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Supercomputing facilities are becoming increas-
ingly available for simulating activity dynamics in 
large-scale neuronal networks. On today’s most 
advanced supercomputers, networks with up 
to a billion of neurons can be readily simulated. 
However, building biologically realistic, full-scale 
brain models requires more than just a huge num-
ber of neurons. In addition to network size, the 
detailed local and global anatomy of neuronal con-
nections is of crucial importance. Moreover, ana-
tomical connectivity is not fixed, but can rewire 
throughout life (structural plasticity)—an aspect 
that is missing in most current network models, in 
which plasticity is confined to changes in synaptic 
strength (synaptic plasticity).

The papers in this Ebook, which may broadly be 
divided into three themes, aim to bring together 
high-performance computing with recent experi-
mental and computational research in neuroanat-
omy. In the first theme (fiber connectivity), new 
methods are described for measuring and data-bas-
ing microscopic and macroscopic connectivity. In 

the second theme (structural plasticity), novel models are introduced that incorporate mor-
phological plasticity and rewiring of anatomical connections. In the third theme (large-scale 
simulations), simulations of large-scale neuronal networks are presented with an emphasis on 
anatomical detail and plasticity mechanisms. Together, the articles in this Ebook make the reader 
aware of the methods and models by which large-scale brain networks running on supercom-
puters can be extended to include anatomical detail and plasticity.
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The Editorial on the Research Topic

Anatomy and Plasticity in Large-Scale Brain Models

INTRODUCTION

Supercomputing facilities are becoming increasingly available for simulating electrical activity in
large-scale neuronal networks. On today’s most advanced supercomputers, networks with up to a
billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain
models requires more than just a huge number of neurons. In addition to network size, the detailed
local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical
connectivity is not fixed, but can rewire throughout life (structural plasticity; Butz et al., 2009)—an
aspect that is missing in most current network models, in which plasticity is confined to changes in
synaptic strength (synaptic plasticity).

The papers in this research topic, which may broadly be divided into three themes, aim to bring
together high-performance computing with recent experimental and computational research in
neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring
and data-basing microscopic and macroscopic connectivity. In the second theme (structural
plasticity), novel models are introduced that incorporate morphological plasticity and rewiring
of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale
neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms.
Together, the papers in this research topic contribute to extending high-performance computing in
neuroscience to encompass anatomical detail and plasticity.

FIBER CONNECTIVITY

Investigating the brain’s connectivity requires multiscale approaches and hence strategies for
integrating data across different spatial scales. Axer et al. demonstrate how to bridge microscopic
visualizations of fibers obtained by 3D-PLI (polarized light imaging; Axer et al., 2011) to meso-
or macro-scopic fiber orientations based on dMRI (diffusion magnetic resonance imaging). A
relatively new technique, 3D-PLI is applicable to microtome sections of postmortem brains and
uses birefringence of brain tissue, induced by optical anisotropy of the myelin sheaths around
axons, to derive a 3D description of the underlying fiber architecture. To be able to link 3D-PLI
to dMRI measurements, the authors introduce fiber orientation distribution functions (ODFs)
extracted from 3D-PLI. They demonstrate the validity of their approach with simulated 3D-PLI
data as well as real 3D-PLI data from the human brain and the brain of a hooded seal.
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Capturing different aspects of brain organization, such as
connectivity and molecular composition, necessitates the use of
different neuroimaging techniques. To subsequently integrate
the multiscale and multimodal data into a complete 3D
brain model requires an accurate definition of the spatial
positions of structural entities. Defined by MRI, the Waxholm
Space (WHS) (http://software.incf.org/software/waxholm-space)
provides such a reference space for rodent brain data. The aim
of the study by Schubert et al. was to extend the WHS rat
brain atlas with information about cytoarchitecture, receptor
expression and spatial orientation of fiber tracts, derived from
autoradiography and PLI images. To incorporate these distinct
classes of information into the WHS, the authors improved
currently available registration algorithms to align sections and
to correct for deformations. The extended WHS rat brain atlas
now enables combined studies on receptor and cell distributions
as well as fiber densities in the same anatomical structures
at microscopic scales. Furthermore, the methods developed
facilitate future integration of data of other modalities.

STRUCTURAL PLASTICITY

According to the long-standing connectionists’ dogma,
information is stored in the connection weights of neural
networks. However, in biological neural networks, a synaptic
connection is much more than just a weight factor, and a wealth
of biological mechanisms can bring about changes in functional
and structural connectivity. The following papers deal with
models that go beyond the traditional modeling concept of
plasticity as merely up- or down-regulating synaptic connection
strength (synaptic plasticity).

Fauth and Tetzlaff review experimental and modeling studies
that address the formation and deletion of synapses (structural
plasticity) and how this is regulated by electrical activity.Whereas
adapting existing synapses in a Hebbian manner predominantly
serves memory consolidation, the de novo formation of synapses
and deletion of existing synapses can, together with other
synaptic mechanisms, grant stability to a network facing
continuously changing inputs. The authors point out that these
different plasticity mechanisms may be involved in different
neural functions and, remarkably, may respond very differently
to changes in neuronal activity.

Changes in the anatomical layout of connections (structural
plasticity) are crucially dependent on morphological changes in
individual neurons. A lack of understanding of how structural
changes affect network function is partly due to the absence
of tools for studying the impact of neuronal morphology
on neuronal function. Therefore, Bezelos et al. introduce a
simulation tool for systematically varying the morphology of any
type of neuron, which will help investigate the role of neuronal
morphology and morphological changes in large-scale neuronal
networks.

Diaz-Pier et al. go beyond the level of single neurons and
describe an approach based on a recent model of homeostatic
structural plasticity (Butz and van Ooyen, 2013), which for
the first time enables growing from scratch the neuronal

network connectivity of a cortical column in silico. The resulting
connectivity shows remarkable similarities with a real cortical
column.

In biologically realistic, sparsely connected cortical networks,
Knoblauch and Sommer study what the computational
contribution of structural plasticity is to memory formation
based on synaptic plasticity. They show that neuronal networks
with structural plasticity can more efficiently adapt their
connectivity to the computational problem at hand. As a
consequence, structural plasticity may significantly increase
the number of stably maintained memory items and may even
account for psychological phenomena such as the spacing effect
in rehearsal learning (Greene, 1989).

LARGE-SCALE SIMULATIONS

The third theme concerns large-scale simulations, with a special
focus on anatomic detail and/or plasticity mechanisms. Because
of the high computational demands of such simulations, it is
crucial to have the right hardware and software tools available.
Breit et al., Gosui and Yamazaki, and Knight et al. report on
recent developments in this area. Furthermore, Zhou et al. show
how to successfully employ established neuro-simulators for this
purpose, and Kozloski how tomove up to full brain-scale models.

Breit et al. developed the novel simulation framework
NeuroBox and applied it to the investigation of the interplay
between synapse loss and signaling synchrony. NeuroBox
provides a link between the description of the morphology of
neurons and networks on the one hand and the simulation
of such networks in the simulation framework UG4 (Vogel
et al., 2013) on the other hand. This combination enables the
simulation of anatomically detailed models of large networks on
supercomputers with good scaling behavior.

Gosui and Yamazaki tackle the problem of how to carry out
long-term simulations within a manageable time frame. They
studied the long-term gain adaptation of optokinetic response
eye movements over a period of 5 days of simulated time in
a large-scale cerebellar model. By implementing the simulation
software on highly parallel processors (graphics processing units;
GPUs), the simulation could be carried out in real-world time.
This approach opens up new opportunities for studying long-
term plasticity in neural networks, e.g., in the context of memory
consolidation.

Knight et al. demonstrate that large-scale models that
incorporate complex and demanding plasticity mechanisms (in
this case, based on the Bayesian Confidence Propagation Neural
Network paradigm; Lansner and Holst, 1996) can be simulated
in a highly power-efficient way on the SpiNNaker neuromorphic
architecture. Furthermore, in this study the largest plastic neural
network ever was simulated on neuromorphic hardware. This
shows that (some) neuromorphic hardware is already up to the
task of simulating detailed anatomy and plasticity in large-scale
brain models.

Zhou et al. rely in their work on the established neuro-
simulator NEURON (Hines and Carnevale, 2001). They
implemented a large-scale model of the olfactory bulb that
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includes plasticity mechanisms. They investigated how prior
odor experience influences the representation of new odor
inputs. The results show that prior experience changes the pattern
in which sparse responses occur in different sub-networks within
the olfactory bulb. From a methodological point of view, this
study demonstrates how to set up a large-scale simulation of a
plastic neural network with rather detailed anatomy.

Kozloski positions his modeling and simulation work at brain-
scale, comprising the neocortex, basal ganglia and thalamus. The
proposed model is based on the principle of information-based
exchange and does not cover anatomical details. Nevertheless,
it is grounded in neuroanatomical observations and accounts
for various forms of plasticity. Modeling at this rather abstract
level enables long-term simulations at brain-scale and extensive
parameter variations. In this specific study, variations in dynamic
set points and modulations were investigated, leading to a theory
about the emergence of neurodegenerative diseases.

CONCLUSION

Biologically realistic large-scale brain models require, besides
a huge number of neurons, the right layout of local and
global connections. Moreover, they need to capture the plasticity
mechanisms operative in the adult brain. These mechanisms
include, in addition to changes in the strength of synapses,
structural modifications in anatomical connections. With the
articles in this research topic, we hope that the reader will become
aware of the methods and models by which large-scale brain
networks running on supercomputing facilities may be extended
to include anatomical detail and the full plastic potential of the
brain.
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Research of the human brain connectome requires multiscale approaches derived

from independent imaging methods ideally applied to the same object. Hence,

comprehensible strategies for data integration across modalities and across scales

are essential. We have successfully established a concept to bridge the spatial scales

from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging

(3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution

functions (pliODFs) from high-resolution vector data via series expansion with spherical

harmonics utilizing high performance computing and supercomputing technologies, data

fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a

large-scale dataset such as the human brain. Validation of our approach was done

effectively by means of two types of datasets that were transferred from fiber orientation

maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber

patterns and real 3D-PLI data derived from sections through the human brain and the

brain of a hooded seal.

Keywords: connectome, fiber architecture, human brain, polarized light imaging, 3D-PLI, ODF

INTRODUCTION

The repertoire of neuroimaging tools that are able to target neuronal connectivity in both the living
and the post mortem brain, is continuously growing. Technological developments in particular in
the field of microscopy (Osten and Margrie, 2013), new preparation and labeling methods (Chung
et al., 2013; Costantini et al., 2015) and a better understanding of how to process the collected
data (Amunts et al., 2013; Silvestri et al., 2015), facilitates this advancement (for recent review
Amunts and Zilles, 2015). Several of these techniques address either cellular or even molecular
dimensions, e.g., light sheet microscopy, or they provide data at meso- to macroscopic scales,
e.g., Diffusion Magnetic Resonance Imaging (dMRI). Thus, the data output generated by different
technical approaches and imaging techniques results in different data types, formats, and sizes,
and is obtained on different spatial scales. As a consequence, comprehensible comparison across
modalities and across scales evolves into a basic necessity for the neuroscience community.
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Axer et al. Nerve Fiber Orientation in 3D-PLI

In the present study, we demonstrate how to bridge the
spatial scales from microscopic post mortem fiber visualization
and orientation measurements based on 3D-Polarized Light
Imaging (3D-PLI; Axer et al., 2011a,b) to meso- or macroscopic
dimensions as targeted by dMRI. Our approach enables the
propagation of the entire information on the microscopic fiber
architecture within individual voxels by means of sophisticated
data fusion. Based on the commonly used strategy to integrate
vector data into a comprehensive description by employing
Orientation Distribution Functions (ODFs, Bunge, 1982), we
introduce the pliODF derived from 3D-PLI. pliODFs benefit
from the unique property of 3D-PLI to extract high-resolution
3D vector fields indicating the spatial orientation of single fibers
and fiber tracts in unstained brain sections. By transferring
the entire vector data within a certain compartment, the
so-called super-voxel, into a 3D statistical description (often
visualized in form of a glyph), an efficient downscaling of
high-resolution vector-like data becomes feasible. Considering
the pure size of a 3D-PLI dataset that covers a whole human
brain (i.e., 2500 sections scanned at 1.3 microns pixel size sum
up to at least 500 TByte), the development of a method that
reliably resamples large-scale microscopic data is of particular
importance.

The choice of using ODF-like statistical descriptions of
multiple-fiber compartments is based on the fact, that recent
dMRI methods such as Diffusion Spectrum Imaging, Q-
ball Imaging or Spherical Deconvolution (Tuch et al., 2002;
Alexander, 2005; Wedeen et al., 2005; Dell’Acqua et al., 2013)
also approximate the distribution of fiber orientations within
an MRI-voxel by means of fiber Orientation Distribution
Functions (fODF; Alexander et al., 2002; Hess et al., 2006;
Rathi et al., 2009; Assemlal et al., 2011). Using a similar
mathematical description is clearly beneficial for multimodal
comparisons. Approaches have been reported aiming at
the extraction of textural 2D-information, i.e., local fiber
orientations, from images of histological brain sections stained
for myelin in order to create 2D structural ODFs (Leergaard
et al., 2010; Budde and Frank, 2012). In this context, small
regions of interest were successfully compared to fODFs
obtained from dMRI measurements. These studies represent
important steps toward a region-based comparison of 2D
fiber architecture obtained from different modalities. However,
the 3D fiber architecture across large datasets has not been
addressed yet.

Here, we benefit from the three-dimensional nature of the
polarized light imaging approach, which provides measurements
of the 3D fiber structures at the level of individual brain
sections. Consequently, a super-voxel—and also a pliODF—can
arbitrarily be composed of compartments within a section, but
also across aligned neighboring sections without the requirement
to change the software tools. To demonstrate the validity of
our approach, two types of 3D-PLI datasets were transformed
into pliODFs: (i) simulated 3D-PLI data showing synthetic,
but clearly defined fiber-like patterns and (ii) real 3D-PLI
data derived from sections through the human brain and
the brain of a hooded seal. The human brain data were
selected to highlight the gain of high-resolution imaging of

brain regions with challenging fiber compositions such as the
complex fiber crossings in the corona radiata or low fiber
density regions in the cortex. The chiasm of the hooded seal
with its nearly perpendicularly decussating fiber tracts (cf.
Dohmen et al., 2015) appeared to be well suited to show the
transition from simulation-based ODF generation to the most
simple crossing fiber tract constellation observable in real brain
tissue.

MATERIALS AND METHODS

3D-PLI (Axer et al., 2011a,b; Zeineh et al., 2016) has
demonstrated its unique capabilities (i) to reveal fiber structures
at multiple scales, such as long-range connections and even
single fibers and crossings within unstained histological brain
sections, and (ii) to determine spatial fiber orientations (i.e.,
3D unit vectors down to the scales of fiber diameters (0.4–
15µm). 3D-PLI is applicable to unstained microtome sections
of post mortem brains and utilizes the optical birefringence
of nerve fibers, which basically arises from the highly ordered
arrangement of lipid molecules in the myelin sheath surrounding
most of the axons in the brain. Polarimetric setups (e.g., a
polarizing microscope) are employed to carry out birefringence
measurements and to give contrast to individual nerve fibers and
their tracts. Supported by fundamental principles of optics and
dedicated simulation approaches (Dohmen et al., 2015; Menzel
et al., 2015), the measured signals are additionally interpreted in
terms of spatial fiber orientations by means of unit orientation
vector descriptions (Figure 1). The algorithms used for the
fiber orientation interpretation have been implemented as an
automated 3D-PLI analysis workflow suitable for distributed
supercomputing, as described by Axer et al. (2011b); Amunts
et al. (2014).

The Fiber Orientation Map
Application of the 3D-PLI analysis workflow results in a unit
vector-based description of the fiber orientation determined for
each tissue voxel, referred to as a native voxel. The native voxel
dimensions are defined by the image pixel size provided by the
optical setup and the thickness of the studied histological brain
section (70µm in the present study). The generation of pliODFs
was exclusively performed on 3D-PLI datasets with native voxel
dimensions of 1.3× 1.3× 70µm. Each orientation vector reflects
the net effect of all fibers comprised within a voxel. The assembly
of all unit vectors represents the fiber orientation map (FOM).

The orientation unit vector
⇀
u i at voxel location i can be

parameterized by two angles, i.e., by spherical coordinates:
the direction angle ϕi, which represents the projection of
the principal fiber axis within the sectioning plane, and the
inclination angle αi, which is the angle between the principal fiber
axis and the sectioning plane (Figure 1 and Equation 1).

⇀
u i =





cosαi · cosϕi

cosαi · sinϕi

sinαi



 (1)
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FIGURE 1 | 3D-PLI in a nutshell. The fiber orientation vector
−→
u i located at the native voxel location i is defined by the direction angle ϕi and the inclination angle αi .

The brain section is aligned to the x-y-plane (at z = 0). In general, a unit vector can be described as a distinct point on a unit sphere. For 3D-PLI, the determined unit

vector represents an axis in space (in the mathematical and the anatomical sense), since the initial and the terminal points cannot be assigned uniquely. Therefore, the

point reflection across the center of the sphere has to be assigned to the same vector. For visualization purposes, the vectors were encoded in RGB color space: the

x-component of
−→
u i is represented by the red color channel (R), the y-component by the green color channel (G), and the z-component by the blue color channel (B).

Image Generation and Data Acquisition
Simulated 3D-PLI Data
The simulation software tool SimPLI (Dohmen et al., 2015;
Menzel et al., 2015) was used to generate two synthetic 3D-
PLI datasets with known configurations of fiber-like structures.
In SimPLI, three main steps of simulation are implemented:
(i) the generation of an arbitrary spatial arrangement of
synthetic fibers and the discretization into a three-dimensional
fiber orientation vector field with a certain resolution (e.g.,
70µm isotropic), (ii) the calculation of the transmitted light
intensity based on the Jones matrix calculus (Jones, 1941)
yielding a synthetic 3D-PLI image series, and (iii) the simulation
of environmental clutter arising from the camera and the
tissue in the optical path by adding blurring and noise
effects.

In order to validate the different methodological steps
employed to transfer a FOM into a set of orientation distribution
functions, a well-defined template providing unambiguous
structural macroscopic and microscopic features in terms of
left/right, top/down and in-plane/out-of-plane orientations, was
required. This dataset generated by means of SimPLI is shown
in Figures 2A–D. It is composed of a stack of 18 images
and comprises birefringent “fibers” forming human readable
structures (“fiber bundles”), such as the capital letter “R” and
the “±” sign. The line thickness of the letters (or the thickness
of the “fiber bundles”) was chosen to be 20 pixels on average.
The fiber inclination angles in “R” were all set to α = 0◦, while
the inclination angles were set to α = +45◦ and α = −45◦

for the “+” and “−” sign, respectively. The direction angles
ϕ were aligned with the local structures using a right-handed
coordinate system, i.e., the horizontal components (e.g., the “−“
sign) are identified by ϕ = 0◦ while the vertical components are
represented by ϕ = 90◦. The diagonal element of the “R” has
a direction of ϕ = 135◦. The background is composed of 90◦

inclined fibers corresponding to light intensity variations equal to

zero. This dataset was subjected to the 3D-PLI analysis workflow
to extract the corresponding FOM (Figures 2E, 3A).

A second, more realistic dataset was generated with SimPLI
and subjected to 3D-PLI analysis (cf. Figure 5F), and has already
been described in detail in Dohmen et al. (2015): the model of
a chiasm of the hooded seal. This data bridges to the successive
section on real 3D-PLI data sets.

3D-PLI Data Obtained from Histological Sections of

the Hooded Seal and the Human Brain
Two human brains and the optic chiasm of a hooded seal were
immersed in 4% paraformaldehyde. After cryoprotection (with
a 20% glycerin solution), the brain tissue was deep frozen at
−70◦C and stored at the same temperature till further processing.
A whole human brain and the occipital lobe of a human brain
were coronally sectioned and optic chiasm was axially sectioned
using a large-scale cryostat microtome (Polycut CM 3500, Leica,
Germany), and eventually coverslipped with a 20% glycerin
solution. The chosen section thickness was 70µm. During
sectioning, each blockface was imaged using a CCD camera
mounted above the brain in order to obtain an undistorted
reference for each section (cf. Figures 5A, 6A, 7A). No staining
was applied. In each case, this procedure resulted in a complete
series of sections through large tissue samples, which enables a
3D reconstruction. The brains were acquired in accordance with
local legal and ethical requirements.

The brain sections were measured in two custom-made
polarimetric setups, the large-area polarimeter and the polarizing
microscope, providing images with pixel dimensions of 64 ×

64µm and 1.3 × 1.3µm, respectively (for technical details refer
to Axer et al., 2011b). The datasets were passed to the 3D-
PLI analysis workflow to extract the corresponding FOMs. For
pliODF generation only the high-resolution data were used, while
the 64µm-sized FOMs were used for plausibility checks and
reference measures.
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FIGURE 2 | Simulated 3D-PLI reference dataset. (A) The standard 3D-PLI measurement yields 18 images corresponding to equidistant rotation angles ρ between

0◦ and 170◦. Here, a selection of nine generated images of simulated birefringent structures (the letter R and the ± sign) is shown. Each image has a size of 200 ×

200 pixels. The varying pixel intensities are comparable to observed signals in measurements of brain sections. The red squares indicate a native voxel of interest that

is displayed (B) in terms of the observed light intensity as a function of the rotation angle. The physical model that underlies 3D-PLI provides a sinusoidal description of

the simulation (continuous black line), and relates (C) its amplitude to the inclination angle α via the retardation value sinδand (D) its phase to the direction angle ϕ. The

introduced effects of blurring and noise are evident: the minus sign in the direction map (D), for example, shows direction angles that are spread around the initial

direction ϕ = 0◦ by±2.5◦. In a π-periodic system, this is equivalent to an angle range between 177.5◦ and 2.5◦. (E) Visualization of the FOM with the determined

vectors
−→
u encoded in RGB color space (see color sphere for the relation between orientation and color-coding).

Estimation of Fiber Orientation Distribution Functions

(pliODFs)
The fundamental aim was to generate a mathematical description
-the orientation distribution function (pliODF)– that quantifies
the spatial distribution of fiber orientations determined by 3D-
PLI within a rectangular compartment. The compartment can be
defined in a single FOM or in a series of FOMs and is referred
to as super-voxel. A super-voxel is composed of (r × c × s =
rows × columns × sections) native voxels. In order to calculate
pliODFs, fundamental approaches frommaterial science (texture
analysis in crystallography; Bunge, 1982) and directional statistics
(Mardia and Jupp, 2000) were applied and adopted to the needs
of 3D-PLI.

The implemented procedure was based on three steps (cf.
Figure 3):

(A) the definition of super-voxels (rectangular
compartments) in high-resolution FOMs to resample the
dataset,

(B) the collection of all fiber orientation vectors comprised
in a super-voxel to derive the discretized distribution
of orientations by creation of a normalized directional
histogram on a unit sphere, and

(C) the approximation of the orientation probability
distribution density by fitting the directional histogram with
a series expansion using spherical harmonics.

In the following, steps (A) to (C) will be explained in more
detail. As mentioned above (Figure 1), a 3D-PLI orientation
vector can be expressed in spherical coordinates (the polar angle
ϑ = π

2 − α and the azimuth angle ϕ) and defines two points
on the unit sphere S2. This feature was used to construct a
directional histogram aiming at a statistical description of the
fiber orientations contained in a super-voxel. To discretize the
distribution of fiber orientations, the surface of a unit sphere was
subdivided into planar bins (bin centers characterized by latitude
and longitude) with a total bin number n calculated by

n =
(

# of latitudes
)

+
(

# of longitudes
)

+ 2 polar caps. (2)

n was adopted to the specific requirements of the used
datasets. In a final step, the number of vectors falling into each
bin was determined (Figure 3B).

Normalization of the directional histogram enabled to
mathematically describe the empirical orientation probability
distribution density p(ω) by
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FIGURE 3 | Three steps toward pliODF generation. (A) First, a FOM is divided into regular domains or super-voxels. The exemplarily enlarged super-voxel

contains 40 × 40 × 1 native voxels representing three predominant fiber orientations, which show a relative frequency of occurrence of ∼¼(blue color), ∼¼(magenta

color) and ∼½(cyan color), respectively. The color sphere defines the relation between orientation and color-coding. (B) Second, a normalized directional histogram

with a discretized binning on a unit sphere is created for each super-voxel. The relative fraction of fiber orientations assigned to a particular bin is reflected by the

length of the colored solid angle originating from the middle of the sphere. The symmetry of the histogram with respect to point reflection across the center of the

sphere is evident. Here, the total number of bins distributed over the sphere was set to 164 and the three predominant input fiber orientations are still preserved. (C)

Third, a spherical harmonics expansion is used to approximate each directional histogram. Depending on the selected depth of expansion (e.g., to the 4th or the 6th

band), orientation distribution features might become occluded by interpolation.

dN

Z
= p (ω) d�, (3)

with Z being a normalization factor (Int
(

dN
Z

)

= 1), d� the

dihedral angle differential, and ω the spatial direction. p(ω) was
expanded into a series of generalized spherical harmonics:

p (ω) =

∞
∑

l=0

l
∑

m=−l

l
∑

n=−l

Cmn
l Tmn

l (ω)

=

∞
∑

l=0

l
∑

m=−l

l
∑

n=−l

Cmn
l eIϕ2P

mn
l (8) eIϕ1 . (4)

The Pm
l

represent the associated Legendre polynomials. Due
to the existing rotational symmetry (i.e., the determined fiber
orientations are invariant with respect to rotation around the
axis defined by the unit vector), the general description of the
series simplified to an expansion in terms of spherical harmonics
Ym
l (ϑ,ϕ):

p (ϑ,ϕ) =

∞
∑

l=0

l
∑

m=−l

Cm
l Y

m
l (ϑ,ϕ) , (5)

with l and m denoting the band index and sub-band index,
respectively. A series expansion to the 6th band, for example,
means l = 0, . . . , 6 and −l ≤ m ≤ l (with 1 + 3 + 5 + 7 +

9+ 11+ 13 = 49 members).
The expansion of the empirical orientation probability

distribution p (ϑ,ϕ) into real valued symmetric spherical

harmonics series reads as:

p (ϑ,ϕ) =

∞
∑

l=0

2l
∑

m=−2l

Cm
2ly

m
2l (ϑ,ϕ) ≈

L̂
∑

l=0

2l
∑

m=−2l

Cm
2ly

m
2l (ϑ,ϕ),

(6)
with

1

2
(L+ 1) (L+ 2) =

(

2L̂+ 1
) (

L̂+ 1
)

(7)

coefficients (with 2L̂ = L).
To generate a pliODF, the coefficients Cm

2l
of the expansion

up to the lth band had to be determined. This was realized
using a least square fit algorithm, because of its numerical
stability and the efficiency of the numerical implementation.
Due to discretization and truncated series expansion, the
pliODF only approximates the empirical orientation probability
distribution p.

Computing
Both, the size of the processed data and the computationally
intensive algorithms to determine the expansion coefficients
required a supercomputing environment. For this reason, we
used the Juelich Dedicated GPU Environment (JuDGE), hosted
by the Jülich Supercomputing Center (JSC), Germany. It was
equipped with 206 compute nodes, where each node consisted
of two Intel Xeon Westmere 6-core processors operating at 2.66
GHz. Each compute node contained 96 GB of main memory.
Per node there were either two NVIDIA Tesla M2050 (Fermi)
GPUs or two NVIDIA Tesla M2070 (Fermi) GPUs integrated.
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FIGURE 4 | pliODFs based on different super-voxel sizes. (A) The FOM of the simulated dataset (cf. Figure 2) was divided into super-voxels composed of (B)

10 × 10 × 1, (C) 20 × 20 × 1, and (D) 40 × 40 × 1 native voxels. pliODFs were generated by means of series expansions to the 6th band for the different

super-voxels. The color sphere defines the relation between orientation and color-coding.

The inter- and intra-node communication was realized by the
message passing interface (MPI) protocol.

Runtime measurements were performed for a region of
interest in a FOM gained from the human brain tissue [i.e., ROI
(1) as depicted in Figure 6B], which was composed of 3712 ×

4576 orientation vectors. The number of compute cores was set to
72 in order to keep the compute time in an acceptable range, but
to highlight the differences in run-time properly at the same time.
The number of bands and the size of super-voxels were taken as
parameters.

Visualization
ODFs are typically visualized either (i) by means of a textured
sphere, where the color of a point on the surface represents
the probability of its corresponding orientation, or (ii) by
simply scaling the surface with the probability p. To visualize
the generated pliODFs, the second option was applied in
combination with the color-coding scheme also used to visualize
different fiber orientations in a FOM and the surface intensity
increasing with the probability (Figure 3C). The scheme is based
on the RGB color space with the red channel representing the x-
component, the green channel representing the y-component,
and the blue channel representing the z-component of the fiber
orientation in the reference coordinate frame. The peaks of the
pliODF shape and the color-coding reflect the most common
fiber directions such that both the pliODFs and the FOMs are
visually comparable.

Results
Simulated 3D-PLI Data
The FOM obtained from the simulated dataset was divided into
super-voxels of 10 × 10 × 1, 20 × 20 × 1, and 40 × 40 × 1

native voxels, respectively, to create pliODFs. These clusters were
chosen (i) to demonstrate the accurate interpretation of the input
vectors including the conservation of the coordinate system and
(ii) to investigate how different super-voxel dimensions affect the
shape of the resulting pliODF representations. Therefore, super-
voxel dimensions close to the (fiber) structure dimensions (here:
about 20 pixels, equivalent to 36 microns; cf. Figure 3A) were of
specific interest. The binning of the directional histogram was set
to (9 latitudes× 18 longitudes+ 2 polar caps)= 164 bins.

As demonstrated in Figures 3A–C on the basis of an
exemplary 40× 40× 1 super-voxel, the implemented resampling
procedure of high-resolution FOMs provided a comprehensible
description of the distribution of fiber orientations, in form
of a directional histogram or a pliODF. The comparison
of the pliODFs based on different levels of expansion with
the corresponding directional histogram suggested that the
approximation of the probability density function with spherical
harmonics in the studied cases with the selected bin sizes
should be confined (at least) to the 6th band, in order
to reliably resolve orthogonal contributions (e.g., cyan and
magenta).

The resampling results for different super-voxel dimensions
are shown in Figures 4B–D. Compared to the original unit
vector description of the fiber orientations, the peaks of the
pliODFs obtained from the small super-voxels (Figures 4B,C)
reflect the main underlying (microscopic) fiber orientations
corroborated by the matching colors. In addition, the
general (macroscopic) orientations of the letters agree
with the orientations of the input structures. As expected,
the complexity of the pliODF shapes increases in larger
samples (Figure 4D), maintaining the major portions of fiber
orientations.
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FIGURE 5 | Real and simulated brain section from the hooded seal. (A) Blockface image of the optic chiasm of the hooded seal before sectioning. (B) Fiber

orientation map of a medial section through the optic chiasm. Optic nerves and optic tracts appear as massive and rather homogeneous fiber bundles. Most fiber

tracts from the optic nerves decussate to the contralateral optic tract. (C) The decussation zone in the center (i.e., the chiasm) is characterized by a patch pattern

produced by small fiber tracts (red and green color; exemplary orientations are indicated by black lines) and fiber crossings characterized by signal attenuation (blue

color; exemplary highlighted by white arrow). Based on this FOM, pliODFs were created for super-voxel dimensions of 40 × 40 × 1 native voxels. (D,E) demonstrate

different enlargements of the field of pliODFs overlaid with the input FOM. (F) FOM of a simulated section through the optic chiasm and (G) corresponding pliODFs for

super-voxel dimensions of 40 × 40 × 1 native voxels. (H) Zoom into the FOM of the fiber decussation zone and (I) corresponding pliODFs. The effects of crossing and

bending fibers on the ODF shapes are obvious.

3D-PLI Data Obtained from a Hooded Seal
and a Human Brain
Brain Sections of a Hooded Seal
FOMs taken from hooded seal brain tissue show the optic
nerve traversing through the optic chiasm into the optic tract
(Figures 5A,B). The center of the optic chiasm reveals decussate
fiber populations alternating with blue dots caused by signal
attenuation (white arrow, Figure 5C). A pattern of crossing fiber
tracts was used to prove the functionality of our implementation
in a realistic setting. The FOMs were sampled using a histogram
binning of (50 latitudes × 100 longitudes + 2 polar caps) =

5002 bins with a super-voxel size of 52 × 52 × 70µm3, which
is equivalent to 40 × 40 × 1 native voxels. The series expansion
of the pliODFs was confined to the 6th band. The fused images
of the high-resolution FOMs with the corresponding pliODFs
demonstrated a sound resampling (Figures 5D,E). The simulated
chiasm of the hooded seal was analyzed accordingly and showed
concordant results (Figures 5H,I).

Human Brain Sections
Three high-resolution FOMs of selected regions of interest from
a coronal section through the human occipital lobe (Figure 6A)
were resampled at different super-voxel dimensions (Figure 6B),
but with fixed histogram binning (50 latitudes × 100 longitudes
+ 2 polar caps = 5002 bins). The targeted super-voxel sizes of
26× 26× 70µm3, 52× 52× 70µm3, and 260× 260× 70µm3

correspond to 20× 20× 1, 40× 40× 1, and 200×200× 1 native
voxels, respectively. The series expansion was confined to the
6th band. The pliODFs were compared both with the underlying
high-resolution FOMs acquired with the polarizing microscope
(Figure 6C) and FOMs obtained with the large-area polarimeter
(Figure 6D).

In addition, two high-resolution FOMs of selected regions
of interest from a coronal section through the human brain
(Figure 7) at the level of the central region were resampled
at different super-voxel dimensions (Figures 7C,D), but with
fixed histogram binning (50 latitudes × 100 longitudes
+ 2 polar caps = 5002 bins). The targeted super-voxel
sizes of 65 × 65 × 70µm3, and 260 × 260 × 70µm3

correspond to 50 × 50 × 1, and 200 × 200 × 1 native
voxels, respectively. The series expansion was confined to the
6th band.

The following observations were made:

(i) The overall fiber architecture in all regions of interest were
preserved (Figures 6B–D, 7C,D) by pliODFs. This holds
true for deep white matter tracts (e.g., in the stratum
sagittale, Figure 6D, or the corpus callosum, Figure 7D).
In cortical regions, the integrity of the fiber architecture is
maintained by the 6th band expansion even at increasing
super-voxel sizes beyond 250µm (Figure 6B).

(ii) The peaks of the pliODFs, i.e., the prevailing directions,
agree with the FOMs gained from the large-area polarimeter
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FIGURE 6 | Brain section from the human occipital lobe. (A) Segmented blockface image acquired from the surface of the frozen human occipital lobe during

the sectioning process. The small white rectangles (1) to (3) indicate the selected regions of interest for which pliODFs were determined (cf. B–D). The enlarged extract

shows the delineation of anatomical structures, such as the tapetum, the calcar avis, and the stratum sagittale. (B) pliODF representations in region (1) with super-voxel

dimensions of 20 × 20 × 1, 40 × 40 × 1 and 200 × 200 × 1 native voxels; the magnified images show the same cortical region, which is characterized by crossing

fibers (indicated by the white arrows). The largest super-voxel size is equivalent to 260 × 260 × 70µm3 and corresponds approximately to the level of high-resolution

post mortem dMRI measurements. (C) Region (2) demonstrates for a super-voxel dimension of 50 × 50 × 1 native voxels the preservation of the overall fiber structure

in comparison with the original high-resolution FOM obtained with the polarizing microscope. Zooming into the data reveals pliODFs with multiple fiber orientations in

inhomogeneous white matter regions. (D) For region (3), pliODFs (super-voxel dimension of 50 × 50 × 1 native voxels) are opposed to the vector-based representation

of the FOM of the same brain region measured with the large-area polarimeter at 64 × 64 × 70µm3 voxel size. The white arrows indicate a crossing zone of fibers.

in tissue regions basically composed of parallel fibers
(Figure 6D).

(iii) Super-voxels localized in transition areas of adjacent or
crossing fiber tracts preserved the corresponding fiber
orientations in the pliODF with high fidelity (Figures 6D,
7C), while the same regions scanned with the large-
area polarimeter showed attenuated signals or averaged
orientations (e.g., Figure 6D).

Runtime Behavior
Runtime measurements (for 3712 × 4576 orientation vectors)
performed on the JuDGE supercomputer showed that (i) with
increasing super-voxel size the overall runtime decreased and (ii)
with increasing depth of expansion the overall runtime increased
(cf. Figure 8).

DISCUSSION

General Concept
3D-Polarized Light Imaging has been demonstrated in
previous neuroanatomical studies (Axer et al., 2011a,b;

Caspers et al., 2015; Dohmen et al., 2015; Zilles et al., 2015;
Zeineh et al., 2016) to provide unique high-resolution data
on the brains’ fiber architecture of various species, such as
mouse, rat, seal, vervet monkey, and human. The color-
coded fiber orientation map (FOM) was the fundamental
image modality for each of these studies, since it comprised
both the highlighted fiber structures and their local 3D
orientations. Hence, each FOM enabled a comprehensive
delineation and identification of neuroanatomical fiber
structures across different scales covering the micrometer
(i.e., cortical and sub-cortical fibers) to the centimeter
range (i.e., long-range fiber tracts across entire brain
sections).

In the present study, we have successfully implemented a
dedicated methodology of integrating high-resolution vector
data obtained from FOMs into a comprehensive statistical
description, the orientation distribution functions or pliODFs,
respectively. By this means, efficient downscaling of high-
resolution FOMs was achieved and cross-scale, cross-modality
comparisons were enabled. The general concept of pliODF
generation can be summarized in three steps:
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FIGURE 7 | Coronal section from the central human brain region. (A) Segmented blockface image acquired from the surface of the frozen human brain. (B)

Fiber orientation map comprising arcuate fascicle (AF), cingulum bundle (CB), corpus callosum (CC), caudate nucleus (Cd), corona radiata (CR), internal capsule (IC).

Fiber orientations are RGB color-coded (see sphere). The white rectangles indicate FOMs (C(1) and D(1)) that were transferred into pliODFs. (C) pliODF representations

in the region of CR/IC with super-voxel dimensions of (2) 50 × 50 × 1 and (3) 200 × 200 × 1 native voxels (from different views). Patches of crossing fiber bundles are

clearly visible in the FOM and the pliODF maps. (D) pliODF representations in the region of CC with super-voxel dimensions of (2) 50 × 50 × 1 and (3) 200 × 200 × 1

native voxels (from different views). Although a predominant fiber direction is observable, small wriggling fiber bundles cause local inhomogeneities along the CC.

(A) the definition of super-voxels (rectangular compartments)
in high-resolution FOMs to resample the dataset,

(B) the collection of all fiber orientation vectors comprised
in a super-voxel to derive the discretized distribution
of orientations by creation of a normalized directional
histogram on a unit sphere, and

(C) the approximation of the orientation probability
distribution density by fitting the directional histogram with
a series expansion using spherical harmonics. This yields a
3D glyph per super-voxel.

Validation Strategy
To prove the concept, we applied our implementation to
simulated and real 3D-PLI datasets that reflected different
characteristics of fiber compositions: well-defined parallel fibers
(letter simulation, Figure 4), perpendicular fiber tract crossings
(measurement and simulation of the hooded seal chiasm,
Figure 5), and complex fiber architectures (measurements in
human brain sections, Figures 6, 7). That way, the feasibility of
our approach became traceable from the most simple to the most
challenging cases.

The reliability of the steps required to derive a pliODF in
form of a glyph was successfully demonstrated on basis of a

simulated 3D-PLI dataset. The simulation tool SimPLI (Dohmen
et al., 2015; Menzel et al., 2015) has specifically been developed
to model the effects of birefringence in brain tissue as well
as the results of polarimetric measurements. However, one of
the generated synthetic datasets (cf. Figure 2) was not destined
for realistic simulation of fiber architecture, but to enable
systematic testing of the conservation of the involved coordinate
systems, and fiber-like/bundle-like orientations, respectively. In
combination with the same color-coding scheme applied to
FOMs and pliODFs, this turned out to be an excellent approach
for demonstration and validation purposes. This becomes
evident in the study of directional histograms (i.e., the probability
distributions of orientation vectors on a sphere) and their fitting
with a series expansion with spherical harmonics (Figure 3).

The directional histogram is a proximate reflection of the
main fiber orientations in a super-voxel as provided by the
FOMs. However, the discrete arbitrary binning of the histogram
affects the orientation information and, consequently, the final
approximation of the density function. The different bin widths
for simulation and experimental datasets, which were used for
this study resulted from trials. For future studies, an automated
data driven binning in S2, depending on input and target
data, is essential. The creation of directional histograms from
high-statistics vector data is not computationally intensive and
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FIGURE 8 | Runtime measurements. Runtime as a function of the

super-voxel dimension for the series expansion up to the 6th and the 8th

band. Note, that the left time axis is scaled logarithmically, while the right time

axis is scaled linearly.

represents a very fast and robust method to derive the prevalent
fiber directions in super-voxels. The precision of the fiber
directions obtained from the directional histogram (defined by
the bin centers) is basically limited to the size of the dihedral angle
spanning a bin.

This limitation can be overcome by fitting the directional
histogram with a series expansion using spherical harmonics
to generate a pliODF, but at the expense of computing
time that is increasing drastically. As derived from runtime
measurements, the resampling of a FOM composed of 3712 ×

4576 orientation vectors, the computationally most intensive step
was the determination of the expansion coefficients. According
to Equation 7, the number of coefficients to be determined
increases non-linearly with increasing expansion depth. Hence,
the series expansion has to be truncated. For the experiments
done in this study, the expansion to the 6th band appeared to be
sufficient to assess the functionality of our implementations, but,
this level of resolution has to be reviewed in case of addressing
different questions as to data precision, data size or computing
time. By increasing the super-voxel size, the computation time
is decreased in a non-linear way, due to the lower number of
pliODFs to be computed.

What does this mean for whole human brain imaging and
comparison? A human brain volume of 1200 cm3 translates
into 1010 native voxels provided by high-resolution 3D-PLI
measurements. A voxel size of 2mm isotropic, such as provided
by standard clinical in vivo dMRI technologies (e.g., Bastiani
and Roebroeck, 2015), leads to 150,000 dMRI voxels for a
human brain. Resampling of 3D-PLI to this dMRI scale means
integrating 65,000 orientation vectors into a single super-voxel or
pliODF, respectively. For the runtime measurements performed
on the 3712×4576 pixel-sized FOM, about 170,000 pliODFs with
a super-voxel dimension of 10 × 10 × 1 native voxels had to be
computed. The computation time (expansion to the 6th band)
was about 9.5 h utilizing only 72 compute cores. Conclusively,

computation of pliODFs for an entire human brain at 2mm
resolution is feasible. Post mortem dMRI has recently progressed
to study the structural organization of the entire human brain
at a voxel size of 0.7mm isotropic (Miller et al., 2011), which
results in 3.5 million target (super-)voxels, which is a factor of
20 more than provided by standard in vivo dMRI measurements.
However, adjusting pliODFs to submillimeter dMRI data for a
whole human brain is still in the realm of the feasible, taking
into account that supercomputing facilities provide thousands of
computing cores.

Scope of Application
We demonstrated that the pliODF generation workflow enables
the study of scaling effects and related partial volume effects
efficiently, already at the level of single brain sections for both
real and simulated data (cf. Figures 5–7). 3D-PLI measurements
of the same tissue at two distinct resolutions (native voxel sizes
of 64 × 64 × 70µm and 1.3 × 1.3 × 70µm) were beneficial in
this context. The low-resolution FOMs were used as independent
references for prevailing fiber orientations derived from pliODFs
computed from super-voxel dimensions that matched the native
voxel dimensions of the low-resolution measurements (e.g.,
Figure 6D). While the principal orientations of distinct fiber
tracts from both types of fiber orientation descriptions agreed, the
benefit of pliODFs became evident at transition zones between
differently oriented fiber tracts. In the latter case, pliODFs
preserved details about the complex fiber population, which
was not observed for the low-resolution measurements. This is
due to the fact, that in a 3D-PLI measurement a native voxel
collects birefringence effects from multiple fibers resulting in
a measurement of superimposed sinusoidal signals (Reckfort
et al., 2015), each with fiber orientation specific amplitude and
phase. As demonstrated by Dohmen et al. (2015), the derived
fiber orientation vector for a native voxel significantly depends
on the complexity of the underlying fiber population. For the
low-resolution measurements this means that about 50–100
myelinated fiber contribute to the measured signal, if fiber
diameters between 0.4 and 15µm (Aboitiz et al., 1992) are
assumed. Future studies will further elaborate on scaling effects
by combining sophisticated simulation approaches (Dohmen
et al., 2015; Menzel et al., 2016) with measurements across
scales (Reckfort et al., 2015). This will open up new avenues
to derive observer independent quality measures for 3D-PLI
measurements, beyond neuroanatomical inspection.

Even though the concept of the pliODF generation has
been demonstrated for FOMs of individual brain sections, its
application is not limited to section-like data, but it can also
be extended to a volume of FOMs. In the latter case, the
brain section images have to be re-aligned into a coherent
3D brain volume, which requires application of complex non-
linear image registration techniques (Palm et al., 2010; Amunts
et al., 2013). Assuming a whole human brain reconstruction
from 2500 serial coronal sections scanned at 1.3µm pixel size
with a single section image size of 70,000 × 100,000 pixels on
average, it becomes evident, that the utilization of distributed
high performance computing on a supercomputing environment
is essential. The process of registration aims at correcting for
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up to cm-sized tissue deformation introduced during brain
sectioning and tissue mounting. This poses a major challenge
when addressing 3D brain reconstruction at the µm-scale, as
required for long-range pixel-wise tracing of fiber tracts across
hundreds to thousands of brain sections. By integrating many
orientation vectors into pliODFs, local inaccuracies in section
alignment are likely to be polished and, therefore, tractography
of long distance fiber pathways become feasible for large-scale
3D-PLI datasets, but at the expense of resolution. As a benefit,
advanced tractography algorithms exploiting multiple direction
information of individual dMRI voxels (Sotiropoulos et al., 2010;
Reisert et al., 2011) become applicable to 3D-PLI data and,
vice versa, pliODFs (or, alternatively, directional histograms) are
suitable to validate various methods of tractography.

As pointed out by Hubbard and Parker (2009), “it is important
to . . . test not only the ability of the tractography algorithms to
track fibers from voxel to voxel, but to observe the details of the
voxel-scale information and independently quantify the ability of
dMRI to assess fiber orientation. The integrity of this orientation
information is paramount to the validity of the reconstructed
tract.” 3D-PLI with its pliODFs particularly opens up the avenue
to align with dMRI measurements by crossing the scales using
common data formats, and to provide sub-voxel information
on the underlying fiber architecture based on an independent
technology complementary to the dMRI approach. Based on
the pliODF generation, comparisons of 3D-PLI and dMRI can
now be conducted at the level of individual voxels of the same
size. Describing the local distribution of fiber orientations by
means of spherical harmonics opens up the possibility to utilize
methods being developed in the scope of computer vision to
assess the similarity of datasets via shape descriptors and shape
metrics, for example. This appears to be a promising approach
to derive observer independent quality measures for 3D-PLI
measurements, which will be evaluated in future studies.

CONCLUSIONS

The future of research about the brain connectome will depend
on multiscale approaches validated by independent imaging
methods applied to the same object simultaneously. We have
successfully established a concept to bridge the spatial scales
from microscopic fiber orientation measurements based on 3D-
PLI to macroscopic dimensions by means of creating orientation
distribution functions (pliODFs) from high-resolution vector
data. With pliODFs the fusion and comparison with dMRI
data becomes feasible even for whole human brains. The key-
technology of supercomputing, that is inevitable for addressing

real big data challenges as posed by the human brain, has

been applied to achieve this goal. Though, our implementation
does not only limit the software’s application to supercomputing
environments, but it was also demonstrated to run successfully
on local linux cluster systems. The established software package
to generate pliODFs from 3D-PLI datasets described in this work
will be made available through an ICT portal currently being
developed by the human brain project consortium.
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High-resolution multiscale and multimodal 3D models of the brain are essential

tools to understand its complex structural and functional organization. Neuroimaging

techniques addressing different aspects of brain organization should be integrated

in a reference space to enable topographically correct alignment and subsequent

analysis of the various datasets and their modalities. The Waxholm Space

(http://software.incf.org/software/waxholm-space) is a publicly available 3D

coordinate-based standard reference space for the mapping and registration of

neuroanatomical data in rodent brains. This paper provides a newly developed pipeline

combining imaging and reconstruction steps with a novel registration strategy to

integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of

principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor,

and fiber architectonic images of rat brains into the 3D digital MRI based atlas of

the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from

image acquisition to reconstruction and registration of these three modalities into

the Waxholm Space rat atlas. The registration of the brain sections into the atlas

is performed by using both linear and non-linear transformations. The validity of

the procedure is qualitatively demonstrated by visual inspection, and a quantitative

evaluation is performed by measurement of the concordance between representative

atlas-delineated regions and the same regions based on receptor or fiber architectonic

data. This novel approach enables for the first time the generation of 3D reconstructed

volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density

distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion

of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical

stainings or of the regional distributions of multiple other receptor types, into the

Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in

the Waxholm Space atlas of the rat brain. Since the registration of these multimodal

high-resolution datasets into the same coordinate system is an indispensable requisite for
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multi-parameter analyses, this approach enables combined studies on receptor and cell

distributions as well as fiber densities in the same anatomical structures at microscopic

scales for the first time.

Keywords: brain atlas, polarized light imaging, quantitative receptor autoradiography, histology, image registration

1. INTRODUCTION

Virtual high-resolution multiscale and multimodal 3D models

of the brain are essential tools to visualize and understand

the complex structural and functional organization of the

brain. To capture different aspects of brain organization,

such as the long-range fiber tracts connecting different brain

regions, intracortical connectivity, and differences in molecular

compositions, complementary neuroimaging techniques should

be utilized. In order to interpret and compare measurements
derived from different experimental techniques, all brain data sets
should be integrated into a standard reference space.

This integrative approach leading to a multimodal and
multiscale brain model is a major challenge because of the
enormous structural complexity of the brain. The different
brain regions differ not only by their cytoarchitecture, i.e.,
the varying densities of cells between the different layers
within and between brain areas, but also by the expression
of neurotransmitter receptors and gene expression. This
microstructural diversity leads to a segregation of the cerebral
cortex and the subcortical regions into hundreds of well
definable entities with complex spatial arrangements (Toga
et al., 2006; Zilles and Amunts, 2010; Amunts et al., 2013;
Amunts and Zilles, 2015). Moreover, the different entities
are connected by long range and short range fiber tracts,
which also show an enormous spatial complexity (Zilles and
Amunts, 2012). Therefore, an accurate definition of the spatial
positions of structural entities is an indispensable requirement,
particularly for multimodal and multiscale data sets. This
is far from trivial (Bjaalie, 2002), because it often requires
the registration of data collected from different brains, with
different spatial resolutions, different dimensions of methodically
introduced structural deformations and artifacts, and structures
of considerable intersubject variability. Therefore, a multiscale
and multimodal analysis must be based on an integration
of the various data in a common stereotaxic brain atlas
framework.

The International Neuroinformatics Coordinating Facility
(INCF) Digital Atlasing Project created such a standardized
framework, i.e., Waxholm Space, that operates as a connection
point between miscellaneous rodent brain data. The Waxholm
Space (WHS) is a common open access (http://software.
incf.org/software/waxholm-space) 3D reference space based
on high resolution magnetic resonance imaging (MRI) data
anchored in a standardized spatial coordinate system. It
also supports infrastructure for data exchange. The WHS
of the mouse brain (Hawrylycz et al., 2011) was extended
amongst others with neuroanatomic atlases (Goldowitz, 2010),
gene expression databases and MRI and diffusion tensor
imaging (DTI) (Johnson et al., 2010). Papp et al. (2014)

introduced and implemented the WHS atlas of the Sprague
Dawley rat brain. The WHS rat brain atlas currently only
contains high resolution MRI and DTI images, which served
as basis for the delineation of the 79 major anatomical
structures it depicts (Papp et al., 2014, 2015; Kjonigsen et al.,
2015).

Aim of the present study was to complement the WHS
rat brain atlas with information of cytoarchitecture, receptor
expression and spatial orientation of fiber tracts. Thus, we
processed entire postmortem brains of the Wistar rat for
three different neuroimaging techniques: microscopic analysis of
histological cell body stained serial sections for cytoarchitectonic
analysis, in vitro receptor autoradiography to demonstrate
muscarinic M2 receptor density distributions (Zilles et al.,
2002; Zilles and Amunts, 2010), and 3D Polarized Light
Imaging (PLI) for high resolution visualization of fiber tracts
(Axer et al., 2011a,b). Imaging of the cell body stained
sections enables a precise microscopical identification of
cytoarchitectonically definable areas and the visualization of the
spatial distribution of neurons. Quantitative in vitro receptor
autoradiography is a well established technique to visualize the
topographically heterogeneous distribution of neurotransmitter
receptors, the key molecules of signal transmission. 3D
PLI has been introduced recently and has opened up new
avenues to analyze the complex architecture of nerve fibers
and fiber tracts in postmortem brains at a microscopic
resolution.

All of the above mentioned techniques require brain
sectioning and mounting on glass slides, and this approach
results in a loss of spatial alignment between neighboring
sections. To obtain 3D brain models, the sections have to
be aligned, the artificial deformations must be corrected, and
3D reconstructions must be performed. Therefore, it was
necessary to improve currently available registration algorithms
and adapt them to the specific requirements inherent to
images obtained from receptor autoradiography and PLI.
Finally, the nature of the data acquired in the present
study also required the development of a novel registration
strategy which enables integration of large scale high-resolution
images of into the 3D MRI volume of the WHS rat
atlas.

The here provided data complementing the Waxholm Space
rat brain atlas will provide a multiscale and multimodal rat brain
model enabling for the first time combined studies on receptor
and cell distributions as well as fiber densities in the same
anatomical structures at microscopic scales. Furthermore it will
be publicly accessible through the Human Brain Project (HBP)
portal, intended for multi-parameter analyses, refinement of the
atlas labels, or further expansion via the proposed registration
strategies.
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2. MATERIALS AND METHODS

2.1. Tissue Processing and Image
Acquisition
2.1.1. Tissue Sectioning and Blockface Imaging
All animal procedures were approved by the institutional animal
welfare committee at the Research Centre Jülich, and were in
accordance with European Union (National Institutes of Health)
guidelines for the use and care of laboratory animals. The brain
of one adult male Wistar rat was used for the visualization of
cell bodies and of muscarinic M2 receptors. It is referred to as
the receptor brain. The brain of a second adult male Wistar
rat, which we refer to as the PLI brain, was processed for the
visualization of nerve fibers and fiber tracts. The receptor brain
was immediately deep frozen in isopentane at−50◦C and serially
sectioned in the coronal plane at 20µm thickness using a cryostat
microtome (Leica Microsystems, Germany). The ensuing 1362
sections were thaw-mounted onto glass slides and organized in
series of adjoining triplets of which one section was used for
visualization of cell bodies, and the other two sections were
processed for quantitative in vitro receptor autoradiography. The
PLI brain was immersion fixed in 4% buffered formaldehyde.
After two cryoprotection steps (10% glycerin for 3 days, followed
by 20% glycerin for 14 days at +4◦C), the brain was deep frozen
in isopentane at −50◦C and serially sectioned in the coronal
plane at 60µm thickness using the same cryostat microtome
(Leica Microsystems, Germany). The 446 ensuing sections were
placed on glass slides and stored at −80◦C in airtight plastic
bags until further processing. They were thaw mounted and
coverslipped with 20% glycerin the day before image acquisition
took place. During sectioning of both brains, blockface images
of every section were taken with a CCD camera (AVT Oscar
F-810 C, 3272 × 2469 pixels, 15µm × 15µm, RGB) which
was installed vertically above the cryostat, in order to obtain
undistorted reference images. Spatial resolution in the z-direction
was 20µm for images obtained from the receptor brain, and
60µm for images obtained from the PLI brain. A total of 1361
blockface images were taken for the receptor brain, and 446 for
the PLI brain.

2.1.2. Receptor Brain
A total of 452 sections from the receptor brain were stained
with a silver staining technique after (Merker, 1983). It results
in a staining of all cell bodies, which is different from the widely
used cresyl-violet stain of Nissl substance by its higher contrast
and more intense visualization of cytoarchitecture. The sections
processed for quantitative in vitro receptor autoradiography were
used to demonstrate the densities (in fmol/mg protein) of two
different receptor binding sites of the cholinergic muscarinic
M2 receptor, i.e., the agonistic and the antagonistic binding
site, according to previously published protocols (Zilles et al.,
2002; Palomero-Gallagher et al., 2013). Sections were incubated
with 1,7 nM 3H-oxotremorine-M (PerkinElmer, USA) or with
5 nM 3H-AF-DX 384 (PerkinElmer, USA) to visualize the
agonistic and antagonistic binding sites of the M2 receptor,
respectively. Binding assays were preceded by a preincubation in
the respective buffer to eliminate the endogenous transmitters

and finalized by a washing step. The labeled sections were
exposed together with plastic scales of increasing and known
radioactivity concentrations against beta-radiation (tritium) -
sensitive films, which were developed after 15 weeks.

The ensuing 430 autoradiographs of the agonistic binding site
of the M2 receptor as well as the 452 cell body stained histological
sections were digitized using a high resolution camera (Zeiss)
with an in-plane resolution of 5µm× 5µm ( 4164× 3120 pixels,
RGB). Since each of these sections was 20µm thick and sections
had been organized into triplets, the resulting spatial resolution in
the z-direction was 60µm for both the digitized autoradiographs
and the digitized histological sections. For further details of
quantification of receptor density in fmol/mg protein and color
coding see Zilles et al. (2002).

2.1.3. PLI Brain
The 446 sections from the brain cut at 60µm were used to
acquire 3D-PLI data reflecting the fiber architecture in gray and
white matter regions (cf. Axer et al., 2011b; Dohmen et al., 2015;
Menzel et al., 2015; Reckfort et al., 2015 for technical details).
Briefly, 3D-PLI utilizes the optical birefringence of brain tissue,
which is basically induced by the optical anisotropy of myelin
sheaths wrapped around axons. By passing linearly polarized
light through brain sections and by detecting the local changes in
the polarization state of light, a 3D description of the underlying
fiber architecture is derived. The imaging system used is a
polarimeter. The sections were successively scanned with a large-
area polarimeter (LAP), and subjected to an analysis workflow,
which comprises calibration, independent component analysis,
polarization analysis and calculation of fiber orientation maps
(FOMs). FOMs are the fundamental data structure provided by
3D-PLI and have an in-plane resolution of 64µm× 64µm, and,
since each section was 60µm thick, a spatial resolution in the z-
direction of 60µm. They contain a single 3D fiber orientation
vector per voxel, that is interpreted as the spatial orientation of
the fibers in this voxel.

2.2. 3D Reconstruction
2.2.1. 3D Reconstruction of Blockface Images
Non-linear deformations introduced by brain sectioning,
mounting and staining were corrected using blockface images as
undistorted references for the spatial alignment of histological,
autoradiographic and PLI images. Hence, in a first step the
blockface images had to be 3D reconstructed. In short, the here
applied robust and efficient reconstruction method consisted
of a two-phase registration: a marker-based alignment of the
blockface images and a refinement of the pre-reconstructed
volume using 3D information. First, the coordinates of markers
(circles) labeled on the microtome chuck were extracted. The
centers of the circles of neighboring images were aligned to each
other by means of a translation transformation. Processing all
images leads to an almost smoothly reconstructed 3D stack of
blockface images of the brain. However, this approach causes
perspective errors due to the different heights of the sectioning
plane and microtome chuck with the markers, and thus their
different distances to the camera lens. Therefore, in the second
part of the method the median along the z-direction of the
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marker-based reconstructed blockface volume was calculated to
eliminate the outliers caused by perspective errors. The number
of the images used by the voxelwise computation of this median
volume can be specified by the radius of the median. In a next
step, the marker-based reconstructed volume was aligned slice-
by-slice onto the median volume using a translation transform
estimated by an intensity based image registration algorithmwith
sum of squared differences as metric. By using this technique we
took advantage of 3D information in an actually 2D slice-by-slice
registration method. This led to an accurately aligned volume
of blockface images that was an important reference to recover
the spatial coherence of the non-linearly deformed sections
corresponding to the blockface images. The procedure of 3D
reconstruction of blockface images was introduced by Schober
et al. (2015) with modified markers for the reconstruction.
Finally, the reconstructed blockface volumes of the receptor and
PLI brains were separated from the surrounding by means of a
3D watershed algorithm. The 3D reconstruction was carried out
separately for images obtained from the receptor brain and for
those of the PLI brain. Thus, we obtained two distinct blockface
coordinate spaces (BCS): the BCS of the receptor brain (BCSR),
and the BCS of the PLI brain (BCSPLI).

2.2.2. 3D Reconstruction of Cyto- and Receptor

Architecture Images
After reconstruction of the blockface volume of the receptor
brain, each histological and autoradiographic image was aligned
to its corresponding blockface image. Due to the highly
different information each modality comprises (i.e., cell body
distribution patterns vs. M2 receptor densities), it was necessary
to establish different registration strategies. Each histological
section was rigidly aligned with its corresponding blockface
image. The centers of gravity of the brain tissue in blockface
and histological image were calculated and superimposed. To
determine the center of gravity, the separation of the brain tissue
from the background is required. This was done by means of
thresholding, extracting the largest connected component and
morphological operations. After alignment of the centers of
gravity a brute force optimizer tested all rotation angles with the
sum of squared differences as metric. Details are described in
Schubert et al. (2015). Reconstruction of the autoradiographic
images is considerably more challenging due to the fact that
receptors of a given type, in our case the muscarinic M2

receptor, are not necessarily expressed in all brain regions.
Furthermore, when present, they can occur at very different
concentrations throughout the brain. Thus, the range of gray
values present in an autoradiographic image is much larger
than that of a histological section. Therefore, the registration
has to compensate for “empty regions,” i.e., regions without
information in the images because that part of the brain does
not express the receptor in question. First of all, an intra-
stack registration matched consecutive autoradiographic images
by means of a scale-invariant feature transform algorithm that
detected characteristic points in the images based on their
gradient information. Afterwards, these points were rigidly
aligned by minimizing the Euclidean distance between them.
With this pre-registered autoradiographic volume we were able

to use a landmark based method to align the autoradiographic
images to their corresponding blockface images. In every 30th
image anatomical landmarks were manually set and the rigid
transformation between these landmarks was calculated. Between
these 30 images the transformations were interpolated and
applied to the autoradiographic images (Huynh et al., 2015).
Data acquisition and 3D reconstruction of the cyto- and receptor
architecture are illustrated in Figure 1. At the end of this
procedure, the 3D reconstructed histological volume and the 3D
reconstructed M2 receptor volume were each in the BCSR.

2.2.3. 3D Reconstruction of Fiber Architecture Images
The 3D reconstruction of the PLI data consists of two steps:
a rigid slice-by-slice registration of the PLI images to the
corresponding blockface images and a non-rigid refinement
method. The first step is based on estimating a transformation of
the PLI images to the corresponding image of the reconstructed
blockface volume by image registration. To align the PLI images
to the blockface images, the masks of the brain tissue of both data
sets are required. For that, the reconstructed blockface volume
was segmented by means of a 3D watershed algorithm and
the PLI images were manually segmented. Using the segmented
images the centers of gravity of the corresponding brain masks
were calculated and aligned. Based on this initial transformation,
an intensity based rigid registration was performed using mutual
information as metric. The second step, the refinement, was done
by means of a slice-by-slice B-Spline registration with sum of
squared differences as metric and a grid size of 5 × 6. At the end
of this procedure, the 3D reconstructed fiber volume was in the
BCSPLI .

2.3. Data Intergration into a Reference
Space
2.3.1. Waxholm Space Atlas
The WHS atlas of the Sprague Dawley rat brain is an open
access atlas based on a high resolution MRI and DTI template
in which both WHS and stereotaxic coordinates are defined.
The T2∗-weighted anatomical MRI (512 × 1024 × 512 pixels)
with an isotropic spatial resolution of 39µm was acquired ex
vivo by means of a 7T small animal MRI system. Anatomical
delineations in the atlas are based on image contrast observed
in T2*-weighted images and diffusion tensor images. Technical
details are described in Papp et al. (2014). The latest version of the
atlas contains 79 structures with new and updated delineations
of the hippocampal formation and parahippocampal region, as
described in Kjonigsen et al. (2015). The atlas is available from
the INCF Software Center (http://software.incf.org/software/
waxholm-space-atlas-of-the-sprague-dawley-rat-brain).

2.3.2. Data Integration into the Waxholm Space Atlas
In order to achieve an accurate analysis of the multimodal data
sets, we aligned the atlas data to the coordinate space of each
reconstructed data sets, i.e., to the BCSR and the BCSPLI by
means of an advance image registration. In the literature several
methods were proposed to integrate brain sections into 3D
data volumes. Strategies which rely on successively increasing
the degrees of freedom of the transformation demonstrated
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FIGURE 1 | The main steps of data acquisition and 3D reconstruction at the example of the receptor brain. Image acquisition: The brain was removed from

the head, blockface photographs were taken prior to sectioning, alternating sections were either used for cell body staining or receptor autoradiography. Volume

reconstruction: The blockface sections were reconstructed, the 3D reconstructed blockface volume served as undistorted reference for the reconstruction of

histological and autoradiographical sections. All modalities combined build a multimodal 3D model.

the best results. For instance, Dauguet et al. (2007) and Li
et al. (2009) suggested a two step procedure consisting of a
rigid transformation followed by non-linear transformations.
However, this approach has several drawbacks, since a rigid
transformation only aligns brain orientation, so that the brains
after this transformation still differ in size and shape. Non-
linear registrations work locally and, therefore, need well aligned
volumes as starting point, which a rigid transformation cannot
garantee. Lebenberg et al. (2010) added an affine transformation
between the rigid and non-linear transformations. This step
is also important for our data, due to the fact that the affine
transformation is able to align the size and shape of the brains
by scaling and shearing. However, since Lebenberg et al. (2010)
not only registered a single mouse hemisphere, but also excluded
the olfactory bulb and cerebellum, they were not confronted
with the challenges posed by trying to register the whole brains.
Therefore, modifications of their strategy are essential to enable
accurate registration of structures such as the olfactory bulbus,
or of even of the hemispheres, since they are independent of
each other at levels rostral of (or caudal to) the corpus callosum.
We used for all three transformations (rigid, affine and non-
linear) a pyramidal method, i.e., a coarse to fine approach, to
align initially large structures followed by aligning small and
fine structures, whereas Lebenberg et al. (2010) only applied
this multi-resolution approach to the affine transformation.
Furthermore, we computed the similarity of the brains by
means of Mutual Information, which is the best metric for
multimodal registration tasks (Rueckert et al., 1999), in all
three transformation steps, while Lebenberg et al. (2010) used
Correlation Coefficient in the affine registration step. Finally, we

studied the influence of the grid spacing used for the non-linear
transformation to achieve best possible results for the whole
brains, which was not tested by Lebenberg et al. (2010).

The T2*-weighted atlas MRI was aligned to the respective
reconstructed blockface volume. The estimated transformation
was then applied to the digital atlas delineations. To compensate
the variability between the atlas data and the rat brain data
sets (i.e., the 3D reconstructed histological, M2 receptor and
fiber volumes), the registration strategy consists of the successive
steps explained below (Figure 2). Initially, image parts belonging
to the rat brain of the MRI data set were separated from
the rest of the head using the atlas template. All voxels in
the MRI with their corresponding atlas label unequal to 0
were marked as “brain,” the other voxels were marked as
background. The resulting masked MRI containing only the
brain volume was used for the registration. Note that it was
necessary to perform two separate registrations, since we have
reconstructed blockface images in two separate spaces, namely
BCSR and BCSPLI . The procedure is the same in both cases and
encompasses the following registration steps: The T2∗-weighted
MRI was manually aligned to a few selected images from the
reconstructed blockface volume using the anchor a custom tool
for affine registration of histological images to brain atlas space
(Moene et al., 2011; Papp etal., 2016) in Navigator3. Then, the
transformations were automatically propagated to the remaining
images. These steps can be iterated with different parameters
to prioritize specific boundaries or structures. Afterwards, the
manually aligned MRI was automatically re-oriented to match
the spatial orientation of the blockface volume. A global 3D affine
registration initialized with the previously computed parameters
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FIGURE 2 | Registration of Waxholm Space atlas with rat brain data in blockface coordinate space (BCS) at the example of the receptor brain. Steps

(1)–(3) performs the alignment of the WHS MRI to the blockface volume. Step (4) applies the estimated transformation from Steps (1)–(3) to the atlas. This yields the

3D atlas model of multimodal rat brain data.

was then optimized with normalized mutual information as
similarity measure. To speed up the registration and prevent
local minima a coarse to fine multiresolution approach was used
which consisted of six levels of Gaussian smoothing pyramids.
Finally, a 3D non-linear registration based on cubic B-Splines
was used to refine the former parameters and local discrepancies.
Again, normalized mutual information was chosen as similarity
measure, and a pyramidal approach was used. The manual
anchoring as well as the automatic 3D affine and non-linear
transformations were directly applied to the atlas template
with one exception. Instead of cubic B-Spline interpolation we
used nearest neighbor interpolation to preserve accurate label
boundaries and avoid gaps. We employed elastix (Klein
et al., 2010) for the 3D registration. After registration to the
respective blockface volumes, the resulting volume dimensions of
the MRI and atlas template equal the dimensions of the blockface
volume coordinate space: 996× 1356× 1361 pixels with a spatial
resolution of 15µm × 15µm × 20µm for the receptor brain
(BCSR), and 588 × 723 × 446 pixels with a spatial resolution of
22µm× 22µm× 60µm for the PLI brain BCSPLI .

2.3.3. Evaluation of the Registration Results
Qualitative evaluation of the registration results in terms of
anatomical accuracy was done by superimposing the alignedMRI
and the blockface volume to compare the external borders and
internal structures, as well as superimposing the atlas contours
with the cyto-, muscarinic M2 receptor and fiber architecture.

Quantitative evaluation was performed by computing the
quality of the alignment of atlas based segmented and receptor
or PLI based segmented structures. Two structures which are
defined in the WHS atlas were used: the pial brain surface, and
the hippocampal formation. In our datasets different strategies
were used to generate the pial surface contour and that of the
hippocampal formation: The surface of the entire brains was

segmented with a 3D watershed algorithm, and the hippocampal
formation was manually delineated on the original images
by two of the coauthors (NP-G and KZ). A comprehensive
evaluation suggests the use of three uncorrelated measures
that cover different aspects of the segmentation: an overlap
measure (e.g., Dice coefficient), the Hausdorff distance and the
average surface distance (Handels, 2000; Heimann et al., 2004).
The Dice coefficient (DC) (Dice, 1945) assesses the overall
overlap of the segments, it is sensitive to misplacement of the
segments, but gives less weight to outliers. The average surface
distance (ASD) and the Hausdorff distance (HD) determine the
discrepancy of the surface of the segments. ASD is defined as
the average error of all distances. A small ASD indicates a small
error and variance between the segments. The HD returns the
maximum distance between the segments, and therefore the
maximum error. It is sensitive to outliers. The measurements
were determined between an atlas based segmented structure
A and the corresponding receptor or PLI based segmented
structure B. The DC calculates the spatial overlap accuracy of
two segmented structures A and B, whereby 0 is the result of
disjunct segments and 1 is the result of a perfect agreement of the
segments. With | · | denotes the number of voxels in the respective
segmented structure, the DC is:

DC(A,B) =
2|A ∩ B|

|A| + |B|
(1)

The ASD determines theminimal distance inmm of one segment
to the other and vice versa. This value is 0 for a perfect
registration.

ASD(A,B) =

∑

a∈A
min
b∈B

d(a, b)+
∑

b∈B

min
a∈A

d(b, a)

|A| + |B|
(2)
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The HD is defined as the maximum distance in mm of a segment
to the nearest point in another segment and vice versa. A low HD
indicates a good match.

HD(A,B) = max(h(A,B), h(B,A)) with h(A,B)

= max
a∈A

min
b∈B

d(a, b) (3)

with the Euclidean distance d between point a and b.
Note, that the aim of this procedure was not to prove that our

definition of pial surface or hippocampal formation is better than
that of the WHS atlas. We only wanted to determine whether
the overlap could be improved (i.e., differences could be reduced)
with different algorithms.

2.4. Hard- and Software
The processing was partially done using high-performance
computing tools and supercomputing facilities of the Jülich
Supercomputing Centre, Germany [Juelich Dedicated GPU
Environment (JuDGE)], as well as the in-house Solaris computer
cluster. Custom C++ software programs using ITK, elastix,
OpenCV, MPI, OpenMP, QT and OpenGL performed the 3D
reconstruction of the postmortem rat brains, the data integration
into the WHS atlas, and furthermore the evaluation and the
visualization of the results.

3. RESULTS

The registration of the atlas MRI volume to the respective
blockface volume was done in three subsequent steps: rigid,
affine and non-linear B-Spline based registration. All three steps
used the Adaptive Stochastic Gradient Descent approach for
optimization. A multi-resolution registration with six levels
was used to overcome local minima problems. The brain
volumes were downsampled by a factor of 2 compared to
the next resolution level. The similarity of the intensity
values of blockface and MRI data was determined with the
Mutual Information metric, which was specifically developed
for multimodal data sets (Viola and Wells, 1997). As expected,
the matching of brain structures from the different modalities
improved considerably with increasing degrees of freedom of the
transformations. Considerable differences were found after the
rigid registration. The affine registration improved the matching,
but still differences existed. The application of the non-linear
registration led to a high matching quality. It took 39 min for the
PLI brain (rigid 5 min 16 s, affine 5 min 16 s, B-Spline 28 min 30
s) and 66 min for the receptor brain (rigid 11 min 33 s, affine 12
min 8 s, B-Spline 42 min 18 s).

3.1. Qualitative Evaluation
The results after each step are illustrated as checkerboard
images of blockface and MRI volumes in three orthogonal views
(coronal, horizontal and sagittal, c.f. Figure 3). Regarding the
differences in size and shape of the brains, it was recognizable
that these differences nearly disappeared from rigid, affine to
non-linear registration transformation. Depending on the actual
registration method, considerable to minor differences could be
easily detected at three sites: the outer surface of the entire brain,

the olfactory bulb and the cerebellum. The blockface volume of
the entire brain was wider, that of the olfactory bulb was deflected
and laterally displaced, and the cerebellum of the blockface
volume was more flattened compared to the MRI volume. The
difference between the outer surfaces (Figure 3, green circles)
decreased after affine registration and disappeared after the non-
linear registration. The position of cerebella (Figure 3, blue
circles) and olfactory bulbs (Figure 3, yellow circles) considerably
differed between blockface and MRI volumes. This could not
be compensated by linear and global transformations. Only
non-linear registration fitted these structures. In conclusion,
rigid transformation sufficiently centered the brains, affine
registration compensated differences in size and shape of the
brains, and finally, non-linear registration aligned both small
local mismatches and also large differences (c.f. olfactory bulb
and cerebellum).

The cytoarchitectonic, M2 receptor distribution, and fiber
orientation volumes were superimposed with the atlas to
demonstrate the quality of the match between the reconstructed
and the atlas volumes (Figures 4, 5).

In both brains, the overall matching quality was high,
particularly at the anterior commissure (Figure 4, magenta
arrow) and the corpus callosum (Figure 5, green arrow). In the
receptor brain, the artificial gap between the hemispheres was
caused by the removal of the unfixed brain from the skull, which
resulted in an anti-clockwise rotation and lateral displacement
of the hemispheres and thereby local mismatches at the mesial
cortical surface, the border between the retrosplenial cortex and
the underlying white matter, and the medial protrusion of the
neocortex in direction to the hippocampus (Figure 4, yellow
arrows). The differences between the position and shape of the
cerebella in the atlas and the reconstructions led to further
mismatches (Figure 4, red arrows), which were not compensated
by the registration. In the PLI brain, minor mismatches were
found at the outer surface of the brain (Figure 5, red arrows) and
the cerebellum (Figure 5, yellow arrow). The better match of the
PLI brain is understandable, because the receptor brain was not
fixed and therefore, more prone to distortions whereas the PLI
brain was fixed before deep freezing.

3.2. Quantitative Evaluation
The quality of alignment between the atlas and the reconstructed
volumes was estimated by comparing the topography of the
surface of the entire brain and of the hippocampal complex
using three different measures introduced in Section 2.3.3.
The surface of the entire brains was segmented with a 3D
watershed algorithm. The atlas labels were used to extract
the surface of the entire brain and hippocampal complex.
The outer contour of the hippocampal complex was manually
traced in the M2 and the FOM sections by experienced
neuroanatomists. The hippocampal complex comprises the
Cornu Ammonis regions 1, 2, and 3, the dentate gyrus
and the subicular complex with the subiculum, presubiculum
and parasubiculum. The hippocampal complex spans a wide
portion of the brain in both the rostrocaudal and dorso-
ventral directions, and can be used to demonstrate the
registration quality for inner anatomical structures. Since the
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FIGURE 3 | Checkerboard images of the blockface volume of the receptor brain and the T2∗-weighted atlas MRI template after each registration step:

rigid (first row), affine (second row) and non-linear (third row). Considering size and shape of the brain and especially its outer surface (green circles), cerebella

(blue circles) and olfactory bulbs (yellow circles) the matching quality increased with increasing degree of freedoms of the transformations.

FIGURE 4 | Superimposition of the atlas structures (white contours) on the histological volume of the receptor brain (upper row) and on the M2

receptor density distribution volume (lower row). The color legend of the lower row denotes the distribution of M2 receptor densities (red: high, black: low). The

overall matching quality is high, especially at the anterior commissure (magenta arrow). The gap between the hemispheres results in small mismatched boundaries

(yellow arrows). The high differences of the cerebella in location and shape yields some small discrepancies (red arrows).
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FIGURE 5 | Superimposition of the contours of the atlas delineations on the Fiber Orientation Maps (FOMs) of the PLI brain. The color sphere indicates

the direction of the fiber orientation. A high matching quality is observable, especially at the corpus callosum (green arrows). Some small discrepancies are visible at

the outer surface of the brain (red arrows) and the cerebellum (yellow arrow).

spatial location of the olfactory bulbs differed between MRI
and blockface volumes, and caused far-reaching effects on the
registration quality of many other brain structures, particularly
at rostral levels, the quantitative evaluation was carried out with
registrations with or without the olfactory bulbs. An important
registration parameter was the spacing of the control points
in the B-Spline grid, which indicates the flexibility of the
transformation. A low spacing guaranties a high flexibility of the
transformation.

The results of the comparisons after each registration step
using different spacing of the control points are shown in
Figure 6. Using the Dice coefficient, the affine registration was
sufficient to reach a high matching of the entire brain and
the hippocampal complex well above 0.7, which is commonly
accepted as a limit for a good match (Zijdenbos et al., 1994).
However, the measures improved significantly after the non-
linear B-Spline registration. The Dice coefficient and the average
surface distance reached their optimum at middle flexibility of
the transformation grid for the entire brain comparison. The
Hausdorff distance reached an optimum at high flexibility. This
is caused by the fact that the artificial displacements of the
olfactory bulbs were compensated. However, this led to undesired
transformations of brain structures at rostral levels. That was
also reflected in the quantitative evaluation of the hippocampal
complex. Here, the best results were achieved by the relatively
less flexible affine registration (receptor brain), or after a non-
linear registration at low flexibility levels (PLI brain). Comparing
the results after registration without inclusion of the olfactory
bulbs, the measures improved significantly for the hippocampal
complex in the receptor brain. In contrast to the receptor brain
the results between the registration with or without the olfactory
bulbs did not considerably differ. In Table 1 the results are
summarized.

4. DISCUSSION

The study aimed at integrating multimodal (i.e.,
cytoarchitectonic, muscarinic M2 receptor distribution and
fiber orientation data) and multiscale (i.e., mesoscopic resolution
of blockface images and MR data of the 3D digital WHS Atlas,
and microscopic resolution of sections) data in a common

stereotaxic reference space. This was achieved by linear and
non-linear registration. The qualitative and quantitative
evaluations demonstrated a good matching of all data sets. We
selected the whole brain, and additionally the hippocampal
complex, that spans a wide distance within the brain in both the
rostro-caudal and dorso-ventral directions, as examples to prove
the quality of the methods of registration.

4.1. Methodic Challenges
4.1.1. 3D Reconstruction
The 3D reconstruction of rodent brains is often carried out by
means of rigid or affine registration transformations guided by
blockface images (Ourselin et al., 2000; Lebenberg et al., 2010)
or by volumes obtained from MRI (Li et al., 2009; Yang et al.,
2012). We used blockface images for the reconstruction, due to
the fact that they provide largely undistorted reference images
of the brain sections. Furthermore, a reconstructed blockface
volume is an excellent reference template, particularly if a real
3D volume (e.g., MRI volume) is missing or the resolution of
the respective MRI volume is not appropriate (Schober et al.,
2015). A particular challenge of the 3D reconstruction was
the differential deformation of the brains inevitably caused by
different tissue processing techniques. While the PLI brain was
fixed and deep frozen before sectioning, the receptor brain
was just deep frozen to maintain the receptor architecture.
The fixation and deep freezing of the PLI brain introduces
less deformations compared to the native brain size and shape
than the deep freezing of the unfixed receptor brain (e.g.,
location of olfactory bulb). The sectioning procedure and
mounting of sections from fixed brains also results in less
deformations than that of sections from unfixed brains. To
compensate these deformations, we performed, in addition
to the common linear reconstruction strategies, non-linear
transformations, which results in largely good reconstruction
results. However, the anti-clockwise rotation of the hemispheres
during the mounting procedure together with the more fragile
nature of these unfixed cryostat microtome sections could not
be completely eliminated at some sites (Figure 4, yellow arrows).
A further challenge was the different information provided
by the different modalities, e.g., “empty regions” (c.f. Section
2.2.2) in sections of the receptor brain. Therefore, particular
reconstruction strategies were necessary for each modality,
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FIGURE 6 | Diagrams of the quantitative analyses of the Dice coefficient (DC), Hausdorff distance (HD) and Average Surface distance (ASD) from rigid,

affine to non-linear transformations, whereby numbers 20–100 describes the flexibility of the grid (20 -high flexibility, 100-low flexibility). The upper row

illustrates the registration results of the receptor brain and the lower row demonstrates the registration results of the PLI brain. Diagrams in the first column indicate the

results of the analyses of the whole brains (wb), the diagrams in the second column indicate the results of the analyses of the hippocampal complex (hc). The last two

columns show diagrams of the analyses of the wb (3rd column) and the hc (4rd column) after a registration excluding olfactory bulb (ob). The best results of the

quantitative and the qualitative analyses are marked with yellow rectangles.

TABLE 1 | The quantitative evaluation is measured by Dice coefficients (DC), Hausdorff distances (HD) and average surface distances (ASD) between

receptor and PLI based and atlas based segmented structures, considering the whole brain and an internal structure, the hippocampal complex.

Cyto- and receptor architecture Fiber architecture

Rigid Affine Non-linear Rigid Affine Non-linear

Entire brain Whole brain DC 0.852 0.887 0.981 0.898 0.919 0.976

HD 3.112 3.331 1.000 2.291 2.138 1.139

ASD 1.085 0.952 0.592 0.810 0.767 0.588

Hippocampal

complex

DC 0.642 0.776 0.75 0.757 0.783 0.84

HD 1.158 0.92 1.553 1.279 0.877 0.982

ASD 0.332 0.226 0.238 0.235 0.186 0.137

Brain without olfactory bulb Whole brain DC 0.848 0.907 0.978 0.912 0.932 0.971

HD 2.853 2.572 1.124 2.348 2.141 0.946

ASD 1.208 0.929 0.645 0.808 0.788 0.661

Hippocampal

complex

DC 0.655 0.766 0.824 0.768 0.795 0.841

HD 1.177 1.010 0.961 1.205 0.961 0.956

ASD 0.323 0.235 0.163 0.224 0.174 0.135

The Dice coefficient ranges between 0 and 1, 1 indicates full overlap. Lowest Hausdorff distance and average surface distance values indicate best alignments. The best results are

labeled bold.

e.g., landmarks were interactively introduced in the receptor
images, which was not required in the cytoarchitectonic and
fiber tract images, because the latter images do not contain
empty regions. In particular the strategy developed to solve
problem of empty regions in receptor autoradiograhps represents
a crucial step forwards in the reconstruction of future datasets
coding for the regional and laminar distribution patterns of
receptors, this is a recurrent problem, but the brain structures
that do not express a certain type of receptors, or do so only

at extremely low densities, vary considerably between receptor
types.

4.1.2. Data Integration
Althoughmany studies described the registration of 3D data, e.g.,
MRI volumes, to 3D atlases of rodent (Sergejeva et al., 2015)
or human brains (Collins and Evans, 1997), only a few studies
registered postmortem rodent brain sections to an MRI volume
based atlas (Lebenberg et al., 2010, 2011; Abdelmoula et al.,
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2014; Sergejeva et al., 2015). Lebenberg et al. (2010) published
the alignment of autoradiographic and histological data of one
hemisphere of the mouse brain into a 3D digital MRI based
atlas by means of a three step strategy containing rigid, affine
and non-linear (elastic) transformations using the reconstructed
blockface volume as intermediate modality between atlas and
postmortem data. Abdelmoula et al. (2014) used a similar
method to transfer mass spectrometry data into the Allen
Mouse Brain atlas (Goldowitz, 2010) via affine and non-rigid
B-Spline based registration. Sergejeva et al. (2015) identified
anatomical landmarks in MRI, blockface or histological images
for a landmark based affine registration of these data to the WHS
rodent atlases (Johnson et al., 2010).

Since the 3D reconstructed receptor and PLI brains as well
as the WHS Atlas brain slightly differed in size and shape of
the entire brain and its inner structures, and the use of a non-
linear registration is indispensable, we improved the three step
registration strategy published in Lebenberg et al. (2010) by the
constant use of a multi-resolution registration, i.e., application
of a pyramidal method to all three transformation steps and
of a similarity criterion (Mutual Information) as an optimal
metric formultimodal registration tasks, and testing the influence
of the grid spacing used by the non-linear transformation
on the registration results. The combination of linear and
non-linear transformations of the brains, and the use of the
blockface volume as intermediate modality between fiber, cyto-
and receptor architectonic and MRI data provided a maximal
concordance of the brains. Rigid and affine transformations
optimized thematching of the position of the different brains and
compensated global shearing and scaling misalignments. Local
structural adaptations were done with the non-linear B-Spline
based registration. A crucial parameter was the flexibility of the
B-Spline grid. With higher flexibility the algorithm generally
works more accurately, but unrealistic deformations can be
induced. This is illustrated by increasing the grid flexibility, which
led to best overlap and distance results with the atlas brain
(Figure 6). The overlap of the receptor or PLI brains and the
MRI brain of the atlas was nearly perfect (Dice coefficients of
0.98 for M2 receptor brain; 0.97 for the PLI brain), but structures
within the forebrain, the olfactory bulb and the cerebellum were
unrealistically deformed. To overcome this problem, a lower
grid flexibility was chosen, although this led to a lower overlap
of the entire brains, with special focus in the region of the
olfactory bulb. Since the position of the bulb in the receptor
and the PLI brain does not reflect its natural position, but
is extremely deformed by the necessary preparation steps for
receptor autoradiography and PLI measurement, the sections
through the bulb were excluded from the registration. This led
to a much better overlap and improved distance measurements
of the hippocampal complex, particularly in the receptor brain,
and still to a good matching of the entire brains well above (Dice
coefficient of 0.84 for both brains). Although the quantitative
evaluation was based on automatically extracted contour in the
case of the whole brain and on manually defined contours in the
case of the hippocampus, a comparison of the results obtained
for both structures reveals a high consistency. Likewise, although
the quantitative evaluation of the matching of the hippocampal

complex was based on independent delineations in the receptor,
PLI and MRI brains by different experienced neuroanatomists,
the results demonstrated high congruence of the different
delineations of the hippocampal complex. This registration
strategy was very effective in most brain regions. However, the
remaining anti-clockwise rotation of the hemispheres in the
fragile sections of the unfixed receptor brain and the mismatch
between the neocortex and hippocampus in the center of the
section (Figure 4) would only be compensated with an extremely
high flexibility of the B-Spline grid. This would introduce large
undesired artificial deformations in adjoining brain regions,
which are biologically unrealistic.

4.2. Limitations and Applications
We are aware that there are a series of putative limitations
in the present study. One of them is that different sectioning
thickness had to be used for processing of the receptor and PLI
brains due to technical constraints. The PLI method requires
fixation of brain tissue as well as a minimal section thickness
in order to enable extraction of information concerning the
direction of the fibers, and previous studies from our group
have shown 60µm to be an optimal thickness (Axer et al.,
2011a,b). Quantitative in vitro receptor autoradiography requires
usage of unfixed deep-frozen brains, since the method is based
on the fact that the receptors to be visualized must maintain
their ability to bind the radioactively labeled ligand present in
the incubation buffer (Zilles et al., 2002). Unfortunately, it is
technically not possible to obtain 60µm thick sections tissue
preprocessed in this manner, and, therefore, we used 20µm
thick sections. However, the different section thicknesses were
accounted for during 3D reconstruction, so we do not think
this poses a problem for the registration of our different image
modalities to the WHS atlas. Quite the contrary, the methods
developed here to overcome these differences in section thickness
will facilitate future inclusion of multiscale data into theWHS rat
atlas or the WHS mouse atlas.

Our cyto-, M2 receptor, and fiber architectonic datasets were
obtained from adult Wistar rat brains, whereas the WHS atlas
is based on an MRI scan of an adult Sprague Dawley rat (Papp
et al., 2014, 2015; Kjonigsen et al., 2015), and the fact that
brains from different rat strains have been used may also be
viewed as a putative problem. However, this issue has been
addressed in the past and is not thought to constitute a problem,
since comparison of the cyto- and chemoarchitecture of the
hippocampal formation in different rat strains has shown it
to be a highly conserved brain structure (Kjonigsen et al.,
2015).

A large variety of 3D digital atlases based on MRI or
reconstructed histological or histochemical sections are available
for rodent brains (Goldowitz, 2010; Dorr et al., 2008; Li
et al., 2009, 2010; Johnson et al., 2010), nonhuman primate
brains (Paxinos et al., 2000; Calabrese et al., 2015) and human
brains (Hawrylycz et al., 2012; Shen et al., 2012; Amunts
et al., 2013; Amunts and Zilles, 2015). Compared to the
current available atlases the WHS (Hawrylycz et al., 2011; Papp
et al., 2014) is an unique framework operating as a hub of
an infrastructure connecting rodent brain data and reference
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FIGURE 7 | 3D visualization of the fiber architecture in the corpus callosum (left) and of the receptor architecture of the superior colliculus (right). Both

structures were extracted using the delineations of the Waxholm Space atlas.

spaces. To enrich this framework with cyto-, M2 receptor
and fiber architecture provides a valuable extension to master
analyses of the enormous structural complexity of the brain
data.

4.3. Conclusion
We developed a tool to register multiscale and multimodal
rat brain data to the WHS atlas brain. It enables retrieval
of detailed information of volume densities of cell bodies,
of neurotransmitter receptor densities, and of fiber tract
architecture and orientation in microscopically identified brain
regions (c.f. Figure 7).

Therefore, our results considerably expand the data base of
the WHS. Furthermore, the methods developed in the present
study enable future integration of data of other modalities, which
can further enhance the neuroscientific impact of the atlas. The
3D reconstructions of the cyto-, receptor and fiber architectonic
images registered to WHS will be publicly accessible through the
Human Brain Project (HBP) portal.
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The connectivity of the brain is continuously adjusted to new environmental influences

by several activity-dependent adaptive processes. The most investigated adaptive

mechanism is activity-dependent functional or synaptic plasticity regulating the

transmission efficacy of existing synapses. Another important but less prominently

discussed adaptive process is structural plasticity, which changes the connectivity by

the formation and deletion of synapses. In this review, we show, based on experimental

evidence, that structural plasticity can be classified similar to synaptic plasticity into two

categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the

number of synapses during phases of high (low) neuronal activity and (ii) homeostatic

structural plasticity, which balances these changes by removing and adding synapses.

Furthermore, based on experimental and theoretical insights, we argue that each type

of structural plasticity fulfills a different function. While Hebbian structural changes

enhance memory lifetime, storage capacity, and memory robustness, homeostatic

structural plasticity self-organizes the connectivity of the neural network to assure

stability. However, the link between functional synaptic and structural plasticity as well as

the detailed interactions between Hebbian and homeostatic structural plasticity are more

complex. This implies even richer dynamics requiring further experimental and theoretical

investigations.

Keywords: structural plasticity, architectural plasticity, timescales, synaptic plasticity, network topology

INTRODUCTION

Information from the environment leads to the activation of neural subnetworks in the brain.
The connectivity of these neural subnetworks, i.e., the existence and strength of synapses between
neurons, influences the neuronal activation and, thereby, determines the way environmental
information is processed. Accordingly, the long-term storage of information is related to activity-
dependent (long-lasting) changes in connectivity (Hebb, 1949; Morris et al., 1986; Rioult-Pedotti
et al., 1998; Leuner et al., 2003; Pastalkova et al., 2006;Whitlock et al., 2006; reviewed, e.g., inMartin
et al., 2000; Chklovskii et al., 2004; Dudai, 2004; Hübener and Bonhoeffer, 2010). Basically two
types of activity-dependent mechanisms yield such changes: synaptic or functional plasticity and
structural plasticity. Structural or architectural plasticity determines the formation and removal
of synapses. On the other hand, synaptic or functional plasticity changes the electrochemical
transmission efficacy of synapses by altering, for instance, the receptor configuration of the
postsynaptic site. Note, as we will show, this functional synaptic plasticity is associated with
structural changes at existing synapses (size, postsynaptic density, etc.) and these changes are
sometimes summarized as structural plasticity (Lamprecht and LeDoux, 2004). However, here we
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restrict structural plasticity to changes of the number of synapses
(and of axonal/dendritic trees) and refer the long-term functional
changes at existing synapses as synaptic plasticity.

The alterations of the transmission efficacy by synaptic
plasticity depend on the level of neuronal activation. However,
the mapping between activity level and triggered synaptic
changes is not unique. In general, they are categorized into two
classes: Hebbian and homeostatic synaptic plasticity. Hebbian
synaptic plasticity yields an increase in synaptic efficacy given
high neuronal activities (long-term potentiation; LTP; Bliss and
Lomo, 1973; Lynch et al., 1983; Bliss and Collingridge, 1993; see
Feldman, 2009 for a review), while low levels of activity induce a
decrease (long-term depression; LTD; Lynch et al., 1977; Dudek
and Bear, 1992; Mulkey and Malenka, 1992; see Collingridge
et al., 2010 for a review). Thus, Hebbian synaptic plasticity
basically maps the neuronal activation onto the synaptic efficacies
or rather connectivity (high activity→ stronger connections; low
activity → weaker connections; Hebb, 1949; Bliss and Lomo,
1973; Dudek and Bear, 1992; Kirkwood et al., 1996). These
changes in the connectivity, in turn, influence the neuronal
activities. Along these lines, theoretical studies show (Rochester
et al., 1956; Riedel and Schild, 1992; Gerstner and Kistler,
2002; Kolodziejski et al., 2010) that Hebbian synaptic plasticity
alone induces a positive feedback loop leading to unrestricted
synaptic (and thus neuronal) dynamics. On the other hand,
homeostatic synaptic plasticity, as synaptic scaling (Turrigiano
et al., 1998), act conversely to Hebbian synaptic plasticity. If
neuronal activities are high, synaptic efficacies are decreased,
while, if activities are low, efficacies are increased (high activity
→ weaker connections; low activity → stronger connections;
Turrigiano et al., 1998; Hou et al., 2008, 2011; Ibata et al.,
2008). Thereby, homeostatic synaptic plasticity alone induces a
negative feedback loop and, thus, stabilizes the dynamics. As
several theoretical results indicate (Tetzlaff et al., 2011; Zenke
et al., 2013; Toyoizumi et al., 2014), the combination of both
plasticity processes lead to desired, stable dynamics.

We will argue in this review that, analogous to functional
synaptic plasticity, structural plasticity can also be categorized
into two different classes of activity-dependency: (i) One class
of structural changes maps features of the neuronal activity
onto the connectivity, such that the connectivity is strengthened
with high activity levels and vice versa. These changes will
be referred to as Hebbian structural plasticity (Hebb, 1949;
Helias et al., 2008). (ii) The other class of structural changes
weakens (strengthens) the connectivity given high (low) neuronal
activities and, thus, stabilizes the dynamics. This class is named
homeostatic structural plasticity (Butz et al., 2009).

Note, this classification is phenomenological. Changes in
connectivity (synaptic as well as structural) are not directly
linked to neuronal activity. Neuronal activity initiates such
changes by triggering secondary processes as molecular signaling
cascades, which lead to the corresponding changes. For the
here discussed plasticity processes, these underlying signaling
cascades can have different degrees of similarity, which we will
not consider in detail. The focus of this review is to systematize
the qualitative links between the neuronal activity level and
resulting connectivity changes.

Moreover, we focus on morphological changes of connections
between excitatory neurons only. The dynamics of inhibitory
synapses has been reviewed, for instance, by Vogels et al. (2013)
for inhibitory synaptic plasticity and by Flores and Méndez
(2014) for inhibitory structural plasticity. Further non-synaptic
homeostatic mechanisms stabilizing neural network dynamics
have been reviewed in Turrigiano andNelson (2004), Marder and
Goaillard (2006), or Yin and Yuan (2014).

In the following, as structural and synaptic plasticity are linked
to each other, we first briefly outline the main findings for
synaptic plasticity. Then, we review the morphological changes
of synapses induced by synaptic plasticity and relate these
changes to the dynamics of synapses and, thus, to structural
plasticity. Following this, we summarize the experimental
evidence of activity-dependent structural changes and categorize
these, similar to synaptic plasticity, into the two classes of
Hebbian and homeostatic structural plasticity. We also briefly
review indications of Hebbian and homeostatic processes
occurring during development. Finally, we sort theoretical
investigations studying the dynamics of structural plasticity
by this categorization and, based on their results, arrive at
conclusions about the different functional roles of Hebbian and
homeostatic structural plasticity.

ACTIVITY-DEPENDENT SYNAPTIC
PLASTICITY

The most investigated long-term plasticity in neuronal systems is
synaptic plasticity. This mechanism adapts synaptic efficacies (by,
e.g., altering the number of AMPA receptors at the postsynaptic
site) between neurons dependent on the neuronal activation. One
distinguishes between two different forms of synaptic plasticity:
(i) Hebbian synaptic plasticity and (ii) homeostatic synaptic
plasticity.

(i) Hebbian synaptic plasticity adapts the synaptic efficacies
seconds or minutes after onset of a stimulus-induced
neuronal activation. In general, neuronal activity induces
a calcium influx into the postsynaptic site inducing a
complex molecular cascade which changes, amongst others,
the number of AMPA receptors determining the synaptic
efficacy (Kauer et al., 1988; Muller and Lynch, 1988; Shi
et al., 1999; reviewed, e.g., in Malenka and Bear, 2004).
Many experiments show that a low calcium level (thus
a low neuronal activity level) leads to a decrease of the
number of AMPA receptors (long-term depression: LTD;
Lynch et al., 1977; Dudek and Bear, 1992; Mulkey and
Malenka, 1992; Beattie et al., 2000; see Collingridge et al.,
2010 for a review) while a high calcium level yields an
insertion of new ones resulting in a stronger synaptic efficacy
(long-term potentiation: LTP; Bliss and Lomo, 1973; Lynch
et al., 1983; Malenka et al., 1992; Bliss and Collingridge,
1993; see Feldman, 2009 for a review). Thus, after several
minutes, Hebbian synaptic plasticity maps the strength of
the stimulus onto the strength of the synaptic transmission.
Note, synapses from several input sources connecting to
the same postsynaptic neuron can interact with each other
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yielding cooperative and competitive dynamics (Miller,
1996). Moreover, the change of the synaptic efficacy can
also depend on the relative timing of pre- and postsynaptic
action potentials (spike-timing-dependent plasticity: STDP;
Levy and Steward, 1983; Gerstner et al., 1996; Markram
et al., 1997b; Bi and Poo, 1998; see Markram et al., 2011
for a review), such that also temporal correlations might
be mapped onto the synaptic efficacies. However, as several
theoretical studies indicate, Hebbian synaptic plasticity alone
induces a positive feedback loop leading to unrestricted
growth of the synaptic efficacy (Rochester et al., 1956; Riedel
and Schild, 1992; Gerstner and Kistler, 2002; Kolodziejski
et al., 2010). In other words, if a stimulus drives the firing of
the postsynaptic neuron, LTP potentiates the corresponding
synaptic efficacy and, by this, induces a stronger input drive
which, in turn, generates more potentiation and so forth.
Thus, Hebbian synaptic plasticity alone would yield unstable,
divergent dynamics of the synaptic efficacies.

(ii) Another process adapting the transmission strength of a
synapse is homeostatic synaptic plasticity. Several different
homeostatic processes dampen the dynamics of neuronal
systems on various levels (Zhang and Linden, 2003;
Turrigiano and Nelson, 2004; Marder and Goaillard, 2006;
Turrigiano, 2011; Yin and Yuan, 2014). Thus, it is reasonable
that homeostatic processes, like synaptic scaling, also adapt
synaptic efficacies (Turrigiano et al., 1998; Hengen et al.,
2013; Keck et al., 2013). Amongst others, this mechanism
depends mainly on the average postsynaptic activity (Ibata
et al., 2008). Here, in contrast to Hebbian synaptic plasticity,
if the neuronal activity is high, the synaptic efficacies are
decreased and, if the activities are low, the efficacies are
increased (Turrigiano et al., 1998; Burrone et al., 2002; Kim
et al., 2012). Hereby, synaptic scaling is unspecific, i.e., it
scales all synapses onto a postsynaptic neuron preserving
relative differences between synaptic efficacies induced by
Hebbian plasticity (Turrigiano, 2008). However, several
experiments indicate (e.g., Turrigiano et al., 1998; Hengen
et al., 2013; Keck et al., 2013, but see also Ibata et al.,
2008) that, compared to Hebbian synaptic plasticity, this
process is much slower (hours to days) which complicates
the analysis of both processes within the same experimental
setup (Vitureira and Goda, 2013). Nevertheless, theoretical
investigations show that synaptic scaling is one way to solve
the problem of unrestricted growth discussed above (Tetzlaff
et al., 2011; Zenke et al., 2013; Toyoizumi et al., 2014). Please
note that there are also other solutions proposed to solve
this problem (von der Malsburg, 1973; Sejnowski, 1977a,b;
Bienenstock et al., 1982; Oja, 1982).

In summary, investigations in the field of synaptic plasticity show
that, at least, two classes of processes adapt synaptic efficacies:
Hebbian synaptic plasticity and homeostatic synaptic plasticity.
Hereby, Hebbian synaptic plasticity maps neuronal activities
onto the synaptic efficacies (high act. → stronger connect.;
low act. → weaker connect.), which are, in turn, stabilized by
homeostatic processes (high act.→ weaker connect.; low act.→
stronger connect.).

ACTIVITY-DEPENDENT STRUCTURAL
PLASTICITY

Activity-dependent structural plasticity basically influences two
different physical substrates: On the one hand, neurites (i.e.,
dendrites and axons) grow and retract dependent on the level
of neuronal activation (Cohan and Kater, 1986; van Huizen and
Romijn, 1987). These growth processes determine the basic shape
of a neuron and its regions of afferent and efferent connections.
On the other hand, synapses (i.e., dendritic spines and axonal
boutons) are continuously formed and deleted. Although an axon
and a dendrite lie close together and the gap could be bridged by
a synapse, the existence of a synapse is not guaranteed (Kalisman
et al., 2005). In fact, the formation and deletion of a synapse
also depend on the neuronal activation of both neurons (see e.g.,
Annis et al., 1994; Nägerl et al., 2007; Kwon and Sabatini, 2011;
Hill and Zito, 2013).

As the majority of cortical synapses resides on dendritic
spines (Yuste, 2010), many studies applied time-lapse imaging
of the dynamics of dendritic spines for analyzing the structural
dynamics or structural plasticity of single synapses. This implies
the problem that the existence of a dendritic spine does not
guarantee the existence of a functional synapse. However, several
experiments provide evidence that, at least after a few hours
after spine formation, new born spines are structurally and
functionally equivalent to mature spines hosting a synapse
(Trachtenberg et al., 2002; Knott et al., 2006; Nägerl et al., 2007;
Zito et al., 2009). Similarly, also the emergence and stabilization
of axonal terminals or boutons seems to involve synapse
formation and maturation (Friedman et al., 2000; Ruthazer et al.,
2006). Thus, the existence of a spine or bouton is a good indicator
for the existence of a functional synapse.

Link between Structural and Synaptic
Plasticity
The dynamics of synapses is determined by the dynamics of
dendritic spines. Accordingly, structural plasticity depends on
the morphology of spines as their sizes and shapes (Nägerl et al.,
2008; Tønnesen et al., 2011, 2014). Experiments indicate that the
volume of a dendritic spine correlates with the synaptic efficacy
of the corresponding synapse (Matsuzaki et al., 2001; Knott et al.,
2006; Zito et al., 2009) which, in turn, is influenced by synaptic
plasticity. Accordingly, stimuli causing long-term potentiation
(LTP) also cause spine enlargements (Fifková and Van Harreveld,
1977; Okamoto et al., 2004; Yang et al., 2008, for a review see
Yuste and Bonhoeffer, 2001) while stimuli causing long-term
depression (LTD) induce spine shrinkage (Okamoto et al., 2004;
Zhou et al., 2004; Oh et al., 2013). Hereby, synaptic and structural
changes rely on distinct signaling cascades, which are triggered by
the same signals (Matsuzaki et al., 2004; Zhou et al., 2004). Thus,
blocking synaptic plasticity, for instance, by blocking NMDA-
receptors also prevents changes in the spine volume. Several
experiments indicate that the spine head volume is correlated
to the lifetime or stability of the spine (Grutzendler et al., 2002;
Majewska et al., 2006; Yasumatsu et al., 2008; Loewenstein et al.,
2015). Thus, the spine stability or removal of a synapse is, in turn,
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correlated to the synaptic efficacy of the corresponding synapse,
which also has been directly observed in several experiments
(Holtmaat et al., 2005; Le Bé and Markram, 2006, reviewed, e.g.,
in Kasai et al., 2003). In combination with STDP, this relation
between synaptic weight, spine volume and spine stability could
give rise to a spike-timing-dependent structural plasticity (Helias
et al., 2008; Deger et al., 2012), which still has to be experimentally
verified. Interestingly, the stability of a synapse is also influenced
by the reliability of signal transmission of the synapse (Wiegert
and Oertner, 2013) which is also altered by synaptic plasticity
(Stevens and Wang, 1994). Thus, for Hebbian-like changes,
structural and synaptic plasticity are linked with each other by
the morphology of spines or properties of the synapse (Segal,
2005).

Some evidence indicates a similar link for homeostatic
changes: in vitro (Murthy et al., 2001) and in vivo (Keck et al.,
2013) studies show that changes of the spine volume also go
along with the activity-dependent homeostatic scaling of synaptic
efficacies. Given the aforementioned correlation between spine
volume and spine stability, we expect that structural plasticity is
also linked to homeostatic synaptic plasticity.

In the following, we will summarize experimental results
indicating the different aspects of activity-dependent structural
plasticity in more detail. We will classify these aspects according
to Hebbian (high act. → stronger connect.; low act. → weaker
connect.) and homeostatic (high act.→weaker connect.; low act.
→ stronger connect.) structural plasticity in adult networks. In
addition, we will show that many of these experiments support
the here discussed link between synaptic and structural plasticity.
We will also provide a brief survey of structural dynamics during
development. Finally, we will discuss experimental evidence of
the interaction of Hebbian and homeostatic structural plasticity
in the same neural system.

Evidence for Hebbian Structural Plasticity
LTP-Stimuli
The induction of LTP by a strong neuronal activation is mainly
associated with the increase of the synaptic efficacy (e.g., number
of AMPA receptors) of existing synapses (Malenka and Bear,
2004; Feldman, 2009). However, already in the 1980s first studies
(Lee et al., 1980; Chang and Greenough, 1984) indicate that
15–20 min after applying the strong stimulus the number of
synapses is enhanced, too. In addition, one also observes an
increase in the number of filopodia (Lee et al., 1980; Chang
and Greenough, 1984), which seem to be the precursors of
dendritic spines (Ziv and Smith, 1996). Accordingly, about
30 min after stimulation, an increased number of dendritic
spines can be observed (Moser et al., 1994; Trommald et al.,
1996; Engert and Bonhoeffer, 1999, but see also Desmond
and Levy, 1990). The strength of the effect and the detailed
timescale, however, depend strongly on the used tissue and
preparation method (Sorra and Harris, 1998; Dunaevsky et al.,
1999; Kirov et al., 1999; Bourne et al., 2007; Bourne and
Harris, 2011), but most studies report timescales between 5 and
30 min.

This increase in the number of spines after an LTP-stimulus
provides further support for an interaction between Hebbian

synaptic plasticity and Hebbian structural plasticity: A strong
neuronal activation will induce an increase in synaptic efficacies
or rather in the spine volumes implying the stabilization of
these enlarged dendritic spines. Given a continuous formation
of new spines, this also implies that the new and small spines,
which would be pruned without stimulation, will be enlarged
and stabilized by synaptic plasticity. Together with the already
existing (and further stabilized) spines, the stabilization of new
spines by the strong stimulus would lead to an increase of
the the number of spines as observed experimentally. For
this, the rate of forming new spines could be independent
of the neuronal activity and stay constant. This potential
explanation of the increase in spine number is supported
by a recent study demonstrating that LTP stabilizes nascent
spines (Hill and Zito, 2013). Accordingly, blocking the signals
inducing LTP (by blocking the NMDA-channels) also prevents
the increase in the number of dendritic spines and also of
axonal boutons (Engert and Bonhoeffer, 1999; Maletic-Savatic
et al., 1999; Toni et al., 1999; Nikonenko et al., 2003).
Thus, the dynamics of dendritic spines can be explained by
the link between Hebbian structural plasticity and synaptic
plasticity.

Note, although an increase of the number of spines could be
explained by assuming a constant rate of forming new spines,
the LTP-dependent appearance of more filopodia (Lee et al.,
1980; Chang and Greenough, 1984; Maletic-Savatic et al., 1999)
suggests that the formation rate changes, too. Thus, further
experiments are required to clarify whether the formation rate
of dendritic spines (and also of axonal boutons) stays constant or
whether it is adapted by the level of neuronal activity.

Also at the presynaptic neuron an LTP-inducing stimulus
triggers a structural remodeling: the number of axonal boutons
increases. This effect arises already 15 min after the stimulation
(Nikonenko et al., 2003; Ninan et al., 2006). The fact, that
both the numbers of dendritic spines and of axonal boutons
are enhanced, suggests that new synapses are formed by
these new elements. In addition, recent findings indicate also
an LTP-dependent increase in the probability that a bouton
hosts one or more functional synapses (Medvedev et al.,
2014). Thus, newly formed spines have a very high chance of
connecting to a new or old bouton and, hence, forming a new
synapse.

LTD-Stimuli
A link between the dynamics of Hebbian structural plasticity
and LTD-inducing stimuli has been established, too. Several
experimental studies show that the induction of an LTD-stimulus
(low frequency) yields a separation of pre- and postsynaptic
terminals (Bastrikova et al., 2008) and a loss of dendritic spines
(Nägerl et al., 2004; Wiegert and Oertner, 2013). Thus, similar to
the dynamics triggered by an LTP-stimulus, due to the induction
of a low frequency stimulation, the synaptic efficacy is decreased,
spines shrink and decrease their stability, and the removal
rates of dendritic spines are increased (Segal, 2005). This is
supported by experiments showing that the prevention of LTD by
blocking NMDA-channels impedes the structural effects (Nägerl
et al., 2004; Yu et al., 2013). Thus, also these results indicate
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that structural plasticity is linked to synaptic plasticity which
influences the stability of the corresponding dendritic spines.
The timescale of spine shrinkage and removal seems to depend
on the experimental conditions: some experiments report spine
shrinkage after about 20 min of LTD-induction (Oh et al., 2013)
while other studies report no significant changes in spine volume
or stability up to 30 min after the induction of LTD (Wiegert
and Oertner, 2013). Like for LTP-induced dynamics, also the
presynaptic site is also influenced by a low level of activation as
it increases the turnover of axonal boutons (Paola et al., 2006;
Stettler et al., 2006) resulting in a loss of synapses (Becker et al.,
2008).

In summary, stimulation protocols inducingHebbian synaptic
plasticity change the stability and number of synapses. A strong
activation induces the formation of more synapses while a low
activation induces a loss of synapses. These variations in the
number of synapses seem to depend on changes in the stability
of the corresponding dendritic spines and axonal boutons
correlated to the actual synaptic efficacy adapted by Hebbian
synaptic plasticity. However, it is still not clear whether the rate of
newly formed spines and boutons is changed, too. Furthermore,
the data about the dynamics induced by LTD-stimuli are less
comprehensive than the data for LTP-stimuli.

Most of the above discussed structural dynamics happens on
a timescale of the order of several minutes to one hour. On
this timescale the dendritic trees and axons hosting spines and
boutons remain quite stable (Ziv and Smith, 1996; Grutzendler
et al., 2002; Trachtenberg et al., 2002; Lee et al., 2006; Paola et al.,
2006; Stettler et al., 2006). Hence, fast Hebbian changes of the
network structure must be mainly implemented by the growth or
removal of dendritic spines. On slower timescales, also changes of
the dendrites and axons take place. However, as we will discuss in
the following, such changes are mainly triggered by homeostatic
processes.

Evidence for Homeostatic Plasticity
As already mentioned above, the connectivity of neural networks
is not only adapted by Hebbian-like changes. Similar to synaptic
plasticity, also structural changes show homeostatic dynamics,
i.e., a decrease of connectivity with high neuronal activities
and an increase with low activities. Typically, these homeostatic
dynamics are observed under chronically altered conditions of
neuronal activity and, thus, also at slower timescales. In general,
the resulting structural changes seem to counterbalance the
altered conditions and, thereby, regulate the activity back to
an intermediate level (for a complete review of homeostatic
structural processes see Butz et al., 2009). Like Hebbian structural
plasticity, homeostatic structural changes are determined by the
dynamics of dendritic spines and axonal boutons. However,
under extreme conditions, as in epilepsy or after lesions, also
changes of the dendritic and axonal trees are observed.

Already in the year 1978, Wolff et al. (1978) observed
in vivo the growth of protrusions and thickenings on the
dendritic tree after decreasing neuronal activity. For this, they
applied the inhibitory neurotransmitter GABA for 3–7 days.
Further studies verified that chronic blockage of neuronal
activity can yield an increase in the number of spines after

approximately 8 h (Dalva et al., 1994; Rocha and Sur, 1995;
McAllister et al., 1996; Kirov and Harris, 1999) indicating a
slower timescale for homeostatic structural changes as compared
to Hebbian ones. Hereby, already the blockage of NMDA
channels leads to an increase in spine number (Yu et al.,
2013; Chen et al., 2015) or prevents spine elimination (Bock
and Braun, 1999). Note that during development blocking
activity or NMDA receptors can show the opposite effect
(Annis et al., 1994; Collin et al., 1997). However, the newly
formed spines often host silent synapses needing synaptic
plasticity to be converted to functional synapses (Nakayama
et al., 2005). On the other hand, persistent depolarization of
neurons leads to a loss of dendritic spines (Müller et al., 1993;
Drakew et al., 1996). Already the application of high levels
of NMDA induces a spine loss by the destabilization of the
spine actin scaffold (Halpain et al., 1998). Thus, the number
of spines is adapted in an activity-dependent homeostatic
manner.

Furthermore, the changes in the number of spines also depend
on the calcium level (Kirov and Harris, 1999; Kirov et al.,
2004; Tian et al., 2010). Accordingly, it has been proposed
that dendritic spines follow a calcium-dependent homeostasis
(Segal et al., 2000). As the postsynaptic calcium level is largely
influenced by neuronal activity (Spruston et al., 1995; Helmchen
et al., 1996; reviewed, e.g., in Higley and Sabatini, 2008), the
calcium-dependent homeostasis could, in turn, imply an activity-
dependent homeostasis as described above. However, the detailed
relation between calcium, activity, and spine dynamics is more
complex, as the calcium level is also regulated by other signals as
neurotrophins (Stoop and Poo, 1996) or cell adhesion molecules
(Bixby et al., 1994). Furthermore, in contrast to the postsynaptic
activity, calcium is a local signal allowing different dynamics
at different branches of the dendritic tree. Accordingly, by
comparing different branches of the same dendrite, where each
branch receives stimuli from other brain regions, such different
spine dynamics are observed (Mattson, 1988; Bravin et al., 1999;
Lohmann et al., 2005; Deller et al., 2006; Vuksic et al., 2011,
see also Yu and Goda, 2009; Vlachos et al., 2012a, 2013 for
evidence on local homeostasis of synaptic efficacies). However,
in summary, these experiments indicate that the number of
spines or synapses is adapted by activity-dependent homeostatic
structural plasticity.

Evidence from Networks in Extreme Situations
Further evidence for homeostatic dynamics are obtained in more
complex settings which we summarize in the following. Note that
under these conditions dynamics of dendritic and axonal trees are
observed, too.

For example, homeostatic regulation of connectivity is found
in animal models of epilepsy. Epileptic seizures are network states
of high and synchronous activity. Given a homeostatic dynamic,
this would lead to a decrease in the number of spines which,
indeed, was found in animal models of epilepsy (Scheibel et al.,
1974; Paul and Scheibel, 1986; Geinisman et al., 1990; Isokawa
and Levesque, 1991; Isokawa, 1998). These changes are likely
signs of structural plasticity rather than mere damages by the
epileptic seizures, as the number of spines recovers after several
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days without seizures (Müller et al., 1993; Isokawa, 1998). The
spine loss is only visible at least 5 h after the seizure (Mizrahi
et al., 2004), which implies that, also under these conditions,
the timescale of homeostatic structural plasticity is typically
slower than for Hebbian structural plasticity described above.
Interestingly, after several days with reoccurring seizures also
changes of the neuronal morphology, like retraction of dendritic
branches, are measured (Colling et al., 1996; Jiang et al., 1998).

In contrast to the elevated activities during epilepsy,
phenomena like strokes, lesions, or deprivations typically lead
to lowered activity levels in a group of neurons. For instance,
for deprived neurons a homeostatic dynamic would increase the
number of spines. Indeed, experiments show that, after 4 days of
monocular deprivation, the number of newly formed spines in
the binocular cortex of adult mice doubles compared to control
conditions (Hofer et al., 2009). Interestingly, a second phase
of monocular deprivation at the same eye does not lead to an
increased formation of new spines. Now, the synaptic efficacies
of spines formed during the first phase are strengthened by
(presumably homeostatic) synaptic plasticity counterbalancing
the lost input (Hofer et al., 2009). These findings support the link
between (homeostatic) structural and synaptic plasticity.

However, as shown by Keck et al. (2008), also smaller
interferences, like small lesions of the retina, lead to more new
spines (in the lesion projection zone in the visual cortex). In
this experiment, although more new spines are formed, the
spine density is comparable to control conditions after 3 days.
Another experiment shows that trimming the whiskers of rats
leads to an increased number of spines and an outgrowth of
dendritic trees in the input-receiving layer in the barrel cortex
(Vees et al., 1998; other layers might be affected differently,
see Chen et al., 2015). Along this line, one observes massive
reorientation of the dendritic trees of adult rats after whisker
removal, while the system regains the pre-removal dendritic
lengths and spine densities (Tailby et al., 2005). Note, however,
already the retraction of dendrites from denervated areas can
increase the exitability of neurons, such that activity-homeostasis
can be reached without regaining the pre-lesion dendritic length
(Platschek et al., 2016).

Interestingly, not only the dendrites of the neurons with
lesioned afferents, but also axons of neighboring neurons
contribute to regain homeostasis. Although these neighboring
neurons are not directly affected by the lesions, they can also be
expected to experience altered activity levels. This triggers, after
a few days, the growth of axons from the neighboring neurons
toward the deprived region (Darian-Smith and Gilbert, 1994;
Yamahachi et al., 2009;Marik et al., 2010). Furthermore, damaged
axons can grow out and form new synapses, similar to growth
dynamics during development (Canty et al., 2013). In summary,
we find that lesions trigger the formation of new spines and the
outgrowth of dendrites, which, together with new innervation
from neighboring neurons, presumably form new synapses and
restore the activity level.

Thus, very high or low activity levels occurring in extreme
situations like epilepsy, lesions, or stroke are counterbalanced
by structural changes on the timescale of several hours to days,
thereby, contributing to activity-dependent homeostasis.

Activity-Dependent Structural Plasticity
during Development
As already mentioned above, apart from networks in extreme
situations, many experiments in adult networks observe very
small or no changes of the axonal or dendritic arborization.
This is different during the development of neural networks,
when these dendritic and axonal trees are formed. Interestingly,
also during this phase activity-dependent structural processes
contribute to the network dynamics. In the following we will
briefly discuss these experiments.

Homeostatic Structural Changes during Development
Single, isolated neurons in culture typically start growing axons
and dendrites. This initial process could already be a homeostatic
mechanism, as such neurons typically exhibit only weak activities
(Kater et al., 1989). The further outgrowth of neurites also
seems to be homeostatically regulated: On the one hand, the
application of the inhibitory neurotransmitter GABA, which
normally decreases activity, triggers an increased outgrowth
(Mattson and Kater, 1989). On the other hand, excitatory
neurotransmitters as glutamate (but not NMDA, see Mattson
et al., 1988), which normally yield an increased activity, induce
the degeneration of the dendritic structures (Haydon et al., 1984,
1987; Mattson, 1988; Mattson et al., 1988; Mattson and Kater,
1989). The strength of this effect is dose-dependent (Mattson
et al., 1988). Note, during early developmental phases, GABA
is an excitatory neurotransmitter (Barker et al., 1998; Ben-
Ari, 2002). Still, in the above studies GABA shows the inverse
effect of the excitatory neurotransmitters. Furthermore, in these
experiments, changes in the axonal dynamics are initiated only at
very high doses and lead to a retraction of the axon.

Further experiments targeted downstream signals of these
neurotransmitters. Also here, several indications show that
especially the postsynaptic calcium level seems to trigger
dendritic changes: on a slower timescale, an increased level
of calcium induces a retraction of dendrites while a decrease
of calcium leads to an outgrowth of dendrites (Mattson and
Kater, 1987, for a similar effect for CaMKII see Wu and
Cline, 1998). These dynamics are summarized in the calcium-
dependent homeostasis hypothesis for dendrites (Kater et al.,
1989; Lipton and Kater, 1989). Furthermore, recent experiment
suggest that also the dynamics of filopodia are regulated
dependent on local calcium currents (Lohmann et al., 2005).
As discussed above, the calcium level is mainly influenced by
the neuronal activity. Therefore, we suppose that the calcium-
dependent homeostasis hypothesis implies an activity-dependent
homeostasis, i.e., neurons grow and retract their dendrites to find
an optimal level of input which, in turn, assures amedium activity
level. This hypothesis is supported by experiments showing
that increased activity, due to electrical stimulation, prevents
dendritic outgrowth (Cohan and Kater, 1986; Fields et al.,
1990 but see Garyantes and Regehr, 1992), whereas blocking
activity yields enhanced growth of dendrites (van Huizen and
Romijn, 1987; Fields et al., 1990). Note, these experiments
demonstrate a relation between activity and the dendritic
outgrowth describing only the potential connectivity between
neurons and not the realized connectivity between neurons.
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Whether this also yields the formation of more functional
synapses remains unclear.

Further evidence for homeostatic structural changes during
development are coming from experiments analyzing the time
course of the developmental process of neuronal networks.
During development, neural networks evolve from an initial
unconnected state to a connected matured state. Initially,
neurons have very low activities (Ramakers et al., 1990;
Chiappalone et al., 2006; Wagenaar et al., 2006), which could
trigger the outgrowth of neurites and formation of synapses
in a homeostatic manner (van Ooyen, 2011). Before reaching
the matured state, neural networks typically pass through a
phase of extreme build up of synapses followed by a phase of
synapse pruning (so-called overshoot)—dependent on the level
of neuronal activity (Feldman and Dowd, 1975; Huttenlocher
et al., 1982; Huttenlocher, 1984; van Huizen et al., 1985, 1987;
van Huizen and Romijn, 1987; van Pelt et al., 1996; Bock and
Braun, 1999; Hua and Smith, 2004; Zuo et al., 2005a,b). Such an
overshoot in synapse number is typical for neural networks with
homeostatically regulated connectivity (van Ooyen, 2003, 2011).

Hebbian Structural Changes during Development
During development some structural changes of axonal and
dendritic trees also show Hebbian-like dynamics as described in
the following: Neurites grow by constantly adding and removing
branches (Wu and Cline, 1998; Sin et al., 2002; Wong and Ghosh,
2002; Portera-Cailliau et al., 2003). Hereby, only a few branches
become stable and form the axonal or dendritic tree, while others
are removed on the timescale of minutes to hours (Wu and Cline,
1998). Thereby, the activation of receptors and local calcium
transients are necessary to stabilize and maintain dendritic
branches (Lohmann et al., 2002; Vaillant et al., 2002; Hutchins
and Kalil, 2008). Accordingly, in animals experiencing four
hours of increased neuronal activity due to visual stimulation,
one observes significantly more stabilized dendritic branches as
compared to animals left in the dark (Sin et al., 2002). Similarly,
the blockage of neuronal activities yields much less complex
dendritic trees (Groc et al., 2002).

Interestingly, the stabilization of dendritic and axonal
branches also depends on the connectivity, more precisely,
on the existence and maturation of synaptic contacts on the
branch (Haas et al., 2006; Ruthazer et al., 2006). As shown
above, in adult networks, the activity-stability relationship of
synapses implements Hebbian changes in connectivity. Thus, if
the dynamics underlying the stabilization of synaptic contacts are
similar during development and in adult networks, the activity-
dependent stabilization of spines and, therefore, of branches
would indicate a Hebbian-component of the growth of dendritic
trees.

EVIDENCE FOR THE INTERACTION OF
HEBBIAN AND HOMEOSTATIC
STRUCTURAL PLASTICITY

As we discussed above, for adult networks, the alteration in
neuronal activity causes two different directions of structural
changes (see Figure 1). On a fast timescale (minutes to hours)

the number of dendritic spines goes along with the change
in neuronal activity in a Hebbian manner. On a typically
slower timescale (hours to days), the dynamics of dendrites and
dendritic spines homeostatically counterbalance the change in
activity and regulate it back to an intermediate target regime.
Obviously, in experiments, chronic changes in neuronal activity
should trigger both processes which, then, interact with each
other. With these two mechanisms and their typically different
timescales at hand, in the following, we will discuss direct
conclusions about the dynamics of structural changes during a
period of altered activity.

For example, when neurons start to receive reduced or LTD-
inducing inputs, the corresponding synapses will be depressed
and, therefore, more likely to be removed due to Hebbian
structural plasticity—the spine density is reduced (Figure 1,
bottom center). Later on, due to the reduced activity of the
neuron, homeostatic structural plasticity yields the formation of
new synapses—the spine density will increase (Figure 1, bottom
right). Note, as the homeostatic changes are unspecific, very likely
these new synapses connect to other, more active inputs. Thus,
when the neural network has again reached its homeostatic level
and assuming that the synaptic efficacies are, on the long run,
similar to those before the activity alteration, the spine density is
probably at the same level as before receiving the LTD-inducing
inputs. Thus, as a direct consequence from the interaction of
Hebbian and homeostatic structural plasticity in the same neural
network, we expect in general a transient decrease in the spine
density.

Such transient changes have been observed already in the
1970s (Parnavelas et al., 1974; Goldowitz et al., 1979). In
these studies, the transsection of afferent hippocampal axons
yields a strong decrease in spine density around 4 days after
deafferentiation and a restoration of the initial spine density after
10–50 days (Parnavelas et al., 1974; Goldowitz et al., 1979; Vuksic
et al., 2011). Strikingly, this transient change in spine density does
not result from changes in the spine formation rate, but rather
from changing the elimination rate or the stability of the spines
(Vlachos et al., 2012b). Similarly, one observes changes in the
spine elimination rate in barrel cortex after whisker trimming
also leading to a transient decrease of the spine density (Zuo et al.,
2005a; Miquelajauregui et al., 2015).

These results are consistent with the correlation between
spine stability, spine volume, and synaptic efficacy governing the
interaction of synaptic and structural plasticity: First, Hebbian
synaptic plasticity would decrease the efficacies and the stability
of spines, such that their density decreases. Later, synaptic
scaling would scale up the synaptic efficacies of both old
and new synapses and, thereby, stabilizes them and increases
spine density. Interestingly, at the same time, Hebbian synaptic
plasticity can induce competitive effects between newly formed
and up-scaled preexisting spines, which destabilizes the newly
formed synapses and, thereby, protracts the recovery of the
system (Vlachos et al., 2013).

On the other side, paradigms which supposedly trigger
higher neural activities, such as motor learning or an enriched
environment, have been demonstrated to elicit a transient
increase in the number of spines after 2–3 days of stimulation.
After 7 days the number of spines reaches control level again
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FIGURE 1 | Summary of experimental findings. On the one hand, neural systems, which experience high activities, quickly form new spines and strengthen old

ones (Hebbian changes). If high activities persist for longer time, spines are removed and dendrites start to retract. This reduces the input and drives the postsynaptic

activities back to lower levels (homeostatic changes). On the other hand, low activities lead to spine removal and shrinkage. On the long run, however, new spines are

created and dendrites start growing out such that the neurons acquire more inputs and increase their activity levels. Thus, structural plasticity shows Hebbian-type

changes and homeostatic changes.

(Xu et al., 2009; Yang et al., 2009, see Figure 1, upper row).
Also during these experiments, the number of new filopodia
remains constant, which suggest a constant formation rate
of new spines. Interestingly, the repeated training selectively
stabilizes mainly the newly formed spines, while the stability of
preexisting spines drops (Xu et al., 2009). Also for these types of
experiments the interaction of structural and synaptic plasticity
provides a potential explanation for the observed dynamics.
We expect that Hebbian synaptic plasticity leads to a selective
potentiation and, thus, a stabilization of the synapses which
are important for learning (especially the ones hosted by newly
formed spines, which are important for the task performance,
see Xu et al., 2009; Yang et al., 2009). This, in turn, leads to an
increased spine number and higher neuronal activities. In the
long run, this increased activity triggers unspecific homeostatic
synaptic plasticity decreasing the stability of synapses and
inducing their pruning. Remarkably, in experiments, when
training is stopped earlier, the newly formed spines are less
stable than the preexisting ones (Xu et al., 2009). Following our
reasoning, this could imply that learning was not long enough
to trigger sufficient potentiation to stabilize the newly formed
synapses.

The interaction of Hebbian and homeostatic mechanisms
could also be used to explain a detailed EM-study conducted by
Bourne and Harris (2011). This study shows that, 5–30 min after

a typically LTP-inducing tetanic burst stimulation, a transient
increase in the number of stubby spines, shaft synapses, and
nonsynaptic protrusions can be observed. However, already after
2 h these structures are not present anymore. In addition,
the number of small spines is decreased compared to pre-
stimulation, whereas the postsynaptic densities of all remaining
spines have been enlarged such that the PSD (postsynaptic
density) area per micrometer dendrite is the same as for
controls (Bourne and Harris, 2011). This suggests a strong
and, possibly, fast homeostatic mechanism (the authors argue
for a resource homeostasis of the polyribosomes which are
used for spine creation and enlargement). Thus, probably a
group of synapses is selectively stabilized by Hebbian synaptic
plasticity increasing neuronal activity. At the same time,
homeostatic synaptic and structural plasticity counterbalance
these changes and decrease the stability of all synapses leading
to the removal of small, unpotentiated synapses. These dynamics
are similar to the dynamics during motor learning described
above.

These examples demonstrate that Hebbian and homeostatic as
well as synaptic and structural plasticity are strongly interweaved
and jointly adapt the connectivity of the neural network
according to alterations in neuronal activity. To understand these
complex interactions in more detail, further experiments are
needed. However, to assess also the general principles, theoretical
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networkmodels are required. In the following, we will discuss the
state of the art of theoretical models of structural plasticity.

THEORETICAL MODELS OF STRUCTURAL
PLASTICITY

In this section, we will summarize theoretical and computational
studies analyzing the dynamics and functional consequences of
structural plasticity. As models of structural plasticity basically
adapt the connectivity, they enable predictions about properties
of the connectivity in neural networks. These properties range
from statistical (e.g., the statistics of subnetwork structures
(motifs) or the probability distribution of the number of synapses
between two neurons) to graph theoretical features (e.g., small-
worldness or shortest path lengths) which can be compared
to biological data. Many studies also investigate functional
consequences of structural plasticity as, for instance, the influence
on the storage capacity or the ability to classify different inputs.
The majority of studies focuses on either Hebbian or homeostatic
structural plasticity, however, at the end of this section, we will
provide an overview of the few studies combining both processes
of structural plasticity.

Hebbian Structural Plasticity
As discussed above, Hebbian structural plasticity is mainly
realized by the dynamics of dendritic spines. Thus, models of
Hebbian structural plasticity typically describe the dynamics
of dendritic spines. Synapses in these models appear and
disappear at predefined potential synaptic locations with certain
probabilities influenced by neuronal activities, synaptic efficacies
and/or other hidden variables. As activities and efficacies depend
on synaptic plasticity, Hebbian structural plasticity and Hebbian
synaptic plasticity are strongly interconnected and the majority
of models of Hebbian structural plasticity also incorporate
the dynamics of Hebbian synaptic plasticity and some even
homeostatic synaptic plasticity.

The simplest neural network to study the influence of Hebbian
structural plasticity on the network’s dynamics and connectivity
is a postsynaptic neuron receiving input from one presynaptic
neuron. Several experiments show that the connectivity between
such pairs of neurons (the probability distribution of the number
of synapses) is non-trivial (Markram et al., 1997a; Feldmeyer
et al., 1999, 2002, 2006; Hardingham et al., 2010): these neurons
are either unconnected (no synapse) or connected by multiple
synapses (four to five synapses). This finding does not depend
on the detailed anatomy of neurons, as the number of potential
synapse location is much higher than the number of realized
synapses (Fares and Stepanyants, 2009). However, as theoretical
models show (Deger et al., 2012; Fauth et al., 2015b), Hebbian
structural plasticity yields the formation of such multi-synaptic
connections in a broad range of activity levels. By changing the
activity level, the number of synapses between the neurons can
be adjusted providing a way to change connectivity and, thus,
store information in an activity-dependent manner (Fauth et al.,
2015a,b). Furthermore, although the storage capacity per synapse
is decreased, information, stored in such structures, can persist

for timescales much longer than the lifetime of a single synapse,
as the storage is collectively implemented by all synapses and does
not rely on the existence of single ones (Fauth et al., 2015a).

Instead of considering a system consisting of one postsynaptic
neuron, which receives inputs from one presynaptic neuron
by multiple synapses, other studies considered a slightly more
complex system: a postsynaptic neuron receiving inputs from
several presynaptic neurons (note that in this system each
presynaptic neuron is considered to be connected by only
one synapse to the postsynaptic neuron). Here, the stability
of synapses depends on the activity-dependent calcium influx;
a high calcium influx causes stabilization of synapses and
a low influx implies destabilization of synapses. Similar, as
for the multi-synaptic connections, high neuronal activities
lead to a stabilization of all synapses (Helias et al., 2008).
However, for intermediate activity levels only correlated inputs
are stabilized. Thus, the information stored in the connectivity
could also be the information about the correlations between
different inputs (Helias et al., 2008). In addition, synapses
from uncorrelated inputs are pruned or deleted and lose their
(noisy) influence on the postsynaptic neuron (Helias et al.,
2008). Thus, Hebbian structural plasticity might help to prune
synapses which are unimportant for the dynamics of the neural
network.

Accordingly, also in more complex and biologically more
reasonable systems, as large recurrent networks (Bourjaily and
Miller, 2011; Zheng et al., 2013; Miner and Triesch, 2016),
synaptic pruning preferentially removes synapses which only
weakly contribute to synaptic transmission. These models
use synaptic plasticity rules which typically yield a bimodal
distribution of the electrical transmission efficacies with many
efficacies close to zero. In combination with synaptic pruning,
however, synapses with small efficacies are removed leading to
the emergence of a unimodal distribution as observed in the
cortex (Song et al., 2005). Accordingly, the continuous pruning
and creation of synapses can also be interpreted as a process
of stochastic inference, in which the network continuously tests
and evaluates the “usefulness” of synapses to process or represent
external stimuli (Kappel et al., 2015). Thus, synaptic pruning
might minimize the resources for synaptic maintenance while
preserving important dynamics.

Further advantages of pruning or deletion of uncorrelated
or unimportant synapses have been revealed for simpler
feedforward neuronal networks, which are typically used to study
associative memory: the storage capacity of these networks is
increased (Knoblauch et al., 2009, 2014). Considering a Willshaw
or Hopfield network (Willshaw et al., 1969; Hopfield, 1982),
the deletion of the weak or unimportant synapses increases
the storage capacity per synapse without perturbing the stored
patterns (Knoblauch et al., 2009). Furthermore, pruning prevents
the occurrence of catastrophic forgetting and could explain
phenomena as retrograde amnesia or the difference between
spaced- and block-learning (Knoblauch, 2009; Knoblauch et al.,
2014). Intuitively, the increase in storage capacity per synapse
contradicts the finding of multi-synaptic connections described
above (Deger et al., 2012; Fauth et al., 2015b). However, the
influence of multi-synaptic connections on memory has to be
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further investigated as models at the network level are so far
missing.

So far, theoretical studies of structural plasticity in recurrent
networks mostly investigated storage capacity and compared the
properties of the resulting connectivity with the properties of
biological measured connectivities as, for instance, the statistics
of the so-called motifs (Milo et al., 2002), i.e., configurations
of the connectivity in small subnetworks. In cortical networks,
groups of strongly connected neurons show an increased
appearance (compared to random networks; Markram et al.,
1997a; Feldmeyer et al., 1999; Song et al., 2005; Perin et al.,
2011). As groups of strongly connected neurons typically
show strongly correlated activities, which, in turn lead to
stabilization of the corresponding connections, this increased
appearance is naturally reproduced by Hebbian structural
plasticity interacting with synaptic plasticity (Bourjaily and
Miller, 2011; Miner and Triesch, 2016, but see also Zheng and
Triesch, 2014). Remarkably, with the formation of more strongly
connected subgroups of neurons the network’s performance in
discriminating different inputs increases (Bourjaily and Miller,
2011).

In summary, these results show that Hebbian structural
plasticity improves several properties of neural networks
compared to networks adapted only by synaptic plasticity.
Especially, the storage of memories is improved in storage
lifetime, capacity, and noise robustness. Furthermore, perhaps
related to these improvements in memory storage, also the
ability to discriminate inputs is enhanced. However, further
investigations are needed to understand the influence of Hebbian
structural plasticity on the dynamics of neural networks.

Homeostatic Structural Plasticity
As already described above, homeostatic structural plasticity
adapts dendrites and axons dependent on the neuronal activity
to reach and sustain an intermediate activity regime (Butz et al.,
2009). The slow timescale of homeostatic structural plasticity
implies that its influences are basically observed after long
durations, as during development, or in networks under extreme
activity conditions as after lesions. Thus, also theoretical models
investigating the dynamics of homeostatic structural plasticity
concentrate mainly on these two paradigms.

During the development of a neural network from a naive
initial state to a matured network, it passes through an overshoot
phase of building up many synapses followed by a pruning
phase until the network settles in the ground state (van Huizen
et al., 1985, 1987; van Huizen and Romijn, 1987; van Ooyen,
2003, 2011). Such dynamics are already seen in a pure excitatory
network model governed by homeostatic structural plasticity
without the differentiation between axons and dendrites (van
Ooyen and van Pelt, 1994). Introducing also inhibition further
pronounces this overshoot effect and can lead to oscillatory and
bursting neuronal activities (van Ooyen et al., 1995; van Ooyen
and van Pelt, 1996). Assuming different homeostatic dynamics
for axons and dendrites results in even more complex activity
dynamics matching cell culture data (Tetzlaff et al., 2010). The
resulting network state is the so-called critical state which is
predestined for maintaining stability (Bak et al., 1987; Bak,

1996). Thus, the complex interactions between all these different
homeostatic processes are important to bring the whole system
into a stable state showing dynamics matching experimental data.

All of these developmental models consider the dynamics
of axons and dendrites. However, as described above, also the
dynamics of dendritic spines and axonal boutons are determined
by homeostatic structural plasticity. Theoretical network models
from the 1980s (Dammasch et al., 1986, 1988; Cromme and
Dammasch, 1989) already showed that also such detailed models
of homeostatic structural plasticity self-organize to reach a
desired activity regime. Again, the resulting system is quite stable
such that even the insertion of new neurons (by, for instance,
neurogenesis in the hippocampus) does not perturb the global
network state (Butz et al., 2008). Furthermore, by introducing
a distance-dependency for forming new synapses, the network
develops into a small-world network (Butz et al., 2014b).

The dynamics of these models can also be compared to in
vivo measurements after input lesions or stroke-induced lesions
(Butz et al., 2009; Butz and van Ooyen, 2013; Butz et al.,
2014a). Interestingly, this comparison between in vivo and model
dynamics enables conclusions on the activity-dependency of
the different homeostatic processes. For instance, after a retinal
lesion, neurons in the lesion projection zone (which have lost
their external input) start to connect with active neurons at
the border of the zone (Keck et al., 2008). In network models,
this dynamics can only be seen if for small neuronal activations
basically new dendritic spines are formed and axonal boutons
are pruned (Butz and van Ooyen, 2013; Butz et al., 2014a). In
contrast, if for small activities boutons are formed and spines
are deleted, the system still reaches homeostasis, but the neurons
in the lesion projection zone predominantly connect with each
other and, thus, the whole zone decouples from the rest of the
network (Butz and van Ooyen, 2013; Butz et al., 2014a).

Further predictions from these models are, for instance, that
similar effects arise in networks with lesions after stroke (Butz
et al., 2009, 2014a). Neurons affected by the deafferentiation
(nearby the lesion zone) have problems in regaining their
activity-homeostasis when the rest of the network is in
homeostasis. This problem can be solved if, after stroke, the
neurons, which are still in homeostasis, receive an external
stimulation to trigger homeostatic structural plasticity and, thus,
encourage rewiring. After this stimulation the whole network has
reached homeostasis (Butz et al., 2009). Thus, studying the effects
of structural plasticity also helps to gain insights in new potential
medical treatments.

Models of the Interaction of Hebbian and
Homeostatic Structural Plasticity
So far only a few models investigated the interaction between
Hebbian and homeostatic structural plasticity (Levy and
Desmond, 1985; Adelsberger-Mangan and Levy, 1993, 1994;
Levy, 2004; Thomas et al., 2015). Basically, these models
include weight-dependent synapse removal (Hebbian structural
plasticity) with an activity-dependent synapse formation
(homeostatic structural plasticity). The combination of these
processes in a feed-forward network optimizes the information
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transfer from input to output layer and also supports the
separation of information in the output layer while keeping the
homeostasis (Adelsberger-Mangan and Levy, 1993, 1994). As
already seen in developmental models, also in the combined
models the assumption of different dynamics for axons and
dendrites in homeostatic structural plasticity increases the
overall performance of the network (Adelsberger-Mangan and
Levy, 1994). In other words, this combination of Hebbian and
homeostatic structural plasticity provides an unsupervised
way to transfer, compress, and store information (Hebbian
structural plasticity) in an energy efficient representation, i.e.,
with a low number of needed neurons and low firing rates
(homeostatic structural plasticity). Along this line, each post-
synaptic neuron becomes selective or tuned to a specific input
pattern. The number of neurons tuned to one pattern grows
with the occurrence of this pattern (Thomas et al., 2015). This
could, in principle, be a solution to the problem of memory
allocation or rather allocation of inputs to specific groups of
neurons in the brain (Rogerson et al., 2014; Tetzlaff et al., 2015).
These results provide first insights into the complex dynamics

resulting from the interaction between Hebbian and homeostatic
structural plasticity. However, further theoretical investigations
are needed.

CONCLUSIONS AND OPEN QUESTIONS

In this review, we showed that structural plasticity can be
classified into two categories (for a schematic summary, see
Figure 2; italic and bold fonts indicate key references for
experimental and theoretical studies respectively): (i) Hebbian
structural plasticity leads to an increase (decrease) of the
number or density of dendritic spines and contacts with axonal
boutons during phases of high (low) activity (Figure 2, first
column, orange). (ii) When these alterations in activity persist,
homeostatic structural plasticity balances these changes by
removing (adding new) synapses (Figure 2, second column,
orange) and, after days, even by retracting (growing out) the
dendrites themselves (Figure 2, second column, green).

In addition, we showed that there is a strong interaction
between structural plasticity and synaptic plasticity. Both

FIGURE 2 | Schematic overview of the literature. Rectangular boxes: The different effects of activity-dependent plasticity for high activity (upper row) and low

activity (lower row) in a Hebbian (first column) and a homeostatic manner (second column). Colors indicate, whether synaptic efficacies (blue), dendritic spines

(orange), or axons and dendrites (green) are affected. Names and years outside the circles indicate key experimental (italic) and theoretical (bold) studies for the

respective effect. Studies which target both activity regimes and/or plasticity types are placed in-between them.
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have been demonstrated to depend on (local) calcium levels.
Even more strikingly, the synaptic transmission efficacies
are related to the stability of the synapses. Thus, structural
plasticity and its influences on the dynamics of neural
networks can only be understood in conjunction with synaptic
plasticity.

These complex interactions and their functional implications
are best understood by theoretical models. For instance,
Hebbian structural plasticity seems to remove and create
synapses selectively. This selectivity leads to experimentally
measured local connectivities and, furthermore, enhances
memory lifetime, storage capacity, and robustness. For this,
especially the pruning of non-needed synapses plays an
important role. However, as for synaptic plasticity, these
Hebbian dynamics lead to a positive feedback between
connectivity and activity and, thus, to increasing neuronal
activities. Thus, also structural plasticity requires a homeostatic
process regulating activities back to an intermediate level.
Accordingly, theoretical studies show that homeostatic
structural plasticity organizes the connectivity of the network to
maintain network stability. The combination of Hebbian and
homeostatic structural plasticity preserves and improves network
functions, as memory storage and input discrimination, and,
in parallel, stabilizes the global dynamics in a resource efficient
manner.

Still there are many open questions summarized in the
following. On the experimental side, it is, for example, still
unclear whether the increased number of spines after LTP-
inducing stimuli results from increased stabilization or from an
increased spine formation. Also, the relation between structural
and synaptic plasticity is still not completely understood.
Along these lines, especially the relation between homeostatic
structural plasticity and synaptic scaling has not been completely
unraveled yet.

Furthermore, we argued that the interaction of Hebbian and
homeostatic structural plasticity will lead to a transient increase
(decrease) of, e.g., the number of spines in a system which
undergoes prolonged phases of enhanced (decreased) activity.
Such transient increases are observed in experiments. However,
experimental investigations, whether the dynamics occur due
to this interaction, are still missing. In general, the interaction
of Hebbian and homeostatic processes in the same system
is difficult to tackle and has been addressed only by a few
studies.

Accordingly, also most of the theoretical studies have focused
on either Hebbian or homeostatic structural plasticity. The
interaction of bothmechanisms, especially in recurrent networks,
is widely unknown. Moreover, theoretical studies are often
restricted to either reproducing biological data or investigating
functional consequences of structural plasticity. Therefore, more
studies are needed to link experimentally obtained connectivity
features to functional predictions.

The here reviewed theoretical models mostly considered
point-neurons. However, the actual position or location of a
synapse on the dendritic tree strongly influences the details of
synaptic plasticity (Sjöström andHäusser, 2006). In addition, also
neighborly relations between synapses influence via, for instance,
calcium currents synaptic plasticity (Oh et al., 2015). Obviously,
due to the interactions between synaptic and structural plasticity,
these local influences on synaptic plasticity also affect structural
plasticity. On the other side, structural plasticity might select
synapses with certain synaptic plasticity rules and remove others.
Thereby, structural plasticity could act as a metaplasticity-like
process (Abraham, 2008) which adds another level of complexity
to the interaction of the different plasticities.

Taken together, we already have a decent understanding of the
basicmechanisms governingHebbian and homeostatic structural
changes. Yet, their interaction with each other and with synaptic
plasticity, as well as their functional relevance, still leave many
open questions.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This research was supported by the Federal Ministry of
Education and Research (BMBF) Germany under grant number
01GQ1005B [CT] and 01GQ1005A [MF], and by the Göttingen
Graduate School for Neuroscience and Molecular Biosciences
(DFG Grant GSC226/2) [MF].

ACKNOWLEDGMENTS

We want to thank Prof. Florentin Wörgötter for his feedback on
the manuscript.

REFERENCES

Abraham, W. C. (2008). Metaplasticity: tuning synapses and networks for

plasticity. Nat. Rev. Neurosci. 9, 387–399. doi: 10.1038/nrn2356

Adelsberger-Mangan, D. M., and Levy, W. B. (1993). Adaptive

synaptogenesis constructs networks that maintain information and

reduce statistical dependence. Biol. Cybern. 70, 81–87. doi: 10.1007/BF002

02569

Adelsberger-Mangan, D. M., and Levy, W. B. (1994). The influence of limited

presynaptic growth and synapse removal on adaptive synaptogenesis. Biol.

Cybern. 71, 461–468. doi: 10.1007/BF00198922

Annis, C. M., O’Dowd, D. K., and Robertson, R. T. (1994). Activity-dependent

regulation of dendritic spine density on cortical pyramidal neurons in

organotypic slice cultures. J. Neurobiol. 25, 1483–1493.

Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality, 1st

Edn. New York, NY: Springer.

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality: an

explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384. doi: 10.1103/Phys

RevLett.59.381

Barker, J. L., Behar, T., Li, Y. X., Liu, Q. Y., Ma, W., Maric, D., et al. (1998).

GABAergic cells and signals in CNS development. Perspect. Dev. Neurobiol. 5,

305–322.

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 43

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Fauth and Tetzlaff Activity-Dependence of Structural Plasticity

Bastrikova, N., Gardner, G. A., Reece, J. M., Jeromin, A., and Dudek,

S. M. (2008). Synapse elimination accompanies functional plasticity in

hippocampal neurons. Proc. Natl. Acad. Sci. U.S.A. 105, 3123–3127. doi:

10.1073/pnas.0800027105

Beattie, E. C., Carroll, R. C., Yu, X., Morishita, W., Yasuda, H., von Zastrow, M., et

al. (2000). Regulation of AMPA receptor endocytosis by a signaling mechanism

shared with LTD. Nat. Neurosci. 3, 1291–1300. doi: 10.1038/81823

Becker, N., Wierenga, C. J., Fonseca, R., Bonhoeffer, T., and Nägerl, U. V.

(2008). LTD induction causes morphological changes of presynaptic

boutons and reduces their contacts with spines. Neuron 60, 590–597. doi:

10.1016/j.neuron.2008.09.018

Ben-Ari, Y. (2002). Excitatory actions of GABA during development: the nature of

the nurture. Nat. Rev. Neurosci. 3, 728–739. doi: 10.1038/nrn920

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell

type. J. Neurosci. 18, 10464–10472.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for

the development of neuron selectivity: orientation specificity and binocular

interaction in visual cortex. J. Neurosci. 2, 32–48.

Bixby, J. L., Grunwald, G. B., and Bookman, R. J. (1994). Ca2+ influx and neurite

growth in response to purified N-cadherin and laminin. J. Cell Biol. 127,

1461–1475. doi: 10.1083/jcb.127.5.1461

Bliss, T. V., and Lomo, T. (1973). Long-lasting potentiation of synaptic

transmission in the dentate area of the anaesthetized rabbit following

stimulation of the perforant path. J. Physiol. 232, 331–356. doi:

10.1113/jphysiol.1973.sp010273

Bliss, T. V. P., and Collingridge, G. L. (1993). A synaptic model of memory:

long-term potentiation in the hippocampus. Nature 361, 31–39. doi:

10.1038/361031a0

Bock, J., and Braun, K. (1999). Blockade of N-methyl-D-aspartate receptor

activation suppresses learning-induced synaptic elimination. Proc. Natl. Acad.

Sci. U.S.A. 96, 2485–2490. doi: 10.1073/pnas.96.5.2485

Bourjaily, M. A., and Miller, P. (2011). Excitatory, inhibitory and structural

plasticity produce correlated connectivity in random networks trained

to solve paired-stimulus tasks. Front. Comput. Neurosci. 5:37. doi:

10.3389/fncom.2011.00037

Bourne, J. N., and Harris, K. M. (2011). Coordination of size and number of

excitatory and inhibitory synapses results in a balanced structural plasticity

along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–

373. doi: 10.1002/hipo.20768

Bourne, J. N., Kirov, S. A., Sorra, K. E., and Harris, K. M. (2007). Warmer

preparation of hippocampal slices prevents synapse proliferation that might

obscure LTP-related structural plasticity. Neuropharmacology 52, 55–59. doi:

10.1016/j.neuropharm.2006.06.020

Bravin, M., Morando, L., Vercelli, A., Rossi, F., and Strata, P. (1999). Control of

spine formation by electrical activity in the adult rat cerebellum. Proc. Natl.

Acad. Sci. U.S.A. 96, 1704–1709. doi: 10.1073/pnas.96.4.1704

Burrone, J., O’Byrne, M., and Murthy, V. N. (2002). Multiple forms of synaptic

plasticity triggered by selective suppression of activity in individual neurons.

Nature 420, 414–418. doi: 10.1038/nature01242

Butz, M., Steenbuck, I. D., and van Ooyen, A. (2014a). Homeostatic structural

plasticity can account for topology changes following deafferentation and focal

stroke. Front. Neuroanat. 8:115. doi: 10.3389/fnana.2014.00115

Butz, M., Steenbuck, I. D., and van Ooyen, A. (2014b). Homeostatic structural

plasticity increases the efficiency of small-world networks. Front. Synaptic

Neurosci. 6:7. doi: 10.3389/fnsyn.2014.00007

Butz, M., Teuchert-Noodt, G., Grafen, K., and van Ooyen, A. (2008).

Inverse relationship between adult hippocampal cell proliferation and

synaptic rewiring in the dentate gyrus. Hippocampus 18, 879–898. doi:

10.1002/hipo.20445

Butz, M., and van Ooyen, A. (2013). A simple rule for dendritic spine and axonal

bouton formation can account for cortical reorganization after focal retinal

lesions. PLoS Comput. Biol. 9:e1003259. doi: 10.1371/journal.pcbi.1003259

Butz, M., Wörgötter, F., and van Ooyen, A. (2009). Activity-dependent structural

plasticity. Brain Res. Rev. 60, 287–305. doi: 10.1016/j.brainresrev.2008.12.023

Canty, A. J., Huang, L., Jackson, J. S., Little, G. E., Knott, G., Maco, B., et al.

(2013). In-vivo single neuron axotomy triggers axon regeneration to restore

synaptic density in specific cortical circuits. Nat. Commun. 4:2038. doi:

10.1038/ncomms3038

Chang, F. L., and Greenough,W. T. (1984). Transient and enduringmorphological

correlates of synaptic activity and efficacy change in the rat hippocampal slice.

Brain Res. 309, 35–46. doi: 10.1016/0006-8993(84)91008-4

Chen, C.-C., Bajnath, A., and Brumberg, J. C. (2015). The impact of development

and sensory deprivation on dendritic protrusions in the mouse barrel cortex.

Cereb. Cortex 25, 1638–1653. doi: 10.1093/cercor/bht415

Chiappalone, M., Bove, M., Vato, A., Tedesco, M., and Martinoia, S. (2006).

Dissociated cortical networks show spontaneously correlated activity patterns

during in vitro development. Brain Res. 1093, 41–53. doi: 10.1016/j.brainres.

2006.03.049

Chklovskii, D. B., Mel, B. W., and Svoboda, K. (2004). Cortical rewiring and

information storage. Nature 431, 782–788. doi: 10.1038/nature03012

Cohan, C. S., and Kater, S. B. (1986). Suppression of neurite elongation and

growth cone motility by electrical activity. Science 232, 1638–1640. doi:

10.1126/science.3715470

Collin, C., Miyaguchi, K., and Segal, M. (1997). Dendritic spine density and LTP

induction in cultured hippocampal slices. J. Neurophysiol. 77, 1614–1623.

Colling, S. B., Man, W. D., Draguhn, A., and Jefferys, J. G. (1996). Dendritic

shrinkage and dye-coupling between rat hippocampal CA1 pyramidal cells in

the tetanus toxin model of epilepsy. Brain Res. 741, 38–43. doi: 10.1016/S0006-

8993(96)00884-0

Collingridge, G. L., Peineau, S., Howland, J. G., andWang, Y. T. (2010). Long-term

depression in the CNS. Nat. Rev. Neurosci. 11, 459–473. doi: 10.1038/nrn2867

Cromme, L. J., and Dammasch, I. E. (1989). Compensation type algorithms

for neural nets: stability and convergence. J. Math. Biol. 27, 327–340. doi:

10.1007/BF00275816

Dalva, M. B., Ghosh, A., and Shatz, C. J. (1994). Independent control of dendritic

and axonal form in the developing lateral geniculate nucleus. J. Neurosci. 14,

3588–3602.

Dammasch, I. E., Wagner, G. P., and Wolff, J. R. (1986). Self-stabilization of

neuronal networks. I. The compensation algorithm for synaptogenesis. Biol.

Cybern. 54, 211–222. doi: 10.1007/BF00318417

Dammasch, I. E., Wagner, G. P., and Wolff, J. R. (1988). Self-stabilization of

neuronal networks. II. Stability conditions for synaptogenesis. Biol. Cybern. 58,

149–158. doi: 10.1007/BF00364134

Darian-Smith, C., and Gilbert, C. D. (1994). Axonal sprouting accompanies

functional reorganization in adult cat striate cortex. Nature 368, 737–740. doi:

10.1038/368737a0

Deger, M., Helias, M., Rotter, S., and Diesmann, M. (2012). Spike-timing

dependence of structural plasticity explains cooperative synapse formation

in the neocortex. PLoS Comput. Biol. 8:e1002689. doi: 10.1371/journal.pc

bi.1002689

Deller, T., Bas Orth, C., Vlachos, A., Merten, T., Del Turco, D., Dehn, D., et al.

(2006). Plasticity of synaptopodin and the spine apparatus organelle in the rat

fascia dentata following entorhinal cortex lesion. J. Comp. Neurol. 499, 471–484.

doi: 10.1002/cne.21103

Desmond, N. L., and Levy, W. B. (1990). Morphological correlates of long-term

potentiation imply the modification of existing synapses, not synaptogenesis,

in the hippocampal dentate gyrus. Synapse 5, 139–143. doi: 10.1002/syn.

890050208

Drakew, A., Müller, M., Gähwiler, B. H., Thompson, S. M., and Frotscher,

M. (1996). Spine loss in experimental epilepsy: quantitative light and

electron microscopic analysis of intracellularly stained CA3 pyramidal cells

in hippocampal slice cultures. Neuroscience 70, 31–45. doi: 10.1016/0306-

4522(95)00379-W

Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram?

Annu. Rev. Psychol. 55, 51–86. doi: 10.1146/annurev.psych.55.090902.1

42050

Dudek, S. M., and Bear, M. F. (1992). Homosynaptic long-term depression in area

CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade.

Proc. Natl. Acad. Sci. U.S.A. 89, 4363–4367. doi: 10.1073/pnas.89.10.4363

Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C., and Yuste, R. (1999).

Developmental regulation of spine motility in the mammalian central

nervous system. Proc. Natl. Acad. Sci. U.S.A. 96, 13438–13443. doi:

10.1073/pnas.96.23.13438

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 44

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Fauth and Tetzlaff Activity-Dependence of Structural Plasticity

Engert, F., and Bonhoeffer, T. (1999). Dendritic spine changes associated

with hippocampal long-term synaptic plasticity. Nature 399, 66–70. doi:

10.1038/19978

Fares, T., and Stepanyants, A. (2009). Cooperative synapse formation in the

neocortex. Proc. Natl. Acad. Sci. U.S.A. 106, 16463–16468. doi: 10.1073/pnas.0

813265106

Fauth, M., Wörgötter, F., and Tetzlaff, C. (2015a). Formation and maintenance

of robust long-term information storage in the presence of synaptic turnover.

PLoS Comput. Biol. 11:e1004684. doi: 10.1371/journal.pcbi.1004684

Fauth, M., Wörgötter, F., and Tetzlaff, C. (2015b). The formation of multi-

synaptic connections by the interaction of synaptic and structural plasticity

and their functional consequences. PLoS Comput. Biol. 11:e1004031. doi:

10.1371/journal.pcbi.1004031

Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex.Annu. Rev.

Neurosci. 32, 33–55. doi: 10.1146/annurev.neuro.051508.135516

Feldman, M. L., and Dowd, C. (1975). Loss of dendritic spines in aging cerebral

cortex. Anat. Embryol. (Berl.) 148, 279–301. doi: 10.1007/BF00319848

Feldmeyer, D., Egger, V., Lübke, J., and Sakmann, B. (1999). Reliable synaptic

connections between pairs of excitatory layer 4 neurones within a single ’barrel’

of developing rat somatosensory cortex. J. Physiol. 521(Pt 1):169–190. doi:

10.1111/j.1469-7793.1999.00169.x

Feldmeyer, D., Lübke, J., and Sakmann, B. (2006). Efficacy and connectivity of

intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile

rats. J. Physiol. 575(Pt 2):583–602. doi: 10.1113/jphysiol.2006.105106

Feldmeyer, D., Lübke, J., Silver, R. A., and Sakmann, B. (2002). Synaptic

connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs

in juvenile rat barrel cortex: physiology and anatomy of interlaminar

signalling within a cortical column. J. Physiol. 538(Pt 3):803–822. doi:

10.1113/jphysiol.2001.012959

Fields, R. D., Neale, E. A., and Nelson, P. G. (1990). Effects of patterned electrical

activity on neurite outgrowth from mouse sensory neurons. J. Neurosci. 10,

2950–2964.

Fifková, E., and Van Harreveld, A. (1977). Long-lasting morphological changes in

dendritic spines of dentate granular cells following stimulation of the entorhinal

area. J. Neurocytol. 6, 211–230. doi: 10.1007/BF01261506

Flores, C. E., and Méndez, P. (2014). Shaping inhibition: activity dependent

structural plasticity of GABAergic synapses. Front. Cell. Neurosci. 8:327. doi:

10.3389/fncel.2014.00327

Friedman, H. V., Bresler, T., Garner, C. C., and Ziv, N. E. (2000). Assembly of

new individual excitatory synapses: time course and temporal order of synaptic

molecule recruitment.Neuron 27, 57–69. doi: 10.1016/S0896-6273(00)00009-X

Garyantes, T. K., and Regehr, W. G. (1992). Electrical activity increases growth

cone calcium but fails to inhibit neurite outgrowth from rat sympathetic

neurons. J. Neurosci. 12, 96–103.

Geinisman, Y., Morrell, F., and deToledoMorrell, L. (1990). Increase in the relative

proportion of perforated axospinous synapses following hippocampal kindling

is specific for the synaptic field of stimulated axons. Brain Res. 507, 325–331.

doi: 10.1016/0006-8993(90)90291-I

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neuronal

learning rule for sub-millisecond temporal coding. Nature 383, 76–78. doi:

10.1038/383076a0

Gerstner, W., and Kistler, W. M. (2002). Mathematical formulations of Hebbian

learning. Biol. Cybern. 87, 404–415. doi: 10.1007/s00422-002-0353-y

Goldowitz, D., Scheff, S. W., and Cotman, C. W. (1979). The specificity of reactive

synaptogenesis: a comparative study in the adult rat hippocampal formation.

Brain Res. 170, 427–441. doi: 10.1016/0006-8993(79)90962-4

Groc, L., Petanjek, Z., Gustafsson, B., Ben-Ari, Y., Hanse, E., and Khazipov,

R. (2002). In vivo blockade of neural activity alters dendritic development

of neonatal CA1 pyramidal cells. Eur. J. Neurosci. 16, 1931–1938. doi:

10.1046/j.1460-9568.2002.02264.x

Grutzendler, J., Kasthuri, N., and Gan, W.-B. (2002). Long-term dendritic spine

stability in the adult cortex. Nature 420, 812–816. doi: 10.1038/nature01276

Haas, K., Li, J., and Cline, H. T. (2006). AMPA receptors regulate experience-

dependent dendritic arbor growth in vivo. Proc. Natl. Acad. Sci. U.S.A. 103,

12127–12131. doi: 10.1073/pnas.0602670103

Halpain, S., Hipolito, A., and Saffer, L. (1998). Regulation of F-actin stability

in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18,

9835–9844.

Hardingham, N. R., Read, J. C. A., Trevelyan, A. J., Nelson, J. C., Jack, J. J. B.,

and Bannister, N. J. (2010). Quantal analysis reveals a functional correlation

between presynaptic and postsynaptic efficacy in excitatory connections from

rat neocortex. J. Neurosci. 30, 1441–1451. doi: 10.1523/JNEUROSCI.3244-

09.2010

Haydon, P. G., McCobb, D. P., and Kater, S. B. (1984). Serotonin selectively inhibits

growth cone motility and synaptogenesis of specific identified neurons. Science

226, 561–564. doi: 10.1126/science.6093252

Haydon, P. G., McCobb, D. P., and Kater, S. B. (1987). The regulation of neurite

outgrowth, growth cone motility, and electrical synaptogenesis by serotonin. J.

Neurobiol. 18, 197–215. doi: 10.1002/neu.480180206

Hebb, D. (1949).The Organization of Behavior: A Neuropsychological Theory.Wiley

Book in Clinical Psychology. New York, NY: Wiley.

Helias, M., Rotter, S., Gewaltig, M.-O., and Diesmann, M. (2008). Structural

plasticity controlled by calcium based correlation detection. Front. Comput.

Neurosci. 2:7. doi: 10.3389/neuro.10.007.2008

Helmchen, F., Imoto, K., and Sakmann, B. (1996). Ca2+ buffering and action

potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys.

J. 70, 1069–1081. doi: 10.1016/S0006-3495(96)79653-4

Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B., and Turrigiano,

G. G. (2013). Firing rate homeostasis in visual cortex of freely behaving rodents.

Neuron 80, 335–342. doi: 10.1016/j.neuron.2013.08.038

Higley, M. J., and Sabatini, B. L. (2008). Calcium signaling in dendrites and

spines: practical and functional considerations. Neuron 59, 902–913. doi:

10.1016/j.neuron.2008.08.020

Hill, T. C., and Zito, K. (2013). LTP-induced long-term stabilization of

individual nascent dendritic spines. J. Neurosci. 33, 678–686. doi: 10.1523/JN

EUROSCI.1404-12.2013

Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T., and Hübener, M. (2009).

Experience leaves a lasting structural trace in cortical circuits. Nature 457,

313–317. doi: 10.1038/nature07487

Holtmaat, A. J. G. D., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang,

X., Knott, G. W., et al. (2005). Transient and persistent dendritic spines

in the neocortex in vivo. Neuron 45, 279–291. doi: 10.1016/j.neuron.2005.

01.003

Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.

doi: 10.1073/pnas.79.8.2554

Hou, Q., Gilbert, J., and Man, H. Y. (2011). Homeostatic regulation of

AMPA receptor trafficking and degradation by light-controlled single-synaptic

activation. Neuron 72, 806–818. doi: 10.1016/j.neuron.2011.10.011

Hou, Q., Zhang, D., Jarzylo, L., Huganir, R. L., and Man, H. Y. (2008).

Homeostatic regulation of AMPA receptor expression at single hippocampal

synapses. Proc. Natl. Acad. Sci. U.S.A. 105, 775–780. doi: 10.1073/pnas.07064

47105

Hua, J. Y., and Smith, S. J. (2004). Neural activity and the dynamics of central

nervous system development. Nat. Neurosci. 7, 327–332. doi: 10.1038/nn1218

Hübener, M., and Bonhoeffer, T. (2010). Searching for engrams. Neuron 67,

363–371. doi: 10.1016/j.neuron.2010.06.033

Hutchins, B. I., and Kalil, K. (2008). Differential outgrowth of axons and their

branches is regulated by localized calcium transients. J. Neurosci. 28, 143–153.

doi: 10.1523/JNEUROSCI.4548-07.2008

Huttenlocher, P. R. (1984). Synapse elimination and plasticity in developing

human cerebral cortex. Am. J. Ment. Defic. 88, 488–496.

Huttenlocher, P. R., de Courten, C., Garey, L. J., and Van der Loos, H. (1982).

Synaptogenesis in human visual cortex–evidence for synapse elimination

during normal development. Neurosci. Lett. 33, 247–252. doi: 10.1016/0304-

3940(82)90379-2

Ibata, K., Sun, Q., and Turrigiano, G. G. (2008). Rapid synaptic scaling

induced by changes in postsynaptic firing. Neuron 57, 819–826. doi:

10.1016/j.neuron.2008.02.031

Isokawa, M. (1998). Remodeling dendritic spines in the rat pilocarpine model

of temporal lobe epilepsy. Neurosci. Lett. 258, 73–76. doi: 10.1016/S0304-

3940(98)00848-9

Isokawa, M., and Levesque, M. F. (1991). Increased NMDA responses

and dendritic degeneration in human epileptic hippocampal neurons

in slices. Neurosci. Lett. 132, 212–216. doi: 10.1016/0304-3940(91)90

304-C

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 45

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Fauth and Tetzlaff Activity-Dependence of Structural Plasticity

Jiang, M., Lee, C. L., Smith, K. L., and Swann, J. W. (1998). Spine loss and other

persistent alterations of hippocampal pyramidal cell dendrites in a model of

early-onset epilepsy. J. Neurosci. 18, 8356–8368.

Kalisman, N., Silberberg, G., and Markram, H. (2005). The neocortical

microcircuit as a tabula rasa. Proc. Natl. Acad. Sci. U.S.A. 102, 880–885. doi:

10.1073/pnas.0407088102

Kappel, D., Habenschuss, S., Legenstein, R., and Maass, W. (2015). Network

plasticity as Bayesian inference. PLoS Comput. Biol. 11:e1004485. doi:

10.1371/journal.pcbi.1004485

Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., and Nakahara, H. (2003).

Structure-stability-function relationships of dendritic spines. Trends Neurosci.

26, 360–368. doi: 10.1016/S0166-2236(03)00162-0

Kater, S. B., Mattson, M. P., and Guthrie, P. B. (1989). Calcium-induced neuronal

degeneration: a normal growth cone regulating signal gone awry (?). Ann. N. Y.

Acad. Sci. 568, 252–261. doi: 10.1111/j.1749-6632.1989.tb12514.x

Kauer, J. A., Malenka, R. C., and Nicoll, R. A. (1988). A persistent postsynaptic

modification mediates long-term potentiation in the hippocampus. Neuron 1,

911–917. doi: 10.1016/0896-6273(88)90148-1

Keck, T., Keller, G. B., Jacobsen, R. I., Eysel, U. T., Bonhoeffer, T., and Hübener, M.

(2013). Synaptic scaling and homeostatic plasticity in the mouse visual cortex

in vivo. Neuron 80, 327–334. doi: 10.1016/j.neuron.2013.08.018

Keck, T., Mrsic-Flogel, T. D., Vaz Alfonso, M., Eysel, U. T., Bonhoeffer, T.,

and Hübener, M. (2008). Massive restructuring of neuronal circuits during

functional reorganization of adult visual cortex. Nat. Neurosci. 11, 1162–1167.

doi: 10.1038/nn.2181

Kim, J., Tsien, R. W., and Alger, B. E. (2012). An improved test for detecting

multiplicative homeostatic synaptic scaling. PLoS ONE 7:e37364. doi: 10.1371/

journal.pone.0037364

Kirkwood, A., Rioult, M. G., and Bear, M. F. (1996). Experience-dependent

modification of synaptic plasticity in visual cortex. Nature 381, 526–528. doi:

10.1038/381526a0

Kirov, S. A., Goddard, C. A., and Harris, K. M. (2004). Age-dependence in

the homeostatic upregulation of hippocampal dendritic spine number during

blocked synaptic transmission. Neuropharmacology 47, 640–648. doi: 10.1016/

j.neuropharm.2004.07.039

Kirov, S. A., and Harris, K. M. (1999). Dendrites are more spiny on mature

hippocampal neurons when synapses are inactivated.Nat. Neurosci. 2, 878–883.

doi: 10.1038/13178

Kirov, S. A., Sorra, K. E., and Harris, K. M. (1999). Slices have more synapses than

perfusion-fixed hippocampus from both young andmature rats. J. Neurosci. 19,

2876–2886.

Knoblauch, A. (2009). “The role of structural plasticity and synaptic consolidation

for memory and amnesia in a model of cortico-hippocampal interplay,” in

Connectionist Models of Behavior and Cognition II: Proceedings of the 11th

Neural Computation and Psychology Workshop (Singapore: Wold Scientific

Publishing), 79–90. doi: 10.1142/9789812834232_0007

Knoblauch, A., Körner, E., Körner, U., and Sommer, F. T. (2014). Structural

synaptic plasticity has high memory capacity and can explain graded amnesia,

catastrophic forgetting, and the spacing effect. PLoS ONE 9:e96485. doi:

10.1371/journal.pone.0096485

Knoblauch, A., Palm, G., and Sommer, F. T. (2009). Memory capacities

for synaptic and structural plasticity. Neural Comput. 22, 289–341. doi:

10.1162/neco.2009.08-07-588

Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E., and Svoboda, K. (2006).

Spine growth precedes synapse formation in the adult neocortex in vivo. Nat.

Neurosci. 9, 1117–1124. doi: 10.1038/nn1747

Kolodziejski, C., Tetzlaff, C., and Wörgötter, F. (2010). Closed-form treatment

of the interactions between neuronal activity and timing-dependent plasticity

in networks of linear neurons. Front. Comput. Neurosci. 4:134. doi:

10.3389/fncom.2010.00134

Kwon, H.-B., and Sabatini, B. L. (2011). Glutamate induces de novo growth

of functional spines in developing cortex. Nature 474, 100–104. doi:

10.1038/nature09986

Lamprecht, R., and LeDoux, J. (2004). Structural plasticity and memory. Nat. Rev.

Neurosci. 5, 45–54. doi: 10.1038/nrn1301

Le Bé, J.-V., and Markram, H. (2006). Spontaneous and evoked synaptic rewiring

in the neonatal neocortex. Proc. Natl. Acad. Sci. U.S.A. 103, 13214–13219. doi:

10.1073/pnas.0604691103

Lee, K. S., Schottler, F., Oliver, M., and Lynch, G. (1980). Brief bursts of

high-frequency stimulation produce two types of structural change in rat

hippocampus. J. Neurophysiol. 44, 247–258.

Lee, W.-C. A., Huang, H., Feng, G., Sanes, J. R., Brown, E. N., So, P. T.,

et al. (2006). Dynamic remodeling of dendritic arbors in GABAergic

interneurons of adult visual cortex. PLoS Biol. 4:e29. doi: 10.1371/journal.pbio.0

040029

Leuner, B., Falduto, J., and Shors, T. J. (2003). Associative memory formation

increases the observation of dendritic spines in the hippocampus. J. Neurosci.

23, 659–665. Available online at: http://www.jneurosci.org/content/23/2/659.

long

Levy, W. B. (2004). Contrasting rules for synaptogenesis, modification

of existing synapses, and synaptic removal as a function of neuronal

computation. Neurocomputing 58, 343–350. doi: 10.1016/j.neucom.2004.

01.065

Levy, W. B., and Desmond, N. L. (1985). “The rules of elemental synaptic

plasticity,” in Synaptic Modification, Neuron Selectivity and Nervous System

Organisation, eds W. B. Levy, J. A. Anderson, and S. Lehmkuhle (Hillsdale, NJ:

Lawrence Erlbaum Associates), 105–121.

Levy, W. B., and Steward, O. (1983). Temporal contiguity requirements for long-

term associative potentiation/depression in the hippocampus. Neuroscience 8,

791–797. doi: 10.1016/0306-4522(83)90010-6

Lipton, S. A., and Kater, S. B. (1989). Neurotransmitter regulation of neuronal

outgrowth, plasticity and survival. Trends Neurosci. 12, 265–270. doi:

10.1016/0166-2236(89)90026-X

Loewenstein, Y., Yanover, U., and Rumpel, S. (2015). Predicting the dynamics

of network connectivity in the neocortex. J. Neurosci. 35, 12535–12544. doi:

10.1523/JNEUROSCI.2917-14.2015

Lohmann, C., Finski, A., and Bonhoeffer, T. (2005). Local calcium transients

regulate the spontaneous motility of dendritic filopodia. Nat. Neurosci. 8,

305–312. doi: 10.1038/nn1406

Lohmann, C., Myhr, K. L., and Wong, R. O. L. (2002). Transmitter-evoked local

calcium release stabilizes developing dendrites. Nature 418, 177–181. doi:

10.1038/nature00850

Lynch, G. S., Dunwiddie, T., and Gribkoff, V. (1977). Heterosynaptic depression:

a postsynaptic correlate of long-term potentiation. Nature 266, 737–739. doi:

10.1038/266737a0

Lynch, G. S., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F. (1983).

Intracellular injections of EGTA block induction of hippocampal long-term

potentiation. Nature 305, 719–721. doi: 10.1038/305719a0

Majewska, A. K., Newton, J. R., and Sur, M. (2006). Remodeling of synaptic

structure in sensory cortical areas in vivo. J. Neurosci. 26, 3021–3029. doi:

10.1523/JNEUROSCI.4454-05.2006

Malenka, R. C., and Bear, M. F. (2004). LTP and LTD: an embarrassment of riches.

Neuron 44, 5–21. doi: 10.1016/j.neuron.2004.09.012

Malenka, R. C., Lancaster, B., and Zucker, R. S. (1992). Temporal limits on the rise

in postsynaptic calcium required for the induction of long-term potentiation.

Neuron 9, 121–128. doi: 10.1016/0896-6273(92)90227-5

Maletic-Savatic, M., Malinow, R., and Svoboda, K. (1999). Rapid

dendritic morphogenesis in CA1 hippocampal dendrites induced by

synaptic activity. Science 283, 1923–1927. doi: 10.1126/science.283.540

9.1923

Marder, E., and Goaillard, J. M. (2006). Variability, compensation and homeostasis

in neuron and network function. Nat. Rev. Neurosci. 7, 563–574. doi:

10.1038/nrn1949

Marik, S. A., Yamahachi, H., McManus, J. N. J., Szabo, G., and Gilbert, C. D. (2010).

Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

PLoS Biol. 8:e1000395. doi: 10.1371/journal.pbio.1000395

Markram, H., Lübke, J., Frotscher, M., Roth, A., and Sakmann, B. (1997a).

Physiology and anatomy of synaptic connections between thick tufted

pyramidal neurones in the developing rat neocortex. J. Physiol. 500(Pt 2),

409–440. doi: 10.1113/jphysiol.1997.sp022031

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997b). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A history of

spike-timing-dependent plasticity. Front. Synaptic Neurosci. 3:4. doi:

10.3389/fnsyn.2011.00004

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 46

http://www.jneurosci.org/content/23/2/659.long
http://www.jneurosci.org/content/23/2/659.long
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Fauth and Tetzlaff Activity-Dependence of Structural Plasticity

Martin, S. J., Grimwood, P. D., and Morris, R. G. (2000). Synaptic plasticity and

memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711.

doi: 10.1146/annurev.neuro.23.1.649

Matsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y., Iino, M., and Kasai,

H. (2001). Dendritic spine geometry is critical for AMPA receptor expression

in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4:1086–1092. doi:

10.1038/nn736

Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R., and Kasai, H. (2004). Structural

basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.

doi: 10.1038/nature02617

Mattson, M. P. (1988). Neurotransmitters in the regulation of neuronal

cytoarchitecture. Brain Res. 472, 179–212. doi: 10.1016/0165-0173(88)90020-3

Mattson, M. P., Dou, P., and Kater, S. B. (1988). Outgrowth-regulating actions of

glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8, 2087–

2100.

Mattson, M. P., and Kater, S. B. (1987). Calcium regulation of neurite elongation

and growth cone motility. J. Neurosci. 7, 4034–4043.

Mattson,M. P., and Kater, S. B. (1989). Excitatory and inhibitory neurotransmitters

in the generation and degeneration of hippocampal neuroarchitecture. Brain

Res. 478, 337–348. doi: 10.1016/0006-8993(89)91514-X

McAllister, A. K., Katz, L. C., and Lo, D. C. (1996). Neurotrophin regulation

of cortical dendritic growth requires activity. Neuron 17, 1057–1064. doi:

10.1016/S0896-6273(00)80239-1

Medvedev, N. I., Dallérac, G., Popov, V. I., Rodriguez Arellano, J. J., Davies,

H. A., Kraev, I. V., et al. (2014). Multiple spine boutons are formed after

long-lasting LTP in the awake rat. Brain Struct. Funct. 219, 407–414. doi:

10.1007/s00429-012-0488-0

Miller, K. D. (1996). Synaptic economics: competition and cooperation in synaptic

plasticity. Neuron 17, 371–374. doi: 10.1016/S0896-6273(00)80169-5

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.

(2002). Network motifs: simple building blocks of complex networks. Science

298, 824–827. doi: 10.1126/science.298.5594.824

Miner, D., and Triesch, J. (2016). Plasticity-driven self-organization under

topological constraints aaccount for nonrandom features of cortical synaptic

wiring. PLoS Comput. Biol. 12:e1004759. doi: 10.1371/journal.pcbi.1004759

Miquelajauregui, A., Kribakaran, S., Mostany, R., Badaloni, A., Consalez, G. G.,

and Portera-Cailliau, C. (2015). Layer 4 pyramidal neurons exhibit robust

dendritic spine plasticity in vivo after input deprivation. J. Neurosci. 35, 7287–

7294. doi: 10.1523/JNEUROSCI.5215-14.2015

Mizrahi, A., Crowley, J. C., Shtoyerman, E., and Katz, L. C. (2004). High-resolution

in vivo imaging of hippocampal dendrites and spines. J. Neurosci. 24, 3147–

3151. doi: 10.1523/JNEUROSCI.5218-03.2004

Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. (1986). Selective

impairment of learning and blockade of long-term potentiation by an N-

methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776. doi:

10.1038/319774a0

Moser, M. B., Trommald, M., and Andersen, P. (1994). An increase in dendritic

spine density on hippocampal CA1 pyramidal cells following spatial learning in

adult rats suggests the formation of new synapses. Proc. Natl. Acad. Sci. U.S.A.

91, 12673–12675. doi: 10.1073/pnas.91.26.12673

Mulkey, R. M., and Malenka, R. C. (1992). Mechanisms underlying induction of

homosynaptic long-term depression in area CA1 of the hippocampus. Neuron

9, 967–975. doi: 10.1016/0896-6273(92)90248-C

Muller, D., and Lynch, G. (1988). Long-term potentiation differentially affects two

components of synaptic responses in hippocampus. Proc. Natl. Acad. Sci. U.S.A.

85, 9346–9350. doi: 10.1073/pnas.85.23.9346

Müller, M., Gähwiler, B. H., Rietschin, L., and Thompson, S. M. (1993). Reversible

loss of dendritic spines and altered excitability after chronic epilepsy in

hippocampal slice cultures. Proc. Natl. Acad. Sci. U.S.A. 90, 257–261. doi:

10.1073/pnas.90.1.257

Murthy, V. N., Schikorski, T., Stevens, C. F., and Zhu, Y. (2001). Inactivity

produces increases in neurotransmitter release and synapse size. Neuron 32,

673–682. doi: 10.1016/S0896-6273(01)00500-1

Nägerl, U. V., Eberhorn, N., Cambridge, S. B., and Bonhoeffer, T. (2004).

Bidirectional activity-dependent morphological plasticity in hippocampal

neurons. Neuron 44, 759–767. doi: 10.1016/j.neuron.2004.11.016

Nägerl, U. V., Köstinger, G., Anderson, J. C., Martin, K. A. C., and Bonhoeffer,

T. (2007). Protracted synaptogenesis after activity-dependent spinogenesis

in hippocampal neurons. J. Neurosci. 27, 8149–8156. doi: 10.1523/JNE

UROSCI.0511-07.2007

Nägerl, U. V.,Willig, K. I., Hein, B., Hell, S.W., and Bonhoeffer, T. (2008). Live-cell

imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U.S.A.

105, 18982–18987. doi: 10.1073/pnas.0810028105

Nakayama, K., Kiyosue, K., and Taguchi, T. (2005). Diminished neuronal activity

increases neuron-neuron connectivity underlying silent synapse formation and

the rapid conversion of silent to functional synapses. J. Neurosci. 25, 4040–4051.

doi: 10.1523/JNEUROSCI.4115-04.2005

Nikonenko, I., Jourdain, P., and Muller, D. (2003). Presynaptic remodeling

contributes to activity-dependent synaptogenesis. J. Neurosci. 23, 8498–8505.

Available online at: http://www.jneurosci.org/content/23/24/8498.long

Ninan, I., Liu, S., Rabinowitz, D., and Arancio, O. (2006). Early presynaptic

changes during plasticity in cultured hippocampal neurons. EMBO J. 25,

4361–4371. doi: 10.1038/sj.emboj.7601318

Oh, W. C., Hill, T. C., and Zito, K. (2013). Synapse-specific and size-dependent

mechanisms of spine structural plasticity accompanying synaptic weakening.

Proc. Natl. Acad. Sci. U.S.A. 110, E305–E312. doi: 10.1073/pnas.1214705110

Oh, W. C., Parajuli, L. K., and Zito, K. (2015). Heterosynaptic structural plasticity

on local dendritic segments of hippocampal CA1 neurons. Cell Rep. 10, 162–

169. doi: 10.1016/j.celrep.2014.12.016

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Okamoto, K.-I., Nagai, T., Miyawaki, A., and Hayashi, Y. (2004). Rapid and

persistent modulation of actin dynamics regulates postsynaptic reorganization

underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112. doi:

10.1038/nn1311

Paola, V. D., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., et al.

(2006). Cell type-specific structural plasticity of axonal branches and boutons

in the adult neocortex. Neuron 49, 861–875. doi: 10.1016/j.neuron.2006.02.017

Parnavelas, J. G., Lynch, G., Brecha, N., Cotman, C. W., and Globus, A. (1974).

Spine loss and regrowth in hippocampus following deafferentation.Nature 248,

71–73. doi: 10.1038/248071a0

Pastalkova, E., Serrano, P., Pinkhasova, D., Wallace, E., Fenton, A. A., and Sacktor,

T. C. (2006). Storage of spatial information by the maintaince mechanism of

LTP. Science 313, 1141–1144. doi: 10.1126/science.1128657

Paul, L. A., and Scheibel, A. B. (1986). Structural substrates of epilepsy. Adv.

Neurol. 44, 775–786.

Perin, R., Berger, T. K., and Markram, H. (2011). A synaptic organizing principle

for cortical neuronal groups. Proc. Natl. Acad. Sci. U.S.A. 108, 5419–5424. doi:

10.1073/pnas.1016051108

Platschek, S., Cuntz, H., Vuksic, M., Deller, T., and Jedlicka, P. (2016). A general

homeostatic principle following lesion induced dendritic remodeling. Acta

Neuropathol. Commun. 4:19. doi: 10.1186/s40478-016-0285-8

Portera-Cailliau, C., Pan, D. T., and Yuste, R. (2003). Activity-regulated dynamic

behavior of early dendritic protrusions: evidence for different types of dendritic

filopodia. J. Neurosci. 23, 7129–7142. Available online at: http://www.jneurosci.

org/content/23/18/7129.long

Ramakers, G. J., Corner, M. A., and Habets, A. M. (1990). Development in the

absence of spontaneous bioelectric activity results in increased stereotyped

burst firing in cultures of dissociated cerebral cortex. Exp. Brain Res. 79,

157–166. doi: 10.1007/BF00228885

Riedel, H., and Schild, D. (1992). The dynamics of Hebbian synapses can

be stabilized by a nonlinear decay term. Neural Netw. 5, 459–463. doi:

10.1016/0893-6080(92)90007-6

Rioult-Pedotti, M.-S., Friedman, D., Hess, G., and Donoghue, J. P. (1998).

Strengthening of horizontal cortical connections following skill learning. Nat.

Neurosci. 1, 230–234. doi: 10.1038/678

Rocha, M., and Sur, M. (1995). Rapid acquisition of dendritic spines by

visual thalamic neurons after blockade of N-methyl-D-aspartate receptors.

Proc. Natl. Acad. Sci. U.S.A. 92, 8026–8030. doi: 10.1073/pnas.92.

17.8026

Rochester, N., Holland, J., Haibt, L., and Duda, W. (1956). Tests on a cell assembly

theory of the action of the brain, using a large digital computer. IRE Trans. Inf.

Theory 2, 80–93. doi: 10.1109/TIT.1956.1056810

Rogerson, T., Cai, D. J., Frank, A., Sano, Y., Shobe, J., Lopez-Aranda, M. F., et

al. (2014). Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15,

157–169. doi: 10.1038/nrn3667

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 47

http://www.jneurosci.org/content/23/24/8498.long
http://www.jneurosci.org/content/23/18/7129.long
http://www.jneurosci.org/content/23/18/7129.long
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Fauth and Tetzlaff Activity-Dependence of Structural Plasticity

Ruthazer, E. S., Li, J., and Cline, H. T. (2006). Stabilization of axon branch

dynamics by synaptic maturation. J. Neurosci. 26, 3594–3603. doi: 10.1523/J

NEUROSCI.0069-06.2006

Scheibel, M. E., Crandall, P. H., and Scheibel, A. B. (1974). The hippocampal-

dentate complex in temporal lobe epilepsy. A golgi study. Epilepsia 15, 55–80.

doi: 10.1111/j.1528-1157.1974.tb03997.x

Segal, I., Korkotian, I., and Murphy, D. D. (2000). Dendritic spine formation

and pruning: common cellular mechanisms? Trends Neurosci. 23, 53–57. doi:

10.1016/S0166-2236(99)01499-X

Segal, M. (2005). Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6,

277–284. doi: 10.1038/nrn1649

Sejnowski, T. J. (1977a). Statistical constraints on synaptic plasticity. J. Theor. Biol.

69, 385–389. doi: 10.1016/0022-5193(77)90146-1

Sejnowski, T. J. (1977b). Storing covariance with nonlinearly interacting neurons.

J. Math. Biol. 4, 303–321. doi: 10.1007/BF00275079

Shi, S.-H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda,

K., et al. (1999). Rapid spine delivery and redistribution of AMPA receptors

after synaptic NMDA receptor activation. Science 284, 1811–1816. doi:

10.1126/science.284.5421.1811

Sin, W. C., Haas, K., Ruthazer, E. S., and Cline, H. T. (2002). Dendrite growth

increased by visual activity requires NMDA receptor and Rho GTPases. Nature

419, 475–480. doi: 10.1038/nature00987

Sjöström, P. J., andHäusser, M. (2006). A cooperative switch determines the sign of

synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron

51, 227–238. doi: 10.1016/j.neuron.2006.06.017

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly

nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.

3:e68. doi: 10.1371/journal.pbio.0030068

Sorra, K. E., and Harris, K. M. (1998). Stability in synapse number and size at

2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18,

658–671.

Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent

action potential invasion and calcium influx into hippocampal CA1 dendrites.

Science 268, 297–300. doi: 10.1126/science.7716524

Stettler, D. D., Yamahachi, H., Li, W., Denk, W., and Gilbert, C. D. (2006). Axons

and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49,

877–887. doi: 10.1016/j.neuron.2006.02.018

Stevens, C. F., andWang, Y. (1994). Changes in reliability of synaptic function as a

mechanism for plasticity. Nature 371, 704–707. doi: 10.1038/371704a0

Stoop, R., and Poo, M. M. (1996). Synaptic modulation by neurotrophic factors:

differential and synergistic effects of brain-derived neurotrophic factor and

ciliary neurotrophic factor. J. Neurosci. 16, 3256–3264.

Tailby, C., Wright, L. L., Metha, A. B., and Calford, M. B. (2005). Activity-

dependent maintenance and growth of dendrites in adult cortex. Proc. Natl.

Acad. Sci. U.S.A. 102, 4631–4636. doi: 10.1073/pnas.0402747102

Tetzlaff, C., Dasgupta, S., Kulvicius, T., and Wörgötter, F. (2015). The use of

Hebbian cell assemblies for nonlinear computation. Sci. Rep. 5:12866. doi:

10.1038/srep12866

Tetzlaff, C., Kolodziejski, C., Timme, M., and Wörgötter, F. (2011). Synaptic

scaling in combination with many generic plasticity mechanisms stabilizes

circuit connectivity. Front. Comput. Neurosci. 5:47. doi: 10.3389/fncom.2011.

00047

Tetzlaff, C., Okujeni, S., Egert, U., Wörgötter, F., and Butz, M. (2010). Self-

organized criticality in developing neuronal networks. PLoS Comput. Biol.

6:e1001013. doi: 10.1371/journal.pcbi.1001013

Thomas, B. T., Blalock, D. W., and Levy, W. B. (2015). Adaptive synaptogenesis

constructs neural codes that benefit discrimination. PLoS Comput. Biol.

11:e1004299. doi: 10.1371/journal.pcbi.1004299

Tian, X., Kai, L., Hockberger, P. E., Wokosin, D. L., and Surmeier, D. J. (2010).

MEF-2 regulates activity-dependent spine loss in striatopallidal medium

spiny neurons. Mol. Cell. Neurosci. 44, 94–108. doi: 10.1016/j.mcn.2010.

01.012

Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., and Muller, D. (1999). LTP

promotes formation of multiple spine synapses between a single axon terminal

and a dendrite. Nature 402, 421–425. doi: 10.1038/46574

Tønnesen, J., Katona, G., Rózsa, B., and Nägerl, U. V. (2014). Spine neck plasticity

regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685. doi:

10.1038/nn.3682

Tønnesen, J., Nadrigny, F., Willig, K. I., Wedlich-Söldner, R., and Nägerl, U. V.

(2011). Two-color STED microscopy of living synapses using a single laser-

beam pair. Biophys. J. 101, 2545–2552. doi: 10.1016/j.bpj.2011.10.011

Toyoizumi, T., Kaneko, M., Stryker, M. P., and Miller, K. D. (2014). Modeling

the dynamic interaction of Hebbian and homeostatic plasticity. Neuron 84,

497–510. doi: 10.1016/j.neuron.2014.09.036

Trachtenberg, J. T., Chen, B. E., Knott, G.W., Feng, G., Sanes, J. R.,Welker, E., et al.

(2002). Long-term in vivo imaging of experience-dependent synaptic plasticity

in adult cortex. Nature 420, 788–794. doi: 10.1038/nature01273

Trommald, M., Hulleberg, G., and Andersen, P. (1996). Long-term potentiation

is associated with new excitatory spine synapses on rat dentate granule cells.

Learn. Mem. 3, 218–228. doi: 10.1101/lm.3.2-3.218

Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory

synapses. Cell 135, 422–435. doi: 10.1016/j.cell.2008.10.008

Turrigiano, G. G. (2011). Too many cooks? Intrinsic and synaptic homeostatic

mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103.

doi: 10.1146/annurev-neuro-060909-153238

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson,

S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical

neurons. Nature 391, 892–896. doi: 10.1038/36103

Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the

developing nervous system.Nat. Rev. Neurosci. 5, 97–107. doi: 10.1038/nrn1327

Vaillant, A. R., Zanassi, P., Walsh, G. S., Aumont, A., Alonso, A., and Miller,

F. D. (2002). Signaling mechanisms underlying reversible, activity-dependent

dendrite formation. Neuron 34, 985–998. doi: 10.1016/S0896-6273(02)00717-1

van Huizen, F., and Romijn, H. J. (1987). Tetrodotoxin enhances initial neurite

outgrowth from fetal rat cerebral cortex cells in vitro. Brain Res. 408, 271–274.

doi: 10.1016/0006-8993(87)90386-6

van Huizen, F., Romijn, H. J., and Habets, A. M. (1985). Synaptogenesis in rat

cerebral cortex cultures is affected during chronic blockade of spontaneous

bioelectric activity by tetrodotoxin. Brain Res. 351, 67–80. doi: 10.1016/0165-

3806(85)90232-9

van Huizen, F., Romijn, H. J., Habets, A. M., and van den Hooff, P.

(1987). Accelerated neural network formation in rat cerebral cortex cultures

chronically disinhibited with picrotoxin. Exp. Neurol. 97, 280–288. doi:

10.1016/0014-4886(87)90089-6

van Ooyen, A. (ed.). (2003).Modeling Neural Development. Cambridge: MIT Press.

van Ooyen, A. (2011). Using theoretical models to analyse neural development.

Nat. Rev. Neurosci. 12, 311–326. doi: 10.1038/nrn3031

van Ooyen, A., and van Pelt, J. (1994). Activity-dependent outgrowth of neurons

and overshoot phenomena in developing neural networks. J. Theor. Biol. 167,

27–43. doi: 10.1006/jtbi.1994.1047

van Ooyen, A., and van Pelt, J. (1996). Complex periodic behaviour in a neural

network model with activity-dependent neurite outgrowth. J. Theor. Biol. 179,

229–242. doi: 10.1006/jtbi.1996.0063

van Ooyen, A., van Pelt, J., and Corner, M. A. (1995). Implications of

activity dependent neurite outgrowth for neuronal morphology and network

development. J. Theor. Biol. 172, 63–82. doi: 10.1006/jtbi.1995.0005

van Pelt, J., van Ooyen, A., and Corner, M. A. (1996). Growth cone dynamics and

activity-dependent processes in neuronal network development. Prog. Brain

Res. 108, 333–346. doi: 10.1016/S0079-6123(08)62550-9

Vees, A. M., Micheva, K. D., Beaulieu, C., and Descarries, L. (1998). Increased

number and size of dendritic spines in ipsilateral barrel field cortex following

unilateral whisker trimming in postnatal rat. J. Comp. Neurol. 400, 110–124.

Vitureira, N., and Goda, Y. (2013). The interplay between Hebbian and

homeostatic synaptic plasticity. J. Cell Biol. 203, 175–186. doi: 10.1083/

jcb.201306030

Vlachos, A., Becker, D., Jedlicka, P., Winkels, R., Roeper, J., and Deller, T. (2012a).

Entorhinal denervation induces homeostatic synaptic scaling of excitatory

postsynapses of dentate granule cells in mouse organotypic slice cultures. PLoS

ONE 7:e32883. doi: 10.1371/journal.pone.0032883

Vlachos, A., Helias, M., Becker, D., Diesmann, M., and Deller, T. (2013).

NMDA-receptor inhibition increases spine stability of denervated mouse

dentate granule cells and accelerates spine density recovery following

entorhinal denervation in vitro. Neurobiol. Dis. 59, 267–276. doi: 10.1016/

j.nbd.2013.07.018

Vlachos, A., Orth, C. B., Schneider, G., and Deller, T. (2012b). Time-lapse imaging

of granule cells in mouse entorhino-hippocampal slice cultures reveals changes

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 48

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Fauth and Tetzlaff Activity-Dependence of Structural Plasticity

in spine stability after entorhinal denervation. J. Comp. Neurol. 520, 1891–1902.

doi: 10.1002/cne.23017

Vogels, T. P., Frömke, R. C., Doyon, N., Gilson, M., Haas, J. S., Liu, R., et al. (2013).

Inhibitory synaptic plasticity: spike timing-dependence and putative network

function. Front. Neural Circuits 7:119. doi: 10.3389/fncir.2013.00119

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the

striate cortex. Kybernetik 14, 85–100. doi: 10.1007/BF00288907

Vuksic, M., Turco, D. D., Vlachos, A., Schuldt, G., Müller, C. M., Schneider, G.,

et al. (2011). Unilateral entorhinal denervation leads to long-lasting dendritic

alterations of mouse hippocampal granule cells. Exp. Neurol. 230, 176–185. doi:

10.1016/j.expneurol.2011.04.011

Wagenaar, D. A., Pine, J., and Potter, S. M. (2006). An extremely rich repertoire of

bursting patterns during the development of cortical cultures. BMC Neurosci.

7:11. doi: 10.1186/1471-2202-7-11

Whitlock, J. R., Heynen, A. J., Shuler, M. G., and Bear, M. F. (2006). Learning

induces long-term potentiation in the hippocampus. Science 313, 1093–1097.

doi: 10.1126/science.1128134

Wiegert, J. S., andOertner, T. G. (2013). Long-term depression triggers the selective

elimination of weakly integrated synapses. Proc. Natl. Acad. Sci. U.S.A. 110,

E4510–E4519. doi: 10.1073/pnas.1315926110

Willshaw, D. J., Buneman, O. P., and Longuet-Higgins, H. C. (1969). Non-

holographic associative memory. Nature 222, 960–962. doi: 10.1038/222960a0

Wolff, J. R., Joó, F., and Dames, W. (1978). Plasticity in dendrites shown by

continuous GABA administration in superior cervical ganglion of adult rat.

Nature 274, 72–74. doi: 10.1038/274072a0

Wong, R. O. L., and Ghosh, A. (2002). Activity-dependent regulation of dendritic

growth and patterning. Nat. Rev. Neurosci. 3, 803–812. doi: 10.1038/nrn941

Wu, G. Y., and Cline, H. T. (1998). Stabilization of dendritic arbor structure in vivo

by CaMKII. Science 279, 222–226. doi: 10.1126/science.279.5348.222

Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., et al. (2009).

Rapid formation and selective stabilization of synapses for enduring motor

memories. Nature 462, 915–919. doi: 10.1038/nature08389

Yamahachi, H., Marik, S. A., McManus, J. N. J., Denk,W., and Gilbert, C. D. (2009).

Rapid axonal sprouting and pruning accompany functional reorganization

in primary visual cortex. Neuron 64, 719–729. doi: 10.1016/j.neuron.2009.

11.026

Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines

are associated with lifelong memories. Nature 462, 920–924. doi: 10.1038/

nature08577

Yang, Y., Wang, X. B., Frerking, M., and Zhou, Q. (2008). Spine expansion and

stabilization associated with long-term potentiation. J. Neurosci. 28, 5740–5751.

doi: 10.1523/JNEUROSCI.3998-07.2008

Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., and Kasai, H. (2008).

Principles of long-term dynamics of dendritic spines. J. Neurosci. 28, 13592–

13608. doi: 10.1523/JNEUROSCI.0603-08.2008

Yin, J., and Yuan, Q. (2014). Structural homeostasis in the nervous system: a

balancing act for wiring plasticity and stability. Front. Cell. Neurosci. 8:439. doi:

10.3389/fncel.2014.00439

Yu, L.M. Y., andGoda, Y. (2009). Dendritic signalling and homeostatic adaptation.

Curr. Opin. Neurobiol. 19, 327–335. doi: 10.1016/j.conb.2009.07.002

Yu, X., Wang, G., Gilmore, A., Yee, A. X., Li, X., Xu, T., et al. (2013).

Accelerated experience-dependent pruning of cortical synapses in

ephrin-A2 knockout mice. Neuron 80, 64–71. doi: 10.1016/j.neuron.2013.

07.014

Yuste, R. (2010). Dendritic Spines. Camebridge, MA: The MIT Press.

Yuste, R., and Bonhoeffer, T. (2001). Morphological changes in dendritic spines

associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–

1089. doi: 10.1146/annurev.neuro.24.1.1071

Zenke, F., Hennequin, G., and Gerstner, W. (2013). Synaptic plasticity in neural

networks needs homeostasis with a fast rate detector. PLoS Comput. Biol.

9:e1003330. doi: 10.1371/journal.pcbi.1003330

Zhang, W., and Linden, D. J. (2003). The other side of the engram: experience-

driven changes in neuronal intrinsic excitability.Nat. Rev. Neurosci. 4, 886–900.

doi: 10.1038/nrn1248

Zheng, P., Dimitrakakis, C., and Triesch, J. (2013). Network self-organization

explains the statistics and dynamics of synaptic connection strengths in cortex.

PLoS Comput. Biol. 9:e1002848. doi: 10.1371/journal.pcbi.1002848

Zheng, P., and Triesch, J. (2014). Robust development of synfire chains

from multiple plasticity mechanisms. Front. Comput. Neurosci. 8:66. doi:

10.3389/fncom.2014.00066

Zhou, Q., Homma, K. J., and Poo, M. M. (2004). Shrinkage of dendritic spines

associated with long-term depression of hippocampal synapses. Neuron 44,

749–757. doi: 10.1016/j.neuron.2004.11.011

Zito, K., Scheuss, V., Knott, G., Hill, T., and Svoboda, K. (2009). Rapid

functional maturation of nascent dendritic spines. Neuron 61, 247–258. doi:

10.1016/j.neuron.2008.10.054

Ziv, N. E., and Smith, S. J. (1996). Evidence for a role of dendritic filopodia in

synaptogenesis and spine formation. Neuron 17, 91–102. doi: 10.1016/S0896-

6273(00)80283-4

Zuo, Y., Lin, A., Chang, P., and Gan, W.-B. (2005a). Development of long-

term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46,

181–189. doi: 10.1016/j.neuron.2005.04.001

Zuo, Y., Yang, G., Kwon, E., and Gan, W.-B. (2005b). Long-term sensory

deprivation prevents dendritic spine loss in primary somatosensory cortex.

Nature 436, 261–265. doi: 10.1038/nature03715

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Fauth and Tetzlaff. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 75 | 49

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


METHODS
published: 06 January 2016

doi: 10.3389/fnana.2015.00156

REMOD: A Tool for Analyzing and
Remodeling the Dendritic
Architecture of Neural Cells
Panagiotis Bozelos 1,2, Stefanos S. Stefanou 1,3†, Georgios Bouloukakis 1,4†,
Constantinos Melachrinos 1 and Panayiota Poirazi 1*

1 Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Crete,
Greece, 2 Department of Molecular Biology and Genetics, Democritus University of Thrace, Crete, Greece, 3 Department of
Biology, University of Crete, Crete, Greece, 4 Computer Science Department, University of Crete, Crete, Greece

Edited by:
Arjen Van Ooyen,

VU University Amsterdam,
Netherlands

Reviewed by:
Benjamin Torben-Nielsen,

University of Hertfordshire, UK
Jaap Van Pelt,

VU University Amsterdam,
Netherlands

*Correspondence:
Panayiota Poirazi

poirazi@imbb.forth.gr

†These authors have contributed
equally to the work.

Received: 27 August 2015
Accepted: 16 November 2015
Published: 06 January 2016

Citation:
Bozelos P, Stefanou SS, Bouloukakis

G, Melachrinos C and Poirazi P
(2016) REMOD: A Tool for Analyzing

and Remodeling the Dendritic
Architecture of Neural Cells.

Front. Neuroanat. 9:156.
doi: 10.3389/fnana.2015.00156

Dendritic morphology is a key determinant of how individual neurons acquire a unique
signal processing profile. The highly branched dendritic structure that originates from the
cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a
certain amount of complexity. Its shape undergoes significant alterations under various
physiological or neuropathological conditions. Yet, despite the profound effect that these
alterations can have on neuronal function, the causal relationship between the two
remains largely elusive. The lack of a systematic approach for remodeling neural cells
and their dendritic trees is a key limitation that contributes to this problem. Such causal
relationships can be inferred via the use of large-scale neuronal models whereby the
anatomical plasticity of neurons is accounted for, in order to enhance their biological
relevance and hence their predictive performance. To facilitate this effort, we developed
a computational tool named REMOD that allows the structural remodeling of any type of
virtual neuron. REMOD is written in Python and can be accessed through a dedicated
web interface that guides the user through various options to manipulate selected
neuronal morphologies. REMOD can also be used to extract meaningful morphology
statistics for one or multiple reconstructions, including features such as sholl analysis,
total dendritic length and area, path length to the soma, centrifugal branch order,
diameter tapering and more. As such, the tool can be used both for the analysis and/or
the remodeling of neuronal morphologies of any type.

Keywords: neuron, dendrite, dendritic remodeling, computational tool, statistical analysis

INTRODUCTION

The morphological complexity of dendrites has been documented since the times of Ramón y
Cajal (1911) and is generally considered as an important factor for the proper functioning of the
nervous system. Dendritic morphology also demonstrates a great deal of variation across different
neuronal cell types (Ascoli, 2006), thus imposing an extra layer of complexity onto the deeply
tangled relationship between structure and function (Mainen and Sejnowski, 1996; Krichmar
et al., 2002; Schaefer et al., 2003). This structural diversity has been suggested to play a key role in
shaping the mode of connectivity between neurons (Sholl, 1956; Kalisman et al., 2003; Chklovskii,
2004) as well as the information processing and signal integration capabilities of neural cells
(reviewed in Spruston, 2008). Hence, the morphology of the dendritic tree directly influences
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the functionality of neural tissue, both at the single-cell and
network levels, in complex ways.

To deliver this structural intrication neurons appear to follow
an innate growth program (McAllister, 2000; Libersat and Duch,
2004) while responding adaptively to extrinsic guidance cues
supplied by the extracellular matrix (for detailed reviews, see
Wong and Wong, 2000; Procko and Shaham, 2010). Moreover,
calcium signaling events induced by the electrophysiological
activity of neurons are regarded as indispensable part of the
morphogenesis process (Wu and Cline, 1998; Wong and Ghosh,
2002; Lohmann et al., 2005). Importantly, dendrites appear
to be dynamic structures, even after the post-developmental
period (Magariños et al., 1996; Stranahan et al., 2007) and these
morphological changes ought to be related to neuronal function.

A considerable amount of research has accumulated to
validate this notion, by quantifying the dendritic alterations that
happen in response to either physiological or neuropathological
stimuli. For instance, in Alzheimer’s disease, besides the well-
known histopathological hallmarks of extracellular amyloid
plaques and intracellular neurofibrillary tangles (NFTs),
dendritic atrophy is consistently found among hippocampal
and cortical pyramidal neurons (Yamada et al., 1988; Moolman
et al., 2004). In another study, when rats were reared under
chronic stress conditions, abnormal morphological changes to
dendritic trees were seen across at least three different brain
regions: the hippocampus, amygdala and prefrontal cortex
(Vyas et al., 2002; Shansky and Morrison, 2009). Interestingly,
neurons in these areas seemed to respond completely different
to the same type of stress. In the CA3 subregion of the
hippocampus, as well as in the medial prefrontal cortex, the
dendritic arbor retracted to itself. On the contrary, dendritic
trees in the basolateral amygdala (BLA) exhibited excessive
growth as evident by their increased total length and number of
branches.

Dendritic remodeling is also happening under physiological
conditions. For instance, when there is increased need for
receiving, integrating and encoding complex spatiotemporal
patterns about newly encountered environments, the dendritic
arbors of rat hippocampal neurons grow (Tronel et al., 2010);
perhaps to accommodate new synapses and/or counterbalance
the impending overexcitability, that otherwise would be toxic
to the cell. Despite the profound effect that such dendritic
alterations can have on neural processing, a causal relationship
between structural changes and neuronal output has not been
established yet.

A great deal of neuroanatomical research effort has been
devoted to providing a direct link between structure and
function, at both the single-cell and network levels. During the
past few decades, the advent of intracellular labeling techniques
and the application of various visualization methods have led to a
dramatic increase in high resolution dendritic morphology data.
A tremendous progress in imaging methods and automation
is also expected to pave the way for an exponential growth
of the data acquisition in the forthcoming years (Peng et al.,
2015). The acquired morphological reconstructions are stored
in dedicated databases such as the NeuroMorpho (Ascoli et al.,
2007), the Fly Circuit (Chiang et al., 2011) and the Cell-Centered

Database (Martone et al., 2003), and enable the quantitative
analysis of neuronal shapes by the use of parameters relevant to
the metrical and topological properties of the cell. Investigators
interested in deciphering the role of neuroanatomy to the
proper functioning of the nervous system have developed and
provided the community with commercial and freeware tools
such as Neurolucida Explorer (Glaser and Glaser, 1990), L-
Measure (Scorcioni et al., 2008) BTMORPH (Torben-Nielsen,
2014), and NLMorphologyViewer1 to trace, analyze and visualize
the shape of the reconstructed neurons. However, most of these
tools need to be locally installed and often require at least
some basic programming skills, making them difficult to use
by non-experts (for a detailed review, see Parekh and Ascoli,
2013).

More advanced approaches to the remodeling of dendritic
trees incorporate the de-novo generation of neuronal
morphologies, based either on intrinsic correlations between
morphometric parameters (e.g., the NETMORPH tool by Koene
et al., 2009), on principles of neuronal material conservation
vs. conduction times (e.g., the TREES toolbox by Cuntz
et al., 2011), or the dynamic and competitive interplay of
retraction and outgrowth processes (e.g., the CX3D tool by
Zubler et al., 2013; Hjorth et al., 2014). Others implement a
hybrid of local and global generative algorithms to efficiently
reproduce the anatomical variability of various neuronal classes
(e.g., the L-Neuron and ArborVitae tools by Ascoli et al.,
2001). Recently, the NeuroMac tool introduced an interesting
context-aware approach in which developing neurons interact
with the surrounding brain substrate (Torben-Nielsen and
De Schutter, 2014). On the core of all the above algorithms
lays the use of a limited set of statistical descriptors and
assumptions on growth rules to generate stochastic neuronal
structures that are statistically indistinguishable from the
real neurons of the same morphological class. There is little
evidence as to whether these assumptions and rules would hold
under different physiological and/or pathological conditions.
While the importance of these tools is widely recognized
by the neuroanatomical community, to our knowledge,
there is currently no tool available to implement targeted,
assumption-free alterations on specific dendrites or branches of
already-grown morphologies. Given that dendritic remodeling
is happening quite frequently in nature, as part of the ever-
adapting neuronal function, the necessity of a tool to remodel
the dendritic morphology of digital reconstructions is long
overdue. Moreover, the recent use of detailed biophysical
and morphologically realistic large-scale brain models to
investigate microcircuit structure and function (Markram
et al., 2015) highlights the need to understand how different
anatomical features and their plasticity shape brain function and
dysfunction. Towards this goal, a systematic methodology that
allows efficient remodeling of any type of neuronal morphology
is a prerequisite.

In this work, we introduce REMOD, a computational tool
that allows the structural remodeling of any type of digitally
reconstructed neuron. The algorithm focuses on the simulation

1http://neuronland.org/NLMorphologyViewer/NLMorphologyViewer.html
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of the end-result of a dendritic remodeling process, without
explicitly implementing any growth and/or retraction rules.
It should be noted that such an end result can be achieved by
several different sets of manipulations, some of which may not
be biologically relevant. The important advantage of REMOD
is that it provides the flexibility to choose which manipulations
are considered relevant for each experimenter, condition and
cell type, thus allowing a full exploration of the parameter
space. This flexibility is particularly important when investigating
the effects of specific morphological manipulations on a given
response pattern. Such manipulations can be used to tease out
the contribution of distinct morphological factors from other
processes such as biophysical mechanisms.

The tool is written in Python and can be accessed through
a dedicated web interface that guides the user through various
options to manipulate selected neuronal morphologies. More
explicitly, it provides the ability to upload one or more
morphology files (in SWC, the most widely used format) and
choose specific dendrites or dendritic regions on which to
operate one of the following actions: shrink, remove, extend,
branch or scale. The user retains complete control over the extent
of each alteration and if a chosen action is not possible due
to pre-existing structural constraints, appropriate warnings are
generated. It is worth mentioning that REMOD can also be used
to extract a plethora of descriptive statistics for one or multiple
neurons, such as sholl analysis, total dendritic length and area,
path length to the soma, centrifugal branch order, diameter
tapering and more. As such, the tool can be used both for the
analysis and/or the remodeling of neuronal morphologies of any
type.

METHODS

Recent advances in high-throughput single-neuron imaging
techniques are expected to stimulate a morphological
data ‘‘explosion’’ that will revolutionize the computational
neuroanatomy field. Importantly, the aforementioned data
‘‘explosion’’ needs to be accompanied by the development of
software tools, designed to meet the future requirements of
parsing and manipulating tons of 3D neuron reconstruction
data in a transparent, reliable and highly-consistent manner
(Peng et al., 2015). In order to achieve this longer-term goal, an
appropriate approach needs to be adopted by the community
to properly address this ‘‘big data’’ challenge. Therefore, it is
imperative for the new generation of software packages to be
optimized for this data volume, to handle it in a user friendly
way and with the added benefit to be open-source and publicly
available, allowing ease of use, sharing and active development
by avid researchers in the field.

The proposed tool is developed according to this philosophy.
The software implementation is in Python 2.7 and the tool
is open source and available for use as a web-application at
www.remod.gr/. The source code and documentation of the
tool is available on the Github repository hosting service at
github.com/bozelosp/remod, where it can be downloaded as
a standalone application that retains almost all of its online
capabilities and/or further developed.

The software package contains flexible and extendable
modular blocks of code that can be generally classified in
three categories: (i) parsing the morphology reconstruction data
encoded in standard SWC files; (ii) performing morphometric
and statistical analysis of the provided dendritic trees; and (iii)
executing specific remodeling actions and exporting the new
morphologies in the SWC format. The following paragraphs
explain the user-action workflow between the abovementioned
categories.

First, the user uploads one or more morphology
reconstructions, properly formatted as SWC files. REMOD
parses the geometric information of the specific 3D structure
and topology and provides a rotating 3D visualization of the
corresponding tree, as well as many depictions of the extracted
morphometric statistics in the form of tables and charts. Next,
the interface guides the user through a range of remodeling
options that can be implemented on the selected morphologies
as shown in Figure 1.

For example, the researcher can manually select specific
dendrites to impose a morphological alteration or more
conveniently select a whole region of the neuron (i.e., the
basal or apical tree), or even a randomly selected portion of it.
Remodeling actions can be implemented on any and/or multiple
selected dendrites, irrespectively of whether they are terminal
branches or not.

Next, the researcher decides the remodeling action to apply. If
the plan is to further grow the dendritic tree, then the appropriate
options to choose might be additive extension or branching, i.e.,
adding two new dendrites stemming from an existing parental
one. The researcher can specify the extent of growth in terms
of a percentage of the previous dendritic length or by defining
the desirable length in micrometers. In this case, the algorithm
will generate a series of somewhat randomly directed cylinders
that radiate away from the parental dendritic segment and the
soma as shown in Figure 2. The added segments have random
lengths sampled from a realistic distribution and mimic the way
dendrites explore the available 3D space in a quasi-random,
quasi-directed way.

Similarly, to simulate a dendritic retraction, the user decides
between two options: shrinking or complete removal of the
selected dendrites. In both actions, cylinders are removed from
the SWC file to match the desirable reduction in length, without
altering any other parts of the morphology file. An example of
each case is shown in Figure 3.

The scaling action can be used to enlarge or reduce the
dimensions of either the entire dendritic tree, or the basal/apical
regions of the tree, independently. Remodeled morphologies are
exported in the SWC standard format and can be downloaded
and/or sent to the user via email as shown in Figure 4.

REMOD is also able to extract useful statistics for the
morphological and topological features of the neuronal
reconstructions. Metrics such as total dendritic length, path
length, surface and volume are available for both the basal and
the apical regions of the tree. Sholl analysis is implemented
either for the number of branch points, the number of
intersections or the sum of dendritic lengths included in
defined radius steps from the soma. The tool also supports
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FIGURE 1 | Screen shot of the main page of the tool depicting an uploaded morphology reconstruction of a CA3 pyramidal neuron.

FIGURE 2 | Examples of the extending and branching REMOD actions on a PFC pyramidal neuron. The induced morphological changes (added segments)
are shown in green. (A) All apical terminal dendrites are extended by 50% of their initial length. (B) New branches are added to the tip of the stem of all basal terminal
dendrites. The produced length of each one of the branches is 80% of the parent length.

the comparison between two groups of morphologically
different neurons using the abovementioned metrics, as
shown in Figure 5. This utility can be especially useful
for both experimentalists and modelers wishing to identify
anatomical differences between two particular groups of
neurons.

RESULTS

To demonstrate the capabilities of REMOD we implemented
morphological changes that led to dendritic atrophy and
enhanced dendritic arborization, in hippocampal and
amygdaloid pyramidal neurons, respectively. Such changes
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FIGURE 3 | Examples of the shrinking and removing REMOD actions on a PFC pyramidal neuron. The induced morphological changes (removed segments)
are shown in red. (A) All apical terminal dendrites are shrunk by 60% of their initial dendritic length. (B) All basal terminal dendrites are completely removed.

were reported to occur as a result of stress by Vyas et al.
(2002). The modifications performed aimed at reproducing
the percentage of change in various dendritic features
as reported experimentally and were applied to a large
number of morphologies downloaded from the NeuroMorpho
database.

According to Vyas et al. (2002) chronic immobilization
stress (CIS) led to a significant decrease of the total dendritic
length and the number of branch points in hippocampal CA3
pyramidal neurons as compared with neurons of the same
class in control animals. The marked shrinkage was evident
in both apical as well as basal dendrites of the examined
pyramidal cells. Specifically, the total dendritic length of apical
dendrites was decreased by 29%, and the number of apical branch
points was reduced by 31%. The same analysis applied to basal
dendrites found their total dendritic length shrunk by 16% and
their number of branch points reduced by 16%, respectively.
Based on the observation that the number of branch points
is affected, it’s easy to deduce that a simple scaling of the
entire dendritic tree length would not reproduce the observed
phenotype. With the goal of simulating the overall shrinkage
effect and reproducing the reported percentages, we took the
following approach:

• Twenty five reconstructed neuronal morphologies of the
hippocampal CA3 pyramidal class were obtained from the
NeuroMorpho repository.

• Subsequently, the parameters that were used to remodel the
morphologies were selected in such a way as to simulate the
experimentally observed results. The total dendritic length of
the apical tree was reduced by randomly selecting 17% of
the terminal dendrites for complete removal and thereafter
randomly choosing an additional 10% of the remaining
terminal dendrites to shrink by 18%.

• Accordingly, the basal tree was pruned by randomly selecting
15% of its terminal dendrites for complete removal and
shrinking another 5% of them by 5% of their initial length.
The results of this processing are shown in Tables 1, 2 and
Figure 6.

It should be noted that other combinations of dendrite
removal/pruning may also reproduce the reported
averaged changes in dendritic length. Due to the lack of
information as to which specific morphological features
were altered in the experiments, we used a randomized
approach.

Interestingly, the same CIS paradigm that caused dendritic
atrophy in CA3 pyramidal neurons induced the opposite effect
in BLA pyramidal neurons. The total dendritic length of
BLA pyramidal neurons under conditions of CIS increased
by 25% and the number of branch points by 15% compared
to the control cells. With the goal of reproducing the
experimentally obtained results of dendritic extension in the
amygdala we implemented the following series of actions in
REMOD:

• Twenty six reconstructed neuronal morphologies of the
BLA pyramidal class of neurons were obtained from the
NeuroMorpho repository.

• Subsequently, 10 percent of the terminal dendrites were
selected for branching at 80 percent of their length and
thereafter a 20% of all the available terminal dendrites were
selected for extension by 70% of their initial length. The results
are shown in Tables 3, 4.

• To further our analysis, we performed segmental processing to
track the changes in dendritic length and number of branch
points as functions of radial distance from the cell soma. The
results are shown in Figure 7.
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FIGURE 4 | Screen shot illustrating a list of downloadable files that contain various statistics calculated by REMOD for the uploaded CA3 pyramidal
neuron depicted in Figure 1.

Overall, despite the fact that the reconstructed morphologies
analyzed by Vyas et al. (2002) were significantly smaller
than the neurons of the same class downloaded from the
NeuroMorpho database, we reliably reproduced the percentage
morphometric changes as well as the overall distributions of
changes between the control and CIS-treated cells in both
neuronal classes.

DISCUSSION

Over the past decade, computational simulations of the
electrophysiological behavior of neurons have become
fairly common as neuroscientists strive to develop a
comprehensive understanding of the nervous system (Bower,
2013; Dudai and Kathinka, 2014). At the same time, the rapid
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FIGURE 5 | Screen shots illustrating various comparison diagrams for a control group of 103 neocortical pyramidal neurons that has been remodeled
by the use of the following REMOD actions: 40 percent of the basal terminal dendrites were selected for branching at 50% of their length and
thereafter a 50% of the apical terminal dendrites were selected for extension by 60% of their parent length.

TABLE 1 | Difference in total dendritic length of CA3 pyramidal neurons as reported experimentally after CIS and via remodeling with REMOD.

Total dendritic length Control (experiment) CIS % Change Control (NeuroMorpho) Remodeled % Change

Apical 2113 1498 −29 5471 3922 −28.31
Basal 1827 1527 −16 4302 3623 −15.78

TABLE 2 | Difference in the number of branch points of CA3 pyramidal neurons as reported experimentally after CIS and via remodeling with REMOD.

Number of branch points Control (experiment) CIS % Change Control (NeuroMorpho) Remodeled % Change

Apical 14.7 10.2 −31 31.14 21.18 −31.98
Basal 16.2 13.6 −16 29.22 24.62 −15.74

advancement of imaging techniques has greatly enhanced the
acquisition of high-resolution 3D neuronal reconstructions,
resulting in anatomically precise and biophysically detailed
compartmental models that render realistic simulation

of neuronal behavior possible under virtual experimental
conditions. Thus, it is expected that multi-compartmental
cable models with ever-increasing accuracy in detail will
become critically important to better understand the
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rich repertoire of computational operations performed by
dendrites.

In addition, substantial progress has been achieved by
experimental neuroscientists into revealing how neural plasticity
might relate to development, learning and disease and how
its influence could be projected far beyond the dynamics
of synapses (Butz et al., 2009; Yau et al., 2011). Along with
motile spines and axonal branches, the dendritic architecture
of neural cells is also subject to significant morphological
readjustments (for a detailed review, see Emoto, 2011). Thus,
many challenging questions arise about the structural plasticity

of the nervous system, including the rules that govern the
dendritic morphological configuration, the adaptability of
the neural connectivity and the preservation of functional
continuity. Hence, a software tool that is able to induce
structural alterations upon virtual neurons and statistically
quantify the changes between acquired and remodeled
morphologies could prove an invaluable resource for modelers
and neuroanatomists alike, complementary to the existing
approaches.

In this paper, we have presented REMOD, a novel open-
access software tool for the analysis and remodeling of dendritic

FIGURE 6 | Comparison of the experimentally induced (CIS) shrinkage in dendritic structure of the CA3 cells (control cells, n = 50; CIS cells, n = 45)
with the same remodeling effect induced by REMOD on 25 CA3 neuronal reconstructions downloaded from NeuroMorpho database. (A) Side by side
comparison of the diagram showing the dendritic length as a function of radial distance from the soma as taken from Vyas et al. (2002, left), with the corresponding
diagram of the remodeling example using REMOD (right). Changes in apical and basal dendrites are shown separately. (B) Comparison of the diagram showing the
number of branch points as a function of radial distance from the soma as taken from the paper published by Vyas et al. (2002, left), with the corresponding diagram
using REMOD.
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TABLE 3 | Difference in the total dendritic length of BLA pyramidal neurons as reported experimentally after CIS and via remodeling with REMOD.

Total dendritic length Control (experiment) CIS % Change Control (NeuroMorpho) Remodeled % Change

All 1330 1666 25 4040 5067 25.42

TABLE 4 | Difference in the number of branch points of BLA pyramidal neurons as reported experimentally after CIS and via remodeling with REMOD.

Number of branch points Control (experiment) CIS % Change Control (NeuroMorpho) Remodeled % Change

All 13.5 15.0 11 25.98 28.825 10.95

morphologies. The tool is written in the non-commercial Python
programming language and is publicly available on the GitHub
platform, under the open-source MIT license to encourage active
development by the neuroanatomical community. The tool is
accompanied by an easily accessible front-end interface that
anyone can use via a web browser (http://www.remod.gr), thus
eliminating the need to download and configure additional
packages and/or restricted libraries locally on the desktop.

REMOD is designed to fulfill the emerging need among
computational neuroscientists to simulate the dynamic nature
of the dendritic structure. Other toolboxes have been developed
for the special purposes of de novo generating synthetic neurons
or neuronal networks, or even configuring the connectivity
between them (Kalisman et al., 2003; Koene et al., 2009).
These methods are exploiting experimentally-substantiated
principles, such as the conservation of neuronal material
vs. conduction time constraints, the dynamic negotiation
between retraction and outgrowth processes and the context-
awareness of neuronal arborization, in order to enforce local
or global generative algorithms that efficiently replicate the

extent of morphological variability manifested by various
neuronal types (Ascoli et al., 2001; Cuntz et al., 2011; Zubler
et al., 2013; Hjorth et al., 2014; Torben-Nielsen and De
Schutter, 2014). Still, the modeling of structural plasticity in
the brain is arguably hindered by a multitude of challenges.
These challenges predominantly include the complex interaction
between numerous interdependent factors, such as genetic,
metabolic and behavioral influences, that cannot be easily
dissected for integration into the current predictive models
(Bestman Da Silva and Cline, 2008; Polleux and Ghosh,
2008).

To overcome this limitation, the researcher can approach
morphology from a different methodological perspective,
that of remodeling an already-existing neuronal structure ad
arbitrium. Principally, this approach provides a wider flexibility
to choose the structural manipulations that are considered
more relevant for each experimenter, physiological condition
and cell type, albeit allowing for a greater exploration of
the available parameter space. This type of freedom could
prove particularly important when investigating the effects

FIGURE 7 | Comparison of the experimentally induced (CIS) increase in dendritic arborization of the basolateral amygdala (BLA) cells (control cells,
n = 18; CIS cells, n = 22) with the same remodeling effect induced by REMOD on 26 BLA neuronal reconstructions downloaded from NeuroMorpho
database. Side by side comparison of the diagram showing the dendritic length as a function of radial distance from the soma as taken from the paper published by
Vyas et al. (2002) (A) with the corresponding diagram of the remodeling example using REMOD (B).
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of certain morphological alterations on a given neuronal
response pattern, even if they are unlikely to occur. Such
manipulations can for instance be used to assess and tease
out the individual contribution of distinct morphological
factors from other processes, like the electrophysiological
properties of ion channels. Furthermore, REMOD offers the
ability to perform statistical morphometric analyses of the
user-provided morphologies via uploading to our server,
an additional utility that may also be of great service to
experimentalists.

In this work, we sought to demonstrate the capabilities
of our toolbox by reproducing dendritic remodeling in the
hippocampus and the amygdala brain regions of the rat
under stress conditions, as reported by Vyas et al. (2002).
Using REMOD, we faithfully reproduced the percentage of
morphological changes reported in this paper, by imposing
dendritic remodeling to 3D reconstructions of the same
neuronal types downloaded from the NeuroMorpho repository.
Unfortunately we did not have access to the original
morphologies in order to perform a direct comparison.

The reproduction of the experimental results (with respect to
the percentage of changes observed), delivered using REMOD,
reflects the ability of the tool to simulate complicated neuronal
phenomena that may occur under physiological or pathological
conditions. We believe that the functions provided within
the first release of the tool are flexible and efficient enough

to simulate any type of dendritic remodeling, capturing the
variant expression of neuronal adaptability that has been
extensively documented, but still insufficiently explained in
current theoretical models.

To the best of our knowledge, REMOD is the first software
package that allows the remodeling of existing, already-grown,
detailed neuronal morphologies, in parallel with the effortless
extraction of morphological descriptive statistics. Thus, REMOD
allows the implementation of a systematic approach for altering
virtual neuronal morphologies, which is likely to promote
further research into understanding the hidden associations
between critical neuroanatomical characteristics and the distinct
electrophysiological patterns that individual neurons, as well
as neural networks, exhibit. Exploiting the benefits and the
capabilities of dendritic remodeling will aid the transition from
investigating a ‘‘rigid’’ neuronal function to a refined exploration
of the intricate effect of morphology to dendritic function and
neuronal processing.
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With the emergence of new high performance computation technology in the last

decade, the simulation of large scale neural networks which are able to reproduce

the behavior and structure of the brain has finally become an achievable target of

neuroscience. Due to the number of synaptic connections between neurons and the

complexity of biological networks, most contemporary models have manually defined or

static connectivity. However, it is expected that modeling the dynamic generation and

deletion of the links among neurons, locally and between different regions of the brain, is

crucial to unravel important mechanisms associated with learning, memory and healing.

Moreover, for many neural circuits that could potentially be modeled, activity data is

more readily and reliably available than connectivity data. Thus, a framework that enables

networks to wire themselves on the basis of specified activity targets can be of great value

in specifying network models where connectivity data is incomplete or has large error

margins. To address these issues, in the present work we present an implementation

of a model of structural plasticity in the neural network simulator NEST. In this model,

synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created

and deleted during the execution of the simulation following local homeostatic rules until

a mean level of electrical activity is reached in the network. We assess the scalability

of the implementation in order to evaluate its potential usage in the self generation of

connectivity of large scale networks. We show and discuss the results of simulations on

simple two population networks and more complex models of the cortical microcircuit

involving 8 populations and 4 layers using the new framework.

Keywords: structural plasticity, large scale neural networks, high performance computing, homeostatic growth,

self-organizing network

1. INTRODUCTION

Models of large scale neural networks are an important tool for understanding the mechanics of
the brain (De Garis et al., 2010; Helias et al., 2012; Eliasmith and Trujillo, 2014). Such models are
created based on experimental information that has been collected for years by neuroscientists and
combine mathematical methods with algorithms to reproduce observed behavior. It is known that
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the connectivity of the network plays an essential role in
defining the way function is achieved at higher levels of activity.
Nevertheless, obtaining accurate measurements of connectivity is
complex, even with the most advanced experimental techniques,
due to the resolution of sensors and difficult access to
the target areas. The dynamics of the connectivity are also
not yet well understood, although it has been shown that
synaptic plasticity is fundamental for understanding how
learning and memory work. Non invasive techniques such
as DTI imaging and fMRI scans can provide a glimpse to
the real complexity of the problem in structure and function.
Higher resolution techniques like electron microscopy (Gray,
1959), photostimulation (Dantzker and Callaway, 2000) and
electrophysiological recordings (Thomson et al., 2002) provide
more detailed connectivity information of specific regions.
Regardless, creating an exact connectivity map of even a
small region of the brain is extremely challenging (Deco
et al., 2008; Essen et al., 2012; Van Essen and Ugurbil, 2012;
Reckfort et al., 2013). This poses a significant problem for
the modeling approach, as connectivity must be specified.
For small networks, parameter scans can be carried out with
respect to the unknown or imprecisely known connection
probabilities between populations. For larger networks, which
are more costly to simulate and also potentially have many
more unknown connectivity parameters, this approach is hardly
feasible.

One way to address the issue of modeling connectivity
within a neural network is to allow a network model to
determine its own suitable connectivity to achieve target
activity patterns, e.g., experimental measurements of the
spiking frequency, which is easier to measure accurately
than connectivity. In addition to addressing the problem of
network model specification, a framework that accounts for
the appearance and disappearance of synapses on the basis
of network activity can provide insight into how connectivity
is generated during development and learning or even on
how healing after lesions takes place (De Paola et al.,
2006). It can also help understand how certain structures
arise as a result of exposition to adequate external stimuli
during critical periods in the development of the brain
(Hensch, 2005) and the mechanisms underlying experience
dependent structural synaptic plasticity (Holtmaat and Svoboda,
2009).

An appropriate model of structural plasticity that incorporates
the dynamic generation, deletion and rewiring of synapses within
a network was presented by Butz and van Ooyen (2013). In
this model, synapses are represented as connections between
pre and a post synaptic elements. The growth or diminishment
of these synaptic elements is an independent process for each
neuron. The model is based on the idea that plasticity in
cortical networks is mainly driven by the need of individual
neurons to homeostatically maintain their average electrical
activity. As a consequence, if activity is lower than a desired
set-point, neurons will form synaptic elements, and remove
them when activity becomes too high. Additionally, a minimum
level of activity is needed to form synaptic elements at all. If
activity falls below this level the neuron will remove synaptic

elements, too. Results show that small networks of hundreds or
thousands of neurons robustly grow toward a stable homeostatic
equilibrium of activity and connectivity. An important advance
on earlier work is that all cell types had different desired average
firing rates (achieved by different homeostatic set-points) and
developed connectivity accordingly. It was shown that these
local rules for structural plasticity can account for network
rewiring after a partial loss of external input (deafferentation) and
shows remarkable similarities with biological data from network
rewiring in the primary visual cortex after focal retinal lesions
(Keck et al., 2008; Yamahachi et al., 2009). Further analysis
by Butz et al. (2014) of changes in network topology revealed
that betweenness centrality could be used as an indicator of
successful brain repair, in the sense that it is related to the ability
of the neurons to restore their electrical activity by network
rewiring. It was concluded by the authors that structural plasticity
may account for network reorganization on different spatial
scales.

In this work, we provide a complete description of how
the structural plasticity model proposed by Butz and van
Ooyen (2013) could be implemented in the neuronal network
simulator NEST (Gewaltig and Diesmann, 2007) in order
to create self-organizing large scale neural networks. We
evaluate the scalability of the implementation and assess
the performance of the model on two use cases. We
demonstrate that our implementation is capable of self-
organizing the connectivity within a cortical microcircuit
model consisting of 100, 000 neurons in total, starting with
a fully disconnected setup. We also show the scenario where
partial information of the connectivity is given as initial
condition and an stable connectivity pattern is obtained in
the end.

The structural plasticity extension to NEST is included in
release 2.10.0 (Bos et al., 2015) and creates a novel possibility for
setting up large-scale neuronal networks. While supercomputers
are required for very large-scale simulation, we show that
smaller networks can also be run on a personal workstation or
laptop according to the NEST development philosophy. This is
a fundamental advantage of this implementation of structural
plasticity in terms of capacity to test different configurations, as it
provides high flexibility and portability for the neuroscientist.

The corresponding extension of the Python interface of NEST
(PyNEST) allows the user to set up their own structural plasticity
experiments for large scale networks.

The rest of this work is divided into threemajor parts. The first
describes themajor elements of the structural plasticity algorithm
and the set of tests that were designed in order to measure the
performance of an implementation of this algorithm. We also
present some use cases for the structural plasticity framework.
In the second part we provide the results of the technical
implementation in NEST and describe how the design matches
the memory and speed requirements for large scale simulations.
We also present results for the use cases described in the
previous section. In the third part, we discuss the results of the
implementation and performance tests.

Some of thismaterial has previously been presented in abstract
form (Naveau and Butz, 2014).
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2. MATERIALS AND METHODS

2.1. The Algorithm of Structural Plasticity
The original formulation of the structural plasticity algorithm
defined in Butz and van Ooyen (2013) consists of three repeating
steps which are described as follows:

(1) Update in electrical activity and intracellular calcium
concentration. The electrical activity is calculated for each
neuron on a millisecond timescale. The time-averaged level
of the neuron’s electrical activity drives changes in neuronal
morphology. Intracellular calcium concentration is updated
according to the electrical activity as follows:

dCa

dt
=

{

−
Ca(t)

τ
+ β if the neuron fires

−
Ca(t)

τ
otherwise

(1)

where τ is the calcium decay constant and β is the
calcium intake constant which indicates how much calcium
is accumulated each time the neuron fires. Calcium
concentration is linearly proportional to average firing rate
and thus is the measure that is used to guide the growth
dynamics of the synaptic elements.

(2) Update in synaptic elements. The detailed morphology of
the synaptic elements is abstracted, and is represented in
this formulation only by the number of possible synaptic
contacts on axons (axonal elements representing axonal
boutons: senders of synaptic activity) and on dendrites
(dendritic elements representing dendritic spines: receivers
of synaptic activity) collectively called synaptic elements.
Synaptic elements are created or deleted according to a
homeostatic rule. In general, the homeostatic rule will create
synaptic elements when the activity is lower than the desired
setpoint and delete them when the activity is higher until
the desired activity level is achieved. This homeostasis is
represented by a curve which defines how quickly new
elements are created or deleted according to the current level
of electrical activity. The original work considers two types
of growth curve, linear and Gaussian:
Linear:

dz

dt
= ν(1−

1

ǫ
Ca(t))

where ν is the growth rate and ǫ is the target level of calcium
concentration that the neuron should achieve.
Gaussian:

dz

dt
= ν

(

2 exp

(

−
Ca(t)− ξ

ζ

)

− 1

)

where ξ = (η + ǫ) /2, ζ = (ǫ − η) /2
√
ln 2 and ν is the

growth rate as before. In this Gaussian growth curve, η

represents the minimum amount of calcium concentration
that the neuron must have in order to start creating new
synaptic elements. Same as in the linear growth, ǫ represents
the target level of calcium concentration that the neuron
should achieve.
A synaptic element is formed (or deleted) when the rounded

down z value increase (or decrease) by one. Newly-formed
synaptic elements are initially vacant and available for
synapse formation.

(3) Update in connectivity. In every connectivity update,
available synaptic elements allow the formation of new
synapses and deleted synaptic elements dictate synapse
breaking. Every available synaptic element has the same
probability to be randomly chosen for a new connection.
Synaptic elements to be deleted are also chosen in a
uniformly random manner out from the pool of already
connected elements. It is important to notice that in this
algorithm when a synapse breaks due to the deletion of one
synaptic element, the counterpart remains and becomes
vacant again. This remaining counterpart can form a new
synapse at the next update in connectivity. This effect models
network rewiring by re-routing of axons or dendrites.

An important characteristic of this algorithm, is that it relies on
global communication to update the connectivity in the network,
as available compatible synaptic elements must be matched
during the simulation to create new connections. This must be
taken into consideration for the design of any implementation of
this model.

2.2. Scalability
To assess the scalability of the framework, we designed strong
and weak scaling tests of the structural plasticity implementation.
For all tests, networks with 80% excitatory and 20% inhibitory
neurons were created. The growth rate for synaptic elements
in the simulation was set to 4.0 × 10−4 elements/ms for the
excitatory elements of the inhibitory population and 1.0 ×

10−4 elements/ms for all the other elements. The set point for
desired calcium concentration in the excitatory population was
defined as 0.05 Ca2+, while in the inhibitory population it was
set to 0.2 Ca2+. The calcium concentration intake constant was
set to β = 0.001 and the calcium concentration decay constant
to τ = 10000.0 for all neurons. The post synaptic amplitude
of individual synapses was set to 1.0 mV. External input was
provided using a Poisson generator with a frequency of 104 Hz.
The post synaptic amplitude of individual synaptic input was
set to 0.01 mV. The simulation was run for 100 s, with a step
size for the numerical integration of 0.1 ms. The updates in the
network connectivity were performed every 10 ms. These values
were chosen as they proved to be one parameter combination that
allowed for stable self-organizing growth of the network toward
the homeostatic equilibrium (See Section 3.3.1 for additional
comments on the selection of this parameter set).

Weak scaling tests were performed for networks with 5000
neurons per node and settings of 1, 2, 4, 8, and 16 nodes, each
node using 28 cores. Strong scaling tests were performed with
a network of 100, 000 on the same hardware configurations
as the weak scaling tests. Only physical cores were used, no
simultaneousmultithreading was enabled. A hybrid optimization
approach was chosen, in which MPI is used for communication
between nodes and OpenMP for intra node communication.
All measurements were performed on the JUROPATEST cluster,
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which provides up to 70 nodes (T-Platforms V210s Blades),
each with 2 × Intel(R) Xeon(R) CPU E5 − 2695 v3 (Haswell)
with 14-core processors (2.30 GHz) and 128 GB DDR memory,
running with Scientific Linux release 6.5 (Carbon).

2.3. Use Cases for the Structural Plasticity
Framework
The main objective of the structural plasticity framework is to
provide the user with a tool to model the dynamic creation
and deletion of synapses between neurons of a neural network
in a scalable manner. There are several applications in which
structural plasticity can be used. In this section we detail two use
cases as examples. The first use case shows the basic functionality
of the framework and how it can be used to study the relationship
between connectivity and activity. We also show how this simple
set-up can model critical development periods in the network
connectivity. The second example is a more complicated case
with several populations, where the objective is to show how
connectivity can be self-generated in a network by using the
synaptic element growth curves as connectivity fitness rules. All
simulations were carried out with NEST version 2.8.0 extended
by our structural plasticity implementation.

2.3.1. A Simple Two Population Network
In this initial use case, we generate a network with a total of
1000 leaky integrate and fire neurons, 80% excitatory and 20%

inhibitory. For the excitatory neurons, η = 0.0, ǫ = 0.05 and
ν = 1.0×10−4elements/ms. For the inhibitory neurons, η = 0.0,
ǫ = 0.2 and ν = 1.0 × 10−4 elements/ms, except for the
excitatory elements which had ν = 4.0× 10−4 elements/ms. The
connectivity in the systemwas allowed to evolve using a Gaussian
growth curve for 3000 s, with an integration step of 0.1 ms and
a delay of the connectivity update equal to 100 integration steps.
The simulations were performed on a workstation with 8 Intel
core i7− 4770@3.4 GHz CPUs running openSUSE 13.1.

2.3.2. The Cortical Microcircuit Network
In this second use case, we create a four layer network based
on the model of the cortical microcircuit proposed by Potjans
and Diesmann (2014). Each layer contains one inhibitory and
one excitatory population of leaky integrate and fire neurons.
In the simulations presented here, the network starts with
the same number of neurons in each population as in the
previous study, but without any synaptic connections. For each
population, we define a level of desired mean electrical activity
based on experimental literature and a growth curve which
defines the dynamics of the variation in the number of pre- and
post-synaptic elements. These are Gaussian shaped curves with
two intersections with the x-axis that determine the minimum
amount of electrical activity required to form any synapse (η),
and the target mean calcium concentration for the neuron (ǫ).
The curves are illustrated in Figure 1.

FIGURE 1 | Growth curves for each synaptic element in each layer of the cortical microcircuit model. The growth curves define the rate at which synaptic

elements are created depending on the amount of calcium concentration in the cell at the moment. Red curves are for neurons in the excitatory population. Blue

curves are for neurons in the inhibitory population. Solid lines are for the excitatory synaptic elements and dotted lines represent inhibitory synaptic elements. The

vertical purple line defines the target level of calcium concentration for excitatory neurons and the vertical cyan line represents the target level of calcium concentration

for inhibitory neurons. It is important to highlight that all synaptic elements of the same neuron must have a growth curve with the same target level of calcium

concentration, otherwise equilibrium will never be reached.
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In the first example, we tune the growth rate to achieve
an stable growth regime for the network connectivity. This
means that the structural plasticity algorithm will stop creating
and deleting synaptic connections when the desired mean
activity is reached, and that this mean activity is actually
reached on average in each population. In a second example,
the growth rate provided leads to an unstable connectivity
pattern, where the target mean electrical activities are never
reached by all populations. A table containing the parameters
for both cases can be seen in Appendix in Supplementary
Material.

A third example was run to illustrate a more common
situation where there are some assumption about the
connectivity in a network and where the structural plasticity
framework can help to find a suitable balance between excitation
and inhibition in the network. Here we used the original model
of Potjans and Diesmann (2014) and enable the structural
plasticity after an initial stabilization period of 30 s.

Simulations were performed on JUROPATEST (70 nodes with
2 × 14-core processors Intel(R) Xeon(R) CPU E5 − 2695 v3
(Haswell) at 2.30 GHz and 128 GB DDR memory, running with
Scientific Linux release 6.5) and JURECA (with 260 compute
nodes with Intel Xeon E5 − 2680 v3 Haswell CPUs with 2 × 12
cores per CPU, 128GB of RAM per node and running on CentOS
7 Linux distribution).

3. RESULTS

3.1. Implementation of the Structural
Plasticity Model into NEST
The implementation of the structural plasticity algorithm
described in this work is based on the version 2.8 of the NEST
software Eppler et al. (2015). In accordance with the original
formalization described in Section 2.1, the algorithm consists of
three repeating parts which can be visualized in a general form in
Figure 2 and described as follows:

FIGURE 2 | Diagram of the implementation of the structural plasticity

model in NEST. In (1) the number of synaptic elements is calculated

depending on the electrical activity of the neuron. These calculations are

optimized using MPI and OpenMP. In (2) the structural plasticity manager

gathers the number of synaptic elements per neuron using MPI directives and

in (3) creates or deletes synapses to update the connections between neurons

using MPI and OpenMP.

1. Update in electrical activity and intracellular calcium
concentration. The Archiving_Node class, which is the general
interface for all neurons, was modified and new variables
to store the of the intracellular calcium concentration, the
calcium decay and calcium intake constants were added.
The Archiving_Node::set_spiketimemethod was also modified
to update the calcium concentration according to the first
case defined in (1), which is performed at every time the
neuron spikes. The Node class was modified by adding
the method Archiving_Node::update_synaptic_element. This
method updates the calcium concentration according to the
second case defined in (1). This method is called by the
Scheduler class when every synaptic update interval is reached.

2. Update in synaptic elements. The first step taken in order to
design and develop a framework for synaptic elements (e.g.,
axonal boutons and dendritic spines) was to redefine synapses
in such a way that they can now be described using connection
elements. This description can be applied to every available
neuron model in NEST for generating electrical activity. The
design also considers that the users can define their own
synaptic elements and their corresponding growth dynamics.
The class SynapticElement was created in order to represent
the connection points for the neurons. The class GrowthCurve
was also created in order to define the homeostatic rules
which guide the creation and deletion of synaptic elements.
Currently, the available growth dynamics are based on either
a linear or a Gaussian growth curve. The linear growth curve
uses an exact integration method to update the number of
synaptic elements, while the Gaussian growth curve uses a
forward Euler integration method. The framework can be
further extended by the user to incorporate more complex
element growth dynamics models. An example of such curves
is shown in Figure 1, where independent dynamics for each
type of element in a network of 8 populations (see use case on
cortical microcircuit) have been defined. Synaptic elements are
used as a discrete value, the actual number of available synaptic
elements is an integer truncated from the float variable used to
represent them. The Archiving_Node class now incorporates
a map data structure to store the synaptic elements. The
method Archiving_Node::update_synaptic_element takes care
of updating the number of each of the synaptic elements
in the map using the value of the calcium concentration at
the time of the call and the corresponding growth curve.
The method Archiving_Node::decay_synaptic_element_vacant
takes care of deleting a percentage of the unused or vacant
synaptic elements on every call. Both methods are called by
the Scheduler at the end of every synapse update interval.

3. Update in connectivity. To coordinate the changes in the
structure of the network, a new StructuralPlasticityManager
class was implemented. At the end of every synapse update
interval, the Scheduler calls the the newly implemented
structural plasticity connectivity manager via the Network
class. The StructuralPlasticityManager determines, for each
neuron, how many vacant synaptic elements are available
for new synapse formation and how many deleted synaptic
elements caused synapse breaking. Then it makes use of the
ConnBuilder in order to create or delete connections. For this,
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the ConnBuilder was extended to include the new methods
ConnBuilder::sp_disconnect_ and ConnBuilder::sp_connect_.
Once new synapses are formed, synaptic elements are tagged
from “vacant” to “connected.” It is important to notice that
when a synapse breaks due to the deletion of one synaptic
element, the counterpart remains and becomes vacant again.
This remaining counterpart can form a new synapse at the
next update in connectivity. This effect preserves the network
rewiring capabilities of the original formulation. A detailed
diagram of how the new calls are integrated into the normal
simulation flow of NEST can be seen in Figure 3.

An important feature that we implemented to simulate structural

plasticity in NEST is the ability to create and delete synapses

during the simulation time. Our new implementation of

the connection management overcomes the limitation of the

NEST simulator that currently models networks with a fixed

connectivity. We have implemented the dynamic creation and

deletion of synapses using the new connection framework

released in version 2.6.0. The new connection framework

improves memory usage to store connection data and reduces the

computation time needed to create a connection.
The main limitation of the structural plasticity algorithm

described by Butz and van Ooyen (2013) is that it requires

global knowledge of the synaptic elements of the entire network.

Fortunately, the MPI global communications, also used by the

NEST kernel to communicate the electrical activity between

the neurons during the simulation, do not pose a substantial

bottleneck since changes in connectivity are assumed to take

place on average around a factor of 100 times slower than
changes in electrical activity. Therefore selecting a biologically
realistic growth rate of around 10−4 elements/ms will result in
an exchange of data that is sufficiently low rate so as not to
impact the scalability of the simulator as a whole. At the end
of each connectivity update step, the number of created/deleted
synaptic elements per neuron are communicated to all MPI
processes and a global shuffle subsequently assigns the new
pairs of neurons that should be connected, and likewise chooses
existing connections for deletion. In the current implementation,
no topological constraints are taken into account while deciding
which neurons will be connected. The probability of two neurons
connecting to each other depends solely on the number of
available compatible synaptic elements between them. The actual
creation and deletion of the synapses is finally done in parallel
using the NEST connection framework. As stated before, a single
update in connectivity should not produce a major modification
of the network. That means that only a small part of the neurons
should create or delete a synaptic element between two updates
in connectivity.

It is important to highlight that the usage of global
communication is a characteristic of the technical
implementation of the algorithm and is not related to the
functionality of the model. If topology was to be taken into
account, the ability of a neuron to connect to any other would
be limited by the constraints imposed by its relative position
to others. Global communication would still be used by the
implementation, but only relevant information would be taken
into account to define the connectivity. The local homeostatic
rules only define the creation or deletion of synaptic elements

FIGURE 3 | Integration of the new structural plasticity calls into the normal simulation flow of NEST.
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per neuron. The number of available synaptic elements is
transmitted globaly and the synaptic plasticity manager takes
care of forming new synapses or deleting existing ones based on
this information.

The update of electrical activity and of the number of synaptic
elements is performed by every individual neuron and therefore
benefits from the parallel framework already implemented in
NEST. Indeed, the NEST software has already demonstrated
its high scaling properties on supercomputer, including the
JUQUEEN system (Helias et al., 2012; Kunkel et al., 2014).

Finally, the Python interface of NEST (PyNEST) was extended
to allow users to easily set up the structural plasticity parameters.
It is important to highlight that the user can enable structural
plasticity inside the simulation and then disable it when the
network has achieved a desired connectivity pattern or activity
level. The user can now also delete synapses even without
enabling structural plasticity, in a similar way as the connect
functions work in NEST.

3.1.1. Setting up a Network in NEST with Structural

Plasticity
In this section we will introduce the high level functions that are
introduced into NEST with the structural plasticity framework
using PyNEST.

In order to set up the network using structural plasticity, one
first needs to define the time at which updates in the structure of
the network should take place as follows:

nest.SetStructuralPlasticityStatus({

’structural_plasticity_update_

interval’:

update_interval,

})

The next step is to define the synapses which can be dynamically
modified by the structural plasticity manager during the
simulation. This is achieved by:

nest.SetStructuralPlasticityStatus({

’Structural_plasticity_synapses’: {

’structural_plasticity_synapse_

ex’: {

’model’: ’structural_

plasticity_synapse_ex’,

’post_synaptic_element’

: ’Den_ex’,

’pre_synaptic_element’

: ’Axon_ex’,

},

’structural_plasticity_synapse_

in’: {

’model’: ’structural_

plasticity_synapse_in’,

’post_synaptic_element’

: ’Den_in’,

’pre_synaptic_element’

: ’Axon_in’,

},

}

})

Here, two types of synapses are being defined, one for the
excitatory synapses and another one for the inhibitory synapses.
It is important to notice that in this definition, a name

A B C

FIGURE 4 | Results of the scalability tests performed with structural plasticity. (A) Efficiency as a function of the number of nodes for 5000 neurons in the

weak scaling test. The network was allowed to grow synapses following the structural plasticity rules during a simulation of 100 s of biological time. (B) Simulation time

(red curve) as a function of the number of nodes for a network of 100,000 neurons and in the strong scaling test. The blue curve indicates ideal linear scaling. (C)

Efficiency as a function of the number of nodes for a network of 100,000 neurons in the strong scaling test. The peak scaling efficiency is marked with a star.
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for the post and pre synaptic elements is also specified.
This allows the structural plasticity manager to create new
synapses of the type specified in model when synaptic elements
related to this label become available. This way of setting up
the dynamic synapses also allows the user to define static
connectivity constraints in the network. This can be achieved
by using one synapse model which is not registered for
structural plasticity to define this fixed connectivity. For the
moment, no other constraints in connectivity like indegree
or outdegree ranges can be specified. Nevertheless, thanks to
its flexible design, the model can be extended to add new
constraints.

Next step involves defining the growth curves for the synaptic
elements defined above. This is done as follows:

growth_curve_e_e = {

’growth_curve’: "gaussian",

’growth_rate’: 0.0001,

’continuous’: False,

’eta’: 0.0,

’eps’: 0.05,

}

This is an example of a Gaussian growth curve where the
minimum level of calcium concentration required to start
generating synaptic elements is η = 0.0 Ca2+, and the desired
calcium concentration is set to ǫ = 0.5 Ca2+. Finally, the
rate at which the synaptic elements will grow is ν = 1 ×

FIGURE 5 | Upper panel: Calcium concentration and numbers of connections as functions of time in a simple two population network. The cyan and

black curves show the calcium concentration measured in the inhibitory and excitatory populations, respectively. The paler horizontal lines indicate the corresponding

target levels ǫ. The blue and red dashed curves indicate the total number of connections in the inhibitory and excitatory populations, respectively. Vertical gray lines

indicate the times of the snapshots displayed in the lower panel. Lower panel (A–F): Evolution of the connectivity in the two population network visualized using

MSPViz . Images show half of the total amount of neurons in the network, where triangles represent excitatory neurons and circles inhibitory neurons. Red lines

indicate excitatory connections while blue lines indicate inhibitory connections.
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10−4 elements/ms. Independent growth curves can be created for
each synaptic element.

Now that we have defined the growth curve, we can assign this
growth curve to the synaptic elements that each neuron will be
able to grow. After that, we create the neurons and let NEST know
that these synaptic elements are linked to the neurons:

synaptic_elements = {

’Den_ex’: growth_curve_e_e,

’Den_in’: growth_curve_e_i,

’Axon_ex’: growth_curve_e_e,

}

nodes = nest.Create(’iaf_neuron’,

number_excitatory_neurons)

nest.SetStatus(nodes, ’synaptic_

elements’, synaptic_elements)

In this case we are creating the neurons pertaining to the
excitatory population. Each neuron has three types of synaptic
elements, one dendritic excitatory, one dendritic inhibitory and
one axonal excitatory.

The final step is to enable structural plasticity and simulate:

nest.EnableStructuralPlasticity()

nest.Simulate(t_sim)

A complete PyNEST example which describes how to create a
network with two populations, enable structural plasticity and
simulate the network is available as Supplementary Material for
this paper.

3.2. Scalability
While the update in electrical activity has been proven to scale
up to 109 neurons, it is important to verify that updating the
number of elements and the deletion and formation of synapses
does not restrict the expected scaling, at least in the desired
regime of up to 106 neurons. Updates in synaptic elements
and connectivity make use of MPI’s “AllGather” communication
scheme to communicate the data. This collective communication
is also used by the NEST kernel to communicate the spiking

activity between the neurons during the simulation. Although
AllGather implements communication between all processes, it is
very unlikely that a huge amount of data has to be communicated
when a reasonable growth rate of around 10−4 elements/ms
because updating the number of synaptic elements and the
connectivity are very slow processes compared to the update in
electrical activity.

3.2.1. Weak Scaling
Figure 4A shows the efficiency, defined as the speed-up divided
by the number of nodes, of the implementation as measured by
a weak scaling test with 28 OMP threads running on each node.
It is visible that, as the number of neurons increases, so does the
total number of synapses. The presence of new synapses leads to
an increase of communication between neurons, which leads to a
decrease in the efficiency of the simulation.

3.2.2. Strong Scaling for a Network of 100,000

Neurons
Figure 4B shows the computation times of the strong scaling
tests for a network of 100, 000 neurons, and Figure 4C shows the
efficiency, defined as speed-up divided by the number of nodes,
of the strong scaling test. The peak efficiency is achieved with 4
nodes and 112 cores. These results show supra-linear scaling for
this network. In Morrison et al. (2005) and Plesser et al. (2007),
supra linear scaling for biological neural networks on NEST was
demonstrated due to increasingly efficient caching.

These results show that the introduction of the new structural
plasticity framework into NEST has no impact in the scalability
of the simulation up to a network size close to that of a cortical
column if a suitably low growth rate is selected.

3.3. Performance on the Use Cases
3.3.1. A Simple Two Population Network
The upper panel of Figure 5 shows the evolution of the calcium
concentration and total number of connections for the two
population model described in 2.3.1.

The lower panel of Figure 5 shows a graphical representation
of the evolution of the connectivity in the network. During
the first 30 s of the simulation, mostly excitatory connections

FIGURE 6 | Evolution of calcium concentration in each layer of the cortical microcircuit model. Pale horizontal lines indicate the target concentration of the

corresponding population. (A) Excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange). (B) Inhibitory populations in layers II/III (brown), IV (cyan),

V (gray,) and VI (purple).
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are created (Figure 5A). This allows the calcium concentration
to increase in both populations. When the target mean
electrical activity is reached and overshoots in the excitatory
population (Figure 5B), the number of excitatory connections
starts to decrease (Figure 5C) until the desired level of calcium
concentration is achieved and stabilized in the excitatory
population. However, both pre- and post-synaptic elements in
the inhibitory population are still being created because it has
not yet reached its target mean electrical activity . It is important
to remember that neurons have no information regarding the

global status of the network and the evolution of their synaptic
elements depends solely on the predefined homeostatic local
rules. At around 40 s (Figure 5D), an increment in excitatory
connections is triggered by the enhanced levels of inhibition.
This leads to a complete rewiring of the network (Figure 5E).
The trend is preserved until the mean electrical activity in the
inhibitory population is also reached (Figure 5F).

In this network setting, the inhibitory population has a higher
level of activity than the excitatory population. It is important
to remember that the probability of two neurons connecting

FIGURE 7 | Evolution of connectivity in the microcircuit model resolved by source and target population. Panels on the left and right illustrate efferent

connections from excitatory and inhibitory populations, respectively, while the vertical arrangement indicates the layer of the source neurons. In each panel, the

numbers of connections to each of the eight population in the model are shown as a function of time. The color of the curves indicates the target population, as in

Figure 6: connections to excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange) are shown as solid curves, and connections to inhibitory

populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple) are shown as dashed curves.
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depends only on the number of available compatible synaptic
elements between them. At the start of the simulation, the
inhibitory population must offer more post-synaptic elements
for excitatory synapses than the excitatory population, otherwise
the excitatory population would reach equilibrium first and
cease to create excitatory pre-synaptic elements. As a result, not
enough excitatory synapses would be created to the inhibitory
population and it would never reach the desired level of
activity. It is important to remember that the structural plasticity
parameter space is broad and a certain amount of exploration
is required to discover combinations for each synaptic element
which take the network to equilibrium. However, there is
in general no unique combination of parameters leading
to equilibrium, and different equilibrium combinations will
typically produce different connectivity patterns. At this point,
biological constraints must be applied to choose between
them.

3.3.2. The Cortical Microcircuit Network
In the case of the cortical microcircuit model described in
2.3.2, Figure 6 shows the changes in calcium concentration,
while Figure 7 shows the evolution of connectivity among layers
as the simulation runs. In this case, parameters which lead
to stable network connectivity were chosen. Reaching stable
connectivity in the networks takes around 700 biological seconds
of simulation, which takes 24 h using 25 nodes and 24 cores per
node in the JURECA cluster to simulate. It is visible that during
the first 20–30 s of simulation, connectivity highly increases on
every layer. After the initial overshoot, a smoother approximation
toward the desired activity levels is achieved. As seen only from
the calcium concentration diagram, the evolution of the network
appears to be quite stable. Regardless, the connectivity plots show
a continuous dynamical reorganization. While neurons on some
layers might start deleting connections due to excess of activity,
the post-synaptic neurons must then create new connections in
order to compensate for missing activity in case they have not
reached their setpoint yet. This leads to a continuous search for
compensating excitation and inhibition which must satisfy the
requirements of all 8 populations. From Figure 7 it can be seen
that outgoing connections from excitatory populations on layers
IV, V, and VI are quite stable. On the other hand, layer II/III
exhibits the highest amount of reorganization, both from the
excitatory and inhibitory populations. This might be due to the
fact that their reduced target levels of activity might be easily
influenced by variations in all other layers. Inhibitory populations
on all layers in general exhibit a higher degree of reorganization
during the whole simulation.

The search space of connectivity parameters for this model
of the cortical microcircuit is large as each setup requires 64
values to be defined. If a brute force exploration would be
performed on these parameters by simulating each combination
for 1 biological second, only 1− 2 values per parameter could be
considered before more biological seconds would be simulated
than using the structural plasticity approach. When adequate
synaptic element growth curves are defined, the structural
plasticity framework allows a progressive exploration of the space
in which the dynamics of the the 8 populations are balanced

at every step, thus providing an efficient way to find stable
connectivity combinations.

Figure 8 presents a comparison between the proportional
values of connectivity among layers between the results obtained
from the simulation using structural plasticity and the original
values reported by Potjans and Diesman. The average error in
percentual connectivity is of 1.058± 1.175.

A second case was also explored, in which parameters lead
to unstable network activity are chosen. Figure 9 shows the
evolution of connectivity among layers and Figure 10 shows the
changes in calcium concentration in each layer for this scenario.
Overshoots in the connectivity, are originated by a choice of
higher rate in the creation of synaptic elements. The system
behaves as a feedback control system, with a delay which is
defined by the time between updates in connectivity and the
synaptic element creation rate. The synaptic element growth rate
determines the steepness of the growth curve, and influences
the speed at which control changes are made. The instability in
the connectivity is reflected in the calcium concentration, never
reaching the desired levels. A stable setting involves finding a
suitable balance between the speed in the creation of excitatory
and inhibitory connections related to the desired level of activity
for each layer.

To study the behavior of the structural plasticity algorithm
on partially pre-connected networks, another simulation was set
in which the initial conditions in connectivity for the structural
plasticity algorithm were those specified in the original model
of Potjans and Diesman. The network was simulated without
plasticity for an initial period of 30 s in order to allow the
calcium concentration reach an initial stable value. The evolution
of the calcium concentration in all layers after the structural
plasticity algorithm was enabled can be seen in Figures 11A,B.
The stability point is reached a lot faster than in the scenario with
no initial connections, at around 400 s. A final simulation was set

FIGURE 8 | Comparison of the normalized connectivity in the

microcircuit model between the results obtained with the structural

plasticity framework (red) and the values reported by Potjans and

Diesmann (2014) (blue). The radius of the circle represents the linearly

normalized value of the percentage of connections between layers.
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FIGURE 9 | Evolution of connectivity through time for each layer in the cortical microcircuit model with an unstable set of parameters. Panels on the left

illustrate connections incoming from excitatory populations. On the right, connections incoming from inhibitory populations. Rows show connections incoming from

layers II/III, IV, V, and VI from top to bottom, respectively. On every panel, connections to excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange)

are shown as solid curves, and connections to inhibitory populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple) are shown as dashed curves.

in which the connectivity was specified with a 10% error margin
from the original setup reported by Potjans and Diesman. The
evolution of the calcium concentration in all layers after plasticity
was enabled can be seen in Figures 11C,D. The structural
plasticity algorithm is able to find a suitable balance between
excitation and inhibition. The initial overshoot in electrical
activity is a reflection of the initial stronger reconfigurations
of the network connectivity. It is important to highlight that a
suitable growth scheme is required for the algorithm to reach this
stability. Not all setups will become stable or find a solution, this
depends on the initial conditions, the desired set points, the shape
of the growth curve and the growth rate.

4. DISCUSSION

In this paper we have described the implementation of a

framework of structural plasticity for the neural network

simulator NEST.We show that the framework is scalable and can

be used to model the dynamical creation and deletion of synapses

inside a large scale network guided by simple homeostatic rules.

This work also presents some use cases for the framework
and some of its potential applications. Researchers can now use
structural plasticity in NEST to generate the connectivity of a
network from scratch, defining homeostatic rules, in form of
synaptic element growth curves, which may vary according to
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FIGURE 10 | Evolution of calcium concentration in each layer of the cortical microcircuit model with an unstable set of parameters. (A) Shows the

calcium concentration in the excitatory populations in layers II/III (red), IV (blue), V (black), and VI (orange). (B) Shows the calcium concentration in the inhibitory

populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple).

FIGURE 11 | Evolution of calcium concentration in each layer of the cortical microcircuit model with partially pre-connected initial conditions. Pale

horizontal lines indicate the target concentration of the corresponding population. Left pannels show excitatory populations in layers II/III (red), IV (blue), V (black), and

VI (orange). Right pannels show inhibitory populations in layers II/III (brown), IV (cyan), V (gray), and VI (purple). (A,B) Show the scenario where the network was started

with the connectivity as specified in the original work by Potjans and Diesman. (C,D) Show the same scenario but with a 10% error in the initial connectivity setup.

their needs. The shape of the growth curve defines the speed with
which new synaptic elements are created, and as a result, defines
the acceleration at which calcium is stored inside the neuron.
The relationship between the growth speed at certain level of
calcium concentration of excitatory and inhibitory elements
is fundamental to achieve stable setups under the model of
structural plasticity. As is has been shown, some parameter
combinations lead to unstable activity in the network. There

are cases where the desired average electrical activity will never
be reached by the system. In other cases the average electrical
activity will oscillate continuously or suddenly go out of bounds.
This relationship depends also on the size of the network and the
neuron model used. As a consequence, some care is required in
navigating the parameter space in order to achieve desired results.

The example of the two population network illustrates how
this framework can be used to understand the interaction
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between activity and the creation of synapses. The behavior
observed in the simulation can be used to model how inhibition
triggers critical periods of connectivity during development of
neural networks (Hensch, 2005). During this window, external
stimuli can also be used to shape the formation of the new
connections. Together with the performance measurements,
these results show that our implementation of structural plasticity
is suitable to study the development of connectivity patterns
inside a neural network in an efficient and scalable manner.

In the specific case of the cortical microcircuit presented in
this work, we are able to see some similarities and differences
between the results obtained by simulating with the structural
plasticity framework and the data reported in Potjans and
Diesmann (2014). One of the most visible differences is the
smaller amount of recurrent connections generated in the
simulation for layer 2/3. This layer has a very low target electrical
activity, which is initially almost reached by external input. This
means that very few synapses are required to reach this target.
This fact limits the creation of synapses for this layer. Note
that the results shown in this paper were obtained only by
defining target activity levels; no other connectivity constraints
were specified. A more elaborate simulation could incorporate
tailored growth curves for each layer, and implement additional
connectivity restrictions which promote recurrent connections
and other connectivity patterns that do not emerge naturally
from the current approach.

Another visible difference is that the excitatory population of
layers 5 and 6 show a higher number of connections than the
ones shown in the original work. On the other hand, connections
from and to the inhibitory population of layer 5 and layer 2/3
are well fit. Except from connections between the inhibitory and
excitatory populations of layer 4, connections from and to layer 4
are also well predicted.

In this paper we describe a framework which can be used
to study structural network dynamics. The focus of this paper
is on the technical implementation. It is not the scope of the
present work to perform a deep analysis of the biological results
that can be obtained using this framework. However, we provide
some examples of how the framework can be used, its capacities
and limitations. This implementation gives researchers flexibility
to explore complex connectivity dynamics by extending the
synaptic elements growth rules. As our implementation is
integrated into NEST, simulations using structural plasticity can
also be combined with other features available in the simulator.
For example, the user may take into account dynamic synaptic

weights by mixing this framework with synaptic plasticity. The
framework can also be further extended using the current
topology framework in NEST in order to constrain connectivity
by relative position.

We also show that the structural plasticity algorithm is able
to solve the complex balance of interaction between layers with
different levels of electrical activity when partial information of
the connectivity is available. This result is very promising, as
it shows that given the right growth rules, it would now be
possible to reconstruct connectivity inside a network without
having exact anatomical information.We therefore conclude that
our approach represents a novel and useful technique to close

the current gaps in information about the connectivity in certain
regions of the brain.
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Learning and memory is commonly attributed to the modification of synaptic strengths

in neuronal networks. More recent experiments have also revealed a major role of

structural plasticity including elimination and regeneration of synapses, growth and

retraction of dendritic spines, and remodeling of axons and dendrites. Here we work

out the idea that one likely function of structural plasticity is to increase “effectual

connectivity” in order to improve the capacity of sparsely connected networks to store

Hebbian cell assemblies that are supposed to represent memories. For this we define

effectual connectivity as the fraction of synaptically linked neuron pairs within a cell

assembly representing a memory. We show by theory and numerical simulation the

close links between effectual connectivity and both information storage capacity of neural

networks and effective connectivity as commonly employed in functional brain imaging

and connectome analysis. Then, by applying our model to a recently proposed memory

model, we can give improved estimates on the number of cell assemblies that can

be stored in a cortical macrocolumn assuming realistic connectivity. Finally, we derive

a simplified model of structural plasticity to enable large scale simulation of memory

phenomena, and apply our model to link ongoing adult structural plasticity to recent

behavioral data on the spacing effect of learning.

Keywords: synaptic plasticity, effective connectivity, transfer entropy, learning, potential synapse, memory

consolidation, storage capacity, spacing effect

1. INTRODUCTION

Traditional theories attribute adult learning and memory to Hebbian modification of synaptic
weights (Hebb, 1949; Bliss and Collingridge, 1993; Paulsen and Sejnowski, 2000; Song et al., 2000),
whereas recent evidence suggests also a role for network rewiring by structural plasticity including
generation of synapses, growth and retraction of spines, and remodeling of dendritic and axonal
branches, both during development and adulthood (Raisman, 1969; Witte et al., 1996; Engert
and Bonhoeffer, 1999; Chklovskii et al., 2004; Butz et al., 2009; Holtmaat and Svoboda, 2009; Xu
et al., 2009; Yang et al., 2009; Fu and Zuo, 2011; Yu and Zuo, 2011). One possible function of
structural plasticity is effective information storage, both in terms of space and energy requirements
(Poirazi and Mel, 2001; Chklovskii et al., 2004; Knoblauch et al., 2010). Indeed, due to space and
energy limitations, neural networks in the brain are only sparsely connected, even on a local
scale (Abeles, 1991; Braitenberg and Schüz, 1991; Hellwig, 2000). Moreover, it is believed that
the energy consumption of the brain is dominated by the number of postsynaptic potentials or,
equivalently, the number of functional non-silent synapses (Attwell and Laughlin, 2001; Laughlin
and Sejnowski, 2003; Lennie, 2003). Together this implies a pressure to minimize the number
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and density of functional (non-silent) synapses. It has therefore
been suggested that the function of structural plasticity “moves”
the rare expensive synapses to the most useful locations, while
keeping the mean number of synapses on a constant low
level (Knoblauch et al., 2014). By this, sparsely connected
networks can have computational abilities that are equivalent
to densely connected networks. For example, it is known that
memory storage capacity of neural associative networks scales
with the synaptic density, such that networks with a high
connectivity can store many more memories than networks with
a low connectivity (Buckingham and Willshaw, 1993; Bosch
and Kurfess, 1998; Knoblauch, 2011). For modeling structural
plasticity it is therefore necessary to define different types of
“connectivity,” for example, to be able to distinguish between
the actual number of anatomical synapses per neuron and
the “potential” or “effectual” synapse number in an equivalent
network with a fixed structure (Stepanyants et al., 2002;
Knoblauch et al., 2014).

In this work we develop substantial new analytical results and
insights focusing on the relation between network connectivity,
structural plasticity, and memory. First, we work out the relation
between “effectual connectivity” in structurally plastic networks
and functional measures of brain connectivity such as “effective
connectivity” and “transfer entropy.” Assuming a simple model
of activity propagation between two cortical columns or areas,
we argue that effectual connectivity is basically equivalent to
the functional measures, while maintaining a precise anatomical
interpretation. Second, we give improved estimates on the
information storage capacity of a cortical macrocolumn as
a function of effectual connectivity (cf., Stepanyants et al.,
2002; Knoblauch et al., 2010, 2014). For this we develop exact
methods (Knoblauch, 2008) to analyze associative memory in
sparsely connected cortical networks storing random activity
patterns by structural plasticity. Moreover, we generalize our
analyses that are reasonable only for very sparse neural activity,
to a recently proposed model of associative memory with
structural plasticity (Knoblauch, 2009b, 2016) that is much more
appropriate for moderately sparse activity deemed necessary to
stabilize cell assemblies or synfire chains in networks with sparse
connectivity (Latham and Nirenberg, 2004; Aviel et al., 2005).
Third, we point out in more detail how effectual connectivity
may relate to cognitive phenomena such as the spacing effect
that learning improves if rehearsal is distributed to multiple
sessions (Ebbinghaus, 1885; Crowder, 1976; Greene, 1989). For
this, we analyze the temporal evolution of effectual connectivity
and optimize the time gap between learning sessions to compare
the results to recent behavioral data on the spacing effect (Cepeda
et al., 2008).

2. MODELING

2.1. Memory, Cell Assemblies and Synapse
Ensembles
Memories are commonly identified with patterns of neural
activity that can be revisited, evoked and/or stabilized by
appropriately modified synaptic connections (Hebb, 1949; Bliss

and Collingridge, 1993; Martin et al., 2000; Paulsen and
Sejnowski, 2000; for alternative views see Arshavsky, 2006). In
the simplest case such a memory corresponds to a group of
neurons that fire at the same time and, according to the Hebbian
hypothesis that “what fires together wires together” (Hebb, 1949)
develop strong mutual synaptic connections (Caporale and Dan,
2008; Clopath et al., 2010; Knoblauch et al., 2012). Such groups
of strongly connected neurons are called cell assemblies (Hebb,
1949; Palm et al., 2014) and have a number of properties that
suggest a function for associative memory (Willshaw et al., 1969;
Marr, 1971; Palm, 1980; Hopfield, 1982; Knoblauch, 2011): For
example, if a stimulus activates a subset of the cells, the mutual
synaptic connections will quickly activate the whole cell assembly
which is thought to correspond to the retrieval or completion of
a memory. In a similar way, a cell assembly in one brain area u
can activate an associated cell assembly in another brain area v.
We call the set of synapses that supports retrieval of a given set
of memories their synapse ensemble S. Memory consolidation is
then the process of consolidating the synapses S.

Formally, networks of cell assemblies can be modeled as
associative networks, that is, single layer neural networks
employing Hebbian-type learning. Figure 1 illustrates a simple
associative network with clipped Hebbian learning (Willshaw
et al., 1969; Palm, 1980; Knoblauch et al., 2010; Knoblauch, 2016)
that associates binary activity patterns u1, u2, . . . and v1, v2, . . .
within neuron populations u and v having size m = 7 and
n = 8, respectively: Here synapses are binary, where a weight
Wij may increase from 0 to 1 if both presynaptic neuron ui and
postsynaptic neuron vj have been synchronously activated for at
least θij times,

Wij =

{

1 , ωij :=
∑M

µ=1 R(u
µ

i , v
µ

j ) ≥ θij

0 , otherwise
. (1)

where M is the number of stored memories, ωij is called the
synaptic potential, R defines a local learning rule, and θij is the
threshold of the synapse. In the following we will consider the
special case of Equation (1) with Hebbian learning, R(u

µ

i , v
µ

j ) =

u
µ

i · v
µ

j , and minimal synaptic thresholds θij = 1, which

corresponds to the well-known Steinbuch or Willshaw model
(Figure 1; cf., Steinbuch, 1961; Willshaw et al., 1969). Further,
we will also investigate the recently proposed general “zip net”
model, where both the learning rule R and synaptic thresholds θij
may be optimized for memory performance (Knoblauch, 2016):
For R we assume the optimal homosynaptic or covariance rules,
whereas synaptic thresholds θij are chosen large enough such
that the chance p1 := pr[Wij = 1] of potentiating a given
synapse is 0.5 to maximize entropy of synaptic weights (see
Appendix A.3 for further details). In general, we can identify the
synapse ensemble S that supports storage of a memory set M by
those neuron pairs ij with a sufficiently large synaptic potential
ωij ≥ θij where θij may depend on M. For convenience we may
represent S as a binary matrix (with Sij = 1 if ij ∈ S and Sij = 0 if
ij 6∈ S) similar as the weight matrixWij.

After learning a memory association uµ → vµ, a noisy
input ũ can retrieve an associated memory content v̂ in a single
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FIGURE 1 | Willshaw model for associative memory. Panels show learning of two associations between activity patterns uµ and vµ (A), retrieval of the first

association (B), pruning of irrelevant silent synapses (C), and the asymptotic storage capacity in bit/synapse as a function of the fraction p1 of potentiated synapses

(D) for networks with and without structural plasticity (Ctot vs. Cwp; computed from Equations (49, 50, 47) for Peff = 1; subscripts ǫ refer to maximized values at

output noise level ǫ). Note that networks with structural plasticity can have a much higher storage capacity in sparsely potentiated networks with small fractions

p1 ≪ 1 of potentiated synapses.

processing step by

v̂j =

{

1 , xj =
(
∑m

i=1 ũiWij +Nj

)

≥ 2j

0 , otherwise
(2)

for appropriately chosen neural firing thresholds 2j. The model
may include random variables Nj to account for additional
synaptic inputs and further noise sources, but for most analyses
and simulations (except Section 3.1) we assumeNj = 0 such that

retrieval depends deterministically on the input ũ. In Figure 1B,
stimulating with a noisy input pattern ũ ≈ u1 perfectly retrieves
the corresponding output pattern v̂ = v1 for thresholds 2j =

2. In the literature, input and output patterns are also called
address and content patterns, and the (noisy) input pattern
used for retrieval is called query pattern. In the illustrated
completely connected network, the thresholds can simply be
chosen according to the number of active units in the query
pattern, whereas in biologically more realistic models, firing

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 63 | 78

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Knoblauch and Sommer Structural Plasticity, Connectivity, and Memory

thresholds are thought to be controlled by recurrent inhibition,
for example, regulating the number of active units to a desired
level l being the mean activity of a content pattern (Knoblauch
and Palm, 2001). Thus, a common threshold strategy in the more
abstract models is to simply select the l most activated “winner”
neurons having the largest dendritic potentials xj. In general, the
retrieval outputs may have errors and the retrieval quality can
then be judged by the output noise

ǫ̂ =

∑n
j=1 |v̂j − v

µ

j |

l
(3)

defined as theHamming distance between v̂ and vµ normalized to
the mean number l of active units in an output pattern. Similarly,
we can define input noise ǫ̃ as the Hamming distance between ũ
and uµ normalized to the mean number k of active units in an
input pattern.

In the illustrated network u and v are different neuron
populations corresponding to hetero-association. However, all
arguments will also apply to auto-association when u and v are
identical (with m = n, k = l), and cell assemblies correspond
to cliques of interconnected neurons. In that case output activity
can be fed back to the input layer iteratively to improve retrieval
results (Schwenker et al., 1996). Stable activation of a cell
assembly can then expected if output noise ǫ̂ after the first
retrieval step is lower than input noise ǫ̃.

Capacity analyses show that each synapse can store a large
amount of information. For example, even without any structural
plasticity, the Willshaw model can store Cwp = 0.69 bit per
synapse by weight plasticity (wp) corresponding to a large
number of about n2/ log2 n small cell assemblies, quite close to
the theoretical maximum of binary synapses (Willshaw et al.,
1969; Palm, 1980). However, unlike in the illustration, real
networks will not be fully connected, but, on a local scale of
macrocolumns, the chance that two neurons are connected is
only about 10% (Braitenberg and Schüz, 1991; Hellwig, 2000).
In this case it is still possible to store a considerable number
of memories, although maximal M scales with the number of
synapses per neuron, and cell assemblies need to be relatively
large in this case (Buckingham and Willshaw, 1993; Bosch and
Kurfess, 1998; Knoblauch, 2011).

By including structural plasticity, for example, through
pruning the unused silent synapses after learning in a network
with high connectivity (Figure 1C), the total synaptic capacity
of the Willshaw model can even increase to Ctot ∼ log n ≫ 1
bit per (non-silent) synapse, depending on the fraction p1 of
potentiated synapses (Figure 1D; see Knoblauch et al., 2010).
Moreover, the same high capacity can be achieved for networks
that are sparsely connected at any time, if the model includes
ongoing structural plasticity and repeated memory rehearsal or
additional consolidation mechanisms involving memory replay
(Knoblauch et al., 2014).

In Section 3.2 we precisely compute the maximal number of
cell assemblies that can be stored in a Willshaw-type cortical
macrocolumn. As the Willshaw model is optimal only for
extremely small cell assemblies with k ∼ log n (Knoblauch, 2011),
we will extend these results also for the general “zip model” of

Equation (1) that performs close to optimal Bayesian learning
even for much larger cell assemblies (Knoblauch, 2016).

2.2. Anatomical, Potential, and Effectual
Connectivity
As argued in the introduction, connectivity is an important
parameter to judge performance. However, network models
with structural plasticity need to consider different types
of connectivity, in particular, anatomical connectivity P,
potential connectivity Ppot, effectual connectivity Peff, and target
connectivity as measured by consolidation load P1S (see Figure 2;
cf., Krone et al., 1986; Braitenberg and Schüz, 1991; Hellwig,
2000; Stepanyants et al., 2002; Knoblauch et al., 2014),

P :=
#actual synaptic connections

mn
, (4)

Ppot :=
#potential synaptic connections

mn
, (5)

Peff :=

∑m
i=1

∑n
j=1H(WijSij)

∑m
i=1

∑n
j=1H(S2ij)

, (6)

P1S :=

∑m
i=1

∑n
j=1H(S2ij)

mn
, (7)

where H is the Heaviside function (with H(x) = 1 if x > 0 and 0
otherwise) to include the general case of non-binary weights and
synapse ensembles (Wij, Sij ∈ R).

First, anatomical connectivity P is defined as the chance that
there is an actual synaptic connection between two randomly
chosen neurons (Figure 2A)1. However, for example in the
pruned network of Figure 1C, the anatomical connectivity P
equals the fraction p1 of potentiated synapses (before pruning)
and, thus, conveys only little information about the true (full)
connectivity within a cell assembly. Instead, it is more adequate
to consider potential and effectual connectivity (Figures 2B,C).

Second, potential connectivity Ppot is defined as the chance
that there is a potential synapse between two randomly chosen
neurons, where a potential synapse is defined as a cortical
location ij where pre- and postsynaptic fibers are close enough
such that a synapse could potentially be generated or has already
been generated (Stepanyants et al., 2002).

Third, effectual connectivity Peff defined as the fraction of
“required synapses” that have already been realized is most
interesting to judge the functional state of memories or cell
assemblies during ongoing learning or consolidation with
structural plasticity. Here we call the synapse ensemble Sij
required for stable storage of a given memory set also the
consolidation signal. If ij corresponds to an actual synapse, we

1More precisely, this means the presence of at least one synapse connecting

the first to the second neuron. This definition is motivated by simplifications

employed by many theories for judging how many memories can be stored.

These simplifications include, in particular, (1) point neurons neglecting dendritic

compartments and non-linearities, and (2) ideal weight plasticity such that any

desired synaptic strength can be realized. Then having two synapses with strength

1 would be equivalent to a single synapse with strength 2. The definition is

further justified by experimental findings that the number of actual synapses

per connection is narrowly distributed around small positive values (Fares and

Stepanyants, 2009; Deger et al., 2012).
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may identify the case Sij > 0 with tagging synapse ij for
consolidation (Frey and Morris, 1997). In case of simple binary
network models such as the Willshaw or zip net models, the Sij
simply equal the optimal synaptic weights in a fully connected
network after storing the whole memory set (Equation 1).
Intuitively, if a set of cell assemblies or memories has a certain
effectual connectivity Peff, then retrieval performance will be as
if these memories would have been stored in a structurally static
network with anatomical connectivity Peff, whereas true P in the
structurally plastic network may be much lower than Peff.

Last, target connectivity or consolidation load P1S is the
fraction of neuron pairs ij that require a consolidated synapse as
specified by Sij. This means that P1S is a measure of the learning
load of a consolidation task.

Note that our definitions of Peff and P1S apply as well to
network models with gradual synapses (Wij, Sij ∈ R). More
generally, bymeans of the consolidation signal Sij, we can abstract
from any particular network model or application domain.
Our theory is therefore not restricted to models of associative
memory, but may be applied as well to other connectionist
domains, given that the “required” synapse ensembles {ij|Sij 6= 0}
and their weights can be defined properly by Sij. The following
provides a minimal model to simulate the dynamics of effectual
connectivity during consolidation.

2.3. Modeling and Efficient Simulation of
Structural Plasticity
Figure 3A illustrates a minimal model of a “potential” synapse
that can be used to simulate the dynamics of ongoing structural
plasticity (Knoblauch, 2009a; Deger et al., 2012; Knoblauch et al.,
2014). Here a potential synapse ijν is the possible location of a real
synapse connecting neuron i to neuron j, for example, a cortical
location where axonal and dendritic branches of neurons i and j
are close enough to allow the formation of a novel connection by

spine growth and synaptogenesis (Krone et al., 1986; Stepanyants
et al., 2002). Note that there may be multiple potential synapses
per neuron pair, ν = 1, 2, . . .. The model assumes that a synapse
can be either potential but not yet realized (state π), realized but
still silent (state and weight 0), or realized and consolidated (state
and weight 1).

For real synapses, state transitions are modulated by the
consolidation signal Sij specifying synapses to be potentiated
and consolidated Then structural plasticity means the transition
processes between states π and 0 described by transition
probabilities pg := pr[state(t + 1) = 0|state(t) = π] and
pe|s := pr[state(t + 1) = π |state(t) = 0, Sij = s]. Similarly,
weight plasticity means the transitions between states 0 and 1
described by probabilities pc|s := pr[state(t + 1) = 1|state(t) =

pg

pe|s

pd|s

pc|sπ

0

1
pe|s

pg pc|s

pd|s

structural
plasticity

weight plasticity 
and consolidation

π 0 1

BA

FIGURE 3 | Two simple models (A,B) of a potential synapses that can

be used for simulating ongoing structural plasticity. State π corresponds

to potential but not yet realized synapses. State 0 corresponds to unstable

silent synapses not yet potentiated or consolidated. State 1 corresponds to

potentiated and consolidated synapses. Transition probabilities of actual

synapses (state 0 or 1) depend on a consolidation signal s = Sij that may be

identified with the synaptic tags (Frey and Morris, 1997) marking synapses

required to be consolidated for long-term memory storage. Thus, typically

pc|1 > pc|0 for synaptic consolidation 0 → 1 and pe|1 < pe|0, pd|1 < pd|0 for

synaptic elimination 0 → π and deconsolidation 1 → 0. All simulations assume

synaptogenesis π → 1 (by pg) in homeostatic balance with synaptic

elimination such that network connectivity P is constant over time.
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FIGURE 2 | Illustration of different types of “connectivity” corresponding to actual (A), potential (B), and requested synapses (C). The requested

synapses in (C) correspond to the synapse ensemble S required to store the memory patterns in Figure 1.
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0, Sij = s] and pd|s := pr[state(t + 1) = 0|state(t) = 1, Sij =
s]. For simplicity, we do not distinguish between long-term
potentiation (LTP) and synaptic consolidation (or L-LTP), both
corresponding to the transition from state 0 to 1. In accordance
with the state diagram of Figure 3A, the evolution of synaptic

states can then be described by probabilities p
(s)
state(t) that a given

potential synapse receiving Sij = s is in a certain state ∈ {π, 0, 1}
at time step t = 0, 1, 2, . . .,

p
(s)
1 (t) = (1− pd|s(t))p

(s)
1 (t − 1)+ pc|s(t)p

(s)
0 (t − 1) (8)

p
(s)
0 (t) = (1− pc|s(t) − pe|s(t))p

(s)
0 (t − 1)+ pd|s(t)p

(s)
1 (t − 1)+

pgp
(s)
π (t − 1) (9)

p(s)π (t) = (1− pg)p
(s)
π (t − 1)+ pe|s(t)p

(s)
0 (t − 1)

= 1− p
(s)
1 (t)− p

(s)
0 (t) , (10)

where the consolidation signal s(t) = Sij(t) may depend on time.
The second model variant (Figure 3B) can be described in

a similar way except that pd|s describes the transition from
state 1 to state π . Model B is more convenient to analyze the
spacing effect. We will see that, in relevant parameter ranges,
both model variants behave qualitatively and quantitatively very
similar. However, in most simulations we have used model A.

Note that a binary synapse in the original Willshaw model
(Equation 1, Figures 1A,B) is a special case of the described
potential synapse (pg = pe|s = pd|s = 0, pc|s = s ∈

{0, 1}, Sij = Wij as in Equation 1). Then pruning following
a (developmental) learning phase (Figure 1C) can be modeled
by the same parameters except increasing pe|s > 0 to positive
values. Finally, adult learning with ongoing structural plasticity
can be modeled by introducing a homeostatic constraint to keep
P constant (cf., Equation 69 in Appendix B.1; cf., Knoblauch
et al., 2014), such that in each step the number of generated
and eliminated synapses are about the same. Figure 4 illustrates
such a simulation for pe|s = 1 − s and a fixed consolidation
signal Sij corresponding to the same memories as in Figure 1.
Here the instable silent (state 0) synapses take part in synaptic
turnover until they grow at a tagged location ijwith Sij = 1 where
they get consolidated (state 1) and escape further turnover. This
process of increasing effectual connectivity (see Equation 70 in
Appendix B.2) continues until all potential synapses with Sij = 1
have been realized and consolidated (Figure 4, t = 4) or synaptic
turnover comes to an end if all silent synapses have been depleted.

Microscopic simulation of large networks of potential
synapses can be expensive. We have therefore developed a
method for efficient simulation of structural plasticity on
a macroscopic level: Instead of the lower case probabilities
(Equations 8–10) we consider additional memory-specific upper-

case connectivity variables P
(s)
state defined as the fractions of

neuron pairs ij that receive a certain consolidation signal s(t) =
Sij(t) and are in a certain state ∈ {∅, π, 0, 1} (where ∅ denotes
neuron pairs without any potential synapses). In general it is

P
(s)
1 (t) = P

(s)
pot

∞
∑

n=1

p(n)
(

1− (1− p
(s)
1 (t))n

)

(11)

P(s)π (t) = P
(s)
pot

∞
∑

n=1

p(n)
(

p(s)π (t)
)n

(12)

P
(s)
0 (t) = P

(s)
pot − P

(s)
1 (t)− P(s)π (t) (13)

where p
(s)
1 and p

(s)
π are as in Equations (8, 10); P

(s)
pot is the

fraction of neuron pairs receiving s that have at least one potential
synapse; and p(n) is the conditional distribution of potential
synapse number n per neuron pair having at least one potential
synapse. Thus, we define a pre-/postsynaptic neuron pair ij to
be in state 1 iff it has at least one state-1 synapse; in state 0
iff it does not have a state-1 synapse but at least one state-0
synapse; and in state π if it is neither in state 1 nor state 0 but
has at least one potential synapse. See Fares and Stepanyants
(2009) for neuroanatomical estimates of p(n) in various cortical
areas.

Summing over s we obtain further connectivity variables
P1, P0, Pπ from which we can finally determine the
familiar network connectivities defined in the previous
section,

Pstate(t) =
∑

s

P
(s)
state(t) for state ∈ {∅, π, 0, 1} (14)

P(t) = P0(t)+ P1(t) (15)

Ppot(t) = Pπ (t)+ P0(t)+ P1(t) (16)

P1S =
∑

s6=0

∑

state∈{∅,π,0,1}

P
(s)
state(t) (17)

Peff(t) =

∑

s6=0 P
(s)
1 (t)

P1S
. (18)

In general, the consolidation signal s = s(t) = Sij(t)
will not be constant but may be a time-varying signal
(e.g., if different memory sets are consolidated at different
times). To efficiently simulate a large network of many
potential synapses, we can partition the set of potential
synapses in groups that receive the same signal s(t). For
each group we can calculate the temporal evolution of state

probabilities p
(s)
π (t), p

(s)
0 (t), p

(s)
1 (t) of individual synapses from

Equations (8–10). From this we can then compute from
Equations (11–13) the group-specific macroscopic connectivity

variables P
(s)
π (t), P

(s)
0 (t), P

(s)
1 (t), and finally from Equations

(14–18) the temporal evolution of the various network
connectivities Pπ (t), P0(t), P1(t), P(t) as well as effectual
connectivity Peff(t) for certain memory sets. For such an
approach the computational cost of simulating structural
plasticity scales only with the number of different groups
corresponding to different consolidation signals s(t) (instead
of the number of potential synapses as for the microscopic
simulations).

Moreover, this approach is the basis for further simplifications
and the analysis of cognitive phenomena like the spacing effect
described in Appendix B. For example, for simplicity, the
following simulations and analyses assume that each neuron
pair ij can have at most a single potential synapse [i.e., p(1) =

1]. In previous works we have simulated also a model variant
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FIGURE 4 | Ongoing structural plasticity maintaining a constant anatomical connectivity P = 22/56 for the memory patterns of Figure 1 with actual,

potential and requested synapses as in Figure 2 and assuming only single potential synapses per neuron pair (p(1) = 1, pe|s = 1 − s, pc|s = s, pd|s = 0).

Note that Peff increases with time from the anatomical level Peff = 9/22 ≈ P at t = 1 toward the level of potential connectivity with Peff = 15/22 ≈ Ppot at t = 4.

Correspondingly, output noise ǫ̂ decreases with increasing Peff. At each time firing threshold 2 is chosen maximally to activate at least l = 3 neurons corresponding to

the mean cell assembly size in the output population.

allowing multiple synapses per neuron pair, where we observed
very similar results as for single synapses (Knoblauch et al., 2014).
As synapse number per connected neuron pair has sometimes
been reported to be narrowly distributed around a small number
(e.g., n = 4; cf., Fares and Stepanyants, 2009), one may also
identify each single synapse in our model with a group of about 4
real cortical synapses (see Section 4).

This assumption is actually justified by evidence that n is
narrowly distributed around a small number, e.g., n = 4 (Fares
and Stepanyants, 2009). This means that two neurons are either
unconnected or connected by a group of about four synapses
(which is actually a very surprising finding as it is unclear how
the neurons can regulate n; cf., Deger et al., 2012). This situation
is well consistent with our modeling assumption p(1) = 1 if we

identify each model synapse with such a group of about 4 real
synapses.

3. RESULTS

3.1. Information Storage Capacity,
Effectual Connectivity and its Relation to
Functional Measures of Brain Connectivity
For an information-theoretic evaluation, associative memories
are typically viewed as memory channels that transmit the
original content patterns vµ and retrieve corresponding retrieval
output pattern v̂µ (see Figure 5A). Thus, the absolute amount
of transmitted or stored information Cabs of all M memories
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FIGURE 5 | Relation between effectual connectivity Peff, information storage capacity C, and output noise ǫ̂. (A) Processing model for computing storage

capacity C := Cabs/Pmn for M given memory associations between input patterns uµ and output patterns vµ stored in the synaptic weights (Equation 1;

p := pr[uµ = 1], q := pr[vµ = 1]; k and l are mean cell assembly sizes in neuron populations u and v). During retrieval noisy address inputs ũµ with component errors

pab := pr[ũ
µ

i
= b|u

µ

i
= a] and input noise ǫ̃ := p10 + (1/q− 1)p01 are propagated through the network (Equation 2) yielding output patterns v̂µ with component errors

qab := pr[v̂
µ

j
= b|v

µ

j
= a] and output noise ǫ̂ = q10 + (1/q− 1)q01. The retrieved information is then the transinformation between vµ and v̂µ. To simplify analysis, we

assume independent transmission of individual (i.i.d.) memory bits v
µ

j
over a binary channel with transmission errors q01,q10. (B) Information storage capacity C(Peff )

(blue curve), and output noise ǫ̂(Peff ) (red curve) as functions of effectual connectivity Peff for a structurally plastic Willshaw network (similar to Figure 4) of

m = n = 100,000 neurons storing M = 106 cell assemblies of sizes k = l = 50 and having anatomical connectivity P = 0.1 assuming zero input noise (ǫ̃ = 0). Data

have been computed similar to Equation (37) using Equations (44–46) for 0 ≤ Peff ≤ P/p1.

equals the transinformation or mutual information (Shannon
and Weaver, 1949; Cover and Thomas, 1991)

Cabs := T(V̂;V) :=
∑

p(V̂,V) log2
p(V̂,V)

p(V̂) · p(V)
(19)

whereV := (v1, v2, . . . vM) and V̂ := (v̂1, v̂2, . . . , v̂M) correspond
to the sets of original and retrieved content patterns, and p(.) to
their probability distributions. If all M memories and n neurons
have independent and identically distributed (i.i.d) activities (e.g.,
same fraction q of active units per pattern and component
transmission error probabilities q01, q10), we can approximate
this memory channel by a simple binary channel transmitting
M · nmemory bits v

µ

j 7→ v̂
µ

j as assumed in Appendix A. Then

Cabs ≈ M · T(v̂µ; vµ) ≈ M · n · T(q, q01, q10) (20)

where T(v̂µ; vµ) is the transinformation for single memory
patterns and T(q, q01, q10) is the transinformation of a single
bit (see Equation 38). From this we obtain the normalized
information storage capacity C per synapse after dividing Cabs by
the number of synapses Pmn (similar to Equation 37).

In our first experiment we have investigated the relation
between information storage capacity and effectual connectivity
Peff during ongoing structural plasticity. For this we have
assumed a larger network of size m = n = 100000 with
anatomical connectivity P = 0.1 and larger cell assemblies
with sizes k = l = 50, but otherwise a similar setting as
for the toy example illustrated by Figure 4. Figure 5B shows
output noise ǫ̂ and normalized capacityC as functions of effectual
connectivity Peff for a given number of M = 106 random

memories. Interestingly, both ǫ̂ and C turn out to be monotonic
functions of Peff because output errors decrease with increasing
Peff (see Equations 45, 46). Therefore, also output noise ǫ̂(Peff)
decreases with increasing Peff whereas, correspondingly, stored
information per synapse C(Peff) increases with Peff. Because
monotonic functions are invertible, we can thus conclude that
effectual connectivity Peff is an equivalentmeasure of information
storage capacity or the transinformation (=mutual information)
between the activity patterns of two neuron populations u and
v. As can be seen from our data, C(Peff) tends to be even linear
over a large range, C ∼ Peff, until saturation occurs if ǫ̂ → 0
approaches zero corresponding to high-fidelity retrieval outputs.

Next, based on the this equivalence between Peff and C, we
work out the close relationship between Peff and commonly
used functional measures of brain connectivity. Recall that we
have introduced “effectual connectivity” as a measure of memory
related synaptic connectivity (Figure 2C) that shares with other
definitions of connectivity (such as anatomical and potential
connectivity) the idea that any “connectivity” measure should
correspond to the chance of finding a connection element (such
as an actual or potential synapse) between two cells. By contrast,
in brain imaging and connectome analysis (Friston, 1994; Sporns,
2007) the term “connectivity” has amore heterogeneousmeaning
ranging from patterns of synaptic connections (anatomical
connectivity) and correlations between neural activity (functional
connectivity) to causal interactions between brain areas. The
latter is also referred to as “effective connectivity” although
usually measured in information theoretic terms (bits) such
as delayed mutual information or transfer entropy (Schreiber,
2000). For example, in the simplest case the transfer entropy
between activities u(t) and v(t) measured in two brain areas u
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and v is defined as

Tu→v :=
∑

p(v(t + 1), u(t), v(t)) log2
p(v(t + 1)|u(t), v(t))

p(v(t + 1)|v(t))
(21)

where p(.) denotes the distribution of activity patterns (see
Equation 4 in Schreiber, 2000)2 . Such ideas of effective
connectivity come from the desire to extract directions of
information flow between two brain areas from measured neural
activity, contrasting with (symmetric) correlation measures that
can neither detect processing directions nor distinguish between
causal interactions and correlated activity due to a common
cause.

To see the relation between these functional measures
of “effective connectivity” and Peff, first, note that transfer
entropy equals the well-known conditional transinformation or
conditional mutual information between v(t + 1) and u(t) given
v(t) (Dobrushin, 1959; Wyner, 1978),

T(v(t + 1); u(t)|v(t)) :=

∑

p(v(t + 1), u(t), v(t)) log2
p(v(t + 1), u(t)|v(t))

p(v(t + 1)|v(t)) · p(u(t)|v(t))
(22)

=
∑

p(v(t + 1), u(t), v(t)) log2

p(v(t + 1)|u(t), v(t)) · p(u(t)|v(t))

p(v(t + 1)|v(t)) · p(u(t)|v(t))
= Tu→v . (23)

Second, we may apply this to one-step retrieval in an associative
memory (Equation 2). Then u(t) = ũµ is a noisy input, and the
update v(t + 1) = F(u(t)) = v̂µ produces the corresponding
output pattern, where the mapping F corresponds to activity
propagation through the associative network. As here the update
does not depend on the old state v(t), we may approximate
transfer entropy by the regular transinformation or mutual
information

Tu→v = T(v(t + 1); u(t)|v(t)) ≈ T(F(u(t)); u(t)) (24)

= I(u(t))− I(u(t)|F(u(t))) (25)

= I(F(u(t)))− I(F(u(t))|u(t))
(26)

where I(X) := −
∑

x p(x) log p(x) is the Shannon information
of a random variable X, and I(X|Y) := −

∑

x,y p(x, y) log p(x|y)

the conditional information of X given Y (Shannon and Weaver,
1949; Cover and Thomas, 1991). Thus, up to normalization,
transfer entropy Tu→v ≈ T(F(u(t)); u(t)) = T(v̂µ; ũµ) has a
very similar form as storage capacity Cabs in Equation (20). If
F(u) is deterministic, the second term in Equation (26) vanishes
and transfer entropy equals the output information I(F(u(t))) ≤
I(u(t)). If F(u) is also invertible, the second term in Equation
(25) would vanish and Tu→v = I(u(t)) = I(F(u(t))) =

Cabs/M. However, in the associative memory application many

2 The general case considers delay vectors (u(t), u(t − 1), . . . , u(t − K + 1) and

(v(t), v(t − 1), . . . , v(t − L+ 1)) instead of u(t) and v(t).

input patterns are (ideally) mapped to one memory and F(u) is
noninvertible and thus Tu→v = I(F(u(t))) < I(u(t)). Moreover,
in more realistic cortex models F is also nondeterministic as
v(t + 1) will depend not only on activity u(t) from a single input
area, but also on inputs from further cortical and subcortical
areas as well as on numerous additional noise sources. Thus, in
fact it will be Tu→v < I(F(u(t))).

Third, we can compare Tu→v to information storage capacity
(Equation 20) by normalizing to single memory patterns,

Cabs

M
=

CPmn

M
= T(v̂µ; vµ) = T(F(u(t); vµ(u(t))) (27)

= I(F(u(t)))− I(F(u(t))|vµ(u(t))) (28)

where µ(u(t)) is a function determining the memory index of the
input pattern uµ(u(t)) best matching the current input ũ = u(t).
Thus, comparing Equation (26) to Equation (28) yields generally

Tu→v −
Cabs

M
= I(F(u(t))|vµ(u(t)))− I(F(u(t))|u(t)) ≥ 0 . (29)

where the bound is true as vµ(u(t)) is a deterministic function
of u(t). In particular, for deterministic F, transfer entropy

Tu→v =
Cabs
M + I(F(u(t))|vµ(u(t))) typically exceeds normalized

capacity Cabs
M , whereas equality follows for I(F(u(t))|vµ(u(t))) =

I(F(u(t))|u(t)), for example, error-free retrieval with F(u(t)) =

vµ(u(t)). Appendix A.4 shows that equality holds generally as well
for nondeterministic propagation of activity (e.g., Equation 2
with Nj 6= 0) if we assume that component retrieval errors
occur independently with probabilities q01 := pr[v̂

µ

j = 1|v
µ

j =

0] ≈ pr[v̂
µ

j = 1|v
µ

j = 0, ũ] = pr[v̂
µ

j = 1|ũ] and q10 :=

pr[v̂
µ

j = 0|v
µ

j = 1] ≈ pr[v̂
µ

j = 0|v
µ

j = 1, ũ] = pr[v̂
µ

j = 0|ũ]

corresponding to the same (nondeterministic, i.i.d.) processing
model as we have presumed in our capacity analysis (Figure 5A;
see also Appendix A, Equations 42–43 or Equations 45–46 for
Willshaw networks). Then normalizing transfer entropy TE and
information capacity CN per output unit yields (see Equations
53, 38)

TE :=
Tu→v

n

>
≈ T(q, q01, q10) ≈ CN :=

Cabs

Mn
=

CPm

M
. (30)

Thus, “effective connectivity” as measured by transfer entropy
becomes (up to normalization) equivalent to the information
storage capacity C of associative networks (see Equation 37 with
Equation 38).

Figure 6 shows upper bounds TE ≤ OE := I(v
µ

j ) and lower

bounds TE≥CN of transfer entropy as functions of output noise
level ǫ̂ = qq10 + (1 − q)q01 for different activities q of output
patterns (cf., Equations 26, 29, 30). For low output noise (ǫ̂ → 0)
both Tu→v and C approach the full information content of the
stored memory set. In general both TE and CN are monotonic
functions of ǫ̂ for relevant (sufficiently low) noise levels ǫ̂. While
TE increases with ǫ̂ for deterministic retrieval (Nj = 0; cf.
Equation 2), TE becomes a decreasing function of ǫ̂ already for
low levels of intrinsic noise (Nj on the order of single synaptic
inputs; see panel D). Similar decreases are obtained even without

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 63 | 84

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Knoblauch and Sommer Structural Plasticity, Connectivity, and Memory

A B

C D

FIGURE 6 | Transfer entropy, output entropy and information capacity. (A) Normalized transfer entropy (TE := Tu→v/n) is bounded by normalized information

storage capacity (solid; CN := CPm/M ≤TE; see Equation 30 with Equation 38) and output entropy (dashed; OE := I(v̂
µ

j
) ≥TE), where TE = OE for deterministic

retrieval and TE = CN for non-deterministic retrieval with independent output noise (see text for details). The curves show TE,CN,OE as functions of output noise

ǫ̂ = (1− q)q01 assuming only add noise q01 = pr[v̂j = 1|vj = 0] but no miss noise q10 = pr[v̂j = 0|vj = 1] = 0 (e.g., as it is the case for optimal “pattern part” retrieval;

see Equation 46 in Appendix A.2). Different curves correspond to different fractions q of active units in a memory pattern (thick, medium, and thin lines correspond to

q = 0.5, q = 0.1, and q = 0.01, respectively). (B) Contour plot of CN = min TE as function of output noise ǫ̂ and activity parameter q for q10 = 0. (C) Contour plot of

OE=max TE as function of output noise ǫ̂ and activity parameter q for q10 = 0. (D) TE (thick solid) and CN (thin dashed) as functions of ǫ̂ for simulated retrieval (zero

input noise ǫ̃ = 0) in Willshaw networks of size n = 10,000 storing M = 1000 cell assemblies of size k = 100 (q = 0.01) and increasing Peff from 0 to 1 (markers

correspond to Peff = 0.001,0.01,0.1,0.15,0.2, . . . ,0.95,1). Each data point corresponds to averaging over 10 networks each performing 10,000 retrievals of 100

memories (see Equations 51, 52). Different curves correspond to different levels of intrinsic noise Nj in output neurons vj (see Equation 2; Nj uniformly distributed in

[0;Nmax] for Nmax = 0,1, 10,100 as indicated by black, blue, green, red lines). Note that, already for low noise levels, retrieval is non-deterministic such that TE

becomes monotonic decreasing in ǫ̂ and, thus, similar or even equivalent to CN (and effectual connectivity Peff; see Figure 5B and Equation 49; cf. Figures 7, 8).

intrinsic noise, Nj = 0, if the target assembly vµ receives (noisy)
synaptic inputs from multiple cortical populations (data not
shown; cf., Braitenberg and Schüz, 1991).

Our results thus show that, at least for realistic intrinsic noise
and/or inter-columnar synaptic connectivity, transfer entropy
Tu→v becomes equivalent to information capacity C. Because
of the monotonic (or even linear) dependence of C on Peff (see
Figure 5B and Equation 49; cf. Figures 7, 8), transfer entropy
is equivalent also to effectual connectivity Peff. Thus, we may
interpret effectual connectivity Peff as an essentially equivalent
measure of “effective connectivity” as previously defined for
functional brain imaging. Still, due to its anatomical definition,
Peff can only measure a potential causal interaction. For example,
if both the synaptic connections from brain area u to v and

the reverse connections from v to u have high Peff, we will
not be able to infer the direction of information flow in
a certain memory task unless we measure the actual neural
activity.

3.2. Storage Capacity of a Macrocolumnar
Cortical Network
A typical cortical macrocolumn comprises on the order of n =

105 neurons below about 1 mm2 cortex surface, where the
anatomical connectivity is about P = 0.1 and the potential
connectivity about Ppot = 0.5 corresponding to a filling fraction
f := P/Ppot = 0.2 (Braitenberg and Schüz, 1991; Hellwig,
2000; Stepanyants et al., 2002). Sizes of cell assemblies have been
estimated to be somewhere between 50 and 500 in entorhinal

Frontiers in Neuroanatomy | www.frontiersin.org June 2016 | Volume 10 | Article 63 | 85

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Knoblauch and Sommer Structural Plasticity, Connectivity, and Memory

assembly size k

e
ff
e
c
tu

a
l 
c
o
n
n
e
c
ti
v
it
y
 P

e
ff

pattern capacity M;  n=10
5

4
0
0
0
0
0
0

2
0
0
0
0
0
0

1
0
0
0
0
0
0

5
1
2
0
0
0

2
5
6
0
0
0

1
2
8
0
0
0

6
4
0
0
0

32
00

0

16384

8192

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

assembly size k

e
ff
e
c
tu

a
l 
c
o
n
n
e
c
ti
v
it
y
 P

e
ff

total synaptic capacity C
tot

;  n=10
5

8 5

4

3

2
.5

2

1
.5

1
0
.9

0
.8

0
.7

0.6

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

5

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

assembly size k

a
n
a
to

m
ic

a
l 
c
o
n
n
e
c
ti
v
it
y
 P

weight capacity C
wp

;  n=10
5

0.3

0
.2

0
.1

5

0
.1

0
.0

7
5

0
.0

5

0
.0

2
5

0.075

0
.0

5

0
.0

2
5

0
.0

1

0
.0

0
1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

assembly size k

e
ff
e
c
tu

a
l 
c
o
n
n
e
c
ti
v
it
y
 P

e
ff

min.connectivity P
1
=P

eff
p

1
;  n=10

5

0
.0

0
1

0
.0

1 0
.0

5 0
.1 0

.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A C

DB

Willshaw model

P  = 0.1
1

P  = 0.1

1

P  = 0.11

struct. plast.

weight plast. only

struct. plast.

weight plast. only weight plast. only

struct. plast.

FIGURE 7 | Exact storage capacities for a finite Willshaw network having the size of a cortical macrocolumn (n = 105). (A) Contour plot of pattern

capacity Mǫ (maximal number of stored memories or cell assemblies) as a function of assembly size k (number of active units in a memory pattern) and effectual

network connectivity Peff assuming output noise level ǫ = 0.01 and no input noise (ũ = uµ). (B) Weight capacity C
wp
ǫ (in bit/synapse) corresponding to maximal Mǫ in

(A) for networks without structural plasticity. (C) Total storage capacity Ctot
ǫ (in bit/non-silent synapse) corresponding to maximal Mǫ in ( A) for networks with structural

plasticity. Note that Ctot may increase even further if less than the maximum Mǫ memories are stored (see text for details). (D) Minimal anatomical connectivity

P1 = p1Peff ≤ P required to achieve the data in ( A-C). Data computed as described in Appendix A.1. Red and blue dashed lines correspond to plausible values of

Peff for networks with and without structural plasticity (assuming P = 0.1, Ppot = 0.5). Note that only the area below the magenta dashed line (P1 = 0.1) is consistent

with P = 0.1. Our exact data is in good agreement with earlier approximative data (Knoblauch et al., 2014, Figure 5) unless k is very small (e.g., k < 50).

cortex (Waydo et al., 2006). Given these data we can try to
estimate the numberM of local cell assemblies or memories that
can be stored in a macrocolumn (Sommer, 2000). In a previous
work (Knoblauch et al., 2014, Figure 5) we have estimated
the storage capacity for the Willshaw model (Figures 1, 4) by
approximating dendritic potential distributions by Gaussians.
However, this approximation can be off as, in particular, for
sparse activity dendritic potentials can strongly deviate from
Gaussians. We have therefore developed a method to compute
the exact storage capacity for theWillshawmodel storing random
memories (see Appendix A). Figure 7 shows corresponding
contour plots of pattern capacity Mǫ , weight capacity C

wp
ǫ , total

synaptic capacity Ctot
ǫ , and the required minimal anatomical

connectivity P1 (assuming that all silent synapses have been

pruned in the end). We can make several observations: First, the
exact results can significantly deviate from the approximations
(cf., Knoblauch et al., 2014, Figure 5). In particular, for extremely
sparse activity (k < 10) the Gaussian assumption seems violated
and the true capacities are significantly lower than estimated
previously. Still, for larger more realistic 50 < k < 500 the new
data is in good agreement with the previous Gaussian estimates,
and for even larger k > 500 the true capacities even slightly
exceed the previous estimates. Second, the previous conclusions,
therefore, largely hold: Without structural plasticity (Peff = P =

0.1) the storage capacity would be generally very low and only
a small number of memories could be stored. For very sparse
k ≈ 50 not even a single memory could be stored and thus, the
cell assembly hypothesis would be inconsistent with experimental
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FIGURE 8 | Storage capacities for binary zip nets (A,B) and Bayesian neural networks (C,D) having the size of a cortical macrocolumn (n = 105). (A)

Contour plot of the pattern capacity Mǫ of an optimal binary zip net (employing the optimal covariance or homosynaptic learning rule; see Knoblauch, 2016) with

P = P1 = 0.1 as a function of cell assembly size k and potential network connectivity Ppot (which is here an upper bound on the achievable effectual connectivity Peff).

(B) Total storage capacity Ctot
ǫ for zip nets including structural plasticity for the setting of (A). (C) Contour plot of the pattern capacity Mǫ of an optimal Bayesian

associative network (Knoblauch, 2011) without structural plasticity as a function of cell assembly size k and anatomical network connectivity P. (D) Weight capacity

C
wp
ǫ for the Bayesian net for the setting of (C). Other parameters are as assumed for Figure 7 (ǫ = 0.01, ũ = uµ). Data computed as described in Appendix A.3. Red

and blue dashed lines correspond to plausible values for Ppot and P, respectively.

estimates of k. Third, by contrast, networks including structural
plasticity increasing Peff from P = 0.1 to Ppot ≈ 0.5 can store
many more memories: For example, for k = 50, the pattern
capacity increases from M ≈ 0 to about M ≈ 800, 000. For
k = 500, there is still an increase from M ≈ 13, 000 to M ≈

45, 000. Fourth, correspondingly, networks without structural
plasticity would have only a very small weight capacity Cwp: For

example, at Peff = P = 0.1 it is Cwp ≈ 0bps for k ≤ 50
and still Cwp < 0.07 bps for k = 500. Fifth, by contrast,
networks with structural plasticity have a much higher total

synaptic capacity Ctot, i.e., they can store muchmore information
per actual synapse and are therefore also much more energy-
efficient, in particular for sparse activity: Although the very high

values Ctot → log n are approached only for unrealistically low
k and high Peff, they can still store Ctot ≈ 0.5 bps for realistic

Peff = 0.5 and k = 50. This high value appears to decrease,
however, to only Ctot ≈ 0.06 bps for k = 500 which would
suggest that, for relatively large cell assemblies with k = 500, a

network without structural plasticity (at P = 0.1) would be more
efficient than a network with structural plasticity (at Peff = 0.5).
However, as the Willshaw model is known to be sub-optimal for
relatively large k ≫ log n, we will re-discuss this issue below for
a more general network model. Sixth, another weakness of the

Willshaw model is that the fraction p1 := 1 − (1 − k2

n2
)M of 1-

synapses is coupled both to cell assembly size k and number of
stored memories M (due to the fixed synaptic threshold θ = 1,
cf., Equation 1). Therefore, the residual (minimal) anatomical
connectivity of a pruned network P1 = p1Peff depends also
on k,M, and we can obtain P1 ≈ P = 0.1 consistent with
physiology only in a limited range of the k-Peff-planes of Figure 7.
At least, physiological k ≈ 50 and Peff ≈ 0.5 match physiological
P1 = 0.1, whereas larger k ≫ 50 would require P1 being larger
than the anatomical connectivity P = 0.1. As many cortical areas
comprise significant fractions P0 > 0 of silent synapses we may
as well allow for smaller P1 < P = 0.1 satisfying P0 + P1 = P
(where Ctot would become a measure only of energy efficiency,
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but no longer of space efficiency), but the very high values of
Ctot ≫ 1 can generally be reached only for tiny fractions of
1-synapses.

In order to overcome some weaknesses of the Willshaw
model we have recently proposed a novel network model (so
called binary “zip nets”) where the fraction p1 of potentiated
1-synapses is no longer coupled to cell assembly size k and
number M (Knoblauch, 2009b, 2010b, 2016). Instead, the model
assumes that synaptic thresholds θij (see Equation 1) are under
homeostatic control to maintain a constant fractions p1 (or P1) of
potentiated 1-synapses. We have shown for the limitMpq → ∞

that this model can reach for p1 = 0.5 up to a “zip” factor
ζ ≈ 0.64 almost the same high storage capacitiesMǫ and C

wp
ǫ as

the optimal Bayesian neural network (Kononenko, 1989; Lansner
and Ekeberg, 1989; Knoblauch, 2011), although requiring only
binary synapses. Moreover, if compressed by structural plasticity,
zip nets can also reach Ctot

ǫ → log n for p1 → 0, similar to
the Willshaw model. As the Willshaw model is optimal only
for extremely sparse activity (k ≤ log n) it is thus interesting
to evaluate the performance gain of structural plasticity for
physiological k using the zip net instead of the Willshaw model.
Figure 8 shows data from evaluating storage capacity of a cortical
macrocolumn of size n = 105 both for the zip net model (upper
panels) and the Bayesian model (lower panels), the latter being a
benchmark for the optimal network without structural plasticity
(Knoblauch, 2011). In order to compute the capacity of the
zip net we have assumed physiological anatomical connectivity
P = P1 = 0.1 where structural plasticity “moves” the P1n

2

relevant 1-synapses to the most useful locations within the limits
given by potential connectivity Ppot (as P1 is fixed, unlike to
the Willshaw model, final Peff after learning may be lower than
Ppot in zip nets; see Appendix A.3 for methodological details).
We can make the following observations: First, as expected, for
high connectivity and very sparse activity (e.g., k ≪ 100) the
zip nets may perform worse than the Willshaw model (because
the Willshaw model then performs close to the optimal Bayesian
net). Second, for more physiological parameters Ppot ≤ 0.5, k ≥

50 the zip net can store significantly more memories than the
Willshaw model, for example, for Ppot = 0.5 the zip net reaches
M ≈ 1000000 for k = 50 and still M ≈ 120, 000 for
k = 500. Third, also the total synaptic capacity Ctot is higher
than for the Willshaw network, for example for Ppot = 0.5,
it is Ctot ≈ 0.6 for k = 50 and still Ctot ≈ 0.5 for k =

500 (remember that the corresponding value for the Willshaw
model required unphysiological P1 > 0.1). Fourth, although
the Bayesian network can store significantly more memories M
it has only a moderate storage capacity below Cwp = 0.25.
In fact, for plausible cell assembly sizes, the binary synapses
of the zip net with structural plasticity at P = 0.1 and
Ppot = 0.5 achieve more than double the capacity of the optimal
(but biologically implausible) Bayesian network with real-valued
synapses at P = 0.1.

In summary, the new data confirms our previous conclusion
that structural plasticity strongly increases space and
energy efficiency of associative memory storage in neural
networks under physiological conditions (Knoblauch et al.,
2014).

3.3. Structural Plasticity and the Spacing
Effect
In previous works we have linked structural plasticity and
cognitive effects like retrograde amnesia, absence of catastrophic
forgetting, and the spacing effect (Knoblauch, 2009a; Knoblauch
et al., 2014). Here we focus on a more detailed analysis of
the spacing effect that learning is most efficient if learning is
distributed in time (Ebbinghaus, 1885; Crowder, 1976; Greene,
1989). For example, learning a list of vocabularies in two sessions
each lasting 10 min is more efficient than learning in a single
session of 20 min. We have explained this effect by slow ongoing
structural plasticity and fast synaptic weight plasticity: Thus,
spaced learning is useful because during the (long) time gaps
between two (or more) learning sessions structural plasticity
can grow many novel synapses that are potentially useful for
storing new memories and that can quickly be potentiated and
consolidated by synaptic weight plasticity during the (brief)
learning sessions (Knoblauch et al., 2014, Section 7.3).

Appendix B.2 develops a simplified theory of the spacing
effect that is based on model variant B of a potential synapse
(which can more easily be analyzed than model A; see Figure 3)
and the concept and methods proposed in Section 2.3. In
particular, with (Equations 73–75) we can easily compute
the temporal evolution of effectual connectivity Peff(t) for
arbitrary rehearsal sequences of a novel set of memories to
be learned. As output noise ǫ̂ is a decreasing function of Peff
(see Figure 5B), we can use Peff as a measure of retrieval
performance.

To illustrate the effect of spaced vs. non-spaced rehearsal (or
consolidation) on Peff, and to verify the theory in Appendix B.2,
Figure 9 shows the temporal evolution of Peff(t) for different
models and synapse parameters. It can be seen that for high
potential connectivity Ppot ≈ 1 and low deconsolidation
probability pd|s ≈ 0 the spacing effect is most pronounced and
the network easily realizes high-performance long-term memory
(with high Peff; see panel A). Larger pd|0 > 0 is plausible to
model short-termmemory, whereas realizing long-termmemory
would then require repeated consolidation steps (panels B–D).
Significant spacing effects are visible for any parameter set.
Comparing the microscopic simulations of both synapse models
from Figure 3 to the macroscopic simulations using the methods
of Section 2.3 and Appendix B.2, it can be seen that all model and
simulation variants behave qualitatively and quantitatively very
similar. This justifies to use the theory of Appendix B.2 in the
following analysis of recent psychological experiments exploring
the spacing effect.

For example, Cepeda et al. (2008) describe an internet-based
learning experiment investigating the spacing effect over longer
time intervals of more than a year (up to 455 days). The structure
of the experiment followed Figure 10. The subjects had to learn
a set of facts in an initial study session. After a gap interval (0–
105 days) without any learning the subjects restudied the same
material. After a retention interval (RI; 7–350 days) there was the
final test.

These experiments showed that the final recall performance
depends both on the gap and the RI showing the following
characteristics: First, for any gap duration, recall performance
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model B (black; see Figure 3B), where both variants assume that at most one synapse can connect a neuron pair (p(1) = 1). Green dashed lines correspond to the

theory of synapse model A in Appendix B.1 (see Equations 54–56). Blue dash-dotted lines correspond to the theory of synapse model B in Appendix B.2 (see

Equations 71–72) and, virtually identical, red-dashed lines correspond to the final theory of model B (see Equations 73–75). For comparison, thick light-gray lines

correspond to non-spaced rehearsal of the same total duration as the spaced rehearsal sessions (using model A). ( A) Spaced rehearsal of a set of M = 20 memories

at times t = 0− 4, 100− 104, 200− 204, and 300− 304. Each memory had k = l = 50 active units out of m = n = 1000 neurons corresponding to a consolidation

load P1S ≈ 0.0488. Further we used anatomical connectivity P = 0.1, potential connectivity Ppot = 1, initial fraction of consolidated synapses of P1 = 0 and

pe|1 = pd|1 = 0, pc|s=s. In each simulation step a fraction pe := pe|0 = 0.01 of untagged silent synapses was replaced by new synapses at other locations, but there

was no deconsolidation pd := pd|0 = 0. (B) Similar parameters as before, but Ppot = 0.4, P1 = 0.04, pe = 0.1, and pd = 0.02. Memories were rehearsed for a single

time step t = 0, t = 100, t = 200, and t = 300. (C) Similar parameters as for panel B, but smaller pd = 0.05. (D) Similar parameters as for panel C, but larger

P1 = 0.095, i.e., 95 percent of real synapses are initially consolidated. Rehearsal times were t = 0,100,200, . . . , 700. Note that the theoretical curves for model A

closely match the experimental curves (magenta vs. green). The theory for model B is still reasonably good (black vs. blue/red), although panel D shows some

deviations to the simulation experiments. Such deviations may be due to the small number of unstable silent synapses (P1 near P). In any case, synapse models A

and B behave very similar.
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Material
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FIGURE 10 | Structure of a typical study of spacing effects on learning. Study episodes are separated by a varying gap, and the final study episode and test

are separated by a fixed retention interval. Figure modified from Cepeda et al. (2008).

decline as a function of RI in a negatively accelerated fashion,
which corresponds to the familiar “forgetting curve.” Second,
for any RI greater than zero, an increase in study gap causes

recall to first increase and then decrease. Third, as RI increases,
the optimal gap increases, whereas that ratio of optimal gap
to RI declines. The following shows that our simple associative
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memory model based on structural plasticity can explain most of
these characteristics.

It is straight-forward tomodel the experiments of Cepeda et al.
(2008) by applying our model of structural plasticity and synaptic
consolidation. Figure 11 illustrates Peff(t) for a learning protocol
as employed in the experiments: In an initial study session facts
are learned until time t(1) when some desired performance level

P
(1)
eff

is reached. After a gap the facts are rehearsed briefly at time

t(2) reaching a performance equivalent to P
(2)
eff
. After the retention

interval at time t(3) performance still corresponds to an effectual

connectivity P
(3)
eff
.

Similar to Cepeda et al. (2008), we want to optimize the

gap duration in order to maximize P
(3)
eff

for a given retention

interval RI. After the second rehearsal at time t(2), Peff
decays exponentially by a fixed factor 1 − pd|0 per time step

(Equation 74). Therefore, P
(3)
eff

= P
(2)
eff
(1−pd|0)

t(3)−t(2) is a function

of P
(2)
eff

that decreases with the retention interval length t(3) − t(2).

We can therefore equivalently maximize P
(2)
eff

with respect to the

gap length 1t := t(2) − t(1). For pc|s = s, pe|1 = pd|1 = 0, a good

approximation of P
(2)
eff

follows from Equation (73),

P
(2)
eff

≈

PPpot + [(Ppot − P)P
(1)
eff

− PpotP
(t1)
1 ](1− pd|0)

1t

−Ppot(P − P
(t1)
1 )(1− pe|0)

1t

Ppot − P
(t1)
1 (1− pd|0)1t − [P − P

(t1)
1 ](1− pe|0)1t

,(31)

where P
(t1)
1 := P

(t0)
1 (1 − P1S)(1 − pd|0)

t(1) + P1SP
(1)
eff

with P
(t0)
1

denoting the initial fraction of consolidated synapses at time

0.3 Since P
(2)
eff

does not depend on the RI we can already see
that the optimal gap interval 1t depends on the RI neither
(which contrasts with the experiments reporting that optimal 1t
increases with RI). Optimizing 1t yields the optimality criterion
(see Appendix B.3)

P
(1)
eff

− P
(t1)
1

P − P
(t1)
1

+ (α − 1)
P
(1)
eff

Ppot
xα − αxα−1 = 0 . (32)

with

x := (1− pd|0)
1t = e1t ln(1−pd|0) ⇔ 1t =

ln x

ln(1− pd|0)
(33)

α :=
ln(1− pe|0)

ln(1− pd|0)
, (34)

which can easily be evaluated using standard Newton-type
numerical methods. Note that Equation (32) can be used to link
neuroanatomical and neurophysiological to psychological data.

3 Note that a constant (instead of decaying) “background” consolidation P1 can

be modeled, for example, by using P
(t0)
1 = 0 and then excluding the initially

consolidated synapses from further simulation. This means to simulate a network

with anatomical connectivity P′ = P−P1, potential connectivity P
′
pot = Ppot−P1,

no initial consolidation with P′1 = 0, and otherwise same parameters as the

original network. Then the effectual connectivity can be computed from P
(1)
1 =

P
(1)
1

′
+ P1SP1 using Equation (18) where P

(1)
1

′
mn is obtained from the simulation.
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FIGURE 11 | Modeling the spacing effect experiment of Cepeda et al.

(2008) as illustrated by Figure 10. Curves show effectual connectivity Peff

as function of time t according to the theory of synapse model A (green solid;

Figure 3A; see Appendix B.1) and synapse model B (magenta dashed;

Figure 3B; see Equations 73–75). In an initial study session, facts are learned

until some desired performance level P
(1)
eff

is reached at time t(1) = 10. After a

gap the facts are rehearsed briefly at time t(2) = 30 reaching a performance

equivalent to P
(2)
eff

. After the retention interval at time t(3) = 90 performance has

decreased corresponding to an effectual connectivity P
(3)
eff

. Parameters were

P = 0.1, Ppot = 0.4, P1 = 0, P1S = 0.1, pc|s = s, pe|0 = 0.1, pd|0 = 0.005,

and pe|1 = pd|1 = 0.

For example, given the optimal gap 1topt from psychological
experiments, Equation (32) gives a constraint on the remaining
network and learning parameters. Alternatively, we can solve
Equation (32) to determine the optimal gap 1topt given the
remaining parameters.

We have verified Equation (32) by simulations illustrated
in Figure 12 (compare simulation data to Cepeda et al.,
2008, Figure 3). For these simulations we chose physiologically
plausible model parameters: Similarly as before we used Ppot =
0.4 (Stepanyants et al., 2002; DePaola et al., 2006), P = 0.1
(Braitenberg and Schüz, 1991; Hellwig, 2000). Further, we used

P
(t0)
1 = 0.02 as neurophysiological experiments investigating

two-state properties of synapses suggest that about 20% of
synapses are in the “up” state (Petersen et al., 1998; O’Connor
et al., 2005)4 . Then we chose a small consolidation load
P1S = 0.001 assuming that the small set of novel facts
is negligible compared to the presumably large set of older
memories. As before, we assumed pg in homeostatic balance to
maintain a constant anatomical connectivity P(t) (Equation 69)
and binary consolidation signals s = Sij ∈ {0, 1} with pc|s = s
and pd|1 = pe|1 = 0 for any synapse ij. For the remaining learning

4 It may bemore realistic that the total number of “up”-synapses is kept constant by

homeostatic processes (i.e., P1/P = 0.2). However, here we were more interested

in verifying our theory which assumes exponential decay of “up”-synapses. To

account for homeostasis with constant P1 one may proceed as described in

footnote 3. Nevertheless, the qualitative behavior of the model does not strongly

depend on P1 or P
(t0)
1 unless their values being close to P which would strongly

impair learning.
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FIGURE 12 | Simulation of the spacing effect described by Cepeda et al. (2008, Figure 3) using synapse model variant A (green lines) and B (magenta

lines; see Figure 3). Each curve shows final effectual connectivity Peff = P
(3)
eff

as a function of rehearsal gap 1t for different retention intervals (RI = 7, 35, 70, 350

days) assuming an experimental setting as in illustrated in Figures 10, 11. Initially, memory facts were rehearsed for tr1=10 time steps (1 time step = 1 h). After the

gap, memory facts were rehearsed again for a single time step (tr2=1). Finally, after RI steps the resulting effectual connectivity was tested. Red dashed lines indicate

optimal gap interval length for synapse model B as computed from solving Equation (32). Different panels correspond to different synapse parameters pe|0 and pd|0:

Elimination probabilities are pe|0 = 0.1 (top panels A,D), pe|0 = 0.01 (middle panels B,E), and pe|0 = 0.001 (bottom panels C,F). Deconsolidation probabilities are

pd|0 = 0.0001 (left panels A–C) and pd|0 = 0.001 (right panels D–F). Remaining model parameters are described in the main text.
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parameters pe|0 and pd|0 we have chosen several combinations to
test their relevance for fitting the model to the observed data.

The simulation results of Figure 12 imply the following
conclusions: First, the simulations show that the optimal gap
determined by Equation (32) closely matches the simulation
results, for both synapse models (Figure 3). Second, for fixed
deconsolidation pd|0, larger pe|0 implies smaller optimal gaps
1topt. Thus, faster synaptic turnover implies smaller optimal
gaps. Third, for fixed turnover pe|0, larger pd|0 implies smaller
1topt. Thus, faster deconsolidation implies also smaller optimal
gaps. Fourth, together this means that faster (weight and
structural) plasticity implies smaller optimal gaps. Fifth, although
model variants A and B (Figure 3) behave very similar for
most parameters settings, they can differ significantly for some
parameter combinations. For example, for pe|0 = pd|0 = 0.001
(panel F) the peak in Peff of model A is more than a third larger
than the peak of model B. In fact, there the curve of model B
is almost flat. Still, even here, the optimal gap interval length is
very similar for the two models. An obvious reason why model A
sometimes performs better than model B is that deconsolidation
of a synapse in model A does not necessarily imply elimination
as in model B (see Figure 3). Sixth, our simple model already
satisfies two of the three characteristics of the spacing effect
mentioned above: Both the forgetting effect and the existence
of an optimal time gap can be observed in a wide parameter
range. Best fits to the experimental data occurred for pe|0 = 0.01
and pd|0 = 0.0002 (between parameters of panels B,C; data not
shown). Last, however, our simple model cannot reproduce the
third characteristic: As argued above, the optimal gap interval
length 1topt does not depend on the retention interval RI. This
is in contrast to the experiments of Cepeda et al. (2008) reporting
that 1topt increases with RI.

Nevertheless, we have shown in some preliminary simulations
that a slight extension of the model can easily resolve the latter
discrepancy (Knoblauch, 2010a): By mixing two populations of
synapses having different plasticity parameters corresponding
to a small and large optimal gap (or fast and slow plasticity),
respectively, it is possible to obtain a dependence of optimal
spacing as in the experiments.

4. DISCUSSION

In this theoretical work we have identified roles of structural
plasticity and effectual connectivity Peff for network performance,
measuring brain connectivity, and optimizing learning protocols.
Analyzing how many cell assemblies or memories can be stored
in a cortical macrocolumn (of size 1mm3), we find a strong
dependence of storage capacity on Peff and cell assembly size
k (see Figures 7, 8). We find that, without structural plasticity,
when cell assemblies would have a connectivity close to the
low anatomical connectivity P ≈ 0.1, only a small number of
relatively large cell assemblies could be stably stored (Latham
and Nirenberg, 2004; Aviel et al., 2005) and, correspondingly,
retrieval would not be energy efficient (Attwell and Laughlin,
2001; Laughlin and Sejnowski, 2003; Lennie, 2003; Knoblauch
et al., 2010; Knoblauch, 2016). It thus appears that storing and

efficiently retrieving a large number of small cell assemblies as
observed in some areas of the medial temporal lobe (Waydo
et al., 2006) would require structural plasticity increasing Peff
from the low anatomical level toward the much larger level of
potential connectivity Ppot ≈ 0.5 (Stepanyants et al., 2002).
Similarly, our model predicts ongoing structural plasticity for
any cortical area that exhibits sparse neural activity and high
capacity.

Moreover, we have shown a close relation between our
definition of effectual connectivity Peff and previous measures
of functional brain connectivity. While the latter, for example
transfer entropy, are solely based on correlations between neural
activity in cortical areas (Schreiber, 2000), our definition of Peff
as the fraction of realized required synapses has also a clear
anatomical basis (Figure 2). Via the link of memory channel
capacity C(Peff) used to measure storage capacity of a neural
network, we have shown that Peff is basically an equivalent
measure of functional connectivity as transfer entropy. By this,
it may become possible to establish an anatomically grounded
link between structural plasticity and functional connectivity.
For example, this could enable predictions on which cortical
areas exhibit strong ongoing structural plasticity during certain
cognitive tasks.

Further, as one example linking cognitive phenomena to its
potential anatomical basis, we have more closely investigated the
spacing effect that learning becomes more efficient if rehearsal
is distributed to multiple sessions (Crowder, 1976; Greene, 1989;
Cepeda et al., 2008). In previous works we have already shown
that the spacing effect can easily be explained by structural
plasticity and that, therefore, structural plasticity may be the
common physiological basis of various forms of the spacing
effect (Knoblauch, 2009a; Knoblauch et al., 2014). Here we have
extended these results to explain some recent long-term memory
experiments investigating the optimal time gap between two
learning sessions (Cepeda et al., 2008). For a given retention
interval, our model, if fitted to neuroanatomical data, can easily
explain the profile of the psychological data, in particular, the
existence of an optimal gap that maximizes memory retention.
It is even possible to analyze this profile, linking the optimal
gap to parameters of the synapse model, in particular, the
rate of deconsolidation pd|0 and elimination pe|0. Our results
show that small optimal gaps correspond to fast structural and
weight plasticity with a high synaptic turnover rate pe|0 and
relative large pd|0 with a high forgetting rate, whereas large
gaps correspond to slow plasticity processes. This result has two
implications: First, it may be used to explain the remaining
discrepancy that in the psychological data the time gap depends
on the retention interval, whereas in our model it does not: As
preliminary simulations indicate, the experimental data could be
reproduced by mixing (at least) two synapse populations with
different sets of parameters, where they could be both within the
same cortical area (stable vs. unstable synapses; cf., Holtmaat
and Svoboda, 2009) or distributed to different areas (e.g., fast
plasticity in the medial temporal lobe, and slower plasticity in
neocortical areas). Moreover, as the temporal profile of optimal
learning depends on parameters of structural plasticity, it may
become possible in future experiments to link behavioral data
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on memory performance to physiological data on structural
plasticity in cortical areas where these memories are finally
stored.

Although we have concentrated on analyzing one-step
retrieval in feed-forward networks, our results apply as well
to recurrent networks and iterative retrieval (Hopfield, 1982;
Schwenker et al., 1996; Sommer and Palm, 1999): Obviously,
all results on the temporal evolution of Peff (including the
results on the spacing effect) depend only on synapses having
proper access to consolidation signals Sij by either repeated
rehearsal or memory replay, and therefore hold independently of
network and retrieval type. However, linking Peff to output noise
(Equation 3) needs to assume a particular retrieval procedure.
At least one-step retrieval is known to be almost equivalent
for both feedforward and recurrent networks yielding almost
identical output noise and pattern capacity Mǫ (Knoblauch,
2008). Estimating retrieved information for pattern completion
in auto-associative recurrent networks, however, requires to
subtract the information already provided by the input patterns
ũµ. Here information storage capacity C is maximal if ũµ

contains half of the one-entries (or information) of the original
pattern uµ, which leads to factor 1/2 and 1/4 decreases of M
and C compared to hetero-association (cf., Equations 48, 49 for
λ = 1/2; Palm and Sommer, 1992). Nevertheless, up to such
scaling, our results demonstrating C increasing with Peff are still
valid. Similarly, our capacity analyses of Mǫ and Cǫ can also
be applied to iterative retrieval by requiring that the one-step
output noise level ǫ is smaller than the initial input noise ǫ̃. As
typically output noise ǫ̂ steeply decreases with input noise ǫ̃ (cf.
Equation 45), additional retrieval steps will drive ǫ̂ toward zero,
with activity quickly converging to the memory attractor.

Our theory depends on the assumption that potential
connectivity Ppot is significantly larger than anatomical
connectivity P. This assumption may be challenged by
experimental findings suggesting that cortical neuron pairs
are either unconnected or have multiple (e.g., 4 or 5) instead
of single synapses (Fares and Stepanyants, 2009) and the
corresponding theoretical works to explain these findings (Deger
et al., 2012; Fauth et al., 2015b). For example, Fauth et al. (2015a)
predict that narrow distributions of synapse numbers around
4 or 5 follow from a regulatory interaction between synaptic

and structural plasticity, where connections having a smaller
synapse number cannot stably exist. If true this would mean
that most potential synapses could never become stable actual
synapses because the majority of potentially connected neuron
pairs have less than 4 potential synapses (e.g., see Fares and
Stepanyants, 2009, Figure 1). As a consequence, actual Ppot
would be significantly lower than assumed in our work, perhaps
only slightly larger than P, strongly limiting a possible increase
of effectual connectivity Peff by structural plasticity. On the other
hand, the data of Fares and Stepanyants (2009) are based only
on neuron pairs having very low distances (< 50µm), whereas
our model rather applies to cortical macrocolumns where most
neuron pairs have much larger distances. Thus, unlike Fauth et al.
(2015a), our theory of structural plasticity increasing effectual
connectivity and synaptic storage efficiency predicts that neuron

pairs within a macrocolumn should typically be connected by a
much smaller synapse number (e.g., 1 or perhaps 2).
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The morphology of neurons and networks plays an important role in processing

electrical and biochemical signals. Based on neuronal reconstructions, which are

becoming abundantly available through databases such asNeuroMorpho.org, numerical

simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be

performed in order to systematically investigate the influence of cellular morphology

and the connectivity pattern in networks on the underlying function. Development in

the area of synthetic neural network generation and morphology reconstruction from

microscopy data has brought forth the software tool NeuGen. Coupling this morphology

data (either from databases, synthetic, or reconstruction) to the simulation platform

UG 4 (which harbors a neuroscientific portfolio) and VRL-Studio, has brought forth the

extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations

on hybrid-dimensional morphology representations. The code basis is designed in a

modular way, such that e.g., new channel or synapse types can be added to the

library. Workflows can be specified through scripts or through the VRL-Studio graphical

workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox

workflows. In this paper, NeuroBox is used to study the electrical and biochemical

effects of synapse loss vs. synchrony in neurons, to investigate large morphology data

sets within detailed biophysical simulations, and used to demonstrate the capability of

utilizing high-performance computing infrastructure for large scale network simulations.

Using new synapse distribution methods and Finite Volume based numerical solvers

for compartment-type models, our results demonstrate how an increase in synaptic

synchronization can compensate synapse loss at the electrical and calcium level, and

how detailed neuronal morphology can be integrated in large-scale network simulations.

Keywords: HPC, large-scale neuronal networks, synaptic plasticity, electrical scale, anatomy, reconstruction,

simulation, cable equation
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1. INTRODUCTION

The structure of neurons and networks in the brain is
known to change continuously over time. Cellular growth,
synapse formation or synapse loss, reorganization of intracellular
architecture constantly make changes to the overall cellular and
network anatomy (Hughes, 1958; Abbott and Nelson, 2000;
Sheng and Hoogenraad, 2007; Shepherd and Huganir, 2007; Tai
et al., 2008; Colon-Ramos, 2009; Branco et al., 2010; Zeltser
et al., 2012; Tyagarajan and Fritschy, 2014). These changes in
geometric layout can be interpreted as a strong indicator that
the anatomy of the (sub)cellular and network level is deeply
involved on various functional levels. Neuroscientific research
has always been devoted to the interplay between morphology
and function on various functional levels. Experimental research
draws from microscopy techniques that can make morphology
and spatio-temporal signals visible (Spacek and Harris, 1997;
Arellano et al., 2007; Chen et al., 2008), theoretical work in
Computational Neuroscience has brought forth an abundant
spread of cellular and network models, many of them rely
on a spatial representation of neurons and networks (Bower
and Beeman, 1997; Hines and Carnevale, 1997; Balls et al.,
2004; Gewaltig and Diesmann, 2007; Andrews et al., 2010).
General purpose simulators such as NEURON or Genesis couple
electrical and biochemical models to graph-representations of
neurons and synaptically connected networks. The importance
of neuronal morphology used in such simulations can be
seen in reconstruction projects, such as the database project
NeuroMorpho (cf. Ascoli, 2006). Currently more than 30,000 cell
reconstructions are freely available on this platform.

Reconstructing morphology frommicroscopy data is a further
example of how deeply structure is integrated in the brain. Semi-
manual or fully automated reconstruction methods are being
developed in research groups around the world (e.g., Jungblut
et al., 2011; Popov et al., 2011; Burette et al., 2012), trying to
unravel the filigreed multi-level organization of the brain. This
dedication has advanced the field significantly, still many of
the anatomical questions are currently unresolved. To leverage
the power of large-scale network simulations, synthetic neuron
morphology tools have been developed (Wolf et al., 2013). These
algorithms are capable of generating synthetic networks with
realistic morphology statistics which can be used within detailed
functional simulations. In order to use these large data sets
in detailed and large network simulations high performance
computing platforms become an inevitable component of the
process. While most of the available network simulators were
originally conceived to run serially, there has been effort to
parallelize and optimize the code for ever growing computing
power.

In this paper, we present an approach focusing on the
topic of cellular and network anatomy within a large-
scale computing context. Building on scalable numerical
methods in a flexible and parallelized discretization and
solver framework for general ordinary and partial differential
equation systems, this unified approach does not make use of
the NEURON simulation environment (Hines and Carnevale,
1997) used in similar projects (Markram, 2015; Ramaswamy,

2015; Reimann, 2015). We introduce some of the authors’
contributions in morphology reconstruction as well as artificial
construction, hybrid-dimensional modeling and simulation of
coupled biochemical and electrical signals, and link these to
newly developed algorithms for massively parallel simulation of
cable equation models and synapse distribution on cells. The
latter can be used to simulate healthy and disease state neurons
with different synapse numbers and distributions.

The Materials and Methods section of this paper discusses
the tool NeuGen (Eberhard et al., 2006; Wolf et al., 2013) and
how it ties into a generalized simulation framework. Our model
for simulating electrical signals builds upon the known cable
theory and is briefly summarized. We introduce our methods for
handling synapse types and synapse distributions and introduce
a new way of numerically discretizing the resulting model
equations and computational domains, ultimately resulting in
a system that can be solved on massively parallel computing
architectures. These methods are compiled in the toolbox
NeuroBox which is developed on top of the numerics engine
UG 4 (cf. Vogel et al., 2013) that has been used in several
detailed studies of structure-function interplay (Xylouris et al.,
2007; Hansen et al., 2008; Nägel et al., 2008, 2009;Wittmann et al.,
2009; Grillo et al., 2010; Muha et al., 2011).

To study this anatomy-high-performance framework we
present a study of synapse loss vs. signal synchronicity and
the influence on somatic calcium signals as well as simulations
of large and detailed network simulations (10,000 neurons,
each neuron containing 574–586 degree of freedom) of a
neocortical column synthetically generated with NeuGen. In
these studies we show that synapse loss, which is a major factor in
neurodegenerative diseases, can be partially compensated by an
increase in synaptic synchronicity, while somatic calcium signals
rely strongly on the activation and frequency of action potentials.
We further show that wave activation in neocortical networks
is clearly driven by synapse density and that our employed
simulation framework scales well on JUQUEEN, one of the high-
performance computers at the German Jülich Supercomputing
Center. This in turn demonstrates that large-scale network
simulations do not necessarily have to come at the cost of
anatomy anymore.

2. MATERIALS AND METHODS

In this section we will introduce the tools and methods used for
the simulations performed in Section 3. A combination of neuron
and network generating tools (Section 2.1), synapse distribution
algorithms, a new approach for numerical discretization of the
network topology and a parallel computing framework (Section
2.2) forms the basis of our detailed anatomical and large-scale
network simulations and is integrated in a new and extendible
simulation toolbox, NeuroBox (Section 2.3).

2.1. Generating Large and Anatomically
Detailed Networks
The generation of large neural networks (containing more
than 10,000 neurons) is accomplished with the neural network
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generator NeuGen (Eberhard et al., 2006). NeuGen uses
anatomical fingerprints, i.e., experimental morphology data and
standard deviations to generate anatomically consistent neurons
that fit experimental mean and standard deviation. NeuGen
thus generates non-identical neurons of various types—e.g.,
pyramidal cells and spiny stellate cells of the neocortex and
hippocampus—and synaptically connects these to form neural
networks. The topology of the network is described in terms
of graph theory as an undirected, connected graph containing
edges and vertices in three-dimensional coordinate space.
NeuGen algorithms sample parameter values from experimental
data distributions and incorporates two categories of synapses:
Primary synapses representing external stimulation of the
network; as well as interconnecting synapses which represent
chemical synapses between neurons present in the network,
typically formed by a presynaptic axon and a postsynaptic
dendrite. The anatomy of the network can be exported to
a 3D graphics format for visualization and various discrete
morphology file formats that can be used in simulators such as
NEURON (Hines and Carnevale, 1997) or UG 4 (Vogel et al.,
2013). NeuGen is intended to provide anatomically accurate
large network topologies for general purpose neuron network
simulators.

The algorithm, which is not a growth-based algorithm, is
summarized by the following steps (cf. Figure 1):

– Generate sections for each neuron based on anatomical
fingerprints

– Interconnect sections of individual neurons
– Generate synapses based on a distance criterion and attach
functional parameters

It is worth highlighting two parameters when discussing
anatomical detail. To regulate the number of vertices for each
neuron (which represents the level of detail at which neuron
morphology is represented), one may adjust a parameter termed
section_length, the average compartment length in µm. In
cases where memory consumption is a constraint, choosing an
increased section length permits the creation of and simulation
on larger networks (with less anatomical detail) using the same
amount of memory. Secondly, the number of synapses inserted
into the networkmay be adjusted by a global threshold parameter
termed dist_synapse. If and only if the euclidean distance
between two sections falls below the threshold specified by this
parameter, these sections will be marked as potential synaptic
contact points. Whether or not a synapse will be placed in the
network depends on the type of pre- and postsynaptic neurons.
A connectivity matrix specifies which classes of neurons are
interconnected by synapses (Wolf et al., 2013).

Subsequent simulations need to refer to the compartments
contained in the grid for simulation control setup. Therefore,
an alphanumerical identifier is stored within the grid too. The
identifier is a string and composed out of the cell type (e.g.,
pyramidal or stellate) and the compartment type (e.g., axon
or dendrite) and groups all edges and vertices belonging to a
given cell and compartment type (cf. Figure 2). If desired one

FIGURE 1 | Flowchart sketching the streamlined pipeline for the generation and subsequent transformation of neuronal network morphologies to

grids suitable for large-scale network simulations. In case of three-dimensional simulations, where one-dimensional point/line reconstructions are used to

generate three-dimensional representations (see Grein et al., 2014) quality assessment of the generated grid can be performed in a semi-automatic way to allow for

the best possible preparation for the subsequent numerical simulations, for instance, we check for intersecting dendrites introduced during neuron tracing.
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FIGURE 2 | An exemplary neocortical network consisting of a total of

ten individual cells synthetically generated with NeuGen. The cellular

composition of the displayed network is identical to the networks described in

Table 1 above. Visualization comprises the different cell types distinguishable

by color: axons of L4 spiny stellate (lavender), axons of L2/3 pyramidal (red),

axons of L5A pyramidal (bright green), axons of L5B pyramidal (blue),

dendrites of L4 spiny stellate (yellow), dendrites of L2/3 pyramidal (cyan),

dendrites of L5A pyramidal (rose), dendrites of L5B pyramidal (light green),

somata of L4 spiny stellate (ocher), somata of L2/3 pyramidal (orange), somata

of L5A pyramidal (light blue), and L5B pyramidal (brown).

can request the identifier to group edges and vertices based
also on the section number of the compartment resulting in a
fine-grained access of the network (not shown).

The network can be exported to a variety of formats including
a format suitable for large neural network grid generation, e.g.,
a custom sparse data format based on a file format derived from
TXT (plain text or compressed plain text) or a more convenient
XML-based file format.

To useNeuGen in conjunction with the simulation framework
UG 4 (Vogel et al., 2013, cf. Section 3), the exported morphology
is exported to the UG 4 geometry format UGX (an xml-
based file format). To that end, topology information of the
exported network, consisting of the raw nodes and vertices, is
enriched by grid attachments such as diameter information and
synapses, together with their parametrizations. This procedure
is implemented as a plugin for UG 4 and produces large
neural networks (≥ 10, 000 neurons) in the matter of seconds
(cf. Table 1).

In addition to directly writing UGX-files from NeuGen, it
is possible to convert the following formats to UGX: SWC
(commonly used in the NeuroMorpho.org database, Ascoli et al.,
2007), HOC (widespread format utilized by NEURON, Hines
and Carnevale, 1997), TXT and NeuroML. The last three file
formats can be exported directly by NeuGen. NeuGen and the
corresponding UG 4-plugins thus form an efficient pipeline
for integrating large and anatomically realistic neural networks
and publicly accessible anatomical neuron reconstructions into
neuron and network simulation frameworks.

2.2. Simulating Electrical and Biochemical
Signals
Having established methods for generating network topologies in
the previous section, we now focus on the steps from modeling

TABLE 1 | Network creation statistics sorted by size, i.e., by number of

contained cells within the network, in ascending order.

Vertices Sections Cells Elapsed time [s] Grid size [mb]

1403 418 12 0.01 0.14

15535 4382 120 0.02 1.60

156596 43892 1200 0.50 16.9

1644260 465262 12000 44.7 65.6

2840213 1212108 120000 300 221.1

The networks are composed of L5A and L5B pyramidal cells (≈ 16% each), of L4 spiny

stellate cells (≈ 42%) as well as L2/3 pyramidal neurons (≈ 26%). The smallest network

contains 12 and the largest network 120,000 cells in total. To create even larger networks

with the same memory resources, one can decrease the number of compartments using

the section_length parameter.

electrical signals, handling membrane transport mechanisms,
including synapses to discretizing the model equations by
means of a new approach via finite volumes. Lastly we
summarize parallel methods for efficiently solving large-scale
networks.

2.2.1. Model Equations for Membrane Potential and

Ion Species
We follow the well established cable theory (cf. Thompson, 1854;
Scott, 1975) to model electrical signals on spatially resolved
neuron morphologies. A neuron’s morphology is given as a
graph consisting of vertices in a three-dimensional space and
edges connecting them. Common file formats for neuronal
morphologies (such as SWC or HOC) contain radius or diameter
values assigned to each vertex. We make use of this diameter
in the most simplistic way, i.e., by supposing the morphology
to be piecewise tubular, each piece being located around a
vertex and with the radius associated to this vertex. With only
very few modifications, we also implemented compartments
shaped like truncated cones resulting in a continuous radius
along the neurites, however, we restrict ourselves to the case of
tubular compartments in the following description for the sake of
simplicity. In each of the compartments, we impose the following
equation expressing the membrane’s role as an ideal capacitor:

Cm
∂V

∂t
= Iax + Im, (1)

where V is the membrane potential, Cm is the capacitance of
the compartment and Iax, Im are the axial and transmembrane
(inward) electric currents, respectively. The compartment’s
capacitance Cm depends on its shape and can be expressed in
terms of a membrane-specific constant cm,

Cm = cm · 2πal,

where a and l are the radius and the axial length of the
compartment, respectively.

Axial currents need to be calculated at both ends of
a compartment, at the interface with the neighboring
compartments. They are assumed to be purely ohmic in
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nature and are expressed in terms of voltage between the two
vertices associated with the neighboring compartments:

Ix2→x1
ax =

V(x2) − V(x1)

rc
π

x2
∫

x1

(a (x))−2 dx

=
V(x2) − V(x1)

rc
2π

(

a−2
1 + a−2

2

)

|x2 − x1|
,

where rc is a material constant, the specific resistance of the
cytosol, x is the axial coordinate, and x1, x2 as well as a1, a2 are
depicted in Figure 3. Note that the former equation implicitly
assumes that the extracellular potential is constant in space.

Finally, the transmembrane current Im into the compartment
is expressed in terms of electrical flux density im as

Im = im · 2πal (2)

and depends on transport mechanisms (e.g., Hodgkin-Huxley-
type channels, Na/K pumps, leakage), synapses and electrodes
definable on the membrane.

In order to track individual ion species, concentrations for K+,
Na+, and Ca2+ or any other ion type can be added to the model.
Each of the species satisfies a diffusion-convection equation in
axial direction and is coupled to transport mechanisms in the
plasma membrane.

Note that as these ions are charged, they are affected by
potential gradients in reality—and conversely, for the same
reason, their concentrations directly affect the potential. A
physically more accurate model of ionic movement in neurons
incorporating both electric and diffusive properties of individual
ion species is electro-diffusion. It has ben demonstrated that the
modeling error introduced by using the cable equation can be
prominent in thin compartments (Qian and Sejnowski, 1989) or
where three-dimensional structural detail is concerned (Lopreore
et al., 2008).

2.2.2. Membrane Transport Mechanisms
What is truly at the heart of most neuronal simulations is
transport across membranes. We have defined an interface
allowing the addition of arbitrary transport mechanisms to the
electrical model in the transmembrane current density term im of
Equation (2). These transport mechanisms are granted access to
the underlying grid as well as to the unknowns of the voltage and
ion species equations. Thus, they are able to declare and calculate

their own sets of states, which may depend on given ones and
vary in space and in time—like the gating parameters m, n and h
in classical Hodgkin-Huxley-type channels governed by ordinary
differential equations in time which depend on the membrane
potential (Hodgkin and Huxley, 1952). As the dependence of
inner states of membrane transport systems on the potential
and on ion concentrations is typically strongly non-linear, we
have decided (in the interest of fast computation) to include
transmembrane currents only by an explicit scheme, i.e., inner
states are updated before any time step of the solution process
using only the solution from the previous time step.

The concept is not unlike the NMODL model description
language for NEURON by Hines and Carnevale (1997, 2000). In
fact, we have developed an automated translation unit that can
convert existing NMODL files to C++ source code compilable in
our framework.

2.2.3. Synapses
Glutamate being the primary excitatory neurotransmitter inmost
synapses of the central nervous system, we define excitatory
synaptic input localized at dendrites as the postsynaptic response
of AMPA or NMDA receptors to presynaptic glutamate signals.
AMPA and NMDA receptors, cation channels that become
permeable in glutamate-bound state and thereby exhibit a
conductance change in direct response to incoming presynaptic
spikes, induce transmembrane flux of sodium, potassium and
calcium ions causing a local excitatory depolarization of the
membrane potential.

In our simulations we distinguish two general categories
of synapses: Primary synapses connected to dendrites as the
postsynaptic side,—they are used to initialize activity in single
cells as well as networks and represent connections to other
neurons not included in the simulation. The second category are
synapses connecting dendrites and axons both present within a
network morphology. We call these interconnecting synapses.

As there is no information on the presynaptic side of primary
synapses, the common and simple approach of alpha functions
provides a reasonable approximation to model postsynaptic
conductance profiles (Roth and van Rossum, 2009):

g(t) = gmax
t − tonset

τ
exp

(

−
t − tonset − τ

τ

)

, (3)

FIGURE 3 | Illustration of the piece-wise tubular compartments of the Finite Volume cable equation model and the definition of axial ohmic flux.
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where gmax denotes the maximal conductance, τ the rise/decay
and tonset the arrival time of a single presynaptic spike. Note that
gmax occurs at t = tonset + τ . The synaptic current Ips(t) is then
defined by

Ips(t) = g(t)(V(t)− Erev), (4)

with g(t) given by (3) for tonset ≤ t ≤ tonset + 6τ and g(t) =

0 otherwise. V(t) denotes the current postsynaptic membrane
potential and Erev a reversal potential. For glutamatergic
synapses, we use Erev ≈ 0mV (Purves et al., 2001).

Interconnecting synapses are activated upon rise of the
presynaptic membrane potential above a threshold Vth and
the following current Iis(t) to the postsynaptic end is modeled
according to a bi-exponential activity function:

tmax =
τ1τ2

τ2 − τ1
log

(

τ2

τ1

)

, (5)

n =

(

exp

(

−
tmax

τ2

)

− exp

(

−
tmax

τ1

))−1

, (6)

Iis(t) = gmax (V − Erev) n

(

exp

(

−
t

τ2

)

− exp

(

−
t

τ1

))

,

(7)

where gmax is the maximal conductance; Erev is a reversal
potential; τ1 and τ2 are constants regulating rise and decay time
of the conductance; tmax designates the point in time (after initial
activation) at which the conductance is maximal, and the factor
n normalizes the conductance such that its value is gmax at tmax.

Synaptic currents—like all other trans-membrane currents—
are evaluated using the solution for the potential of the
previous time step only. This has significant benefits in parallel
computation, as there is no direct coupling of solutions for
the next time step between cells connected to one another by
synapses.

2.2.4. Activation Patterns of Primary Synapses
Our implementation provides a method to set generic activation
patterns for a given set of input synapses in the computational
domain. To achieve that, we introduce the continuous random
variables Xonset and Xτ for the timing parameters tonset and τ

[cf. Equation (3)], respectively. Both of which we assume to be
normally distributed, i.e., Xonset ∼ N (µonset, σ

2
onset) and Xτ ∼ N

(µτ , σ
2
τ ) with probability density functions given by:

fN ( xξ , µξ , σ
2
ξ ) =

1

σξ

√
2π

e
− 1

2 (
xξ−µξ

σξ
)2

, ξ ∈ {onset, τ } (8)

After specification of a peak conductance gmax, a mean onset
time µonset and duration µτ of synaptic activity as well as
corresponding standard deviation values σonset and στ , the
parameters tonset and τ are set to random values drawn from
the above normal distributionsN (µonset, σ

2
onset) andN (µτ , σ

2
τ ),

respectively.

2.2.5. Spatial Distribution of Primary Synapses
Given neuron morphologies (defined as graphs in three-
dimensional coordinate space), we attach all information
parameterizing synapses to the dendritic edges they are
associated to. The distribution is managed by the C++ class
SynapseDistributor. It provides methods to create new or
delete existing ones to user-specified statistical distributions.

In our studies, we assume a uniform distribution of nsyn ∈ N

synapses on the edge sample space

Sedge: = {ei | i = 1, ..., nedge} (9)

of the basal and apical dendrites. For this purpose, we consider
a discrete random variable Xi

syn, i ∈ {1, ..., nsyn}, for the i-th

synapse to be distributed. With every draw Xi
syn can thereby take

one of the edge indices j ∈ {1, ..., nedge} as value, i.e., X
i
syn =

xij: = j. To account for the heterogenous edge lengths every edge

index is assigned an associated probability given by the following
probability mass function:

P (Xi
syn = xij) = pij : =

‖ej‖2
∑nedge

k=1
‖ek‖2

(10)

The exact location of the i-th synapse xij on the j-th edge is

then drawn from a continuous uniform distribution in the range
(0, 1).

2.2.6. Discretization and Solution
We use a first-order (vertex-centered) Finite Volume (FV)
scheme. This type of discretization method is well-suited for
any type of problem resulting from a conservation law. In a FV
scheme, one typically has a conservation formulation like the
following:

∂ρ

∂t
= −divEj on the domain �, (11)

where ρ is the density of a conserved quantity,Ej is a flux density of
the same quantity. In our case, ρ represents the charge density for
the voltage equation and the ionic concentration for the species
equations; the flux densities are given by the electric current
density and the ionic flux density, respectively. The conservation
equation is then transformed into a system of ordinary—i.e., non-
differential—equations by partitioning the domain on which the
equation holds into so-called control volumes (in our case, those
are exactly the compartments as defined above),

� =
⋃

i

�i,

then by integrating Equation (11) on each control volume (thus
ensuring local conservation)

∫

�i

∂ρ

∂t
dx =

∫

�i

−divEj dx






= −

∫

∂�i

Ej · Eni dS






∀i,
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and finally by assuming the unknown function to be part of some
finite-dimensional space (in our case: piecewise linear) in order to
be able to represent it by a finite number of unknowns which can
be used to express the integrals explicitly in a system of ordinary
equations,

ρ =
∑

k

λkρk,

where {ρk} are a known basis of the finite-dimensional function
space; while {λk} are the coefficients in the corresponding
representation of ρ and, at the same time, the unknowns of the
resulting system of equations.

Time discretization is achieved by an Euler scheme, backwards
with respect to axial fluxes and forward with respect to radial
fluxes. The latter treatment results in a step size requirement
for the time integration, the numerically well-known Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1928). In this
particular case this condition states: The more trans-membrane
flux there is, the smaller the time step has to be chosen. If the
requirement is not met (i.e., if the time step size is chosen too big)
the solution will “explode,” meaning that it will tend to infinity
very rapidly. In order to prevent such instability, we calculate and
use an estimate for the allowed step size. Thus, our time step is
neither too big (“explosion”) nor too small (inefficiency).

Discretization is performed using the numerical framework
UG 4 (Vogel et al., 2013). It is written in C++ and simulations
can be set up and run using the widespread scripting language
Lua, which makes this framework easy to use without learning a
highly specialized language of its own.

Solution of the symmetric system of linear equations emerging
from the discretization is also done within the UG 4 framework.
The tree structure of neurons allows for an efficient usage (i.e.,
with linear runtime complexity in terms of the number of
unknowns) of a direct solver if the unknowns are numbered in
such a way that, in each line of the matrix, there is at most one
non-zero entry to the right of the diagonal. We use a Cuthill-
McKee (Cuthill and McKee, 1969) ordering to guarantee this.
We solve by calculating the LU decomposition in a sparse matrix
format.

2.2.7. Parallelization
As UG 4 comes with full MPI support for parallel calculations,
the inevitable usage of large-scale computer facilities for the
simulation of large networks is straight forward. Partitioning of
the domain can be performed using METIS 5.0 (Karypis and
Kumar, 1998) and can be achieved on two levels:

In large networks, whole neurons can be assigned to the
processors (as described for NEURON in Migliore et al., 2006),
resulting in an “embarrassing” parallelism, since there is no direct
coupling between the neurons if synaptic events triggered on the
presynaptic side in one time step are taken into account only in
the next time step on the postsynaptic side. If whole neurons can
be distributed in such a way that the processors’ workloads are
well balanced, this will be the preferred way of parallelizing, as
the solution of the problem works exactly like in the serial case
and communication is only needed at active synapses.

On a second parallelization level, it is also possible to
cut neurons and assign their parts to different processors.
The process of solving the system of equations is a little bit
more involved then. Assuming the system to be solved on a
processor is

Ax = b,

then the iterative solving process on each processor is defined by
the following pseudo-code:

x0 = solution from the precedent time step
d = d0 = b− Ax0 (“defect” vector)
while |d| < |d0| · reductionFactor on any processor do

c = A−1d (calculate correction)
Sum up (over all processors) the corrections in all cutting

points and store back in c.
x = x+ c (update solution)
d = b− Ax (update defect)

end while

In order for this to work, the process-wise matrices A need to
be stored “additively,” i.e., the entries of the global system matrix
must be equal to the sum of the corresponding entries in the
process-wise matrices (where existent).

It usually takes about five to fifteen iterations until
convergence is achieved, depending on how many neurons are
cut and at which locations. Of course, in the case where no
neuron is cut by the distribution of the network, the iteration
will converge in one step. The gain in computation time from
parallelizing on this level is not as big as from distributing whole
neurons, obviously—however, it can still provide some speedup
as it is not solving the system which takes the most time, but
setting it up in the first place.

2.3. Simulation Workflow
The efficiency of simulating large and complex systems in
neuroscience strongly depends on the scaling properties of
code on high performance computers (Section 2.2.7). Additional
aspects when looking at efficiency are the time invested for setting
up a model, the computational tools, compiling and visualizing
data and finally accessibility to an extendible code basis.

The simulation toolbox NeuroBox focusses on these aspects
by allowing users to compile visual or script-based workflows.
Workflows can define models, numerical tools and include third-
party tools, such as ImageJ (Schneider et al., 2012). The multi-
level design, founded on the multi-physics engine UG 4 (Vogel
et al., 2013) and the Visual Reflection Library (VRL, Hoffer et al.,
2013), allows non-experts intuitive access to advanced numerical
methods for solving anatomically detailed biophysical models.
NeuroBox is an open-source project hosted on github and thus is
conceived as a modular and extendible C++ framework, where
new biological components such as ion channels, receptors,
synapse types etc. can be added manually or through an NMODL
importer. This section briefly introduces script-based and visual
workflow design and examples of the extendibility of NeuroBox,
which as a platform is capable of hosting large multi-domain
workflows.
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2.3.1. Using Lua Scripts
The complete process of setting up and solving a problem
in parallel is handled internally by UG 4. In order to
use its functionality, we developed our code as a UG 4
plugin and compile against the UG 4 libraries. We register
our classes and functions at the UG 4 registry (this is
done in the C++ code) in order to make them available

at the Lua script level, where a simulation can then be
formulated using the registered functionality (in addition
to any valid Lua command; see Figure 4). A schematic
representation of what a typical simulation workflow
looks like is shown in Figure 5, an example script with
extensive comments is provided in Listing 1 in Supplementary
Material.

FIGURE 4 | Sketch of the NeuroBox framework, using an ion channel model as an example. Functionality of the channel is implemented in a C++ class

deriving from a pre-defined interface. The implementation can be automatically generated by conversion from NMODL model file. Registering the class at the UG 4

registry and compiling makes the channel available for usage in simulations defined either by a Lua script or by a graphical workflow representation using VRL-Studio.

FIGURE 5 | Illustration of the simulation workflow. After creation of a neuronal (network) morphology, the system of linear equations emerging from the cable

equation is assembled by the central class CableEquation; synapse handling (i.e., activation, calculation of fluxes, parallel coordination) is taken care of by the class

SynapseHandler, while all trans-membrane fluxes are handled by individual classes which all derive from a common interface known to the CableEquation

class. The system is solved using UG4 solvers and parallelism.
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2.3.2. Using Graphical Workflows
We take advantage of the open source software VRL-
Studio (Hoffer et al., 2013) to represent simulation workflows
graphically. Each class and function registered in the UG 4
registry can be represented in VRL-Studio. This allows any
user to put together a simulation by dragging and dropping
the graphical representations of involved objects (like instances
of the cable equation discretization, the channel and pump
mechanisms or the synapse handler) and adding application
of their methods with only a few clicks. Scripts are not
necessary but possible. The important aspect is that VRL-
Studio can combine textual and visual programming in a
single interactive development environment. For some aspects,
script-based development has many advantages. Therefore, VRL-
Studio provides access to the UG 4 APIs. Lua-scripts can
be integrated into the visual workflow. A Lua editor with
advanced autocompletion support allows for intuitive Lua-based
development. Even more important is the fact that VRL-Studio
workflows can integrate any Java library, such as ImageJ and
JFreeChart. Automatic GUI generation works for these external
libraries as well. Users can easily extend existing workflows with
customGroovy scripts, e.g., for pre- and post-processing. Custom
scripts are also available as graphical components. Using external
libraries in custom scripts is a powerful tool for adding domain-
specific knowledge to the NeuroBox platform.

Typically the following steps can be followed to set up a
new NeuroBox workflow (a screenshot of a simple graphical
simulation workflow created in this way is depicted in
Figure 6):

1. The first step is the definition of the computational
domain (the neuronal morphology) and the unknown

functions (membrane potential, ion concentrations) to
be computed. This is done by adding an instance of
DomainAndFunctionDefinition to the canvas and
selecting the grid file as well as names for the unknown
functions and subsets of the domain they are supposed to be
defined on (subsets defined in the geometry file can be chosen
from a list).

2. The following step in the workflow is the definition of all
membrane transport mechanisms (channels and pumps) as
well as a synapse handler (if any synapses are present in the
domain). All of them may be drag-and-dropped onto the
canvas and then parameterized as needed.

3. An instance of the central CableEquation class is added
to the canvas. All defined membrane transport mechanisms
as well as the synapse handler (if applicable) need to be
connected by (gray) data connections. Initial conditions need
to be supplied.

4. A solver is added to the canvas. The time stepping parameters
need to be set as required. Output options can be specified.

5. Workflow connections (yellow) are drawn establishing the
unique order in which the objects are created and their
methods called. Any object receiving data input from another
object needs to be behind that object in the workflow, i.e., the
objects need to be in the order indicated by the enumeration
here.

6. The simulation may be started, output can be observed in the
log window, recorded and visualized.

2.3.3. Adding Functionality
As there is an abundance of membrane transport mechanisms
and even more models trying to describe them, it is hardly

FIGURE 6 | Screenshot of a simple network simulation workflow assembled in VRL-Studio. Each window represents an object, the named panels in the

window represent a method call with the contents of the panel as parameters. The control flow is defined by the yellow connections, data transfer between objects is

marked by gray connections.
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possible to implement all of them in advance. In order to support
a large pool of available models, we wrote a file converter that
will produce C++ code suitable to be compiled with our UG
4 implementation from any model file conforming to Neuron’s
NMODL description language (Hines and Carnevale, 2000). Of
course, membrane transport models can also be implemented
directly on the C++ level, implementing the required methods
of a pre-defined interface class. This requires writing code for
the initialization and updating (typically: evolving some kind
of gating variables, expressed in terms of ordinary differential
equations) of a model as well as code for the computation of the
ion and charge flux through the membrane effectuated by the
model. After registration of a new model at the UG 4 registry
and compilation of the corresponding code, the model can be
used on the Lua script level or on the graphical workflow level
in VRL-Studio. The whole process is depicted schematically in
Figure 4.

2.4. Setups for Our Simulations
2.4.1. Synapse Loss Simulations
We conducted in silico experiments investigating the impact of
synapse loss in various activation patterns, particularly focussing
on the effects it has on the formation of action potentials and the
somatic calcium signal. For the simulations we chose a layer 3
pyramidal cell from the rat neocortex reconstructed by Radman
et al. (2009), which was well suited to serve as reference cell
for further studies as its reconstruction comprised the complete
description of soma, dendrites and axon. The corresponding
neuronal morphology is publicly available in the SWC file format
as part of the NeuroMorpho.org database (Ascoli et al., 2007)
under the name 13-L3pyr-77. It was converted to the UGX
file format to meet UG 4 format specifications.

Subject to the discrete probability distribution specified in
section 2.2.5, N = 100 distributions of nsyn = 1000 synapses
each were drawn from the sample space Sedge defined in (9). We
simulated synapse loss by successively removing portions of the
previously created synapses uniformly from the neuron.

Regarding synapse activity we used a maximal conductance
of gmax = 1.2 nS and a constant rise/decay time of τ = 0.4ms
representing a fast AMPA receptor channel parameterization
(Gabbiani et al., 1994) throughout the simulations.We compared
three levels of input pattern synchrony, namely: complete
synchrony (σonset = 0), moderate asynchrony (σonset = 5ms),
and high asynchrony (σonset = 10ms).

A fraction of 0.2–4% of the current through AMPA receptor
channels is carried by calcium ions, depending mainly on the
exact AMPA subtype (Burnashev et al., 1995; Garaschuk et al.,
1996). As we did not consider calcium buffer (calmodulin,
calbindin) reactions in our simulations, we reduced this
amount to 0.1% in order to (roughly) represent fast binding
of free calcium to these buffers. Calcium dynamics were
also regulated by N-type voltage-dependent calcium channels
modeled according to Borg-Graham (1999) and NCX and PMCA
pump mechanisms (first-order, second-order Hill-type model,
resp.). A leakage term was added to ensure zero-flux for the
equilibrium state.

2.4.2. Network Simulations
For the simulations in Section 3.2.2, we used NeuGen to create
five neocortex geometries composed of 3500 L2/3 pyramidal;
3500 L4 spiny stellate; 1500 L5A and L5B pyramidal cells each
whose somata were contained in a box with extensions of
about 0.5mm × 0.5mm × 1mm (length × width × depth),
resulting in a cell density which is of the same order of
magnitude as reported by Rockel et al. (1980). In each of the
five geometries, NeuGen distributed an average of 30 primary
synapses per L4 spiny stellate cell and an average of 25 per L5B
pyramidal (cf. Constantinople and Bruno, 2013) for thalamic
input. Interconnecting synapses were created wherever axon and
dendrite from compatible neuron types came close enough, with
the critical distance dist_synapse (cf. Section 2.1) being
1 µm for the first network, 2 µm for the second and so on. The
numbers of synapses thus created show a cubical dependence on
the critical creation distance (cf.Table 2), which is to be expected,
as the sphere around any dendritic point within which axonal
points eligible for connection through a synapse are located
grows cubically in volume with increasing radius.

Axonal, dendritic and somatic membranes contained classical
Hodgkin-Huxley-type sodium and potassium channels. Their
flux density is described by

ihh = c(T)
(

gKn
4(V − EK)+ gNam

3h ( V − ENa)
)

, (12)

∂n

∂t
= c(T) (αn (V) (1− n) − βn (V) n) , (13)

∂m

∂t
= c(T) (αm (V) (1−m) − βm (V)m) , (14)

∂h

∂t
= c(T)

(

αh (V)
(

1− h
)

− βh (V) h
)

, (15)

where c(T) is a temperature-dependent constant with a value
of about 3.2 at 37 ◦C (roughly taken from Collins and Rojas,
1982; Tiwari and Sikdar, 1999); gK , gNa are (location-specific)
conductance constants; EK and ENa Nernst potentials; and the
rate functions α and β are taken from the original Hodgkin and
Huxley publication (Hodgkin and Huxley, 1952).

We used a leakage flux density to achieve zero net flux at
resting potential:

il = c(T) gl (V − El) , (16)

where gl is the leakage flux conductance and El an (artificial)
reversal potential calibrated to ensure zero membrane net flux at
resting potential.

TABLE 2 | Number of synapses connecting specific cell types for various

critical creation distances dist_synapse (averaged w.r.t. postsynaptic

cell type) in the 10,000 cell networks created by NeuGen.

Synapse creation distance [µm] 1 2 3 4 5

L4 → L2/3 7.5 59 200 474 926

L4 → L5A 2.7 22 74 173 338

L2/3 → L5A 1.4 11 39 92 179

L2/3 → L5B 1.2 9.5 33 77 150

L2/3 → L2/3 0.48 3.8 13 30 58
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TABLE 3 | Base synaptic conductance values for connections between

different types in units of nS.

Synaptic type: pre- \post- L2/3 pyr. L4 stell. L5A pyr. L5B pyr.

L2/3 pyr. 1.0 – 0.8 0.3

L4 stell. 0.7 1.6 0.6 –

L5A pyr. 0.5 – 2.0 –

L5B pyr. – – – 1.3

Connections that are not created by NeuGen are marked by a dash.

For initialization, the membrane potential was set to
the resting potential of −0.065V globally, voltage-dependent
potassium and sodium channels were also set to their resting
states. At the beginning of the simulation, thalamic input
synapses were activated using an alpha function [cf. Equation
(3)] with tonset, τ drawn from normal distributions with
(µonset, σonset) = (5ms, 2.5ms), (µτ , στ ) = (2.5ms, 0.1ms),
respectively, and gmax = 1.2 nS.

Synapses between cells of the network were exclusively
excitatory glutamatergic in nature and modeled as described in
Section 2.2.3 using a parameterization which represents a fast
AMPA receptor channel (Gabbiani et al., 1994). The maximal
conductance parameter of synapse S with a presynaptic neuron
of type T1 and a postsynaptic neuron of type T2 is calculated by
NeuGen according to the formula

gmax (S) =
(

1+ 0.001 · dsd(S)
)

· gs (T1,T2) , (17)

with dsd(S) being the post-synapse’s distance to the soma in
µm; and a type-specific base conductance the values of which
are summed up in Table 3. All other synaptic parameters were
the same for each synapse. No delay through neuro-transmitter
release and diffusion was considered.

All parameter values for the network simulations are summed
up in Table 4.

Simulations were performed on 160 processors for a
simulated time period of 20ms and took about two hours.
Parallel scaling results for this type of problem are presented
in Section 3.2.1.

3. RESULTS

3.1. Influence of Synapse Loss on
Formation of Action Potentials and
Somatic Calcium Signal
The human brain is one of the most complex structures
known in the universe. It consists of nearly 100 billion nerve
cells, each of which is entangled in a dense and constantly
adapting network of massive information exchange. On average,
a single neuron is linked with 10,000 to 100,000 other
neuronal or non-neuronal cells via synapses (Cragg, 1975). Brain
function relies essentially on those highly dynamic synaptic
connections.

In this part of our study, we investigate the three-dimensional
spatial distribution and activity pattern in time of glutamatergic

TABLE 4 | Parameters for the large-scale network simulation.

Parameter Meaning Value Unit

rc Specific resistance of the cytosol 1.5 � m

cm Specific capacitance of the membrane 1 × 10−2 F m−2

ga
K

Specific potassium channel

conductance of the axonal membrane

4 × 102 S m−2

gs
K

Specific potassium channel

conductance of the somatic

membrane

2 × 102 S m−2

gd
K

Specific potassium channel

conductance of the dendritic

membrane

3 × 101 S m−2

gaNa Specific sodium channel conductance

of the axonal membrane

3 × 104 S m−2

gsNa Specific sodium channel conductance

of the somatic membrane

1.5 × 103 S m−2

gdNa Specific sodium channel conductance

of the dendritic membrane

4 × 101 S m−2

ga
l

Specific leak conductance of the

axonal membrane

2 × 102 S m−2

gs
l

Specific leak conductance of the

somatic membrane

1 S m−2

gd
l

Specific leak conductance of the

dendritic membrane

1 S m−2

EK Potassium Nernst potential −0.09 V

ENa Sodium Nernst potential 0.06 V

Ea
l

Leak reversal potential of the axonal

membrane

−0.066148458 V

Es
l

Leak reversal potential of the somatic

membrane

−0.030654022 V

Ed
l

Leak reversal potential of the dendritic

membrane

−0.057803624 V

Vr Resting potential (global) −0.065 V

c(T ) Temperature factor for HH channel

activity

3.21

τ1 Time constant in interconnecting

synapses

2 × 10−4 s

τ2 Time constant in interconnecting

synapses

1.7 × 10−3 s

Erev Reversal potential for interconnecting

synapse influx

0 V

Vth Threshold potential for interconnecting

synapse activation

−0.01 V

synapses in neurons of the cerebral cortex. Both are key factors
to the integrative properties of the cell. For this purpose, we
have developed a tool for automatic placement of synaptic
functionality onto neuron morphologies. We apply this tool to
systematically assess the impact of activation patterns on the
signal processing in single neurons. In particular, we perform
in silico experiments where we successively knock out synapses
at dendritic locations. We thus investigate situations where
synapse loss contributes to pathological states e.g., Alzheimer’s
disease (Scheff et al., 2006). At the same time, we address the
question under which circumstances the neuron will sustain
its integrative capability. More precisely, how does impulse
conductance and especially the initiation of action potentials at
the axon hillock depend on the number of input synapses and
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their signal synchrony? Does a higher input signal synchrony
sustain action potential initiation during increasing synapse loss?
The degree of synchrony is defined by the size of the standard
deviation from a given mean value. In our experiments, we
vary the standard deviation of the start time σonset of synaptic
excitations.

In the following sections, we present the results of a series
of in silico experiments on a layer 3 pyramidal cell from the rat
neocortex (cf. Section 2.4.1), in which we compare three levels of
input pattern synchrony, namely: complete synchrony (σonset =
0), moderate asynchrony (σonset = 5ms), and high asynchrony
(σonset = 10ms). We randomly distributed 1000 excitatory
synapses on the geometry in 100 sample configurations. In each
of these 100 configurations, we gradually increased synapse loss
and analyzed the neuron’s capability of creating action potentials,
and at the same time, recorded corresponding calcium levels
within the soma.

3.1.1. Generation of Action Potentials
Both moderate (µonset = 15ms, σonset = 5ms) and high
(µonset = 30ms, σonset = 10ms) asynchrony cases show a
strong action potential spike train response to the initial synapse
distribution. The number of spikes ranges from two to three in
the moderate asynchrony case and from one to three in the high
asynchrony case (Figure 7). The synchronous setup, however,
produced exactly one action potential for the initial distribution
of 1000 synapses in all samples. Only the cation influx at new
synapses perpetually being active in the asynchronous cases
can induce the repetitive spiking, while cation influx through
all synapses is completely compensated by potassium efflux
during hyper-polarization in the synchronous case. The number
of action potentials decreased with increasing synapse loss in
both asynchronous cases until complete signal breakdown (in
at least 90 % of the sample patterns) at 75% synapse loss in
the moderately and at 60% in the highly asynchronous case. In
contrast, synchronous activation patterns sustained generation of

an action potential up to a loss of about 97.7% (corresponding to
23 synapses).

3.1.2. Calcium Signaling
In all setups, synchronous as well as asynchronous, calcium
levels at the soma exclusively depend on whether or not
an action potential is elicited. We see step increases in the
calcium concentration with every action potential. Calcium
diffusion, however, is only able to transport calcium within
a very local vicinity of its original point of entry at active
synapses. After termination of electrical signaling, calcium levels
exponentially decay to equilibrium levels due to the activity of
NCX and PMCA pumps. This shows a direct correspondence
between synapse loss and somatic calcium levels through the
number of action potentials elicited in a neuron. Sample
evolution of membrane potential and calcium concentration
at the soma (from the moderately asynchronous setting)
for various levels of excitatory synapse loss are depicted in
Figure 8.

3.2. Large-Scale Network Simulations with
Detailed Anatomy
3.2.1. Parallel Scaling
In order to test the parallel scaling properties of our
network simulation implementation, we created six neocortical
geometries containing 320, 640, 1280, 2560, 5120, and 10,240
neurons, respectively. The average number of compartments per
neuron in the six geometries ranged from 574 to 586. We defined
a random thalamic activation pattern, where synapse activation
times and durations for the thalamic input synapses created
by NeuGen were drawn from the same normal distribution for
all geometries. We then performed one thousand time steps
using 32, 64, 128, 256, 512, and 1024 processors of the Jülich
supercomputer JUQUEEN on the geometries, respectively—thus
in each simulation, a processor would be assigned approximately
the same amount of work (“weak scaling”). We profiled the

A B

FIGURE 7 | (A) Number of evoked action potentials in simulations of a layer 3 pyramidal neuron upon synaptic activation at varying levels of synapse loss.

Experiments on N = 100 sample distributions of synapses with initiation of synaptic activity drawn from a normal distribution N

(

3σonset, σ
2
onset

)

in units of ms.

Square, circle and triangle symbols represent mean values, vertical bars show standard deviations. (B) Synapse input synchrony counteracts synapse loss. The y-axis

indicates the percentage of simulated cells that evoked at least one action potential upon synaptic activity in the three examined levels of synchrony

(σonset ∈ {45ms, 15ms, 0ms}) at three different levels of synapse loss.
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execution of the program to obtain the amount of time spent
in the main components of the simulation. Table 5 shows the
results. Leaving out the loading of the geometry into memory and
its distribution to the involved processors (both are inherently
serial), we achieve good scaling. The times spent for preparing
the channel mechanisms and synapses before a time step, for
assembling, for factorizing the matrix and applying the inverse
remain approximately constant. As a typical network simulation
will have more than 1000 time steps, the loading and distribution
of the domain (which is only performed once, i.e., at the start
of the parallel simulation) will have much less of an impact
on scaling behavior than in this particular study. We thus

demonstrated that our code is suitable to be used efficiently for
simulations of large-scale networks of neurons.

3.2.2. Network Connectivity Affects Network Activity
When a neuronal network is created by NeuGen, synapses
connect presynaptic axons to postsynaptic dendrites (if the
involved neuron types allow this) where axon and dendrite are
sufficiently close to each other (cf.Wolf et al., 2013). Themaximal
distance dist_synapse for which synapses are placed can be
chosen by the user. This criterion, albeit not representative of
an actual model of synaptogenesis (NeuGen does not reproduce
neuronal growth, but only a fully grown state), might be

FIGURE 8 | Courses of the membrane potential in mV (row 1) and calcium concentrations in mM (row 2) measured at the soma. 400 (column 1), 300

(column 2), 200 (column 3) synaptic inputs asynchronously activated at µonset = 15ms with standard deviation σonset = 5ms.

TABLE 5 | Weak parallel scaling results obtained by code profiling.

Problem size (#neurons) 320 640 1280 2560 5120 10240

#Processors 32 × 64 × 128 × 256 × 512 × 1024

Loading domain 12.8 2.08 26.6 2.03 54.1 2.09 113 2.17 246 2.29 562

Domain distribution 4.89 2.12 10.4 2.06 21.4 2.11 45.3 2.10 95.0 2.07 197

Determining step size 42.0 1.03 43.5 1.02 44.2 0.98 43.4 1.00 43.4 1.02 44.1

Preparing time step 52.9 1.01 53.5 0.99 53.2 1.02 54.2 1.02 55.5 1.13 62.5

Assembling system 325 1.02 330 1.03 338 0.97 329 0.99 327 1.02 333

Applying solver 24.0 1.03 24.8 1.01 25.0 0.94 23.4 1.04 24.3 0.92 22.3

Rest 6.41 1.90 12.2 0.33 4.00 2.18 8.7 2.05 17.8 1.13 20.1

Total time 468 1.07 501 1.08 540 1.14 617 1.31 809 1.54 1241

Total w/o load & distribute 450 1.03 464 1.00 465 0.99 458 1.02 468 1.03 483

Timings show almost ideal scaling for setting up the system of equations as well as solving it. Loading and distributing the domain to the involved processors is inherently serial as it is

done by a single processor in every simulation—however, the time percentage of the two tasks is much lower in typical simulations as they run much longer and loading and distributing

is only performed once at the beginning. The remaining variance of the simulation runs is mainly due to differences in the quality of domain distribution. All time values in units of seconds.
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considered as a parameterization of the agility of filopodia and
growth cones during synaptogenesis (Munno and Syed, 2003). In
any case, it has a direct effect on the connectivity properties of the
network.

We conducted simulations on five neocortical networks, each
composed of the same 10,000 neurons, but with the connection
distance ranging from 1 µm to 5 µm in steps of 1 µm. This
resulted in networks with increasing numbers of synapses and
connected neurons (Table 3). As previously described inWanner
(2007), we initialized network activity by depolarizing L4 spiny
stellate cells via primary thalamic input synapses, activity then
spread out through the cortical layers due to interconnecting
synapses. Analysis of the time courses of the membrane potential
at the somata in conjunction with activity data from the
interconnecting synpases (Figure 9) reveals significant impact of
the connectedness on the overall qualitative (and quantitative)
behavior following the same thalamic input pattern in all five
simulations.

In the least connected network, the number of synapses
connecting thalamically activated L4 spiny stellate cells to L2/3

pyramidal cells (only 7.5 per L2/3 pyramidal cell on average) does
not suffice to lead to the depolarization of a single L2/3 cell in the
network. Obviously, this means there can be no active synapses
connecting L2/3 to L5A and although there are also synapses
connecting L4 to L5A directly, there is no activity in L5A, either.
While in the network next in synapse number, considerable
depolarization of layer 2/3 pyramidal neuron somata manifests
itself due to 7.5-fold increase in average number of active
synapses from L4 to L2/3, there is still practically no signal in
L5A. Only in the networks created with synapse creation distance
parameters ≥ 3 µm are action potentials elicited at the somata of
L5A. The same networks exhibit the formation of a second action
potential in some of the initially activated L2/3 somata, the two
most connected networks also show the occurrence of a second
action potential in some of the L5A cells. These second action
potentials are the combined effect of (i) charge from previous
synaptic inputs that has not yet been cleared and (ii) additional
influx at the re-activated synapses. It is noteworthy that somatic
activity in both L2/3 and L5A pyramidal cells peaks higher (L2/3:
0.0, 0.56, 0.84, 0.87, 0.87; L5A: 0.0, 0.0, 0.39, 0.78, 0.87) and earlier

FIGURE 9 | Simulation results for networks of 10,000 neurons. The columns contain time plots for networks created with a synapse creation distance of 2 µm,

3 µm, 4 µm (FLTR), respectively. Row 1: Relative number of active somata, i.e., V ≥ −45mV, in different levels (L2/3 red, L4 green, L5A blue, L5B orange). Row 2:

Number of active synapses at L2/3 pyramidal neurons originating from different levels (L2/3 red, L4 green). Row 3: Number of active synapses at L5A pyramidal

neurons originating from different levels (L2/3 red, L4 green, L5A blue). Initial activation of L4 spiny stellate and L5B pyramidal cells by the same thalamic input pattern

in all simulations.
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FIGURE 10 | Signal propagation through a neocortical slice of 10,000 neurons. Only somata are visualized. Primary excitation of L4 spiny stellate cells (left) is

followed by activation of somata of L2/3 pyramidal cells (middle), before the signal propagates to pyramidal neurons of layer 5A (right). Note how the depolarization of

somata expands through layers 2/3 and 5A like a wavefront indicating increased signal run time to neurons more remote with respect to the signal origin.

(L2/3: –, 8.8ms, 7.9ms, 7.6ms, 7.6ms; L5A: –, –, 11.4ms, 10.2ms,
9.7ms) the more synaptic connections there are in the respective
cortical layers.

Explicit influence of spatial extensions of the neural network
can be identified in Figure 10: Somatic depolarization and
hyperpolarization expands through the layers of L2/3 and L5A
pyramidal cells like a wave, activating the neurons in the order
imposed by the distance to the respective origin of that activation.

4. DISCUSSION

In this paper we presented studies of electrical and biochemical
signals in single cells and networks to investigate the interplay
between synapse loss and signaling synchrony. Amajor focus was
the anatomically realistic representation of cells and networks, for
which a novel simulation toolbox NeuroBox was developed.

The synapse distribution studies on the layer 3 pyramidal cell
from the rat neocortex show a significant impact of the activation
pattern (in space and time) on the signal conductance capabilities
of the cell. Two effects are apparent: (1) The more asynchronous
the input signals are, the more spikes can be generated by this
input—up to a point where the asynchrony begins to affect the
likelihood of generating a single spike. (2) Themore synchronous
input signals are, the higher the cell’s resilience is to synapse loss
with regard to its capability of generating action potentials in
response to synaptic input.

In the context of the study of synaptic input patterns, we
also conducted simulations of calcium dynamics, including
Ca2+ influx through synaptic AMPA-R channels as well
as voltage-dependent calcium channels, NCX and PMCA
pump mechanisms distributed throughout the membranes of
dendrites and soma. Results showed that the somatic calcium
concentration, key factor in the control of gene expression
(Hardingham et al., 1997) and thus development and survival
of cells, is directly coupled to the number of action potentials
initiated in the cell, each action potential leading to a step
increase in calcium levels. However, we neglected effects of
internal calcium stores and also correct consideration of calcium
buffers here. Especially the large amounts of calcium releasable
through ryanodine and IP3 receptor channels in the membrane
of the endoplasmic reticulum need to be taken into account in a
detailed three-dimensional simulation in order to achieve a more
accurate description of calcium signaling, possibly including
calcium waves (cf. Berridge, 1998, among others). A method
of coupling the one-dimensional simulation of the membrane
potential to a detailed three-dimensional simulation of calcium
signals has previously been developed by the authors (Grein et al.,
2014) and may be applied here.

Using NeuGen for the generation of a neocortical column, we
have shown that our implementation of a compartment model
for the cable equation and trans-membrane current mechanisms
in neural networks is adequate for large-scale applications and
scales well with the number of neurons involved. It is reasonable
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to assume that simulations on even larger neural networks can
successfully and efficiently be conducted on high-performance
computers with the help of our implementation.

The neural network simulations we performed were very basic
in nature. We only considered four of the diverse neuron types
present in the neocortex. Unlike (e.g., Anderson et al., 2007;
Vierling-Claassen et al., 2010; Neymotin et al., 2011), we did not
take into account inhibitory synapses and their role in regulating
cortical signal processing. Unlike the three aforementioned
contributions, however, we created neural networks whose
spatial resolution—about 500 compartments per neuron in our
simulations as compared to 3, 16 and 1 in theirs—allowed
for a realistic spatial positioning of synapses. We utilized the
simple (yet not unreasonable) distance rule of NeuGen to create
synapses instead of putting experimental projection data (as
extensively reviewed for excitatory neurons by Feldmeyer, 2012)
to good use. Incorporation of experimental findings into the
existing framework, however, is not difficult. The addition of
inhibitory synapses, for instance, is merely a question of re-
parameterization in a preprocessing step. All that considered, our
network simulations make it possible to examine the impact of
intra- and trans-laminar synaptic connections on each level and
can therefore serve as a valuable tool to decipher the functional
role of detailed anatomy in cortical information processing.

With a focus on accessible workflow control that includes
high-performance numerical methods, a modular neuroscientific
repository and the option of including third-party tools, we
developed the toolbox NeuroBox and used it to perform all
simulations in this paper. NeuroBox is an open source project
hosted on github with the intent to offer its full functional
scope to a broad community. Visual workflow design and
control through VRL-Studio makes NeuroBox projects easy to
use and share with experts and non-experts alike. This feature
is highly beneficial for rapid prototyping and offers an efficient
pathway from in silico experiment design to full implementation
thereof.

The possibility to integrate third-party tools, such as
ImageJ, anatomical reconstructions (e.g., neuromorpho.org)
and the automated import of NMODL models, integrates
NeuroBox ideally into ongoing endeavors in the computational
neuroscience field. Due to the modular design, this toolbox
is easily extendible through various pathways discussed in

Section 2 and thus can growwith continued research. As problem
sizes typically increase alongside growing high-performance
computing power, NeuroBox was built with links to UG 4, a
general purpose package for solving partial differential equations.
Advanced numerical methods with time and space adaptivity,
error estimation and parallel communication layer advance the
possibilities for solving anatomically realistic large-scale network
problems.
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We report development of a large-scale spiking network model of the cerebellum

composed of more than 1 million neurons. The model is implemented on graphics

processing units (GPUs), which are dedicated hardware for parallel computing. Using

4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation

of cerebellar activity for 1 s completes within 1 s in the real-world time, with temporal

resolution of 1 ms. This allows us to carry out a very long-term computer simulation

of cerebellar activity in a practical time with millisecond temporal resolution. Using the

model, we carry out computer simulation of long-term gain adaptation of optokinetic

response (OKR) eye movements for 5 days aimed to study the neural mechanisms of

posttraining memory consolidation. The simulation results are consistent with animal

experiments and our theory of posttraining memory consolidation. These results suggest

that realtime computing provides a useful means to study a very slow neural process such

as memory consolidation in the brain.

Keywords: cerebellum, model, memory consolidation, optokinetic response, realtime simulation, graphics

processing unit

1. INTRODUCTION

Memory formation has two stages: memory acquisition and memory consolidation (Dudai, 2004).
A single session of training forms a type of memory which is fragile and persists only a short period
up to minutes to hours. This phase is called memory acquisition. After the training, the learned
memory, a short-term memory, decays spontaneously and quickly within a day. Meanwhile,
repeated training with a sufficient rest between training sessions gradually form another type of
memory, a long-term memory, which is robust and persists for days and weeks. This phase is
called memory consolidation. Memory consolidation occurs after training but not during training.
That is, when we take a rest after training, the brain still continues working to consolidate the
learned memory. This posttraining memory consolidation is thought to be the basis of spacing
effect (Ebbinghaus, 1885), in which a massed training is inferior to repeated training to form a
robust long-termmemory, even if the total training time is equal. Therefore, it is important to study
how the brain works after training as well as during training to elucidate the memory mechanisms
and our behaviors.

In cerebellar motor learning, both memory formation and consolidation occur within the
cerebellum. In gain adaptation of vestibulo-ocular reflex (VOR) and optokinetic response (OKR),
parallel fiber-Purkinje cell (PF-PC) synapses in the cerebellar cortex store short-term memory,
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whereas mossy fiber-vestibular nuclear cell (MF-VN) synapses
in the brain stem store long-term memory (Kassardjian et al.,
2005; Shutoh et al., 2006). OKR is an oculomotor reflex in
which the eye moves to the same direction of the visual
world’s movement to reduce the slip of the retinal image.
In OKR adaptation, the amplitude of eye movement, called
gain, changes by training. By a single 1-h training, the gain
increases quickly, which corresponds to memory acquisition.
After the training, the gain decreases naturally to the original
level within a day. By repeating the 1-h training everyday, the
gain increases gradually throughout 1 week (Shutoh et al., 2006),
which represents memory consolidation. Moreover, injection of
muscimol, a γ -Aminobutyric acid (GABA) receptor agonist,
to the cerebellar cortex immediately after the training disrupts
memory consolidation (Okamoto et al., 2011), indicating that
training alone is not sufficient for memory consolidation.
Accumulating evidence suggests that posttraining memory
consolidation of OKR gain takes the following steps (Shutoh
et al., 2006). By a single 1-h training, PF-PC synapses undergo
LTD induced by conjunctive activation of PFs and the CF
innervated to the same PCs (Ito, 1989), and thereby the OKR
gain increases. After the training, PFs gradually recover from
the LTD, which erase the memory of learned OKR gain in the
cortex. On the other hand, because inhibition exerted by PCs to
VN is weakened due to the LTD, the VN is deporalized tonically.
This deporalization, combined with presynaptic MF activation,
induces LTP at MF-VN synapses (McElvain et al., 2010; Person
and Raman, 2010), and thereby forming the memory of OKR
gain in the nucleus. In this way, while the cortical memory is
erased gradually after the training, the nuclear memory forms
simultaneously as a long-term memory, as if the learned cortical
memory is transferred to the nucleus and consolidated there.

We have proposed a theory of the cerebellar posttraining
memory consolidation in OKR adaptation (Yamazaki et al.,
2015). The theory captures an essence of the macroscopic
dynamics of synaptic mechanisms underlying the posttraining
memory consolidation. On the other hand, the theory does not
provide insights on mesoscopic cellular/synaptic dynamics on
the posttraining memory consolidation. For example, the theory
does not tell us about spatiotemporal spike patterns of individual
neurons. To study the detailed cellular/synaptic dynamics, an
elaborated, realistic cerebellar model is necessary. A problem
of such elaborated models, however, is that they would spend
too much computational time. Typically, computer simulation
of large-scale spiking network models is 10–100 times slower
than the real-world time (Nageswaran et al., 2009). This means,
if we wanted to carry out a computer simulation of memory
consolidation for 1 week, and the computer simulation was 100
times slower than real time, the simulation would spend about 2
years in total to complete. This is practically impossible.

In this study, we adopted high-performance computing
(HPC) technology to solve these problems. We used graphics
processing units (GPUs) to calculate equations of neurons
in parallel, which could speed up the numerical simulation
drastically. Specifically, we built a very large-scale spiking
networkmodel of the cerebellum composed of 1 million neurons,
which is a model of 1 mm3 of cats’ cerebellum. Moreover,

owing to the parallel computing on GPUs, we were able to
conduct the computer simulation fast enough to complete a
very long computer simulation in a practical time, Eventually,
we achieved realtime simulation, which means that computer
simulation of the cerebellar activity for 1 s completes within
1 s in the real-world time (Igarashi et al., 2011; Yamazaki and
Igarashi, 2013). This is essential for computer simulation of
the cerebellar posttraining memory consolidation, because the
memory consolidation takes days or even weeks. Using the
present cerebellar model, we performed computer simulation of
long-term OKR adaptation of training for 5 days, and obtained
qualitatively the same results with experiments (Shutoh et al.,
2006) and our previous theoretical model (Yamazaki et al., 2015).
We also examined the detailed spike patterns of neurons, which
was abstracted and therefore ignored in our theory.

2. MATERIALS AND METHODS

2.1. Model
Our cerebellar model is built based on a 1 mm3 of the cerebellar
corticonuclear microcomplex (Figure 1) of cats, which is thought
to be a functional module of the cerebellum (Ito, 1984, 2012).
The original model had 100,000 granule cells, which is 10
times smaller than cats’ cerebellum (Ito, 1984), and was already
reported elsewhere (Yamazaki and Tanaka, 2007; Yamazaki and
Nagao, 2012; Yamazaki and Igarashi, 2013). In this study, we
extended the previous model as follows. First, the present model
includes 1 million granule cells, thereby the model includes the
same number of neurons with 1mm3 of the cats’ cerebellum.
Second, the present model has synaptic plasticity at mossy fiber-
vestibular nuclear cell (MF-VN) synapses, as well as parallel
fiber-Purkinje cell (PF-PC) synapses. Except the number of
granule cells and MF-VN synaptic plasticity, the previous and
present models are the same. Therefore, we summarize the model
specification only briefly below. The details are found in our
previous papers (Yamazaki and Tanaka, 2007; Yamazaki and
Nagao, 2012; Yamazaki and Igarashi, 2013).

The present model is composed of 1,048,576 (= 1024 ×

1024) granule cells, 1024 Golgi cells, 16 PCs, 16 basket cells,
1 inferior olivary cell, and 1 VN, connected according to cats
anatomical data (Yamazaki and Tanaka, 2007). Neurons are
modeled as conductance-based integrate-and-fire units (Gerstner
et al., 2014):

C
du

dt
= −gleak(u(t)− Eleak)− gex:AMPA(t)(u(t)− Eex)

− gex:NMDA(t)(u(t)− Eex)− ginh:GABA(t)(u(t)− Einh)

− gahp(t)(u(t)− Eahp)+ Iext(t), (1)

where u(t) is the membrane potential at time t, C is the
capacitance, gleak and Eleak are the conductance and reversal
potential of the leak current, respectively, gex:AMPA(t),
gex:NMDA(t), ginh:GABA(t) are synaptic conductances of excitatory
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and N-methyl-D-aspartic acid (NMDA), and inhibitory
GABA synapses, Eex and Einh are reversal potentials, gahp(t) and
Eahp are the conductance and reversal potential of after-hyper
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FIGURE 1 | Illustration of the cerebellar circuit implemented in this study. (A) Detailed 3D diagram with locations of synaptic plasticity. We implemented six

major types of neurons: granule cells, Golgi cells, PCs, basket cells, inferior olivary cell, and VN. They were connected according to anatomical data, and cell

parameters were taken from electrophysiological data. Contextual information and error information were conveyed by MFs and a CF, respectively, and the VN

provided the final output of the circuit. PF-PC synapses (blue star) and MF-VN synapses (red star) underwent plastic change. The figure was reproduced from

Yamazaki and Igarashi (2013). (B) 2D diagram of the connectivity and the number of neurons. PF-PC synapses (blue star) and MF-VN synapses (red star) underwent

plastic change as in (A). Arroheads represent types of synaptic connections (triangle, excitatory; circle, inhibitory). GR, granule cell; GO, Golgi cell; PC, Purkinje cell;

BS, basket cell; VN, vestibular nucleus; IO, inferior olive; MF, mossy fiber; CF, climbing fiber; PF, parallel fiber.

polarization, respectively, and Iext(t) is an external current.When
u(t) exceeds a threshold θspike at time t, the neuron elicits a spike
at time t. Cell parameters are taken from turtles and rodents
electrophysiological data (Yamazaki and Tanaka, 2007). The
values used in this study are summarized in Table 1. Synaptic
conductance gx(t) for type x is calculated as a convolution of
presynaptic spike events with an exponential kernel as

gx(t) =
∑

j

wj · ḡx
∑

f∈Sj

expx

(

−

(

t − t(f )
))

2

(

t − t(f )
)

, (2)

where ḡx is the peak conductance, wj is the synaptic weight which
is constant, Sj is the set of spikes elicited by presynaptic cell j,

t(f ) is the spike time for the f th spike, expx(t) is the exponential
kernel, and 2(t) is the Heaviside step function. The exponential
kernels used in the present study are summarized in Table 2,
whereas the synaptic weights are shown in Table 3.

The model has two distinct synaptic plasticity sites. One is
PF-PC synapses, which undergo long-term depression (LTD) by
conjunctive activation of granule-cell axons called parallel fibers
(PFs) and a climbing fiber (CF) innervating to the same PC (Ito,
1989), and long-term potentiation (LTP) as well by sole activation
of PFs (Lev-Ram et al., 2003). We modeled these bidirectional
plasticity as follows:

τw
dwij

dt
= −wij(t)+ xij(t)

τx
dxij

dt
= −xij(t)− cLTD

50ms
∑

s=0

PFij(t − s)CF(t)+ cLTPPFij(t),

(3)

TABLE 1 | Summary of cell parameters.

Parameter Neuron type

GR GO PC BS VN IO

θspike (mV) −35.0 −52.0 −55.0 −55.0 −38.8 −50.0

C (pF) 3.1 28.0 107.0 107.0 122.3 10.0

gleak (nS) 0.43 2.3 2.32 2.32 1.63 0.67

Eleak (mV) −58.0 −55.0 −68.0 −68.0 −56.0 −60.0

ḡex:AMPA (nS) 0.18 45.5 0.7 0.7 50.0 1.0

ḡex:NMDA (nS) 0.025 30.0 - - 25.8 -

Eex (mV) 0 0 0 0 0 0

ḡinh (nS) 0.028 - 1.0 - 30.0 0.18

Einh (mV) −82.0 - −75.0 - −88.0 −75.0

ḡahp (nS) 1.0 20.0 0.1 0.1 50.0 1.0

Eahp (mV) −82.0 −72.7 −70.0 −70.0 −70.0 −75.0

τahp (ms) 5.0 5.0 5.0 2.5 2.5 10.0

Iext (nA) - - 0.25 0.1 0.8 −

GR, granule cell; GO, Golgi cell; PC, Purkinje cell; BS, basket cell; VN, vestibular nuclear

neuron; IO, inferior olivary neuron; -, nonexistent.

where wij(t) is the synaptic weight between PC i and PF j, τw
and τx are time constants where τw ≪ τx, xij(t) is an internal
variable, cLTD and cLTP are constants, PFij(t) is 1 if PF j on PC
i elicits a spike at time t and 0 otherwise, and CF(t) is 1 if
the climbing fiber elicits a spike at time t and 0 otherwise. The
term

∑50ms
s=0 PFij(t − s)CF(t) means that PFs that elicit spikes

0–50 ms earlier than the time when the climbing fiber elicits a
spike undergo LTD. If n spikes travel along a PF during 50 ms,
the weight change becomes n times cLTD. Transmission delay
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TABLE 2 | Summary of synaptic functions.

Neuron type Equation

GR expex:AMPA (t) = e−t/1.2

expex:NMDA(t) = e−t/52.0

expinh(t) = 0.43× e−t/7.0 + 0.57× e−t/59.0

GO expex:AMPA (t) = e−t/1.5

expex:NMDA(t) = 0.33× e−t/31.0+0.67× e−t/170.0

PC expex:AMPA (t) = e−t/8.3

expinh(t) = e−t/10.0

BS expex:AMPA (t) = e−t/8.3

VN expex:AMPA (t) = e−t/9.9

expex:NMDA(t) = e−t/30.6

expinh(t) = e−t/42.3

IO expex:AMPA (t) = e−t/10.0

Abbreviations as in Table 1.

TABLE 3 | Summary of synaptic weights.

Presynaptic

neuron

Postsynaptic neuron

MF GR GO PC BS VN

MF - 4.0 - - - 0.2

GR - - 0.00004 0.00075 0.00015 -

GO - 10.0 - - - -

PC - - - - - 0.05

BS - - - 5.3 - -

IO - - - 1.0 - -

Abbreviations as in Table 1.

of PF spikes might be essential for plasticity (Knoblauch et al.,
2014). The conduction velocity of PFs has been experimentally
estimated as 0.24 m/s (Vranesic et al., 1994). This results in the
transmission delay of 1 mm PF is maximally about 4.2 ms, which
could be negligible as long as we assume 50 ms time window
for LTD. Therefore, we did not model transmission delays of
PF spikes. On the other hand, we do not exactly describe the
biological counterpart of xij. A potential interpretation of xij
would be intracellular concentration of some kinases involving
PKC-MAPK positive feedback loop, which plays an essential role
in maintenance of induced LTD (Kuroda et al., 2001). The initial
values of w and x were set at 1.0 and 0.0, respectively.

The other plasticity is MF-VN synapses, which undergo
bidirectional plasticity by a modified Hebbian mechanism. The
original equation was proposed by our previous theoretical
model (Yamazaki et al., 2015) based on Zhang and Linden (2006);
Person and Raman (2010); McElvain et al. (2010) as follows:

τv
dv

dt
= −v(t)

〈

MF(t)
〉

+
〈

MF(t)
(

VN(t)− θ(t)
)〉

, (4)

where τv is time constant, v(t) is the synaptic weight at MF-
VN synapses at time t, MF(t) is the activity of MFs, VN(t) is
the activity of VN, 〈·〉 is the temporal average over a certain
time window (we assumed 6 s), and θ(t) is a running average

TABLE 4 | Summary of learning parameters.

Parameter Value

τw (min) 20.0

τx (min) 240.0

cLTD 0.005

cLTP 0.1

of VN(t), namely θ(t) = 〈VN(t)〉. The left-hand side represents
the temporal increment of v(t). The 1st term in the right-hand
side represents LTD by sole activation of MFs, and 2nd term
represents the Hebbian mechanism, where the weight change
correlates with the correlated activity of pre- and postsynaptic
neurons. Here, the term θ(t) acts as a threshold; only when
the postsynaptic neuron is activated strongly to exceed θ(t), the
synapses undergo LTP, otherwise LTD or no change. In this way,
θ(t) determines the direction of synaptic change. Moreover, the
value of θ(t) itself changes temporally depending on the temporal
history of VN(t). Higher θ(t) value makes the synapse harder to
undergo LTP. The initial value of v was set at 1.0. The parameters
for w and v are summarized in Table 4.

As far as we have tested, the general network dynamics does
not change so largely over a wide range of parameter settings.
We have found three points that are necessary to achieve robust
learning. First, granule-Golgi cell recurrent network should be
tuned so as to generate the population code of granule cells
robustly. Second, basket cell→ PC synaptic connections should
not be so strong; otherwise, PCs would be silent completely.
Third, PC→VN synaptic connections should not be so strong;
otherwise, VNwould be silent completely. If we satisfy these three
points, the network, as far as we have tested, works robustly.

2.2. Simulation Paradigm
We conducted computer simulation of long-term OKR gain
adaptation as in Shutoh et al. (2006). Specifically, we repeated
a 1-h simulated OKR training followed by 23-h rest 5 times
corresponding to 5-days training. In each OKR training,
simulated optokinetic stimulus is fed to MFs, and retinal
slip is fed to a CF. Both optokinetic stimulus and retinal
slip are modeled as Poisson spikes with the following firing
rate:

fMFtrain (t) = MFtrain

(

1+ sin
2π t

T

)

(for MFs)

fCFtrain (t) = CFtrain

(

1+ sin
2π t

T

)

(for a CF),

(5)

where fMFtrain (t) and fCFtrain (t) are the firing rate of MFs and a CF,
respectively, MFtrain and CFtrain are the mean activity of MFs and
a CF, which are set at 15 spikes/s and 1.5 spikes/s, respectively. T
is a period of a cycle of optokinetic stimulus, which is assumed
to be rotated sinusoidally in front of animal subjects. We set
T = 6 s consistently with the experiments (Shutoh et al., 2006).
Because one cycle is 6 s, daily 1-h training consists of 600 cycles of
simulated optokinetic stimulus. On the other hand, after training,
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we assumed that bothMFs and a CF elicited spikes spontaneously
with the following firing rate:

fMFrest (t) = MFrest (for MFs)

fCFrest (t) = CFrest (for a CF),
(6)

where MFrest and CFrest are set at 5 spikes/s and 1 spikes/s,
respectively.

Once we define the firing rate of MF and CF as above, and
assume that the activity of a simulated neuron (e.g., firing rate)
reflects the strength of input signals to the neuron almost linearly
as in the case of integrate-and-fire neurons used in this study
(Gerstner et al., 2014), we could estimate the activity of VN
as a linear sum of excitatory MF activity and inhibitory PC
activity. The PC activity could be estimated as a linear sum of
PF activity and basket cell activity, and further by solely MF
activity. By substituting the MF and VN activities for MF(t) and
VN(t) in Equation (4), we could obtain the following simplified
equation for v. The detailed derivation is found in our previous
paper (Yamazaki et al., 2015).

τv
dv

dt
= −w(t)+ wc, (7)

where w(t) is the average synaptic weight of all PF-PC synapses,
and wc is a constant that defines the initial weight of PF-
PC synapses, namely, 1.0. We used Equation (7) rather than
Equation (4) for simplicity to update v(t).

2.3. Data Analysis
We conducted computer simulation of the 5-days OKR training,
and obtained spike data of all individual neurons and synaptic
weight data of PF-PC synapses and MF-VN synapses. The total
simulation time was 5× 24× 60× 60× 1000 = 4.32× 108 ms,
with temporal resolution of 1 ms.

We analyzed how the OKR gain changed before and after
training for each day. To do so, before training for each day, we
fed 10 cycles of simulated optokinetic stimulus to the network
and obtained the spike data of VN. We made a spike histogram
with bin size of 100 ms, fitted the data with a cosine function
with the period of 6 s, and calculated the modulation amplitude.
We defined the modulation amplitude as the OKR gain before
training. We made the same procedure to obtain the OKR gain
after training for each day.

We also examined how the granule cells transmit mossy fiber
signals robustly against noise in Poisson spike trains. Granule
cells must produce almost identical spike pattern in response to
the same optokinetic stimulus with different noise across cycles;
otherwise, learning at Purkinje cells would fail. To quantify
the reproducibility of the granule cell spike pattern in response
to the same simulated optokinetic stimulus, we calculated the
reproducibility index at time t defined as the normalized cross
correlation as follows:

R(t) =

∑

j z
(i)
j (t)z

(i+1)
j (t)

√

∑

j z
(i)
j (t)

√

∑

j z
(i+1)
j (t)

, (8)

where z
(i)
j (t) is the activity of granule cell j at cycle i of

simulated optokinetic stimulus at time t, which was calculated by
convolution of the spikes with a causal exponential:

z
(i)
j (t) =

∑

f∈S
(i)
j

exp

(

−
t − t(f )

τ

)

2

(

t − t(f )
)

, (9)

where S
(i)
j is the set of spikes elicited by granule cell j at cycle

i, t(f ) is the spike time for the f th spike, τ is the time constant
of 8.3 ms, and 2(t) is the Heaviside step function. Intuitively,

z
(i)
j (t) is a temporal trace of EPSPs of PF j on a PC at cycle i, and

τ = 8.3 ms is the time constant of AMPA receptor-mediated PF-
EPSPs at a PC (Llano et al., 1991). We calculated the average and
standard deviation of the reproducibility index among 10 pairs of
two successive cycles.

2.4. Numerical Method
All equations that govern the network dynamics are solved
numerically. Specifically, differential equations describing
membrane potentials are solved by 2nd-order Runge-Kutta
method with temporal resolution (1t) of 1 ms. The simulation
program is written in C with CUDA (Common Unified Device
Architecture) (NVIDIA, 2015) and most of the calculation is
made on GPUs.

In our previous study (Yamazaki and Igarashi, 2013), we
used only 1 GPU (NVIDIA GeForce GTX580) to simulate
100,000 granule cells in realtime. On the other hand, the present
model has 10 times more granule cells, which makes computer
simulation far slower than realtime. The most time-consuming
part is to calculate synaptic conductances of Golgi cells, basket
cells and PCs, where these cells receive excitatory inputs from
granule cells via PFs. Due to the large number of granule cells,
the calculation spends too much time. To address this issue, we
decomposed the granular layer network composed of granule
cells and Golgi cells into 4 identical subnetworks and calculated
the dynamics in parallel on 4 GPUs (2 boards of NVIDIA
GeForce GTX TITAN Z, each contains 2 GPUs). In the following,
we explain how to decompose the network and calculate the
conductance on 4 GPUs.

Figure 2A illustrates a part of the granular layer of our model.
The granular layer is composed of 1024 × 1024 granule cells
and 32× 32 Golgi cells arranged regularly on a two-dimensional
grid. Granule cells are further divided as 32 × 32 clusters, where
each cluster consists of 32 × 32 granule cells. Due to short
dendrites of granule cells, we assumed that the granule cells
in the same cluster shared inhibitory inputs from the same
Golgi cells. On the other hand, granule cells receive 4 excitatory
MF inputs. We assumed that granule cells receive 4 MF inputs
independently of the other granule cells. This structure allows
us to decompose the granular layer network into 4 identical
subnetworks composed of 512 × 512 granule cells and 32 × 32
Golgi cells, where granule cells are further divided into 32 ×

32 clusters in which each cluster contained 16 × 16 = 256
granule cells as shown in Figure 2B. We conducted simulation
of each subnetwork on a GPU, thereby we employed 4 GPUs for
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FIGURE 2 | Decomposition of granule cell population into four subpopulations for parallel simulation on 4 GPUs. (A) Schematic of the model granular

layer. Granule cells (black dot), Golgi cells (circle) and fictious glomeluri (hexagon) were arranged regularly on a two-dimensional grid. Each Golgi cell was surrounded

by 4 glomeluri, and within the rectangle, 32× 32 = 1024 granule cells were located and constituted a granule-cell cluster. These granule cells were assumed to share

the same inhibitory inputs from Golgi cells and receive excitatory inputs for 4 independent mossy fibers, so the granule cells were functionally identical. (B)

Decomposition of granule-cell clusters. We decomposed each granule-cell cluster composed of 32× 32 = 1024 granule cells into 4 subclusters composed of

16× 16 = 256 granule cells shown by 4 colors. (C) Calculation of synaptic conductances for Golgi cells, PCs and basket cells from granule cells (left small dots). Each

postsynaptic neuron must sum up the postsynaptic potentials of all granule cells with certain synaptic weights. At step 1, for each postsynaptic neuron, a quarter of

the synaptic conductance was calculated from granule cells on each GPU, which was illustrated by a pie-shape color where a large circle represents a postsynaptic

neuron. At step 2, the calculated partial conductances were reduced between 2 GPUs in parallel to obtain a half of the conductance. At step 3, the partial

conductances were further reduced and the full conductance was calculated. (A) was reproduced from Yamazaki and Tanaka (2007).

simulation of 4 subnetworks. In each subnetwork, we calculated
quarter of synaptic conductance for each Golgi cell from granule
cells in the same subnetwork. We then exchanged the partial
conductances across subnetworks over GPUs and obtained the
full conductance by summing up the partial values (Figure 2C).
This is made by direct memory exchange between 2 GPUs called
peer access, which is much faster than conventional memory
exchange via CPUs. Because calculation of synaptic conductance
is linear, our split-reduction method over 4 GPUs provides the
same result with the conventional method. The same method is
used to calculate synaptic conductances of basket cells and PCs
as well.

3. RESULTS

3.1. Simulation Time
First, we measured how the simulation time was accelerated by
using multi GPUs. Using only 1 GPU, we found that computer
simulation of the cerebellar activity for 6 s, corresponding to 1
cycle of simulated optokinetic stimulus, spends 17.7 s. Using 2
GPUs, 9.10 s are spent. Finally, using 4 GPUs, we achieved 5.33 s
for 6 s simulation, indicating realtime simulation. Therefore, we
used 4 GPUs for further simulation.

3.2. Long-term OKR Gain Change
We conducted computer simulation of long-term OKR
adaptation for 5 days. For each day, we performed a simulated
1-h OKR training. During the training, MFs convey simulated
optokinetic stimuli, whereas a CF conveys simulated retinal
slip error signals. After the training, both MFs and the CF
elicit Poisson spikes spontaneously with a constant firing rate,
respectively.

Figure 3A plots the OKR gain obtained in our long-termOKR
training simulation for 5 days. By daily 1-h training, the OKR
gain increases during training, and after the training, the learned
OKR gain almost disappears. This indicates memory acquisition
of OKR gain. On the other hand, throughout the 5 days,
OKR gain gradually increases, indicating memory consolidation.
The present numerical result is qualitatively consistent with
previous experimental and theoretical results (Shutoh et al., 2006;
Yamazaki et al., 2015).

Figure 3B plots the daily increment of learned OKR gain by 1-
h training. The increment becomes larger day by day, suggesting
that repeated daily training accelerates the memory acquisition.
This result is consistent with previous experiments (Shutoh et al.,
2006).

3.3. Change of Synaptic Weights
Figure 4 plots the change of weights at PF-PC synapses (w) and
MF-VN synapses (v) throughout the 5 days training. For w, we
calculated the average of all PF-PC synaptic weights with respect
to PFs and PCs. Similarly for v, we calculated the average of all
MF-VN synaptic weights with respect to MFs. PF-PC synapses
undergo LTD during training, and slowly return to the original
weight value after training spontaneously. PF-PC synapses repeat
the same temporal change 5 times for 5 days, suggesting that
PF-PC synapses store only short-term memory of OKR gain for
hours. On the other hand, MF-VN synapses change little during
training, and slowly increase after training. The synaptic weight
accumulates every day after training, suggesting that MF-VN
synapses store long-term memory of OKR gain.

The overall dynamics is as follows. First, memory of OKR
gain is formed in the cerebellar cortex by PF-PC LTD during
training. Second, after training, learned cortical memory is
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FIGURE 3 | Simulated OKR gain. (A) Modulation amplitude of VN, which corresponded to OKR gain. Horizontal axis represents time (day) and vertical axis the firing

rate (spikes/s). For each day, the modulation amplitude increased by 1-h training, and decreased after training until the next training in the next day. Throughout the 5

days, the amplitude gradually increased, suggesting consolidation of memory of learned OKR gain. (B) Increase of OKR gain before and after daily 1-h training.

Conventions as in (A). Although the same 1-h training was performed, the increase became larger day by day.

FIGURE 4 | Synaptic weight change. PF-PC synaptic weights (blue)

repeated quick decrease during training and slow recovery after training for

each day, whereas MF-VN synaptic weight started to increase mainly after

training and was accumulated throughout 5 days. Horizontal axis represents

training period (day) and the vertical axis represents the weight value. For

PF-PC synaptic weights, the average value on all presynaptic granule cells and

postsynaptic PCs was plotted.

decayed slowly and disappears completely by the next day, and
finally, during the slow decay of the cortical memory, memory
is formed in the vestibular nucleus by MF-VN LTP, as if the
cortical memory is transferred to the nucleus and consolidated.
The present numerical result is consistent with the previous
theoretical results (Yamazaki et al., 2015).

3.4. Change of Eye Movement Trajectory
So far, both the current numerical and previous theoretical
studies show qualitatively the same results. A benefit of our
numerical study is that we could obtain detailed data of
individual neurons such as membrane potential and spike trains
with a fine temporal resolution of 1 ms, which were abstracted in
our theoretical model (Yamazaki et al., 2015).

Figure 5 plots the firing rate of VN in response to simulated
sinusoidal optokinetic stimulus before and after training at the
1st day (A) and the 5th day (B). The firing rate modulates
sinusoidally as the input signals. The modulation amplitude
increases by daily 1-h training, and the amplitude also increases
gradually throughout 5 days. On the other hand, the baseline
firing rate does not change largely from 30–50 spikes/s. Here, the
modulation amplitude of VN represents the OKR gain (Shutoh
et al., 2006), suggesting that the OKR gain becomes larger by
repeated daily training. These results also suggest that realtime
simulation allows us to study both macroscopic behaviors of a
neural network such as OKR gain, and mesoscopic dynamics of
individual neurons in the neural network such as a membrane
potential and spike trains.

3.5. Robust Signal Transmission by the
Enormous Number of Granule Cells
Granule cells must transmit information conveyed by mossy
fibers to Purkinje cells and interneurons faithfully against input
noise, otherwise, learning at Purkinje cells would fail. In OKR,
mossy fibers convey information on visual world movement,
and granule cells produce a spatiotemporal spike pattern that
represents the stimulus reliably. For this purpose, the almost
identical spike pattern of granule cells must be produced across
cycles of the optokinetic stimulus.

Here, we examined how the enormous number of granule
cells help them to transmit mossy fiber information faithfully
and robustly against input noise. Specifically, we calculated
the reproducibility index (Equation 8) that quantifies the
reproducibility of the spike pattern of granule cells across
cycles of the simulated optokinetic stimulus on different
cycles, while changing the number of granule cells in the
network.

Figure 6A plots an example of the spike pattern of granule
cells, whereas Figure 6B plots the reproducibility. As can be seen,
the reproducibility is better when 1 million granule cells were
employed than 0.1 million granule cells. This result suggests that
a functional role of the enormous number of granule cells is

Frontiers in Neuroanatomy | www.frontiersin.org March 2016 | Volume 10 | Article 21 | 120

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Gosui and Yamazaki Memory Consolidation in Cerebellar Model

FIGURE 5 | Firing rate change of VN. (A) Firing rate in response to simulated optokinetic stimulus modulating sinusoidally in time with the period of 6 s before and

after training (blue and red, respectively) in the 1st day. Horizontal axis represents time in ms, and vertical axis the firing rate (spikes/s). The data points are fitted with a

cosine function and the fitted curves are also plotted to show the modulation clearly. (B) The same firing rate in the 5th day. Conventions as in (A).

FIGURE 6 | Granule cell activity. (A) Spike pattern of 1024 out of 1,048,576 granule cells chosen randomly in response to simulated optokinetic stimulus, which

modulated sinusoidally with the period of 6 s. Horizontal axis represents time (ms), whereas the vertical axis the neuron number. (B) Reproducibility of the granule-cell

spike pattern across different cycles of the simulated stimulus. The reproducibility with 1 million granule cells (blue) was higher than that with 0.1 million cells (red).

Horizontal axis represents time (ms), whereas the vertical axis the reproducibility index. The average values on 10 pairs of cycles were plotted in color, while gray

regions represented the standard deviation.

robust transmission of mossy fiber signals to PCs against input
noise.

4. DISCUSSION

4.1. Understanding Memory Consolidation
Mechanisms
Memory consolidation is a slow process that takes days
and weeks. To study the neural mechanisms of memory
consolidation, two ways are possible: either conducting
experiments or making theoretical models. A theoretical model
is a mathematical description of a specific phenomenon. To
make such model, we ignore most of experimental details and
capture the essence of the phenomenon. For example, in our
theoretical model of posttraining memory consolidation in the
cerebellum (Yamazaki et al., 2015), we abstracted all detailed
physiology of individual neurons, detailed anatomical structure,
and detailed input stimuli. This provides a clear view of how the
memory consolidates after training, but we still do not know
the detailed neuronal process during the memory consolidation.
Large-scale, realistic spiking network models are appropriate for

this purpose, but the computational time would be problematic
instead.

HPC technology solves this problem. The advantage is

two-folds. First, the technology allows us to build a larger-

scale model composed of more neurons and synapses with

more detailed morphology and biophysical properties than

conventional models. Very large-scale functional brain models

have been built (Izhikevich and Edelman, 2008; Eliasmith et al.,
2012). Notably, The Blue Brain Project and Human Brain Project

attempt to build a realistic whole brain model, and they recently

published a very detailed cortical microcolumn model (Markram
et al., 2015). Second, the technology allows us to carry out
computer simulations much faster than that on a single-threaded
CPU. The lattermakes the above-mentioned long-term computer
simulation possible in a reasonable time. For instance, if the
computer simulation runs in real time, a simulation of memory
consolidation for 1 week completes in 1 week. In our study, we
adopted GPUs. Using our large-scale, detailed spiking network
model of the cerebellum implemented on multi GPUs, we were
able to simulate the detailed temporal dynamics of individual
neurons, while observing the slowmemory consolidation process
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simultaneously. The present study is, as far as the author knows,
a first demonstration of a very long time computer simulation of
an elaborated spiking network model for days. We were able to
replicate our previous theoretical results (Yamazaki et al., 2015),
and further examined detailed neuronal and synaptic dynamics
during memory consolidation. In cerebellar motor learning,
location of motor memory and the role of LTD at PF-PC synapses
have been a matter of debate for more than 30 years (Mellvill-
Jones, 2000). The present study could provide an answer from
the modeling view point.

4.2. Realtime Simulation and the
Programming
The present cerebellar model consists of more than 1 million
spiking neurons. In general, computer simulation of such large-
scale model takes very long time. The simulation could be 10–100
times slower than the real-world time (Nageswaran et al., 2009).
However, owing to HPC technology, we were able to conduct
computer simulation in realtime, where simulation of cerebellar
activity for 1 s completes within 1 s in the real-world time.
This allowed us to conduct a complete computer simulation of
long-term OKR adaptation training for 5 days in a practical time.

We used 4 GPUs simultaneously to perform realtime
simulation of 1 million neurons. To do so, we had to write
the simulation program in C with CUDA, a platform for GPU
computing, and employed some parallel algorithms to use GPUs
efficiently. Specifically, we used some algorithms to compute
synaptic conductances of Golgi cells, basket cells and PCs that
receive excitatory inputs from many granule cells. This is quite
technical and difficult, and so there should be a more simple way
to adopt the power of parallel computing in neuroscience. One
potential way would be to develop a neural simulator primarily
designed for GPUs and some other accelerators. Naveros et al.
(2014) has reported development of such a spiking neuron
network simulator on a GPU. Some groups have used the
software for realtime robot control (Garrido et al., 2013; Casellato
et al., 2015).

Realtime simulation is only a milestone, and we expect
even faster computer simulation. Scalability, however, would
be a problem. Generally speaking, using more GPUs would
employ more latency for communications and overhead of
communication operations, which could easily be a bottle neck.

4.3. Advantages of Large-Scale Models
over Theoretical Models
Although the present study reproduced qualitatively the same
results with our previous theoretical model (Yamazaki et al.,
2015), some results are slightly different. First, the MF-
VN synaptic weight in the present model tends to decay
spontaneously, whereas that in the theoretical model did not.
This is because in the theoretical model, the decay term was
canceled out and removed by a mathematical treatment. In
experiments (Shutoh et al., 2006), the learned long-term OKR
gain almost vanishes after 2 weeks from the last training,
suggesting that it is natural for the synaptic weight to decay
spontaneously. Second, the increase of modulation amplitude

of VN before and after the 1-h training gradually becomes
larger throughout 5 days in the current study (Figure 2B),
whereas the change is constant in the theoretical model. The
same experiments demonstrate that the increase becomes larger
gradually day by day. This result suggests that the present large-
scale model captures the detailed dynamics of long-term OKR
gain adaptation better than the theoretical model.

Moreover, the present model allows us to study the detailed
temporal dynamics of individual neurons with a fine temporal
resolution. We were able to obtain detailed spike data of PCs
and VN, and analyzed the firing patterns as in Figure 6. This
is an advantage of an elaborated spiking network model over
theoretical models, which abstract detailed temporal dynamics
of individual neurons. We will be able to go into the
details of molecular mechanisms of memory acquisition and
consolidation (Abel and Lattal, 2001; Ito, 2002), if the HPC
technology advances further.

We were also able to examine how the number of neurons
could affect the stability of the network dynamics. In the present
model, we incorporated more than 1 million granule cells,
because the cats’ cerebellum has 1 million granule cells per
1 mm3 (Ito, 1984). The cerebellar granule cells constitute the
largest population in the whole brain (Azevedo et al., 2009). A
question arises: why does the cerebellum have such an enormous
number of granule cells? A theoretical study has demonstrated
that incorporating more granule cells makes the network more
reliable for controlling hardware robots (Pinzon-Morales and
Hirata, 2015). In the present study, we demonstrated that the
enormous number of granule cells makes signal transmission
fromMFs to PFs more robust as in Figure 6.

In summary, combination of large-scale, detailed spiking
network models with HPC technology for realtime simulation
will provide a strong means to study mesoscopic, detailed neural
mechanisms for macroscopic behavioral phenomenon that could
take very long time for days and weeks such as memory
formation.

4.4. Data Sharing
We will release the source code of the model used in this study
under an opensource license upon publication, to facilitate open
collaboration and ensure scientific reproducibility, on Cerebellar
Platform (https://cerebellum.neuroinf.jp/).
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SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale

spiking neural networks at speeds close to biological real-time. Rather than using

bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system

is a general-purpose ARM processor, allowing it to be programmed to simulate a wide

variety of neuron and synapse models. This flexibility is particularly valuable in the study of

biological plasticity phenomena. A recently proposed learning rule based on the Bayesian

Confidence Propagation Neural Network (BCPNN) paradigm offers a generic framework

for modeling the interaction of different plasticity mechanisms using spiking neurons.

However, it can be computationally expensive to simulate large networks with BCPNN

learning since it requires multiple state variables for each synapse, each of which needs

to be updated every simulation time-step. We discuss the trade-offs in efficiency and

accuracy involved in developing an event-based BCPNN implementation for SpiNNaker

based on an analytical solution to the BCPNN equations, and detail the steps taken

to fit this within the limited computational and memory resources of the SpiNNaker

architecture. We demonstrate this learning rule by learning temporal sequences of neural

activity within a recurrent attractor network which we simulate at scales of up to 2.0× 104

neurons and 5.1 107× plastic synapses: the largest plastic neural network ever to

be simulated on neuromorphic hardware. We also run a comparable simulation on a

Cray XC-30 supercomputer system and find that, if it is to match the run-time of our

SpiNNaker simulation, the super computer system uses approximately 45×more power.

This suggests that cheaper, more power efficient neuromorphic systems are becoming

useful discovery tools in the study of plasticity in large-scale brain models.

Keywords: SpiNNaker, learning, plasticity, digital neuromorphic hardware, Bayesian confidence propagation

neural network (BCPNN), event-driven simulation, fixed-point accuracy
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1. INTRODUCTION

Motor, sensory and memory tasks are composed of sequential
elements and are therefore thought to rely upon the generation
of temporal sequences of neural activity (Abeles et al., 1995;
Seidemann et al., 1996; Jones et al., 2007). However it
remains a major challenge to learn such functionally meaningful
dynamics within large-scale models using biologically plausible
synaptic and neural plasticity mechanisms. Using SpiNNaker,
a neuromorphic hardware platform for simulating large-scale
spiking neural networks, and BCPNN, a plasticity model based
on Bayesian inference, we demonstrate how temporal sequence
learning could be achieved through modification of recurrent
cortical connectivity and intrinsic excitability in an attractor
memory network.

Spike-Timing-Dependent Plasticity (Bi and Poo,
1998) (STDP) inherently reinforces temporal causality which
has made it a popular choice for modeling temporal sequence
learning (Dan and Poo, 2004; Caporale and Dan, 2008; Markram
et al., 2011). However, to date, all large-scale neural simulations
using STDP (Morrison et al., 2007; Kunkel et al., 2011) have been
run on large cluster machines or supercomputers, both of which
consume many orders of magnitude more power than the few
watts required by the human brain. Mead (1990) suggested that
the solution to this huge gap in power efficiency was to develop
an entirely new breed of “neuromorphic” computer architectures
inspired by the brain. Over the proceeding years, a number of
these neuromorphic architectures have been built with the aim
of reducing the power consumption and execution time of large
neural simulations.

Large-scale neuromorphic systems have been constructed
using a number of approaches: NeuroGrid (Benjamin et al.,
2014) and BrainScaleS (Schemmel et al., 2010) are built using
custom analog hardware; True North (Merolla et al., 2014) is
built using custom digital hardware and SpiNNaker (Furber
et al., 2014) is built from software programmable ARM
processors.

Neuromorphic architectures based around custom hardware,
especially the type of sub-threshold analog systems which Mead
(1990) proposed, have huge potential to enable truly low-power
neural simulation, but inevitably the act of casting algorithms
into hardware requires some restrictions to be accepted in
terms of connectivity, learning rules, and control over parameter
values. As an example of these restrictions, of the large-
scale systems previously mentioned, only BrainScaleS supports
synaptic plasticity in any form implementing both short-term
plasticity and pair-based STDP using a dedicated mixed-mode
circuit.

As a software programmable system, SpiNNaker will require
more power than a custom hardware based system to simulate
a model of a given size (Stromatias et al., 2013). However
this software programmability gives SpiNNaker considerable
flexibility in terms of the connectivity, learning rules, and ranges
of parameter values that it can support. The neurons and
synapses which make up a model can be freely distributed
between the cores of a SpiNNaker system until they fit within
memory; and the CPU and communication overheads taken

in advancing the simulation can be handled within a single
simulation time step.

This flexibility has allowed the SpiNNaker system to be used
for the simulation of large-scale cortical models with up to
5.0× 104 neurons and 5.0× 107 synapses (Sharp et al., 2012,
2014); and various forms of synaptic plasticity (Jin et al., 2010;
Diehl and Cook, 2014; Galluppi et al., 2015; Lagorce et al.,
2015). In the most recent of these papers, Galluppi et al.
(2015) and Lagorce et al. (2015) demonstrated that Sheik et al.’s
(2012) model of the learning of temporal sequences from audio
data can be implemented on SpiNNaker using a voltage-gated
STDP rule. However, this model only uses a small number
of neurons and Kunkel et al.’s (2011) analysis suggests that
STDP alone cannot maintain the multiple, interconnected stable
attractors that would allow spatio-temporal sequences to be
learnt within more realistic, larger networks. This conclusion
adds to growing criticism of simple STDP rules regarding their
failure to generalize over experimental observations (see e.g.,
Lisman and Spruston, 2005, 2010; Feldman, 2012 for reviews).

We address some of these issues by implementing spike-based
BCPNN (Tully et al., 2014)—an alternative to phenomenological
plasticity rules which exhibits a diverse range of mechanisms
including Hebbian, neuromodulated, and intrinsic plasticity—
all of which emerge from a network-level model of probabilistic
inference (Lansner and Ekeberg, 1989; Lansner and Holst, 1996).
BCPNN can translate correlations at different timescales into
connectivity patterns through the use of locally stored synaptic
traces, enabling a functionally powerful framework to study
the relationship between structure and function within cortical
circuits. In Sections 2.1–2.3, we describe how this learning rule
can be combined with a simple point neuron model as the
basis of a simplified version of Lundqvist et al.’s (2006) cortical
attractor memory model. In Sections 2.4, 2.5, we then describe
how this model can be simulated efficiently on SpiNNaker
using an approach based on a recently proposed event-driven
implementation of BCPNN (Vogginger et al., 2015). We then
compare the accuracy of our new BCPNN implementation with
previous non-spiking implementations (Sandberg et al., 2002)
and demonstrate how the attractor memory network can be
used to learn and replay spatio-temporal sequences (Abbott
and Blum, 1996). Finally, in Section 3.3, we show how an
anticipatory response to this replay behavior can be decoded from
the neurons’ sub-threshold behavior which can in turn be used to
infer network connectivity.

2. MATERIALS AND METHODS

2.1. Simplified Cortical Microcircuit
Architecture
We constructed a network using connectivity based on a
previously proposed cortical microcircuit model (Lundqvist
et al., 2006) and inspired by the columnar structure of
neocortex (Mountcastle, 1997). The network consists of NHC

hypercolumns arranged in a grid where each hypercolumn
consists of 250 inhibitory basket cells and 1000 excitatory
pyramidal cells evenly divided into 10 minicolumns. Within
each hypercolumn, the pyramidal cells send AMPA-mediated
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connections to the basket cells with a connection probability
of 10% and a weight of 0.4 nA (defined as a postsynaptic
current (PSC) amplitude). The basket cells then send GABAergic
connections back to the pyramidal cells with a connection
probability of 10% and a weight of 2 nA. The basket cells
are also recurrently connected through GABAergic connections,
again with a connection probability of 10% and a connection
weight of 2 nA. The functional outcome of this local connectivity
(excitatory to inhibitory and vice versa) is to enable winner-
take-all (WTA) dynamics within each hypercolumn. While the
strength of the local synapses remains fixed, all pyramidal cells
in the network are also recurrently connected to each other
through global AMPA and NMDA connections using plastic
BCPNN synapses (see Section 2.2): also with a connection
probability of 10%. All connections in the network have distance-
dependent synaptic delays such that, between two cells located

in hypercolumns H
pre
xy and H

post
xy , the delay is calculated based

on the Euclidean distance between the grid coordinates of the
hypercolumns (meaning that all local connections have delays
of 1ms):

t
H
pre
xy H

post
xy

d
=

dnorm

√

(

H
post
x −H

pre
x

)2
+

(

H
post
y −H

pre
y

)2

V
+ 1

(1)

Where conduction velocity V = 0.2mmms−1 and dnorm =
0.75mm.

2.2. Synaptic and Intrinsic Plasticity Model
The spike-based BCPNN learning rule is used to learn the
strengths of all global synaptic connections and the intrinsic
excitabilities of all pyramidal cells in the network described in
Section 2.1. The goal of the learning process is to estimate
the probabilities of pre- and postsynaptic neurons firing (Pi
and Pj respectively), along with the probability of them firing
together (Pij). Then, as Lansner and Holst (1996) describe, these
probabilities can be used to calculate the synaptic strengths and
intrinsic excitabilities of the network allowing it to perform
Bayesian inference. Tully et al. (2014) developed an approach
for estimating these probabilities based on pre- and postsynaptic
spike trains (Si and Sj respectively), defined as summed Dirac

delta functions δ(·) where t
f
i,j represent the times of spikes:

Si(t) =
∑

t
f
i

δ(t − t
f
i ) Sj(t) =

∑

t
f
j

δ(t − t
f
j ) (2)

These spike trains are then smoothed using exponentially
weighted moving averages to calculate the Z traces:

τzi
dZi

dt
=

Si

fmax1t
− Zi τzj

dZj

dt
=

Sj

fmax1t
− Zj (3)

Here, the maximum allowed firing rate fmax and spike duration
1t = 1ms combine with the lowest attainable probability
estimate ǫ = 1000

fmaxτp
introduced in Equation (5) to maintain a

linear mapping from neuronal spike rates to probabilities. For
more details on the Bayesian transformation entailed by these
equations, see Tully et al. (2014). The Z trace time constants τzi
and τzj determine the time scale over which correlations can be

detected and are inspired by fast biological processes such as Ca2+

influx via NMDA receptors or voltage-gated Ca2+ channels. The
Z traces are then fed into the P traces, where a coactivity term is
introduced:

τp
dPi

dt
= Zi − Pi τp

dPij

dt
= ZiZj − Pij τp

dPj

dt
= Zj − Pj (4)

The P trace time constant τp models long-term memory storage
events such as gene expression or protein synthesis. It can be set
higher to more realistically match these slow processes, but since
simulation time increases with higher τp values, in this work we
keep them just long enough to preserve the relevant dynamics.
Estimated levels of activity in the P traces are then combined to
compute a postsynaptic bias membrane current Iβj and synaptic
weight between pre- and postsynaptic neurons wij:

Iβj = βgain log(Pj + ǫ) wij = w
syn
gain log

Pij + ǫ2

(Pi + ǫ)
(

Pj + ǫ
) (5)

Here, βgain is used to scale the BCPNN bias into an intrinsic
input current to the neuron which is used to model an A-type
K+ channel (Jung and Hoffman, 2009) or other channel capable
of modifying the intrinsic excitability of a neuron (Daoudal and
Debanne, 2003). Similarly, w

syn
gain is used to scale the BCPNN

weight into a current-based synaptic strength.

2.3. Neuronal Model
We model excitatory and inhibitory cells as IAF neurons with
exponentially decaying PSCs (Liu and Wang, 2001; Rauch et al.,
2003). The sub-threshold membrane voltageVm of these neurons
evolves according to:

τm
dVm

dt
= −Vm + Rm

(

Is + Ia + Iβj
)

(6)

The membrane time constant τm and capacitance Cm determine
the input resistance Rm =

τm
Cm

through which input currents
from the afferent synapses (Is), spike-frequency adaption
mechanism (Ia) and the intrinsic input current from the BCPNN
learning rule (Iβj ) – described in Section 2.2—are applied. When
Vm reaches the threshold Vt a spike is emitted, Vm is reset to Vr

and α is added to the adaption current Ia. We use Liu andWang’s
(2001) model of spike-frequency adaption with the adaption time
constant τa:

τa
dIa

dt
= −Ia (7)

The synaptic input current to postsynaptic neuron j (Isj ) is
modeled as a sum of exponentially shaped PSCs from other
presynaptic neurons in the network:

τsyn
dIsj

dt
= −Isj +

∑

syn

n
∑

i=0

w
syn
ij

∑

t
f
i

δ(t − t
f
i ) (8)
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w
syn
ij indicates the weight of the connection between neurons i

and j [where syn ∈ (AMPA, GABA, NMDA) denotes the synapse

type], t
f
i represents the arrival time of spikes from presynaptic

neuron i (where there are n neurons in the network), and τsyn is
the synaptic time constant.

2.4. Simulating Spiking Neural Networks on
SpiNNaker
SpiNNaker is a digital neuromorphic architecture designed for
the simulation of spiking neural networks. Although systems
built using this architecture are available in sizes ranging
from single boards to room-size machines, they all share the
same basic building blocks—the SpiNNaker chip (Furber et al.,
2014). Each of these chips is connected to its six immediate
neighbors using a chip-level interconnection network with a
hexagonal mesh topology. Each SpiNNaker chip contains 18
ARM cores connected to each other through a network-on-chip,
and connected to an external network through amulticast router.
Each core has two small tightly-coupled memories: 32 KiB for
instructions and 64KiB for data; and shares 128MiB of off-
chip SDRAM with the other cores on the same chip. Although
this memory hierarchy is somewhat unusual, the lack of global
shared memory means that many of the problems of simulating
large spiking neural networks on a SpiNNaker system are shared
with more typical distributed computer systems. Morrison et al.
(2005) and Kunkel et al. (2012) developed a collection of
approaches for mapping such networks onto large distributed
systems in amemory-efficientmanner while still obtaining supra-
linear speed-up as the number of processors increases. The
SpiNNaker neural simulation kernel employs a very similar
approach where, as shown in Figure 1, each processing core
is responsible for simulating between 100 and 1000 neurons
and their afferent synapses. The neurons are simulated using a
time-driven approach with their state held in the tightly-coupled
data memory. Each neuron is assigned a 32 bit ID and, when a
simulation step results in a spike, it sends a packet containing
this ID to the SpiNNaker router. These “spike” packets are then
routed across the network fabric to the cores that are responsible
for simulating these synapses. Biological neurons have in the
order of 103 – 104 afferent synapses, so updating all of these every
time step would be extremely computationally intensive. Instead,
as individual synapses only receive spikes at relatively low rates,
they can be updated only when they transfer a spike as long as
their new state can be calculated from:

1. The synapse’s previous state.
2. The time since the last spike was transferred.
3. Information available from the time-driven simulation of the

postsynaptic neuron.

Using this event-driven approach on SpiNNaker is also
advantageous as, due to their sheer number, synapses need to be
stored in the off-chip SDRAM which has insufficient bandwidth
for every synapse’s parameters to be retrieved every simulation
time step (Painkras and Plana, 2013). Instead, on receipt of
a “spike” packet, a core retrieves the row of the connectivity
matrix associated with the firing neuron from SDRAM. Each

FIGURE 1 | Mapping of a spiking neural network to SpiNNaker. For

example a network consisting of 12 neurons is distributed between two

SpiNNaker cores. Each core is responsible for simulating six neurons (filled

circles) and holds a list of afferent synapses (non-filled circles) associated with

each neuron in the network. The SpiNNaker router routes spikes from firing

neurons (filled circles) to the cores responsible for simulating the neurons to

which they make efferent synaptic connections.

of these rows describes the parameters associated with the
synapses connecting the firing neuron to those simulated on
the core. Once a row is retrieved the weights are inserted
into an input ring-buffer, where they remain until any synaptic
delay has elapsed and they are applied to the neuronal input
current.

In addition to enabling large-scale simulations with static
synapses, this event-driven approach can, in theory, be extended
to handle any type of plastic synapse that meets the 3
criteria outlined above. However, simulating plastic synapses has
additional overheads in terms of memory and CPU load—both of
which are very limited resources on SpiNNaker. Several different
approaches have been previously developed that aim to minimize
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Algorithm 1 Algorithmic Implementation of STDP

function processRow(t)
for each j in postSynapticNeurons do

history← getHistoryEntries(j, told, t)

for each (tj, sj) in history do
wij ← applyPostSpike(wij, tj, told, si)

(tj, sj)← getLastHistoryEntry(t)
wij ← applyPreSpike(wij, t, tj, sj)
addWeightToRingBuffer(wij, j)

si ← addPreSpike(si, t, told)
told ← t

memory usage (Jin et al., 2010), reduce CPU load (Diehl and
Cook, 2014) or offload the processing of plastic synapses to
dedicated cores (Galluppi et al., 2015). Morrison et al. (2007)
also extended their work on distributed spiking neural network
simulation to include synaptic plasticity, developing an algorithm
for simulating plastic synapses in an event-driven manner, using
a simplified model of synaptic delay to reduce CPU and memory
usage. In this work, we combine elements of Diehl and Cook’s
(2014) and Morrison et al.’s (2007) approaches, resulting in
Algorithm 1 which is called whenever the connectivity matrix
row associated with an incoming “spike” packet is retrieved from
the SDRAM.Aswell as the weights of the synapses connecting the
presynaptic neuron to the postsynaptic neurons simulated on the
local core (wij), the row also has a header containing the time at
which the presynaptic neuron last spiked (told) and its state at that
time (si). The exact contents of the state depends on the plasticity
rule being employed, but as only the times of presynaptic spikes
are available at the synapse, the state often consists of one ormore
low-pass filtered versions of this spike train.

The algorithm begins by looping through each postsynaptic
neuron (j) in the row and retrieving a list of the times (tj) at
which that neuron spiked between told and t and its state at
that time (sj). In the SpiNNaker implementation, these times and
states are stored in a fixed-length circular queue located in the
tightly-coupled data memory to which a new entry gets added
whenever a local neuron fires. Next, the effect of the interaction
between these postsynaptic spikes and the presynaptic spike that
occurred at told is applied to the synapse using the applyPostSpike
function. The synaptic update is then completed by applying
the effect of the interaction between the presynaptic spike that
instigated the whole process and the most recent postsynaptic
spike to the synapse using the applyPreSpike function before
adding this weight to the input ring buffer. Finally, the header of
the row is updated by calling the addPreSpike function to update
si and setting told to the current time.

2.5. An Event-based, SpiNNaker
Implementation of Bayesian Learning
Equations (3)–(5) cannot be directly evaluated within the event-
driven synaptic processing scheme outlined in Section 2.4, but

as they are simple first-order linear ODEs, they can be solved to
obtain closed-form solutions for Z(t) and P(t). These equations
then need only be evaluated when spikes occur. Vogginger et al.
(2015) converted this resultant system of equations into a spike-
response model (Gerstner and Kistler, 2002) which, as it only

consists of linear combinations of e
−t
τz and e

−t
τp , can be re-framed

into a new set of new state variables Z∗i , Z
∗
j , P
∗
i , P
∗
j , and P

∗
ij. These,

like the state variables used in many STDP models are simply
low-pass filtered versions of the spike-trains and can be evaluated
when a spike occurs at time t:

Z∗i (t) = Z∗i (t
last)e

− 1t
τzi + Si(t) P∗i (t) = P∗i (t

last)e
−1t

τp + Si(t)
(9)

Z∗ and P∗ can now be stored in the pre and postsynaptic state
(si and sj) and updated in the addPreSpike function called from
algorithm 1; and when postsynaptic neurons fire. The correlation
trace, Pij can similarly be re-framed in terms of a new state
variable:

P∗ij(t) = P∗ij(t
last)e

−1t
τp + Si(t)Z

∗
j (t) (10)

P∗ij can now be stored alongside the synaptic weight wij in each

synapse and evaluated in the applyPreSpike and applyPostSpike
functions called from algorithm 1. The final stage of the event-
based implementation is to obtain the Pi, Pj and Pij values
required to evaluate (Equation 5) from the new state variables
and thus obtain wij and βj.

Pi(t) = ai
(

Z∗i (t)− P∗i (t)
)

(11)

Pij(t) = aij

(

Z∗i (t)Z
∗
j (t)− P∗ij(t)

)

(12)

With the following coefficients used for brevity:

τzij =

(

1

τzi
+

1

τzj

)−1

ai =
1

fmax

(

τzi − τp
)

aij =
1

fmax
2 (

τzj + τzi

) (

τzij − τp
) (13)

This approach makes implementing spike-based BCPNN on
SpiNNaker feasible from an algorithmic point of view, but
limitations of the SpiNNaker architecture further complicate the
problem. The most fundamental of these limitations is that, as
Moise (2012, p. 20) explains, for reasons of silicon area and
energy efficiency, SpiNNaker has no hardware floating point unit.
While floating point operations can be emulated in software,
this comes at a significant performance cost meaning that
performance-critical SpiNNaker software needs to instead use
fixed-point arithmetic. Hopkins and Furber (2015) discussed the
challenges of using fixed-point arithmetic for neural simulation
on the SpiNNaker platform in detail but, in the context of this
work, there are two main issues of particular importance. Firstly
the range of fixed-point numeric representations is static so, to
attain maximal accuracy, the optimal representation for storing
each state variable must be chosen ahead of time. Vogginger et al.
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(2015) investigated the use of fixed-point types for BCPNN as a
means of saving memory and calculated that, in order to match
the accuracy of a time-driven floating point implementation, a
fixed-point format with 10 integer and 12 fractional bits would be
required. However, not only is the model described in Section 2.2
somewhat different from the reduced modular model considered
by Vogginger et al. (2015), but the ARM architecture only allows
8, 16, or 32 bit types to be natively addressed. Therefore, we re-
evaluated these calculations for the SpiNNaker implementation
and chose to use 16 bit types for two reasons:

1. In order to implement the getLastHistoryEntry and
getHistoryEntries functions used in algorithm 1, each
neuron needs to store a history of Z∗j and P∗j values in the

tightly-coupled data memory, therefore minimizing the size
of these variables is important.

2. The SpiNNaker CPU cores can perform multiplication
operations on signed 16 bit values faster than it can on 32 bit
values, allowing more spikes to be transferred each time-step.

Based on a total of 16 bit, the number of bits used for the integer
and fractional parts of the fixed-point representation needs to
be determined based on the range of the state variables. As all
of the Z∗ and P∗ state variables are linear sums of exponential
spike responses and P∗ has the largest time constant, it decays
slowest meaning that it will reach the highest value. Therefore we
can calculate the maximum value which our fixed-point format
must be able to represent in order to handle a maximum spike
frequency of fmax as follows:

P∗max =
1

1− e
− 1

fmax×τp

(14)

In order to match the firing rates of pyramidal cells commonly
observed in cortex, low values of the maximum firing rate (fmax,
e.g., 20 or 50Hz) are often used with the BCPNNmodel described
in Section 2.2. On this basis, by using a signed fixed-point format
with 6 integer and 9 fractional bits, if fmax = 20Hz, traces with
τp < 3.17 s can be represented and, if fmax = 50Hz, traces with
τp < 1.27 s can be represented.

The second problem caused by the lack of floating point
hardware is that there is no standard means of calculating
transcendental functions for fixed-point arithmetic. This means
that the exponential and logarithm functions required to
implement BCPNNmust be implemented by other means.While
it is possible to implement approximations of these functions
using, for instance a Taylor series, the resultant functions are
likely to take in the order of 100 CPU cycles to evaluate (Moise,
2012), making them too slow for use in the context of BCPNN
where around ten of these operations will be performed every
time a spike is transferred. Another approach is to use pre-
calculated lookup tables (LUTs). These are particularly well suited

to implementing functions such as e
−t
τ where t is discretized to

simulation time steps and, for small values of τ , the function
decays to 0 after only a small number of table entries. While the
log(x) function has neither of these ideal properties, x can be
normalized into the form x = y × 2n : n ∈ Z, y ∈ [1, 2) so
a LUT is only required to cover the interval [1, 2) within which
log(x) is relatively linear.

3. RESULTS

3.1. Validating BCPNN Learning on
SpiNNaker with Previous Implementations
In this section we demonstrate that the implementation of
BCPNN we describe in Section 2.5 produces connection weights
and intrinsic excitabilities comparable to those learned by
previous models. To do this we used the procedure developed
by Tully et al. (2014) and the network described in Table 1

to compare two neurons, connected with a BCPNN synapse,
modeled using both our spiking BCPNN implementation and
as abstract units with simple, exponentially smoothed binary
activation patterns (Sandberg et al., 2002). We performed this
comparison by presenting the neurons with five patterns of
differing relative activations, each repeated for ten consecutive
200ms trials. Correlated patterns meant both neurons were firing
at fmax Hz or ǫ Hz each trial; independent patterns meant
uniform sampling of fmax Hz and ǫ Hz patterns for both neurons
in each trial; anti-correlated patterns meant one neuron fired at
fmax Hz and the other at ǫ Hz or vice-versa in each trial; both
muted meant both neurons fired at ǫ Hz in all trials; and post
muted meant uniform sampling of presynaptic neuron activity
while the postsynaptic neuron fired at ǫ Hz in all trials.

As Figure 2 shows, during the presentation of patterns in
which both units are firing, the responses from the abstract
model fall well within the standard deviation of the SpiNNaker
model’s responses, but as units are muted, the two models
begin to diverge. Further investigation into the behavior of
the individual state variables shows that this is due to the P∗

term of Equation (11) coming close to underflowing the 16 bit
fixed-point format when a long time has passed since the last
spike. This inaccuracy in the P∗ term is then further amplified
when the weights and intrinsic excitabilities are calculated using
(Equation 5) as for small values of x, log(x) approaches its vertical
asymptote. The standard deviations visible in Figure 2 reflect the
fact that for the spiking learning rule, the realization of Poisson
noise that determined firing rates was different for each trial, but
with a rate modulation that was repeated across trials.

3.2. Learning Sequential Attractors using
Spike-Based BCPNN
In this section we consider a functional use case of the the
modular attractor network described in Section 2.1 involving
learning temporal sequences of attractors. With asymmetrical
BCPNN time constants, it was previously proposed that this
network could self-organize spontaneously active sequential
attractor trajectories (Tully et al., 2014). We built a suitable
network using the neuron and plasticity models described in
Sections 2.2, 2.3; and the parameters listed in Table 2. Using this
network we employed a training regime—a subset of which is
shown in Figure 3A—in which we repeatedly stimulated all cells
in a mutually exclusive sequence of minicolumns for 50 training
epochs. Each minicolumn was stimulated for 100ms, such that
the neurons within it fired at an average rate of fmax Hz. During
training we disabled the term in Equation (8) that incorporates
input from the plastic AMPA and NMDA synapses meaning
that, while the weights were learned online, the dynamics of
the network did not disturb the training regime. A recall phase
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TABLE 1 | Model description of the BCPNN validation network.

(A) Model summary

Populations Presynaptic, postsynaptic, presynaptic input, postsynaptic

input

Connectivity One-to-one

Neuron model Leaky integrate-and-fire with exponential-shaped synaptic

current inputs and spike-frequency adaption (Liu and Wang,

2001)

Synapse model Current-based with exponential-shaped PSCs

Plasticity BCPNN AMPA synapses

Input Externally generated Poisson spike trains

Measurements Intrinsic bias current and synaptic weights

(B) Populations

Name Elements Size

Presynaptic Leaky IAF 1

Postsynaptic Leaky IAF 1

Presynaptic input External spike source 1

Postsynaptic input External spike source 1

(C) Connectivity

Source Target Pattern Weight

Presynaptic input Presynaptic One-to-one 2 nA

Postsynaptic input Postsynaptic One-to-one 2 nA

Presynaptic Postsynaptic One-to-one Plastic

(D) Neuron and synapse model

Type Leaky integrate-and-fire with exponential-shaped synaptic current

inputs and spike-frequency adaption (Liu and Wang, 2001) as

described in Section 2.3

Parameters τm = 10ms membrane time constant

Cm = 250 pF membrane capacitance

Vt = −55.4 mV threshold voltage

Vr = −70mV reset voltage

α = 0.0 nA adaption current (disabled)

τAMPA = 2.5ms AMPA synapse time constant

(E) Plasticity

Type BCPNN AMPA synapses as described in Section 2.2

Parameters fmax = 50Hz maximum spiking frequency

τzi
= 10ms presynaptic primary trace time constant

τzj
= 10ms postsynaptic primary trace time constant

τp = 1000ms probability trace time constant

w
syn
gain
= 1 nA weight gain

βgain = 1 nA intrinsic bias gain

(F) Input

Type Description

Externally generated Poisson spike trains As described in Section 3.1

After Nordlie et al. (2009).

FIGURE 2 | Spike-based BCPNN estimates abstract BCPNN for

different input patterns. Comparing weight and bias (inset) development

under different protocols when using abstract (dotted) and SpiNNaker (solid)

versions of the learning rule. SpiNNaker simulations were repeated 10 times

and averaged, with standard deviations illustrated by the shaded regions.

followed this learning phase in which a 50ms stimulus of fmax

Hz was applied to all cells in the first minicolumn of the
learned sequence. During both the training and recall phases we
provided background input to each cell in the network from an
independent 65Hz Poisson spike source. These Poisson spike
sources are simulated on additional SpiNNaker cores to those
used for the neural simulation algorithm described in Section 2.4.

We found that the training regime was able to produce the
recurrent connectivity required to perform temporal sequence
recall in the same serial order that patterns were presented
during training as shown in Figure 3B. Each sequence element
replayed as a learned attractor state that temporarily stifled
the activity of all other cells in the network due to WTA
and asymmetrically projected NMDA toward neurons of the
subsequent sequence element, allowing a stable trajectory
to form. Activity within attractor states was sharpened and
stabilized by learned auto-associative AMPA connectivity;
and sequential transitions were jointly enabled by neural
adaptation and inter-pattern heteroassociation via NMDA
synapses.

Because of the modular structure of the network described in
Section 2.1, this temporal sequence learning can be performed
using networks of varying scales by instantiating different
number of hypercolumns and linearly scaling thew

syn
gain parameter

of the connections between them. By doing this, we investigated
how the time taken to simulate the network on SpiNNaker scales
with network size. Figure 4 shows how these times are split
between the training and testing phases; and how long is spent
generating data on the host computer, transferring it to and
from SpiNNaker and actually running the simulation. As the
SpiNNaker simulation always runs at a fixed fraction of real-time
(for this simulation 0.5×), the simulation time remains constant
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TABLE 2 | Parameters for the modular attractor network.

(A) Model summary

Populations and connectivity Modular structure described in Section 2.1

Neuron model Leaky integrate-and-fire with exponential-shaped

synaptic current inputs and spike-frequency

adaption (Liu and Wang, 2001)

Synapse model Current-based with exponential-shaped PSCs

Plasticity BCPNN AMPA and NMDA synapses

Input Externally generated Poisson spike trains and

independent fixed-rate Poisson spike trains

Measurements Spiking activity, membrane voltages, intrinsic bias

current and synaptic weights

(B) Neuron and synapse model

Type Leaky integrate-and-fire with exponential-shaped synaptic current

inputs and spike-frequency adaption (Liu and Wang, 2001) as

described in Section 2.3

Parameters τm = 20ms membrane time constant

Cm = 250pF membrane capacitance

Vt = −50mV threshold voltage

Vr = −70mV reset voltage

α = 0.15 nA adaption current

τa = 300ms adaption time constant

τAMPA = 5ms AMPA synapse time constant

τGABA = 5ms GABA synapse time constant

τNMDA = 150ms NMDA synapse time constant

(C) Plasticity

Type BCPNN AMPA synapses as described in Section 2.2

Parameters fmax = 20Hz maximum spiking frequency

τzi
= 5ms presynaptic primary trace time constant

τzj
= 5ms postsynaptic primary trace time constant

τp = 2000ms probability trace time constant

w
syn
gain
= 0.546

NHC
nA weight gain

Type BCPNN NMDA synapses as described in Section 2.2

Parameters fmax = 20Hz maximum spiking frequency

τzi
= 5ms presynaptic primary trace time constant

τzj
= 150ms postsynaptic primary trace time constant

τp = 2000ms probability trace time constant

w
syn
gain
= 0.114

NHC
nA weight gain

βgain = 0.05 nA intrinsic bias gain

(D) Input

Type Description

Externally generated Poisson spike trains As described in Section 3.2

Independent fixed-rate Poisson spike trains As described in Section 2.1

After Nordlie et al. (2009).

as the network grows, but the times required to generate the data
and to transfer it grow significantly, meaning that when NHC =

16 (2.0× 104 neurons and 5.1× 107 plastic synapses), the total
simulation time is 146min. However, the amount of time spent

in several phases of the simulation is increased by limitations of
the current SpiNNaker toolchain. 84min is spent downloading
the learned weight matrices and re-uploading them for the
testing: A process that is only required because the changing
of parameters (in this case, whether learning is enabled or not)
mid-simulation is not currently supported. Additionally, the
current implementation of the algorithm outlined in Section 2.4
only allows neurons simulated on one core to have afferent
synapses with a single learning rule configuration. This means
that we have to run the training regime twice with the same
input spike trains, once for the AMPA synapses and once for
the NMDA synapses: Doubling the time taken to simulate the
training network.

Previous supercomputer simulations of modular attractor
memory networks have often used more complex neuron models
and connectivity (Lundqvist et al., 2010), making simulation
times difficult to compare with our SpiNNaker simulation due
to the simplifications we outlined in Section 2.1. In order to
present a better comparison, we built a network model with
the same connectivity as our SpiNNaker model and simulated
it on a Cray XC-30 supercomputer system using NEST version
2.2 (Gewaltig and Diesmann, 2007) with the spike-based BCPNN
implementation developed by Tully et al. (2014). NEST does not
include the adaptive neuron model we described in Section 2.3
so we used the adaptive exponential model (Brette and Gerstner,
2005): a simple point neuron model with spike-frequency
adaption.

As previously discussed SpiNNaker runs at a fixed-fraction
of real-time so we distribute our NEST simulations across
increasing numbers of Cray XC-30 compute nodes (each
consisting of two 2.5GHz Intel Ivy Bridge Xeon processors)
until the simulation completed in the same time as those
shown in Figure 4 for our SpiNNaker simulations. Table 3

shows the result of both these supercomputer simulations
and a second set with the time taken for the mid-simulation
downloading and re-uploading of weights—currently required
by the SpiNNaker software—removed. Due to this redundant
step and because NEST parallelizes the generation of simulation
data across the compute nodes, at all three scales, our
modular attractor network can be simulated using 2 compute
nodes. However, if we remove the time spent downloading
and re-uploading the weights, 9 compute nodes are required
to match the run-time of the SpiNNaker simulation when
NHC = 16.

While a more in-depth measurement of power usage is out of
the scope of this work, we can also derive approximate figures
for the power usage of our simulations running on both systems
based on the 1W peak power usage of the SpiNNaker chip and
the 30 kW power usage of a Cray XC-30 compute rack (Cray,
2013). While these figures ignore the power consumed by the
host computer connected to the SpiNNaker system; the power
consumed by the “blower” and storage cabinets connected to the
Cray XC-30; and assume that all CPUs are running at peak power
usage, they show that even in the worst case, SpiNNaker uses
45× less power than the Cray XC-30 and, if the limitations of the
current SpiNNaker software are addressed, this can be improved
to 200×.
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FIGURE 3 | Learning sequential attractor states. (A) Training. (B) Replay.

FIGURE 4 | Total simulation time on SpiNNaker.

3.3. Connectivity Patterns Show Different
Signatures in Membrane Potentials
The purpose of this section is to study how learning parameters
influence the resulting connectivity patterns and the effect of
learned connectivity on membrane dynamics during sequence

replay. For this purpose we vary two parameters of the learning
rule that control the time window within which correlations are
detected − τzi on the pre- and τzj on the postsynaptic side.
The network is trained using the same regime described in
Section 3.2 and two different configurations, one with τzi =

τzj on NMDA synapses, and one with τzi 6= τzj . If τzi and
τzj are equal, the Zi and Zj traces evolve in the same manner,
meaning that, as their dynamics propagate through the P traces
to the synaptic weights, the forward and reciprocal connections
between minicolumns develop symmetrically as shown in the top
row of Figure 5. However, when τzi 6= τzj , the Zi and Zj traces
evolve differently and, as the bottom row of Figure 5 shows,
asymmetrical connections develop between minicolumns. It is
important to note that the spiking activity during the training
regime is the same in both configurations and the shape of
the resulting connectivity results only from the learning time-
constants τzi and τzj .

In order to analyze the effect of the different learned
connectivity patterns shown in Figure 5, we studied the impact
of the two connectivity kernels on the subthreshold dynamics
of neurons during sequence replay. As described in Section 3.2,
after training, the trained sequence can be replayed by applying
a 50ms stimulus of fmax Hz into all cells of the first minicolumn
in the learned sequence. Later, in the sequence replay when the
stimulus has been removed, we recorded the membrane potential
of all of the neurons in the network and stored the point in time
when the firing rate of the respective minicolumn was maximal.
We then align the membrane potential traces to this point in time
and average them over all cells in a minicolumn. Interestingly,
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TABLE 3 | Comparison of power usage of modular attractor network simulations running on SpiNNaker with simulations distributed across enough

compute nodes of a Cray XC-30 system to match SpiNNaker simulation time.

Simulation SpiNNaker Cray XC-30

NHC time [min] # chips Peak CPU power usage [W] # compute nodes Peak CPU power usage [W]

4 17 6 6 2 938

9 50 12 12 2 938

16 146 21 21 2 938

4 9 6 6 4 1875

9 23 12 12 14a 6563

16 62 21 21 9 4219

Cray XC-30 power usage is based on the 30 kW power usage of an entire Cray XC-30 compute rack (Cray, 2013). SpiNNaker power usage is based on the 1W peak power usage of

the SpiNNaker chip (Furber et al., 2014).

Top: SpiNNaker simulation times include downloading of learned weights and re-uploading required by current software.

Bottom: Time taken to download learned weights, re-generate and re-upload model to SpiNNaker have been removed.
aWe are unsure why more supercomputer compute nodes are required to match the SpiNNaker simulation times when NHC = 9 than when NHC = 16. We assume this is an artifact of

the different scaling properties of the two simulators, but further investigation is outside of the scope of this work.

FIGURE 5 | Average strength of NMDA connections between attractors resulting from different learning time constants. Darker colors correspond to

larger synaptic weights. τzi
increases from left-to-right. Top, red row: Symmetrical kernel with τzj

= τzi
. Bottom, green row: Asymmetrical kernel with τzj

= 5ms.

as Figure 6 illustrates, these averaged and aligned membrane
responses show different characteristics for the network models
built on symmetric and asymmetric connectivity. Both network
types show similar membrane characteristics before the sequence
arrives at the minicolumn, but, the network with symmetric
connectivity shows a significantly slower decrease in membrane
potential after the sequence has passed. In contrast, the
network with asymmetric connectivity shows a strong after-
stimulus hyperpolarization due to the increased inhibitory
input originating from minicolumns later in the sequence
which get subsequently activated. The slower decrease in the
mean membrane potential in the symmetric network can be
explained by the excitatory projections in both directions of
the sequence providing excitatory current flow to previously

activated neurons. The implications of this experiment and
interpretations of these different characteristics is discussed in
Section 4.2.

4. DISCUSSION

The contribution of this study is threefold. Firstly, we have
shown that BCPNN can be efficiently implemented within
the constraints of the SpiNNaker neuromorphic architecture.
Secondly, we have shown how BCPNN can be used in a
functionally meaningful context to perform near real-time
learning of temporal sequences within a large-scale modular
attractor network—the largest plastic neural network ever to
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FIGURE 6 | Aligned average membrane potentials during sequence

replay for two different connectivities. The membrane potentials have

been recorded from all neurons in the trained network during sequence replay.

These membrane voltages have then been averaged and aligned to the time of

peak activity in the temporal domain (bold lines represent the mean, shaded

areas represent the standard deviation). The y-axis has been normalized to

improve visibility (0 corresponds to Vt and −1 corresponds to the minimal

membrane voltage in the sample). In the network with asymmetric connectivity

the mean membrane response shows a pronounced drop after the peak

response, whereas the network with symmetric connectivity does not.

Oscillatory behavior originates from switches between discrete attractor states

alternated by phases of inhibitory feedback.

be simulated on neuromorphic hardware. Finally, we have
demonstrated the value of SpiNNaker as a tool for investigating
plasticity within large-scale brain models by exploring how, by
changing a single parameter in the BCPNN learning rule, both
symmetric and asymmetric connectivity can be learned, which in
turn influence underlying membrane potential characteristics.

4.1. Learning Temporal Sequences in
Cortical Microcircuits
The total duration of temporal sequences is longer than the
time courses of individual cellular or synaptic processes and
therefore, such sequences are thought to be driven by circuit-
level phenomena although the intricacies of this relationship
have yet to be fully explored. The massively recurrent and
long-range nature of cortical connectivity, taken together with
the emergence of temporal sequences at fine scales and
distributed over spatial areas, suggests the presence of generic
cortical microcircuit mechanisms. The model presented here
is modularly organized into hypercolumns, each implementing
WTA dynamics (Douglas and Martin, 2004). This modular
structure also allowed us to vary the number of hypercolumns the

network contained without effecting its functionality (Djurfeldt
et al., 2008). Such distributed systems generally exhibit an
improved signal-to-noise ratio, error resilience, generalizability
and a structure suitable for Bayesian calculations (McClelland
et al., 1986; Barlow, 2001). Like their uniformly interconnected
counterparts, they can also exhibit high variability in their
spike train statistics (Litwin-Kumar and Doiron, 2012; Lundqvist
et al., 2012). Moreover, due to their capacity to exhibit a
rich repertoire of behaviorally relevant activity states, these
topologies are also well suited for information processing
and stimulus sensitivity (Lundqvist et al., 2010; Wang et al.,
2011).

Previous investigations have shown that the attractors which
emerge within such modular networks reproduce features of
local UP states (Lundqvist et al., 2006). This observation remains
consistent with the extension considered here since, in vivo,
UP state onsets are accompanied by the sequential activation
of cortical neurons (Luczak et al., 2007). This redundant neural
coding scheme should not necessarily be viewed in terms of
anatomical columns, but rather functional columns consisting
of subgroups of neurons with similar receptive fields that are
highly connected (Yoshimura et al., 2005) and co-active (Cossart
et al., 2003). Similar stereotypical architectures have been used as
building blocks for other unifiedmathematical frameworks of the
neocortex (Johansson and Lansner, 2007; George and Hawkins,
2009; Bastos et al., 2012).

The dynamics of the model consists of attractors, whose
activations produce self-sustaining spiking among groups of
neurons spread across different hypercolumns. Activity within
attractors is sharpened by the fast dynamics of the AMPA
receptor, until the network transitions to a subsequent attractor
due to neural adaptation and asymmetrical NMDA connectivity,
both of which have longer time constants of activation.
In this work we have shown how these dynamics could
be learned using BCPNN, a learning rule which offers an
alternative to phenomenological STDP rules that often require
complementary mechanisms due to their prevailing instability
(Kempter et al. 2001; Babadi and Abbott 2010; but see Gütig et al.
2003).

4.2. Sequence Anticipation and
Asymmetric Connectivity as Observed in
the Membrane Potential Dynamics
In both the symmetric and asymmetric networks, the stimulus-
aligned mean membrane potential traces show a similar rise
prior to sequence arrival which can be interpreted as a form
of anticipation of the impending activity peak. By anticipation
we mean the premature build-up of a neuronal response which
is becoming increasingly similar to the response when the
actual stimulus is present and represents the neural signature
of expectation or prediction of future input. Anticipation is
an important function of neural circuits and is observed not
only in early sensory structures such as the retina (Berry et al.,
1999; Hosoya et al., 2005; Vaney et al., 2012), but also in
downstream structures and cortical areas (Rao and Ballard, 1999;
Enns and Lleras, 2008) which are involved in more abstract
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cognitive tasks (Riegler, 2001; Butz et al., 2003). Anticipation
can also be regarded as a form of prediction of future events:
something which Bar (2007) and Bubic et al. (2010) argue is a
fundamental function of the brain. This predictive capability can
improve sensory perception (Yoshida and Katz, 2011; Rohenkohl
et al., 2012) and is important for other modalities such as
motor control and learning (Shadmehr et al., 2010; Schlerf
et al., 2012). However, the connectivity which implements this
predictive or anticipatory function, and the mechanisms which
give rise to it, are not well understood. We believe that BCPNN
learning helps fill this gap—as we discussed in Section 3.2,
it can learn functional connectivity at a network scale and,
as previously argued in this section, it exhibits anticipatory
behavior.

We studied the network response by looking at the membrane

potential dynamics prior to and after a stimulus and compared

the response of two network connectivities trained with different
learning parameters. As membrane potential dynamics are the

result of a multitude of parameters, we constructed identical
experimental settings in terms of input, to make sure that

the differences in the membrane potential dynamics can be

linked as closely as possible to the differences in the underlying
connectivity. That is, the only major difference between the two

settings is the characteristic shape of the connectivity (either
being symmetric or asymmetric, see Figure 5) resulting from

different learning parameters. Since the two models implement

a different flow of recurrent excitation, the gain parameters
in both networks have been adjusted so that both operate

in a similar activity regime in order to enable a meaningful
comparison of the temporal characteristics introduced by the

connectivity shape. The voltage traces arising from the different
network connectivities shown in Figure 6 exhibit different
post-stimulus characteristics during sequence replay, with a
faster hyperpolarization happening in networks with asymmetric
connectivity. Hence we propose that by aligning the average
membrane voltage of a population of neurons—in a perceptual
context, to its preferred stimulus and, in a task-related context,
to its peak activity—and then analyzing the post-stimulus
characteristics of this average voltage, the population’s afferent
connectivity can be inferred.

4.3. Asymmetric Connectivity Supports
Motion Preference
In the context of visual perception of motion, asymmetric
connectivity has been found to play an important role in
direction-sensitive ganglion cells in the retina (Kim et al., 2008;
Vaney et al., 2012). A previous study by Kaplan et al. (2013)
proposed asymmetric connectivity as a means of extrapolating
the trajectory of a moving stimulus in the absence of a stimulus:
similar, in many respects, to the experiment presented here.
Recently, this hypothesized tuning property-based connectivity
has been confirmed by the observation of neuronal modules
in mouse V1 that exhibit similar motion direction preference
(Wertz et al., 2015). The model we present here uses a
Hebbian-Bayesian rule to explain how such feature-selective
connectivity between neurons tuned to similar stimulus features

could arise. It could therefore serve not only as a framework
for modeling observed connectivity patterns and helping to
understand their functional implications, but also as a means
of linking experimentally observed connectivity with earlier
modeling studies (Kaplan et al., 2013) by explaining how
asymmetric connectivity can arise through learning.

The question of how a preferred sequence direction could be
learned and replayed is not only relevant for sensory systems,
but also other systems where sequence learning, generation
and replay are important (Luczak et al., 2015). We addressed
this question by training networks with both symmetric and
asymmetric connectivity using a single sequence direction. We
then triggered sequence replay in both networks in a similar
way to experiments by Gavornik and Bear (2014) and Xu
et al. (2012) which studied sequence learning in early visual
cortices. Models with symmetric connectivity can show sequence
replay in both directions, not only in the trained one. The
intuition being that if one were to employ the same training
protocol described in Section 3.2, one could replay the sequence
forwards or backwards by presenting a cue to the first or last
attractor. Instead of being directed by asymmetrical connectivity,
the preferred sequence trajectory would evolve according to
adaptation. Hence, the direction of the sequence during training
alone is not sufficient to create a preferred replay direction as
observed in experiments (Xu et al., 2012). Instead, we argue
that the asymmetric connectivity caused by a difference in the
learning parameters, i.e., an unequal temporal correlation time
window, is necessary to replay sequences in only the trained, and
therefore preferred, direction.

4.4. Results in Context of Anatomical Data
The presented model addresses the question of how connectivity
emerges at a cellular and network level in response to temporally
varying stimuli. Through usage of different learning time
constants, connectivity kernels of varying widths develop as
shown in Figure 5. There exists a large body of anatomical
evidence reporting regional variations in cortical circuitry in
terms of structural features such as dendritic morphology and the
density of dendritic spines (see e.g., Jacobs and Scheibel, 2002;
Elston, 2003 for reviews). In the visual system the hierarchical
organization of areas (Riesenhuber and Poggio, 1999) is reflected
in their varying dendritic complexity. When compared to areas
such as V1, V2, and V4 which respond to simpler visual features,
areas associated with more complex functionality also exhibit
more complex dendritic morphologies and have a higher number
of connections (Jacobs and Scheibel, 2002; Elston and Fujita,
2014).

It stands to reason that the structural and electrophysiological
differences observed in both pyramidal cells and interneurons
influences activity on a cellular level (Spruston, 2008), shaping
the way in which information is integrated and therefore the
functional roles of both the individual cells and the entire
circuit (Elston, 2003). These regional variations appear to be
consistent across species and to change during development (see
Elston and Fujita, 2014 for a recent review). Pyramidal cells in
V1 reduce their dendritic complexity and those in inferotemporal
and prefrontal areas grow larger dendritic structures over
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the first months and years of development. In the light of
the presented model, these observations could lead to the
interpretation that reducing the dendritic extent of pyramidal
cells mirrors an improved perceptual precision in V1 as finer
temporal correlations are detected (represented by short learning
time constants τzi,j and smaller dendritic extent as shown in
the panels on the left side of Figure 5). In contrast, as more
abstract associations are learned, pyramidal cells in higher areas
grow more spines over larger dendritic territories. This allows
these cells to integrate information from more diverse sources,
requiring integration and association to occur over longer time
scales (larger τzi,j ). In this context, it is important to note that the
learning time constants may not necessarily equal the synaptic
time constants (which are determined by receptor and channel
kinetics), but could vary depending on the area and with it the
function or task to be learned.

Despite the fact that our model uses point neurons and thus
does not directly represent the dendritic field, we argue that
the learning time-constants determine a neuron’s capability to
integrate information over time which – given a topographic
stimulus representation such as that seen in V1—could be
linked to the size of the dendritic field of a neuron. Hence, the
presented learning framework offers the possibility to study these
arguments in more quantitative detail.

4.5. Scaling the Modular Attractor Model
In Section 3.2 we presented simulations of the modular
attractor network model described in Section 2.1 with up
to 16 hypercolumns, connected using sparse, random 10%
global connectivity. At this scale each pyramidal cell in the
network receives 4.0× 103 afferent excitatory synapses but—if
the model were scaled up to, for example, the scale of the mouse
neocortex with approximately 1.6× 107 neurons (Braitenberg
and Schüz, 2013)—each pyramidal cell would receive 1.3× 106

afferent synapses. As we discussed in Section 4.4, pyramidal cell
connectivity varies widely across the layers and areas of the
neocortex. However, in this section we base our discussion of
the scaling properties of our model on the assumption that each
pyramidal cell receives 8.0× 103 afferent synapses. This number
is consistent with averages calculated across cortical layers and
areas in mice (Braitenberg and Schüz, 2013), cats (Beaulieu
and Colonnier, 1989) and humans (Pakkenberg et al., 2003).
The reason this number is significantly lower than the one
obtained by naïvely scaling our current model is because of the
“patchy” nature of long-range cortical connectivity (Goldman
and Nauta, 1977; DeFelipe et al., 1986; Gilbert and Wiesel,
1989; Bosking et al., 1997). Specifically, each pyramidal cell
only connects to around 10, approximately hypercolumn-sized,
clusters of neurons located within a radius of a few millimeters.
Additionally, while each hypercolumn in our model contains 10
minicolumns, biological hypercolumns typically have closer to
100 (Mountcastle, 1997; Buxhoeveden and Casanova, 2002). This
means that, because of the winner-take-all dynamics within each
hypercolumn, while 10% of neurons in our model are active
at any given time, only 1% would be active in a more realistic
model.

As Sharp and Furber (2013) discuss, when simulating spiking
neural networks on SpiNNaker, the majority of CPU time is
spent within the event-driven synaptic processing stage, making
the CPU load highly dependent on the rate of incoming
synaptic events (a single spike innervating a single synapse). The
combined effect of the more realistic global connectivity and
sparser activity discussed in the previous paragraph would be
to reduce the rate of incoming synaptic events by a factor of 5
when compared to our current model. This means that a model
with more realistic connectivity could actually run faster than the
current model on SpiNNaker - Potentially in biological real-time
rather than the 0.5× real-time we use in this work.

However, as we discussed in Section 3.2, the time spent
actually running simulations on SpiNNaker is often dwarved by
the time spent generating simulation data on the host computer
and transferring it to and from the SpiNNaker system. One way
of reducing the time taken to generate the simulation data and
upload it to SpiNNaker would be to perform some of the data
generation on SpiNNaker itself. The most obvious target for this
approach would be the generation of the connectivity matrices
as, not only do these represent the bulk of the uploaded data,
but they are typically defined probabilistically meaning that they
could be generated based on a very small uploaded definition.
While this approach would undoubtedly reduce the time taken to
generate and upload the simulation data, even the 1min currently
taken to download the results at the end of the simulation would
grow to several hours if the network was scaled up to the size of
even amouse’s neocortex. These slow upload and download times
are due to current simulations all having been run on single board
SpiNNaker systems, connected to the host computer through a
single ethernet link. While the theoretical bandwidth of this link
is 100Mbit s−1, inefficiencies in the current SpiNNaker system
software reduce the effective bandwidth to only a few MiB s−1.

Not only is work currently underway to improve the
bandwidth of the ethernet links, but in the case of large-scale
network simulations running across multiple SpiNNaker boards,
if the host computer is powerful enough and connected to
the SpiNNaker system through a sufficiently fast network, data
can be transferred to multiple SpiNNaker boards in parallel.
Furthermore, if still more bandwidth is required, each SpiNNaker
board also has several high-speed serial connectors which could
be used for transferring data to and from SpiNNaker at the
full 1 Gbit s−1 bandwidth of the chip-level interconnect network.
Together, the improvements to the scalability of the model
discussed in this section would also act to further increase the
power efficiency of SpiNNaker when compared to traditional
super computer systems that we briefly discuss in Section 3.2.

4.6. Extensions of BCPNN on SpiNNaker
and other Future Considerations
Since we have shown that BCPNN learning is possible on
SpiNNaker, the implementation we describe in Section 2.5
could be extended to support spike-based reinforcement
learning (Izhikevich, 2007) by adding an extra level of E (i.e.,
“eligibility”) traces with time constants between those of the
Z and P traces (Tully et al., 2014). Representing downstream
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cellular processes that interact with increased intracellular Ca2+

concentrations (Yagishita et al., 2014), E traces propagate into
the P traces at a rate previously described as κ (Tully et al.,
2014). The κ parameter models the delivery of delayed reward
signals in the form of interactions with global neuromodulatory
systems, which have been linked to the emergence of sequential
activity (Gavornik and Bear, 2014; Ikegaya, 2004). Using this
extended BCPNN model, the modular attractor memory model
we describe in Section 2.1 could be extended to include basal
ganglia input (Berthet et al., 2012), allowing it to switch between
behavioral sequences when this might be a beneficial strategy for
successful task completion (Ponzi and Wickens, 2010).

Similarly, Vogginger et al.’s (2015) original event-driven
BCPNNmodel includes a set of E∗ state variables which are used
to represent the components of the spike-response model arising
from E trace dynamics. Though omitted here, the SpiNNaker
BCPNN implementation could be extended to include these
traces at the cost of some extra computational cost, and the
memory required to store an additional 16 bit trace with each
synapse and with each entry in the postsynaptic history structure.
In Section 3.1 we showed that by using a 16 bit fixed-point
representation for the Z∗ and P∗ state variables, we can produce
results comparable to previous floating-point implementations
when both τp and fmax are relatively small. However, this
approach doesn’t scale to the type of model described by Fiebig
and Lansner (2014) where learning time constants span many
orders of magnitude. In these situations, it may be necessary to
use a 32 bit fixed-point representation for the P∗ traces, further
increasing the memory and computational cost of the learning
rule.

As spikes from neuromodulator-releasing populations can
arrive at the synapse at any time, integrating spike-based
reinforcement learning into an event-driven, distributed
simulation requires incorporating the times of modulatory as
well as postsynaptic spikes into algorithm 1. Because entire
populations of neuromodulator-releasing neurons can affect the
modulatory input received by a single synapse, the per-neuron
history structure discussed in Section 2.4 is not a viable means
of storing them. Potjans et al. (2010) extend Morrison et al.’s
(2007) STDP algorithm to support neuromodulated learning
by introducing “volume transmitter” populations which handle
all the incoming modulatory input to a virtual “volume.”
These populations maintain a spike-history of all incoming
modulatory spikes which they deliver to the synapses of neuronal
populations within this volume, both at presynaptic spike times
and after a fixed period so as to ‘flush out’ the spike-history
data structure and allow it to be kept relatively small. This
approach has the potential to map well to the SpiNNaker
architecture and could be used as the basis of a future SpiNNaker
implementation of spike-based reinforcement learning using
BCPNN.

A benefit of the model proposed here is its robustness and
flexibility. Non-sequential attractor networks without learning
have previously been emulated on a neuromorphic microchip
(Pfeil et al., 2013) and on a simulated version of the BrainScaleS
system (Petrovici et al., 2014). Though not shown here, the
connectivity required by these types of randomly hopping
attractor networks can also be learned. Variations of this

network run on supercomputers have been shown to account
for disparate cognitive phenomena including perceptual rivalry
and completion (Kaplan and Lansner, 2013); attentional blink
(Lundqvist et al., 2006; Silverstein and Lansner, 2011); and
diverse oscillatory regimes (Lundqvist et al., 2010). But our
model was a reduced version of previous detailed ones insofar
that we did not utilize Hodgkin-Huxley neurons with calcium-
dependent potassium channels or regular spiking non-pyramidal
cells; nor did we explicitly model connections among basket
cells, saturating synapses, a Vm-dependent Mg2+ blockade or
short-term depression.

A problem not stressed by the aforementioned models is how
the connectivity required for stable activity propagation might
be learned (Wörgötter and Porr, 2005; Kunkel et al., 2011),
despite the biochemical (Peters et al., 2014) andmetabolic (Picard
et al., 2013) changes accompanying learned sequential behaviors.
Several promising approaches have been developed (Sussillo and
Abbott, 2009; Laje and Buonomano, 2013; Hennequin et al.,
2014), albeit with biological motivations driven more from
the perspective of algorithmic optimization, rather than from
bottom-up neural processing. Here, we have shown that activity
could propagate through recurrent cortical microcircuits as a
result of a probabilistic learning rule based on neurobiologically
plausible time courses and dynamics. The model predicts that
the interaction between several learning and dynamical processes
constitute a compound mnemonic engram that can flexibly
generate step-wise sequential increases of activity within pools of
excitatory neurons. We have shown that this large-scale learning
model can be efficiently simulated at scale using neuromorphic
hardware and our simulations suggest that flexible systems
such as SpiNNaker offer a promising tool for the study of
collective dynamical phenomena emerging from the complex
interactions occurring between individual neurons and synapses
whose properties change over time.
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Prior odor experience has a profound effect on the coding of new odor inputs by animals.

The olfactory bulb, the first relay of the olfactory pathway, can substantially shape the

representations of odor inputs. How prior odor experience affects the representation of

new odor inputs in olfactory bulb and its underlying network mechanism are still unclear.

Here we carried out a series of simulations based on a large-scale realistic mitral-granule

network model and found that prior odor experience not only accelerated formation of the

network, but it also significantly strengthened sparse responses in the mitral cell network

while decreasing sparse responses in the granule cell network. This modulation of sparse

representations may be due to the increase of inhibitory synaptic weights. Correlations

among mitral cells within the network and correlations between mitral network responses

to different odors decreased gradually when the number of prior training odors was

increased, resulting in a greater decorrelation of the bulb representations of input odors.

Based on these findings, we conclude that the degree of prior odor experience facilitates

degrees of sparse representations of new odors by the mitral cell network through

experience-enhanced inhibition mechanism.

Keywords: odor representation, prior experience, sparse representation, olfactory bulb, large scale network

INTRODUCTION

Prior sensory experience is very important for animals in learning and processing novel incoming
signals. In olfaction, prior odor experience can significantly improve the ability of the animal to
discriminate new odor inputs (Mandairon et al., 2006a,b,c; Mandairon and Linster, 2009; Sinding
et al., 2011). The olfactory bulb is the first relay of the olfactory pathway, and encodes odor inputs as
the network responses of mitral cells (Kay and Sherman, 2007; Mandairon and Linster, 2009). The
olfactory bulb has been observed to encode signals in a spatiotemporally sparse and decorrelated
manner (Khan et al., 2010; Yu et al., 2014). Moreover, it has been observed that mitral cells become
less responsive after prior odor exposure (Buonviso et al., 1998; Buonviso and Chaput, 2000;
Fletcher and Wilson, 2003; Mandairon and Linster, 2009; Kato et al., 2012). On the other hand,
it has been shown that interneurons may become more (Mandairon et al., 2008) or less (Kato et al.,
2012) responsive with new odors.

In previous experimental and computational studies, the numbers of prior odor experiences
and new incoming odors are limited. How an animal’s prior experience with odorants affects the
representation by the olfactory bulb (i.e., the firing patterns of mitral and granule cells) in response
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to new odors is an open question. Considering the limitations of
current experimental techniques, it is nearly impossible to access
the synaptic dynamics or neuronal response to odor inputs in
the olfactory bulb network at a large scale. However, large-scale
supercomputer simulation of realistic olfactory bulb models has
been employed to carry out a series of simulations examining
these issues (Yu et al., 2013, 2014; Migliore et al., 2014, 2015).
Our previous reports have shown that a sparse spatial spiking
representation of specific odor signals can emerge naturally from
mitral-granule interactions and can be realistically implemented
by our model via balanced excitatory-inhibitory synapses (Yu
et al., 2013, 2014). Here, we examine how and to what extent
prior odor experience modulates the excitatory and inhibitory
interactions and how they shape odor representations.

To address these issues, we performed a series of simulations
based on a previously established large-scale olfactory bulbmodel
(Yu et al., 2013, 2014). The simulation results show that prior
odor experience can accelerate the formation of sparseness in
the mitral cell network in response to new odors. Furthermore,
the sparseness of the mitral cell network is increased but the
sparseness of the granule cell network is decreased with an
increasing number of prior training odors. Further analysis
demonstrated that this phenomenon is accompanied by a
nonlinear change in the excitatory and inhibitory synaptic
weighting of the network. Mitral cell network responses
demonstrated a gradual increase in their intrinsic decorrelation
property, suggesting an increased odor discrimination ability.

MATERIAL AND METHODS

Computational Simulations
All simulations were carried out with the NEURON simulation
program v7.3 (Hines and Carnevale, 1997, 2001) on a Cray
XC30 system (INCF, Sweden). All the present work was based
on a previously verified scaled-up olfactory bulb model (Yu
et al., 2013, 2014). Briefly, The network was composed of
multi-compartment canonical models of 500 mitral and 10,000
granule cells, implemented as described in our previous studies
(Migliore and Shepherd, 2008; Migliore et al., 2010).The model
uses a reduced number of MCs and granule cells (glom: MC:
GC = 1: 5: 100). As we have already explained in detail in
a previous paper (Yu et al., 2013), the reason for this choice
is that our main aim with this model is to understand the
basic processes underlying lateral and feedback inhibition in
a network. To this purpose the full number of cells is not
needed, especially in the presence of experimental data limited
to a very small subset of glomeruli; however, the relative ratio
between mitral and granule cells is consistent with experimental
estimations, validated against a number of experimental findings
(Willhite et al., 2006; Shusterman et al., 2011). The canonical
model for mitral cells was implemented with 312 compartments
representing an axon, the soma, the apical dendrite, and two
lateral dendrites each 1.5mm in length, in the range indicated
by anatomical measurements (Mori et al., 1981). Real mitral
cells have a number of lateral dendrites that cover a relatively
large, bidimensional surrounding area. From this point of view,

our simplifying choice of using only two lateral dendrites
per mitral cell has the obvious limitation that, since many
glomeruli are at variable distances from the single projection
tract, the interactions between mitral cells belonging to specific
neighboring glomeruli are not precisely represented. However,
our additional choice to project the glomeruli into a single tract,
results in the interactions of a given mitral cell with many nearby
mitral cells still holding in a generic sense, so that the model gives
a relatively accurate reflection of these population interactions
within the mitral-granule network. In this way we were able to
maintain the requirements for computational resources within a
reasonable limit. An indirect proof of the overall quality of this
model is its qualitative agreement with a number of experimental
findings (Yu et al., 2013). Uniform passive properties were used,
with Ra = 150 �·cm, τm = 20ms, and Rm and Cm adjusted to
obtain an input resistance of about 100 M�. Resting potential
was set at -65mV and temperature at 35◦C. Cells weremodeled as
regular firing cells (Migliore et al., 2005), with Na, KA, and KDR
conductances uniformly distributed over the entire dendritic tree
(Bischofberger and Jonas, 1997). Kinetics for the Na conductance
were from hippocampal pyramidal neurons (Migliore et al.,
1999), whereas those for KA and KDR were from mitral cell
data (Wang et al., 1996). Granule cells were modeled with a
soma and a 20 segment radial dendrite (250µm of total length)
representing the dendritic tree. Na+ and KA channels were
distributed throughout (Schoppa and Westbrook, 1999; Pinato
and Midtgaard, 2005; Zelles et al., 2006) whereas KDR was
present only in the soma (Schoppa and Westbrook, 1999).

Effective dendrodendritic coupling between granule cell
synapses and mitral cell secondary dendrites was implemented
by connecting a GC synapse, containing the same proportion of
AMPA and NMDA channels, with the appropriate compartment
of mitral cell GABA channel-containing secondary dendrites.
The details of the synaptic mechanisms have been described
in our previous work (Yu et al., 2013, 2014). It should
be noted that we applied a generic use-dependent plasticity
rule to the dendrodendritic connection. Briefly, all synaptic
weights started at zero and, in response to an odor input, the
components (inhibitory or excitatory) of each dendrodendritic
synapse were independently modified according to local spiking
activity in the lateral dendrite of the mitral cell or the granule
cell synapse. After each spike, the peak conductance (w) and
the state (p) of any given synapse were updated from their
current value w{exc,inh},p = gmax,{exc,inh}·S(p) to a new value.
The new values were calculated according to the instantaneous
presynaptic interspike interval (ISI) (see Migliore et al., 2007) as
w{exc,inh},p+1 = gmax,{exc,inh}·S(p+1). The value of p was limited
to the range 0–50, and is subjected to the classical scheme 1

= {0,+1,−1} (Stanton, 1996) in which1 = 0 for an ISI≥ 250ms
(i.e., no changes for spike rates ≤ 4Hz), 1 = −1 for 33 < ISI <

250ms (LTD in the range of 4–30Hz), and 1 = 1 for ISI≤ 33ms
(LTP for a spike rate≥ 30Hz). The sigmoidal activation function
S(p) was defined as S (p) = 1/{1+exp[(25-p)/3]} (Haykin, 1994).
In this way, the weight (i.e., the peak synaptic conductance) of
any given synapse could transition from a fully depressed (w≈ 0,
for p = 0) to a fully potentiated state (w ≈ gmax, for p = 50), or
vice-versa, over a span of 50 consecutive spikes of the appropriate
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frequency. At the beginning of a simulation p = 0, the spikes
resulting in values of p < 0 or > 50 were ignored.

It should be stressed that synaptic plasticity is fundamental
to any dynamic network. Although in the mitral-granule circuit
it has not been observed directly, we consider this lack of
information as a shortcoming of the experimental techniques
rather than a demonstration that there is no plasticity in the
olfactory bulb. Indeed, recent studies have shown more or less
direct evidence for long term plasticity of olfactory input in
mitral cells (Ennis et al., 1998; Ma et al., 2012), and in granule
cells (Patneau and Stripling, 1992; Gao and Strowbridge, 2009;
Arenkiel et al., 2011). Also note that the plasticity rule used in
this model has already been shown (Yu et al., 2013) to generate
synaptic clusters and firing patterns in qualitative agreement
with experimental findings. As discussed in detail elsewhere
(Xiong and Chen, 2002; Migliore and Shepherd, 2008), the
formation of synaptic clusters consistent with those observed
experimentally is an extremely robust process that can be
understood by considering the follow dynamics: (a) a strong odor
input causes mitral cells to fire at high-frequency; (b) somatic
APs backpropagate along the lateral dendrites and potentiate
excitatory mitral–granule synapses along their way, activating
granule cells; (c) granule cells begin to fire at high-frequency,
potentiating inhibitory synapses on the lateral dendrites of
mitral cells, (d) inhibition from granule cells hinders AP back-
propagation as it travels far from the soma, thus reducing, locally,
the firing frequency of mitral and granule cells, and (e) this finally
results in the selective depression of synapses far from the soma
of the active mitral cell. Therefore, as long as: (1) action potentials
backpropagate along the mitral cell lateral dendrites, (2) granule
cells form dendrodendritic connections, and (3) LTD and LTP are
induced by different levels of synaptic activity, a columnwill form
independently from the specific learning rule. This mechanism is
robust and independent of the plasticity rule used to update the
synaptic weights during a simulation (Migliore et al., 2007, 2010);
we have tested it with hebbian, non-hebbian, and spike-time-
dependent plasticity, obtaining in all cases the same qualitative
result (i.e., the formation of a column).

It should be noted that in this paper we were interested in the
results obtained for a relatively high odor concentration, which is
needed to form glomerular units as observed in the experiments.
The overall amount of LTP or LTD obtained in a real system,
and its overall effect on the I/O properties, will of course depend
from the actual plasticity rules in effect for mitral and granule
cells. There are no sufficient experimental indications on these
processes. However, we stress that the plasticity rule used in
this model has already been shown (Yu et al., 2013) to generate
synaptic clusters and firing patterns in qualitative agreement with
experimental findings.

Other details of the model were identical to those described
previously (Yu et al., 2013, 2014). The simulation codes used to
run the simulations described in the present work are available in
the ModelDB database (http://senselab.med.yale.edu/modeldb,
accession number 144570), with the exception of run control
files. Kinetic equations and implementation details for all ionic
currents are described in these model files.

Odor Input Paradigm
In our model, the network contains 100 glomeruli, 500 mitral
cells, and 10,000 granule cells. The 100 glomeruli spatially
distributed within which 74 glomeruli are chosen to have active
responses to represent the spatial responses to 72 different odor
stimuli. Each glomerulus makes synaptic connections with five
mitral cells. For those 74 glomeruli, there are 370 spatially
distributed mitral cells connected to them. The other 130 mitral
cells are connected to other 26 glomeruli (which could be
stimulated by new odors, other than the present 72 odors). We
distributed them in such a way to have a roughly uniform overall
spatial distribution of glomeruli. Note that although there is
no odor input feeding to those 130 mitral cells, their firing is
modulated by the random background activity and by the lateral
inhibition received from granule cells that are connected with
odor-activated mitral cells. As described in our previous work,
72 odor inputs were used for simulations (Yu et al., 2013, 2014).
The basic activation strength (0–4) for each glomerulus and
each odor is taken directly from the experimental values kindly
provided by Mori et al. (2006). To simulate an odor presentation,
these values are multiplied by a coefficient representing the odor
concentration, and that resulted in an aggregate synaptic input
up to 10 nS, as explained in details in the Methods section of Yu
et al. (2013).

A new model of the olfactory bulb, representing the actual
3D layout of the mitral-granule cell network, has been recently
developed (e.g., Migliore et al., 2015). This model represents in
a very realistic way the possible interactions between glomeruli
located within the dendritic field of mitral cells, and it would be
especially useful to study natural odors, which exhibit a rather
broad and dense input. However, it requires large computational
resources. With the particular set of inputs we are considering in
this paper, i.e., single monomolecular odors with rather sparse
and segregated inputs, such a model would not give results
qualitatively different from those obtained with the 1D model.

To represent the range of intensities with adequate sensitivity
(i.e., including the weakest concentration without saturating
the network at the highest concentration), we set the peak
conductance sensitivity to give suprathreshold responses to levels
3 and 4. Then, we defined strong inputs as strengths of 3 or 4
and weak inputs as strengths of 0, 1, or 2 (Figure 1A). All odor
inputs were presented over 4–10Hz. To address how prior odor
experience interferes with the subsequent sparse representation
of new odors, a series of odor inputs was used to train the
network in sequence. In one odor experience condition, the first
odors were presented within the first 5 s, and after a 5 s rest,
another odor input was presented for the next 5 s (Figure 1C). In
other experience conditions (for instance, five odors experience),
more odor series were presented similarly to the single odor
experience condition: each odor input was presented for 5 s, with
a 5 s resting state between each presentation. The last odor input
was denoted as the new odor input, and all prior odor inputs
were defined as experienced odors, implying that in the five
odors experience condition, a total of six odor inputs were used.
For the control condition, only the new odor inputs were given
at the time when the new odors were given in the experience
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FIGURE 1 | Mitral cell network responses in naïve and prior odor

experiences conditions. (A) Two example odor input strengths to each

mitral cell. k7-1, heptyl methyl ketone; 8OH, octanol. (B) A raster plot shows

the mitral cell network response in the naïve condition. k7-1 was delivered at

the 10th second after a resting state (each mitral cell fires spontaneously and

randomly at a low frequency) of 5 s. (C) A raster plot shows the mitral cell

network response to the new odor input k7-1 in the single odor input (8OH)

experience condition. Red rectangles represent the time elapsed to reach a

stable sparseness level for the network response in different conditions.

conditions (Figure 1B). Unless otherwise noted, all experienced
odors during training were presented in order from low level to
high level of input strength.

Sparseness Calculation
The method for the sparseness calculation of network response
was identical to our previous work (Yu et al., 2014). Briefly, based
on previous work (Vinje and Gallant, 2000; Franco et al., 2007),
the sparseness of response to a given stimulus can be calculated
as follows:
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where S is the sparseness of the network in one period of odor
input (from the beginning of one input to the beginning of the
next odor input); ri is the mean firing rate of mitral cell i in
that period; N is the total number of mitral cell (500). A high
sparseness value in our present work indicates only a few neurons
with high firing rates.

Correlation between Mitral Cell Firing in a
Network
To calculate the correlation between mitral cell firing in a
network, we used a coherence measure based on the normalized
cross-correlation of neuronal pairs in the network. The coherence
between two mitral cell i and j was measured by their cross-
correlation of spike trains at zero time lag within a time bin of
τ . Precisely, supposing that a long time interval T (one period of
odor input) was divided into small bins of τ , and that two spike

trains (value of 0 or 1) were given by X(l), Y(l), with l = 1, 2, . . .K
(here T/K = τ ), respectively, a coherence for the pair (Kij) was
calculated as follows (Wang and Buzsaki, 1996; Yu et al., 2014):

Kij(τ ) =

∑K
l=1 X(l)Y(l)

√
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√
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.

And then, the correlation between mitral cells across the whole
network K was defined by the average of Ki,j(τ ) over all pairs of
mitral cells in the network. That is

K =
1

N(N − 1)

N
∑
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N
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where N is the total number of the mitral cells in the network.
And in our present work, τ was taken as 20ms through the whole
analysis.

Correlation between Mitral Cell Network
Responses
To compare the similarity between mitral cell network response
to odor inputs x and y during an odor input period, we defined
and calculated it as the correlation coefficient (Cxy) as follows:

Cxy =
1

N
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,

where MCi is the i’th mitral cell; MCi[x(t)] and MCi[y(t)] are
the mitral cell network response in an odor input period to
odor input x(t) and y(t) respectively; Corrcoef is to calculate
the classic correlation coefficient. To investigate how prior odor
experience affects the network response to the news odor inputs,
we calculated the average of Cxy between one new odor input in
the experience conditions and the other tested new odor inputs
in the naïve condition.

1/2 Time of Sparseness
To test the dynamic evolution of the sparseness of the mitral
cell network response, sparseness values were calculated at series
time points when the odor inputs were presented. This sparseness
time series could be fitted by the classic logarithmic function as
follows:

S = A2 + (A1 − A2)/

(

1+

(

x

x0

)S1/2
)

,

where S is the sparseness, and S1/2 is the time at which S reaches
the half of the maximum S (A1).

Correlation of Input Strengths between
Different Odors
In some simulations, we quantified the similarity of two odor
inputs by calculating the Pearson correlation coefficient based
on their strength values for 500 mitral cells (i.e., 500 values for
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each odor). A higher correlation coefficient indicates that a pair
of odors is more similar.

Data were presented as mean ± SEM. Statistical significance
was assessed by paired Student’s t-test or ANOVA analysis with
Tukey’s multiple comparison test, and p < 0.05 was considered
significant. Data analyses were performed using Graphpad Prism
software Version 6.0 (San Diego, USA).

RESULTS

To systematically address how prior odor experience affects the
representation of new odor inputs by the olfactory bulb network,
we used a previously verified olfactory bulb network model that
includes 500 mitral cells and 10,000 granule cells connected
through dendrodendritic synapses (Yu et al., 2013, 2014). In
this model, we simulated different odor inputs to mitral cells
with varied strength intensities ranging from 0 to 4 based on
previous experimental results (Mori et al., 2006; Figure 1A). As
shown in Figure 1B, in the naïve condition (i.e., no prior odor
input experience, without odor inputs during the first 10 s), a
sparse spatial spiking representation of specific odor input (k7-
1 in this example) emerged naturally within several seconds of
the training period from the mitral-granule cell interactions, as
verified by our previous work (Yu et al., 2013, 2014). In one
training paradigm, after delivery of a prior odor input (8OH)
for 5 s and a 5 s resting state (no odor input), a new odor
input (K7-1or other, see below) induced a different response of
mitral cell network compared with that observed in the naïve
condition (Figure 1C, compare with the mitral cell network
response during the period of 10th–15th second in Figure 1B).
From the raster plot, we observed that the response of the mitral
cell network reached a stable sparseness state much faster than
the naïve condition (Figures 1B,C, note that the red rectangle
denotes the course to reach stable sparseness in Figure 1C that
is much narrower than in Figure 1B). Since the sparseness of
the mitral cell network reaches steady state after about 2 s of
odor stimulus, we trained the network with specific odor input
for 5 s in the following results. We also extended the simulation
time to 10 s, and no significantly different results were found
(Supplementary Figure 1). We will now present additional details
describing our results.

Prior Odor Input Experience Facilitates the
Evolution of the Sparseness of the Mitral
Cell Network Response
Experimental and computational studies have shown that the
response of the mitral cell network to odor inputs tends to
be heterogeneous and spatiotemporally sparse (Yu et al., 2013,
2014). Our previous reports have shown that a sparse spatial
spiking representation of specific odor signals can emerge
naturally within several seconds of the training period from
mitral-granule cell interactions and that the network response
reaches a stable level of sparseness (Yu et al., 2013, 2014).
To address how prior odor experience affects the evolution of
sparseness in the mitral cell network and the final sparseness level
in response to new odor inputs, we fixed the prior odor inputs to

8OH or o-Eph and then varied the new odor inputs or trained the
network only with the new odor inputs (Figures 1B,C). Same as
in our previous reports, the sparseness of the mitral cell network
response gradually evolved from a relatively low sparseness level
to a high sparseness level (Figures 1, 2A). We found that the
sparseness of the mitral cell network response to new odor inputs
in the single odor experience (8OH or o-Eph) condition was
larger than that in the naïve condition at all sniff points the
input were given (Figure 2A, n = 14 for the number of second
odors). Figure 2B shows that the stable sparseness levels of the
mitral cell network (represented by the last sniff point of 14.8 s) in
both 8OH and o-Eph experience conditions are statistically larger
than those in the naïve condition (one way ANOVA analysis,
p < 0.01, Figure 2B). To demonstrate this phenomenon in a
more systematic way, we trained the network with additional
prior odor series in amanner similar to the single odor experience
condition. As shown in Figure 2C, the stable sparseness level
(represented by the last sniff point) of the mitral cell network
increases with the number of prior odors experienced (one
way ANOVA, p < 0.01). This scenario was more significant,
as shown by the sparseness at the first sniff (Figure 2C). As
shown in Supplementary Figure 2, the prior odors were delivered
from low input strength level to high strength level in the 72
odor experience condition [72 Odors (lh)]. We also reversed
the training sequence [i.e., prior odors were delivered from
high input strength level to low strength level, 72 Odors (hl)].
Interestingly, the final sparseness of the mitral cell network is
significantly lower in the 72 odor (hl) condition than that in the
72 odor (lh) condition (paired t-test, p < 0.001, Supplementary
Figure 2). We plan to address this phenomenon extensively in
future work, but the present work will mainly focus on the former
training sequence (i.e., all prior odors were delivered from low
input strength level to high strength level). Moreover, we fixed
the new odor to 8OH and varied the experienced odor inputs.
We found that the final sparseness level of the mitral cell network
to 8OH was negatively correlated to the correlation coefficients
of input strength of experienced odors and 8OH (Figure 2D).
Similar results were found in the cases of k7-1 and o-Eph as the
second odors (Supplementary Figure 3A).

It is worthwhile to note that, the new odors we used in our
model were different from the experienced odors. We also tested
the case that the second odor was the same as the first odor
(experienced odor) in the single experienced odor condition and
found no significant difference (Supplementary Figure 4).

A previous experimental study showed that prior odor
experience could increase the tuning specificity of mitral cell to
a variety of odors (Fletcher and Wilson, 2003). In our model,
prior odor training could decrease the response of mitral cell
to weak odor input leading to a slight increase of the tuning
specificity of the mitral cell (Supplementary Figure 5A). To test
whether the network sparseness change observed above was due
to the increase of tuning specificity of mitral cells, we arbitrarily
set the responses of mitral cell receiving no input from a given
new odor the same as that in the naïve condition and left the
rest responses of mitral cells (receiving at least one intensity from
new odor) unchanged as in Figure 2C; we found that the stable
sparseness levels hardly changed under different conditions (one
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FIGURE 2 | Sparseness of the mitral cell network in different odor input conditions. (A) A time course plot shows the sparseness of the mitral cell network in

response to 14 new odor inputs in the single odor input (8OH or o-Eph) experience or naive condition. (B) A dot aligned plot shows the sparseness of the mitral cell

network response at the last sniff shown in (A). ***p < 0.001, *p < 0.05; one-way ANOVA with Tukey’s post-hoc comparison test. (C) Sparseness measured in the first

and last sniff period of the mitral cell network response to 17 new odor inputs in additional odor inputs experience conditions. The experienced odor inputs were

delivered in sequence in ascending order of input strength. (D) The correlation between sparseness to 8OH under 14 different single odor input experience conditions

vs. the correlation coefficients of input strength of these 14 experienced odor inputs and 8OH. The solid line represents the linear fitting curve.

way ANOVA, Supplementary Figure 5B). Such results suggest
that the observed sparseness change of mitral cell network under
prior odor experience condition is mainly due to the increase
of the sparseness of mitral cells with no input from the new
odors. And the experimentally observed tuning specificity of
MCs after the odor exposure (e.g., Fletcher and Wilson, 2003)
may have additional mechanisms that are beyond the present
model simulation study.

To quantify how prior odor experience affects the evolution
of the sparseness of the mitral cell network response to new
odors, we fitted the time course of sparseness using a classical
logarithmic function (Figure 3A). Then, based on the fitting
curve, we determined the time at which the sparseness reaches
half of the maximum value (denoted S1/2). We found that S1/2 of
the network response to new odor inputs in both the 8OH and
o-Eph experience conditions is less than in the naïve condition
(one way ANOVA, p < 0.001, Figure 3B), implying that prior
odor experience could accelerate the formation of sparse state sin
themitral cell network in response to new odor inputs. Moreover,
to determine how the correlation of experience and new odor
input strength affects the evolution of sparseness induced by
new odor inputs, we fixed the new odor as 8OH and varied the
experienced odor inputs, then measured the S1/2 of the network
response to 8OH. Interestingly, we found that S1/2 was negatively

proportional to the correlation coefficient of the input strength
of the experienced odors and 8OH (r = 0.89, Figure 3C).
Similar results were found in the cases of k7-1 and o-Eph as
the second odors (Supplementary Figure 3B). This may imply
that the network response to new odor input requires less time
to evolve to a stable sparseness state following experienced odor
input more similar to the new odor.

In summary, prior odor experience could accelerate the
evolution of sparseness in themitral cell network response to new
odor inputs and increases the sparseness level.

Prior Odor Input Experience Increases the
Response of the Granule Cell Network
Previous experiments have shown that prior odor experience has
a profound effect on the activity of the granule cell network in
response to new odor inputs (Mandairon et al., 2008; Kato et al.,
2012). We next tested the activity of the granule cell network in
our model system. We also applied the sparseness measurement
for mitral cells to quantify the activity in the granule cell network.
Contrary to the sparseness in mitral cell network, the sparseness
of the granule cell network decreased with the number of prior
odors, implying that more prior odors leads to a larger increase
of the response of the granule cell network to new odor inputs
(Figure 4, one way ANOVA, p < 0.01).
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FIGURE 3 | Evolution of sparseness of mitral cell network responses in naïve and experienced odor input conditions. (A) A time course plot shows the

sparseness of the mitral cell network response to odor input K7-1 in the single odor input (8OH or o-Eph) experience or naive condition. The solid line represents the

fitting curve described by the classical logarithmic function (see Materials and Methods). (B) 1/2 time of sparseness (S1/2) of the mitral cell network response to 17

new odor inputs in the single odor input (8OH or o-Eph) experience or naive conditions. S1/2 is the time elapsed from the first presentation of new odor inputs to the

time when the sparseness reaches half of the maximum value. ***p < 0.001, one-way ANOVA with Tukey’s post-hoc comparison test. (C) S1/2 of mitral cell network

responses to 8OH in nine different single odor input experience conditions vs. the correlation coefficients of input strength of these nine experienced odor inputs and

8OH. The solid line represents the linear fitting curve.

FIGURE 4 | Sparseness of the granule cell network in different odor input conditions. (A) A raster plot shows the firing of the granule cell network in response

to 5CHO in the 3 (middle) or 10 (right) odors experience or naïve conditions (left) in the stable state. 5CHO: pentanal. Red arrows show the sniff points. (B) The

sparseness measured after the first and last sniff of the granule cell network response to 17 new odor inputs in a series of prior odor inputs conditions. The series of

experienced odor inputs were delivered in sequence according to ascending order of input strength.

Effects of Prior Odor Experience on
Synaptic Weight in the Mitral Cell Network
Because synaptic plasticity exists in ourmodel, the different stable
sparseness of mitral or granule cell networks under different
conditions may be due to the final synaptic weights in the bulb
network. We tested the excitatory and inhibitory synaptic weight
under different conditions in response to specific new odors. We
divided the input strength into a strong group with strengths
of 3 or 4 and a weak group with strengths of 0, 1, or 2. As
shown in Figure 5A, the average excitatory synaptic weights for
a mitral cell receiving weak or all inputs significantly increased
with prior odor number, but decreased for mitral cells receiving
strong inputs (two way ANOVA, p < 0.01). The same scenario
applied to the average inhibitory synaptic weight (Figure 5B, two
way ANOVA, p < 0.01).

Our previous studies reported that the change of sparseness
of the mitral cell network resulted from the evolved dynamic
changes in the synaptic weight of both excitatory and inhibitory
dendrodendritic synapses (Yu et al., 2013, 2014). Such a
developed dynamic change of synaptic weights has been

suggested to affect the changes in the time course of mitral
cell network sparseness (Yu et al., 2013, 2014). Now we would
like to examine how the synaptic weights will further evolve
with the continuous training of prior odor experience, and then
examine how this prior experience could modulate the response
sparseness of themitral network to new odor inputs.We analyzed
the time course of average excitatory weight (Gex) and inhibitory
weight (Gin) for mitral cells receiving strong inputs and weak
inputs. Similar to our previous results (Yu et al., 2013, 2014), the
time courses of response sparseness are tightly correlated with the
changes of synaptic weight (especially excitatory synaptic weight)
during the response to 8OH, both for naïve (Supplementary
Figure 6) and single odor input experience (k7-1, Supplementary
Figure 6). In the naïve condition, strong excitatory synaptic
inputs gradually increased from 0.06 nS to a steady state of
∼0.47 nS after 2 s of 8OH input (Supplementary Figures 6A,B).
However, in the k7-1 odor experience condition, the sparseness
of the mitral cell network reached a maximum level immediately
in response to new 8OH input, and the strong excitatory and
inhibitory synaptic inputs also reached a maximum value at
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FIGURE 5 | Effects of prior odor experience on synapticweightin the mitral cell network. (A) The average excitatory synaptic weight for mitral cells receiving

strong (strength 3 or 4), weak (strength 0, 1, or 3), or all inputs in a variety of prior odor experience or naïve conditions. (B) Same as in (A), but for the inhibitory

synaptic weight.

the beginning of the 8OH input period (Supplementary Figures
6A,B). Therefore, these results imply that prior odor experience
accelerates the evolution of synaptic weight in the mitral cell
network to the steady state, which in turn accelerates the
evolution of sparseness in the mitral cell network in response to
new odor inputs.

Prior Odor Input Experience Decreased the
Correlation of the Mitral Cell Firing Pattern
Sparse coding is an efficient scheme by which an individual
neuron independently encodes different properties of the input
(Olshausen and Field, 1996; Vinje and Gallant, 2000). This
naturally leads us to predict that when the mitral cell network
reaches a high sparseness level, the correlation level among
responses of mitral cells in the network should reach a low
level. In fact, we have verified this prediction in our previous
work (Yu et al., 2014). We therefore tried to determine whether
prior odor experience would also affect the evolution of the
decorrelated state among mitral cells in the network to new
coming odor inputs. We quantified this correlation by averaging
the correlation coefficients of all possible pairs of 500 mitral
cell responses at each sniff point during new odor delivery.
Similar to the evolution of sparseness in the mitral cell network,
the correlation among mitral cells gradually evolved from a
relatively high level to a low level (Figure 6A). We found that the
correlation of mitral cell firing in the network in response to new
odor inputs in one odor experience (8OH or o-Eph) condition
was lower than that in the naïve condition at all the sniff points
tested (Figure 6A). Figure 6B shows the stable correlation level
of mitral cell firing in the network (represented by the last sniff
point) for both 8OH and o-Eph experience conditions were
statistically lower than that in the naïve condition (paired t-
test, p < 0.05, Figure 6B). We then tested the correlation in
conditions with more prior odor inputs. As shown in Figure 6C,
the correlations of mitral cell firing in the network in response
to new odor inputs at first and last sniff following prior odor
experience both decreased as the number of prior odors increased
(one way ANOVA, p < 0.01). Moreover, we fixed the new odor
to 8OH and varied the experienced odor inputs; we found that
the correlation of mitral cell firing in network in response to the

new odor 8OH at last sniff was weakly linearly correlated to the
correlation coefficients of the input strength of experienced odors
and 8OH (Figure 6D). Similar results were found in the cases of
k7-1 and o-Eph as the second odors (Supplementary Figure 3C).
This result implies that the mitral cell firing response tends to
be more decorrelated if the input strength of new coming odor
differs more greatly from that of the prior experienced odor.

Prior Odor Input Experience Decrease
Correlation of Mitral Cell Network
Response
We already tested the effects of prior odor experience on mitral
cell firing pattern in response to the corresponding new odor
inputs. A more direct way to measure the coding efficiency of
the mitral cell network in response to different odor inputs is
to calculate the similarity of the network response to different
odor inputs, especially to similar odor inputs (Yu et al., 2014).
We therefore investigated how prior odor experience affects the
mitral cell network response to different new odor inputs. Odors
7OH and 6OH are two very similar odor inputs (Figure 7A).
The response of the mitral cell network to 6OH in one odor
input (8OH) experience condition was more different than that
in the naïve condition to the network response to 7OH in
naïve condition after the training process (Figures 7B,C). For
instance, the firing rates of mitral cells 1–100 to 6OH in the 8OH
experience condition (Figure 7C, right) were more different than
that in naïve condition (Figure 6B, right) from that to 7OH in
naïve condition (Figure 7B, left). A similar result was also found
when we compared the response of the mitral cell network to
7OH in the 8OH experience condition or the naïve condition
with that to 6OH in the naïve condition (Figures 7B,C).

To quantify the similarity of the mitral cell network response
to different odor inputs in different conditions, we measured
the network response correlation as described in the Materials
and Methods section. The correlations of mitral cell network
responses evolved gradually from relatively high to low level
(Figure 8A). Furthermore, the correlations between mitral cell
network responses to new coming odor inputs in the one
odor experience (8OH or o-Eph) condition were lower than
in the naïve condition at all sniff points tested (Figure 8A).
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FIGURE 6 | Correlation between mitral cell firing patterns. (A) A time course of the correlations between mitral cell firing patterns in response to 14 new odor

inputs in the single odor input (8OH or o-Eph) experience or naïve condition. (B) A dot aligned plot shows the correlation between mitral cell firing pattern in response

to 14 new odor inputs at the last sniff shown in (A).***p < 0.001, *p < 0.05; one-way ANOVA with Tukey’s post-hoc comparison test. (C) The correlation between

mitral cell firing patterns in response to 17 new odor inputs in networks measured after the first and last sniff with increased number of prior experienced odors. The

odor inputs were delivered sequentially in order of ascending input strength. (D) The correlation between mitral cell firing patterns in response to 8OH under 14

different single odor input experience conditions vs. the correlation coefficients of input strength of these 14 experienced odor inputs and 8OH. The solid line

represents the linear fitting curve.

Figure 8B shows the stable correlation level of the mitral cell
network response (represented by the last sniff point) in both
8OH and o-Eph experience conditions were statistically lower
than in the naïve condition (one way ANOVA, p < 0.05,
Figure 8B). We then tested the correlation in conditions with
more series of prior odor inputs. As shown in Figure 8C, the
correlations of mitral cell network response to new coming
odor inputs in prior odor experience at the first and last sniff
point decreased while the number of prior odors increased (one
way ANOVA, p < 0.01). Similar to Figure 6D, we fixed the
new odor to 8OH, and varied the experienced odor inputs and
we found that the correlation of mitral cell network response
to new coming odor 8OH was weakly linearly correlated to
correlation coefficients of the input strength of experienced odors
and 8OH (Figure 8D). Similar results were also found in the
cases of k7-1 and o-Eph as the second odors (Supplementary
Figure 3D).

DISCUSSION

Using a scaled up mitral-granule cell network model and a set
of odors with relatively strong input strength, we systematically

investigated how prior odor input affects the coding paradigm of
mitral cells to new incoming odor inputs. The following findings
were observed: (1) when increasing the number of prior odors,
the activity of the mitral cell network decreased and the granule
cell network increased, gradually reaching an equilibrium level.
(2) prior odor experience accelerated the formation of a stable
sparseness level of the mitral cell network to new odors; (3)
increasing prior odor experience also facilitated the mitral cell
network to evolve to a more decorrelated state; (4) prior odor
experience decreased the correlation of the mitral cell network
response to new odors and this effect is more obvious after
training the network with a larger number of prior odors. Note
that all the changes gradually reach an equilibrium level that
does not change with additional odor experience. All changes
may be attributed to two key factors: (1) the continuous LTP
effect for those mitral cells receiving a sustained strong input; (2)
more and more mitral cells are activated when more odors are
presented to the network, inducing more dynamic changes in the
excitatory and inhibitory synaptic weights of the dendrodendritic
synapses. An equilibrium is reached when most of the
relevant mitral cells have been activated during the past odor
experiences.
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FIGURE 7 | Spatial firing rate patterns of 500 mitral cells. (A) The strength of odor inputs 7OH (left) and 6OH (right) to each mitral cell. (B) The spatial firing

pattern of 500 mitral cells during the 4th second after training in response to 7OH (left) or 6OH (right) in the naïve condition. (C) The spatial firing pattern of 500 mitral

cells during the 4th second after training in response to 7OH (left) or 6OH (right) in the 8OH experience condition. The red arrow (right) indicates that the firing pattern

of the network in response to 7OH in the 8OH experience condition (C, left) differs more than that of the naive condition (B, left) from the firing pattern of the network

to 6OH in the naïve condition (B, right). Similarly, the red arrow (left) indicates that the firing pattern of the network in response to 6OH in the 8OH experience condition

(C, right) differs more than that of the naive condition (B, right) from the firing pattern of the network to 7OH in the naïve conditions (B, left).

Sparseness of Mitral and Granule Cell in
Prior Odor Experience Conditions
Sparse coding has been suggested as an efficient way to code
the sensory inputs (Olshausen and Field, 1996; Rinberg et al.,
2006; Davison and Katz, 2007; Koulakov and Rinberg, 2011).
Previous studies have found that the response of mitral cell
network to new coming odor inputs decreases after prior odor
experience (Buonviso et al., 1998; Buonviso and Chaput, 2000;
Fletcher and Wilson, 2003; Kato et al., 2012). We systematically
tested several prior odors inputs in our large scale olfactory bulb
model, and we found the sparseness of the mitral cell network
to new coming odors increases with the number of prior odors
(Figure 2C). Moreover, we found the sparseness of the granule
cell network to new coming odors decrease with the number of
prior odors (Figure 4B). In fact, previous experimental results
also found that prior odor experience could increase the activity
of interneuron (Mandairon et al., 2008). We further found the
average of excitatory and inhibitory synaptic weight both increase
along with the number of prior odor inputs (Figure 5). As the
mitral cell is the main target of granule cell and granule cell is
also the main target of mitral cell, we can infer that the increase
of excitatory synaptic weight leads to the increase of granule cell
activity, and the increase of inhibitory synaptic weight combined
with the increase of granule cell activity leads to the decrease of
the mitral cell activity.

Previous experimental study also showed that prior odor
experience could decrease the granule cell activity (Kato et al.,
2012). In our simulations, prior odor experience decreases the
response of mitral cell network, which tends to decrease the
activity of granule cells. By contrast, prior odor experience
increases the average excitatory synaptic weight to granule cell,
which tends to increase the activity of granule cells. These two
contrary effects of prior odor experience on granule cell activity
might be the cause for the varied results of granule cell activity
change to prior odor experience observed in experiments.

It should be noted that an experimental study shows that
mitral cell responses decreases more after the same prior odor
exposure than with different odor experience (Kato et al., 2012).
In our work, the response of mitral cells hardly changed when
it was in the same prior odor conditions. This suggests the
phenomenon observed by Kato et al. (2012) might be attributed
to a differentmechanism that is not involved in the currentmodel
network.

Previous experimental results have also shown that the first
sniff after odor input is very important for odor discrimination
behavior (Uchida and Mainen, 2003; Cury and Uchida, 2010).
In addition to analyzing olfactory bulb responses at equilibrium,
we also analyzed the response properties right after the first
sniff in all conditions. We found the sparseness change (or
correlation of mitral cell network response change) induced by
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FIGURE 8 | Correlation between mitral cell network responses. (A) Time

courses of the correlations between mitral cell network responses to 14 new

odor inputs after one odor input experience (8OH or o-Eph) or under naive

conditions. (B) A dot aligned plot shows the correlation between mitral cell

network responses to 17 new odor inputs at the last sniff shown in (A).
***p < 0.001; one-way ANOVA with Tukey’s post-hoc comparison test. (C)

Correlation between mitral cell network responses to 17 new odor inputs

measured after the first and last sniff after experiencing additional odor inputs.

The odor inputs were delivered in order of ascending input strength. (D)

Correlation between mitral cell network responses to 8OH in 14 different single

odor input experience conditions vs. the correlation coefficients of input

strength of these 14 experienced odor inputs and 8OH. The solid line

represents the linear fitting curve.

prior odor experience is more significant for first sniff cycle than
that for the last sniff cycle. The more experienced odors result
in less response difference in the sparseness level (or response
correlation) between the first and last sniff cycles. This may
suggest that the response in the first sniff may contain important
information for odor discrimination that can be enhanced by the
experienced odors.

It is worthwhile to note that the increasing rate of sparseness
of mitral cell network tend to decrease when the number of
prior odors increases (Figure 2C). For instance, the increase of
sparseness between three and five odors conditions (increase
of only two odors) is larger than that between 15 and 72
odors conditions (increase of 57 odors). We may infer that the
sparseness level of the mitral network would saturate after a
certain number of prior odor experience. Another interesting
phenomenon needed to further test is that the different training
sequence of series of prior odors would have significantly
different effect on the response of mitral cell network to new
coming odors.

Sparseness Evolution in Mitral Cell
Network
Previous studies have shown a sparse spiking representation
of specific odor can emerge naturally after several seconds
of a learning period (with certain odor input frequency)

from the mitral-granule cell synaptic connections (Yu et al.,
2013, 2014). And this phenomenon may be corresponding
to the learning process of animal to a new odor inputs. In
the one odor experience condition, we found the prior odor
experience accelerates the process to reach the stable sparse
state (Figure 3). Furthermore, we found that such acceleration
of the sparseness to reach stable sparse state was well correlated
to the acceleration of the excitatory and inhibitory synaptic
weight to reach the maximum value (Supplementary Figure
6). And further experiments are needed to confirm such
findings.

We also found that the more similar the new odor was to
the experienced odor, the faster the mitral cell network reached
a stable sparseness level, which may be due to less time needed
to train more overlapping synaptic interactions to reach steady
state. On the other hand, more disparate prior experienced odors
lead to a higher stable sparseness level of mitral cell to the new
odor, which may be due to the increase of the overall inhibitory
synaptic weight resulting from the activation of more mitral and
granule cells by more experienced odors. We may infer that the
rate of formation of stable sparseness and the sparseness level
itself are two different aspects of the odor representation of the
mitral cell network.

Decorrelation of the Mitral Cell Network
Response
Our previous study has shown that the response of the mitral cell
network tends to be decorrelated and accompanied by sparseness
(Yu et al., 2014). Our current work shows correlations within
the mitral cell network to new odors decrease with the number
of prior odors (Figure 6C). A similar correlation exists for
mitral cell network responses to different odor inputs—a direct
way to quantify coding efficiency under different conditions
(Figure 8C). This may partially give an explanation to why
enrichment could increase the ability of an animal to discriminate
different odors (Mandairon et al., 2006a,b,c; Sinding et al.,
2011).

Previous experimental and computational results have
extensively shown the importance of granule cell activity and
inhibitory synaptic weight for representation of odor inputs in
olfactory bulb network (Mandairon et al., 2006a, 2008; Koulakov
and Rinberg, 2011; Kato et al., 2012). We infer that such a
decorrelated state between mitral cell firing in a specific network
and the network response to different odor inputs is due to an
increase in granule cell activity and inhibitory synaptic weight
after odor experience.

In summary, using a scaled up olfactory bulb model, we
systematically investigated how prior odor experience affects the
sparse representation of new odor inputs by the olfactory bulb
network. In conclusion, the gradual increased inhibitory weight
of granule cells together with the slightly increased firing rates
of gradual cell populations promote the response sparseness and
decorrelated state of mitral populations to new odor inputs.
These results may help to better explain how prior sensory
experience affects the behavior of animals in response to new
odor inputs.
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Neocortical Information-Based
Exchange
James Kozloski *

IBM Research Division, Computational Biology Center, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

Here we describe an “information-based exchange” model of brain function that ascribes

to neocortex, basal ganglia, and thalamus distinct network functions. The model allows

us to analyze whole brain system set point measures, such as the rate and heterogeneity

of transitions in striatum and neocortex, in the context of neuromodulation and other

perturbations. Our closed-loop model is grounded in neuroanatomical observations,

proposing a novel “Grand Loop” through neocortex, and invokes different forms of

plasticity at specific tissue interfaces and their principle cell synapses to achieve these

transitions. By implementing a system for maximum information-based exchange of

action potentials between modeled neocortical areas, we observe changes to these

measures in simulation. We hypothesize that similar dynamic set points and modulations

exist in the brain’s resting state activity, and that different modifications to information-

based exchange may shift the risk profile of different component tissues, resulting in

different neurodegenerative diseases. This model is targeted for further development

using IBM’s Neural Tissue Simulator, which allows scalable elaboration of networks,

tissues, and their neural and synaptic components toward ever greater complexity and

biological realism.

Keywords: neocortex, thalamus, basal ganglia, information-based exchange, brain model

1. INTRODUCTION

Synaptic plasticity regulates neuronal responses to patterns of inputs impinging on dendritic
arbors from multiple presynaptic sources. Resulting input selectivity at the single neuron level is
often associated with learning and memory in models of cognition. At the circuit level, synaptic
plasticity can serve more complex functions over arbitrary inputs, from selecting fixed points
in recurrent networks (Hopfield, 1982), to implementing optimizations such as information
maximization in artificial neural networks (Linsker, 1997), to dynamically encoding inputs in
winnerless networks (Rabinovich et al., 2001). A challenge to analyzing the role of any neuron or
circuit that implements these functions for cognition is that of modeling appropriate, naturalistic
neuronal and circuit inputs, which in real brains derive from tens of thousands to millions of other
neurons.

Here we present a closed-loop brain model, including component models of several neural
tissues that we hypothesize implement some of these functions. Synapses and plasticity connecting
components at principle cell interfaces together create a set of closed neuroanatomical loops.
Without extrinsic inputs or stochastic intrinsic drivers, our model avoids the challenges and
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assumptions of modeling naturalistic inputs separately, and
instead derives them exclusively from the dynamics of upstream
neurons and tissues. The challenge then is model validation,
which we won’t address in this report. Instead the aim here is to
delineate hypotheses and a theory of brain resting state function
using the model and its simulations. We propose that models
implemented similarly constitute a class of “brain models,” and
are distinct from component “neural tissue models,” which
instead assume an arbitrary set of inputs or stochastic processes
to drive intrinsic tissue dynamics. By avoiding these assumptions,
a coarse but consistent model of global brain function may be
useful for better constraining the most detailed neural tissue
simulations.

We introduce the term “traversal” to refer to a “synfire chain”
as defined by Abeles (1991), but with additional neuroanatomical
constraints defining a minimum set of neocortical regions
traversed by the event. The cortico-cortical feedback loop
in our model acts as a substrate for combined traversals
of sensory, limbic, and motor areas, which we propose
together drive behavior in the organism. The cortico-thalamo-
cortical feed forward loop acts to maximize the entropy of
these global traversals and to maximize information about
the environment relayed as inputs to the loop. Lastly,
the striato-nigro-striatal loop provides a means to select
subsequent configurations by monitoring changes in ongoing
traversals and signaling them with dopamine to alter routing
within the feed forward entropy maximizing network. We
propose this function as the substrate for reward learning
in the organism. Each of these loops therefore has both
a closed-loop function (global traversal, traversal entropy
maximization, and traversal change monitoring and rerouting)
and an organismal input-output function (behavior generation,
sensory processing, and behavior selection based on reward
learning).

The objective of this report is to describe the closed-
loop model and simulations of it. Perturbations to the closed
loop that alter dynamic set points will also be described. We
hypothesize about dynamic disease mechanisms and progression
based on the model, and describe methods that use neural
tissue simulation (Kozloski and Wagner, 2011) for modeling
treatments that alter brain disease risks. To summarize our
overall approach and long-term research goals, the driving
hypotheses relating our closed-loop model to brain disorder
and disease states are: (1) The primary disease and disorder
risk is a disturbance in plasticity that critically maintains
brain system dynamic set points; (2) Compensatory circuit
dynamics achieves near-normal set points despite genetic or
environmental perturbations, but with increased secondary
risk of neuronal dysfunction, damage, or loss; (3) Secondary
risk correlates with feed forward destruction or dysfunction
of neural tissues because with each neuron function lost,
maintaining system set points requires even greater secondary
risks; and (4) Slowing progression may therefore lie in
mitigating the primary risk’s effect on system set points or
in limiting secondary risks incurred by inherent compensatory
dynamics.

2. INFORMATION-BASED EXCHANGE
BRAIN MODEL

2.1. Cytoarchitectonics of Bidirectional
Neocortical Projections: The “Grand Loop”
We propose a model that emphasizes a specific cortico-cortical
connectivity across the major sensory, limbic, and motor
categories of Brodmann areas. This emphasis derives from
several observations. First, we note the importance of signals
traversing all three categories of cortical representations in
order to produce a stable basis for perception and behavior by
integrating information about the environment, internal needs,
and behavioral opportunities of the organism. While many loops
have been discovered in studies of the neocortical connectome,
none provide the directed graph (feed forward vs. feedback)
needed to identify a system to support such traversals. Instead,
we note that the cytoarchitectonic granularity of neocortical
areas provides one means to interpret feed forward (i.e., more
granular to less granular) and feedback (i.e., less granular to more
granular) connections between cortical areas (Rempel-Clower
and Barbas, 2000) and therefore a means to identify a backbone
for global brain traversals (Figure 1A).

Granularity refers to the density of punctate Nissl bodies
in stained layer 4 of neocortex. The granularity across all of
neocortex was studied and mapped extensively by von Economo
(1929), and we reproduce his illustrations and some key findings
in Figures 1A,B. Note that granular cortices typically have
smaller diffuse Nissl bodies in layer 5, and agranular cortices have
very large diffuse layer 5 Nissl bodies. Tiling in von Economo’s
map shows that regions of cortex with similar granularity are
adjacent, with key exceptions at the boundaries between primary
motor (M1) and primary somatosensory (S1), hippocampus
(HC) and retrosplenial granular areas (RGA), and subgenual
anterior cingulate (ACC) and prefrontal (PFC) cortices. Each
of these three pairs of Brodmann areas are interconnected, and
in our model represent key boundaries in the backbone for
traversing the sensory-limbic (HC-RGA), limbic-motor (ACC-
PFC), and motor-sensory (M1-S1) cortices (Figure 1B, black
arrows). To complete a “Grand Loop” backbone, we join each
pair of areas by an area in their adjacent dysgranular neocortical
regions: the secondary somatosensory (S2), posterior cingulate
(PCC), and supplemental motor (SMA) areas (Figure 1C).
While others have noted that organizing principles for intrinsic
microcircuits may be derived from combining von Economo’s
observations with those regarding granularity and the direction
of cortico-cortical projections (Beul and Hilgetag, 2015), none to
our knowledge have proposed a Grand Loop that traverses all of
neocortex according to these principles.

2.2. Cortico-Cortical and
Cortico-Thalamo-Cortical Functional
Pathways
Having defined the feed forward neocortical Grand Loop, we’ll
now embellish this structural model with additional components
based on observations regarding feed forward projections and
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FIGURE 1 | (A) Granularity of different neorcortical areas, adapted from von Economo (1929). Colors at bottom correspond to the map in (B). (B) von Economo’s

neocortical tiling based on the granularity of large regions of neocortex spanning multiple Brodmann areas. The location of three Brodmann areas per stage are

waypoints along a feed forward Grand Loop (arrows). (C) These Brodmann areas are connected based on projection data. Evidence that feed forward connections

progress from granular to agranular areas provides directionality. The reciprocal feedback loop is not shown.

FIGURE 2 | Organization of feed forward and feedback functional connections, adapted from Guillery and Sherman (2011). Infragranular and

supragranular layer pyramidal neurons (gray triangles) form direct feedback and feed forward connections, with the local circuitry receiving first order (FO) and higher

order (HO) thalamic nuclei inputs through granular layer spiny stellate neurons (blue circles). The basal ganglia (BG, pink boxes) receive infragranular inputs, and

provide inhibitory gating to higher order nuclei in the brain’s frontal lobe (right).

signaling between neocortical areas. Sherman and Guillery
emphasized different roles for direct cortico-cortical feed forward
projections, which join one cortical area to another through
their supragranular layers, and indirect cortico-thalamo-cortical
projections, which join infragranular layers of the same original
area to the granular layer of the same target area (Figure 2;
Guillery and Sherman, 2011). In Sherman and Guillery’s model,
direct cortico-cortical projections are “modulatory,” providing
restricted activation to the target area, and indirect cortico-
thalamo-cortical projections are “driving,” providing activation

across all layers of the target area. Figure 2 represents Sherman
and Guillery’s model (based on a simplification of their
schematic). We will now describe how this model may be
integrated into the Grand Loop.

Recall that each station of the loop in Figure 1 is coupled in
the feed forward direction. These connections, largely through
the supragranular layers, are mirrored in the feedback direction
by connections through infragranular layers (Figure 2; Rempel-
Clower and Barbas, 2000). Thus, the Grand Loop represents two
reciprocal loops, one in the feed forward direction and one in
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the feedback direction. Furthermore, according to Sherman and
Guillery, higher order thalamic nuclei provide at every stage
a redundant relay for driving inputs over each feed forward
connection. The local cortical circuit then receives signals from
these thalamic nuclei and mixes the otherwise independent
direct feed forward modulation loop and feedback traversal loop,
primarily at layer 4’s synaptic connections onto supragranular
layers, and at supranular layers’ onto the infragranular layers’
apical dendrites.

We proposed previously that layers 2/3 of neocortex
implement a network for maximizing mutual information
between thalamic inputs and cortical responses (Kozloski
et al., 2007). Entropy maximization in these layers (equivalent
to information maximization when noise in the inputs is
assumed to be negligible) would require a dense lateral network
(Linsker, 1997), which fits well with the high proportion
(∼22%) of total cortical synapses dedicated to intralaminar 2/3
connections (Binzegger et al., 2004). Given this role for the
supragranular layers, we now propose that the role of cortico-
thalamo-cortical driving inputs in Sherman and Guillery’s model
is to provide inputs both from first order thalamic nuclei
about the environment and from feedback traversals through
higher order thalamic nuclei about the behavioral state of
the organism. A global supragranular network then extracts
maximally informative features from combinations of these
inputs. In addition, we propose that these features become
conditional modulators on feedback traversals by boosting or
reducing the gain on proximal inputs to layer 5 neurons bymeans
of synaptic inputs onto their apical dendrites from layer 2/3
neurons.

2.3. Basal Ganglia Gating of Feed Forward
Functional Pathways
In Sherman and Guillery’s model, thalamic relay neurons in both
first order and second order nuclei are subject to modulation.
Modulation may derive from direct cortico-thalamic feedback
from layer 6, inhibition from the thalamic reticular nucleus, or
from neuromodulatory inputs such as norepinepherine from the
locus coeruleus. Sherman and Guillery’s model derives largely
from their studies of sensory cortices and feed forward pathways
through them, projecting from more granular to less granular
regions. Here we extend the discussion of thalamic relay neuron
modulation to include a role for inhibitory inputs from the basal
ganglia to thalamic nuclei that act as relays in the frontal lobe
between more granular limbic and motor areas to less granular
areas in these regions.

The basal ganglia (including ventral limbic and dorsal motor)
are in a privileged position to influence traversals by means of
their inhibitory inputs onto thalamic relay neurons within the
Grand Loop. These inputs derive from nucleus inominata in
the ventral limbic subpallium and from the globus pallidus in
the dorsal motor subpallium. Neurons in the ventral pallidus
(nucleus inominata) receive inhibition from medium spiny
neurons (MSNs) in the nucleus accumbens (ventral striatum)
and those in the dorsal globus pallidus from those in the dorsal
striatum. These neurons then either directly disinhibit thalamic
relay neurons or indirectly inhibit thalamic relay neurons

through an additional stage of inhibitory neurons (in globus
pallidus, this is organized as direct and indirect projections
through the external and internal segments). Spiking models of
inhibitory pallidothalamic gating have focused on the bird song
system (Goldberg et al., 2012), where gating inputs to thalamic
relay neurons serve the role of transitioning syllables of the
organism’s vocalizations. Here we propose a more generic role
for this gating in selecting and deselecting different pathways for
internal traversals of the pallium.

Inputs to these direct and indirect pathways through basal
ganglia derive from neocortical layer 5 neurons’ projections
onto MSNs, and their corticostriatal synapses undergo spike-
timing dependendent plasticity (STDP) which is modulated
differentially by dopamine depending on the selective expression
of either D1 dopamine receptors in the direct or D2 dopamine
receptors in the indirect pathways (Pawlak and Kerr, 2008;
Figure 3). Each layer 5 neuron’s collaterals then include a branch
descending to the brainstem or spinal cord, a branch descending
to thalamus (Guillery and Sherman, 2011), and additionally a
branch descending to striatum (Lévesque et al., 1996). A recent
review of additional types of layer 5 projection neurons and the
role of corticostriatal connectivity in disease provides a thorough
examination and schematic of these pathways (Shepherd, 2013),
and our model of thalamic gating, for now and for simplicity,
includes only the “Pyramidal Tract” layer 5 neurons and their
projections to basal ganglia and thalamus for the function of
thalamic gating.

In summary, our model extends Sherman and Guillery’s
model of cortico-thalamo-cortical gating of driving, feed forward
inputs to include modulation from striatal and pallidal neurons
in both the direct and indirect pathways (Figure 3). MSNs in
our model receive convergent layer 5 collaterals from all layer 5
neurons that send convergent collaterals onto a specific thalamic
relay neuron. This relay neuron is then gated by the same MSNs,
indirectly through globus pallidus (the gate opens for the direct
pathway, and closes for the indirect pathway). Such a scheme
does not preclude so called “closed loops” that originate and
terminate in the same cortical area (Kelly and Strick, 2004), but
downplays their significance as only partial regulators of feed
forward thalamic gating (Figure 4A).

The basal ganglia in our model is then a “forward driver gate”
for all feed forward driving signals relayed through the frontal
lobe’s cortico-thalamo-cortical functional pathways. Because
these pathways relay layer 5 traversals through thalamus to the
granular and supragranular layers of cortex, they can indirectly
control the routing of feedback signals and the selection of
certain traversals over others through the Grand Loop, as we
describe in the next section. Additional area to area cortico-
thalamo-cortical pathways not on the main loop backbone (such
as the visual system) are then available for additional modulation
and traversals of the global layer 5 behavioral network, possibly
including loops requiring reafference from the environment.

2.4. Information Based Gating of Feedback
Traversals
Our model provides two distinct functional signaling pathways
through the Grand Loop: feed forward for driving the

Frontiers in Neuroanatomy | www.frontiersin.org January 2016 | Volume 10 | Article 3  | 157

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Kozloski Brain Model of Information-Based Exchange

FIGURE 3 | The Forward Driver Gate. Cortical action potentials (red raster marks) traverse the Grand Loop (red circle, representing a periodic time line), when

neurons in specific areas (red boxes) spike. These cause spikes in striatum, represented by STDP functions placed on a periodic time line for both the indirect

(lavender circle) and direct (black circle) pathway medium spiny neurons (D2-MSN and D1-MSN). The D1-MSN is inhibiting the D2-MSN providing additional

GABA-ergic modulation of STDP. Spikes cause direct disinhibition of the external segment of Globus Pallidus (GPe), allowing a cortical spike to be relayed through the

thalamic gate (red arrows, SMA to M1), or indirect additional inhibition through the internal segment (GPi), blocking spikes.

supragranular entropy maximizing network, and feedback for
traversal of the infragranular behavior generation network. The
latter, in our implementation of the model, propagates synfire
events through a loop, as described by Zheng and Triesch in
their model of “synfire ring” formation and propagation (Zheng
and Triesch, 2014). Restricting synfire activity to the feedback
direction is a key aspect of our model. Unlike other models
of feedback, which ascribe to it solely a sensory processing
“top down” function, we model the propagation of feedback
activity as potentially independent of feed forward activity
(for example when a coupling parameter between these two
networks is zero). Specifically, the emergence of activations in
the supragranular layers are rate coded, while activations in
the infragranular layers are spike timing based in order to
support synfire events. (We won’t speculate here on how these
distinct coding schemes are implemented and maintained by
the neocortical microcicuit, but it would seem there are ample
mechanisms available.)

Conditional coupling between features, extracted by
information maximization in the supragranular layers, and
spike propagation in the infragranular layers, is then under
the control of a parameter that models cholinergic modulation
in neocortex. Acetylcholine enhances the influence of sensory
inputs on pyramidal cell firing relative to their processing of
intrinsic signals within neocortical circuits (Hasselmo and

Giocomo, 2006). We model this modulatory parameter as
changing the slope and dynamic range of a gain function.
The function sets the gain on feedback integration within the
synfire ring based on the level of activity in the corresponding
functional units (e.g., orientation columns) in layer 2/3. Thus,
feature encoding acts as a gate for synfire propagation, and we
hypothesize this gain function may be implemented by layer 2/3
inputs to layer 5 neurons’ apical dendrites. Varying cholinergic
modulation of these inputs in cortex then controls the slope and
dynamic range of the mapping from layer 2/3 activity to layer
5 feedback integration gain. The result is that propagation of
synfire activity through a column of cortex is informed by the
categorization of thalamic inputs to that same area. Information
maximization among responses in the supragranular areas
over environmental inputs becomes entropy maximization
of synfire propagation pathways through the infragranular
layers, provided that coupling between these is strong (i.e.,
cholinergic modulation is high). It is because of this coupling
that we have named our model an information-based exchange
network.

2.5. The Forward Driver Gate: Bursting,
Modulation, and Plasticity
Having proposed a central cortico-thalamo-cortical routing
function for striatal MSNs bymeans of their directly disinhibiting
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FIGURE 4 | (A) Schematic of cortico-thalamo-cortical routing. Direct (solid line) and indirect (dotted line) pathways through GP disinhibit or inhibit thalamic relay

neurons. The striatum is a source of self inhibition (pink line) creating GABA-ergic modulation of corticostriatal synapses (pink annulus). Dopamine neurons in SNc

receive extensive inhibitory striatal inputs, and similarly modulate these synapses (yellow annulus). (B) GABA levels change with intrinsic striatal firing Strin and cross a

threshold (pink box). GABA modulation results in changes to STDP due to correlated layer 5 (L5) and striatal (Str) firing patterns. Superimposed dopamine modulation

(yellow box), results in distinctly different STDP functions at a corticostriatal synapse (stars, corresponding to those in C). (C) For each combination of a direct pathway

D1 or indirect pathway D2 (rows) striatal neuron’s modulatory inputs, model STDP functions are represented. Transitions from low dopamine to high dopamine occurs

from left half to right half of this matrix of functions. Transitions from low GABA to high GABA occurs between odd and even columns in the matrix.

or indirectly inhibiting thalamic relay neurons, we will now
propose on what basis a striatal MSN adapts to perform
this function in the context of system set points. We call
this the forward driver gate’s “routing function.” Our model
of MSN firing includes constraints from a weak, assymetric
lateral inhibitory network giving rise to “winnerless competition”
(Rabinovich et al., 2001), and closely matching the periods of
striatal bursting lasting hundreds of milliseconds observed in
vivo (Miller et al., 2008). Ponzi and Wickens have similarly
used this network to model spiking properties of striatum
(Ponzi and Wickens, 2010), and have shown that at transition
points in the lateral network configuration (from low, ∼10%, to
high,∼20%, rates of connectivity), an optimal balance is achieved
that facilitates winnerless encoding of variations in driving inputs
from neocortex (Ponzi and Wickens, 2013). To achieve this
balance, our model instead varies the strength of cortical inputs
dynamically by a dual source of modulation of STDP at the
corticostriatal synapse.

The first dynamic modulator of STDP at the corticostriatal
synapse in our model is GABA inhibition from the lateral
network, itself responsible for “turn-taking” among MSNs and
their bursts, characteristic of the winnerless network. We assume
that both direct and indirect pathways show STPD reversal under

GABA inhibition (Fino et al., 2010; Paille et al., 2013), and we
model winnerless competition between striatal neurons as the
source for this inhibition (Figure 4B).

The second dynamic modulator of STDP at the corticostriatal
synapse is dopamine. Given the routing function’s potential
as a critical determiner of the emergence of behavior, affect,
and cognition in the organism via its direct control over
traversals of the layer 5 network, reward-based learning of
this function is ultimately required. For now, we simulate our
brain model of information-based exchange with dopamine-
based learning serving only a closed-loop function, separate
from the environment and therefore independent of reward
encoding. This closed-loop function is sensitive to system set
points and monitors traversals. It is equivalent to so-called “tonic
firing” in dopamine neurons, which can also include bursts.
We propose that the intrinsic dynamics of dopamine neuron
membrane currents implements this closed-loop function by
measuring time and the abruptness of changes to system states,
with bursts generated under specific conditions summarized
below. Dopamine provides a potent modulation of STDP at
the corticostriatal synapse (Pawlak and Kerr, 2008), and further
modulates it differentially at the inputs to D1-MSNs and D2-
MSNs. In our model this differential modulation, combined
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with GABA modulation, produces the complex routing function
summarized in Figure 4C.

Dopamine neurons have been shown to fire bursts of
action potentials to signal basal reward inputs to the organism
encoded as strong excitatory inputs to medial tegmentum and
substantia nigra pars compacta (SNc) neurons. Because of these
responses, the dopamine system has been extensively modeled as
recapitulating reinforcement learning and operant conditioning
in the organism. We propose here for the first time an additional
closed-loop role for dopamine neurons in learning routing
functions and selecting traversals. Specifically, we propose that
dopamine neurons signal changes to traversals, and thereby
influence the subsequent emergence of new traversals. The basis
for this proposal derives from recent connectomics studies,
which demonstrate that 70% of dopamine neuron inputs are
inhibitory, and that most of this inhibition arises from striatum
(Watabe-Uchida et al., 2012). Our closed-loop role for dopamine
modulation depends on this inhibition, and this proportion and
source suggests that closed-loop responses to inhibitory inputs,
not open loop responses to basal excitation and reward, may be
the predominant operating mode of the dopaminergic system.

Dopamine neurons exhibit heterogeneous combinations of
intrinsic Ih and IA currents (Amendola et al., 2012), as well as
T-type calcium currents, which together generate post inhibitory
rebound bursting in slice preparations. These currents’ role in
vivo has not yet been demonstrated, but our model assumes
that the dynamical criteria for dopamine neuron bursting (and
subsequent learning of routing at corticostriatal synapses) are
implemented at least in part by rebound bursting. Other models
have explored rebound bursting in dopamine neurons (Lobb
et al., 2011), but not in the context of a closed-loop regulatory
function. In our model, if the duration and abruptness of removal
of striatal inhibition to dopamine neurons is appropriate, a
rebound burst occurs. This aspect of themodel indirectly imposes
the additional criterion that inputs from layer 5 to striatum
that transition the MSN winnerless network should be similarly
matched to the duration and abruptness of change required for
rebound spiking in dopamine neurons. In this way the striato-
nigro-striatal loop monitors changes in traversals and alters
routing within the feed forward entropy maximizing network
by modulating corticostriatal STDP. We therefore propose that
MSNs learn this routing based in part on their ability to recognize
patterns of spiking in layer 5 that remain stable for a minimum
duration of time then fade rapidly, a property expected during
traversals of the Grand Loop.

3. SIMULATION METHODS

We simulated the model to explore its dynamics, characterize
preliminary set points for measurement and analysis, and study
traversal behavior and its regulation under different modulatory
conditions. The five major components of the model to be
simulated included cortical layers 2/3, 5, thalamus, striatum,
and dopamine neurons. Meeting this challenge at the detailed
level of neural tissue simulation is beyond the scope of this
report, and without a good understanding of target model set
points, likely impossible. We therefore aimed to draw upon

four simplified abstractions of the key behaviors we ascribe to
principle cells in these structures (Linsker, 1997; Rabinovich
et al., 2001; Mihalas and Niebur, 2009; Zheng and Triesch,
2014). With four base component models replicated from other
studies, we then coupled them across novel interfaces, realizing
the closed, functioning Grand Loop, complete with its subcortical
regulators.

3.1. Component Models
Four component models from the literature were targeted
here to capture the functions of cortical layers 2/3 and 5,
striatum, and dopamine neurons in the brain model. These
four met sufficient requirements to implement information-
based exchange (Algorithm 1), with very few changes to
published parameters. We list the models below and describe
the requirements they satisfy. Parameters defined in the original
references for each component model are found in Table 1.
Because thalamic relay neurons were implemented as a simple set
of sums over inputs, they are described as an interface between
component models in the subsequent section.

• Neocortex, layer 2/3: The model applies the “Infomax”
algorithm of Bell and Sejnowski (1995) to thalamic relay
neuron inputs. A neural network implementation of the same
optimization (Linsker, 1997), based entirely on a local learning
rule, establishes the biological plausibility of this function for
this tissue (Kozloski et al., 2007). The three stage network
modifies a weightmatrixC that couples thalamic relay neurons
to cortical units (e.g., at layer 4) based onmicrocircuit feedback
from layer 2/3. Stage one receives the rate vector x̂I from an
ensemble of time averaged thalamic spike trains and computes
the zero mean input vector xI = x̂I − x0, where x0 ≈ 〈̂xI〉 is
learned at the learning rate βx0 . Stage two computes the sum
of weighted inputs to stage three, u ≡ CxI . In addition, each
stage two unit computes an element of the output vector y,
yi = σ (ui), where σ (·) denotes a nonlinear squashing function,
here the logistic transfer function, y = 1/1 + e−(u+w0), where
w0 is an adaptive output bias vector learned by1w0 = βw0 [1−
2y]. The output vector y maximizes the mutual information
over the input ensemble and provides regulatory microcircuit
feedback to the model of layer 5 described below.

Stage three then computes an entropy maximizing learning
vector, which is fed back to stage two and applied by Hebbian
learning to modify C at the learning rate βC0 . Derived by
Linsker (1997), this learning vector when applied in this way
precisely yields the Infomax anti-redundancy term of Bell and
Sejnowski (1995), (C′)−1 (ie., the inverse of the transpose of
the input weight matrix) which for simplicity may also be
computed directly. In this model of layer 2/3, the entropy
maximizing learning vector emerges from a fully connected
lateral network, whose weight matrix ̂Q undergoes Hebbian
learning according to 1̂Q = βQ[uu

′ −̂Q], such that̂Q ≈ Q =
〈uu′〉. For a given input presentation, these lateral connections
evolve an auxiliary vector v according to vt = vt−1 + u −
α̂Qvt−1. Regardless of initial v, and assuming the scalar α

is chosen so that v converges, the Infomax anti-redundancy
term can be approximated by iterating the lateral network
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TABLE 1 | Component models and parameters.

Component References Parameter

name

Parameter

value

Neocortex, layers 4

and 2/3

Bell and Sejnowski, 1995; βx0
0.00002

Linsker, 1997;
βw0

0.0007

Kozloski et al., 2007
βC 0.0007

βQ 0.0007

Neocortex, layer 5 Zheng and Triesch, 2014 ηIP 0.01

TEmax 1.0

T Imax 0.5

µIP 0.1

σHIP 0

ηinhib 0.001

σ2
ξ

0.01

ηSTDP 0.004

ηiSTDP 11.0

Striatum Rabinovich et al., 2001 gmax 0.25

gmin 0

a 0.7

b 0.8

τ1 0.08

τ2 4.1

ν −1.5

x0 −1.2

y0 −1.62

z0 0

Dopamine neurons Mihalas and Niebur, 2009 b 1.0

G/C 50

k1 200

k2 20

2inf −0.05

R1 0

R2 1.0

EL −0.07

VR −0.07

2r −0.06

a 1.0

A1 5.0

A2 −0.3

and applying its output by Hebbian learning, since (C′)−1 =
Q−1C〈xIxI

′〉, and by substitution, (C′)−1 = α〈v∞xI
′〉 (Linsker,

1997).
• Neocortex, layer 5: The model evolves from a self-organizing

recurrent network (SORN) of binary spiking units through
application of homeostatic plasticity, weight normalization,
and STDP learning rules, together with synaptic pruning and
synaptogenesis (Zheng and Triesch, 2014). This biologically
consistent set of synaptic modifications creates distributions

of synaptic densities and weights that evolve over time to
closely match data from developing neocortex. The weight
matrixW also develops robust feed forward motifs and synfire
activity similar to the model of Kozloski and Cecchi (2010),
but with the remarkable topological feature of a closed, global
loop of distinct propagation layers (Figure 5), which together
engender “synfire rings.”We evolved this network for 200, 000
time steps (1t = 1 ms) to create four areas of cortex,
which were then embedded into the larger model as two
frontal lobe (M1, Msup) and two sensory lobe (S1, Ssec) areas.
Weights close to zero were held at zero for the remainder
of all simulations. Propagating activity is maintained in the
excitatory network, satisfying the requirement for layer 5
traversals. An inhibitory network that undergoes biologically
plausible inhibitory STDP at its synapses onto excitatory
neurons, together with homeostatic plasticity in the excitatory
network, maintains spiking activity, s(t), in the synfire ring
at a nominal firing rate of 100 spikes/s. The inhibitory
network imposes global, persistent competition across the
network of excitatory layers. We propose this inhibition as an
approximate functional model of inhibition from the thalamic
reticular nucleus, which also integrates activity from across the
thalamocortical system.
• Striatum: The model creates activation paths within the state

space of a weakly connected, asymmetric inhibitory network to
give rise to “winnerless competition” (Rabinovich et al., 2001),
and alternating bouts of activity (i.e., “turn-taking”) among
the different neurons in the network (Figure 6). These bouts
have been used by others to model the intrinsic dynamics
of the striatum (Ponzi and Wickens, 2010), and together
represent global attractor states that encode the modulatory
and reorganizing influence of excitatory inputs to the network
from cortical layer 5. Using a FitzHugh-Nagumomodel, MSNs
are represented by three dynamic variables. First, xf (t) in
the model represents the “burst potential” of the neuron,
with a positive transient in this potential representing a
∼350 ms burst. Computed using the same time step as the
binary spiking layer 5 model, this coarse resolution model
of the neuron’s membrane potential is appropriate given
the dominant bursting mode of firing in MSNs, and the
observation that activity is often observed as alternating series
of bursts of bursts (Miller et al., 2008). The remaining variables
yf (t) represent a recovery from inhibition and zf (t) the
inhibitory synaptic current received by the neuron, summed
over the inhibitory inputs from other neurons through a
Heaviside step function and the inhibitory weightsWStr.
• Dopamine Neurons: The model is that of a leaky integrate

and fire (IAF) neuron. Four state variables are computed:
a membrane potential V(t), a variable threshold 2(t), and
two intrinsic currents I1(t) and I2(t), each integrated over the
same time step as the previous two models. Because spikes
in this model are represented by instantaneous resets of each
variable at V(t) > 2(t), the time step (1t = 1 ms) is
sufficient to integrate the neuron’s spiking dynamics. Based on
the published model, we derived an instance of a “rebound
burst” model, and satisfied the requirements of dopamine
neurons in the closed striato-nigro-striatal loop. Specifically,
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FIGURE 5 | (A) Correlation matrix computed over the final 10,000 iterations of a simulation of the Layer 5 model based on Zheng and Triesch (2014). The four

self-organized layers of this cortico-cortical topology are correlated in firing. (B) The cortico-cortical feedback weight matrix, showing clear dominance of the feed

forward area to area connections over all others. This self-organized topology supports synfire ring activity, which in the current model is referred to as traversal activity.

the voltage-dependence of 2(t) permits the model to generate
rebound spiking under conditions when the neuron has been
hyperpolarized deeply, or for a prolonged period (Figure 7).
Due to the independent spike-induced current R2, each
rebound event generates a burst of four action potentials.
This simplification’s phenomenology also approximates that
generated by other more complex models of rebound firing in
dopamine neurons (Lobb et al., 2011).

3.2. Component Model Interfaces
The interfaces between component models that implement
the integrated brain model of information-based exchange
summarized in Algorithm 1, are now listed and described.

• Feedback Cortico-cortical: Layer 5 feedback inputs to a
cortical area layer 5 are modeled as in the self-organizing
recurrent network of Zheng and Triesch (2014) and
implement the traversal network. Inputs are also categorized
by the layer 2/3 model as an input vector of sums of binary
spike trains over a time window τX . This vector x̂FB(t)
comprises the elements x̂FBi (t) ←

∑t
t−τX

sFBi (T), where
sFBi (T) ∈ {0, 1} is the spike train from one unit in the
upstream layer 5 area. Because of the full rank requirement
of the information maximizing algorithm, the model of layer
2/3 includes a fixed first stage random mixing matrix MFB,
drawn from a lognormal distribution with unit mean and unit
standard deviation, and linearly combining the elements of x̂FB
to create the feedback input vector xFB ← MFB · x̂FB.
• Feed Forward Cortico-thalamo-cortical: Inputs to a thalamic

relay neuron j projecting to a cortical area are modeled as a
vector of sums over a time window τX of binary spike trains
from layer 5 units in the cortical area projecting in the feed
forward direction to the same area. This vector x̂FF(t) then
comprises elements x̂FFi (t) ←

∑t
t−τX

sFFi (T), and is similarly
transformed by a mixing matrix such that the thalamic relay
neuron’s activity θFF ← MFF · x̂FF. Each element θFFj is then
subjected to the forward driver gating function G(·) over the

gating vector ̂G, such that elements of the feed forward input
vector are xFFj ← ̂Gj · θFFj .
• Layer 4 Thalamic and Feedback Inputs : Feed forward

thalamic inputs to layer 4 are combined with feedback inputs,
such that the input vector to information maximization in
layer 2/3, x̂I ← xFB + xFF. It is at this stage also that sensory
inputs from a simulated environment may be added to the
model.

• Layer 2/3 to Layer 5: The Layer 2/3 output vector y provides
an input to a gain function for layer 5’s integration of binary
spikes from feedback traversals of the Grand Loop. This gain
function is a model of the layer 5 neuron’s apical dendrite, and
is parameterized by the term Ach ∈ [0, 1], a proxy for the level
of cholinergic modulation in neocortex. The gain on inputs to
layer 5 unit j is then Uj = [1 − Ach(1 − yj)]/[1 − Ach/2],
which at Ach = 0, preserves unitary gain regardless of y,
and at Ach = 1 provides a gain U ∈ (0, 2) for y ∈ (0, 1).
In this way, assuming information maximization divides the
population into different halves of active and inactive units,
the total synaptic input to the network will remain constant,
since the Uj will always have a mean of 1, and is applied
multiplicatively to the excitatory synaptic integration function
of each layer 5 neuron as in Zheng and Triesch (2014).

• Globus Pallidus to Thalamus: The forward driver gating
function G applied to thalamic relay neurons in the feed
forward cortico-thalamo-cortical pathway models the final
output of basal ganglia, a transient increase (via the indirect
pathway) or decrease (via the direct pathway) in inhibition.
̂G is computed using a modified pallido-thalamic adjacency
matrix D, comprising 1 for all direct pathway pallido-thalamic
inputs, −1 for all indirect pathway pallido-thalamic inputs,
and 0 for all unconnected pallidal to thalamic relay neurons.
The bursting outputs ofMSNs are represented by the half wave
rectification function P, of the burst potential variable xf (t),

and the gating vector is then ̂G = H[D · P(xf (t))], where H is
the Heaviside function.

Frontiers in Neuroanatomy | www.frontiersin.org January 2016 | Volume 10 | Article 3 | 162

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Kozloski Brain Model of Information-Based Exchange

FIGURE 6 | (A) Striatal burst potential time series derived from FitzHugh-Nagumo models of four MSNs (columns) plotted at the beginning (blue) and the end (red) of

a simulation. Each burst potential represents a series of MSN spikes fired in a burst. (B) The time aligned burst output traces represent the half wave rectified version

of the potentials in (A). (C) IPSCs received by each MSN (outward currents plotted as a positive deflection). Currents are maximal when the neurons bursting ceases,

and are low when it is bursting, reflecting the operation of winnerless competition in the lateral inhibitory network.

• Layer 5 to Striatum: The inputs from the Layer 5 model to
an MSN in the Striatum model are drawn from all layer 5
neurons in the cortical area for which the MSN gates inputs
at the thalamus, and from those in the areas connected to
it in either the feed forward or feedback directions. These
Layer 5 inputs may also be directed to motor outputs of
the model to a simulated environment (as in the Pyramidal
tract). Corticostriatal synapses are subjected to STDP that
differentially adjusts weights, WCStr, based on correlation
between cortical spiking and the derivative of the burst outputs
of MSNs, P′(xf (t)). Pre-post pairing is defined as when a
cortical spike occurs and this derivative is positive, and post-
pre pairing when a cortical spike occurs and it is negative.
Each kind of pairing is computed separately and subjected
to the modulatory conditions at the synapse, as illustrated in
Figure 4. Briefly, depending on 1. the identity of theMSN (D1-

or D2-type), 2. whether dopamine is or is not present at the
synapse, and 3. whether the inhibitory synaptic current zf (t) at
the MSN exceeds a threshold (zf (t) > 0.00707), each pairing
value may be either 1 or 0, and the adjustment to the weight a
multiple of this value and a learning rate of 0.002. As in Zheng
and Triesch (2014), weights are normalized such that the sum
of all inputs to anMSN cannot exceed 0.1.When weights reach
zero they are pruned, and a single new connectionmay then be
formed during a time step with probability 0.2.
• Striatum toDopamine Neurons: The input to each dopamine

neuron in the model, Ie (Mihalas and Niebur, 2009), is
computed by summing all burst outputs from those MSNs
projecting to the dopamine neuron, multiplied by a constant
weight of−2.25.
• Dopamine Release to Corticostriatal Synapses: Unlike all

other projections in the model’s interfaces, the dopamine
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FIGURE 7 | (A) Long duration time series plots of Dopamine Neuron model variables. When the membrane potential (blue) reaches the variable threshold (red), a

spike reset occurs. Firing rates of Dopamine neurons across all simulations were consistently on average ∼1.6Hz, and varied locally depending up the ongoing

integration of dynamic inputs. (B) An expanded time scale reveals bursts (inset) occurring in response to deep hyperpolarization (single star), or prolonged weaker

hyperpolarization (triple star) events.

neuron projection is to a synapse, not a neuron. Specifically,
dopamine spiking results in a persistent dopaminemodulation
of STDP at a specific set of corticostriatal synapses. Dopamine
neurons are assigned randomly without replacement to
corticostriatal synapses onto each MSN. The duration of
dopamine modulation following a Dopamine Neuron model
spike persists at the synapse for a time τDA.

3.3. Simulation Materials and Experiments
We simulated the model to explore the rate and heterogeneity
of transitions in traversals and in subcortical modulators of
these traversals. The configuration (Table 2) allowed for a
rapid prototyping in Matlab because of the simulation’s small
size. Following initialization of the cortico-cortical Grand Loop
network of four areas, we simulated the full model for an
additional 500, 000 iterations using an Intel Xeon E5-2640 v3
Processor (20MB Cache, 2.60GHz), requiring 2.5 hours of
compute time. The first 50, 000 iterations were used to adjust the
biases of the layer 2/3 model, during which time Achmodulation
of layer 5 was drawn from the positive half of a zero mean normal
distribution with standard deviation of 1. All plots, except where
noted, show the final iterations of the 500, 000 total. Reported are
experiments wherein the parameter τDA was set at either 25 or
100 ms, and Ach at 0.25, 0.5, or 0.75. All plots except Figure 12
show results for τDA = 100ms.

4. SIMULATION RESULTS

4.1. Coordinated Behavior Among
Component Models
Behavior of the model may be analyzed first based on inspection
of various raster plots from different components of the model.

Algorithm 1: Information-Based Spike Exchange

1 while Simulation Running do
2 for (M1,Msup, Ssec, S1) do

3 xFB(t)← MFB ·
∑t

t−τX
sFB(T);

4 θFF(t)← MFF ·
∑t

t−τX
sFF(T);

5 if (M1,Msup) then
6 xFF(t)← G(θFF(t));
7 else

8 xFF(t)← θFF(t);
9 end

10 x̂I ← xFB + xFF;
11 y← σ (CxI);
12 1C←Infomax(xI,C, y, . . .);
13 U ← [1− Ach(1− yj)]/[1− Ach/2];
14 s(t): =SORN(sFB(t − 1),W,U, . . .);
15 xf (t): =Winnerless(s(t),WCStr, P(xf (t −

1)),WStr, . . .);
16 V(t): =IAF(P(xf (t)),2(t − 1), I1(t − 1), I2(t −

1), . . .);
17 1WCStr ←STDP(s(t), P(xf (t)), P(xf (t −

1)),WStr,
∑t

t−τDA
V(T), . . .);

18 if (M1,Msup) then
19 ̂G← H[D · P(xf (t))]

20 end

21 end

22 end

In this way coordination between the different components
is apparent. We first observed that cortico-cortical traversals
through the feedback layer 5 network occur without subcortical
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TABLE 2 | Configuration parameters specific to model simulation.

Parameter

name

Description Parameter value

NA Number of cortical areas 4

NE Number of thalamocortical units (layer 5,

2/3 pyramidal, thalamic relay neurons)

400

τX Layer 2/3 integration window for spiking

to rate code transformation (ms)

100

NI Number of thalamic reticular inhibitory

neurons

80

NFrontal Number of frontal cortical areas under

striatal gating

2

NStr Number of striatal MSNs 100

NCx,Str Number of cortical neurons projecting to a

striatal neuron

20

W0Cx,Str
Initial corticostriatal weight 0.005, (0.1/NCx,Str)

NStr,Th Number of striatal neurons projecting to a

thalamic relay neuron

11

NDA Number of dopamine neurons 20

NStr,DA Number of striatal neurons projecting to a

dopamine neuron

20

τDA Dopamine modulation window (ms) 25,100

regulation, and were similar to the synfire events reported by
Zheng and Triesch (2014). There are twomain regulators of these
traversals in our model: (1) an information based gain on layer 5
feedback inputs provided from layer 2/3, and (2) basal ganglia
gating of cortico-thalamo-cortical feed forward inputs to layer
2/3 information maximization by the forward driver gate.

Upon introducing these regulators, we noted that traversals
became structured into long bouts of smoothly alternating and
repeating patterns of activity across the different cortical layers’
raster plots. Each pattern persisted for ∼400 ms (Figure 8A),
and sequences of patterns, while similar over each cycle, were
not identical. The Ach parameter provides a means to adjust the
influence of categories learned by layer 2/3 on traversals. For this
initial experiment, Ach = 0.25 provided a gain U ∈ (0.86, 1.14)
for y ∈ (0, 1).

Information maximization creates maximal entropy in the
ensemble of output vectors over an input ensemble, and because
of the logistic function, activity in each layer 2/3 neuron was
typically close to zero or one.We interpret these values as cortical
up and down states, which have both an extrinsic and intrinsic
origin in the local cortical microcircuit.

Maximizing entropy of the ensemble of gain functions,
applied to layer 5 inputs in the feedback traversal network, had
the interesting effect of creating more irregularity in the patterns
of activity across all of cortex asAch increased. AtAch = 0.5,U ∈
(0.67, 1.33), (Figure 8B), pattern combinations became varied,
even though average global firing rates imposed by homeostatic
plasticity in the network were consistently maintained (100
spiked/s). Finally, at Ach = 0.75, U ∈ (0.4, 1.6), traversal
transition rates increase significantly, and patterns were highly
varied (Figure 8C).

Inspecting the information-bearing up and down states in
layer 2/3 directly in state rasters from all four cortical areas

also reveals coordination between areas and with transitions
in traversals. In Figure 9A, under Ach = 0.25, the rate of
state changes among layer 2/3 units appeared coordinated,
especially in the secondary sensory area. This coordination is
less regularly transitioned than in the traversals, and occurs
at a higher rate. At higher Ach = 0.5 (Figure 9B) up
and down state coordination with traversals increases, while
coordination across layer 2/3 is weakened. At Ach = 0.75
(Figure 9C) states become synchronized in the secondary
sensory area and more coordinated with traversals overall,
even though traversals themselves become more heterogeneous.
Note that the heterogeneity in traversals due to increased
control by the information maximizing network is not due
to a lack of convergence in the weights of the networks.
Weights among both the layer 2/3 Infomax input weights
C and layer 5 feedback weights W converged during these
simulations.

MSN bursts generated by the model were ongoing, as in
the winnerless network and the model of Ponzi and Wickens
(2010). These bursts appeared in fast sequences, which were
of longer duration in D1-type MSNs than D2-type (Figure 10).
Variability in burst rate between MSNs was also observed, with
some not firing at all, likely because of inhibition from the
active network. Increasing Ach had only a small effect on the
raster appearance, and so we began our quantitative analysis by
examining coordination between the Striatum model and the
Layer 5 model.

4.2. Measurements of Information-Based
Exchange
To quantify coordination between striatum bursting and cortical
layer 5 spiking, we computed pairwise linear correlation
coefficients between each cortical spike train and striatal burst
train. We plotted each using a color scale (red, more correlated;
blue, less correlated) in a matrix showing how different areas
of cortex fired in relation to D1- and D2-type MSN bursts
(Figure 11, left column). Only significant correlations were
plotted, and all others were represented by zero. We also
show that the mean of each distribution of correlation values
(Figure 11, right column) for both D1- (blue) and D2-type (red)
MSNs differed. Most coefficient distributions of D1 vs. D2 burst
correlation with cortical spiking were significantly different(p <

0.05), based on pairwise student t-tests. More striking is the
difference in sign for each mean coefficient of correlation to each
cortical area as Ach increases. Positive correlation coefficients
dominated at low Ach and negative at high. At the intermediate
level, M1 in particular showed a divergence in sign between
mean correlation coefficients for D1-type (positive) and D2-type
(negative) MSNs.

Finally, to quantify information-based exchange directly,
we measured the entropy of cortical spiking and dopamine
neuron spiking, and the mutual information between
cortical and dopamine neuron spiking (Strong et al., 1998).
Instead of measuring entropy and information among spike
trains of individual neurons however, which quantifies the
distribution of patterns of spikes over time, we measured
entropy and information in population spiking, which
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FIGURE 8 | Raster plots of the cortical Layer 5 model outputs. 400 spike trains from the final 2 s of simulated time. Cortical areas noted on right. (A) Under low

Ach (0.25) patterns of traversals are long lasting (∼400 ms) and smooth. (B) Under moderate Ach (0.5) patterns of traversals become briefer and choppy, with example

of a single traversal of the Grand Loop expanded on right (red boxes). (C) Under high Ach (0.75) patterns of traversals are brief (100–200 ms) and heterogeneous.

quantifies the distribution of patterns of spikes over the
population for single time steps. The method was aimed at
asking if traversals themselves show entropy maximization

based on increased modulation from layer 2/3. Synfire
events are encoded by the sets of units that participate at
every stage of the chain or ring propagation. Therefore,
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FIGURE 9 | Up state (black) raster plots of Layer 2/3 model outputs (upper panels) and example time series of gain U on traversal inputs to each area

(lower panels). (A) Under low Ach (0.25), states transition more quickly than traversals from Figure 8. (B) Under moderate Ach (0.5), states transition more slowly in

sensory areas. (C) Under high Ach (0.75), up and down states become synchronized in the secondary sensory area.

if the entropy of synfire population spiking increases, it
can be concluded that the synfire chain entropy itself has
increased.

We found that entropy in cortical layer 5 population spiking
increased as Ach increased (Figure 12A). We also show that
as the window of dopamine integration τDA increased, the
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FIGURE 10 | Striatal model MSN burst raster plots over the final 100 s of simulated time. Bursts come in alternating bursts of bursts across the population

due to winnerless competition. D1-type and D2-type of MSN noted at right. Bursts of bursts are longer in duration among D1-type MSNs under (A) Low (0.25), (B)

Moderate (0.5), and (C) High (0.75) Ach.
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FIGURE 11 | Pairwise linear correlations coefficients between cortical spike trains and striatal bursts from Figures 8, 10. Only significant correlations are

shown in the matrices plotted on left (D1- and D2-types noted along right) with others shown as zero. Mean correlation values are plotted on right, for D1- (blue) and

D2-type MSNs (red). A star indicates significant difference (p < 0.05) in the distributions of coefficients (pairwise student t-test). (A) Under low Ach (0.25), correlations

are positive across motor areas and all areas combined. (B) Under moderate Ach (0.5), correlations become positive for primary motor D1 and negative for D2. (C)

Under high Ach (0.75), correlations are negative across motor areas and all areas combined.
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FIGURE 12 | Entropy and mutual information computed for cortical and

dopamine neuron population spiking. (A) Entropy (H) of cortical population

spiking for final 100 (dashed) and 200 (solid line) seconds of simulated time

under increasing Ach. Circles plot simulations with τDA equal to 25 ms and

squares 100 ms. In all conditions H increases with Ach and τDA. (B) Same as

(A) but showing entropy of dopamine neuron population spiking. (C) With

increasing cortical population spiking entropy (A), the mutual information

between cortical and dopamine neuron population spiking decreased.

entropy of layer 5 population spiking increased slightly as well.
Surprisingly, the entropy of dopamine neuron population spiking
(Figure 12B) remained constant while both parameters in the
model were altered. Finally, to measure how increasing traversal

entropy depends on dopamine population spiking, we measured
the mutual information between these two populations, and
found it to decrease as Ach increased (Figure 12C).

5. DISCUSSION

We discuss the brain model of information-based exchange in
three contexts: brain evolution and development, brain resting
state networks, and new approaches to the study of brain
disorders such as neurodegenerative diseases.

5.1. Brain Evolution and Development
We propose that the Grand Loop, spanning sensory, limbic,
and motor cortices, and specifically traversing in our model
somatosensory cortices, is prototypical and embryonic in origin,
since other modalities develop fully only after birth and do not
share a granular-agranular tiling boundary in von Economo’s
map. The topological relationship between other modalities
and this backbone may then provide alternative pathways
for completing a full traversal and rapidly binding percepts,
needs, and behaviors. Finally, the tight coupling between
somatosensory inputs and limbic states (i.e., tissue damage, pain)
and motor states (i.e., sensorimotor feedback, proprioception)
argues that this loop is likely preeminent in both brain evolution,
organization, and development.

This model additionally provides insights into those
organisms lacking cortices, wherein the stages of the proposed
traversals may not be segregated anatomically (e.g., into
Brodmann areas), but instead may be nucleated (e.g., in the
birdsong system), or even superimposed within the same pallial
regions (e.g., in fish and amphibians). Synfire ring development
is robust given the synaptic modifications proposed by Zheng
and Triesch (2014). It furthermore does not require anatomical
segregation between layers to emerge or for synfire activity
to propagate (e.g., for Figure 5, we sorted each matrix after
areas developed in order to illustrate them clearly and connect
subcortical structures to each).

Synfire rings may represent a prototypical substrate for
behavior generation (Figure 13), and through subpallial
regulatory inputs from thalamus and basal ganglia as described
herein, for behavior selection. In such a scenerio, the evolution
of a multilaminate neocortex to support such rings may have
solved the problem of entropy maximization over the ensemble
of synfire events in very large networks. Since the neural network
implementation of Infomax requires a dense lateral network, to
optimize each stage of a synfire ring and traversals in general
would necessitate both the segregation of stages and a registered
information maximizing network (Figure 13). This solution
to the problem would then support rapid expansion of the
synfire ring substrate by evolution, given that redundancy in
large networks could suddenly be managed and eliminated by
information maximization.

5.2. Resting State Networks
The challenge of modeling resting state activity in the brain
has presented itself based on observations that distinct networks
spanning multiple cortical areas appear in imaging studies to
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FIGURE 13 | A generalized schematic for an information-based exchange network.

serve either active or inactive states of the organism (Fox
et al., 2005). Inactivity correlated networks appear even under
anesthesia (Vincent et al., 2007), and these areas have very high
metabolic rates, tipping the brain’s energy budget toward a large
investment in the organism’s doing nothing.

What this costly outlay accomplishes may be explained by
our model’s use of closed-loop activity in the information-
based exchange network to increase entropy over the ensemble
of traversals. In an evolutionary context, this activity may be
viewed as preadapting the brain to selecting novel behaviors
in novel contexts by maximizing such a quantity first, before
engaging with the environment, then using the preadapted
diverse traversals to explore it and seek reward.

While others have noted that resting state dynamics may
represent a “constant state of inner exploration” (Deco et al.,
2011), our model is the first to assign a quantitative measure to
the fruits of this brain activity, providing a new way to reason
about the trade-off between evolutionary pressures toward latent
adaptive behaviors and the large metabolic cost of resting state
network activity.

5.3. Dynamic Disease Risk
We hypothesize that basic controls are required to establish
“cognitive homeostasis,” i.e., a process by which variables that
change brain dynamics are carefully regulated so that properties
of brain state transitions (and thus brain information processing
and behavioral dynamics) remain relatively stable under constant
neuromodulatory conditions. We refer to these stable properties
as “set points,” i.e., targeted norms for critical system variables
supporting normal behavior, percepts, affect, and cognition. In
our model, these controls are based on a consistent set of
parameters that yield consistent spiking and bursting patterns,

even when the network undergoes reorganization (e.g., when
Ach was modified, the system adjusted and produced stable
traversals). Stable ranges of firing among burst rates and
traversals, coefficients of correlated firing and bursts, and entropy
and mutual information among population spiking and bursting
have been our initial targets for describing these system set points
using the brain model.

In real brains, given evolutionary pressures for robust self-
regulation and behavior, the system is certainly replete with
controls aimed at maintaining these set points. The challenge
of studying brain disorders such as neurodegenerative disease
is sorting primary and secondary risks from the multitude
of compensatory mechanisms, each of which manifests itself
as a deviation from normal brain and neuronal function
given some primary genetic or injury risk. Researchers have
shown, for example, that mutant Huntingtin protein disturbs
NMDA receptor localization, densities, and currents at the
corticostriatal synapse in mouse models of the disease (Cepeda
et al., 2001). Knowing how this change arises and perturbs circuit
dynamics, plasticity, and system set points may provide a better
understanding of why certain neurons succumb and others don’t
when subjected to the same mutant protein.

We propose that perturbations in our model may result in
stable dynamics, but with measurable risks related to stressors
on normal neuronal function. If these deviations are extreme
in our model, and therefore difficult to compensate for in
biological tissue, a cascade of neuronal dysfunction may result.
Neurodegenerative diseases such as Huntington’s, Parkinson’s,
and Alzheimer’s, may then be understood as cascading failures
given initial stressors derived from plasticity abnormalities at
the corticostriatal synapse, within the striato-nigro-striatal loop,
and over the process of entropy maximization in layer 2/3,
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respectively. For example, subtle changes to STDP or homeostatic
plasticity may result in increased synaptic competition or cycling
in the space of possible weights, which is then difficult to
compensate for locally, given that traversals entail global brain
states. If these risks increase when stressed neurons are removed
from a simulation, the model may then be used to predict disease
progression.

Implementation of the current brain model of information-
based exchange forms a framework for the analysis of cognitive
homeostasis and disease using IBM’s scalable approach to
structural and neurophysiological modeling of neocortex and
brain nuclei (Kozloski and Wagner, 2011). Here we extend this
approach and that of many brain modeling projects, which
seem focused on validating complex local circuit and tissue
models at the expense of validating tissue inputs. Minimal
complexity brain models, in our case an information-based
exchange network, may be necessary to capture brain dynamics
and provide validatable inputs to complex tissue models. The
current model has now been reimplemented in the same model
graph simulation infrastructure in which IBM’s Neural Tissue
Simulator was implemented, and thus will allow direct coupling
between these in a single scalable, extensible program.

With this new approach, inputs and models of the various
components may be simulated and compared to in vivo
experimental observations. Furthermore, simulations over very
long time scales can be used to stress the model and its
set points in physiologically and clinically realistic ways.
Additional perturbations to the model may include physiological
stimulation, such as simulated deep brain stimulation (DBS)
in simulated neural tissue, simulated drugs with known targets
in the detailed model, and different simulated disease states
with hypothesized mechanisms at the level of gene, protein,
regulatory network, etc. Stimulation, drug effects, and disease
mechanisms can then be targeted to test certain hypotheses about

modifications to dynamic disease risk, and to study the wider
system’s behavior. Increasing complexity of perturbation sets
(targets and combinations)may be designed to validate themodel
under different therapeutic conditions, and to test for phenotypic
outcomes (e.g., symptomatology). Therefore, elaboration of these
simulations within each modeled neural tissue might allow for in
silico study of therapeutic interventions in living brain tissue.

In the above discussion, a model of several brain circuit
components and their global set points has been proposed as a
means to test disease mechanisms and therapeutic inputs such
as DBS and drugs. The implicit assumption of these tests is that
risks can be inferred from outlier variables that maintain system
set points, and that these outliers may then be implicated as
causes of phenotypic symptoms such as abnormal behavior at the
organismal, circuit, neuronal, or synapse level. Targeting these
variables in real world systems is one approach we propose for
novel therapeutic design and discovery using brain modeling
combined with neural tissue simulation.
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