comparison of variations in the prevalence of environmental conditions at the grain-filling stage of Japonica rice in Harbin and Qiqihar, 2017 and 2018.
[image: Table 4]Superior and inferior grains showed increased grain-filling rates in all selected cultivars in Harbin until the end of the grain-filling phase and typically showed loop-shaped trend curves during both study years (Figure 4, 5). However, the mean grain-filling rates for all cultivars were lower in 2018 compared to those in 2017. The interaction and reciprocation of grain-filling rates between superior and inferior grains were highly significant in 2018, where the filling rate for superior grains was approximately 2.4 times higher than that in inferior grains. During anthesis, the grain-filling rate in inferior grains was nearly significantly unvarying, as in superior grains. Therefore, almost 24 days from anthesis, the grain-filling rate of inferior grains was comparable to that of superior grains. Temperature variation is a main factor among environmental variables affecting dry weights and filling rates. In Harbin, we observed a significant difference in the variation curves of the dry weights and filling rates between superior and inferior grains; however, both values were constant between grain types 23 days after flowering. The relatively higher assimilates accumulation in Harbin for all cultivars was attributed to the beneficial environmental conditions, including temperature variations.
[image: Figure 4]FIGURE 4 | Variations in grain-filling rates (mg grain−1 day−1) of superior and inferior grains in 2017 in Harbin and Qiqihar.
[image: Figure 5]FIGURE 5 | Variation in grain-filling rates (mg grain−1 day−1) of superior and inferior grains in 2018 in Harbin and Qiqihar.
The optimum growing temperature for paddies during the grain-filling stage ranges between 22°C and 32°C. The average temperature in Harbin during the earlier stages of grain-filling was in the optimum range, which was conducive to earlier increases in dry weight accumulation and grain-filling rates. The time to reach maximum grain-filling varied significantly between superior and inferior grains, indicating that the difference in the prevalence of environmental conditions at different study sites had varying effects on the different cultivars. Among the selected cultivars, the time difference for the maximum filling rates of superior grains to reach the peak value for V1 and V3 were 7 and 4 days, respectively, while the difference in the time to reach the maximum grain-filling for inferior grains of V1 was 6 days at both study sites; thus, the cultivars at Harbin showed an earlier maximum grain-filling compared to that in Qiqihar.
Variations in the environmental components at the study sites showed varying influences on the early- and late-maturing cultivars of the different accumulative temperate regions and greatly influenced the dry weight accumulation in V4 and V3, while the dry weight accumulation and filling rates were less affected in V2 and V1 in 2017 and 2018. The grain-filling period was generally divided into three major sub-components (start, middle, and late) to better understand the trends in variation. The overall contributions during the start, middle, and late stages of the grain-filling period were 38.17%, 60.05%, and 28.91%, respectively, in 2018. In 2017, the average contributions varied, with marginal differences in values, at 37.01%, 58.93%, and 30.79%, respectively. Hence, most of the assimilate accumulation in both grain types under varying environmental conditions occurred primarily in the middle sub-phase of the grain-filling stage, comprising nearly 59.93% of grain-filling during both study seasons. The variability among the environmental components during the grain-filling stage in both growing seasons for all cultivars in both sites is shown in Table 4.
3.1.2 Variations in yield and yield-contributing traits
In the current study, the yield-contributing traits also showed great fluctuations along the changes in grain-filling attributes among four different cultivars and at both experimental locations during both study years. The maximum panicle length was longer in Harbin compared to that in Qiqihar for all cultivars except Longdao-21. However, all yield-contributing components showed increasing trends in 2018 as compared to 2017 in both locations. In addition, Suijing-18 produced almost the same number of productive tillers in each plant, while Longjing-21 produced 11 and 16 fertile tillers in Harbin and Qiqihar, respectively. Similar patterns of fertile tiller production were observed in Longdao-21 at both locations; however, Longdao-21 had lower numbers of productive tillers. Longdao-18 showed 8 and 10 productive tillers in Harbin and Qiqihar, respectively, in 2017. A similar trend was observed in 2018, but with increased numbers of fertile tillers. Longdao-18 produced the highest number of grains per panicle (140) in Harbin as compared to the other cultivars in both locations in 2017. In contrast, Longjing-21 produced the lowest number of grains per panicle (88) in Qiqihar compared to the other cultivars. The seed setting percentage also fluctuated among cultivars and study regions. The maximum seed setting percentages of 95.00% and 93.25% were observed for Longjing-21 in Harbin and Qiqihar, respectively, in 2017. The trends in seed setting fluctuations were the same in 2018 but with increased values. Regarding 1000-grain weight, Longdao-21 in Qiqihar showed the maximum value of 28.96 g, while Longdao-18 in Harbin showed the lowest weight of 24.00 g in 2017.
Assessment of variations in overall grain yield showed that Longjing-21 and Longdao-21 produced maximum grain yields of 11235.23 and 11148.42 kg ha−1 in Qiqihar and Harbin, respectively, in 2017. In 2018, the grain yields at both study sites were considerably higher than those in 2017 for all cultivars. In 2017, Suijing-18 and Longdao-18 showed the lowest yields of 8985.36 and 8310.67 kg ha−1, respectively, in Qiqihar. The results of the comparisons of variation in overall yield components between Harbin and Qiqihar in both study years are shown in Table 5. In contrasting environmental comparisons, all cultivars in Harbin produced long panicles with maximum values of 20.07 and 21.17 cm during 2017 and 2018, respectively. However, Qiqihar showed a higher number of productive tillers, with values of 12 and 14 in 2017 and 2018, respectively. The agro-climatological conditions in Harbin resulted in the production of a higher number of grains per panicle in 2017 and 2018 (121 and 124, respectively) compared to those in Qiqihar (99 and 107, respectively). Moreover, seed setting was also higher in Harbin than that in Qiqihar during 2017 and 2018, which led to higher grain yields of 10160.46 and 10773.51 kg ha−1, respectively, in Harbin compared to 9528.75 and 9978.12 kg ha−1 in Qiqihar (Table 5).
TABLE 5 | Comparisons of rice grain yield and yield components under both climatic conditions.
[image: Table 5]Therefore, seed setting showed strong negative correlations with the maximum and average grain-filling rates of superior grains in Harbin. The grain yield of superior grains in Harbin was also negatively correlated with the maximum prevailing temperature conditions during both growing seasons. In contrast, the seed setting of superior grains was positively correlated with the maximum and average grain-filling rates during both study years in Qiqihar. Although the grain yield of superior grains in Qiqihar was also negatively correlated, the difference was not statistically significant. Moreover, the 1000-grain weight was also non-significantly and negatively correlated with the maximum and average grain-filling rates of superior grains among all cultivars at Qiqihar (Table 6). Regarding inferior grains, maximum temperature also significantly and negatively affected the grain yields in Harbin. However, the seed setting of inferior grains was positively correlated with the maximum temperature and grain-filling rate in Harbin. The grain yield of superior grains in Harbin was also negatively correlated with the maximum prevailing temperature conditions during both growing seasons. Conversely, seed setting in inferior grains was negatively correlated with the maximum and average grain-filling rates in Qiqihar. Table 7 illustrates the key relationships between the characteristic parameters of inferior grains, yield, and yield components in Harbin and Qiqihar.
TABLE 6 | Relationships between the grain-filling characteristic parameters of superior grains, yield, and yield components in Harbin and Qiqihar, 2017 and 2018.
[image: Table 6]TABLE 7 | Relationships between the grain-filling characteristic parameters of inferior grains, yield, and yield components in Harbin and Qiqihar, 2017 and 2018.
[image: Table 7]3.2 Grain quality
Table 8 shows that percentage of brown rice did not vary significantly between agro-climatic locations; however, clear variations were observed among cultivars. In 2017, Longdao-21 showed the minimum brown rice percentages, at 81.90% and 81.80% in Harbin and Qiqihar, respectively. The same trend was observed in 2018. In contrast, Longdao-18 showed the maximum brown rice percentages in Harbin and Qiqihar. Additionally, comparisons of the percentages of fine rice showed a variation trend of Longdao-18>Suijing-18>Longjing-21, with the minimum values observed in Longdao-21. In contrast, great variation was observed in whole milled rice percentages. Longjing-21 and Longdao-21 produced almost the same whole-milled rice percentages in Qiqihar and Harbin during both study years while Longjing-21 showed the minimum whole-milled rice percentage in Harbin. Overall, the Harbin site produced lower percentages of whole-milled rice in 2017 and 2018 (58.95% and 57.25%, respectively) compared to those in Qiqihar (67.45% and 69.23%, respectively) (Table 8). Longdao-21 had the maximum length-width ratio of rice grains, followed by Longdao-18>Suijing-18>Longjing-21. The length-width ratios of the rice grains did not differ significantly between sites (Table 7). Chalkiness percentage also varied among experimental locations and cultivars. In 2017, Longjing-21 contained 7.58% and 8.21% chalky grains in Harbin and Qiqihar, respectively, with a similar trend but increased values in 2018. Longdao-21 also showed variations of approximately 2% in both locations.
TABLE 8 | Variations in rice quality attributes among all four cultivars under the climatic conditions in Harbin and Qiqihar, 2017 and 2018.
[image: Table 8]In this study, the overall values were high for positive quality parameters in Harbin during 2017 and 2018 for all cultivars (Table 8). However, Suijing-18 and Longdao-18 showed distinct variations in chalky grain percentages between study sites. Longdao-18 showed a 3.1% variation in chalkiness percentage at Qiqihar compared to that in Harbin. In contrast, Suijing-18 showed 5.06% variations in Harbin compared to that in Qiqihar. No significant differences in protein percentage were observed between growing locations and among cultivars. However, the amylose percentages varied significantly between study sites. All cultivars grown in Harbin contained significantly higher percentages of amylose contents, with 3%–4% variation compared to those in Qiqihar except Longdao-18, which showed 11.95% variations (Table 8).
Regarding regional variations, chalkiness degree, brown and fine rice percentages, and length-width ratio of rice grains did not show significant changes in all cultivars. However, the percentage of whole-milled rice varied greatly in Qiqihar by 8.50% and 11.50% in 2017 and 2018, respectively, as compared to Harbin. Amylose percentage also varied by 5.86% and 7.50% during 2017 and 2018, respectively, in Harbin compared to Qiqihar. However, protein content and chalkiness percentages varied to a smaller extent at both study sites. Comparison of rice quality between regions showed significantly higher amylose and protein contents in Harbin during both study years and a higher chalkiness percentage in Qiqihar, which indicated a comparatively better rice quality among all cultivars in Harbin compared to that in Qiqihar (Table 8). Based on these data, a clear and more elaborative two-dimensional explanation of the climate-by-trait association through heatmap is shown in Figure 6. This figure is encoded as a pattern of colored boxes to evaluate the relationships between different climatic conditions and rice plant traits. Thus, this heatmap shows the associations between plant traits and climatic conditions to more quickly determine the overall relative changes of traits against environmental conditions to assess the adaptability mechanisms. The heatmap in Figure 6 shows the association between environmental conditions prevailing in Harbin and Qiqihar. The plant traits are shown with dendrograms, with clustering of more similar climatic conditions on one side and grouping of highly associated plant traits on the other side. The columns and rows are ordered to highlight the patterns of traits at Harbin and Qiqihar accompanied by dendrograms.
[image: Figure 6]FIGURE 6 | Heatmap describing the two-dimensional visualization of environment-by-trait through clustering of similar and different groups. The dendrogram differentiates the similarities between climatic conditions and plant traits.
4 DISCUSSION
4.1 Rice quality in inferior and superior grains
The grain-filling extent and rate of Japonica rice are mainly determined by the grain position and arrangement in the spikelet on a specific panicle. With higher translocation rates, the weights of superior and large grains on the primary branches are generally increased. In contrast, inferior and light grains positioned on the secondary branches generally have slow translocation rates; therefore, they are considered poorly filled grains and generally undesirable for human use (Xu et al., 2021). Similar observations have been observed in research reporting the significant effects of temperature, maximum grain-filling rate, and average grain-filling rate on grain quality in different climatic conditions (Tables 6, 7). Comparison of both sites in the present study showed a strong negative correlation between maximum temperature and the length-width ratio of superior grains in Harbin. These findings are supported by those reported by Lin et al. (2010), who reported that higher temperature during the grain-filling stage increased the filling rate but deteriorated the quality and reduced the weight of the grains. In Harbin, a strong negative correlation was observed between maximum grain weight and the length-width ratio of superior grains. In contrast, in Qiqihar, the fine rice percentage was positively and significantly more highly associated with the maximum atmospheric temperature. Other quality parameters, including whole-milled rice percentage, chalkiness degree, and length-width ratio, were strongly and negatively associated with the maximum atmospheric temperature. The amylose concentration in superior grains was not correlated with the maximum atmospheric temperature during the entire crop growth but was more obvious during the grain-filling phase in Qiqihar. Moreover, the amylose concentration among superior grains was strongly and positively associated with the maximum grain weight. These findings are consistent with those reported by Ahmed et al. (2008) and Li et al. (2013), who determined that the control of starch in endosperm cells was influenced by environmental and genetic variables during different plant developmental pathways. Increased atmospheric temperature can improve the apparent amylose concentration and could also cause modifications in the primary structure composition of starch granules in endosperm cells such as crystalline, distinct, and grainy shapes, thus resulting in major shifts in the quality and structural composition of storage starches. The dissimilarities in overall amylose concentrations relied primarily on the specificity of rice cultivars; however, changes in the low-temperature conditions broadened the amylose concentration in certain cultivars (Ahmed et al., 2008; Farooq et al., 2021).
In this study, the protein and amylose concentrations in inferior grains in Harbin showed a strong negative association with initial growth. In contrast, the same quality attributes showed strong positive correlations with the maximum temperature in quality assessments of genetic complex control in cereal grains (Sandhu et al., 2021). Similarly, the length-width ratio in inferior grains was also strongly and negatively associated with the prevalence of maximum temperature. Similar results were reported by Zhang et al. (2018), who reported that the amylose concentration in endosperm cells occurred due to the ambient temperature during the early developmental phase, ranging between 5 and 15 days after anthesis at a temperature of 25.8°C. The results of the present study confirmed that maximum temperature was strongly and positively correlated with the chalkiness percentage in inferior grains. The prevalence of heat stress during the grain-filling phase deteriorates the grain quality and undermines the grain yield, with values ranging between 53% and 83% (Ali et al., 2019). Noticeably, the amylose concentration in inferior grains was significantly and positively correlated with the maximum grain weight at Harbin, whereas the protein concentration was significantly correlated with the average grain-filling rate in Qiqihar. Based on these findings, the protein and amylose contents were significantly negatively correlated with the days for inferior grains, as reported by Yang and Zhang (2010). Similarly, Tsukaguchi and Iida (2008) reported that the high temperatures during grain ripening may lead to immoderate morphological features along with pigmentation in grains (Yang et al., 2017), likely due to the reduced activities of enzymes that are essential during grain-filling, the utilization of accumulated assimilates in respiration, and undermined sink activities.
Based on the aforementioned discussion and considering the limited literature on this topic, the grain-filling phase showed strong positive correlations with the environmental conditions in Harbin but negative correlations in Qiqihar due to unsuitable environmental conditions during the grain-filling phase. However, the dry weight values in both inferior and superior grains were highest in V2, followed by V3 and V4, in both study years. The minimum dry weight values were observed in V1, as shown in Figures 2, 3. The maximum higher temperature boosted the grain growth rate, which ultimately reduced the grain-filling duration (Oh-e et al., 2007; Hatfield and Prueger, 2015). These findings are consistent with those reported by Tian et al. (2007), who observed that higher maximum temperatures during anthesis and grain-filling reduced the grain yield by inducing higher spikelet sterility and reducing the grain-filling duration. For a specific rice cultivar, the GDD required for anthesis was comparatively the same in different environmental conditions within the range of the base and optimal temperatures (Ali et al., 2022b). These results further confirmed that the dry weights of inferior grains in Qiqihar were significantly lower, as expected, due to shifts in the prevalent temperatures during grain-filling (Chaturvedi et al., 2017; Farooq et al., 2021). Therefore, the dry weights of the grains in Harbin were relatively higher than those in Qiqihar during both study years. The root activities are reduced due to high temperatures, which negatively affect the photosynthetic rate (Shah et al., 2011). The prevalence of higher temperatures during anthesis and grain-filling reduces the grain yield due to increased rates of sterile spikelets and reduced grain-filling duration (Tian et al., 2007; Xie et al., 2009).
The present study evaluated the overall variation in grain yield and yield components between Harbin and Qiqihar in 2017 and 2018, as shown in Table 5. In contrasting environmental comparison, all cultivars showed longer panicles during both study years in the agro-climatic conditions in Harbin compared to those in Qiqihar. However, Qiqihar showed a higher number of productive tillers from each plant. These results are consistent with those reported by Kumar et al. (2021) and Mai et al. (2021), who reported that air temperatures <20°C during the tillering phase were related to an increased number of panicles. Proportionately, the productive tillering capacity of a specific variety determines the overall yield potential; however, cultivars with more tillering capacity may exhibit a large repugnance in the transportation of assimilatory products and other essential nutrients, leading to major changes in grain development and, ultimately, grain yield and quality. The optimum temperature required for grain ripening is less than that for tillering and flowering (Oh-e et al., 2007). The panicle weight decreases under continuous high temperatures. Moreover, a decrease in dry matter accumulation in the panicle was reported after high temperature stress (Kobayashi et al., 2006; Chen et al., 2017), at least partly due to the higher rate of spikelet sterility. Therefore, the dry weights of panicles would not necessarily increase the accumulation of assimilatory products in culms and leaves; however, the environmental conditions were suitable for panicle development. Increased tillering capacity has been reported with rising temperatures (15–33°C), with values outside these ranges unfavorable for tillering (Ghadirnezhad and Fallah, 2014; Fahad et al., 2017). Furthermore, larger numbers of tillers have been observed during the early growth stages under high-temperature conditions within the maximum adaptable ranges. Moreover, the maximum tillering capacity of a potential cultivar was relatively earlier over optimum temperature conditions. Similar results were reported by Oh-e et al. (2007), who suggested that at maturity, the number of tillers was lower under high-temperature conditions compared to that in ambient conditions for crops grown in a temperature gradient chamber.
4.2 Relationships between environmental factors and rice growth periods
One possible future threat to rice quality and production is alternations in climate. Such changes affecting rice growth, physiology, morphology, and phenology might lead to serious food security threats due to decreased rice production worldwide (Krishnan et al., 2011; Farooq et al., 2022b). Assessments of the relationships between environmental factors and the growth periods of rice crops showed higher variations at both experimental locations. The increasing surface temperature affected the growth phases of the rice crop. During the early growth stages, average temperature, solar radiation hours, radiation accumulation, and RH did not show significant effects during the initial growth cycle (from transplanting to booting) of the crops at Harbin and Qiqihar, similar to the results reported by Farooq et al. (2021) and Shahbaz Farooq et al. (2022). However, these environmental variables showed a negative relationship with the early specific growth phase of the plant. Variation in environmental variables significantly affected the later growth phase in both Harbin and Qiqihar. Average sunshine hours, daily radiation average soil temperature (0–5, 5–10 cm) showed strong negative correlations from booting to maturity cycle of the crop in Harbin. However, RH was positively associated with the later growth phase of the plant in Harbin. In contrast, in Qiqihar, daily average sunshine hours showed a significant effect (r = 0.958*) between booting and maturity. Daily average solar radiation also showed an effect, although the effect was not statistically significant. These were consistent with those reported by Yang et al. (2017), who reported that shifts in the average daily day and night temperatures along with remaining environmental variables influenced the overall growth by undermining the physiological processes, grain yield and yield components, and grain quality due to high-temperature stress. The presence of high day or nighttime temperatures during anthesis and grain-filling reduces grain quality (Morita et al., 2004; Wada et al., 2021). Based on the aforementioned discussion and findings of this study, Figure 7 represents the sustainability of Japonica rice in NEC through investigations of response mechanisms in local regions, although this study did not consider all response mechanisms.
[image: Figure 7]FIGURE 7 | Roadmap for sustainable production of Japonica rice in NEC through an assessment of response mechanisms, thereby disseminating adjustive measures.
5 CONCLUSION
The results of this study showed the changes in rice grain yield due to changes in grain-filling components because of relative changes in environmental components associated with climate change. The phenological, morphological, and physiological response mechanisms that consequently induced the observed changes in grain yield and quality under the differential impacts of changes in environmental components at high latitudes are still unknown. This study identified inter- and intra-varietal variations in different environments due to the changes induced by fluctuations in the environment-driven factors. These changes mainly affected the maximum and average grain-filling rates as well as grain quality in superior and inferior grains. Based on the adaptability mechanisms tested during the 2-year study period, Japonica rice cultivars with shorter growth duration are recommended for mid-high-latitudes of China to avoid the effects of environmental stresses on later developmental stages, especially anthesis and grain-filling. The findings of this study should also be extended to assess the adaptability mechanism of Japonica rice in response to the combination of more than two environmental components to improve the adaptation of these crop plants to climate stresses. Moreover, the results of this study suggested the need to test different Japonica rice cultivars in the same agro-climatic regions to identify heat tolerance mechanisms for future prospects, Japonica rice sustainability, and profitability at high latitudes. The findings of this study underscored the dire need for modern and innovative methods of growing degree days (GDD) to estimate the effects of temperature variations on critical and major growth phases such as anthesis and grain-filling and to observe the interannual shifts as modern GDD measures consider various thresholds of the environmental components.
Our study investigated the responses of commercial Japonica rice cultivars to varying environmental variables under field conditions and observed their capacity and resilience to withstand changes in environmental conditions. Our results on the change in grain yield and quality reinforce the dire need for additional measures in developing rice production systems with both high yield and tolerance to climate stress with less susceptibility and better resilience to climate change. Future research focus should not be limited to only the anthesis and grain-filling phases, as the pre-flowering growth stages such as from panicle initiation to anthesis, etc. also appeared to be susceptible to changes in environmental conditions. Hence, given these adaptability mechanisms to different climatic conditions, the investigation and exploration of additional measures to improve Japonica rice sustainability with better adaptation to increasingly climatic variabilities are urgently required. Moreover, research-based investigations to explore the mechanisms behind spikelet fertility and differentiation under varying environmental conditions are also needed. Additionally, further refinements are needed in the crop-growth models currently available for the deep assessment of the relative differential impacts of changed climatic conditions on crop morphology, physiology, phenology, and yield, which require more accurate simulations related to the differential influences under climate change scenarios. The findings of the current study also emphasize the need for increased awareness of the impacts of the relative contributions of environmental components on physiological and biochemical pathways regulating plant growth and development.
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Sesame (Sesamum indicum L.) is an ancient diploid oilseed crop with high oil content, quality protein, and antioxidant characteristics that is produced in many countries worldwide. The genes, QTLs, and genetic resources of sesame are utilized by sesame researchers and growers. Researchers have identified the many useful traits of this crop, which are available on different platforms. The genes, genotypes, QTLs, and other genetic diversity data of sesame have been collected and stored in more than nine genomic resources, and five sesame crop marker databases are available online. However, data on phenotypic and genotypic variability, which would contribute to sesame improvements, are limited and not yet accessible. The present study comprehensively reviewed more than 110 original published research papers and scientifically incorporated the results. The candidate genes, genotypes, and QTLs of significantly important traits of sesame were identified. Genetic resources related to grain yield and yield component traits, oil content and quality, drought tolerance, salt tolerance, waterlogging resistance, disease resistance, mineral nutrient, capsule shattering resistance, and other agronomic important traits of sesame were studied. Numerous candidate genotypes, genes, QTLs, and alleles associated with those traits were summarized and discovered. The chromosome regions and linkage groups, maps associated with the best traits, and candidate genes were also included. The variability presented in this paper combined with sesame genetic information will help inform further sesame improvement.
Keywords: candidate gene, genetic resource, genotype, linkage map, QTL, sesame
BACKGROUND
Sesame (Sesamum indicum L., 2n = 26), an ancient oilseed crop that belongs to the Pedaliaceae family, is widely cultivated in Africa and Asia (Zhang et al., 2013b; Stavridou et al., 2021; Wang et al., 2021). Although the origin and domestication are controversial, Ethiopia (Dagmawi et al., 2015; Boru, 2021; Teklu et al., 2021), India (Bedigian and Harlan, 1986; Bedigian and Korosec-Koruza, 2003), Sudan (Bedigian and Korosec-Koruza, 2003), and China (Nayar and Mehra, 1970) are believed to be the sources of sesame origin and domestication. Sesame includes more than 34 species with different chromosome numbers and features (Nayar and Mehra, 1970). Sesame global production has reached 11.7 million hectares (Mha) and 6.02 MT production, with an annual average productivity of 0.52 ton ha−1 (Yadav et al., 2022). The leading sesame-producing countries in 2020 were Sudan (1.53million MT), Myanmar (740, 000 MT), Tanzania (710, 000 MT), India (658,000 MT), Nigeria (490, 000 MT), China (447,000 MT), Burkina Faso (270, 000 MT), and Ethiopia (260, 000 MT) (https://www.tridge.com/production?code=0289&producer=WL).
Sesame seeds are recognized for their high-quality oil, high protein content, vitamins, and unique antioxidant compounds like sesamin and sesamolin, which contribute to sesames’ popularity as a healthy and nutritious food (Liang et al., 2021). Sesame has excellent characteristics, including a large propagation coefficient (3,000–10,000 seeds/plant), relatively short growing season (3 months), high drought resistance, high oil content (55%), and small diploid genome (∼337 MB [Wang et al., 2014] to ∼350 MB [Wei et al., 2017]). Sesame seeds are mostly used for cooking oil; the flour left over after oil extractions contains 35–50% protein and is utilized as feed for cattle and poultry (Tripathy et al., 2019; World Atlas). Sesame has not only edible oil (dietary) but also compounds that could be used for therapeutics in medicine and cosmetics applications (Tripathy et al., 2019).
Around 35,000 sesame accessions have been provided worldwide, from which researchers have identified the allelic, gene, and genomic variations of sesame populations (Wei et al., 2017). Superior alleles and genes for different sesame traits can be found in germplasm resources preserved in numerous national and international sesame gene banks. These resources are a source of candidate genes, genotypes, and agronomically important traits for sesame research and improvement programs. Candidate genes and QTLs associated with oil content and quality can be discovered by GWAS, which provides precise clues for uncovering the genetic mechanism for important agronomic traits of sesame (Wei et al., 2017). Although summarized sesame population diversity information is still not available (Satyendra Nath et al., 2014), the location of sesame origin indicates the place of diversity and source of rich gene and genetic resources, which is true for any crop species.
Agro-morphological studies have reported the genetic diversity of sesame genetic resources. In recent years, molecular-level or PCR-based methods of genetic diversity have also played vital roles in developing gene resources and demonstrating the diversity of the sesame population. However, the genetic diversity between sesame cultivars is reportedly lower due to the source of variability originating from one formerly cultivated sesame species (Zhang et al., 2012). Although the genetic diversity of sesame is limited to one cultivated species, the rich phenotypic and genotypic diversity within the species indicates the presence of valuable functional gene resources for genomic studies to improve sesame. Therefore, this comprehensive review highlights the available genotype and gene resources of sesame from more than 110 published journal articles.
SESAME GERMPLASMS AND DIVERSITY
The presence of genetic diversity and variability between and within the species is the first criterion for any crop improvement. Most of the variability, diversity, and characterization studies of sesame have aimed to identify candidate genotypes and genetic resources to improve sesame traits. Sesamum indicum L. is available in different countries and continents worldwide for its multipurpose high-quality oil from seeds, as well as other byproducts (Teklu et al., 2021). Sesame has more than 35,000 accessions in international major crop germplasm gene banks (Wei et al., 2017). In their review, Dossa et al. (2017a) reported that approximately 26,000 sesame genetic materials are conserved in four principal international gene banks, including the Indian-NBPGR-national gene bank, South Korea [National Agro-Biodiversity Center (NABC) and Rural Development Administration (RDA)], China-Oil Crops Research Institute CAAS, and the United States (United States Department of Agriculture [USDA], Agricultural Research Service [ARS], and Plant Genetic Resources Conservation Unit [PGRU]). Korea and the US (USDA, ARS, and PGRU) have preserved 7,698 (He et al., 2019) and 1,226 (Morris, 2009) sesame accessions respectively. Recently, more than 8,000 accessions in China (Berhe et al., 2021) and 6,658 sesame accessions in India NBPGR (Mahajan et al., 2007) have been reported. In this regard, Dagmawi et al. (2015) indicated that around 870 sesame accessions were collected and preserved at the Ethiopia Biodiversity Institute (EBI). Dossa et al. (2017b) also reported unknown preserved sesame genetic resources in Nigeria, Ethiopia, and Sudan. However, information is insufficient regarding the sesame genetic resources in each major germplasm seed bank worldwide. Therefore, it is important to establish online databases to record all genetic resources globally to reduce the double counting of sesame materials.
The main goals of sesame breeding are to improve seed yield and oil quality. Achieving this breeding objective requires gene and genetic diversity. The first step and major task for a plant breeder is to identify the potential genes controlling essential traits of a given crop (Pham et al., 2011). Genetic diversity can be achieved using landraces and wild species in conventional breeding as sources of valuable traits for wider adaptability, including traits related to biotic and abiotic stress resistance (Nyongesa et al., 2013; Teklu et al., 2022). Sesame includes more than 37 species distributed across Africa, Asia, and Australia, with different chromosome numbers and features (Nayar and Mehra, 1970; Yadav et al., 2022). The ploidy level of S. indicum and S. radiatum are expressed as 2n = 26 and 2n = 64, respectively (Nayar and Mehra, 1970). The somatic chromosome numbers of some wild species of sesame include S. lanciniatum at 2n = 28 and S. angolase and S. prostratum, at 2n = 32, and S. occidentale, at 2n = 64 (Hegde, 2012). Other species include S. triphyllum, and S. capense, with 2n = 26, S. angustifolium, with 2n = 32, and S. prostratum and S. schinzianum, with 2n = 64 (Yadav et al., 2022). Therefore, sesame has species with various ploidy levels, including diploid (S. indicum, S. triphyllum, and S. capense, where 2n = 2x = 26), tetraploid (S. angustifolium, S. angolase, and S. prostratum, where 2n = 32), and octaploid (S. occidentale, S. radiatum, and S. schinzianum, where 2n = 8x = 64).
Nyongesa et al. (2014) studied the genetic relationships among a total of 46 accessions, including 37 cultivated S. indicum accessions and 11 accessions from wild species of S. angolense, S. spp., S. latifolium, and S. calycinum based on somatic chromosome counts and isozyme markers. They observed consistent numbers of somatic chromosomes (2n = 32) from the four wild species, unlike those in the cultivated species (2n = 26), indicating the presence of genetic variation and diversity. Therefore, the utilization of the wild relatives of sesame is critical for increasing genetic diversity and mining important genes associated with traits to react to biotic and abiotic stress. Kumari and Ganesamurthy (2015) performed direct and reciprocal crosses between wild sesame species including S. alatum, S. malabaricum, S. radiatum, and a wild variety of S. indicum (S. indicum var. yanamalaiensis) and other cultivated variety of S. indicum. They observed significant variations between cultivated and wild species of sesame in various traits including leaf pubescence; flower size; corolla and anther color; capsule size and shape; color; extra floral nectary size and shape; and seed size, texture, and branching pattern. The cross-compatibility analyses revealed that S. indicum is compatible with S. malbarum and incompatible with S. alatum and S. radiatum and partially compatible with S. indicum var. yanamaliansis in direct and reciprocal crosses (Kumari and Ganesamurthy (2015). Additionally, the authors recommended the wild species S. malabaricum and S. indicum var. yanamalaiensis for the transfer of essential traits from wild to cultivated sesame species.
Genetic diversity can be studied using three main methods: agro-morphological, biochemical, and molecular marker methods. Studies on the gene/genetic diversity and divergence of crop species, candidate genes, QTLs, and genotypes have been reported worldwide. The candidate genes and genotypes provide genetic resources for crop improvement programs. Tripathy et al. (2019) reported more than 270 genotypes developed for different agronomic traits showing the best performance in some sesame-growing countries. Grain yield, disease resistance, drought tolerance, oil quality, coat color of seed and flower, plant height, capsule number, seed per capsule, capsule length, shattering resistance, oil content, and leaf morphology are the most important traits for sesame improvement (Pham et al., 2011; Sheng et al., 2021; Stavridou et al., 2021).
The phenotypic variability of the sesame genotypes directly indicates the agro-morphological traits and indirectly suggests the genes and genetic variability controlling them. Teklu et al. (2021) reported 10 genotypes with superior phenotypic (grain yield and oil yield) and genotypic variability from among 100 populations, including Hirhir Humera Sel-6, Setit-3, Hirhir Kebabo Hairless Sel-4, Hirhir Nigara 1st Sel-1, Humera-1, and Hirhir Kebabo Early Sel-1 (from cluster II-a), Hirhir kebabo hairless-9, NN-0029 (2), NN0068-2, and Bawnji Fiyel Kolet (from cluster II-b). The authors observed 30–25 polymorphisms and gene diversity index values by using SSR molecular markers in these populations. Their findings demonstrated the genetic variability and diversity in the studied sesame genetic resources, which suggested the genetic potential of these materials. Therefore, such genetic resources provide important candidate genotypes and can be used for further sesame improvement programs.
A study of genetic diversity assessed Mediterranean core collections including 95 accessions and 21 geographic regions spread over four different continents of Africa, Asia, America, and Europe (Basak et al., 2019). The authors reported the highest allelic variations in accessions collected from Asia compared to those from Africa, America, and Europe, suggesting that the Mediterranean core collections are highly genetically diverse. Similarly, Wei et al. (2015) reported abundant phenotypic diversity and 56 agronomical important traits for sesame improvement from among 705 accessions in their diversity analysis study conducted in China. Consequently, Adu-gyamfi et al. (2019) observed genetic diversity among the 25 accessions in Ghana based on the analysis of morphological and molecular data.
The most important traits assessed by genetic diversity studies include oil content and quality, vitamin and nutrient composition, yield and yield component traits, morphological characteristics, growth cycle, seed color, and disease resistance (Dossa et al., 2017a; Basak et al., 2019; Teklu et al., 2022). A study of genomic variations between the cultivated variety “Zhonghzi13” and two landraces (Baizhima and Mishuozhima) in China observed more differences in important agronomic traits such as plant height, branches, seed size, seed number per capsule, disease resistance, and flowering date (Wei et al., 2016). A large-scale GWAS study reported a total of 169 sets of phenotypic data based on 1,805,413 standard SNPs with low allelic frequency (MAF) > 0.03 (Wei et al., 2015). Likewise, from a total of 120 (82 Ethiopian and 38 exotic) accessions, increased polymorphism was observed in the Ethiopian accession collections (75.85) compared to that in the exotic accession collections (65.52) based on six ISSR primers (Dagmawi et al., 2015). The accessions with higher polymorphism indicate the presence of important alleles and genes controlling traits not found in other accessions (exotics). Therefore, the Ethiopian collections could be valuable genetic resources for sesame improvement.
Wang et al. (2014) reported that the resequencing of 29 sesame accessions from 12 different countries revealed higher genetic diversity in lipid-related genes, suggesting an association with wide variation in oil content. Hernán. (2007) observed higher variability within the diversity centers. Kehie et al. (2020) also reported considerable variations in all traits included in their analysis among 25 sesame genotypes. The variability of sesame indicates the opportunities for developing and improving sesame genotypes for better agronomic, stress tolerance, and other quality traits.
Studies on genetic diversity have applied different classical and molecular markers, including morphological (agronomical important traits of sesame, oil content, yield, plant height, number of capsules/plant, seed/plant, seed coat color) and PCR-based (RFLP, SSR, SNPs, etc.) (Dagmawi et al., 2015; Basak et al., 2019) methods. The variations in different traits, ranging from allelic to phenotypic, indicate the presence of candidate gene resources and the potential for variability that could be used in sesame breeding programs. Accessions of landraces and wild types are a source of valuable traits and should be maintained and conserved for future sesame improvement programs.
SESAME GENOMES AND DATABASES
The reported genome size of sesame varies from 369 Mb (Zhang et al., 2013a), to 357 Mb (Wang et al., 2014), 350 Mb (Wei et al., 2017), whereas and ∼375 Mb (Sabag et al., 2021). Thus, the average genome size is ∼360 Mb, which is not larger than those of other oil crop species, including sunflower ∼3500 Mb (Staton et al., 2012), soybean ∼1,013.2 Mb (Xie et al., 2019), and rapeseed ∼1200–1280 Mb (Song et al., 2020). The variation in genome size might be due to the differences in the sequenced genotype, sequencing methods, and the presence of transposon elements. Sinbase 1.0 (http://orci-genomics.org/Sinbase/) was the first version of a database used as a reference for genomic and bioinformatics analysis, which was launched 7 years ago by the Oil Crops Research Institute Chinese Academy of Agricultural Sciences (CAAS) (Wang et al., 2015). This is the world’s first comprehensive and integrated resource platform for sesame genetics, genomes, and comparative genomics, and provides a user-friendly interface for quick access to sesame genome data. Sinbase 1.0 includes a total of 401,063 entries for genomic information, including 27,148 predicted protein-coding genes, 372,167 jumping genes, and 1,748 non-coding RNAs with 16 linkage groups. It also includes 406 genetic markers including single nucleotide polymorphism (SNPs), simple sequence repeats (SSRs), and insertion/deletion (indel) genetic markers and 16,296 scaffolds (Wang et al., 2015).
Sinbase 1.0 was recently upgraded to version 2.0, which includes updated genome sequence data (Wang et al., 2021). This advanced, updated, and multi-omics Sinbase database is an online, freely downloaded, and accessible gene resource for sesame improvement (http://www.sesame-bioinfo.org/Sinbase2.0) that provides an updated genome database with 13 chromosomes, three genetic linkage maps, five intra- and six inter-species genomic comparisons, one genomic variation analysis, data from five transcriptomes and one proteome, 31 functional markers, 175 putative functional genes and 54 QTLs from agronomic important traits (Wang et al., 2021). Updated genomics; genetics; comparative genomics; transcriptomes; proteomics; and functional markers, genes, and QTLs using multiple-layer methods according to different multi-omics data formats have also been integrated into Sinbase 2.0 (Wang et al., 2021). This internet-based database includes a total of 236,063 pieces of genome information including protein-coding genes (27,148), repeat elements (207, 167), and non-coding RNAs (1,748). In this database, the highest component of the genome which accounts for 88% was the protein-coding regions whereas non-coding RNAs comprise 1% (Figure 1).
[image: Figure 1]FIGURE 1 | Genome components integrated in Sinbase 2.0.
In addition, since 2014, the new and novel online Sesamum indicum L. genetic discovery database (SiGeDiD) (https://sigedid.ucad.sn/) has been constructed to facilitate access to all genetic and genomic findings in sesame using GWAS (Berhe et al., 2021). Currently, more than nine online comprehensive databases of sesame related to gene expressions, QTLs, gen families, functional genes, comparative genomics, and phenotypes (Table 1), as well as five platforms focusing on sesame marker development and utilization (SSRs, InDels, SNPs, and AFLPs) transposons, genetic maps, and haplotype maps (Table 2). The availability of this genetic information through online platforms and other sources indicates the advancement of sesame research and will play a significant role in the breeding and crop improvement programs of sesame and other oil crops.
TABLE 1 | Sesame genome online databases and numbers of integrated genomes, traits, QTLs, and markers.
[image: Table 1]TABLE 2 | Online databases for sesame markers.
[image: Table 2]To enhance sesame improvement projects, Dossa et al., 2016 reported on essential genomic sequence resources such as functional markers, genes, and QTLs associated with agronomically desired traits, which were created using linkage mapping and association analysis. Dossa also created a physical map of important QTLs, functional markers, and genes available for the sesame breeding program. These resources could be helpful for sesame research and provide an excellent view of genetic information. Berhe et al. (2021) recently reported around 300 QTLs and 250 functional genes related to the qualitative and quantitative traits of sesame.
Regarding sesame genome database development, more than five sesame genotypes of cultivated and landraces have been sequenced and their genomic data assembled (Yu et al., 2019; Wang et al., 2021), including Zhongzhi-13 (Wang et al., 2014), Yuzhi-11 (Zhang et al., 2013a), Swetha (Kitts et al., 2016), Mishuozhima, and Baizhima (Wei et al., 2015). Based on the numbers of refined genes and genome length, Swetha showed a higher number of genes (41, 859) (Figure 2A) and genome length (340,463,922 base pairs) (Figure 2B) (Yu et al., 2019). Therefore, the Swetha Indian cultivar has a large genome size compared to other genotypes and could be a source of unique genes and QTL resources.
[image: Figure 2]FIGURE 2 | (A) Genomes sequenced and their refined number of genes. (B) Genome lengths (in base pairs) of five cultivars (genomes). Data source: Yu et al. (2019).
Wei et al. (2016) observed large genomic variations in three sesame genomes (Figures 3A,B). The genome of cultivar Zhonghzi-13 showed higher numbers of SNPs and indels in the DNA coding region compared to Baizhima and Mishuozhima (Figure 3A). Similarly, the Baizhima cultivar showed higher numbers of SNPs and indels compared to Mishuozhima (Figure 3B). This indicated higher variability in these markers, indicating a larger genome size and potential for marker development. Therefore, the genomes showing the large size and higher alteration of coding DNA sequences should be considered an opportunity for further sesame research and improvement.
[image: Figure 3]FIGURE 3 | (A) Alterations of coding DNA sequences in three genomes. (B) Summary of SNPs and indels in two sesame cultivars. Data source: Wei et al. (2016).
SESAME MARKERS AND GENETIC LINKAGE MAPS
Sesame improvement programs have developed and implemented many diverse markers. Molecular markers are important for evaluating genetic diversity, identifying candidate genes, producing QTLs, analyzing linkage maps, performing genotyping, and performing marker-assisted selection. Both classical and molecular markers have been utilized by sesame improvement programs (Dossa et al., 2017b). Dossa et al. (2017a) reported the development and application of around 7,000 validated and more than 100,000 non-validated microsatellites (SSR) molecular markers for sesame research and development programs. Random applied polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were grouped in the first class whereas different SSR molecular markers were grouped in the 2nd class. From the first class of molecular markers, AFLP for genetic relationship and diversity (Laurentin & Karlovsky, 2006) and RAPD (Bhat, et al., 1999; Gulhan A et al., 2004; Abdellatef et al., 2008) markers were successfully used in sesame improvement. SSR (Nyongesa et al., 2013; Badri et al., 2014) ISSR (Dossa et al., 2016; Hota et al., 2016), EST-SSR (Wenliang et al., 2011; Yepuri et al., 2013; Wu et al., 2014), cDNA-SSR (Wang et al., 2012), SNPs (Satyendra Nath et al., 2014), and G-sequence SSR (gSSR) (Zhang et al., 2012) markers were developed and also used in the evaluation, characterization, and genotyping of sesame diversity.
Wei et al. (2008) discovered 155 EST-SSR markers and successfully amplified 108 loci by using 44 EST-SSR markers, with an average of 2.45 loci per primer. Similarly, in sesame transcriptomes, 7,702 EST-SSRs were identified as potential molecular markers, with an average frequency of 8.3% (Wei et al., 2011). Badri et al. (2014) also reported 120 SSRs of which 25 microsatellite markers were developed from a selective hybridization strategy and 95 expressed sequence tags were extracted from the NCBI database. Subsequently, Wu et al. (2014) developed 3,769 single nucleotide polymorphic (SNPs) markers, and 89 PCR-based polymorphic markers including 44 SSR, 10 gnomic-SSR, and 35 insertion-deletion (InDels) markers. Wang et al. (2014) reported 2,719 SNPs, 97 indels, and 2,282 SSR markers from the genotyping of Zhuongzi-13. Furthermore, Uncu et al. (2016) reported 15, 521 high-throughput SNP markers using the genotyping by sequencing (GBS) approach. Wang et al. (2017) also developed 7,357 SSRs from the sesame genome and transcriptomes from a cross-population of 548 recombinant inbred lines (RILs) to construct a genetic linkage map with 424 polymorphic markers. More recently, Cui et al. (2021) reported 224 significantly polymorphic SNP markers from 336 sesame germplasm lines in a GWAS study of seed coat color in 12 different environments. They also identified four markers (S1_6648896, S2_12232938, S7_6839839, and S8_8313501) as the most reliable and significant SNP markers.
Zhang et al. (2013c) reported 71, 793 SLAF markers for the constriction of sesame genetic maps. The authors also confirmed the importance of the SLAF-seq method in developing a large number of high-accuracy markers with less sequencing. Therefore, this method is important and especially suited for species with low polymorphism, like sesame. Kizil et al. (2020) reported 86 indel sites with long lengths (>8Mbs) in genome-wide analysis. They selected and used 16 of these markers to identify the diversity of 32 sesame accessions with an average of 0.33 polymorphisms in double-digest restriction site-associated DNA sequencing (ddRADSeq) data.
Transcriptome sequencing was used to identify 2,164 genic-SSR (gSSR) from sesame in China (Zhang et al., 2012). Consequently, Zhang et al. (2012) reported 59 cDNA SSR markers in 36 individuals showing allelic heterozygosities of 2-4 per locus. Yepuri et al. (2013) reported 16,619 EST-SSR from the gene bank of India (NCBI’s) database. From this database, 156 primer pairs were considered and characterized to determine the diversity of 49 sesame accessions. These markers increase the number of SSR marker resources and created an opportunity for increased genetic diversity, qualitative and quantitative trait mapping, and marker-assisted selection studies in sesame. The development of high-quality amplicons from many EST-SSR markers indicates the suitability of EST markers for specific primer designs (Wei et al., 2011). Moreover, the marker data of sesame may be used to improve molecular markers and sesame genetic information.
More than five online sesame molecular marker databases have been established for different marker types (Table 2). Yu et al. (2017) developed PMDBase (http://www.sesame-bioinfo.org/PMDBase) for SSR marker development and DNA research in plants, which includes around 26,230,099 microsatellites for 110 eukaryotic species, with different functions and software. This tool help inform breeding efforts, including the identification of genes responsible for seed coat color. Similarly, Purru et al. (2018) developed the GinMicrosatDb database (http://backwin.cabgrid.res.in:8080/Gingelly7/) of microsatellite (SSR) markers, including different options; i.e., the selection of markers, primers, flanking sequences, physical maps, and a genome browser. The 118,004 markers identified in the “Swetha” sesame variety are available in this online database. Although various marker databases have been established, the web pages of some are inaccessible, possibly due to security or maintenance issues. However, the information included in the present study was also obtained from the original studies.
Genetic linkage mapping is an efficient method to show the specific location of genes and the distance between genes and markers on a chromosome (Wu et al., 2014). There are different tools used to map genes and QTLs on a chromosome including (GCIM, ICIM, IM, CIM (Li et al., 2021), with MCIM and MIM (Wu et al., 2014). Li et al. (2021) applied for the mapping of sesame seed coat color. More than 18 different genetic linkage maps for sesame different traits have been reported (Figure 4). The first sesame gene linkage map was constructed from the intraspecific cross results of F2 populations using 284 polymorphic PCR-based markers (Wei et al., 2009). However, Zhang et al. (2013c) constructed and reported the first high-density genetic map of sesame developed using a new marker type and the specific length amplified fragment sequencing (SLAF-seq) method. Yanxin et al. (2014) also constructed a genetic linkage map length of 592.4 cM using 70 polymorphic markers that clustered into 15 linkage groups (LG). The development of a high-quality genetic map would provide the best opportunity for genome assembly and the mapping of the quantitative trait loci/genes of agronomic traits of important oil crops including sesame (Wang et al., 2016a). Zhang et al. (2016) developed an ultrahigh genetic linkage map of SiDT genes in 13 LGs governing determinate growth habits of sesame using a total of 30,194 SNP markers.
[image: Figure 4]FIGURE 4 | The status of Sesame Genetic linkage maps for different traits using different molecular markers. (A) First batch of linkage maps. (B) Recent linkage maps of sesame. More than 18 genetic linkage map collections on sesame from the past to the present are shown.
Although Zhang et al. (2013c) reported 71,793 SLAF and 1,272 polymorphic markers for the construction of genetic linkage maps, only 1,233 markers were included on 15 LGs (chromosomes) with a 1.2 cM average distance between adjacent markers. This indicates the fine resolution, with very small marker distances to identify and isolate the genes of interest using SLAF markers. Therefore, the development of SLAF markers is an important platform for gene/QTL mapping, map-based gene identification, and isolation, as well as a reference for developing sequence scaffolds on physical maps, sesame genome sequence assembly, and other sesame molecular breeding programs.
Wu et al. (2014) reported the first high-density genetic linkage map of yield-related traits using the RIL population in sesame. Wu et al. (2014) also mapped 1,230 markers in 14 linkage groups, with a length of 844.46 cM and 0.69 cM average distance between adjacent markers. The authors applied RAD-Seq to identify 3,804 pairs of new and novel DNA markers including SNPs and indels to aid in the development of high-density genetic maps combined with SSR markers. Additionally, Wang et al. (2017) developed a genetic map with 13 linkage groups (chromosome numbers) and discovered 14 QTLs responsible for sesame resistance to charcoal rot disease. More recent results from Liang et al. (2021), Asekova et al. (2021), XU et al. (2021), and Yol et al. (2021) have reported high-density genetic linkage maps of sesame using 1,354 bins, 1,662 SNPs, 424 SNPs, and 782 SNPs, respectively (Figure 4). Furthermore, Li et al. (2021) developed a super-dense genetic linkage map of 17 QTLs of seed coat color using 22,375 marker bins in 13 LGs (Figure 4). These findings demonstrate the rapid growth and use of higher-density genetic linkage maps for different sesame traits. The construction of high-density genetic linkage maps and the discovery of QTLs associated with different traits will contribute to the study of key agronomic traits, map-based cloning grain yield, and yield-related genes as well as the application of MAS to improving sesame genetics.
GENES AND QTLS RELATED TO SESAME PLANT ARCHITECTURE
Growth habit, plant height, leaf arrangement, leaf shape, and primary and secondary branches are the most important agronomic traits influencing sesame plant architecture (Stavridou et al., 2021). Liang et al. (2021) identified QTLs associated with relative root length, root length, relative shoot length, and shoot length, which contribute significantly to improving sesame architecture. Studying the genetic basis and variability of those traits could contribute not only to sesame architecture but also to the improvement of other oil crops.
The plant leaf is the main and crucial site of photosynthesis; therefore, leaf angle, size, length, shape, width, and overall morphology directly affect CO2 assimilation. Sheng et al. (2021) reported three candidate genes (SIN_1004874, SIN_1004882, and SIN_104883) responsible for leaf growth and development. Although the authors mapped 56 QTLs on nine LGs associated with four leaf-related traits using the composite interval mapping method and 81 polymorphic SSR markers, they were not evenly distributed. However, they revealed that 35 of 56 QTLs were clustered on LG 3 and LG 15. This indicates these two linkage groups, containing more than 35 QTLs related to leaf size, could be the best genomic regions for improving sesame architecture. The authors also detected a stable pleiotropic locus (qLS15-1) with large (27.50%) phenotypic contribution rates for leaf length and width. Hence, the gene and genetic diversity of leaf morphology (leaf length and width) are good potential genetic resources for research on improving sesame architecture and yield.
Plant height affects plant architecture and is directly and positively associated with seed yield; thus, improvements in height also improve oil yield (Mustafa et al., 2015; Wang et al., 2016b). Therefore, the genes controlling plant height play a significant role in sesame architecture and the improvement of seed, oil content, and other yield-related traits. Tall plant height is characterized by an indeterminate growth habit, which has a negative effect on logging and the non-synchronous maturity of capsules (Zhang et al., 2018a). This leads to non-uniform capsule maturity, which results in challenges in mechanized harvesting, time, and an increased number of immature seeds and loss of seeds due to dehiscence of the bottom part of the capsules. Improving plant height and developing sesame genotypes with determinate growth habits would solve these problems. Yadav et al. (2022) also suggested that genes and genotypes associated with determinate growth and monocular stems would be important for mechanized sesame harvesting. Therefore, the identification of such genes, genotypes, QTLs, and other genomic regions of sesame related to sesame architecture is important.
Wang et al. (2016a) mapped 41 QTLs for sesame plant height and related traits. Two main QTLS (qPH_8.2 and qPH_3.3) comprising 350 kb on chromosome 8 and 928 kb on chromosome 3 were associated with sesame plant height. QTL qPH-3.3 was responsible for semi-dwarf sesame plant height, which may play an irreversible role in developing determinate sesame genotypes suitable for synchronous maturity and mechanized farming.
Among the 30 QTLs reported by Wu et al. (2014) as grain yield-related traits, four QTLs in LG6 and LG12 were in a region containing genes associated with plant height (Table 4). The authors also identified 16 QTLs related to first-capsule height (eight QTLs in LG4, 11, and 12) capsule axis length (four QTLs in LG5 and 9), and capsule length (six QTLs in LG3, 4, 7, 8, and 12) (Table 5). These QTLs may play significant roles in improving the first-capsule height, plant height, and capsule-axis length, as well as sesame plant architecture. Likewise, Dossa et al. (2019) reported two main QTLs harboring four genes responsible for stem length that were related to drought tolerance (Table 3). The stem length is also a component of plant architecture: as stem length increases, the plant height also increases. They may be positively associated with plant height. Furthermore, Liang et al. (2021) identified 24 QTLs harboring four traits including relative root length, root length, relative shoot length, and shoot length from 11 chromosomes (Table 4). While these traits and QTLs were related to drought tolerance, they encode for plant architecture traits/genes. As they are responsible for shoot and root length, the QTLs could play a significant role in sesame architecture research and improvement. Hence, those QTLs are additional genetic resources for the further sesame improvement program.
TABLE 3 | QTLs and linkage groups (LGs) associated with sesame architecture traits.
[image: Table 3]TABLE 4 | Twenty-four shoot and root length QTLs associated with plant architecture.
[image: Table 4]More recently, Berhe et al. (2021) reported 19 QTLs and 26 functional genes related to sesame root length. The nine potential genes responsible for root length were SIN_1017810, SIN_1017811, SIN_1017812, SIN_1017815, SIN_1017818, SIN_1017843, SIN_1007064, SIN_1007065, and SIN_1020072. Root length is one component of plant architecture; thus, these genes may be important in improving sesame architecture. These genes are also considered a resource for sesame research programs.
GENES, GENOTYPES, AND QTLS RELATED TO SESAME YIELD
Improving sesame seed production and yield-related traits has received attention in recent years and remains a primary goal of oil seed breeding (Islam et al., 2016). A study in Ethiopia identified four genotypes (Setit-2 (G4), G6, G12, and G13) as a genotype/genetic resource for stable and high-yielding rain-fed and irrigation production (Baraki et al., 2020). Baraki et al. (2020) identified WARC-60 (G4) and the Setit-2 variety as high-yielding genotypes with better performance in rainfed production, while Setit-1 (G6) and WARC-60 (G4) were recommended for irrigation production. Similarly, Hirhir, Kibebew, Airless sel-1, Maru (G12), and Marusel-1 (G13) showed relatively good agronomic performance and should be preserved and used for further sesame breeding. Adu-gyamfi et al. (2019) identified and reported six promising accessions (C3, C4, S5, W1, W3, and W5) from five different clusters with higher capsule numbers and seed/capsule. Therefore, those accessions and genotypes are candidate genetic resources in sesame improvement of yield and yield component traits.
Sabag et al. (2021) also discovered major genomic regions on LG2 with strong correlations with flowering date and yield components, suggesting the crucial role of phenology in sesame production. Wu et al. (2014) also reported 30 QTLs, 10 of which were associated with grain yield, including two QTLs related to the number of capsules per plant, six QTLs related to grain number/capsule, and two QTLs related to thousand-grain weight from the RIL population (Table 5). Similarly, Du et al. (2019) reported three QTLs associated with thousand-grain weight (Table 5). These QTLs were first discovered in the sesame research program and are the main resources for further sesame breeding programs. Consequently, Dossa et al. (2019) also identified one QTL (QtlY4.1) and two candidate genes (SIN_1012139 and SIN_1012134) in LG4 related to seed yield. Although these genes were identified in a study of drought-tolerant genes, they may also be candidate genes for sesame seed yield. Yield is a polygenic trait controlled by many genes with cumulative effects that are also influenced by the environment (Wu et al., 2014). Therefore, special techniques for utilizing the identified gene locations are required, including pyramiding more genes or improving many genes simultaneously via new technologies such as gene editing.
TABLE 5 | QTLs for sesame grain/seed yield and yield-related traits.
[image: Table 5]Therefore, the identified QTLs and genes associated with yield and yield-related traits included seed yield, capsule length, grain/capsule, thousand-grain weight, and capsule number/plant and provide opportunities for improving sesame grain yield.
Wei et al. (2015) discovered two promising candidate genes at the locus of flowering time (SiDOG1 and SiIAA14) and two candidate genes at the locus of plant height (SiDFL1 and SiILR1) which were significantly correlated with oilseed yield. Those genes and locations may contribute to improving sesame seed yield. The identification, mapping, and development of databases for sesame yield-related traits would serve as a primary foundation for the application of marker-assisted selection and improvement of yield and yield-related traits.
GENES AND QTLS ASSOCIATED WITH SESAME QUALITY
Sesame oil
Sesame is produced for its main product of high-quality oil, which is used for cooking, medicine, and cosmetic applications. More than 65% of global sesame seed production is used for the extraction of edible oil, whereas the rest 35% is used for confectionery purposes (Dagmawi et al., 2015). Sesame seeds provide high-quality oil (45–60%), proteins (18–25%), carbohydrates (3–25%), essential vitamins, minerals, as well as specific antioxidants (sesamin and sesamolin) (Muthulakshmi Chellamuthu and Swaminathan, 2012; Dossa et al., 2017b). The quality of sesame oil is determined by the content of the seed oil and the composition of the fatty acids. Although sesame has lipid-related genes, data from online databases indicate a lower number of lipid-related genes (708) compared to other oil-producing crops, including A. thaliana (736), soybean (1,298), tomato (902), grapevine (732), and rice (805) (Wang et al., 2014). This may be due to differences in lipid biosynthesis and genome sizes. Differences in genome size may also result in different numbers of genes involved in oil/lipid biosynthesis.
Plant lipid transfer protein (LTPs) functions by transferring phospholipids and fatty acids between membranes in vitro (Song et al., 2021). Fifty-two (52) S. indicum lipid transfer proteins (SiLTPs)/genes were nonrandomly distributed on 13 chromosomes, 75% of which were located on chromosomes 1, 6, 11, and 3, while no SiLTP genes were observed on chromosomes 4, 5, or 7 (Song et al., 2021). SiLTP genes are expressed in various parts and tissues of sesame, including the capsule, seeds, flowers, leaves, stems, and root tissues (Choi et al., 2008). However, some SiLTP genes are located and expressed in specific tissues; e.g. tandem duplication gene pairs of SiLTPI.4, SiLTPI.5 and SiLTPI.6 on chromosome 1 are expressed in seeds, suggesting their role in seed development (Song et al., 2021).
Moreover, SiLTP genes have multi-function and are expressed in many important agronomic traits. Song and colleagues identified five SiLTPIs (SiLTPI.10, SiLTPI.15, SiLTPI.19, SiLTPI.26, and SiLTPI.2), which were upregulated in all three seed-development stages for high-oil content, while SiLTPI.23 and SiLTPI.28 were candidate genes for high-oil content for the improvement of sesame seeds. These genes showed significantly different expression patterns in sesame growth and development. SiLTPI.23 and SiLTPI.28 showed higher-oil content 30 days after anthesis (DPA), indicating that SiLTPIs are more active during seed development than seed maturity (Figure 5). Finally, the authors discovered that the interactions of multiple transcription factors withnh several SiLTP genes may alter fatty-acid biosynthesis and oil content in sesame. Wang et al. (2019) also reported 23 candidate genes involved in oil biosynthesis and responsible for the accumulation of oil in sesame. Among those, three lipid transfer protein genes (SIN_1019175, SIN_1019172, and SIN_100009) showed promise for increasing oil content. Hence, lipid transfer protein genes associated with high oil accumulation may be gene resources for sesame and other oil crops.
[image: Figure 5]FIGURE 5 | Site of lipid transfer proteins.
Breeders should consider not only oil quality (changes in fatty-acid composition) but also oil seed yield when improving oil seed crops (Wei et al., 2015). From 705 sesame cultivars sequenced, 56 important agronomic traits and 546 QTLs associated with oil yield and quality were discovered in four different environments (Wei et al., 2015). Wei et al. also identified candidate causative genes of SiKASI (SIN_1001803) and SiKASII (SIN_1024652), which were highly associated with palmitic-acid (C16:0) and palmitoleic-acid (C16:1) concentration. SiACNA, SiDGAT2, SiFATA, SiFATB, and SiSAD were also identified as candidate genes for fatty-acid composition variation in sesame cultivars Among them, the two major genes SiKASI in palmitic acid synthesis and SiDGAT2 for triacylglycerol synthesis may be responsible for the variation in unsaturated to saturated fat ratios, resulting a good index for healthy dietary consumption (Wei et al., 2015).
Previous studies focused on improving sesame seed yield, disease resistance, and high-oil yield (XU et al., 2021). Quantitative traits such as yield, oil content, quality, and protein content are polygenic, controlled by many genes with cumulative effects, and are influenced by the environment. In many studies, it was difficult to improve the yield and nutritional quality of any crop due to the negative association between the two traits. However, Wei et al. (2015) reported the absence of association (Pearson’s correlation r2 = 0.02) between seed yield and oil content of sesame, suggesting the possibility of simultaneous improvement. The gene with the strongest correlation with sesame oil content also showed a strong association with the two lignin compounds, sesamin and sesamolin, that are good for human health and protein content in sesame seeds. Thus, both oil content and sesamin and sesamolin compounds can be improved simultaneously. Two lipase-encoding genes (CXE17 (SIN_1003248) and GDSL-like lipase (SIN_1013005)), as well as the two lipid transfer protein-encoding genes (SIN_1019167 and SIN_1009923), were identified in four loci encompassing genes encoding for the oil metabolism pathway (Wei et al., 2015). The authors also reported another gene locus containing a candidate gene for oil content (SiPPO, SIN_1016759) and confirmed that mutations on SiPPO (Sesamum indicum L.) predicted polyphenol-oxidase, which plays a significant role in improving the oil content of sesame.
Similarly, a total of 26 QTLs (16 loci associated with sesamin and 10 loci associated with sesamolin) had a linkage map and were identified using 424 SSR markers (Xu et al., 2021). The assessment of potential genetic variation for sesamin and sesamolin revealed two candidate genes (SIN_1005755 and SIN_1005756) at the same locus in two LGs (LG4 and LG8) based on comparative transcriptome analysis. These results suggested the presence of a single gene with a large effect on the expression of both sesamolin and sesamin, which provides genetic information for the further investigation of the regulation of lignin biosynthesis in sesame. A total of 26 gene locations distributed in eight linkage groups (LG2, 3, 4, 5, 8, 9, 11, and LG13) have been identified.
Sesame seed coat color
Sesame seed coat color is one of the most important agronomic traits that determine sesame quality (Wei et al., 2017). The natural seed coat color of mature seeds of sesame ranges from white, intermediate (grey, golden, brown, yellow, and light white) to black (Zhang et al., 2013b) (Figure 6). Hence, improving the seed coat color and identifying the major and potential candidate genes controlling seed coat color may significantly affect seed quality. Zhang et al. (2013b) identified four gene locations/QTLs (QTL1-1, 11–1, 11–2, and QTL13-1) controlling seed coat color in three linkage groups of sesame, including LG1, LG11, and LG13. Wang et al. (2016b) also identified nine QTLs associated with sesame seed coat color from three LG4, 8, and 11 (Table 7). Similarly, Wu et al. (2014) also reported four QTLs controlling seed coat color with a range of 59-33–69.89% heritability in the F3 population. Subsequently, Wei et al. (2016) identified six candidate genes (SIN_1016759, 760, 761, 762, 763, and SIN_10120223) in six QTLs of LG4. However, none of these candidate genes were expressed in qRT-PCR analyses and only one candidate gene PPO (SIN_1016759), which was responsible for phenol-oxidase and black pigment, was synthesized and expressed in the seeds of the cultivar “Mishuozhima” from 11 to 20 days. Furthermore, Wang et al. (2020) reported 20 candidate genes for seed coat color associated with black pigmentation from the gnome Zhonghzi.33 (Table 6). Among these, 15 candidate genes for seed coat color were annotated whereas five were not.
[image: Figure 6]FIGURE 6 | Different seed coat colors of sesame. (A) White. (B) Yellow. (C) Light brown color. (D) Brown. (E) Black.
TABLE 6 | Twenty candidate genes responsible for seed coat color.
[image: Table 6]These genes encode different chemical compounds and contribute to the coloration of the sesame seed coat (Figure 6). Sesame has different genotypes with different seed coat colors, with white-colored and thin seed coat varieties the most favored (Wei et al., 2016; Tripathy et al., 2019). Wei et al. (2016) reported that the cultivated variety “Zhonghzi13” has white seed coat color whereas the landrace “Mishuozhima” has black seed coat color.
Du et al. (2019) identified 14 QTLs in three LGs (LG4, 9, and 12) associated with seed coat color from the F3 population and progeny of a cross between “Gaoyou 8 and Ganzhi 6” (Table 7). Recently, a GWAS study of 366 sesame germplasms in 12 environments performed at Henan Research Centre in China exploring the factors affecting the genetic architecture of seed coat color identified 92 candidate genes associated with seed coat color, which were linked to four SNP markers (Cui et al., 2021). The candidate genes included SIN_1006005, SIN_1006010, SIN_1012034, SIN_1006006, SIN_1006020, SIN_1024895, SIN_1006022, SIN_1016759, SIN_1023237, and SIN_1023224. Likewise, Li et al. (2021) more recently identified 17 QTLs/candidate genes for sesame seed coat color in seven non-overlapping intervals on four linkage groups (Table 7). These results showed the clustering of QTLs in a linkage group of nine, which suggested its significance in sesame seed coat color.
TABLE 7 | Detailed information of QTLs associated with seed coat color in sesame.
[image: Table 7]GENES AND QTLS ASSOCIATED WITH DISEASE RESISTANCE IN SESAME
Sesame plants are mainly affected by biotic stress induced by bacteria, fungi, viruses, insect pests, and nematodes (Yadav et al., 2022), which can cause highly reduced sesame quality and yield. The major diseases of sesame include various bacterial, fungal, and viral agents, including Cercospora sesami, Alternaria sesami, Cylindosporium sesami, Macrophomina Phaseoli, Phytophhthora parasitica, oidim spp, Erysiphe cirhoracearum, Phytophthora nicotianae var. sesame, and Helminthosporim sesamine (Min & Toyota, 2019). Soil-born fungal diseases charcoal rot (Macrophomina phaseolina (Tassi) Goid (MP) and root rot (rhizoctonia solani) are also problems in sesame cultivation (Teklu et al., 2022). Moreover, the viral disease phyllody (Orosius albicinctus), which is associated with phytoplasma, is another problem for sesame production that affects most cultivated and wild species of sesame, resulting in economic loss (Yadav et al., 2022). Phyllody had been reported in Pakistan, African countries (Ethiopia, Burkina Faso, Nigeria, Tanzania, and Uganda), some Asian countries, and India, Iraq, Israel, Myanmar, Venezuela, Thailand, Oman, Turkey, and Mexico (Yadav et al., 2022).
Any new trait in a crop could have resulted from the effort of breeders, geneticists, and pathologists. The development of disease- and pest-resistance genes and genotypes in sesame requires serious knowledge and collaboration among these experts. The production and improvement programs for sesame crops through hybridization, selection, and mutation are also challenged by wilt disease (Fusarium oxyporum f. sp. sesame; Bayoumi & El-Bramawy, 2007) and charcoal rot (Macrophomina phaseolina (Tassi) Goid (MP)) (Yan et al., 2021). For many years, due to a lack of molecular-level understanding and investigation, root rot seriously affects sesame yield and quality. Wang et al. (2017) reported a novel genetic map of sesame using 424 SSR markers, in which they discovered 14 novel QTLs related to charcoal rot resistance (Table 8). The three QTLs (qCRRT8.2, 8.3, and qCRR12.2) detected in different environments had a higher phenotypic contribution rate and could be used to identify candidate genes for disease resistance. These genetic data could also be an important genetic resource for marker-assisted sesame improvement to solve charcoal rot disease.
TABLE 8 | Detailed information on 14 QTLs responsible for the charcoal-rot disease resistance gene in sesame.
[image: Table 8]Although replacing old and obsolete varieties with new and improved varieties with disease resistance is the cheapest, easiest, and most effective method for introducing disease-controlling mechanisms (Gupta et al., 2018); collecting, evaluating, identifying, and conserving the genetic resources with potential disease-resistant traits is a sustainable and a key activity in crop improvement programs. Gupta et al. (2018) reported 18 genotypes/genotype resources related to tolerance for major diseases in sesame in India. JT-21, TKG-21, TKG-22, TKG-55, JTS-8, RT-46, RT-48, RT-54, RT-103, RT-125, RT-127, Sekhar, Guatam, Usha, TSS-6, M-75, Swetha, and Nirmala are resistant to different major diseases of sesame. Therefore, these genotypes could be further used as parental resources in sesame improvement programs.
Comparative transcriptome analyses of resistance to sesame charcoal rot (Macrophomina phaseolina) by Yan et al. (2021) identified several core genes, including protein kinase, disease-related proteins, cytochrome P450s and peroxidases, and other closely-related genes. The authors also identified 52 significantly and differentially expressed genes as a response to hormones (ABA and JA), cell-wall, hormone-mediated signaling, cell-cell junction defense response, and signal transduction and hormone-mediated signaling pathway associated with plant stress, especially sesame charcoal rot (Macrophomina phaseolina). Similarly, Radadiya et al. (2021) reported 1,153 candidate genes related to disease resistance from genotype (GT-10). Furthermore, Asekova et al. (2021) reported the upregulation of SIN-1019016 and three promising and potential QTLs (qPhn_10KACC481220, qPhn_10_KACC48121, and qPhn_10_No2526) against Phytophthora blight (PB) caused by Phytophthora nicotiana. The upregulation of SIN-1019016 in the resistant line would contribute to the development of PB resistance. Hence, those QTLs were genomic regions harboring five candidate genes associated with PB in sesame. Although no evidence has been reported to cure phyllody disease due to the overlap of its symptoms with environmental effects, it is possible to develop resistant varieties from interspecific crosses of wild and cultivated species (Yadav et al., 2022). In this regard, Junior et al. (2019) identified two resistant accessions (ACS38 and ACS108) from the screening of 542 sesame genotypes in field and greenhouse conditions. Additional molecular details about the function of this genomic area in regulating PB resistance in sesame may be obtained via functional characterization and expression analysis of other genes in the QTL intervals.
GENES AND QTLS ASSOCIATED WITH ABIOTIC STRESS TOLERANCE IN SESAME
Drought and waterlogging tolerance genes and QTLS
Drought and waterlogging are major abiotic stress factors for limiting sesame production in the early growth stages (Liang et al., 2021; Yadav et al., 2022) and development (Li et al., 2017). Drought tolerance is a key and well-known trait of sesame breeding programs for plant growth and yield stability (Liang et al., 2021). In recent decades, several SNP markers have been employed for QTL genetic mapping and GWAS analysis, thanks to the development of next-generation sequencing (NGS) technology and the availability of the complete genome sequence of sesame (Liang et al., 2021). Based on linkage disequilibrium, the genome-wide association study (GWAS) technique is frequently used to identify associations between molecular markers, candidate genes, and traits of interest in a particular population (Li et al., 2018).
Among the plant-specific transcription factor families, the homeodomain-leucine zipper (HD-Zip) gene family is highly involved in plant growth, development, and various stress responses (Zhang et al., 2021). However, sesame lacks genes responsible for responses to drought and salinity stresses. Zhang et al. (2021) reported 45 HD Zip candidate drought-resistant genes (SiHDZ01-SiHDZ45). The 44 SiHDZ genes map on the sesame genome in 12 linkage groups. These 45 candidate genes for drought resistance are important for further sesame improvement and are considered new gene resources.
Evidence has also indicated that WRKY are involved not only in the response to cold, drought, and heat stresses but also to waterlogging stress. Li et al. (2017) identified 26 candidate WRKY and SiWRKY genes that may play a role in sesame drought stress responses. Liang et al. (2021) reported that four genomic regions were associated with five significant QTLs (qRSL1.2, qRSL1, qRSL7and qRSL12/qRSL12) based on the respective flanking markers in each drought-resistant gene QTL. Although 465 genes were identified in these four genomic regions, only 347 genes were functionally annotated; the remaining 118 genes were unknown proteins/hypothetical proteins or repetitive. Their study identified and described 34 QTLs responsible for drought tolerance traits in different chromosomes with flanking markers (Table 9). Furthermore, Liang et al. identified twelve chromosome regions linked to relative shoot length (RSL), relative seedling weight (RSW), and relative root length (RRL).
TABLE 9 | Detailed information on drought tolerance traits and their QTLs.
[image: Table 9]Although more than 300 QTLs and more than 250 candidates have been identified in sesame, QTLs and important genes for chlorophyll yield, heat tolerance, waterlogging tolerance, and other traits are under investigation (Berhe et al., 2021). Different genotypes respond differently to waterlogging stress and the resistant genotypes remain more stable during waterlogging, whereas more sesame genotypes showed sensitivity to waterlogging stress (Wang et al., 2016a). Among the genes expressed in response to waterlogging, 66 candidate genes have been shown to improve sesame tolerance to waterlogging stress (Wang et al., 2016a). These 66 genes cluster in five homologous stress-responsive genes (SIN_1024017, SIN_1021706, and SIN_1012279). Their expression patterns were validated by real time-PCR.
Yanxin et al. (2014) also identified six QTLs linked to water-logging resistance traits (Table 10). Those six QTLs were located on LG7, 9, 13, and 15 and were identified by using the SSR marker (ZM428), with an average linkage distance of 0.7 cM. The author also identified eight germplasms (2413, 2552, Ezhi-1, Funan Zhima, Henan-1, Jiaxing Jinkouhei, Macheng Heizhima, and Xiping Erlanghua) from the sesame core collection showing tolerance to waterlogging. Furthermore, Dossa et al. (2019) discovered ten major and stable QTLs from four LGs (LG4,6,7, and 8) in their genome-wide association study of drought tolerance-related traits from among 400 sesame accessions in a 2-year experiment (Table 11). Though they identified 569 significant SNPs across 10LGs of the sesame genome, 21 potential candidate genes were identified using 10 SNPs from 4LGs for five traits.
TABLE 10 | QTLs associated with water logging tolerance in sesame.
[image: Table 10]TABLE 11 | Identified drought-tolerant QTLs, genes, and SNPs in sesame.
[image: Table 11]Genes and genotypes and QTLs associated with salt tolerance in sesame
Soil salinity is a serious and major problem that affects the production and productivity of crop plants including sesame (Zhang et al., 2019; Raza et al., 2022). Several studies have identified candidate genes, QTLs, promising genotypes, and genomic regions associated with salt tolerance (Lakhanpaul et al., 2012; Suassuna et al., 2017; Zhang et al., 2019). Suassuna et al. (2017) identified two promising genotypes (LAG-927561 and LAG-26514) which showed moderate resistance to salt stress and adaptation. Similarly, Zhang et al. (2019) reported 59 salt-tolerant/upregulated candidate genes from two sesame accessions, salt-tolerant (WZM3063 (ST)) and salt-sensitive (ZZM4028 (SS)) obtained through the evaluation of salt tolerance in 490 sesame core collections stored in the China National Gene Bank at the Oil Crops Research Institute Among these, ABC transporter (LOC-105170264), β-glucoside (LOC_105173929), cytochrome P450 (LOC_105161642), dehydration-responsive element-binding protein (LOC_105157670), and UDP-glycosyltransferase (LOC_105171082) genes of regulatory elements were identified.
Despite the differences in tolerance levels, 901 genes (206up-regulated and 695down-regulated) were constitutively expressed in both genotypes and constituted the core genes linked to salt stress response (Zhang et al., 2018b). In this regard, 101 transcription factors from 31 gene families were discovered, including AP2-EREBP, bHLH, bZIP, HB, MYB, and NAC. Their different expression patterns indicated their essential regulatory role in response to salt stress. Under salt stress, PYLs, PP2Cs, SnRK2s, AREB/ABFs, VP1, and LEA were activated or repressed, implying their critical roles in ABA signal transduction and protecting sesame from salt stress-induced damage.
OTHER GENES AND QTLS
Gene resources and QTLs associated with non-shattering traits
Seed yield reduction in sesame occurs due to high capsule shattering at harvest and uneven capsule ripening characteristics of the sesame crop (Abdellatef et al., 2008; Yol & Uzun, 2019; Teklu et al., 2022). The scientific evidence indicates that capsule shattering can lead to up to a 50% yield loss during or after harvesting in sesame (Phumichai, et al., 2017). Besides yield reduction, the absence of noon shattering/indehiscent cultivars suited for mechanical harvesting is another topic for sesame improvement (Abdellatef et al., 2008). Therefore, developing low-shattering or shattering-resistant varieties of sesame could improve yield and allow mechanized farming techniques (Tripathy et al., 2019; Yadav et al., 2022). Developing these varieties requires variability among sesame genotypes worldwide or the identification of a gene or genetic resources for the improvement of sesame shattering traits (Qureshi et al., 2022). In Bulgaria, four sesame varieties (victoria, aida, valya, and nevena) have been developed that are suitable for mechanized farming (Myint et al., 2020). Although the shattering trait is considered to be qualitative and controlled by a single major gene (Yol et al., 2021), this topic has received less attention, and research to identify indehiscent/shattering resistant candidate genes for sesame is required.
Wongyal et al. (1997) aimed to develop shattering-resistant genotypes using gamma rays and ethyl methanesulfonate (EMS)-induced mutations in the Kasetsart University Sesame Breeding Project in Thailand. Five promising mutant lines (M-6060 to M-6064) from the gamma-ray treatment M-6045, M-6015, and M-6054 lines with 1.0% EMS mutagen treatments were obtained. These lines could serve as a source of shatter-resistant genes for further sesame breeding work.
Although the method of harvesting matters, the first gene/genotypes with capsule shattering resistance/indehiscence (homozygous recessive allele, id/id) was identified in1943 by Langham in Venezuela through successive mutation and published in 1946 (Langham, 2001). Later, Wongyai et al. (1997) and Diouf et al. (2010), reported different mutants of delayed, closed capsule, and semi-shattering (Saha & Paul, 2017). Similarly, 52 mutants were identified with shatter resistance in both Tillotoma and Rama cultivars in West Bengal (Saha & Paul, 2017). The capsule varieties with the recessive idid allele showed a strengthened zone of weakness due to the presence of numerous cell layers between the epicarp and median vascular bundle, with no band of small thin-walled cells in this region (Day, 2000).
In addition, Zhang et al. (2018) discovered the candidate gene SiCL1 in sesame, which controls leaf curling and capsule indehiscence. The authors reported that SiCL1 is mainly expressed in the tissues of leave, stems, buds, and capsules. Hence, identifying the gene and localization plays a role in the improvement of sesame capsule indehiscence, which complicates mechanized farming. However, Yol et al. (2021) suggested improving this trait using gene editing tools instead of agronomic improvement approaches because of the reduced suitability of lower-yielding genotypes for mechanized harvesting. The genes, gene locations, and genetic materials associated with indehiscence traits in sesame can be used as resources for the future improvement of this trait in sesame research programs.
Candidate genes and QTLs related to mineral nutrients
Although 70% of sesame is processed into cooking oil (Sonia et al., 2015), it is also a good source of carbohydrates, proteins, fat, and several mineral nutrients (Makinde and Akinoso, 2013). Some evidence also supports sesame seeds and oil as sources of vitamin E, which has antioxidant properties and is important for lowering blood cholesterol levels (Kamal et al., 2013; Tripathy et al., 2019). Teboul et al. (2020) identified the candidate genes and QTLs associated with sesame seed mineral nutrient concentration. Among these were 381 potential candidate genes, 285 of which were not annotated and 96 of which were uncategorized. However, 36 candidate genes in three LGs (8, 11, and 16) were annotated (Table 12). Among the QTLs identified, QTL-qk-1 in LG8 showed two candidate genes: SKOR-like (LOC-105167760) and SKOR-potassium channel (LOC-105167785) Similarly, in three QTLs (qZN_5 and qFe_6, qS_2), LG11, phosphate starvation response 1-like protein; PHR1 (LOC-105173373), which is responsible for seed zinc and iron concentration, and three genes encoding a cyclic nucleotide-gated ion channel-1 like (CNGC1) (LOC-105173138, LOC-105173087, and LOC-105173088) were identified. Besides, the zinc transporter 8 (LOC-105178590) and zinc transporter 8-like (LOC-105178589) genes, which determine the zinc content of sesame seeds, were identified in LG6 and the QTL of qZn-6.
TABLE 12 | Candidate genes and their protein annotation for mineral nutrients.
[image: Table 12]Teboul et al. (2020) suggested that identifying candidate genes that alter seed mineral-nutrient and morphological traits can serve as a good foundation for future sesame research integrating transcriptional expression, allele mining, and fine mapping of potential candidate genes.
A GWAS study conducted by He et al. (2019) in Kongju National University, Korea (2015) using 92 sesame accessions reported two candidate QTLs: (LG08_6621957 (A/G) linked to γ-tocopherol content and LG03_13104062 (C/T) SNP linked to β-tocotrienol) from LG8 and 3, respectively. These two loci may be important for improving the vitamin E content in sesame. He et al. also identified twelve candidate genes responsible for different biomolecules/enzymes related to vitamin E. Among the twelve candidate genes, five (SIN_1001936, SIN_1001937, SIN_1001938, SIN_1001939 and SIN_1001940) were located in LG 8 and seven (SIN_1022039- up to SIN_1022045) in LG3. Although several genes related to mineral nutrients were identified, SIN_1022045 was annotated as a zinc-ion binding protein that regulates ARF-GTPase activity and was associated with the endocytosis process pathway.
CONCLUSION
Sesame is a well-studied crop, with an updated database providing its genomic, proteomic, and all other genetic data. The development of the Sinbase platform, which stores the functional genes online and provides free access to genetic and genomic information, enables researchers, experts, and any data-gathering bodies to access this information from anywhere. This is a great scientific contribution to the field related to sesame production. This crop has special features that make sesame oil and its products preferable for consumers due to its higher quality oil and antioxidant properties. Improving sesame agronomic by enhancing important traits and productivity requires more gene and genetic resources with higher diversity. The improvement and research programs for sesame have identified and applied molecular markers including SSR (EST-SSR, gSSR, cSSR), SLAF, RFLP, RAPD, InDels, and others.
Many scientific research results are published online to report useful genetic information obtained worldwide. The present review pooled the genes and genetics resources useful for sesame improvement. Moreover, the genes, QTLs, and genotypes identified in sesame breeding associated with important agronomic traits including seed yield and yield component traits, sesame architecture, seed coat color, disease resistance, drought tolerance, waterlogging resistance, salt tolerance, oil content, quality, and other agronomic traits were presented. The gene and genetic resources identified for sesame improvements will likely play major roles in closely related oil crop species (for example, sunflower, rape seed, etc.), providing an opportunity to identify genes with shared functions.
Although different genetic and genomic data of Sesame are available in Sinbase 2.0 and other online resources, it lacks proper data handling, maintenance, and utilization in places with technology to allow its access, as well as extension to developing countries where higher genetic diversity is present. More than ten online comprehensive sesame genomic and five marker databases are also available. Despite being considered an “orphan crop”, sesame has received large investments in terms of money, time, labor, and effort. Sesame grows relatively quickly to provide higher yields with limited water requirements, lower costs, and good prices globally. Therefore, this crop requires increased attention for production in developed and developing countries to benefit from its beneficial features. This detailed review of sesame provides more knowledge and guiding examples for continuing genetic investigations in sesame as well as other oil crop species with more complex genomes.
FUTURE PROSPECTS
Sesame research is interesting and much progress has been made in improving knowledge of overall important traits, QTLs, and genes as well developing sesame databases. Many genes, QTLs, and other genetic information related to sesame are now available in an online database. However, work is limited regarding the improvement of minerals and vitamins in sesame, as well as sesame architecture including marker development, genes, genomic regions, and QTL identification. Therefore, additional research is required on these topics. It is better to concentrate on protein-protein interactions in the adaptive response of sesame to drought, water-logging, salt stress, and other abiotic stresses and to investigate the genetic basis for the natural variations in sesame tolerance to salinity, drought, water-logging, and other stresses. Future studies should also concentrate on the availability of candidate genes, genotypes, QTLs, and genomic regions of sesame in developing countries with limited production technologies and research resources.
The omics and gene editing era, has allowed the incorporation of useful candidate genes into a single sesame genotype, as well as the development of sesame genotypes characterized by higher yield, higher oil content, quality, and resistance to different stresses. Global efforts in research and development have been diverted to multi-omics approaches including metabolome, transcriptome, and proteome profiling and the investigation of new genetic components useful to perform different functions. Hence, the sesame crop requires more work on its transcriptomics, metabolomics, and proteomics, as well as the integration of all other omics approaches. Although various sesame genetic resources are available in different national and international gene banks, the reports of various scholars may not solve the double counting of germplasms and the lack of general availability and accessibility. Therefore, the establishment of online databases and pangenomes is needed to easily record all genetic resources globally, reduce the double counting of sesame materials, and provide important information on genetic resources.
Generally, sesame research should focus on the following critical research areas:
1. Sesame architecture (root and shoot); i.e., the development of varieties with determinate growth habits and indehiscence capsules suitable for mechanized farming.
2. Online databases (pangenome) that provide accessible data on candidate genotypes, genes, QTLs, and other genomic regions.
3. Multi-omics and gene editing approaches for better trait development in sesame improvement program
4. Improvement of sesame mineral and vitamin content
5. Breeding in the context of biotic and abiotic stress
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Dongxiang wild rice (DXWR, Oryza rufipogon Griff.) belongs to common wild rice O. rufipogon, which is the well-known ancestral progenitor of cultivated rice, possessing important gene resources for rice breeding. However, the distribution of DXWR is decreasing rapidly, and no reference genome has been published to date. In this study, we constructed a chromosome-level reference genome of DXWR by Oxford Nanopore Technology (ONT) and High-through chromosome conformation capture (Hi-C). A total of 58.41 Gb clean data from ONT were de novo assembled into 231 contigs with the total length of 413.46 Mb and N50 length of 5.18 Mb. These contigs were clustered and ordered into 12 pseudo-chromosomes covering about 97.39% assembly with Hi-C data, with a scaffold N50 length of 33.47 Mb. Moreover, 54.10% of the genome sequences were identified as repeat sequences. 33,862 (94.21%) genes were functionally annotated from a total of predicted 35,942 protein-coding sequences. Compared with other species of Oryza genus, the genes related to disease and cold resistance in DXWR had undergone a large-scale expansion, which may be one of the reasons for the stronger disease resistance and cold resistance of DXWR. Comparative transcriptome analysis also determined a list of differentially expressed genes under normal and cold treatment, which supported DXWR as a cold-tolerant variety. The collinearity between DXWR and cultivated rice was high, but there were still some significant structural variations, including a specific inversion on chromosome 11, which may be related to the differentiation of DXWR. The high-quality chromosome-level reference genome of DXWR assembled in this study will become a valuable resource for rice molecular breeding and genetic research in the future.
Keywords: Oryza rufipogon, wild rice, de novo genome assembly, stress resistance, structural variations
INTRODUCTION
Rice is a main crop consumed by half the world’s population (Elert, 2014). As the population explosion intensifies and the climate change challenges, the contradiction between large population and food supply is severe day by day, so improving crop yield is urgently needed. In the world, Asian rice O. sativa and African rice Oryza glabarrima were the common cultivated rice. During the long-term human selection, desirable agronomic traits including bigger seeds, lodging-resistant, and high yield were bred. However, the continuous selection also resulted in decreasing genetic diversity (Sun et al., 2001b; Meyer and Purugganan, 2013), which may be the inadequacy of facing climate change. Fortunately, there were more than twenty wild rice distributed in the world, which displayed abundant geographical, morphological, physiological and genetic diversity (Vaughan et al., 2008).
With the application of sequencing technologies, genome sequences of many species have been decoded. The cultivated rice O. sativa was the first crop to assemble the genome sequence, which supplied a useful foundation for functional study and breeding improvement (Yu et al., 2002). Next, more and more cultivated and wild rice were assembled using short-read sequencing and long-read sequencing (Chen et al., 2013; Wang et al., 2014; Wang et al., 2018; Choi et al., 2020; Kou et al., 2020; Li et al., 2021; Panibe et al., 2021; Qin et al., 2021; Zhang et al., 2022), which was helpful for comparative genomics, evolution analysis and variation identification. Genomic variations, including single nucleotide polymorphisms (SNPs, = 1 bp), insertion-deletion (InDels, ≤ 50 bp), and structural variations (SVs > 50 bp), are an important source of genetic diversity in species (Huang et al., 2012; Hollister, 2014; Sun et al., 2018b). Among them, structural variation, including insertion, deletion, inversion, copy number variation and some more complex variants, is a major driving force for the evolution of species, and plays a crucial biological role in rice phenotypic variation (Sun et al., 2018b; Yang et al., 2019a; Ho et al., 2020; Hollox et al., 2022).
The Oryza genus includes cultivated rice and wild rice species, Cultivated rice (two species O. sativa and O. glaberrima) is domesticated from wild rice species (22 species, including O. rufipogon, etc.), and during the domestication process, the diversity of cultivated rice morphological traits is reduced by 40% compared to wild rice species (Xie et al., 2009a; Wang et al., 2014). In addition, the domestication process of rice leads to the loss of several genes associated with biotic and abiotic stress (Xie et al., 2009a). In recent years, many rice disease resistance and stress tolerance genes have been found in wild rice, including genes associated with cold tolerance, insect resistance and other resistance genes (Sun et al., 2001a; Zhang et al., 2006; Huang et al., 2012; Mao et al., 2015; Zhao et al., 2016). Wild rice resources in China are very abundant and widely distributed in central and southern China. Dongxiang wild rice (hereafter DXWR), a wild rice O. rufipogon discovered in 1978 in Dongxiang County, Jiangxi Province of China, is thought to be the northernmost distribution (28°14′N latitude and 116°30′E longitude) of any wild rice species (N 28°14′) (Xie et al., 2009b). DXWR is rich in genetic diversity and is a potential source of many genes associated with high yield, hardiness and drought resistance, disease and insect resistance, and cytoplasmic male sterility. The distribution of DXWR was sharply reduced in recent decades. Therefore, DXWR was classified by the Chinese government as the second class of wild relative to food crop for protection. Despite its importance, no reference genome for DXWR has been published to date.
In this study, a high-quality chromosome-level DXWR genome using Nanopore long-read sequencing technology and Hi-C technology was obtained. Comparative genomics and structural variation revealed the reason of DXWR characters, which showed strong resistance to disease and cold. Our reference genome will lay a solid foundation for the molecular breeding of cultivated rice, and develop improved phenotypic rice with high yield, disease resistance and stress resistance.
MATERIALS AND METHODS
Plant materials and high-throughput sequencing
DXWR sequenced in this study (O. rufipogon Griff.) was planted in the greenhouse of Jiangxi Key Laboratory of Crop Growth and Development Regulation with normal growth conditions. Young leaves (2 cm × 0.3 cm) were collected and immediately frozen in liquid nitrogen, then stored at −80°C. The total genomic DNA from young leaves was extracted using CTAB method (Doyle, 1987). For Illumina DNA paired end (PE) sequencing, library with insert size of 400 bp was constructed by Illumina TruSeq Nano DNA Library Prep Kit and sequenced on Navoseq 6000 instrument (Illumina, San Diego, United States). For Nanopore sequencing, approximately 10 µg of gDNA was size-selected (10–50 kb) and processed using the Ligation sequencing 1D kit (SQK-LSK109, ONT, United Kingdom) according to the manufacturer’s instructions to construct a Nanopore library, and then the library was sequenced on a PromethION sequencer (ONT, United Kingdom) at the Genome Center of Nextomics (Wuhan, China). For Hi-C experiment, the young leaves were fixed with 1% formaldehyde to induce cross-linking (Sigma), and then were lysed and formed the cohesive ends by restriction endonuclease DPN II (NEB). The digested DNA was blunt-ended by filling nucleotides by Klenow enzyme (NEB) with biotin-14-dATP (Invitrogen), then ligated by T4 DNA ligase (NEB). After incubating overnight to reverse cross-links, the ligated DNA was sheared into 300- to 600-bp fragments. The DNA fragments were blunt-end repaired and A-tailed, followed by purification through biotin–streptavidin-mediated pulldown. Finally, Hi-C library was sequenced on Illumina NovaSeq 6000 platform.
Estimation of genome size and genome assembly
The Illumina PE reads were filtered and used to estimate the genome size and heterozygosity. K-mers were counted with Jellyfish (Kingsford, 2011), and then analyzed with skew normal distribution model and negative binomial model by FindGSE (Sun et al., 2018a) and GenomeScope (Vurture et al., 2017), respectively.
The Nanopore reads with mean quality score more than seven were retained and corrected by NextDenovo (https://github.com/Nextomics/NextDenovo) with specific parameters (read_cutoff = 1k,seed_cutoff = 42k). The corrected reads were assembled into contigs by smartdenvo (-k 17 -J 4000 -d dmo) (Liu et al., 2020a). To acquire more accurate genome, three rounds of correction were performed to the assembled contigs using Racon (Vaser et al., 2017) with nanopore long reads and another four rounds to the corrected genome were applied using NextPolish (Hu et al., 2020) with Illumina short reads.
The qualified Hi-C reads were aligned to the draft genome obtained from the previous step using bowtie2 (v2.3.2) with end-to-end model (-very-sensitive -L 30) (Langmead and Salzberg, 2012). Only the reads that both ends could be uniquely mapped to the draft genome were used in further analysis. Then LACHESIS 14 (https://github.com/shendurelab/LACHESIS) (Burton et al., 2013) according to the agglomerative hierarchical clustering algorithm was used to cluster contigs. The cross-linked maps were visualized and manually checked using Juicebox. Benchmarking Universal Single-Copy Orthologs (BUSCO v3.0.1) (Seppey et al., 2019) and Core Eukaryotic Genes Mapping Approach (CEGMA) (Parra et al., 2007) was used to evaluate the completeness of the assembled genome. Moreover, Illumina PE reads were mapped to the assembled genome using BWA to assess the accuracy. Then single-nucleotide polymorphisms (SNPs) and Indels were called and filtered using SAMtools and bcftools (Li et al., 2009).
Repeat and non-coding RNA identification
The repeat sequence can be classified as Tandem repeats (TRs) and transposable elements (TEs). TRs were annotated using GMATA (Wang and Wang, 2016) and Tandem Repeats Finder (TRF) (Benson, 1999). A repeat library for DXWR was constructed with the combination of TE.lib, RepMod.lib, and Repbase (Jurka et al., 2005). TE.lib was generated using MITE-hunter (Han and Wessler, 2010), LTR_finder (Xu and Wang, 2007), LTRharverst, and LTR_retriver (Ou and Jiang, 2018); RepMod.lib, a de novo repeat library, was generated using RepeatModeler. Then TEs were identified using RepeatMasker (v4.0.6) based on the combined repeat library (Bedell et al., 2000). Finally results of TRs and TEs were merged together.
Additionally, non-coding RNAs were also identified. snRNA and miRNA were obtained using Infernal based on the Rfam (v11.0) database (Griffiths-Jones et al., 2005). rRNA and tRNA were detected by BLAST and tRNAscan-SE (v1.3.1). Then the rRNA and subunits were predicted by RNAmmer (v1.2) (Lagesen et al., 2007).
Gene prediction and annotation
Gene models were constructed by three methods, ab initio prediction, homology-based prediction and RNA-seq-assisted prediction. For the ab initio prediction, Augustus (v3.3.1) was used for the de novo-based gene prediction with default parameters (Stanke et al., 2006). Meanwhile, proteins of five species (Oryza brachyantha, O. rufipogon, Oryza longistaminata, Zea mays, and Setaria italica) were used for homology-based prediction through GeMoMa (v1.5.3) with default parameters (Keilwagen et al., 2019). Then, PASA (v2.0.2) was used for the RNAseq-based method of gene prediction, and the RNAseq data was downloaded from NCBI (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73181, SRA number, SRP063832) (Haas et al., 2003). Finally, the results from the three approaches were integrated using EVidenceModeler (EVM v1.1.1) to get the raw gene set (Haas et al., 2008). To obtain precise gene set, genes including transposable elements were filtered with TransposonPSI software (http://transposonpsi.sourceforge.net).
Functional annotation of predicted genes was obtained using two strategies. Firstly, those predicted protein sequences were aligned to SwissProt protein database using Blastp with the best match parameter. The involved pathways of predicted sequences were extracted from the KEGG Automatic Annotation Server (v2.1). Then the annotation of motifs and domains were performed using InterProScan (v5.32–71.0) to search against opening databases including Pfam, ProDom, PRINTS, PANTHER, SMRT, and PROSITE (Blum et al., 2021).
Whole genome duplication analysis
To analyze the WGD events among DXWR, O. brachyantha, Z. mays, O. sativa, Triticum aestivum and Arabidopsis thaliana, their protein sequences were aligned against themselves with Blastp (E-value ≤ 1e−10) to acquire conserved paralogs in each species. Then, the respective collinear blocks of these species were identified with MCScanX. Finally, potential WGD events in each genome were evaluated based on their 4DTv (Kimura, 1980) and Ks distribution (Blanc and Wolfe, 2004).
Evolution analyses
The nucleotide and amino acid sequences of nine species (O. brachyantha, O. rufipogon, Z. mays, S. italica, O. sativa, T. aestivum, Brachypodium distachyon, Oryza meyeriana var. Granulata and A. thaliana) were downloaded. All-to-all BLASTP with an E-value threshold of 1e-5 was applied to determine the similarities between protein sequences for all the species, and genes were classified into orthologues, paralogues and single copy orthologues (only one gene in each species) using OrthoMCL (v2.0.9) (Li et al., 2003). For the genes of unique family, the GO and KEGG enrichment analysis were performed to reveal the function of these unique genes.
Molecular phylogenetic analysis was conducted using all the single copy orthologues genes, and each gene family for multiple sequence alignment used Mafft (Katoh and Standley, 2013) and curated the alignments with Gblocks v0.91b (Castresana, 2000). The phylogenetic tree was built based on the PROTGAMMAAUTO model and a bootstrap of 1,000 by RAxML (v 8.2.11) (Stamatakis, 2006). A. thaliana was set as the outgroup. MCMCTREE in PAML v4.9e was used to estimate the divergence times (Yang, 2007). Two fossil calibration times were obtained from the TimeTree database (http://www.timetree.org/), including divergence times of 147.97–172.96 Mya and 9.89–21.38 Mya.
Comparative transcriptome analysis
Transcriptome datasets under normal and cold treatment were downloaded from NCBI (accessions:SRP026336) (Shen et al., 2014). NGSQC Toolkit (Patel and Jain, 2012) was used to remove the adapter sequences and low quality sequence reads. Clean reads were aligned with the reference genome DXWR by Hisat2 v2.0.5 (Kim et al., 2015). FeatureCount (Liao et al., 2014) was used to calculate the read count. Differentially expressed genes (DEGs) was identified with the thresholds |log2(FoldChange)| > 1 and padj <0.005 by edgeR.
SV calling and collinear analysis
To investigate the structure variations among the wide and cultivated rice, minimap2 (Li, 2021) was selected for alignment and Smartie-sv pipeline (https://github.com/zeeev/smartiesv) was used to call SVs (Kronenberg et al., 2018). Collinear analysis among different genomes was analyzed using MCScanX (Wang et al., 2012). For verification with single chromosome, MUMmer (Kurtz et al., 2004) was used to display the detail information.
RESULTS
Genome sequencing and assembly
To obtain a high-quality genome assembly for DXWR (Figure 1), three methods including Illumina short read sequencing, Nanopore long read sequencing and Hi-C chromosome conformation capture were used. After filtering, a total of 18.65 Gb clean PE reads (∼45x) were yielded for genome survey and correction, 58.41 Gb Nanopore long reads (∼140x) with reads N50 of 33.36 kb were obtained for genome assembly, and 44.58 Gb clean Hi-C reads (∼108x) were used for chromosome construction (Supplementary Table S1). The genome size was surveyed with FindGSE and GenomeScope based on Illumina PE reads, and the predicted size ranged from 374.82 to 421.16 Mb. The heterozygous and repeat rate were 0.5% and 35%, respectively (Supplementary Figure S1; Supplementary Table S2).
[image: Figure 1]FIGURE 1 | The plants (A) and seeds (B) of DXWR.
For genome assembly, the corrected nanopore reads were assembled into 233 contigs with 414.59Mb, and the contig N50 size was 5.17 Mb. Further, the polished genome sequences were aligned to the NT database, and two contigs with a total of 1,126,901 bp were filtered out as mitochondrion and chloroplast genomes. Therefore, the final assembly for nuclear genome was 413.46 Mb with 231 contigs and the contig N50 was 5.18 Mb (Table 1), which was very close to the predicted genome size.
TABLE 1 | Genome assembly statistics and post-processing of Dongxiang wild rice.
[image: Table 1]After mapping, 62,511,242 valid paired reads were used for Hi-C scaffolding analysis, and the assembled 231 contigs were clustered into 12 groups, which were further ordered and oriented into chromosomes. And 97.39% (402,670,344 bp) of the total contig bases (413,462,892 bp) were reliably anchored to the 12 chromosomes (Figure 2A). Finally, the nuclear genome size was 413,480,492 bp with a scaffold N50 of 33.49 Mb (Figure 2B; Table 1).
[image: Figure 2]FIGURE 2 | Genome assembly of DXWR. (A) The genome contig contact matrix. The blocks indicated the contacts between linkage groups, color depth indicated the degree of contacts. (B) Circos plot of genomic features. The tracks from the outermost to innermost are: chromosome, gene density, repeat density, GC content, collinear genes of DXWR. (C,D) Verification of genome integrality based on the BUSCO and CEGMA.
To evaluate the completeness genome of the nuclear genome, BUSCO v3.0.1 was performed by using embryophyta_odb10 database with default parameters to search single-copy orthologs genes. Approximately 98.25% of the orthologs genes were found in the assembly (Figure 2C; Supplementary Table S3). Meanwhile, Core Eukaryotic Genes Mapping Approach (CEGMA) was also used, and a total of 245 core genes were identified, which was 98.79% of the eukaryotic core genes (the complete set was 248) (Figure 2D). These results showed that the genome assembly of DXWR was highly complete and robust. Moreover, the accuracy was checked by the SNPs and Indels which were detected from alignment with the nuclear genome. Finally, A total of 3,269 homozygous SNPs (0.000233% of the assembled genome) and 964 homozygous Indels (0.000343% of the assembled genome) were identified with more than ×10 sequencing depth. The accuracy of the assembled genome was up to 99.999%, which suggested the high accuracy of the assembly.
Genome annotation
Overall, 54.10% in the DXWR genome (223,689,067 bp) were identified as repetitive sequences. Among all the repeat elements, transposable elements (TEs) were the main types, accounting for 51.67% (213,636,330 bp). In terms of TEs, the dominant type was DNA transposon, but the longest total length was long terminal repeat (LTR), with the ratio up to 29.71% (122,836,029 bp) of the genome (Figures 3A,B; Supplementary Table S4). For non-coding RNAs, a total of 222 rRNA, 1,839 small RNA, and 683 tRNA were identified (Figure 3C; Supplementary Table S5). For protein-coding genes, the results of three methods were merged, and finally 35,942 protein-coding genes were predicted, with an average CDS length of 1,128.28 bp and an average exons number of 4.63 for each gene. To check the completeness of the genome annotation, BUSCO v3.0.1 was also used with default parameters. The results showed that 96.80% of the orthologs genes were found in DXWR annotated gene set (Supplementary Table S3), indicating most conserved genes of DXWR were predicted completely. To better understand the function of predicted genes, a variety of databases were used. In total, 33,862 (94.21%) genes were successfully assigned to at least one public functional database. Specifically, 90.94%, 65.84%, 42.18%, 40.3%, 26.46% of the total genes were mapped into the NR, Swissprot, KOG, GO and KEGG databases, respectively (Figure 3D; Supplementary Table S6). And 5,035 (14.01%) genes were annotated simultaneously by these five databases.
[image: Figure 3]FIGURE 3 | Genome annotation of DXWR. (A) The proportion of repeat classes in the total number of annotated repeats. (B) The proportion of repeat classes in the total length of annotated repeats. (C) The Number and average length of Non-coding RNAs. (D) The gene numbers annotated by public databases.
Comparative genomics and evolutionary analysis
The protein sequences of DXWR and nine species were selected for comparative genomics analysis, and 2,471 single copy orthologues genes were identified among them (Figure 4A). For unique genes, the number ranged from 1,396 to 16,480 in these species, and there were 4,741 unique genes in the genome of DXWR. Then GO and KEGG enrichment analysis was used to predict the function of these unique genes, and the results showed that hydrolase activity, polysaccharide binding and kinase activity were enriched terms in the molecular function category, whereas the terms including defense response and recognition of pollen in the biological process category were highly enriched. Meanwhile, KEGG enrichment analysis showed that plant-pathogen interaction and plant hormone signal transduction pathways were the significantly enriched ones. It suggested that DXWR could resist against various biotic and abiotic stresses, which would be an invaluable gene pool for the genetic improvement of modern rice cultivars.
[image: Figure 4]FIGURE 4 | Comparative genomics and evolutionary analysis. (A) The orthologues genes and specific genes of ten species. (B) Phylogenetic relationship and expanded/contracted gene families. (C) KEGG enrichment results of the expanded gene families. (D,E) 4DTv and Ks distribution.
For evolution analysis, 2,471 single copy orthologues genes were used to construct the phylogenetic tree with Arabidopsis as the outgroup. It was obvious that O. sativa and W1943 were the most closely relative of DXWR. According to the gene families and phylogenetic tree (Figure 4B), 2,355 expanded gene families and 3,880 contracted gene families were identified in the genome of DXWR. The KEGG enrichment analysis of the expanded gene families revealed that plant-pathogen interaction, phenylpropanoid biosynthesis, starch and sucrose metabolism were the most enriched pathways (Figure 4C). As to contracted gene families, response to oxidative stress, peroxidase activity and aminoacyl-tRNA ligase activity terms were enriched.
Whole Genome Duplication is an important event in the history of biological evolution, which has great significance in the origin of species and the expansion of genomes, therefore, we investigated the WGD event in DXWR by comparing with other five symbolic species. And the results of 4DTv and Ks distribution (Supplementary Table S7) suggested that DXWR experienced two recent WGD events, just like its close relative O. brachyantha and O. sativa (Figures 4D,E).
Comparative analysis of differentially expressed genes
To investigate expression changes under cold stress in DXWR, RNA-seq data from normal and cold treatment was compared. In total, 1801 DEGs were determined with the thresholds |log2(FoldChange)| > 1 and padj <0.005, among them, 1,072 DEGs were up-regulated and 729 DEGs were down-regulated. The KEGG enrichment of DEGs showed that they gathered in the process of photosynthesis, carbon metabolism, glyoxylate and dicarboxylate metabolism, biosynthesis of amino acids, pentose phosphate pathway, carotenoid biosynthesis and linoleic acid metabolism. Moreover, 43 DEGs were overlapped with contracted genes, while 340 DEGs were determined in expanded gene families of DXWR (Supplementary Table S8), which would be candidate genes for DXWR to enhance the cold resistance. Actually, there were a number of genes that had been verified as cold-response genes, like potassium transporter 1, sugar transport protein MST6-like, calmodulin-like protein 5, glycerophosphodiester phosphodiesterase GDPDL3-like, polyol transporter 5, CBL-interacting protein kinase 5, protein NRT1/PTR FAMILY 6.2 and so on.
Structural variation and collinear analysis
SVs are a major source of genetic diversity (Hollister, 2014; Wang et al., 2018; Ho et al., 2020). In order to understand the structural variation of DXWR, we conducted a collinearity analysis of ten species of Oryza including DXWR (Figure 5A). The genome sequences of the Oryza genus had relatively high collinearity. Compared with the other nine Oryza species, DXWR and Nipponbare had a nearly 6 Mb inversion on chromosome 6 (Figure 5A).
[image: Figure 5]FIGURE 5 | The genomic variations of DXWR. (A) Synteny analysis of genes in ten crops of Oryza genus. (B) The structure variation of DXWR and Nipponbare and W1943. The results of GO enrichment (C) and KEGG enrichment (D) analysis of genes involved in inversion in DXWR.
Using wild rice DXWR as a reference genome, we aligned cultivated rice Nipponbare (O. sativa) and wild rice W1943 (O. rufipogon) genomes with DXWR genomes, respectively. As a result, DXWR had more collinear regions and longer collinear lengths with W1943 (Figure 4B). Insertion and deletion accounted for the majority of structural variants, whereas inversion proportion was the least one (Figure 5B). At the same time, we found SNPs and SVs between DXWR and W1943 were less than those of DXWR and Nipponbare, which was consistent with the evolutionary relationship of the three, that is, DXWR and W1943 were more closely related, and more distantly related to cultivated rice (Figure 4B).
Chromosomal inversion is a structural variation that often contributes significantly to evolution, and its appearance is often related to biological processes such as biological adaptive phenotype and differentiation (Arostegui et al., 2019; Wellenreuther et al., 2019). Compared with the cultivated rice Nipponbare, it was discovered that there are 154 inversion regions in DXWR, of which 105 inversion fragments contained 1,061 genes (Supplementary Table S9). These genes were unevenly distributed on 12 chromosomes, among which chromosome 6 and chromosome 11 had the most genes, 284 and 268 respectively. GO enrichment analysis of these 1,061 genes revealed that these genes were associated with denfense response to fungus (Figure 5C), while KEGG enrichment analysis found that these genes were connected to fatty acid metabolism, such as fatty acid degradation and Biosynthesis of unsaturated fatty acids (Figure 5D). This was similar to the enrichment analysis results of DXWR expansion genes, which were also related to plant-pathogen interactions and fatty acid metabolism.
There are three inversions larger than 500 kb in chromosome 11 of DXWR (Chr11: 12,364,796–13,088,674, Chr11: 13,518,190–14,923,590, Chr11: 24,597,628–26,486,542). Compared with the other two wild rice (O. rufipogon) and other Oryza rice, these three inversions existed specifically in DXWR (Figure 5A), which may be one of the reasons for the differentiation of DXWR. We verified the authenticity of these three inversions using Hi-C data. The Hi-C data of DXWR was aligned to the genomes of W1943 and Nipponbare, respectively. The heat map signal can clearly find that the inversion occurred at the corresponding position of chromosome 11 of W1943 and Nipponbare, confirming the authenticity of the inversions of the corresponding position of chromosome 11 (Figure 6). The longest inversion (Chr11: 24,597,628–26,486,542) of the three inversions was 1,888,914 bp in length and involved a total of 176 genes. The enrichment analysis of these genes found that the main functions described defense response to fungus, ADP binding and linoleic acid metabolism. There are six genes (evm.model.Contig 25.47–51 and evm.model.Contig 25.99) related to defense response to fungus in this inversion region, of which the first five are tandem genes, and these five genes are all related to defense response to bacterium. At the same time, unsaturated fatty acids can enhance the cold resistance of plants, so this inversion may be related to the disease and cold resistance of DXWR. Colinearity analysis of ten varieties from Oryza genera showed that the SV in Chr11 existed only in DXWR (Supplementary Figure S2). Then we compared this area in detail. We performed collinearity analysis on W1943 (Chr11: 20.88–23.27 Mb), DXWR (Chr11: 24.06–27.26 Mb) and IRGC106162 (Chr11: 24.14–23.26.83 Mb) and confirmed that this SV existed alone in DXWR and absent in W1943 and IRGC106162 (Supplementary Figure S3).
[image: Figure 6]FIGURE 6 | The inversions between DXWR and Nipponbare and W1943 supported by Hi-C contact maps.
DISCUSSION
Wild rice is usually regarded as abundant resource for holding genetic diversity, excellent agronomic traits and resistance against stresses (Xu et al., 2011; Zhao et al., 2018). DXWR is a common wild rice located at the northernmost of O. rufipogon species. To better understand and exploit the characteristic of DXWR, sequencing the genome is a convenient and effective way, which will provide all the genetic information. In this study, a chromosome-level genome of DXWR was assembled using nanopore long reads and high-through chromatin conformation capture (Hi-C) technology, which could overcome issue of heterozygosity and high repeat rate. After primary assembly, more than 97% of the total contig bases (413,462,892 bp) were correctly anchored into 12 chromosomes. The final nuclear genome was 413.48 Mb with a scaffold N50 of 33.49 Mb, which was a little larger than other published rice genome, and not only DXWR, it was noted that generally the genome size of O. rufipogon varieties was larger (Shang et al., 2022), which was caused by higher repeat rates, especially the transposon expansion. Moreover, both BUSCO and CEGMA assessment verified the completeness of the genome, and the high accuracy of the genome was also affirmed by alignment using short reads. For protein-coding genes, a high annotation rate was observed, up to 94.21% genes could be annotated by public functional databases. The high-quality genome and annotation could supply valuable resources for comparative genomics, evolution analysis and genetic breeding of rice.
Based on the high-quality genome assembly, DXWR was compared with other species to understand its character. According to the enrichment analysis of unique genes and expanded gene families, it was noted that plant-pathogen interaction, phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction pathways were significantly enriched. The plant-pathogen interaction and defense response would help DXWR survive under biotic stress (Kushalappa and Gunnaiah, 2013). Phenylpropanoid which was a rich source of secondary metabolites in plants, together with plant hormone, played important roles in plant growth, development, and defense (Desmedt et al., 2021; Dong and Lin, 2021). Moreover, starch and sucrose metabolism was the vital pathway in the process of rice grain filling, which could finally affect the yield (Fan et al., 2019; Jiang et al., 2021; Mathan et al., 2021). All these information indicated that DXWR probably had superior disease-resistance and starch synthesis ability.
Like other stress-responsive traits, the cold resistance characteristics of plants are affected by multiple factors and are also controlled by genetics (Xu and Cai, 2014; Fang et al., 2017). As we know, cold resistance is related to the content of unsaturated fatty acids in plants. The increase of unsaturated fatty acids in membrane lipids will reduce the temperature of phase transition of membrane lipids, so the cold resistance of plants can be improved by increasing the degree of unsaturation of fatty acids (Khodakovskaya et al., 2006; Matteucci et al., 2011; Soria-Garci et al., 2019). Overexpression of the chloroplast omega-3 fatty acid desaturase gene (LeFAD7) in tomato (Lycopersicon esculentum Mill.) can increase the content of unsaturated fatty acids and enhance the resistance to low temperature stress (Liu et al., 2008). Overexpression chloroplast ω- 3 fatty acid desaturase gene can also enhance the cold tolerance of transgenic tobacco (Khodakovskaya et al., 2006). The increase of small molecular substances and soluble substances is one of the cold resistance responses of plants, and plants with strong cold resistance will accumulate more soluble sugars (Wei et al., 2017; Zhao et al., 2019; Liu et al., 2021). These soluble sugars have a certain protective effect on preventing protein denaturation after dehydration, and intercellular sugars will alleviate low temperature damage by affecting the growth of ice crystals. Liang et al. (2021) reported that the increasing of soluble sugar in grapes can enhance the cold resistance of grapes. DXWR is the wild rice with the most northward distribution and the strongest cold resistance discovered so far. It can resist low temperature and cold wave for a long time in the seedling and heading stage. Analysis of its genome and comparative transcriptome under normal and cold treatment found that genes related to phenylpropanoid biosynthesis, linoleic acid metabolism and starch and sucrose metabolism were significantly expanded and differentially expressed in DXWR, which may promote the cold resistance of DXWR. The discovery of cold resistance-related genes in wild rice is of great significance for understanding the cold resistance mechanism of wild rice and cultivating strong cold resistance rice varieties.
SNPs have long been considered to be a significant component of genetic variation, but now there is increasing evidence that structural variation is also an important part of genetic variation (Alonge et al., 2020; Liu et al., 2020b; Qin et al., 2021). Structural variation may have the addition or deletion of DNA information, such as insertion, deletion, or duplication, but it may not lead to the increase or deletion of DNA information, such as inversion, transposition in an individual (Fu et al., 2016; Yang et al., 2019b). SVs are a key and pervasive force driving genetic diversity and contribute to important agronomic traits in crops (Yang et al., 2019a; Yang et al., 2019b). In tomato, SV has been shown to relate with fruit size and flavor, disease response, and the plant’s ability to detect pathogens (Jobson and Roberts, 2022). Copy number variants (CNVs), one important type of SV, has been shown to play an important role in the adaptive response of plants, by regulating development, and by increasing resistance to biotic and abiotic stresses (Francia et al., 2015). SVs in maize, sorghum and rice have been shown to be associated with plant disease resistance, and stress responsive genes in soybeans have also found related with SVs (Saxena et al., 2014). Published studies have shown that SVs play an important role in the domestication of rice from wild rice to cultivated rice, and peaks of SV divergence were concentrated in genes associated with domestication (Kou et al., 2020). The appearance of inversion is often related to evolution and biological processes, such as biological adaptive phenotypes and differentiation. In the chromosome 11 of DXWR, there was an inversion region close to 2 Mb, which is consistent with the results obtained by Mao et al. (2015) using SLAF marker. Compared with the other nine Oryza genus plants, this inversion was specific to DXWR and this region was related to 176 genes. The enrichment analysis showed that these genes were closely related to defense response to fungus and linoleic acid metabolism, which may be the reason for the differentiation and characteristics of DXWR.
CONCLUSION
In this research, a high-quality chromosome-level genome of wild rice DXWR was obtained using Nanopore sequencing and Hi-C technology, which could provide elaborate genomic information for evolution and genetic breeding. Here the comparative genomics and transcriptomics analysis had indicated that DXWR probably had superior disease and cold resistance. Moreover, when compared to other cultivated rice, DXWR exhibited certain distinct inversions. These inversions were also connected to defense response to biotic stress and may be responsible for the characteristics of DXWR. Overall, the genome assembly of DXWR would help us to better understand and utilize the characteristic of this wild rice, which is critical for future genetic breeding in this crop.
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Temporal transcriptome of tomato elucidates the signaling pathways of induced systemic resistance and systemic acquired resistance activated by Chaetomium globosum
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C. globosum is an endophytic fungus, which is recorded effective against several fungal and bacterial diseases in plants. The exclusively induce defense as mechanism of biocontrol for C. globosum against phyto-pathogens is reported. Our pervious study states the effectiveness of induced defense by C. globosum (Cg), in tomato against Alternaria solani. In this study the temporal transcriptome analysis of tomato plants after treatment with C. globosum was performed for time points at 0 hpCi, 12 hpCi, 24 hpCi and 96 phCi. The temporal expression analysis of genes belonging to defense signaling pathways indicates the maximum expression of genes at 12 h post Cg inoculation. The sequential progression in JA signaling pathway is marked by upregulation of downstream genes (Solyc10g011660, Solyc01g005440) of JA signaling at 24 hpCi and continued to express at same level upto 96 hpCi. However, the NPR1 (Solyc07g040690), the key regulator of SA signaling is activated at 12 h and repressed in later stages. The sequential expression of phenylpropanoid pathway genes (Solyc09g007920, Solyc12g011330, Solyc05g047530) marks the activation of pathway with course of time after Cg treatment that results in lignin formation. The plant defense signaling progresses in sequential manner with time course after Cg treatment. The results revealed the involvement of signaling pathways of ISR and SAR in systemic resistance induced by Cg in tomato, but with temporal variation.
Keywords: tomato, Chaetomium globosum, biocontrol agent, Alternaria solani, defense
INTRODUCTION
Tomato (Solanum lycopersicum) is highly nutritive vegetable crop plant of immense economic importance which shares 15% of total vegetables produced worldwide. India is the second largest producer in the world with 19.7 million metric tons production from 809 (‘000) hectares land (Gupta et al., 2022). The tomato crop is infested by several pathogens that lead to severe losses in production. The fungal diseases such as late blight, early blight, Fusarium wilt, Verticillium wilt, White mold, Anthracnose and Septoria leaf spot cause major damage followed by bacterial diseases such as bacterial wilt and bacterial leaf spot (Panno et al., 2021). The viral diseases such as tomato mosaic disease and tomato leaf curl disease also cause severe losses (Nagendran et al., 2019).
C. globosum is a biocontrol fungus which is reported to be effective against various pathogens such as A. solani in tomato (early blight) (Singh et al., 2021), Alternaria alertnata in tomato (leaf spot) (Fayyadh and Yousif, 2019), Fusarium oxysporum f.sp. lycopersici in tomato (F. wilt) (Madbouly et al., 2017), Bipolaris sorokiniana in wheat (spot blotch) (Aggarwal et al., 2004; Aggarwal et al., 2011), Phytophthora infestans in potato (late blight) (Shanthiyaa et al., 2013) and Fusarium graminearum in potato (dry rot) (Jiang et al., 2017). C. globosum belongs to a saprophytic genus Chaetomium and family Chaetomiaceae of Ascomycota. Of the more than 300 species of Chaetomium described to date, C. globosum is the most frequently isolated and inhabits the widest range of environments (Domsch et al., 2007). The fungus has been reported to be a potential antagonist of various soil borne and seed borne plant pathogens. C. globosum mycoparasitizes the pathogen and produces antifungal metabolites which suppress the growth of pathogenic fungi (Aggarwal et al., 2013). The mechanism of antifungal action of the biocontrol fungi has been reported mainly through antibiosis (Pan et al., 2016; Li et al., 2016) and mycoparasitism (Moya et al., 2016; Aggarwal et al., 2015). Although a number of reports are available on mycoparastism and antibiosis mechanism of C. globosum against a number of plant pathogenic fungi, but very few studies to date report the role of the induced resistance component of C. globosum for disease management. It is also reported that C. globosum and its metabolites has ability to induce host defense against tan spot in wheat caused by Pyrenophora tritici-repentis (Istifadah et al., 2006). The recent studies state that C. globosum induces defense mechanism in tomato plant which reduces the disease establishment by A. solani (Singh et al., 2021). To gain insights into the potential induced defense mechanism of C. globosum in tomato, temporal transcriptome of plants treated with C. globosum Cg-2 (virulent isolate) is performed in this study. Temporal transcriptome profile was validated by expression analysis of differentially expressed genes of defense induced hormone signaling pathways by using real time reverse transcriptase PCR (qRT-PCR).
MATERIALS AND METHODS
Plant material and fungal cultures
The seeds of Pusa Rohini variety of tomato were obtained from vegetable seed production unit of ICAR-Indian Agricultural Research Institute, New Delhi. The C. globosum (Cg-2) previously isolated from wheat fields of ICAR-Indian Agricultural Research Institute, New Delhi (Aggarwal et al., 2013) was maintained on Potato Dextrose Agar (PDA) in our laboratory in 16-h light and 8 h dark.
Plant growth and biocontrol treatment
The tomato seed weighing 5 g were surface sterilized by dipping in 1% (v/v) sodium hypochloride solution for 1 min and subsequent double washing with distilled water. The air-dried seeds were sown in 14-inch sterilized sand soil (3:1) as nursery and 3 weeks old seedlings were transplanted in 6-inch pots in a polyhouse.
The C. globosum (Cg-2) inoculum was prepared by mass multiplication on sorghum grains (Niranjana et al., 2009). The overnight soaked sorghum grains were dried and autoclaved in volumetric flasks for 15 min at 121°C to sterilize the material. The volumetric flask filled with grains was inoculated with a mycelial disc of 7-day-old culture of Cg-2 and placed at 25 ± 2°C (Supplementary Figures S1A,B). The sorghum grains turned black due to Cg-2 spores’ mass and were grounded to prepare spore suspension (Supplementary Figure S1C). The plants were drenched with 100 ml ascospore suspension (1 × 106 spores/ml) of C. globosum at 3–4 leaf stage and control plants were mocked with distilled water (Supplementary Figure S1D). The leaf samples were taken from control plants and from biocontrol treated plants at five different time points after drenching with C. globosum at 6 h post Cg inoculation (hpCi), 12hpCi, 24 hpCi, 48hpCi and 96 hpCi with three replicates for each. The leaf samples were wrapped in silver foil and immediately dipped into liquid nitrogen. The samples were stored at −80°C for storage for long time.
RNA extraction
The total RNA was isolated from the six plant samples with two replications (control plants; biocontrol treated plants with five-time intervals) using trizol (TRI reagent, Molecular Research Centre, OH, United States) following the manufacturer’s guidelines. Leaf sample was grounded in pestle-mortar using liquid nitrogen, transferred to 1.5 ml eppendorf tube, homogenized with 1 ml trizol and kept at RT (room temp) for 5 min. Later, 200 µl of chloroform was added to each tube, after a quick vortex kept at RT for 10 min. The samples were phase separated by centrifuge at 12,000 rpm for 15 min (Eppendorf AG, Heidelberg, Germany) and the transparent aqueous phase at the top was transferred to new tube. A 500 µl isopropanol was added to each tube and incubated for 5 min at RT. The samples were centrifuged at 12,000 rpm for 10 min to obtain RNA pellet, followed by subsequent three washings with 75% ethanol (v/v) at 7500 rpm for 5 min. The tube containing RNA pellet was kept open for 30 min to evaporate residual ethanol. Then, pellet was dissolved in 40 µl of nuclease free water and incubated at 55°C in water bath. The RNA samples were quantified using NanoDrop (Thermo Fisher Scientific, Wilmington, NC, United States).
RNA sequencing
The RNA-sequencing (RNA Seq) was performed for control plants (mock treated with water) and three time points (12 hpi, 24 hpi and 96 hpi) post inoculation with Cg-2, taking two replicates for each sample and in total eight samples. The RNA seq paired end sequencing libraries were prepared from the isolated total RNA using Illumina TrueSeq stranded mRNA sample preparation kit (Illumina, San Diego, CA, United States). For this, mRNA was enriched from the total RNA using poly-T attached magnetic beads, followed by enzymatic fragmentation. The double standard cDNA samples were then purified using Ampure XP beads (New England Biolabs, Ipswich, MA, United States) followed by A-tailing, adapter ligation and then enriched by limited number of PCR cycles (Darshan et al., 2021). The effective concentration of the library was then precisely quantified using a qRT-PCR to ensure the library quality. The size of the purified library was measured on the Bioanalyzer 2100 using DNA 1000 Lab Chip. A library with an average size of more than 300 bp was taken for sequencing in an Illumina sequencing platform (HiSeqTM 2500) by Guangzhou Saizhe Biotechnology Co., Ltd. using Illumina HiSeq 151 × 2 paired end (PE) read technology (Meyer and Kircher, 2010; Singh et al., 2021).
DATA ANALYSIS
Bioinformatics analysis of RNA sequencing data
The quality of raw reads was checked by FastQC (version 0.11.8). The high-quality reads were mapped using Minimap (version 2.17) at default parameters against the reference genome of S. lycopersicum (Accession: PRJNA892457; ID: 892457).
Analysis of differentially expressed genes
The assembled reads were used to estimate gene expression, and the transcripts were quantified using the Cufflinks program module. The expression level of each of the genes was quantified by RNA-seq by expectation maximization (RSEM) tool (Li and Dewey, 2011) available at https://deweylab.biostat.wisc.edu/rsem/ in the form of fragments per kilobase of exon per million mapped reads (FPKM). The number of reads mapped to unigenes was calculated using SAMtools (version 0.1.19) for each sample. Differential analysis of 5 combinations (0 hpCi vs. 12 hpCi, 0 hpCi vs. 24 hpCi, 0 hpCi vs. 96 hpCi, 12 hpCi vs. 24 hpCi, 24 hpCi vs. 96 hpCi ) was carried out by using DESeq 2V 1.6.3 (https://support.bioconductor.org/packages/release/) with selected filters like p-values of 0.05 and log2FC. R package such as Cummerbund was performed to prepare heat maps (Goff et al., 2012), and hierarchical clustering was done using Euclidean correlation matrix. After DESeq analysis, ggplot2 was used to draw volcano plots (Wickham, 2016) with default parameters (Darshan et al., 2020).
Functional annotations of individual and combined unigenes of samples were performed by aligning those unigenes to the non-redundant (NR) protein database (version 36) of NCBI employing BLASTX v2.2.31+ (Suzuki et al., 2015) using a threshold E-value of 1 × e−3. The assembled contigs were then functionally annotated by a Blast2GO software V 3.0 (https://www.blast2go.com) (Conesa et al., 2005). Further, the predicted proteins were subjected to pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999) database to map the proteins involved in biochemical pathways (Wang et al., 2019; Singh et al., 2021).
Gene expression analysis by real time reverse transcriptase PCR
The transcriptomics data was validated by analyzing the expression of 10 candidate genes related to plant induced defense pathways by qRT-PCR. The expression analysis was performed for three time points (12 hpCi, 24 hpCi and 96 hpCi) after C. globosum treatment with 0 hpCi as control and each sample with six replicates (three biological replicates and two technical replicates). The RNA was isolated from leaf samples by trizol method as mentioned above. Then, cDNA was synthesized using Thermofisher Scientific Verso cDNA synthesis kit by taking a 2 μg of total RNA for each sample and following the manufacturer’s protocol. Each reaction of 20 µl was prepared with: 4 µl of a 5x cDNA synthesis buffer, 2 µl of a 20 mM dNTP mix, 1 µl of an anchored oligo dT (500 ng/μl), 1 µl of an RT enhancer, 1 µl of a verso enzyme mix, 2 μg of RNA template and volume make up to 20 μl with nuclease free water. After quick spin, PCR tubes were kept in thermocycler at 42°C for 45 min and reverse transcriptase enzyme was inactivated at 95°C for 2 min.
The qRT-PCR reaction mix were prepared for expression analysis of selected genes by using specific the primer pairs (Table 1), and SlEF (elongation factor gene) was used as reference gene (Rotenberg et al., 2006). The reaction consists of cDNA (1 µl), SYBR Green PCR master mix (12 µl), a forward primer-1pM (0.5 µl), a reverse primer-1 pM (0.5 µl) and distilled water to make up final volume of 20 µl. The PCR was performed with the following conditions: 94°C for 4 min and later 40 cycles of 94°C for 15 s, 57°C for 30 s, and at 70°C for 30 s. Relative gene expressions were calculated in terms of fold changes using the 2−ΔΔCt method.
TABLE 1 | The primer sequences for genes selected for qRT-PCR.
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Plant growth
The plant growth parameters showed statistically significant difference when treated with biocontrol agent Cg-2 on analysis with SPSS version 27.0. The biocontrol treated plants had better plant growth which was evident from 20.15% increase in plant height and 31.2% increase in plant root length as compared to control plants (Supplementary Table S1).
RNA-sequencing data statistics
The RNA sequencing was performed for eight tomato samples which included four time points after Cg-2 inoculation (control plant, 12hpCi, 24hpCi and 96 hpCi) and two replicates for each sample. RNA-seq data yielded an average of 19–20 million reads by using Illumina HiSeq 2000 mRNA sequencing platform with an average read length of 2000 bp. The mapping percentage with reference genome of S. lycopersicum ranged from 84%–90% (Table 2).
TABLE 2 | Statistics of RNA sequencing data for untreated plant, Cg-2 treated plant at 12 hpCi, 24 hpCi and 96 hpCi.
[image: Table 2]In silico functional analysis of differentially expressed genes induced by Cg-2 at 12 hpCi
In total, 22,473 specific differentially expressed genes (DEGs) were expressed in tomato at 12 h after Cg-2 inoculation as compared to control plants without Cg-2 treatment and among these 922 DEGs had fold change −2 to +2 and p < 0.05 (Figure 1A). Out of 922 DEGs, 61 DEGs were expressed exclusively in control plant (0 h), 80 DEGs at 12 hpCi and 781 DEGs were commonly expressed at 0 h and 12 hpCi (Figure 2A; Supplementary Table S2). The KEGG pathway analysis reveals that most of the DEGs belong to 10 KEGG pathways with maximum DEGs (i.e., 1370 DEGs) related to metabolic pathways, biosynthesis of secondary metabolites, ribosome, carbon metabolism, plant hormone signal transduction, biosynthesis of amino acids, plant-pathogen interaction, protein processing in endoplasmic reticulum, phenylpropanoid biosynthesis and MAPK signaling pathway in plant (Figure 3A; Supplementary Table S3). Gene Ontology (GO) classification indicated 1647 DEGs with 15 GO terms belong to cellular component category, 756 DEGs with 10 GO terms belong to molecular function category and 1113 DEGs with 20 terms belong to biological processes. The maximum DEGs belong to catalytic activity (324 DEGs), binding (338 DEGs), metabolic process (287 DEGs), cellular process (292 DEGs), response to stimulus (103 DEGs), biological regulation (100 DEGs) and transcription regulator activity (41 DEGs) (Figure 4A; Supplementary Table S4). The heat map depicts the important genes of metabolic processes, secondary metabolites biosynthesis and signaling pathways upregulated or downregulated at 24 hpCi (Figure 5A; Supplementary Table S5).
[image: Figure 1]FIGURE 1 | The volcano plot represents the significant genes above the threshold FDR and log (FC) in Cg-2 treated at (A) 0 h vs. 12 h (B) 0 h vs. 24 h (C) 0 h vs. 96 h.
[image: Figure 2]FIGURE 2 | Venn diagram showing the DEG expressed (A) exclusively in control plant, Cg2 treated plant at 12hpCi and mutually expressed in both conditions (B) exclusively in control plant, Cg2 treated plant at 24hpCi and mutually expressed in both conditions (C) exclusively in control plant, Cg2 treated plant at 96hpCi and mutually expressed in both conditions (fold change < −2 or > 2 and p < 0.05)
[image: Figure 3]FIGURE 3 | Column graph representing the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways at (A) 12 hpCi (B) 24 hpCi and (C) 96 hpCi in comparison to control (0hpCi) plants.
[image: Figure 4]FIGURE 4 | Bar graph depicting the number of upregulated DEGs belonging to different gene ontology (GO) categories at (A) 12 hpCi (B) 24 hpCi and (C) 96 hpCi in comparison to control (0hpCi) plants.
[image: Figure 5]FIGURE 5 | Heatmap displaying the change in expression pattern of genes in tomato plant at (A) 12 hpCi (B) 24 hpCi and (C) 96 hpCi in comparison to control (0hpCi) plants (green to red to black marks the increase in the expression of genes).
In silico functional analysis of differentially expressed genes induced by Cg-2 at 24 hpCi
DEGs expressed in tomato at 24 hpCi in comparison to control plants were 22,914 and significantly expressed 893 DEGs with fold change −2 to +2 and p < 0.05 (Figure 1B). Out of 893 DEGs, 26 DEGs were expressed exclusively in control plant (0 h), 7 DEGs at 24 hpCi and 860 DEGs were commonly expressed at 0 h and 12 hpCi (Figure 2B; Supplementary Table S6). The DEGs were categorized depending on their biological function by using KEGG pathways enrichment analysis. The results revealed that most of DEGs belong to metabolic pathways (46 DEGs), biosynthesis of secondary metabolites (26 DEGs), signaling system (13 DEGs), ribosomes biosynthesis (11 DEGs) and plant pathogen interaction (9 DEGs) (Figure 3B; Supplementary Table S7). GO analysis of significantly expressed DEGs classified genes into three categories: cellular function, molecular function, and biological processes with 16, 10 and 22 GO terms, respectively (Figure 4B; Supplementary Table S8). DEGs corresponding to metabolic processes, secondary metabolites biosynthesis and signaling pathways upregulated or downregulated at 24 hpCi are depicted in heat map (Figure 5B; Supplementary Table S9).
In silico functional analysis of differentially expressed genes induced by Cg-2 at 96 hpCi
Analysis of RNA-seq data reveals the 22,258 DEGs at 96hpCi in contrast to control plants and 476 significantly differentially expressed genes filtered with fold change −2 to +2 and p < 0.05 (Figures 1C, 2C; Supplementary Table S10). GO classification and KEGG pathway enrichment analysis reveal the DEGs corresponding to various GO terms and three GO categories: cellular function, molecular function, and biological processes (Figure 3C; Supplementary Table S11). The most of DEGs are related to catalytic activity, binding activity, and response to stimulus in molecular function category; metabolic processes and cellular processes in biological processes category; cell part , cell, organelle and membrane related in cellular component category (Figure 4C; Supplementary Table S12). The DEGs related to metabolic processes, secondary metabolites biosynthesis and signaling pathways upregulated or downregulated at 96 hpCi are presented in heatmap (Figure 5C; Supplementary Table S13).
Temporal expression analysis of differentially expressed genes associated with plant hormone signaling pathways
The enrichment of phytohormone signaling transduction pathways is visualized in Figure 6A. The red box indicates the upregulation of genes and green box marks downregulation of genes, which allows to depict the involvement of hormone signal transduction pathway. In Cg-2 treated plants after 12 h of Cg-2 inoculation the genes JAR1 (Solyc10g011660) and JAZ (Solyc01g005440) participating in JA signal transduction and NPR1 (Solyc07g040690) a key regulator of SA signaling are upregulated in comparison to 0 hpCi. The ETR (Solyc12g011330) & BKI1 (Solyc04g011520) are upregulated and CYCD3 (Solyc01g080190) is downregulated at 12 hpCi in comparison to 0 hpCi.
[image: Figure 6]FIGURE 6 | Modulation of gene expression in plant hormone signaling pathways (salicylic acid, jasmonic acid, ethylene and brassinosteroid pathways) in tomato plant due to Cg-2 treatment (A) at 12 hpCi vs. 0 hpCi (B) at 24 hpCi vs. 12 hpCi (C) at 96 hpCi vs. 24 hpCi. (Red color represent upregulated genes and green color represents downregulated genes).
Later at 24 hpCi, in jasmonic acid pathway the JAR1 (Solyc10g011660) gene retained the same expression as at 12 hpCi and JAZ (Solyc01g005440) is upregulated. The BKI1 (Solyc04g011520) of brassiniosteroid pathways retained same level as at 12 hpCi whereas TCH4 is upregulated at 24 hpCi (Figure 6B). The NPR1 (Solyc07g040690), ETR (Solyc12g011330) and BKI1 (Solyc04g011520) are downregulated at 96 hpCi in comparison to 24 hpCi (Figure 6C).
Temporal expression analysis of differentially expressed genes engaged in phenylpropanoid biosynthesis
The transcriptome analysis reveals that phenylalanine ammonia-lyase (PAL) (Solyc09g007920), cinnamic acid 4-hydroxylase (C4H) (Solyc12g011330) and 4-coumarate-CoA ligase (4CL) (Solyc05g047530) genes of phenylpropanoid biosynthesis pathway were significantly up-regulated at 12 hpCi (Figure 7A). The key genes of lignin formation such as p-coumarate 3-hydroxylase (C3H) (Solyc01g096670), cinnamoyl-CoA reductase (CCR) (Solyc08g076790) and (POX) (Solyc02g079500) were also significantly elevated in tomato plants at 12 hpCi.
[image: Figure 7]FIGURE 7 | Modulation of gene expression in phenylpropanoid biosynthesis in tomato plants due to Cg-2 treatment (A) at 12 hpCi vs. 0 hpCi (B) at 24 hpCi vs. 12 hpCi (C) at 96 hpCi vs. 24 hpCi. (Red color represent upregulated genes and green color represents downregulated genes).
Later, the phenylalanine ammonia-lyase (PAL) (Solyc09g007920), cinnamic acid 4-hydroxylase (C4H) (Solyc12g011330), 4-coumarate-CoA ligase (4CL) (Solyc05g047530), p-coumarate 3-hydroxylase (C3H) (Solyc01g096670) and cinnamoyl-CoA reductase (CCR) (Solyc08g076790) genes of phenylpropanoid biosynthesis pathway were significantly down-regulated at 24 hpCi in comparison to 12 hpCi (Figure 7B). The downstream enzyme in lignin formation pathway coniferyl-alcohol glucosyltransferase is the only gene which is upregulated at 96 hpCi in comparison to 24 hpCi, otherwise most of the genes are down regulated at late hours (Figure 7C).
Validation of temporal transcriptomic data by real time reverse transcriptase PCR analysis
The expression level of genes related to plant defence pathways was calculated by qRT-PCR using 2−ΔΔCt method to validate transcriptomics data. The genes related to various defense pathways such as WRKY17, JAZ and ERF were upregulated maximum at 12 h and 24 h, whereas SAM showed increasing trend from 12 h (6 folds) to 21 folds at 96 h. The MYC, ASC4 and CHS1 showed maximum expression at 12 h post Cg treatment. The gene MPK3 depicted decreasing trends from 12 h (15 folds) to 96 h (6 folds). The ETR4 expressed maximum (6 folds) at 12 h and decreased to 4 folds at 24 h and only 2 folds at 96 h. The PYL gene related to abscisic acid pathway expressed at late time points, i.e., 96 h (15 folds) (Figure 8). The expression pattern of these genes by qRT-PCR was in correlation with that observed in transcriptomic data.
[image: Figure 8]FIGURE 8 | The validation of expression of selected genes by qRT-PCR showed significant difference in their expression at different time intervals. Error bars shows ±SD among the biological replicates.
DISCUSSION
The hormone signaling pathways specifically related to activation of defense in plants such as jasmonic acid, salicylic acid and ethylene pathway are very crucial for systemic resistance induced in plants either through SAR or ISR. SAR is triggered in plants by plant pathogen infection through salicylic acidmediated signaling which enhances the resistance of plant towards secondary infections, whereas ISR is activated by PGPRs or beneficial fungus such as Trichoderma spp. through jasmonic acid and ethylene signaling which primes the plant to increase its resistance against pathogen infection (Alfiky and Weisskopf, 2021; Singh et al., 2021). The microarray study in Arabidopsis by priming plant through Trichoderma hamatum T382 against Botrytis cinerea B05-10 observed the similarity between ISR-prime and systemic acquired resistance SAR (Mathys et al., 2012). Another study, on induced defense cucumber by Trichoderma asperellum treatment revealed the involvement of jasmonic acid and ethylene signaling pathway (Shoresh et al., 2005).
In this study, we focused on the pathways to draw holistic picture of the induced defense mechanism of C. globosum. The ETR (Solyc12g011330) gene of ET signal transduction which negatively regulates ET signaling is upregulated at 12 hpCi in comparison to 0 hpCi. It states the absence of role of ET signaling pathway at early stage of Cg-2 treatment in tomato plant. The absence of participation of brassinosteroid pathway is marked by downregulation of CYCD3 (Solyc01g080190) and upregulation of BKI1 (Solyc04g011520), negative regulator of brassinosteriod signaling at 12 hpCi. At 24 hpCi, initial genes of hormone signaling pathways retain the same expression as at 12 hpCi. Thegenes downstream in the jasmonic acid signaling pathway such as JAZ (Solyc01g005440) and TCH4 of brassiniosteroid pathways are upregulated at 24 hpCi. It demonstrates the active role of jasmonic acid signaling in defense signal progression for induction of defense mechanism in the plant. Moreover, it marks the sequential expression and activation of hormone signaling pathways on a temporal basis in biocontrol treated plants. At the same time at 24 hpCi, the salicylic acid pathway and ethylene pathway gene does not mark any change in expression as compared to 12 hpCi. It reveals no advancement in ET and SA signaling at 24 hpCi as campred to 12 hpCi. The comparative gene expression analysis at late time points, i.e., 96 hpCi over 24 hpCi statesthe downregulation of NPR1 (Solyc07g040690), a key regulator of SA signaling, ETR (Solyc12g011330) gene of ET signal transduction, BKI1 (Solyc04g011520) of brassiniosteroid pathway. It depicts that signalling is conveyed by salicylic acid, brassiniosteroid and ethylene hormone signaling pathways at initial time points and those signals get low at late hours, i.e., 96 hpCi. However, no change in expression is observed in the jasmonic acid pathway at 96 hpCi, it marks theactivate involvement of JA signaling pathway for defense signaling in Cg-2 treated plants (Segarra et al., 2007). Overall, all the three major defense phytohormone (JA, ET and SA) are involved in defense signaling in Cg-2 induce systemic defense. The JA is activated at initial stage and remain active throughout, whereas ET and SA activation follows JA pathway and both are down regulated in late stage. Similarly, the transcriptomic and proteomic study of T. longibrachiatum H9 treated cucumber plant demonstrated that the activation of defense by signaling pathways associated with the phytohormones JA/ET and SA, which contradicts the standard definitions of ISR and SAR (Yuan et al., 2019). The phenylpropanoid pathway is important for reduction of antimicrobial substances which provide protection to plant from pathogens (Yadav et al., 2020). The temporal expression of genes belonging to these pathways is important to know the sequential activation of the pathways. The key genes of lignin formation such as p-coumarate 3-hydroxylase (C3H) (Solyc01g096670) and cinnamoyl-CoA reductase (CCR) (Solyc08g076790) were also significantly elevated in tomato plants at 12 hpCi. The peroxidase (POX) (Solyc02g079500) which is responsible for lignin polymerization is significantly upregulated by biocontrol treated plants at 12 hpCi (Singh et al., 2021). The lignin formation is important to restrict the subsequent infection by A. solani in biocontrol treated plant. The caffeate methyl transferase or S-adenosyl -L-methionone (Solyc03g080180) gene playing role in lignin formation both for structural development and defense response is up regulated at 24 hpCi as compared to 12 hpCi (Khan et al., 2022).
CONCLUSION
The temporal transcriptomic data of tomato plants treated with C. globosum elucidated that there is activation of JA hormone signaling pathways in sequential manner from 0 h to 24 h after treatment with Cg-2 and continue to express. The NPR1, the key regulator of SAR is activated at 12 h and decrease in expression in later stages. The absence of participation of brassinosteroid pathway due to upregulation of BAKI, negative regulator of brassinosteriod signaling at 12 hpCi. The sequential expression and activation of hormone signaling pathways of ISR and SAR on a temporal basis marks interaction between the defence signalling pathways.
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GLOSSARY
Cg-2 Virulent isolate Chaetomium globosum
hpCi hours post Chaetomium globosum inoculation
JA Jasmonic acid
NPR1 Nonexpresser of PR genes1
ISR Induced Systemic Resistance
SAR Systemic Acquired Resistance
qRT-PCR Quantitative Real Time PCR
PDA Potato Dextrose Agar
RT Room temperature
rpm Revolution per minute
RSEM RNA-seq by expectation maximization
FPKM Fragments per kilobase of exon per million mapped reads
DEGs Differentially expressed genes
KEGG Kyoto Encyclopedia of Genes and Genomes
SlEF Solanum lycopersicum Elongation factor
PGPRs Plant growth promoting rhizobacterias
ET Ethylene
SA Salicylic acid
BKI1 BRI1 kinase inhibitor 1
MAPK Mitogen-activated protein kinase
PAL Phenylalanine Ammonia-lyase
C4H Cinnamic acid 4-hydroxylase
SAM S-Adenosyl methionine
MYC MYC core transcription factors of Jasmonate signaling
JAZ JAsmonate-ZIM domain
MPK3 Mitogen-activated protein kinase 3
ACS4 Aminocyclopropane Carboxylic acid Synthase 4
ERF Ethylene-Responsive Factors
CHS1 CHalcone synthase 1
PYL PYrobactin Resistance-Like (regulatory component of ABA receptors)
ETR4 EThylene Receptor 4
4CL 4-coumarate-CoA ligase
C3H p-coumarate 3-hydroxylase
CCR Cinnamoyl-CoA reductase
WRKY17 WRKY transcription factor
POX Peroxidase
BAKI BRI1 Associated receptor Kinase 1
ds cDNA Double stranded cDNA
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Rice plants experience various biotic (such as insect and pest attack) and abiotic (such as drought, salt, heat, and cold etc.) stresses during the growing season, resulting in DNA damage and the subsequent losses in rice production. DNA Replication Helicase/Nuclease2 (DNA2) is known to be involved in DNA replication and repair. In animals and yeast DNA2 are well characterized because it has the abilities of both helicase and nuclease, it plays a crucial role in DNA replication in the nucleus and mitochondrial genomes. However; they are not fully examined in plants due to less focused on plants damage repair. To fill this research gap, the current study focused on the genome-wide identification and characterization of OsDNA2 genes, along with analyses of their transcriptional expression, duplication, and phylogeny in rice. Overall, 17 OsDNA2 members were reported to be found on eight different chromosomes (2, 3, 4, 6, 7, 9, 10, and 11). Among these chromosomes (Chr), Chr4 contained a maximum of six OsDNA2 genes. Based on phylogenetic analysis, the OsDNA2 gene members were clustered into three different groups. Furthermore, the conserved domains, gene structures, and cis-regulatory elements were systematically investigated. Gene duplication analysis revealed that OsDNA2_2 had an evolutionary relationship with OsDNA2_14, OsDNA2_5 with OsDNA2_6, and OsDNA2_1 with OsDNA2_8. Moreover, results showed that the conserved domain (AAA_11 superfamily) were present in the OsDNA2 genes, which belongs to the DEAD-like helicase superfamily. In addition, to understand the post-transcriptional modification of OsDNA2 genes, miRNAs were predicted, where 653 miRNAs were reported to target 17 OsDNA2 genes. The results indicated that at the maximum, OsDNA2_1 and OsDNA2_4 were targeted by 74 miRNAs each, and OsDNA2_9 was less targeted (20 miRNAs). The three-dimensional (3D) structures of 17 OsDNA2 proteins were also predicted. Expression of OsDNA2 members was also carried out under drought and salt stresses, and conclusively their induction indicated the possible involvement of OsDNA2 in DNA repair under stress when compared with the control. Further studies are recommended to confirm where this study will offer valuable basic data on the functioning of DNA2 genes in rice and other crop plants.
Keywords: rice, abiotic stress, DNA2, DNA damage-repair, gene expression
INTRODUCTION
Rice plants experience various biotic (such as insect and pest attack) and abiotic (such as drought, salt, heat, and cold etc.) stresses during the growing season, resulting in DNA damage and the subsequent losses in rice production. Homologous recombination is essential for replication, DNA repair pathways, and the exchange of genetic substances between parent chromosomes during meiosis (Li, 2008; Kuzminov, 2011). The complex reorganization of DNA structures is typically organized into several stages, and the success rate of completing these stages is entirely related to the activities of multiple helicase enzymes (Wu, 2012; Huselid and Bunting, 2020). Helicases of several families are organized to process the broken ends of DNA structures, and are also involved in the subsequent disassembly and formation of recombinant intermediate materials essential for the template-based repair of DNA structures (Raney et al., 2013; Croteau et al., 2014; Tisi et al., 2020). Therefore, the loss of recombinant-linked helicase functionality can result in genome disorder, higher risks of tumor forging, and subsequent cell death (Yousefzadeh et al., 2021). Certain helicases are associated with the anti-recombinase effects that influence the recombination efficiency, ultimately leading to other pathways directed toward repairing broken ends of DNA (Wu and Hickson, 2006; Li and Heyer, 2008). Several helicases are also responsible for adjusting the relative repair outputs for noncrossover and crossover. A typical increase in the utilization of recombination occurs during the collision of transcription material and replication forks, or when it comes across lesions in the DNA template (Nguyen et al., 2015). Amazingly, successful recombination in such situations is also regulated by helicases, permitting optimized cell growth while maintaining genome integrity (Saada et al., 2018).
During developmental processes, the unrelenting activities of apical meristems organize organ morphogenesis (Traas, 2018; Marconi and Wabnik, 2021). The development of apical meristems is maintained and promoted by cell division in meristematic areas (Murray et al., 2012; Geng et al., 2022). Plant meristems are accompanied by stem cells, and have a strong regenerative ability; they maintain plant growth mechanisms and produce new plant organs such as stems, leaves, flowers, and roots (Chang et al., 2020). The final forms of the organs and the overall plant architecture mainly depend on the temporal and spatial regulation of cell proliferation in meristems.
DNA2, typically called the DNA replication helicase/nuclease two protein, occurs in both the mitochondria and nucleus, where it performs the roles of helicase and ATPase-dependent nuclease (Zhou et al., 2015; Zheng et al., 2020). During the 1980s, the DNA2 protein was first reported in the yeast Saccharomyces cerevisiae (Budd et al., 2000). Because it has the abilities of both helicase and nuclease, it plays a crucial role in DNA replication in the nucleus and mitochondrial genomes (Dumas et al., 1982; Budd and Campbell, 1997). In humans, it is known as DNA replication ATP-dependent helicase/nuclease DNA2 (Masuda-Sasa et al., 2006). DNA2 essentially shares an important purpose in the removal of long flaps during DNA replication and DNA LP-BER (long-patch base excision) repair. Moreover, it interacts with flap endonuclease 1 (FEN1) and replication protein A (RPA) (Kleppa et al., 2012). DNA2 has the ability to promote the reactivation of the prehended replication fork along with BLM (Bloom syndrome protein) and WRN (Werner syndrome ATP-dependent helicase) (Machwe et al., 2006; Sturzenegger et al., 2014). DNA2 assists in the removal of primers during strand displacement replication in the mitochondria (Zheng et al., 2008). Additionally, DNA2 is considered to act as a key to protein-sharing activities in complex DNA damage repair. Moreover, it is accompanied by a double stranded break (DSB) and a 50 reactive adduct resulting from a chemical group attached to DNA 50 ends, produced by ionization of the radiation (Pawłowska et al., 2017). In human and animal cells, the key role of DNA2 in general cell cycle maintenance proposes its generalized function in genomic integrity. Therefore, for human and animal cells, it is essential for disease therapy.
During the repair of broken DNA ends, DNA2 intercedes the 59-end resection of DNA by splitting the 59-single-stranded DNA, ssDNA, with the assistance of RPA and Sgs1. Subsequently, it acts as helicase, whose function is mediated by RPA, and can disentangle DNA along the production of an ssDNA substrate for DNA2 (Cejka et al., 2010; Ruff et al., 2016; Bonetti et al., 2018). Homologs of RPA and Sgs1 are also preserved in plants, with essential duties in different pathways, such as DNA repair (Chatterjee and Walker, 2017; Verma et al., 2020; Wang et al., 2021). Yeast DNA2 is occupied by the compound nuclear localization signal (NLS) sequences, Pat4 and Pat7, and is decentralized to the nucleus (Jia et al., 2016; Meng et al., 2019). Yeast DNA2 mutants are sensitive to DNA damage factors, including X-ray and UV irradiation, and methyl methane sulfonate (MMS) (Bae et al., 2001; Jia et al., 2016). Moreover, yeast DNA2 exhibits DNA repair activities by assisting homologous recombination. In mammalian cells, DNA2 participates in DNA repair and replication, whereas in humans, a reduction in hDNA2 delays cell division as well as the entire cell cycle (Duxin et al., 2009; Bailey et al., 2019; Hudson and Rass, 2021).
On a broader level, DNA2 is thought to have essential roles in DNA repair and replication, along with maintaining nuclear genomic DNA and mitochondrial integrity in fungi and animals (Duxin et al., 2009; Gredilla et al., 2012). However, the role of DNA2 in plants has not yet been investigated due to less focus on plants damage repair. Therefore, this study performed with objectives of genome-wide identification and characterization of OsDNA2 genes in the rice genome along with their differential expression analysis.
MATERIALS AND METHODS
Evidencing the identification of OsDNA2
Phytozome database was used to obtain sequences of DNA2 proteins (Zhang et al., 2012). In the rice genome (Oryza sativa IRGSP-1.0), the Hidden Markov Model (HMM) profiles of DNA2 domain from the Pfam (protein family) database were used to scan the predicted proteins using HMMERv3 (Prince and Pickett, 2002). By using HMM model in HMMERv3, the protein sequences of rice DNA2 were aligned. For the confirmation of the presence of DNA2 conserved domain, the putative DNA2 gene core sequences were verified by searching against the SMART (http://smart.embl-heidelberg.de/) and Pfam database (https://pfam.xfam.org/). Protein sequences of Zea mays, Hordeum vulgare, Pennisetum glaucum, and Oryza sativa were obtained from previous studies (Liu and Widmer, 2014; Guo et al., 2017), and TAIR (https://www.arabidopsis.org/) source was used to download information of Arabidopsis DNA2 gene family protein sequences and annotation. ExPASy (https://www.expasy.org/) online server was used to obtain molecular weight, GRAVY, Iso-electric point information for OsDNA2 (Gasteiger et al., 2003).
Chromosomal location, gene structural, and phylogenetic analysis
Rice genomic database in phytozome was accessed to get the DNA2 genes genomic coordinated on rice chromosomes. All OsDNA2 were present on the eight chromosomes of rice genome. Protein sequences of DNA2 in Arabidopsis, rice, maize, barley, and millet were aligned using clustalW. Bootstrap 1000 replications were used to generate phylogenetic tree using maximum likelihood (ML) method in MEGA 10. Coding sequence was compared with the corresponding full-length sequence for the identification of intron insertion sites in the DNA2 genes. This identification was performed by using Gene Structure Display Server (Guo et al., 2007). The analysis of conserved DNA2 motifs was performed by using MEME Suit (Multiple EM for Motif Elicitation) Version 4.12.0 (http://meme-suite.org/tools/meme) (Rehman et al., 2022). Following parameters were used for this analysis: ten motifs to be found with motif width between 10 and 200; site distribution was one occurrence per sequence or set at zero (at most one occurrence for each motif was allowed for each sequence), whereas the maximum number of motifs was set to 10 (Bailey et al., 2009). TBtools (https://bio.tools/tbtools) program was used for further analysis of MEME results (Chen et al., 2020). Unipro UGENE software package (Okonechnikov et al., 2012), helped to examine the conserved domains of OsDNA2 proteins. This aligned the sequences by the ClustalW algorithm and conserved regions were displayed in the form of color patterns which differentiated each amino acid based on physiochemical properties. OsDNA2 protein sequences in SMART database containing Pfam domain search options, was used to perform protein domain analysis, and confirmation was carried out through the InterPro database (Letunic et al., 2012; Blum et al., 2021).
MicroRNA, gene ontology, cis-elements, collinearity and synteny prediction in OsDNA2
MicroRNAs (miRNAs) interacting with the DNA2 genes were predicted form the available rice miRNA reference sequences by submitting genome sequences of OsDNA2 to the psRNATARGET server (https://www.zhaolab.org/psRNATarget/). The visualization of miRNAs and OsDNA2 gene was done with Cytoscape software (https://cytoscape.org/). Online tool gProfiler (https://biit.cs.ut.ee/gprofiler/gost, accessed on 20 July 2022) was used to conduct gene ontology (GO) analysis of OsDNA2 protein sequences with default parameters. The rice genome database was downloaded from RGAP (https://cottonfgd.org/) to get the DNA2 promoter region sequence containing 2000 bp upstream of the inhibition codon (ATG). The prediction of regulatory elements in the DNA2 promoter regions was carried out by using online tool PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) and visualized by TBtools. For the sequence similarity patterns evaluation, synteny analysis and sequence identity visualization were performed using the TBtools (Rahim et al., 2022). For gene duplication, homologous gene pair were calculated with the help of Ka/Ks calculator 2.0. For Synteny analysis, genome sequence (FASTA) and annotation files (gff/gtf) were used in One-step MCScanX toolkit in the TBtools.
Subcellular localization and 3D protein structure prediction of OsDNA2
CELLO v.2.5: subCELlular LOcalization predictor was used to predict the sub-cellular location of DNA2 family (Yu et al., 2014). Protein sequences were used as input and output results were further analyzed/visualized by using TBtools software. Amino acid sequences of OsDNA2 proteins were used for the prediction of 3D structures by utilizing the SWISS-MODEL database (https://www.swissmodel.expasy.org) (Waterhouse et al., 2018), while visualization of such predicted structures was carried out with the help of Pymol software (https://pymol.org/2/). Ramachandran Plot—Zlab, (https://zlab.umassmed.edu/bu/rama/), was applied for the confirmation of predicted 3D models of OsDNA2 proteins (Anderson et al., 2005).
Expression analysis of OsDNA2 under abiotic stress
RNA seq data for drought and salt stresses were assessed from online data bases which are publically available with Bio-projects GSE145869 and GSE167342 (Tarun et al., 2020; Bundó et al., 2022). In these studies, Nil-95 and Swarna genotypes were used as drought tolerant and sensitive, while IL22 and PL12 were used as a salt tolerant and sensitive rice genotype, respectively. FPKM (fragments per kilobase of transcript per million mapped reads) values were extracted and heatmaps were generated in TBtools. Furthermore, the rice genotype IR-6 was used in this study under drought and salt stresses. Plants were grown under normal conditions for 2 weeks. Then drought and salt stresses were applied to two batches of plants and one batch was kept as a control. Three biological replicates for each treatment were used. Gene specific primers of selected OsDNA2 genes along with drought and salt reported genes (OsEm1 and bZIP23) for qRT-PCR are presented in Supplementary Table S1. For this purpose, 1 g leaf tissues from control and treated samples were grinded in liquid nitrogen and used for RNA extraction. Total RNA was extracted with the help of TRIzol method. Complementary DNA (cDNA) was also synthesized from the 800 ng extracted RNA with the help of reverse transcriptase-III, first strand cDNA Synthesis Kit (K1691, Thermo Scientific Revert Aid). StepOne RT-PCR (Applied Biosystems® 7900 H T Fast RT-PCR) was used for quantification. OsActin was used as a reference gene and 2−ΔΔCT method was used for expression calculations (Uzair et al., 2021).
RESULTS
Delineation of DNA2 gene family in rice
Wheat DNA2 protein (TraesCS2A02g301600) and Arabidopsis (AT2G03270) sequences were used as queries to identify DNA2 genes in the rice genome. From these analysis, 17 OsDNA2 members were found (Figure 1A, Supplementary Table S2). OsDNA2 was distributed on the basis of its physical position on eight chromosomes (2, 3, 4, 6, 7, 9, 10, and 11). Of these chromosomes, Chr4 had the maximum number of six OsDNA2 genes, followed by Chr3, which had three genes. Chr2 and Chr10 each had two members, whereas the rest of the chromosomes had a single member. Chr9 was the shortest one which had OsDNA2_5. This structure plays an important role in the expression of genes. For this purpose, we also checked the gene structures and found that the number of introns varied from 1 to 32 (Figure 1B). The maximum number of introns was found in OsDNA2_1, whereas the minimum was found in OsDNA2_11. The CDS length extended from 399 bp (OsDNA2_11) to 3624 bp (OsDNA2_1). Similarly, the protein length, protein molecular weight, and number of exons varied from 133 aa (OsDNA2_11) to 1208 aa (OsDNA2_1), 132.72854 KDa (OsDNA2_1) to 14.19668 KDa (OsDNA2_11), and 2 (OsDNA2_11 and OsDNA2_3) to 33 (OsDNA2_1), respectively (Table 1). A total of five genes (OsDNA2_1, OsDNA2_2, OsDNA2_4, OsDNA2_7, and OsDNA2_17) out of 17 were found on the positive strand. The isoelectric points varied between 4.2510 (OsDNA2_11) and 11.6011 (OsDNA2_3). The charge on a protein molecule depends on the ionizable groups and their pKa values. The protein becomes negatively charged when the pH becomes higher than the pI. In the present study, only four OsDNA2 genes (OsDNA2_2, OsDNA2_8, OsDNA2_10, and OsDNA2_11) were negatively charged (Table 1). All members of the OsDNA2 gene family, except OsDNA2_7, showed negative GRAVY, indicating that they are hydrophilic in nature (Table 1). Additionally, the subcellular localization of all OsDNA2 proteins was determined. The results showed that most of the genes were located in the nucleus, cytoplasm, mitochondria, and chloroplasts (Figure 1C). Meanwhile, the subcellular localization of OsDNA2_16 was predicted in the peroxisomes (Figure 1C).
[image: Figure 1]FIGURE 1 | Prediction of DNA2 gene members in rice genome. (A) Distribution of OsDNA2 members on respective chromosome. Chr represent the chromosome. Left side of the figure scale was used in mega base (Mb). (B) Gene structure of OsDNA2 members. Orange color shows the CDS, light green shows upstream/downstream region, and black line represent the introns. (C) In-silico prediction of subcellular location of OsDNA2. Proteins were shown on the right side of the figure. Nucl = nucleus, Cyto = cytoplasm, Mito = mitochondria, Chlo = chloroplast, Plas = plasma-membrane, Vacu = vacuole, Cysk = cytoskeleton, Extr = extracellular, E.R = endoplasmic reticulum, Pero = peroxisome, and Golg = Golgi apparatus.
TABLE 1 | Physico-chemical properties of OsDNA2 gene members.
[image: Table 1]Motifs and domain analysis, and phylogenetic association among DNA2 genes
When characterizing newly identified proteins, it is very important to understand the motifs and domains of that specific protein. In the present study, motifs were predicted for all OsDNA2 genes using MEME (Bailey et al., 2009). For this purpose, we used the protein sequence of OsDNA2 and found ten conserved motifs (Figure 2A). The lengths of the predicted motifs varied between 20 and 39 amino acids (Supplementary Figure S1). Motif five was present in all genes except OsDNA2_2, OsDNA2_6, and OsDNA2_12. Motifs 1, 2, 3, and six were conserved among all members. Similarly, we also examined the domains in OsDNA2 members (Figure 2B). The conserved domain in the OsDNA2 genes of rice is the AAA_11 superfamily (Pfam: PF13086), which belongs to the DEAD-like helicase superfamily involved in the unwinding of ATP-dependent RNA or DNA.
[image: F]FIGURE | 2OsDNA2 members were divided into three groups. Prediction of motifs (A) and domains (B) in OsDNA2 members. Each motif and domain were represented by different colors.
In the current study, the evolutionary associations among OsDNA2s, ZmDNA2s, SbDNA2s, HvDNA2s, and AtDNA2s were assessed (Figure 3). The results revealed that 99 DNA2 molecules were clustered into six main clusters (C1 = pink, C2 = blue, C3 = yellow, C4 = green, C5 = brown, and C6 = purple). Cluster six contained a maximum of six OsDNA2 genes (OsDNA2_2 and OsDNA2_4–8). Interestingly, Cluster five contained only one, OsDNA2_1. Overall, OsDNA2 showed a closer association with ZmDNA2, HvDNA2, and SbDNA2 than with AtDNA2 in each cluster.
[image: Figure 3]FIGURE 3 | Evolutionary relationship among DNA2 members of Oryza sativa, Zea mays, Hordeum vulgare, and Arabidopsis thaliana. For the construction of phylogenetic tree, a maximum likelihood (ML) method was used with 1000 bootstrap values.
Investigating synteny and collinearity among DNA2 genes
To estimate the evolutionary relationship among DNA2 members of Oryza sativa, a synteny analysis of DNA2 protein sequences was conducted (Figure 4A and Supplementary Table S2). These analyses were performed to study gene duplication using TBtools for the 17 predicted OsDNA2 (Chen et al., 2020). For gene duplication, Ka/Ks values were calculated, and the results revealed that six gene pairs, including OsDNA2_1-OsDNA2_8, OsDNA2_2-OsDNA2_14, OsDNA2_5-OsDNA2_6, OsDNA2_10-OsDNA2_11, OsDNA2_12-OsDNA2_13, and OsDNA_16-OsDNA2_17 could be duplicated in the rice genome (Supplementary Table S3). Similarly, we also performed collinearity analysis among Oryza sativa, Sorghum bicolor, Zea mays, and Hordeum vulgare. The results revealed that rice DNA2 genes were more collinear with sorghum than with maize and barley, indicating that whole genome or segmental duplication was involved in OsDNA2 gene family progression (Figure 4B).
[image: Figure 4]FIGURE 4 | Identification of OsDNA2 gene duplication. (A) Synteny analysis and (B) Collinearity analysis of DNA2 genes amongst Oryza sativa, Sorghum bicolor, Zea mays, and Hordeum vulgare.
Promoter analysis of OsDNA2 genes
It was previously reported that the promoter region is the control center for the expression and regulation of genes (Rasool et al., 2021). Promoters are also known as cis-regulatory elements in DNA. The 2-kb upstream region of each OsDNA2 gene was subjected to the PLACE database, and the results revealed that more than 85 different types of cis-acting elements and nine unnamed types of elements were detected (Figure 5, Supplementary Table S4). CAAT-box, TATA-box, and unnamed were the most identified elements for the OsDNA2 genes. Furthermore, different stress-related regulatory elements, such as CGTCA-motif, G-box, Sp1, GATA-motif, I-box, GT1-motif, and AT-rich, were detected. Similarly, hormone-related cis-regulatory elements, such as TATC-box, ABRE, CGTCA-motif, P-box, and TGACG-motif, were also detected. ABRE was detected in all members of OsDNA2, except for OsDNA2_6 (Figure 5). The GCN4-motif, GC-motif, O2-box, and ARE were detected in the different OsDNA2 members, indicating that these genes are involved in cellular development. Notably, it has been reported that the GCN4-motif and O2-box are involved in the expression of endosperm and zein metabolism, respectively.
[image: Figure 5]FIGURE 5 | Prediction of Cis-Elements in 2 kb upstream region of OsDNA2 coding sequences. Scale bar was used to indicate the presence of numbers of specific elements in that particular DNA2 genes.
Gene ontology (GO) and MicroRNA (miRNA) targeting OsDNA2 genes
GO annotation was used for the practical investigation of OsDNA2 genes. In silico characterization based on functions was conducted, which revealed three types of biological processes (BPs), cellular components (CCs), and molecular functions (MFs) (Figure 6, Supplementary Table S5). Further analysis of the BPs’ annotations revealed that most of the terms were related to DNA replication. Similarly, the MFs also showed DNA helicase, and catalytic and ATP-dependent activities. Based on these findings, we concluded that OsDNA2 genes play an essential role in DNA replication.
[image: Figure 6]FIGURE 6 | Gene ontology (GO) analysis of OsDNA2 genes was performed. OsDNA2 genes were involved in biological processes (BP, (A), cellular components (CC, (B), and molecular functions (MF, (C).
Over the past few decades, many studies have shown that miRNAs play essential roles in the regulation of genes in specific environments. Thus, to understand the post-transcriptional modification of OsDNA2 genes, we identified 653 miRNAs targeting 17 OsDNA2 genes (Figure 7, Supplementary Table S6). The results indicated that at the maximum, OsDNA2_1 and OsDNA2_4 were targeted by 74 miRNAs each, and OsDNA2_9 was less targeted (20 miRNAs). Nineteen members of the osa-miR164 family targeted four genes (OsDNA2_1, OsDNA2_4, OsDNA2_6, and OsDNA2_14). Furthermore, the single miRNAs, such as osa-miR6255, osa-miR6245, osa-miR6246, and osa-miR6248, targeted OsDNA2_10, OsDNA2_14, OsDNA2_10, and OsDNA2_4, respectively. Future studies will be required to validate the functions of these miRNAs and their target genes to understand their biological interactions in the rice genome.
[image: Figure 7]FIGURE 7 | 7Prediction of MicroRNAs (miRNAs) shows how they target the respective OsDNA2 genes. Green oval shapes represent the OsDNA2 genes, blue rectangles represent the miRNAs, and brown lines represent the interaction among the miRNAs and OsDNA2 genes.
3D-protein structural analysis of OsDNA2
Understanding the structure of proteins is very difficult due to their complexity, and the fact that they contain a different number of atoms and convoluted topology. In this study, the SWISS_MODEL online server was used to predict the three-dimensional (3D) structures of 17 OsDNA2 proteins (Figure 8, Supplementary Table S7). The results revealed the successful prediction of the 17 OsDNA2 protein models. Many reports have shown that >30% identity with the template is acceptable (Xiang, 2006; Rahim et al., 2022), and our findings also showed an average of 40% similarity with the template (5ean. 1.A, 6ff7. 1.c, 5mzn. 1.A, 2wjv. 1.A, 4b3f. 1.A, 4b3g. 2.A, 2gjk. 1.A, 2wjv. 1.A, and 2xzl. 1.A). Spiral shapes represent α-helices, thick arrows depict ß-sheets, and thin lines indicate loops and turns. Most of the OsDNA2 members had similar structures (Figure 8). Furthermore, these predicted 3D models were confirmed using Ramachandran plots with the help of diahedral angles of the OsDNA2 proteins (Anderson et al., 2005). The results of the Ramachandran plots revealed that >95% of the regions of OsDNA2 proteins showed highly favorable regions. This confirmed the better quality and stability of the predicted OsDNA2 protein structures.
[image: Figure 8]FIGURE 8 | The 3D structure prediction and Ramachandran plots of OsDNA2 proteins. Different shapes in these final models represent the sheets and helicases.
Role of OsDNA2 genes in abiotic stress tolerance
RNA-seq data for drought and salt stress were retrieved from publicly available data sites. Circular heat maps for these stresses were generated from the FPKM values, showing the expression of OsDNA2 members at the seedling stage (Figures 9A,B, Supplementary Table S8). OsDNA2_11, OsDNA2_14, and OsDNA2_15 were downregulated and showed low expression under drought and salt stress conditions (Figures 9A,B). Quantitative real-time PCR (qRT-PCR) analysis of five randomly selected OsDNA2 genes was performed to study the transcription profile (Figure 9C). OsDNA2_2 and OsDNA2_5 were up-regulated under both stress conditions, whereas OsDNA2_4 and OsDNA2_7 were up-regulated under salt and drought stress, respectively. Moreover, OsDNA2_15 expression was unchanged after the treatments. These findings indicate that these genes might be involved in mitigating abiotic stresses (drought and salt), and they may provide useful information for the functional characterization of these genes in the future.
[image: Figure 9]FIGURE 9 | 9In-silico expression profiling of OsDNA2 genes members under drought (A) and salt (B) stress. Different capital letters C, D, and S represent the control, drought, and salt stresses, respectively. (C) Quantification of expression of OsDNA2 genes through qRT-PCR. Results are shown as fold change. Data is a mean ± SE of three biological replicates. Comparison was checked with the help of t-test (*p < 0.05, **p < 0.01).
DISCUSSION
The DNA of a living organism contains genetic information that is important for its survival and reproduction. During cell division, DNA strands can be damaged by abiotic stresses such as exposure to radiation or chemicals. To avoid the consequent negative impacts on life, cells initiate processes that quickly fix damaged DNA using different techniques, such as homologous recombination, in which cells fix the damaged strands (Duxin et al., 2009). Different enzymes act on broken strands to form single-stranded tails, and DNA2 is one of the enzymes involved (Jia et al., 2016). In yeast, the dna2 mutant shows a lethal phenotype, indicating that the wild-type protein is necessary for cell viability (Budd et al., 2011). Similarly, the Arabidopsis dna2 mutant caused small roots at the time of germination (Diray-Arce et al., 2013; Jia et al., 2016). Another protein, Rpa, is required for the proper functioning of DNA2; however, it remains unclear how Rpa regulates it. DNA2 homologs are the same in fungi and other metazoans, indicating that they may have conserved functions (Kang et al., 2010). In plants, the alternate DNA helicase is DNA2 (Levikova and Cejka, 2015). Plants face different types of biotic and abiotic stresses that cause cell injury, DNA damage including double- and single-stranded breaks (DSBs and SSBs), and DNA lesions (Gill et al., 2015; Noctor and Foyer, 2016; Nisa et al., 2019; Rout et al., 2022). Because the function of DNA2 is conserved in DNA damage repair and Okazaki fragments, the small RNA/DNA was removed by FEN1, while the larger flaps were removed in the correct order of both FEN1 and DNA2 (Kang et al., 2010; Zheng and Shen, 2011). To date, DNA2 has mainly been studied in fungi and animals, but its role in plants has not been fully studied. Therefore, this study aimed to investigate the function of DNA2 in rice at the whole-genome level.
Rice is an important cereal used worldwide as a good source of food around the globe. Rice production is hampered by biotic and abiotic stresses. The rice genome is publicly available, which permits genome-wide identification and characterization of the DNA2 family (Table 1). In this study, we identified 17 OsDNA2 members in the rice genome (Figure 1A) that were distributed into three clusters. The expression of any gene is dependent on its structure. In this study, gene structure analysis confirm that 2 to 33 exons were present among the OsDNA2 genes, whereas the number of introns varied from 1 to 32 (Figure 1B). Conserved motifs and domain analyses were also carried out systematically. The AAA_11 superfamily (Pfam: PF13086) domain is present in the OsDNA2 gene, which belongs to the DEAD-like helicase superfamily, and is involved in ATP-dependent RNA or DNA unwinding (Figure 2). Phylogenetic association was also carried out among different plant species, such as Oryza sativa, Hordeum vulgare, Zea mays, Sorghum bicolor, and Arabidopsis thaliana (Figure 3). These results indicate that OsDNA2s were conserved with related species, and this may be due to the presence of conserved domains among them. Similarly, we performed synteny and collinearity analyses among Oryza sativa, Sorghum bicolor, Zea mays, and Hordeum vulgare. The results revealed that rice DNA2 genes were more collinear with sorghum than with maize and barley, indicating that segmental duplication is involved in OsDNA2 gene family progression (Figure 4B).
To better understand the function of OsDNA2 genes in stress tolerance, cis-regulatory elements were predicted (Figure 5). Our results showed that three main types of cis-elements (stress, hormones, and light) were detected. Among these stress-related regulatory elements, CGTCA-motif, G-box, Sp1, GATA-motif, I-box, GT1-motif, and AT-rich were detected. According to previous studies, cis-elements are involved in the stress response (Rasool et al., 2021; Su et al., 2021). The GCN4-motif, GC-motif, O2-box, and ARE were detected in the different OsDNA2 members, indicating that these genes are involved in cellular development. These results were further confirmed through gene ontology (Figure 6), in which most of the GO terms were related to DNA replication, DNA helicase, and catalytic and ATP-dependent activities. These findings further emphasized the thought that OsDNA2 genes may be involved in DNA repair and replication under environmental stress.
Recent studies have shown that most plant biological processes are controlled by microRNAs through the regulation of gene expression (Millar, 2020). In grasses, different miRNAs are expressed under drought conditions (Njaci et al., 2018; Raza et al., 2022). In another study on Arabidopsis, miRNA394 was shown to respond to cold stress. Similarly, in wheat, different miRNAs, such as tae-miR1119, tae-miR398, and tae-miR444a, were expressed in the roots under drought conditions (Rasool et al., 2021). In this study, we identified 653 miRNAs that target 17 OsDNA2 genes (Figure 7). To date, the highest number of identified miRNAs is 1077 in maize (Fu et al., 2017). These miRNAs can be upregulated or downregulated in response to environmental stress. In these findings, OsDNA2_4 was targeted by 74 miRNAs, and was upregulated under salt stress.
For further in-depth study, we predicted 3D models of the OsDNA2 proteins (Figure 8). The results showed 20–74% homology with the templates, which is widely acceptable. Our findings are in accordance with those of other studies (Su et al., 2021; Rahim et al., 2022). The Ramachandran plots also confirmed that the 17 OsDNA2 proteins had favorable regions because they showed >80% residue in the allowed regions, which indicates that the predicted 3D structures of these proteins were of good quality. Similar findings have also been reported for TATrx and TaRPK1 proteins in wheat (Bhurta et al., 2022; Rahim et al., 2022). In another study, 21 TaEIL 3D models and Ramachandran plots were used (Yi-Qin et al., 2020).
Previously, it was reported in mammals and other microorganisms that DNA2 genes are expressed differently under different circumstances. Thus, in this study, we examined the expression of OsDNA2 genes in plants under control, drought, and salt stress conditions. We found that some of the OsDNA2 genes were up- and downregulated under drought and salt stress conditions (Figures 9A,B). qRT-PCR of five randomly selected OsDNA2 genes (OsDNA2_2, OsDNA2_4, OsDNA2_5, OsDNA2_7, and OsDNA2_15), along with well-known drought- (OsEm1) and salt- (bZIP23) related genes, was performed to study the transcription profile (Figure 9C). OsDNA2_2 and OsDNA2_5 were upregulated under both stress conditions, whereas OsDNA2_4 and OsDNA2_7 were up-regulated under salt and drought stress, respectively. However, OsDNA2_15 expression was unchanged after treatment. These findings suggest that these genes are involved in abiotic stress mitigation. Moreover, this study also signifies the need for the functional characterization of these genes in the near future.
CONCLUSION
In animals and yeast DNA2 are well characterized because it has the abilities of both helicase and nuclease, it plays a crucial role in DNA replication in the nucleus and mitochondrial genomes. However; they are not fully examined in plants due to less focused on plants damage repair. The current study extensively examined the characteristic, properties, gene structures, chromosomal locations, cis-regulatory elements, synteny and collinearity, miRNAs, and expression of OsDNA2. Overall, 17 OsDNA2 genes were reported in the whole genome of rice, and were distributed on eight chromosomes. Phylogenetic analysis revealed that all the OsDNA2 genes were organized into three groups. We also found that the conserved domain (AAA_11 superfamily) was present in the OsDNA2 genes, which belongs to the DEAD-like helicase superfamily. In addition, 653 miRNAs targeting OsDNA2 genes were identified. Meanwhile, shifts in gene expression under abiotic stress, especially drought and salinity, were investigated using a comparative transcriptome approach to evaluate the susceptibility and tolerance to abiotic stress. These findings provide essential information for future functional characterization of OsDNA2 genes under abiotic stress to improve stress tolerance in rice as well as other crop species.
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Vegetable crops are known as protective foods due to their potential role in a balanced human diet, especially for vegetarians as they are a rich source of vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses threaten the crop growth, yield and quality of these crops. These crops are annual, biennial and perennial in breeding behavior. Traditional breeding strategies pose many challenges in improving economic crop traits. As in most of the cases the large number of backcrosses and stringent selection pressure is required for the introgression of the useful traits into the germplasm, which is time and labour-intensive process. Plant scientists have improved economic traits like yield, quality, biotic stress resistance, abiotic stress tolerance, and improved nutritional quality of crops more precisely and accurately through the use of the revolutionary breeding method known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9). The high mutation efficiency, less off-target consequences and simplicity of this technique has made it possible to attain novel germplasm resources through gene-directed mutation. It facilitates mutagenic response even in complicated genomes which are difficult to breed using traditional approaches. The revelation of functions of important genes with the advancement of whole-genome sequencing has facilitated the CRISPR-Cas9 editing to mutate the desired target genes. This technology speeds up the creation of new germplasm resources having better agro-economical traits. This review entails a detailed description of CRISPR-Cas9 gene editing technology along with its potential applications in olericulture, challenges faced and future prospects.
Keywords: genome-editing technology, CRISPR-cas application, vegetable crops, advanced, cutting-edge
INTRODUCTION
The world population is estimated to increase by 10 billion in the next three decades, thereby the demand for food crops is likely to increase by 25–70% (Hunter et al., 2017). Contemporary agriculture will eventually face enormous challenges to produce crops having high yield and better quality which require few inputs (Tilman et al., 2011). Vegetable crops act as protective foods that provide essential nutrients in the human diet due to their richness in vitamins, minerals, dietary fiber and phytochemicals (Dias, 2012). More than 400 g of fruits and vegetables should be consumed daily per person to reduce the risk of cardiovascular diseases. (Bazzano et al., 2002). or cancer (Aune et al., 2017). Like any other food crop, vegetable crops too are prone to many biotic and abiotic stresses (Jaganathan et al., 2018; Boscaiu and Fita 2020) thereby necessitating the development of next-generation architectured crops which are able to sustain adverse environmental stresses (Karkute et al., 2017).
Till now conventional breeding techniques have been extensively used to improve the yield and agronomic performance which is a complex, time-consuming and labor-intensive process (Zhang et al., 2018). It is a selection of improved individuals utilizing genetic variation in the population (Breseghello and Coelho, 2013). It also recombines the desired gene pools resulting in new genotypes or cultivars (Holme et al., 2019). However, when the desirable genetic variation is not available in the gene pool, then it can be generated and used for selection by inducing mutations using various mutagenic agents like non-ionizing radiation i.e. UV rays or ionizing radiation i.e. X and gamma rays, alpha and beta rays, fast and slow neutrons. Some chemicals can also be used as mutagenic agents like ethyl methane sulphonate (EMS), methyl methane sulphonate (MMS), hydrogen fluoride (HF), sodium azide, N-methyl-N-nitrosourea (MNU) and hydroxylamine) (Parry et al., 2009). Mutation breeding has not been extensively utilized in vegetable crop improvement except for a few exceptions being low in its efficiency. Over the last few decades, there have been a large number of significant developments in the molecular biology approaches to improve crop yield and quality. Recently, tremendous progress has been made in genome editing tools like site-directed nucleases (SDNs) which are able to edit the crops at high speed and possess great potential in shaping up the novel genetic makeup of vegetable crops (Tian et al., 2021). Genome editing tools can precisely engineer the genes by either deleting, replacing or inserting specific sequences at the specific targeted location in the target genome to generate novel traits (Corte et al., 2019). Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated enzymes are the tools for genome editing used to modify plants (Miller et al., 2007). Site-specific double-stranded breaks (DSBs) are enabled by Crispr/Cas which further activate the cellular DNA repair systems (Zhu et al., 2020; Gaj et al., 2013). These DSBs can either be corrected by the non-homologous end joining (NHEJ) pathway or through the homology-directed repair (HDR) pathway (O’Driscoll and Jeggo, 2006; Wang T. et al., 2019a). The use of first-generation technologies like ZFNs and TALENs has been limited due to their adverse mutagenic outcome, low editing efficiency, time-consuming process and labor-intensive selection and screening process (Gaj et al., 2013; Jaganathan et al., 2018). The second-generation genome editing technology i. e. CRISPR/Cas9 is easier to design, and execute and more cost-effective. The use of CRISPR/Cas9 in vegetable crops has substantially expanded gene editing technology and made it possible to create novel genotypes with desired phenotypic features and altered genomic functions at the base pair level (Abdallah et al., 2015; Nunez de Caceres Gonzalez and De la Mora Franco, 2020). We will first go over CRISPR/Cas9 history and development before summarising how it is currently used to modify vegetable crops. Finally, we will talk about the real-world challenges in enhancing vegetable crops with the desired traits.
Clustered regularly interspaced short palindromic repeats-CRISPR-associated protein-9
CRISPR-Cas9 is an advanced genome editing technique that enables scientists to change, add, or remove specific DNA sequences to modify specific regions of the genome. In general, there are three main types (I-III) of CRISPR-Cas systems utilized for target interference (Rouillon et al., 2013). Type II uses its two distinctive nuclease domains, RuvC and HNH, to achieve interference with only a basic effector-module design (Gasiunas et al., 2012). Type II Cas9 from Streptococcus pyogenes (SpCas9) is the most popular CRISPR nuclease employed in CRISPR-Cas technology (Doudna and Charpentier, 2014). The protospacer adjacent motif (PAM) is recognized by the sgRNA-Cas complex, and Cas9 cleaves the target DNA to create a double-strand break (DSB), activating cellular DNA repair processes (Figure 1).
[image: Figure 1]FIGURE 1 | Basic structure of CRISPR/Cas9 system.
How does it work
The two essential parts of the CRISPR-Cas9 system that modify DNA are Cas 9 enzyme and guiding RNA (gRNA). The “genetic scissors” known as Cas9 (enzyme), cut the two DNA strands at an exact place in the genome to allow for the addition or deletion of DNA fragments and the guiding RNA (gRNA) is made up of two parts: Crispr RNA (crRNA), a 17–20 nucleotide sequence complementary to the target DNA, and a transactivating Crispr RNA (tracr RNA), which serves as a binding platform for the Cas9 nuclease (Mei et al., 2016) (Figure 1). Each crRNA hybridizes with tracr RNA, and these two RNAs jointly make a complex with the Cas9 nuclease (Deltcheva et al., 2011). The goal of the guide RNA is to find and bind to a target DNA sequence that is complementary to its RNA bases. Double strand breaks, or DSBs, are created when the Cas9 enzyme cuts across both DNA strands at the same location in the DNA sequence as the guide RNA (Jinek et al., 2012; Jiang et al., 2013). The DSBs inflicted by Cas-9 protein are repaired by two mechanisms i.e., non-homologous end-joining (NHEJ) and homology-directed repair (HDR) (Liu et al., 2019) (Figure 2). NHEJ needs enzymes in the repair mechanism in which different DNA segments are joined by excluding a homologous DNA template (Shuman and Glickman, 2007). It is an extraordinarily effective cell repair mechanism that is most often exploited but is prone to errors that can cause minor, spontaneous insertions or deletions. (Yang et al., 2020). The HDR however is quite precise in gene insertion or replacement of DNA segments at the predicted DSB site but requires a large amount of homologous DNA template (Liu et al., 2019; Yang et al., 2020).
[image: Figure 2]FIGURE 2 | Schematic diagram of CRISPR/Cas9 mechanism. Double-strand breaks (DSBs) are induced when Cas9 enzyme and gRNA bind with targeted double-stranded DNA. These DSBs are repaired by Homology-directed repair (HDR) and Non-homologous end-joining (NHEJ) mechanisms.
Modifications in clustered regularly interspaced short palindromic repeats genome editing system
Several new CRISPR systems have been developed to overcome the limitations of CRISPR/Cas 9 and improve its specificity for more effective genome editing. These cutting-edge technologies are detailed below and could be crucial resources for molecular crop breeding.
Cas protein Cpf1 (also known as Cas12a) is with RNA-guided system being widely used in genome editing (Kim et al., 2017; Moon et al., 2018; Chen et al., 2019). It uses a T-rich PAM sequence to identify the target site, extending the editing sites beyond the G-rich PAM sequences preferred by Cas9. The target site of Cpf1 is located at the distal position and downward the PAM sequence. Cpf1’s guide RNA has 43 base pairs and is shorter than the sgRNA of Cas9 (about 100 bp) (Kim et al., 2017; Chen et al., 2019). Cpf1 generates staggered-ended double-strand breaks, which offers more advantages than Cas9 and improves the effectiveness of the NHEJ-based gene insertion. (Kim et al., 2017; Moon et al., 2018). Cpf1-based genome editing has been reported in rice and soybean (Kim et al., 2017; Xu et al., 2017). Additional research is required to analyze the specificity of Cpf1 in other crops and to enhance the current Cas12a-based applications Schindele and Puchta (2020).
Cas12b prefers T-rich PAM, produces staggered double-strand breaks, and needs both a crRNA and a trans-activating crRNA. Cas12b protein is smaller than Cas9 and Cas12a. Cas12b/C2c1 has been effectively used to carry out multiplex genome editing, induce mutations, and cause deletions at many loci in Arabidopsis (Wu et al., 2020). However, Cas12b shows its optimum activity at higher temperature (Teng et al., 2018), it needs to be altered for making it more useful in crop applications.
Cas13 is a recently identified CRISPR effector which targets specific RNAs in plant cells. This system has high RNA target specificity and efficiency. Cas13 protein belongs to class 2 type VI and contains unique higher eukaryotes and prokaryotes nucleotide-binding domains that are exclusively associated with RNase activity (Wolter and Puchta 2018). Till now, three different Cas13 protein classes, such as Cas13a, Cas13b, and Cas13d, have been used for RNA editing in plants (Schindele et al., 2019), mainly to target RNA for cleavage, for combating RNA viruses (Aman et al., 2018; Wolter and Puchta 2018). It has been demonstrated that CRISPR/LshCas13a system is used to create potyvirus resistance in plants, which suggests that this system can be employed for agricultural and biotechnological applications (Aman et al., 2018).
Cas14a is a highly compact protein, which can be used as an RNA-guided DNA nuclease for target-specific single-stranded DNA (ssDNA) cleavage (Harrington et al., 2018; Khan M. Z. et al., 2019b). Due to its sequence-independent and unrestricted cleavage, it has evolved into an excellent tool for building resistance to economically significant plant ssDNA viruses (Harrington et al., 2018; Khan M. S. S. et al., 2019). Cas14a is only one-third the size of Cas9 and is the smallest working CRISPR system to date. (Harrington et al., 2018). It has the potential to generate resistance against ssDNA viruses that belong to the Geminiviridae and Nanoviridae families (Khan M. S. S. et al., 2019a).
Besides these systems, base editing provides effective, concise, and well-recognized strategies for specific base replacement at the target site without the need for DSBs or donor DNA and independent of homology-directed repair (HDR) (Chen et al., 2019). They are helpful when there is a requirement for desired protein-coding genes to create variations with enhanced economic traits (Li H. et al., 2020c). At present, there are two types of base editors: Cytosine base editors (CBE) (which converts C-G pair to T-A pair) and adenine base editors (ABE) (converts A-T base pair to G-C base pairs (Komor et al., 2016; Gaudelli et al., 2017) Figures 3A,B. Both these editors largely depend upon the availability of PAM sequence as they use DNA binding proteins to induce point mutations at the targeted site (Jin et al., 2019). The major limitation of base editors is their inability to generate precise base edits in point mutations. Research is ongoing to improve the efficiency and role of base editing in random and targeted mutagenesis (Li H. et al., 2020c).
[image: Figure 3]FIGURE 3 | (A) Cytosine base editor and (B) Adenosine base editor.
Prime editing, a recent genome-editing tool that induced all kinds of mutations and base substitutions (insertion/deletion) without donor DNA or double-strand breaks. Prime editing uses proteins fused to Cas 9 nickase and prime edited guide RNA with reverse transcriptase to induce mutations. The pegRNA contains not only complimentary sequence as the target sites that directs nCas9 to its target sequence, but also an additional sequence creating desired sequence changes. The Cas9 nicked the PAM containing DNA strand which act as a primer for reverse transcriptase to create extensions in the nicked strand using pegRNA as template and ultimately modifying the target site (Anzalone et al., 2020). PE has been successfully applied in rice and wheat to generate stable edited lines with price gene edits (Butt et al., 2020; Li H. et al., 2020c). It is advantageous over other genome editing tools in crop science with respect to reduced off-target mutations and less requirement of PAM sequences due to RNA template and high-efficiency rates but still experiments are need to be conducted regarding its specificity and potential. The various tools and Databases used for CRISPR/Cas9 mediated genome editing in plant systems are being presented in Tables 1, 2.
TABLE 1 | List of available tools used for CRISPR/Cas9 genome editing.
[image: Table 1]TABLE 2 | List of available databases for CRISPR/Cas9 for plants.
[image: Table 2]APPLICATIONS OF CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS/CRISPR-ASSOCIATED PROTEIN-9 IN VEGETABLE CROPS
As vegetables are susceptible to various abiotic and biotic stresses which reduce optimum production, which highlights the significance of developing resistant/tolerant cultivars. Additionally, in vegetable crops, various quality traits including flavor and nutritional profile, plant architecture, and shelf life can be improved. Various gene editing systems have good potential to improve the quality and yield of vegetables among which CRISPR/Cas is very popular. The major applications of CRISPR/Cas9 in vegetable crops is being discussed below under different sections and the list of various traits modified by CRISPR/Cas is being presented in Table 3.
TABLE 3 | List of traits modified by Crispr/Cas in vegetable crops.
[image: Table 3]Albino phenotype
Some plants lack chlorophyll pigmentation as a result of phytoene desaturase (PDS) gene disruption, which affects the formation of carotenoids and chlorophyll, leading to albino plant phenotypes. There is little information on the albino plant phenotypes in vegetables except for a few publications where albinism has been used to standardize the gene-editing method utilizing CRISPR-Cas. Fully albino plants (pds mutants) were generated in various vegetable crops like tomato, watermelon, melon, cabbage and carrot via editing phytoene desaturase gene through Agrobacterium tumefaciens-mediated transformation (Pan et al., 2016; Tian et al., 2017; Xu J. et al., 2019; Hooghvorst et al., 2019; Ma et al., 2019).
ABIOTIC STRESS
Vegetable crops face many abiotic stresses caused due to temperature, drought, salinity and heat which adversely affect crop productivity. Although traditional breeding techniques are able to combat stresses to certain extent, new innovative technologies like CRISPR-Cas 9 offers the possibility to generate more resilient germplasm in dealing with these stresses (Haque et al., 2018). High temperature is a major stress factor that inhibits the growth and productivity of vegetable crops. It leads to the overproduction of reactive oxygen species (ROS) which causes oxidative damage, ultimately impairing the normal function of plant cells. Highly conserved protein kinases called mitogen-activated protein kinases (MAPKs) are involved in the response to heat stress of vegetable crops (Sharma et al., 2020). Knockout of BRASSINAZOLE RESISTANT 1 (BZR1) impaired the induction of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and induced production of H2O2 and heat tolerance in tomato. This exogenous H2O2 recovered the heat tolerance in bzr1 tomato mutant plants (Yin et al., 2018). In addition to this, mutations induced through CRISPR-Cas9 in slmapk3 imparts higher heat stress tolerance in tomato. Slmapk3 mutant also showed less wilting, mild membrane damage, low production of reactive oxygen species and improved antioxidant enzymatic activity under heat stress as reported by Yu et al. (2019). Similarly, in lettuce by using CRISPR/Cas9, LsNCED4 (9-cis-EPOXYCAROTENOIDDIOXYGENASE4) gene, resulting in thermo-inhibition of seed germination was knocked out, which significantly resulted in high-temperature germination in both cultivars (Salinas and Cobham Green), capable of germinating more than 70% at 37°C (Bertier et al., 2018).
One of the most harmful environment factors causing damage to vegetable crops is drought stress. Important signalling molecules that react to drought stress include mitogen-activated protein kinases (MAPKs). In 2017, Wang and his co-workers utilized CRISPR/Cas9) mediated mutagenesis to generate slmapk3 mutants in tomato. In comparison to wild type plants, the slmapk3 mutants had more severe wilting symptoms, greater hydrogen peroxide levels, low antioxidant enzyme activity, and experienced more membrane damage. They concluded that slmapk3 is involved in drought response in tomato by protecting from membrane damage and stimulating transcription of some stress related genes. Chilling stress is the primary obstacle that prevents the growth of some vegetable crops, like tomato, brinjal, and chilli as they are sensitive to severe chilling injury. The highly conserved C-repeat binding factors (CBFs) are involved in regulating cold tolerance. As in tomato, the slcbf mutants were generated using the CRISPR-Cas9 system, but these mutants exhibited severe chilling- injury symptoms as shown by the down-regulation of CBF-related genes as compared to wild-type (WT) plants (Li et al., 2018a). Additionally in both abovementioned studies, the mutants exhibited lower content of proline and protein and more amount of hydrogen peroxide contents and antioxidants than WT plants which further altered hormonal level of plants and reduced the expression of genes. So, there is a need to study the regulatory mechanism of CBF and mitogen-activated protein kinases (MAPKs) genes in order to understand their molecular mechanism.
In addition to this, the SlUVR8 gene was knocked out in tomato to increase tolerance to high UV-B stress using CRISPR-CAS9 gene editing approach by generating sluvr8 mutant lines which confirmed that SlUVR8 plays a significant function in tomato seedling growth and UV-B stress resistance Liu et al. (2020). Excessive concentration of salts within the plant tissues will reduce growth and productivity, as they can affect several pivotal processes, such as germination, photosynthesis, nutrient balance and redox balance, among others (Parihar et al., 2015; Petretto et al., 2019). Recently, the HKT1&2 allele was edited and inserted into tomato Hongkwang cultivar via the CRISPR/Cpf1-mediated homology-directed repair (HDR) mechanism which showed stable inheritance for salt tolerance (Vu et al., 2020). Furthermore, by precise deletion of one or more SlHyPRP1’s functional motifs using CRISPR/Cas9-based multiplexed editing, salt stress-tolerant events in cultivated tomatoes were produced (Tran et al., 2021).
Biotic stresses
Globally, major losses in the production of vegetable crops are caused by a diverse variety of diseases. A sustainable strategy for supplying the world’s expanding population with food is the development of disease-resistant cultivars. (Thomazella et al., 2016). Traditional plant breeding has been utilized for centuries to develop new varieties, but modern technologies, like genome editing, have the ability to produce improved varieties more quickly, by accurately introducing favourable alleles into locally adapted types (Nekrasov et al., 2017). In tomato, SlDMR6-1 orthologue Solyc03g080190.2 is up-regulated when infected due to Pseudomonas syringae pv. tomato and Phytophthora capsici. The tomato homologue genes were knocked out using CRISPR-Cas9 to cause mutations in DMR6, which resulted in broad-spectrum resistance to Pseudomonas, Phytophthora, and Xanthomonas spp. (Thomazella et al., 2016). Wild-type MILDEW RESISTANT LOCUS O (Mlo) alleles, encode a protein, which provides fungal sensitivity causing powdery mildew disease. In tomato, homozygous loss-of-function of SlMlo1 gene through CRISPR-mediated mutations resulted in resistance to powdery mildew (Nekrasov et al., 2017).
Pseudomonas syringae pv. tomato (Pto) DC3000, a causative agent of tomato bacterial speck disease releases coronatine (COR) which stimulates stomatal opening and encourages the bacterial colonization in the leaves. Ortigosa et al. (2019) developed a tomato genotype resistant to bacterial speck by editing the SlJAZ2 gene (a key co-receptor for coronatine in stomatal guard cells) via the CRISPR/Cas9 system to produce dominating Jasmonate-Zim Domain (JAZ2) repressors (SlJAZ2jas), which prevents coronatine from reopening stomata and provided resistance to PtoDC3000. Jeon et al. (2020) identified biosynthetic gene clusters (ACET1a, ACET1b and Solyc12g100270) in tomato plants required for the production of falcarindiol in response to biotic stress. Mutagenesis through CRISPR revealed the direct role of the cluster in synthesis of falcarindiol which imparts resistance against fungal and bacterial pathogens in tomato. In 2018, through the use of the CRISPR/Cas9 system, tomato plants were made resistant to the tomato yellow leaf curl virus by focusing Through the use of the CRISPR/Cas9 system, tomato plants were made resistant to the tomato yellow leaf curl virus by focusing on the coat protein and replicase sites (Tashkandi et al., 2018).
In order to speed up the breeding of potatoes for resistance to late blight (Phytophthora infestans) and potato virus Y (PVY), CRISPR/Cas has emerged as a substitute and effective method. Targeting P3, CI, Nib, and CP viral genes, Cas13a protein was used to give resistance to three PVY strains (RNA viruses) (Zhan et al., 2019). Similarly, the functional knockouts of StDND1, StCHL1, DMG400000582 (StDMR6-1) and caffeoyl-CoA-O-methyltransferase gene generated potato plants with increased late blight resistance (Hedge et al., 2021; Kieu et al., 2021). Knocking out of Clpsk1 gene, which encodes the PSK precursor, in watermelon to provide increased resistance to Fusarium oxysporum f.sp. niveum (Zhang et al., 2020), whereas, in tomatoes, Solyc08g075770-knockout via CRISPR-Cas9 resulted Fusarium wilt disease sensitivity in the plants (Prihatna et al., 2018). Virus resistance can be induced in cucumber plants by disrupting the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene using Cas9/subgenomic RNA (sgRNA) technology (Chandrasekaran et al., 2016). Similarly in Brassica napus, BnWRKY11 and BnWRKY70 were edited with CRISPR/Cas9 vectors and mutations induced in BnWRKY70 generated mutants with enhanced resistance to Sclerotinia spp. (Sun et al., 2018).
Vegetable quality improvement
Fruit and vegetables (F&V) are highly perishable food products that need advanced post-harvest technologies to maintain their storage stability and extended shelf life (Gallagher and Mahajan., 2011). In tomato, the homology-directed repair (HDR) pathway was used to replace the allele of ALC with the alc gene, resulting in T1 homozygous plants with long shelf life. (Yu et al., 2017). Klap et al. (2017) used CRISPR/Cas9 technology to delete tomato SlAGL6 (SlAGAMOUS-LIKE6) which led to the development of parthenocarpy under high-temperature stress conditions without compromising the weight, fruit shape, or pollen vitality. Other vegetable crops, like the in-demand seedless watermelon or less-seeded fruits, can also use this approach to generate parthenocarpy.
Lycopene is an important plant nutrient with strong antioxidant properties that helps to protect the cells from damage. Lycopene accumulation in the fruit is facilitated by the knockdown of a few genes linked to the carotenoid metabolic pathway. The amount of lycopene was successfully increased to about 5.1 times in genome-edited tomato fruits. These results suggested that the CRISPR/Cas9 system has the potential to greatly increase the amount of lycopene in tomato fruit due to its high effectiveness, infrequent off-target mutations, and stable heredity Li et al. (2018a). The non-proteinogenic amino acid gamma-aminobutyric acid (GABA) has hypotensive properties. Nonaka et al. (2017) To boost GABA accumulation by 7–15 times in tomato fruits, researchers employed CRISPR/CRISPR-associated protein (Cas)9 technology to remove the autoinhibitory domain of SlGAD2 and SlGAD3 and insert a stop codon right before the autoinhibitory domain.
Potato starch quality is important in various food applications. Improved starch quality with full knockout of granule-bound starch synthase (GBSS), starch synthase gene (SS6) and starch-branching enzymes (SBEs) genes SBE1, and SBE2 was reported in potato using CRISPR mediated genome editing (Andersson et al., 2017; Andersson et al., 2018; Kusano et al., 2018; Johansen et al., 2019; Veillet et al., 2019; Sevestre et al., 2020; Zhao et al., 2021). The enzyme polyphenol oxidase (PPO) catalyzes the oxidation of phenolic compounds into highly reactive quinones that cause postharvest browning of cut or bruised fruit (Araji et al., 2014). In the tetraploid potato cultivar Desiree, Gonzalez et al. (2020) investigated the use of the CRISPR/Cas9 system to introduce mutations into the StPPO2 gene. Mutations induced in the four alleles of the StPPO2 gene led to lines with reduced PPO activity (69%) in tubers. CRISPR/Cas has also been utilized in potato for improving traits like carotenoid biosynthesis (Khromov et al., 2018; Banfalvi et al., 2020; Butler et al., 2020) and glycoalkaloids (Nakayasu et al., 2018). Reducing the amount of steroidal glycoalkaloids (SGAs), such as α-solanine and α -chaconine, in tubers is necessary for breeding excellent potatoes since their presence may give potatoes a bitter flavor and have other unfavorable effects on humans. Two SGA-free potato lines were generated by selectively inhibiting a steroid 16-hydroxylase (St16DOX) that is involved in the synthesis of steroidal glycoalkaloids (SGA) in potato (Nakayasu et al., 2018).
Similarly, in brinjal, the three-polyphenol oxidase (PPO) genes SmelPPO4, SmelPPO5, and SmelPPO6 in brinjal were linked to enzymatic browning. To stop the browning of fruit flesh, these three target PPO genes have been eliminated using CRISPR-Cas9-based mutagenesis. (Maioli et al., 2020). It paves the way for the creation of genotypes of eggplant with reduced levels of flesh browning and higher levels of berry polyphenols as this is the first time the CRISPR/Cas9 system has been applied to eggplant for biotechnological uses.
Yield
Cucumber gynoecious inbred lines are very important because of their better production yield and cheaper labour cost for crossing. Hu et al. (2017) used CRISPR-Cas9 technique to create Cswip1 mutants by targeting the WPP trp/pro/pro domain Interacting Protein1 (CsWIP1) gene, which encodes a zinc-finger transcription factor. Cswip1 T0 mutants had a gynoecious phenotype with exclusively female flowers and these gynoecious mutants will be beneficial in heterosis breeding to produce high-yielding hybrids.
Similarly, Zhang et al. (2019a) created artificial gynoecious watermelon lines by editing ClWIP1gene using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system. Additionally, SP5G mutations in field tomatoes hasten the blooming process and alter the compact growth habit, resulting in a short flowering interval and an early harvest (Soyk et al., 2017).
Herbicide resistance
Weeds are a significant stress factor that affects the yield and quality of vegetables, and selective herbicides are frequently used to control the growth and development of weeds during cultivation. The herbicide target gene acetolactate synthase (ALS) has been edited by using CRISPR-Cas9 technology in vegetables like tomato, watermelon, soybean, and potato for developing herbicide resistance in plants (Danilo et al., 2019; Tian et al., 2018; Li et al., 2015; Veillet et al., 2019).
Phelipanche aegyptiaca, an obligatory weedy plant parasite, requires the presence of the plant hormone strigolactone (SL) to encourage seed germination. Carotenoid dioxygenase 8 (CCD8), a crucial enzyme in the carotenoid synthesis pathway that generates strigolactone in tomatoes, and More Axillary Growth1 (MAX1), which is involved in strigolactone synthesis, were modified using CRISPR-Cas9 to significantly lower SL content and produce tomato plants resistant to P. aegyptiaca (Bari et al., 2019; Bari et al., 2021).
Recently, Yang et al. (2022) designed and tested the efficiency of sgRNA to use with Crispr/Cas system to edit herbicide-related genes pds (phytoene desaturase), ALS (acetolactate synthase), and EPSPS (5-Enolpyruvylshikimate-3-phosphate synthase) in tomato. The outcomes of the sgRNA efficiency tests confirmed that the transformation process could alter the target locations. They verified that 19 different transgenic tomatoes had adequately been edited by ALS2 P or ALS1 W sgRNAs, and 2 of them carried three base mutations that are likely to change their herbicide resistance.
Regulation of genome-edited crops
Genome/gene editing refers to the precise change in either of DNA or RNA sequence of any target organism. This editing can lead to change in a single base pair to completely reorganization of the large genomic region. Sometimes, genes that are not present in the natural gene pool are also introduced into the target individual to generate novel traits. As this technique involve genetic manipulation either by altering genome sequence or by addition of foreign genomic sequence therefore it becomes mandatory to enforce the regulations of the Cartagena Protocol by any country. The Cartagena Protocol on Biosafety set the foundation for regulating the release and international trade of genetically modified organisms. However, there have been differences in the patterns of GM crop cultivation, utilization and legislation. While some nations restrict production and deny consumption, others actively cultivate and consume them (Garcia Ruiz et al., 2018). Some countries regulate the process while others are involved in the regulation of the product (Eckerstorfer et al., 2019; Van Vu et al., 2019).
For instance, in 2018, as per the guide lines of United States Department of Agriculture (USDA) genome editing through CRISPR-Cas 9 is like conventional breeding therefore does not need any regulation under American Regulatory Standards and are exempted from the regulatory frameworks (Waltz, 2016a). This gives advantage in minimizing the time and resources needed for the testing and legislation of the release of the CRISPR edited crops. Growing research output is authentic evidence that CRISPR-Cas edited crops holds significant promise in improving the yield and quality of crops for the consumers across the world.
In the year 2018, Canadian legislation stated that any gene editing technology which produces a novel product must be subjected to further regulatory supervision on toxicity, allergenicity and any effects on other organisms except the target (Smyth, 2017). For example, non-browning apples and non-dark spot potatoes were approved in Canada after a long examination process which ensured that the changes made in these two products were not harmful to the human being.
However, the European Court of Justice (ECJ) has approved many mutagenic crops developed through chemical and physical mutagens (Waltz, 2016b) but considered gene-edited crops under same strict rules as traditional genetically modified (GM) plants. Among the South American countries like Argentina has developed a regulation system as per the guidelines of Cartagena Protocol on Biosafety for the approval of genome-edited products and relies on the case-by-case evaluation with the exemption from the regulation in the absence of transgene (Whelan and Lema, 2015). Chile and Brazil also followed the same regulatory system regarding genome editing as Argentina. Chile has given regulations in 2017 while Brazil in January 2018 (Duensing et al., 2018).
In Australia, the regulatory framework is set by the Gene Technology Act 2000 (GT Act) and GT Regulations 2001 (GT Regulations) with the purpose to protect people’s health, safety and the environment by recognizing threats posed as a consequence of genetic manipulation. The proposed amendments relevant to genome editing would exclude organisms developed with site-directed nucleases (SDN-1) from regulation and stated that organisms developed with SDN2 or SDN-3 are regulated as GMOs (Thysegen, 2019) (Please see Figure 4 depicting mechanism of SDN-1, 2 and 3 types). In the New Zealand, release of genetically modified plants is regulated by the Hazardous Substances and New Organisms (HSNO) Act 1996. The Act generally defines a GMO as any organism whose genome or genetic information has been altered by in vitro methods (Fritsche et al., 2018).
[image: Figure 4]FIGURE 4 | Schematic diagram of modification by site directed nuclease (SDN- 1, SDN-2 and SDN-3) types. Double strand break (DSB) is repaired via non-homologous end joining (NHEJ) or homologous recombination (HR). SDN1 results in random insertion/deletion, SDN2 induces addition of few nucleotides and SDN3 inserts a DNA fragment.
In India, all the activities related to the development and use of genetically modified products are regulated as per the ‘‘Rules for the Manufacture/Use/Import/Export and Storage of Hazardous Microorganisms, Genetically Engineered Organisms or Cells’’, 1989 (Rules 1989) which covers new genome editing technologies including CRISPR/Cas9 and notified under the Environment (Protection) Act, 1986, by Genetic Engineering Appraisal Committee (GEAC). (Warrier and Pande 2016). This committee is responsible for granting permits to conduct experimental and large-scale open field trials and also granting approval for the commercial release of genetically altered crops.
Challenges and future prospects of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 genome editing
The CRISPR/Cas9 system is the latest cutting-edge technology that augments crop improvement by generating high-yielding, better quality, and resistant crop plants to biotic and abiotic stresses crops in a short span of time (Doudna and Charpentier, 2014; Langner et al., 2018). The NHEJ-mediated gene repair creates precise alterations to knock out or change the function of a particular target gene(s) which plays an important role in crop-trait-specific applications, but still there exist many challenges which must be overcome. Foremost is the selection of genes that are to be targeted for mutations and the types of mutation to avoid off-target gene editing. Moreover, it is difficult to carry out genome editing in the target organisms without genome sequencing. Editing a single gene does not result in desired phenotypic changes, because significant agronomic factors are quantitative. To add desired mutant alleles, effective CRISPR-Cas-mediated target site-specific insertion, deletion, and chromosomal recombination procedures can be applied (Zhu et al., 2020).
Once a gene has been identified, the second major challenge is to deliver CRISPR-Cas gene-editing agents into plant cells and the procedure to regenerate the putative edited plants (Chuang et al., 2021; Lino et al., 2018). Actually, it is quite challenging to create a universal and effective genetic transformation and regeneration system for vegetable crops (Niazian et al., 2017). In addition to this, for successful genetic transformation of vegetable crops editing efficiency is to be considered, which is further influenced by various factors, such as the number of sgRNA and GC amount; the expression levels of sgRNA and Cas9; and the secondary structure of the paired sgRNA and target sequence. (Kumlehn et al., 2018; Hu et al., 2019). Since genome editing in vegetable crops has such huge potential, we expect that strategies will be formulated to overcome these challenges in the near future.
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Manipulation of flowering time for adaptation through natural or genetic approaches may combat heat-stress damage that occurs at the reproductive stages in production conditions. HD2733, a popular wheat variety of the eastern plains of India, is largely sensitive to heat stress. Therefore, the current study aims to improve heat tolerance of HD2733 by introgression of QTLs associated with early anthesis and high kernel weight linked to markers Xbarc186 and Xgwm190, respectively, through marker-assisted backcross breeding (MABB) from a tolerant donor, WH730. A total of 124 simple sequence repeat (SSR) markers distributed evenly across the genome were used for the background selection. The alleles of Xbarc186 and Xgwm190 were fixed in BC2F1 and BC1F2 generations by selecting individual plants heterozygous for both marker loci and backcrossed with HD2733 and simultaneously selfed to generate BC2F1 and BC1F2 populations, respectively. Furthermore, the selected BC1F2 were selfed to generate the BC1F4 population. By background screening, a total of 39 BC2F3 and 21 BC1F4 families homozygous for the targeted QTLs with 90.9–97.9% and 86.8–88.3% RPG recoveries were selected. The best performing 17 BC2F3 and 10 BC1F4 lines were evaluated for various morpho-physiological traits. Phenotypic evaluation and multi-location trials of the introgressed lines under late sown conditions led to the selection of three promising lines with early anthesis and higher grain yield. The improved lines will serve as an excellent genetic material for functional genomics and expression studies to understand the molecular mechanisms and pathways underlying the stress tolerance.
Keywords: heat tolerance, MABB, markers, backcross, early anthesis
INTRODUCTION
Wheat is an important cereal crop in terms of global annual acres grown and tonnage harvested. According to FAO statistics, 772.64 million tons of wheat is harvested from 220.4 mha area in the world (FAO, 2020). High temperature stress during the anthesis period can not only reduce grain yield but also the quality of wheat (Stone and Nicolas, 1994; Langridge and Reynolds. 2021). Climate change is likely to increase the problem of high temperature stress to wheat production in many parts of Asia (Ortiz et al., 2008; Sun et al., 2021). The effects of climatic change are highly noticed in major wheat-growing regions of India, with frequent heat waves and earlier onset of higher temperatures. Furthermore, a substantial area under wheat cultivation is subjected to heat stress due to delayed planting (Joshi et al., 2007).
The central zone and north-eastern plain zone of India encompasses nearly 7 mha of wheat-growing area which is prone to high-temperature stress and nearly 13.5 mha of wheat-growing area is affected by heat stress (Bhusal et al., 2017). Increased ambient temperature above 30°C during the grain-filling period is a major threat for wheat productivity and grain-quality standards (Wardlaw and Moncur, 1995; Rane and Nagarajan, 2004) by affecting the duration and rate of grain development (Dias and Lidon, 2009; Pandey et al., 2013). The North Eastern Plain Zone (NEPZ) covers more than 33% of the wheat-growing area with a predicted yield potential of 4.5–5.0 t/ha. However, farmers in this zone realize only 2.5 to 3.0 t/ha of production, due to late sowing in the end of November or the first week of December, which leads to the exposure of the crop to high temperature during the reproductive growth period (anthesis to grain maturity) causing reduced spikelet fertility and grain filling, thereby reducing the yield (Shashikumara et al., 2022b). Manipulating the flowering time either naturally or through genetic approaches may combat heat stress damage during the reproductive stages (Jagadish et al., 2020). Thus, the development of wheat cultivars with built-in heat-tolerant traits such as early anthesis and high kernel weight are rewarding in boosting wheat production under high-temperature regimes. Earliness in wheat acts as an adaptive mechanism to avoid heat stress and has been observed in the release of early maturing varieties and heat-tolerant wheat in South-Asia (Mondal et al., 2016). Improving heat tolerance in plants through traditional methods of breeding is comparatively difficult as heat tolerance is a complex trait manifested by various yield and physiological adaptive traits (Manjunath et al., 2021). Selection based on phenotyping alone is tricky and time-consuming in case of complex traits affected by the environment on its expression. Heat tolerance is a quantitative trait which is influenced by prevailing environments. Hence, selection for such traits using phenotyping tools will be tricky and difficult in segregating generations. Identification of genomic regions governing such adaptive traits could be helpful in improving yield stability under stress using molecular marker-assisted transfer of genes/QTLs to improve thermo-tolerance.
Although the application of conventional plant breeding programs has a significant impact in improving the productivity under marginal wheat-growing environments (Manu et al., 2020), genetic improvement needs a more systematic use of physiological and molecular genetic approaches. Molecular markers are highly efficient in QTL identification and introgression of QTLs into the required genetic background through marker-assisted backcrossing (Puttamadanayaka et al., 2020). Marker-assisted backcross breeding is one of the best breeding methodologies to accelerate the improvement of varieties by adopting marker-based selection of genes/QTLs governing desirable traits (Hospital, 2003; Shashikumara et al., 2022a). Marker-assisted backcross breeding has successfully been demonstrated in various crops such as rice (Oryza sativa) (Neerja et al., 2007; Singh et al., 2013), wheat (Triticum aestivum) (Somers et al., 2004; Zhou et al., 2005), maize (Zea mays L.) (Tamilkumar et al., 2014; Muthusamy et al., 2015), and so on for biotic and abiotic stresses. In wheat, MABB was efficiently used for high molecular weight glutenins (de Bustos et al., 2001), grain protein content enhancement (Davies et al., 2006), drought tolerance (Rai et al., 2018), and pre-harvest sprouting tolerance (Torada et al., 2008).
Most of the heat stress adaptive traits are polygenic in nature. QTLs identified for physiological and yield traits were also found to contribute to improving adaptation under heat stress (Pinto et al., 2010; Kadam et al., 2012; Kumar et al., 2012; Ramya et al., 2021). Despite the availability of a large number of QTLs for heat stress-governing traits, few QTLs have been validated and fewer have been used in practical wheat-breeding programs. Hence, the present study was undertaken to transfer available heat-tolerant QTLs from donor parent WH730, an identified heat stress-tolerant line into a well-adapted, high-yielding variety of HD2733. HD2733 is one of the popular varieties, cultivated in more than 30% of area in the NEPZ and having a high indent for breeder seed requirement (www.iiwbr.org.in), but it is heat stress susceptible as there is significant reduction in the yield potential under high-temperature stress.
To improve HD2733 for heat tolerance and to overcome the yield reduction, two QTLs were targeted for transfer through MABB which is known as the most eco-friendly and sustainable approach to develop stress-tolerant varieties. The first QTL was transferred for early anthesis linked with marker Xbarc186 (Pinto et al., 2010) and the second major QTL linked with marker Xgwm190 was targeted for kernel weight and grain yield under heat stress (Mohammadi et al., 2008). The improved NILs possessing targeted QTLs were further analyzed for the performance of QTLs in homozygous generations.
MATERIALS AND METHODS
Plant material and experimental site
The recurrent parent HD2733, a high-yielding variety, was released for the North Eastern Plains Zone (NEPZ) of India under irrigated timely sown conditions. It is double dwarf (82 cm), resistant to leaf rust and leaf blight, medium to early maturing (130–135 days) with average yield of 5.0 t/ha under timely sown and irrigated conditions. The seeds of HD2733 were obtained from wheat-breeding section, IARI, New Delhi, India. WH730 (IC546937) (derived from a cross of CPAN2092/Improved Lok1), developed by Chaudhary Charan Singh Haryana Agricultural University, Hissar, Haryana, India, was used as the donor parent. The variety had a higher grain yield, low heat susceptibility index, high kernel weight, membrane thermo-tolerance, and grain number under high-temperature stress (Dhanda and Munjal, 2012; Gupta et al., 2013). The experiment was conducted at the Division of Genetics, Indian Agricultural Research Institute, New Delhi, India. All the package of practices recommended for bread wheat crop was followed.
Molecular marker analysis
Leaf samples were collected from 25- to 30-day-old seedlings for DNA isolation using a protocol as described by Prabhu et al. (1998). PCR was performed in a 10-µl reaction mixture containing 10–25 ng of template DNA, 1 µl 10X buffer (containing 500 mM KCL, 15 mM MgCl2, 200 mM Tris HCl, pH 8.3), 0.4 µl of 10 mM dNTPs, 1 µl each of 5 mM forward and reverse primers, 0.4 µl of Taq DNA Polymerase (2 U/µl), and double-distilled water to make up the volume to 10 μl, using a 96-well thermal cycler. The PCR program was as follows: initial denaturation for 5 min at 94°C, each cycle comprised 1 min, denaturation at 94°C, 1 min annealing at 55-60°C (depending upon the Xgwm/Xwmc primer), and 1 min extension at 72°C with a final extension for 10 min at 72°C at the end of 45 cycles. For Xbarc and Xcfd series, the thermo-cycling program included initial denaturation for 5 min at 94°C, followed by 30 cycles where each cycle comprised 30 s of denaturation at 94°C, 30 s of annealing at 60°C, and 30 s of extension at 72°C with a final extension for 10 min at 72°C. The PCR products were analyzed by electrophoresis on 3.2% agarose/metaphorTM gel stained with ethidium bromide and were documented using Alpha Imager 1220 (Alpha Innotech, CA, United States).
Marker-aided development of improved lines
During the rabi season, crosses were affected by hand emasculation of HD2733 and pollination with WH730 pollens to generate sufficient F1 seeds. F1 plants with confirmed hybridity through foreground markers were backcrossed to HD2733 to produce BC1F1s and subsequent generations were forwarded as per the MABB scheme presented in Figure 1. The scheme includes a three-step selection strategy in each backcross generation: (1) foreground selection for the target QTLs using linked SSR markers; (2) a two-phase background selection using 124 SSR polymorphic markers, 57 of these markers (nearly half the set of the total polymorphic markers) were used for background scoring in BC1F1, and the remaining 67 polymorphic markers and the markers heterozygous in BC1F1 were used in BC2F1 to select plants homozygous for recurrent parent alleles at the maximum number of loci to increase the recurrent parent genome (RPG) recovery and genome coverage; and (3) stringent phenotypic selection for agro-morphological traits and physiological traits to accelerate the recurrent parent phenome (RPP) recovery.
[image: Figure 1]FIGURE 1 | MABB scheme for the improvement of HD2733 using WH730 as a donor for heat-tolerance QTLS.
The desirable BC1F1 plants obtained as per the three-step selection strategy explained previously were backcrossed with HD2733 to develop BC2F1 lines and advanced with two generations of selfing to obtain BC2F2 (Off-season nursery) and BC2F3 lines. Simultaneously, BC1F1 plants were selfed to generate BC1F2 generation and advanced to obtain BC1F3 (off-season nursery) and BC1F4 generations. Foreground and background selections coupled with phenotypic selection were again carried out in the BC2F1 and BC1F2 generations; the SSR markers which were homozygous and fixed were not considered for background selection. QTL-positive plants with high RPG and RPP were advanced to BC2F2and BC1F3 generations. The donor QTLs were confirmed in BC2F2 and BC1F3 and these were subsequently selfed to generate BC2F3 and BC1F4 families.
Foreground selection
Foreground selection for the targeted QTLs was carried out using QTL-linked markers, Xbarc186 (Pinto et al., 2010) and Xgwm190 (Mohammadi et al., 2008), respectively (Table 1). The Xbarc186 marker reported in a reciprocal cross of Seri M82/Babax-derived RILs population governs early anthesis, causing early maturity with 6.4% phenotypic variance, and the Xgwm190 marker reported in the RIL population of a cross between MTA16/Kauz governs high kernel weight and grain yield under stress with 44.3% phenotypic variance. QTL mapping for heat stress-related traits had also been carried out in the WH730 x HD2733 mapping population in our laboratory at IARI. In this earlier study, QTL linked to early heading and anthesis (Xbarc186) was mapped on chromosome 5A and QTL for grain yield (Xgwm190) mapped on chromosome 5D (Sun et al., 2021). These SSR markers were also validated in the segregating BC1F2 population (296 plants) using single-marker analysis during the present study.
TABLE 1 | Details of the markers used in the foreground selection of backcross-derived lines.
[image: Table 1]BC1F1 plants heterozygous for the Xbarc186 and Xgwm190 markers at both loci were selected for making backcrosses with HD2733 to generate the BC2F1 population. Simultaneously, the selected BC1F1 plants were selfed to generate the BC1F2 population and advanced up to BC1F4 generation. A similar strategy was used to select individual plants in the BC2F1 generation and selfed to get BC2F2 and BC2F3 generations (Figure 1).
Background selection
A parental polymorphic survey was carried out between donor and recurrent parent by screening parents for 1,350 microsatellite markers (Pestsova et al., 2000; Gupta et al., 2002; Somers et al., 2004; Kadam et al., 2012; Röder et al., 1998). Initially, in the BC1F1 generation, 57 polymorphic markers were used to screen the selected individual plants for recipient parental genome recovery and donor parent allele replacement at other regions of the chromosomes except at the targeted regions; later on, in BC2F1, BC2F2, BC2F3, BC1F2, and BC1F3 generations, 67 additional SSRs were used for background selection to calculate genome recovery. A total of 124 molecular markers differentiated the parents at the genome level, which were used for background selection (Supplementary Table S1). The genome contribution of the parents in the improved lines was analyzed and depicted using the software Graphical Genotypes (GGT) Version 2.0 (van Berloo, 1999). The recurrent parent genome recovery (RPG) percentage was calculated by using the formula RPG (%) = (R + 1/2H) × 100/P, where R is the total number of markers homozygous for a recurrent parent allele, H is the total number of markers which remained heterozygous, and P is the total number of polymorphic markers used in the background selection program. Chi-square (χ2) test of goodness of fit with one degree of freedom was used to test the observed and the expected segregation ratio of the targeted QTLs.
Evaluation of derived lines for targeted trait improvement and other morpho-physiological traits
The experiment was laid out in an augmented design with four replications of parental checks in BC2F3 lines and three replications in BC1F4 lines. Two rows of each genotype were planted in a plot size of 0.46 × 2.5 m keeping 23 cm between rows. The standard cultivation field practices followed in wheat under normal (mid of November) and late sowing (second quarter of December) conditions to expose them to heat stress were followed precisely. The IARI research farm had calcic xe-rosol type of soil with a mean maximum temperature of 26.6°C and a mean rainfall of 2.9 mm during the wheat-growing seasons. Parental lines were raised under normal sowing and also at late sowing conditions for an accurate comparison of the derived lines with parents. Data for targeted traits and different morpho-physiological traits, namely, days to flag leaf emergence (FLE), days to heading (DH), days to anthesis (DA), and days to maturity (DM), were recorded on a visible basis, number of productive tillers per plant (tillers/pl), number of spikelets per spike (spk/sp), 1000-kernel weight (TKW), number of grains per 5 spike, grain yield per 5 plants, biomass, and harvest index (HI) were measured on five plants. Observations on days to flag leaf emergence, days to heading, and days to maturity were measured by counting the days from date of sowing to the respective stages of the crop. Traits such as plant height, spike length, peduncle length, number of productive tillers per plant, number of spikelets per spike, and number of grains per 5 spike observations were taken on 5 randomly selected plants and their means were used for analysis. Biomass was recorded as above ground weight of the five selected plants.
Among the physiological traits, the normalized difference vegetation index (NDVI) was measured with a field-portable Greenseeker at three growth stages (late boot stage, early milky stage, and late milky stage). The chlorophyll content was measured using a Minolta SPAD-502 chlorophyll meter at the three stages of growth. Stomatal conductance was measured using Decagon: SC-1 hand-held porometer at two growth stages (late-boot stage and early milky stage). Early ground cover was measured following the method described by Mullan and Reynolds (2010). With the use of a compact digital camera, images were acquired without using the zoom function at 25 days after germination, one image per plot was taken from a distance of constant 1 m height, and the digital photographs were processed. A hand-held infrared thermometer (Kane May Model Infratrace 8000, United States) was used to estimate the canopy temperature. Two measurements per plot nearly 0.5 m from the edge of the plot and approximately 1 m above the canopy were recorded. Membrane stability index (MSI) was estimated according to the method of Sairam et al. (1997). Leaf material (100 mg) was taken in test tubes having 10 ml of double-distilled water. Initial (C1) (40°C) and final (C2) (100°C) conductivities of the solution were noted on a conductivity bridge (Century, Water soil analysis kit, CMK 751). MSI was calculated as follows: MSI = [1 − (C1/C2)] × 100. Traits such as stomatal conductance and canopy temperature were measured on clear sunshine days at 11 a.m. to 12 p.m. h. CT and NDVI were measured two times a day, 11.00–11.30 a.m. and 1.00–1.30 PM. All physiological characters were measured at three developmental stages: late-boot stage, early milk stage, and late milk stage, which were considered as important and sensitive stages to heat stress.
The improvement of backcross-derived lines for the targeted traits and contribution of other morpho-physiological characters to yield under high-temperature stress was tested for significance (t-test at p < 0.05) by using critical difference at 5 per cent level of significance (CD5%). The Anderson Darling test was studied to know the distribution pattern of lines in each population. Correlation coefficients were studied to determine the effect of other traits on days to anthesis and grain yield. Analysis of variance (ANOVA) for the augmented design was studied in BC2F3 and BC1F4 progenies. The number of selected genotypes was further reduced in subsequent generations on the basis of improved agronomic performance over the recurrent parent. The 27 selected BC2F4 (17) and BC1F5 (10) families were planted next season in an alpha-lattice design that consisted of 4 blocks with 7 plots/blocks. The two replications were planted in three rows with a gross plot size of 0.63 × 2.5 m, with rows at 23 cm apart under late sown conditions (second quarter of December), and data for DA and yield traits were recorded. From these 27 lines, the selected 8 homozygous lines were evaluated at three locations, namely, Delhi, Pusa Bihar, and Pune under a net plot size of 7.2 sq. m each. Pusa Bihar (north-east India) and Pune (central India) represent the target locations for a heat-stress environment.
RESULTS
Development of NILs using foreground and background selections
Genotyping and selection in BC1 generation
A total of 760 individual BC1F1 plants were tested for the presence of foreground markers and 266 plants were selected based on both phenotypic similarity to the recipient parent HD2733 and presence of foreground markers, Xbarc186 and Xgwm190. Out of the 266 selected plants, 40 plants were positive for the Xbarc186 marker and 39 plants for the Xgwm190 marker, along with 187 plants positive for both the markers. Background screening using 57 polymorphic makers revealed a recovery percentage range from 67.3% to 75.4%. A total of seven plants showing heterozygous nature for both foreground marker loci, high RPG recovery of 74.5%–75.4%, and higher phenotypic similarity with a recurrent parent were used to make backcrosses to generate BC2F1 and selfed to produce BC1F2 generation. The details of the plant population in each generation, RPG recovery, and number of plants selected are given in Table 2.
TABLE 2 | Number of plants selected and the recurrent parent genome recovery obtained in each of the backcross generations.
[image: Table 2]To examine the phenotypic expression of the two targeted QTLs, segregating the BC1F2 population (296 plants) was done for validation with linked SSRs through single-marker analysis. The results showed QTL for days to anthesis, located on chromosome 5A (co-segregated with the Xbarc186 marker) showing a phenotypic variance of 8.9% (R2 = 0.089), and QTL for grain yield under stress, located on chromosome 5D, (co-segregated with the Xgwm190 marker) showed 24.5% (R2 = 0.245) phenotypic variance under high-temperature stress (Table 1).
Genotyping and selection in BC2 generation
A total of 356 BC2F1 plants derived from seven plants selected in BC1F1 were screened with Xbarc186 and Xgwm190 markers linked with QTLs of interest. A total of 119 plants, which includes 52 plants with both QTLs, 37 plants with one QTL linked to Xbarc186 and 30 plants, and with another QTL linked to Xgwm190, were screened for background recovery. The SSR marker loci which were heterozygous in BC1F1 were used for screening again to know the replacement of the donor parent allele by the recipient parent allele at the respective locus. There were 67 additional markers used for background screening of BC2F1 plants along with 57 markers already used in BC1F1. Based on the results of background screening, lines having a comparatively high recurrent parent genome recovery and phenotypic similarity of the plants with recurrent parent also targeted the trait similarity with donor parent allele; a total of 26 BC2F1 plants with RPG ranging from 88.60% to 94.44% were selected for the advancement to BC2F2 generation.
The segregating BC2F2 generation (800 plants) of the selected 26 BC2F1 plants were screened for the presence of targeted trait QTLs using linked markers. 59 plants homozygous for donor parent allele were used for screening with background markers which were heterozygous in BC2F1-selected individual plants. Finally, 39 plants with a higher RPG per cent ranging from 89.73% to 96.87% were selected. Out of 39 plants, six plants were with both QTLs, 12 plants were with Xbarc186-linked QTL, and 21 plants with Xgwm190 marker-linked QTL. The selected homozygous BC2F3 families of the 39 selected plants were subjected to foreground selection for the confirmation of the targeted QTLs. An improvement in the RPG recovery per cent from 90.90% to 97.90% (39 BC2F3 lines) was observed in the background selection. After evaluation of 39 plants for targeted traits and other morpho-physiological traits, 17 lines were finalized for advancement.
Genotyping and selection in selfed BC1 generations
A total of 68 BC1F2 plants containing single or both QTLs in the homozygous condition were selected for background screening. Based on high RPG (ranging from 86.84% to 88.35%), high RPP, and targeted trait similarity with donor parent allele, a total of 21 BC1F2 plants (Table 2) were selected for advancement. The selected plants were selfed to generate BC1F3 and BC1F4 homozygous families.
Chi square test for Mendelian segregation of QTLs
The chi-square test is done to test an expected ratio of 1:1 segregation for each QTL separately and also for the combination of QTLs in the BC1F1 and BC2F1 generations. It was established that the observed frequency of QTL-positive and -negative plants was in accordance to the Mendelian segregation pattern with an expected ratio of 1:1 and 1:1:1:1 for single and two QTLs, respectively (Table 3). In BC1F1 generation, the calculated χ2 values for qAnth (0.0473), qGY (s) (0.1924), and for combination of both QTLs (0.2834) (at p = 0.05 level of significance) were non-significant, agreeing with the null hypothesis of no difference. In BC2F1 generation, the calculated χ2 values (0.9111 for qAnth, 1.3594 for qGY(s), and 1.1114 for a combination of both QTLs) were again non-significant (Table 3).
TABLE 3 | Chi-square (χ2) test for QTL segregation in backcross generations.
[image: Table 3]Evaluation of derived lines for targeted and other morpho-physiological traits
The 39 BC2F3 and 21 BC1F4 families were evaluated for their performance over the recurrent parent for morpho-physiological and yield traits. The morphological traits such as plant height, spike length, and peduncle length showed little improvement over HD2733 under heat stress. However, there was a significant improvement in the derived lines for days to heading, days to maturity, tillers/plant, 1,000-kernel weight, number of spikelets/spikes, and yield/5 plants (p < 0.05) (Table 4). Based on the CD values at a 5% level of significance for individual traits (Table 4), it was found that all selected 39 BC2F3 lines performed better or at par with HD2733 for most of the traits. There was an improvement of 4.3% and 35.5% for the number of spikelets/spike and yield/5 plants, respectively, over the recurrent parent. Likewise, most of the selected BC1F4 lines were also superior or similar to the recurrent parent for a majority of traits. An improvement of 8.4% for 1,000-kernel weight and 18.8% for yield/5 plants over the recurrent parent was observed (Table 4). We observed a 32% reduction in the number of grains/5 spikes in HD2733 under the stress condition; however, the donor parent was not much affected by this trait under stress. The selected BC2F3 and BC1F4 lines showed ∼6% improvement for this trait over HD2733 under heat stress. Yield, the most important trait, was found to have a reduction of 16.5% in HD2733 when subjected to stress, but the improved lines showed better performance than the recipient parent. BC2F3 lines showed an increase of 35.5%, and BC1F4 lines showed 18.8% increase in yield under stress over the recurrent parent.
TABLE 4 | Morpho-physiological trait observations of recurrent parent and derived lines under heat stress.
[image: Table 4]An evaluation of physiological traits such as canopy temperature (CT), stomatal conductance (SC), normalized difference vegetation index (NDVI), and chlorophyll content was carried out at different stages of the crop period (late-boot, early milky, and late milky stages). Significant improvement over the recurrent parent was observed at the early milk stage for these traits. Percentage improvement ranged from 1.7 for CT to 66.9 for membrane stability index (MSI) in the derived lines. For NDVI and per cent ground cover, the majority of the derived lines were similar to the recurrent parent. A few lines were superior to the recipient parent for chlorophyll content (3%) and SC (8.8%) (Table 4). Membrane stability index, which measures the lipid unsaturation, showed a highly significant improvement (36 lines showed absolutely better performance than HD2733) over the recipient parent under heat-stress conditions, indicating its strong association with the transferred QTLs or with other physiological traits.
The extent of the relative contribution of different physiological traits to abiotic stress tolerance was determined by significant correlations with yield under stress. Positive correlation (p > 0.01) with yield under stress was observed for tillers/plant (0.379**), days to anthesis (0.452**), and NDVI at the early milk stage (0.399**). Canopy temperature measured during the early milk stage (−0.686**) showed significant but negative correlation with yield (Supplementary Table S2). The performance of the progenies in the late sown conditions revealed a significant variance for the majority of the traits. The treatment mean sum of squares of the derived lines is provided as an online resource (Supplementary Table S3). The QTL per se performance of the derived lines carrying either single or both QTLs for the targeted traits is presented in Table 5. Lines pyramided with both QTLs and those carrying single QTL for DA revealed early heading, anthesis, and maturity in comparison to the lines carrying single QTL for yield under stress. However, the derived lines performed better in yield, irrespective of having either sole QTL for DA and yield or having pyramided QTLs.
TABLE 5 | Morpho-physiological characters of parents and selected MABB-derived lines with single and two QTLs.
[image: Table 5]Among the 39 BC2F3 and 21 BC1F4 families, ten lines carrying single QTL for DA (81–85 days) were early in anthesis and superior in grain yield (52.03–56.94) than the recipient parent (91 days and 47.43 gms, respectively). Nine BC2F3 and three BC1F4 families carrying single QTL for yield under stress revealed a significant improvement over the recurrent parent; however, there was little improvement for days to anthesis (83–94) in these lines. The five families pyramided with both QTLs had early anthesis (83–85 days) and superior grain yield under stress (55.07–96.13 gms). Furthermore, a total of 27 (17 BC2F3 and 10 BC1F4) lines were carried forward for multi-location testing.
Genomic contribution of donor parent regions and agronomic evaluation of improved lines
The substituted chromosomal segment of donor parent WH730 was in the range of 0.0%–3.2% in BC2F3 and BC1F4 selected lines excluding the introgressed targeted regions on 5A and 5D chromosomes (Table 6). The graphical genotyping image for 17 selected BC2F3 lines showed the targeted QTL-linked Xbarc186 and Xgwm190 markers, the maximum recovery of the recurrent parent genome at non-targeted regions on carrier chromosomes, and residual minimum donor parent regions (Figure 2). The line HD2733-210-45-812-3 with the highest percent of genome recovery (96.7%) transferred with both QTLs is represented in Figure 3.
TABLE 6 | Performance of the targeted traits and genomic constitution of MABB-derived lines.
[image: Table 6][image: Figure 2]FIGURE 2 | Graphical genotyping image of the selected 17 BC2F3 MABB lines. Red and blue represent the genomes of RP and DP genomic regions, respectively, and residual heterozygous regions are represented in white.
[image: Figure 3]FIGURE 3 | Graphical genotyping image of the best selected line with maximum genome recovery of RP and carrying both targeted QTLs.
The selected 17 BC2F3 and 10 BC1F4 families were advanced to successive generation and subjected to agronomic evaluation under late sowing condition. Furthermore, eight lines were selected for multi-location yield trials in the next season (Table 6) on the basis of superior yield in comparison to the recurrent parent under stress conditions. The selected eight lines were evaluated in large plots at three locations, namely, New Delhi, Bihar, and Pune, which resulted in the final selection of three superior lines for further entry into a varietal testing system for release (Table 7).
TABLE 7 | Multi-location evaluation of the selected homozygous NILs.
[image: Table 7]DISCUSSION
Heat stress is a limiting factor in the global agricultural production by preventing the crop from its potential genetic yield. To develop tolerance to heat stress, improvement of wheat varieties with stress-tolerant genes/QTLs is the most effective strategy. MABB is considered as one of the reliable methods to improve a crop variety by incorporating the desired gene(s)/QTLs that govern the trait expression in which the variety is essentially deficient. Numerous reports are available on molecular markers linked with the expression of QTLs for heat-stress tolerance (Devate et al., 2022; Khan et al., 2022; Pinto et al., 2010; Gupta et al., 2012; Gupta et al., 2017) but their use in wheat-breeding programs is still rare. The present study is an attempt of the transfer of QTLs associated with heat stress in to the background of high-yielding wheat varieties using MABB.
Marker-assisted foreground selection had been used successfully in earlier studies (Alam et al., 2012; Singh et al., 2012; Babu et al., 2017; Rai et al., 2018; Todker et al., 2020; Pandit et al., 2021) for abiotic stress such as identification of salt-tolerant genotypes in rice (Neerja et al., 2007) and for biotic stress as downy mildew resistance in bajra (Hash et al., 2006). In the present study, foreground selection helped to select only those desirable genotypes that were carrying the QTLs (either in homozygous or heterozygous) for targeted morpho-physiological traits imparting tolerance to the heat stress.
It has been found that the applications of background selection with genome-wide polymorphic markers hasten the RPG recovery in MABB (Servin and Hospital, 2002; Chen et al., 2008; Basavaraj et al., 2010). The simulation studies on marker-assisted breeding (Hospital et al., 1992; Hospital, 2003; Servin et al., 2004) recommended that a minimum of four markers per chromosome (2 markers on each arm) at an average distance of 20 cM between markers is sufficient for the accelerated recovery of the recipient parent genome with a sufficient population size. Hence, marker alleles corresponding to HD2733 were selected for background screening to determine the actual recovery of RPG in the early segregating generations, making it possible to reduce the number of genotypes to be carried to the next generation. Selected plants had an enhanced RPG recovery ranging from 67.3% to 75.4% in BC1F1 and 83.33% to 94.44% in BC2F1. This additional recovery is due to the fixation of recipient allele from a heterozygous condition which may be theoretically gained after 3–4 backcrossing in case of single-gene/QTL transfer which also could have taken an additional number of backcrossing in case of more than two QTLs/gene pyramiding.
Multiple QTL mapping studies performed over the years have identified several QTLs associated with physiological, morphological, and agronomic traits in wheat (Griffths et al., 2009; Griffths et al., 2012; Gupta et al., 2017; Puttamadanayaka et al., 2020). Meta-analysis of such QTLs identified genomic regions that contribute to improved adaptation under stress (Acuna-Galindo et al., 2015). In earlier studies, there were 43 meta-QTL (MQTL) regions that co-localized with traits governing both drought and heat stress. MQTL38 on 5A chromosome harbors individual QTL for days to heading, biomass, CT, maturity, stay-green, yield, kernel number, and harvest index (Acuna-Galindo et al., 2015). The present study reports the transfer of the Xbarc186 marker that co-localized with the MQTL38 region, known for drought and heat stress-adaptive traits. The improved lines were superior in performance probably due to introgression of this meta-QTL region governing beneficial genes for heat-tolerant traits. Another QTL-linked SSR marker Xgwm190 for grain yield under stress lies on chromosome 5D according to the high-density consensus linkage map (Somers et al., 2004). However, Mohammadi et al. (2008) reported the presence of the Xgwm190 marker on 1D chromosome in its linkage map. Blast analysis of the sequence of marker Xgwm190 with Triticum aestivum genome sequence (www.ensemblplants.org/triticum aestivum/release 47) revealed its location at the 5D: 8746873-8747085 region. The linkage mapping carried out earlier in our lab for heat tolerance also determined Xgwm190 position at the upper arm of 5D (Sun et al., 2021). The chromosomal location of Xgwm190 on linkage group 5D was, therefore, considered and used for transfer of the linked trait in this study. The location of Xgwm190 was very close to a trait-linked DART marker on 5D, identified for drought-tolerance in wheat in previous studies (McIntyre et al., 2010).
Tolerance to high-temperature stress is achieved by an interaction between several physiological, biochemical, and molecular components in wheat (Shashikumara et al., 2022b). High correlation between physiological traits and grain yield was observed under stress condition (Sun et al., 2021). Previous researchers reported that several morpho-physiological traits significantly contributed to yield improvement under stress and could effectively be used in breeding programs (Richards et al., 2000; Ramya et al., 2015; Cossani and Reynolds 2012; Puttamadanayaka et al., 2020; Goel et al., 2019; Yadav et al., 2006). These include traits for canopy establishment and architecture, photosynthesis, and partitioning of total assimilates to grain. In the present study, traits such as canopy temperature, membrane stability index, and stomatal conductance were improved in the derived lines introgressed with heat-tolerant QTLs. This suggests the effectiveness in use of such traits as the selection criteria in wheat breeding (Ramya et al., 2021). Spikelet fertilization and grain setting are the most critical stages sensitive to the high-temperature stress at the mid-anthesis stage (Ferris et al., 1998; Ullah et al., 2022). In the present study, under late sowing condition, HD2733 and WH730 took 91 and 80 days for anthesis, respectively. This difference of nearly 10 days subjected HD2733 to heat stress. The grain yield reduced drastically in HD2733 from 56.83 g under normal condition to 47.43 g under late sowing condition, which accounts for nearly 18.30% reduction as compared to WH730 which showed 8.01% higher yield under stress. A significant reduction of 32.86% for seeds per five spikes in HD2733 in comparison to WH730 which showed a reduction of 3.55% under stress suggesting that a decrease in grain number per spike could be one of the reasons to have a significant reduction in the grain yield of HD2733 under high temperature and improving wheat for this trait would be worthwhile for the development of tolerant varieties.
Many of the previous studies indicated a severe effect of high temperature at phenological stages, in particular, heading on seeds/spike and thereby on grain yield (Wardlaw et al., 1989; Wardlaw and Moncur, 1995; Sarker et al., 2021). Hence, early heading is a desirable trait to combat heat stress in wheat. Several cultivars had been released for adaptation to production systems to avoid reproductive stage-heat stress. The early heading lines developed in the present study can adapt to heat stress with higher yields. Early heading lines complete the initial seed setting and grain filling before the incidence of heat stress. In the eastern Gangetic plains of South-Asia, early heading had been suggested as a good approach for wheat-breeding (Joshi et al., 2007; Mondal et al., 2016). In an earlier study by Tewolde et al. (2006), it was found that early-heading wheat cultivars yielded better results than later-heading cultivars in heat stress environments, even in durum lines (Akter and Islam, 2017).
There are numerous examples of QTLs mapped for heat-tolerant traits, but the mobilization of mapped QTLs into practical breeding is extremely worthwhile. Validation of identified QTLs with high PVE (phenotypic variation explained) in different genetic backgrounds is essential for their utilization. The QTLs used in this study were mapped with high phenotypic variance for the trait of interest. The selected lines containing QTLs for days to anthesis exhibited earliness in anthesis causing early maturity to avoid the effect of heat stress without affecting grain yield. It is pertinent that early-heading wheat varieties have an adaptive mechanism to heat stress with shorter life cycles in the area where there are frequent occurrences of terminal heat stress (Mondal et al., 2016). The heat-tolerant early heading varieties had high grain-filling duration and lower senescence of leaf compared to late-heading varieties. Negative association between days to heading and grain yield has been observed in five years of South-Asian trials of early maturing varieties which support the fact that earliness enabled tolerance to high-temperature stress. The study, therefore, reports the first successful incorporation of QTLs for early heading and yield traits into the background of a high-yielding elite cultivar, HD2733. Eight homozygous lines comprising tolerant QTLs were subjected to multi-location testing, and three lines were finally identified for their subsequent entry into varietal release system.
CONCLUSION
The present study improved the performance of one of the most popular wheat cultivars, HD2733, by introgression of QTLs associated with early anthesis and high-kernel weight under high-temperature stress. The study has led to the development of MABB-derived lines with targeted QTLs that caused earliness, and plants escaped the terminal stage heat stress without compromising the grain yield. These derived genotypes were further advanced for multi-location testing, and three lines were finally selected for subsequent release as improved varieties. The lines may also serve as the best genetic materials for functional genomics and expression studies to understand the molecular pathways and mechanisms underlying the stress tolerance governed by the respective QTLs without the effect of background noise. Furthermore, improved HD2733 can be used as genetic resource for the wheat-breeding program for heat-stress tolerance.
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Tomato is one of the most significant vegetable crops, which provides several important dietary components. Pakistan has a significant low tomato yield compared to other countries because of low genetic diversity and the absence of improved cultivars. The present study aimed to investigate the genetic variability, heritability, and genetic advance for yield and yield-related traits in tomato. For this purpose, eight tomato parents and their 15 crosses or hybrids were evaluated to study the relevant traits. Significant variation was observed for all studied traits. Higher values of the genotypic coefficient of variability (GCV) and phenotypic coefficient of variability (PCV) were recorded for yield per plant (YP) (kg) (37.62% and 37.79%), as well as the number of fruits per cluster (NFRC) (31.52% and 31.71%), number of flowers per cluster (24.63 and 24.67), and single fruit weight (g) (23.49 and 23.53), which indicated that the selection for these traits would be fruitful. Higher heritability (h2) estimates were observed for the number of flowers per cluster (NFC) (0.99%), single fruit weight (SFW) (g) (0.99%), and yield per plant (YP) (kg) (0.99%). Single fruit weight (SFW) (g) exhibited higher values for all components of variability. High genetic advance as a % of the mean (GAM) coupled with higher heritability (h2) was noted for the yield per plant (YP) (kg) (52.58%) and the number of fruits per cluster (NFRC) (43.91). NFRC and SFW (g) had a highly significant correlation with YP (kg), while FSPC had a significant positive association with YP (kg), and these traits can be selected to enhance YP (kg). Among the 15 hybrids, Nagina × Continental, Pakit × Continental, and Roma × BSX-935 were selected as high-yielding hybrids for further evaluation and analysis. These findings revealed that the best performing hybrids could be used to enhance seed production and to develop high-yielding varieties. The parents could be further tested to develop hybrids suitable for changing climatic conditions. The selection of YP (kg), SFW (g), NFC, and NFRC would be ideal for selecting the best hybrids.
Keywords: coefficient of variability, genetic advance, heritability, tomato, yield
INTRODUCTION
The world population is rising, and there is massive pressure on natural resources (Airoboman and Onobhayedo, 2022). It is now becoming a challenge to feed the growing population (D’Esposito et al., 2021). Tomato is an important vegetable crop, and in its raw form, it is processed to make ketchup and other meals (Kiralan and Ketenoglu, 2022; Kulus, 2022; Zafar et al., 2022). South Mexico is the center of origin of tomato (Campos et al., 2021). Tomato fruit is a significant source of vitamins B1 and B6 and C in the human diet (Mellidou et al., 2021; Rosa-Martínez et al., 2021). During 2020, 186,821 million metric tons of tomatoes were produced on 5,051,983 ha (https://www.fao.org/faostat/en/#data). China, India, the United States of America (USA), and Turkey are the top tomato-producing countries (El-Shafie, 2020). The total tomato production in Pakistan in 2020 was 594,210 tons (http://faostat.fao.org). In Pakistan, the availability of tomato seed for local production is insufficient and requires Pakistan to import large quantities of seed every year to meet its shortfall (Hassan et al., 2021).
Therefore, the evaluation of tomato germplasm is of great importance for crop agronomic and genetic enhancement in the current and future time (Ramzan et al., 2014). The lack of genetic variability and unavailability of high-yielding cultivars are the main reasons for low seed production in Pakistan; hence, it is imperative to increase genetic variability to develop high-yielding tomato cultivars by evaluating available germplasm (Brake et al., 2021; Kulus, 2022). Tomato yield is a multigenic trait and is greatly affected by environmental factors (Wang et al., 2021). The breeders used potential hybridization techniques to obtain tomatoes with high-yield potential.
Genetic diversity is the range of different inherited traits within a species, which is the prerequisite of the breeding program. Genetic diversity leads to the selection of superior cultivars and their traits. Hi (2022) evaluated 24 tomato genotypes to study the genetic diversity for morphological traits using molecular markers, inter-simple sequence repeats (ISSRs), and observed significant variation for studied traits. Genetic variability is well defined as the formation of individuals varying in the genotype. Genetic variability for the tomato fruit was studied in 589 tomato accessions, and this germplasm could be used to develop improved genotypes (Marefatzadeh-Khameneh et al., 2021). These examples showed that genetic diversity is necessary to develop high-yielding genotypes. Genetic diversity between the parental lines increases heterosis, whereas genetic homogeneity between the two parents results in phenotypically uniform F1 progeny (Liu et al., 2021).
The components of genetic variability like h2 and genetic advance (GA) are essential biometric tools for assessing dissimilarity in population for making a selection (Akhter et al., 2021) and evaluating tomato germplasm for improvement through breeding techniques (Eppakayala et al., 2021). Javed et al. (2022) studied the higher PCV and GCV for yield and yield-related traits in tomato hybrids and indicated the role of genetic variability in plant selection. Understanding the nature of the inherited trait of tomatoes, whether they are phenotypic or genotypic, is essential (Anuradha et al., 2020). Erazo et al. (2020) investigated the higher h2 coupled with higher genetic advance for the number of fruits per cluster (NFRC) and single fruit weight (SFW) (g). Other researchers, such as Kumari et al. (2020), observed a moderate behavior of GCV and PCV with higher h2 and lowered genetic advance for the number of fruits per cluster (NFRC) and yield per plant (YP) (kg). Maurya et al. (2020) also discussed high genetic variation and h2 for days to maturity (DM), the number of branches per plant (NBP), and the number of fruits per plant (NFRP) in tomatoes. Pakistan is facing the issue of low tomato yield because of the lack of sufficient genetic diversity or variability. Therefore, this present study aimed to explore genetic variation, h2, and genetic advance for yield and yield-related traits in tomatoes to identify vigorous genotypes that would enhance seed production in Pakistan and lead to self-sufficiency. In this study, several new hybrids were used, which were developed indigenously. These new hybrids could be the potential source for the development of high-yielding tomato cultivars in future research studies. Although the previous study conducted by Ramzan et al. (2014) studied yield-related traits of parents and hybrids, however, in this study, several new hybrids and traits were studied to fulfill the gap which was not previously considered. Fruit setting percentage per cluster is rarely studied in previous studies. This paper provides sound results regarding exploring genetic diversity among tomato genotypes and their hybrids. This can be useful to conduct future studies to identify the high-performing tomato genotypes.
MATERIALS AND METHODS
The current study was carried out at the experimental field of the Department of Horticultural Research and Development (DHRD), National Agricultural Research Centre (NARC) Islamabad, Pakistan. The experiment was carried out in a randomized complete block design (RCBD). A total of eight parents and their 15 hybrids (Table 1) were chosen for this study. These parents showed significant genetic variation for yield and yield-related traits. The parents were earlier tested in different combinations and selected because of their excellent combining ability to produce hybrids. The top eight best performing parents were chosen, and 15 hybrids were developed. These hybrids were chosen because of their superior performance for all studied traits. Some of these hybrids were tested in an earlier experiment by Ramzan et al. (2014), and not all qualified for the subsequent trials. In the current study, some new hybrids were tested. The current study was conducted to study the genetic diversity, h2, and genetic advance for different traits of parents and hybrids.
TABLE 1 | List of parents and hybrids used in the study.
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The plot size was 7.5 meter square. The seeds of parents and their hybrids were grown at 30°C in a growth chamber for 1 week. After 1 week, the germinated seeds of parents and hybrids were moved to plastic trays, and the trays were kept in the plastic tunnel to maintain the required temperature. Plants were shifted on beds, and the plant-to-plant and row-to-row distance was 50 and 100 cm, respectively. Irrigation of seedlings was carried out regularly to keep the plants fresh and healthy. Weeds were removed to keep the plants in a healthy and safe environment and minimize their effects on plant growth. Several insecticides were used to reduce the risk of insect attacks on tomato plants. No fertilizer was applied to determine the accurate yield capacity of each parent and hybrid. A total of 7 plants were randomly selected from each replication and genotype for data collection.
Data collection
Random plant selection (seven plants) was made from each replication for each parent and hybrid to record the data for each parameter. Random plants were selected for plant height (PH) from each parent, hybrid, and replication. The ruler was placed at the base of the plant, and PH was measured from the base to the top of the plant. DF (50%) and DM (50%) were recorded by counting the number of flowers and fruits (50% emerged flowers and 50% ripened fruits), respectively, from each replication. To count the NBP, NCP, NFC, and NFRC, plants from each parent, hybrid, and replication were chosen randomly, and the relevant values were recorded. For SFW (g), random plant selection was made from each parent and hybrid from all replications. Fruits were taken from each plant, and the value was recorded using an electronic balance. The data for NLF were noted by counting the number of locules from each fruit of plants selected from parents and hybrids. FSPC was noted by counting the number of fruit set on each chosen plant of the parent and the hybrid. YP (kg) was measured by weighing the fruits of each randomly selected plant of parents and hybrids from each replication.
Statistical analysis
The analysis of variance (ANOVA) for yield-related parameters was carried out using the procedure proposed by Steel and Torrie (1960). The significance level was checked using 5% and 1% probability. The ANOVA was calculated using MSTAT-C software. The values of parents and hybrids were subjected to ANOVA, and a significance level was observed for all traits. ANOVA showed the level of significance for given traits. Likewise, GCV and PCV indicated a significant amount of variability among the genotypes for all the studied characteristics as calculated using the method of Hallauer et al. (2010). Genetic advance and h2 were determined using the method of Hanson et al. (1956). Principal component analysis (PCA) for the major traits was carried out using PAST software to simplify the complexity in high-dimensional data while retaining trends and patterns. Pie charts were also made using PAST software. Pearson coefficient analysis was calculated using IBM SPSS 20.
RESULTS
Analysis of variance (ANOVA)
ANOVA indicated the significant differences among the parents and hybrids for all the studied characters. These differences indicated the existence of variability in germplasm and offered opportunities for the improvement of yield and yield-related traits via selection (Table 2). The correlation between yield and yield-related traits is given in Table 3. The mean values for genotypes are presented in Table 4. Pie charts are employed to show fractions of a whole and represent proportions at a set point in time. Pie charts do not show deviations over time. The pie chart for DM (50%) and YP (kg) (Figures 1, 2) of parents and hybrids showed percentages of a whole and represented percentages at a set point in time. The size value of the total amount is divided among distinct categories as a circle (the namesake pie).
TABLE 2 | Analysis of variance (ANOVA) for different yield traits.
[image: Table 2]TABLE 3 | Pearson correlation coefficient among yield and yield-related traits in tomatoes.
[image: Table 3]TABLE 4 | Mean performance of parents and their hybrids for 11 variables.
[image: Table 4][image: Figure 1]FIGURE 1 | Pie chart represents the size of the value of DM (50%) for each parent and hybrid. Each segment in the pie chart represents a category.
[image: Figure 2]FIGURE 2 | Pie chart shows the different values of a given variable. Pie chart represents the size of the value of YP (kg) for each parent and hybrid.
Principal component analysis (PCA) and Pearson correlation coefficient
PCA is a statistical analysis used for reducing the dimensionality of such datasets and increasing interpretability while decreasing information loss. Scatter biplot analysis revealed that DM (50%), YP (kg), and SFW (g) are correlated with each other, while PH, FSPC, NFC, and NFRC also had a significant association with each other. DF (50%) had a positive correlation with NBP and a negative correlation with all other variables, while NLF and NCP exhibited a positive association with each other (Figure 3). In scree plot analysis, the eigenvalues are displayed on the y-axis and the number of components on the x-axis. It shows a downward curve. The point where the slope of the curve is visibly flattening off (the “elbow”) specifies the number of factors the analysis should create. In the current scree plot, PC1, PC2, PC3, and PC4 should be retained in exploratory analysis to keep in PCA, and the rest behind the first three components are disregarded (Figure 4). Correlation represents the inter-relationship between two traits. The correlation of NFRC, SFW, FSPC, and YP showed different ranges from significantly positive to highly significant and positive. In the correlation coefficient analysis, NFRC showed a highly significant positive correlation with SFW (0.758**), FSPC (0.784**), and YP (0.712**). SFW exhibited a highly significant positive association with NFRC (0.758**), FSPC (0.573**), and YP (0.674**). Likewise, FSPC showed a highly significant correlation with NFRC (0.784**) and SFW (0.573**) and a significant positive association with YP (0.434**). A highly significant positive correlation (0.712** and 0.674**) was recorded for YP with NFRC and SFW and a significant positive correlation with FSPC (0.434*) (Table 3). The positive correlation of NFRC, SFW, FSPC, and YP indicated that YP could be improved by directly selecting these traits.
[image: Figure 3]FIGURE 3 | Scatter biplot of different yield and yield-related traits of parents and hybrids. It shows that several variables are correlated with each other and several are not correlated.
[image: Figure 4]FIGURE 4 | Scree plot for 11 variables of parents and hybrids. It shows that the first four variables could be retained for PCA, while others can be disregarded.
Mean performance of parents and hybrids
The mean values of all parents and hybrids showed different patterns of variation for all traits (Figures 5, 6, Table 4). Among the parents, a maximum value (78.20) of PH was recorded for VCT-01, followed by Pakit (76.13), Rio Grande (71.20), Continental (68.21), Roma (66.17), 17905 (64.17), Nagina (63.12), and BSX-935 (60.23).
[image: Figure 5]FIGURE 5 | Comparisons of the mean values of parents for 11 variables. A total of eight parents showed different ranges of values for 11 variables. The difference in values of traits among the parents indicated the scope of selection.
[image: Figure 6]FIGURE 6 | Comparisons of the mean values of hybrids for 11 variables. A total of 15 hybrids showed different ranges of values for 11 variables. The difference in values of traits among the hybrids indicated the scope of selection for varietal development.
Minimum DF (50%) was taken by BSX-935 (23.66) along with VCT-01 (24.00), Pakit (28.00), Roma (28.00), Continental (29.00), Nagina (29.33), and 17905 (29.33). The highest DF (50%) was recorded for Rio Grande (30.00). The lowest DF (50%) is an indicator of the early maturing behavior of parents. BSX-935 had the highest NBP (5.30), along with Nagina (5.10), VCT-01 (5.06), Roma (4.76), and 17905 (4.73). Rio Grande had the lowest NBP (3.83). A maximum NCP was noted for Roma (18.80), 17905 (17.93), Rio Grande (17.40), VCT-01 (17.00), and Continental (16.00). BSX-935 exhibited a minimum NCP (14.00). Regarding NFC, the highest score was witnessed for Roma (5.50), BSX-935 (5.20), Continental (5.00), VCT-01 (4.70), Pakit (4.50), and 17905 (4.06), while Nagina showed a minimum NFC (3.36). Continental had a maximum NFRC (3.90) along with Pakit (3.40), Roma (3.20), 17905 (3.13), VCT-01 (3.10), Rio Grande (2.96), and Nagina (2.26). BSX-935 scored the lowest NFRC (2.20). The lowest NFRC can affect the YP of parents. 17905 had a minimum number of DM (50%) (48.33) along with Pakit (57.33), BSX-935 (59.00), and VCT-01 (61.33). The highest value of DM (50%) was observed for Continental (66.66), which shows the late maturing attitude of this parent. Parents exhibited significant variation regarding SFW, as shown in Table 4. Continental demonstrated the highest SFW (74.10 g) followed by Nagina (61.07 g), VCT-01 (58.50 g), and BSX-935 (57.07 g). The lowest value of SFW was recorded for 17905 (34.07 g). NLF affects the fruit size and shape. More NLF may result in better fruit size. A maximum NLF was witnessed for Continental (3.73), Rio Grande (3.26), and 17905 (3.23). Pakit had the lowest NLF (2.13). FSPC represents the number of fruits that emerged on a cluster. The highest FSPC was exhibited by Continental (78.53), followed by 17905 (77.89), Pakit (76.12), Rio Grande (74.78), Nagina (68.12), VCT-01 (65.51), and Roma (58.56). The parent, BSX-935, had the lowest FSPC (53.25). YP (kg) is the ultimate goal of all breeding programs. Continental and BSX-935 had the highest YP (1.58 kg and 1.58 kg, respectively) along with Pakit (1.48 kg), VCT (1.24 kg), Nagina (1.13 kg), and Rio Grande (1.09 kg). The lowest value of YP among all parents was scored by 17905 (0.84 kg).
Hybrids showed a distinct pattern of performance for the given variables. The maximum value of PH was secured by VCT × Continental (102.27 cm), Nagina × Continental (100.20), Roma × Continental (98.43), and Nagina × 17905 (96.10). The lowest PH was recorded for Pakit × BSX-935 (73.70). Hybrids like Nagina × 17905 and Nagina × Continental showed the minimum number of DF (19.33 and 20.00, respectively). Nagina × 17905 was regarded as an early maturing hybrid as it also exhibited a minimum DM (50%) (51.63). In contrast, Rio Grande × Continental exhibited the highest number of DF (50%) (30.33), which may lead to the late maturing trend of this hybrid. Rio Grande × Continental, Nagina × 17905, and Roma × 17905 scored the highest NBP (5.93, 5.80, and 5.80, respectively), whereas Rio Grande × BSX-935 scored the lowest value of NBP (4.30). VCT-01 × BSX-935 showed the highest NCP (21.46), and the lowest number was attained by Pakit × BSX-935 (15.16). Roma × BSX-935 had the highest NFC (8.16), followed by Roma × Continental (8.10), VCT-01 × Continental (8.00), Rio Grande × Continental (8.00), Nagina × Continental (7.46), Nagina × 17905 (7.40), Nagina × BSX-935 (7.30), Pakit × 17905 (7.26), Rio Grande × BSX-935 (7.10), Pakit × BSX-935 (7.00), and VCT-01 × BSX-935 (6.60). The lowest value was scored by VCT-01 × 17905 (5.20). The maximum number of NFRC was observed for Rio Grande × Continental (7.00), Roma × Continental (6.73), Nagina × Continental (6.40), Roma × BSX-935 (6.36), Nagina × 17905 (6.30), and VCT-01 × Continental (6.10), whereas a minimum number of NFRC was recorded for VCT-01 × 17905 (4.13). All hybrids had different values for DM (50%), where Nagina × 17905 showed an early fruit maturity trend indicated by the lowest value of DM (50%) (51.63) and VCT-01 × 17905 was a late maturing hybrid as revealed by the highest value for DM (50%) (66.66). The highest SFW (g) was observed for Rio Grande × Continental (114.30 g), followed by Pakit × BSX-935 (84.13 g) and Nagina × Continental (83.27 g), and the lowest value was observed for VCT-01 × 17905 (60.10 g). For NLF, the highest value was observed for Roma × 17905 (3.53) and the lowest value for Nagina × Continental (2.00).
Pakit × BSX-935 showed the highest score for FSPC (88.77), followed by Rio Grande × Continental (87.52), Nagina × Continental (86.71), and Rio Grande × BSX-935 (86.31). VCT-01 × BSX-935 showed the lowest FSPC (72.72). Nagina × Continental was a high-yielding hybrid with YP (3.00 kg) along with Pakit × Continental (2.83 kg), Roma × BSX-935 (2.80 kg), Rio Grande × Continental (2.73 kg), Roma × Continental (2.50 kg), and VCT-01 × Continental (2.16 kg). Among all hybrids, the lowest value of YP was observed for VCT-01 × 17905 (1.03 kg).
Genetic variability, h2, and genetic advance
The results of genetic variability indicated that the highest GCV and PCV were observed for YP (37.62% and 37.79%), followed by NFRC (31.52% and 31.71%), NFC (24.63% and 24.67%), and SFW (g) (23.49% and 23.53%), which exhibited the existence of large genetic variability and demonstrated the effective selection for the given traits. The moderate values of GCV and PCV were recorded for NLF (17.34% and 17.68%), followed by PH (15.56% and 15.56%), DF (12.69% and 12.83%), FSPC (11.06% and 11.62%), NBP (10.48% and 10.57%), and NCP (10.01% and 10.15%), respectively. DM had the lowest GCV and PCV (8.72% and 8.90%, respectively), which exhibited a huge impact of the environment on the trait (Table 5).
TABLE 5 | Genetic variability, heritability, and genetic advance for yield-related traits in tomatoes.
[image: Table 5]A high heritability was witnessed for all traits, NFC (0.99%), SFW (0.99%), YP (0.99%), NFRC (0.98%), PH (0.98), NBP (0.98%), DF (0.97), NCP (0.97%), DM (50%) (0.97%), NLF (0.96%), and FSPC (0.90%) (Table 5). The highest value of genetic advance was recorded for SFW (g) (22.23%), which showed the presence of the additive gene action, while moderate GA was detected for PH (17.90%) and FSPC (11.46%) (Table 5), which showed non-additive gene action. NLF had the lowest GA (0.68), followed by NBP (0.72) and YP (kg) (0.94) (Table 5). The results showed that maximum genetic advance as a % of the mean was detected for YP (52.58%), NFRC (43.91%), NFC (34.19%), SFW (g) (32.55%), NLF (23.78%), and PH (21.64%), while DF (50) % (17.59%), FSPC (14.75%), NBP (14.55%), NCP (13.84%), and DM (50%) (12.10%) revealed moderate genetic advance as a % of the mean which stated non-additive gene action.
DISCUSSION
Tomato is one of the most important vegetables worldwide, presenting a high added value (Azevedo et al., 2022). In the past, many breeders have significantly contributed to the yield by increasing the genetic variability in given tomato populations or cultivars (Rasul et al., 2022). The exploitation of genetic diversity is critical to enhancing tomato production by developing high-yielding cultivars (Ramzan et al., 2014). Therefore, in Pakistan, there is a crucial need for developing improved varieties of tomatoes with high yield and quality features. A substantial yield improvement can be achieved by developing F1 hybrids of tomatoes (Aziz et al., 2021).
Genetic advance, h2, and genetic variability are used to improve the selection of parents and hybrids. All traits had a higher magnitude of h2, which shows that these traits are highly heritable (Table 5). Earlier investigators, such as Eppakayala et al. (2021), studied significant variations for numerous traits in tomatoes. The conclusion in the current study aligned with the earlier research outcomes (Ramzan et al., 2014; Behera et al., 2020). Days to 50% flowering indicated an early maturing attitude of parents/hybrids. Early flowering genotypes lead to early fruit maturity and escape the threats of many abiotic stresses. Genotypes with early flowering and early maturity attributes must have high-yielding potential, and it depends on the combination of strong and vigorous early growth, nutrients, water usage efficiency (WUE), stable photosynthesis and respiration, the production of more biomass before fast anthesis, and effective uptake of metabolites into seeds, all ending in high yield (Passioura, 2012; Shavrukov et al., 2017).
The hybrid, Nagina x 17905, secured the lowest day to 50% flowering (19.33), and this hybrid could be used to develop an early maturing tomato cultivar. The minimum days to fruit maturity were secured by 17905 (48.33), which was regarded as an early maturing parent. In some cases, early maturing cultivars may lead to a high yield and improved quality of tomatoes. These characters are the most significant for the selection criteria. These findings could help future researchers improve tomatoes’ early flowering and fruit-maturing traits to reduce the risk of diseases and shorten the growth duration. The earlier researchers, who worked on some of these hybrids and parents, did not report data on these traits (early flowering and early fruit maturity) (Ramzan et al., 2014). Haydar et al. (2007) studied the days to flowering, and Prajapati et al. (2015) studied the days to 50% fruit set in tomato genotypes. The genotypic and phenotypic coefficients of variability, h2, and genetic advance are essential biometric tools used to assess the genetic divergence among the genotypes (Mohamed et al., 2012; Pooja et al., 2022; Sahoo et al., 2022). Genetic variability is the basis for any selection strategy because the larger the genetic variability in the existing population, the greater will be the scope of selection for the improvement of genotypes for the given traits (Mohamed et al., 2012; Hussain et al., 2021).
A higher magnitude of GCV and PCV indicated the scope of selection as more variation results in an effective selection plan (Islam et al., 2022). Usually, the magnitudes of PCV were, to some extent, higher than those of GCV for the given traits, demonstrating the role of the environment in the appearance of the trait. In the current study, YP (kg), NFC, NFRC, and SFW (g) had the highest GCV and PCV. These findings indicated the naturally occurring differences among the parents. They permitted an enormous scope of selection to develop potential cultivars, allow parents/hybrids to adopt environmental changes, and maintain a high-yielding attitude. In the current study, most traits had moderate to higher magnitudes of GCV and PCV. Higher PCV and GCV were previously studied for fruit yield per hectare and average fruit weight (g), which is different from the current findings because the traits studied in both studies are different (Hussain et al., 2021). Haydar et al. (2007) and Mohamed et al. (2012) reported higher values of GCV and PCV for FW (g), Kumari et al. (2007) studied higher genotypic and phenotypic variance for YP (kg), and other studies (Saleem et al., 2013; Singh et al., 2014; Singh et al., 2017) presented related results. Higher GCV and PCV for NFC were observed by Singh et al. (2014). Many vital characteristics showed a higher magnitude of PCV than those of their GCV, showing the more substantial impact of the environment on the appearance of that trait (Kuru Dosegnaw, 2021; Kulus, 2022). Earlier researchers, such as Rani and Anitha (2011), found a moderate magnitude of GCV and PCV for NBP, which strongly supported our findings. The h2 determines to what extent a trait is inherited or the degree to which a trait is inherited (Akhter et al., 2021). A high h2 indicates that genetics describes a lot of the variation in a trait between different parents and a low heritability, which is nearly zero, specifies that most of the difference is not genetic. A high h2 alone is not considered an essential standard for selection, but the likelihood of effective selection increases with high genetic advance (Pooja et al., 2022). An effective breeding program to improve quantitative traits needs reliable h2 estimates (Mohamed et al., 2012). YP (kg) (0.99), NFC (0.99%), and SFW (g) (0.99%) recorded higher h2 estimates in the current study so that genetic variation can be exploited and these traits can be improved using this selection criterion (Bineau et al., 2021). Venkadeswaran et al. (2020) observed higher h2 values for all traits except NBP, which strongly validated our results. Mohamed et al. (2012) also detected higher h2 estimates for NFC, which strongly supported the validity of our results.
Genetic advance is another vital biometric tool to decide on selection and shows the scope of selection (Pooja et al., 2022). A higher magnitude of genetic advance and h2 is more reliable in forecasting genetic gain under selection (Eppakayala et al., 2021). A higher h2 coupled with the medium genetic advance indicated the need for single plant selection to improve the genotypes. The further crossing is obligatory to create desired variations if both components are low in traits (Behera et al., 2020). SFW (g) had higher values for all components of variability. Shankar et al. (2013) also presented the same results for average fruit weight (g). Higher genetic advance with a higher h2 for SFW (g) strongly confirmed that additive gene action is present, and the selection of genotypes for the improvement of SFW (g) would be highly effective (Mahebub et al., 2021). The additive gene effect indicated that additive genes play an equal role in the phenotype and genes do not dominate each other. The more the genes are present, the stronger the phenotype will be (Dutta et al., 2013). The selection of superior genotypes would be effective in improving this character. Genetic advance with the moderate behavior coupled with a higher h2 was detected for PH and FSPC in the current study, which exhibited the scope of individual plant selection for further improvement. A high h2 does not mean higher genetic advances (Rawat et al., 2020). The selection of parents with higher genetic advances and higher h2 for yield-related traits is an essential prerequisite (Cholin and Raghavendra, 2021). Most of the traits in the current study had a higher h2 with moderate to low genetic advance, which suggests that further selection is required to improve these traits.
A high h2 with high genetic advance as a % of the mean was detected for PH, YP, NFC, NFRC, SFW (g), and NLF in the current study, indicating that these parameters could be selected for developing superior genotypes. A higher genetic advance as a % of the mean coupled with high h2 is more valuable than h2 alone in predicting the resultant effects during the selection of the best genotype (Shankar et al., 2013). Shankar et al. (2013) observed high h2 coupled with high genetic advance as a % of the mean for NFRC, NLF, and YP (kg) but low genetic advance for NFRC, YP (kg), and NLF. Likewise, Javed et al. (2022) also observed high h2 and GAM for YP (kg), which supported our studies. These traits were highly heritable, which indicated the presence of an additive gene action. A higher h2 with low to moderate genetic advance as a % of the mean indicated the effect of the environment on the expression of particular traits (Shankar et al., 2013). These characters could be exploited through heterosis manifestation of dominance and epistatic components. Meena et al. (2018) studied the low and moderate genetic advances as a % of the mean for NBP, DF (50%), and NCP.
High genetic advance and high h2 revealed that the environment plays a negligible role in the expression of particular traits as indicated by additive gene action. Hence, these traits can be improved via natural selection. Al-Araby (2021) and Soresa et al. (2021) showed dissimilar outcomes for different traits. Biplot and scree plot analyses are critical to understanding genotypes and traits’ similarity and divergence patterns (Rai et al., 2017). Scatter biplot analysis (Figure 3) showed that DM (50) %, SFW (g), and YP (kg) were highly correlated because of their position in the same area, and PC1, PC2, PC3, and PC4, holding the highest eigenvalues, could be regarded for further analysis as depicted by scree plot analysis (Akhter et al., 2021) (Figure 4). Rasul et al. (2022) showed significant variability for fruit weight using PCA and showed that fruit weight selection plays a key role in yield improvement. In the current study, correlation analysis showed that NFRC and SFW (g) had a highly significant positive correlation with YP (kg), and YP (kg) could be improved by direct selection. Direct selection, based on yield components, helps reliability in yield improvement, as mentioned by Kumar et al. (2013). Previous research studies reported the results of components of genetic variability for different yield and yield-related traits. High heritability for all traits makes this study different from previous studies. The use of FSPC is a novel aspect of the current study, and it indicates that YP (kg) can be maximized by increasing this trait. A greater FSPC results in a higher yield. One of the hybrids, Nagina × Continental, had a higher FSPC (86.71%), which also increased YP (kg).
A selection of SFW (g) can enhance YP (kg). A high-yielding hybrid, Nagina × Continental, is one of the core findings of the current study, which showed that this hybrid could be used for varietal development. Further studies are required to enhance the genetic variability to improve the selection program. Hence, the breeder should implement an appropriate breeding procedure to use both additive and non-additive gene effects simultaneously since varietal and hybrid development will go a long way in the breeding programs, especially in the case of tomatoes.
CONCLUSION
The main objective of the study was to observe significant variation, heritability, and genetic advance for different traits of parents and hybrids. We have found significant genetic variability for the studied traits. High heritability and genetic advance confirmed that selection could effectively improve traits to increase tomato yield. Current findings confirmed the additive gene action and suggested that the selection of parameters would be effective for further improvement. Nagina × Continental, Pakit × Continental, and Roma × BSX-935 were high-yielding hybrids, while Rio Grande × Continental and Pakit × BSX-935 had higher SFW (g). As shown in the results, superior hybrids indicated that seed production could be maximized to reduce the import of tomato seeds. These hybrids could lead to the development of high-yielding tomato varieties. Likewise, superior parents can be further evaluated to make different cross-combinations. We strongly suggest conducting further studies on these parents and hybrids to validate the results and continue the cultivar development.
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Pea is a conventional grain-feed-grass crop in Tibet and the only high-protein legume in the region; therefore, it plays an important role in Tibetan food and grass security. Zinc finger-homeodomain (ZF-HD) belongs to a family of homozygous heterotypic cassette genes, which play an important role in plant growth, development, and response to adversity stress. Using a bioinformatics approach, 18 PsZF-HD family members were identified. These genes were distributed across seven chromosomes and two scaffold fragments, and evolutionary analysis classified them into two subgroups, MIF and ZHD. The MIF subgroup was subdivided into three subclasses (PsMIFⅠ–III), and the ZHD subgroup was subdivided into five subclasses (ZHDⅠ–V). The PsZF-HD members were named PsMIF1–PsMIF4 and PsZHD1–PsZHD14. Twelve conserved motifs and four conserved domains were identified from PsZF-HD family, of which MIF subgroup only contained one domain, while ZHD subgroup contained two types of domains. In addition, there were significant differences in the three-dimensional structures of the protein members of the two subgroups. Most PsZF-HD genes had no introns (13/18), and only five genes had one intron. Forty-five cis-acting elements were predicted and screened, involving four categories: light response, stress, hormone, and growth and development. Transcriptome analysis of different tissues during pea growth and development showed that PsZHD11, 8, 13, 14 and MIF4 were not expressed or were individually expressed in low amounts in the tissues, while the other 13 PsZF-HDs genes were differentially expressed and showed tissue preference, as seen in aboveground reproductive organs, where PsZHD6, 2, 10 and MIF1 (except immature seeds) were highly expressed. In the aerial vegetative organs, PsZHD6, 1, and 10 were significantly overexpressed, while in the underground root system, PsMIF3 was specifically overexpressed. The leaf transcriptome under a low-nitrogen environment showed that the expression levels of 17 PsZF-HDs members were upregulated in shoot organs. The leaf transcriptome analysis under a low-temperature environment showed stress-induced upregulation of PsZHD10 and one genes and down-regulation of PsZHD6 gene. These results laid the foundation for deeper exploration of the functions of the PsZF-HD genes and also improved the reference for molecular breeding for stress resistance in peas.
Keywords: transcription factors, ZF-HD proteins, low-temperature stress, biological functions, gene function
1 INTRODUCTION
Pea (Pisum sativum L.) is a conventional grain-feed-grass crop that has been grown for a long time in the cold and dry Qinghai-Tibet Plateau and is a major crop for abandoned relief. It has a wide range of distribution and shows great resistance to cold, drought, and dryness. Pea can grow up to 4,700 m above the sea level, and it is often mixed with highland staple crops, such as hulless barley and oilseed rape. Plants with strong resistance against stress can adapt to the severe cold and drought environment of the plateau. Transcription factors (TFs) initiate target gene expression by binding to specific cis-acting elements in the promoter regions of related genes to regulate plant growth and development and resistance to stress (Zhou et al., 2019). Zinc finger homeodomain (ZF-HD) proteins are plant-specific TFs that play important roles in the regulation of flower development as well as biotic and abiotic stresses (Windhövel et al., 2001; Lai et al., 2021). ZF-HD proteins are classified into two subfamilies, the Zinc Finger Homotypic Box (ZHD) and the Mini Zinc Finger (MIF), according to a phylogenetic tree (Hu et al., 2008). Three MIF genes were identified for the first time in Arabidopsis thaliana, encoding proteins similar to the ZF structural domain of ZF-HD proteins but lacking the HD structural domain (Hu and Ma, 2006). To date, the origin and evolutionary relationship between the two remain unclear, but both belong to the ZF-HD family. The distinctive structural features of ZHDs comprise a zinc finger (ZF) structural domain at the N-terminal and a conserved homologous heterotetrameric box HD (homeo-domain) at the C-terminal (Wang et al., 2016). ZFs contain zinc ions and five conserved cysteine residues or at least three conserved histidine residues (Krishna et al., 2003). ZFs are widely present in different regulatory proteins, bind specifically to DNA/RNA sequences and enhance protein–DNA interactions, and are mediated by the HD structural domain (Xie et al., 2019). HD encodes a highly conserved DNA structural domain consisting of 60 amino acids that fold to form a 3-helix structure, with the first and second helix forming a loop between them and the second and third helix regions forming a helix-turned-helical structure (Mukherjee et al., 2009). Most HD proteins specifically adsorb to the major groove of DNA to activate and repress the expression of target genes (Mukherjee et al., 2009; Hu et al., 2018). Based on the HD amino acid sequence and other conserved motifs accompanying it, HD-bearing proteins are classified into typical HD structural domains (with 60 amino acids in length) and atypical HD structural domains (with variation in amino acid length). The latter is known as three amino acid loop extension homozygous heterotypic box superfamily proteins, encoding 63 with three additional amino acid residues (P-Y-P) between the first and second helices (Chen et al., 2003). In rice, 107 HD proteins were identified and classified into 10 subfamilies, including ZF-HD, KNOX I, KNOX II, WOX, HD-Zip I, BLH, HD-Zip II, HD-Zip III, HD-Zip IV, and PHD, based on the sequence length, structure, HD position, and other structural domains containing HD proteins (Jain et al., 2008). Subsequently, Mukherjee (2009) systematically studied plant homozygous heterotypic cassette genes and classified them into 14 subfamilies with the addition of NDX, DDT, PHD, LD, SAWADEE, and PINTOX (Mukherjee et al., 2009). ZF-HD proteins often bind to ATTA elements of DNA sequences to form homodimers and heterodimers (Tan and Irish, 2006).
ZF structures are widely found in a variety of regulatory proteins and play an important role in the formation of homodimers or heterodimers of different members of the ZF-HD family (Windhövel et al., 2001). A typical ZF structure contains two pairs of conserved cysteine residues or histidine residues and is coordinated to a single zinc ion to form a finger-like loop (Klug and Schwabe, 1995). They are classified into different types according to the number and nature of residues bound to zinc ions and zinc-binding protein residues. For example, C2H2, C3H, and C2C2 ZFs interact with one zinc ion, while PHD and LIM ZFs can interact with two zinc ions, with the C2H2 type being the most common (Englbrecht et al., 2004; Yanagisawa, 2004). Single proteins can have one or more ZF structures, and ZFs can recognize and bind DNA, RNA, DNA-RNA double-stranded molecules, or proteins (Takatsuji, 1999; Krishna et al., 2003) and regulate gene expression at the transcriptional and translational levels, which can play an important role in plant stress response and defense activation (Mackay and Crossley, 1998). In ZF-HD proteins, HD binds to DNA, and the ZF domain enhances HD-mediated protein–DNA interactions (Windhövel et al., 2001; Hu et al., 2008).
Currently, the ZF-HD family is widely studied in several higher plants, including 17 members in Arabidopsis thaliana (Hu et al., 2008), 32 members in tobacco (Niu et al., 2021; Sun et al., 2021), 37 members in wheat (Liu et al., 2021), 13 members in cucumber (Lai et al., 2021), 24 members in maize (Jing et al., 2022), 18 members in tea tree (Zhou et al., 2021), 60 members in alfalfa (He et al., 2022), 20 members in buckwheat, 62 members in kale type oilseed rape (Song et al., 2019), and 31 members in Chinese cabbage (Wang et al., 2016). To date, the biological functions of most of the ZF-HD genes identified in Arabidopsis thaliana have been characterized as being involved in blue light signaling regulation, vascular bundle development, outer cell biosynthesis of organs, stress response to adversity, and anthocyanin synthesis. For example, multiple ZF-HDs in Arabidopsis thaliana are involved in the regulation of floral organ development and functional sink residues, and similar findings have been reported in barley and wheat (Tran et al., 2007; Abu-Romman and Al-Hadid, 2017). Drought, salinity, and external application of abscisic acid induce AtZHD1 expression (Wang et al., 2014). The overexpression of ZF-HD1 and NAC genes enhances drought resistance in Arabidopsis thaliana (Tran et al., 2007; Hu et al., 2008). Using Arabidopsis thaliana overexpressing MIF1, it has been demonstrated that MIF1 regulates multiple hormones and affects plant growth and development. In addition, MIF1 overexpression impedes ZHD protein functions, and this may result from interactions with the ZF structural domain (Hu and Ma, 2006). ZF-HD4 expression can be induced by drought and salt stress (Hu et al., 2008). It has also been reported that the overexpression of ZF-HD5 can result into large plant leaves (Hong et al., 2011). ZF-HD10 is highly expressed in the hypocotyl and induces the expression of hypocotyl elongation-related genes HFR1 (Long hypocotyl in far-red) and ATXTH17 (Xyloglucan endotransglucosylase/hydrolase) (Shalmani et al., 2019). ZF-HD8 is highly expressed in floral organs and plays an important role in flower development (Hu et al., 2008). It has also been shown that most ZF-HD genes are expressed in floral organs, significantly associated with flowering-related hormones (GA, 6-BA), and may be involved in the regulation of floral organ development (Tan and Irish, 2006; Shalmani et al., 2019). Under low temperatures, drought, and mechanical damage, all four ZF-HDs bind to the DREB1B promoter to activate its expression (Figueiredo et al., 2012). Soybean ZF-HD1 and ZF-HD2 are transiently heterologously expressed in Arabidopsis thaliana protoplasts, confirming their response to pathogen infestation and activation of CaM4 gene expression (Park et al., 2007), which is involved in plant defense responses. In other species, ZF-HD, such as tomato SlZF-HD7 and buckwheat FtZF-HD1, plays an important role in leaf and flower bud development (Khatun et al., 2017; Liu et al., 2019). The expression analysis of 24 ZF-HD genes in maize under ABA, alpine, and drought stresses has showed that both ZF-HD11 and ZF-HD12 exhibit significant responses to abiotic stresses (Jing et al., 2022).
Pea is important for food security and the healthy development of animal husbandry in Tibet. To date, there have been no reports of systematic studies on the pea ZF-HD gene family. Moreover, since the pea whole genome sequencing results were published in 2022 (Yang et al., 2022), recent bioinformatics advances have made it easy to analyze the pea ZF-HD family variation on a broad genomic scale. Although the ZF-HD gene family has been identified in several species, the effects of its members on the growth, development, yield, and quality of pea have not been reported. In this study, bioinformatics was used to identify the ZF-HD gene family based on the sequencing results of the pea genome. Its protein structure, basic physicochemical characteristics, cis-acting elements, and gene covariance were analyzed to lay the foundation for further understanding of the biological functions of the ZF-HD gene family.
2 MATERIALS AND METHODS
2.1 Identification of the ZF-HD gene family in pea
Genomes, protein sequences, and gff3 annotation files of dicotyledons crops pea (Pisum sativum), soybean (Glycine_max L.), tomato (Solanum lycopersicum L), cabbage (Brassica Rapa L.), and monocotyledonous crops like Arabidopsis thaliana (Arabidopsis thaliana L.), rice (Oryza sativa L.) were obtained from Ensembl plants (http://plants.ensembl.org/index.html) and Phytozome (https://phytozome-next.jgi.doe.gov/) public databases. Pea ZF-HD family members were searched and identified by two methods. Firstly, a BLAST search of the pea proteome database was performed using the identified AtZF-HD protein sequence as a probe to obtain the first candidate ZR-HD family members. Second, the Pfam number (PF04770) of the ZF-HD gene family structural domain was searched on the Pfam website(http://pfam-legacy.xfam.org/), the corresponding Hidden Markov Model profile (HMM) was downloaded, the protein sequences containing similar structural domains to the Hidden Markov Model (E-value <1.2e-28) were searched for the first time with the HMMER software(version 3.3.2), and the ZF-HD structural domain sequences were extracted, and the ZF-HD structural domain sequences were analyzed with the Clustalw software(version 2.1) for multiple sequence alignment of ZF-HD structural domain sequences to construct a pea-specific stealth Markov model, search again for candidate ZF-HD family genes containing ZF-HD structural domains (E-value <.001), remove duplicate transcripts, select the longest transcripts, extract the protein sequences corresponding to the transcripts, and submit them to CDD (https://www.ncbi.nlm.nih.gov/cdd),SMART (http://smart.embl.de/), and PFAM (http://pfam.xfam.org/) databases to confirm the structural transgressions and remove sequences that do not contain the ZF-HD structural domain. The candidate genes identified first time were compared and analyzed with those identified the second time. The full lengths of the proteins and corresponding CDS sequences of the 18 ZF-HD gene family members were finally obtained. The amino acid length, molecular weight, and isoelectric point of the 18 ZF-HD family member proteins were predicted using the online tool ExPASy-ProtParam (https://web.expasy.org/protparam/). The obtained protein sequences were analyzed for subcellular localization using the WoLF PSORT online tool(https://wolfpsort.hgc.jp/) to construct phylogenies.
2.2 Phylogenetic tree analysis
The full-length sequences of ZF-HD proteins from Chinese cabbage(Brassica rapa L.), tomato(Solanum lycopersicum L.), soybean(Glycine max L.), rice(Oryza sativa L.), and Arabidopsis thaliana (Arabidopsis thaliana L.) were compared with Clustal X1.8 multiplex using MEGA X software(Kumar et al., 2018). The comparison results were used to generate evolutionary trees using the maximum likelihood method (ML) with parameters set to bootstrap 1,000 and the model set to JTT + G (Supplementary File S2). The evolutionary tree was embellished with the online tool Evolview (https://www.evolgenius.info/evolview/) (He et al., 2016).
2.3 Chromosome localization, gene duplication and ka/ks analysis
Information on the location of ZF-HD family genes on chromosomes was obtained from pea genome annotation files, and their gene lengths were obtained using samtools software. Centipede maps of genes on chromosomes were drawn using the online software MG2c (http://mg2c.iask.in/mg2c_v2.1/). MCScanX software is used for analyze gene doubling and gene tandem duplication events in pea genome, Then, KaKs_Calculator software calculates ka/ks values of duplicated genes and tandem repeats.
2.4 Conserved structural domains, conserved motifs, and gene structure and 3D structure analysis
Online program MEME (https://meme-suite.org/meme/tools/meme) discovers novel, ungapped motifs (recurring, fixed-length patterns) in your sequences (sample output from sequences). MEME splits variable-length patterns into two or more separate motifs. MEME tools was applied to predict the conserved motifs of 18 ZF-HD family protein, setting the search to a maximum of 12 motifs with amino acid motifs ranging from 6 to 100. The exon, CDS, and UTR position information of ZF-HD family genes were extracted based on the pea genome annotation file to map their gene structures. 18 PsZF-HD protein sequences were submitted to the online software SWISS-MODEL (https://swissmodel.expasy.org), retrieved the most similar models from the PDB library to predict the three-dimensional structure of pea PsZF-HD protein.
2.5 Prediction of cis-acting elements in promoter regions
The online software Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to predict the cis-acting element of the 1,500 bp sequence upstream of the ZF-HD family gene.
2.6 Inter-tissue differential expression analysis of PsZF-HD family genes
Transcriptome FASTQdata from four groups of different treatments of pea were downloaded from the NCBI SRA database (http://www.Ncbi.Nlm.Nih.gov) and the EBI-ENA database (https://www.ebi.ac.uk/ena/browser/home) for data analysis. Among them, the participating varieties in group 1 were the Kaspa variety (semi-leafless medium-high, spherical brown medium grain) and Parafield variety (common plant phenotype, spherical brown large grain) varieties with transcriptome data accession numbers PRJNA277074 and PRJNA277076, respectively (Sudheesh et al., 2015). The test items were true leaves, stipules, stems, tendrils, roots, and root tip tissues of 4-week-old seedlings, stamens at fully open flowers (10–14 days after flowering), pistils, immature pods, immature seeds (20–25 days after flowering) and rhizome nodules (3-month-old plants) and seedlings (7-day-old seedlings) collected at multiple stem nodes at different developmental stages. The second group of participating materials was two varieties of vegetable peas and grain peas, sampled at five periods of post-flowering pod development to determine the transcriptome (Yang et al., 2019). The third group of participant test materials, two pea varieties with different cold effects, a cold-resistant winter forage variety and a cold-sensitive spring dry pea variety, were subjected to low-temperature treatment at different developmental stages with transcriptome data registration number PRJNA543764(Bahrman et al., 2019). The transcriptome of the fourth group of participant materials in different N-treated peas at three developmental stages in different tissues (Alves-Carvalho et al., 2015). For the above FASTQ data according to the type of library construction, they were de-spliced with fastp software (Chen et al., 2018), and the low-quality sequences were removed according to the default parameters to obtain clean and high-quality sequences. Subsequently, they were mapping to the pea reference genome using Hisat2 software (Kim et al., 2015) to generate Sam files and converted to Bam files, and the resultant files were subjected to quality control analysis using RSeQC comparison to detect whether the sequences were normal, genome coverage, and RNA explained. Gene expression was analyzed by FPKM using Htseq-count software (Anders et al., 2015).
3 RESULTS
3.1 Identification of the ZF-HD gene family
To identify the ZF-HD genes in Pisum sativum, two HMM analyses were performed, generating 18 PsZF-HD genes after confirming ZF-HD domain by SMART and NCBI Conserved Domain Search Service Supplementary File S1). The longest variable splicing was adopted for the study (Supplementary File S2). Based on the evolutionary tree and the order and position of the ZF-HD proteins on the chromosome, they were named MIF1-4 and PsZFD1-14 (Table 1). Eighteen ZF-HDs proteins had amino acid lengths in the range of 75–417 amino acids, molecular weights in the range of 46,209.52–8,126.16 Da, and isoelectric points PI in the range of 4.78–9.08. PsZHD13 had the longest amino acid sequence, the largest molecular weight, and the smallest PI value. PsMIF2 had the shortest amino acid sequence, the smallest molecular weight, and a PI value of 8.97. PsZHD5 and PsMIF4 had equal and largest PI values, both at 9.08. The subcellular localization of the PsZF-HD family showed that PsMIF1, PsZHD8, PsZHD11, and PsZHD11 were located in the cytoplasm. PsZHD10 was localized in the cytoplasm or nucleus, and PsMIF2 and PsMIF3 were localized in the chloroplast. Other 11 PsZF-HD family members were localized in the nucleus. These findings showed that the 18 psZF-HD proteins differed significantly in their sequences and characteristics.
TABLE 1 | Detailed information for the ZF-HD gene family in Pisum sativum.
[image: Table 1]3.2 Phylogenetic tree analysis
The phylogenetic tree classified the ZF-HD proteins into two subgroups, MIF and ZF-HD. MIF was further categorized into three branches (MIFⅠ, Ⅱ, and Ⅲ), and the ZF-HD subgroup was further classified into five branches (ZF-HD I, II, IV, and V) (Figure 1). PsMIF2 and PsMIF4 were classified into the MIF I branch, and PsMIF1 and PsMIF3 were classified into the MIF II branch. MIF III does not contain pea ZF-HD family members; the ZHD I subpopulation contains PsZHD8, 12, 3, and 10; the ZHD II subpopulation contains PsZHD4, 13 and 14; the ZHD III subpopulation contains PsZHD5; the ZHD IV subpopulation contains PsZHD1, 7, 11 and two; and ZHD V subpopulation contains PsZHD6 and 9. This evolutionary tree differs individually from that formed by the pea PsZF-HD family protein sequences and domain motifs, but it is highly consistent with the evolutionary tree generated by the CDS. Notably, the ZF-HD family has not diverged in the evolution of monocot and dicot plants.
[image: Figure 1]FIGURE 1 | The phylogenetic tree of ZF-HD proteins from pea (Pisum sativum,Ps), Arabidopsis (Arabidopsis thaliana,At), Tamato (Solanum lycopersicum,Sl), Soybean (Glycine max,,Glyma), Chinese cabbage (Brassica rapa,Bra) and rice (Oryza sativa,Os). The phylogenetic Tree members showed as blot and accompany a pentagram.
3.3 Chromosomal localization, gene duplication and ka/ks analysis
The 18 ZF-HD family members in peas were unevenly distributed on seven chromosomes, and two large segments were not mounted on chromosomes, with different densities of gene distribution (Figure 2). Chromosome 1LG6 contained three PsZF-HD genes; 2LG1 contained three genes; 3LG5 contained one gene; 4LG4 contained the largest number of PsZF-HD members (four genes); 5LG3 contained two genes; 6LG2 contained one gene; 7LG7 contained one gene; sequence large segment Scaffold00667 contained one gene; and sequence large sequence segment Scaffold03255 contains one gene. PsZF-HD gene did not have large segment gene duplication events in seven chromosomes and two Scaffolds of pea, and only one pair of genes (Psat0s3255g0040.1 and Psat0s3255g0080.1) showed tandem duplication pairs. The ka and ks values were .206,821 and .1879, respectively, and ka/ks was 1.1007, indicating that the gene was under positive selection pressure during evolution.
[image: Figure 2]FIGURE 2 | Physical distribution of PsZF-HD genes among seven chromosomes and scaffold.
3.4 Conserved motifs, conserved structural domains, and gene structure analysis
Twelve Motifs were identified from the 18 PsZF-HD family members, namely motif1-12 (Supplementary File S3). Motif1 was present in all the PsZF-HD family members, except PsMIF4 and PsZHD5, and Motif3 was present in all the PsZF-HD family members, except PsMIF2. Motif2 was found in 11 members of the PsZF-HD family. The MIF family members had the lowest number of motifs; Motifs were classified as MIFⅠ. Motif12 is unique to the MIF members, and the ZHD family has more motifs. Motif9 is specific to ZHDII subgroup PsZHD13, 14, and 4 (Figures 3A). The conserved domain analysis (Figures 3B) showed that the 18 PsZF-HD family members contained four conserved domains, while the MIF subgroup members contained only one conserved domain, and all the ZHD subgroup members contained two different conserved domains. PsMIF4, which is classified in the MIF subgroup, contains a specific ZF-HD dimer superfamily domain, while the other 17 members contain an N-terminal ZF-HD dimer domain (rich in cysteine and histidine). PsZHD3, 8, 12, 4, and nine contain another hemeo ZF-HD superfamily domain. Structural analysis of PsZF-HDs genes showed (Figures 3C) that most members had no introns (13/18), and five members (PsZHD4, PsZHD14, PsZHD9, PsZHD1, PsZHD5) contained only one intron. The psMIF4 contained the longest intron and the longest untranslated region sequence. The highest matching templates with the PDB library were selected to construct and visualize 3D models of PsZF-HDs family proteins (Figure 3). psat4g050800.1 (3qdy.pdb), Psat5g176320.1 (6eu0.1. I.pdb), Psat1g073200.1 (2fqh.pdb), Psat0s3255g0040.1 2 (lbc.1.A.pdb), Psat0s667g0040.1 (1fr5.1.A.pdb), and the rest of the proteins use the same template 1wh7. pdb. There were significant structural differences between the MIF subpopulation and the ZF-HD subpopulation, while there was a high degree of structural similarity within the subpopulation. Members of the MIF subpopulation had no α-helix. MIFⅠ consisted of β-fold and a ring, while MIFⅡ had neither helix nor fold and consisted of a ring. In contrast, the ZF-HD subfamily was β-folded and had a more complex structure than the MIF members. Notably, PsZHD13, the 3D model, was significantly different from other ZF-HD subgroup members.
[image: Figure 3]FIGURE 3 | Phylogenetic relationship, conserved motifs, conserved domain and gene structure of the PsZF-HD genes. (A) An unrooted phylogenetic tree was constructed by the MEGA X based on Pea ZF-HD protein sequences using the Maximum likelihood method. (B) Conserved motif composition of the PsZF-HD proteins, and the colored box at the bottom represented the relative position of each conserved motif, Details are shown in Supplementary File S2. (C) conserved domain composition PsZF-HD proteins. (D) The CDS–UTR-introns structures of PsZF-HD genes were displayed by TBtools software.
3.5 Analysis of structural elements of the promoter region of PsZF-HD
Cis-acting elements serve as molecular switches in the promoter regions of genes and important regulators of gene transcription during plant development in response to biotic/abiotic stresses and phytohormones. We extracted elements in the 1.5 kb promoter region upstream of the transcriptional start of PsZF-HD family members and filtered out unknown and untrustworthy elements to analyze 21, 10, 9, and 5 cis-acting elements involved in light, hormone, and stress responses and the regulation of growth and development, respectively (Figure 4). Of the 21 light response elements found in the 18 PsZF-HD family members, Box4, GT1-motif, and G-box had the highest coverage percentages at 16/18, 14/18, and 14/18, respectively. Fourteen members contained more than two light-responsive elements. The hormone-regulated response elements involved growth hormone, gibberellin, methyl jasmonate, zeatin, and abscisic acid, and the abscisic acid response elements were common in the PsZF-HD family, accounting for 14/18. The growth hormone AuxRR-core and TGA-box response elements were only present in PsZF-HD9 and 2, respectively. Gibberellin response element GARE motif existed only in PsZF-HD4. The other 16 PsZ-HD members contained more than two hormone response elements. PsZF-HD family genes contained stress response elements involving abiotic stresses, such as those induced by drought, low temperature, salt, and anaerobic factors. Of these, ARE anaerobic response elements had the highest distribution in the PsZF-HD family, reaching 13/18. PsZF-HD17 (except WUN motif element) and PsZF-HD2 (except MBS drought response element) contained six other stress response elements. PsZF-HD8 and 14 contained only anaerobic response elements. PsZF-HD3 contained only drought response element MBS. Five response elements regulate pea growth and development, none of which was found in PsZF-HD9, 6, 14, 7 and 11, while the other 13 PsZF-HD members contained at least one response element. The as-1 elements were distributed in the largest proportion of the PsZF-HD family at 1/2. Cluster analysis showed that some PsZF-HD members in the same branch had similar cis-elements. This suggests that the PsZF-HD family is involved in different developmental processes in response to abiotic stresses and hormonal regulation.
[image: Figure 4]FIGURE 4 | Analysis of Cis-acting elements of ZF-HD gene family in P. sative.
3.6 Inter-tissue differential expression analysis of PsZF-HDs genes
To investigate the biological roles of PsZF-HDs, the expression levels of 18 PsZF-HDs genes were systematically examined in pea flowers, immature pods, immature seeds, roots, root tips, seedlings, stems, leaves, stipules, tendrils, stamens, post-flowering pods at five developmental stages and under the stress conditions of N deficiency and low temperature (Figure 5, Supplementary File S4). The aforementioned tissue contained PsZHD11, 8, 13, 14 and MIF4 (Figure 5A). The other PsZF-HD members were differentially expressed in various tissues and demonstrated tissue specificity. However, they were similarly expressed in the same tissues of the two groups of phenotypically significantly different pea varieties (Kaspa and Parafield, WDZY-14 and WDZY-04) (Figure 5B-1). PsZHD6, 2, and 10 and MIF1 (except immature seeds) were significantly expressed in the aboveground reproductive organs. PsZHD6, 1, and 10 were significantly expressed in the aboveground nutritional organs, and PsMIF3 was highly expressed in the subterranean organs.
[image: Figure 5]FIGURE 5 | Expression patterns of PsZF-HDs in Different Tissues from Pisum sativum L. The heat map with clustering was created based on the FPKM value of PsZF-HDs. Differences in gene expression changes are shown in colour as the scale. (A) The expression pattern of PsZF-HD genes in the flower, immature pod, immature seed, nodule, root, root-tip, seeding, stem, stipule, tendril, pistil, stamen, leaf of Two pea varieties with significant phenotypic differences(Kaspa variety and Parafield variety). (B-1) Expression of PsZF-HDs gene in five stages of immature pod development. (B-2) The expression pattern of PsZF-HD genes in the leaf under different low-temperature stress. Scheme of the experiments and samplings of RNA-sequencing (RNA-seq) experiments:low temperature (L) treatment and control (N),low temperature in fuchsia, freezing in deepskyblue, and recovery period in darkviolet. (C) The expression pattern of PsZF-HD genes in different tissues of pea: The sampling points are shown in Supplementary File S3. The expression pattern of PsZF-HD genes in different tissues of pea: The sampling points are shown in Supplementary File S5.
In the petals, the expression of all PsZF-HD members was upregulated, except for the aforementioned non-expressed genes, of which PsZHD6, 2, and 10 and MIF1 genes were highly expressed in that order, presumably relating to pea flowering regulation. The genes PsZHD12, 6, MIF1 and 10 were the most highly expressed in Kaspa and Parafield pea varieties during pod development. Moreover, PsZHD5 was consistently more expressed than the other members of PsZF-HDs at the five pod developmental stages of WDZY-14 and WDZY-04 pea varieties. PsZHD10, 6, five and two were sequentially highly expressed in immature seeds. PsZHD6, MIF1, and MIF3 were relatively highly expressed in the root nodules. PsMIF3 was specifically highly expressed in the roots and root tips, and its expression in roots was the second highest value of this family of genes in all the organs of peas. In the seedlings, PsZHD1, 6, 10, and two were sequentially highly expressed. The stems showed a sequential upregulation of PsMIF1, 6, 1, and 10 over the course of their development. The stipules showed exceptionally high expression of PsZHD6 and 1. The tendrils showed sequentially high expression of PsZHD6, 1, and 2. The 12 PsZF-HD members were highly expressed in the pistil and stamen, except PsMIF2, with PsZF-HD2 in the pistil showing the highest expression in all the organs of pea and PsMIF1 showing the third highest expression in the stamen. The expression of PsZHD6 in the leaves was relatively high. The expression of PsMIF3 in pea underground tissues was higher than other members of PsZF-HDs under a high-low N environment (Figure 5C), but it did not show a certain pattern during its development. PsZHD6, 1, 10 and MIF1 (except leaves) showed significantly high expression in aboveground nutritional tissues, with the highest expression of PsMIF1 in stems and terminal nodes in the low-N environment and the highest expression of PsMIF1 in pedicels in aboveground reproductive organs. The expression of the 17 PsZF-HDs members in the shoot organs was slightly higher in the low-N environment compared with the high-N environment.
This study analyzed the leaf transcriptome of two pea varieties (Te: freeze-sensitive spring dry bean variety, Ch: freeze-resistant winter forage variety) under control (20 °C day/14 °C night), low temperature (8 °C day/2 °C night) for 3 days, and low temperature (8°C day/2 °C night) for 16 days to clarify the mechanism of PsZF-HDs affecting low-temperature stress (Figure 5B-2). PsZHD11, 8, 13 and one were not detected in all experimental groups. Meanwhile, the expression values of PsZHD12 and 14 were close to or equal to 0, indicating that they were almost independent of leaf development. On the contrary, PsZHD10,6,1 and one were highly expressed in the control and different low temperature environments, and their gene expression levels were ranked from high to low. Compared with the control, the gene expression of PsZHD10 and PsZHD10 was up-regulated. In contrast, PsZHD6, 2, MIF2 and MIF1 genes were down-regulated (except the PsZHD2 gene in ChN1 and ChL1 low-temperature treatment groups and the PsMIF1 gene in TeN2 and TeL2 low-temperature treatment groups), and their up- or down-regulation was less affected by the duration of low temperature. Other members of PsZF HDs did not show regular changes under the control and different low temperature durations.
3.7 Functional enrichment analysis of PsZF-HD gene and protein interaction network
GO enrichment analysis showed that the functions of ZF-HD family genes were mainly enriched in three levels: biological process (BP), cellular component (CC) and molecular function (MF). At the level of biological process, the target gene ZF-HD was significantly enriched in several GO items, such as the growth and development process (GO: 0032502), bioregulatory process (GO:0065007), metabolic process (GO: 008152), cell replication and reproduction, 11 genes were involved in biological metabolism, seven genes exercised biological management function, one gene had the function to resist At the cellular component level, most of the ZF-HD genes are the main components of the constituent cells, and a small number of ZF-HD genes are involved in the constitution of organs; and the molecular functions of the ZF-HD gene family are mainly enriched in the DNA binding function, which is one of the typical features of transcription factors. The results of GO enrichment showed that 18 PsZF-HD genes could be involved in rapid growth and development in peas.
4 DISCUSSION
4.1 Evolutionary and structural characteristics of PsZF-HD genes in pea
The plant ZF-HD family genes play an important role in regulating plant growth and development and resisting stresses in a stressful environment. According to the bioinformatics analysis, the pea genome carried a total of 18 ZF-HD genes, with four PsMIF genes and 14 PsZHD genes similar to the categories of model plant Rice and Arabidopsis ZF-HD genes, respectively. However, the number of each subgroup in pea was different from that in rice and Arabidopsis. Previously, 58, 28, and 18 ZF-HD members were identified in soybean, wild soybean, and Tribulus alfalfa of the legume subfamily Pteridophyllaceae, respectively. In Chinese cabbage (Wang et al., 2016), tea (Zhou et al., 2021), buckwheat (Liu et al., 2019), maize (Jing et al., 2022), tobacco (Sun et al., 2021), and tomato (Hu et al., 2018), a total of 31, 18, 20, 24, 32, and 22 ZF-HD family members, respectively, have been reported. A total of 17 and 15 genes were identified in Arabidopsis and rice model crops, respectively. Although the number of the ZF-HD family members of the aforementioned plants are not less than that of pea, their genomes are much smaller (soybean, 1.15 Mb; alfalfa, 360 Mb; cabbage, 283.8 Mb; tea, 3.14 Gb; buckwheat, 489.3 Mb; tomato, 900 Mb. Previous studies have shown that ZF-HDs underwent a genetic expansion to differentiate between higher and lower plants. Most species undergo more than one genome contraction/expansion event during evolution, causing changes in gene numbers. A similar event has now been shown to occur in pea (Wang et al., 2016; Kreplak et al., 2019). Therefore, it is hypothesized that the gene duplication/loss events occurring in peas may be a key factor in the sparse distribution of PsZF-HDs genes in the genome.
The results of the biochemical analysis and phylogenetic tree showed that the ZF-HDs proteins were classified into two distinct subgroups (MIF and ZHD) and subdivided into three branches for MIF and five branches for ZHD (ZHD1-ZHDV) (Figure 1). This result is consistent with the previous reports on other crops (Liu et al., 2019; Zhou et al., 2021; He et al., 2022). The pea genome carried four PsZF-HD members classified into the MIF I subgroup and 14 members classified into the ZHD subgroup. Conserved motifs, protein structural domains, and 3D structures significantly differed between the MIF and ZHD subgroups. Members of the MIF subgroup contained the lowest number of motifs, which was unique to motif12. Meanwhile, the MIF subgroup contained only one conserved structural domain. Similarly, the ZHD subgroup contained only one conserved domain, and the ZHD subgroup had no motif12. However, both subgroups contained two different conserved domains. This is consistent with the previous proposal that the MIF subgroup contains only the ZF structural domain and lacks the C-terminal homology domain. In addition, the three-dimensional structures of the MIF and ZHD subgroups and the proteins within the MIF subgroup were significantly different. However, the members of the ZHD subgroup did not show significant structural differences among the branches. These results corroborate and support the correct classification of the PsZF-HD family, which has high evolutionary conservation. The present study did not show the evolutionary divergence of the ZF-HD family among monocots, which may be attributed to the small number of plants selected. Gene structure analysis may provide clues to gene family evolution (Lai et al., 2021). Most members of the pea PsZF-HD family are intronless, which matches the typical features of the ZF-HD family gene structure. It has been proposed that the loss of selective splicing of intronless genes facilitates the maintenance of the highly conserved sequence and functional stability of ZF-HD proteins during the evolutionary process. Moreover, it enables rapid transcription and translation in response to abiotic stresses (Shalmani et al., 2019). Furthermore, the five members of the PsZF-HD family contained only one intron, and we hypothesized that intron acquisition events occurred during the evolution of the pea ZF-HD gene. This provides further evidence that ZF-HD genes are subject to strong purifying selection, and it also suggests that members of the PsZF-HD family may have relatively conserved biological functions. However, the distinction between phase functions has not been made to date (Abdullah et al., 2018).
4.2 Analysis of cis acting elements of PsZF-HD gene promoter and its expression in different tissues at different growth stages and under abiotic stress
TFs are involved in the regulation of stress signals and expression of stress-responsive genes through various mechanisms, which depend on the presence of cis-acting elements in the promoter region. A growing body of evidence indicates that ZF-HD TFs play crucial roles in regulating various biological processes in plants (Hu et al., 2008; Khatun et al., 2017; Zhou et al., 2021). In our study, 45 cis-acting elements of the PsZF-HD with known biological functions were predicted and screened; these elements belonged to four categories: light response, stress, hormone, and growth and development, suggesting that the PsZF-HDs are also involved in different processes, such as photomorphogenesis, organ development, stress response, and hormone regulation, in pea plants. ZF-HD genes are differentially expressed in different tissues of different species and play an important role in plant growth and development (Khatun et al., 2017). Previous studies on ZF-HD genes have mostly focused on abiotic stresses and less on organ development. Previously, scholars analyzed the expression of ZF-HDs family genes in cabbage, buckwheat, and cucumber in their respective different organs and found significant spatiotemporal expression differences and tissue preference in different tissues (Liu et al., 2019). For example, buckwheat FtZHD10 and three were expressed only in the roots and FtMIF3 only in the flowers; the fruits showed high expression of FtZHD11/6/15/13 and no expression of FtZHD2. FtZHD1/2/4/5/7/9/12/16/17 and FtMIF2/3 were expressed more in the flowers than that in the other tissues; FtZHD1/6/11/12/15 were expressed more in the reproductive organs than that in the nutritional organs (Liu et al., 2019). Cucumber CsMIF1, CsMIF3, and CsZHD1 were highly expressed in the roots, flowers, and tendrils, respectively, and several CsZF-HD genes were significantly downregulated at the late stage of fruit development (Lai et al., 2021). We found that PsZF-HDs had a similar pattern as previously described. PsZHD11, 8, 13, and 14 and MIF4 were not expressed in the different tissues of the pea multiset transcriptome or were lowly expressed in the individual tissues. The other 13 PsZF-HDs genes were differentially expressed in the different tissues of pea. For example, in aboveground reproductive organs of pea, PsZHD6, 2, and 10 and MIF1 (except immature seeds) were significantly expressed; in aboveground nutritional organs, PsZHD6, 1, 10 were significantly expressed; and in the underground root system, PsMIF3 was highly expressed; in aboveground nutritional organs, PsZHD6, 1, 10 were significantly highly expressed; and in the underground root system, PsMIF3 was specifically highly expressed. It has been proposed that Arabidopsis thaliana AtZHD5 is highly expressed in leaves with the same branches as tobacco NtZF-HD22 and NtZF-HD2 and Arabidopsis thaliana AtZF-HD8 is highly expressed in flowers and leaves(Sun et al., 2021). In this study, high expression of PsZHD6 in leaves of the same branch as AtZF-HD8 was found. It indicates that PsZHD6 is involved in regulating the growth and development of pea leaves. Seedlings highly expressed genes (PsZHD1, 6, 10), stems (PsMIF1, 6, 1, 10), stipules (PsZHD6 and 1), tendrils (PsZHD6, one and 2), and leaves (PsZHD6 and MIF2). Notably, the pod transcriptome data published by Sudheesh et al. (2015); Yang et al. (2019) differed significantly, with the former showing high expression of MIF1/10/12/2/6 genes in all immature pods, while the latter showed only PsZHD5-specific high expression at five periods of pod development. In the floral organs (petals, pistils, and stamens), most PsZF-HD members were expressed at high values, with PsZF-HD2, PsMIF1, 6 and 10 being significantly overexpressed in the floral organs in that order, presumably in relation to pea flowering regulation. Previous studies have shown that most of the Arabidopsis thaliana ZF-HD family genes are expressed in the floral organs and overlap in regulating flower development (Shalmani et al., 2019). BraZF-HD30 is specifically expressed in the flower tissue of Chinese cabbage (Wang et al., 2015).
ZF-HD genes play key roles in response to biotic and abiotic stresses. For example, Arabidopsis thaliana AtZF-HD4 is up-regulated in response to drought, cold stress, and salinity. Most BraZF-HD genes in cabbage are induced by photoperiod, vernalization, low temperature and abiotic stresses (Wang et al., 2016). ZF-HD3 was gradually up-regulated, and ZF-HD15 was down-regulated by cold stress 0–24 h in a tea tree(Zhou et al., 2021). Tomato SlZHD13 was up-regulated under drought, and salt stress (Khatun et al., 2017), and silencing the SL-ZH13 gene reduced its resistance to cold and salt stresses (Zhao et al., 2018; Zhao et al., 2019). In this study, we analyzed the transcriptome results of pea leaves under low-temperature stress at 3 days and 16 days. We found that low temperature induced up-regulation of PsZHD10 and one genes and down-regulation of PsZHD6, 2, MIF2 and MIF1 genes, but their up- and down-regulation was not significant. Under low N stress, PsZHD6, 1, 10 and MIF1 (except leaves) were significantly highly expressed in aboveground nutrient tissues, with PsMIF1 showing the highest expression in stems, terminal nodes and pedicels. The expression of 17 PsZF-HDs members was slightly up-regulated in shoots. Similar results have been verified in other crops (Wang et al., 2016; Khatun et al., 2017). The PsZF-HD members in the same branch have more similar types of action elements. For example, the ZHD V branch members PsZF-HD7 and 11 are highly similar in hormone, stress and growth and development-related action elements, and the three members of the ZHD IV branch (except PsZF-HD2) are highly similar in their response elements. The ZHD III branch contains only PsZF-HD6, which contains the least number of active elements and is divided into a single branch. 16 genes were highly similar in some light-responsive and hormone-responsive element types. Overall, their expression was detected during pea organ development and morphogenesis; these genes may not be associated with pea organ development or light-induced morphogenesis. Overall, Some PsZF-HD family genes in pea are involved in regulating the response to stress, focusing on the functional verification of the above genes will help uncover the stress resistance of peas and play an important role in promoting the improvement of crop stress resistance.
CONCLUSION
18 PsZF-HD genes, including 14 ZHD genes and four MIF genes, were identified in the entire pea genome, and their Conserved motif, Conserved domain, structures and expression pattern of in various tissues, different stages of pod development, together with the expression patterns of BraZF-HD genes under low temperature and nitrogen stress were analyzed, provided a basic resource for the examination of the molecular regulation of pea development and stress resistance. Our findings is the first systematic and comprehensive analysis of ZF-HD genes in pea, it provides clues for revealing the potential roles of PsZF-HD genes in Morphogenesis and tissue development and stress tolerance of Pea.
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The soybean yield is a complex quantitative trait that is significantly influenced by environmental factors. G × E interaction (GEI), which derives the performance of soybean genotypes differentially in various environmental conditions, is one of the main obstacles to increasing the net production. The primary goal of this study is to identify the outperforming genotypes in different latitudes, which can then be used in future breeding programs. A total of 96 soybean genotypes were examined in two different ecological regions: Faisalabad and Tando Jam in Pakistan. The evaluation of genotypes in different environmental conditions showed a substantial amount of genetic diversity for grain yield. We identified 13 environment-specific genotypes showing their maximum grain yield in each environment. Genotype G69 was found to be an ideal genotype with higher grain yield than other genotypes tested in this study and is broadly adapted for environments E1 and E2 and also included in top-yielding genotypes in E3, E4, and E5. G92 is another genotype that is broadly adapted in E1, E3, and E4. In the case of environments, E3 is suggested to be a more ideal environment as it is plotted near the concentric circle and is very informative for the selection of genotypes with high yield. Despite the presence of GEI, advances in DNA technology provided very useful tools to investigate the insight of advanced genotypes. Association mapping is a useful method for swiftly and efficiently investigating the genetic basis of significant plant traits. A total of 26 marker–trait associations were found for six agronomic traits in five environments, with the highest significance (p-value = 2.48 × 10–08) for plant height and the lowest significance (1.03 × 10–03) for hundred-grain weight. Soybean genotypes identified in the present study could be a valuable source for future breeding programs as they are adaptable to a wide range of environments. Genetic selection of genotypes with the best yields can be used for gross grain production in a wide range of climatic conditions, and it would give an essential reference in terms of soybean variety selection.
Keywords: genotype-by-environment interaction, association mapping, GGE biplots, agronomic traits, soybean
1 INTRODUCTION
The soybean (Glycine max) is an important oil seed crop that fulfills the demands of oil and proteins of millions of people around the world. Its cultivation area covered 130.94 million hectares during 2021/2022, with a net production of 355.59 million metric tons in the world (https://www.fas.usda.gov/data/world-agricultural-production). However, in Pakistan, its cultivation area is negligible, with a production of 1,000 metric tons. To meet the increasing need for food, it is essential for breeders to develop cultivars that have high yield and yield stability and are also resistant to biotic and abiotic stresses (Eltaher et al., 2021). In any crop species, grain yield is the most important factor. It is a complex quantitative trait that is influenced by multiple genes and environmental factors (Yongchun et al., 2008). Hence, it is necessary to dissect the underlying genetics of grain yield and other related traits for manipulating alleles at relevant loci to get maximum benefits (Yongchun et al., 2008). The selection of genotypes carried out in a single environment on the basis of their performance is not suitable for the development of varieties (Shrestha et al., 2012). So, the selection of the genotypes on the basis of yield stability evaluation is more important than their mean performance in multiple environmental conditions (Tariku et al., 2013; Islam et al., 2016). For crops like soybean, which grows in a wide range of ecological conditions, it is very important to select the genotypes for adaptability and stability before recommending any environmental condition. The photoperiod is the main climatic factor in soybean that determines its adaptability to different ecological conditions. Because of photoperiod sensitivity, each soybean cultivar is restricted to cultivation in a narrow range of latitudes to get maximum yield (Debebe et al., 2014). Although soybean grows in a wide range of latitudes (50°N–35°S) across the world, identification of traits that help to determine the performance of the most stable cultivars at different latitudes is very important (Li et al., 2020).
Genotype × environment interaction (GEI) has limitations in the study of important agronomic traits like yield and its components, as it complicates the understanding of genetic experimentations and restricts the selection of varieties adaptive to specific conditions (Farshadfar and Sutka, 2003). Normally, in plant breeding programs, the selection of genotypes for a specific environment is conducted by multi-environmental trials (METs) for the evaluation of genotypes based on their performance across environments (Li et al., 2020). Numerous research studies have been conducted using several statistical modeling approaches for checking the effect of GEI on yield and other agronomic traits (Grüneberg et al., 2005). These approaches mainly utilize a generalized linear model (GLM) to measure the variation caused by genotype, environment, and GEI for each variable by linear regression and joint analysis of variance (ANOVA) (Arif et al., 2021). GLMs lower the supposition of dependent variables (Olsson, 2002).
The additive main effect and multiplicative interaction (AMMI) model is mostly used in crop breeding programs for evaluating the genotypes for variety approval. First, the AMMI model uses ANOVA to divide variations into the main effect of genotype (G), main effect of environment (E), and effect caused by genotype-by-environment interaction (GEI). Second, it performs principal component analysis (PCA) by singular value decomposition for genotype and environment (Gauch Jr et al., 2008).
The most important method that visually helps to examine the relationship among genotypes, environments, and genotype-by-environment interaction and plays a significant role in the selection of the most stable and high-performing genotype for a specific environment in mega-environmental trials is the GGE biplot (Tiwari, 2019). GGE biplots play a major role in the selection of the most stable genotypes and discard those genotypes that are unstable across environments and/or have less yield (Li et al., 2020). In the past, many studies have been conducted to check the stability of soybean across environments. GGE biplots have been used to check the stability and adaptability of soybean genotypes that were cultivated in multiple environments and select the varieties that were highly stable and performed better across the environments (Mukuze et al., 2020; Carvalho et al., 2021). Other than soybean, GGE biplots were used in oat, sugarcane, rice, wheat, and maize for screening the stable genotypes in mega-environmental trials. Hence, it has been established that in agricultural research programs, the GGE biplot is the most effective method for the selection of suitable cultivars for specific environments in mega-environmental trials (Donoso-Ñanculao et al., 2016; Tena et al., 2019).
In general, genetic make-up (G), environment (E), and their interaction G × E influence the expression of any physiological and morphological trait. Due to their polygenic nature, yield and other quantitative traits are continuously controlled and affected by quantitative trait loci, genomic regions with associated genes, and environment (Said et al., 2022). As a result, genes that affect the yield and its components are highly sensitive to the environment and show QTL–environment interaction. This interaction between QTL and the environment can facilitate or constrain the responses toward artificial selection (Falconer, 1952). Therefore, breeding programs need to take these effects seriously and address them properly (El-Soda and Sarhan, 2021). Traditional QTL mapping and genome-wide association mapping are two methods that can be used for identifying the genes with an underlying natural variation that affects the genotypes.
In traditional breeding programs, the selection of genotypes is mostly carried out on the basis of phenotypic performance. Breeders mostly select the genotypes that perform well in a specific environment, costing time and resources (Baenziger, 2016). Association mapping (AM) is an alternative to conventional breeding and is considered an effective approach for dissecting the genomic location of genes or quantitative trait loci (Verdeprado et al., 2018). Based on the association between markers and traits, it performs rapid and fine mapping of the target locus (Mackay and Powell, 2007). In previous studies, association mapping conducted in soybean by using genome-wide SSR markers showed a successful marker–trait association (Ghione et al., 2021). The use of functional molecular markers, especially those derived from expressed sequence tags (ESTs), facilitates the association between phenotype and genotype by providing direct access to the population variation in genes of agronomically important traits (Mulato et al., 2010). In the past, linkage mapping was frequently used to check the effect of genotype, environment, and GEI (Ma et al., 2009). However, association mapping is rarely used for dissecting GEI (Lü et al., 2011). So, the aim of this study was 1) to check the effect of G × E interaction on the performance of soybean genotypes in multiple-environmental trials and select the genotypes that are most stable and have high adaptability across the environments, 2) identify the genotypes that give high yields in different environments, and 3) find the association between markers and traits for important agronomic traits.
2 MATERIALS AND METHODS
2.1 Plant material
A total of 96 soybean accessions acquired from USDA-ARS from different maturity groups (Supplementary Table S1) were selected. Of these accessions, eight were from Pakistan, including two locally adapted cultivars, Faisal soybean (G95) and Ajmeri (G96).
2.2 Experimental design
The field experiments were conducted at the Nuclear Institute of Agriculture (NIA) (25°′60′N 68°′60′E), Tando Jam, Sindh, Pakistan, and the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab (31°′42′N 73°′02′E), in the 2015–2016 growing season of soybean. The seeds were sown during August 2015 and 2016 at NIBGE and NIA and during August 2016 at NIBGE, with three replications of each accession. To analyze the data, each experiment was considered a separate environment. Experiments during February 2015/2016 at NIBGE were coded as E1 and E2, and those at NIA were E3 and E4, respectively. The experiment conducted during February 2016 at NIBGE was presented as E5.
The accessions were planted using a randomized complete block design. Seedbeds were prepared by one-time plowing with a cultivator, followed by planking and two-time plowing with a rotavator. To maintain a distance of three inches between plants, sowing was carried out with the help of a dibbler. Row to row distance of 30 cm and seed depth of 1-2 inches was maintained for proper emergence. Three rows of size 2.43 m were used for each soybean accession. Weather data for all the experimental locations were collected from https://www.worldweatheronline.com/ (Figure 1).
[image: Figure 1]FIGURE 1 | Weather footprint for the soybean genotypes’ growth period. Monthly rainfall (mm) (left x-axis) and relative humidity (%) (right x-axis).
2.3 Phenotyping
Data were collected for plant height (cm), pods per plant (number), seeds per plant (number), seed weight per plant (gm), hundred-grain weight (gm), and total grain yield (gm). For phenotyping, the average data of three randomly selected plants were collected for each parameter except total yield. Plant height (PH) was measured at maturity from the surface of the soil to the tip of the plant. Pods per plant (PPP) were calculated for each randomly selected plant, and the average number of pod was recorded as pods per plant. Seed per plant (SDPP) was calculated as the average number of seeds present in three randomly selected plants of each accession. For seed weight per plant (SWPP), seeds of three randomly selected plants of each accession were weighed separately, and the average of three plants was recorded. For hundred-grain weight (HGW), 100 seeds were selected from the total seeds of each randomly selected plant, and the average of three plants was recorded as HGW. Total yield (TY) for each accession was measured after harvesting the whole plot.
2.4 Genotyping
For the association study, 100 genome-wide SSR markers were selected from the literature (Supplementary Table S2). For genotyping, DNA was extracted from young leaves using the method introduced by Doyle and Doyle (1987). PCR amplification was performed at an annealing temperature ranging from 42°C to 58°C, and the amplified product was run on 2.5% agarose gel. Scoring of bands was carried out on the basis of presence (0) and absence (1).
2.5 Phenotypic data analysis
2.5.1 Correlation analysis
Correlation analysis between the six traits was performed in the web-based R software package “Performance Analytics” to find the significance of interrelationships between these traits based on Pearson’s correlation (Micheaux et al., 2013). By using the formula given by Wen et al. (2012), the correlation coefficient was calculated.
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where [image: image] and [image: image] denoted the mean value of xi and yi samples.
2.5.2 Descriptive statistics
Descriptive statistics of six phenotypic traits was measured using the R-based package “metan,” which provides a simple and intuitive pipeline. The mean value of each variable was computed for all the combinations of genotypes and environments.
2.5.3 Combined analysis of variance
The level of significance of the genotypes, environment, and their interaction in the multi-environment trial ANOVA was performed on six traits. In this model, a linear model along with the interaction effect was used, which is formulated as
[image: image]
In this equation, yijk represents the response variable, which is observed in the ith genotype and jth environment; µ is used for the grand average; αi represents the effect of the ith genotype; τj is the effect of the jth environment; (ατ)ij represents the interaction effect of the ith genotype with the jth environment; and εij is the residual standard error.
2.6 G × E data analysis
2.6.1 AMMI and GLM models
In multi-environment experiments, GEI is commonly used to check the performance of genotype (G) across environments. The two statistical models used to evaluate the response of genotype in multi-environment are the AMMI model and GLM. In the AMMI method, ANOVA is used to access genotype G, environment E, and genotype × environment interaction to keep the genotype as fixed and the environment as a random effect, as described by Olivoto and Lúcio (2020). This method is further divided into interaction principal component analysis (IPCA) and AMMI main effect biplot analysis, where GE was plotted on the x-axis and IPCA values on the y-axis, while the second method is G and GEI biplot (Yan and Tinker, 2006).
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Metan package of R is utilized to plot the data of GEI. On the other hand, MINITAB 14 software is used to perform GLM, which is a combination of ANOVA and generalized linear regression.
2.6.2 GGE biplots
In METs, genotype main effect plus genotype-by-environment interaction (GGE) model were used for evaluation of appropriate genotype and environment. It can be written as
[image: image]
where Yij stands for the average of the ith genotype in the jth environment; µ stands for the grand mean, and βj stands for the main effect of the jth environment; µ + βj is the mean variable of all the genotypes in the jth environment; λ1 and λ2 are singular values obtained from first two principal components (PC1 and PC2); 𝜉i1 and 𝜉i2 are the eigenvalues of PC1 and PC2 for ith genotype; ɳj1 and ɳj2 are eigenvectors of PC1 and PC2 for the jth environment, and Ɛij is the residual for ith genotype and y, for jth environment.
2.7 Graphics
Trellis plots of phenotypic traits across the genotypes and environments were produced using Origin software.
2.8 Association mapping
Association analysis was conducted for individual environments for the evaluation of the association between markers and phenotypic traits and best linear unbiased prediction (BLUP) values using the GLM in TASSEL 3.0 software (Bradbury et al., 2007). Markers having a p-value of 1.03 × 10–3 are considered significantly associated with phenotypic traits. A linkage map was constructed based on the associated markers in Map chart software (Voorrips, 2002).
3 RESULTS
3.1 Extent of phenotypic variations among environments
The effect of each environment on morphological traits was measured and illustrated by trellis plots, which showed the significant effect of each on genotypes (Figure 2). Environments showed a clear effect on PPP, SDPP, SWPP, and TY; however, in the case of HGW and PH, genotypes were found to be the main source of variation. Based on the mean data of PPP, SDPP, and SWPP, E5 performed well in the spring season of Faisalabad. However, it was observed that TY was higher for most of the genotypes in E3 (Tando Jam) than other environments. Data recorded for TY presented higher variation for each genotype in all the environments (Figure 3).
[image: Figure 2]FIGURE 2 | Variation in phenotypic data for traits is shown in trellis plots. (A) Plant height (PH). (B) Pods per plant (PPP). (C) Seeds per plant (SDPP). (D) Seed weight per plant (SWPP). (E) Hundred-grain weight (HGW). (F) Total yield (TY).
[image: Figure 3]FIGURE 3 | Shade plot across five environments. Number of genotypes (x-axis) and environments (y-axis).
3.2 Extent of genotypic variations among environments
In multi-environment yield trials, it is common to represent a combination of cross and non-crossover types of genotype–environment interaction. Trellis plots demonstrated that average data of the total yield of individual genotypes were higher in E3 for the majority of genotypes when compared to other environments (Figure 4). Based on the trellis plots’ observation, G69 performed well in all the environments. However, G11, G69, G73, G82, G85, G88, G91, G92, and G3 were found to be stable in E3 and E4 and performed better during 2015/16 at Tando Jam.
[image: Figure 4]FIGURE 4 | Trellis plots for average yield (g/plot) across five environments. Genotypes are coded as 1–96.
3.3 Correlation analysis
The pairwise correlation matrix of grand mean data of morphological traits showed a low level of positive correlation between PH, PPP, SDPP, SWPP, and TY. PPP and SDPP had a relatively high positive correlation as compared to other traits. HGW was negatively correlated with all the traits except SWPP, for which a low level of positive correlation was recorded. However, TY was positively correlated with all the traits at a low level except HGW (Figure 5).
[image: Figure 5]FIGURE 5 | Correlation matrix (upper triangle), frequency distributions (blue bars), and bivariate scatter plots with a fitted line at lower triangle are shown for plant height (PH), pods per plant (PPP), seeds per plant (SDPP), seed weight per plant (SWPP), hundred-grain weight (HGW), and total yield (TY).
3.4 G × E interaction
3.4.1 Genotype main effects: AMMI biplots
The identification of genotype adaptability to the nearby environment, i.e., broadly (near the origin) or specifically (far from the origin), can be carried out using AMMI main effect biplots (Figure 6A). Genotypes G19, G23, and G87 were less sensitive to environmental interaction in terms of seed yield as these were located near the origin. Similarly, the mean yield of G73, G11, G69, and G31 was found to be better than the grand mean yield of all genotypes. These genotypes were proposed to be high yielding and comparatively unresponsive to GEI. Performances of G2, G66, and G76 were less effective compared to the grand mean yield and were located near the origin along the y-axis but far from the origin on the x-axis, which means that these genotypes had low yield and were not affected by GEI. In a similar way, environments that had lower PCA scores and were found to be located near the central point along the y-axis had less contribution in GEI, such as E1 and E2, whereas E3, E4, and E5 showed strong interactive force. In terms of GEI, E4 had better contribution as it was plotted away from the center of origin along the x-axis. For TY, E4 was the most productive environment, followed by E3 and E5, and E1 and E2 were the least productive. Based on AMMI estimates in five environments, the ranks of 96 genotypes for the mean grain yield are presented in Supplementary Table S3.
[image: Figure 6]FIGURE 6 | (A) AMMI main effects biplot for TY of genotypes across five environments. (B) The scatter plot of 96 soybean genotypes’ seed yield data across five environments explained 81.1% of the total variation. At the x-axis, PC1 explains (54.2%), and at the y-axis axis, PC2 explains (24.9%).
3.4.2 Genotype main effect: ANOVA (AMMI and GLM)
For better understanding, GLM was performed for our data along with the AMMI model, to compare the analytical competitiveness of GLM with special software-based AMMI analysis. Results obtained for ANOVA from both models were similar (Table 1). This suggests that genetic makeup of genotype has the least contribution in phenotypic variation of all traits compared to environment and GEI.
TABLE 1 | Additive main effects and multiplicative interaction (AMMI) and generalized linear regression model (GLM) analysis of variance of the 96 soybean genotypes tested across five environments.
[image: Table 1]GEIs show how the performance of genotype is different in different environmental conditions. AMMI-based biplots were explained by the two interactive principal components. PCA 1 was on axis 1, while PCA 2 was on axis 2, and no GEI was explained by its origin. The scatter plot of TY data presented a negative correlation between E1, E2, E4, and E5, as shown by the obtuse angle between them (Figure 6B). Environments E1 and E2 were plotted near the origin and in the same cluster, elicited weak interactive forces, and had a similar influence on the genotypes, while E4 was located away from the origin and was subjected to strong interactive forces. Genotypes G69 and G72 were suggested to be under maximum GEI influence as they were located away from the center. G69 was located near E3 and was suggested to be specifically adapted for E3. G31, G41, and G42 were clustered together and had a similar yield across environments and were influenced by GEI in a similar way.
3.5 Selection of the best suitable genotype and environment
Various kinds of biplots can be drawn for better understanding of G × E analysis via GGE plots.
3.5.1 Representativeness vs. discriminativeness
To evaluate the genotypes with better and stable yield, representativeness and discriminative view of GGE biplots can be used on tested environments. The length of environmental vectors can be visualized, which is proportional to standard deviation in respective environments based on the concentric circle in the biplots and is a measure of the environmental ability to discriminate. Therefore, E3, E4, and E5 are the most discriminative, while E1 and E2 are less discriminative and provide very little information (Figure 7A). E1 and E2 are highly representative, based on the angle formed between the environmental vector and the average environment coordinate (AEC) axis. The smaller the angle between the environmental vector and AEC, the stronger will be the representativeness. Environments which are discriminating but non-representative are good for the selection of specifically adapted genotypes in mega-environments.
[image: Figure 7]FIGURE 7 | (A) Genotype plus genotype × environment interaction (GGE) biplot analysis for representation and discrimination of genotypes. (B) The which–won–where biplot for the yield of 96 soybean genotypes evaluated in five environments. (C) The best genotypes based on average performance and stability are displayed in a yield-focused comparative biplot. (D) Environment-focused comparison biplot explains the ideal environment for soybean yield among the locations used in evaluations.
3.5.2 Which–won–where
The which–won–where view of GGE biplot for TY helps in the identification of suitable genotypes for a specific environment in mega-environments. In our study, we observed three mega-environments: E3 and E5 formed mega-environment 1 (ME1), E1 and E2 formed mega-environment 2 (ME2), while E5 alone was mega-environment 3 (ME3) (Figure 7B). The polygon connects all the genotypes which are further from the origin of the biplot in such a way that all the genotypes are contained inside the polygon. Perpendicular lines generated from the center of origin help to compare the genotypes. Generally, the genotype that appears in the same sectors as the specific environment performs the best in that environment. The equality line that connects the adjacent genotypes on the polygon helps in visual comparison of the genotypes, e.g., the equality line that is formed between G11 and G40 shows that G40 was better in E3 and E5, while G11 performed better in other environments. So, these genotypes are expected to produce the maximum yield in that particular environment.
3.5.3 Ranking genotypes relative to ideal genotype
A genotype that is highly stable across the environments and also has high mean performance is considered an ideal genotype. The performance of a genotype in a particular environment is ranked by the axis line that passes through center of origin. An ideal genotype is mostly plotted near the center of concentric circles to a point on the AEA (“absolutely stable”) in the positive direction. It also has a vector length that is equal to the longest vector of genotypes on the positive side of AEA (“highest mean performance”). In our case, G11 was considered more desirable than G69, even though G69 has a higher average yield (Figure 7C). G76 was considered to be the poorest of all the genotypes as it was the furthest from the center of the concentric circle and was consistently the poorest. Although the yield of G76 was very low, its performance was also stable.
As there was not a single genotype that produced the highest yield in all the environments, we selected top-20 high-yielding genotypes from each environment as a representative of high-yielding genotypes for that environment. If a genotype was one of the 20 high-producing genotypes in at least two environments, it was then selected. Consequently, 13 genotypes were identified and selected (Table 2).
TABLE 2 | Top genotypes for high yields across five environments.
[image: Table 2]3.5.4 Ranking environments
A ranking environment view of the GGE biplot is the most suitable method to check ideal environment for the selection of genotypes that perform better in a specific environment. The environment that is plotted near the concentric circle is more informative than those plotted far away from the center. So, in this case, E3 is suggested to be more ideal environment as it is plotted near the concentric circle and is very informative for the selection of genotypes with high yield (Figure 7D), while E1 and E2 are far away from the concentric circle and give very little information for selection of high-yielding genotypes.
3.6 Combined analysis of variance
Results obtained from combined ANOVA showed that the environment has the main influence on SDPP, SWPP, and HGW, whereas GEI has a high influence on TY, PH, and PPP, that is, 47%, 57%, and 56%, respectively (Table 3). The results obtained from AMMI-based ANOVA also showed that G × E has a major influence on TY, PH, and PPP, which showed that in soybean, genotypes performed differently across different environments, which may be because of differences in locations.
TABLE 3 | Analysis of variance (ANOVA) combined for total yield (TY), plant height (PH), pods per plant (PPP), seeds per plant (SDPP), seed weight per plant (SWPP), and hundred-grain weight (HGW).
[image: Table 3]3.7 Analysis of variability, heritability, and genetic advance
From the results obtained from the genotypic coefficient of variance (GCV), phenotypic coefficient of variance (PCV), heritability, and genetic advance (GA) (Table 4), there is sufficient scope for selecting desired germplasm for each environment based on the agronomic traits. Both GCV% and PCV% calculated for PH, PPP, SDPP, SWPP, and HGW were higher in most of the environments, except for SDPP and HGW, where less distance was calculated between GCV and PCV in E1 (57.38/57.65), E3 (30.36/31.12), and E4 (39.46/39.70) for SDPP and E3 (22.15/22.58), E4 (31.91/32.15), and E5 (17.19/17.77) for HGW, respectively. In case of TY, distance calculated between PCV and GCV was very low in all environments. Heritability estimated in this study were PH (55%–92%), PPP (57%–97%), SDPP (82%–99%), SWPP (32%–98%), HGW (72.34–98), and TY (95%–99%). TY (99%) showed relatively higher heritability than other traits in all the environments. Maximum genetic advance (145) was calculated for TY in E4.
TABLE 4 | Variability, heritability, and genetic advance estimate for six agronomic traits.
[image: Table 4]3.8 Association mapping
Out of 100 markers, 96 were polymorphic, which produced a total of 262 alleles with an average of 2.79 alleles per locus (Figure 8). The average polymorphism information content of the molecular markers was 0.44, and 28 markers showed a PIC value ≥ 0.50. In five environments, a total of 26 marker–trait associations were found for six agronomic traits. The level of significance was set at p < 1.03 × 10–3 for identifying significant markers (Table 5). Most of the significant markers were found to be associated with a single trait in a single environment. SSR marker Satt316 was found to be associated with plant height at both locations during 2016 at NIBGE and 2015 at NIA with 12% of the total variation. Few markers like GMES0902, Satt565, GMES6336, Satt300, Satt322, Satt102, and Satt070 are associated with more than one trait, which may be due to positive correlations present among these traits. Two markers, Satt565 and Satt070, were associated with both seeds per plant and total yield. A total of nine markers were significantly associated with plant height, which explained 12%–31% of variation, while a single marker–trait association was observed for seed weight per plant with 18% of total variation. Six marker–trait associations were identified for the total yield at the tested environment with the total percentage of variation explained by each marker ranging from 12% to 19%. Most of the markers associated with the agronomic traits were located on chromosome 17. The genetic linkage map was constructed to depict the position of observed SSR and EST SSR markers (Figure 9).
[image: Figure 8]FIGURE 8 | Representative gel image of 18 soybean genotypes with SSR marker Satt565 on 2.5% agarose gel. Lane M shows 1 kb plus DNA.
TABLE 5 | Marker–trait associations detected using GLM with six traits.
[image: Table 5][image: Figure 9]FIGURE 9 | Genetic linkage map of soybean using simple sequence repeat (SSR) markers showing the marker positions and estimated map distance in cm on chromosomes 1, 4, 5, 6, 9, 10, 14, 17, 19, and 20. Markers associated with plant height (PH), pods per plant (PPP), seeds per plant (SDPP), seed weight per plant (SWPP), hundred-grain weight (HGW), and total yield (TY) are identified by colors. Markers that do not show any significant association with traits are not highlighted with any color.
4 DISCUSSION
The main objective of any breeding program is to develop genotypes that are resistant to biotic and abiotic stresses with high production. Environmental interaction has a significant impact on complex quantitative traits with several contributing factors such as yield. The existence of a substantial genotype main effect and G × E interactions revealed that genotypes respond differently in different environmental conditions. Studies on stability and GEI are crucial for effective breeding and adaptability in a wide range of environmental conditions (Liang et al., 2015). For the allocation of best resources in breeding or cultivar evaluation programs, the mega-environment concept is helpful (Gauch Jr and Zobel, 1997). A mega-environment is a collection of places that regularly use the same top cultivars (Yan and Rajcan, 2002). Because of the significant impact of genotype by mega-environment interaction, the evaluation of cultivars should be carried out separately for each mega-environment before the cultivar recommendation (Yan et al., 2011). Genotypes selected from the ideal test environment were mostly those with exceptional mean performance and greater adaptability (Yan et al., 2000). For identification of lines with high homeostasis in multilocation trials and coordinated variety testing programs, stability analysis models such as YSi statistics, AMMI, and GGE biplots were used. The main issue for plant breeders is to get the relevant knowledge concealed in multi-environment data and then to understand it for successful utilization. For mega-environment and cultivar evaluation, and assessment of varietal stability, GGE biplots have mostly been used (Rakshit et al., 2012; Zimmer et al., 2016). The GGE biplot was more beneficial when the mega-environment was used to evaluate a large set of genotypes, as the pattern of GEI could make the genotype evaluation more challenging (Krishnamurthy et al., 2017). In other words, environmental variation was inconsistent with the superiority of genotype, which restricted the selection of cultivars. The quality of selection can be improved by the selection of superior genotypes, with little stability variance produced through simultaneous selection for high mean and stability. In many crops, this technique has been effectively used, particularly for determining grain yield.
In this study, soybean genotypes were analyzed in five different environmental conditions, and the features that substantially correlated with stability were discussed. With the help of stability analysis models, stable genotypes with high mean yields were identified. These models suggested that the most stable genotype for TY was G69, followed by G92, G85, and G40 (Figure 6A). A genotype with a high mean yield and great stability would be an ideal genotype. A genotype located closer to the mean environment’s direction and having a projection of zero onto the perpendicular AEC coordinate is considered an “ideal” genotype. For mean yield and stability across environments, lines G69 and G92 displayed high mean rankings and were determined to be the best-performing ones (Figure 7C). Results obtained from GGE biplots suggested that G92 and G69 are most suited to E1, G69 to E2, G18 to E3, G1 to E4, and G42 to E5 (Figure 7B). These results are in line with the findings of Arif et al. (2021), who reported that genotypes DCD, BRC-457, and D-14005 were ideal genotypes for E5 as they have high mean yield and stability.
A significant variation was observed in the yield of genotypes, which may be due to the presence of diversity across environments. Similar results were reported by many researchers (Kumar et al., 2014; Bhartiya et al., 2017). Carvalho et al. (2021) also reported the epistatic effect on yield. Results obtained by GGE biplot analysis recommended that E3 was the most suitable environment for the selection of high-yielding genotypes and general adaptability (Figure 7D). E4 was the most discriminating and least representative environment for genotype evaluation and would be helpful in choosing genotypes that are specifically adapted (Mulugeta et al., 2013). The environment with the least discrimination but the most representation for the majority of attributes was E3 (Figure 7D). The large environmental difference suggested that there were genotypic variations in adaptation (Krisnawati and Adie, 2018). Regarding the stability of yield attributes, genotypes also varied greatly. Genotype G69 stood out in all evaluated environments (Table 2). However, when average yield was considered, G92, G85, and G40 performed better. Results obtained from this study are aligned with those from the work of AbdulHamid et al. (2017) and Nagarajan et al. (2017), who showed the importance of cultivating soybean genotypes with yield-contributing traits.
With the advancement of phenotyping and genotyping technologies, it has become easy to analyze the genomic regions related to quantitative traits in larger populations. Considering the relatively important interactions between the environments and genotypes, association mapping was performed for yield-contributing traits with SSR and EST-SSR markers for each environment separately. For six agronomic traits, 26 marker–trait associations were found in five environments (Table 4). No common markers among environments were discovered, which may be due to absence or very weak significant relationships between environments for TY. Additionally, many studies have demonstrated that variations in the size and structure of the population might affect the outcomes of association mapping (Liu and Cheng, 2020). Given that a smaller population offers fewer allelic types, genetic drift may be the cause of this variation. Another possible source could be the type and number of SSRs, as a preference for single-locus SSR in the present study may miscalculate the value after lowering the complexity of genotyping (Vigouroux et al., 2002). A typical population for an association study should consist of multiple unrelated and independent individuals from the same origin (Porth et al., 2013). Therefore, in order to eliminate false positive associations, we still need to confirm the association results by targeting allelic variations in coding regions via molecular biology approaches such as knockout studies (Abdurakhmonov and Abdukarimov, 2008) that offer a high-precision estimation of allelic variation.
5 CONCLUSION
From this study, we concluded that significant genetic variation was present between the genotypes for yield in different environments. In total, 13 environment-specific genotypes showing their maximum grain yield in each environment were identified. Genotype G69 was an ideal genotype with higher grain yield and broad adaptation to environments E1 and E2. In the case of environments, E3 was a more ideal environment as it was plotted near the concentric circle and was very informative for the selection of genotypes with high yield. Furthermore, association mapping revealed a total of 26 marker–trait associations for six agronomic traits in five environments, with the highest significance for plant height and the lowest significance for hundred-grain weights. As the G × E interaction has a significant effect on yield, it is necessary to further evaluate the ideal location for introducing suitable genotypes with stable high yield. Plant breeders must concentrate on improving features with high heritability.
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Depleting water resources and increasing global temperature due to climate change are major challenges to agriculture and food security worldwide. Deciphering the underlying mechanisms of traits contributing to grain development and yield is essential for the development of climate-resilient cultivars. Therefore, this study assessed 105 bread wheat genotypes grown under control, drought, and heat-stress conditions for two crop seasons and performed a genome-wide association study (GWAS) using a 90k SNP array. The genotypes showed significant trait differences under all environmental conditions. Highly significant variation was observed, with moderate (50.09%) to high (76.19%) heritability in the studied germplasms. The studied traits were all also significantly positively correlated. A total of 541 significant associations (p ≤ 10−3) between marker and trait (MTAs) were observed after crossing the FDR <0.05 threshold for all traits. Among these, 195, 179, and 167 significant MTAs were detected under control, drought, and heat-stress conditions, respectively. Under the control and drought conditions, pleiotropic loci BS00010616_51 and BS00010868_51 were observed on chromosomes 7B and 1B situated at 186.24 cM and 35.47 cM, respectively. Pleiotropic loci BS00010868_51, Kukri_c11154_1723, and Ex_c10068_1509 were identified on chromosomes 1B, 5B, and 2A, respectively, under control and heat stress conditions. A stable and consistent locus (Excalibur_c20796_395) on chromosome 7A, located at 372.34 cM, was also linked to grain morphology and yield-related attributes in control, drought, and heat-stress conditions. The results of the current study confirmed several previously reported MTAs for the traits under consideration and identified new MTAs under harsh climatic conditions. These SNPs will aid in the discovery of novel genes in wheat. SNPs showing significant associations may be used in marker-assisted selection and allow the development of drought- and heat-tolerant genotypes with high yields to address global food security concerns.
Keywords: drought, heat, breeding, genome, chromosome, genotypes, wheat, yield
INTRODUCTION
Wheat is a vital staple food in many countries worldwide. Overcoming the need and supply gap of food requires improving wheat yield against environmental stresses including drought and heat. The shape, texture, and size of wheat grains determine their economic worth. However, the genetic inheritance patterns of the morphological trait of wheat grain require further investigation. Wheat milling and baking quality are influenced by these traits, which include seed size, shape, length, and width, as well as grain sphericity (Ahamed et al., 2017). Among abiotic stresses, drought is the most significant global threat to sustainable wheat production. Drought decreases grain weight and yield per plant by inhibiting photosynthate transfer to the grains (Pinto et al., 2010). It stops metabolic processes, photosynthate synthesis, and translocation activities (Ahmed et al., 2019). Drought and heat stress have become more common, especially in wheat-growing areas worldwide, owing to changes in temperature and rainfall patterns. These stresses have a deleterious impact on wheat plant development and production. Water scarcity in developing countries has lowered wheat yield to 50–90% of their irrigated potential (Zampieri et al., 2017).
Wheat crops are not as water-intensive as rice and maize. However, water stress during specific vegetative and reproductive phases like tillering, jointing, booting, flowering, and grain-filling severely hamper crop yield. Although grain yield per plant (GYP) improvements have been made in irrigated-farmed regions, rainfed and water-stressed areas have seen far less success. Drought stress exacerbates the situation, with substantial production gaps between maximum productive regions and dryland farming (Qaseem et al., 2018).
Wheat is a cold-season crop, with an ideal daytime temperature for optimal growth of around 22 °C, followed by 16 °C at night. Temperature increases, especially around the flowering stage, drastically reduce grain number and size. Each degree Celsius beyond the optimal temperature results in a yield reduction of 3–4% (Ni et al., 2018). However, the worldwide average temperature increase is 0.18°C per decade (Hansen et al., 2012). Climate change is generating a rise in global average temperatures and the frequency of extreme weather events (Moriondo et al., 2011). From 1880 to 2012, the average temperature of the Earth’s surface increased by 0.85°C, a trend that is expected to continue (Guo et al., 2020). Therefore, investigation of the desired alleles for use in breeding programs is required to generate heat-resistant wheat genotypes.
Wheat consumption is expanding rapidly, with projections of up to 40% growth by 2030. Factors contributing to poorer wheat yield include low-quality seed, wrong broadcasting techniques for sowing, late cultivation, poor soil, uneven fertilizer dosages, inadequate weed eradication, disease, high temperature, and lack of water due to climate change (Ahmed et al., 2020). Due to the rise in consumption, increased wheat production is necessary to ensure global food security. Growing populations, decreased arable land areas, and demand for high nutrition value have posed new challenges for wheat breeders in terms of developing wheat genotypes with specified seed quality; high yield; and drought, heat, and disease resistance (Sukumaran et al., 2018; Gulnaz et al., 2019).
One of the most crucial techniques in wheat breeding is the indirect selection of attributes related to grain production (Gegas et al., 2010). When comparing different spikelets, the grains might differ in grain developmental stages, weight, grain number, height, length, area, width, and sphericity (Ahmed et al., 2018). These phenomena are also seen within individual spikes. The central spikelet in a spike has a more fully developed and heavier grain than spikelets at the basal and top portions of the spike (Boz et al., 2012; Li et al., 2016). The number of spikelets per spike, grains per spikelet, and average grain weight significantly affect grain weight and grains per spike (Guo et al., 2018). While previous studies focused on increasing yield by increasing the number of grains, yield can also be increased by increasing grain size. Grain yield is positively affected by grain size as it increases grain weight, which ultimately increases the wheat yield (Gegas et al., 2010; Boz et al., 2012). Wheat grain yield is not only affected by grain shape and size because large, spherical grains are suitable for milling but shriveled and tiny seeds also reduce milling quality in flour extraction (Li et al., 2016).
Wheat grain has its own set of physical and chemical characteristics. Understanding how wheat grain yield and grain morphological traits are passed down through the generations is essential for developing high-yielding cultivars with superior grain quality (Li et al., 2012). Grain size is a crucial yield component, and the ability to track alleles for bolder, larger grains using precise, gene-based SNP markers should assist in boosting milling yield and increasing the total yield of genotypes. It could also aid in enhancing yield stability (Abdipour et al., 2016).
Smaller grains are more rigid and have worse milling and baking qualities, whereas bigger grains have more endosperm and are heavier. Grain length, rather than breadth or height, is directly linked to grain weight and volume. The quality and yield of wheat flour are determined by grain properties, which are considered during the milling process. These characteristics are tightly linked to various circumstances, the most significant of which is the genetic background (Gegas et al., 2010; Abdipour et al., 2016; Cristina et al., 2016).
Low rates of genetic improvements for wheat yield constitute a genuine danger to global food security, despite increasing human populations and wheat demand (Ray et al., 2013). Thus, identifying, understanding, and incorporating genes that boost wheat production potential across diverse conditions are critical. The polygenic control of grain yield, as well as the influence of the environment, makes this a challenging endeavor. Overall, grain yield can be split into different components to make research more accessible. Total grain weight (TGW) and its physical properties (grain length, breadth, and area) are studied because they are relatively stable and have higher heritability values than total yield (Kuchel et al., 2007). Any additional information on the genetic mechanisms involved in grain size and weight will enhance the efficiency of breeding programs and ensure sustainable production in drought and heat-stress conditions.
The combination of high-density SNP arrays and GWAS (genome-wide association studies) in wheat has been used to identify SNPs associated with a specific trait. Gene prediction and validation are accelerated by the high mapping resolutions of GWAS, which allow researchers to accurately delimit chromosomal areas containing specific loci (Su et al., 2019). Because GWAS can identify whole-genome changes using a variety of panels, it can circumvent the drawbacks of bi-parental populations and save costs and time (Qaseem et al., 2018). A GWAS in bread wheat has been widely utilized to identify essential markers on the A, B, and D genomes separately (Sukumaran et al., 2018). GWAS has developed into a powerful and ubiquitous tool for investigating complex traits (Tadesse et al., 2015). The present study was performed to add knowledge about the genetic basis of drought and heat tolerance in wheat based on grain morphology and yield-related traits.
MATERIALS AND METHODS
A total of 105 bread wheat genotypes were sown during two growing seasons, 2019–20 and 2020–21, in three different environmental conditions: control, drought, and heat-stress. The genotype names, pedigree records (if available), and origins of the 105 genotypes are listed in Supplementary Table S1. All genotypes were grown in three sets of experiments: control, drought, and heat-stress. These experiments applied a randomized complete block design (RCBD) with three replicates.
In the control experiment, irrigation was applied at three critical stages: first, at tillering (35 days after sowing [DAS]); second, at the booting stage (85 DAS); and third, at the milking stage (112 DAS) (Noorka and Teixeira da Silva 2014). Drought stress was induced at the tillering stage in the drought experiment by skipping the irrigation. For the application of heat stress, the experiment was conducted in a walking tunnel in which one set of the 105 wheat genotypes was seeded. A plastic sheet covered the tunnel during the grain-filling stage to provide high-temperature stress. The temperatures inside and outside the tunnel were recorded daily and were maintained at around 40°C inside the tunnel. In each experiment, all genotypes were seeded in three replicates in a 1-m-long row, with a plant-to-plant spacing of 15 cm and a space between rows of 30 cm. In all environmental conditions (control, drought, and heat-stress), two seeds of each genotype were dibbled per hole, and one healthy wheat seedling was saved following germination by thinning. Fertilizer was applied (NPK 120-90-60 kg/ha).
Standard agronomic practices were adopted as needed in the three environmental conditions. Data for the following characteristics were recorded, and the average values were calculated. Spikes of randomly selected plants were harvested at physiological maturity. The yield and morphological attributes of grain were measured (Ahmed et al., 2018; Gao et al., 2021). A total of 1,000 grains were taken from bulk seeds and weighed using an electric balance (Compax- Cx-600) to determine the thousand-grain weight. The YP was taken by thrashing all spikes from the single plants selected from each replication and then weighing the grain.
The data were analyzed using the analysis of variance (ANOVA) method (Steel and Torrie 1980) in GenStat (v10). The correlations were calculated to evaluate the associations among grain morphology and yield-related traits under all studied environmental conditions. For each variable, the broad sense heritability was determined using the equation given as follows (Sorkheh et al., 2008; Qaseem et al., 2018; Ahmed et al., 2021).
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The correlations were calculated in Minitab v16 (Ogunbayo et al., 2005). The significance levels were set to α = 0.01 and α = 0.05, respectively, for ANOVA and correlation coefficients in this study.
Genotyping of 105 bread wheat genotypes
The seeds from each genotype were sown in germination trays. Fresh leaf samples for DNA isolation were taken from seedlings at 15 days. DNA was isolated as described by Dreisigacker et al. (2013). The extracted DNA (50–100 ng/μl per sample) was genotyped on high-density Illumina 90K Infinium SNP arrays (Wang et al., 2014). The genome-wide locations of SNPs and genetic distance (cM) on each chromosome were determined using the bread wheat genetic map reported by Wang et al. (2014). When evaluating the data, minor alleles, monomorphic SNPs, missing values >20%, and allele frequencies <5% were removed.
Genome-wide association study
Advanced statistical techniques are used by the Genome Association and Prediction Integrated Tool (GAPIT), including the compressed mixed linear model (CMLM) and CMLM-based genomic prediction and selection (Lipka et al., 2012). This tool was developed as an R package to provide maximum likelihood accuracy and was executed and analyzed in RStudio (Team 2019). The threshold level for significantly associated markers of the studied traits was ≥10−3 (log10p) (Sukumaran et al., 2018) after Bonferroni adjustment (p = 1/n, n = total numbers of SNPs) applying a correction for a false discovery rate (FDR) <0.05 (Benjamini and Hochberg 1995). Overall, 33,212 of the functional iSelect bead 90K SNP chip analyses visually showed polymorphisms in the examined germplasm and were located on the genetic map (Wang et al., 2014).
RESULTS
Phenotypic evaluation
On the examined variables, ANOVA analysis revealed considerable variations in the genotype and environment and their interaction effects (Table 1). Significant genotypic variations (p < 0.01) were observed for all examined traits among genotypes identified in the ANOVA. Among environmental effects, significant differences were observed for the studied attributes. The Genotype × Interaction (G × E) interaction between environmental conditions (control, drought, and heat-stress) also showed highly significant differences in the observed attributes (Table 1). Broad sense heritability of the observed traits under consideration was also calculated (Table 1) for both seasons using the values of the variance from ANOVA for each year. High heritability values were observed for grain length, at 76.18% in season 1 and 70.30% in season 2. Grain width and diameter showed heritability values of 70.66% and 69.71%, respectively, in season 1 and 63.07% and 67.07% in season 2. The trait grain roundness showed heritability values of 65.69% and 68.03% in seasons 1 and 2, respectively. Grain circumference and grain surface area showed heritability values of 50.9% and 50.34%, respectively, in season 1 and 56.59% and 53.79% in season 2. The heritability values for thousand-grain weight and grain yield per plant were 67.60% and 64.45%, respectively, in season 1 and 63.22% and 68.18% in season 2.
TABLE 1 | Heritability broad sense (HBS) and mean sum of squares (MSS) of 105 bread wheat genotypes for the examined traits in both seasons.
[image: Table 1]The phenotypic characteristics also showed a wide range of variation. The descriptive statistics of these grain morphology and yield-related traits are presented in Table 2 based on data averaged over the years. The grain length mean values ranged from 5.87 to 10.21 mm, 4.99–9.01 mm, and 4.66–8.88 mm in the control, drought, and heat-stress environments, respectively. The maximum mean values for grain width were 4.18 mm (control), 3.97 mm (drought), and 3.66 mm (heat-stress), while the minimum mean values were 3.09 mm, 2.92 mm, and 2.77 mm, respectively. The variations in grain diameter ranged from 4.30 to 6.16 mm (control), 4.02 to 5.77 mm (drought), and 3.92 to 5.30 mm (heat-stress). The average grain roundness values were 0.58, 0.51, and 0.47 mm in the control, drought, and heat-stress conditions, respectively. Mean grain circumference values were 19.02 mm (control), 18.22 mm (drought), and 17.07 mm (heat stress) among the 105 bread wheat genotypes. The highest mean values for grain surface area were 29.3, 27.78, and 25.02 mm2, while the lowest mean values were 15.07, 13.99, and 12.88 mm2 in the control, drought, and heat-stress conditions, respectively. The mean thousand-grain weight values ranged from 46.51 to 71.25 g (control), 32.08 to 48.81 g (drought), and 30.08 to 45.03 g (heat). The mean grain yield per plant ranged from 17.15 to 27.18 g (control), 16.05 to 21.01 g (drought), and 15.34 to 20.2 g (heat stress).
TABLE 2 | Descriptive statistics for the eight-grain seed morphology and yield-related traits evaluated in three different environments based on averages over the years (2019–2021).
[image: Table 2]Based on the average data per year, Pearson’s correlation coefficients were determined for all attributes in the control, drought, and heat-stress conditions (Table3). A significant positive correlation was observed among GD and GSA (0.95), followed by between GD and GC (0.94), in the heat-stress condition. A significantly positive association was observed among GL, GD, GC, and GSA traits under the control, heat, and drought conditions. However, GL had a slight positive association with GW, TGW, and GYP under all studied environmental conditions. The most negative but significant correlation (−0.49) was observed between GL and GR under the heat-stress condition. Yield-related traits like TGW and GYP were significantly correlated with grain morphology-related traits like GW, GC, and GSA under all examined environmental conditions.
TABLE 3 | Pearson’s correlation results of grain physical attributes in spring wheat genotypes based on data averaged over the years (2019–2021).
[image: Table 3]Marker-trait associations
Marker-trait associations (MTAs) for grain morphology and yield traits under control, drought, and heat-stress conditions were examined and visualized using Manhattan plots (Figures 1–4). These figures show the site of significantly associated SNPs according to p values -log10(p), linked to the studied traits in all studied environmental conditions. In this study, a total of 541 SNPs showed significant associations; of these, 195, 179, and 167 significant MTAs were observed in the control (Supplementary Table S2), drought (Supplementary Table S3), and heat-stressed (Supplementary Table S4) conditions, respectively, at the–log 10 (p ≤ 10−3) threshold level using FDR ≤0.05 correction in the studied bread wheat genotypes.
[image: Figure 1]FIGURE 1 | Manhattan plot of grain length and width under control, drought, and heat-stress conditions.
[image: Figure 2]FIGURE 2 | Manhattan plot of grain diameter and roundness under control, drought, and heat-stress conditions.
[image: Figure 3]FIGURE 3 | Manhattan plot of grain circumference and surface area under control, drought, and heat-stress conditions.
[image: Figure 4]FIGURE 4 | Manhattan plot of thousand-grain length and grain yield per plant under control, drought, and heat-stress conditions.
Grain length
Under control conditions, 50 SNPs located on chromosomes 1A, 1B, 2D, 3D, 4B, 5D, 7A, 7B, and 7D were significantly linked to grain length in the current GWAS study (Figure 1). These loci ranged from 20.78 to 32.71% of the total phenotypic variation for this attribute. Under control conditions, marker Kukri rep c71356 236 at 244.31 cM on chromosome 7B showed the highest trait phenotypic variation (32.71%). In comparison, marker Tdurum contig76677 1142 on chromosome 4B at 176.21 cM showed the lowest phenotypic variation in grain length (20.78%) (Supplementary Table S2).
On chromosomes 1B, 3D, 4A, 4B, 5A, 5B, and 7D, 26 SNPs were highly related to grain length under drought conditions (Figure 1). The total phenotypic variation of these SNPs ranged from 16.08% to 26.62% (Table 5). Under drought conditions, marker Kukri_c45439_457 had the highest phenotypic variation (PV) (26.62%) at 78.15 cM on chromosome 5A. In comparison, marker Tdurum_contig87227_108 showed the lowest PV (16.09%) at 201.25 cM on chromosome 1B. Significantly associated MTAs were dispersed on all wheat genomes, including three from A-genome, 20 from B-genome, and three from D-genome in the drought condition (Supplementary Table S3). Under the heat-stress condition, grain length was significantly linked with 18 SNPs. Seven significant MTAs associated with GL were identified on chromosomes 4A; three on 2D; two each on 4B and 7D; and one on each 1B, 2A, 3A, and 3D (Figure 1). These eighteen GL-related SNPs accounted for 12.33%–25.36% of the PV in this attribute (Supplementary Table S4). Marker Excalibur_c22896_149 at position 475.83 cM on chromosome 4A showed the highest PV (25.36%).
Grain width
Under the control condition, grain width was highly associated with 25 SNPs. Seventeen SNPs were located on chromosome 1B; three on 2A; and one on each of 1A, 4B, 6B, 7B, and 7D (Figure 1). These grain-width-related SNPs accounted for 21.64%–30.77% of the total PV in grain width (Supplementary Table S2). Marker BobWhite_c35520_397 at 230.29 cM on chromosome 1B showed the highest PV (30.77%), while marker RAC875_rep_c111001_187 at 244.91 cM on the same chromosome showed the lowest PV (21.64%). MTAs for grain width were distributed across all wheat genomes, with four SNPs on the A-genome, 20 on the B-genome, and one on the D-genome under the control condition.
Under the drought condition, 12 SNPs were significantly linked with grain width, with four SNPs on chromosome 7B, three on 4D, two on 4B, two on 5A, and one on 3D (Figure 1). These SNPs accounted for 12.17%–31.92% of the total PV in grain width under the drought condition. The significantly associated SNPs were distributed among all wheat genomes, with two from the A-genome, six from the B genome, and four from the D genome. Marker BobWhite_c43880_73 at 159.35 cM on chromosome 4D showed the highest phenotypic variation (31.92%), while marker Excalibur_c7338_563 at 427.7 cM on 7B showed (Supplementary Table S3) the lowest PV (12.17%) for this trait under the drought condition.
In the heat-stress conditions, 16 SNPs were significantly positively associated with grain width, including four SNPs each on chromosomes 4B and 7B; three SNPs on 1D; and one each on chromosomes 3A, 3D, 4A, 5A, and 6B (Figure 1). These SNPs showed PV in grain width ranging from 12.17% to 22.48% under the heat-stress condition. Marker BS00022027_51 at 108.87 cM on chromosome 1D showed the highest PV (22.48%) (Supplementary Table S4).
Grain diameter
Under the control condition, grain diameter was highly associated with 38 SNPs, 12 of which were located on chromosome 5B, followed by six on 6A, five on 7B, three on 1B, two each on 3B and 6B, and one each on 1A, 2A, 3A, 4B, 5D, and 7A (Figure 2). These SNPs comprised 15.42% to 28.03% of the total PV in grain diameter. The MTAs for this trait were distributed across three genomes, with 12 SNPs on the A-genome, 25 on the B-genome, and one on the D-genome. Marker Tdurum_contig48049_705 located at 160.42 cM on chromosome 4A showed the highest PV (28.03%), while marker Tdurum_contig93156_239 at 497.16 cM on the same chromosome showed the lowest PV (15.42%) (Supplementary Table S2).
Under the drought condition, 21 SNPs were significantly associated with grain diameter. Eight SNPs were located on chromosome 5A, five on 6D, two each on chromosomes 1B and 5B, and one each on chromosomes 2A, 2D, 3D, 4A, and 7A (Figure 2). Under the drought condition, these significant SNPs showed total PV in grain diameter ranging from 12.27% to 21.48%. The MTAs for grain diameter were distributed across all wheat genomes, with 11 SNPs on the A-genome, four on the B-genome, and six on the D-genome (Supplementary Table S3). Marker Tdurum_contig48049_705 at 160.42 cM on chromosome 4A showed the highest PV (21.48%), while marker BS00067501_51 at 222.57 cM on chromosome 5B showed the lowest PV (12.27%).
Under the heat-stress condition, grain diameter was positively correlated with 20 SNPs. Three SNPs each were located on chromosomes 3D and 7B; two each on chromosomes 2B, 3B 5A, and 7D; and one each on chromosomes 1B, 1D, 4A, 4B, 5D, and 7A (Figure 2). These SNPs comprised 17.49% to 29.88% of the total PV for grain diameter under this condition. Significant MTAs were distributed across all wheat genomes, including four SNPs from the A-genome, nine from B-genome, and seven from the D-genome. Marker Tdurum_contig14863_885 at 67.48 cM on chromosome 5A showed the highest PV (29.88%), while marker Kukri_c23474_718 283.69 cM on chromosome 3D showed the lowest PV (17.49%) (Supplementary Table S4).
Grain roundness
Under the control condition, a total of eight significant SNPs were observed for grain roundness. One SNP each was located on chromosomes 1D, 2A, 2B, 3A, 3D, 4A, 7A, and 7B (Figure 2). The total PV in grain roundness comprised by these SNPs ranged from 12.28% to 21.32%. Marker Tdurum_contig100702_265 at 542.67 cM on chromosome 4A showed the highest PV (21.32%), while marker Kukri_c13134_132 at 5.63 cM on chromosome 1D showed the least PV (12.28%) (Supplementary Table S2). The MTAs for grain roundness attributes were distributed across three wheat genomes, four on the A-genome and two each on the B and D-genomes.
Under the drought condition, 37 SNPs were significantly associated with grain roundness. Six were located on chromosome 2A; five each on 3D, 5D, and 6D; four on 7B, two each on 2B, 5A, 6B, and 7D; and the remaining on 1B, 2D, 6A, and 7A (Figure 2). These SNPs had a total PV in grain roundness under the drought condition ranging from 13.27% to 25.27%. The MTAs for this trait were distributed across three wheat genomes, with 10 SNPs on the A-genome, eight on the B-genome, and 18 on the D-genome. Marker D_contig57523_172 at 183.76 cM on chromosome 2D showed the highest variation (25.27%), while marker Kukri_c31508_91 at 176.43 cM on chromosome 2A showed the least PV (13.27%) for grain roundness under the drought-stress condition (Supplementary Table S3).
Under the heat-stress condition, 25 MTAs were significantly correlated with grain roundness. These MTAs were located on chromosomes 1B, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 5B, 5D, 6D, 7A, 7B, and 7D (Figure 2) and accounted for PV ranging from 12.18% to 35.01%. Marker D_GB5Y7FA02JIMB5_49 at 290.6 cM on chromosome 7D showed the highest variation (35.01%), while marker Ex_c10068_1509 at 479.11 cM on chromosome 2A showed the lowest PV (12.18%) for grain roundness under the heat-stress condition. The MTAs were distributed on all wheat genomes, with seven on the A-genome and nine each on the B- and D-genomes (Supplementary Table S4).
Grain circumference
Under the control condition, 15 SNPs on chromosomes 1B, 2A, 2D, 3A, 4B, 6B, 6D, 7A, and 7D were highly associated with grain circumference (Figure 3). These SNPs accounted for total PV in grain circumference ranging from 21.64% to 32.58%. The MTAs were distributed across all wheat genomes, with four SNPs on the A-genome and two each on the B- and D-genomes. Marker Tdurum_contig82633_313 at 176.21 cM on chromosome 4B showed the highest PV (32.58%), while marker BS00067342_51 at 86.88 cM on chromosome 2A showed the lowest PV (21.64%) (Supplementary Table S2).
Under the drought condition, 13 SNPs were associated with grain circumferences. Four SNPs each were located on chromosomes 1B and 7B, three on 2B, and one each on 3B and 5D (Figure 3). These SNPs comprised 12.25%–24.97% of the PV for grain circumference. Marker Excalibur_c39284_949 at 510.03 cM on chromosome 1B showed the highest PV (27.55%), while marker Ex_c13213_2992 at 371.86 cM on chromosome 2B showed the lowest PV (16.75%) (Supplementary Table S3) for grain circumference under the drought condition.
Under the heat-stress condition, the grain circumference was highly correlated with 21 MTAs, five of which were located on chromosome 7B, three on 2B, two each on 5D and 6D, and one each on chromosomes 1A, 2D, 3A, 3D, 5B, 6A, 6B, 7A, and 7D (Figure 3). The PV ranged from 12.46% to 31.12%. Significant MTAs for GC were distributed on all wheat genomes, with four SNPs from the A-genome, ten from the B-genome, and seven from the D-genome (Supplementary Table S4). Marker D_contig57523_172 at 183.76 cM on chromosome 2D showed high PV (31.12%) under the heat-stress condition.
Grain surface area
Under the control condition, grain surface area was highly associated with 18 SNPs, including 15 on chromosome 7B and one each on chromosomes 5A, 5B, and 7A (Figure 3). The total PV of these GSA-related SNPs ranged from 14.96% to 19.42% (Supplementary Table S2). Marker BS00035630_51 at 172.1 cM on chromosome 7B showed the highest PV variation (19.42%), while marker Excalibur_c22340_449 at 398.79 cM on chromosome 7A showed the lowest PV (14.96%). The MTAs for GCA were distributed across two wheat genomes, with 16 SNPs on the B-genome and two on the B-genome under the control condition.
Under the drought condition, 22 SNPs were significantly linked to grain surface area, including seven SNPs on chromosome 7D, three on 4B, two each on 6A and 6B, and one each on 1B, 1D, 2A, 2B, 2D, 3A, 5A, and 5B (Figure 3). These SNPs showed total PV in GSA ranging from 14.67% to 23.19% under the drought condition. Marker D_contig57523_172 at 183.76 cM on chromosome 2D showed the highest PV (23.19%), while marker Tdurum_contig64286_268 at 517.73 cM on chromosome 2A showed the lowest PV (14.67%) for grain surface area under the drought condition (Supplementary Table S3).
Under the heat-stress condition, 22 SNPs were significantly associated with grain surface area, with PV ranging from 24.85% to 34.88%. Four SNPs each were detected on chromosomes 1A, 7A, and 7B; three on 5A; two on 2A; and one each on 1B, 3B, and 4B (Figure 3). Marker Excalibur_rep_c69263_462 at 182.55 cM on chromosome 4B showed the highest PV (34.88%), while marker BS00100120_51 at 260.38 cM on chromosome 1A showed the lowest PV (24.85%) for grain surface area under the heat-stress condition (Supplementary Table S4).
Thousand-grain weight
Under the control condition, thousand-grain weight was significantly linked with 22 SNPs. Ten significant MTAs associated with TGW were detected on chromosome 4B; three on 2B, two each on 1A, 1B, and 3A; and one each on 4D, 5B, and 6B (Figure 4). These 22 TGW-related SNPs showed a total PV in thousand-grain weight ranging from 19.52%–26.26% (Supplementary Table S2). Marker CAP11_c2285_104 at 357.33 cM on chromosome 1A showed the highest PV (26.26%), while marker Tdurum_contig50731_961 at 400.89 cM on chromosome 5B showed the minimum PV (19.52%). The significant MTAs for thousand-grain weight were distributed on all wheat genomes, with four SNPs on the A-genome, 17 on the B-genome, and one on the D-genome.
Under the drought-stress condition, 28 SNPs were positively significantly associated with TGW, including six SNPs on chromosome 1B, four each on chromosomes 2B and 3B, three each on each chromosomes 3A and 5B, and one each on chromosomes 1A, 2A, 3D, 4A, 4B, and 7D (Figure4). These markers showed a total PV ranging from 12.21% to 20.23% under the drought condition. Marker Tdurum_contig58293_437 at 461.54 cM on chromosome 5B showed the highest PV (20.23%), while marker Ku_c9596_1649 at 113.62 cM on chromosome 3B showed the lowest PV (12.21%) (Supplementary Table S3). The significant MTAs for thousand-grain weight were distributed on all wheat genomes, with eight SNPs in the A-genome, 18 on the B-genome, and two on the D-genome.
Under the heat-stress condition, 24 SNPs on chromosomes 1A, 1B, 2A, 3A, 3B, 4A, 4B, 5D, 6A, 6D, 7A, 7B, and 7D were highly associated with thousand-grain weight (Figure 4). These SNPs showed total PV ranging from 12.30% to 29.88%. Marker Tdurum_contig44851_9272 at 513.23 cM on chromosome 1B showed the highest PV (29.887%), while marker Excalibur_c19552_319 at 278.84 cM on chromosome 3B showed the lowest PV (12.30%) for thousand-grain weight under the heat-stress condition. The significant MTAs for TGW were dispersed on all three genomes, with 12 SNPs on the A-genome, eight on the B-genome, and four on the D-genome (Supplementary Table S4).
Grain yield per plant
Under the control condition, grain yield per plant was significantly linked with 19 SNPs on chromosomes 1B, 2B, 3B, 3D, 4A, 4B, 5B, 6B, 7A, and 7B (Figure 4). These sixteen GYP-related markers showed total PV ranging from 18.35% to 36.38% (Supplementary Table S2). Marker Tdurum_contig48231_1233 at 191.56 cM on chromosome 4A showed the highest PV (34.04%), while marker BobWhite_c34267_459 at 273.29 cM on chromosome 1B showed the lowest PV (18.41%). The significant MTAs for this grain per yield were distributed on all wheat genomes, with two SNPs of the A-genome, 16 on the B-genome, and one on the D-genome under the control condition.
Under the drought condition, 20 SNPs were significantly linked with GYP, with five SNPs each on chromosomes 2B and 4A; two SNPs each on 3A and 7B; and one SNP each on 3B, 3D, 5B, 5D, 6A, and 7D (Figure 4). Marker RAC875_s119811_122 at 597.71 cM on chromosome 4A showed the highest PV (21.36%), while marker Tdurum_contig49532_53 at 429.47 cM on chromosome 2B showed the lowest PV (12.34%) under the drought condition. The significant MTAs for grain yield per plant were distributed on all wheat genomes, with eight SNPs on the A-genome, nine on the B-genome, and three on the D-genome. These SNPs showed a total PV ranging from 12.34% to 21.36% under the drought condition (Supplementary Table S3).
Under the heat-stress condition, grain yield per plant was significantly linked to 21 SNPs. Seven MTAs were detected on chromosome 7B, five on 2B, three on 6B, two on 6B, and one on each 1A, 1B, 3A, and 4A (Figure 4). Marker D-contig24171-152 at 191.27 cM on chromosome 6D showed the highest PV (28.74%), while marker Excalibur_c58468_162 at 418.37 cM on chromosome 7B showed the lowest PV (20.53%) for grain yield per plant under the heat-stress conditions. These 21 GYP-related SNPs showed a total PV ranging from 20.53% to 28.74% (Supplementary Table S4).
Trait-wise and genome-wide marker-trait associations
The highest numbers of MTAs were identified for GL (50) followed by GD (38), GW (25), TGW (22), GSA (18), GYP (19), GC (15), and GR (8) under the control condition (Table 4). Under the drought-stress condition, the highest number of MTAs was identified in GR (37), followed by TGW (28), GL (26), GSA (22), GD (21), GYP (20), GC (13), and GW (12). In the heat-stress condition, the highest number of MTAs was observed in GR (25), followed by TGW (24), GSA (22), GYP (21), GC (21), GL (18), GW (16), and GD (20). The highest number of MTAs under the control condition was identified on chromosome 4B (45), followed by 7B (34), 1B (29), 5B (21), and 2 A (11), while the D-genome showed the lowest number of MTAs (13). However, the B-genome showed the highest number (143), with the A-genome in between (39). Under the drought condition, the highest number of MTAs was observed on chromosomes 1B (31), followed by 5A (17), 2B (15), 7B (14), 7D (12), and 3D (11). The D- and A-genomes showed the lowest numbers of MTAs (46 and 47, respectively), while the B-genome had the highest number (86) (Table 4). Under the heat-stress condition, the highest number of MTAs was identified on chromosome 7B (25), followed by 4A (18), 2B (12), 7D (11), and 4B (11). The D-genome showed the lowest number of MTAs (40), while the B-genome showed the highest number (70), followed by the A-genome (57) under this condition.
TABLE 4 | Significant MTAs reported in this study.
[image: Table 4]In the A-genome, markers Tdurum_contig48231_1233, Kukri_c45439_457, and Ku_c10135_987 at 191.56 cM, 78.15 cM, and 78.15 cM on chromosomes 4A, 5A, and 5A were significantly associated with GYP, GL, and GS under the control, drought, and heat-stress conditions, with the highest PVs of 24.04%, 26.62%, and 33.05%, respectively. The lowest PV (12.30%, 12.37%, and 12.18%) was observed for markers D_GDEEGVY01CQJ66_272, Kukri_c865_59, and Ex_c10068_1509 at 375.14 cM, 463.65 cM and 479.11 cM on chromosomes 7A, 5A, and 2A in the A-genome, which were associated with GR, GW, and GR under the control, drought, and heat-stress conditions, respectively. Markers RFL_Contig1445_1192, Excalibur_c7338_563, and Excalibur_rep_c103202_402 on the B-genome on chromosomes 2B (343.22 cM), 7B (427.7 cM) and 4B (243.79 cM) showed the lowest PV (14.61%, 12.17%, and 12.17%%) for GR, GW, and GW under the control, drought, and heat-stress conditions, respectively. In the B-genome, markers Kukri_rep_c71356_236, Excalibur_c39284_949, and Excalibur_rep_c69263_462 at 244.31cM and 510.03 cM and 182.55 cM on chromosome 7B, 1B and 4B showed the highest PV (32.71%, 24.97%, and 34.88%) and were significantly associated with GL, GC, and GS under the control, drought, and heat-stress conditions, respectively. Markers RFL_Contig2949_500, BobWhite_c43880_73, and D_GB5Y7FA02JIMB5_49 on chromosomes 5D (194.19 cM), 4D (159.35 cM), and 7D (290.6 cM) on the D-genome were associated with GL, GW, and GR and showed the highest PV (32.39%, 31.92%, and 35.01%) under the control, drought, and heat-stress conditions, respectively. The lowest PV (12.28%, 13.52%, and 12.47%) was observed for markers Kukri_c13134_132, wsnp_RFL_Contig2996_2877869, and CAP7_rep_c9997_155 at 5.63cM, 277.56cM and 108.87 cM on chromosomes 1D, 5D, and 1D on the D-genome and were associated with GR, GC, and GW under the control, drought, and heat-stress conditions, respectively.
Under the control and drought conditions, grain morphology and yield attributes showed pleiotropic loci asBS00010616_51 and BS00010868_51 at 186.24 cM and 35.47 cM on chromosomes 7B and 1B, respectively (Table 5). Under the control and heat-stress conditions, the studied traits were influenced by pleiotropic loci BS00010868_51, Kukri_c11154_1723, and Ex_c10068_1509 at 35.47 cM, 126.02 cM, and 479.11 cM on chromosomes 1B, 5B, and 2A respectively. The pleiotropic loci Kukri_rep_c111174_132 and Kukri_c27958_334 at 546.25 cM and 153.27 cM on chromosomes 1B and 6A were linked to grain morphology-related traits under the drought and heat-stress conditions, respectively (Supplementary Table S5). Only one stable and consistent locus (Excalibur_c20796_395) at 372.34 cM on chromosome 7A was also linked to grain morphology and yield-related attributes in all three conditions (Table 5).
TABLE 5 | Pleiotropic loci and stable MTAs across the study environment in 105 bread wheat genotypes.
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Phenotypic evaluations
Increased grain width contributes to increased grain weight, according to a significant positive association between grain width and diameter and thousand-grain weight. In the current study, however, grain width significantly influenced grain weight more than grain length. Previous studies have reported moderate to high associations between grain weight, grain surface area, and grain circumference (Rasheed et al., 2014). Longer and broader grains can acquire more starch and show greater grain weight; the correlations between these traits lead to a causal link between grain size and weight and, ultimately, increased grain yield per plant. The correlation coefficient between grain size measurements and grain weight is positive and significant (Rasheed et al., 2014). The results of the present study showed a positive association of grain length and width with thousand-grain weight. Russo et al. (2014) also reported a significant positive correlation between grain roundness and grain length, consistent with the finding in the current study. Grain weight is also significantly correlated with grain size and shape (grain length and grain width) (Gegas et al., 2010). Grain size and shape are essential traits in wheat domestication and breeding since they are linked to yield and milling quality. Compared to ancient wheat species, which have more variety in grain size and form, modern wheat cultivars have more comprehensive and shorter grains (Yan et al., 2017). Larger grains may have a positive impact on seedling vigor and enhance output. According to geometrical models, changes in grain size and form might result in up to a 5% increase in flour production. In the present study, the traits with the highest heritability were phenotypic, the most stable yield components. They may be used as independent descriptors in breeding programs to boost grain production. These findings will aid wheat breeders in developing high-yielding genotypes with improved grain architecture to improve bread wheat milling and baking quality.
Marker-trait associations for grain physical and yield attributes in all studied conditions
The genome-wide analysis has identified several loci linked to grain shape across distinct chromosomal regions in different environmental conditions (Su et al., 2019). This diverse panel was used for other wheat traits but has never been utilized for grain morphology traits using GWAS. This study examined 33,212 high-density SNPs from the 90K Illumina iSelect SNP array (Wang et al., 2014) to detect those associated with grain morphology and yield-related traits. Marker-trait associations (MTAs) were investigated for the examined traits in control, drought, and heat-stressed conditions. We discovered critical genomic areas containing specific vital genes linked to these traits. Grain size is primarily determined by grain weight and area, while grain shape refers to the percentage of the grain’s primary growth axes (Gegas et al., 2010).
Wheat grain size and shape are positively connected with TGW and influence flour yield, end-use quality, and market price (Abdipour et al., 2016). Grain size and shape significantly impact grain weight and is also a major breeding goal due to market and industry demands. Many QTLs influencing grain size and shape have been reported in hexaploid wheat (Simmonds et al., 2016).
Grain width was related to more SNPs than the other variables. Wang et al. (2011) and Russo et al. (2014) reported that chromosomes 4D and 7D were linked to grain width in wheat RIL populations. This work mapped the most relevant MTAs for grain length, width, and weight on various chromosomes, namely, 6D, 5D, and 2D. MTAs for several grain characteristics were observed in chromosomal areas 6D 66.4–71.1 cM, 1D 143.5–156.7 cM, and 2D 89.9–92.5 cM (Arora et al., 2017) consistent with the findings in the current study. Due to their direct impact on increasing grain yield, 38 MTAs for grain morphology-related traits and TGW were comparatively more significant. Co-linearity of the MTAs of many traits was observed on chromosomes 1A, 2B, 3A, 3D, and 5B, indicating that these areas were stable (Rasheed et al., 2014).
Grain yield per plant is heavily influenced by grain weight. Simmonds et al. (2014) reported that the effect of a yield MTA on chromosome 6A was driven primarily by increased grain weight, suggesting that enhancing grain weight could contribute to the genetic improvement of wheat yield. Advantageous QTLs for grain weight from common wheat’s diploid D donor have also been identified (Xiang-Zheng et al., 2008). Grain size is a quantitative trait in wheat and is regulated by significant QTLs on most chromosomes of the wheat genome, including 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D (Cristina et al., 2016). Because of competition for available assimilates, grain size is inversely associated with grain number.
Mir et al. (2012) reported that chromosomes 6A, 1B, 2B, and 6B were linked with grain width in bread wheat genotypes, consistent with the present findings. Grain shape is a quantitative and essential agronomic property with many variables. Many studies have identified MTAs affecting grain shape on multiple chromosomes in popular wheat cultivars. Li et al. (2018) reported an MTA for grain length on chromosome 5B, confirming the present findings. In addition, Wu et al. (2015) observed grain diameter-related MTAs on chromosome 3B, as also reported in the present study. Several MTAs related to grain weight have been identified on chromosome 3D and are available in the literature.
Rasheed et al.(2014) observed the most MTAs (21) on chromosome 2B, followed by 3B (15), and just one MTA on chromosome 6D. The B-genome had the highest number of MTAs (109), followed by the A-genome (60), while the D-genome had the fewest MTAs (28). These results support the current findings.
The results of our study demonstrated the value of genome-wide association mapping for identifying MTAs for grain morphology and yield-related traits in 105 bread wheat genotypes. One pleiotropic locus on chromosome 2D related to Tg-D1 contributed considerably to regulating wheat grain shape (Dvorak et al., 2012). This study discovered the QTL on the short arm of chromosome 2D. MTAs related to grain shape and size are of interest for domestication and breeding programs (Simons et al., 2006; Gegas et al., 2010). Furthermore, the additional stable loci discovered in various contexts are likely novel.
CONCLUSION
This study conducted a genome-wide association study (GWAS) through a 90k SNP array of grain morphology and yield-related traits in 105 bread wheat genotypes under control, drought, and heat-stressed conditions. Heritability level was observed from moderate (50.09%) to higher (76.19%). The yield-related traits (TGW and GYP) were significantly correlated with grain morphology-related traits (GW, GC, and GSA) under all examined environmental conditions. This study identified 541 significant MTAs, including 195, 179, and 167 associated with the control, drought, and heat-stressed conditions, respectively. Under control and drought conditions, the pleiotropic loci were BS00010616_51 and BS00010868_51 at 186.24 cM and 35.47 cM on chromosomes 7B and 1B, respectively, for the studied traits. The stable SNP (Excalibur_c20796_395) was situated on chromosome 7A at 372.34 cM under the control, drought, and heat-stress conditions. All experimental environments showed multi-trait loci for yield and heat stress tolerance-associated traits on chromosomes 2A, 6A, 7A, 1B, 5B, and 7B. The significant MTAs identified in this study may be useful in marker-assisted selection (MAS) for wheat breeding programs focused on drought and heat tolerance to develop high-yielding wheat genotypes grown under harsh climatic conditions.
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Globally, malnutrition has given birth to an alarming predicament, especially in developing countries, and has extensively shifted consumer preferences from conventional high-energy diets to a nutritionally balanced, cost-effective, sustainable, and healthy lifestyle. In keeping with this view and the mandate for developing high-yielding, disease-resistant biofortified staple food (wheat) for catering to the demand-driven market, the current research aimed at stacking together the enhanced grain protein content, carotenoid content, and disease resistance in an elite bread wheat background. The Y gene (PsyE1) and the GpcB1 gene were used as novel sources for enhancing the grain carotenoid and protein content in the commercial elite bread wheat cultivar HD2967. The combination also led to the stacking of resistance against all three foliar rusts owing to linked resistance genes. A stepwise hybridization using Parent 1 (HD2967 + PsyE1/Lr19/Sr25) with Parent 2 (PBW550 + GpcB1/Yr36+ Yr15), coupled with a phenotypic-biochemical selection, narrowed down 2748 F2 individuals to a subset of 649 F2 plants for molecular screening. The gene-specific markers PsyE1, PsyD1, Xucw108, and Xbarc8 for the genes PsyE1, PsyD1, GpcB1, and Yr15, respectively, were employed for forward selection. Four bread wheat lines positive for all the desired genes with high carotenoid (>8ppm) and protein (>13%) content were raised to the F5 generation and will be evaluated for yield potential after bulking. These improved advanced breeding lines developed following multipronged efforts should prove a valuable and unique source for the development of cultivars with improved nutritional quality and rust resistance in wheat breeding programs.
Keywords: bread wheat (Triticum aestivum L), biofortifcation, carotenoids, protein, GpcB1 gene, PsyE1 gene
HIGHLIGHTS
Combining unique nutritional subcomponents (high carotenoid and protein content in wheat grain) along with rust resistance for food as well as nutritional security using conventional and marker-assisted breeding.
1 INTRODUCTION
Wheat (Triticum aestivum L.) is one of the major staples consumed by approximately 2.5 billion people globally to meet the 20% of dietary calorie value (Velu et al., 2017). Wheat is utilized in various forms such as bread, chapati, semolina, pasta, macaroni, noodles, and biscuits. with an annual per capita consumption of 67.4 kg (Padhy et al., 2022b). On the other hand, FAO (Food and Agriculture Organization) reported that two billion people from developing countries suffer from “hidden hunger” due to inadequate intake of essential micronutrients (Garg et al., 2018). Wheat biofortification with essential nutrients offers a long-term and sustainable approach to nutritional security. Wheat being the staple diet, the envisaged product will have greater reachability to the masses, including the low-income groups with low affordability to costly additional supplements. Further, consumer awareness of a healthy lifestyle in the past decade has played a pivotal role in revamping food. Following the trend and market demand, several biofortified wheat varieties for iron, zinc, selenium, anthocyanins, etc., are now available commercially (Garg et al., 2018). Recently, biofortified colored wheat has drawn significant attention among manufacturers, food processors, and consumers due to its potential as a food colorant, nutraceutical ingredient, and prospective functional food (Sharma et al., 2018; Padhy et al., 2022b). Pigments, particularly anthocyanins, flavonoids, phlobaphenes, and catechins responsible for black, blue, purple, and other colors of colored wheat and their products are generally localized in the outer layers (aleurone/pericarp) of grains, and thereby facilitate their commercial extraction (Lachman et al., 2017), while yellow-colored carotenoids are housed in the grain endosperm (Clydesdale, 1993; Mezzomo, and Ferreira, 2016).
Traditionally, white or amber-colored chapati (Indian flat bread) was preferred whereas yellow-colored flour was utilized to prepare biscuits, pasta, semolina, and alkaline noodles, consumed in Japan and South-East Asia (Kadam et al., 2012; Padhy et al., 2022b). However, blended chapatis, commonly known as missi roti, (made from wheat and chickpea flour in a ratio of 80:20, Kadam et al., 2012; Dhillon et al., 2022) are light yellowish in color and is one of the most relished forms of chapati in Northern India. Usually, to cut down the costs, these are prepared commercially (in restaurants, functions, etc.) using food colorants to give a yellowish color, thus lowering their nutritive value (Kadam et al., 2012; Padhy et al., 2022b). Carotenoid biofortification in bread wheat, which is still an underutilized and less explored facet, can be best employed in the above context to meet consumer demands and thus, replace the harmful food colorants. Commercially available bread wheat varieties are generally low in carotenoid content, which ranges from 0.1–3.0 ppm (Hidalgo et al., 2006). However, einkorn wheat (T. monococcum) and wild wheat grass (Thinopyrum spp., especially, Th. elongatom and Th. ponticum) have been reported to contain a high amount of carotenoids with a range of 5.3–13.6 ppm (Abdel-Aal et al., 2002; Padhy et al., 2022a; Padhy A. K. et al., 2022), thereby opening avenues for carotenoid biofortification in bread wheat. These genes, therefore, if pyramided with other nutritional and agriculturally important attributes, could potentially translate wheat into a complete staple food with higher nutritive value and health benefits.
The current study was undertaken to combine high carotenoid and grain protein content in bread wheat through the pyramiding of the PsyE1 (Y gene) and GpcB1 genes. GpcB1as a choice for gene pyramiding is unique as it is reported to accentuate grain zinc and iron content (Brevis and Dubcovsky, 2010) and is also linked to Yr36, an effective high-temperature adult-plant (HTAP) stripe rust resistance gene (Uauy et al., 2005). Also, the gene for high carotenoid content, PsyE1(Y gene), from Th. ponticum background, is linked to genes Lr19 and Sr25, and both genes have demonstrated efficacy in controlling leaf and stem rust, respectively (Knott, 1989; Zhang et al., 2005). Sr25 has also been found to be effective against the deadly Ug99 race of stem rust pathogen (Liu and Hambleton, 2010). The choice of genes thus incorporates rust resistance in the envisaged product as an added benefit, considering the fact that rusts in wheat are among the major limiting factors contributing to significant yield losses (Braun et al., 2010). The manuscript reports the pyramiding of Y gene (PsyE1), GpcB1, and stripe rust resistance gene Yr15 for nutritionally enhanced quality wheat with resistance to all the three foliar rusts, utilizing ‘transfer first and assemble later’ technique in elite bread wheat variety, HD2967.
2 MATERIAL AND METHODS
2.1 Plant materials
Two germplasm sets were used for crossing and generating segregating population for combining PsyE1 (Y gene) and GpcB1 gene. First set of germplasm consisted of BC1F5bulk plants havingPsyE1 (Y gene) in HD2967 background (HD2967 + PsyE1/Sr25/Lr19). The set consisted of 180 lines, out of which an agronomically better-performing line with high pigment content was chosen and used as parent 1 (Padhy et al., 2022c). A commercial bread wheat variety HD2967 (ALD/COC//URES/3/HD2160 M/HD2278) developed by the Indian Agricultural Research Institute (IARI), New Delhi for cultivation under timely sown irrigated conditions in the northwestern plain zone of India (notification number 2326 (E) dated 10.10.2011, Indian Council of Agricultural Research (ICAR), Government of India). The variety has an average yield of 5.1 t/ha (potential yield 6.6 t/ha) with bold, round, lustrous, and amber-colored grains with a protein content of 10.7%. Similarly, the second set of germplasm consisted of the GpcB1 gene and Yr15 in the PBW550 background (PBW550 + GpcB1+Yr36+ Yr15) in the F6 generation. Out of 81 available lines having the same genetic composition, the third line (F6 3) was used for crossing as parent 2 owing to its better agronomic performance, high protein content, and low polyphenol oxidase activity (Supplementary Table S2, Gill M S, 2017). PBW550 (WH594/RAJ3856//W485) is a double dwarf early maturing bread wheat variety developed and released by Punjab Agricultural University, Ludhiana (notification number 72 (E) dated 10.01.2008, Indian Council of Agricultural Research (ICAR), Government of India) for timely sown irrigated conditions in the northwestern plain zone of India having good grain and chapati quality.
2.2 Combining high carotenoid, high grain protein content, and rust resistance
A stepwise hybridization and phenotypic-biochemical-molecular selection strategy in the introgression program were followed to obtain agronomically elite plants with desirable genes under consideration. The germplasm lines of parent 1 and parent 2 were validated using biochemical and molecular analysis for carotenoid content, protein content, and rust resistance genes. Eight individual crosses were made between parent 1 and parent 2 where eight different lines with the same genetic composition (HD2967 + PsyE1/Sr25/Lr19) were used as parent 1 against single parent 2 (‘F6 3’ having genetic composition PBW550 + GpcB1+Yr36+ Yr15), during the main season (November to May) at ‘Wheat Experimental Area’, Punjab Agricultural University, Ludhiana (30.9010° N, 75.8573° E, 810 ft above msl) in 2017–18 (Table 1). F1’s were raised at the off-season (June to October) location of Punjab Agricultural University, Ludhiana situated in the Himalayas at Keylong, Lahaul&Spiti District, Himachal Pradesh (32.210° N, 77.140° E, 10,500 ft above msl). Off-season or alternate season refers to production outside their typical cropping cycle and is used to advance the generations mainly by the breeders.
TABLE 1 | Crosses made for pyramiding PsyE1 gene and GpcB1 gene.
[image: Table 1]F2 was raised at Ludhiana during the main crop season in 2018–19. The selection of phenotypically promising rust-resistant single plants was done in artificially inoculated conditions for stripe rust and leaf rust. Grains from selected plants were screened for carotenoid pigments using spectrophotometric evaluation and high grain protein content (GPC) using the Kjeldahl method as well as for the genes of interest using MAS. Selected single plant progenies along with parental lines HD2967 and PBW550 were planted in 1.5 m paired rows with a plant-to-plant distance of 10 cm and row-to-row distance of 20 cm in a randomized block design. The selected lines were carried forward to F3/F4/F5 in 2019–20, 2020–21, and 2021–22, respectively. In each generation, plant/progenies selection was based on rust resistance, carotenoid content, and GPC. Four promising lines having all the desired genes combined with elite agronomic traits and grain quality (luster, boldness, thousand-grain weight, etc.) were identified for evaluation of yield potential.
2.3 Screening against foliar rust resistance
Screening for stripe rust and leaf rust was performed in the field along with MAS to validate the effectiveness of rust resistance genes linked to gene GpcB1(Yr36) and PsyE1 (Lr19) as well as for Yr15. Progenies from F2/F3/F4 and F5 generations were screened against stripe rust and leaf rust at the adult plant stage in the field during seasons 2017–18 to 2021–22. For screening, artificial epiphytotic conditions for rust were created by spraying the urediniospores of Pt pathotypes (100S119, 78S84), and Pt pathotypes (77–1, 77–2, 77–5, 104–2) diluted in water containing Tween-20. For the uniform spread of disease, highly susceptible cultivars HD2967, PBW343, and PBW550 were planted as spreader rows all around the field and after every 20 rows (Kaur et al., 2020). Data was recorded using the Cobb’s scale, as illustrated by Peterson et al., (1948), when ‘check’ cultivars showed complete susceptibility. The screening for stem rust could not be done in field conditions in Punjab since it is not prevalent in the region and hence, it was monitored using linked molecular markers only. As Sr25 is linked to PsyE1, therefore, the positive selection for PsyE1 implies the presence of Sr25.
2.4 Biochemical analyses
2.4.1 Protein content estimation
The Kjeldahl method was used for protein content estimation. 100–200 mg of seeds were weighed. Digestion mix (K2SO4:Cu2SO4 in a 9:1 ratio) and concentrated H2SO4 were added to the samples and placed in the digestion tubes. The tubes were then placed in the digestion assembly for 30 min at 420°C. 25 mL of distilled water was added to the mixture after cooling it to room temperature. In a flask, 0.01N HCl was added followed by three drops of acetocarmine. Distillation was then performed for 3 min by placing the sample tubes with 20 mL of added alkali and the flask in the distillation chamber. The flask was then titrated with the help of a 0.1N NaOH solution. The amount of solution required to change the color of the solution of the flask from pink to yellow was recorded. The protein content was calculated by the formula:
Protein content= (0.08092 x volume of NaOH used for titration)/weight of the sample (Gill, 2017).
2.4.2 Extraction and estimation of total carotenoid
A grounded wheat grain sample (4 g) was taken in a glass test tube, followed by the addition of 20 mL water-saturated butanol. The sample was mixed and shaken properly. The tube was then covered with aluminum foil and kept overnight in the dark at room temperature. All the samples were filtered using Whatman filter paper No. 1 and were allowed to stand for 20 min at room temperature. Absorbance was recorded in a spectrophotometer at 440 nm and contents were expressed in ppm per gram of dry weight as per the following formula:
Carotenoid content (ppm) = [(O.D. X 23.5366) + 0.0105] (Mishra and Gupta, 1995).
2.4.3 Phenol test
Nearly 30 seeds were placed in the Petri plates containing water in the evening and incubated overnight. Excess water was decanted the next morning, followed by the addition of 1% phenol solution (prepared by mixing Phenol crystalline AR grade, molecular weight 94.11 g solvent into double distilled water) and kept for 4 h. The solution was decanted and the seeds were then scored from 1 to 10 based on the extent of coloring within 1h of decanting (Kaur et al., 2013).
2.5 DNA extraction and marker-assisted selection (MAS) for PsyE1/Lr19/Sr25, GpC-B1/Yr36, and Yr15
The selection for the traits i.e., high carotenoid content, high protein content, and resistance to foliar rusts was achieved in a combined phenotypic—genotypic strategy. For the marker-assisted selection, the DNA of F2 plants was extracted from young leaves using the CTAB method (Saghai-Maroof et al., 1984) with some modifications (Kaur et al., 2020). PsyE1/Lr19/Sr25 was screened using a combination of gene-specific markers i.e., Psy1-E1 specific and Psy1-D1 specific (Zhang and Dubcovsky 2008). F2s were screened for GpC-B1/Yr36 using the dominant marker Xucw108 (Uauy et al., 2006). Similarly, the rust-resistant gene, Yr15, was screened with marker Xbarc8 (https://wheat.pw.usda.gov/) using specific primers (Table 2). The primers were used to amplify the desired DNA segment using specific PCR (polymerase chain reaction) profiles (Supplementary Table S1) and separated by gel electrophoresis using 2% agarose gel in 0.5X TBE buffer. The amplicons (Table 2) were visualized in a Biorad-gel-documentation system with an ethidium bromide stain.
TABLE 2 | Markers, their sequences used for Marker Assisted Selection.
[image: Table 2]3 RESULTS
3.1 Development of segregating population for gene pyramiding
Based on the screening of individual populations for high protein content (PBW 550 + Yr15 + GpcB1/Yr36) and high carotenoid content (HD 2967 + PsyE1/Sr25/Lr19), the phenotypic expression of both PsyE1 and GpcB1was observed to be variable among the plants, as guided by their genotype constitution. Therefore, it is necessary to choose the line with the best agronomic characters as the parental type for developing the segregating population. Amongst the eight crosses made among selected lines, four crosses (i.e. BC1F5 20/F6 3, BC1F5 18/F6 3, BC1F5 154/F6 3, BC1F5 23/F6 3) survived, while the F1generation of the remaining crosses suffered hybrid necrosis due to low temperature and the genetic makeup of the cultivar HD2967 (Supplementary Figure S1) (Mishra et al., 2017; Takumi and Mizuno, 2011). Hybrid necrosis (gradual premature death of leaves or plants in certain wheat F1 hybrids) is caused by the interaction of two dominant complementary genes, Ne1 and Ne2, located on chromosome arms 5BL and 2BS, respectively (Chu et al., 2006) and the HD2967 genotype carrying both the genes is often reported to cause hybrid necrosis in F1s. The seeds harvested from the remaining four crosses were sown as a single seed to raise a total of 2748 F2 individuals which were phenotyped for rust resistance (stripe rust and leaf rust) along with yellow grain pigment content. A subset of 649 F2 plants was selected for further screening of biochemical constituents (carotenoid content, protein content, and polyphenol oxidase activity) and MAS (using gene-specific markers for the genes, Yr15, GpcB1/Yr36 and PsyE1/Sr25/Lr19) (Figure 1).
[image: Figure 1]FIGURE 1 | Representation of the steps performed for pyramiding PBW550 + GpcB1/Yr36 + Yr15and HD2967 + PsyE1/Lr19/Sr25.
3.2 Marker-assisted selection (MAS)
MAS was carried out to select the genotypes combining PsyE1/Sr25/Lr19, GpcB1/Yr36, and two stripe-rust-resistant genes along with Yr15 in the F2 plants sown as single plants. The four crosses which survived made up a total of 2748 F2 individual plants. The conventional MAS was modified to achieve the best results out of the selected F2 plants. For the gene pyramiding experiments, expression of the genes in terms of the phenotype is equally important as their presence in a genotype. Therefore, sequential screening was performed for rust resistance (stripe rust and leaf rust) followed by estimation of carotenoid content and protein content before molecular validation to minimize the time, effort, and cost for the selection of pyramided plants (Figure 1).
3.2.1 Screening for rust resistance
All the F2 individual plants were screened for stripe rust and leaf rust resistance under artificial epidemic conditions as described in Section 2.3 (material and methods). All the individual plants with an infection of any kind of rust or both were uprooted and discarded before proceeding to the selection for carotenoid content. The leaf tissue was collected from the remaining 1735 individual plants out of the total of 2748 F2s after screening for rust resistance.
3.2.2 Screening for carotenoid content
The Y gene (PsyE1) derived from Thinopyrum ponticum encodes for phytoene synthase which increases the grain carotenoid content. As we adopted the product-oriented methodology i.e., a combined phenotypic - genotypic strategy in the pyramiding experiment as described previously, we aimed for the expression of the PsyE1 gene i.e., yellow coloration of the grains before proceeding with the molecular selection based on the PsyE1 gene. The selection was made for bold, hard, and lustered grains with bright to dark yellow color from the rust-resistant plants followed by biochemical selection for carotenoid content in the grains. For the cross BC1F5 20/F6 3, having 732 F2 plants, a total of 232 plants were selected on the field in the manual selection (seed color giving the preliminary indication) followed by biochemical estimation and being observed to have carotenoid content in the range of 0.59–9.49 ppm (Supplementary Table S6). For the cross BC1F5 18/F6 3, among the selected 22 plants out of 458 F2 plants, carotenoids were estimated in the range of 0.47–4.14 ppm (Supplementary Table S3). Similarly, 177 F2 plants in the cross BC1F5 154/F6 3, were selected with 1.58–12.17 ppm carotenoid content, from a total of 624 plants (Supplementary Table S4).In the cross, BC1F5 23/F6 3, out of 934 plants, 218 F2 plants having grain carotenoid in the range of 0.45–6.55 ppm were selected (Supplementary Table S5). The grains with >6 ppm (almost double the carotenoid content of the available commercial bread wheat varieties) of carotenoid content were selected, to further reduce the number of selected F2s for molecular screening (Figure 2). In this process only, BC1F5 154/F6 3 cross was selected as it yielded seeds possessing a gradient of carotenoid content in the range of 1.58–12.17 ppm. In the remaining crosses, the carotenoid content was too small (<6.00 ppm). Out of the selected 177 single plants from the cross BC1F5 154/F6 3, 89 plants were chosen after considering the carotenoid content data obtained from them (Supplementary Table S8).
[image: Figure 2]FIGURE 2 | Frequency distribution of carotenoid content in the F2 population of the cross (A). BC1F5 154X F6 3, (B). BC1F5 23X F6 3, (C). BC1F5 20X F6 3, (D). BC1F5 18 X F6 3 where “Loc” (location) specifies the Mean, “Scale” specifies the Standard Deviation, and “N” specifies the number of individuals taken under consideration.
3.2.3 Biochemical screening
Polyphenol oxidases oxidize phenols to cause enzymatic browning and forming dark pigments in unfermented stored flours and dough causing a major perceived aesthetic quality loss in bread wheat (https://maswheat.ucdavis.edu/protocols/PPO). It constitutes a major proportion of wheat proteins besides gluten. Qualitative estimation of polyphenol oxidase activity conducted using a phenol test on 89 selected plants revealed scores in the range of 1.4–4.8 (Supplementary Table S8) and was followed by the selection of 15 plants with scores <3.0, i.e., low polyphenol oxidase activity (Supplementary Figure S1, Supplementary Table S9). To evaluate GpcB1 gene expression, the protein content was estimated in the above-mentioned 15 selected plants by the Kjeldahl method which was recorded in the range of 11.52%–14.53% (Supplementary Table S9). The plants with >13% of grain protein were advanced for further evaluation and yield trials.
3.2.4 Molecular marker-assisted validation for gene pyramiding
The molecular marker “PsyE1 specific” (for Y gene) was used to validate the presence of the PsyE1 gene in all the selected 89 plants, which also screened positive for carotenoid content and gave a band of 191bp (Figure 3). It was observed that all the selected 89 genotypes were positive for the PsyE1 gene and, hence, were further subjected to screening for Xbarc8, a marker for the rust-resistant gene Yr15. As the F2 plants were initially screened for rust resistance, it was reflected in the molecular analysis, providing an increased probability of getting positive results for the presence of the rust resistance genes. Xbarc8 produced a band of 245bp in a total of 82 plants, demonstrating these lines carried the Yr15 gene. As mentioned above, all the selected F2s were positive for the PsyE1 gene and were therefore counted as positive for stem rust and leaf rust resistance genes, i.e. Sr25 and Lr19, respectively, due to their strong linkage with PsyE1. Screening with the molecular marker Xucw108 was carried out for validating the presence of the GpcB1 gene and produced a 217bp band in all the positive lines (Figure 3). Molecular analysis identified 4 plants i.e., plant no. 10, 31, 104, and 160 (Supplementary Table S9) to be positive for all the desired genes. These lines were advanced in the ear-to-row method and the same selection protocol was followed i.e., morphological, biochemical, and molecular selection until the F5 generation.
[image: Figure 3]FIGURE 3 | Amplification of markers, (A). UCW108, (B). BARC8, (C). PsyD1 and (D). PsyE1 in the experiments.
4 DISCUSSION
Food and nutritional security, especially in developing countries have gained much significance in the recent past and all major breeding programs have diverted their efforts to not only increase food production but also to improve the nutritional value of the food products simultaneously. India has been producing sufficient wheat to contribute towards food security in the recent past but is still unable to cater to the undernourishment and malnutrition issues, especially for the masses. However, a decline in the undernourished population was witnessed, although a reverse trend started again after 2015, so that currently 9%–11% of the world’s population suffers from undernourishment/malnutrition, and this is likely to increase further (by∼0.8%–1.0%) by 2030 when >850 million people are predicted to suffer with hunger and undernourishment/malnutrition (Purugganan and Jackson 2021; Gupta et al., 2022). The wheat crop deserves major attention as it is the second most important crop after maize in terms of staple food and the second most important crop after rice in terms of food and nutritional security. Many efforts are underway to combine different subcomponents of nutritional quality in wheat, particularly in terms of grain protein content (GPC), iron content, zinc content, and antioxidant content (Gupta et al., 2020; Gupta et al., 2021; Gupta et al., 2022). A novel component of biofortification in wheat other than enhancing iron or zinc content is the enhancement of carotenoid pigments in the mature grain. Since cereals are characterized by low carotenoid content, their biofortification to meet daily human requirements offers an opportunity to combat wide-scale malnutrition deficiencies without changing the diet structures of the population. Besides improved nutritional quality, the yield potential and the disease resistance to major prevalent diseases are also important for developing suitable end-product-specific wheat cultivars. Therefore, the present study focuses on combining high carotenoid content, grain protein content, and disease resistance in high-yielding backgrounds using breeding, biochemical, and molecular techniques.
Marker-assisted selection (MAS) is routinely used to supplement conventional plant breeding (Gupta et al., 2022). MAS-assisted gene pyramiding allows the stacking of desirable genes/alleles of multiple genes for one or more traits in an elite genotype of interest. This method is well demonstrated in numerous crop species to further improve an existing elite cultivar through the introgression of multiple genes from one or more donors. Theoretically, it can be achieved by a single cross provided that the segregating population is large enough (Xu, 2013). As a large population is not always practically feasible, it can be done in two steps by selecting desirable heterozygous/homozygous alleles followed by their self or back-crossing (Ishii and Yonezawa, 2007). In wheat, several successful examples of gene pyramiding are available in a number of varieties (Gupta et al., 2010). With an increasing population and per capita income, demand for quality wheat and its products is increasing especially in developing countries. Although conventional breeding approaches have been utilized in developing cultivars with improved quality traits, they are limited by their time demands. With the advent of molecular tools, high throughput and cost-effective markers have been designed to aid in the crop improvement process and have yielded numerous successful examples in wheat itself (Gautam et al., 2020; Liu et al., 2020; Sharma et al., 2021; Awan et al., 2017).
4.1 Carotenoid and protein content in biofortified wheat
PsyE1 gene introgression resulted in a significant increase in the carotenoid content, which varied up to 9.49 ppm in the selected pyramided lines (Supplementary Table S6). Further, the GpcB1 gene was pyramided with PsyE1in the current experiment, and the former was observed to increase the protein content up to 14% and 13.5% with and without yield penalty, respectively. The gene also resulted in increased remobilization of nutrients, thereby increasing the Fe and Zn concentration by 10% and 5%, respectively (Uauy et al., 2006). Uauy et al., 2006 first cloned and characterized the grain protein content associated with gene GpcB1 as well as developed the functional markers which have opened numerous avenues to further increase the nutritional significance of bread wheat. The study also showed that GpcB1 is also responsible for increased iron and zinc content in grain. Although the expression of this gene is influenced by the environment with a coupled yield penalty (Brevis and Dubcovsky, 2010), examples of introgression of the GpcB1 gene through MAS without compromising crop yield are also available (Uauy et al., 2006; Brevis and Dubcovsky, 2010). However, GpcB1-induced accelerated senescence resulting in shriveled grain seems to be the significant reason that even after widespread use of this gene in almost all wheat breeding programs for a decade, no commercially released variety has this gene introgressed in it. In the present study, the GPC was increased by 2% of existing content, making a total of 13%–14% with minimal yield compromise along with the carotenoid content raised up to 8ppm.
4.2 Consumer acceptance of carotenoid-fortified wheat
The yellow color in wheat is controlled by the Phytoene Synthase (Psy) gene and its alleles which produces the enzyme. Phytoene Synthase dimerizes two geranylgeranyl pyrophosphate molecules and is also the rate-limiting factor in the carotenoid biosynthesis pathway (Lindgren, 2003). The wheat Psy1 gene shows homology with the maize Psy1 gene and is associated with carotenoid accumulation (Palaisa et al., 2003) in the endosperm. In maize, it was mapped on chromosome 6 which shows synteny with chromosome 7 of bread wheat (Gale and Devos, 1998; Palaisa et al., 2003). In wheat, the gene is present in all three homologs of chromosome 7 (PsyA1, PsyD1, and PsyB1) (Zhang and Dubcovsky, 2008). The original 7E chromosomal segment from Th. ponticum was incorporated into the wheat cultivar “Agatha” containing the Psy gene which was translocated into chromosomes 7A and 7D of wheat and was named the Y gene due to the undesired yellow coloration of the flour (Sharma and Knott, 1966). Plants heterozygous for the 7 EL segment showed 56% higher lutein content than the lines without the 7 EL segment (Zhang et al., 2005). Carotenoid (lutein) is the main component mediating the yellow coloration of wheat flour (Adom et al., 2003; Zhang et al., 2005). Further, the yellow color of the flour is desirable for yellow alkaline noodles consumed mostly in Japan and Southeast Asia (Kruger et al., 1992). Similarly, in North India, missi roti is consumed, by adding chickpea flour to wheat flour for added taste and colour is quite popular (Padhy et al., 2022b; Padhy, 2019).
4.3 Rust resistance in biofortified wheat
In our experiment, the genes PsyE1+Lr19+Sr25 in HD2967 background with GpcB1+Yr36+ Yr15 in PBW550 background were converged and stacked together. After the selection of the desirable lines utilizing gene-specific markers, the resultant lines showed total rust resistance to both stripe and leaf rust, thus demonstrating the expression and functionality of the Lr19, Yr36, and Yr15 genes. Yr36 is the temperature-sensitive stripe rust resistance gene which confers enhanced resistance to stripe rust as the temperature increases. Combining one major stripe rust resistance gene (Yr15) which ensures completely clean plant foliage with temperature sensitive Yr36 gene takes care of stripe rust resistance. Further, Lr19, linked to the Y gene, partially covers leaf rust. The other minor/defeated leaf rust genes in several backgrounds may add to the complete resistance when combined with other genes. This kind of additive effect of minor defeated genes has been also shown to provide resistance in segregating generations of two susceptible cultivars who reported that in the two crosses (PBW621×PBW343 and HD2967×PBW343) the resistant segregants possessed two genes, one contributed by PBW621 or HD2967 (depending on the cross) and the other, unexpectedly but obviously, came from the most susceptible cultivar, PBW 343 (Sharma et al., 2022). Also, the gene Sr25, linked to the Y gene, makes a case for pre-emptive breeding for black rust in wheat.
4.4 Yield and agronomic traits of carotenoid biofortified wheat
An increased carotenoid content (up to 12ppm) in the segregating population was limited by a yield penalty, such as reducing the number of tillers in the lines than the checks. However, it was observed that the lines pyramiding all the desired genes had carotenoid content up to 9 ppm without any substantial yield penalty. An increased carotenoid content of 50%–120% was observed in these pyramided lines as compared to those previously reported by Zhang et al. (2005), which showed 56% higher lutein content than the lines without the 7 EL segment. The agronomic characterization of the translocated isogenic lines demonstrated that the presence of 7E was associated with high grain yield under irrigated conditions (Monneveux et al., 2003). After the characterization of the gene by Zhang and Dubcovsky, (2008), the gene was used positively for the first time in a durum background by Singh et al. (2014). Sun et al. (2014) found a significant negative correlation between carotenoid content and thousand-grain weight and a positive correlation between carotenoid content and grain length, grain length/grain width, and grain length/grain thickness. They also reported a negative correlation between carotenoid content and grain width and grain thickness. Similarly, Padhy A. K. et al. (2022) reported a significant negative correlation between carotenoid content and thousand-grain weight and spike length. Spikelets per spike and grains per spike were negatively correlated with carotenoid content but were insignificant. However, they reported a slight positive correlation between carotenoid content and tillers per meter row as well as yield. It implies that the Y gene can be effectively used for inbreeding wheat with high carotenoid content without any major yield penalty provided the population size is kept large so as not to lose out the rare recombinants combining high carotenoid content, high grain weight, and disease resistance.
4.5 Health benefits of biofortified wheat
Micronutrient deficiencies affect a large section of the world’s population. Biofortification is an evidence-based nutrition strategy to address some of the most common and preventable global micronutrient gaps and can help improve consumer health (Bouis and Saltzman, 2017; Foley et al., 2021). Enhancing the micronutrient concentration, specifically protein, iron, and zinc content in wheat via genetic fortification using modern plant breeding approaches has been exploited as the most effective and safe approach to alleviate micronutrient malnutrition by plant breeders. Further, a number of issues concerning the nutritional quality of wheat revolve around the seed phosphorus (P) storage compound called phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) for which studies report genetic variability in available wheat germplasm (Sharma et al., 2022). Enhancing carotenoid content in wheat is a novel addition to biofortification components to be considered when breeding biofortified wheat cultivars (Padhy et al., 2022b). Lutein, the major component of carotenoids, is an antioxidant that reduces oxidative damage to biological membranes by scavenging peroxy-radicals, which are involved in certain human diseases and aging, as well as responsible for the degeneration of food quality. Therefore, the carotenoid pigments contribute to an increased nutritional value of wheat and wheat products (Bast et al., 1996). The PsyE1 gene is present in the distal region of the chromosome arm 7 EL from Th. ponticum increases carotenoids in the endosperm and is linked with the rust-resistant genes Lr19 and Sr25 (Zhang et al., 2005; Padhy et al., 2022a). The incorporation of the PsyE1 gene increases all the carotenoids that are produced in the carotenoid biosynthesis pathway. There is an increase in lutein, zeaxanthin, and β-carotein content due to the introgression of PsyE1 (Zhang et al., 2005; Ceoloni et al., 2017; Padhy A. K. et al., 2022). In a bread wheat background, despite the numerous health benefits of carotenoids, the gene was never used commercially as the yellow coloration of wheat flour lacked consumer acceptability and health-associated awareness. But recent trends and demand for biofortified quality wheat and wheat products have encouraged us to use the gene positively by analyzing its role in increased carotenoid content, agronomic effects, and potential health benefits (Padhy et al., 2022b).
Wheat breeding in combination with advances in biotechnology tools has made remarkable progress in increasing crop yields in the recent past. Wheat breeders must constantly respond to ever-emerging challenges, primarily, nutritional security, which defines the major mandate of a wheat breeder in the present scenario. Wheat breeders in India have always faced the endless task of continually developing new wheat varieties combining enhanced yield and disease resistance and have emerged successful, leading to self-sufficiency in wheat. However, in light of the malnourishment statistics of the country, the task of combining two or more nutritional components into agronomically elite backgrounds, and, if not enhancing, at least maintaining substantial yields represents an unprecedented challenge for wheat breeders. Varieties with improved nutritional quality, protein content, high grain yield, high carotenoid content, and desirable processing quality in adapted elite genetic backgrounds with tolerance to stresses and diseases can help alleviate nutrient deficiencies. Breeding wheat with enhanced levels of nutritional components is a cost-effective, sustainable solution to malnutrition problems. It is therefore paramount that suitable biofortified wheat varieties are developed, released, and disseminated for widespread adoption. Since grain nutrition is a non-visible trait, it is essential that new cultivars not only have enhanced nutritional components but also higher yield levels.
4.6 Shuttle breeding for combining quality components in wheat
Shuttle breeding, started at CIMMYT, Mexico, was originally used to accelerate the breeding cycle by growing segregating generations in contrasting environments. This could ensure rapid generation advance by taking more than a single generation per year. Additional benefits of shuttle breeding were observed in terms of wider as well stringent selection due to exposure of the breeding material to variable disease spectrums, soil types, photoperiod lengths, and diverse abiotic stresses. Wheat breeders in North India, including Punjab Agricultural University located in India, Punjab, exploit the shuttle breeding concept and grow alternate wheat crops at Keylong, situated in the Himalayas. This has been highly effective in achieving the breeding objectives as the wheat after harvesting (end of April to first fortnight of May) from the main crop season is planted at an alternate location or commonly known as the off-season location at Keylong in the second fortnight of May. The crop is harvested from Keylong at the end of September and the seed is ready to be sown back in the main crop season in November. This cycle fits well for major breeding objectives focusing on grain yield. However, when the breeding is aimed at stacking together the various subcomponents of quality, this system poses a major challenge in terms of the time available for quality component analysis in the screening of the generations before the next sowings. Wheat grain quality primarily refers to two main components, namely the nutritional content (which may be for domestic or commercial use) and industrial processing or end product specificity. Enhancing wheat quality improves processing specificity, makes more desirable and more diverse consumer products and ensures the competitiveness of farmers, grain merchandisers, millers, and end processors. Wheat quality criteria may vary drastically depending on the end use. Usually, the conventional small-scale quality tests and/or marker-assisted selection (MAS) are done in the advanced breeding stages (F6–F8) or the final product. But combining together different components of quality definitely requires stringent screening for the traits under consideration from the F2 generation onwards. Moreover, this testing must be based on more specific food processing (dough visco-elasticity and mixing properties, starch pasting properties, baking performance, etc.). Since the breeding for complex multigenic quality characters in wheat by biochemical analyses and functional pilot tests is traditionally a slow process, shuttle breeding has limited utility. Instead, rapid generation advance (RGA) under controlled conditions or doubled haploid production can be of much use. This explains the breeding scheme presented here which uses an off-season location for advancing F1 to F2 only and the other generations were evaluated for selection in the main season only.
5 CONCLUSION
In conclusion, the present study is a successful example of seamlessly combining conventional breeding and biotechnological tools (MAS) for pyramiding diverse subcomponents of grain fortification and disease resistance in wheat. The exploitation of the Y gene in a constructive way to increase grain pigment content is in contrast to the earlier approaches (Sharma and Knott, 1966; Sears, 1972) that focused on dissecting the gene by only retaining the linked rust-resistant genes. This exploitation was coupled with enhancing grain protein as well as micronutrient content in an innovative attempt at wheat breeding. The parental material with different components of quality, fortification, or resistance individually was available in the background of the popular wheat varieties (HD2967 and PBW550), which hold the honor of being the mega-varieties adapted to various wheat growing agro-climatic zones of India, such that their contribution to national food security is significant. In the present study, the development of advanced wheat lines with high carotenoid content in the grains, increased protein content, rust resistance, and elite plant type is reported. These lines will be very useful as new genetic resources for future wheat breeding programs. The improved lines will be further evaluated for their agronomic performance and other yield-related traits in preliminary and multi-location yield trials to examine their potential to provide next–generation improved versions of rust-resistant biofortified wheat with superior grain quality. The derived wheat lines have the potential of developing into newer, biofortified, and improved germplasm for commercial cultivation.
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In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars. The objective of this study was to characterize a collection of Brazilian germplasm under Canadian growing conditions, including the reaction of the Brazilian germplasm to Canadian isolates/pathogens and to predict the presence of certain genes in an effort to increase genetic diversity, improve genetic gain and resilience of Canadian wheat. Over 100 Brazilian hard red spring wheat cultivars released from 1986 to 2016 were evaluated for their agronomic performance in eastern Canada. Some cultivars showed good adaptability, with several cultivars being superior or statistically equal to the highest yielding Canadian checks. Several Brazilian cultivars had excellent resistance to leaf rust, even though only a few of these tested positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat. Resistance for stem rust, stripe rust and powdery mildew was variable among the Brazilian cultivars. However, many Brazilian cultivars had high levels of resistance to Canadian and African - Ug99 strains of stem rust. Many Brazilian cultivars had good Fusarium head blight (FHB) resistance, which appears to be derived from Frontana. In contrast FHB resistance in Canadian wheat is largely based on the Chinese variety, Sumai-3. The Brazilian germplasm is a valuable source of semi-dwarf (Rht) genes, and 75% of the Brazilian collection possessed Rht-B1b. Many cultivars in the Brazilian collection were found to be genetically distinct from Canadian wheat, making them a valuable resource to increase the disease resistance and genetic variability in Canada and elsewhere.
Keywords: wheat, Triticum aestivum, breeding, germplasm, genetic diversity, rust, Fusarium
1 INTRODUCTION
Wheat is one of the primary crops in Canada with approximately 10 Mha seeded annually and a total annual production ranging from approximately 22 Mt to over 37 Mt between 2010 and 2022 (Statistics Canada). Approximately 75% of Canadian wheat production is exported and it is valued worldwide for its excellent quality, and versatility in end-use applications. Canadian wheat cultivars are grouped into marketing classes based on their functional characteristics, growth habit (spring or winter) and geographical origin (eastern or western Canada). The main classes of wheat grown in Canada are Canada Western Red Spring (60% of total wheat grown), Canada Western Amber Durum, Canada Prairie Spring Red and Canada Eastern Soft Red Winter (Cereals Canada, 2023).
Wheat in Brazil is a secondary crop. Approximately 2 Mha of wheat are seeded annually with production reaching 6.3Mt in 2020 (FAOSTAT). However, the Brazilian wheat crop is important for food security with nearly all of the production consumed domestically. Wheat production in Brazil increased 3.7 times from 2000 to 2022, although the cultivated area only increased two-fold (FAOSTAT). Brazil produces only hard red spring wheat, which is classified based on flour characteristics. Fusarium head blight (FHB) and pre-harvest sprouting are important limitations to the cultivation of durum and white soft wheats. The wheat is grown mostly in southern Brazil in the autumn-winter months and harvested in the early summer. Climatic conditions during the growing season are very favourable to the development of fungal diseases. The pathogens survive during the summer on alternative hosts, and the green-bridge leads to high disease pressure. Consequently, superior disease resistance is critical for wheat cultivation in Brazil and good resistance to various diseases has been developed through years of breeding.
Targets for improving wheat in both countries include grain yield, disease resistance, adaptation to climate change and abiotic stresses, and end-use quality. Some of the disease problems are common to both countries, which include FHB and leaf rust.
Collaboration between Brazilian and Canadian breeders and pathologists has existed for decades. Wheat varieties from Brazil, such as Frontana, have been used to breed Canadian wheat cultivars in the past. The genetic studies to characterize the leaf rust resistance of Frontana, carried out in Canada (Dyck et al., 1966; Dyck, 1987; McCallum et al., 2016), identified the resistance genes: Lr13 and Lr34. The identification of new resistance genes provides an opportunity to improve Canadian wheat disease resistance and resilience through genetics derived from Brazilian germplasm. Similarly, Brazilian breeding programs could use Canadian germplasm to improve end-use quality, for example,.
The project started as there was a need for Brazilian breeding programs to characterize their current germplasm for stem rust resistance. The disease had been absent in Brazil for decades, so the resistance of modern cultivars was unknown. While it was known that the stem rust resistance of older cultivars was derived from Sr31 and Sr24 (Barcellos, pers. comm.), the genetics of more recently released cultivars had not been determined. With the threat of the African stem rust race Ug99 and its variants (Fetch et al., 2021), which rendered Sr31 and Sr24 ineffective, it was important to characterize the Brazilian germplasm for stem rust resistance to prevent future losses. Due to the valuable genetic diversity of Brazilian germplasm, a thorough characterization of the collection, in which older cultivars were also included, was undertaken. The ultimate objective was to evaluate the agronomic performance and disease resistance of a comprehensive collection of Brazilian wheat cultivars under Canadian growing conditions and pathogen populations. The analysis used representative Canadian check cultivars for grain yield and other agronomic characteristics along with resistance to FHB, leaf rust, stem rust, stripe rust, and powdery mildew. A secondary objective was to predict the presence or absence of some critical wheat genes in this germplasm collection using molecular markers diagnostic for the presence of these genes.
2 MATERIALS AND METHODS
2.1 Germplasm and agronomic performance
The Brazilian wheat germplasm evaluated in this study was composed of 111 cultivars organized in two collections (Supplementary Table S1). Collection “A” was composed of cultivars registered in Brazil from 1986 to 2012, while the registration of the collection “B” cultivars dated from 1999 to 2016. Sixteen cultivars were present in both collections. The cultivars were derived from multiple breeding programs in Brazil. Some cultivars were removed during the study because of lack of seed. The Canadian checks were chosen based on disease reaction as controls in nurseries; thus, they do not represent the predominant cultivars in Canada.
Two agronomic trials were conducted in Ottawa (Ontario) and Saint-Mathieu-de-Beloeil (Quebec) in 2017 and 2018 using a randomized complete block design with two replications (4.77 m2 plots) without fungicide treatments. The agronomic characteristic evaluated were grain yield (kg/ha), thousand kernel weight (TKW, g), test weight (TW, kg/hL), days to heading (Julian date), days to maturity (Julian date), plant height (cm), and lodging (1–9). Percent grain protein content was measured using GrainSpec NIR machine (FossElectric, United Kingdom).
2.2 Leaf rust
Artificially inoculated and irrigated nurseries were used to determine the field leaf rust reaction of the collections. Test entries were seeded in 1 m rows, with three replications each year. Puccinia triticina (Eriks.) urediniospores were used to inoculate susceptible spreader rows, regularly spaced between test rows. The inoculum was generated from a representative mixture of the virulence phenotypes found in Canada during the annual national virulence survey in the previous year (McCallum et al., 2021). After purification, characterization and multiplication of Puccinia triticina isolates, urediniospores were suspended in light mineral oil (Soltrol, Chevron Phillips Chemical Co.) and sprayed on the leaves of the spreader rows at early tillering. Subsequently, leaf rust developed on the spreader rows and urediniospores were windblown onto the test materials. Leaf rust severity (proportion of the flag leaf infected with leaf rust, %) was rated near maturity at the point of maximum infection using the modified Cobb scale (Peterson et al., 1948). The entire collection was tested for leaf rust resistance in nurseries at Morden in 2017 and 2018, collection ‘B’ was also evaluated at Morden in 2016.
To determine seedling resistance, each cultivar (five to six plants) was grown indoors to the two leaf stage and inoculated with urediniospores of single purified P. triticina isolates, as described by McCallum et al. (2021). The isolates used were 96-12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, 11-180-1 TDBG, 06-1-1 TDBG, and 77-2 TJBJ. Plants were rated to determine the infection type 12–14 days post-inoculation as described in McCallum et al. (2021).
2.3 Stem rust
The reaction of the Brazilian cultivars to Puccinia graminis Pers. f. sp. Tritici Eriks. and E. Henn. (Pgt) was tested both in the field and greenhouse. In the greenhouse, the collection was tested for reaction to Canadian races QCC, TPM, RHT, TMR, RKQ, QTH, MCC, QFC, and the African Ug99 race TTKSK, as described by Fetch et al. (2021). At 14 days post-inoculation, seedlings were scored for infection type (IT) using a 0–4 scale (Stakman and Levine, 1922), where ITs from 0 to 2 were deemed resistant and 3-4 were considered susceptible. All tests with Ug99 TTKSK were conducted in a Plant Pest Containment Level 3 (PPC3).
For the Morden field trials, entries were planted in 1 m rows with ranges of six rows flanked by susceptible spreader rows. The spreader rows were inoculated with a mixture of Pgt races (TPMKC, TMRTF, RKQSC, RHTSF, QTHJF, RTHJC and MCCFC with AAFC-MRDC isolate numbers 1373, 1,311, 1,312, 1,562, 1,347, 1,561, and 1,541 respectively; from the AAFC—Morden Research and Development Centre (MRDC) Pgt collection of isolates found in Canadian fields) at the jointing stage by spraying urediniospores suspended in a light mineral oil (Soltrol®170 Isoparaffin) on a day preceding anticipated overnight dew. Spores from heavily infected spreader rows caused infection of the experimental plots. The populations were rated for stem rust severity and infection response once the susceptible checks showed heavy disease (severities near 80%) which was approximately at anthesis. The modified Cobb scale was used to assess disease severity (Peterson et al., 1948), while infection response: resistant (R), moderately resistant (MR), moderately susceptible (MS), susceptible (S) was assessed using the scale of Roelfs et al. (1992).
2.4 Stripe rust
Stripe rust resistance was evaluated in field trials in Lethbridge, AB (2015—collection “A” and 2017) and Creston, BC (2017). A randomized complete block design with two replicates was used in Lethbridge in 2017, while there was no replication at the other sites. Spreaders for stripe rust were composed of a mixture of susceptible cultivars Morocco, SWS18 and AC Barrie. All trials relied on natural infection from the prevalent Puccinia striiformis f. sp. tritici (Pst) populations. Plants were scored for stripe rust infection at wheat anthesis, when the susceptible check lines showed over 50% rust infection. Stripe rust severity was recorded on a 0%–100% severity infection scale.
2.5 Powdery mildew
Under natural disease pressure, powdery mildew resistance was evaluated in Charlottetown (PEI) in 2017 and 2018. The trials were conducted using a randomized complete block design with two replicates. The entries were planted in a single 1 m-long rows. A 0 (none) to 9 (completely covered) scale was used to score the disease severity.
2.6 Fusarium head blight
The Brazilian collection was screened in inoculated FHB nurseries at Morden (MB) in 2017 and 2018 and Ottawa (ON) in 2021 using a randomized complete block design with three replicates. Plots consisted of a single 1 m row.
In Morden, Fusarium graminearum (Fg) corn kernel inoculum was prepared using four Fg isolates from the Henriquez Spring Wheat (HSW) collection: HSW-15–39 [3-acetyldeoxynivalenol (ADON) chemotype], HSW-15-87 (3-ADON), HSW-15–27 (15-ADON) and HSW-15–57 (15-ADON). Kernel inoculum was dispersed at a rate of 8 g per row on biweekly intervals, starting at Zadoks stage 31. The application of the inoculum was followed by irrigation three times a week using Cadman Irrigations Travellers with Briggs booms. Visual observations were taken at 18–21 days post inoculation for infected heads (disease incidence; DI) and spikelets (disease severity; DS) using a 0 to 10 scale, which were used to calculate FHB visual rating index (VRI: DI × DS) (Gilbert and Morgan, 2000). Wheat plots were manually harvested and threshed using a stationary combine, then seed was manually cleaned to prevent the loss of Fusarium-damaged kernels.
In Ottawa, a Fg inoculum was prepared with 1:1 corn and barley kernels inoculated with three Fg isolates: DAOMC178148 (15-ADON), DAOMC212678 (15-ADON), and DAOMC232369 (3-ADON) sourced from the Canadian Collection of Fungal Cultures at the Ottawa Research and Development Centre (ORDC). Isolates were chosen from those collected locally with high deoxynivalenol (DON) producing capacity. Inoculum was prepared as described in Xue et al. (2006). Inoculation with 12 g per line of fresh inoculum was performed twice, first application occurring when the earliest lines started stem elongation, before flag leaf emergence (Zadoks stage 31–36), and again 2 weeks later. Plots were irrigated daily applying approximately 1.5 cm of rain equivalent with wedge drive impact sprinklers. Flowering date (50% flowering) were recorded for each plot, and visual observations were made 21 days after flowering for each plot. Rating scales, harvest, and sample threshing were performed as in Morden (see description above).
For DON analysis, to make a whole-grain flour, one 25 g aliquot from the two replications of each cultivar was ground with a Perten Laboratory mill 3,310 to pass through a 0.4-mm screen. A single 1 g ground sub-sample was taken and extracted with 5 mL of methanol:water (1:9, vol:vol) in 10-mL plastic tubes, which were then subjected to end-over-end mixing for 1 hour, centrifuged for 5 min at 2000 rpm. DON analysis was conducted on the filtrate using the in-house enzyme-linked immunosorbent assay (ELISA) as described by Sinha et al. (1995). The accuracy of the ELISA procedures has been reported to be comparable to that of the gas chromatography method (Sinha and Savard, 1996). The limit of quantitation was 0.1 mg kg−1.
2.7 Genotyping
Genomic DNA bulks (10 plants/cultivar) were extracted from greenhouse-grown young leaf tissue with the Macherey-Nagel NucleoSpin 96 Plant II kit (Macherey-Nagel GmbH and Co. KG, Düren, Germany). dsDNA concentrations were determined using the fluorescence-based Quant-IT dsDNA Broad Range Assay kit (ThermoFisher Scientific, cat #Q33130) on the BMG FLUOstar Omega microplate reader with Omega MARS data analysis software (BMG Labtech GmbH, Ortenburg, Germany). The DNA bulks were diluted with sterile, distilled water to working concentrations of 10 ng/μL.
KASP markers were from the University of Bristol wheat MAS set (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/kasp_download.php?URL/MAS_data_May_2013.xls) and the references listed in Table 1. All primers were commercially prepared (Invitrogen) from sequences obtained from the literature.
TABLE 1 | Molecular markers analysed in the Brazilian material to predict the presence of specific loci/genes (Röder et al., 1998; Dreisigacker et al., 2016).
[image: Table 1]KASP reactions were assembled in either 96 (Bio-Rad, cat # HSP9655) or 384 well (4Titude, cat # 4ti-0387) PCR plates, following LGC Biosearch Technologies’ recommended protocol (https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-guide.pdf). KASP assay mix was prepared according to Smith and Maughan (Smith and Maughan, 2015). For the 96 well format, each PCR reaction contained 5 µL genomic DNA (10 ng/μL), 5 µL KASP 2x MasterMix (standard ROX, BioSearch Laboratories cat # KBS-1050-102) and 0.14 µL KASP assay mix containing two allele specific primers and one common primer (Invitrogen). For the 384 well format, each well contained 2.5 µL genomic DNA (10 ng/μL), 2.5 µL KASP MasterMix and 0.07 µL KASP assay mix. PCR amplifications were carried out in either a Bio-Rad C1000 Touch (Bio-Rad Laboratories (Canada) Ltd., Mississauga, ON), Eppendorf Master Cycler Gradient (Eppendorf Canada, Mississauga, ON) or Veriti 384 (Applied Biosystems, Foster City, CA, United States) thermal cyclers, following the recommended touchdown thermal cycling conditions. Fluorescence readings were performed in a multimode microplate reader: Spark 10M (Tecan, Männedorf, Switzerland) or FLUOstar Omega (BMG Labtech GmbH, Ortenburg, Germany). Data were imported into KlusterCaller genotyping software (LGC Biosearch Technologies, Hoddeston, Herts, United Kingdom) for analysis.
For SSR and STS markers resolved by capillary electrophoresis, the total PCR reaction volume was 20 µL. For SSR markers, each PCR reaction contained: 50 ng genomic DNA, 180 nM dye-labelled M13 primer (5′- CAC GAC GTT GTA AAA CGA C, labelled at the 5′ end with one of 6-FAM, PET, VIC, or NED), 20 nM M13 sequence-labelled forward primer, 200 nM unlabelled reverse primer, 1X Taq buffer containing (NH4)2SO4 (ThermoScientific, cat #B33), 1.5 mM MgCl2, 200 µM each dNTP and 1U Taq DNA polymerase (DreamTaq, ThermoScientific).
For the STS marker UMN10 (Liu et al., 2008) at Fhb1, the PCR conditions described by Liu and Anderson (2003) were adapted for capillary electrophoresis. Each PCR reaction contained: 50 ng genomic DNA, 50 mM dye-labelled (6-FAM or PET) M13 primer, 50 nM M13-labelled forward primer, 100 nM reverse primer, 1X Taq buffer containing (NH4)2SO4, 1.5 mM MgCl2, 200 µM each dNTP and 1U Taq DNA polymerase.
Marker 2AS_VPM_CAPS, diagnostic for the 2NS segment from Triticum ventricosum (Helguera et al., 2003), was also adapted for capillary electrophoresis. Each PCR reaction contained: 50 ng genomic DNA, 50 nM 6-FAM-labelled M13 primer, 50 nM M13-labelled URIC forward primer, 100 mM unlabelled reverse primer LN2, 1X Taq buffer containing (NH4)2SO4, 1.5 mM MgCl2, 200 µM each dNTP and 1U Taq DNA polymerase. PCR products were not digested with a restriction enzyme.
PCR cycling occurred in one of the above-mentioned thermal cyclers, with the marker-specific conditions detailed in the literature (Table 1). Amplification products were resolved by capillary electrophoresis using the ABI 3130xl or 3,500 Genetic Analyzers, with GeneScan 600 LIZ v. 2.0 (Applied Biosystems, Foster City, CA, United States) as the sizing standard. Alternatively, the PCR products were sent to “Centre d’expertise et de services Génome Québec” to be resolved on an Applied Biosystems 3730XL DNA analyzer. SSR and STS marker data were analyzed using GeneMapper 5 software (Applied Biosystems).
PCR and agarose gel protocols for cssfr5 (Lagudah et al., 2009) and csSr2_CAPS (Mago et al., 2011a) markers were as described in the literature.
2.8 Statistics
Agrobase Generation II (Agronomix Software Inc., Winnipeg, MB) was used to calculate the mean, least significant difference (LSD) and coefficient of variation (CV) of traits from agronomic field trials and Fusarium nurseries. RStudio (RStudio Team, 2015) and ggplot2 package (Wickham, 2016) were the main tools used for statistical calculation and plotting the results. Grain yield by grain protein was plotted using the libraries ggplot2 (Wickham, 2016), dplyr (Revelle, 2022), hrbrthemes (Rudis et al., 2020), viridis (Garnier et al., 2021), ggrepel (Slowikowski et al., 2021) and ggpmisc (Aphalo, 2022). Those libraries were also used to calculate and plot the bubble charts of leaf diseases and traits-related with FHB. Pearson’s correlation coefficients were calculated for traits related with FHB using psych (Revelle, 2022), and plotted using corrplot (Wei and Simko, 2021) packages in R. Boxplots representing severity for each cultivar to leaf rust, stripe rust, stem rust and powdery mildew were computed and plotted with ggplot2 (Wickham, 2016) and stat_summary. Those were also used to calculate and to prepare the boxplot charts of FHB traits classified by collection. Ggarrange function in ggpubr package (Kassambara, 2020) was used to combine ggplot2 charts in a same figure. The percent stacked bar chart was designed with ggplot2 (Wickham, 2016).
3 RESULTS
3.1 Germplasm and agronomic performance
There was a considerable parental diversity in the pedigrees of the collection cultivars which suggests there is high degree of genetic variability present in the material (Supplementary Table S1). Cultivars varied widely with respect to agronomic performance as indicated by the wide range of grain yield, thousand kernel weight, test weight, heading date, maturity, plant height and protein content (Table 2). Some of the Brazilian cultivars performed well in eastern Canada. In Ottawa 2017, the highest yielding cultivar was Celebra from the collection, and 30 other Brazilian cultivars were superior or statistically equal to the highest yielding Canadian check, AAC Scotia. In Beloeil 2018, the Canadian line FL62R1 produced the highest grain yield; however, 10 Brazilian cultivars had statistically similar grain yield (Figure 1). Over both years, the Brazilian collection averaged higher mean thousand kernel weight and mean test weight, later mean maturity, shorter mean plant height compared to the mean of the Canadian checks.
TABLE 2 | Mean of trial, maximum mean among Brazilian cultivars and among Canadian checks, range, least significant difference (LSD) and coefficient of variation (CV) of agronomical traits in two field trials in east Canada in 2017 (Ottawa, ON) and 2018 (St-Mathieu-de-Beloeil, QC).
[image: Table 2][image: Figure 1]FIGURE 1 | Grain yield by grain protein plot of the Brazilian collections and Canadian checks evaluated at Saint-Mathieu-de-Beloeil in 2018. The material was divided in collections: “A”—cultivars registered in Brazil from 1986 to 2012, but not recommended for cultivation in Brazil after 2015; “B”: cultivars registered from 1999 to 2016 and still in recommendation to be cultivated in 2015; “AB”—cultivars present in both collections, still in recommendation after 2015. “C” represents Canadian checks. The linear regression line is in black and the confidence interval (0.95) is displayed in gray.
Grain yield and grain protein content were significantly negatively correlated in the 2018 trial (Pearson correlation: −0.88, p = 0.02), but not in the 2017 trial (Pearson correlation: −0.63, p = 0.18). Cultivars from Brazilian collection “B” generally had higher grain yield and intermediate protein content compared to collection “A” (Figure 1).
3.2 Rusts and powdery mildew
Good disease pressure was observed in the leaf rust nurseries which was demonstrated by the high mean severity of the susceptible check, AC Foremost (76.7% and 60% in 2017 and 2018, respectively). Brazilian cultivars showed good resistance to Canadian leaf rust isolates (Figure 2; Table 3) with over 80% of Brazilian cultivars having a severity of 10% or less. At the seedling stage, 43 Brazilian cultivars were resistant (scored below “3”) to the six Canadian races (Table 3). Only five (BR 18, BRS Pardela, CD 104, Pampeano and TEC Vigore) were susceptible at seedling stage to all six races; however, these cultivars appeared to possess adult leaf rust resistance. According to the molecular markers results, none of these five cultivars possess Lr34, Lr37, Lr16, Lr26, or Lr67; except TEC Vigore that has Lr16. Adult plant resistance (APR), not based on Lr34 or Lr67, was observed in the Brazilian cultivars Abalone, ORS 1401, ORS 1403 and Safira (Table 3).
[image: Figure 2]FIGURE 2 | Chart representing the average reaction of the Brazilian cultivars to leaf rust (bubble size), stripe rust (y-axis), stem rust (x-axis) and powdery mildew (color intensity) in field nurseries in Canada.
TABLE 3 | Characterization of the Brazilian collections to leaf rust (Puccinia triticina). Reaction at seedling stage of Brazilian wheat cultivars to Canadian leaf rust isolates, comparison of resistance reaction between Canada and Brazil (Dotto et al., 2005; Informações técnicas para trigo e triticale - Safra, 2012, 2011; Cunha and Caierão, 2014; Cunha et al., 2016; Silva et al., 2017; Franco and Evangelista, 2018; Informações técnicas para trigo e triticale - Safra, 2019, 2018; Informações técnicas para trigo e triticale - Safra, 2020, 2020; Informações técnicas para trigo e triticale - Safra, 2022, 2022). Prediction of the resistance genes in the collection by genotypage of genes/loci related with leaf rust resistance. APR: adult plant resistance determined phenotypically by comparing seedling and adult plant resistance (no indication of APR presence in the table does not mean necessarily absence of APR); pos: positive allele, presence of the resistant allele; neg: negative, presence of the susceptible allele; hetero: heterozygosity in the locus; NSD: not sufficient data.
[image: Table 3]Markers associated with wheat rust resistance or multiple disease resistance loci such as Lr34/Yr18/Pm38/Sr57/Ltn1, Lr67/Yr46/Sr55/Pm46/Ltn3, Lr37/Yr17/Sr38/blast, Lr16/Sr23, Sr2/Yr20/Lr27/PM/pseudo-black chaff, and SrCad/Bt10 were evaluated (Tables 3, 4 and 5). The frequency of the resistant alleles (Figure 6) to those genes were below 25% in the Brazilian collections, and Lr67 and SrCad were completely absent. Lr34 was present in only 10 cultivars, and Lr16 was identified in 5 cultivars. The presence of the T. ventricosum 2NS translocation, which confers blast resistance besides rust resistance, was present in CD 116, ORS 1401 and ORS 1403, while CD 121, CD 122, Celebra and Tbio Pioneiro were showed to be heterogeneous for the translocation.
TABLE 4 | Characterization of the Brazilian collections to stem rust (Puccinia graminis). Reaction at seedling stage of Brazilian wheat cultivars to Canadian stem rust isolates and TTKSK, and field data in Canada. Prediction of the resistance genes in the collection by genotypage of genes/loci related with stem rust resistance. Pos: positive allele, presence of the resistant allele; neg: negative, presence of the susceptible allele; H: heterozygosity in the locus; NSD: not sufficient data; R: resistance; MR: moderate resistance; I: intermediate; MS: moderate susceptibility; S: susceptibility.
[image: Table 4]TABLE 5 | Comparison of FHB reaction in ancient and more contemporary spring wheat Brazilian cultivars in Canada (mean of FHB index and DON, Ottawa 2021 and Morden 2017 and 2018 under artificial inoculation and irrigation) with the classification to FHB in Brazil (Dotto et al., 2005; Informações técnicas para trigo e triticale - Safra, 2012, 2011; Cunha and Caierão, 2014; Cunha et al., 2016; Silva et al., 2017; Franco and Evangelista, 2018; Informações técnicas para trigo e triticale - Safra, 2019, 2018; Informações técnicas para trigo e triticale - Safra, 2020, 2020; Informações técnicas para trigo e triticale - Safra, 2022, 2022). Prediction of the resistance genes in the collection by genotypage of genes/loci related with FHB and plant height (Rht genes). Markers related with resistance genes, positive allele (pos) means presence of the resistant allele and negative (neg) represents the susceptible allele. For the Rht genes, positive represents the mutant allele (semi-dwarf) and negative is the wild-type. Hetero: heterozygosity in the locus; NSD: not sufficient data; R: resistance; MR: moderate resistance; MS: moderate susceptibility; S: susceptibility.
[image: Table 5]Only collection “B” was tested at seedling stage for their reaction to nine Canadian P. graminis f. sp. tritici (Pgt) races and the Ug99 race “TTKSK” (Table 4). Of the 42 cultivars tested 37 were resistant to the Pgt races, and 28 cultivars showed seedling resistance to the Ug99 stem rust race TTKSK. Both collections were field evaluated at Morden (MB) in 2017 and 2018 with severity ranging from 1R to 90S (Table 3; Figure 2). ORS 1403 demonstrated excellent stem rust resistance. This cultivar demonstrated seedling resistant to all 9 Canadian races and TTKSK, and it was rated 1R in the field. Molecular analyses indicated that ORS 1403 carries the 2NS translocation (Sr38), but does not have the DNA markers for Sr31 (1RS:1BL), Sr57, Sr23, SrCad, or Sr2. The rye translocation (1RS:1BL), which has been associated with leaf, stem and stripe rust and powdery mildew resistance, was present in 14% of the cultivars (Figure 6; Table 4).
When tested for stripe rust resistance, 46% of the Brazilian cultivars had average severity equal to or less than 30% in 2015 and 2017 (Figure 2). In general, the Brazilian material possessed less stripe rust resistance compared to leaf rust resistance. 26% of Brazilian cultivars tested had stripe rust severity over 50%.
The powdery mildew nurseries in 2017 and 2018 had maximum plot severities of 70% and 60%, respectively. Among Brazilian cultivars evaluated, 53% had powdery mildew severity scores less than or equal to 20% (Figure 2).
Figure 2 demonstrates the reaction of each cultivar to leaf rust, stripe rust, stem rust and powdery mildew. Four cultivars were found to possess superior resistance to the three rusts and powdery mildew: ORS 1403, CD 121, BRS Camboata and Tbio Mestre.
3.3 Fusarium head blight
Results of the Brazilian collections at the FHB nurseries at Morden 2017, 2018 and Ottawa 2021 showed significant positive correlations among the traits associated with FHB disease rating (Incidence, Severity, FHB Index and DON). These disease rating parameters were negatively correlated with anthesis and plant height (Figure 3).
[image: Figure 3]FIGURE 3 | Correlation matrix of traits related with Fusarium head blight (FHB): Anthesis (days), Plant height (PltHeight, cm), incidence (FHBInc, %), severity (FHBSev, %), index (FHBInd, %) and Deoxynivalenol (DON, ppm). The distribution of each variable is shown on the diagonal. On the bottom of the diagonal, the bivariate scatter plots with a fitted line are displayed. On the top of the diagonal, the value of the correlation plus the significance level as stars. Each significance level is associated to a symbol: 0.001: “***”, 0.01: “**”, 0.05: “*”. The data is derived from the evaluation of Brazilian cultivars grew at Ottawa 2021 and at Morden 2017 and 2018 under artificial inoculation and irrigation.
When the FHB ratings and DON data were considered by collection, there was a trend to lower FHB disease scores (Incidence, Severity, FHB index, and DON) from collection ‘A’ (older cultivars), to cultivars in collection ‘B’ (recent cultivars) (Figures 4A–D). Improved FHB resistance of collection B is also evident in Figure 5, where these cultivars were mostly situated in the bottom left quadrant of the chart indicating a FHB index below 30% and DON content below 20 ppm. In general, Canadian checks were earlier maturing than Brazilian cultivars, with some exceptions (Figure 4E). While there was a significant negative correlation between both FHB index and DON with plant height, some shorter Brazilian cultivars with good FHB resistance were identified (Table 3; e.g., Fundacep 300, Fundacep Horizonte, Jadeite and LG Oro).
[image: Figure 4]FIGURE 4 | Boxplot charts representing the distribution frequency of the analysed Brazilian cultivars and Canadian checks in traits related with Fusarium head blight (FHB): incidence (A), severity (B), index (C), Deoxynivalenol (DON (D)), anthesis (E) and plant height (F). The Brazilian cultivars were divided by collections: “A” present in the older collection, “B” present in the newer collection, “AB” in both collections. “C” refers to Canadian checks. The data is derived from the evaluation of Brazilian cultivars grew at Ottawa 2021 and at Morden 2017 and 2018 under artificial inoculation and irrigation.
[image: Figure 5]FIGURE 5 | Each analysed cultivar plotted in a bubble plot with FHB index as y-axis, DON accumulation at x-axis and plant height—size of the bubble. The cultivars were classified by the collections, which created a fourth dimension (color) in the plot: “A” red, “B” blue, “AB” green, “C” purple, which refers to Canadian checks.
FHB resistance within the collections does not appear to be conferred by Fhb1 or Fhb2, because cultivars had the susceptible alleles for markers close to those loci (Table 5; Figure 6). In contrast, FHB QTL 3AL, derived from Frontana, was identified in 24% of the cultivars tested, and 13% of the cultivars tested positive for resistant alleles associated with 5AS FHB QTL. The KASP marker IWA7777 developed for the 5AS FHB QTL (Pandrurangan et al., 2021) gave positive alleles for both Frontana and Sumai-3. Thus, it is not possible to distinguish the source of this QTL using IWA7777 marker. For SSR marker gwm293, Frontana (211bp) and Sumai-3 (217bp) amplified different size alleles. The cultivars that amplified the same gwm293 allele as Frontana for FHB 5AS were: Ametista (heterozygous), BRS179, BRS254, BRS 296, BRS 328, BRS Parrudo, CD 150, CD 151, Embrapa 22, Embrapa 42, IPR 136, TEC Triunfo; and the cultivars that amplified same allele as Sumai-3 for FHB 5AS (gwm293) were: CD 116, CD 121, Fundacep 52, Fundacep Bravo. Four cultivars had the alleles associated with FHB resistance for the QTL on 5AS and 3AL: BRS 179, CD 121, CD 150 and CD 151 (Table 5). The comparison of the cultivars with the allele associated with FHB resistance at FHB 5AS QTL with cultivars with the susceptible allele found no significative difference among the two groups for FHB index (p = 0.89) and DON level (p = 0.69) (data not shown).
[image: Figure 6]FIGURE 6 | Alleles frequency in the Brazilian collection. The Brazilian cultivars (106, except Rht8—60 cultivars, Rht-B1—101 cultivars and Rht-D1—103 cultivars) were genotyped with molecular markers related with genes/loci of traits of interest. Each material was classified as positive (colored as black), negative (dark grey), heterozygous (light grey) or indetermined (null or questionable allele, white). Markers related with resistance genes, positive allele means presence of the resistant allele and negative represents the susceptible allele. For the 1RS:1BL, positive allele represents presence of the translocation. For all others, positive represents the mutant allele and negative is the wild-type.
Through molecular marker analysis, the presence of the semi-dwarf alleles, Rht-B1b and Rht-D1b, was predicted. The semi-dwarf Rht-B1b allele was present in 77.2% of the cultivars tested compared to only 15.5% of cultivars that carried the Rht-D1b allele (Figure 6). Only six cultivars did not carry either the Rht-B1b or the Rht-D1b semi-dwarf alleles (Table 5), of which two cultivars (CD104 and CD114) tested positive for the Rht8 semi-dwarf allele. These two Brazilian cultivars may have either Akakomugi or Strampelli in their ancestry because the Rht8 marker is only diagnostic in germplasm with these exotic cultivars in their lineage (Ellis et al., 2007). The effect of the Rht genes on plant height and FHB resistance is shown in Figure 7. T-tests indicated significant differences in plant height between the B1a-D1a cultivars and cultivars with either the Rht-B1b or the Rht-D1b allele. In the presence of the Rht-D1b allele, FHB symptoms and DON accumulation were higher compared to cultivars without it. The presence of the Rht-B1b allele, on average, did not significantly affect the FHB symptoms and DON accumulation in the cultivars tested (Figure 7).
[image: Figure 7]FIGURE 7 | Plant height (A), FHB index (B) and DON accumulation (C) in the wheat collections tested at Morden in 2017 and 2018 classified by the presence (“a” haplotype) or absence (“b” haplotype) of the mutation at Rht-B1 and Rht-D1 genes predicted by molecular markers. Effect of each class B1a- D1a, B1a-D1b and B1b-D1a in those traits and comparison of the means of each paired class (t-test).
4 DISCUSSION
Wheat cultivars from both countries have been developed with good performance in their agroclimatic conditions and good levels of resistance to important economic diseases. In this study, we evaluated the agronomic performance Brazilian cultivars under Canadian growing conditions, we assessed the reaction to Canadian isolates/pathogens and hypothesize as to the presence of certain genes. The final aim was to understand the weakness and strengths of the Brazilian germplasm in order to effectively use it with Canadian genetics to increase genetic diversity, improve genetic gain and resilience in spring wheat.
In general, the Brazilian spring wheat collection with more recently released cultivars, had intermediate protein and higher grain yield compared to the older collection (Figure 1). The well-known negative correlation between yield and protein was evident in 2018 but the yield-protein content relationship was not significant in 2017. Most Brazilian cultivars tested that plotted below the linear regression line of yield versus protein (Figure 1), were removed from the 2022 Brazilian recommendation list of cultivars (Supplementary Table S1). The exceptions were Marfim (hard red wheat with white flour) and Campeiro (hard red wheat with crackers-flour type), which have specific end-use quality attributes.
The genetic basis for disease resistance can be a determining factor in the durability of disease resistance. Frequently, rust resistance genes that were previously effective at controlling the disease, lose their effectiveness due to changes in the pathogen population, resulting in susceptibility. Recent examples are the evolution of virulence to the leaf rust resistance gene Lr21 which conditioned complete resistance in Canada until the emergence of virulent races in 2012 (McCallum et al., 2018), or Sr31 and/or Sr24 stem rust resistance genes that were overcome by Ug99 isolates and variants in Africa (Fetch et al., 2021). However, disease resistance has never been overcome for the durable multi-pest resistance genes Lr34 and Lr46 (Bokore et al., 2022). To avoid resistance genes becoming ineffective, it is important to diversify the genetics and pyramidize genes, using durable adult plant resistance genes and/or minor genes.
Wheat breeders have been able to achieve high levels of resistance for leaf rust in both countries. In Canada, some of the commonly deployed leaf rust resistance genes include Lr1, Lr2a, Lr13, Lr14a, Lr16, Lr21, Lr34, and more recently Lr46 (McCallum et al., 2016; Bokore et al., 2022). The Brazilian wheat cultivars had excellent field and seedling resistance to wheat leaf rust in Canada. However, only a few Brazilian cultivars were positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat (McCallum et al., 2007; McCallum et al., 2012). Therefore, the Brazilian wheat germplasm likely could be used to diversify and improve the leaf rust resistance of Canadian wheat.
Many Brazilian cultivars tested have good adult plant resistance (APR) because they were seedling susceptible to one or more common Canadian leaf rust races but were at least moderately resistant in the field. In Brazil, these cultivars with APR to leaf rust were classified from MRR to S (Table 3) (Dotto et al., 2005; Informações técnicas para trigo e triticale - Safra, 2012, 2011; Cunha and Caierão, 2014; Cunha et al., 2016; Silva et al., 2017; Franco and Evangelista, 2018; Informações técnicas para trigo e triticale - Safra, 2019, 2018; Informações técnicas para trigo e triticale - Safra, 2020, 2020; Informações técnicas para trigo e triticale - Safra, 2022, 2022). Molecular marker analyses indicate that APR is mostly conferred by genes other than Lr34 or Lr67. Lr46 may be a source of APR in the Brazilian germplasm or the resistance could be derived from genes not yet identified. Genetic studies to better understand the Brazilian leaf rust resistance are planned with expectations of identification of new sources of durable resistance, such as that identified in the older Brazilian cultivars Toropi and Frontana. The Brazilian cultivar Toropi has excellent adult plant resistance (Barcellos et al., 2000; Rosa et al., 2019) as does Frontana (Dyck and Samborski, 1982; Singh and Rajaram, 1992), which was the original source of Lr34 resistance complex in the majority of CIMMYT and North American hard red spring wheat cultivars. The genetic resistance of Toropi is complex, involving race-specific and non-specific adult plant genes, being the last denominated as Lr78 (Barcellos et al., 2000; Wesp-Guterres et al., 2013; Casassola et al., 2015; Kolmer et al., 2018; Rosa et al., 2019).
The common leaf rust differential set used to differentiate and denominate P. triticina isolates is inadequate for testing in Brazil (Barcellos and Turra, pers. comm.). The seedling differential set used in Brazil to determine the virulence phenotype of the isolates in 2013 was composed by the genes: set 1- Lr1, Lr2a, Lr2c, Lr3; set 2- Lr9, Lr16, Lr24, Lr26; set 3- Lr3ka, Lr11, Lr17, Lr30; set 4- Lr10, Lr18, Lr21, Lr23; set 5- Lr14a, Lr14b, Lr27+Lr31, Lr20; additional lines Lr3bg, ORL 4002 [described by Rosa (2013)]. The seedling gene conferring resistance to ORL 4002 has not been identified. From 2004 to 2007, the predominant race was MDT-MT 4002 avirulent, which was surpassed by the race MDT-MT 4002 virulent. This race was predominant from 2007 to 2010. In 2007, the new races TDT-MT and TFT-MT were identified, and TFT-MT represented approximately 70% of the isolates from 2013 to 2017. Since 2019, variants of TFT and MDT were identified: MPP-MT, TFT-HT, TPT-MT, TNT-MT, TDT-HT. In Canada, the predominant race in 2019 was MNPS, identified first in 2015, and it has been the predominant race since 2016. In 2018, TBBG made up 29% of races and was virulent on Lr21 (McCallum et al., 2021). There are some differences in the fourth set between Brazil and Canada (LrB, Lr10, Lr14a, Lr18), which makes comparison difficult. The Canadian MNPS would be MNP-L or MNP-M in Brazil; while TBBG would be denominated TBB-N or TBB-P. In general, the Brazilian leaf rust races are more virulent than in Canada. In 2023, the Brazilian differential set included Lr51 and Lr41 (Nogal). The cultivars Citrino (Lr26 + other gene(s)), Toruk, ORS1403 recently became susceptible to leaf rust in Brazil. However, in Canada, the last two cultivars were still resistant in seedling and field tests (Table 3). Besides the seedling resistance of ORS1403, this cultivar also demonstrated as yet unidentified APR.
Resistance for stem rust was variable within the Brazilian cultivars. Stem rust has not been a disease of economic importance in Brazil for decades. However, susceptible pustules of stem rust were identified in 2022 on wheat grown at southern Brazil. The most important genes conferring stem rust resistance in Brazilian germplasm at the present time are probably Sr24 and Sr31 (1BL.1RS translocation) (Barcellos, pers. comm.). The wheat-rye translocation, which is related with multiple disease resistance, has been used by Brazilian and North American breeding programs because it can confer higher yield in some environments, however, it is also related with poor bread quality. This translocation was present in 14% of the cultivars (Figure 6; Table 4). Previously, it was estimated that 1BL.1RS was present in 30% of the area cultivated with wheat in Brazil in 2004 (Germán et al., 2007). The difference in prevalence of 1BL.1RS may reflect the choice by Brazilian producers of the higher yielding cultivars that also carry the 1BL.1RS translocation.
Many cultivars had high levels of both seedling and field stem rust resistance to Canadian Pgt isolates. Many also had seedling resistance to TTKSK, one of the Ug99 strains from Africa. Twelve cultivars were tested in Kenya in 2015, and some showed good resistance to the African Pgt races (Ametista 30MSS, Campeiro 40MSS, Jadeite 30MSS, Marfim 40MSS, Mirante 60MSS, ORS1401 40MSS, ORS1403 20MR, ORS1405 50MSS, ORS Vintecinco 60MSS, Quartzo 60S, Safira 40MSS, Topazio 20M) (Barcellos, unpublished results). The stem rust resistance genes in these Brazilian cultivars might be different from those in Canadian cultivars making them useful for diversifying the base of stem rust resistance in Canadian wheat. Studies to characterize Brazilian germplasm, such as the one reported here, are valuable for both Brazilian and Canadian researchers.
The Brazilian cultivars had considerable variability for both stripe rust and powdery mildew resistance, with many cultivars being susceptible to either one or the other or both in Canada. However, many cultivars had good levels of stripe rust or powdery mildew resistance, and some had resistance to both (Figure 2). Higher susceptibility for stripe rust than leaf rust in the Brazilian germplasm could be explained by the absence of the first disease in Brazil for decades, so breeding for resistance to stripe rust has been practically absent. Few breeding programs have the capacity to use molecular marker selection in Brazil, so the selections are based on the pedigree and phenotyping in the field, which was impossible without the disease. Recently, Brazil and Canada have experienced stripe rust epidemics, even in warmer regions (Rioux et al., 2015). Therefore, a focus will be needed to introduce stripe rust resistance and to characterize the genetics of the germplasm. This study would be helpful, and Canadian wheat might be a useful source of stripe rust resistance in Brazil. In Canada, stripe rust resistance breeding had not been a priority until after 2000 since it was confined mainly to southern Alberta (McCallum et al., 2007). However, with the spread of stripe rust through the Great Plains of the United States and into the Canadian provinces of Manitoba, Saskatchewan and Alberta since 2000, resistance to stripe rust has become a more urgent priority. One major source of resistance initially in Canadian wheat cultivars was Yr18 = Lr34 that had been incorporated into many cultivars for leaf rust resistance, but also conferred stripe rust resistance (McCallum et al., 2007). Powdery mildew is an economic important disease in eastern Canada. However, it is normally of minor importance in western Canada where the majority of wheat is grown, due to the generally warmer and drier growing conditions, which are not favorable to the pathogen. Wheat cultivars are selected for resistance in eastern Canada for powdery mildew resistance but not in western Canada. In Brazil, the environmental conditions favor the disease development, and genetic resistance is key to manage it. In general, Pm4a, Pm4b, Pm3f, Pm8 and Pm17 are effective in southern Brazil (Lau et al., 2020).
Cultivars were identified that combined resistance to FHB, leaf, stem, stripe rust and powdery mildew including: ORS 1403, CD 121, BRS Camboata and Tbio Mestre. This could be due to pyramids of resistance genes specific to each disease and/or the presence of multi-pest resistance genes, although the best-known multi-pest resistance gene Lr34 was not found in these multi-disease resistant cultivars. The presence of Lr46, another important multi-pest resistance gene should be investigated, which should be facilitated once a diagnostic molecular marker is available.
FHB resistance is less well understood, but Canadians and Brazilians have developed cultivars with good FHB resistance. Canadian wheat cultivars were built from a moderate level of resistance in cultivars such as AC Barrie by adding Fhb1 from Sumai-3 and other Asian sources (Thambugala et al., 2020). In contrast, FHB resistance in Brazilian wheat is not based on Sumai-3, as molecular markers for Fhb1 and Fhb2 were absent in the Brazilian material tested. A similar result was reported by Mellers et al. (2020). In a panel of 558 bread wheat accessions maintained by Brazilian Agricultural Research Corporation (EMBRAPA)-Trigo, which represents wheat germplasm released between 1852 and 2013, only two Brazilian cultivars amplified the resistance allele of Fhb1, Peladinho and BR-43, released in 1978 and 1991, respectively. Neither cultivar was included in the present study. The FHB resistance in the Brazilian wheat seems to be based on resistance from the Brazilian cultivar “Frontana”. The presence of the 3AL QTL, derived from Frontana, and the 5AS QTL (identified in both Frontana and Sumai-3) was shown, based on molecular marker testing, in 11 and 28 cultivars, respectively. However, a comparison of the FHB index and DON level of cultivars with the positive allele for 5AS QTL and cultivars with the negative allele indicated no significative difference among the cultivars. Therefore, the effect of FHB 5AS QTL alone was not enough to confer resistance. The results of the 3AL QTL marker testing were not adequate to predict the presence/absence of these QTL in many of the cultivars, so similar analysis of the effect of 3AL QTL was not possible.
Cultivars that had the highest FHB index and DON levels in Canada were classified as MS or S in Brazil (Dotto et al., 2005; Informações técnicas para trigo e triticale - Safra, 2012, 2011; Informações técnicas para trigo e triticale - Safra, 2013, 2013; Cunha and Caierão, 2014; Riede, 2014; Cunha et al., 2016; Silva et al., 2017; Franco and Evangelista, 2018; Informações técnicas para trigo e triticale - Safra, 2019, 2018; Informações técnicas para trigo e triticale - Safra, 2020, 2020; Informações técnicas para trigo e triticale - Safra, 2022, 2022). However, some Brazilian cultivars classified as MS or S in Brazil performed well in Canada (Table 5). The climate conditions in Brazil are frequently favorable to the development of Fusarium infection, with temperatures over 20°C and high precipitation during anthesis. The inoculum pressure is very high, as the fungi can survive in many native species and previous crops (Chiotta et al., 2021). Wheat is mainly rotated with soybean and corn in southern Brazil, where wheat is predominantly cultivated. In that region, no-till is the predominant farming system.
Besides climate, farming system and inoculum pressure, another difference between Canada and Brazil that could cause the difference in the disease resistance rating of cultivars is the composition of the F. graminearum species complex (FGSC). In a multi-year survey of more than 200 wheat fields assessed and more than 600 isolates, the FGSC was composed by F. graminearum (83%) of the 15-ADON genotype, Fusarium meridionale (12.8%) and Fusarium asiaticum (0.4%) of the nivalenol (NIV) genotype, and Fusarium cortaderiae (2.5%) and Fusarium austroamericanum (0.9%) with either the NIV or the 3-ADON genotype (Del Ponte et al., 2015). In Canada, F. graminearum sensu stricto is prevalent (Amarasinghe et al., 2015; Amarasinghe et al., 2019). In some Canadian provinces, the native 15-ADON chemotypes are being displaced by the more aggressive 3-ADON chemotypes, and new NIV-type as well as NX-2 populations have emerged (Kelly et al., 2016; Kelly and Ward, 2018).
The presence of the semi-dwarf alleles was predicted in most of the Brazilian cultivars. Over 75% of the cultivars possessed the semi-dwarf allele of Rht-B1, while the Rht-D1 and Rht-8 were less frequent (Figure 6). While Rht genes reduce plant height, they are also associated with increased susceptibility to FHB (Draeger et al., 2007; Srinivasachary et al., 2008, 2009; Lv et al., 2014). A significant negative correlation between plant height and FHB was detected (Figure 3). The presence of the Rht-B1b or Rht-D1b alleles significantly reduced plant height although there was no significant difference between the plant height reduction of the two genes. The presence of Rht-D1b significantly increase FHB index scores and DON accumulation compared to the Rht-D1a allele. This trend was not observed for the Rht-B1 cultivars (Figure 6). As previously mentioned, Brazilian breeding selections were dependent on phenotyping in the field. Therefore, the Rht-B1b was probably indirectly selected due to better FHB resistance in the shorter plants. The success through the years of improving FHB in the Brazilian germplasm is visualized in Figure 4, where most recent cultivars (collection “B”) have lower Fusarium ratings and DON content compared to older cultivars. Selections for reduced plant height and days to anthesis was generally similar across the collections. This study indicates that Rht-B1 is a preferred option compared to Rht-D1 to reduce plant height with less effect on FHB susceptibility. A similar result was previously reported for winter wheat in Ontario, Canada (Tamburic-Ilincic and Rosa, 2017; Tamburic-Ilincic and Rosa, 2019). Surprisingly, the frequency of Rht-B1b (28%) and Rht-D1b (45%) in Southern Great Plains, eastern United States and Canada, are contrary to the proportions reported for the Brazilian collections (Guedira et al., 2010).
Wheat blast (Magnaporthe oryzae Triticum, MoT) is a major threat to wheat production in Brazil, other South America and African countries (Li et al., 2015; Callaway, 2016; Tembo et al., 2020; Singh et al., 2021; Hossain, 2022). There are concerns that the pathogen may continue to spread to other parts of the world, including Canada (Kohli et al., 2011; Duveiller et al., 2016; Ceresini et al., 2019). Once the symptoms of blast appear in the spikes, control methods are not efficient and total crop loss can result. Resistance is mostly limited to 2NS carriers, which is being eroded by the newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources (Singh et al., 2021). The translocated 2NS segment is closely linked to Sr38, Yr17 and Lr37 (Bariana and McIntosh, 2011), and some Canadian cultivars have the translocation such as CDC Stanley (Randhawa et al., 2013). Some Brazilian cultivars described in this study could be used as source of 2NS blast resistance for Canadian wheat breeding.
Generally, the Brazilian wheat cultivars performed and yielded well under eastern Canadian growing conditions. Resistance was generally very good for FHB and leaf rust, but more variable between cultivars for stem and stripe rust and powdery mildew. Since the genetic backgrounds of these cultivars are generally different from Canadian wheat, they represent opportunities to improve agronomic performance, and resistance to these diseases. A better understanding of the genetics that condition resistance to each of these diseases will be helpful in parental selection and the development of molecular markers for marker assisted breeding.
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Modern plant breeding programs collect several data types such as weather, images, and secondary or associated traits besides the main trait (e.g., grain yield). Genomic data is high-dimensional and often over-crowds smaller data types when naively combined to explain the response variable. There is a need to develop methods able to effectively combine different data types of differing sizes to improve predictions. Additionally, in the face of changing climate conditions, there is a need to develop methods able to effectively combine weather information with genotype data to predict the performance of lines better. In this work, we develop a novel three-stage classifier to predict multi-class traits by combining three data types—genomic, weather, and secondary trait. The method addressed various challenges in this problem, such as confounding, differing sizes of data types, and threshold optimization. The method was examined in different settings, including binary and multi-class responses, various penalization schemes, and class balances. Then, our method was compared to standard machine learning methods such as random forests and support vector machines using various classification accuracy metrics and using model size to evaluate the sparsity of the model. The results showed that our method performed similarly to or better than machine learning methods across various settings. More importantly, the classifiers obtained were highly sparse, allowing for a straightforward interpretation of relationships between the response and the selected predictors.
Keywords: genomic selection, classification, multi-omics, sparsity, data integration
1 INTRODUCTION
Modern plant breeding programs are collecting an increasing amount of data of various types from several sources such as multiple secondary phenotypic traits (other than the main trait of interest), high-throughput phenotyping data, weather data, hyper-spectral images, and different types of -omics data such as genomics, transcriptomics, proteomics, metabolomics, etc. It is believed that many secondary phenotypic traits are often positively associated with the main trait, a fact that most prediction models for genomic selection (GS) do not take advantage of. Given the availability of different data mentioned above, an important question is how these various data types could be integrated to improve prediction. Integrating different data types becomes a complex challenge when the data types have very different dimensions. In the case of GS, the high-dimensional nature of the genomic data is well known. Genomic data are often found to be in the form of Single Nucleotide Polymorphisms (SNPs), which can range from the thousands to millions. On the other hand, data types such as secondary traits can be fewer than 20. Naive concatenation of various data types into existing GS models could lead to poor results because of the differing sizes. Genomic variables would out-compete all other variable types in terms of explaining the variation in the response due to their sheer numbers. A key challenge in such scenarios is to build models that are able to access the unique information presented in each data type to improve the prediction capabilities.
Early attempts at integration of data types for GS show promising results (Schrag et al., 2018). Lopez-Cruz et al. (2020) proposed the concept of a penalized selection index, where the selection index (SI) was linear combinations of high-dimensional secondary traits that maximized the correlation between the primary trait and the secondary traits. The SI was used in a G-BLUP model as a covariate or using bivariate methods with SI and main trait as the two responses. Arouisse et al. (2021) examined the possibility of other dimensionality reduction methods such as penalized regression and random forests to reduce the dimension of the secondary trait set and used them in bivariate or multivariate settings. Sandhu et al. (2021) explored the possibility of including all secondary traits along with the main trait in multivariate GS methods and hence their approach was optimal in the presence of a small number of secondary traits.
Another underdeveloped area of research involves developing models for non-Gaussian phenotypic traits. Crop yield, a continuous trait (can be modeled with a Gaussian distribution), is often the most important trait that plant breeding programs want to improve. Some other continuous traits that breeders focus on include quality (shape, size, and other aesthetic qualities), time to maturity, plant height, and seed weight. Sometimes, breeders are also interested in improving categorical phenotypic traits such as resistance to drought or salinity, susceptibility to disease, and days to maturity or flowering. While extensive literature covers the prediction of continuous traits, there is limited literature developing GS models for classification.
Since the seminal work of (Meuwissen et al., 2001), genomic selection (GS) models harnessed the genomic marker information combined with observed phenotypic data to improve the prediction of unobserved phenotypic values. Most of the GS methods proposed over the last 2 decades were developed for continuous phenotypic traits, which were assumed to be normally distributed (Kizilkaya et al., 2014; Montesinos-López et al., 2015a; Montesinos-López et al., 2017; Silveira et al., 2019). However, several crops have categorical traits that have agronomic importance (Iwata et al., 2013; Martínez-García et al., 2017; Sousa et al., 2019). These categorical traits could be binary or multicategory in nature. Some examples of such traits include resistance to disease, resistance to salinity, degree of infection, fruit quality, fruit external appearance, fruit size, and the number of reproductive nodes.
When the number of categories in the response is large, and the data follows an approximately normal distribution, treating the response as normal may be reasonable. However, if the number of categories is small and has a well-defined ordering among them, the normality approximation leads to biased estimates of the mean and the variance components (Stroup, 2012; Stroup et al., 2018). Generalized linear mixed models (GLMMs) were proposed as the most suitable alternative to model the response variable according to the appropriate distribution it arose from.
Unfortunately, GLMMs are not directly implementable in GS due to the high dimensionality of the genomic data, where the number of predictors is far greater than the number of observations. Bayesian GLMM approaches were proposed to address the high-dimensionality problem and the multicollinearity issue prevalent in genomic data. Some popular methods include BayesA (Meuwissen et al., 2001), BayesB (Meuwissen et al., 2001), Bayes Cπ (Habier et al., 2011), Bayesian ridge regression and Bayesian LASSO (Park and Casella, 2008). Wang et al. (2013) extended the Bayes A, Bayes B, and Bayes Cπ using threshold models (Gianola, 1982) to estimate categorical traits in animal breeding. Following this idea, Montesinos-López et al. (2015a) extended the genomic best linear unbiased predictor (GBLUP) model (Burgueño et al., 2012; Jarquín et al., 2014) for ordered categorical data using a probit link function. They also introduced a logit link based model for categorical traits that included interaction effects (Montesinos-López et al., 2015b; Montesinos-López et al., 2017). While some of the models above were developed to predict ordinal categorical traits based on genomic information, none of the models had provisions to integrate multi-type data to improve prediction.
High-dimensional prediction is the most prevalent challenge in the GS problem and has been an active area of research. Feature selection is a common strategy to reduce the dimensionality to perform such predictions. Feature selection also helps remove irrelevant features and improve the interpretability of the final model. Variable selection methods such as forward selection, backward selection, and best-subset selection were popular but performed poorly in high-dimensional data (James et al., 2013). Penalization methods such as ridge regression (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996), elastic net (Zou and Hastie, 2005), and their variants were proposed for feature selection and work in high-dimensional data as well. We describes some of the relevant advancements of these penalization methods next.
Ghosal et al. (2009) proposed a novel method called forward iterative regression and shrinkage technique (FIRST) that combined forward selection with penalization methods such as LASSO to predict a continuous response. FIRST effectively combined two categories of feature selection methods. Turnbull et al. (2013) proposed a new method called selection technique in orthogonalized regression models (STORM), that acted as an extension to FIRST. Their method was developed especially for the case of highly correlated predictors. Both FIRST and STORM had lower errors than the traditional LASSO, especially when the predictors were correlated with each other. More importantly, their methods also led to a smaller final model than LASSO, allowing for greater interpretability of the relationships between the predictors and the response. FIRST and STORM methods could be very useful methods for GS because they work well in the presence of correlated predictors, which is a common issue with genomic data.
FIRST and STORM methods were developed for a continuous response and were regression methods. Ghosal et al. (2016) proposed a penalized forward selection for the support vector classification method (CLASSIC) which was a forward selection based SVM for high-dimensional classification. Their models led to lower error rates than traditional SVM along with providing significantly leaner models. The method also has low memory requirements from a computational perspective. While FIRST, STORM and CLASSIC dealt with high-dimensional predictions, they did not provide solutions for combining data types.
Jarquin et al. (2022) (in review) combined the idea of sparse prediction and classification from these papers and applied them to the context of combining two data types for GS. They incorporated secondary traits, which represented a low-dimensional data set, and genomic information, which was a high-dimensional component. Their method used a penalized forward selection based logistic regression inspired by high-dimensional prediction models such as the FIRST, STORM, and CLASSIC. They showed that their method provided sparse models with favorable classification accuracy compared to standard ML methods such as RF, SVM, boosting, and linear discriminant analysis (LDA). Model sparsity refers to the number of variables used for the classification task and hence the smaller the model size, the greater the sparsity. Greater sparsity in the final models allows for easier interpretation of relationships between predictors and response, as well as determining important variables.
Additionally, global climate change and extreme environmental changes are an inescapable reality of the day, presenting an escalating challenge to food production worldwide. Resilience and adaptability among crops are essential to ensure food security. Resilience refers to the stability of the yield in the face of extreme weather conditions, while adaptability refers to how crops react to changes in environments (Macholdt et al., 2020). Understanding the impact of environmental covariates on the phenotypic outcome will help select crops that are better suited across environments and select the best-performing varieties for specific environments. In this work, a Finlay-Wilkinson (FW) regression (Finlay and Wilkinson, 1963) based approach was used to find the optimal window where the weather had the greatest impact on the phenotypic traits of interest. Similar approaches to finding optimal windows of time for weather information have been the subject of recent research (Li et al., 2018; Millet et al., 2019; Guo et al., 2020; Costa-Neto et al., 2021; Li et al., 2021). However, these studies did not focus on integrating data types for GS.
To summarize, this paper focused on three challenges to improve GS: integrating multiple data types, optimizing weather data to improve forecasting, and developing methods for high-dimensional forecasting for categorical phenotypic traits. We developed a three-stage method to integrate three data types (secondary traits, weather data, and genomic data) of differing dimensionality to predict a binary categorical phenotypic trait. The main goal of our method is to integrate genomic, weather, and secondary trait information to classify a trait of interest which can be modeled as a binary variable. Binary variables have two classes, such as diseased or not, fraud or not, resistant or not, etc. The practical implication of our method is that plant breeders can collect different data types with significantly different dimensions and have a way to combine them for the purpose of predicting traits that have two possible outcomes. We also employed techniques to extend this method for multi-class categorical traits (traits that express as more than two classes). Furthermore, FW regression was implemented as a pre-processing step to the three-stage method, to identify optimal time windows to optimize the weather data and improve the interpretability of the effect of weather on the main trait. This enables plant breeders to include weather information that influences the trait of interest instead of all available weather information. It has a practical implication by learning which growing stages impact the prediction. Finally, the performance of the proposed methods was compared to two standard machine learning (ML) methods - random forests (RF) and support vector machines (SVM).
The rest of the paper is organized as follows. First, we present a short overview of relevant literature that motivated our proposed three-stage method. Our proposed method for binary traits was presented in the Materials and Methods section. Next, we describe details about the strategy that allows our method to handle multi-class traits as well as a description of how FW regression was implemented. This section ends with a discussion of the metrics used to evaluate the classification ability of the methods for binary as well as multi-class traits. The details of the real data set used to demonstrate our methods were described next. Then, we present the results of the method and compare them to other standard methods in terms of their performance and finally conclude with a discussion and future directions.
2 MATERIALS AND METHODS
Penalized approaches (Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie, 2005; James et al., 2013) for regression and classification are common in the presence of high-dimensional data. However, a classical penalized logistic regression approach does not work in our context because it does not allow for variables of certain data types to be considered for the model building before others. Combining data types of disparate sizes invites the risk of the “crowding-out” issue discussed earlier. Outnumbering often leads to out-competing, resulting in the lower-dimensional data being disregarded in the final model. In a naive concatenation approach, it is plausible that none of the secondary traits or weather variables are retained in the final model. In order to avoid this, a forward selection approach was considered, whereby we included variables one at a time. Forward selection also allowed control of the order in which data types are considered. By first considering low-dimensional data types, this method ensured that the classifier used all information available to explain the variability in the primary trait before allowing higher-dimensional data types to explain the variation in the response.
Another issue was that the genomic and weather variables also impacted the secondary traits. Before considering all the variables in the model building, the effect of genomic and weather variables had to be removed from the secondary traits and their true intrinsic effects had to be obtained. Isolating the intrinsic effect of the secondary traits also ensured that the potential effect of genomic or weather variables was not mistakenly ascribed to the secondary traits. Separating the effects also allowed for a simpler and cleaner interpretation of variable importance and relationships between the response and the explanatory variables.
In the first stage of the modeling, we computed the intrinsic effect of the secondary traits devoid of the weather and genomic effects. In order to remove the genomic and weather effects, the weather variables were first regressed on each of the secondary traits to obtain the residuals. Then, the genomic variables were regressed on the secondary traits to obtain another set of residuals. In the second stage of the modeling, we used a training data set to build a logistic regression classifier combined with a penalized forward-selection scheme to include phenotypic residuals into the model before allowing weather variables and finally allowing genomic variables. Through the iterative process of the forward selection scheme, only the most influential predictor was selected to enter the model at each step. The third and final stage of the proposed method concentrated on improving the classification through a threshold search process. Traditionally, a threshold of p = .5 is used to categorize the predicted probabilities obtained from a logistic classifier, where an observation with a probability greater than .5 is classified as a 1 and below .5 as a 0. However, when the number of 1s and 0s in the binary response are significantly different, often referred to as class imbalance, the threshold of .5 may lead to poor classification accuracy. Hence, we used an optimization data set to determine the optimal threshold to improve classification accuracy in this third stage of modeling. Finally, the coefficients obtained from the second stage of modeling and the optimal threshold obtained from the third modeling stage were used to predict the class assignment in the test data set and the corresponding results were used to evaluate the model’s performance.
2.1 Three-stage method for binary classification
In this section, we build on the overview presented above by describing all the pertinent details to implement the proposed method for GS. Let the binary main trait of interest be represented by yi, the two sets of residual for the secondary traits be denoted by [image: image], the weather covariates be denoted by wi = (wi1, wi2, … , wiQ), and the genomic variables be denoted by vi = (vi1, vi2, … , viR), where i = 1, 2, … , n. Without loss of generality, let us assume that E(U) = E(W) = E(V) = 0 and Var(U) = IP, Var(W) = IQ, and Var(v) = IR, where U = (u1, u2, … , un), V = (v1, v2, … , vn), and W = (w1, w2, … , wn). Essentially, we replaced the variables with their standardized versions.
The first stage of the method involved evaluating the two sets of residuals of the secondary traits by removing the effects of weather and genomic covariates. A penalized regression model was used to compute the residuals of each uip, where p = 1, 2, … , P and i = 1, 2, … , n. First, we regressed the weather variables on each of the secondary traits uip and obtained the residuals [image: image], where [image: image] were the corresponding regression coefficients and [image: image] was the vector of weather covariates associated ith observation. The regression coefficients were estimated by minimizing the penalized sum of squares:
[image: image]
where the penalty function can be any of the standard penalty functions such as the LASSO, adaptive LASSO, or ridge regression penalties. Ridge regression uses a L2-penalty with the residual sum of squares (RSS) loss function to shrink the coefficients associated with predictors towards zero. However, due to the nature of the L2-penalty, regularization is performed, but none of the coefficients are set exactly to zero. LASSO model, on the other hand, uses a L1-penalty with the RSS to shrink the coefficients and sets some coefficients to exactly zero, effectively performing feature selection. Elastic net is a compromise between ridge regression and LASSO and uses a linear combination of both L1 and L2 penalties. Thus, an elastic net has the advantages of regularization and feature selection. Adaptive LASSO (Zou, 2006) was proposed as an alternative to LASSO in the presence of high multicollinearity among explanatory variables, which is seen commonly in genomic data sets. We compared the various penalty functions, including the raw residuals with zero penalty, to determine which yielded the best results. The entire process was repeated by regressing the set of genomic variables on each of the secondary traits to obtain the residuals [image: image], where [image: image] were the corresponding regression coefficients and [image: image] was the vector of genomic variables associated ith observation.
After obtaining the intrinsic effect of the secondary traits, represented by the two sets of residuals obtained in step one, we moved on to the second stage of the method. Here, the penalized forward selection was implemented to ensure that the secondary trait residuals were entered first into the model, followed by the weather covariates, and finally followed by the genomic variables. This approach ensured that higher-dimensional data types did not crowd out the smaller-dimensional data types and improved how the variables included in the model explained the variability in the response. We used a logistic classifier as the model structure for its simplicity and ease of interpretability. The probability mass function (PMF) of the C-class multinomial logistic classifier for class c is given by:
[image: image]
where Θ = (αcW1, … , αcWP, αcV1, … , αcVP, βc1, … , βcQ, γc1, … , γcR) is a C × T matrix of coefficients associated with the predictors and [image: image] represents the vector of all predictor values for observation i. Here, T = 2P + Q + R. The classification for a new test observation is given by:
[image: image]
where [image: image] is the set of coefficient estimates obtained from the Newton-Raphson estimation method with a LASSO penalty.
2.1.1 Newton-Raphson (NR) method
Using the PMF function defined in Eq. 2, the log-likelihood function required for the NR method is given by:
[image: image]
where S = {(y1, z1), …, (yn, zn)} denoted the set of observations with yi representing the response and zi representing the vector of predictors associated with the ith observation. In the presence of penalty terms for each of the data types, a modified version of Eq. 4 can be maximized as:
[image: image]
where the λ’s are the penalty values. Here, we used a LASSO-based penalization which ensured that several coefficients were set to zero, making the model more sparse. Sparsity allowed for greater interpretability of the final model because there were only a few predictors with non-zero coefficients. Using the second-order Taylor series approximation, the coefficients were updated in the (k+1)th NR iteration as follows:
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where s is the step size, also known as the learning rate. More specifically, the NR iteration updates for each of the different data types were given by the following equations:
[image: image]
Here, L and R represented the left- and right-derivatives of Eq. 5 with respect to θct. Following the optimization solution provided in Wu et al. (2009), if [image: image], then we set [image: image] and if [image: image], we set [image: image]. If either [image: image] or [image: image], then we set [image: image]. The iteration process continued until the convergence criteria were met.
2.1.2 Algorithm
The likelihood associated with the logistic regression was intractable, and hence NR iterative methods were used to obtain the coefficients associated with the predictors. In this section, we presented the algorithm used to initialize and update the coefficients in each iteration of the NR method as well as the stopping criterion. The algorithm was by setting θct = 0 for all c and t. Suppose we denote the kth penalized log-likelihood from Eq. 5 as PLLm(c, t).
1. Update each θct using the NR update rules from Eqs 6, 7. Continue iterations until:
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2. The NR updates start with a step size s = 1. If the [image: image] does not satisfy Eq. 8 or Eq. 9, we repeat the procedure using s = 1/2, 1/22, 1/23, … , 1/210. If the PLL does not improve with changing s, we set [image: image].
3. Stop the iteration process when no variable is selected.
In the proposed algorithm, there were five hyperparameters that need to be tuned, {s, ϵ, λ1, λ2, λ3}. We started with step size s = 1 as a reasonable value for the parameter and varied it by halving it successively until the convergence criteria were met. The ϵ value was set to be 10–3 for the secondary traits, 10–5 for the weather traits, and 10–8 for the genomic variables traits. The choice of these ϵ′s was another way to give more importance to the data types with smaller dimensions as well as ensure greater sparsity of the final model and hence, can be varied to suit the objectives of the problem. We did not observe any changes in predictive power by increasing the ϵ′s to 10–8 for all the data types. A cross-validation grid-search was used to find the optimal values of λ′s by testing various combinations of the λ′s ranging from 1 to 10. For each combination of λ′s, we estimated the predictor coefficients and then evaluated the models using various classification metrics. The optimal combination corresponded to the one with the best classification metrics.
2.2 FW regression to optimize weather information
One of the primary objectives of this work was to find the most sparse models that had the best classification performance. While the relationships between the selected secondary trait variables and the response or the genomic variables and the response were easy to interpret, the relationship between the weather covariates and the response was more challenging to understand. Data on four weather variables were collected daily over the entire growing season of 100 days, yielding 400 weather covariates. The variables were maximum temperature (Tmax), minimum temperature (Tmin), wind speed (WS), and rainfall (Precip). Weather covariates that led to the best classifier were selected without regard for the interpretation of the individual covariates chosen. For instance, suppose the three weather covariates chosen were WS at day 45, Tmax at day 18, and Tmin at day 72. There is no insight into what these individual days mean for a breeder or a farmer and how to determine the practical significance of these covariates.
An alternate approach could be to select windows of time when the selected set of weather covariates have the most impact on the main trait. For instance, suppose we select day 18 to day 25 as the window of time in the season. Then, we could include all daily weather covariates for those days in our three-stage model to understand the impact of the window on the response. Such windows of time allow for greater interpretability of the impact of weather conditions during the growing season on the final plant production. Further, extreme weather conditions in the identified windows of time could help forecast potential losses, and farmers could take actions to mitigate losses, if possible.
Plant breeding programs often collect data on several weather variables such as wind speed, humidity, daylight hours, temperature, etc. When several weather variables are present, a different optimal time window can be obtained for each one of them. However, including a separate set of covariates for each optimal time window in our model increases the model size. Weather variables can be combined to form a single environmental index as an alternative. In this work, we proposed using principal component analysis (PCA) to combine the weather variables and extracted the first principal component as a singular environmental index. PCA method ensured that information across the different weather variables was combined. The first PC corresponds to the linear combination of variables that explains the maximum variability present in the weather data. When daily weather data is available, PCA can be performed daily. All the weather variables for a day were combined to form the first PC for that day. This process was repeated to obtain the first PCs every day in the growing season. Following this, the average of PCs was computed within each time window to represent the environmental effect of the time window. Normalization of the weather variables is necessary before PCA is applied to ensure that all variables are on a similar scale and did not disproportionately skew the PC calculations.
Suppose the main trait can be expressed as follows:
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where yij represented the value of the main trait for genotype i in environment j and eij represented the random error, i = 1, 2, … , t and j = 1, 2, … , k, where t was the number of genotypes and k was the number of environments. Then, the environmental means for the jth environment is represented by:
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The time window mean of weather variables is represented as follows:
[image: image]
where, wpjd denoted the value of the pth weather variable in jth environment on day d and [image: image] was the mean of the weather variables in the time window. Then, b represented the beginning day of the time window, and e represented the ending day. Here, wpjd could also be the first PC of the linear combination of all the weather variables available for the day d. Finally, the linear association between the environmental means and the mean of the time window was defined as the R-squared value when simple linear regression is performed between [image: image] and [image: image]. For simple linear regression, the R-squared value is simply the square of the correlation between the variables. Hence, the R-squared was computed as:
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where, [image: image] represented the correlation between the environmental mean of the jth environment and the mean of the (b, e)-th time window for the pth weather variable. R-squared values range between 0 and 1, with 1 indicating perfect linear association and 0 indicating no linear association. Hence, the optimal window corresponds to the window with the highest R-squared found using the method described above.
We found the optimal time window for the weather variables as a pre-processing step. Hence, we included all the weather variables within the optimal time window and did not perform any feature selection for this data type in the modeling stage. We set λ2 = 0 in the penalized likelihood function Eq. 5 and obtained the following reduced penalized likelihood function:
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The rest of the three-stage method remained the same as in section 2.1. The NR updating algorithm also remained identical. Here too, we used a cross-validation grid search to find the optimal values of λ1 and λ3.
2.3 Extending our method for multi-class classification
Predicting a response with two classes is known as a binary classification problem. Some popular supervised learning methods for binary classification include logistic regression, naive Bayes, decision trees, random forests, support vector machines, and neural networks (Kotsiantis et al., 2006; James et al., 2013). These methods also handle multi-class problems in one of two ways. The first approach involves modifying the relevant algorithm to extend to multi-class settings, and the second involves deconstructing the multi-class problem into a set of binary classification problems, known as binarization strategies (Galar et al., 2011).
Binarization strategies are prevalent because they allow simpler ways to form decision boundaries separating the two classes. Binarization allows for a greater choice of classification algorithms because almost every classification algorithm such as logistic regression, SVM, neural networks, etc. was introduced initially for binary classification. It has also been established that the performance of a single multi-class classifier is no better than an aggregation of a set of binary classifiers (Sánchez-Marono et al., 2010; Galar et al., 2011). There are two major ways to perform binarization: one-vs-one (OVO) and one-vs-all (OVA) (Lorena et al., 2008; Sánchez-Marono et al., 2010; Galar et al., 2011; Abramovich et al., 2021).
The OVO method has better predictive ability than the OVA in general (Rifkin and Klautau, 2004; Pawara et al., 2020). The performance of the OVA approach is similar to OVO when the base classifier is well-tuned (Rifkin and Klautau, 2004). However, the performance of OVA suffers in the presence of class imbalance (Galar et al., 2011). On the other hand, the main advantage of OVA is that the number of binary classifiers required is in the order of K while the number of binary classifiers for OVO is in the order of K2. Thus, the number of classifiers required for OVO increases exponentially as a function of the number of classes in the response. For example, for a response with ten classes, OVO requires 45 classifiers, whereas OVA requires only ten classifiers.
In this study, we extended our methods to deal with a categorical response with three classes by opting for the OVA binarization. Since the number of classes was three, both OVO and OVA required the same number of binary classifiers - three. The objective of our proposed method was a multi-class classification for an ordinal categorical response with any number of classes. Hence, we chose the OVA approach because of computational frugality as well as generalizability. Further details about OVO and OVA can be found in section 2 of the Supplementary Material.
For a K class response variable, the OVA approach creates K binary classification problems. Suppose we have a response with three classes. Then, for the first binary classifier, OVA sets all the response values of class 1 as 1 and the other two classes as 0. In the second binary classifier, class 2 is set as 1 and rest as 0, and the third classifier has class 3 set as 1 and rest as 0. For each binary sub-problem, any classifier can be used for the classification task. In this study, we used a modification of the three-stage method developed earlier as the classifier of choice. The proposed method was a penalized logistic regression with forward selection. The output from this classifier was a vector of probabilities that an observation belonged to class 1. While many standard classifiers output probabilities like logistic regression, some classifiers such as neural networks output a non-probability based score. A softmax activation function can be used to convert the scores to a probability when using other classifiers (Pawara et al., 2020).
Using the OVA approach for a three-class problem, we obtained a set of three probabilities for each observation corresponding to the probability that the observation belonged to each of the three classes. The predicted class was simply the class with the highest probability for each observation, referred to as the maximum probability approach.
2.3.1 Reason for not using optimal threshold step
For three-class classification, we obtained three probabilities for each observation coming from the three binary classifiers. Class assignments depended only on comparing these probabilities and picking the class with the maximum probability. Thus, unlike traditional binary classification, the class assignment was independent of any threshold. Hence, we dropped the threshold search step from the method proposed in the binary classification algorithm and used the rest of the method as the classifier for multi-class classification.
We tried to improve the classification by searching for optimal thresholds between class 1 vs rest and class 3 vs rest. The idea was to partition the probability space into three regions corresponding to the three classes, based on these two thresholds. However, the approach had poor forecasting performance, especially for class 2. A possible reason was that three completely separate classifiers were used, each with its own set of coefficients associated with the predictors leading to three sets of linear predictors that had significant overlaps in the predictor space. Thus, this approach was not feasible, and the best performance was observed when using the maximum probability approach.
2.4 Classification metrics
Binary classification metrics can be modified to make them suitable for multi-class problems. For multi-class classification, the performance was assessed using the following metrics: overall accuracy, macro true positivity rate (TPR), and macro true negativity rate (TNR). Overall accuracy is a metric that remains the same between binary and multi-class problems. It is defined as the total number of correctly classified observations out of the total number of observations in the data set. In binary classification, TPR and TNR are easily defined because there is one positive and one negative class. However, these metrics need to be modified when there are multiple classes. Instead, TPR and TNR can be computed for each class, and then the weighted mean could be found to compute the weighted macro TPR and weighted macro TNR. The weights are determined by the proportions of each class in the training data set. Using the sample multi-class confusion matrix in Figure 1, TPR and TNR for class k can be defined as:
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where TP was the number of true positives, TN was the number of true negatives, FP was the number of false positives, and FN was the number of false negatives. Then, the weighted macro TPR (mTPR) and TNR (mTNR) for K classes are given by:
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where, TPRk refers to the TPR for the kth class, wk denotes the proportion of observations in class k in the training data, and w1+⋯ + wK = 1.
[image: Figure 1]FIGURE 1 | A representative confusion matrix representing the true class vs. predicted class for “class 2” in a multiclass classification: true positive (TP), false positive (FP), true negative (TN), and false negative (FN).
2.5 Data
We used a chickpea data set to evaluate the performance of the proposed model and contrast it with standard machine learning methods such as random forest (RF) and support vector machines (SVM). The data set contained phenotypic, weather, and genomic SNP data. The phenotypic and weather data were collected at four locations, namely International Center for Agricultural Research in the Dry Areas (ICARDA) - Amlaha, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Patancheru, Junagadh Agricultural University (JAU) - Junagadh, and Rajasthan Agricultural Research Institute (RARI)—Durgapura, over two seasons, 2014–15 and 2015–16. Genotypic information was available for n = 749 lines and the corresponding phenotypic information was available for all the lines across the eight environments (location by year combinations).
Over 15 phenotypic variables were collected across the eight environments. However, only seven of those were available in all eight environments. We selected only these as the primary and secondary phenotypic traits for the analysis. The seven phenotypic variables were days to flowering (DF), plant height (PLHT), basal primary branch (BPB), basal secondary branch (BPB), days to maturity (DM), pods per plant (PPP), and 100 seed weight (100-SDW). This work focused on days to maturity (DM) as the primary trait of interest. The rest of the six traits form the secondary trait data type.
The second data type in this study was the weather data collected daily over the entire growing season of 100 days. Depending on the location, the growing season was between October and April. Several weather variables were collected at each location; however, only four variables were commonly present across the four locations for each day. The variables were maximum temperature, minimum temperature, wind speed, and rainfall. Since the four weather traits were collected daily over 100 days, there were a total of 400 weather variables that form the weather data type.
Genomic Single nucleotide polymorphisms (SNP) data was available for the 749 lines. We randomly selected 10,000 markers for each line to form the genomic data type. To summarize, there were six secondary traits, 400 weather traits, and 10,000 SNPs as the final set of predictor variables. We considered a three-class DM variable as the response for the multi-class classification demonstration and also implemented the proposed three-stage method for a binary trait, whose implementation and results can be found in section 3 of the Supplementary section.
2.6 Multi-class trait implementation
For the multi-class implementation, we created a three-class categorical response using the DM trait that was continuous. The DM trait was discretized into three levels corresponding to low, average, and high days to maturity. For the continuous trait DM, all observations in the bottom 25th percentile were denoted as class 1 and top 25th percentile as class 3. We also found a 25th percentile centered around the mean of the continuous trait and denoted that as class 2. The discretization of the continuous response is depicted in Figure 2.
[image: Figure 2]FIGURE 2 | Visualization depicting the process of discretizing a continuous trait (Days to Maturity—DM) into a multi-class trait. All observations in red are denoted as class 1, green as class 2, and blue as class 3.
The performance of the multi-class methods was evaluated using three different class-balance settings: 33-34-33, 40-40-20, and 10-80-10. 33-33-33 refers to the balanced class setting, while 10-80-10 refers to the extreme imbalance setting where 80% of the observations are in class 2% and 10% in each of the other two classes. We randomly sampled 280 observations to create the datasets with different class ratios. For each class ratio, 20 replications were created and averaged the performance across the replications to avoid sampling bias.
We decomposed the multi-class problem into a set of binary classification problems using the OVA approach. As discussed earlier, threshold searching methods were not employed due to this OVA approach. Thus, the 280 observations were split into a train and test set in the ratio of 200/80. The training data set was used for the penalized logistic regression modeling step, and the test data set was used to evaluate the performance of the models.
The penalization effect was evaluated with the help of a baseline model G + E + P that did not have a penalty applied to any of the data types denoted by MC0. Here, G refers to the genomic data, E refers to the weather data, and P refers to the secondary trait data. We evaluated the cases where all the secondary traits PenG + PenE + P and penalized the secondary traits PenG + PenE + PenP were included, where Pen refers to penalized versions of the data types. These models are denoted as MC1 and MC2, respectively. The optimal time window was applied to optimize the weather data and evaluated the following models PenG + FWE + P (MT1) and PenG + FWE + PenP (MT2), where FWE refers to the optimized weather data. Finally, these models were compared to the RF and SVM machine learning models. Table 1 summarizes all the model settings that were evaluated in this paper, along with the model notations.
TABLE 1 | Summary of models assessed in this paper for a multi-class categorical trait.
[image: Table 1]3 RESULTS
In our research, we focused on several aspects of developing models to improve breeding and aid the selection process. The focus was to integrate three different data types with differing dimensions for the purpose of predicting phenotypes that can be categorized. In addition, we wanted to see whether a subset of the weather information is sufficient to achieve the same prediction accuracy as we can reach with the full set of weather information.
First, the proposed models were evaluated in terms of overall accuracy, and we also included TPR and TNR. Seven classification models (MC0, MC1, MC2, MT1, MT2, SVM, RF) were evaluated and compared. We wanted to see whether the penalization-based methods and methods that incorporate the reduced amount of weather information can outperform machine learning techniques. Also, we wanted to determine whether the model performance is influenced by the rate of the imbalance in the data. All the proposed models showed similar performance to ML models for the balanced class and the medium imbalance settings (40–40–20). All the models had an overall accuracy of ∼.55 in both these settings. The penalization-based models (MC0, MC1, and MC2) had similar overall accuracy to the optimal time window based models (MT1 and MT2) for these two settings. However, in the extreme imbalance class of 10-80-10, MT1 and MT2 had significantly worse accuracy of .57 and .59 instead of the .80 accuracies for the penalization-based and ML models. It is important to note that both the ML models and the penalization models ended up predicting all observations as class 2 for the 10-80-10 case and hence resulted in an accuracy of 80%, matching the proportion of class 2 in that setting. Weighted macro TPR and TNR metrics provide better insight into a model’s predictive ability in the presence of imbalance, and hence we looked at these metrics next. Across the board, the standard error associated with the average of the overall accuracy, mTPR, and mTNR were in the order of 10–3 to 10–4 and hence are not presented here. Overall accuracy results for all the models can be seen in Figure 3.
[image: Figure 3]FIGURE 3 | Bar plot comparing the seven different classification models based on overall classification accuracy averaged over the 20 replications within each class balance setting for the Days to Maturity (DM) trait with three classes. The seven models and their notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE + PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), support vector machine (SVM), and random forest (RF).
For the balanced class setting, the weighted macro TPR values for the proposed models were around .78, while the ML models had values around .58. This represents a 20% higher TPR value for our proposed models. On the other hand, macro TNR values for the proposed models were similar to the ML methods in the balanced case. We saw similar trends for the medium imbalance case as well. However, in the extreme imbalance case, the ML methods outperformed the proposed methods in terms of the weighted macro TPR metric. In contrast, MT1 and MT2 had ∼25% higher macro TNR than the penalization based and ML models. These results can be viewed in Figure 4 and Figure 5. The proposed models had similar or better performance in the balanced and medium imbalanced class settings for both the mTPR and mTNR metrics. In the extremely imbalanced class, there was a tie between the proposed methods being better in terms of mTNR and ML being better in terms of mTPR.
[image: Figure 4]FIGURE 4 | Bar plot comparing the seven different classification models based on the weighted macro true positivity rate (TPR) averaged over the 20 replications within each class balance setting for the Days to Maturity (DM) trait with three classes. The seven models and their notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE + PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), support vector machine (SVM), and random forest (RF).
[image: Figure 5]FIGURE 5 | Bar plot comparing the seven different classification models based on the weighted macro true negativity rate (TNR) averaged over the 20 replications within each class balance setting for the Days to Maturity (DM) trait with three classes. The seven models and their notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE + PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), support vector machine (SVM), and random forest (RF).
Model interpretability was one of the primary objectives of this study along with the evaluation of the model’s predictive power. Model interpretability can be assessed by evaluating the complexity of the model used. Generally, including more predictors into the model results in a more complex model that can lead to difficulty in interpretability. Our methods showed a tremendous improvement over the ML methods in model sizes. Across all class balance settings, our method had close to 90% fewer predictors in the final models compared to the ML models. The penalized methods had smaller model sizes between the penalization-based and the optimal window-based approaches. This complements what we observed with the binary trait results (presented in the supplementary materials). MC1 and MC2 had the smallest models consistently across the class settings. Just as with the binary trait, the penalization-based methods MC0, MC1, and MC2 did not include any genomic variables in the final model, while MT1 and MT2 did. Refer to Figure 6 as well as Supplementary Figures S9, S10 (in supplementary materials) for visualizations corresponding to the model size comparisons. All the metric comparisons between the seven models are presented in Table 2.
[image: Figure 6]FIGURE 6 | Bar plot comparing the proposed models to random forest based on model size averaged over the 20 replications within each class balance setting for the Days to Maturity (DM) trait with three classes. The six models and their notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE + PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), and random forest (RF).
TABLE 2 | Summary of results for the seven different models across the three different class-balance settings. The performance was measured using overall accuracy (Acc), weighted macro true positivity rate (mTPR), weighted macro true negativity rate (mTNR), and model size (MDS). The seven models and their notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE + PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), support vector machine (SVM), and random forest (RF).
[image: Table 2]4 DISCUSSION
One of the recent challenges in plant breeding and especially in terms of accelerating genetic gain is how to utilize all the data that are collected. With high-throughput technologies, information is collected on the molecular level, on the different environments including weather information, and factors that describe the different management practices. This system of diverse information has the potential to connect the different genotypes in different environments and explain how they might be related and ultimately benefit the prediction of traits of interest.
This paper proposed a novel three-stage classification method to improve multi-class classification when combining multi-type data. More specifically, we developed a classification method for binary and multi-class responses using secondary trait data, weather covariates, and marker information. We used the one-versus-all (OVA) binarization approach (Galar et al., 2011; Abramovich et al., 2021) to decompose the multi-class problem into a set of binary classification problems and aggregated the results using a maximum probability approach (each observation). The method was evaluated in different settings, including various penalization schemes and class balances, and compared with standard machine learning methods. Various metrics (Acc, mTPR, mTNR) were used to evaluate classification accuracy and model size to evaluate the sparsity of the model. Overall, our model showed excellent promise in predictive ability. Our proposed models matched or outperformed ML methods across almost all settings and metrics. Most importantly, the classifiers obtained through our models were highly sparse. Specifically, MC1 and MC2 models used fewer than 80 predictors to obtain similar performance to ML methods. This greatly increases the ability for manual dissection of the relationships between individual predictors and the multi-class trait.
The improved performance of the proposed model, as compared to the ML methods, can be attributed to the manner in which the stages of the proposed method were constructed. First, by isolating the intrinsic effect of the secondary traits, we reduced the confounding effects. Reducing confounding helped separate the effect of each data type on the response as well as helped improve the independence between data types. It is well known that collinearity and high-correlated predictors significantly harm prediction and classification efforts. Secondly, by controlling the order in which data types entered the model, we gave the secondary traits the best chance of being selected in the final model. This process ensured that weather and genomic variables were not selected unless they significantly enhanced the model and ensured that the secondary traits were not ignored just because of their low dimensionality. We further exacerbated this effect by the choice of ϵ′s for each data type. Secondary traits are sometimes collected during the early- or mid-season, and hence our model allows breeders to estimate the end-season main trait better based on this information. Finally, penalization in conjunction with forward selection played a fundamental role in reducing model sizes, thereby allowing breeders to make data-driven decisions based on the relationships at play. The main advantage of our method for plant breeders is that they can leverage genomic, weather, and secondary trait data to classify the trait of interest. We showed a method for incorporating different data types that they can potentially collect in a way that enables them to select lines for advancements more efficiently.
One of the key strengths of the proposed method is its modular nature. In the first stage, we used ridge-based penalized regression to extract the intrinsic effect of the secondary traits devoid of weather and genomic effects. The ridge penalty can be substituted for any other penalties such as LASSO, adaptive LASSO, elastic net, adaptive elastic net, etc. The choice of penalty depends on the data set at hand, its unique characteristics, and the study’s objectives. In the second stage of the method, we used a penalized forward-selection based logistic regression for the model building. We used a LASSO-based penalty in this stage for the feature selection advantages offered by LASSO. LASSO can again be substituted for one of the other penalty functions based on the application. Logistic regression was selected due to its simplicity and interpretability. If interpretability is not one of the concerns, this could be switched out for one of the other, more complex classification methods available, including the machine learning algorithms. The high degree of modularity lends flexibility to the model. We believe that it will allow the method to have a wide range of applicability to any problem that involves combining data types of different sizes.
There are several immediate extensions that we can foresee. In this work, we considered 10,000 randomly selected SNPs as the genomic data type. Surprisingly none of these SNPs were selected in the final models based on the proposed method, which could be a result of the random selection process of these SNPs from a much larger pool of available SNPs. Alternatively, it could also be attributed to measures employed to keep model sizes as small as possible such as the choice of penalties and ϵ values in the stopping criteria of the NR method. Given that secondary traits and weather covariates explained a large proportion of the response, computational resources are wasted to evaluate the genomic data type’s impact. Variable screening methods (Fan and Fan, 2008; Fan and Lv, 2008; Wang, 2009; Hao and Zhang, 2014; Liu et al., 2015) are fast and crude methods to reduce the dimensionality of ultra-high dimensional data to high dimensional data. These could be employed as a pre-processing tool to reduce the dimensionality of the genomic data and reduce the computational burden of the method. We also anticipate significant gains in run times when the method is combined with variable screening. In this research, the performance was evaluated of the proposed method using metrics such as TPR and TNR to address the class-imbalance present. Balancing the class imbalance, prior to modeling, through techniques such as oversampling, under-sampling, and SMOTE (Chawla et al., 2002) can also be explored to improve the proposed three-stage method.
There is limited literature (Schrag et al., 2018; Akdemir et al., 2020; Lopez-Cruz et al., 2020; Arouisse et al., 2021; Sandhu et al., 2021) on combining data types to improve genomic selection. With the advances in modern plant breeding and access to an increasing number of data sources, it is essential to develop statistical approaches that will allow breeders to leverage all available data to improve selection strategies and accelerate breeding programs. Second, most of the focus over the past 2 decades has been on developing models for continuous traits that are normally distributed. Recently, there has been an increasing focus on non-Gaussian distributed traits. Our work simultaneously targets both these two gaps in the literature. Along with proposing approaches to combine data types, our methods rely on penalization and forward selection to reduce the model size. Breeders can use the methods to predict the categorical traits in their programs and more importantly, understand the impact of individual predictors on these categorical traits.
Finally, while we presented this method in an agronomic setting, the three-stage model proposed can be implemented in any problem involving combining data types of differing sizes. For example, we believe that it could be very useful in the area of precision medicine where the main trait is a risk of disease or reaction to a medication. The secondary traits could be other physiological measurements from the subjects, the medium-dimensional data could be the lifestyle and behavioral characteristics, and the high-dimensional data type could be the genomic marker information.
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Traits Hundred- seed Seed length Seed width Seed aspect Shelling percent Seed oil
‘weight ratio content
Hundred- seed weight P 1.000 -0532 0.549 -0721° ~0.651 ~0.155
G 1.000 -0599 0.679 0760 -0.878" -0.188
Seed length P 1.000 -0225 0434 0200 -0224
G 1.000 -0280 0732 0135 -0341
Seed width P 1.000 -0.780° ~0.646 0325
G 1.000 ~0.985" ~0.895" 0464
Seed aspect ratio 13 1.000 0.649 ~0.444
G 1.000 0.865" -0471
Shelling percent P 1.000 -0.002
G 1.000 ~0.002
Seed oil content P 1.000
G 1000

cant at 5% level (F test).
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p value

527 £ 005"
5.60 = 0.06%
625 +0.15°
7.05 + 020"
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5.18 + 0.00°
<0.0001*
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2381 = 0.20%
3.14 £ 0.00°
354 2016
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260 + 0.05*
<0.0001°
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1.000"™
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107.74 + 339
0.296™

49.20  0.69°
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47.31 + 228
47.12 £ 018
49.20 + 121°
0.728™
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RIL no.

RL

RSR
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ESW

SDW

RDW/SDW

81
154

180

70

62

24

GPF2
ILWC292

127.46
84.89
106.69
105.03
122.08
87.42
114.57
114.54
90.08
93.47
97.32
100.89
109.93
84.67
124.62
121.75
116.73
12571
88.98

41.36
27.81
27.37
2315
3471
2153
3374
29.34
2355
3422
2326
2626
28.63
2805
39.99
26.56
3418
31.82
17.07

3.05
312
389
463
350
408
337
390
390
273
418
388
391
3.05
3.05
459
336
397
520

572
1053
8.83
1412
583
1255
467
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1297
1063
1170
9.20
895
878
562
603
925
6.64
1052

1362
931

111
112
1310
941

1224
1241
951

1029
1005
1065
1170
921

1341
1272
13.00
1226
793

845
1494
1470
1536
1299
8.10
19.96
1107
7.04
1370
858
1183
927
6.84
2368
1237
12.84
17.32
571

5.18
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236
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221
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465
4.69
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341
242
4.65
3.02
221
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317
267
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§.  Trait Chr QTL LOD Additive R® TR®  Left Right Left Right
no. name effect (%) flanking flanking flanking flanking
marker  marker  marker marker
position  position
(cM) (cM)
1 DG 6 qdg-01 477 01178 1028 02061 32115 32878 CNC_021165.1.18056125  CNC_021165.1.513801
7 qdg-02 453 01425 1837 03323 54162 55269 CNC_021166.1.34922231  CNC_021166.1.15786786
2 DFl 4 qdfi-01 685 08494 1747 03047 53251 545.63 CNC_021163.1.11351447  CNC_021163.1.12812015
6 qdfi-02 329 05900 641 02614 32115 328.78 CNC_021165.1.18056125  CNC_021165.1.513801
3 DFF 4 qdff-01 506 -0.8135 1272 03016 18218 1915 CNC_021163.1.27315241  CNC_021163.1.38343874
4 qdff-02 527 06712 1039 02731 53251 545.63 CNC_021163.1.11351447  CNC_021163.1.12812015
6 qdff-03 322 06502 820 02972 32115 328.78 CNC_021165.1.18056125  CNC_021165.1.513801
6 qdff-04 308 06634 728 02870 36435 37426 CNC_021165.1.36994104  CNC_021165.1.17940395
4 DHF 4 qdhf-01 471 -0.7461 1007 02689 18218 1915 CNC_021163.127315241  CNC_021163.1.38343874
4 qdhf-02 340 -0.5411 666 02602 53251 545.63 CNC_021163.1.11351447  CNC_021163.1.12812015
5 NPP 4 qnpp-01 306 20760 1031 03384 20575 21892 CNC_021163.1.33772884  CNC_021163.1.30731371
4 qupp-02 340 -1.8962 858 02594 398 406.09 CNC_021163.1.29479703  CNC_021163.1.25311228
6 qnpp-03 338 21303 966 02666 200 1875 CNC_021165.1.1002514  CNC_021165.1.8008006
7 qnpp-04 394 21311 805 02368 188.69 195.37 CNC_021166.1.23023466  CNC_021166.1.17171266
6 BIO 6 qbio-01 375 25243 773 02633 200 1875 CNC_021165.1.1002514  CNC_021165.1.8008006
6 qbio-02 377 22020 742 02592 27616 284.06 CNC_021165.121676871  CNC_021165.1.32146805
7 qbio-03 402 26998 792 02558 18869 19537 CNC_021166.1.23023466  CNC_021166.1.17171266
7 YLD 4 qyld-01 441 19979 1371 03145 20575 21892 CNC_021163.1.33772884  CNC_021163.1.30731371
4 qyld-02 433 17325 1019 02794 21892 22315 CNC_021163.1.30731371  CNC_021163.1.30731330
4 qld-03 356 20064 1381 03167 53251 545.63 CNC_021163.1.11351447  CNC_021163.1.12812015
4 qyld-04 355 15264 700 02486  547.09 548.02 CNC_021163.1.12812016  CNC_021163.1.12811959
7 qyld-05 342 16487 686 03160 188.69 195.37 CNC_021166.1.23023466  CNC_021166.1.17171266
8 HSW 6 ghsw-01 335 -0.4827 672 02324 27616 28406 CNC_021165.1.21676871  CNC_021165.1.32146805
7 ghsw-02 494 08518 1529 03074 17797 188.69 CNC_021166.1.12612605  CNC_021166.1.23023466
9 HI 4 qhi-01 416 09921 1142 02919 20575 21892 CNC_021163.1.33772884  CNC_021163.1.30731371
4 qhi-02 465 0.9668 1055 02832 218.92 223.15 CNC_021163.1.30731371  CNC_021163.1.30731330
4 qhi-03 327 07656 641 02646  547.09 548.02 CNC_021163.1.12812016  CNC_021163.1.12811959
10 MPL 4 qmpi-01 373 09711 896 02520 21892 22315 CNC_021163.1.30731371  CNC_021163.1.30731330
6 qmpi-02 389 -1.2668 1477 03027 200 1875 CNC_021165.1.1002514  CNC_021165.1.8008006
11 RLWC 4 qriwc-01 378 03861 845 02641 218.92 223.15 CNC_021163.1.30731371  CNC_021163.1.30731330
6 griwe-02 301 03107 589 0239 27616 28406 CNC_021165.1.21676871  CNC_021165.1.32146805

DG, days to germination; DFI, days to flowering initiation; DFF, days to 50% flowering; DHF, days to 100% flowering; PH, plant height (cm); NPP, number of pods per plant; BIO, biomass
per plant (gm); YLD, yield per plant (gm); HSW, 100-seed weight (gm); HI, harvest index (%); MPI, membrane permeability index; RLWC, relative leaf water content (%); Chr,

chromosome number; LOD, logarithm of odds; R?, proportion of the variance explained by genetic effect; TR?, proportion of the total variance explained by the model including covariates.
Bold characters show QTLs, which were common at both locations, i, Ludhiana as well as Faridkot.
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S. Trait Chr QTL LOD Additive R* TR®  Left Right Left Right
no. name effect (%) flanking flanking flanking flanking
marker  marker  marker marker
position  position
(cM) (cM)
1 DG 2 qdg-01 366 00394 915 02053 287.19 30205 CNC_021161.1.17610977  CNC_021161.1.36182232
2 DFl 2 qdfi-01 448 -0.6750 1864 03936 23267 25056 CNC_021161.1.9957038  CNC_021161.1.3423481
4 qdfi-02 416 -0.5626 1104 02915 1596 17046 CNC_021163.129661315  CNC_021163.1.29493473
4 qdfi-03 515 -0.6576 1711 03459 53251 545.63 CNC_021163.1.11351447  CNC_021163.1.12812015
6 qdfi-04 412 0.5661 11.02 03002 32115 328.78 CNC_021165.1.18056125  CNC_021165.1.513801
3 DFF 2 qdff-01 416 -0.7216 1744 03850 23267 250.56 CNC_021161.1.9957038  CNC_021161.1.3423481
4 qdff-02 401 -0.6127 1071 02901 1596 17046 CNC_021163.129661315  CNC_021163.1.29493473
4 qdff-03 556 -0.7497 1819 03520 53251 545.63 CNC_021163.1.11351447  CNC_021163.1.12812015
6 qdff-04 397 06107 1045 02957 32115 32878 CNC_021165.1.18056125  CNC_021165.1.513801
4 DHF 2 qdhf-01 400 -0.7213 1694 03838 23267 25056 CNC_021161.1.9957038  CNC_021161.1.3423481
4 qdhf-02 386 -0.6051 1011 02867 1596 170.46 CNC_021163.129661315  CNC_021163.1.29493473
4 qdhf-03 565 07584 1818 03456 53251 545.63 CNC_021163.1.11351447 ~ CNC_021163.1.12812015
6 qdhf-04 398 06220 1049 02964 32115 32878 CNC_021165.1.18056125  CNC_021165.1.513801
5 NPP 2 qnpp-01 364 -1.8546 1036 02316 16241 178.09 CNC_021161.1.24009817  CNC_021161.1.30341279
6 YLD 6 qyld-01 311 -1.2866 652 01959 27616 284.06 CNC_021165.1.21676871  CNC_021165.1.32146805
7 HSW 2 ghsw-01 369 -0.3816 918 02351 16241 178.09 CNC_021161.1.24009817  CNC_021161.1.30341279
8 HI 4 qhi-01 352 08841 826 02520 218.92 223.15 CNC_021163.1.30731371  CNC_021163.1.30731330
6 ghi-02 344 -0.7563 683 02344 27616 284.06 CNC_021165.1.21676871  CNC_021165.1.32146805
6 qhi-03 301 -0.9501 766 02551 36435 37426 CNC_021165.1.36994104  CNC_021165.1.17940395
9 MPL 6 qmpi-01 444 -13652 2105 03508 200 1875 CNC_021165.1.1002514  CNC_021165.1.8008006
6 qmpi-02 389 08194 812 02137 27616 284.06 CNC_021165.1.21676871  CNC_021165.1.32146805
7 qmpi-03 322 -L0739 1017 02589 17797 188.69 CNC_021166.1.12612605  CNC_021166.1.23023466
10 RLWC 4 qriwc-01 416 17789 1361 02518 218.92 223.15 CNC_021163.1.30731371  CNC_021163.1.30731330

DG, days to germination; DFI, days to flowering initiation; DFF, days to 50% flowering; DHF, days to 100% flowering; PH, plant height (cm); NPP, number of pods per plant; BIO, biomass
per plant (gm); YLD, yield per plant (gm); HSW, 100-sced weight (gm); HI, harvest index (%); MPI, membrane permeability index; RLWC, relative leaf water content (%); Chr,
chromosome number; LOD, logarithm of odds; R?, proportion of the variance explained by genetic effect; TR, proportion of the total variance explained by the model including covariates.

Bold characters show QTLs, which were common at both locations,
ates the names assigned to QTLs identified for different traits, in the present study.

The italic values provided

, Ludhiana as well as Faridkot.
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S.  Trait

no.

1 RSR

2 RLD

3 RDW

4 RDW/
TDW

Ch QTL
name

qrsr-01
qrsr-02
qrsr-03
qrsr-04
qrld-01
qraw-01
qrdwtdw-01

A Y

LOD

354
319
367
3.66
513
450
326

Additive
effect

-0.1946
~0.1620
02083
02203
06382
03234
-0.0262

R*
(%)

7.8
6.17
7.8
932
10.99
11.56
8.89

TR*

02598
02564
02568
02825
02170
02545
0.1742

Left
flanking
marker
position
(cM)

64.75

380.66
289.68
46355
144.63
21892
36247

Right
flanking
marker
position
(cM)

7475

38155
29426
47388
14596
22315
37131

Left
flanking
marker

CNC_021161.1.14160111
CNC_021163.1.32600157
CNC_021164.1.32536050
CNC_021165.1.46709195
CNC_021166.1.17179431
CNC_021163.1.30731371
CNC_021164.1.3036101

Right
flanking
marker

CNC_021161.1.28928681
CNC_021163.1.32600103
CNC_021164.132971044
CNC_021165.1.52150911
CNC_021166.1.17179406
CNC_021163.1.30731330
CNC_021164.1.6394203

RSR, root-shoot ratio; RLD, root length density; RDW, raot dry weight; RDW/TDW, ratio of root dry weight to total plant dry weight; Ch, chromosome number; LOD, logarithm of odds;
R, proportion of the variance explained by genetic effect; TR?, proportion of the total variance explained by the model including covariates.
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Trait

DFI

DFF

DHE

NPP

BIO

YLD

HSW

MPI

RLWC

Env

R
RF
IR
RF
R
RE
IR
RF
IR
RF
R
RE
IR
RF
R
RE
R
RF
IR
RF
IR
RF
IR
RF

ILWC

292
(susceptible
parent)

1234
1370
90.33
78.15
94.26
82.14
98.08
84.93
242
2355
43.53
18.09
76.78
40.72
2791
1178
1127
1033
36.63
28.89
4223
50.24
65.28
48.11

GPF 2
(tolerant
parent)

8.12
853
82.80
70.10
86.46
73.57
89.78
76.45
58.87
48.52
68.54
4371
11332
77.51
49.74
3677
16.18
16.09
4355
47.96
2881
36.17
88.31
78.16

Contrast
analysis
between
parents

44.33%
194.89%
78.87*
28.44*
17150
2891%
17150
30.18*
65.43*
53806
133.10*
169.97*%
55.17*
450.56**
23207
20039
1,629.73
71484
15.81%
54.76*
150.71%
91.06*
178.91%%
42924

Mean
(RILs)

933

1014
8599
72.14
89.46
7651
93.10
80.33
4568
3156
47.39
2725
8133
48.68
3214
17.94
1422
1162
38.98
3537
3942
47.12
74.85
60.23

cv

5.05
10.10
201
945
208
875
1.96
820
1047
2612
2175
35.25
1547
33.28
27.07
50.90
16.11
2033
16.48
19.94
1212
13.02
937
15.97

Range

8.12-1234
827-13.89
78.91-90.33
55.53-87.61
82.35-94.26
60.19-91.55
86.67-98.08
64.44-95.80
33.82-58.87
12.74-48.52
25.13-75.07
12.69-50.09
51.55-113.70
18.68-83.48
14.13-54.69
731-4579
9.79-18.42
7.16-17.10
22.49-52.86
23.55-56.56
28.70-50.76
31.56-58.10
59.06-89.94
44.80-79.65

Genotypic

variance

150"
235
1.96%
15.24*
224
25.76*
228
16.30*
405
21.30%
18.64*
37.02%
10.35*
35.06%
18.16*
30.72%
2041%
25.40%
12.52%
836
15.49*
19.61%
607
14.39%

G x

variance

051
0.15
0.15
061
0.14
052
020
059
385
458
582
412
412
658
612
9.12%%
18.35%
9.89"*
531%
7.53*
8517
3.08*
1017*
8.96*

H*
(broad
sense)

5640
4240
3520
88.40
2510
88.60
2970
88.40
7940
89.00
85.30
89.50
8420
89.70
88.00
89.20
9040
90.10
8640
87.50
88.70
88.70
86.60
88.90

“*Highly significant at 1% probability level, DG, days to germination; DFI, days to flowering initiation; DFF, days to 50% flowering; DHE, days to 100% flowering; PH, plant height (cm);

NPP,

relative leaf water content (%); Env, envi

number of pods per plant; BIO, biomass per plant (gm); YLD, yield per plant (gm); HSW, 100-seed weight (gm); HI, harvest index (%); MPI, membrane permeal
nment; CV, coefficient of variation; G x L, genotype by location interaction; H?, broad-

se heritability.

ty index; RLWC,
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Trait Env ILWC GPF 2 Mean cv Range Genotypic G x H*

292 (tolerant (RILSs) variance E (broad
(susceptible parent) variance sense)
parent)
RL IR 84.82 109.60 90.84 17.08 57.37-128.17 24.25% 169 96.30
RE 88.98 12571 92.10 17.86 56.10-127.46 2023 95.40
SL R 26.60 35.65 28.72 1922 16.84-47.99 7.20% 213 88.00
RF 17.07 3182 24.72 2195 13.56-41.36 10.81% 92.20
RSR R 319 3.08 326 1892 1.90-4.89 450 174" 78.80
RE 520 397 386 2050 1.99-6.94 640 85.50
RLD R 9.14 671 9.33 2397 5.67-13.85 1229 7.26% 92.60
RF 10.52 664 935 2021 4.67-14.24 28,89 96.90
FRW R 899 1146 972 17.06 637-13.73 10.46" 161 91.30
RE 7.93 1226 964 17.39 5.71-13.62 17.26* 94.90
FSW IR 9.40 1504 1193 27.94 7.68-25.04 3377 535 97.40
RE 571 1732 8.90 4368 479-24.92 31967 97.10
RDW R 200 3.00 230 28.62 1.17-3.85 10.28* 3.83 91.20
RF 139 469 244 4520 0.37-5.80 1549 94.20
SDW R 249 361 299 2243 2.13-547 3162 503 97.20
RF 197 425 257 30.18 1.60-5.60 26,99 96.70
RDW/ R 045 046 043 1258 0.25-0.55 5.09° 322 81.30
DW RF 042 052 047 2163 0.18-0.74 8.46 89.20

“*Highly significant at 1% probability level, RL, root length; SL, shoot length; RSR, root-shoot ratio; RLD, root length density; FRW, fresh root weight; FSW, fresh shoot weight; RDW, root
dry weight; SDW, shoot dry weight; RDW/TDW, ratio of root dry weight to total plant dry weight; Env, environment; CV, coefficient of variation; G x E, genotype by environment
itarictoi FY. broad i lumsbilio,
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RIL no. DG DFL DFF DHF PH NPP BIO YLD HSW Hl MPI RLWC

75 838 57.48 62.11 66.83 44.43 5009 81.46 4579 1570 56.56 3188 78.10
81 827 5738 61.84 66.43 4506 47.98 76.99 42.68 17.06 56.02 3258 77.59
154 9.30 69.79 73.67 77.34 46.36 49.71 83.48 42,05 16.50 50.87 3156 79.37
41 961 73.00 77.19 81.06 4094 46.28 7321 3892 1622 53.97 3447 7595
26 1069 69.17 7375 77.02 47.34 50.07 79.78 38.67 17.10 48.96 3521 76.53
56 9.94 59.07 63.86 68.20 4192 4345 75.33 37.12 1524 49.38 3552 7802
16 10.66 83.69 87.96 91.67 39.00 4397 74.12 37.05 14.66 50.35 3474 76.78
13 9.96 63.06 68.37 7238 4199 4584 77.04 3690 1555 4804 3735 7481
9 9.02 67.12 71.59 7579 4278 4051 69.77 36.28 1547 5237 36.70 75.85
77 9.06 57.32 61.63 66.56 45.14 44.35 79.20 36.16 1696 4580 37.01 77.59
7 9.34 57.79 62.58 65.77 46.52 43.00 7374 3583 15.66 4875 36.88 7257
80 8.68 61.83 66.72 70.62 4626 43.73 73.65 35.68 1389 4947 36.92 7594
15 9.39 76.98 80.78 84.57 39.41 4031 70.91 35.60 16.84 50.47 37.82 7697
180 1045 79.47 83.64 87.30 4412 4595 73.39 35.14 1404 4817 36.63 7125
70 9.15 69.19 7385 77.90 4553 46.17 81.41 3481 1572 43.02 3848 76.67
62 957 67.85 71.93 76.16 4493 4237 76.18 34,68 1473 45.60 37.94 77.88
24 9.84 66.00 7041 73.80 4345 247 7171 3443 1524 4804 3828 79.65
GPF2 853 70.10 73.57 7645 48.52 4371 77.51 36.77 1609 47.96 36.17 78.16
ILWC292 1370 78.15 82.14 84.93 2355 18.09 40.72 1178 1033 28.89 50.24 48.11
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Traits Hundred-fruit weight Fruit length Fruit width Fruit aspect Fruit yield
ratio

Hundred -fruit weight P 1.000 ~0.408 0.157 -0.540 0540
G 1.000 -0428 0.048 773 0.605

Fruit length P 1.000 0548 0342 ~0.672
G 1.000 0.800" 0.563 -0720"

Fruit width P 1.000 -0.454 -0.144
G 1.000 -0.159 -0.205

Fruit aspect ratio 24 1.000 -0.459
G 1.000 -0.838"

Fruit yield P 1.000
G 1.000

*Significant at 5% level (F test).
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Clones Plant Sturdiness  No. No. No. No. Male/ Fruits/ Bunches/
height diameter  quotient  of primary of secondary of male  of female female bunch Branch
(cm) (cm) branches  branches  flowers  flowers  flower
ratio
First year (2018-2019)
CIH 3 11733 £551° 524 £ 006" 2239 £ 058™ 317 £ 003" 475 £ 0.02* 158.50 £ 823  24.25+ 015" 654 £ 0.22° 1520 + 0.60" 4.25 % 016"
CH 5 11244 £5.82° 507021 2218 £056™ 3.11£001° 452£ 015 17225 £2.28° 2685+ 062" 642 + 022° 16550 £ 0.00™ 4.00 £ 0.09"
CHH 9 10844 £ 0.50° 548 + 017 1979 023 412015 395+ 019" 169.25 £ 2.60° 26,65 + 0.95°  6.35 + 0.30° 1640 + 0.62" 475 £ 024"
CH 12 11656 £342° 500+ 012" 2331 118" 470 £ 004" 435+ 012*% 19675 £ 9.06"  24.50 + 123"  8.03 £ 027" 1835 + 0.90" 475 + 024"
CH 13 13222 £1.92° 503 +£022* 2629+ 131' 433001" 461 £ 0.13° 192.25 £2.74" 2225+ 1.03° 864 £ 007" 1835 + 0.63" 4.25 £ 001"
TNMC 7 (Control) 106.11 £3.73* 472+ 011" 2248 £037° 255 003 320 £ 0.16° 22550 £ 6.00° 1825+ 0.94° 1235 £ 0.40" 1290 + 0.24° 4.00 £ 0.01"
p value 0007 085 0003 <0.0001* <0.0001 <00001 <0.0001* <00001* <00001* 014
Second year (2019-2020)
CH 3 12124 £510% 1240 £ 009™ 978 + 0.31° 7.17 £ 005" 675 £ 007 23325 £479% 3450 £022% 680 £ 0.02% 21.40 + 091° 6.25 % 0.30™
CHS5 12063 £ 148" 1398 £ 054 86 035 611 £032° 7.52 £ 0.26% 227.75£6.09% 3695 1.89° 620 £ 0.20 2235 098" 6.00 £ 0.10
CH9 11827 £0.20° 1274 £ 0.19° 928 + 006>  9.12 + 0.02* 995 + 049" 217.75 + 146"  36.89 + 1.88° 590 £ 0.16* 21.35 + 0.90° 6.75 £ 0.02*
CJH 12 11670 £ 5.41° 1240 £ 025% 941 £ 044% 770 £ 0.12" 8.35 £ 0.00" 21325 £435% 3451+ 107% 620 £ 014 2235 + 005" 6.75 + 025"
CJH 13 13197 £ 118" 11232 047° 1175022 733 £021" 7.61 £ 0.15% 21675 £9.86" 3251 £ 029" 670 £ 0.31% 2335+ L14° 625 % 019"
TNMC7(Control) 10970 + 4.02° 1149 £ 0.46° 955+ 043%  6.55 £ 0.16% 7.20 £ 0.26% 28175 £ 859" 28.70 + 0.65°  9.80 £ 0.03* 1690 + 0.85" 6.00 £ 0.04"
pvalue 019 o0 o0 <oo0r  <00001* <00001* o004 <0000 o003 o7
Third year (2020-2021)
CH 3 12515 £ 263 1944 £ 096" 644 £ 0.08  7.15 £ 0.04° 9.50 + 0.08" 24575 £4.94° 3550 059" 692 £ 012" 22550 + 039" 7.20 £ 017"
CH 5 12883 £ 3.82° 2278 £ 048" 566 £ 0.10° 7.12 £ 0.05° 9.62 + 0.06" 25250 £10.56" 38.75 % 1.78"  6.52 £ 0.10% 2225 + 036" 6.50 £ 0.23"
CH9 12810 £ 451" 1978 £ 022" 648 + 020" 9.50 £ 0.16* 985 + 045" 237.25+1069" 3425+ 066" 693 + 0.02" 2225 + 049" 620 £ 017"
CJH 12 11685 £ 5.34% 1989 £ 039" 587 £ 0.26° 8.42 £ 005" 9.25 £ 0.18" 22675 £7.54" 3650 £ 156™ 621 £ 0.19° 2350 + 120" 750 £ 0.11*
CJH 13 13172 £6.09°  1811%026" 7.7 £ 0.15" 952 £031° 9.60 + 0.22° 23825 £ 898" 3650 + 149"  6.53 £ 0.03% 2625 + 0.84" 7.50 £ 0.21°
TNMC7 (Control)  113.30 + 0.67° 19.11£ 091" 5930159  7.50 £ 0.37° 825+ 025" 316.50 £10.12  29.50 + 1.15°  10.73 £ 0.29" 17.50 £ 0.19° 6.00 £ 013"
p value 057 0004 <0.0001* <0001 0007 <0.0001° 0.005™ <0.0001* <0.0001° <0.0001°

*Highly significant difference at p < 0.001 level of probability, and ns - no significance. Values with different superscripts were significantly different at p < 0.05 level of probability.
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Clones 100 Fruit  Fruit Fruit Fruit 100 seed  Seed Seed Seed Shelling  Seed Kernel
weight length  width  aspect  weight length  width  aspect percent  oil oil
(g (cm) (cm) ratio (2 (cm) (cm) ratio content  content
(%) (%)
CJH 3 11257£074 200+ 157 % 128+ 5937 + 173+ 079+ 219+ 6157 % 27.93 + 5480 +
0.04" 0.04° 002 052 0.00* 003 002" 213 0.00° 0.80"
CH 5 11068 239" 210 169+ 126 + 5748 + 172+ 080+  215% 6196 = 3419+ 53.60 =
0.08" 0.01°% 0.00" 045" 0.06* 0.00* 005 124 037 1.96*
CJH 9 11266+013 212+ 163+ 133+ 5946 + 174+ 080+ 218+ 6043 + 4350 +
007" 0.05% 005 193 0.00° 002 003 2500 017>
CJH 12 11440£232 205+ 174+ 118+ 6120 + 168 + 078+  217% 6222+ 4540 =
0.09" 0.01° 005" 146" 007" 0.00* 0.09" 132 210"
CJH 13 11681£436° 216+ 178+ 122+ 6361 £170° 171+ 081+ 212+ 58.99 + 5320 +
002" 007" 005 002 003 007" 0.45* 255
TNMC7  10956%229° 237% 180+ 133+ 5636 £ 106° 175+ 075+ 234% 6385 % 3540 +
(Control) 0.0 0.05° 000" 0.06" 0.00* 006" 0.58" 0.26°
p value 0.399" 0024 0030 0135%  0.025™ 0939" 0624 0628 0401™ <0.0001° <0.0001°
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Traits

Plant height
Basal diameter
Sturdiness quotient

No. of primary branches
No. of secondary branches
No. of male flowers

No. of female flowers
F:M ratio

No. of fruits/bunch

No. of bunches/branch
Seed yield
Hundred-fruit weight
Fruit length

Fruit width

Fruit aspect ratio

Fruit yield
Hundred-seed weight
Seed length

Seed width

Seed aspect ratio
Shelling percent

Seed oil content

PCV %

6.08
524
518
1471
1445
1114
9.13
2122
1078
5.60
16.05
250
641
654
686
19.14
472
1.88
380
384
3.06
1649

GCV %

583
496
464
14.65
14.41
11.03
9.09
21.10
10.73
548
16.00
223
5.96
4.80
3.80
19.11
422
123
257
344
255
16.39

Heritability (%)

92.00
89.00
80.00
95.00
95.00
94.00
95.00
95.00
95.00
93.00
95.00
80.00
86.00
54.00
31.00
95.00
80.00
43.00
46.00
80.00
70.00
95.00

GA (%) of mean

11.50
9.67
856
30.03
29.59
2249
18.64
4322
2201
11.05
3285
411
1141
727
433
39.32
777
167
3.60
635
438
33.56
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Traits

Plant height

Basal diameter

Sturdiness quotient

No. of primary branches

No. of secondary.

branches

No. of male flowers

No. of female flowers

Male-female flower ratio

No. of fruits/bunch

No. of bunches/branch

Seed yield

sSignificant at 5% level (F test).

~ o= o=

a~o

ocro=o=o=o=o0 =

o
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1000
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Number
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LOC_Os06g03710  OsDLT 1419 1456 3 123 94 0 65 1.07 GAG

LOC_0s02g58390  OsELTT 1305 1336 2 16 93 0 55 117 AG

LOC_Os04g56850 OsARF11 351 375 3 83 100 0 50 1.68 GCA

LOC_0s05g32270  OsRLAT 604 643 21 19 89 0 62 111 GAGGCGGTGGGAGCGGGGGGA

LOC_Os03g44500 OsPPKL1 660 732 38 19 85 0 101 1.92 ACTAAACACAGAAAGGGATCATCCAAC
GTGAACTTCTC

LOC_0s12g42310  OsPPKL3 510 535 2 13 100 0 52 4 AT

LOC_Os03g45420 OsPUB24 19 182 32 2 100 0 128 1.92 GCTAACTAAAAGAGCTATAGCTCATGA
TGATT

LOC_Os01g64430 OsOFP8 350 385 2 18 100 0 p 1 TC

LOC_Os06g12210  OsBUT 663 711 24 2 100 0 98 1.68 AAAACATAGAACTTAAATATTTGC

LOC_0s02g52340 OsMADS22 1268 1301 10 34 91 0 50 1.52 CCTCGCCTCA

LOC_Os01g12830  OsEMF1 964 992 2 14.5 100 0 58 i TC

LOC_0s02g47280  OsGRF4 1137 1165 2 15 92 7 51 1 GA

LOC_Os02g54600 OsMAPKK4 365 559 76 e 79 12 173 16 Large no of DNA stretches (69bp)

LOC_Os06g06090  OsMAPK6E 614 652 " 35 82 6 51 0.83 TITICTTITIT

LOC_Os05906280 OsBHST 358 417 2 295 96 3 " 113 AT
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Gene ID

LOC_0s01g10840
LOC_0s01g12690
LOC_0s01g12890
LOC_0s01g52050
LOC_0s01g64430
LOC_0s02g22130
LOC_0s02947280
LOC_0s02952340
LOC_0s02g54600
LOC_0s02g58390
LOC_Os03g08754
LOC_0s03g13010
LOC_0s03938210
LOC_0s03g44500
LOC_0s03g45420
LOC_0s03g49990
LOC_0s04g49230
LOG_0s04g54900
LOC_0s04g56500
LOC_0s04g56850
LOG_0s04g58750
LOC_0s05g05240
LOC_0s0506280
LOC_0s05909520
LOC_0s05g11730
LOC_0s05g27730
LOC_0s05g32270
LOC_0s06g03710
LOC_0s0606090
LOC_0s06g11330
LOC_0s06g12210
LOC_0s06g15620
LOC_0s06948950
LOC_0s06g49080
LOC_0s06g50060
LOC_0s07g39220
LOG_0s08g07760
LOC_0s12913380
LOC_0s12g42310

Gene
name

0sGSK1
OsOFP1
OSEMF1
OsBAIT
OsOFP8
OsGAP1
OsGRF4
OsMADS22
OSMAPKK4
OSELT!
OsMADS47
0OsTUD1
OsGAMYBL2
OSPPKLT
OsPUB24
OSRGAT
OSRAVLT
OslLI1
OsIBH1
OsARF11
0sBSK3
OsPPKL2
OsBHS1
OsGWS5
OsGSK2
OSIWRKYS3
OsALAT
OsDLT
OSMAPK6
OSMADS55
0sBU1
OsGSR1
OsARF19
OsLIC
OsPRA2
OsBZR1
OsBAK1
OSAK3
OSPPKL3

Nomenclature

OsBRs1-1
OSBRs1-2
OsBRs1-3
OsBRs1-4
OSBRs1-5
OsBRs2-1
OsBRs2-2
OsBRs2-3
OsBRs2-4
OsBRs2-5
OsBRs3-1
OsBRs3-2
OsBRs3-3
OsBRs3-4
OsBRs3-5
OsBRs3-6
OsBRs4-1
OsBRs4-2
OsBRs4-3
OsBRsd-4
OsBRs4-5
OsBRs5-1
OsBRs5-2
OsBRs5-3
OsBRs5-4
OsBRs5-5
OsBRs5-6
OsBRs6-1
OsBRs6-2
OsBRs6-3
OsBRs6-4
OsBRs6-5
OsBRs6-6
OsBRs6-7
OsBRs6-8
OsBRs7-1
OsBRs8-1
OsBRs12-1
OsBRs12-2

Start
(bp)

4350502
7009032
7157779
29927542
37396144
13173638
28863172
32038901
33442068
35705634
4519404
7029148
21212848
25042314
25638650
28612624
29366455
32657762
33676316
33888003
34942979
2564220
3203041
5365121
6657480
16150265
18812389
1465498
2806542
5953592
6556801
8847701
29656968
29738879
30336268
23483808
4344170
7476415
26306762

End (bp)
Strand

5778466
7010505
7164385
29931487
37397573
13176606
28866997
32045130
33443948
35710799
4525778
7031702
21215801
25051072
25642193
28515179
29368515
32668190
33683540
33894393
34949751
2573158
3214116
5366701
6661493
16152747
18817699
1468600
2813004
5963184
6557319
8848847
20665195
29742503
30336936
23485344
4350502
7480811
26315803

Genomic
length
(bp)

4186
1473
6606
3945
1429
2968
3825
6229
1880
5166
6374
2554
2953
8758
36543
2555
2060
438
7224
6390
6772
8938
11075
1580
4013
2482
5310
3102
6462
9592
518
1146
8227
3624
678
1536
6332
3896
9041

Transcript
length
(bp)

1846
1473
4300
3945
1429
1628
1721
1567
1880
2754
1460
2554
1829
3743
3459
2555
2060
338
6618
3849
2316
3494
3584
1494
1863
2075
1484
3102
1815
600
264
1042
3858
1834
678
1407
2710
173
4179

Exons:
Introns

1211
01:00
04:03
01:00
01:00
03:02
03:02
08:07
01:00
02:01
08:07
01:00
03:02
21:20
02:01
01:00
01:00
02:01
01:00
14:13
08:07
21:20
19:18
02:01
12:11
05:04
07:06
01:00
06:05
06:05
02:01
02:01
14:14
10:09
01:00
02:01
11:10
06:05
21:20

Protein
length
(aa)

406
395
1058
1122
229
166
423
229
370
691
251
460
523
1004
825
626
317
105
203
956
359
892
1100
498
403
488
315
618
399
200
88
111
1139
391
226
299
625
242
1010
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Promoter ID

LOC_0s01g52050
LOC_Os08907760
LOC_0s07g39220
LOC_Os06g49080
LOC_Os06g03710
LOC_0s03g13010
LOC_Os04g49230
LOC_Os04g56850
LOC_Os06g48950
LOC_0s03g49990
LOC_0s02g22130
LOC_0s05g32270
LOC_0s03g44500
LOC_0s05g05240
LOC_Os12g42310
LOC_0s03g45420
LOC_Os01g12690
LOC_0s01g64430
LOC_0s06g12210
LOC_0s05g27730
LOC_Os03g08754
LOC_0s02g52340
LOC_Os06g11330
LOC_Os06g15620
LOC_0s03g38210
LOC_Os01g12890
LOC_0s02g47280
LOC_Os04g54900
LOC_Os06g06090
LOC_Os05g06280

Gene
name

OsBRIT
OsBAK1
OsBZR1
OsLIC
OsDLT
OsTUD1
OsRAVL1
OsARF11
OsARF19
OsRGAT
OsGAP1
OsRLA1
OsPPKL1
OsPPKL2
OsPPKL3
OsPUB24
OsOFP1
OsOFP8
0sBUT
OsWRKY53
OsMADS47
OsMADS22
OsMADS55
OsGSR1

OsGAMYBL2

OsEMF1
OsGRF4
OsILIT
OsMAPK6E
OsBHS1

Begin
site

51
890
1
22

810
233

630
619
760
147

913
971
722
959
56
789
865
1
1
714
814
1001
853

End site

1524
1500
1500
1500
1153
684

1500
1167
1500
1500
1500
1167
1500
1500
1500
1500
815

1488
1500
1500
1500
1500
1500
1500
1114
1126
1500
1500
1500
1500

Length

1450
611
1500
1479
1153
684
1311
1167
665
691
1268
1167
871
882
741
1354
815
576
530
779
542
1445
712
636
114
1126
787
687
500
648

G+
C frequency

0.54
0.63
0.54
0.54
0.55
0.49
0.58
0.55
054
0.51
051

0.6
0.61
0.56
0.65

05
0.54

05
0.52
0.54

05

0.6
0.54
0.51
052
0.58
0.55
0.49

05
0.58

CpGo/e
ratio

1.08
0.98
077
1.16
1.04

At Skew

-0.05
0.19
0.05

-0.01
-0.06
0.03
0.08

-0.07
0.02
-0.04
0.03

-0.07
0.05

-0.04

CG Skew

-0.14
-0.09
-0.09
-0.01
-0.04
0.07
-0.16
0.06
0.04
-0.02
-0.01
-0.07
-0.22
-0.16
0.01
0.1
0.04
-0.32
=02
-0.36
-0.09
-0.19
-0.09
-0.23
-0.14
-0.29
-0.02
02
-0.29
-0.13

Start
P

0.72
0.49
0.38
08

0.67
0.34
0.68
04

0.38
025
051
052
0.68
031
0.44
034
053
0.08
03

0.79
034
0.64
057
0.28
022
0.73
0.68
0.19
0.36
057

Strand

[

R

Strand
P

0.79
0.96
0.84
05

0.53
0.65
0.95
0.83
0.57
0.53
0.61
0.55
0.97
0.85
0.7

0.88
0.79
0.95
0.97
0.99
0.88
0.83
0.87
0.98
0.54
0.82
0.92
0.98

1
0.98
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Primers. Name Sequence

P1 Eif4-F 5'ATGGCAGCAGCTGAAATGGAGAGAACGACS'
Eifa-R 5'CTATACGGTGTAACGATTCTTGGCACTTCTG3'

P2 PCF 5'TCCAAAGCTTCCTAGGC CTTC 3'
PCR 5'CCAGAAGCTTCTAGGTAATGCCAACTTT 3’

P3 CasD F 5'GCAAGAAATTCAAGGTGCTGGGCAACAZ'
CasDR 5'ACTCTTCCAGTCTGTGGAAGAAGCTGT3"

P4 PVYVpg-F 5'GTGTCTCATCAAGGGAAAAATAAATCCS'
PVWYvpg-R 5'AAGCCTCTCATGAGCGATTTAGCTTCATS'

P5 EF1 5'ATGGCAGCAGCTGAAATGGAGAGAACGACS'
ER1 5' AGTGAGCTTCCCCAAGCAGTTTGTCGAG3'

P6 KF 5'GCACGAGGAAGCGGTCAGCCCATTCGCC3'

KR 5'AGACCGACCTGTCCGGTGCCCTGAATGAACS'
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Line

Wild-
type

E1.8

E1.9

E1.16

E1.46

Wild-
type

E2.9

Wild-
type

Allele 1
Allele 2
Allele 3

Allele 4

Aliele 1
Allele 2
Allele 3
Allele 4

Alele 1

Allele 2
Allele 3
Allele 4

Alele 1

Allele 2
Allele 3
Allele 4

Allele 1
Allele 2
Allele 3
Allele 4

Allele 1
Allele 2
Allele 3
Allele 4

Sequences (5'..... .3)

ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGA

ATGGCAGCAGCTGAAATGGAGAGAACGACCTCGTTTGATGCAGCTGA-AAGTTGAAGGCCGACGATGGA
ATGGCAGCAGCTGAAATGGAGAGAACGACCTCGTTTGATGCAGCTGA-AAGTTGA AGGCCGACGATGGA
ATGGCAGCAGCTGAA-TGGAGAGAA ACGACCTCGTTTGATGCG/CGCTGA-AAAGTTGAAGGCCGACGAG

ATGGCAGCAGCTGAAATGGAGAGAACGACCTCCTTTGATGCAGCTGA— — —AGTTGAAGGCCGACGATGGA

ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAAG-GAAGGCCGACGATGGA
ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGATGCAGCTGAG-AGTTGAAGGCCGACGATGGA
ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGA —CAGCTGAGAAGTTGAAGGCCGACGATGGAG
ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGACGATGGA

ATGGCCGCAGCTGAAATGGAGACGAA-GGAGCATATA

—— - s r————— —GATGGAG
ATGG-AGAG-AACGACGAGGA—GCATATATAGGTGAGGGAAGAGAGCATATATGGAGACTTTCCAGATC
ATGGAGAGAACGACGAGG-AGCATATATATAGGTGAGGGGAAGAGAGCATATATGGAGAGACTTTCCAA

ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGA

ATGGAGAGAACGACG——— —
CATCCATTGGAGCATTCATGGACTTT
ATGGCAGCAGCTGAAATGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGACGATGGA
ATGGCAGCAGCTGAA-TGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGAG
ATGGCAGCAGCTGAA-TGGAGAGAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGA

GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGAGGAGGAGGGGAGGTAGACGATG

——COGCATATCT—

GAACGACGTCGT-TGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGAGGAGGAGGGGAGGTAGACGATG
GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGCAGGAGGAGGAGAGGTAGACGATG
GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGG —AGGAGGGGAGGTAGACGATG
GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGCAGGAGGAGGAGAGGTAGACGAT

GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGGAGGAGGAGGGGAGGTAGACGATG
GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATGCAGGAGGAGGGGAGGTAGACGATG
GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGGCCGCCGATG —GAGGAGGGGAGGTAGACGATG
GAACGACGTCGTTTGATGCAGCTGAGAAGTTGAAGCGCCGATGCAGGAGGAGGGGAGGTAGACGATG

Editing event

0
0
~1 bp Substitution

~1bp, +1bp
-1

-1bp
-2bp
~1bp
Obp

-25/+10 bp.

~15bp/+14 bp
25 bp/+35 bp
Obp

139 bp/+42 bp

0bp
1 bp (stop codon)
-1 bp (stop codon)

~1bp
2bp substitutions
-3bp

2 bp substitutions

0bp
1 bp substitutions
-3bp
-2bp
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Name Sequence

St Actin1 St-AcF1: 5'GATGGCAGACGGAGAGGA3'
St-AcR1: 5'GAGGACAGGATGCTCCTC3'

St Actin2 St-AcF2: 5'GTGACAATGGAACTGGAATGGTCAAGGTAAS'
St-AcR2: 5'GACCCATACCCACCATCACACCAGTAT
GGC3'

elF4E (RT-F&RT-R) 5" ATGGCAGCAGCTGAAATGGAGAGAACGACS'
5' AGTGAGCTTCCCCAAGCAGTTTGTCGAGS'

Cas9 (RT-F&RT-R) 5’ GGACTCCCGGATGAACACTA3"
§' TCGCTTTCCAGCTTAGGGTA3'

VPg (RT-vp182) 5'GAATTCAAGCCTTGAAGTTTCGCCATGC3"
5'TGCGCCCCAGTGAGTGGATCAACGAATT3"
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S. no.

S g =

Standard

82
83

85
S6
87

Concentration (ng/pl)

0.06
0.005
0.0005
0.00005
0.000005
0.0000005

Concentration in scientific
notation

5.000E-02
5.000E-03
5.000E-04
5.000E-05
5.000E-06
5.000E-07

Copy number

23E+08
2.3E+07
23E+06
2.3E+05
2.3E+04
2.3E+03
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Transcript ID

Ga01G2780.1
Ga02G0430.1
Ga02G0682.1
Ga03G1080.1
Ga05G0289.1
Ga05G1883.1
Ga06G0702.1
Ga06G1021.1
Ga06G1856.1
Ga07G0263.1
Ga07G0524.1
Ga10G2984.1
Ga11G2398.1
Ga13G2421.1

Gene
name

GaPFKO1
GaPFK02
GaPFK03
GaPFPAT
GaPFKO4
GaPFK05
GaPFK06
GaPFKO7
GaPFPB1
GaPFK08
GaPFK09
GaPFPB2
GaPFPB3
GaPFK10

Chr

A01
A02
A02
A03
A05
A05
A0B
A0B
A0B
A07
A07
A10
Al
A13

Start

112187850
6567294
26885445
39283790
2603640
17010181
11952219
33241627
119568833
2791986
5587128
128611006
104247268
119436074

End

112188338
6573204
26888798
39288712
2606732
17011769
11956985
33245603
119563236
2795312
5593089
128615063
104252050
119444081

Strand

Gene

length
(bp)

489
5011
3354
4923
3093
1589
3767
4077
4404
3327
5962
4058
4783
8008

Chr #, chromosome number; bp, base pair; aa, amino acio; MW, molecular weight; kDa,

kilodalton; pi, iso-aleciric point: GRAVY. grand average of varopathy:

cps
length
(%)

372

1617
1509
1851
1725
1470
1668
1473
1701
1581
1587
1701
1710
1437

Mean
exon

length
(bp)

186
124.4
116.1
1028
1438

736
1283
1133
106.3
1216
1134
106.3
106.9
1105

Mean

intron

length
(bp)

"7
357.8
153.8
180.7
124.4

119
174.9

217
180.2
145.5
336.5
157.1
204.9
547.6

Protein
length
(aa)

128
538
502
616
574
489
555
490
566
526
528
566
569
478

Mw
(kDa)

14.208
59.306
54.862
67.41

63.536
54.157
61.365
53.828
61.49
58.044
58.111
61.874
62.939
52.444

Charge

15
55
95

125
45
126

-05
19
35
-1
25

Pl

8.239
7.849
7.182
7.683
8.227
6.852
8.284
6.745
6.441
9.126
7.065
6.383
6.787
7.803

GRAVY

-0.335
-0.189
-0.221
-0.144
-0.228
-0.242
-0.286
-0.288
-0.114
-0.194
-0.193
-0.16
-0.191
-0.19
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Transcript ID

Gorai.001G025000.1
Gorai.001G051000.1
Gorai.003G042800.1
Gorai.003G061100.1
Gorai.005G115600.1
Gorai.007G170900.1
Gorai.009G029100.1
Goral.009G185000.1
Gorai.010G079100.1
Gorai.010G103800.1
Goral.010G103900.1
Gorai. 010G 184300.1
Gorai.011G011600.1
Gorai.013G229200.1

Civ #, chromosome number: bo, base pair aa, amino acid: MW, molecular weioht: kDa, kibdalton: pf, iso-electric point: GRAVY. arand average of hydropathy.

name

GPFKOT
GIPFKO2
GIPFKO3
GIPFKO4
GiPFPAT
GiPFPB1
GIPFKO5
GIPFKOB.
GIPFKO7
GrPFKO8
GIPFK09
GrPFPB2
GrPFPB3
GIPFKIO

chr

oot
Dot
D03
003
D05
Do7
D09
D09
D10
D10
D10
p10
o1
D13

Start

2353903
4832464
5450969
10796852
22500435
15439718
2006642
14234340
11493546
18880342
18886681
53477489
820017
54804614

End

2357870
4839210
5457737
10799714
22605464
15444527
2230570
14236341
11498094
18883026
18891336
53482966
824604
54812629

Strand

S

Gene
length

(bp)

3968
6747
6769
2863
6030
4810
3929
2002
4549
2685
4656
5478
4588
8016

cDs.

fength

(%)

1647
1587
1617
1257
1854
1707
1725
1470
1668
840

1473
1701

1701

1431

Mean
exon

length

(bp)

1752
167
1786
1048
146.2
108.7
177.8
941
190
933
150.4
1795
145.7
1132

Mean

intron

length
(bp)

1408
3392
3706
146
195.1
2047
1348
120
1733
2306
2163
1737
1505
5453

Protein
length
(aa)

548
528
538
418
617
568
574
489
555
280
490
566
566
476

Mw
(kDa)

60.768
58.207
50.229
46243
67.568
62573
63.604
54.191
61203
30493
53641
61567
61851
52.266

Charge

18

1
65
85
45
15
65
135
15

-15
-15

8.56¢
7.28¢
7.7
7.36¢
7.52
7.044
8398
7.032
8507
9.1
6.624
6302
6304
7.83¢
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Transcript ID

Gbar_A02G009620.1
Gbar_A02G012760.1
Gbar_A02G014220.1
Gbar_A05G002520.1
Gbar_A05G017640.1
Gbar_A06G007200.1
Gbar_A06G009460.1
Gbar_AOBGO16360.1
Gbar_A07G002540.1
Gbar_A07G004730.1
Gbar_A10G001200.1
Gbar AT1G015950.1
Gbar_A136021230.1
Gbar_D02G010860.1
Gbar_D03G004100.1
Gbar_D05G002800.1
Gbar_D05G018110.1
Gbar_D0BGO07450.1
Gbar_D06G009890.1
Gbar_D06G009900.1
Gbar_D06GO17040.1
Gbar_D07G002510.1
Gbar_D07G005030.1
Gbar_D10G001120.1
Gbar_D11G016720.1
Gbar_D13G021590.1

Gene
name

GbPFPAT
GbPFKOT
GbPFK02
GLPFKO3
GbPFKO4
GLPFKO5
GLPFKO6
GbPFPB1
GLPFKO7
GLPFK08
GbPFPB2
GbPFPB3
GbPFK09
GLPFPAZ
GOPFK10
GOPFKT1
GbPFK12
GbPFK13
GOPFK14
GbPFK15
GbPFPBA
GLPFK16
GLPFK17
GbPFPBS
GbPFPB6
GLPFK18

Chr

A02
A02
A02
A0S
A0S
A0S
A0B
A0S
A0T
A0T
A10
Al
A13

D07
D10
o
D13

33078079
76466974
90947968
2313058
16387664
15846931
30004949
105197849
2781640
5531897
936595
18500653
104899524
23684632
5429725
2438237
15588556
11808443
19029717
19037339
54055440
2536630
5200039
824918
16179099
55974312

End

33083928
76470364
90954531
2316747
16389252
15851523
30009643
105203545
2785230
5538486
941048
18505440
104907657
23690730
5436416
2441342
15500428
11812989
19033756
19041938
54060021
2540438
5215628
829627
16183855
55082847

Strand

44

AR

Gene

length
(bp)

5850
3391
6564
3690
1589
4593
4695
5697
3591
6590
4454
4788
8134
6099
6692
3106
1873
4547
4040
4600
5482
3809
6790
4710
4757
8536

cos
length
(%)

1851
1590
1617
1725
1422
1668
1473
1701
1647
1587
1302
1707
1431
1740
1632
1449
1470
1617
1473
1473
1698
1581
1602
1701
1707
1479

Mean
exon

length
©p)

1546
1223
1748
157.9
474
1922
1621
180.1
1426
1585
2357
106.7
1191
1564
1724
1203
8765
1853
1133
1564
1734
1618
1761
1474
108.9
1444

Mean

intron

length
(bp)

1805
150.1
3577
1364
85
1746
2157
178
1448
3362
1158
205.4
5488
1932
3709
1188
120
1782
2139
2139
1805
1422
3327
156.8
201
5012

Civ #, chromosome number: bo, base pair- aa, amino acid: MW, molecular weioht: kDa, kibdalton; pf, iso-electric point: GRAVY, arand average of hydropathy.

Protein
length
(aa)

616
529
538
574
473
555
490
566
548
528
433
568
476
579
543
a82
489
538
490
490
565
526
563
566
568
492

MW
(kDa)

6738
57.77
59.202
63523
52.463
61379
53828
61.553
60514
58204
47844
62624
52.286
63.736
59.869
52,956
54218
59.202
53631
53631
61.465
58,047
62433
61.853
62601
54,037
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125
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Transcript ID Gene Chr# Start End Strand  Gene cps Mean  Mean  Protein

name length length exon intron length
) (o) length length  (aa)
(op) (op)
Gh_A02G0878.1 GhPFPA1 A02 27983885 27988803 - 4919 1854 103 1803 617
Gh_A02G1133.1 GhPFKO1 A02 61785439 61788827 - 3,389 1509 116.1 156.7 502
Gh_A02G1250.1 GhPFKO02 A02 74165509 74171506 * 5,908 1617 124.4 3576 538
GhAO3G1964.1  GHPFKO3  Scaffdld A03 150231 150719 + 489 ar2 186 117 123
Gh_A05G0198.1 GhPFKO04 A0S 2069765 2072937 + 3173 1773 147.8 127.3 590
Gh_AO5GI517.1  GHPFKOS A0S 15480854 15490943 = 159 1473 7365 117 490
Gh_AOGGOG04.1  GHPFKOS  AOB 16518034 15621797 + 3764 1668 1283 1747 555
Gh_A06G0820.1 GhPFKO7 A0B 30143450 30147508 - 4,059 1473 1133 2155 490
GhAOGG1338.1  GHPFPBT  AOG 94604250 94608663 - 4405 1701 1063 1803 566
GhA07G0376.1  GHPFKOS AT 478280 4788853 + 5958 1687 1134 3362 528
GhA07G2294.1  GHPFKO9  Scaffdd AO7 180176 183360 N 3,185 1449 M5 1447 482
GhAT1GI421.1  GWPFPB3 ATl 19026378 19083169 + 3904 1710 1069 2055 569
Gh_A13G1730.1 GhPFK10 A13 76200172 76208188 - 4,792 1437 1105 548.3 478
Gh.D02G10121  GhPFPAZ D02 24830220 24836396 + 8017 1851 1028 1951 616
Gh_D03G0389.1 GhPFK11 DO3 5424547 5430634 % 5,168 1617 1244 3726 538
Gh_D03G0556.1 GhPFK12 D03 10902780 10905086 - 6,088 900 1286 2345 299
Gh_D05G0274.1 GhPFK13 D05 2434690 2437805 + 2,307 1725 1438 1265 574
Gh_D05G1688.1 GhPFK14 [0 15175474 15177063 - 3116 1470 735 120 489
Gh_D06G0684.1 GhPFK15 D06 11829902 11833654 + 1,590 1668 1283 1738 5565
Gh_D06G1667.1 GhPFPB4 D06 55410670 55415080 - 3,753 1701 1063 180.7 566
Gh_D07G0203.1 GhPFK16 Do7 2148309 2151465 - 4411 1449 115 1423 482
Gh_D07G0439.1 GhPFK17 o7 4733687 4739703 % 3,157 1587 1134 3408 528
Gh_A05G0198.1 GhPFKO04 A0S 2069765 2072937 + 6,017 1773 147.8 127.3 590
Gh_D10G0107.1 GhPFPBS D10 845050 849103 + 4,054 1779 1186 162.5 592
Gh_D11G1572.1 GhPFPB6 D11 16161960 16166675 + 4716 1710 1069 200.4 569
Gh_D13G2078.1 GhPFK18 D13 56288459 56298463 - 10,005 1431 1101 7145 476

Civ #, chromosome number: bo, base pair- aa, amino acid: MW, molecular weioht: kDa, kibdalton; pf, iso-electric point: GRAVY, arand average of hydropathy.

MW
(kDa)

67.555
54.868
59.306
14.192
65.239
54.231
61379
53814
61553
58204
53.007
625593
52472
67.471
50.229
32918
63533
54.166
61.207
61.602
53127
58.264
65.239
64.872
62672
52224
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Trait Me: GQV (%) PCV ( h? (%)

) Genetic advance as a percentage of me

PH (cm) | 8274 1556 1556 098 17.90 2164
DE (s0%) | 2521 12.69 1283 097 am 1759
NBP 499 1048 1057 098 Lom 1455
NP 72 1000 1015 097 23 1384
NFC e ue 2467 099 211 )
NERC 483 3152 3171 098 212 43.91
DM (50%) | 60.75 872 890 097 735 1210
SFW (@) 68.32 2349 2353 099 223 3255
NLF 286 1734 1768 06 0.68 2378
FSPC 77.69 1106 1162 090 1146 1475
YP (kg) 1.80 ‘ 37.62 37.79 0.99 0.94 52.58

Note: PH, plant height (cm); DF, days to 50% flowering; NBP, number of branches per plant; NCP, number of clusters per plant; NFC, number of flowers per cluster; NFRC, number of fruits
per cluster; DM, days to 50% fruit maturity; SFW, single fruit weight (g); NLF, number of locules per fruit; FSPC, fruit setting percentage per cluster; YP, yield per plant (kg); GCV, genotypic
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Parent/| (cr DF (50% NBP NCP NFC NFRC DM (50%);

SFW (g) NLF FSPC  YP (kg)

17905 64.17 29.33 473 1793 | 406 | 313 48.33 34.07 323 | 77.89 0.846
BSX-935 60.23 23.66 530 1400 | 520 220 59.00 57.07 | 250 | 5325 158
Nagina 63.20 2933 5.10 1533 336 226 62.66 61.07 20 68.12 113
Continental 68.21 29.00 470 16.00 5.00 3.90 66.66 74.10 : 373 7853 158
Roma 66.17 28.00 476 1880 | 550 | 320 66.00 51.40 286 5856 0930
Rio Grande 71.20 30.00 383 1740 | 400 296 63.36 47.20 326 | 7478 1.09
Pakit 76.13 28.00 443 1520 | 450 | 340 57.33 56.33 213 7612 148
VCT-01 78.20 24.00 5.06 1700 | 470 | 310 61.33 58.50 260 | 6551 124
Nagina x 17905 96.10 1933 5.80 1853 | 740 | 630 51.63 72.10 350 | 8475 250
Nagina x BSX-935 93.10 25.00 490 1580 | 730 | 606 54.96 7597 300 8273 210
Nagina x Continental 100.20 20.00 553 1620 | 746 640 61.30 8327 200 | 8671 3.00
Roma x 17905 93.50 23.66 5.80 1846 5.80 480 5833 63.17 353 8228 200
Roma x BSX-935 92.17 24.00 526 1873 | 816 | 636 65.10 70.27 293 7840 280
Roma x Continental 98.43 23.66 5.16 1733 | 810 | 673 64.00 80.43 200 8347 250
Rio Grande x 17905 95.17 2433 440 15.86 6.16 5.00 60.66 66.60 330 81.67 193
Rio Grande x BSX-935 81.17 2633 430 1813 | 710 6.10 56.33 74.50 260 | 8631 120
Rio Grande x Continental  88.80 30.33 593 1853 | 800 7.00 61.06 114.30 253 8752 273
Pakit x 17905 84.30 2600 543 1773 | 7.26 590 70.10 | 6133 290 8057 173
Pakit x BSX-935 73.70 24.66 520 1516 | 700 | 596 65.33 84.13 306 8877 110
Pakit x Continental 80.10 25.66 4.63 19.40 6.50 [ 536 | 66.00 83.10 | 346 | 8225 | 283
VCT-01 x 17905 86.37 21.00 440 1566 | 520 | 413 66.66 60.10 260 | 7947 1.03
VCT-01 x BSX-935 90.30 20.33 5.00 2146 | 660 | 480 57.00 6410 253 | 7272 2.00
'VCT-01 x Continental 102.27 2433 5.10 18.80 8.00 6.10 54.10 78.33 [ 320 76.57 216

LSD value 7.99 253 037 154 0.047 0.090 5.00 5.05 054 1501 035
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‘ NERC 1 0.758*% 0.784%% 0712
‘ SFW 0.758** 1 0.573** 0.674
‘7 ESPC 0.784%* 0573** 1 | 0.434*
| YP 0.712** 0.674** 0.434* | 1

**Correlation is significant at the 0.1 level.
*Correlation is significant at the 0.05 level.
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Chromosomal CDS Length/ Pl Subcellular  Ortholog
position length/ aa localization
bp
PSMIFI | Psat1g73200.1 | chrlLG6 2,169 255 84 681 925029  cytoplasm ATIG28917.1(ATMIF2)  73E™
PSZHDL | Psat1g073320.1 chrlLG6 3443 1,005 334 774 | 3665801  nucleus AT5G15210.1 (AtZHDS) | 15E7
PZHD2 | Psatlgl24840.1 | chrlLG6 1263 540 179 816 | 197439 | nucleus -
PZHD3 | Psat2g066960.1 | chr2LGl 2451 816 7 641 | 29,669.55  nucleus -
PZHD4 | Psat2g081040.1 chr2LG1 1914 690 229 659 2518895  nucleus AT5G65410.1(AZHDI) 33
PZHDS | Psat2gl58960.1 | chr2lGl 1211 582 193 908 | 2202171 | nucleus AT2GI8350.1(AZHD6)  11E™
PZHD6 | Psatdgl9s320.1 | chi3LGS 2,651 1,056 351 815 | 3937984  nucleus AT3G28920.1 (AZHD9) | 13E
PZHD7 | Psat4g01440.1 | chrilGd 1,697 1,077 358 726 | 40,13364 | nucleus | ATGO2540.1 (AiZHDS) | 435
PMIF2  Psatdg050800.1 | chrdlGd 1,602 28 75 897 812616  chloroplast ATIG74660.1 (ATMIF1) |~ 45E
PZHDS | Psatdgl15280.1 | chrdlGd 846 669 22 829 | 2514063  cytoplasm -
PZHD9 | Psatdgl41240.1 | chrilGd 1,594 897 298 861 | 3241812  nucleus ATIG69600.1(AZZHD11) | 15E*
PSZHDIO | Psat5g045800.1 chr5LG3 2364 813 270 593 | 2977707  nucleus/ AT4G24660.1(AIZHD2)  1.6E™
cytoplasm
PSMIF3 | Psatsgl76320.1 | chrLG 276 276 84 681 925029  chloroplast ATIGIS835.1(MIF3)
PZHDI1 | Psat6gl12080.1 | chr6LG2 558 558 185 874 | 2137262  cytoplasm ATIGI4440.1(AZHD4)  33E®
PZHDI2 | Psat7g232440.1 | chi7LG7 897 ® | 20 898 | 2659648 | Extracelular - -
PsMIF4 | Psat0s667g0040.1 | scaffold00667 3367 302 230 908 | 2549903  cytoplasm - -
PsZHDI3 | Psat0s3255g0040.1 | scaffold03255 1254 1,254 417 478 | 4620952 | nucleus -
PSZHDI4 | Psat0s3255g0080.1 | scaffold03255 1236 @ | 0 659 | 2138339 | nudeus - -
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Trait

PH

HGW

PPP

SWPP

sDPP

Marker LG Position (cM) Environment p-value
Satt194 c1 2635 v 248E-08 031
GMES0902 I s v 4.86E-04 012
GMES6336 Dla 1222 v 526E-04 014
Satt102 K 3028 n 7.09E-04 015
Satt300 Al 3093 v 9.82E-04 018
sattl54 ;> 57.07 v 118E-03 014
Sau316 c2 127.66 u 236E-03 012
Sau316 o 127.66 m 2.80E-03 012
GMES0902 I 1248 v 3.04-04 013
GMES6336 Dla 1222 v 103E-03 014
Satt322 c 8223 v 139E-03 013
Satt173 o 58.4 o 4.10E-04 018
Sat300 Al 30.93 v 104E-03 Coss
Sat_001 D2 o o 2.09E-03 015
Sctt008 D2 32 v 299E-03 012
Satt300 Al 30.93 v 103E-03 018
Sattd78 o a5 1 5.61E-04 019
satt102 K 3028 v 110E-03 014
Satts65 c1 6 v 148E-03 015
Satt386 D2 125 1 193E-03 012
San322 2 8223 v 291E-03 012
[ sato70 B2 728 K 2.98E-03 015
Sat070 B2 728 ll 7.95E-04 019
Sau373 L 87 v 167E-03 02
Sau3so D2 79.23 n 227E-03 02
Satts65 c 0 n 2.68E-03 014
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Traits Environment M ECV (%) GCV (¢ PCV (%)
Plant height El 27024 1872 20.7736 27.9639 55.19 7.9487
E2 24832 16,1988 19.5046 2s3sa1 | so1s 8.2068
E3 19517 118329 221595 25.1209 77.81 115037
E4 33932 19.789 49.5019 533108 86.22 281221
ES 18496 1616 48.1595 | 00055 | o275 227386
Pods per plant El 16544 104287 58.3768 59301 691 325277 |
E2 35833 131744 19332 233043 68.29 155033
E3 29551 10,2789 184711 211385 76.35 165566
E4 112558 37.1468 42,8019 566735 | 570 349485
E5 11944 34.8605 67.6765 76.1273 79.03 735491
Seeds per plant El 12216 56103 57.3823 57.6559 99.05 443704
E2 81589 20,3741 62.3657 65,6093 90.36 847051
E3 80271 68488 30.3627 311256 95.16 123.8603 |
E4 33165 43303 39.4654 397023 98.81 107.2044
ES 188243 31733 68.8557 758162 s 1323587
Seed weight per plant E1 03142 21.2268 55.6528 595638 87.30 27458
2 21019 a3ss 49.8399 L siss9 92.36 26,1365
E3 12055 7.5147 48.0508 48.6349 | 9761 271735
E4 1824 8.851 17.1982 27568 32493 07199
ES 20839 292044 64.6533 70.9433 83.05 150015
Hundred-grain weight E1 06169 7.6845 19.6252 210762 8671 5234
E2 10575 13.0592 21118 248297 [ 7234 51895
E3 03755 43948 221574 225891 96.21 66256
E4 03533 39428 31912 32.1547 | oss0 101245 |
ES 03575 45005 17.1955 177747 93.59 47146
Total yield E1 17858 33856 214582 217236 o7 398917
E2 15197 28868 22,8897 23071 98.43 42,6546 |
E3 21067 Losos 269173 20885 99.47 102985
E4 93396 13.0413 58.3983 59.8367 95.25 145.6353
ES 43883 93684 72.3745 72,9784 98.35 1199615
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Traits

Total yield (g)

Plant height (cm)

Pods per plant

Seeds per plant

Seed weight per plant (g)

Hundred-grain weight (g)

Source Df S5 MS F value
Environment (E) 4 2,138,95131 38 53473783 7,655.17
Genotype (G) Lo 820,965.26 14 8,641.74 12371
GxE 380 2,640,104.76 47 6,947.64 99.46
Residuals 950 66,360.50 1 085

Total L 5,666,381.83 100

Environment (E) 4 685558 4 171390 88.67
Genotype (G) 95 43,388.16 27 45672 23.63
GxE 380 91,586.43 57 24102 1247
Residuals 950 1836164 12 1933

Total 1429 160,191.82 100

Environment (E) 4 16448143 14 41,12036 233.38
Genotype (G) 95 17298232 15 182087 1033
GxE 380 63529758 56 167184 9.49
Residuals 950 167,387.14 15 17620

Total 1429 1,140,148 46 100

Environment (E) v4 4,633,323.10 51 1,158,330.78 3,877.80
Genotype (G) 95 958,166.57 1 1008596 3377
GxE 380 3,140,858.43 35 8,265.42 | ve
Residuals 950 283,772.90 3 29871

Total 1429 9,016,120.99 100

Environment (E) 4 125,820.14 8 3145504 3,737.66
Genotype (G) 95 48,558.27 18 51114 60.74
GxE 380 82,002.25 31 21580 25.64
Residuals 950 799491 3 842

Total L 264,375.57 100

Environment (E) 4 63583 3 15896 140.00
Genotype (G) 95 959431 52 10099 88.95
GxE 380 721598 ) 1899 16.72
Residuals 950 107867 6 114

Total 1429 18524.80 100 114
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Gene description

NPR1
PRI
PR2
WRKY1
WRKY2
TGA2

Gene ID

VIT_1150016g01990
VIT_0350088g00810
VIT_0850007g06060
VIT_1750000g01280
VIT_0150011g00220
VIT_0850007g05170

Log2-fold change

SA 12

116
123
1.52
115
229
174

SA 24

171
219
L4
1.96
316
225

SA 48

1.47
244
1.97
141
263
2.59
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Source

Plant height (cm)

Pods per plant

Seeds per plant

AMMI Var AMMI Var AMMI Var
SS SS SS %
Genotype (G) 43,388 31 14465 31 172,982 18 57,099 18 958,167 1 321,594 11
Environment (E) 6856 5 2286 5 164,481 17 54,754 17 4633323 53 1,528,906 } 52
GxE 91,586 64 | 30,529 64 635,298 65 210,800 65 3,140,858 | 36 | 1,086,808 37
IPCAL 52,339 - - - 441,207 - - - 1,684,096 — - —
IPCA2 32,966 = [= - 135,043 - - - 833,618 [= - -
IPCA3 4,939 - - - 57,952 - - - 390,085 = - -
| IPCA4 1342 [= - - 1,095 - - - 233,060 [= - -
Residuals 18,362 = [= - 167,387 - - - 283,773 [= - -
"To!a.l 252210 | 100 47,280 100 1,785,008 100 7322.643 100 12,170,736 | 100 2,937,308 100

Seed weight per plant (g)

Hundred-grain weight (g)

Total yield (g)

AMMI Var Gl AMMI Var M AMMI

SS SS SS
Genotype (G) 48,558 19 16,19 19 9,594 55 3,193 55 820,965 15 273,655 15
Environment (E) 125,820 49 41,925 49 636 4 205 4 2138951 | 38 712,984 38
GxE 82,002 32 27367 k7] 7216 41 2455 41 2,640,105 47 880,035 47
IPCAL 62,152 = - =i 5220 = = 1431114 = =i =
IPCA2 | 15,156 - = - | 1,659 | [= - 658,172 |= - -
IPCA3 3,889 = - - 279 - - 439,416 - - -
IPCA4 805 - = - 57 - - 111,403 = - -
Residuals 7,995 - - - 1,079 - - 66,360 - - -
Total 348,233 100 85488 100 | 25945 ‘ 5852 100 8,322,069 | 100 1,866,674 100

The bolds provided ase just 1o highlight the traits.
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Cultivar Region Year Sowing-booting Booting-maturity Full growing
period
Suijing-18 Harbin 2017 89 61 150
2018 87 60 147
Qigihar 2017 103 57 160
2018 105 60 165
Longjing-21 Harbin 2017 90 59 149
2018 87 57 144
Qigihar 2017 103 55 158
2018 106 58 164
Longdao-21 Harbin 2017 100 53 153
2018 96 51 147
Qigihar 2017 107 58 165
2018 11 61 172
Longdao-18 Harbin 2017 95 57 152
2018 9 56 149
Qigihar 2017 104 58 162
2018 106 60 166
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MQTL2D.2 TraesC$2D02G529000 616525223 616530794 Basic-leucine zipper domain

MQTL2D.2 TraesCS2D02G531819 617414356 617417584 Pentatricopeptide repeat

MQTL2D.3 TraesCS2D02G571200 637649854 637652332 Sugar phosphate transporter domain
MQTL3A.2 TraesCS3A02G055500 32145925 32149547 Glycosyl transferase, family 1
MQTL3A.2 TraesCS3A02G056000 32251515 32253338 SANT/Myb domain

MQTL3A.2 TraesCS3A02G056100 32384710 32387330 SANT/Myb domain

MQTL3A.2 TraesCS3A02G056500 32639616 32642710 Small GTPase

MQTL3A.2 TraesCS3A02G056600 32646665 32650869 Small GTPase

MQTL3A.2 TraesCS3A02G056800 32716216 32718252 Small GTPase

MQTL3B.1 TraesCS3B02G023300 10013879 10014906 Zinc finger, RING-type

MQTL3B.1 TraesCS3B02G023700 10198656 10202090 Glycosyltransferase 61

MQTL3B.1 TraesCS3B02G024300 10388175 10392856 Protein kinase domain

MQTL3B.1 TraesCS3B02G024500 10562122 10573523 Protein kinase domain

MQTL3B.2 TraesCS3B02G034400 16439668 16444830 WD40 repeat

MQTL3B.2 TraesCS3B02G035600 17558579 17563046 SUF system FeS cluster assembly, SufBD
MQTL3D.1 TraesCS3D02G120000 75733615 75740231 Serine incorporator/TMS membrane protein
MQTL3D.1 TraesCS3D02G120200 75946541 75948546 UDP-glucuronosyl/UDP-glucosyltransferase
MQTL3D.2 TraesCS3D02G113400 67470659 67484580 ‘WDA40 repeat

MQTL3D.2 TraesC$3D02G113600 67541388 67544595 Transferase

MQTL3D.2 TraesC$3D02G114100 67710273 67713074 Phosducin, thioredoxin-like domain
MQTL3D.2 TraesCS3D02G114300 67717667 67729719 Homeobox domain

MQTL4A.2 TraesCS4A02G010000 5835053 5839914 Protein kinase domain

MQTL4A.2 TraesCS4A02G011700 6801496 6803203 PsbQ-like domain superfamily
MQTL4A.2 TraesCS4A02G011900 6884841 6888795 GNAT domain

MQTL4A.2 TraesCS4A02G012100 6921978 6923456 Protein BIG GRAIN 1-like

MQTL4A.4 TraesCS4A02G028800 21057927 21058645 Phytocyanin domain

MQTL4A.4 TraesCS4A02G028900 21062686 21066407 Myc-type, basic helix-loop-helix (bHLH) domain
MQTL4A.4 TraesCS4A02G029100 21215068 21220471 SLC26A/SulP transporter

MQTL4A.4 TraesCS4A02G029800 21845172 21854022 Protein kinase domain

MQTL4B.3 TraesCS4B02G034300 25263926 25266948 Ribosomal protein $21

MQTL4B.3 TraesCS4B02G034400 25267031 25270444 Ribosomal protein L18

MQTL4B.3 TraesCS4B02G035500 25842359 25852716 CBS domain

MQTL4B.3 TraesCS4B02G037000 26791996 26794269 Zinc finger, CCCH-type

MQTL4B.3 TraesCS4B02G037300 27104920 27110487 BRCT domain

MQTL4B.5 TraesCS4B02G241100 500052749 500054910 Cytochrome P450

MQTL4B.5 TraesCS4B02G241500 500252893 500257371 Protein kinase domain

MQTL4B.5 TraesCS4B02G242200 500868125 500871590 Protein kinase domain

MQTL4B.5 TraesCS4B02G240900 499898695 499901767 Glutamine synthetase, catalytic domain
MQTL5A.2 TraesCS5A02G035100 32702327 32704442 Methyltransferase type 11

MQTL5A.3 TraesCS5A02G235300 451454753 451458817 Glycosyl transferase, family 31
MQTL5A.3 TraesCS5A02G236100 451731021 451736139 Aminotransferase, class I/classIl
MQTL5A.3 TraesCS5A02G237200 452933936 452937774 Basic-leucine zipper domain

MQTL5B.2 "TraesCS5B02G358300 537960131 537964109 Cytochrome P450

MQTL5B.2 TraesCS5B02G358600 538541865 538548795 Zinc finger C2H2-type

MQTL5B.2 TraesCS5B02G357900 537530437 537537053 F-box-like domain superfamily
MQTL5D.1 TraesCS5D02G364500 441919689 441927139 Cytochrome P450

MQTL5D.1 TraesCS5D02G364900 442330660 442339062 Zinc finger C2H2-type

MQTL5D.1 TraesCS5D02G363500 441327117 441328139 Sulfotransferase domain

MQTL6B.1 TraesCS6B02G026100 15780439 15788214 Ancestral coatomer element 1, Sec16/Sec31
MQTL6B.1 TraesCS6B02G026900 15929467 15933792 Aspartate/other aminotransferase
MQTL7A.4 TraesCS7A02G091800 55918294 55919130 Early nodulin 93 ENOD93 protein
MQTL7A.4 TraesCS7A02G091900 55922722 55923573 Early nodulin 93 ENOD93 protein
MQTL7A.4 TraesCS7A02G092700 56244809 56245904 Early nodulin 93 ENOD93 protein
MQTL7A.4 TraesCS7A02G092800 56324077 56324854 Early nodulin 93 ENOD93 protein
MQTL7A.4 TraesCS7A02G092900 56430737 56431572 Early nodulin 93 ENOD93 protein
MQTL7A.4 TraesCS7A02G093100 56658022 56658811 Early nodulin 93 ENOD93 protein
MQTL7A4 TraesCS7A02G093300 56738537 56739378 Early nodulin 93 ENOD93 protein
MQTL7A.7 TraesCS7A02G486300 676584400 676591905 Thioredoxin domain

MQTL7A.7 TraesCS7A02G486600 677692146 677692709 Invertase/pectin methylesterase inhibitor domain superfamily
MQTL7A.7 TraesCS7A02G486700 677694300 677697668 Zinc finger, RING-type

MQTL7A.7 TraesCS7A02G487900 678152379 678157242 Protein kinase domain

MQTL7B.1 TraesCS7B02G387200 653168095 653169641 Aspartic peptidase domain superfamily
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Name of QTL hotspots Chr. Position CI (95%) Flanking markers N QTLs Avg. LOD Avg. PVE

QTLhotspot_2A 2A 24601 15.09 Excalibur_rep_c102244_1103/ 2 350 6.60
BobWhite_c30988_361
QTLhotspot_4A 4A 114 412 AX-109576258/ AX-110589926 2 325 7.00
QTLhotspot_4B 4B 196.93 124 wsnp_Ex_c25373_34639805/Excalibur_c23433_474 3 450 933
QTLhotspot_5D.1 5D 54.39 32 Xwmec818/Xcfd26/RAC875_rep_c72023 4 342 1852
QTLhotspot_5D.2 5D 35548 528 CAP11_c2809_169/D_contigl9403_486 2 272 1533
QTLhotspot_5D.3 5D 37112 533 Kukri_rep_c102237_122/Excalibur_c76347_77 2 214 2043
QTLhotspot_5D.4 5D 39535 611 D_contig59863_627/Kukri_rep_c101289_99 2 275 2478
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MQTL name Chr. CI (95%) Flanking markers N QTLs Avg. LOD Avg. PVE
MQTLIA.1 1A 108.15 15 RACS75_c34888_65/Excalibur_c48152_563 3 450 923
MQTLIA.2 1A 12894 335 Excalibur_c20777_428/BS00110358_51 7 434 9.78
MQTLIA.3 1A 168.63 6.03 Tdurum_contigd8378_452/IWB12795 3 521 7.10
MQTLIB.1 1B 162.82 494 BS00091126_51/Tdurum_contig9s11_127 5 480 844
MQTLIB.2 1B 175.82 265 Kukri_c83200_268/BS00067003_51 2 415 765
MQTLIB.3 1B 188.02 435 Excalibur_c3510_159/BS00067290_51 3 143 1100
MQTLIB4 1B 24516 12.07 Ex_c67582_735/IWB69702 2 405 830
MQTL2A.1 24 312 414 BS00019744_51/GENE-1397_630 7 590 977
MQTL2A.2 24 169.53 11.01 TAAVS700/Kukri_c31508_91 3 325 675
MQTL2A.3 24 21417 7.14 wsnp_Ex_rep_c103167_88182254 2 563 793
MQTL2B.1 2B 4178 217 BS00061187_51/GENE-0559_171 3 499 1631
MQTL2B.2 2B 106.73 0.68 Ku_c63748_1270/RACS75_rep_c110344_370 3 307 7.23
MQTL2B.3 2B 12423 3.06 wsnp_Ex_c34303_42642389/BobWhite_c12911_788 7 548 928
MQTL2B4 28 164.06 486 RFL_Contigl445_1192/Kukri_c46361_295 3 5.60 620
MQTL2B.5 28 217.06 046 IWB56961/Excalibur_c42364_134 5 538 732
MQTL2D.1 2D 779 047 wsnp_Ex_c1508_2881921/Excalibur_c18353_55 7 353 1755
MQTL2D.2 2D 8448 372 RFL_Contig2460_547/RACS75_rep_c105150_589 6 533 1078
MQTL2D.3 2D 118.76 293 BS00067584_51/BS00009458_51 4 640 767
MQTL3A.1 3A 64 13 BobWhite_rep_c49374_348/TA003589-0518 2 390 1150
MQTL3A.2 3A 168.01 856 wsnp_BE497169B_Ta_2_1/Excalibur_rep_c68267_309 13 889 15.10
MQTL3A.3 3A 24152 7.44 BobWhite_c13210_115/Tdurum_contig86206_149 2 300 978
MQTL3B.1 3B 1052 526 RACS75_c5966_1854/CAP7_c1576_371 7 544 1803
MQTL3B.2 3B 1515 201 IWB40683/IWB9S5 4 463 1348
MQTL3B.3 3B 180.64 285 RACS75_c5799_170/BS00065934_51 2 430 380
MQTL3D.1 3D 11392 361 RACS75_c22095_1545/IAAV5635 4 405 1041
MQTL3D.2 3D 21861 623 Xcdod07/AX-111337684 4 382 734
MQTL4A.1 4A 7383 06 Tdurum_contig12696_528/BS00003914_51 3 539 2047
MQTL4A.2 4A 14499 268 IWB47937/AX-89398002 5 484 15.06
MQTL4B.1 4B 51.09 548 Tdurum_contig5427_314/Xwmc8 2 622 9.00
MQTL4B.2 4B 59.32 03 WPt-1046/SBG_21726/IWB8981 2 650 864
MQTL4B.3 4B 88.44 083 4B_s49916/Xcnl7 6 682 10.13
MQTL4B.4 4B 14155 183 IWB1224/IWB3229 2 465 991
MQTL5A.1 5A 175.42 071 RACS75_c106584_1077/wsnp_Ex_c43642_49901192 ) 523 697
MQTL5A.2 5A 190.16 226 BS00021708_51/Excalibur_c34426_723 4 667 1296
MQTL5A.3 5A 23454 627 ‘Tdurum_contigd2203_4222/CAPS_c2014_192 4 343 764
MQTL5A.4 5A 31352 84 GENE-3344_224/Xwmc805 2 440 1073
MQTL5B.1 5B 7152 1771 TWB8032/wsnp_BE497820B_Ta_2_1 2 350 1145
MQTL5B.2 5B 109.96 41 IWB45714/Xbarc308 7 3.66 709
MQTL5B.3 B 177.64 152 IWB8195/IWB29437 2 410 7.55
MQTLSD.1 5D 6298 539 Xwme289/Xwmed34 2 340 885
MQTL6A.1 6A 21249 9.58 Jagger_c8913_220/RACS75_c104548_369 2 594 2000
MQTL6B.1 6B 6645 245 wsnp_RFL_Contig2223_1603535/Tdurum_contigl0149_284 5 302 9.98
MQTL6B.2 6B 101.67 246 IWB7667/TWB22499 2 18.40 9.65
MQTLGB.3 6B 13402 14.14 IWA4745/Kukri_c20894_1233 2 370 410
MQTL6D.1 6D 4481 03 Excalibur_c1991_1504/RACS75_rep_c85994_258 2 3.00 578
MQTL6D.2 6D 9695 9.69 RACS75_c37031_312/D_contig17879_55 2 725 1255
MQTL7A.1 7A 651 511 Excalibur_c34115_727/Excalibur_c57160_208 2 585 1135
MQTL7A.2 7A 15385 297 Ra_c54443_444/Excalibur_c44734_935 10 489 888
MQTL7A.3 7A 162 193 RACS75_c4336_208/BS00010282_51 2 807 501
MQTL7A.4 7A 167.62 3.03 wsnp_Ra_c63822_63288359/Excalibur_c34807_431 9 351 621
MQTL7A.5 7A 17191 0.58 Xbarc222/Ra_c9427_300 2 896 191
MQTL7A.6 7A 205.68 348 IWB35185/IWB59328 2 298 7.27
MQTL7A.7 7A 25645 245 IWB35275/IWB39743 4 623 450
MQTL7B.1 7B 58.74 264 Excalibur_c17927_284/BS00064146_51 5 671 485
MQTL7B.2 7B 7142 10.22 Excalibur_c15405_808/Xgwm400/IWB36802 2 600 1745
MQTL7B.3 7B 20242 633 BobWhite_c44404_312/Excalibur_c18228_286 2 482 865
MQTL7D.1 D 9695 97 Xbarc214/Xgwm130 2 280 2134
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Genes Chromosome Primer sequence Amplicon References
(markers) location size
¥ris 1BS Xbarcs Dominant 245bp htps://wheat pw.usda.
‘ 5'GCGGGAATCATGCATAGGAAAACA o
GAA 3
5'GCGGGGGCGAAACATACACATAAA
AACA 3
Yr36/GpC-B1 6BS Xucw 108 Dominant 217 bp. Uauy et al (2006)
5' ATCTGCAATTCCAGGCACAC 3'
5' CCAGCAGATCAAGGAGAATTG 3'
PSYL-DI Specific | 7DL | S TIGCAGTGCAATGGTTTICCAY Dominant ~175 bp. Zhang and Dubcovsky
5'GACTCCTTTGACGATGTCTTC3' s
PSYI-EI Specific 7AL/7DLI7 EL 5'CTACGTTGCGGGCACCGTTS' Dominant ~191 bp. Zhang and Dubcovsky

5'AGAGAAAACCATTGCATCTGTA3'

(2008)
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Pyramiding PsyE1 gene, GpcBI and rust resistance

i ‘ BC,F5 14X Fy 3 (F, Died)
‘ BC/F; 18X Fy 3
| BC,F; 20X Fq 3

‘ BC,Fs 23X Fo 3

‘ BC,F, 70X Fy 3 (F, Died)
‘ BC,Fs 99X Fe 3 (F, Died)

‘ BC,F5 124X Fs 3 (F, Died)

‘ BC,Fs 154X Fg 3
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Locus name

Location

Pleiotropic loci

Position Trait

Durum_contigd4261_127 7B 195.74 GD, GYP v x x
Excalibur_c20796_395 7A 37234 GD, GYP v x x
Excalibur_c41898_218 5B 168.1 GD, GYP v x x

Excalibur_c766_771 6B 148.84 GD, GYP v x X
RACS75_c30829_1711 5B 179.66 GD, GYP v x x
Tdurum_contig13784_824 5B 168.1 GD, GYP v x x
wsnp_Ex_c2727_5053747 5B 2122 GD, GYP v % %
wsnp_RFL_Contig1570_778491 5B 212.38 GD, GYP v x x
wsnp_RFL_Contig2504_2093982 5B 179.66 GD, GYP v x x
BS00023035_51 4B 23843 GSA, TGW x v x
TACX419 6B 237.57 GR, GSA x v x
Kukri_c45439_457 5A 7815 GL, GD x v x
Tdurum_contig97656_120 3B 136.78 TGW, GYP X v X
BS00093856_51 3D 7219 GL, GR X x 4
Ex_c10574_1027 D 275.13 GL, GR x x v
Excalibur_c25991_184 7B 169.41 GC, GYP X x v
GENE-4937_537 2D 298.38 GL, GR X x v
Stable MTAs
BS00010616_51 7B 186.24 GYP, GD v x v
BS00010868_51 1B 3547 GD, GYP v x v
D_contig22507_191 6D 191.27 GR, GC x v v
D_contig24171_152 6D 19127 GR, GYP x v v
D_contig57523_172 2D 183.76 GR, GS, GC x v v
D_GCESAKX01CTXDI_46 6D 191.27 GR, GC x v v
Ex_cl10068_1509 24 479.11 GR v x v
Excalibur_c20796_395 7A 37234 GD, GYP v v v
Excalibur_c25991_184 7B 169.41 GR, GC % v v
GENE-4403_405 7B 24431 GYP, GSA v x v
GENE-4937_537 2D 298.38 GSA, GL v x v
‘ Kukri_c11154_1723 5B 126.02 GSA, GL v x v
‘ Kukri_c27958_334 6A 153.27 GSA, GC X v v
Kukri_rep_c111174_132 1B 54625 TGW, GYP i v v

Tdurum_contigd6313_394 4B 2114 GYP, GD v x v

Tdurum_contig48049_705 4A 160.42 GD, GL v v X
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Traits

GwW

GD

GR

GSA

TGW

GYP

Environment GL GW GD GR GSA
Control 021
Drought 019
Heat 017 [
Control 074" 0.66
Drought 0,69 o6 |
Heat 070" 069
Control -0.48* 052 075"
Drought ~049* st | oz |
Heat -046* 059 081
Control 077+ 03 | oo ~0.31*
Drought 0817 037° 093 -025
Heat 072+ 0.35° 094 -033
Control 074 0.65* 093+ 026 088+
Drought 071 0.66° 090 018 0.85*
Heat 069" 0717 095 019 0.89*
Control 028 0.66* 0517 0.46* 0.58* 0.47*
Drought 031 0717 053 0.48* 0,617 0.34*
Heat 029 0.68* 049+ 047* 063 0.44*
Control 013 0.64 057 0.39* 045° 051 0.88*
Drought 018 077 0617 037* 046° 055 0.82°
Heat 0.15 088+ 062 0417 049* 059 0.78*

GL, grain length; GW, grain width; GD, grain diameter; GR, grain roundness; GC, grain circumference; GSA, grain surface area; TGW, thousand-grain weight; GYP, grain yield per plant.
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Region Year Brown Fine ‘Whole- LW Chalkiness Protein Amylose
rice rice milled ratio (%) (%) (%)
(%) (%) (%)
Harbin Avg 2017 8278 7085 58.95 224 216 854 2003
jalie 2018 8431 68.94 57.29 219 207 913 227
cv (%) 2017 113 270 1353 1166 972 247 588
2018 101 303 1133 1239 1113 329 509
Qigihar Avg. 2017 83.03 7085 67.45 226 273 834 1444
malue 2018 8218 73.11 69.23 237 241 9.14 14.67
Cv (%) 2017 131 146 1431 1051 1015 818 1379
2018 145 163 1229 1198 1328 723 1113
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Trait (Unit) Environment Range Minimum Maximum Mean SD
Grain length (mm) N 5.87-1021 587 1021 698 051 7.31
D 499-9.01 499 901 687 049 713
H 466-8.88 466 888 645 052 806
Grain width (mm) N 3.09-4.18 3.09 418 3.98 018 452
D 292-397 292 397 3.63 019 523
H 277-366 277 366 335 017 507
Grain diameter (mm) N 430-6.16 43 616 501 023 459
D 402-577 402 577 491 021 428
H 392-530 392 53 427 025 585
Grain roundness (mm) N 0.44-066 044 066 058 004 690
D 037-061 037 061 051 003 588
H 0.33-058 033 058 047 003 638
Grain circumference (mm) N 1601-2522 1601 2522 19.02 075 394
D 14.88-23.18 1488 2.8 18.22 075 412
H 1396-2121 1396 2121 17.07 073 428
Grain surface area (mm?) N 15.07-2930 1507 293 2034 151 742
D 13.99-27.78 1399 27.78 19.81 152 7.67
H 12.88-25.02 1288 25.02 1824 148 811
Thousand grain weight (g) N 4651-7125 4651 7125 54.03 289 535
D 32.08-48.81 3208 48.81 41.52 282 679
H 30.08-45.03 3008 45.03 39.01 281 7.20
Grain yield per plant (g) N 17.15-27.18 17.15 27.18 19.73 154 7.81
D 16.05-21.01 1605 2101 17 147 865
H 1534-202 1534 202 16.11 149 925
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Region Year Ro GFRpax Tmax Whax GFRqvg D 1% 193
Harbin Grains/panicle 2017 090 -084 -064 -090 ~0.84 072 -0.70 ~0.40
2018 093 -081 -0.61 -0.84 -0.79 077 -0.67 -0.38
Seed set 2017 -0.22 044 049 0.35 044 -0.61 055 031
2018 -021 048 0.55 039 046 -0.57 0.61 036
1000-grain wt 2017 ~047 044 0.07 0.46 043 -0.25 014 -0.13
2018 -0.44 048 0.09 050 047 -0.23 018 -0.12
Grain yield 2017 085 -0.85 -097* -0.87 ~0.85 091 -0.98" -0.79
2018 088 -0.83 ~0.95* -0.84 -0.81 093 ~0.95* -0.72
Qiqihar Grains/panicle 2017 -0.43 021 063 0.56 -0.88 066 0.60 069
2018 -0.40 026 0.67 0.61 -0.85 071 0.62 072
Seed set 2017 093 -0.94 043 -0.82 -0.21 054 ~0.01 039
2018 094 -092 047 -0.79 -0.18 058 -0.02 041
1000-grain wt 2017 -0.32 034 0.45 0.44 021 018 076 040
2018 -0.27 038 051 053 027 021 083 045
Grain yield 2017 -0.75 087 -041 0.6 0.67 ~0.65 013 -0.42
2018 -0.67 0.89 -0.37 070 074 -0.63 015 -0.38

“Significant at the 0.05 level; Ry; regression coefficient; GFRq, maximum grain-filling rate; Tpnq, time to reach the maximum grain-filling rate; Wy, grain weight at the maximum grain-

filling rate; GFR,, average grain-filling rate; D, days to the maximum grain-filling rate; t,, t,, time between grain-filling phases (start, middle, and late).
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Region Year Ro Gmax T max Whax Gavg D 4 153
Harbin Grains/panicle 2017 -0.02 015 -0.60 -0.55 013 ~0.68 -055 ~0.62
2018 -0.01 018 -0.53 -0.49 018 -0.61 -047 -0.59
Seed set 2017 -0.70 -097* 0.74 -0.03 097 051 076 0.71
2018 -0.63 -0.94* 079 -0.02 -0.94% 058 083 079
1000-grain wt 2017 013 039 0.05 070 039 040 -001 010
2018 017 043 0.07 077 043 043 -001 013
Grain yield 2017 025 0.84 -0.96" -0.03 0.82 -0.67 -0.97* -0.94
2018 032 0.89 ~0.95* -0.02 087 -0.63 -0.96" -0.91
Qiqihar Grains/panicle 2017 080 -079 0.01 -0.77 -0.81 082 ~061 083
2018 083 -0.73 0.02 -0.72 -0.73 088 -053 088
Seed set 2017 0.14 0.21 0.34 -0.38 033 -0.07 021 0.26
2018 017 025 039 -035 041 -0.05 027 032
1000-grain wt 2017 045 -0.59 -0.94 -0.19 -0.56 053 -0.77 -0.34
2018 048 =053 -0.89 -0.18 =85 058 -0.74 =031
Grain yield 2017 -0.24 -0.13 -0.77 057 -0.20 -0.04 -029 -0.76
2018 -0.22 -0.11 -071 063 -0.19 -0.04 -0.28 -0.73

“Significant at the 0.05 level; Ro: regression coefficient; GFRma maximum grain-filling rate; Trmas, time to the reach maximum grain-filling rate; Winu grain weight at the maximum grain-

filling rate; GER,,, average grain-filling rate; D, days to the maximum grain-filling rate; t,, t,, time between grain-filling phases (start, middle, and late).
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Region Year Panicle Productive tillers/ Grains/ 1000-grain Grain
length (cm) plant panicle set (%) weight (g) yield
(kg ha™")
Harbin  Avg. 2017 2007 1100 121.00 093 25.53 1016046
it 2018 2117 13.00 124.00 095 26.09 1077351
CV (%) 2017 1118 680 1179 253 432 752
2018 1137 701 1213 275 459 783
Qigihar  Avg. 2017 1884 12.00 99.00 086 26.90 9528.75
mlue 2018 1916 14.00 107.00 111 28.10 9978.12
V(%) 2007 1739 12.89 923 764 578 528
2018 1762 13.03 952 812 621 573
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Genotype

Suijing-18

Longjing-21

Longdao-21

Longdao-18

Region

Harbin

Qigihar

Harbin

Qigihar

Harbin

Qigihar

Harbin

Qigihar

Year

2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018

2026
1921
1844
19.67
2041
2177
18.62
18.93
19.97
2090
1691
17.54
2015
2143
17.71
18.32

Tinax
(Q)

26.01
2534
2438
25.14
26.10
27.18
24.44
25.67
25.68
26.81
2295
2376
25.92
26.12
23.69
2453

Tomin

Q)

15.00
1432
12.96
1345
15.19
1623
1326
1454
14.80
1561
1115
13.01
14.99
1673
12,05
14.08

aily
avg.
sunshine

(h)

624
654
730
741
625
611
7.16
698
575
661
7.74
711
588
613
731
779

Radiation
(MJ/m?)

17.64
17.93
1672
1698
17.71
17.93
16.66
1634
1681
16.09
1681
17.11
17.09
17.56
1658
17.18

Avg,

RH
(%)

8281
80.13
80.99
78.16
8273
8043
8144
79.12
83.36
81.90
77.38
79.14
83.32
8145
79.77
80.67

Avg.

soil

temp. (5 cm)
Q)

2173
2224
19.77
2105
2187
2278
1991
2045
2124
2178
18.66
2007
2148
211
1927
2103

Avg.
soil
temp. (10 cm)
(Q)

2032
2097
18.23
2053
2045
2104
18.37
19.13
19.84
2012
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Cultivar

Sujing-18

Longjing-21

Longdao-21

Longdao-18

Grain

Superior

Inferior

Superior

Inferior

Superior

Inferior

Superior

Inferior

Region

Harbin

Qiqihar

Harbin

Qigihar

Harbin

Qigihar

Harbin

Qiqihar

Harbin

Qigihar

Harbin

Qigihar

Harbin

Qigihar

Harbin

Qigihar

Year

2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018
2017
2018

163
288
262
163
1.09
337
078
1.68
1.60
331
322
1.67
134
352
029
150
176
143
152
124
087
210
098
145
164
310
1.08
1.90
088
339
049
219

Tonax
(days)

13.08
1207
1262
17.58
2085
1073
14.14
1651
1448
1529
1258
20.16
20.18
13.09
1657
2084
1077
1190
09.30
2205
1652
924

1790
1973
12.09
1257
1194
1654
17.63
1263
2207
1413

Gw (mg)

10.31
22.80
08.44
18.70
09.25
2538
05.76
18.41
1114
2543
08.37
22.86
10.20
2421
2077
19.34
10.89
1259
08.39
9.52

07.35
13.86
07.61
10.85
10.44
13.48
07.82
1135
06.99
13.76
05.39
1275

GFRayg
(mg grain™
day™)

L1
1.60
1.96
0.90
074
220
053
091
1.06
235
276
0.8
091
235
061
0.85
120
1.07
1.06
0.63
0.60
1.81
0.70
0.92
L1
1.99
075
1.09
0.61
205
034
1.01

GEFD (days)

3179
3042
2181
20.18
47.12
46.13
4442
43.14
3394
3439
18.15
1741
4113
4017
54.06
5523
2892
30.18
3226
3111
52.83
5142
5047
49.17
29.70
30.18
4445
43.10
5260
51.86
7149
70.77

x

0.999
0.999
0.998
0.989
0.999
0.995
0.983
0.993
0.999
0.989
0.994
0.998
0.999
0.994
0.987
0.995
0.999
0.987
0.997
0.985
0.995
0981
0.992
0.989
0.999
0.993
0.993
0977
0.997
0.997
0.997
0.987

GFR o maximum grain-filling rate; Ty time required to reach the maximum grain-filing rate; GW, final grain weight; GFR,, average grain-filling rate: GFD, active grain-filling

duratior

- " -
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Cultivar Grain Region Year A B K N R*
type
Sujjing-18 Superior Harbin 2017 2291 13.79 024 055 0.999
2018 2270 13.57 024 055 0.998
Qigihar 2017 2276 081 0.60 152 0.998
2018 23.01 085 063 157 0,999
Inferior Harbin 2017 2085 18.77 018 049 0.999
2018 2051 1891 019 051 0.998
Qigihar 2017 1528 294 016 028 0.983
2018 1551 313 0.18 031 0.987
Longjing-21 Superior Harbin 2017 24.03 2024 024 0.6 0.999
2018 23.87 2047 027 069 0.998
Qigihar 2017 2231 170 128 320 0.994
2018 2.6 187 137 331 0.998
Inferior Harbin 2017 2179 17.35 022 069 0.999
2018 21.50 17.14 021 065 0.994
Qigihar 2017 19.59 054 012 008 0.987
2018 20,01 061 014 0.10 0.989
Longdao-21 Superior Harbin 2017 23.780 9.01 025 0.60 0.998
2018 23.57 889 024 059 0.988
Qigihar 2017 2197 189 021 025 0.997
2018 214 196 025 027 0.999
Inferior Harbin 2017 19.35 074 013 0.10 0.99
2018 19.07 0.66 012 008 0.993
Qigihar 2017 19.53 593 015 038 0.991
2018 19.87 627 0.16 038 0.995
Longdao-18 Superior Harbin 2017 2236 15.84 026 069 0.999
2018 211 15.63 024 063 0.989
Qigihar 2017 2088 0.60 014 011 0,993
2018 2110 088 017 013 0.997
Inferior Harbin 2017 18.01 0.80 013 008 0.997
2018 17.92 079 011 007 0.995
Qigihar 2017 1432 0.80 009 009 0.997
2018 14.69 091 0.10 0.10 0.999

I

[ ————
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Significant MTAs

Genome Genome-wise and chromosome-wise Traits-wise
Drought Heat Stress Control  Drou Heat
stress
A Genome | Total 39 MTAs (1A = 62A =  Total 47 MTAs (1A=1,24 =9, Total 57 MTAs (1A= 8,2A = GL 50 2 18
113A=54A=4,5A=1,6A= 3A=64A=8,5A=17,6A=4, | 8,3A=54A=18,5A=6, ' -
6,7A=6) 7A=2) 6A=3,7A=9) Gw 25 12 16
GD 38 21 20
B Genome | Total 143 MTAs (1 Total 86 MTAs (1B = 31,2B = | Total 70 MTAs (1B=9,2B=  GR 8 37 25
53B=3,4B=4558=21,6B= 153B=6,4B=8,58=8,6B=4, 12,3B=4,4B=11,5B =4,
6,7B = 34) 7B = 14) 6B =5, 7B = 25) GC 15 13 Ik
GsA |18 2 2
D Genome | Total 13 MTAs (1D = 1,2D Total 46 MTAs (11 Total 40 MTAs (ID=4,2D= TGW | 22 28 2

3D=2,4D=1,5D =3,6D 3D=11,4D=3,5] 6,3D=8,5D=56D=6 i
7D = 4) 7D = 12) 7D = 11) GYP 19 20 21

Total 195 179 167
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Trait Control Salinity

Min Max Mean SD CV  Min Max Mean SD cv
Chlorophyll content (CC, mg cm-2) 2465 59.48 4087 6916 1676 1695 4873 2951 7791 2640
Canopy Temperature (CT, C1C) 2118 3745 27.87 3295 1182 2620 4646 3423 4117 1203
Specific Leaf Area (SLA, cm2) 6022 17350 90.49 23.059 2548 43.60 16689 8554 24610 2893
Analysis of variance (ANOVA)
Source of Variance Treatments ~ Genotypes  Replications ~ Treatment x Genotype ~ Heritability
Chlorophyll content (CC) 991.16* 7351 241+ 7.52 98.64
Canopy Temperature (CT) 589,26 19.89% 082 460 9497
Specific Leaf Area (SLA) 366+ 556 206 386 8202

+, =+ *** stand for significance levels p < 0.1, 0.05, 0.01 and 0.001, respectively.
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Genome assembly

Smartdenovo
Smartdenovo + Racon 3x + Nextpolish 4x
Nuclear genome

Nuclear genome + Hi-C

Total assembly size
of contigs/scaffolds (bp)

405,743,318
414,589,793
413,462,892
413,480,492

Number of contigs/scaffolds

233
233
231
66

N50 contig/scatfold
length (bp)

5,062,292
5,177,887
5,177,887
33,492,066
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QTL Chr Interval Physical position LOD Additive effect PVE%

(MB)
Grain length (GL)
qGL4 4 id4008430-id4009024 25.64-27.93 341 -0.14 347
qGL7 7 id7003359-id7003748 21.79-2293 414 022 805
qGL8 8 id8006789-id8007301 2421-26.84 537 -042 2961
qGL11 1 id11007488-id 11008036 21.86-23.28 432 -031 1684
Grain width (Gw)
qGWla 1 id1024972-id1025983 41.12-42.57 318 ~0.11 1362
qGW1b 4 id1025983-id1028304 42.57-44.67 511 -0.10 1158
qGW7 7 id7002051-id7002105 1223-13.42 369 -001 025
qGWs s id8006789-id8007301 24.21-26.84 11.19 0.10 977
Length width ratio (LRW)
qLWR1 | id1000556-id1001073 6.57-11.74 456 0.10 2388
qLWRS 8 id8006789-id8007301 24.21-26.84 1455 -031 21.90
qLWRY 9 id9001297-id9001352 5.66-5.87 345 -0.16 591
1000 grain weight (TGW)
qTGW1 1 id1024972-id1025983 41.12-42.57 549 -227 3252
qTGW3 3 id3013765-id3014401 30.02-31.15 305 -121 883
qTGWS 8 id8006789-id8007301 24.21-26.84 528 059 201

A positive additive effect means Sadri alleles increasing the trait value.
Chr, chromosome; LOD, logarithm of odds
PVE%, phenotypic variation.
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Balance Model Acc mTPR mTNR MDS
B—34—33 MCo 57 78 78 2405
MCl |5 78 79 |58
MC2 57 79 7 285
MT1 56 78 78 | w769
MT2 55 78 78 4599
SVM 55 55 77 -
RE 58 58 79 31916
40—40—20 MCo 55 76 72 2388
MC1 | 5 76 73 60.3
MC2 | s | 73 |52
MT1 56 77 76 4603
MT2 55 |7 74 | asn6
SVM 54 54 73 -
RE 56 56 74 34438
10—80—10 MCo 80 67 21 2532
MC1 80 67 21 s
MC2 % 7 a e
MT1 59 70 54 4759
MT2 57 70 53 468.4
SVM 80 80 23 -
RE 80 80 32 10134
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Chromosome number Number of markers Chromosome length (cM)

1 30 2597
2 21 2126
3 2 285

4 13 1603
5 9 720

6 13 1256
7 19 1707
8 18 1265
9 15 1097
10 13 90.2

11 20 1996

12 17 93.3
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Model

‘ G+E+P MCo 0 0 ‘
PenG + Pen: + P MCl 0 varying | varying ‘
PenG + Penk: + PenP MC2 varying | varying | varying ‘
‘ PenG + FWE + P MT1 0 0 varying ‘
‘ PenG + FWE + PenP MT2 varying | 0 varying ‘
Support Vector Machines  SVM " = o ‘

S E N E

Random Forest
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Grain length Grain width Length width ratio 1000 grain weight
Grain length 1
Grain width ~032% 1
Length width ratio 0.69*+* ~0.89%+ 1
1000 grain weight 0.15* 049+ -031% 1

e+ and *

icant wt levels: of & = 0,05, 001 and 0,001 respectively:
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[(C.TaCYP - C,TaAct) treated ~ (C,TaCYP - C, TaAct) control]
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LG  Marker interval

Traits

Candidate
gene ID

Annotated protein’s function

LG8  4550182-7125811

FD, FN, NN, IL, SB, CL, CDI, SL, TSW, SC, Zn, Fe,
Cu, Mn, Ca, Mg, K

LOCI105167760

LOC105167785
LOC105167762

LOCI105167788
LOCI105167789
LOC105167791
LOCI105167765
LOCI105167815

Potassium channel SKOR- like

Potassium channel SKOR

Inositol hexakisphosphate and di-phosphoinositol-
pentakisphosphate kinase 2-like

Ethylene-responsive transcription factor 1B-like
Ethylene-responsive transcription factor 1B-like
Ethylene-responsive transcription factor 1B-like
Transcription repressor KAN1

Isocitrate dehydrogenase [NADP]

LG11  310665-1216709

NN, CDL, SL, SW, SP, SA, Zn, Fe, §

LOC110012885
LOCI105173138
LOCI105173087
LOCI105173088
LOCI105173140
LOCI105173141
LOCI05173122
LOCI105173253
LOCI105173155
LOCI105173156
LOCI105173161

Ethylene-responsive transcription factor ERF023-like
Cydlic nucleotide-gated fon channel 1-like

Cydlic nucleotide-gated fon channel 1-like

Cyclic nucleotide-gated fon channel 1-like
MYB-like transcription factor ETC3

Probable WRKY transcription factor 30

Heavy metal-associated isoprenylated plant
Probable polygalacturonate protein 39-like

Ferric reduction oxidase 2

Ferric reduction oxidase 2-like

Ascorbate transporter

LGl  5566003-5767772

NN, IL, SB, PH, CDI, Fe, Zn

LOCI105173373
LOCI105173380

Protein phosphate starvation response 1-like

Citrate synthase

LGl  14205927-14426041

LG16  14816-3048510

NN, SB, PH, CL, CW, SL, P

CDI, Zn, Mn

LOCI105174482
LOC105174515

LOCI105178592
LOCI105178450
LOCI105178476
LOCI105178598
LOCI105178495
LOCI105178506
LOC105178507
LOCI105178516
LOCI105178613
LOCI105178537
LOC105178559
LOCI105178589
LOCI105178590

Transcription factor LHW

Transcription factor MYB1

Transcription factor bHLH30-like
Transcription factor TCP10-like
Nicotianamine aminotransferase A
WRKY transcription factor 6
Transcription factor MYB101
MYB-like transcription factor ETC1
Isocitrate lyase

Aconitate hydratase
Calcium-binding protein PBP1-like
Transcription factor MYB39-like
Ethylene-responsive transcription factor 4-like
Zinc transporter 8-like

Zinc transporter 8

Source: Teboul et al. (2020)
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Traits

Capsule number

Stem Length

Survival rate

Wilting level

Seed yield

QTLs

QUCN8.1

QusLa.1

QUSL8.1

QUISR4.2

QUSR6.1
QiiSR6.2

QUSR7.1

QUSR8.1

QUWL7.1

Q4.1

Candidate gene ID

SIN_1022782
SIN_1022789
SIN_1022774
SIN_1012134
SIN_1022782
SIN_1022789
SIN_1022774
SIN_1012139
SIN_1012134
SIN_1015691
SIN_1015693
SIN_1005662
SIN_1004723
SIN_1004716
SIN_1022782
SIN_1022789
SIN_1022774
SIN_1004723
SIN_1004716
SIN_1012139
SIN_1012134

Gene name

SiINIMIN1
SISAM
SiGOLS1
SITTM3
SINIMINI
SiSAM
SIGOLS1
SiAB14
SITTM3
SiP450
NA
SiPOD3
NA

NA
SiNIMIN1
SiSAM
SiGOLSI
NA

NA
SiABI4
SITTM3

References

Dossa et al. (2019)
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Cultivar FHB DON FHB Brazil® Fhb1 Fhb2 Fhb 5AS FHB 3AL Rht-B1 Rht-D1 Rht8
index (%)  (ppm)
Abalone 18 15 MR MS neg neg neg pos pos neg neg
Ametista 103 9.2 MS S neg neg NSD NSD pos neg neg
Berilo [ 326 245 MS neg neg neg pos pos neg NSD
VBR 18 - Terena 39.6 287 s neg neg neg pos neg pos neg
BR 23 24 205 s neg neg neg NSD neg pos neg
BRS 177 [ 121 7.6 MR neg neg NSD pos pos neg neg
BRS 179 222 15.4 MR neg neg pos pos neg neg neg
BRS 208 24 147 Ms neg neg neg NSD neg neg neg
BRS 220 30.8 2.8 Ms neg neg neg NSD neg pos NSD
BRS 254 33 299 s neg neg NSD NSD pos neg neg
BRS 264 [ 388 28 s neg neg neg pos pos neg neg
BRS 276 246 16.9 MS neg neg neg pos pos neg neg
BRS 296 212 17 MR neg neg pos neg pos neg neg
BRS 327 [ 204 17.4 MR neg neg neg NSD neg neg neg
BRS 328 [ 2 17.9 Ms neg neg pos NSD pos neg neg
BRS 331 17.6 17.8 MS neg neg neg NSD neg pos NSD
7 BRS 374 195 24 s neg neg neg NSD neg pos NSD
BRS Albatroz 189 20.1 MS neg neg neg NSD pos neg neg
BRS Buriti | 17.6 88 MS neg neg neg NSD neg neg neg
BRS Camboatd 285 22 MS neg neg neg NSD pos neg NSD
BRS Gaivota 237 156 MS neg neg NSD NSD pos neg NSD
BRS Gralha Azul 26.8 202 MS neg neg NSD NSD pos neg neg
BRS Guabiju | 186 17 MS neg neg neg NSD neg neg neg
BRS Guamirim 202 187 MR neg neg neg NSD neg pos neg
BRS Louro 172 9.3 MR neg neg neg pos pos neg neg
BRS Pardela 331 236 MS neg neg neg NSD neg pos neg
BRS Parrudo | 212 145 MR neg neg pos NSD neg pos neg
BRS Sabia 241 124 MS neg neg NSD NSD pos neg NSD
BRS Tangard 307 318 Ms neg neg neg NSD neg pos neg
BRS Timbatva 17.8 14 MR neg neg neg pos pos neg NSD
BRS Umbu - MR NSD NSD neg NSD pos neg neg
Campeiro [ 146 8.9 Ms neg neg neg NSD pos neg neg
D 104 215 206 s neg NSD NSD pos pos neg pos
CD 105 316 279 i neg NSD neg pos pos neg neg
CD 108 321 244 s neg neg neg NSD pos neg neg
CD 1104 264 165 'y neg neg NSD neg pos neg NSD
CD 113 266 29.1 s neg neg neg NSD pos neg neg
CD 114 219 1.9 MS neg NSD neg NSD neg pos pos
CD 115 174 114 MS neg neg neg pos pos neg neg
CD 116 248 259 s neg neg pos NSD pos neg neg
cp 117 187 203 Ms neg neg NSD NSD pos neg hetero
cp 118 26 174 s neg NSD neg NSD pos neg NSD
CD 119 411 249 MS neg neg neg NSD pos neg NSD
CD 120 [ - MS neg neg neg NSD pos neg neg
CD 121 235 17.6 Ms neg neg NSD pos pos neg NSD
CD 122 36.6 3238 MS neg neg NSD pos neg pos neg
CD 123 257 204 MS neg neg neg pos pos neg neg
CD 1252 - s neg neg NSD NSD pos neg NSD
CD 150 317 207 s neg NSD pos pos pos neg hetero
CD 151 256 257 MS neg NSD pos pos pos neg hetero
CD 154 254 30.6 s neg neg neg pos pos neg NSD
CD 1550 16.1 138 MS neg neg NSD NSD pos neg NSD
Celebra 17.1 10.5 MR MS neg neg NSD NSD pos neg NSD
Embrapa 22 395 385 - neg NSD pos NSD pos neg neg
Embrapa 42 382 345 - neg NSD NSD NSD neg pos neg
FPS Nitron 133 89 MR MS neg neg NSD neg pos neg NSD
Fundacep 300 137 47 s neg neg neg NSD hetero neg neg
7 Fundacep 51 114 68 MS neg neg neg NSD neg neg neg
Fundacep 52 | 174 10 s neg neg pos NSD neg pos neg
Fundacep Bravo [ 162 8.1 MS neg neg pos NSD pos neg neg
Fundacep Campo Real 147 93 MR neg neg neg NSD pos neg NSD
Fundacep Cristalino 239 15.1 MS neg neg neg pos pos neg NSD
Fundacep Horizonte 105 93 MR MS neg neg neg pos pos neg neg
Fundacep Nova Era [ 16.8 6.6 s neg neg neg NSD neg pos neg
Fundacep Raizes 157 10.1 s neg neg neg NSD hetero neg neg
IPR 128 30.6 28.1 s neg NSD neg NSD pos neg neg
IPR 130 304 202 S neg NSD neg NSD pos neg neg
IPR 136 238 209 s neg NSD pos NSD pos neg neg
IPR 144 415 29 s neg NSD NSD NSD pos neg neg
IPR 85 455 323 MS neg neg neg pos neg pos neg
IPR Catuara TM 303 184 s neg neg neg pos neg pos neg
Jadeite 11 [ 12 7.5 MR neg neg NSD neg pos neg NSD
LG Oro 127 129 MS neg neg NSD NSD pos neg NSD
LG Prisma 17.9 118 MR neg neg NSD pos NSD NSD NSD
Marfim 214 16.1 MS S neg neg neg NSD pos neg NSD
Mirante 175 10.6 s neg NSD neg NSD pos neg neg
Onix 17 67 Ms neg neg neg NSD pos neg neg
OR1 209 148 Ms neg NSD neg NSD pos neg neg
ORS 1401 125 10.3 MR neg neg NSD pos pos neg NSD
ORS 1402 | - MR neg neg NSD NSD NSD neg NSD
ORS 1403 27.8 72 MR neg neg NSD NSD pos neg NSD
ORS 1405 144 5.1 MR MS neg neg NSD neg pos neg NSD
ORS Vintecinco 16.6 129 - neg neg NSD NSD pos neg NSD
Pampeano [ 179 89 MR neg neg neg pos pos neg neg
Quartzo 16.1 122 MS neg NSD NSD NSD pos neg NSD
Safira 25 1.6 Ms neg neg neg NSD pos neg neg
Supera 2.4 211 Ms neg NSD neg NSD pos neg neg
TBio Bandeirante 20.1 184 MS neg neg NSD NSD pos neg NSD
TBio Iguagu 174 8.8 MS neg neg NSD NSD pos neg NSD
TBio Itaipu 174 10.9 Ms neg neg NSD NSD pos neg NSD
TBio Mestre 187 157 Ms neg neg NSD pos pos neg NSD
TBio Noble [ 217 143 MS neg neg NSD neg NSD NSD NSD
TBio Pioneiro 16.9 104 MS neg neg NSD neg pos neg NSD
TBio Seleto 133 69 MS MR neg neg NSD NSD pos neg NSD
V “TBio Sintonia 227 134 MS neg neg NSD NSD pos neg NSD
TBio Sinuelo 137 6.3 MS MR neg neg NSD NSD pos neg NSD
TBio Tibagi 229 1.7 SMS neg neg NSD NSD pos neg NSD
TBio Toruk 145 1.3 SMS neg neg NSD NSD pos neg NSD
TEC Frontale - - - neg neg NSD NSD pos neg NSD
TEC Triunfo e - MR MS neg neg NSD NSD NSD NSD neg
TEC Veloce 187 12 MR MS neg neg neg pos pos neg NSD
TEC Vigore [ 118 5.8 MR MS neg neg neg pos pos neg NSD
Topazio 168 116 MR neg neg neg NSD pos neg neg
Turqueza 143 11 MR neg neg neg neg pos neg neg
Valente 231 14.6 § neg neg neg NSD pos neg neg
Vaqueano 187 13.7 MS MR neg neg neg NSD pos neg neg

*Informacdes Técnicas para Trigo e Triticale, disease reaction provided by cultivar’s sponsor.
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Gene

TaCYP1

TaCYP2

TaCYP3

TaCYP4

TaCYP5

TaCYP6

TaCYP7

TaCYP§

TaCYP9

TaCYP10
TaCYP11
TaCYP12
TaCYP13
TaCYP14
TaCYP15
TaCYP16
TaCYP17
TaCYP18
TaCYP19
TaCYP20
TaCYP21
TaCYP22
TaCYP23
TaCYP24
TaCYP25
TaCYP26
TaCYP27
TaCYP28
TaCYP29
TaCYP30
TaCYP31
TaCYP32
TaCYP33
TaCYP34
TaCYP35
TaCYP36
TaCYP37
TaCYP38
TaCYP39
TaCYP40
TaCYP41
TaCYP42
TaCYP43
TaCYP44
TaCYP45
TaCYP46
TaCYPA7
TaCYP48
TaCYP49
TaCYP50
TaCYP51
TaCYP52
TaCYP53
TaCYP54
TaCYP55
TaCYP56
TaCYP57
TaCYP58
TaCYP59
TaCYP60
TaCYP61
TaCYP62
TaCYP63
TaCYP64
TaCYP65
TaCYP66
TaCYP67
TaCYP68
TaCYP69
TaCYP70
TaCYP71
TaCYP72
TaCYP73
TaCYP74
TaCYP75
TaCYP76
TaCYP77
TaCYP78
TaCYP79
TaCYP80
TaCYP81

Ave.
Residue

weight
g/mol

105.884
105.679
105745
106.099
109.834
106.233
112486
109.873
107571
112336
110251
102563
111212
107.222
114.085
102.803
106.950
114.062
102434
112850
112119
107.076
114.18

109.785
114223
112297
104.669
107816
106.897
113.902
109.938
108.051
104.901
111634
114.776
109.846
109.055
108.003
107588
108.939
107.790
108.939
107.932
107550
112423
108.95

109.049
106.086
107.48

111907
109.16

107.49

109.612
107.55

111.86

109.191
107.841
109.94

112245
110522
109323
107.297
107.883
114.845
109911
112277
110492
109.493
107.297
108.171
115.157
107.753
110248
112125
109.949
109.489
107.231
108.466
115334
111694
107.663

Charge

85
95
85

77
-05
35
75

80.5
12
-235
30
-15
12

-55
12
-18
35
40
-55
95
-75
55

45

415
-45
115
115

S NI N

55
120
-65
11

55
1215
-6.5
115
125
55
1215

-135
12
14
-35

45
-13
12
13
-65

115

Isoelectric
point

9.8314
10.1213
9.8314
6.1784
11083
63737
75129
111222
7.748
75526
111652
102688
4.5089
7485
63203
10.2688
7.8016
57607
10.2688
4.5537
7.2070
77611
57586
7.5797
55357
82661
8.4889
7.9629
125473
6.0702
7.9467
8.6208
6.8452
74773
65051
75797
8.4141
81615
83595
79158
8.1615
79158
81615
82502
12,0339
52653
89479
7.2659
82495
11.9813
52783
9.0669
9.4164
82502
12,0081
5.1707
7.9801
64227
69378
8.4983
45823
10.1576
8493
6.1908
65905
68711
82803
45854
10.1576
8.8576
62187
7.9801
65065
67563
8.1469
46255
107.231
85808
5.89
74774
86208

Molecular
‘weight
g/mol

25,9415
25,8914
25,907.45
6.1784
70,623.28
48,760.75
26,209.26
69,769.11
45,61031
26,174.18
70,119.76
30,256.13
45,040.97
25,7332
56,472.30
29,915.70
25,668.11
57,0308
30,218.03
37,691.94
26,572.28
25,698.19
56,975.62
64,773.06
55357
26,614.44
18,840.48
17,250.54
32,389.69
53,078.52
64,863.22
35,2457
18,777.29
25,787.39
55,207.15
64,919.24
23,555.86
21,384.52
34,750.97
23,530.81
21,342.49
23,530.81
21,3705
18,391.07
90,837.67
4423373
26,935.05
17,7164
18,379.05
95,009.27
44,537.13
23,540.34
24,004.97
18,391.07
94,969.15
44,550.05
17,254.53
41,667.07
72,734.47
18,125.59
46,243.51
22,854.31
43,800.34
6.1908
41,766.25
72,755.45
18,120.62
46,315.62
22,854.31
44,2418
64,372.61
17,240.5
41,342.82
72,657.28
16,932.17
47,189.59
22,840.28
44,796.47
64,471.61
25,801.42
34,990.32

Theoretical
plI

9.4
959
9.4
597
1043
6.07
7.07
1046
7.64
7.1
1051
9.74
473
7.52
6.01
9.74
8.08
5.69
974
476
676
8.04
5.68
7.29
55
836
8.67
7.85
12.05
575
7.96
894
641
7.09
6.08
729
8.42
847
872
777
847
7.77
847
853
1151
5.42
9.13
6.89
852
1145
543
9.16
93
853
1148
536
7.87
6.06
649
855
4.85
958
877
5.85
62
642
843
4.86
958
9.01
5.87
7.87
6.14
631
836
4.89
958
8.83
5.69
7.09
8.94

Instability
index

(I

35.81
3244
31.89
44.11
66.01
44.62
437
66.36
46.05
37.92
66.93
37.63
39.12
3412
50.92
399
39.21
50.34
39.67
37.56
49.88
36.35
48.79
28.33
39.02
5205
189
1477
89.55
41.66
29.18
56.07
2017
46.45
4202
2895
2562
25.55
50.03
26.83
2263
26.83
2598
18.09
106.61
23.06
3274
1835
1922
97.11
211
35.58
26.61
18.09
98.59
23.87
14
29.67
4346
283
4113
1938
51.66
49.01
305
4251
26.26
4199
1938
49.85
49.93
1477
29.65
43.04
2568
403
1978
48.86
5223
47.18
51.72

Aliphatic
index

77.63
76.86
77.63
88.1
4526
89.59
100.04
4169
87.48
9751
4423
97.97
71.46
75.13
68.18
96.29
73.08
68.28
96.98
74.73
79.45
735
68.22
67.17
69.14
81.9
69.33
72.56
48.88
63.82
67
8423
69.22
8277
65.28
67.38
80.74
7242
84.98
82.55
7343
82.55
7192
66.02
40.28
69.26
78.5
79.34
65.44
46.15
71.35
82.28
79.13
66.02
46.49
69.68
72.56
68.58
76.39
71.89
92.17
76.48
72.86
55.12
69.42
76.39
71.28
92.39
76.48
754
5546
72.56
70.35
76.23
62.66
9227
76.01
75.11
546
82.77
86.58

Grand

average

of
hydropathicity
(GRAVY)

-0.15
-0.151
~0.124
-0.11
~1.186
~0.106
-0.155
~1.268
~0.136
-0.192
-1225
0.197
~0.59
-0173
-1.018
0.158
-0219
-1.033
0.178
~0.585
-0241
-0.196
-1.044
-0.563
-0.815
-0.265
~0.172
-0224
~0.532
-0.96
~0.568
-0.043
-0.141
~0.184
-0931
~0.559
-0237
~0.158
~0.047
~0.198
-0.127
~0.198
-0.159
-0.202
~144
~0.468
-0.1
0.035
-0213
-1.261
-0438
0.047
-0.117
~0.202
-1257
~0.468
~0.261
~0.504
~0455
-0.456
-0217
-0.146
-0349
~1.193
~0.486
~0.466
-045
-0.209
-0.146
-035
~1202
-0.261
~0479
-0.467
-0.501
~0.202
-0.157
~0353
-123
~0.184
~0.014

Stable

Yes
Yes
Yes
No

No
No
No
No
Yes
No
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
No
Yes
Yes
No
Yes
Yes
No
No
Yes
No
Yes
No
No
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
No
Yes

Yes
No
No
Yes
No
Yes
No
Yes
No
No
Yes
Yes
No
Yes
No
Yes
No
No

No
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Name of QTLs

Lol L o

. qEZ09ZCLI3
. QWHO9CHLI5
. qEZ10ZCLO7
. QWHI0ZCL09
. QEZI0CHLO7
. QWH10CHL09

Range

ZM22-ZM92
E16M19-E14M14a
E5M12a-ZM351
M20E10-ZM428
E5M12a-ZM351
M20E10-ZM428

Position  References

0.0
8.0
45
70
45
7.0

Yanxin et al. (2013)
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Discovered motif

YYKGSSFHRVIKGFMIQGGDF
NAGPNTNGSQFFITTVPTPWL
TPAGRIVIELYGDVVPKTAENFRALCTGE
DGKHVVEGRVVEGMD
GTGGESIYGGKFEDE
NEKLKHTGPGTLSMA
DRPKKDVVILDCGEL

TGDSLCYAFIAFEEKEGCEKAFFKMGNALIDLRRIDVDFE
Q

AAAAAAAPAAAAAQSPVTPKVEFDVSIGG

‘WWIEAVDSAKAFGNENFKKHDYKKALRKYRKALRYLDVCW
E

DNVLEFVCKLNPVTQDEDLYTIFSREGTVT

CGAPDHIARDCDQGGEKKNKAPBYVLKDENTQRGGNNRRS
Y

QLAELIPENSPJGKPRDEIAEERLEDTWV

FQHALDLEPNDGGIKRELAAAKKKISBRRBKERKAYAKMF
z

PLDETVDPGQLEELIRSKEAHANAVIQISVGLIPBAEVKP
P

Log likelihood ratio

2,946
2,796
3550
2043
1775
1769
1,442
1,340

1,208
878

589
820

Information
content

65.8
58.8
68.7
397
47.2
39.9
32
120

65.8
143.6

109
152.8

85.1
165.2

109.9

Relative
entropy

66.4
58.5
648
368
434
38.1
302
137

60.1
1408

106.3
147.8

79.7
1552

100.7

Bayes
threshold

88
107
84
87
88
101
85
114

105
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124

108
109

98
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Traits Chro. Loca Locus  Flanking Traits Chromo. Locus  Flanking
markers Location markers

Seedling weight control  Chr2 gSWC2  c02b067-c02b073 Shoot length-PEG Chrl gSLPI  c01b032-c01b035

Chrg gSWC8  c08b086-c08b090 Chrs gSLPS  c08b055-c08b063

Chrl2 gSWCI2  c12b069-c12b071 Chr9 gSLP9-1 c09b015-c09b021
Shoot length control  Chrl gSLCI c01b092-c01b100 Chr9 gSLP9-2 c09b031-c09b033

Chrs gSLCS  c05b087-c05b094 Root length-PEG Chrl GRLPI  c01b062-c01b070

Chrs gSLC8  c08b065-c08b070 Chré GRLP6  c06b054-c06b060

Chri2 gSLCIZ  c12b062-c12b072 Chr7 GRLP7  c07b030-c07b036
Root length control ~ Chrl GRLCI  cO1b086-cO1b087 Chr12 GRLPI2  c12b032-c12b036

Chrd GRLCY  c04b040-c04b046 Relative seedling weight ~ Chr GRSWS- c05b019-c05b029

1
Chr6 GRLC6  c06b129-c06b135 Chrs GRSWS- c03b071-c05b074
2

Chrlo GRLCIO  c10b076-c10b080 Chré GRSWG  c06b041-c06b045
Seedling weight PEG  Chrl gSWPL  c01b003-c01b010 Chr12 GRSWI2  c12b061-c12b072

Chr3 gSWP3  c03b116-c03b119 Relative Shoot length ~ Chrl GRSLI-T  cO1b035-c016049

Chr9 gSWP9  c09b031-c09b040 Chrl GRSLI-2  c01b109-c01b113
Relative oot length ~ Chrl GRRLI  c01b052-c01b063 Chrl1 GRSLII  c11b044-c11b051

Chr3 GRRL3- c03b043-c03b055

1
Chr3 GRRL3-  c03b102-c03b113
2
Chr7 GRRL7  c07b020-c07b028
Chrl2 gRRLI2  c12b032-c12b036

Source: Liang et al. (2021), (https//doi.org/10.1371/journal.pone.0247681.t004).
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Genome location

Chromosome 1A: 4045713
Chromosome 1B: 5,157,094

Chromosome 1D: 216,466

Chromosome 2A:
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Chromosome 24:
313770204

Chromosome 2B;
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Chromosome 28
268,470,184

Chromosome 28
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Chromosome 2D
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202325816
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Chromosome Un:
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Linkage group

[ Y

Position (cM)

24,50
39.30
52.30
58.40
116.80
1050
115.70
123.70
104.70
53.80
89.80
106.10
43.90
73.50

Flanking markers

ZMM2997~ZMM1033
ZMM5636~ZMM5775
ZMM2218~ZMM4682
ZMM4682~ZMM5444
ZMM1155~ZMMO0314
ZMM5060~ZMM5061
1D0041~ZM638.
ZM638~ZMM1682
ZMM2323~ZMM0205
1D0046~1D0133
ZMMO0913~ZMM3752
ZMM3683~ZMM2365
ZMM1307~1D0030
ZMM2344~ZMM2343

References

Wang et al. (2017)
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Yield (kg/ha) Thousand Test weight Heading Maturity ~ Height (cm) Protein (%)

kernel (kg/hL) (days) (CED)
weight (g)

2017 2018 2017 2018 2017 2018 2017 2018 2018 2018 2017 2018

Trial mean 223 | 4471 246 349 708 725 | 1961 540 812 816 69.1 125 14.0
Max mean - BR cultivars 3310 | 5508 = 365 464 769 755 740 60.0 8.5 1050 | 820 150 165
"Max mean - CA checks I 2,729 5,696 | 316 427 737 74.1 69.0 580 1 845 | 1110 [ 96.0 | 148 16.6
Range 263 2501 216 o 163 e 175 130 175 490 410 44 50
1SD 2447 6450 46 0 s 0 s 23 5o 03 59 11 12

v 4.6 6.1 79 24 20 17 04 18 24 53 36 38 37
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Chromosome

Chrl
Chr2
Chr2
Chr3
Chrd
Chr4
Chré.
Chré
Chré
Chr7
Chr8
Chr8.
Chr9
Chr9
Chr10
Chr10
Chr10
Chr12
Chr12
Chr13

Candidate genes

SIN_1013986
SIN_1002392
SIN_1017088
SIN_1017435
SIN_1016759
SIN_1006242
SIN_1018543
SIN_1020696
SIN_1012414
SIN_1001138
SIN_1006025
SIN_1026689
SIN_1024143
SIN_1025570
SIN_1018917
SIN_1018959
SIN_1018961
SIN_1006892
SIN_1022200
SIN_1006470

NCBI annotation

Ferruginol synthase like
Probable carotenoid, cleavage dioxygenase 4, chloroplastic
Not annotated

Not annotated

Polyphenol oxidase 1, chloroplastic like

Cytochrome P450 93A3-like

Transcription factor WER-like

Cytochrome P450 71D95-like

Not annotated

Crocetin, glucosyltransferase, chloroplastic-like
Iso-chorismite synthase, chloroplastic

WAT1-related protein At3g28050-like

MLO-like protein 6

Not annotated

Cytochrome P450 71A1-like

Chalcone synthase-like

Chalcone synthase

Uncharacterized protein LOC105175232

Low Quality protein: dihydroflavonol 4-reductase

Not annotated

Data source: Wang et al. (2020).





OPS/images/fgene-14-1125940/fgene-14-1125940-t001.jpg
Trait

Combined resistance

Wheat-rye
translocation

Fusarium head blight

Plant height

cus/Gen Marker Marker type Reference
Lr16/sr23 kwm8d7 KASP Kassa et al. (2017)
csfis agarose gel-based Lagudah et al. (2009)
sy Xaslbmas/Sror/ Ll WMAS000003 | KASP hitp://maswheat ucdavis.edu, http:/wiww.cerealsdb.
ukonet/
Lr37/Yri7/sr3s 2AS_VPM_CAPS | STS Helguera et al. (2003)
Lr67/Yrd6/Srs5/Pmd6/Lin3 CsSNP836 KASP Forrest et al. (2014)
WMAS000005 KASP hitp://maswheat.ucdavis.edu/, http://www.cerealsdb.
uk.net/
Sr2/¥r30
sSr2-CAPS CAPS, agarose gel- Mago et al. (2011b)
based
SrCad/Sr42/B10 kwm907 KASP Kassa et al. (2016)
IRS:1BL- Lr26, Sr31, Yr9, Pm3 WMAS0000011 | KASP htpe//maswheat.ucdavis.edu/, http://www.cerealsdb.
ukonet/
TaHRC-KASP | KASP Su et al. (2018)
UMNIO STS Liu et al. (2008)
gwmd93 SSR
5 McCartney et al. (2004), Bernardo et al. (2011)
Fhbl (3BS) (Sumai-3) owms33 SSR
WMAS000008 Kasp http://maswheat.ucdavis.edu/, http://www.cerealsdb.
WMAS000009 KASP ulenet/
GBS0158_6BS KASP Cai et al. (2016)
wme397 SSR
wmc398 SSR
Fhb2 (6BS) (Sumai-3) |
gwms08 SSR McCartney et al. (2004), Cuthbert et al. (2007)
gwml33 SSR
gwm6d4 SSR
Qfhs.ifa-5AS (Sumai-3) 1WA7777 KASP Pandurangan et al. (2021)
gwmdls SSR
gwm304 SSR
Qfhi.nau-5AS (Wangshuibai, Sumai 3, Steiner et al. (2004), (2019), Xue et al. (2011)
Frontana) qwm293 SSR
wme96 SSR
QIL Fusarium 5A (Haiyanzhong) GBS 1852_5A. KASP Cai et al. (2016)
Qhsifa-5Ac (Sumai-3) wme705 SSR Buerstmayr et al. (2003), McCartney et al. (2004),
Steiner ef al. (2019), Pandurangan et al. (2021)
barc180 SSR
gwml110 SSR
gwm720 SSR
QITL_3AL (Frontana) Steiner et al. (2004), Marion Roder, pers. comm.
gwml121 SSR
Rht8 gwm261 SSR Ellis ef al. (2007)
Rht-B1 WMAS000001 KASP httpe//maswheat.ucdavis.edu/, http://www.cerealsdb.
uk.net/, Ellis et al. (2002)
Rht-DI WMAS000002 KASP htpe//maswheat.ucdavis.edu/, http://www.cerealsdb.

uk.net/, Ellis et al. (2002)
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Traits Detection method References
MCIM MIM
5QTLs LGs 5QTLs LGs
1. Grain number per capsule (Qgn) Wau et al. (2014)
Qgn-1 1 Qph-1 1
Qgn-6 6 Qph-6 6
Qgn-12 12 Qgn-12 12
2. Capsule number per plant (Qcn)
Qenll 1 Qcan-11 12
3. Thousand grain weight (Qtgw)
Qugw -11 1 Qugw 11 1
Other QTLs from others sources
4. Thousand seed/grain weight QTLs Marker intervals Du et al. (2019)
Qtswd MK1268296-MK 1268983
Qtswo MK193210-MK167922
Quswi2 MK1695007-MK1754691
5. Seed yield Quy4.1 Candidate genes Gene names Dossa et al. (2019)
SIN_1012139 SiABI4
SIN_1012134 SITT™M3

kage group, QTL: quantitative trait loci.
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Traits Chromosome QTLs Flanking markers References
Relative root length Chrl qRRLI 01b052-c01b063 Liang et al. (2021)
Chr3 qRRL3-1 03b043-c03b055
Chr3 qRRL3-2 03b102-c03b113
Chr7 GRRL7 07b020-c07b028
Chri2 gRRLI2 C12b032-c12b036
Relative shoot length Chrl qRSLI-1 <016035-c016049
Chrl qRSLI-2 01b109-c01b113
Chrll qRSLI1 C11b044-c11b051
Shoot length Chrl 4SLC1 €016092-c01b100
Chrs 4SLCS 05b087-c05b094
Chrg 4SLC8 <08b065-c08b070
Chr12 4SLC12 €12b062-¢12b072
Root length Chrl qRLCI 01b086-c01b087
Chrd qRLCA €04b040-c04b046
Chr6 GRLC6 06b129-c06b135
Chr10 qRLCIO €10b076-c10b080
Shoot length-PEG Chrl 4qSLPI 01b032-c016035
Chr8 4qSLPS 08b055-c08b063
Chr9 qSLP9-1 09b015-c09b021
Chr9 4SLP9-2 09b31-c09b033
Relative length-PEG Chrl qRLPI <016062-c01b070
Chr6 GRLPG 06b054-c06b060
Chr7 GRLP7 07b030-c07b036
Chri2 qRLPI12 €12b032-c12b036
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Traits Detection method References
MCIM MIM
12QTLs LGs 8QTLs LGs
1. Plant height (Qph) W et al. (2014)
Qph-6 6 Qh-6 12
Qph-12 12 Qph-12 12
2. First capsule height (Qfch)
Qfch-4 4 Qfch-4 4
Qfch-11 1 Qfch-11 1
Qfch-12 12 Qfch-12 12
3. Capsule axis length (Qcal)
Qal-5 5 Qaal-5 5
Qaal-9 9 Qaal-9 9
4. Capsule length (Qcl)
Qd-3 3 Qd-12 12
Qc-4 4
Qd-7 7
Qdl-8 8
Qd-12 12
Other traits from others source
5. Stem Length (QUISL) Candidate genes Gene name
QusL4.1 4 SIN_1012134 SITTM3 Dossa et al. (2019)
QUSLS.1 4 SIN_1022782 SINIMINI

SIN_1022789
SIN_1022774

SISAM
SiIGOLS1
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No. Name of molecular ‘Websites Number References
markers database of markers integrated

1 Sesame SNPBase http://www.sesamebioinfo.org/  Not accessible

SesameSNPresults

2 Database for SSR analysis in Sesamum  http://www.sesamebioinfo.org/ 138,194 SSRs Dossa et al.
indicum L (Sisatbase) SisatBase/index html (20172)

3 Plant Microsatellite DNAs http://www.sesamebioinfo.org/ 26, 230,099 SSRs Yu et al. (2017)
Database(PMDBase) PMDBase/index.html

4 Genome wide microsatellite marker http://backwin.cabgrid.res.in: Totally identified 118,004 SSRs but, 21, 704 SSRs were Purru et al.
database (GinMicroSatDb) 8080/Gingelly7/ integrated (2018)

5 Oil Crops Seed (ocsESTdb) htp://ocri-genomics.org/ 2,328, 925 EST for four different crops (sesame, rape seed,  Ke et al. (2015)

soybean, and peanut). However, Sesame has 44,820 ESTs
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No. Name of Number of Source genomes Markers References
sesame online functional QTLs developed/
database and and traits identified
their webpages
1 Sinbase 1.0 htp://ocri.genomics.org/  An unknown number of QTLs but the  Zhonghzil3 2719 SNPs, 97InDels ~ Wang et al. (2014),
Sinbase/ traits are oil content, oil biosynthesis, and 2,282 SSRs Wang et al. (2015)
sesamin, and sesamolin production, lipid-
related genes
2 Sinbase2.0 http://www.sesame- 54 QTLs, The traits are disease resistance, ~ Zhonghzil3 31 functional markers ~ Wang et al. (2021)
bioinfo.org/Sinbase2 growth cycle morphological features,
yield component, il quality, oil content,
and abiotic stress resistance traits
3 Genetic Discovery Database 65 QTLs. The traits are seed coat color, ~ Unknown 34 functional markers  Berhe et al. (2021)
(SiGeDiD) (https://sigedid.ucad.sn/)  capsule zone length, tip length without
capsule, internode length, node number,
plant height, the height of first capsule,
grain number/capsule, capsule number/
plant, waterlogging tolerance, and capsule
axis
4 Sesame Functional Genomics database  The traits included are yield, yield-related, Zhonghzil3 and Baizhima ~ Genomic-104,836 SR~ Wei et al. (2017)
(SesameEG) http://www.ncgracen/  disease resistance, oil quality, growth ‘markers -Polymorphism
SesameFG cycle related, flowering date, SSRs-218
waterlogging, lipid metabolism, and other
morphological traits
5 Sesame HapMap http://202.127.18. 549 QTLs, Totally 56 traits are included 705 accessions A total of Wei et al. (2015)
228/SesameHapMap/or and some are oil content, fatty acid 5,407,981 SNPs
biosynthesis, nutritional quality,
morphological feature traits, seed color,
growth cycle, oil seed yield, disease
resistance, and yield-related traits
6 The sesame genome project working ~ Not mentioned Yuzhi-11 Not determined Zhang et al.
group (SGPWG) htp://www. (20132)
sesamegenome.org
7 NCBI assembly database. https://wiww.  Not accessible (need permission) Yuzhi-11, Zhongzhi-13and  Not accessible Kitts et al. (2016)
nebi.nlm.nih.gov/assembly/?term= Swetha
Sesamum-+indicum
8 Plant Tandem duplicated Genome Zhonghzil3 Not accessible (need Yu et al. (2015)
database (PTGBase) http://ocri- permission)
genomics.org/PTGBase/
9 Sesame Pan-genome References Lipid metabolism (fatty acid elongation, ~ Five genomes; Zhongzhi-13, Not accessible (need Yu et al. (2019)

database (SesamePan-genome)
database. http://www.sesame-bioinfo,
org/pan-genome/

cutin, suberin, and wax biosynthesis,
steroid hormone biosynthesis,
glycerolipid biosynthesis,
glycerophospholipid metabolism, ether
lipid metabolism, alpha linolic acid
metabolism, sphingolipid metabolism,
and unsaturated fatty acid biosynthesis)

Baizhima, Mishuozhima,
Swetha and Yuzhi-11

permission)
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Trait SNP ID Position TransID Putative candidate  Function
genes
DH  AX- 5D:487240908.487243412  TraesCSSD03G0939000  F-box-like domain Heat Stress tolerance in wheat (Li et al., 2018). Regulate root
94724456 (+strand) superfamily growth and abiotic stress tolerance in rice (Yan et al., 2011)
GED  AX- 1A:115131649..115133537 (- TraesCS1A03G0271300  Lateral organ Floral organs development in Arabidopsis (Shuai et al.,
95107750 strand) boundaries, LOB 2002). Stress tolerance in potato (Liu etal., 2019a) and wheat
(Wang et al,, 2021)
AX- 4A:5076587..5077492 (- TraesCS4A03G0014500  Thioredoxin-like Seed germination (Guo et al,, 2013) and disease resistance in
94598412 strand) superfamily wheat (Shi et al., 2021)
AX- 4A:5076587..5077492 (- TraesCS4A03G0014500  Glutathione S-transferase  Growth and development, salt and drought stress tolerance
94598412 strand) in wheat (Wang et al,, 2019)
AX- 5A:586571409.586575276  TraesCS5A03G0929100  RNA-binding domain Extend grain filling duration and improve malt barley
95181791 (+strand) superfamily agronomic performance (Alptekin et al, 2021)
AX- 5A:586576183.586579881  TraesCS5A03G0929200  UDP-glycosyltransferase  Regulation of grain size and abiotic stress tolerance in Rice
95181791 (+strand) family (Dong et al., 2020)
AX- 1A:507053551..507056672  TraesCS1A03G0779800  Serine/threonine-protein  High thousand kernel weight and grains per spike in wheat
94691261 (+strand) kinase, active site (Ur Rehman et al,, 2019)
GNPS  AX- 4D:465931660.465932025 (- TraesCS4D03G0700700  Expansin Capsule number in tobacco (Chen etal., 2016). Grain size in
94978133 strand) wheat (Lizana et al., 2010; Calderini et al, 2020)
GWPS  AX- 1D:43497907.43499982 TraesCS1D03GO131800  Patatin Seed size in Arabidopsis (Huang et al., 2001)
94883693 (+strand)
GY AX- 1D:20838814.20851719 TraesCS1D03GO081100  Exocyst complex Tissue-specific expression in wheat for biotic and abiotic
94473624 (+strand) component Exo70 stress (Zhao et al,, 2018). Role in seed development in
soybean (Wang et al, 2016). Pollen development in
Arabidopsis (Markovic et al., 2020)
PH AX- 2D:9070785.9073543 TraesCS2D03G0036000  DUFI618 domain Role in development and fitness in rice (Wang et al,, 2014)
94452759 (+strand)
AX- Chr5D: TraesCS5D03G0455800  Protein kinase domain OStMAPKKKS regulates plant height and yield in rice (Liu
94796636 297449170.297458745 etal, 2019)

(+strand)

DH: days to heading (days); GED: grain filling duration (days); GNPS: grain number per spike (number); GWPS: grain weight per spike (gm); PH: plant height (cm); GY: grain yield
R i ik i Rk b ol
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Trait Environment SNPs Chr. Position p-value PVE (%)
DH E3 AX-95024590 3D 152,556,482 5.00E-08 211
E4 AX-94724456 5D 484,426,977 2.04E-07 146
AX-95024590 3D 152,556,482 3.17E-07 144
Pooled AX-95024590 3D 152,556,482 6.60E-08 173
GED E2 AX-95107750 1A 112,941,690 6.51E-08 91
E3 AX-94598412 4A 5,068,136 4.67E-10 177
AX-95181791 SA 584,672,964 344E-08 181
AX-94691261 1A 505,524,324 1.82E-07 159
E4 AX-94794189 5B 356,188,192 1.0SE-07 182
AX-95210025 A 585,412,855 22507 190
AX-94702510 2B 776,211,899 1.99E-06 199
AX-94425015 8 2,036,666 3.13E-06 204
Pooled AX-94425015 4B 2,036,666 147E-06 167
AX-95210025 A 585,412,855 3.37E-06 154
GNPS E1 AX-94539354 6A 599,237,214 1.70E-09 163
AX-94978133 4D 465,771,817 1.26E-07 111
AX-94658573 4A 715,512,644 2.65E-06 10.1
Pooled AX-94539354 6A 599,237,214 226E-12 156
GWPS El AX-94602474 7A 15,695,625 351E-08 114
AX-94539354 6A 599,237,214 4.67E-07 171
AX-94883693 1D 40,579,284 7.14E-07 140
E3 AX-94469473 A 521,025,733 4.76E-07 114
E4 AX-94978133 4D 465,771,817 1.62E-11 125
AX-95105308 6B 113,453,322 1.09E-06 66
Pooled AX-94387482 6B 337,941,809 3.39E-07 110
PH E4 AX-94452759 2D 8,890,070 5.04E-08 54
AX-94498579 3B 82,448,998 151E-07 50
AX-94796636 5D 294,585,572 2.23E-06 72
GY E3 AX-94978133 4D 465,771,817 1.66E-08 93
AX-94483483 1D 206,101,173 2.09E-07 81
AX-94709904 7A 728,244,062 149E-06 108
ES AX-94473624 1D 19,313,725 2.74E-09 125
Pooled AX-94978133 4D 465,771,817 3.87E-06 154

DH: days to heading (days); GFD: grain filling duration (days); GNPS: grain number per spike (number); GWPS: grain weight per spike (gm); PH: plant height (cm); GY: grain yield (gm);

El: Dharwads E2: TARI, Delhi; E3: IARI, Jharkhand; E4: Karnal; E5: Ludhiana; SNPs:

siaaiac poove A R o gl

ngle nucleotide polymorphisms; PVE%: percent phenotypic variation explained Gene and marker
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Environments Traits GWPS GNPS GY GFD
Dharwad (E1) GWPS 1.00 0.89% 0.45% -0.25% 000 023
GNPS 1.00 030 -0.11 001 013
GY 1.00 =611 -0.09 05
DH 1.00 ~0.13* 000
GED 100 0042
PH 1.00
IARI-Delhi (E2) GWPS 1.00 — -0.04 0.050 -0.02 -0.02
GY 1.00 0.04 0.00 013
DH 1.00 -022 018
GFD 1.00 ~0.09
PH 1.00
IARI Jharkhand (E3) GWPS 1.00 0.55% 027% 0.03 001 025
GNPS 1.00 012 025" -0.13* 018
GY 1.00 -0.01 -01 0.15%
DH 1.00 -039* 010
GED 100 -0.29*
PH 1.00
Karnal (E4) GWPS 1.00 - 021% ~0.04 -0.00 025%
GY 1.00 0.04 -0.08 006
DH 1.00 -0.95* 021
GFD 1.00 ~0.21%*
PH 1.00
Ludhiana (ES) GWPS 1.00 - 0.89% - - 012
GY 1.00 - — 009
PH 1.00
Across Environment GWPS 1.00 0617 0.44% -0.09 -007 ~0.21%
GNPS 1.00 0317 0.09 -0.19* 009
GY 1.00 0.04 -0.03 018
DH 1.00 ~071% 019
GFD 1.00 ~0.25%
PH 1.00

CIWDS; wrsii weipht s sl fam) CNPS: s fibe it sl Hinb ek Y

L T

I ———





OPS/images/fgene-13-1034921/fgene-13-1034921-g005.gif





OPS/images/fgene-13-1039548/fgene-13-1039548-g004.gif
e e e T T T T T T T






OPS/images/fgene-13-1032691/inline_4.gif





OPS/images/fgene-13-982589/fgene-13-982589-t001.jpg
Trait Env. Mean + SD Range CV (%) LSD hgs GV EV
DH El 592+ 38 504-722 24 41 852 119 2
E2 958 £ 5.6 81.6-1164 15 4.0 935 2% 20
E3 85748 69.8-98.8 10 23 972 2.1 07
B4 947 +52 816-1166 19 50 882 27 32
GED El 450 £ 0.1 313-49.1 55 69 65.1 153 60
E2 449 £ 0.1 269-51.9 49 62 605 135 48
E3 316+ 03 19.6-463 11 98 505 124 121
E4 42703 283-553 56 67 709 137 56
GNPS El 52386 242-80.1 53 66 9.7 1619 55
E3 439% 129 116794 41 60 939 706 46
GWPS E1 2106 04-35 8.7 05 916 04 0.03
E2 19406 0239 108 06 883 03 004
E3 2403 12-33 87 06 618 01 004
B4 29£05 15-46 89 08 734 02 007
ES 2108 04-371 83 05 954 06 003
PH El 729+ 69 57.6-94.1 25 52 929 449 34
E2 1022+ 7.4 820-1348 22 65 906 504 52
E3 962%76 775-1158 22 59 915 464 43
E4 1108 + 69 9481345 22 67 882 422 57
E5 1039 £ 59 813-120.1 25 72 806 270 65
GY El 312.7 + 1007 1433-6118 612 541 964 9835.2 366.1
E2 4668 £ 88.9 2326-689.3 416 55.1 95.1 73482 379.6
E3 2563+ 393 1338-37238 467 340 892 11996 1449
E4 556.9 £ 905 29787523 685 108.1 797 5746.2 1461.0
ES 5329 + 828 2432-7342 51 772 889 5932.8 744.6

DH: days to heading (days); GFD: grain filling duration (days); GNPS: grain number per spike (number); GWPS: grain weight per spike (gm); PH: plant height (cm); GY: grain yield (gm).
E1: Dharwad; E2: IARI, Delhis E3: IARI, Jharkhand; E4: Karnal; E5: Ludhiana; SD: standard deviation; CV: coefficient of variation; h°BS: broad sense heritability; GV: genotypic variation;
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Sr. No.

Sample

Untreated_R1

Untreated_R2

Treated_12hr_R1
Treated_12hr_R2
Treated_24hr_R1
Treated_24hr_R2
Treated_96hr_R1
Treated_96hr_R2

No. of
reads

20,003,620
20,546,374
20,009,074
20,985,360
20,209,343
22,800,265
20,854,406
20,568,010

Read length

150
150
150
150
150
150
150
150

GC%

44
45
51
44
46
45
45
44

Mapping percentage
(%)

86.00
84.90
86.50
86.20
90.80
88.60
86.80
80.50
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Sr #

b b

e Sy e e

10.11
1112
1213

Donor species

Acgilops speltoide
Acgilops speltoide
Aegilops sharonensis

Thinopyrum
intermedium

Dasypyrum villosum
Hordeum vulgare
Elymus tsukushiensis
Hordeum vulgare

Hordeum vulgare

Secale cereal
Secale cereal

Dasypyrum villosum

Secale cereal

Secale cereal

Secale cereal

Secale cereal

Secale cereal

Th. bessarabicum
Th. Elongatum
Acgilops searsii
Acgilops speltoides
Th. elongatum

T. durum

T.spelta

P. Huashania

Secale cereal
Thinopyrum elongatum
Secale cereal
Triticu timopheevii

Acgilops tauschii

Name of gene

Stem rust/Sr39
‘Tan spot TsrAesI Septoria nodorum blotch SnbAes!
Lr56/Yr38

Wheat streak mosaic virus Wsm3

Stem rust Sr52

B-glucan synthesis HCsIF6
Fusarium head blight Fhb6
Salt tolerance B-D-glucan

cellulose synthase-like F6 gene (CslF6)

Powdery mildew resistance gene Pm56

Stem rust Sr59

Glume ridges (Bgr-V1) photoperiod response gene

(Ppd-V1)

stripe rust and powdery mildew

stripe rust and powdery mildew
Greenbug resistance genes Gb2 and Gb6
Drought-responsive genes

Stripe Rust Yr24/26

High Fe and Zn contents

Flour Quality genes

Powdery mildew Pm57

Stem rust Sr39

Wheat streak mosaic virus Wsm3

Y7

¥rs

Al disease resistance and agronomic traits

Aphid and Hessian fly

Fusarium head blight
Pest and disease resistance
Agronomic traits

Quality traits, Resistance to biotic and abiotic
stresses

Translocation chromosome

28/2B

28/2B
T6AS.6AL-65"/6L
T7BS-78#3L

T6AS6V#3L

T7AS7HL, T7BS-7HL and T7DS-7HL
1E*#1S

7BS.7H

A complete set of six compensating RobT
chromosomes

6ALGRS
2DS.2RL
2V$.2DL

1BL.IRS

IRS.1BL

1AL.IRS

1BL.IRS

IRS.1BL

6EDS-6DL

1AS.1EL

285#1/2B

28/2B

2E/2B

2BL

2BL

2Ns/2D

3DL.3RS and S5AL.5RS
7E7D

1BS

2ALAS, 6ALAY, 7G.B4
5D.5B

Reference

Niu et al. (2011)
Zhang et al. (2019)
Marais et al. (2010)
Danilova et al. (2017)

Li et al. (2019)
Danilova et al. (2019)
Cainong et al. (2015)
Tiirkosi et al. (2018)
Danilova et al. (2018)

Hao et al. (2018)
Rahmatov et al. (2016)
Rahmatov et al. (2016)

Ren et al. (2018)

Ren et al. (2017)

Lu et al. (2010)

Jang et al. (2017)
Yang et al. (2016)
Ardalani et al. (2016)
‘Tanaka et al. (2017)
Liu et al. (2017)
Zhang et al. (2019)
Zhang et al. (2018b)
Marchal et al. (2018)
Marchal et al. (2018)
Bai et al. (2020)
Johansson et al. (2020)
Fedak et al. (2021)
Przewieslik-Allen et al. (2019)
King et al. (2022)
Othmeni et al. (2022)
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Gene name

SIWRKY17
SAM

MYC

JAZ

MPK3
ACS4

ERF

CHS1

PYL

ETR4

Gene ID

Solyc07g051840.2.1
Solyc01g101060.2.1
Solyc08g076930.1

Solyc09g008230.2

Solyc06g005170.2.1
Solyc12g008740.1.1
Solyc05g052050.1.1
Solyc09g091510.2.1
Solyc10g085310.1.1
Solyc06g053710.2.1

Forward primer

GTTGTCCAGTTCGGAAGCAA
TGCCTGAGCCATTGTCTGTA

CGAGGCTTCAGTGGTGAAAG
CCCTAATTCGCAGAGAGGGA
ATGGGTGCTGCTCAATTTCC

AATTGCTCGGAGGTAGGATG
ACAGTTACCACCGACGAACT
AGGAGTATCGTAAGGCGCAA
ACTTTACGGGAAGTCCGTGT

GATCAAAGCATGGCTGTCGT

Reverse primer

TTTCGCTGCTGAGGAAGTTG
AGTGACCATAGGCAGCAGTT
TGCCTCGACGTGATTCAATG
CGGCTTTAACAGCTCATCGT
ACACAGAGCAGACGATTCCA
TTCCTCTTCCATTGTGCTTG
AATTAAACGGCGACCATCCG
AGCTCAGTCTTGTGCTCACT
GTTCCGTGTGAAGCGTAGTC
ACCTTGGAGGAGTGAGTGTG

Amplicon size
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Effector name

RipAL

RipA2
RipA3
RipAd
RipAS
RipAA
RipAB
RipAC
RipAD
RipAE
RipAF1
RipAT
RipA]
RipAK
RipAL
RipAN
RipAQ
RipAP
RipAQ
RipAR
RipAS
RipAT
RipAU
RipAV
RipAW
RipAX1
RipAY
RipAZ1
RipBC
RipB
RipBM
RipBP
RipCl
RipC2
RipE1
RipF1
RipG1
RipG2
RipG3
RipG4
RipG6
RipG7
RipH1
RipH2
RipH3
Ripl
Rip]
RipL
RipM
RipN
RipO1
RipP1
RipP2
RipP3
RipQ
RipR
RipS1
RipS2
Rips3
RipS4
RipS5
RipS6
RipS7
Rips8
RipTAL
RipTPS
RipU
RipV1
RipW
RipX
RipY
RipZ
RS_T3E_Hypl2
RS_T3E_Hypl4
RS_T3E_Hyp6
RS_T3E_Hyp8

FJ1003 gene ID

11923
11924
2,580
21308
21309
21465
1424
21338
21304
2449
1.106
21283
21299
1.1887
1.2138
21184
21307
21341
2122
21348
2143
2237
2242
2313
21192
2332
1.3060
21462
2436
1.3046
133
2,693
1690
2_146
2.776
1.3141
2409
21360
21134
2557
1.1357
1.1148
11149
11177
2692
2,631
1.3248
11919
2667
1.1265
2.4
2.795
1,181
1.2971
12935
2184
2189
13173
2223
21373
11321
2.772
1.1917
1.2037
11317
11343
21191
2,119
11141
12487
21339
140

2 1474
2,670
1.646
1.631
2,900
1.1388

GMI1000 (1)

95/94
100/98
100/99
100/98
100/99
100/99
100/65
100/99
100/100
95/99
10098
100/98
100/99
100/99
100/100
absent
100/99
100/98
79/98
100/99
100199
100199
91/99
100/98
100/99
100/96
93/100
100/96
100/99
100/100
100/99
62/99
absent
100199
100/92
100/99
100/99
100/99
100/98
100/95
100/99
100/97
100/75
100/99
100/97
99199
100/100
100/93
100/97
100/99
100/99
100/100
100/100
100/99
61/100
100/100
100199
100/99
98/99
100/99
100/99
100/99
100/96
100/99
79/63
100/99
100/99
absent
100/100
100199
100/98
100/100
100/99
100/99
absent
absent
100/100
100/100

CQPs-1 ()

absent
absent
100/100
100/99
100/99
99/99
absent
100/100
100/100
absent
100/100
absent
100/99
absent
100/99
100/100
100/99
100/100
100/100
100/100
100/99
100/99
100/98
100/98
100/98
79/98
93/100
absent
72199
100/100
absent
7199
absent
absent
100/100
100/100
100/100
100/100
100/100
100/100
83/52
100/80
100/100
100/100
100/98
99/100
100/99
100/100
100/97
absent
100/99
100/100
100/100
absent
absent
70/97
absent
100/72
absent
100/99
99/100
100/100
96/51
100/99
79/63
100/100
100/99
absent
100/100
100/100
100/100
absent
absent
100/100
84/100
absent
100/100
100/100

UW700

absent
absent
101/78
100/70
100/76
100/79
100/76
absent
100/87
93/67

absent
absent
99/81

100/70
absent
96/80

100/70
absent
100/79
absent
97/62

absent
absent
99/75

absent
100/63
absent
100/58
absent
100/94
10077
96/94

absent
99/70

100/66
100/85
100/79
absent
absent
100/56
100/60
absent
98/67

absent
100/64
99179

100/82
absent
100/61
99/71

100/73
100/84
100/95
99/85

absent
absent
100/80
100/90
99/74

100/76
98/72

100179
96/50

absent
77/64

absent
absent
100/74
100/64
100/73
absent
100/78
97/68

100/82
absent
absent
100/94
96/92

UWS551 (liB)

absent
absent
101/78
100/68
93/52

100/78
100/75
100/70
100/88
90/72

absent
absent
99/80

100/68
absent
96/80

absent
100/51
100/78
100/68
100/64
97/51

100/61
absent
absent
83/54

94/73

absent
absent
100/93
absent
absent
absent
99/69

102/63
100/85
100/78
absent
100/59
98/56

100/56
100/71
absent

70/82

100/79
100/88
91/51

100/75
91/64

100/70
absent
100/92
103/62
absent
100/79
100/78
100/65
100/80
100/59
100/74
98/68

100/83
absent
absent
100/95
96/92

CFBP3059 (II)

absent
absent
100/92
72/94
92/92
98/95
100/75
100/94
100/97
95/81
102/52
absent
100/95
100/75
absent
100/84
100/89
59/81
100/84
100/77
100/87
absent
absent
100/78
100/88
83/83
94/78
100/86
72/93
100/99
100/81
71/93
absent
absent
100/64
absent
100/95
absent
100/81
100/85
93/51
absent
100/64
100/83
absent
100/83
100/87
absent
absent
100/88
100/90
absent
100/100
absent
absent
98/69
98/93
99/71
98/91
100/93
91/85
100/86
96/50
68/96
71/63
absent
100/95
absent
100/85
100/93
100/76
absent
absent
90/96
absent
absent
100/99
100/98

PSI07 (IV)

absent
absent
100/79
100/81
100/80
100/82
100/80
100/77
100/92
95/73
100/76
absent
99/85
100/69
absent
100/99
92/74
100/55
absent
100/65
96/74
absent
99/68
absent.
absent
85/67
absent
97/68
72/91
100/98
100/80
71/94
absent
100/96
100/83
100/80
100/78
100/50
100/64
97/69
100/51
98/73
94/72
87/66
99/55
98/71
100/93
100/27
absent
100/80
89/74
absent
100/95
absent
absent
absent
98/82
100/75
100/77
99/77
98/65
100/76
absent
100/92
100/90
82/66
94/76
100/77
100/71
100/85
99/74
100/72
97/71
100/90
absent
absent
100/97
96/91
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Type

Coding gene
miRNA
rRNA

tRNA
Pseudogene

Size (bp)

Chromosome

3446

3

306

k74

8
3,753,705

Megaplasmid

1564
1

102

3

8
1,996,333

Small plasmid

123

146,771

Total

5133

408

35

21
5,896,809
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Trait Marker* Chr Pos p-value R* SNPI° AE" Gene Coded
(%)" protein
CC.C  S3A_521149922 3A 521149922 135E-05 2803 CIG 1384 — -
S5B_689115825 5B 689115825 143E-05  28.67 AT 760 — -
S5B_689115839 5B 689115839 143E-05  28.67 AIG 760  — —
S5B_689115842 5B 689115842 143E-05 2867 GIT 7.60
S5A_558304350 5A 558304350 295E-05 2444 AIT 1406 TraesCS5A02G355900  P-loop containing nucleoside triphosphate
hydrolase
$3B_796536954 3B 796536954 341E-05 2488 crr 1464 — —
S$3B_796536986 3B 796536986 341E-05 2488 cr 1464 — -
CC_S  S1B_687090072 1B 687090072 6.27E-06  30.90 AIC 13.84  TraesCS1B02G479100  Guanine nucleotide binding protein (G-protein),
alpha subunit
S5A_558304350 SA 558304350 137E-05  27.16 AT 1509  TraesCS5A02G355900  P-loop containing nucleoside triphosphate
hydrolase
S7B_605313385 7B 605313385 3.69E-05 2515 AIG 1046 — -
SLAS  $2B_757067650 2B 757067650 540E-05 2208 AIG 7605 — —
S2B_757067657 2B 757067657 5A0E-05 2208 cr 7605 — -
$2D_601971008 2D 601971008 670E-05 2026 AIG 7.605  TraesCS2D02G509500  Wall-associated receptor kinase, galacturonan-
binding domain
SSA_557328543 SA 557328543 777E-05 2136 crr 1046 — —

*Bold-italic marker refers to markers with pleiotropic effects.
“Phenotypic variation explained by markers.

“Red allele refers to the target allele which associated with increased the trait.
“The effect of target allele (red allele).
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Number of

phenotypic “D”
varieties

12
24
48
72
96
122

D" varieties are expressed as artificially set phenotypically or molecularly distinct

vareties.

Number of molecular “D” varieties

"

4
5
12
12
12
12

24

7
13
23
24
24
24

48

1
23
40
47
48
48

72

12
24
45
60
66
72

96

12
24
a7
69
83
9

122
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24
48
72
96
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No. Trait Correlation (predicted vs.  Group  No.

measured traits)

1 Basal leaf sheath: anthocyanin coloration 0129 A 16
2 Plant: growth habit 0.760 B 17
3 Leaf blade: intensity of green color 0.102 A 18
4 Leaf blade: anthocyanin coloration 0.232 A 19
5 Leaf blade: pubescence 0447 B 20
6 Time of panicle emergence 0.765 B 21
7 Awn: length 0.307 A 22
8 Lemma: color of tip 0.384 A 23
9 Stigma: color 0.307 A 24
10 Stem: anthocyanin coloration of nodes 0.354 A 25
1 Lemma: pubescence 0.648 B 26
12 Flag leaf: attitude of blade 0.563 B 27
13 Panicle: attitude 0614 B 28
14 Panicle: number of secondary branches 0441 A 29
16 Panicle: attitude of branches 0.439 A 30

Trait

Panicle: exsertion
Glume: length

Lemma: color

Grain: ratio length/width
Grain: color

Grain: aroma

Plant: number of panicles
Stem: thickness

Stem: length

Flag leaf: length of blade
Flag leaf: width of blade
Panicle: length

1000 seed weight
Grain: length

Grain: width

Correlation (predicted vs.
measured traits)

0.608
0.186
0.540
0.565
0.360
0.287
0315
0817
0.840
0378
0.740
0.760
0.443
0.605
0433

Group

>PVDVVSVO>>> OO > D
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Genotypes

HD2733
WH730

HD2733-129-44-
246-1

HD2733-210-45-
812-3

HD2733-129-44-
241-7

HD2733-210-45-
777-8

HD2733-210-45-
777-9

HD2733-154-152-
314-14

HD2733-182-156-
398-15

HD2733-210-42-
756-16

HD2733-129-44-
220-20

HD2733-129-44-
225-21

HD2733-210-31-
908-26

HD2733-210-31-
910-27

HD2733-210-31-
915-28

HD2733-210-31-
916-29

HD2733-210-31-
938-32

HD2733-210-31-
948-35

HD2733-210-31-
959-37

HD2733-154-46-3
HD2733-182-81-4
HD2733-485-153-6

HD2733-210-
209-11

HD2733-210-
209-12

HD2733-210-
209-13

HD2733-210-
209-16

q ANTH+ q
YIELD

q ANTH+ q
YIELD

qANTH+ q

YIELD

q ANTH

q ANTH

q ANTH

q ANTH

q ANTH

q ANTH

q YIELD

q YIELD

q YIELD

q YIELD

q YIELD

q YIELD

q YIELD

q YIELD

q YIELD

q ANTH+ q
YIELD

qANTH+ q
YIELD

q ANTH+ q
YIELD

q ANTH

q ANTH

q ANTH

q ANTH

91
80

84

83

83

83

82

81

81

84

89

92

92

90

90

90

94

89

90

84

83

85

85

82

82

85

Yield/
5plant
(gms)

47.43
52.65

96.13
78.53
56.23
52.18
56.94
54.81
55.42
56.08
75.73
7971
80.74
79.06
85.19
80.48
787

69.53
75.01

BC,E,
7168

55.07
7145
52.03
53.32
53.22

5275

67

BCFs
75

73

69

72

69

68

72

73

71

70

70

71

74

69

72

73

Yield/
20 spikes
(gms)

236
2574

BCF,
2329

26.35
25.73
33.38
25.94

23.55

29.49
27.06
30.5

27.63
30.19
23.42
24.85
27.73
29.42

36.56

33.61
24.33
22.03
29.42
22.85

2046

RPG  HD2733 allele

%

96.3

96.7

939

97.5

959

947

955

96.7

96.7

97.9

943

943

95.1

96.3

95.1

943

95.1

92

92

924

924

924

928

924

%

943

943

911

96.7

935

91.9

927

943

95.1

96.7

911

90.3

919

927

911

911

911

864

88

86.4

856

88

87.2

864

Heterozygous
allele %

48

56

16

48

56

56

48

32

24

64

56

64

72

112

12

136

88

112

12

WH
730 allele %

16

08

32

16

16

24

16

0.8

16

0.8

24

16

16

32

24

16

24

32

16

0.8

32
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Chromosome  Chr. length (Mb) ~ Number of SNP  Density (kb/SNP)

Chr.1 44.36 3822 1161
Chr.2 37.76 3366 11.22
Chr.3 39.69 1959 20.26
Chr.4 35.85 4582 782
Chr.5 31.24 1770 17.656
Chr6 3247 2490 13.04
Chr.7 30.28 2976 1017
Chr.8 29.95 3517 852
Chr.9 24.76 1946 22
Chr.10 25.58 3412 7.50
Chr.11 31.78 5126 6.20

Chr.12 26.60 2963 8.98
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Traits

FLE
DH

DA

DM
Spikelets/spike
Seeds/5 spike
Biomass/5 pl
1000kwt

HI

Yield/s plant
CTy

NDVI,

MSI

Chl content

HD2733 (s)

80
87
91
122
184
192
150
425
316
47.4
2353
0.63
17244
40.15

TRp——

‘WH730 (s)

76
81
110
196
217
140
455
376
527
2585
0.53
318.12
37.13

BGF;

gANTH +
qYield(s)

7212
80.87
8475
114.12
2005
23006
2675
337
2548
59.35
2372
0.62
266.00
38.37

GANTH

7128
7942
83
113.64
189
198.89
20142
4349
28.86
54.17
231
061
22004
39.76

qYield (s)

79.73
85.34
90.17
1186
191
2135
2726
4234
3022
58.61
233
0.64
26492
4124

BC,Fy

gANTH +
Yield(s)

7144
8022
83.88
113.44
18.85
196.83
156.66
46.025
37.17
58.53
2356
0.58
217.22
38.15

GANTH

71.16
80.41
83.91
11291
18.67
19241
179.16
455
29.58
51.36
2331
0.56
18258
38.13

qYield (s)

725
81.41
855
116.83
1853
2142
158.33
4672
4112
57.9
23.66
0.56
25413
3343
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Trait

Basal leaf sheath: anthocyanin coloration
Plant: growth habit

Leaf blade: intensity of green color

Leaf blade: anthocyanin coloration

Leaf blade: pubescence

Time of panicle emergence

Awn: length

Lemma: color of tip

Stigma: color

Stem: anthocyanin coloration of nodes
Lemma: pubescence

Flag leaf: attitude of blade

Panicle: attitude

Panicle: number of secondary branches
Panicle: attitude of branches

No.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Trait

Panicle: exsertion
Glume: length

Lemma: color

Grain: ratio length/width
Grain: color

Grain: aroma

Plant: number of panicles
Stem: thickness

Stem: length

Flag leaf: length of blade
Flag leaf: width of blade
Panicle: length

1000 seed weight

Grain: length

Grain: width
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No. of* Genotype*  Country DREB1 DREBI1 DREBI1 DREB1 DREBI1 DREB1 DTI"  Tot

genotypes -Al -A2 -B -D -D1 -D2

1 MISRI Egypt + + + + + + 28 6
2 SIDS12 Egypt - + + + + + 317 5
3 SAKHA93 Egypt + + + + + + 31 6
4 Gimmeiza-12 Egypt + + + - + + 368 5
5 Shandweel-1 Egypt . + + + + + 27 5
6 Beni Swief-5 Egypt - + + + + + 3.08 5
7 Sohag-3 Egypt - - + + - - 277 3
8 SIDS13 Egypt + - + + + + 348 5
9 PI525434 Morocco - - - + + + 353 3
10 Hutch United States - - - + - - 366 1

Where, the positive sign (+) indicates the presence of the gene, while the negative sign (-) indicates the absence of the gene or indicates that the genotype does not contain this gene.
* Indicates the positions and names of genotypes in the gel during the electrophoresis. DTI, refers to the values of drought tolerance index (DTI) for each genotype.
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HD2733 (s)

DH 87
DM 122
cr 19.84
NDVI 08
%GC 2185
MSI 17244
sC 3555
ChL content 4951
Spk/sp 184
Seeds/Sspikes 1915
Tillers/pl 132
TKW 4246
Yield/s pl 4743

BG,F; (%gain)

83 (4.5%)
116 (4.9%)
195 (1.7%)
078

2093
287.95 (66.9%)
32433
51.03 (3%)
192 (4.3%)
2044 (6.7%)
136 (3%)
409

64.3 (35.5%)

BC,F, (%gain)

80 (8%)

113 (7.3%)
2055

079

2372 (8.5%)
199.91 (15.9%)
387.02 (8.8%)
4871

186 (1%)
203 (6%)
12

46.04 (8.4%)
56.35 (18.8%)

Figures in parenthesis depict the percentage gain over the recurrent parent during stress (s).

T test

-3.04
-344
395
6.06
748
-443
2.89
-413
-241
-0.10
-38
27
-245

p-value

0.004
0.001

0.005

0.019
0922

0.009
0017

CD (5%)

43
2.86
147
0.036
1.66
1421
39.95
0.84
0.49
27.94
135
3.86
371
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No.

A1

&R

A4

A6
AT

A10
A1l
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29

A31
A32

A35
A36
A37

A39
A40
A4l

Cultivator

Tallangpingweju
Boyo

RT103

UDEK
Xiachongnuo
Huangsinuo
Gungunuo

Zaonuo
Gaogannuo
Baokanglengshuihong
Zaohongnuo
Sanlicun
JR7729-2

JWe0

Erbaixuan
Lengshuibai
Lengshuinuo
Bingshuibai
Jiuyuehuang-1
Zhangdianzaonuogu
Kawluyoeng
Dongnong-363
Zixiangnuo
Yuanzizhandao
Yuli

Hejiang-18
Hanlundao
Guhuahuang
Tsukushiakamochi
Koshinikari
Heuknambyeo
Beniroman
Asamurasaki
Lemont

Aizhixiang
Ludaononglin-2
Chunnuo
Youlivjannuo
Fenghei
Ludaononglinnuo-1
Ludaononglinnuo-21

Country

Thailand
Indonesia
Congo
Indonesia
China
China
China
China
China
China
China
China
Philippines
India
China
China
China
China
China
China
Thailand
China
China
China
Japan
China
China
China
Japan
Japan
South Korea
Japan
Japan
United States
Japan
Japan
Japan
Japan
Japan
Japan
Japan

No.

Ad2
A43
Ad4
A4S
A46

Ad8
Ad9
AS0
AS1
A52
AS3
A54
A5
AS6
AS7
A58
A59
AB0
A6t
762
A63
A64
AB5
766
A67
A68
A69
AT0
AT1
AT2
A73
AT4
AT5
AT6
ATT
AT8
A79
A80
A1
A82

Cultivator

Nonglin-9
Beinian
Qingfeng
Libingnuo
Dongfengrian-17
Fangzhu-5
Xinrong
Nonglin-268
Kujuwang-3
Yulong

Guiin
Songmunuo
Suweon
Jisa-1
Tengban-4
Aoyu-187
Yuxingnuo
Xinfangjiu-4
Weihuamin-2
Qingxinuo-107
Chaofeng-1
Nongiin-276
Qiutianxiaodin
Xinan-72
Feiginian
Sanlyannuo
Nonglin-277
Aoyu-324
Luyu-42
Aoyu-191
Nonglin-289
Xiaobei
Xiannan-1
Aoyu-334
Nonglin-285
Dadao
Fengxu
Luorongdao
Changgi
Aoyu-2
Xingnian

Country

Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan

No.

A83
AB4
A8S
AB6
A87
Ag8
A89
A90
A91
Ag2
Ag3
Ag4
Ag5
Ag6
A97
Ags
A99
A100
A101
A102
A103
A104
A1056
A106
A107
A108
A109
A110
A1
A112
A113
A114
Al15
A116
AT
A118
A119
A120
A121
A122

Cultivator

Chaozhiguang
Aizhi-78
Aizhi-80
Guandong-11
Nongiin-03
Fengguang
Yueguang
Yusuibo
Xushi

Misui
Youjinjin
Aizhi-53
Nongin-288
Nongiin-218
Bieng
Guobao-P2
Rizhiguang
Yuanye-4
Nanjingnongda-W30
Nanjing-16
Miyang63
ome-9
Duzi-129
Chendao
Bodao-1
Bodao-2
Aenmetan-2
Salazana-3
Xuelihong
Heimi-2
Xinyidanuo
Hainanhong
Hainannuo
Hinanhei
HN-27
HN-10
HN-54
HN-107
HN-31
HN-61

Country

Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan
Japan

Japan
China
China

South Korea
Vietnam
Soviet Union
China
China
China
Indonesia
Madagascar
China
China
China
China
China
China
China
China
China
China
China
China
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Genotype country DTT" N.of SL S_Lw DTW DTR DSR TI DTI
traits
The most tolerant genotypes
Shandweel-1 Egypt 27 9 + + + + + + +
SIDS13 Egypt 277 9 + + + + + + +
MISR1 Egypt 28 9 + + + + + + +
SAKHA93 Egypt 317 9 + + + + + + +
PI525434 Morocco 348 9 + + + + + + +
Hutch United States 3.66 9 * + 4 + * + +
SIDS12 Egypt 3.08 8 + + + + + + +
Sohag-3 Egypt 353 8 + + + + + +
Gimmeiza-12 Egypt 3.68 8 + + + + + +
Beni Swief-5 Egypt 311 7 + + + + +
Beni Swief-7 Egypt 397 6 + + + +
GIMMIZA11 Egypt 369 5 + + + +
Gimmeiza-07 Egypt 379 5 + + + +
The most susceptible genotypes
Little Tich United Kingdom 7.03 8 # # # # # #
Rhodesian Sabanero  Kenya 678 7 # # # # # #
P1238391 Kenya 675 7 # # # # #
Hmira Tunisia 667 7 # # # # #
Grekum 105 Kazakhstan 672 6 # # # # #
Kenya Governor Kenya 651 6 # # # #
PI525221 Morocco 684 5 # # # #
Atson United Kingdom 651 5 # # #
PI525318 Morocco 62 5 # # #
Musane Oman 656 4 # # # #

+Refers that the genotype was among the highest performance genotypes in the trait, while, # refers that the genotype was among the lowest performance genotypes in the trait.

DTIY, refers to the values of drought tolerance index (DTI) for each genotype.
Ths bold font dicases the st 10 drousin-slersnt penotvies wire seleched: siid woal to-study the nlosaatossal dhanes and peoetic sl
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Generation QTL

BC/Fy gANTH

4GY(s)

qANTH+ qGY(s)
BCF, gANTH

4GY(s)

qANTH+ qGY(s)

B s e

QTL
+ve
plants

377

374

187 187
169

167

85 85

QTL —ve
plants

383

386

190 196
187

189

88 97

Total no. plants

760
760
760
356
356
356

Observed ratio

1:1
1:1
jEBEY
1:1
1:1
jEBEY

Expected ratio

1:1
1:1
LD
1:1
1:1
L1

Total X value at
p =005

00473
0.1924
02834
09111
1.3594
L1114





OPS/images/fgene-13-945015/fgene-13-945015-g008.gif





OPS/images/fgene-13-1010272/fgene-13-1010272-t006.jpg
Physiological traits

Traits P AM PRO G F TSC
SL -0.067 0237 0052 0211 -0.003 -0.278"
SLW -0.061 0274 003 -0.186* 003 -0.168"
DTW 0025 0261 0008 0157 0019 0.163*
DTR -0.108 0361 -0.062 0,322 0077 -0.367**
Morphological traits RB 0097 0376 0013 02517 0.006 0271%
DSR 0071 -0.388* 0094 0.288* 0114 0,392+
ke 0058 0282 0026 0,190 0024 -0.176*
RI -0.105 0374 0,054 0,310 -0.066 -0.354*
DTI 0092 0367 0,016 0,280 0,025 0297+

O it T D i Sl SE e by, sseativdly:
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Generation

BCiF,

QTL-positive plants
with 1 Xbarc186

2. Xgwm190
3. Both markers
BCF,

1. Xbarc186

2. Xgwm190
3. Both markers
BC,F,

1. Xbarc186

2. Xgwm190

3. Both markers
BCFy

1. Xbarc186

2. Xgwm190

3. Both markers
BCF,

BC\F,

1. Xbarc186

2. Xgwm190

3. Both markers
BC,Fy

1. Xbarc186

2. Xgwm190

3. Both markers
BC,F,

1. Xbarc186

2. Xgwm190

3. Both markers
BC,Fs

Total no.

of plants
obtained

374
187
356
169

167
81
800
383
417
186
39
12
21

17

296

Plants selected

based on

phenotypic similarity
to RP

40

39
187

ar

30
52

Phenotypic selection not practiced at off-
season nursery at Dalang maidan, Lahaul-
Spiti, HP, India

39

10

10

Markers used % RPG

for
background
selection

57

57
57

124

124
124

124
124
124

124
124
124

124
124
124

124
124
124

in the

QTL positive
and high
phenotypic
similarity

to RP

plants

67.3%-75.4%

83.33%-94.44%

89.73%-96.87%

90.90%-97.90%

86.84%-88.35%

86.84%-88.35%

92.0%-92.80%

Plants selected
after
foreground,
background,
and

phenotypic
selection

10

oW ow e

% RPG
in
selected
plants

74.5%-
75.4%

88.60%-
94.44%

90.83%-
96.87%

93.90%-
97.90%

93.90%-
97.90%

86.84%-

88.35%

86.84%-
88.35%

92.0%-
92.80%

92.0%-
92.80%
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Traits Seedling Tolerance traits Recovery traits Drought indices

traits

SL S_LW DWT DTR RB DSR TI RI DTI
SL 1 050 -0.68% 051 0.5 0.56* 055+ 0.54% 062+
S LW 053++ 1 -0.79% 057 -0.54 057 0.99% 058+ 088+
DTW 0.74++ 0864+ 1 -0.49% 0.49% 050 -0.85 050 0.76*
DTR 0.55++ 0.63++ 0.55++ 1 .87+ 0,95 058" 099* 088+
RB 0.59++ 0.60++ 0.54++ 0.92++ 1 0.90% 056" 093+ 083+
DSR -0.60++ -0.62++ 0.56++ -1.00++ 0.95++ 1 -0.58" 0.97* -0.87**
TI 059++ 100+ 0904+ 0.63++ 0.61++ 0.63++ 1 059 0.89%
RI 0.58++ 0.63++ 0564+ 0994+ 0.95++ L00++ 063++ 1 0.89%
DTI 0.66++ 0.90++ -0.80++ 090++ -0.87++ 0.90++ 0.90++ 0914+ 1

nificant at the 0.05 and 0.01 level of the probabili

T T L ——
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QTL Marker Forward primer Reverse primer Chr Reference R p-value
value

Days to anthesis Xbarc186 5" GGAGTGTCGAGATGATGTGGA 5" CGCAGACGTCAGCAGCTCGAG ~ 5A (25 0.089 0.001
AACY AGG 3’

Grain yield under Xgwm190 5’ GTGCTTGCTGAGCTATGAGTC 3' 5" GTGCCACGTGGTACCTTTG 3' 5D (28] 0.245 1.13E-08
stress.
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Trait

Control

Proteins (P)
Amino acids (AM)
Proline (PRO)
Glucose (G)
Fructose (F)
Total soluble Carbohydrate (TSC)
Drought
Protein (P)
Amino acids (AM)
Proline (PRO)
Glucose (G)
Fructose (F)
Total soluble Carbohydrate (TSC)

T mrpr—

Min.

89.16
1.85
0.76
37.14
2250
13643

2757
0.34
0.15
2073
1357
11357

344.74
2294
355
14578
26143
33110

253.78
2959
1663
209.08
238.99
476.93

Mean

140.68
874
163
73.33
86.69
20255

12774
9.09
245
8547
88.17
22673

LSD

18.74
1.61
0.15
654
1578
19.49

17.89
140
0.08
479
2097
24.70

F-value

27.88*
46.72*
75.78*
62.02*
38.76%
3220%

34.87*
89.41%
871.59**
34277
3302+

11871

SD

3555
396
047
18.51
3531
39.78

37.98
474
272
3187
43.38
96.73

H*

96.41
97.86
98.68
98.39
97.42
969

97.13
98.88
99.99
99.71
96.98
99.16
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Source of variance 8 Protein Amino acid Proline Glucose Fructose Total soluble carbohydrate
Treatments (T) 1 291,03 53.41°% 14617 2279.08* 19.46* 914.61%

Replications (R) 2 7.43 0.66 3.57° 01 097 117

Genotypes (G) 171 25.76° 59320 3089 149.28* 4465 9634

TxG 171 38,14 69.17* 87.53 168.36* 3408 8675

*, **stander for

(aotianrt fiveli v 06 anilp- - 00F mewectivtby:
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Tait Mini Max Mean LSD F-value SD H*

Seedling length (SL) 8.18 22.55 1575 2,01 1294 2.602 92.27
Tolerance traits
Leaf wiltingl (LW1) 1 21 132 0.33 323 0.213 69.02
Leaf wilting2 (LW2) 122 352 239 0.7 3.98* 0.501 74.85
Leaf wilting3 (LW3) 219 5.12 387 0.93 347 0.621 712
Leaf wilting4 (LW4) 3.69 6.65 545 0.9 349 0.603 71.35
Leaf wilting5 (LW5) 517 873 % 0.71 8.17* 0.731 87.76
Sum of leaf wilting (S_LW) 13.82 25.08 20.53 252 6.64" 2.334 84.93
Days to wilting (DTW) 438 8.06 568 0.83 6.19* 0.744 83.85
Recovery traits
Days to regrowth (DTR) 3567 90 785 11.83 8.03* 12.075 87.55
Regrowth biomass (RB) 0 126.14 11.98 15.38 11.52% 18.808 91.32
Drought survival rate (DSR) 0 93.75 19.6 243 6.24* 21.862 83.98
Drought indices
Tolerance index (TT) 742 17.18 13.38 2,04 7.38" 1.992 86.45
Recovery index (RI) 9.04 57.82 4827 9.37 9.98* 10.655 89.98
Drought tolerance index (DTI) 27 7.03 5.62 0.75 10.76** 0.891 90.71

slcunt i the 0:01 level nf e sosbabiiey.
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Codes

DREBI-A

DREBI-A1

DREBI-A2

DREBI-B

DREBI-B

DREBI-D

DREBI-DI

DREBI-D2

DREB U
DREB D

Primer

M ® M ®®™M®E™W®EM®M®ETWETW® ™

Primer sequence

ATGAACAGGAAGAAGAAAGTGCGC
TTCTCAAATCATTGCTCACT TCTTTC
CGGAACCACTCCCTCCATCTC
CGGTTGCCCCATTAGACGTCA
CTGGCACCTCCATTGCTGAC
AGTACATGAACTCAACGCACAGGACAAC
CCCAACCCAAGTGATAATAATCT
TTGTGCTCCTCATGGGTACTT
ATGACCAGGAAGAAGAAAGTGCGC
TCATTGCTCACTTCTTTTTTCACCTTAT
ATGAACAGGAAGAAGAAAGTGCGC
TCCTTCCCATCAGAAGGATGTGAC
TCGTCCCTCTTCTCGCTCCAT
GCGGTTGCCCCATTAGACATCG
CTGGCACCTCCATTGCCGAT
AGTACATGAACTCAACGCACAGGACAAC
TCGTCCCTCTTCTCGCTCCATGG
GGGCATGGCG CCGCATGG

Fragment size (bp)

593
1,107
599
816
585
455
1,190
596

493

Anneal temp. (C)

62
58.8
67.4
58.8
60
52
69.6
69.6

66

Where (F), (R) indicates that the sequence of the forward and reverse primers, respectively.
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Crop

Tomato

ALS

Brinjal

Potato

Carrot

Target gene

SIAMS
SIHyPRPI
SIPelo and SIMlo1

ccos
K transporter HKT 1,2

SIMAPK3

SIMAPK3

BZR 1

Coat protein, Replicase from Tomato yellow leaf curl virus
SiMlo1

Pectate lyase (PL), polygalacturonase 2a (PG2a and beta-galactanase
(TBG4)

APETALA2a (AP2a), NON-RIPENING (NOR) and FRUITFULL (FUL1/
TDR4 and FUL2/MBP7)

SIGAI

SBPase

Psyl and CrtR-b2
IncRNA1459

SGRI, Ble, LCY-E, LCY-BI, LCY-B2

SICBF

PDS and GABA-TP1, GABA-TP2, GABA-TP3, CAT9 and SSADH
SINPRI

SIMYBI2

RIN

SP, MUILT, FAS, CyCb, OVUTE and FW2.2

SP, SP5, CLV3 and WUS, GGP1

RIN and ethylene
RIN

SIORRM¢#

Ale
CLAVATA-WUSICHEL

Solyc12g038510

Pphytoene synthase (PSY)
LEAFYCOTYLEDONI-LIKE4
SIAA9

SIAGL6

ANTI

SIALST

Herbicide resistance
SmelPPO4, SmelPPOS, and SmelPPO6 genes

StDNDI, StCHLI, and DMG400000582(StDMR6-1)
GBSS genes

GBSS1

GBSS

St16DOX

Coilin gene

F3H

DeMYBI113-like

Watermelon

Pumpkin

Lettuce

ALS

GRFI2, AHAL and HAKS

LsNCED4

Chinese Cabbage

BraFLCs

Trait modification

Affects pollen viability
Salt tolerance

Tomato yellow leaf curl virus (TYLCV) and Powdery
mildew fungus

Host resistance to plants
Salt tolerance

Enhances heat stress tolerance

Drought stress response

Regulates heat stress tolerance

Induced resistance to tomato yellow leaf curl virus
Resistance to powdery mildew

Development of cell wall and modification of fruit color
and weight

Development and ripening of fruit

Gibberellin responsive dwarf mutant
Induced Leaf senescence in SBPase mutants
Change in Carotenoid biosynthesis

Alters fruit ripening, lycopene, ethylene and carotenoid
biosynthesis

Increased lycopene content

‘The sharp decrease in chilling stress tolerance
Increased y-aminobutyric acid content
Reduced drought tolerance

Pink fruit color

Fruit ripening

Fruit size and lycopene accumulation

Plant structure, Fruit ripening, Day-length response,
Vitamin-C and fruit size

Fruit ripening
Ethylene production and fruit ripening
Fruit ripening

Shelf life

Altered locule number

Jointless mutant, abscission
Fruit color

Fruit metabolism
Parthenocarpy
Parthenocarpic fruits
Anthocyanin biosynthesis
Enhanced herbicide resistance

Veillet et al. (2019)

Reduced levels of flesh browning
Late blight resistance

Starch biosynthesis

Starch biosynthesis

Starch and tuber quality
Glycoalkaloids metabolism

Biotic (PVY) and abiotic stress resistance

Change in the anthocyanin biosynthesis pathway

Anthocyanin biosynthesis

Enhanced herbicide resistance

Salt sensitivity

Seed germination inhibition

The carly-flowering phenotype that did not depend on
vernalization

References

Bao et al. (2022)
Tran et al. (2021)
Pramanik et al. (2021)

Bari et al. (2021)

Vu et al. (2020)

Yu et al. (2019)

Wang et al. (2017)
Yin et al. (2018)
Tashkandi et al. (2018)
Nekrasov et al. (2017)
Wang et al. (2018a)

Wang et al. (2018b)

Tomlison et al. (2019)
Ding et al. (2018)
D’Ambrosio et al. (2018)
Li et al. (2018a)

Li et al. (2018b)

Li et al. (2018¢)

Li et al. (2018d)

Li. et al. (2019)
Deng et al. (2018)
Jung et al. (2018)
Zsogon et al. (2018)
Li et al. (2018¢)

Li et al. (2020a)
Tto et al. (2017)
Yang et al. (2017)
Yu et al. (2017)

Rodriguez-Leal et al.
(2017)

Roldan et al. (2017)
Filler et al. (2017)
Gago etal. (2017)
Ueta et al. (2017)
Klap et al. (2017)
Cermak et al. (2015)
Danilo et al. (2019)

Maioli et al. (2020)
Kieu et al. (2021)
Andersson et al. (2018)
Kusano et al. (2018)
Andersson et al. (2017)
Nakayasu et al. (2018)

Makhotenko et al. (2019)

Klimek-Chodacka et al.
(2018)

Xu et al. (2019b)

Tian et al. (2018)

Huang et al. (2019)

Bertier et al. (2018)

Jeong et al. (2019)
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2)
3)
1)
5)
6)

Database name

CRISPR Plant v2

PGED (Plant Genome Editing Database)
CRISPRInc

Cpfl- Database

Cas-Database

CrisprGE.

Purpose

For highly specific sgRNAs

Stores information about mutants
Manual database of sgRNAs
Design tool for Cpfl

Design tool for Cas9 nucleases

CRISPR/Cas-Central repository

Access link

‘https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6330547/

http://planterispr.org/cgi-bin/crispr/index.cgi
https://www.crisprinc.org/
http://wwiw.rgenome.net/cpfl-database/
http://www.rgenome.net/cas-database/

http://crdd.osdd.net/servers/crisprge/

References

Minkenberg et al. (2019)

Zheng et al. (2019)
Chen et al. (2019)
Park and Bae (2017)
Park et al. (2016)
Kaur et al. (2015)
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2)

3)

4

5)

6)

7

8)

9)

10)
11)

12)
13)

14)

15)

16)

17)

18)
19)

20)
21)

Tool name

GuideMaker
CROPSR

BE target
BE-Designer and BE-
Analyzer

PnB Designer
crisprRdesign
CRISPR-Local
CRISPR-P 2.0

GuideScan

Breaking-Cas
CHOPCHOP v2

CRISPOR
CRISPRscan

CRISPR Multitargeter
Off-Spotter
Wu-CRISPR

SgRNA designer
(CRISPRPick)

E-CRISP
CRISPRseck

Cas-OFFinder
CRISPRdirect

Purpose

To identify target genes and design sgRNA
sequences

For complex (polyploid) genome wide CRISPR
gRNA design

To design sgRNA for base editing in plants
To design target sites and assess mutation ratios
A web application to design prime and base editor
guide RNAs for animals and plants

To design sgRNAs

Designing sgRNAs

For computer-aided sgRNA designing to minimize
off-targets

Designing CRISPR guide RNA libraries

To facilitate sgRNA design

To increase target range and specificity
Helps to design and evaluate guide sequences
Find gRNAs on genes, gRNA generation and
scoring of gRNAs

To find common and Unique sgRNA

To design optimum sgRNA

To design sgRNA

For effective selection of SgRNA

To identify target site
To find potential gRNA

For identifying off-target sites

For selecting targets based on input sequence

Access link

https://academic.oup.com/gigascience/article/doi/10.
1093/gigascience/giac007/6562533

https://bmcbioinformatics.biomedcentral.com/articles/
10.1186/512859-022-04593-2

hitps://www.sciencedirect.com/science/article/pii/
$2001037022003269

hitps://europepme.orgfarticle/med/33180295

https://bmcbioinformatics.biomedcentral.com/counter/
pdf/10.1186/512859-021-04034-6.pdf

hittps://wwwjgenomics.com/v08p0062.htm

hitps://academic.oup.com/bioinformatics/article/35/14/
2501/5221013

hitps://www.cell.com/molecular-plant/pdf/$1674-
2052(17)30004-7.pdf

hitps://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5607865/

hitpi//bioinfogp.cnb.csic.es/tools/breakingeas

https://academic.oup.com/nar/article/44/W1/W272/
2499370

http://crispor.tefor.net/

hitps://pubmed.ncbi.nlm.nih.gov/26322839/

hittps://www.ncbi.nlm.nih.gov/pme/articles/
PMC4351176/

hitps://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4326336/

https://genomebiology.biomedcentral.com/articles/10.
1186/513059-015-0784-0

hitps://portals.broadinstitute.org/gpp/public/analysis-
tools/sgrna-design

http://wwiw.e-crisp.org/E-CRISP/aboutpage.html

hitps://bioconductor.org/packages/release/bioc/html/
CRISPRseek.html

hitpy//www.rgenome.net/cas-offinder/

hitps://pubmed.ncbi.nlm.nih.gov/25414360/
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Mean and standard error p-value

Transgenic rice WT rice OE1 O.E2 OE3 WT/O.E 1 WT/O.E 2 WT/O.E 3
PH 731+ 16 744+ 47 766 +22 743+ 16 NS NS NS

KPS 65735 72517 765+ 16 78423 0015* 0,005 0,004+
TKW 188 + 0.6 198 + 1.6 1912 189 £ 0.5 NS NS NS

N 145%17 20310 173£18 17823 0035 NS NS

SPL 145 %07 147 + 08 143 £ 09 146 £ 0.5 NS NS NS
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M = Section Modulus (SM) x Bending Stress (BnS).
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Pleiotropic =~ Chromosome Start Traits QTLs Size of Candidate
QTL position  position count QTL ORFs
sM PR M dr (bp)
1 1 3538854 3683583  qSMI-1 qPRI3 qMI-1 3 144,729 19
2 I 5566150 5744781 QPRI-4  qMI-3  qeLrl-1 3 178,631 19
3 1 5849743 5971020  qSMI-3 qM1-4 2 121277 14
4 1 6271684 6376084  qSMl-4  gPRI-S 2 104,400 17
5 1 6581990 7070411 qPRI-6  qMI-5 2 488,421 70
6 1 14353502 14,890,707 qPRI-7  qM17 2 537,205 73
7 1 24957693 27134674  qSMI-8 QMI-14,  gelrl-5 4 2176981 317
qM1-15
8 1 31504595 31,969,329 QPRI-13 qMI-19  qcLrl-6 3 464,734 74
9 i 32366242 33,807,002 QPRI-14  qM1-21  qeLrl-7 3 1440760 62
10 1 40397326 42294223 qSMI-12 qPRI-IS  qMI-26 3 1896897 291
1 2 15454980 17,571479 qPR25  qM2-4 2 2116499 311
12 2 24,657,034 24,799,865 qPR2-10 qeLr2-5 2 142,831 16
13 3 14879518 15135921  qSM3-2  gPR3-2  qM3-6 3 256,403 44
14 3 20883,680 24,068,489 QPR3-10  qM3-13 2 3184809 479
15 3 27,631,508 27,677,782 qPR3-11 qeLi3-6 2 46,274 6
16 4 33314165 33457154 qPR4-12 qM4-12 2 142,989 %
17 5 5161253 5348092 qSM5-2 qeLrs-2 2 186,839 26
18 6 20687352 29709960  qSM6-2 QM6-6  qcLr6-3 3 22,608 3
19 7 5261202 5577829 qSM7-1  QqPR7-1 qM72  qcli7-l 4 316627 52
20 7 7234758 7608752  qSM7-2 qM7-3 2 373,994 56
21 7 9435313 9925095 qSM7-3 qM7-4 2 489,782 64
2 7 10,111,738 11910229 gSM7-4 qM7-5 2 1798491 280
23 7 16028149 16517487 QPR7-3 qM77  qcLi7-3 3 489,338 74
2 8 18,109,039 18,657,995 QPRS- qM8-5 2 548,956 74
25 8 18278186 20416330  qSM8-1  QPR8-5  qMs8-6 3 2138144 249
26 9 16303469 16,907,874 qPR9-4  qM9-8 2 604,405 96
27 10 871334 1056808 qSMI10-1 qMI10-1 2 185,474 29
28 10 2641123 2829097  qSMI0-2 qM10-2 2 187,974 30
29 11 7873690 8,601,084 qSMI13, qM11-2 2 727,394 110
qSM11-4
30 11 15327195 15530521 QPRIL8  qMI1-3 2 203,326 2
31 11 16648356 22483866  qSM11-5, QPRIL9, qMI15  qelrll-3, 8 5835510 823
qSM11-6  gPRII- qeLrl1-4,
10 qelrll-5,
qeLrl1-6
32 11 21216213 23048708  qSMI1-8  gPRI-  qMII-8 3 1832495 83
11
33 12 10232335 10956543 qSM12-2 QMI21  qelri2-1 3 724208 94
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Traits

SM

cLr
Total

‘Whole population

Indica
sub-population

Japonica
sub-population

GLM
19

13
18

67

MLM

32
19
45
21
n7

GLM MLM
8 10

3 9

13 18

8 23

32 60

GLM

73
64

147

MLM

82
63

158

Common QTLs

15
80
70
1
176

Total QTLs

55
113
140
67
375
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M cLr

PR 1 0339 0.90 0.799
SM 0293 1 0.339 0.68
M 0.894 0.608 1 0.799
cLr 0.023" 0.740 0.266 1

Ns, non-significant at p < 0.05; other all values are significant at p < 0.05; below, diagonal
are for whole population, while above disgonal are for Japonics subpopulation.
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Trait SOV Significance
M Genotypes (G) 794 51524 e
Years (Y) 2 15488 NS
GxY 794 5935 NS
Blocks (B) 1 529.751 il
GxB 794 10756
PR Genotypes (G) 794 901.352
Years (Y) 2 57.641 -
GxY 794 57.461 NS
Blocks (B) 1 330984 NS
GxB 794 260496 e
M Genotypes (G) 794 250,486.96 Lo
Years (¥) 2 139,786.52
GxY 794 3283.60 NS
Blocks (B) 1 19,437.789 NS
GxB 794 15,453.52
cLr Genotypes (G) 794 0125 e
Years (Y) 2 0190
GxY 794 0.006 NS
Blocks (B) 1 0337 .
GxB 794 0030

SOV, source of variation; DF, degree of freedom; MS, mean square; *** significance, p >

0.001; **, p > 0.01; NS, p < 0.05.
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Mean sum of squares

Replication Genotype Error Coefficient of variability
PH (cm) 27.1 11083.8° 2854 3.08%
D (50%) 0.087 691072 28.580 3.20%
NBP 00452 18.3814° 0.6281 2.39%
Nep 0023 205,092+ 10603 s
NFC 0.105 151912+ 1015 247%
NERC 0.136 s 3644 505
DM (50%) 1.66 193028 11197 2.63%
st ® 30 17069.8"* 143 2.36%
NLF 00325 16,8681 13075 6.03%
FSPC | 538194 100615 6.15%
YP (kg) Coosis 307286 0.5587 6.24%
| DF =2 DF =22 DF = 44

Note: PH, plant height (cm); DF, days to 50% flowering; NBP, number of branches per plant; NCP, number of clusters per plant; NFC, number of flowers per cluster; NFRC, number of fruits
per cluster; DM, days to 50% fruit maturity; SFW, single fruit weight (g); NLF, number of locules per frui; FSPC, frui setting percentage per cluster; YP, yield per plant (kg); GCV, genotypic
el of sastabilie POV, shehotrmic costiictent of wokkilitty ® = Kigkly sixnioait ¥ = dsnikoi.
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SM (mm®)  Whole
Jap
Ind
M (gem)  Whole
Jap
Ind
PR (gem®)  Whole
Jap
Ind
clr (gem)  Whole
Jap
Ind

Range

0.13-2335
0.13-2335
0.44-21.67
273.33-2306.67
313.33-2306.67
273.33-1650
13.67-11533
156711533
13.67-82.50
0.15-0.87
0.17-0.82
0.15-0.78

Mean + SD

623 £ 3.65
664 £4.13
602 %337
8249 +215.11
844.35 + 261.07
815.08 + 246.77
4125 + 12,59
4222 +13.05
40.75 + 12.34
043 £0.14
042 £0.14
044 £ 0.15

CV (%)

58.69
6217
56.06
3053
3092
3028
30.53
3092
3028
3319
3297
3327

23.10
1542
1524
8432
937

87.95
55.55
73.07
47.59
2446
67.08
2472

Vg

13585
46.49
5431
251,015.31
2286335
262,527.1
91222
88147
913.64
0.12

013

0.12

V(G x E)

1116
1049
1091
15,572.71
13,088.87
16,770.43
26121
28112
248.83
0.03

0.03

0.03

Ve

5.88
491
6.32
285391
269450
291238
54.17
47.38
57.69
0.01
0.19
0.50

Skewness

124
131
1.09
0.65
116
033
0.64
116
033
051
057
047

Kurtosis

212
211
148
1.36
3.64
-021
1.37
3.63
-021
-031
-0.28
.32

»

0.88
0.8
0.89
0.97
0.97
0.97
0.87
0.86
0.87
0.89
0.89
0.89

SD, standard deviation from mean; CV, coefficient of variation; h?, broad sense heritability; *, repeatability; V, genotypic variance; V (G x E), genotypes to environment interaction
variance; V., environmental variance.
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Parent

Hybrid

Hybrid

17905 Nagina x 17905 Rio Grande x Continental
7 Rio Grande Nagina x BSX-935 Pakit x 17905
Pakit Nagina x Continental Pakit x BSX-935
7 BSX-935 Roma x 17905 I Pakit x Continental
Roma Roma x BSX-935 VCT-01 x 17905
I VCT-01 Roma x Continental VCT-01 x BSX-935
Continental Rio Grande x 17905 VCT-01 x Continental

Nagina

Rio Grande x BSX-935
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Lines
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CD 5%

Delhi
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Root length (RL)
Fresh shoot weight (FSW)
Fresh root weight (FRW)

Dry root weight (DRW)

Marker RS#

1008453,
1067078
1100610
2255164
1074330

Chromosome

6B
6D
7A
7A
7D

-logl0 p value

0.000542
0.000235
0.000144
0.000603
0.000609

0.19
0.14
0.22
0.17
0.16

R2 indicates the variation explained by the marker.
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Trait

Shoot length (cm)
Root length (cm)
Shoot fresh weight (g)
Root fresh weight (g)
Shoot dry weight (g)
Root dry weight(g)

Normal (0 mM)

Salt treatment (150 mM)

Range

20-23
10-14
7.59-1137
851-9.47
0.793-0.886
0.720-0.786

Mean

2135 + 1.04
1188 + 1.2
9.77 + 114
8.95 + 040
0.83 £ 0.04
0.74 + 0.04

Range

13-19
5.00-8.67
4.67-7.74
643-7.58
0.463-0577
0.40-0.475

Mean

15.55 + 1.67
711+ 114
6.03 %098
7.03 + 045
052 £ 0.05
041 % 007

Percentage increase (+)
or decrease (-)

-24.16
-40.15
-38.28
-2145
-37.34
-44.59
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SOV dt  Shoot length (g) Root length (g) Fresh Fresh Dry shoot weight (g) Dry root

shoot weight (g) root weight (g) weight (g)
Treatment 3 246827 189595+ 102853+ 249,34 6672 7717
Variety 124 733 5230 2,39+ 0.149" 0017 00007
Treatment x Variety 372 1.85%* 176 193+ 069 ™ 00016 ™ 00007
Error 1000 085 067 0.66 017 00018 0.0008

ificant at <0.05,

nificant <0.01, and ***significant <0.001.
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Sample

CR

SA12
SA24
SA48
Total

Total raw
reads (M)

44.40
43.82
4382
44.40
30791

Total clean
reads (M)

4246
242
4234
42.66
29742

Clean reads
Q20 (%)

97.07
97.16
97.08
97.19
679.95

Clean reads
ratio (%)

95.63
96.81
96.62
96.07
67616

Total

(%)

88.17
89.72
89.52
89.23
619.66

mapping

Transcripts with
changed expression

27

218
266
511

All DEGs (down- and upregulated) were obtained from the transcriptome data after SA treatment and compared with controls according to the Cuffdiff analysis.
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Rank Mean yield Biplot based Rank Mean GPC Biplot based
based ranking ranking based ranking ranking
1 PBW725 PBW725 1 BWL7508 BWL7511
2 PBW761 BWL7506 2 BWL7504 BWL7509
3 BWL7497 BWL7508 23 BWL6964 BWL7504
4 BWL7509 BWL7511 4 BWL7509 BWL6964
5 BWL6964 BWL7497 5 BWL7511 BWL7508
6 BWL7508 BWL6228 6 BWL7493 BWL7497
7 BWL7511 BWL7509 7 BWL7495 BWL6228
8 BWL7493 PBW761 8 BWL7506 BWL7493
9 HD3086 BWL6964 9 BWL7497 BWL7495
10 BWL7506 BWL7493 10 BWL6228 BWL7506
1 BWL6228 BWL7504 11 PBW761 PBW761
12 BWL7504 HD3086 12 HD3086 HD3086
13 BWL7495 BWL7495 13 PBW725 PBW725

GPC, grain protein content.
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Species Diameter (mm) Leat thickness Rate of Disease index Disease index
(mm) incidence (%) (%)

Vitis davidii 824 +5.02° 0081 + 0.006" 75.00 008 833

Vitis vinifera 3403 £ 436° 0.113 + 0.002" 100.00 078 77.78

Disease rank

HR
HS

Data are the mean + SD, n = 04, and significant differences were assessed using analysis of variance.
T ——






OPS/images/fgene-13-1001904/fgene-13-1001904-t005.jpg
DTF

DF SS MS % Explained Ss MS % Explained
Environment 7 5069.99 72428 7137 353761 50537+ 4154
Genotype 2 1497.07 12476 21.08 2944.48 24537 3458
GxE 84 536.263 6.385*** 7.55 2033.65 24.210"* 2388
PC1 18 222982 1239 4158 1206.63 67035 5933
PC2 16 122378 7.65° 2282 43288 27.055% 2129
SPS GPS
DF sS MSs % explained ss MSs % explained
Environment 7 28091 4013 54 1304522 1863.60°** 8121
Genotype 12 53.135 443 1021 83245 6937 518
GxE 84 186.17 220+ 3579 218572 2602 1361
PC1 18 67.120 373%x 3605 1147.88 6527 5375
PC2 16 37.200 233 19.98 409.29 2558 1873
DTM Yield
DF ss MSs % explained ss Ms % explained
Environment 7 4587.84 655.41%% 78.56 109.64 15,66 4378
Genotype 12 65252 5438 117 11.03 092+ 440
GxE 84 59939 714 1026 129.80 155+ 5183
PC1 18 34763 1931%% 58 69.77 388 5375
PC2 16 11821 7.39%% 19.72 2491 156+ 19.19
TGW GPC
DF ss MS % explained ss MS 9% explained
Environment 7 411520 587887 63.87 150.55 2151+ 2952
Genotype 12 977.83 8149+ 15.18 26851 2238 52.64
GxE 84 1350.09 16.07*** 2095 90.98 1,08 17.84
IPC1 18 57113 31730 4230 4639 2,58 5099
IPC2 16 39078 2442 2894 16.93 106+ 18.61

“*%, 0.001% level of significance.
DF, Degree of freedom; S5, Sum of square; MS, Mean square; G x E, Genotype x Environment; DTF, Number of days to flowering; PH, Plant height; DTM, Number of days to maturity; SPS,
Number of spikelets per spike; GPS, Number of grain per spike; TGW, 1000-grian weight, and GPC, Grain protein content.
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Genotypes Francis and Eberhart and Perkins and jinks Wricke’s ecovalence
kanenberg russell
Sd CV (%) bi Sdi Bi DJi Wi
BWL6228 11151 22.1484 0859 1.0742 -0.141 11049 6.6854
BWL6964 12438 235916 1712 0.4009 0712 04316 40149
BWL7493 11008 212189 11536 07595 0.1536 07902 48076
BWL7495 05786 119541 07491 0.097 02509 01277 09433
BWL7497 10779 201607 13935 0415 03935 04457 3.1097
BWL7504 10069 20,0641 13718 02704 03718 03011 21953
BWL7506 1224 23878 12797 09499 02797 0.9806 6.1036
BWL7508 08715 166017 11553 02299 0.1553 02606 16313
BWL7509 0487 92235 0.5863 0085 04137 01157 11753
BWL7511 07742 148713 11432 00562 01432 0.0869 05791
HD3086 07772 149953 0.1619 0.6618 -0.8381 06925 61301
PBW725 09882 174926 08277 0.7876 01723 08183 4993
PBW761 04629 86203 0.607 00467 0393 00773 0.8983
Genotypes Francis and Eberhart and Perkins and jinks ‘Wricke’s ecovalence
kanenberg russell
Sd CV (%) bi §di Bi DJi Wi

BWL6228 07676 60004 0.8626 0.1807 ~0.1374 02086 13248
BWL6964 08503 62098 0996 01774 0004 02053 1232
BWL7493 1375 102205 1.6906 03388 0.6906 03667 40414
BWL7495 13797 102976 17058 03207 0.7058 03486 40147
BWL7497 08149 62211 09703 01411 00297 0.169 10176
BWL7504 10129 7.3816 12902 00979 02902 01258 1.0801
BWL7506 0568 42377 02713 03011 -0.7287 0329 40242
BWL7508 09113 65333 1.0658 02101 0.0658 0238 14447
BWL7509 1034 7.5539 13295 00822 03295 0.1101 10796
BWL7511 09777 71727 1.2088 0147 02088 01749 1218
HD3086 07704 66667 08192 02329 ~0.1808 02608 16908
PBW725 04421 39949 0.1342 0.1886 -0.8658 02165 41924
PBW761 08594 74214 0.6556 05571 03444 0585 39679

Sd, Standard deviation; CV, coefficient of variation; bi, Regression coefficient of Eberhart and Russell; §°di, Deviation form regression of Eberhart and Russel; Bi, Regression coefficient of

Perkins and Ji
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S.V. DTF PH SPS GPS

DF Ss MS SS MS SS MS SS MS
Genotype 12 1497 124.8%* 2944 24547 5313 443 832 697
Location 3 5006 1668.8°* 3293 1097.6°% 17847 59.494% 10425 34754
Year 1 15 14.48"* 23 234 2954 29.54%* 907 907**+
GxY 12 43 360 172 1430 2571 2140 178 15%
GxL 36 230 641+ 1274 354 68.70 191+ 1468 41
Y xL 3 49 16,31 221 7370 7290 24.30%* 1713 5710
GxYxL 36 263 734 588 163+ 91.76 25504 540 154
SV DTM Yield TGW GPC
DF ss MS ss MS s MS ss MS
Genotype 12 653 54,54 1103 0.920%** 978 815 268.50 22.37**
Location 3 4216 1405.2*** 9327 31.090*** 4059 135y 130.11 43.37%
Year 1 33 2.7 0.06 0.064™ 2 1.9 12.87 12.87%%*
GxY 12 1 09" 974 0.812%% 189 158" 16.88 141
GxL 36 441 123 94.47 2624 723 20.1% 46.41 120w
Y xL 3 340 1137254 1637 5458 54 1810 7.57 252
GxYxL 36 147 AR 25.66 0.713%% 437 1210 27.69 0774

**, 0.01% level of si
**, 0.001% level of significance.

ns, Non-significant; DF, Degrees of freedom; S5, sum of squares; MS, Mean square,.V, Source of variances; G x Y, Genotype x Year; G x L, Genotype x Location; Y x L, Year x Location;
Gx Y x L, Genotype x Year x Location; DTF, Number of days to flowering; PH, Plant height; DTM, Number of days to maturity; SPS, Number of spikeletes per spike; GPS, Number of grain
per spike; TGW, 1000-grian weight, and GPC, Grain protein content.
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Pincode Location

141001

141202

147001

151005

Source: https://www.time:

Ludhiana

Ballowal

Patiala

Bathinda

Latitude

3090107

30°77'09"

30°34'49"

30°11'08"

Longitude

75'80'71°"

75°74'73""

76.33754

74°56/52"

ddate.com/weather/india/

Altitude
(m)

247

246

280

210

Year

2019-20

2020-21

2019-20

2020-21

2019-20

2020-21

2019-20

2020-21

Env.
Condition

Temperature
Rainfall
Temperature

Rainfall

Temperature
Rainfall
Temperature

Rainfall

Temperature
Rainfall
Temperature

Rainfall

Temperature
Rainfall
Temperature

Rainfall

Nov.

11-30C
352 mm
9-31C

166 mm

11-30C
162 mm
9-31C

6.3 mm

11-30C
112 mm
9-31C

6 mm

10-32°C
9 mm
8-33C

5mm

Dec.

5-24'C
46.8 mm
4-26'C

6 mm

5-24'C
234 mm
4-26'C

5 mm

5-24'C
27.1 mm
4-26'C

5mm

2-23C
13.2 mm
4-36'C

7 mm

Jan.

2-22°C
39.8 mm
4-24°C

11 mm

2-22°C
19.5 mm
4-24°C

8 mm

2-22°C
16 mm
4-24°C

7 mm

3-22°C
112 mm
2-23C

6mm

Feb.

5-26'C
15 mm
6-33C

17 mm

5-26'C
82 mm
6-33'C

11 mm

5-26'C
67 mm
6-33C

8§ mm

5-27°C
4mm
6-36'C

3mm

10-29°C
69 mm
13-35'C

5mm

10-29°C
253 mm
13-35C

4 mm

10-29°C
21 mm
13-35'C

3 mm

11-30C
9 mm
14-40°C

5 mm

Apr.

15-37°C
132 mm
14-40°C

14.3 mm

15-37°C
69 mm
14-40°C

82 mm

15-37°C
9.9 mm
14-40°C

11.2 mm

14-40°C
32mm
12-43°C

2mm
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S. No. Genotypes Gpe-Bl Pedigree

1 BWL6228 - BWL 2760/BWL 1879//BWL 2752/BWL 1797

2 BWL6964 + PBWS550//Yrl5/6* Avocet/3/2*PBW550/4/ GLUPRO/3* PBW568//3*PBW550
3 BWL7493 - PBWS550//Yr15/6* Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550
4 BWL7495 e PBWS550//Yr15/6* Avocet/3/2*PBW550/4/GLUPRO/3* PBW568//3*PBW550
5 BWL7497 - PBWS550//Yrl5/6* Avocet/3/2*PBW550/4/ GLUPRO/3* PBW568//3*PBW550
6 BWL7504 + PBWS550//Yr15/6* Avocet/3/2*PBW550/4/ GLUPRO/3* PBW568//3*PBW550
7 BWL7506 + PBWS550//Yr15/6* Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550
8 BWL7508 # PBW550//Yr15/6* Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550
9 BWL7509 + PBWS550//Yrl5/6* Avocet/3/2*PBW550/4/ GLUPRO/3* PBW568//3*PBW550
10 BWL7511 * PBWS550//Yr15/6* Avocet/3/2*PBW550/4/GLUPRO/3* PBW568//3*PBW550
11 PBW 761 - PBWS550//Yr15/6* Avocet/3/2*PBW550

12 PBW725 - PBW621//GLUPRO/3*PBW568/3/PBW621

13 HD3086 - DBW 14/HD 2733/HUW 468

+ indicates the presence of Gpc-B1, gene and —indicates the absence of Gpc-BI, gene.
iskoiie 55 n atvmiond beusine et atetrmie 2 are coun Bonsii: Eaw bl puitmne 110 sty sdiad vt veitins
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