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Editorial on the Research Topic

Untangle the broad connections and tight interactions between human

microbiota and complex diseases through data-driven approaches

It is well-known that microorganisms are ubiquitous in the environment and occupy

almost all habitats in animals and humans (Finlay and Clarke, 1999; Rosenberg, 2021).

Traditionally, microorganisms are studied as individuals grown in isolation under artificial

conditions; however, with the development of experimental techniques and computational

methods, microbes are now frequently considered as a functional group in a particular niche

and studied at the community level in order to best mimicking the real-world situations

(American Academy of Microbiology, 2004). During the study of microbial communities,

two terms are commonly used, that is, microbiota and microbiome. A microbiota is defined

as the microorganisms present in a defined environment and consists of bacteria, fungi,

viruses, archaea, protists, etc. (Malard et al., 2021), while a microbiome not only means the

collection of genomes from all the microorganisms in a niche, but also includes themicrobial

structural elements, metabolites, and the environmental conditions (Berg et al., 2020). For

the past two decades, both sequencing technologies and mass spectrometry techniques have

been developing rapidly. With their in-depth applications in the dissection of the human

microbiota, more and more evidence have shown that microorganisms play very important

roles in physiological functions and are closely related to various complex diseases in human

beings (Hou et al., 2022). This has led to an insightful understanding of underlying disease

mechanisms from microbial perspectives. Therefore, elucidation of the microbiota-disease

association will be of great help for understanding the pathogenesis of human diseases,

promoting early diagnosis, and improving precision medicine.

Particularly, in the human gut, the vast majority of gut microbes not only synthesize

essential amino acids and vitamins but also facilitate the digestion of indigestible
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components of the human diet like plant polysaccharides (Rowland

et al., 2017; Vernocchi et al., 2020). When gut microbial

communities change, people are likely to suffer from related

digestive system diseases, but when the abnormal gut microbial

communities are restored to normality, disease symptoms could

be alleviated (Gagliardi et al., 2018; Liu et al., 2021), though safety

issues are still under intensive investigations (Daliri et al., 2018). If

changes in intestinal microbes can be detected in time and given

corresponding treatment, the workload of later clinical diagnosis

and treatment will be greatly reduced (Zhang et al., 2015; Manor

et al., 2020). Although current technologies have already helped

us identify many previously unexpected connections between the

microbiota and diseases, such as cancer, autoinflammatory diseases,

metabolic syndromes, digestive system diseases, cardiovascular

diseases, and central nervous system disorders, the present level

of knowledge is still limited (Zhang et al., 2015). It is rather

difficult to analyze the existing meta-omics data in-depth due

to the lack of competent algorithms and bioinformatics tools,

which leads to a narrow understanding of the microbiome-disease

association and severely limits the development of the association

mechanisms (Wang et al., 2022). Therefore, more efforts should

be applied to the microbiota-disease association analysis, especially

to promote the application of microbial analysis in the clinical

settings for the diagnosis, treatment, and prevention of complex

human diseases. In addition, downstream experimental validations

of the microbiome discoveries in terms of the associations between

microbiota and diseases are urgently needed to promote the real-

world application of the meta-omics analysis. Therefore, studies

with the combination of experimental and computational methods

for interrogating the intriguing associations are also desirable.

In this Research Topic, all the collected articles could be

divided into several groups that are either directly related to

the topic by focusing on the interactions between microbiota

and diseases or indirectly linked with the topic by focusing on

models, tools, biomarkers and diseases, which are all summarized

below to emphasize the core of the collection, that is, the broad

connections and tight interactions between human microbiota

and complex diseases. In specificity, Qin et al. compared the gut

microbiome in 28 healthy people and 61 lung cancer patients that

were classified into three types according to their histopathology,

that is, Atypical Adenomatous Hyperplasia/Adenocarcinoma

in situ (AAH/AIS), Minimally Invasive Adenocarcinoma

(MIA), and Invasive Adenocarcinoma (IA). According to the

results, categorized cancer patients had unique intestinal flora

characteristics with comparatively lower density and flora diversity

than healthy people. In addition, several flora markers were

identified for the development of lung cancer, which held the

potential for diagnosis, prognosis, prevention and treatment of

lung cancer. Yang L. et al. from Sichuan University performed

an integrative analysis of gut microbiota and fecal metabolites by

comparing 32 metabolic associated fatty liver disease (MALFD)

patients and 30 healthy individuals; according to the results,

decreased species richness and diversity and altered β-diversity

in feces were found in MALFD patients via 16S rRNA amplicon

sequencing data, while metabolomic analysis identified overall

changes in fecal and serum metabolites dominated by lipid

molecules. Further associations between gut microbiota and fecal

metabolites revealed that LPC 18:0 was positively correlated

with Christensenellaceae_R-7_group, Oscillospiraceae_UCG-002

while neohesperidin was positively correlated with Peptoniphilus,

Phycicoccus, and Stomatobaculum, which provided novel clues

for understanding the molecular mechanisms of MALFD, and its

diagnostic markers and therapeutic strategies. In addition, Wei

et al. developed and validated an interpretable radiomic nomogram

for severe radiation proctitis prediction in postoperative cervical

cancer patients because radiation proctitis is a complex disease

closely related to the microbiota but it is really time-consuming

and expensive for analysis of gut microbiota. Therefore, this study

emphasized the limitations of microbiota study and proposed a

solution to solve the issue.

Except for the direct analysis of human microbiota and

complex diseases, several studies focused on the constructions

of models and development of tools for disease studies. For

example, Yang B. et al. focused on the disease-ligand identification

in the system of traditional Chinese medicine (TCM) based

on a newly developed screening method termed as flexible

neural tree (FNT) model, which were successfully applied to

hypertension, diabetes, and COVID-19 for the identification

of related compounds in TCM. It is also well-studied that

hypertension, diabetes, and COVID-19 are closely associated with

gut microbiota (Gurung et al., 2020; Mishima and Abe, 2021;

Zhang F. et al., 2022). Therefore, the disease-ligand identification

model has potential application in dissection the association

between human microbiota and human diseases. In another

study, Wang et al. tried to infer pan-cancer associated genes by

examining the microbial model organism Saccharomyces cerevisiae

by homology matching, which was based on the principle that the

homologous genes of the common ancestor may have similarities

in expression. According to the authors, their study holds the

potential in revealing a link between microbiota and associated

diseases, which is crucial to understand the molecular mechanisms

of these diseases in the development of new microbiome-based

therapies. In addition, Chen and Lei noticed that limitations

of traditional medical experiments in the study of potential

microbe-disease associations. Therefore, they proposed a method

based on heterogeneous network and metapath aggregated graph

neural network (MAGNN) to predict microbe-disease associations,

which is termed as MATHNMDA. According to the results, their

model could effectively predict microbe-disease associations in

terms of case studies of asthma, inflammatory bowel disease, and

COVID-19. In another study, Niu et al. studied an industrial

yeast Pichia pastoris from the aspect of transcriptomic analysis,

which aims to identify the regulation of foreign proteins with

different stabilities expressed in Pichia pastoris. According to their

results, the study shed a new light on the understanding of the

regulatory mechanisms in yeast cells that responds to intracellular

folding stress.

COVID-19 that is caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has been widely spread

worldwide since the end of 2019 (Liu et al., 2022; Zhang Y.-D.

et al., 2022), which generated huge social and economic impact on

human beings. Since COVID-19 infection is tightly associated with

human microbiota, several studies also contributed to its diagnosis

and therapy in this Research Topic collection. For example, Peng

et al. developed a novel diagnostic analysis for CT scan images

of COVID-19 pneumonia based on a deep ensemble framework
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with DenseNet, Swin transformer, and RegNet, which achieved the

best precision of 0.9833, recall of 0.9895, accuracy of 0.9894, F1-

score of 0.9864, AUC of 0.9991, and AUPR of 0.9986 under binary

classification problem by comparing with other classification

methods. Moreover, Tian et al. constructed a deep ensemble

learning-based automated detection of COVID-19 using lung CT

images and Vision Transformer and ConvNeXt, which computed

the best precision of 0.9668, an accuracy of 0.9696, and an F1-

score of 0.9631 in the three-classification experiment. In addition,

Chen et al. built a novel weighted reconstruction-based linear label

propagation (WLLP) algorithm for predicting potential therapeutic

agents for COVID-19, which exhibited excellent performance with

an AUC of 0.8828 ± 0.0037 and an area under the precision-recall

curve of 0.5277± 0.0053, showing that the algorithm could be used

to suggest potential drugs for the treatment of COVID-19.

Finally, there are also two studies that are focusing on

microRNAs in human diseases. According to previous studies,

it was well-known that the interactions between gut microbiota

and microRNA affected host pathophysiology such as intestinal,

neurological, cardiovascular, and immune health and diseases (Li

et al., 2020). Therefore, it is meaningful to include a couple

of microRNAs studies in this Research Topic. In particular,

Qu et al. investigated the spring-like effect of microRNA-31 in

balancing inflammatory and regenerative responses in colitis,

according to which MIR31 is able to alleviate inflammation

via inhibiting inflammatory cytokine receptors and can promote

epithelial regeneration by modulating the WNT and Hippo

signaling pathways. In the other study, Yao et al. identified

circRNA-miRNA interactions based onmulti-biological interaction

fusion by proposing a novel model termed as circRNA-miRNA

interaction prediction model (IIMCCMA), which showed that

the model could achieve excellent performance in predicting the

rare interaction between circRNA and miRNA, which helped to

understand the molecular mechanism and contributed to the

diagnosis, treatment, and prognosis of human diseases. However,

whether these microRNAs involve any interactions with gut

microbiota require further studies.

Taken together, a total of 12 articles including research papers,

methodologies, web server tools, and software were enclosed in

this Research Topic, which were authored by 96 investigators from

different countries and regions of the whole world. The Research

Topic focuses on human diseases such as cancer, pneumoniae,

liver disease, colitis, and proctitis mainly from the aspects of

human microbiota and relevant factors that could greatly facilitate

the understanding of complex diseases in human beings from a

long-term perspective. In addition, we would also like to thank

all the reviewers for their valuable, rigorous, and high-standard

suggestions and comments during the tedious peer review process.

Wewould like to express our sincere gratitude to the Specialty Chief

Editor, Dr. George Tsiamis, and also the editorial office of Frontier

in Microbiology, for providing us with this opportunity to hold this

fascinating Research Topic issue successfully.
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More and more studies have shown that understanding microbe-disease associations
cannot only reveal the pathogenesis of diseases, but also promote the diagnosis and
prognosis of diseases. Because traditional medical experiments are time-consuming
and expensive, many computational methods have been proposed in recent years to
identify potential microbe-disease associations. In this study, we propose a method
based on heterogeneous network and metapath aggregated graph neural network
(MAGNN) to predict microbe-disease associations, called MATHNMDA. First, we
introduce microbe-drug interactions, drug-disease associations, and microbe-disease
associations to construct a microbe-drug-disease heterogeneous network. Then we
take the heterogeneous network as input to MAGNN. Second, for each layer of MAGNN,
we carry out intra-metapath aggregation with a multi-head attention mechanism to
learn the structural and semantic information embedded in the target node context,
the metapath-based neighbor nodes, and the context between them, by encoding the
metapath instances under the metapath definition mode. We then use inter-metapath
aggregation with an attention mechanism to combine the semantic information of all
different metapaths. Third, we can get the final embedding of microbe nodes and
disease nodes based on the output of the last layer in the MAGNN. Finally, we
predict potential microbe-disease associations by reconstructing the microbe-disease
association matrix. In addition, we evaluated the performance of MATHNMDA by
comparing it with that of its variants, some state-of-the-art methods, and different
datasets. The results suggest that MATHNMDA is an effective prediction method. The
case studies on asthma, inflammatory bowel disease (IBD), and coronavirus disease
2019 (COVID-19) further validate the effectiveness of MATHNMDA.

Keywords: microbe-disease associations, heterogeneous network, metapath aggregated graph neural network,
multi-head attention mechanism, COVID-19

INTRODUCTION

The microorganisms related to the human body mainly include eukaryotes, archaea, bacteria, fungi,
and viruses [Human Microbiome Project (HMP), 2012]. These microorganisms form different
microbial communities and parasitize in different parts of the human body, such as the skin, mouth,
genitalia, intestinal tract, and other parts. Studies have shown that the number of microbes in the
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adult intestine is equivalent to 10 times that of human
cells (Sender et al., 2016), which indicates that the microbial
community in the human body is relatively large. Microbes
are generally beneficial to the human body. For example, by
fermenting food ingredients that cannot be digested by the
host, gut microbes can promote nutrient and energy absorption
(Gill et al., 2006; Marco et al., 2017). The Bifidobacteria in
the human intestine can produce lactic acid and acetic acid
after fermentation, which can promote the absorption of iron
and vitamin D. Therefore, a set of balanced microbes can keep
the human body away from physiological disorders, but the
imbalance or decline of the microbial community can harm
the human host and cause diseases. For example, a study has
found that compared to normal children, children with asthma
would have a smaller number of Faecalibacterium, Lachnospira,
Veillonella, and Rothia (Arrieta et al., 2015). Another study found
that the relative abundance of Enterococcus, Escherichia/Shigella,
Klebsiella, Streptococcus, and Peptostreptococcus in the intestinal
flora of patients with colorectal cancer was increased (Wang et al.,
2012). These studies have shown that identifying the relationship
between microbes and diseases can help us understand the
pathogenesis of the disease, so as to carry out more targeted
treatment. Therefore, determining the relationship between
microbes and diseases has become a key research topic in the
current bioinformatics field.

Verifying the relationship between microbes and diseases
through biological experiments is a time-consuming and
expensive task. Therefore, many computational models have
been proposed to predict the association between microbes and
diseases. Wang et al. (2021) wrote a review on circular RNAs
and complex diseases, which classified the prediction models
of circRNA-disease associations. Inspired by this study, we can
divide these computational models into four types according
to the differences in the microbe-disease association prediction
strategies based on heterogeneous networks: path-based
methods, random walk methods, bipartite local models, and
matrix decomposition methods (Wen et al., 2021). Path-based
methods are widely used in association prediction (Zhang et al.,
2021; Liu et al., 2022a). They make predictions by calculating
path-based scores between microbe nodes and disease nodes.
For example, Chen X. et al. (2016) proposed the first model
KATZHMDA to predict microbe-disease associations, which
calculated the predicted probability score according to the
walking step length and walking times between the two nodes
in the microbe-disease network. Huang et al. (2017) proposed
a computational model PBHMDA based on the depth-first
search to predict potential microbes associated with diseases.
Fan et al. (2018) developed a new model MDPH_HMDA to
predict microbe-disease associations by integrating multi-
source data and path-based HeteSim score. The random walk
has aroused extensive interest in the field of microbe-disease
prediction. For instance, Yan et al. (2019) proposed a prediction
model BRWMDA based on similarity and bi-random walk to
predict potential microbe and disease associations. Luo and
Long (2018) proposed a computational model NTSHMDA
based on random walk and network topology similarity
to predict the associations between microbes and diseases.

Wu et al. (2018) developed a method named PRWHMDA,
which attempted to infer potential microbe-disease pairs by
random walk on the heterogeneous network with Particle
Swarm Optimization (PSO). Bipartite local models are also
common methods, which work independently on the basis
of both sides of a microbe-disease pair and can be combined
to yield a definitive prediction result. For example, Zou et al.
(2018) proposed a method called NCPHMDA that utilized
the network consistency projection to predict microbe-disease
associations. Wang et al. (2017) constructed a semi-supervised
computational model LRLSHMDA based on a Laplacian
regularization least squares classifier to predict the associations
between microbes and diseases. In addition, some prediction
models for microbe-disease associations were developed based
on matrix factorization techniques. For instance, He et al.
(2018) presented a method called GRNMFHMDA, which
incorporated weighted K-nearest known neighbors to predict
microbe-disease associations. Shen et al. (2017) developed a
computational model of CMFHMDA, which used collaborative
matrix factorization to reconstruct the association matrices
between diseases and microbes. Wang Y. et al. (2022) proposed
a method HNGFL based on heterogeneous network and global
graph feature learning to predict microbe-disease association.
In addition to these computational models, several review
articles on microbe-disease associations have been published. For
example, Pan et al. (2022) developed a comprehensive approach
to predict associations between genomics, proteinomics,
transcriptomics, microbiome, metabolomics, pathomics,
radiomics, drug, symptoms, environment factors, and disease
networks. Wang L. et al. (2022) provided a comprehensive review
on predicting pairwise relationships between human microbes,
drugs, and diseases, from biological data to computational
models. Wen et al. (2021) provided a survey on predicting
microbe-disease associations based on biological data and
computational methods.

Although the above-mentioned methods have achieved
relatively stable prediction performance in the association
prediction task of microbes and diseases, there are still some
limitations and deficiencies. First, the vast majority of methods
make predictions based on small-scale datasets, which makes
them unable to obtain accurate predictions when it comes to
new diseases (or new microbes) due to a lack of training data.
Second, microbe imbalance (or the occurrence of disease) is
not influenced by a single factor. Some studies have shown
that microbes participate in drug absorption and metabolism,
thereby regulating drug efficacy and drug toxicity for disease
(Zimmermann et al., 2021). However, the above-mentioned
methods are only based on microbes and diseases, which makes
these models unable to obtain accurate prediction results due
to the lack of more semantic information about microbes and
diseases in the prediction process.

Therefore, with the discovery of multivariate biological data,
the heterogeneous graph embedding method is increasingly
applied to relational prediction. It can learn semantic and
structural information between nodes to compensate for the
poor prediction performance due to the small amount of
known associated data. For example, Lei and Wang (2020)

Frontiers in Microbiology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 91938010

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-919380 May 25, 2022 Time: 16:53 # 3

Chen and Lei MATHNMDA

proposed a method based on Node2vec and a heterogeneous
network scoring mechanism, called LGRSH, to predict the
association between microbes and diseases. Liu et al. (2022b)
proposed a method to identify miRNA-disease associations
via deep forest ensemble learning based on autoencoder.
Yang et al. (2022) proposed a DeepWalk-based method to
predict lncRNA-miRNA associations via a lncRNA-miRNA-
disease-protein-drug graph. Zhu et al. (2018) proposed a
method using Metapath2vec to predict drug-gene interactions.
Lei et al. (2021) developed a method, called CDWBMS, to
predict circRNA-disease associations based on an improved
weighted biased meta-structure. Zhang et al. (2020) adopted
metapath2vec++ and matrix factorization to predict circRNA-
disease associations. All the heterogeneous graph embedding
methods have some limitations when applied to association
prediction, such as ignoring the information of multiple
nodes, discarding all intermediate nodes on the metapath, or
only using a single metapath. This will affect the predictive
performance of the model.

To deal with the above-mentioned issues, we developed
a novel method based on a metapath aggregated graph
neural network (MAGNN) and tripartite heterogeneous
network for microbe-disease association prediction named
MATHNMDA. In particular, we integrate information from
different sources, such as microbe-disease associations, microbe-
drug interactions, and disease-drug interactions, to construct
a tripartite heterogeneous network of microbe-drug-disease.
Further, we feed the heterogeneous network to MAGNN. For
each layer of MAGNN, we first use intra-metapath aggregation

with a multi-head attention mechanism to extract the structural
and semantic information of the metapath instance. After that,
we further apply inter-metapath aggregation with an attention
mechanism to fuse latent vectors of multiple metapaths. Finally,
we take the output of the MAGNN as the final embedding
features of the microbe node and disease node, and make
predictions. In order to verify the predictive performance of
MATHNMDA, we carried out cross-validation experiments, and
the results indicate that MATHNMDA can effectively identify
potential disease-related microbes.

Overall, our main contributions are as follows:

(1) We expand known microbe-disease association data by
integrating multiple databases, and construct a tripartite
heterogeneous network by introducing drug-disease
associations and microbe-drug associations. We further
apply MAGNN to predict microbe-disease associations.

(2) We use intra-metapath aggregation with the multi-head
attention mechanism to learn the topological information
and semantic information embedded in the internal nodes
of metapath, so that the embedding learned by the target
node is more comprehensive.

(3) We use inter-metapath aggregation with an attention
mechanism to aggregate the embeddings of
different metapaths for target nodes (microbe nodes
or disease nodes).

(4) We conduct a case study of coronavirus disease
2019 (COVID-19) to verify the effectiveness of
the MATHNMDA model.

FIGURE 1 | The processing and integration process of microbe-drug-disease association data.
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MATERIALS AND METHODS

Dataset
In this study, we integrate the information obtained from
different sources. First, we collect microbe and disease association
data from Peryton (Skoufos et al., 2020) and MicroPhenoDB
(Yao et al., 2021). Among them, Peryton includes more than
7,900 relationships between 43 diseases and 1,396 microbes.
The data in MicroPhenoDB are collected from some public
datasets, such as Human Microbe-Disease Association Database
(HMDAD; Kong et al., 2017), Disbiome (Yorick et al., 2018),
Virulence Factor Database (VFDB; Chen L. et al., 2016), etc.
MicroPhenoDB has 5,565 relationships between 515 diseases
and 1,717 microbes. After eliminating redundancy for the same
diseases and microbes, we obtain a total of 9,202 associations
between 538 diseases and 2,491 microbes. Furthermore, we
collect data about microbes and their related drugs from
Microbe-Drug Association Database (MDAD; Sun et al., 2018),
drugVirus (Andersen et al., 2020), and aBiofilm (Akanksha
et al., 2017), and remove redundant records to obtain a
total of 132 microbes and 1,933 drugs and 3,345 microbe-
drug associations. Then, we download disease-drug interaction
data from drugBank (Wishart et al., 2017) and Comparative
Toxicogenomics Database (CTD; Davis et al., 2012) databases,
and we obtain 9,604 interactions between 127 diseases and 247
drugs after de-redundancy. Figure 1 illustrates the integration
process of microbe-drug data, drug-disease data, and microbe-
disease data. It is worth noting that in this study, we unified
the disease, microbe, and drug according to the MESH id of

the disease, the taxonomy id of the microbe and the chemical
information of the drug, disease-related drugs, are included in
drugs related to microbes.

Construction of Microbe-Drug-Disease
Tripartite Heterogeneous Network
In this study, we use microbe-disease, microbe-drug, and disease-
drug associations to build a tripartite network. The relationship
between microbes, drugs, and diseases is shown in Figure 2A.
A certain microbial imbalance can lead to certain diseases.
and the pathogenesis of a certain disease will be affected by
certain microbial communities. Some drugs can treat some
diseases, and certain diseases can be treated with certain
drugs. Microbes can regulate the activity and toxicity of drugs
(Zimmermann M. et al., 2019). Drugs in turn can change
the diversity and function of microbial communities. Suppose
M, C, and D, respectively, represent all the sets of microbes,
drugs, and diseases in the network, mi∈M represents a microbe,
i = 1, 2, 3..., nm; cj∈C represents a drug, j = 1, 2, 3..., nc;
and dk∈D represents a disease, k = 1, 2, 3..., nd. Construct
a tripartite heterogeneous network based on the relationship
among microbes, drugs, and diseases. Here, we can simplify
it to an undirected and unweighted network to represent the
existence of associations, as shown in Figure 2B. We further
construct the microbe-disease adjacency matrix B ∈ Rnm×nd ,
where nm represents the number of microbes and nd represents
the number of diseases. If there is a known association between
a microbe node i and a disease node j, the value of B(i,j) is 1,
otherwise, it is 0.

FIGURE 2 | Illustration of microbe-drug-disease relationship and heterogeneous networks. (A) The illustration of microbe-drug-diease relationships. (B) A tripartite
network corresponding to the microbe-drug-disease relationships.
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MATHNMDA
Our proposed MATHNMDA model consists of three main steps,
as shown in Figure 3. The model takes heterogeneous microbe-
drug-disease interaction network and MAGNN to predict
microbe-disease associations. First, we take heterogeneous
network as input of the MAGNN. Second, for each layer of
the MAGNN, we use intra-metapath aggregation to learn the
structural and semantic information embedded in the target
node, metapath-based neighbor nodes, and the context between
them. Third, we apply inter-metapath aggregation to combine the
semantic information of all different metapaths. Finally, we take
the output of the MAGNN as vector representations of microbe
nodes and disease nodes, which can be used to predict potential
microbe-disease associations.

Intra-Metapath Aggregation
In this study, we predict novel microbe-disease associations on
the heterogeneous microbe-drug-disease interaction networks
based on MAGNN. Given a heterogeneous network G = (V, E),
where V and E represent sets of nodes and edges, respectively,
and the mapping functions of nodes and edges are δ: V→A and
ψ: E→R, A represents node types, R denotes edge types, and |A|
+|R| >2. Given a metapath M on the heterogeneous network G,
we can define it as a path of the form A1→A2→. . .→An−1→An,
which can be abbreviated as A1A2. . .An−1An. The relationship
between node types A1 and An is R = R1◦R2◦. . .◦Rn−1, where
◦ represents the composite operation. That is to say, the
relationship R is obtained by compositing the n–1 relationships of
these R1, R2, . . ., Rn−1. Therefore, a metapath can capture specific
semantic information in the graph, and different metapaths
represent different semantic information. For example, for the
metapath microbe-drug-disease (abbreviated as m-c-d), drug c
can act on microbe m, and drug c can be used to treat disease
d, so microbe m may be associated with disease d. The key
idea of intra-metapath aggregation is to learn structural and
semantic information embedded in target nodes, metapath-based
neighbors, and the context between them by encoding metapath
instances under a certain metapath. Next, we introduce the
process of intra-metapath aggregation in detail.

Given a metapath M, we define a sequence of nodes in G
that follow the pattern of M as a metapath instance, defined as
M(i,j), which is represented as a metapath instance connecting
the target node i and its neighbor node j based on the metapath.
Here, j ∈ NM

i , NM
i represents the set of nodes connected to node

i through the metapath instance M(i,j). It is worth noting that if
the metapath instance M(i,j) is symmetric, j ∈ NM

i also includes
node i itself. Then we define the intermediate node set of M(i,j) as
TH(i,j), TH(i, j) = M

(
i, j
)
/
{

j, i
}

, where
{

j, i
}

represents the set
with elements i, j.

As mentioned before, intra-metapath aggregation learns
structural and semantic information of target nodes by encoding
metapath instances. Sun et al. (2019) proposed a method for
knowledge graph embedding based on relational rotation in
complex space, called RotatE. RotatE can model all relational
patterns, so we use RotatE as the metapath instance encoder in
this study. Given a metapath instance M(i,j) = (i, th2..., thn−1, j),

for convenience, let set i = th1 and j = thn. Ri represents
the relationship between node thi and node thi+1, and the
relationship vector is ri. Therefore, for the metapath instance
M(i,j), RotatE can be defined as follows:

21 = h̃th1 = h̃i

2i = h̃thi + θi−1 � ri

hM(i,j) =
θn
n

(1)

where h̃thi and ri are vectors of complex space, � represents

hadamard product, hM(i, j) ∈ Rd
′

, and d
′

is the dimension of
hM(i,j). In which case, we get vector representation of the
metapath instance M(i,j). It is important to note that there may
be multiple instances of the metapath M connecting nodes i and
j, but we use M(i,j) to represent a single instance here.

Graph attention network (GAT) is an effective graph
representation learning tool, which represents the importance
of neighbor nodes to the target node by assigning different
weights to different neighbor nodes (Bian et al., 2021). Here, for
target node i and metapath M related to i, we first use GAT to
assign weights (attention coefficients) to metapath instances in M,
thereby learning the importance of different metapath instances
to target nodes. Then the features of different metapath instances
are aggregated according to the obtained attention coefficients,
which are represented as the feature vector of the target node i.
Given a metapath instance M(i,j), its attention coefficient can be
defined as:

eM
ij = LeakyReLU

(
δT

M

[
h̃i ‖ hM(i,j)

])
(2)

where δT
M is the attention parameter of the metapath M,

and ‖ represents connection operation. To make the attention
coefficients of different metapath instances comparable, we use
the softmax function to normalize eM

ij :

αM
ij = softmax

(
eM

ij

)
=

exp
(

eM
ij

)
∑

k∈NM
i

exp
(

eM
ij

) (3)

Then, we aggregate the feature vectors of all metapath
instances according to the activation function σ(·) to obtain the
vector representation of node i based on the metapath M:

αM
ij = σ

∑
j∈NM

i

αM
ij · hM(i,j)

 (4)

In this study, we further introduce a multi-head attention
mechanism to stabilize the learning process of attention
coefficients and reduce the influence of a single attention.
Specifically, we independently repeat the attention mechanism
K times and concatenate vector representation learned by each
attention head. Therefore, the vector representation of node i can
be further rewritten as follows:

hM
i =

K
‖

k = 1
σ

∑
j∈NM

i

αM
ij · hM(i,j)

 (5)
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FIGURE 3 | The framework of MATHNMDA. mcm, mdm, dmd, and dcd are four metapaths, where m represents microbe, c represents drug, and d represents
disease.
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Since the metapath is undirected, each node in the metapath
can be either a start node or an end node. Therefore, for
the metapath set starting or ending with node type a ∈ A, it
is denoted as Ma = {M1, M2, · · · , MS}, and S represents the
number of metapaths. Intra-metapath aggregation obtains M
metapath-specific vector representations of the target node i ∈
Va, defined as

{
hM1

i , hM2
i , · · · , hMS

i

}
.

Inter-Metapath Aggregation
After the intra-metapath aggregation of metapaths, we obtain
the vector representation of a single metapath M for target
node i. Then, we need to aggregate the semantic information
and structural information of node i based on all metapaths
of Ma, where S represents the number of metapaths. The
node embedding set corresponding to these S metapaths is{

hM1
i , hM2

i , · · · , hMS
i

}
. A simple aggregation method between

metapaths is to take the average of these node embeddings.
However, because the importance of metapaths to node i in a
heterogeneous network is different, we allocate weight for each
metapath pattern through the attention mechanism, and then
perform aggregation.

Specifically, given a metapath Mp, Mp ∈ Va, we first transform
these metapath-specific node vectors for all nodes i ∈ Va with the
tanh function, and then take average value as feature of Mp:

SMp =
1
|Va|

∑
i∈Va

tanh
(

Wa · h
Mp
i + ba

)
(6)

where Wa is the weight matrix of nonlinear transformation
specific to node type a, and Ba is the corresponding bias, both
of which are learnable parameters. Va indicates all nodes of type
a in the network.

Then we use the attention mechanism to calculate the
importance of each metapath pattern for the target node i, and
normalize the obtained attention coefficients by the softmax
function. Then we fuse the corresponding vector representations
of these metapaths to get the output of the target node i, as shown
in Equation 7:

eMp = cT
a · SMp

βMp = softmax
(
eMp

)
=

exp
(

eMp

)
∑

Mp∈Ma exp
(

eMp

)
hMa

i =
∑

Mp∈Ma

βMp · h
Mp
i

(7)

where cT
a denotes the attention parameter, βMP denotes the

normalized attention score, and MP denotes the Pth metapath
in Ma. hMa

i represents the embedding vector of node i based on
aggregation between metapaths.

MAGNN
The goal of a graph neural network (GNN) is to learn the low-
dimensional vector representation of each node, which can be
used for many downstream tasks, such as node clustering, node
classification, and link prediction. Thus, we further apply an
L-layer GNN to learn the low-dimensional representation vectors

of microbe nodes and disease nodes. At each layer of the GNN, we
use intra-metapath aggregation and inter-metapath aggregation
to obtain vector representations of node-based metapath. In this
way, we can define the low-dimensional representation for node
i at the lth layer:

hl
i = σ

(
W l

o ·
[

hMa
i

]l
)

(8)

where σ(·) is an activation function and W l
o represents the weight

vector at the lth layer. hl
i represents the vector representation for

node i at the lth layer, which is also the input of the (l+1)th
layer. We define h0

i =Wa · Xa
i , where Wa represents the linear

transformation matrix of node type a and Xi is the original feature
vector for node of type a. Here, we use one-hot encoding to
initialize each type of node in the heterogeneous network.

Finally, we use vector representation of node i at the Lth layer
to serve as the final embedding for nodes i:

hi = hL
i (9)

where hL
i represents vector representation of node i at the

Lth layer.

Reconstruction of Microbe-Disease
Association
After we get the final embeddings of all microbe nodes and
disease nodes, we can predict new microbe-disease associations
by reconstructing microbe-disease associations. Here we perform
a simple inner product operation on the microbe and disease
embeddings. In this case, each microbe-disease pair will receive
a new score. Specifically, given a microbe node m and a disease
node d, the predicted score Cmd between them can be calculated
as:

Cmd = sigmoid
(

hT
m · hd

)
(10)

where hm and hd represent the final embeddings of microbes and
diseases, respectively.

Optimization
Since our task is to predict microbe-disease associations, this is
equivalent to a binary classification problem. So, here we use the
cross-entropy function as the loss function and optimize through
negative sampling:

L = −
∑

(m,d)∈µ

log (Cmd)−
∑

(m,d)∈µ−
log (−Cmd) (11)

where µ represents the set of positive samples, and µ− represents
the set of negative samples obtained by negative sampling.

RESULTS

In this section, we evaluate the performance of MATMNMDA
through some experiments and analysis of the results. At the same
time, we also analyze and adjust some parameters of the model in
order to make better predictions.
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Evaluation Metrics
In this study, we mainly use two metrics to evaluate the
performance of the model, area under the receiver operating
characteristic curve (AUC) and area under the precision–
recall curve (AUPR), which are widely used in association
prediction tasks.

AUC: This corresponds to the area of a planar graph
bounded by the receiver operating characteristic (ROC) curve
and horizontal axis, which can estimate the performance of
binary classification models. The value of AUC is between 0 and
1. When it is closer to 1, the model performs better. In practical
application, the advantages and disadvantages of different models
can be compared by comparing the AUC values of different
classification models.

AUPR: The precision–recall (PR) curve is also used to evaluate
the classification ability of the model. In particular, the PR
curve can collect more information when dealing with some

imbalanced datasets. The area enclosed by the PR curve and the
abscissa axis is called AUPR.

Baselines
In order to test the effectiveness of the MATMNMDA model, we
compare it with six state-of-the-art methods based on the data
processed in this study. Here, we calculate the AUC and AUPR
values of these methods under the same conditions and analyze
the results. The six baselines are as follows:

BRWMDA (Yan et al., 2019): It is a similarity-based and
modified bi-random walk to predict associations between
microbes and diseases.

KATZHMDA (Chen X. et al., 2016): It is a method to predict
microbe-disease associations based on the katz metric.

LRLSHMDA (Wang et al., 2017): It is a semi-supervised
model to predict microbe-disease associations by introducing a
Gaussian kernel and Laplacian regularization.

FIGURE 4 | Parameter analysis. (A) Comparison of AUC and AUPR for different hidden layer dimensions. (B) Comparison of AUC and AUPR of attention heads for
different multi-attention mechanisms. (C) Comparison of AUC and AUPR for different attention vector dimensions. (D) Comparison of AUC and AUPR for different
numbers of neighbors sampled by nodes.
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NCPHMDA (Zou et al., 2018): It uses network consistent
projections to predict microbe-disease associations.

NTSHMDA (Luo and Long, 2018): Predicting microbe-
disease associations using heterogeneous network topological
similarity and random walks.

CRPGCN (Ma et al., 2021): It is a method based on graph
convolutional network (GCN) and random walk with restart
(RWR), which was proposed for the cirRNA-disease association
prediction task. Here, we use it as a baseline method for the
prediction of microbe-disease association.

We compare MATMNMDA with these six baseline methods
under the same conditions. For the CRPGCN method, the
similarity of microbes and diseases is calculated in the same way
as BRWMDA. For the MATMNMDA model, we first perform
negative sampling on the microbe-drug-disease heterogeneous
network. The positive and negative sample ratios of the training
set, validation set, and test set are 1:1, and the proportion of
the training set, validation set, and test set is 8:1:1, respectively.
We randomly initialize vector representations of microbe nodes,
drug nodes, and disease nodes. The Adam optimizer is used to
optimize the model. The dropout and early stopping mechanisms
are used to prevent overfitting. Here, according to the extensive
literature (Phaisangittisagul, 2016), we set the value of dropout to
0.5. We train the model 100 times.

Parameter Analysis
In this section, we analyze the sensitivity of parameters. As
we all know, important parameters will affect the performance
of the model, so it is very necessary to conduct parameter
analysis for the model. Some important parameters involved
in the MATMNMDA model include the dimension of hidden
layer, number of heads in the multi-head attention mechanism,
dimension of attention vector, and number of neighbors sampled
by the nodes in the experiment. We analyze these four parameters
in turn and evaluate their impact on model performance.

As can be seen from Figure 4A, we set the dimension of
the hidden layer to 16, 32, 64, 128, 256. As the dimension
of the hidden layer increases, the performance of the model
first increases. When the dimension reaches 32, both AUC and
AUPR reach the maximum value. As the dimension continues
to increase, the performance of the model begins to decrease
gradually. Therefore, in this study, we set the embedding
dimension of the hidden layer as 32. When the dimension
changes between 16 and 256, the values of AUC and AUPR
vary greatly. Thus, the MATMNMDA model is sensitive to the
dimension of the hidden layer.

MATMNMDA model adopts a multi-attention mechanism to
stabilize the process of attention coefficient learning. Figure 4B
shows the influence of the number of attention heads in the multi-
attention mechanism on model performance. We change the
number of attention heads from 2 to 10 by step 2. It can be seen
that when the number of attention heads is set to 6, the model
has the best performance. Figure 4C shows the influence of the
dimension of the attention vector. The dimension of the attention
vector changes between 32 and 512. It can be observed that the
vector dimension is too small or too large, which is not good for
the performance of the model. Specifically, if the dimension of

the attention vector is too large, it may lead to overfitting, which
will degrade the performance of the model. When the dimension
is set to 64, we can obtain better prediction ability.

In the MATMNMDA model, intra-metapath aggregation
involves aggregating features of neighbor nodes to represent the
representation of the current target node. Therefore, we analyze
the number of neighbor nodes. In Figure 4D, the number of
neighbor nodes is selected from {50,100,150,200,250}. It can be
seen that when the number of neighbor nodes is too small or too
large, the performance of the model is not very good. Specifically,
if the number of neighbor nodes is too small, the structural
information and semantic information of the target node may not
be so comprehensive, while too large may cause noise. Therefore,
we set the number of neighbor nodes to 150.

Ablation Study
As mentioned in the Introduction section, the previous
heterogeneous network embedding methods have the following
problems: (1) They only consider the neighbors based on the
metapath, and do not consider the intermediate nodes inside
the metapath. (2) In the metapath-based embedding, only the
single best metapath is considered, and our model is proposed
based on these problems. Therefore, in order to verify the
effectiveness of each module of our model, we further conduct
experiments on different variants of the MATMNMDA model.
Taking MATMNMDA as a reference model, here we tested
three variants of it.

MATMNMDA_nb: It only considers metapath-based
neighbor nodes and does not consider intermediate nodes.

MATMNMDA_sm: It only considers the single best metapath.
MATMNMDA_avg: It replaces the RotatE

with a mean encoder.
Figures 5, 6 show the comparison results of the

MATMNMDA model and its variants. We can see that
the MATMNMDA model has the highest AUC and AUPR.
Followed by MATMNMDA_avg, MATMNMDA_sm has
the worst performance. Comparing MATMNMDA and
MATMNMDA_avg, we find that the MATMNMDA model
performs better, which is because the mean encoder essentially
treats metapath instances as a set and ignores the information
embedded in the sequential structure of metapaths, while
RotatE can be modeled according to the sequential structure
of metapaths, thereby preserving the information embedded
in the sequential structure of metapaths, so RotatE helps to
improve the performance of the model by a small amount.
Comparing MATMNMDA and MATMNMDA_nb, we can find
that considering the intermediate nodes inside the metapath
can help the model to obtain more structural information and
thus improve the performance of the model. The results of
MATMNMDA and MATMNMDA_sm show that the model
performance can be significantly improved by combining
multiple metapaths.

Comparison With Baselines
We run these baseline methods with default parameters.
Figures 7, 8 show the performance of different methods. Our
model achieves the highest prediction results on these two
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FIGURE 5 | Comparison of AUC for MATMNMDA and its variants.

FIGURE 6 | Comparison of AUPR for MATMNMDA and its variants.

evaluation metrics, and its AUC and AUPR reach 0.9492 and
0.9637, respectively, which are better than all baseline methods.
The CRPGCN model occupies the second position. It applies the
RWR algorithm, which allows each calculated node to better fuse
information from neighboring nodes with higher weights, so that

GCN can learn features faster and get higher prediction scores.
Next is the LRLSHMDA model, because the topological structure
in the microbe-disease association network helps the model to
effectively use the hidden information of vertices and edges,
which helps to train the optimal classifier, so that microbe-disease
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FIGURE 7 | Comparison of AUC for MATMNMDA and baselines.

FIGURE 8 | Comparison of AUPR for MATMNMDA and baselines.

associations can be predicted more accurately. Next is the
BRWMDA model, which also achieved good prediction results,
because the BRWMDA model is based on similarity and bi-
random walk, and it can model the topology information of
the network well. However, NCPHMDA and NTSHMDA have

poor prediction performance, because although we have obtained
9,202 known microbe-disease associations, they account for 0.7%
of the whole microbe-disease association. The whole network
is very sparse, and these two methods are based on network
structure, so their performance is relatively poor.
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FIGURE 9 | Comparison of AUC for MATMNMDA and baselines on HMDAD dataset.

Comparison With Different Datasets
In this study, we augment the known microbe-disease association
data. In order to verify the validity of the MATHNMDA model
in our dataset, we also compare MATHNMDA with baseline
methods on HMDAD and Disbiome, which are commonly
used in microbe-disease prediction. The results are shown in
Figures 9, 10, and the comparison results of these methods
on the three datasets are shown in Table 1. From Table 1, we
can see that on each dataset, our model achieves the highest
prediction value. It performs best on our dataset, so we can
suggest that augmenting the known microbe-disease associations
can help to improve the performance of the MATHNMDA. In
addition, we can see that CRPGCN, LRLSHMDA, and BRWMDA
methods perform well on these three datasets among the baseline
methods. It also shows that these three methods are suitable
for both large and small datasets, and the robustness of models
is better. The remaining comparison methods are only suitable
for small datasets.

Case Study
To further evaluate the predictive ability of the MATMNMDA
model in identifying new microbe-disease associations, we
conduct case studies on asthma, inflammatory bowel disease
(IBD), and COVID-19. For each disease, microbes that have
known associations with the disease are first removed. Then the
predicted scores of candidate microbes are sorted in descending
order according to the MATMNMDA model. Finally, we verify
whether the top 10 microbes associated with the disease are
confirmed by the relevant literature.

Asthma is a heterogeneous disease characterized by chronic
airway inflammation (Lee and Kim, 2021). More than 300 million

people worldwide suffer from asthma, and the incidence of
asthma increased by 12.6% between 1990 and 2015 (Vasily,
2017). Therefore, it is necessary to study asthma deeply.
With the development of 16rRNA sequencing technology,
it has been found that there is an important relationship
between asthma and microbe. In this study, when we employ
the MATMNMDA model to predict potential microbe-disease
associations, 7 of the top 10 candidate microbes are verified
by relevant literature in PubMed (as shown in Table 2). For
example, studies have shown that Staphylococcus (2nd) is linked
to asthma attacks (Zhou et al., 2019), the relative abundance
of Bacteroidetes, Clostridium (3rd), and Enterobacteriaceae
were high, and the relative abundance of Bifidobacterium
and Lactobacteriaceae were low, which is associated with
allergies, eczema, or asthma (Zimmermann P. et al., 2019). An
increased prevalence of Staphylococcus aureus (6th) colonization
and sensitivity against its proteins are found in asthma
(Tomassen et al., 2013). Bacterial dysbiosis and abundance
within Firmicutes (4th) were significantly reduced in asthmatic
children (Hufnagl et al., 2020). Human parainfluenza virus 1
(4th) was detected most frequently from patients with URI
(3.74%, 47/1,257), followed by those with bronchitis (2.14%,
53/2,479), pneumonia (0.85%, 145/17,068), bronchiolitis (0.47%,
12/2,536), and asthma (0.43%, 2/462; Wang et al., 2015).
Herpesviruses were the most abundant virus type in the asthma
group (44.6 ± 4.6%), mainly cytomegalovirus (CMV; 9th) and
EBV, which accounted for 24.5 ± 3.3 and 16.9 ± 3.5%,
respectively (Choi et al., 2021). In healthy controls, the
two viruses were 5.4 ± 2.5 and 7.1 ± 3.0%, respectively.
Therefore, CMV and EBV are more abundant in patients with
asthma exacerbations.
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FIGURE 10 | Comparison of AUC for MATMNMDA and baselines on Disbiome dataset.

Inflammatory bowel disease (IBD) is an idiopathic intestinal
inflammatory disease, mainly including ulcerative colitis (UC)
and Crohn’s disease (CD), with clinical manifestations of
abdominal pain, diarrhea, and bloody stools. It is difficult to
completely cure the disease, which is easy to recur, and there is
a potential risk of cancer. Therefore, we perform a case study
of IBD to evaluate the predictive ability of the MATMNMDA
model for novel microbe-disease associations. The results are
shown in Table 3, and 7 of the top 10 candidate microbes are
verified by relevant literature. For example, Fusobacterium (2nd),
Halomonas, Acinetobacter, Shewanella, and Streptococcus were
enriched in the CD microbiota (Weng et al., 2019). Increased
abundance of Salmonella sp., Campylobacter sp., Helicobacter
sp., Escherichia coli, Alcaligenes sp., and Mycobacterium sp. (4th)
was observed in IBD patients (Olejniczak-Staruch et al., 2021).
IBD patients exhibit a lower abundance of butyrate-producing
bacteria (6th; Gasaly et al., 2021) and butyrate content. Although
some findings related to IBD dysbiosis have varied among the

TABLE 1 | Performance comparison of MATMNMDA and baselines on
different datasets.

DATASET HMDAD Disbiome Our dataset

METHOD AUC AUPR AUC AUPR AUC AUPR

CRPGCN 0.8798 0.4533 0.8702 0.4965 0.9368 0.8470

KATZHMDA 0.8815 0.4828 0.6743 0.0508 0.7035 0.0532

BRWMDA 0.8748 0.3966 0.8199 0.0705 0.8961 0.0913

LRLSHMDA 0.8766 0.4960 0.8672 0.1370 0.8990 0.1476

NCPHMDA 0.7524 0.0795 0.7299 0.1024 0.5708 0.0092

NTSHMDA 0.8276 0.2975 0.6880 0.0630 0.7383 0.0629

MATMNMDA 0.9181 0.9297 0.9245 0.9322 0.9492 0.9637

studies due to differences in sample type, survey method, patient
profile, and drug treatment, the most consistent observation
across these studies is that bacterial diversity decreased in IBD
patients. For viruses infecting human cells, Anelloviridae (5th)
showed a higher prevalence in very early-onset IBD compared to
healthy controls (Liang et al., 2020). The population of Firmicutes
decreased (7th) and that of Proteobacteria increased (Matsuoka
and Kanai, 2015). Researchers observed a bias in the fungal
microbiota in IBD compared to the normal control group, with
an increased Basidiomycota/Ascomycota ratio (8th), a decreased
Saccharomyces cerevisiae ratio, and an increased Candida albicans
ratio (Sokol et al., 2017). There are experiments to verify that
the intensity of both CMV and human herpesvirus 6 (HHV-6;
9th) correlated with endoscopic disease severity in IBD (CMV,
p = 0.010 and HHV-6, p = 0.048; Sipponen et al., 2011).

Coronavirus disease 2019 (COVID-19) is a disease caused by
severe respiratory syndrome coronavirus 2 (SARS-CoV-2). It has

TABLE 2 | Top 10 candidate microbes related to asthma.

Rank Microbe Evidence

1 Geotrichum sp. PMID: 9376049

2 Staphylococcus PMID: 24117882

3 Clostridiaceae PMID: 30600099

4 Firmicutes PMID: 32072252

5 Mitsuokella Unconfirmed

6 Staphylococcus aureus PMID: 30193937

7 Human parainfluenza virus 1 PMID: 26481737

8 Sphingobacteriia Unconfirmed

9 Cytomegalovirus PMID: 33757721

10 Aeromonas hydrophila Unconfirmed
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TABLE 3 | Top 10 candidate microbes related to IBD.

Rank Microbe Evidence

1 Holophagae Unconfirmed

2 Fusobacterium PMID: 31240835

3 Sneathia sanguinegens Unconfirmed

4 Mycobacterium sp. PMID: 33924414

5 Anelloviridae PMID: 32406906

6 Butyrate-producing bacterium PMID: 33802759

7 Firmicutes PMID: 25420450

8 ascomycota PMID: 26843508

9 Human herpesvirus 6 PMID: 21879802

10 Nitrososphaeraceae Unconfirmed

TABLE 4 | Top 10 candidate microbes related to COVID-19.

Rank Microbe Evidence

1 Dyella Unconfirmed

2 Acinetobacter calcoaceticus Unconfirmed

3 Coriobacteriaceae bacterium Unconfirmed

4 Bacteroides intestinalis Unconfirmed

5 Bacteroides thetaiotaomicron PMID: 32442562

6 Pisolithaceae Unconfirmed

7 Pigmentiphaga Unconfirmed

8 Mucor PMID: 34009676

9 Prevotella disiens PMID: 33577896

10 Blumeria graminis Unconfirmed

been 3 years since its emergence and has become a pandemic
threat to human health and the world economy. Although most
cases of COVID-19 are mild or moderate, 3–4% of patients
may be severe or critical, leading to hospitalization, respiratory
failure, or death (Shen et al., 2020; Taleghani and Taghipour,
2021). Recent studies have found significant changes in the
gut microbiome after infection with SARS-CoV-2. Therefore,
this study conducts a case study on COVID-19 to evaluate the
predictive ability of the model for COVID-19-related microbes,
thereby helping researchers to conduct experimental verification
purposefully, thus saving manpower and material resources. The
results are presented in Tables 3, 4, of the top 10 candidate
microbes were verified by relevant literature. For example, the
analysis of fecal samples from COVID-19 patients found that
the populations of Bacteroides dorei, Bacteroides thetaiotaomicron
(5th), Bacteroides massiliensis, and Bacteroides ovatus were
negatively associated with SARS-CoV-2 viral load in the samples
(Zuo et al., 2020). Mycological analysis revealed that 77.8 and
30.6% of patients were infected with Mucor (8th) and Aspergillus,
respectively (El-Kholy and El-Fattah, 2021). Staphylococcus
haemolyticus, Prevotella disiens (9th), and 2 Corynebacterium_1
unclassified amplicon sequence variants were more abundant
in people with low SARS-CoV-2 viral load during COVID-19
infection (Rosas-Salazar et al., 2021).

CONCLUSION

Increasing studies have shown that microbes play a key role
in human health and disease. Microbe-disease associations

cannot only reveal disease pathogenesis, but also promote the
diagnosis and prognosis of diseases. Therefore, research on
microbe-disease associations has attracted wide attention. In
this study, we propose a novel computational model, called
MATMNMDA, to predict potential microbe-disease associations.
In order to capture more semantic and structural information
between microbe nodes and disease nodes, we introduce drugs to
construct a tripartite heterogeneous network and apply MAGNN
to learn low-dimensional embedded representations of microbe
nodes and disease nodes. For each layer of MAGNN, we use
intra-metapath aggregation to get the representation of the
target node in each metapath, which is the input of inter-
metapath aggregation layer. Then we aggregate the embedding
representations between different metapaths related to the target
node. Therefore, we can learn the embedding representation
for the target node (microbe node or disease node) of the
layer. Finally, we obtain vector representations of microbes and
diseases based on the output of the last layer in the MAGNN,
which is used for the prediction task. We designed multiple
experiments to verify the effectiveness of the MATMNMDA
model. By analyzing the experimental results, we found that:
(1) Compared to the variants of our model, our model obtains
the best prediction performance, which also indicates that our
method could be better applied to microbe-disease prediction.
(2) Under the same conditions, compared to the state-of-the-
art methods, our method also obtains the best AUC and AUPR,
which indicates that the MATMNMDA model can better identify
potential disease-related microbes. (3) Compared to the state-of-
the-art methods on different datasets, MATMNMDA achieves
the best prediction performance on our enlarged dataset. It
demonstrates that more known microbe-disease associations can
help MATHMDA improve predictive performance. (4) Case
studies on asthma, IBD, and COVID-19 further verified the
effectiveness of MATMNMDA.

In future work, we will add more relational data, such as drug-
drug interactions, drug-protein interactions, and protein-disease
associations to achieve better predictive results.
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In order to screen the disease-related compounds of a traditional Chinese medicine
prescription in network pharmacology research accurately, a new virtual screening
method based on flexible neural tree (FNT) model, hybrid evolutionary method
and negative sample selection algorithm is proposed. A novel hybrid evolutionary
algorithm based on the Grammar-guided genetic programming and salp swarm
algorithm is proposed to infer the optimal FNT. According to hypertension, diabetes,
and Corona Virus Disease 2019, disease-related compounds are collected from the
up-to-date literatures. The unrelated compounds are chosen by negative sample
selection algorithm. ECFP6, MACCS, Macrocycle, and RDKit are utilized to numerically
characterize the chemical structure of each compound collected, respectively. The
experiment results show that our proposed method performs better than classical
classifiers [Support Vector Machine (SVM), random forest (RF), AdaBoost, decision tree
(DT), Gradient Boosting Decision Tree (GBDT), KNN, logic regression (LR), and Naive
Bayes (NB)], up-to-date classifier (gcForest), and deep learning method (forgeNet) in
terms of AUC, ROC, TPR, FPR, Precision, Specificity, and F1. MACCS method is
suitable for the maximum number of classifiers. All methods perform poorly with ECFP6
molecular descriptor.

Keywords: virtual screening, network pharmacology, flexible neural tree, grammar-guided genetic programming,
salp swarm algorithm

INTRODUCTION

Computer-aided drug design (CADD) has gradually become an indispensable emerging technology
in the research and development of a new drug (Leelananda and Steffen, 2016; Tong et al., 2019;
Maia et al., 2020). CADD technology reduces the capital, time, and labor cost of drug development
and greatly improves the efficiency of the research and development of new drug (Gomeni et al.,
2001). Virtual screening is one of the important comprehensive technical means in CADD, which
is a process of discovering new ligands on the basis of biological structure based on the computer
methods (Guasch et al., 2016; Olubiyi et al., 2020; Rajguru et al., 2020). It is a new technology and
method for innovative drug research. By using the high-speed computing of computer, a small
number of potential active compounds are screened from a large number of candidate compounds,
so as to greatly reduce the blindness of subsequent experimental verification. In the future, virtual
screening technology will become an important means to explore the relevant biochemical space
because of its many advantages, such as high efficiency, high speed, low cost, and so on (Zaslavskiy
et al., 2019; Guo et al., 2021; Maddah et al., 2021; Selvaraj et al., 2021; Yang et al., 2021).

In the past decade, virtual screening has been applied to the medical and the pharmaceutical
researches widely (Meng et al., 2011; Bajusz et al., 2017). The most commonly used virtual screening
method is molecular docking, and the software involved contains AutoDock, SLIDE, DOCK,
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Flex X, etc. (Morris et al., 1996; Kellenberger et al., 2004; Taufer
et al., 2005). Fischer et al. (2021) utilized virtual screening
method to screen 25, 56, 750 compounds in order to make the
analysis about the binding of small molecules to translationally
controlled tumor protein. Baxter et al. (2000) utilized molecular
docking to screen ligand-receptor complexes in virtual database
and tabu search method was utilized to assist this work. Talluri
(2021) utilized Vina and SMINA to make molecular docking to
predict potential drugs for the treatment of Corona Virus Disease
2019 (COVID-19). Zhou et al. (2016) screened the compounds
of Chicory, which were bundled with concentrated nucleoside
transporter 2 (CNT2) in order to validate that CNT2 as the
potential target of chicory could reduce the absorption of purine
nucleosides in the intestine. Meenakumari et al. (2019) made
docking analysis between 17 coumarin derivatives and carbonic
anhydrase IX (CAIX) to screen the ligands. Thiyagarajan et al.
(2016) made molecular docking between the 3D structures of
focal adhesion kinase and S6 kinase and 60 natural compounds to
obtain the new specific inhibitors, and the findings could provide
help for the treatment of tumorigenesis and metastasis.

In order to improve the time and accuracy of virtual screening,
some machine learning methods have been utilized to assist or
replace molecular docking (Berishvili et al., 2018; Zaki et al.,
2021). Wang et al. (2016) proposed a new virtual screening
based on ensemble learning and SVM to tackle with protein-
ligand in action fingerprint. Zhang Y. et al. (2019) investigated
the performances of 8 classifiers containing decision tree (DT),
KNN, SVM, random forest (RF), extremely randomizer tree,
AdaBoost, gradient boosting tree, and XGBoost with ACC
inhibitor data for the researches of drug design and discovery.
Zhang et al. (2017) proposed a new scoring function based on
machine learning to screen the compounds targeting the viral
neuraminidase protein so as to make anti-influenza therapy.
Chen et al. (2011) proposed a ligand screening algorithm
based SVM to discovery lead compounds. Bustamam et al.
(2021) proposed a dipeptidyl peptidase-4 (DPP-4) inhibitors
identification method based on Rotation Forest and Deep Neural
Network with the fingerprint datasets for the treatment of
type 2 diabetes mellitus. Zheng et al. (2020) utilized Naïve
Bayesian and recursive partitioning to select the important active
chemical components from many compounds in Xiaoshuan
Tongluo formula with ECFP_6 and MACCS feature sets for
treating stroke.

Virtual screening of disease-related compounds can narrow
the scope of analysis in network pharmacology research. In
this paper a new virtual screening method based on flexible
neural tree (FNT) model is proposed to screen the disease-
related active compounds. A novel hybrid evolutionary algorithm
based on Grammar-guided genetic programming and salp swarm
algorithm is proposed to infer the structure and parameters
in each FNT model. The 3 diseases (hypertension, diabetes,
and COVID-19) related compounds are searched from the up-
to-date literatures. The unrelated compounds are selected by
negative sample selection algorithm from DUD-E website. About
4 kinds of molecular descriptors (ECFP6, MACCS, Macrocycle,
and RDKit) are utilized to numerically characterize the chemical
structures of related and unrelated compounds of diseases,

FIGURE 1 | An example of flexible neural tree.

FIGURE 2 | A flexible neuron operator.

respectively. We make the investigation about the performances
of these 4 molecular descriptors.

MATERIALS AND METHODS

Flexible Neural Tree Model
In order to solve the automatic design problem of artificial
neural network, FNT was proposed, which is a hierarchical,
multilayer, and irregular artificial neural network (Chen et al.,
2012). FNT can transform a single and fixed neural network
model into a special tree model that can change flexibly between
various levels. It could overcome the difficulty of structural
optimization of common neural network, have strong adaptive
ability for various classification and prediction problems, and
obtain high classification and prediction accuracy. In this paper,
FNT is proposed to predict active disease-related compounds.
An example of structure of FNT model is showed in Figure 1.
AFNT includes input layer, several hidden layers and output
layer. The nodes in the input layer are created randomly from
terminal set T = {x1, x2, . . . , xn}. The nodes in the hidden
layers are selected randomly from terminal set and operator set
F = {+2,+3, . . . ,+n}. The output layer contains one node.

In FNT, each layer is randomly generated according to the
operation set and terminal set. The maximum depth of tree is set
in advance. If an operator instruction +n is selected, n branches
are created randomly from set T and F, which are terminal
variables and operators. And n weights are generated randomly.
If a terminal variable is selected, the corresponding branch is
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FIGURE 3 | The flowchart of screening disease-related compounds algorithm.

terminated. When FNT is created randomly, the depth of FNT
could not exceed the maximum depth.+n is depicted in Figure 2
and is calculated as follows.

netn =

n∑
j=1

wjxj. (1)

The final output of +n is calculated by activation function,
which is given as follows.

y = f (netn, an, bn) = e−( netn−an
bn

)2
. (2)

Where an and bn are parameters of activation function.

Model Optimization Algorithm
Grammar-Guided Genetic Programming
Grammar-guided genetic programming (GGGP) was proposed
in order to overcome the shortcomings of genetic programming
(Wu and Chen, 2007). In this paper, GGGP is utilized to search
the optimal structure of FNT model. In GGGP, context-free
grammar (CFG) model is utilized to guide the evolutionary
process of GP in order to search the optimal solution faster.

The CFG model contains a quadruple, which is represented
as G = {N, T, P,

∑
}, where N is non-terminal symbol

set, T is terminal symbol set, P is production rule set
and

∑
is beginning symbol set. The 4 sets satisfy the

conditions: N
⋂

T = φ and
∑
∈ N. An element in

production rule set is represented as x→ y, where x ∈ N,
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FIGURE 4 | AUC performances of 11 methods with hypertension dataset.

FIGURE 5 | AUC performances of 11 methods with diabetes dataset.

FIGURE 6 | AUC performances of 11 methods with COVID-19 dataset.
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TABLE 1 | Prediction performances of 11 methods with hypertension dataset.

Molecular descriptors Methods TPR FPR Precision Specificity F1

ECFP6 Our method 0.985075 0.022222 0.956522 0.977778 0.970588
gcForest 0.955224 0.155556 0.752941 0.844444 0.842105
forgeNet 0.895522 0 1 1 0.944882

SVM 0.880597 0.007407 0.983333 0.992593 0.929134
RF 0.880597 0 1 1 0.936508

AdaBoost 0.835821 0.037037 0.918033 0.962963 0.875
DT 0.835821 0.044444 0.903226 0.955556 0.868217

GBDT 0.850746 0.051852 0.890625 0.948148 0.870229
KNN 0.686567 0 1 1 0.814159
LR 0.970149 0.311111 0.607477 0.688889 0.747126
NB 0.731343 0.096296 0.790323 0.903704 0.75969

MACCS Our method 1 0.007407 0.985294 0.992593 0.992593
gcForest 0.970149 0.051852 0.902778 0.948148 0.935252
forgeNet 0.925373 0.018587 0.96124 0.981413 0.942966

SVM 0.940299 0.02963 0.940299 0.97037 0.940299
RF 0.940299 0.014815 0.969231 0.985185 0.954545

AdaBoost 0.895522 0.044444 0.909091 0.955556 0.902256
DT 0.895522 0.051852 0.895522 0.948148 0.895522

GBDT 0.925373 0.014815 0.96875 0.985185 0.946565
KNN 0.925373 0.02963 0.939394 0.97037 0.932331
LR 0.970149 0.066667 0.878378 0.933333 0.921986
NB 0.940299 0.192593 0.707865 0.807407 0.807692

Macrocycle Our method 0.984375 0 1 1 0.992126
gcForest 0.9375 0.09009 0.857143 0.90991 0.895522
forgeNet 0.921875 0.018018 0.967213 0.981982 0.944

SVM 0.890625 0.027027 0.95 0.972973 0.919355
RF 0.90625 0.027027 0.95082 0.972973 0.928

AdaBoost 0.953125 0.027027 0.953125 0.972973 0.953125
DT 0.921875 0.072072 0.880597 0.927928 0.900763

GBDT 0.90625 0.036036 0.935484 0.963964 0.920635
KNN 0.921875 0.072072 0.880597 0.927928 0.900763
LR 0.9375 0.153153 0.779221 0.846847 0.851064
NB 0.9375 0.09009 0.857143 0.90991 0.895522

RDKit Our method 0.985075 0 1 1 0.992481
gcForest 0.955224 0.02963 0.941176 0.97037 0.948148
forgeNet 0.895522 0.022222 0.952381 0.977778 0.923077

SVM 0.940299 0.014815 0.969231 0.985185 0.954545
RF 0.865672 0.014815 0.966667 0.985185 0.913386

AdaBoost 0.925373 0.014815 0.96875 0.985185 0.946565
DT 0.873134 0.055762 0.886364 0.944238 0.879699

GBDT 0.895522 0.02963 0.9375 0.97037 0.916031
KNN 0.865672 0.044444 0.90625 0.955556 0.885496
LR 0.955224 0.02963 0.941176 0.97037 0.948148
NB 0.895522 0.214815 0.674157 0.785185 0.769231

Bold values denote the best performances.

and y ∈ N
⋃

T. Assuming that terminal set and operator
set are set as T = {x1, x2, . . . , xn}, and F = {+2,+3}, 4 sets
of CFG model are defined:N = {s, exp, var, op2, op3},
T = {+2, +3, x1, x2, . . . , xn},

∑
= {s}, and P is represented

with Eq. (3) or Eq. (4).

s→ exp
exp→ exp op2 exp
exp→ op3 exp exp exp
exp→ var
op2→+2
op3→+3
var→ x1|x2| . . . |xn

(3)

s→ exp
exp→ op2 exp exp
exp→ op3 exp exp exp
exp→ var
op2→+2
op3→+3
var→ x1|x2| . . . |xn

(4)

Generate the initial population randomly. When generating
each individual tree, the non-terminal node S is started with.
Then the subtree of each non-terminal node is derived in top-
down and left-right order according to the rules of the syntax
model. When all non-terminal nodes in the tree have sub-trees,
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TABLE 2 | Prediction performances of 11 methods with diabetes dataset.

Molecular descriptors Methods TPR FPR Precision Specificity F1

ECFP6 Our method 0.991935 0.012048 0.97619 0.987952 0.984
gcForest 0.967742 0.124498 0.794702 0.875502 0.872727
forgeNet 0.916031 0.007605 0.983607 0.992395 0.948617

SVM 0.935484 0.02008 0.958678 0.97992 0.946939
RF 0.862903 0.008032 0.981651 0.991968 0.918455

AdaBoost 0.879032 0.036145 0.923729 0.963855 0.900826
DT 0.806452 0.100402 0.8 0.899598 0.803213

GBDT 0.854839 0.02008 0.954955 0.97992 0.902128
KNN 1 0.939759 0.346369 0.060241 0.514523
LR 0.967742 0.15261 0.759494 0.84739 0.851064
NB 0.604839 0.052209 0.852273 0.947791 0.707547

MACCS Our method 0.975806 0 1 1 0.987755
gcForest 0.975806 0.02008 0.960317 0.97992 0.968
forgeNet 0.951613 0.024096 0.951613 0.975904 0.951613

SVM 0.935484 0.024096 0.95082 0.975904 0.943089
RF 0.943548 0.012048 0.975 0.987952 0.959016

AdaBoost 0.943548 0.032129 0.936 0.967871 0.939759
DT 0.951613 0.040161 0.921875 0.959839 0.936508

GBDT 0.975806 0.02008 0.960317 0.97992 0.968
KNN 0.951613 0.044177 0.914729 0.955823 0.932806
LR 0.975806 0.02008 0.960317 0.97992 0.968
NB 0.967742 0.417671 0.535714 0.582329 0.689655

Macrocycle Our method 0.991453 0 1 1 0.995708
gcForest 0.982906 0.028037 0.950413 0.971963 0.966387

forgeNet 0.957265 0.009346 0.982456 0.990654 0.969697

SVM 0.974359 0.018692 0.966102 0.981308 0.970213

RF 0.957265 0.014019 0.973913 0.985981 0.965517

AdaBoost 0.957265 0.018692 0.965517 0.981308 0.961373

DT 0.91453 0.037383 0.930435 0.962617 0.922414

GBDT 0.965812 0.046729 0.918699 0.953271 0.941667

KNN 0.923077 0.018692 0.964286 0.981308 0.943231

LR 0.982906 0.042056 0.927419 0.957944 0.954357

NB 0.974359 0.042056 0.926829 0.957944 0.95

RDKit Our method 0.959677 0 1 1 0.979424

gcForest 0.959677 0.02008 0.959677 0.97992 0.959677

forgeNet 0.967742 0.012048 0.97561 0.987952 0.97166

SVM 0.951613 0.008032 0.983333 0.991968 0.967213

RF 0.935484 0.012048 0.97479 0.987952 0.954733

AdaBoost 0.943548 0.016064 0.966942 0.983936 0.955102

DT 0.943548 0.028112 0.943548 0.971888 0.943548

GBDT 0.943548 0.008032 0.983193 0.991968 0.962963

KNN 0.903226 0.012048 0.973913 0.987952 0.937238

LR 0.959677 0.024096 0.952 0.975904 0.955823

NB 0.951613 0.204819 0.698225 0.795181 0.805461

stop the derivation process of the tree, and then judge the depth
of the tree. If the depth is greater than the predefined maximum
depth, the tree is considered invalid, and a tree is regenerated after
deletion. If the depth is less than the maximum depth, the tree is
considered and can be saved to the population. Then 3 genetic
operators (replication, crossover, and mutation) are utilized to
generate a new population in the iteration process.

Salp Swarm Algorithm
The Salp swarm algorithm (SSA) is a new swarm optimization
algorithm proposed by Mirjalili et al. (2017). The main idea
of SSA comes from simulating the group behavior of salp

chain (Babaei et al., 2020; Ren et al., 2021). In this algorithm,
salp chain is divided into 2 groups: leader and follower. The
leader is at the head of the salp chain, and the followers are
at the back of the chain. In each iteration, the leader directs
the followers to move in a chain toward the food. In the
process of moving, the leader makes global search, while the
follower makes full local search, which greatly avoid falling into
local optimization. The leader’s leadership role for the followers
behind will be weaker and weaker. The followers behind will
not blindly move toward the leader, which could maintain the
diversity of the population. Therefore, this movement mode
makes the salp chain have a strong ability of global search and
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local development. Because of its simple implementation, fast
convergence speed, and easy computer implementation, SSA is
utilized to optimize the parameters of FNT model. The SSA is
given as follows in detailed.

(1) Initialize the population. Suppose that population
size is m, the dimension is n, the upper bound of the
search space is Xmax = {X1

max, X2
max, . . . , Xn

max}, the lower
bound is Xmin = {X1

min, X2
min, . . . , Xn

min}. The positions of salp
population are created randomly by the following equation.

Xi = rand()× (Xmax − Xmin)+ Xmin. (5)

(2) Give the fitness values of population according to the
fitness function defined in advanced. In the iteration process,
the position of the food is not clear, so the fitness values of all
individual salps are calculated and sorted. And the position of
salp with the optimal fitness value is set as the current food
position, which is set as F = {F1, F2, . . . , Fn

}.
(3) Positions of leader and followers are updated. The leader

is responsible for searching food to lead the moving direction of
the whole group. The position of the leader is updated as follows
(Chen and Mu, 2021).

Xi
1 =

{
Fi
+ c1 × ((Xi

max − Xi
min)× c2 + Xi

min) c3 ≥ 0.5,

Fi
− c1 × ((Xi

max − Xi
min)× c2 + Xi

min) c3 < 0.5.
(6)

Where Xi
1 and Fi are the i-th positions of leader (the first salp)

and food. c2 and c3 are random number. c1 is the convergence
factor in SSA, which could play the role of balancing global search
and local development. c1 is calculated as follows.

c1 = 2e−( 4t
T )2

. (7)

Where t is the current generation and T is the
maximum generation.

The positions of the followers are updated according to
Newton’s laws of motion, which is defined as follows.

Xj
i = 0.5× at2

+ v0t. (8)

a = vfinal−v0
Mt ,

vfinal =
Xj

i−Xj−1
i

Mt .
(9)

Where a is acceleration. The difference between two adjacent
iterations is 1 and v0 = 0, so Eq. (8) could be defined as follows.

X
′j
i =

Xj
i − Xj−1

i
2

. (10)

(4) Update the fitness values of new population and the
position of food. If the end condition is satisfied, algorithm is
stopped; otherwise go to step (3).

Screen Disease-Related Compounds by
Our Proposed Method
Virtual screening is needed in the research of network
pharmacology to select the disease-related compounds. In this
paper, a novel virtual screening method based on FNT, hybrid

evolutionary method and negative sample selection algorithm is
proposed, which is depicted in Figure 3.

(1) Disease-related compound dataset collection. Search the
up-to-date literatures for treating diseases according to the name
of disease. By consulting these literatures with data mining
method, the active compounds for the treatment of the disease
are collected as the positive compound samples. In order to
generate the unrelated compounds, the positive compounds
are input into DUD-E database to generate the corresponding
decoys, which are set as negative samples (Mysinger et al.,
2012). There are too many decoys generated compared to the
number of positive samples. In order to balance the proportion
of positive samples and negative samples, negative sample
selection based on Tanimoto index (Algorithm 1) is presented
to choose a certain number of decoys that are quite different
from the positive sample set. Tanimoto index could measure
the distance between the 2 compounds, which can measure
the similarity between 2 sets (Klekota et al., 2005), which
can solve the relationship between 0 and 1 well. The greater
Tanimoto index is, the higher the similarity of 2 sets is. The
Tanimoto index of 2 sets A and B is calculated as followed.

T(A, B) =
A ∩ B
A ∪ B

. (11)

Algorithm 1: Negative sample selection algorithm.

Input: disease-related compound set [c1, c2, . . . , cm] (m is the number of
compounds),

the generated decoy set [g1, g2, . . . , gn] (n is the number of decoys)

Output: the selection negative compound set [n1, n2, . . . , n2m]

for i = 1; i ≤ n; i ++ do

sumi = 0;

for j = 1; j ≤ m; j ++ do

Tij = Tanimotoindex(gi, cj);

sumi = sumi + Tij;

End

End

Sort the decoy set according to [sum1, sum2, . . . , sumn];

Select the decoys with 2m smallest Tanimoto indexes as negative compound
set;

(2) Screening process. The related and unrelated molecules
collected are all chemical structures. To facilitate the compounds
collected inputting into flexible neural tree model, 4 kinds
of molecular descriptors (ECFP6, MACCS, Macrocycle, and
RDKit) are utilized to numerically characterize the chemical
structure of each compound (Todeschini and Consonni, 2009).
ECFP6 contains 2,048 features, which denotes all possible
molecular routes retrieved from the atom according to radius
3 and each bit denotes whether the special stator structure
exists. MACCS contains 166 molecular characteristic sites,
such as ISOTOPE, ATOMIC NO, 4M RING, and GROUP
VIII. Macrocycle contains 1,613 features, which refer the
information about the ring-size, sugars, and ester functional
groups. RDK it contains 208 features, such as number of
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TABLE 3 | Prediction performances of 11 methods with COVID-19 dataset.

Molecular descriptors Methods TPR FPR Precision Specificity F1

ECFP6 Our method 0.965909 0 1 1 0.982659
gcForest 0.965909 0.101695 0.825243 0.898305 0.890052
forgeNet 0.931818 0.00565 0.987952 0.99435 0.959064

SVM 0.920455 0.011299 0.975904 0.988701 0.947368
RF 0.931818 0 1 1 0.964706

AdaBoost 0.896226 0.025882 0.945274 0.974118 0.920097
DT 0.909091 0.045198 0.909091 0.954802 0.909091

GBDT 0.886364 0.028249 0.939759 0.971751 0.912281
KNN 0.897727 0.435028 0.50641 0.564972 0.647541
LR 0.988636 0.214689 0.696 0.785311 0.816901
NB 0.636364 0.062147 0.835821 0.937853 0.722581

MACCS Our method 1 0 1 1 1
gcForest 0.954545 0.011299 0.976744 0.988701 0.965517
forgeNet 0.943182 0.008499 0.982249 0.991501 0.962319

SVM 0.931818 0.011299 0.97619 0.988701 0.953488
RF 0.954545 0 1 1 0.976744

AdaBoost 0.886364 0.016949 0.962963 0.983051 0.923077

DT 0.931818 0.033898 0.931818 0.966102 0.931818
GBDT 0.931818 0.00565 0.987952 0.99435 0.959064
KNN 0.954545 0.028249 0.94382 0.971751 0.949153
LR 0.954545 0.016949 0.965517 0.983051 0.96
NB 0.863636 0.090395 0.826087 0.909605 0.844444

Macrocycle Our method 0.965517 0 1 1 0.982456

gcForest 0.954023 0.006536 0.988095 0.993464 0.97076
forgeNet 0.954023 0 1 1 0.976471

SVM 0.942529 0.006536 0.987952 0.993464 0.964706

RF 0.942529 0.006536 0.987952 0.993464 0.964706

AdaBoost 0.954023 0 1 1 0.976471

DT 0.908046 0.039216 0.929412 0.960784 0.918605

GBDT 0.896552 0.03268 0.939759 0.96732 0.917647

KNN 0.931034 0.019608 0.964286 0.980392 0.947368

LR 0.954023 0.026144 0.954023 0.973856 0.954023

NB 0.885057 0.039216 0.927711 0.960784 0.905882

RDKit Our method 0.965909 0 1 1 0.982659

gcForest 0.943182 0.022599 0.954023 0.977401 0.948571

forgeNet 0.943182 0.011299 0.976471 0.988701 0.959538

SVM 0.943182 0.011299 0.976471 0.988701 0.959538

RF 0.931818 0.00565 0.987952 0.99435 0.959064

AdaBoost 0.931818 0.016949 0.964706 0.983051 0.947977

DT 0.943182 0.011299 0.976471 0.988701 0.959538

GBDT 0.943182 0.011299 0.976471 0.988701 0.959538

KNN 0.954545 0.016949 0.965517 0.983051 0.96

LR 0.943182 0.028249 0.943182 0.971751 0.943182

NB 0.897727 0.112994 0.79798 0.887006 0.84492

Bold values denote the best performances.

valence electros, number of radical electrons, charge information,
and number of Aliphatic Carbocycles. Cross-validation method
is utilized to divide the training and testing datasets to test
the performance of our proposed method. With the feature
vector of each compound in the training dataset as the input,
flexible neural tree model is utilized to train with the feature
datasets. A hybrid evolutionary method based on grammar-
guided genetic programming and salp swarm algorithm is
proposed to search the optimal structure and parameters of
FNT model. For the unknown compounds of testing dataset,
the feature vectors are used as the input of the optimal FNT

model to obtain the output results. If the result is higher than
0.5, the compound is identified to be disease-related; otherwise,
it is unrelated.

EXPERIMENT RESULTS AND
DISCUSSION

In order to test the effectiveness of our method, the important
compounds were collected, which were involved in the
treatment of hypertension, diabetes, and COVID-19. The
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related compounds of these 3 diseases are regarded as positive
samples and the numbers of samples are 67, 124, and 88,
respectively. Negative sample selection method is utilized to
select the inactive compounds about hypertension, diabetes and
COVID-19, and the numbers of negative samples are 134, 248,
and 176, respectively. The 4 kinds of molecular descriptors
(ECFP6, MACCS, Macrocycle, and RDKit) are utilized to
numerically characterize related and unrelated compounds of
diseases, respectively.

The 10-cross validation method is utilized to test the
performance of our method. SVM (Hearst et al., 1998), RF
(Breiman, 2001), AdaBoost (Collins et al., 2002), decision tree
(DT) (Safavian and Landgrebe, 1991), GBDT (Zhang B. et al.,
2019), KNN, logical regression (LR) (Collins et al., 2002), gc
Forest (Zhou and Feng, 2017), forgeNet (Kong and Yu, 2020), and
Naive Bayes (NB) (Kim et al., 2006)are also utilized to identify
disease-related compounds of three diseases. In our method,
operator set is set as F = {+2,+3,+4,+5}, population size is
set as 30 and the maximum depth of tree is set as 5. In SVM,
linear kernel function is selected. In RF, the number of trees
is set as 100. In GBDT, the number of regression trees is set
as 200. In DT, CART algorithm is utilized. The parameters of
other algorithms are set by default. The AUC performances
of 11 methods with the datasets about hypertension, diabetes,
and COVID-19 are shown in Figures 4–6, respectively. From
Figure 4, it could be seen that with ECFP6, Macrocycle, and
RDKit methods, our method has the highest AUC performances
among 11 methods. With MACCS method, the AUC values
obtained by our method and RF are very close to 1.0, which are
0.999889 and 0.997772, respectively. For Figure 5, in terms of
AUC, it could be clearly seen that our method performs best with
ECFP6, MACCS, and RDKit methods. With Macrocycle feature
method, our method, gcForest, and SVM could obtain the better
AUC values than other 8 methods, which are 1, 0.99803, and
0.998435, respectively. By the comparison of these 3 methods,
our method performs best, which show that our method is a
good classifier for disease-compound identification problem. For
Figure 6, with ECFP6molecular descriptor, our method and SVM
could obtain the higher AUC values than other 9 methods, which
are 0.996901 and 0.99703. With other molecular descriptors, our
method could obtain the better performances, which are equal to
or very close to 1.0.

TPR, FPR, Precision, Specificity, and F1 are also utilized to
test the performances of 11 methods for compound identification
about 3 diseases. TPR denotes the ratio of true disease-
related compounds identified against all true disease-related
ones. FPR denotes the ratio of disease-related compounds
identified erroneously against all true disease-unrelated ones.
Precision denotes the ratio of true disease-related compounds
identified against all disease-related ones identified. Specificity
is the ratio of true disease-unrelated compounds identified
against all true disease-unrelated ones. F1 could evaluate a
classifier comprehensively with Precision and Recall. TPR, FPR,
Precision, Specificity, and F1performances of11 methods with
the datasets about hypertension, diabetes and COVID-19 are
listed in Tables 1–3, respectively. In Table 1, with ECFP6
method, our method has the highest TPR performance among

TABLE 4 | Averaged ranking scores of 11 methods with 3 datasets.

ECFP6 MACCS Macrocycle RDKit

Our method 3.33 1.67 2 2.67

gcForest 3.67 1.83 2.33 2.17

forgeNet 2.5 2.17 2.33 3

SVM 2.83 2.5 2.5 2.17

RF 2.83 1.33 2.5 3.17

AdaBoost 3.5 2.5 1.83 2.17

DT 4 1.83 2.5 1.67

GBDT 3.5 1.33 2.83 2.33

KNN 4 1.83 1.67 2.5

LR 3.83 1.17 2.83 2.17

NB 3.67 2.83 1 2.33

11 classifiers, which shows that our method could identify more
true disease-related compounds. In terms of FPR, Precision and
Specificity, forgeNet and RF perform best, which reveal that all
the true disease-unrelated compounds are identified. But our
method could obtain the highest F1 performance. Overall our
method could obtain the more accurate identification results.
With MACCS, Macrocycle, and RDKit, our method could obtain
the best performances of TPR, FPR, Precision, Specificity, and F1.

In Table 2, with ECFP6 method, KNN has the highest TPR
performance among 11 classifiers, which is 1.0. The result shows
that KNN could identify all true disease-related compounds.
In terms of FPR, Precision, and Specificity, forgeNet perform
better than other 10 methods. But our method could also
obtain the highest F1 performance. Overall our method could
obtain the more accurate identification results. With MACCS
and Macrocycle, our method could obtain the best performances
of TPR, FPR, Precision, Specificity, and F1. With RDKit, our
method performs best in terms of FPR, Precision, Specificity,
and F1, while forgeNet could obtain the best TPR performance.
For Table 3, our method performs best with 4 kinds of
molecular descriptors in terms of 5 criterions. All results show
that our method could predict disease-related compounds more
accurately than gcForest, forgeNet, SVM, RF, AdaBoost, DT,
GBDT, KNN, LR, and NB.

According to the performances of 11 methods with the
datasets from 3 diseases and 4 molecular descriptors, 11 methods
are ranked. For each molecular descriptor, the averaged ranking
results of each method are listed in Table 4. From Table 4,
we can see that our method, gcforest, forgenet, RF, GDBT, and
LR perform best with MACCS feature set, while SVM and
DT perform best with RDKit feature set. AdaBoost, KNN and
NB perform better with Mordred feature set than the other 3
feature sets. All methods perform poorly with ECFP6 molecular
descriptor. The results also show that the different molecular
descriptors of compounds are suitable for the different classifiers
and the ranking results can provide the guidance for each
classifier to choose the appropriate molecular descriptor to solve
the problem in the future. On the whole, MACCS method
is suitable for the maximum number of classifiers. In future
research, MACCS method can be preferred for a new classifier.
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FIGURE 7 | Performances of our method with COVID-19 dataset and the different ratios of positive and negative samples.

We investigate the performances of our method with different
ratios of positive and negative samples. The 8 kinds of ratios (1:1,
1:2, 1:3, 1:4, 1:5, 1:6, 1:8, and 1:10) are selected and COVID-19
dataset is utilized. The identification results are depicted in
Figure 7. From Figure 7, it could be seen that when the ratios are
1:1, 1:2, 1:3, and 1:4, our method could have the better ROC and
AUC performances. The excessive imbalance of data may affect
the classification performance of the algorithm.

CONCLUSION

In order to sort the candidate compounds in a traditional Chinese
medicine prescription and narrow the scope of analysis in
network pharmacology research accurately, this paper proposes
a new virtual screening method based on flexible neural
tree (FNT) model, hybrid evolutionary method, and negative
sample selection algorithm to screen the disease-related active
compounds. 3 diseases (hypertension, diabetes, and Corona Virus
Disease 2019) related compounds are collected from the up-
to-date literatures. The unrelated compounds are selected by
negative sample selection algorithm from DUD-E website. 4
kinds of molecular descriptors (ECFP6, MACCS, Macrocycle,
and RDKit) are utilized to characterize the features of related and
unrelated compounds of diseases, respectively. The experiment
results show that our proposed method performs better than
classical classifiers (SVM, RF, AdaBoost, DT, GBDT, KNN, LR,
and NB), up-to-date classifier (gcForest) and deep learning

method (forgeNet) in terms of AUC, ROC, TPR, FPR, Precision,
Specificity, and F1.

We also investigate the performances of 11 methods with
4 kinds of molecular descriptors. The results show that our
method, gcforest, forgenet, RF, GDBT, and LR perform best
with MACCS feature set, while SVM and DT perform best
with RDKit feature set, AdaBoost, KNN and NB perform best
with Mordred feature set. With ECFP6 molecular descriptor all
methods perform poorly.

In the paper, our proposed method has been successfully
applied to hypertension, diabetes, and Corona Virus Disease. In
the future, our method will be utilized to identify other chronic
disorders related compounds, such as cancers, coronary heart
disease, and rheumatoid disease.
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Lung cancer is a malignancy with high incidence and mortality worldwide. Previous
studies have shown that the gut microbiome plays an important role in the development
and progression of metabolic cancers. However, data on the characteristics of the
gut microbiome with different histopathology types of lung cancer remain scant. We
collected stool samples from 28 healthy people (HP) and 61 lung cancer patients. The
lung cancer patients were classified into three types according to their histopathology:
Atypical Adenomatous Hyperplasia/Adenocarcinoma in situ (AAH/AIS), Minimally
Invasive Adenocarcinoma (MIA), and Invasive Adenocarcinoma (IA). In addition, we
employed 16S rRNA gene amplicon sequencing to analyze the characteristics of the
gut microbiome in these patients. Our analysis revealed that the categorized cancer
patients had unique intestinal flora characteristics, and had lower density and flora
diversity compared to healthy people. Besides, the structure of the flora families and
genera was more complex, and each group presented specific pathogenic microbiota.
The patients in the AAH/AIS group and HP group had relatively similar flora structure
compared with the IA and MIA groups. In addition, we identified several flora markers
that showed significant changes with the development of lung cancer. Lung cancer
gut microbiota showed a decrease in short-chain fatty acids (SCFAs) producing
and anti-inflammatory bacteria compared to healthy people, while some pathogenic
bacteria such as proinflammatory or tumor-promoting bacteria were more abundant
in lung cancer patients. On the other hand, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Clusters of Orthologous Group (COG) annotation demonstrated
suppression of some dominant metabolism-related pathways in lung cancer. These
findings provide new biomarkers for the diagnosis and prognostic assessment of lung
cancer and lay the basis for novel targeted therapeutic strategies for the prevention and
treatment of lung cancer.

Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03244605].
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INTRODUCTION

Lung cancer is one of the most aggressive and prevalent types of
malignancy that leads to high morbidity and mortality (Allemani
et al., 2018). Over 80% of lung cancer incidences are non-small
cell lung cancer (NSCLC) (Wagner et al., 2020), which include
adenocarcinoma (AC) and squamous cell carcinoma (SCC).
However, with the development of individualized and targeted
therapy for lung cancer, traditional pathological classification
no longer meets the treatment requirements. It is, therefore,
important to characterize the lung cancer subtypes based on
the existing diagnostic criteria, coupled with more sensitive and
specific diagnostic and prognostic markers.

Intestinal bacteria is a systemic metabolic product, which
mediates disease resistance through metabolism, immunity,
inflammation, and other mechanisms. Few studies have evaluated
the interplay between the microbiome and lung cancer. Recent
studies have also shown that intestinal flora has a unique
population, which expresses in different cancers such as lung,
breast, pancreatic, brain, and bone cancers (Nejman et al., 2020).
In the treatment of lung cancer, intestinal flora can improve
the efficacy and sensitivity of chemotherapy, radiotherapy, or
immunotherapy, and reduce treatment-related toxicities (Cheng
et al., 2020). In addition to carcinogenic effects, intestinal flora
can also inhibit the development of cancer (Kadosh et al.,
2020). The intestinal flora modulated cancer development by
regulating its microenvironment, the host’s immune system, as
well as other metabolites (Finlay et al., 2020). Thus, the gut
microbiome could correlate with the development of lung cancer,
but evidence for the interplay between the microbiome and lung
cancer is insufficient and cannot yet be used to predict tumor
progression and prognosis.

An ideal diagnostic or prognostic index should have high
specificity and sensitivity. Novel indexes such as intestinal flora
have received considerable prospects for clinical application.
To define biomarkers in the development of early lung
adenocarcinoma, we explored the role played by intestinal flora
changes using 16S rRNA sequencing and then attempted to
correlate the intestinal flora changes with the development of
infiltrating carcinoma. These data provided a theoretical basis for
the accurate diagnosis and classification of early lung cancer.

MATERIALS AND METHODS

Samples
The 89 fecal samples for 16S rRNA sequencing were obtained
from 28 healthy people and 61 lung cancer patients initially
diagnosed by histopathology and computed tomography
(CT). The lung cancer patients were further divided into 3
groups based on different histopathology as prescribed by
WHO classification on Tumors of the Lung, Pleura, Thymus,
and Heart in 2015, which include Atypical Adenomatous
Hyperplasia/Adenocarcinoma in situ patients (AAH/AIS group,
n = 8), minimally invasive adenocarcinoma patients (MIA group,
n = 18), invasive adenocarcinoma patients (IA group, n = 35).
None of the patients received therapy, such as chemotherapy,

radiation therapy, targeted therapy, immunotherapy, or surgery
before sample collection. We excluded patients who had one of
the following conditions: congestive cardiac failure, respiratory
failure, renal failure, severe liver dysfunction, consumption of
probiotics or antibiotics within 1 month before admission. The
control group was of 28 healthy people (HP group) who did not
use any type of antibiotics or probiotics within 1 month before
admission. Fresh fecal samples from all the participants were
collected by the fecal sample collection kit (MGI Tech Co., Ltd.,
China) for intestinal microbial gene testing. The fecal samples
were transferred into a sterilized tube containing stabilizer
N-octylpyridine, which is a reliable reagent suitable for storage
and transportation at room temperature. Then the fecal samples
were frozen at –80◦C immediately until DNA extraction. This
study was conducted by the Declaration of Helsinki. The study
was approved by the ethics committee of Yueyang Hospital of
Integrated Traditional Chinese and Western Medicine Affiliated
with Shanghai University of Traditional Chinese Medicine
(NO.2016-059). Each patient gave signed informed consent
before the study. The clinical trial registration date was August 9,
2017, and the registry number was NCT03244605.

Fecal DNA Extraction and 16S
Sequencing
Microbial DNA was extracted from 89 fecal samples (61
fecal samples from lung cancer patients and 28 fecal samples
from healthy people) by QIAamp R© Fast DNA Stool Mini
Kit following the manufacturer’s protocol. Briefly, the
V3–V4 variable regions of the bacterial 16S rRNA gene
were amplified by polymerase chain reaction (PCR) using
universal primers 338F: (ACTCCTACGGGAGGCAGCAG)
806R:GGACTACHVGGGTWTCTAAT). The extracted DNA
was purified by silica gel and then quantified using a QuantusTM

Fluorometer. The PCR cycle conditions included an initial
denaturation at 95◦C for 3 min; followed by 30 cycles at 95◦C
for 30 s, primer annealing at 52◦C for 30 s, and extension
at 72◦C for 45 s; followed by a final elongation at 72◦C for
10 min. The PCR products were then analyzed in 2% agarose
gel. Subsequently, purified amplicons were pooled in equimolar
amounts, and paired-end sequenced on Illumina HiSeq/MiniSeq
for genome analysis.

Microbiome Data Analysis
The raw FASTQ files were first de-multiplexed, quality-filtered
using chimera check, and then merged using FLASH (Magoč
and Salzberg, 2011) with the sequences which were processed
using the Cutadapt v1.3 and QIIME v1.8.0 (Cock et al., 2010).
Briefly, forward, and reverse bacterial 16S rRNA reads were
merged with a minimum length of 200 bps, and then we used the
pick_open_reference method in the QIIME analysis to perform
OTU clustering. The clustering algorithm used Uclust, and the
database used the Greengenes 2013-08 release1 version, and the
similarity threshold was 80% for all sequences. Thereafter, we
performed Operational Taxonomic Units (OTUs) division and
statistical analysis, and the remaining parameters were the default

1http://greengenes.lbl.gov/Download/
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parameters for QIIME. The index of observed species, Chao,
Shannon, Sobs and Simpson were used to calculate alpha (α)
diversity metrics. The beta (β) diversity measurements including
Principal Component Analysis (PCA) and Principal Coordinates
Analysis (PCoA) were used by the unweighted UniFrac metric.
The PCA and PCoA were based on unweighted uniFrac distance.
The statistical significance was evaluated using analysis of
similarities (ANOSIM). In addition, the Linear Discriminant
Analysis (LDA) Effect Size (LEfSe) method was used to evaluate
the influence of each differentially abundant taxon. We further
conducted an correlation network analysis to identify the co-
occurring intestinal microbes under different histopathology
types. To analyze the correlation network, we calculated the
Spearman correlation between different groups of phylum using
the R package cooccur. Subsequently, significant and robust
correlations (P-value < 0.01, |ρ| ≥ 0.6) were used to construct
a network using the R package psych. Gephi (v0.9) was then
used to construct network figures. Finally, pathway enrichment
analysis was performed using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and the Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) 2.0 database (Kanehisa et al., 2008; Langille et al.,
2013; Douglas et al., 2020).

Statistical Analyses
Statistical tests were performed in R (3.0.2; R Foundation for
Statistical Computing) and Prism software (Graph Prism7.0
Software Inc., CA, United States). Data were expressed as a
mean ± standard deviation (SD) and the differences among the
groups were evaluated by Wilcoxon rank-sum test. The Wilcoxon
rank-sum test (for two groups) or Kruskal-Wallis test (for more
than two groups) was used to analyze the diversity between multi-
groups. Besides, Fisher’s exact test was performed on categorical
variables, whiles the chi-square test was used for categorical
variables. A value P< 0.05 was considered statistically significant.

RESULTS

Patient Characteristics
Clinical characteristics of all the participants were listed in
Table 1. No difference was observed in age, sex, disease stage,
smoking status and family history (P > 0.05).

Clustering Analysis of Operational
Taxonomic Unit
A total of 1,243 Operational Taxonomic Units (OTUs) were
annotated for subsequent analysis, including 15 phyla, 81
families, 253 genera, and 555 species of gut microbes (Figure 1A).
The coverage of 16S rRNA sequencing was 400–440 bp and the
average length of these fragments was 415 bp (Supplementary
Figure 1A). The data showed that the sobs index tended to be
stable as sampling increased, which indicated that the depth of
our sample sequencing met the analysis requirements for the
diversity of intestinal flora (Supplementary Figure 1B).

Taxonomic Analysis of the 16S rRNA
Sequence Data
To explore the features of the gut microbial community of the
lung cancer patients, the relative microbiota taxon abundance in
the lung cancer groups was compared with healthy people. The
predominant genera were defined as those comprising greater
than 1% of the total gut bacteria. Bacterial taxonomy distribution
of the three lung cancer groups demonstrated increased density
and clustering compared to the healthy controls group. In
addition, a total of 605 OTUs were obtained for the HP group,
639 OTUs for the AAH/AIS group, 780 OTUs for the MIA group,
and 944 OTUs for the IA group as shown by the Venn diagrams
(Figure 1A). The number of unique OTUs in each group was
36, 38, 104, and 159 in AAH/AIS, MIA, IA, and HP groups,
respectively. In addition, the HP and the lung cancer groups
had a total of 446 shared OTUs, indicating that there was the
high similarity between the structure of the intestinal flora of the
healthy group and the lung cancer patients (Figure 1A). Rank-
Abundance curves showed that the intestinal flora of the healthy
group had higher abundance and diversity compared to the lung
cancer groups (Figure 1B).

The Alpha Diversity of the Gut Microbiota
To investigate the diversity of the bacterial species in the gut
ecosystem in each group, the microbial alpha diversity was
measured as shown in Figure 2. Alpha diversity evaluates
the diversity of microbial communities in a region, reflecting
the richness and evenness. We obtained data such as species
abundance by observation of various index values such as
Chao, Shannon, Sobs, and Simpson index. Community richness
can be measured by Chao index, while community diversity
indices includes Shannon index and Simpson index. Sobs index
represents the number of species observed in the sample
(OTU number). The Chao, Shannon, Sobs index are positively
correlated with the richness and diversity while the Simpson
index is negatively correlated with them. We then employed a
t-test to define the significance of the differences in the index
values between the four groups. The Chao, Shannon, or Sobs
index (P< 0.05) demonstrated that the diversity index of the HP
group was significantly higher compared to the three lung cancer
groups, while the Simpson index was lower compared to the three
lung cancer groups (P< 0.05). Our results demonstrated that the
intestinal flora of lung cancer patients was significantly different
from in the HP group, and the gut microbiota abundance and
diversity of the lung cancer patients were lower than the HP
group. In addition, there was no significant differences in the
indices of the different lung cancer groups (P > 0.05).

The Beta Diversity Analysis of the Gut
Microbiota
The Beta (β) diversity was used to evaluate the similarities and
differences of between-group diversity of each group, including
principal component analysis (PCA) and principal coordinates
analysis (PCoA) based on unweighted UniFrac distance. The
more similar the community composition of the samples is,
the closer they are to each other in the PCA or PCoA
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TABLE 1 | Baseline characteristics of health people and non-small cell lung cancer (NSCLC) patients.

Characteristics Total (n = 89) HP (n = 28) AAH/AIS (n = 8) MIA (n = 18) IA (n = 35) P-value

Age, years
Mean ± SD

55.88 ± 10.87 58.79 ± 11.16 49.00 ± 5.61 53.67 ± 12.34 56.26 ± 10.17 0.110

Sex, n (%)

Male 30 (33.71) 11 (39.29) 2 (25.00) 7 (38.89) 10 (28.57) 0.731

Female 59 (66.29) 17 (60.71) 6 (75.00) 11 (61.11) 25 (71.43)

Smoking status, n (%)

Smoker 10 (11.24) 5 (17.86) 0 (0.00) 3 (16.67) 2 (5.71) 0.279

Non-smoker 79 (88.76) 23 (82.14) 8 (100.00) 15 (83.33) 33 (94.29)

Family history, n (%)

Yes 7 (7.87) 0 (0.00) 0 (0.00) 1 (5.56) 6 (17.14) 0.098

No 82 (92.13) 28 (100.00) 8 (100.00) 17 (94.44) 29 (82.86)

Disease stage, n (%)

IA – – 0 (0.00) 17 (94.44) 30 (85.71)

IB – – 0 (0.00) 1 (5.56) 3 (8.57) 0.529

IIA – – 0 (0.00) 0 (0.00) 0 (0.00)

IIB – – 0 (0.00) 0 (0.00) 2 (5.71)

EGFR mutation, n (%)

L858R – – 0 (0.00) 1 (5.56) 8 (22.86)

19-del – – 0 (0.00) 0 (0.00) 4 (11.43) 0.074

Unknown – – 8 (100.00) 17 (94.44) 23 (65.71)

Solitary/multiple nodule, n (%)

Solitary – – 2 (25.00) 8 (44.44) 18 (51.43) 0.396

Multiple – – 6 (75.00) 10 (55.56) 17 (48.57)

Defecation, n (%)

Normal 62 (69.66) 28 (100.00) 7 (87.50) 15 (83.33) 27 (77.14) 0.067

Abnormal 27 (30.34) 0 (0.00) 1 (12.50) 3 (16.67) 8 (22.86)

HP, healthy people; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma.

FIGURE 1 | Taxonomic analysis of 16S rRNA sequence data. (A) Venn diagram of OTU shared among the four groups. (B) Rank-Abundance curves of intestinal
flora in four groups of samples.

diagram. Therefore, samples with high similarity in community
structure tend to cluster together, while those with very different
communities are far apart. We performed the PCA analysis
between the four groups as shown in Figure 3A. When PC1

(35.09%) and PC2 (25.33%) were taken as the abscissa and
ordinate, respectively, the four groups were well distinguished
(P = 0.007), demonstrating that the four groups had significant
differences in the composition of the intestinal bacteria. Besides,
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FIGURE 2 | Comparison of Alpha diversity index of intestinal flora among the four groups. (A) Microbial alpha diversity of Chao index. (B) Shannon index.
(C) Simpson index. (D) Sobs index. *Indicates P < 0.05 compared to the HP group.

in the PCoA analysis (Figure 3B), when PC1 (19.27%) and PC2
(11.75%) were taken as the abscissa and ordinate, respectively, the
four groups were farther apart in the coordinate chart (P = 0.001),
which indicated that there was a significant difference in species
diversity between the four groups.

In summary, our data showed that there were significant
differences in the species diversity and community composition
of the intestinal flora between the lung cancer patients and
healthy controls, as well as certain differences in the diversity
and structure of the intestinal flora between the three different
pathological subgroups of lung cancer. However, the results of
Beta diversity can only illustrate the general similarities and
differences of diversity between each group. Therefore, the clear
information on detailed differences between the four groups were
further reflected by subsequent species taxonomic profiling at
different levels of biological classification.

Variation Analysis
Species Specificity in Multi-Level Tests
At the phylum level, Firmicutes, Bacteroidetes, and
Proteobacteria were the most common phyla identified in
the three lung cancer groups, contributing 87.27% (AAH/AIS),
93.53% (MIA), and 93.09% (IA) of the gut bacteria, respectively.
Firmicutes, Bacteroidetes, Proteobacteria, and Acidobacteria

contributed to 98.95% of the gut bacteria in the HP group
(Figure 4A). The lung cancer groups especially the MIA
group had a significantly lower abundance of Firmicutes, a
relatively higher abundance of Proteobacteria, Bacteroidetes,
and Fusobacteria compared to the HP group. On the other
hand, the AAH/AIS group showed a relatively low abundance
of Acidobacteria (Figures 4B–D). The ratio of Firmicutes to
Bacteroidetes can reflect the homeostasis of intestinal flora. The
Firmicutes/Bacteroidetes ratio in the HP group was 1.88, while
in the lung cancer group, the ratio was 1.12 (AAH/AIS), 0.48
(MIA), and 0.95 (IA), respectively.

In addition, analysis of relative abundance showed a clear
difference between the taxa with high and low abundance were
distinguished, and the color gradient were used to reflect the
similarity and difference of the composition of multiple samples
at each classification level. As shown in Figure 5, the difference
between the four groups of samples can be seen intuitively
according to the change in the color gradient.

Gut Microbial Signature in Lung Cancer Patients
The multi-level LEfSe was used to analyze biomarkers between
the lung cancer patients with different histopathology and the
healthy controls. Our results showed that dominant fecal gut
microbiota was specific to the histopathological types of lung
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FIGURE 3 | Beta diversity analysis of intestinal flora. (A) PCA analysis of intestinal flora in four groups of samples. (B) PCoA analysis of intestinal flora in four groups
of samples.

cancer. There were 74, 20, 15, and 15 bacterial taxonomic
clades that were significantly different in HP, AAH/AIS, MIA, IA
groups, respectively [log10 (LDA score) > 2] (Figure 6A).

We also analyzed the evolutionary relatedness of the intestinal
flora species as shown in Figure 6B. The data showed that
the species were divergent, which was in sync with the LDA
value distribution data. The data showed that the dominant
flora in each group of lung cancer patients was significantly
different from the healthy people, and there were also significant
differences in the characteristic flora in the lung cancer patients
based on the different pathological types.

The flora evolution analysis showed the relative content
of these dominant bacteria (Figure 7). In the HP group,
p_Firmicutes, c_Clostridia, and o_Clostridiales were
shown to be the most significant, while in AAH/AIS
group, g_Lachnoclostridium, g_Parasutterella, and
g_Eubacterium_coprostanoligenes had the highest abundance.
On the other hand, in the MIA group, p_Bacteroidetes,
o_Bacteroidale, and c_Bacteroidia were shown to be the most
significant genus, while in the IA group, g_Prevotella_9,
g_Klebsiella, and g_Eubacterium_eligens were most represented.
Besides, in the HP group, the dominant bacteria group was
classified at a high level, while the different lung cancer groups

were significantly reflected in the low-level classification.
Further analysis showed that o_Bacteroidales, o_Clostridiales,
f_Lachnospiraceae, f_Ruminococcaceae, g_Anaerotruncus,
g_Faecalibacterium, g_Prevotella_9, g_Roseburia, and
g_Subdoligranulum in HP group was significantly
different from MIA, IA, but not with AAH/AIS group
(Figure 7A). On the other hand, f__Peptostreptococcaceae,
f_Christensenellaceae, f_Veillonellaceae, g_Blautia,
g_Christensenellaceae_R-7_group, g_Haemophilus,
g_Lachnospira, g_Lachnospiraceae_NK4A136_group, and
g_Lachnospiraceae_UCG-001 were significantly different from
the other three groups (Figure 7B). These florae features may be
related to the development of lung cancer.

Moreover, several specific genera were presented in both
lung cancer patients and healthy people. According to the
LEfSe analysis, the genera of Lachnospiraceae, Ruminococcaceae,
and Eubacterium were predominantly identified in both cancer
patients and healthy people. Specifically speaking, the genera of
Lachnospiraceae were in both healthy people and IA group. The
genera of Ruminococcaceae were both enriched in healthy people
and AAH/AIS group. Eubacterium genera were simultaneously
identified in healthy people and three lung cancer subgroups
AAH/AIS, MIA, and IA group.
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FIGURE 4 | Major OTUs at Phylum level in the HP group vs. the three lung cancer subgroups. (A) Major OTUs at Phylum level in the HP group. (B) Major OTUs at
Phylum level in the AAH/AIS group. (C) Major OTUs at Phylum level in the MIA group. (D) Major OTUs at Phylum level in the IA group.

Constructed networks revealed that samples from the HP
had fewer edges, a lower average degree and lower nodes
than those from the lung cancer group, which indicated
that there were fewer significant correlations of phylum
(Supplementary Table 1). In AAH/AIS group, average weighted
degree, density and clustering coefficient were higher than
the other three groups, demonstrating a elevation in the
network complexity. Co-occurrence was also found among
species of the Proteobacteria in AAH/AIS, MIA, IA environments
(Figures 8B–D), however, such co-occurrence was missing in the
healthy environment (Figure 8A).

Functional Profile of the Gut Microbiome in
Non-small Cell Lung Cancer
The KEGG and COG pathway analyses were performed to
explore potential differences in the functions of the microbiome
in lung cancer patients vs. healthy individuals.

Although the functional analyses showed significant similarity
between the lung cancer patients and the control group, the
microbiome of the lung cancer patients was abundant in
pathways such as carbohydrate digestion and absorption, which
was proportional to the development of lung cancer. On the other
hand, the KEGG analysis showed clustering of valine, leucine, and
isoleucine biosynthesis, arginine biosynthesis, and glutamatergic
synapse, which showed lower abundance in the lung cancer
patients than the healthy controls (Figure 9A). In addition,
diguanylate cyclase (COG2199) and RNA-binding protein

(COG1534) of the ABC (ATP-binding cassette) transporter
system were significantly downregulated in lung cancer patients
compared to the healthy controls, which might be promoting
utilization of glucose or ribose/galactoside to regulate energy. In
addition, exported protein (COG2911) ortholog was upregulated
in the lung cancer patients compared to the healthy controls
(P < 0.05) (Figure 9B).

DISCUSSION

Adenocarcinoma is the most common type of pathology in
NSCLC. With the development of imaging techniques like
High Resolution Computed Tomography (HRCT), CT imaging,
Positron Emission Tomography-Computed Tomography (PET-
CT), and Magnetic Resonance Imaging (MRI), the detection
rate of early lung adenocarcinoma has significantly improved.
However, how to analyze the prognosis of patients with early lung
adenocarcinoma is particularly critical.

There are three major types of pathology in early lung
adenocarcinoma, including adenocarcinoma in situ (AIS),
minimally invasive adenocarcinoma (MIA), and invasive
adenocarcinoma (IA) with a maximum tumor diameter
of ≤ 3 cm (Travis et al., 2015). Besides the AIS, there is atypical
adenomatous hyperplasia (AAH) with very similar morphology.
Although the CT imaging of the above lesions is mainly in the
form of ground-glass nodules, their prognosis is quite different.
AAH can be observed and followed up without surgery for years;
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FIGURE 5 | Species classification heat map analysis. The color gradient from blue to red indicates that the distance between the samples is from near toward far.

AIS and MIA could be treated by lobectomy without regional
lymph node dissection, with a 5-year survival rate of 100%; while
submerged IA with predominantly appendicular growth requires
lobectomy and regional lymph node dissection, with a 5-year
survival rate of 67% (Detterbeck et al., 2017). With the increase
in the detection rate of pulmonary ground-glass nodules, it is
essential to classify the degree of malignancy of the nodules.
Unfortunately, the ground glass nodules have similarities and
overlap in histomorphology, which blocks accurate diagnosis
and treatment. Presently, experienced pathologists identified
the types of early lung adenocarcinoma based on infiltrating
carcinoma components in the lesion, but there are no specific
biological markers of infiltrating carcinoma components in
lesions, especially for the early lung adenocarcinoma patients.
Therefore, it is urgent to explore non-invasive and economical
screening modalities which could easily detect samples with
high positive rates.

Recent studies have shown that intestinal flora can be
used in the diagnosis of human diseases such as tumors
(Zheng et al., 2020; Leng et al., 2021). Intestinal flora is a large
group of microorganisms that colonize the intestines, and
their homeostasis plays an important role in regulating the

development of human diseases and is referred to as the “second
genome” (Qin et al., 2010) or “a new organ” (Donaldson et al.,
2016). Previous data has demonstrated a pathogenic association
between the microorganisms and the gut-lung axis (Gut-lung
axis) (Budden et al., 2017), which is the basis for the regulation
of lung cancer by the intestinal flora microenvironment.
The intestines and the lung regulate each other through the
gut-lung axis, which relies on various biological structures
such as embryonic homology, mucosal immune channels, and
neurological channels. Besides, the intestinal microenvironment
could influence the occurrence, development, treatment, and
prognosis of lung cancer through various pathways. In our study,
we showed that the lung cancer group had significant differences
from the healthy group, which is consistent with previous reports
(Liu et al., 2019a). Thus, the microbiota has high sensitivity in
early lung adenocarcinoma compared to blood tumor markers
such as carcinoembryonic antigen (CEA), carbohydrate antigen
125 (CA125), and squamous cell carcinoma (SCC) antigen.

The α- and β-diversity results of lung cancer patients with
different histopathology types did not show any significant
differences, but the HP and AAH/AIS groups showed high
similarity, while the IA group was similar to the MIA group.
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FIGURE 6 | Identification of gut microbiota composition and abundance across the four groups. (A) Histogram of the distribution of LDA values for LEfSe analysis of
intestinal flora in four groups of samples. (B) Evolutionary map of species branching for LefSe analysis of intestinal flora in four groups of samples.
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FIGURE 7 | The comparison of relative abundant microbiome between each group. (A) The Characteristic flora which are significantly HP group is significantly
different from MIA, IA, and no difference. (B) The Characteristic flora which are significantly different between HP and the other three group. *P< 0.05, **P< 0.01,
***P< 0.001, ****P< 0.0001, ns, no significance.
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FIGURE 8 | Correlation network of the gut microbiome in the four groups. The correlation coefficient was calculated with Spearman rank correlation test (|ρ| ≥ 0.6).
Gephi (v0.9) was used for network construction. (A) Correlation networks in HP. (B) Correlation networks in AAH/AIS. (C) Correlation networks in MIA.
(D) Correlation networks in IA. Each circle represents the average relative abundance of a microbial species in that state. Node sizes are scaled according to their
degrees of connections.

FIGURE 9 | COG pathway and KEGG analysis in the four groups. (A) The relative abundance of COG pathway differentially enriched in the four groups. (B) The
relative abundance of KEGG pathway differentially enriched in the four groups.
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Together, these differences were not statistically significant but
was confirmed by specific flora structure.

Moreover, at the phylum level, Firmicutes were significantly
higher in the HP group compared to the AAH/AIS, MIA, and
IA groups, while the ratio of Firmicutes to Bacteroidetes was
lower than in the HP group. Previous data demonstrated that
all butyrate-producing bacteria belong to the Firmicutes. Besides,
butyrate is one of the most important fatty acids associated
with anti-inflammatory activity, cell proliferation, induction of
regulatory T cell differentiation, and apoptosis through activation
of signaling pathways (O’Keefe, 2016; Feng et al., 2018). High
rates of Firmicutes/Bacteroidetes phylum are frequently observed
in healthy adults, as previously demonstrated using a large
gut microbiome cohort study (Zhong et al., 2019). Reduced
Firmicutes/Bacteroidetes ratio has been shown to be associated
with dysbiosis of gastrointestinal tract metabolism, which results
in low concentration of circulating short-chain fatty acids,
and then influenced elements for host systemic immunity and
systemic inflammation (Liu et al., 2019b). This data shows that
there is a disrupted balance of gut microbiota in lung cancer
patients and the presence of distinct microbiota profiles from
those of precancerous lesions.

The characterizations in family and genus levels were more
complex and significantly varied from each group, presenting
a more diverse pathogenic population. Our results showed that
the Lachnospiraceae and Blautia genera were suppressed in lung
cancer patients, which was in agreement with previous studies
(Liu et al., 2019a; Zhang et al., 2019). The Lachnospiraceae
genera of the Clostridium family belongs to Firmicutes phylum,
which was suppressed in each lung cancer group compared to
the HP. Lachnospiraceae can protect the host against cancer
by producing butyric acid which plays an important role in
the suppression of tumor growth, regulation of immunity, and
participation in anti-inflammatory reactions (Daniel et al., 2017).
Each lung cancer group exhibited a decreased abundance of the
Blautia genus belonging to the Firmicutes phylum, which has
a role in digesting complex carbohydrates. The suppression of
the Blautia genus was also seen in irritable bowel syndrome,
non-alcoholic fatty liver diseases, Crohn’s disease, and diabetes.
However, the specific roles of these common specific florae and
their importance need further confirmation (Zhang et al., 2019).
Our results indicated that the composition and development
of bacterial communities varied in lung cancer with a different
course. Therefore, it is feasible to speculate that some microbiome
might be used for diagnosis, prognosis, therapeutics or fecal
microbiota transplantation in lung cancer.

Our data also showed that there was a lower abundance of
Faecalibacterium, Prevotella, Roseburia, and Subdoligranulum,
Anaerotruncus genera in lung cancer patients in IA and MIA
groups compared with HP, but no difference with AAH/AIS
group. Faecalibacterium was reported as a “favorable” gut
microbiome, which can enhance systemic and anti-tumor
immune responses mediated by increased antigen presentation,
and improved effector T cell functions as well as the tumor
microenvironment, which modulates the response of melanoma
patients to anti-programmed death-1(PD-1) immunotherapy
(Gopalakrishnan et al., 2018). It was also shown that patients

on Cytotoxic T Lymphocyte-associated Antigen-4 (CTLA-4)
blockade with a higher abundance of Faecalibacterium had a
prolonged PFS compared to those with a higher abundance
of Bacteroidales in the gut microbiome (Chaput et al., 2017).
Thus, these findings demonstrated that Faecalibacterium plays
an important role in immunotherapy. Prevotella belongs to the
Prevotaceae family of Bacteroides. It has a diverse bacterial
species and is a dominant genus in the human intestine. It is
negatively associated with metabolic diseases such as obesity and
diabetes (Lukens et al., 2014). In our study, we showed that
Prevotella decreased with lung cancer progression. Roseburia
genus has been shown to produce short-chain fatty acids,
especially butyric acid, which affects colon movement with
anti-inflammatory properties and has the potential of being a
probiotic (Sanders et al., 2019). Studies have shown that the
occurrence of colorectal cancer may be related to the reduction
of the Roseburia (Bisht et al., 2021). Our findings showed that the
reduction of Roseburia genus was associated with the occurrence
and progression of lung cancer.

In the healthy people group, the majority of gut bacteria
were associated with the production of short-chain fatty
acids (SCFAs), the regulation of the immune system, and
the modulation of metabolism. The microbial genera in
healthy people were characterized by a higher abundance
of beneficial bacteria that promote the restoration of gut
microenvironment balance, and some of them were identified
as the next-generation probiotics (Singh and Natraj, 2021).
However, these beneficial gut microbiota were not significantly
observed in either of the three subgroups of lung cancer
patients. On the contrary, most of the beneficial gut microbiota
were significantly decreased in lung cancer patients, and
some pathogenic bacteria such as proinflammatory or tumor-
promoting bacteria were more abundant in lung cancer patients.
Lachnoclostridium (Liang et al., 2020), Pseudomonas (Rathje
et al., 2020), Eubacterium_xylanophilum_group (Zhang et al.,
2020), Megasphaera (Lee et al., 2016), Klebsiella (Jian et al.,
2020), Citrobacter (Mullineaux-Sanders et al., 2019), and
Enterobacter (Yurdakul et al., 2015) were regarded as pathogenic
bacteria involved in inducing inflammation or generating cancer
development. Further studies will be conducted to investigate the
mechanisms of how these gut microbiota influence lung cancer
occurrence, progression and prognosis.

Gut microbiota interaction is a key factor of the microbial
equilibrium. Our correlation networks results demonstrated that
the microbial network was complexed in the early stage of
lung cancer. These results suggest changes in gut microbial
homeostasis in the early stages of lung cancer. Our results also
showed the network indices including network density, clustering
coefficient and average degree was significantly different between
HP and lung cancer. Whether they could be used as quantitative
parameters to assess cancer risk and homeostasis of the lung
microbiome requires further study.

In addition, the predicted 16S functions showed that there
were significant differences between the different groups. These
results were in agreement with our hypothesis which showed
that in the early stages of lung carcinogenesis, there was no
significant disease progression in the AAH/AIS group compared
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with the HP group. Therefore, the structure of the intestinal
flora was closer compared to that of healthy individuals. In
contrast, patients in the IA and MIA groups were at a later
stage of lung cancer development and had a more altered flora
structure compared to the healthy individuals. We thought
that the tumor cells may produce metabolites and exhibit
different characteristics, and the metabolic disorders and tumor
abnormalities may progressively worsen as the disease progresses.
On the other hand, the harmful flora in the lung cancer group was
also reduced. To a certain extent, this was also a manifestation of
the imbalance of the intestinal flora. The Anaerotruncus genus
belongs to the Clostridium and participates in the carbohydrate
metabolism pathway. The final metabolites are beneficial acetic
and butyric acids. A previous study demonstrated that the
abundance of Anaerotruncus was significantly increased in the
intestinal flora of a mouse model with non-alcoholic fatty
liver-related cancer fed on high diet cholesterol (Zhang et al.,
2021). Besides, Anaerotruncus was significantly enriched in
the uterine microbiome of patients with endometrial cancer
(Walther-António et al., 2016).

The KEGG and COG analysis also showed significant
differences in the intestinal flora between lung cancer patients
and healthy individuals. Further functional analysis of the
intestinal bacteria revealed that the flora in lung cancer patients
was associated with carbohydrate digestion and absorption.
Our findings showed the same metabolic disorders and tumor
abnormalities in the intestinal flora. These bacteria may
shed different microbial bioactive molecules and affect the
utilization of valine, leucine and isoleucine biosynthesis, arginine
biosynthesis, glutamate synthesis, glucose, ribose/galactoside by
the host. Firmicutes could alter undigested carbohydrates and
proteins into acetate, which then produces energy for the
organism (Liu et al., 2019a). Furthermore, the reduced abundance
of the ABC (ATP-binding cassette) transporter system suggested
the potential for energetic and metabolic alterations in the
microbiota in lung cancer. This observation is consistent with the
hypothesis that lung cancer is fundamentally a metabolic disease
and that lung cancer patients often exhibit coexisting metabolic
disorder phenotypes and pathologies.

Existing data focused on comparative analysis of intestinal
flora changes, which investigated the characteristics of the
changes in intestinal flora in different lung cancer histopathology.
However, to our knowledge, there are no studies on the
relationship between intestinal flora and the development of
different histopathological lung cancers. Our study compared
the structure of intestinal flora in healthy individuals and
patients with different histopathology types in early stage lung
cancer. These findings may provide new insights into the
development of lung cancer, suggesting that the intestinal flora
may be closely related to the progression of lung cancer which
can help determine the stage of the disease. Using various
bioinformatics methods, such as α-diversity and β-diversity
analysis, we identified intestinal flora in lung cancer patients. The
population structure of the lung cancer patients was different
from the healthy population, which was consistent with previous
results. However, there was no overall imbalance in the structure
of the intestinal flora in patients with early lung cancer, indicating

that the imbalance does not significantly affect the occurrence
and development of lung cancer. Meanwhile, the observation of
dynamic observation with larger scale were needed in the future.

CONCLUSION

We classified lung cancer patients with different histopathology
types and performed a detailed study to characterize the
structure of intestinal flora. Our results revealed that the
different histopathology types of lung cancer were associated with
structural changes in the intestinal flora. AAH/AIS group had a
more similar structure to the HP group, while the IA and MIA
groups showed a greater change in the colony structure. Lung
cancer gut microbiome showed a decrease in SCFA-producing
and anti-inflammatory bacteria compared to healthy people,
while some pathogenic bacteria such as proinflammatory or
tumor-promoting bacteria were more abundant in lung cancer
patients. Our findings would provide clues for the use of intestinal
flora as a biomarker in the assessment of lung cancer progression
and the effective development of targeted therapy.
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microbiota and fecal metabolites 
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Objective: Metabolic associated fatty liver disease (MAFLD) affects nearly a quarter 

of the world’s population. Our study aimed to characterize the gut microbiome 

and overall changes in the fecal and serum metabolomes in MAFLD patients.

Methods: Thirty-two patients diagnosed with MAFLD and 30 healthy 

individuals (control group, CG) were included in this study, the basic clinical 

characteristics and laboratory test results including routine biochemistry, etc. 

were recorded for all, and their serum and fecal samples were collected. A 

portion of the fecal samples was subjected to 16S rDNA sequencing, and 

the other portion of the fecal samples and serum samples were subjected to 

non-targeted metabolomic detection based on liquid chromatography-mass 

spectrometry (LC–MS). Statistical analysis of clinical data was performed using 

SPSS software package version 25.0 (SPSS Inc., Chicago, IL, United States). The 

analysis of 16S rDNA sequencing results was mainly performed by R software 

(V. 2.15.3), and the metabolomics data analysis was mainly performed by CD 

3.1 software. Two-tailed p value < 0.05 was considered statistically significant.

Results: The 16S sequencing data suggested that the species richness and 

diversity of MAFLD patients were reduced compared with controls. At the 

phylum level, the relative abundance of Bacteroidota, Pseudomonadota, and 

Fusobacteriota increased and Bacillota decreased in MAFLD patients. At the 

genus level, the relative abundances of Prevotella, Bacteroides, Escherichia-

Shigella, etc. increased. 2,770 metabolites were detected in stool samples 

and 1,245 metabolites were detected in serum samples. The proportion of 

differential lipid metabolites in serum (49%) was higher than that in feces (21%). 

There were 22 differential metabolites shared in feces and serum. And the 

association analysis indicated that LPC 18:0 was positively correlated with 

Christensenellaceae_R-7_group, Oscillospiraceae_UCG-002; neohesperidin 

was also positively correlated with Peptoniphilus, Phycicoccus, and 

Stomatobaculum.

Conclusion: Microbial sequencing data suggested decreased species richness 

and diversity and altered β-diversity in feces. Metabolomic analysis identified 
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overall changes in fecal and serum metabolites dominated by lipid molecules. 

And the association analysis with gut microbes provided potentially pivotal 

gut microbiota-metabolite combinations in MAFLD patients, which might 

provide new clues for further research on the disease mechanism and the 

development of new diagnostic markers and treatments.

KEYWORDS

metabolic associated fatty liver disease, intestinal microflora, metabolomics, 
non-alcoholic fatty liver disease, lipid metabolites

Introduction

Metabolic associated fatty liver disease (MAFLD), a new 
definition of fatty liver officially proposed by an international 
expert group in 2020 after the non-alcoholic fatty liver disease 
(NAFLD; Eslam et al., 2020a), affects at least one-quarter of the 
adult population worldwide (Powell et  al., 2021). MAFLD is 
closely associated with metabolic disease and its complications, 
and it has rapidly become one of the leading causes of 
hepatocellular carcinoma and cirrhosis in Western countries 
(Younossi et al., 2019). The main complication causing death in 
patients with MAFLD is CVD. However, liver-related 
complications are more common in patients with advanced 
fibrosis or cirrhosis and account for the majority of deaths (Lin 
et  al., 2021). The currently widely accepted treatment 
recommendations for MAFLD are lifestyle changes aimed at 
weight loss, and there are no drugs approved for the therapy of 
MAFLD at this stage (Eslam et al., 2020b; Fouad et al., 2022). 
Therefore, it is crucial to continue to explore the mechanisms 
associated with MAFLD and develop new treatments.

In the process of hepatic steatosis and its progression to liver 
inflammation and liver fibrosis, MAFLD involves the interaction 
of multiple metabolic, environmental, genetic, and microbial 
factors (Friedman et al., 2018; Lin et al., 2020). Altered gut-liver 
axis, increased susceptibility to hepatic triglyceride accumulation, 
altered lipid metabolism, dyslipidemia, and insulin resistance are 
key components of the pathophysiology of MAFLD. Notably, 
multiple studies have shown that the gut-liver axis is closely 
related to metabolic syndrome, obesity, and type 2 diabetes (Leung 
et al., 2016; Mardinoglu et al., 2019; Yuan et al., 2019). A high-fat, 
high-sugar diet and a sedentary lifestyle promote adipogenesis 
and subclinical inflammation in the intestines, adipose tissue, and 
liver. Furthermore, this metabolic inflammation in adipose tissue 
and intestine can promote hepatic adipogenesis and aggravate 
inflammation through cytokines, fatty acids, dysbiosis of gut flora, 
and gut barrier disruption (Friedman et al., 2018). The intestinal 
microbiota is considered to be a new metabolic organ involved in 
the regulation of host metabolism. The association between 
microbiota and the pathogenesis of MAFLD has placed those 
small organisms as a critical focus in MAFLD research. However, 
the relationship between the gut microbiome and metabolism in 
MAFLD patients has not been established. Therefore, a 

comprehensive analysis of the gut microbiome and metabolome 
may help us uncover the complexity of MAFLD.

Here, we  performed 16S gut microbiome sequencing and 
untargeted metabolomics studies in MAFLD patients and healthy 
volunteers. We revealed the disruption of gut microbiota homeostasis 
and the changes in fecal and serum metabolism in patients with 
MAFLD. In addition, we constructed a map showing the correlation 
of gut microbiota with fecal and blood metabolism, revealing 
possible key gut microbe-metabolite combinations, and laying a 
foundation for further study of the disease mechanism of MAFLD.

Materials and methods

Subject enrollment

Thirty-two NAFLD patients and 30 healthy volunteers were 
recruited from July 2019 to February 2020 at the West China 
Hospital of Sichuan University (Sichuan Province, China). 
NAFLD patients were newly diagnosed outpatients and were 
diagnosed according to the clinical diagnostic criteria 
recommended by the Chinese Association for the Study of Liver 
Diseases and the American Association for the Study of Liver 
Diseases (Fan et al., 2011; Chalasani et al., 2018). The detailed 
inclusion and exclusion criteria of the case and control groups 
can be  found in the Supplementary material. Patients’ basic 
clinical characteristics and relevant laboratory test results were 
recorded, including age, sex, height, weight, body mass index 
(BMI), and routine biochemical test results (TBIL, DBIL, IBIL, 
ALT, AST, TP, ALB, GLB, fasting glucose, UREA, CREA, eGFR, 
URIC, TG, CHOL, HDL-C, LDL-C, ALP, and GGT), thyroid 
function test results (TSH, FT3, and FT4), etc. This study was 
approved by the Institutional Review Board of West China 
Hospital, Sichuan University, exempted from informed consent, 
and conducted following the Declaration of Helsinki.

Sample processing

Fecal and serum samples from each volunteer were collected 
on the same day. Volunteers self-collected samples after defecation 
in the hospital and immediately transferred the samples to a 
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laboratory freezer at −80°C for cryopreservation. Blood samples 
were collected from fasting venous blood, placed at room 
temperature to stratify, and centrifuged at 3,000 rpm for 10 min. 
Serum samples were collected and frozen in a −80 freezer.

DNA extraction from stool samples was performed using the 
sodium dodecyl sulfate (SDS) method. Before amplification, check 
the purity and concentration of DNA by electrophoresis, and 
dilute the sample DNA with sterile water to obtain the 
amplification template (target concentration was 1 ng/μl). The 16S 
V3-V4 region was selected as the amplified region in this study 
(Abellan-Schneyder et al., 2021). The PCR was completed using 
specific primers with “barcode short sequences” (used to 
distinguish each sample), buffers that provide GC bases (Phusion® 
High-Fidelity PCR Master Mix, New England Biolabs), and high-
efficiency, high-fidelity enzymes. The samples were mixed in the 
same volume according to the PCR product concentration. 
Purification was carried out using 2% agarose gel electrophoresis, 
and finally, the target band was recovered with a gel recovery kit 
(Qiagen). The PCR-free library was constructed using the TruSeq® 
DNA PCR-Free Sample Preparation Kit based on the Illumina 
Nova sequencing platform, followed by paired-end sequencing 
(Caporaso et  al., 2012). And Qubit and Q-PCR quantitative 
detection were used to judge whether the library was qualified or 
not before running on the computer (NovaS eq6000).

For metabolomics sample processing, firstly 100 mg of liquid 
nitrogen-ground fecal samples were placed in an EP tube, and 
500 μl of 80% methanol in water was added. 100 μl of serum 
sample was placed in an EP tube, and 400 μl of 80% methanol in 
water was added. Vortex and shake, stand in an ice bath for 5 min, 
centrifuge at 15,000 rpm and 4°C for 10 min, take a certain 
amount of supernatant and add mass spectrometry-grade water 
to dilute to 53% methanol, and place it in a centrifuge tube at 
15,000 g and centrifuge at 4°C 10 min. The supernatant was 
collected and analyzed by liquid chromatography-mass 
spectrometry technology (LC–MS; Alseekh et  al., 2021). In 
addition, an equal volume of samples was taken from each 
experimental sample and mixed well as a quality control sample 
for equilibrating the chromatography-mass spectrometry system 
and monitoring the instrument status, and evaluating the system 
stability throughout the experimental process. At the same time, 
a blank sample was set, which was a 53% methanol aqueous 
solution containing 0.1% formic acid. The pretreatment process 
was the same as that of the experimental sample and was mainly 
used to remove background ions.

Statistical analysis

Statistical analysis of clinical data was performed using the 
SPSS software package version 25.0 (SPSS Inc., Chicago, IL, 
United States). The continuous variables were tested for normality 
first. Variables with homogeneity of normal variance were 
expressed as mean ± SD, and a t-test was used for comparison 
between groups; variables that were normal but with unequal 

variance were expressed as mean ± SD, and the Wilcoxon 
rank-sum test was used for comparison between groups; 
non-normal variables were expressed as medians (upper and 
lower quartiles), and the Wilcoxon rank-sum test was used for 
comparison between groups. Categorical variables were expressed 
as frequency (percentage), and the chi-square test was used for 
comparison between groups. Two-tailed value of p < 0.05 was 
considered statistically significant.

The analysis of the results of 16S rDNA sequencing was 
mainly done using R software (V. 2.15.3). Using Uparse v7.0.1001 
software to cluster effective sequences into operational taxonomic 
units (OTUs) with 97% consistency, and then performed species 
annotation analysis according to the SILVA132 SSUrRNA 
database. The data with the least amount of data in the sample 
were used as the standard to normalize the data to obtain the 
relative abundance value of the species. Using Qiime software 
(V. 1.9.1) to calculate the alpha diversity index (including 
Observed species, Good’s coverage, Chao1, ACE, Shannon, and 
Simpson index) and beta diversity index (Unifrac distance and 
Bray-Curtis distance). T-test and Wilcox test were used for inter-
group difference analysis of diversity index. Using R software for 
principal component analysis (PCA) and principal coordinates 
analysis (PCoA). Finally, R software was used for a routine t-test 
to obtain taxons with significant differences between groups 
(value of p < 0.05); Furtherly, using LEfSe software, taxons with 
significant differences between the two groups [linear discriminant 
analysis (LDA) index > 4] were screened.

Data analysis of non-targeted metabolic results used CD 3.1 
software, combined with the mzCloud, mzVault, and MassList 
database for identification and processing to obtain metabolite 
qualitative and quantitative results. The final identification results 
were selected from the compounds with a coefficient of variation 
value of less than 30% in the quality control samples. Compounds 
were functionally and taxonomically annotated with the KEGG, 
Human Metabolome Database (HMDB), and LIPID MAPS 
databases. The partial least squares discriminant analysis model 
(PLS-DA) was obtained by multivariate statistical analysis. In 
order to evaluate the reliability of the model, the PLS-DA model 
of each group was first established, and the model evaluation 
parameters (R2, Q2) were obtained through 7-fold cross-
validation. The closer the values of R2 and Q2 were to 1, the more 
stable and reliable the model was. Then, the grouping marks of 
each sample were randomly scrambled, and further modeling and 
prediction were performed to determine whether the model was 
“overfitting.” Each modeling corresponded to a set of R2 and Q2 
values, and their regression lines were drawn based on the Q2 and 
R2 values after 200 scrambles and modeling. When R2 was greater 
than Q2 and the Q2 regression line and the Y-axis intercept were 
less than 0, it could indicate that the model was not “overfitting.” 
By calculating the variable importance in projection (VIP) value 
and fold change (FC) of the first principal component, and 
combining it with a T-test to find differentially expressed 
metabolites, setting the screening threshold to VIP > 1.0, FC > 1.5, 
or FC<0.667, and value of p < 0.05. The correlation analysis of 
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differential metabolites and differential flora was performed using 
Pearson correlation analysis. Based on the RandomForest analysis, 
the genus-level taxons and metabolome data were separately 
divided into a test set and validation set (7:3), and then the test 
set  was used to build a random forest model. Important 
taxons  or  metabolites were screened out according to 
MeanDecreaseAccuracy and MeanDecreaseGin, and then each 
model was cross-validated (10-fold) and ROC curves were drawn.

Results

Characterization of participants

A total of 30 healthy controls (control group, CG) and 32 
MAFLD volunteers (MAFLD group) were included in this study. 
The two groups had comparable ages [MAFLD group, 38.50 
(33.00–51.75) years; CG, 35.33 (32.50–51.25) years], and the 
difference was not statistically significant. The basic screen of the 
participants showed that the BMI of the MAFLD group 
(26.21 ± 3.80) was significantly higher than that of the CG 
(23.83 ± 3.28), and the difference was statistically significant 
(p < 0.05). Among laboratory indicators, serum AST, ALT, ALP, 
GGT, fast glucose, TG, and URIC levels in the MAFLD group were 
higher than those in the CG, and HDL-C was lower than that in 
the CG, and the differences were statistically significant. In 
addition, the serum levels of TB, TP, ALB, and CREA in the 
MAFLD group were higher than those in the CG, and the 
difference was not statistically significant. We  calculated the 
Fibrosis-4 index (FIB-4) of all people, and the results showed that 
the results of the MAFLD group [1.25 (0.70–1.92)] were higher 
than those of the control group [0.65 (0.33–0.85)], but the 
difference was not statistically significant. In the MAFLD group, 
FIB-4 < 1.3 and FIB-4 between 1.3 and 2.67 each accounted for 
50%. The results of the serum thyroid function test showed that 
compared with the CG, the MAFLD patients had increased TSH 
and decreased FT4 and FT3, but the differences were not 
statistically significant (Supplementary Table S1; 
Supplementary Figure S1).

Altered gut microbiota diversity in 
MAFLD patients

An average of 104,138 tags was detected per sample by splicing 
reads. After quality control, an average of 97,013 pieces of effective 
data was obtained, and the effective rate of quality control was 
61.89%. 1,882 OTUs were obtained by clustering the sequences 
with 97% identity. According to the rarefaction curve (Figure 1A) 
and species accumulation boxplot (Supplementary Figure S2A), 
the current amount of sequencing data and the sample size were 
reasonable. In addition, the rank abundance curve 
(Supplementary Figure S2B) and the analysis results of alpha 
diversity indices (Shannon index, Simpson index, etc.) showed 

that the species richness and diversity of MAFLD patients were 
reduced compared with the CG (Figures 1C,D). The difference in 
beta diversity was observed by PCoA analysis of unifrac distance 
(Figures 1E,F). In addition, the results of MRPP analysis (p < 0.001) 
and ANOSIM analysis (p < 0.001) indicated significant differences 
in community structure between the MAFLD group and the CG.

The number of OTUs that could be  annotated into the 
database was 1,866 (99.15%). The proportions of annotations at 
the kingdom level, phylum level, class level, order level, family 
level, genus level, and species level were 99.15, 91.29, 90.12, 85.44, 
79.17, 54.89, and 18.07%, respectively. At the phylum level, 
we  found that the dominant taxa included Bacillota (previous 
name: Firmicutes), Pseudomonadota (previous name: 
Proteobacteria), Actinomycetota (previous name: Actinobacteria), 
and Bacteroidota (previous name: Bacteroidetes; 
Supplementary Figure S3A); The dominant genera were 
Escherichia-Shigella, Bifidobacterium, and Prevotella et  al. 
(Figure  1B); the dominant species were Escherichia_coli, 
Raoultella_ornithinolytica, and Bacteroides_vulgatus et  al. 
(Supplementary Figure S3B). Through LEfSe analysis, there were 
39 taxa (including six grading levels) with LDA value > 4 between 
the two groups (Figure  2A), and their evolutionary branch 
diagram was shown in Figure 2B. At the phylum level, the relative 
abundance of Bacteroidota, Pseudomonadota, and Fusobacteriota 
increased and Bacillota decreased in MAFLD patients. At the 
genus level, the relative abundances of Prevotella, Bacteroides, 
Escherichia-Shigella, Megamonas, Fusobacterium, and 
Lachnoclostridium increased, while Clostridium_sensu_stricto_1, 
Agathobacter, Romboutsia, Faecalibacterium, Blautia decreased. 
Species with increasing relative abundance were Escherichia_coli, 
Bacteroides_vulgatus, and species with decreasing relative 
abundance were Romboutsia_ilealis.

Serum and fecal metabolite profiling in 
MAFLD patients

A total of 2,770 metabolites were identified in fecal samples, 
and a total of 1,245 metabolites were identified in serum samples. 
The classification results of 997 metabolites in fecal samples and 
400  in serum samples were obtained through the HMDB 
(Supplementary Figures S4A,B, S5A,B), of which Lipids and lipid-
like molecules were the most classified. Then, we obtained the 
classification and annotation results of 305 lipid metabolites in 
fecal samples and 212 in serum samples through the LIPID MAPS 
database (Supplementary Figures S6A,B, S7A,B), among which 
Fatty Acids metabolites accounted for the most.

For differential metabolites screening, we  performed 
PLS-DA on the resulting data (Figures  3A,B; 
Supplementary Figures S8A,B), and the ranking validation 
results show that the PLS-DA model was not “overfit” 
(Supplementary Figures S9A–D). Then, we  screened out 
differential metabolites with VIP > 1.0, FC > 1.5 or FC < 0.667, 
and value of p < 0.05 (Table 1). 34% of differential metabolites in 
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fecal and 40% in serum were classified in HBDM and/or LIPID 
MAPS database, which mainly included: amino acids, peptides, 
and analogs; Lipids and lipid-related molecules; Nucleotides and 
analogs; carbohydrates and carbohydrate conjugates; Benzene 
and substituted derivatives, etc. Notably, lipids accounted for a 
large fraction of the significantly variable metabolites in serum 
and feces, especially in serum, which suggested a disruption of 
lipid homeostasis in MAFLD patients (Figure  3C). KEGG 

pathway enrichment results showed that fecal differential 
metabolites were more enriched in the biosynthesis of amino 
acids, purine metabolism, pantothenate and CoA biosynthesis, 
pyrimidine metabolism, nicotinate, and nicotinamide 
metabolism pathway (Figures  3D,E); serum differential 
metabolites were more enriched in purine metabolism, 
pyrimidine metabolism, bile secretion, and pentose phosphate 
pathway (Supplementary Figures S8C,D). Further analysis found 

A B

C D

E F

FIGURE 1

Altered gut microbiota diversity in metabolic associated fatty liver disease (MAFLD) patients. (A) Rarefaction curve based on OUT count in control 
groups (CGs) and MAFLD patients. (B) The relative abundance of dominant taxa at the genus level in each group. (C,D) The analysis results of alpha 
diversity indices (Shannon index and Simpson index), both p < 0.05. (E,F) Principal coordinates analysis (PCoA) analysis based on weighted unifrac 
distance and unweighted unifrac distance.
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that there were 22 common differential metabolites in feces and 
serum (Supplementary Table S2), which mainly included 
purines and purine derivatives: hypoxanthine; amino acids, 
peptides, and analogues: methionine, gamma-glu-leu, and 
tyrosylalanine; fatty esters: propionylcarnitine; 
glycerophosphocholines: lysophosphatidylcholine (LPC 16:0, 
LPC 18:0); and flavanones: hesperetin and neohesperidin. In 
particular, during the differential metabolite analysis, we found 
some bile acids and derivatives: lithocholic acid and taurocholic 
acid decreased in the serum of MAFLD patients; glycocholic 
acid increased in the serum of MAFLD patients; and 
taurodeoxycholic acid, 7-Ketolithocholic acid, allolithocholic 
acid, and dehydrocholic acid were decreased in the feces of 
MAFLD patients.

Correlation between differential bacteria 
and differential metabolites

Pearson correlation analysis was performed between the 
top 10 differential bacterial genera in relative abundance and the 
top  20 differential metabolites in relative abundance, and the 
differential species-metabolite combinations satisfying |rho| ≥ 0.5 
and p ≤ 0.05 were screened out (Table 2). Then, we performed a 
correlation analysis between the common differential metabolites 
in serum and feces (number = 22) and all differential species in 
feces (number = 74), and the differential species-metabolite 
combinations satisfying |rho| ≥ 0.5 and p ≤ 0.05 were screened out 
(Supplementary Table S3). In addition, we  correlated the 
differential bile acids and derivatives with all differential bacterial 
genera (Supplementary Table S4). Among them, 
Erysipelotrichaceae_UCG-003 had a weak positive correlation with 
serum taurocholic acid (rho = 0.563, p < 0.05); allolithocholic acid 
in feces was associated with Prevotellaceae_NK3B31_group 
(rho = 0.723, p  < 0.05) and unidentified_Ruminococcaceae 
(rho = 0.797, p < 0.05). Finally, we also correlated all differential 
lipids and lipid-related molecules (number = 44) in serum with 
fecal differential bacteria (Supplementary Table S5). Among them, 
the metabolite-genus combinations with strong correlation were: 
L-Leucyl-L-alanine Hydrate-Lachnoanaerobaculum (rho = 0.889, 
p  < 0.05), 6-Keto-prostaglandin f1alpha-Fusicatenibacter 
(rho = 0.743, p  < 0.05), and 6-Keto-prostaglandin f1alpha-
Anaerostipes (rho = 0.730, p < 0.05). The Random Forest analysis 
results of the genus-level taxons and metabolome data were shown 
in Supplementary Figures S10–S12.

Discussion

Evidence accumulated from many preclinical and clinical 
studies had indicated that the communication between the gut 
microbiota, its metabolites, and the liver plays a crucial role in the 
pathogenesis of MAFLD. Here, we  recruited 32 patients with 
MAFLD and investigated overall changes in the gut microbiome 
in feces and the metabolome in serum and feces. In addition, 
we  identified alterations in several gut microbiota-produced 
metabolites that may influence the pathogenesis of MAFLD.

The human gut microbiota are mainly composed of four 
phyla—Bacteroidota, Bacillota, Pseudomonadota, and 
Actinomycetes, of which Bacteroidota and Bacillota dominate the 
gut (Eckburg et al., 2005; Mokhtari et al., 2017). In the present 
study, we observed decreased species richness and diversity and 
altered β-diversity in the feces of MAFLD patients, confirming the 
development of dysbiosis. Specifically, the relative abundance of 
Bacteroidota and Pseudomonadota increased and Bacillota 
decreased in MAFLD patients, which is consistent with previous 
reports (Boursier et  al., 2016; Wang et  al., 2016). Under 
Bacteroidota, differential taxa analysis showed that the relative 
abundance of Prevotella and Bacteroides increased in MAFLD 
patients, and the relative abundance of Bacteroides_vulgatus, 

A

B

FIGURE 2

Linear discriminant analysis (LDA) effect size analysis. 
(A) Histogram of the LDA scores for different abundant taxa. 
Green, enriched in MAFLD patients; red, enriched in CG. 
(B) Cladogram of LEfSe linear discriminant analysis. Red and 
green circles represent the differences of the most abundant 
microbiome class. The diameter of each circle is proportional to 
the relative abundance of the taxon.
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which belonged to Bacteroides at the species level, was also 
increased. Among the increased Pseudomonadota, the relative 
abundances of Escherichia coli-Shigella and Escherichia_coli 
increased. Among the reduced Bacillota, the taxa with decreased 
relative abundance at the genus level include: 

Clostridium_sensu_stricto_1, Agathobacter, Faecalibacterium, 
Blautia, and Romboutsia, and the increased ones include: 
Megamonas and Lachnoclostridium. The changes in some genera 
were consistent with the statistical results of a recent meta-analysis 
that included 1,265 NAFLD patients (from eight countries; 

A

C

D E

B

FIGURE 3

(A,B) are the Scatter plot of partial least squares discriminant analysis model (PLS-DA) scores in positive and negative ion mode for fecal 
metabolites, respectively. The abscissa is the score of the sample on the first principal component, and the ordinate is the score of the sample on 
the second principal component. R2Y represents the interpretation rate of the model, Q2Y is used to evaluate the predictive ability of the PLS-DA 
model, and when R2Y is greater than Q2Y, the model is well established. (C) The proportion of fecal/serum differential metabolite classification. 
(D,E) are bubble plots of fecal differential metabolite pathway enrichment in positive and negative ion modes, respectively. The abscissa in the 
figure is the number of differential metabolites in the corresponding metabolic pathway/the total number of metabolites identified in the pathway. 
The larger the value, the higher the enrichment of differential metabolites in the pathway. The color of the dots represents the value of p of the 
hypergeometric test, and the smaller the value, the greater the reliability of the test. The size of the dots represents the number of differential 
metabolites in the corresponding pathway.
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Li et  al., 2021b). In addition, the relative abundance of 
Romboutsia_ilealis (belonging to Romboutsia) also decreased at 
the species level. In particular, among the differential phyla, 
we also observed an increase of Fusobacteriota in MAFLD patients 
and an increase of Fusobacterium below it.

Previous studies have shown that gut dysbiosis usually led to 
elevated levels of SCFAs in the gut, with acetate and propionate 
mainly produced by Bacteroidota and butyrate by Bacillota 
(Morrison and Preston, 2016; Feng et al., 2018). Elevated SCFAs 
promoted the transport of monosaccharides to the liver, while 
increased hepatic acetate (substrate for fatty acid synthesis) led to 

the accumulation of triglycerides, and elevated hepatic propionate 
promoted gluconeogenesis, eventually leading to weight gain (den 
Besten et  al., 2013; Alves-Bezerra and Cohen, 2017). Further, 
supplementation with SCFAs could also alter the composition of 
the gut microbiome and prevent the occurrence and progression 
of NAFLD through multiple mechanisms (Zhou et al., 2017; Zhai 
et al., 2019; Deng et al., 2020). On the other hand, our study found 
that the decrease of serum taurocholic acid content was related to 
Erysipelotrichaceae_UCG-003, and the decrease of fecal 
taurodeoxycholic acid, allolithocholic acid, and dehydrocholic 
acid content was related to Subdoligranulum, Prevotellaceae_
NK3B31_group, and Parvibacter, respectively. The gut microbiota 
has a direct impact on bile acid composition and concentration 
and contributes to NAFLD progression (Ridlon et al., 2014). It was 
found that NAFLD patients with advanced fibrosis had elevated 
serum glycocholic acid and fecal deoxycholic acid concentrations, 
which were associated with increased abundances of Bacteroidota 
and Lachnospiraceae, compared with non-NAFLD controls 
(Adams et al., 2020). Increased secondary bile acid production in 
the NAFLD gut was associated with Escherichia and Bilophila (Jiao 
et  al., 2018). Bacteroides, Bifidobacterium, Clostridium, 
Lactobacillus, and Listeria can convert bound bile acids to free bile 
acids via bile salt hydrolases, which are subsequently converted to 
secondary bile acids by Clostridium and Eubacterium under 
Bacillota via 7αdihydroxylation (Gérard, 2013). Furthermore, 
Eggerthella and Ruminococcus were also directly involved in bile 
acid metabolism (Jia et al., 2018). Thus, our findings suggested 
that the increase of underlying pathological Fusobacteriota and 
Pseudomonadota in MAFLD patients may contribute to the 
occurrence and development of the disease.

Gut microbiota-related metabolites, such as choline and 
tryptophan metabolites, SCFAs, bile acids, endogenous ethanol, 
and lipopolysaccharides, were involved in the pathogenesis of 
MAFLD (Vallianou et al., 2021). In this study, we performed an 
overall analysis of fecal and serum metabolites in MAFLD 
patients, and we identified more metabolites in feces. Although 
lipid molecules were the most abundant in both, the proportion 
of differential lipid metabolites in serum (49%) was higher than 
that in feces (21%), which further confirmed that lipid 
homeostasis in MAFLD patients was disrupted. At the same time, 
we also found some other metabolites that may be associated with 
the pathogenesis of MAFLD. We  found that the following 
metabolites were simultaneously decreased in feces and serum of 
MAFLD patients: hypoxanthine, propionylcarnitine, 
tyrosylalanine, hesperetin, methionine, gamma-Glu-Leu, 
propylparaben, and neohesperidin. However, LPC 16:0, which 
belongs to glycerophosphocholine, increased in fecal and serum; 
LPC 18:0 decreased in feces and increased in serum. Studies have 
shown that the increased concentrations of hypoxanthine and 
uric acid in hepatocytes contribute to the accumulation of 
intracellular lipids, which in turn causes the occurrence of 
oxidative stress associated with the establishment of fatty liver-
related diseases, laying the foundation for the development of 
fibrosis (Stirpe et al., 2002; Taylor et al., 2020). Accumulation of 

TABLE 1 Metabolite differential screening results.

Sample 
type

Number of 
Total 
Ident.

Number of 
Total Sig.

Number of 
Sig. Up

Number of 
Sig. down

faeces_pos. 1,888 362 47 315

faeces_neg. 882 138 34 104

serum_pos. 731 143 36 117

serum_neg. 414 82 13 69

(1) pos.: positive ion mode; neg.: negative ion mode; (2) Num of Total Ident: Total 
identification results of metabolites; (3) Num of Total Sig: The total number of 
metabolites with significant differences; (4) Num of Sig Up: The total number of 
metabolites significantly upregulated; and (5) Num of Sig down: The total number of 
metabolites significantly downregulated.

TABLE 2 Correlation analysis results of fecal differential bacteria and 
differential metabolites (feces and serum).

Differential 
bacteria

Differential 
metabolites

rho p

Faeces Cutibacterium Adenosine 0.584 <0.05

Intestinibacter YMK 0.514 <0.05

Intestinibacter tert-Butyl N-[1-

(aminocarbonyl)- 

3-methylbutyl]

carbamate

0.562 <0.05

Intestinibacter L-Alanyl-L-proline 0.521 <0.05

Intestinibacter 3’-Hydroxystanozolol 0.601 <0.05

Intestinibacter FQH 0.521 <0.05

Monoglobus tert-Butyl N-[1-

(aminocarbonyl)- 

3-methylbutyl]

carbamate

0.538 <0.05

Intestinibacter 1,5-Anhydro-D-glucitol 0.525 <0.05

Intestinibacter N-(1-benzothiophen-3-

yl)- N′-(1-benzyl-4-

piperidinyl)urea

0.560 <0.05

Lachnospiraceae_

UCG-004

3’-Dephospho-CoA 0.525 <0.05

Serum Neisseria Cnidioside A 0.540 <0.05

Lachnospiraceae_

FCS020_group

PA (16:0/18:2) 0.503 <0.05

Staphylococcus LPA 18:2 0.507 <0.05
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hypoxanthine in the liver established a link between 
hyperuricemia and NAFLD (Toledo-Ibelles et  al., 2021). 
Hesperetin is a citrus flavonoid found mainly in citrus fruits 
(oranges, grapefruits, and lemons) with various pharmacological 
properties, including anticancer, anti-Alzheimer’s disease, and 
antidiabetic effects (Rekha et al., 2019). Hesperetin can alleviate 
hepatic steatosis, oxidative stress, inflammatory cell infiltration, 
and fibrosis in a high-fat diet (HFD)-induced rat model of 
NAFLD (Li et al., 2021a). Another flavonoid, neohesperidin, can 
reduce body weight, low-grade inflammation, and insulin 
resistance by altering the composition of the gut microbiota in 
mice fed a high-fat diet (Lu et al., 2020). Another study found that 
neohesperidin enhanced PGC-1α-mediated mitochondrial 
biosynthesis to alleviate hepatic steatosis in high-fat diet-fed mice 
(Wang et  al., 2020). It was worth noting that our association 
analysis results suggested that LPC 18:0 was positively correlated 
with feces Christensenellaceae_R-7_group, Oscillospiraceae_
UCG-002; Propylparaben was correlated with Erysipelotrichaceae_
UCG-003; neohesperidin was also positively correlated with 
Peptoniphilus, Phycicoccus, and Stomatobaculum 
(Supplementary Table S2). However, the discovery and 
confirmation of the specific role relationship and related 
mechanisms require further follow-up research. For multi-omics 
data obtained through designed experiments, the ANOVA 
simultaneous component analysis (ASCA) and the group-wise 
ANOVA-simultaneous component analysis (GASCA) were 
considered to have certain advantages for analyzing the variations 
ascribable to the main experimental factors and their interactions 
(Saccenti et al., 2018; Raimondi et al., 2021).

Where we fall short is that due to the inherent worldwide 
variability in the composition of the gut microbiota (inter-
individual and inter-population) it is unclear if our data apply 
to other areas of the world. Furthermore, previous studies have 
shown that diet was essential for gut microbial composition 
and function, and diet, gut microbiome, and metabolome were 
all interconnected (David et  al., 2014; Tang et  al., 2019). 
Although our study excluded patients with “abnormal” dietary 
habits (e.g., vegetarian food) within the past 12 months, we did 
not strictly require all participants to adjust their diets but 
retained their daily dietary habits. Therefore, while our study 
suggests differences in microbiota and metabolome due to the 
disease, the study cannot positively tell whether the findings 
were actually due to disease or diet. Further studies based on 
the patient’s dietary structure are needed, which may help 
promote the development of individualized treatments. Finally, 
there was no significant difference in the FIB-4 index between 
the MAFLD group [1.25 (0.70–1.92)] and the control group 
[0.65 (0.33–0.85)], which may be due to the limitation of the 
sample size. Second, FIB-4 may not be  sensitive enough to 
reflect differences between MAFLD patients and healthy 
controls when MAFLD patients are in an early stage of the 
disease. This suggests that we may be able to discover patients 
with MAFLD in more sensitive ways, such as gut microbiota 
and metabolites.

In conclusion, the human metabolome consists of interactions 
of host and microbiota-produced metabolites, and current 
functional metabolomics studies have focused on determining the 
role of individual metabolites or individual microbial taxa in 
MAFLD progression. Characterizing the complex interplay 
between the gut microbiota, its metabolites, and NAFLD 
progression remains a challenge. Our data provided a profile of 
alterations in gut microbes and metabolites in MAFLD patient 
systems, which may contribute to further studies of MAFLD 
disease mechanisms and the development of new diagnostic 
markers and therapeutics.
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COVID-19 has caused enormous challenges to global economy and public 

health. The identification of patients with the COVID-19 infection by CT scan 

images helps prevent its pandemic. Manual screening COVID-19-related CT 

images spends a lot of time and resources. Artificial intelligence techniques 

including deep learning can effectively aid doctors and medical workers to 

screen the COVID-19 patients. In this study, we developed an ensemble deep 

learning framework, DeepDSR, by combining DenseNet, Swin transformer, 

and RegNet for COVID-19 image identification. First, we  integrate three 

available COVID-19-related CT image datasets to one larger dataset. Second, 

we  pretrain weights of DenseNet, Swin Transformer, and RegNet on the 

ImageNet dataset based on transformer learning. Third, we continue to train 

DenseNet, Swin Transformer, and RegNet on the integrated larger image 

dataset. Finally, the classification results are obtained by integrating results 

from the above three models and the soft voting approach. The proposed 

DeepDSR model is compared to three state-of-the-art deep learning models 

(EfficientNetV2, ResNet, and Vision transformer) and three individual models 

(DenseNet, Swin transformer, and RegNet) for binary classification and three-

classification problems. The results show that DeepDSR computes the best 

precision of 0.9833, recall of 0.9895, accuracy of 0.9894, F1-score of 0.9864, 

AUC of 0.9991 and AUPR of 0.9986 under binary classification problem, and 

significantly outperforms other methods. Furthermore, DeepDSR obtains the 

best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, and F1-score 

of 0.9695 under three-classification problem, further suggesting its powerful 

image identification ability. We  anticipate that the proposed DeepDSR 

framework contributes to the diagnosis of COVID-19.
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COVID-19 pneumonia, CT scan image, deep ensemble, DenseNet, Swin transformer, 
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Introduction

In December 2019, a novel acute atypical respiratory disease, 
COVID-19, has broken in Wuhan, China (Ksiazek et al., 2003; 
Zhou et al., 2020). COVID-19 was defined as a global pandemic 
by the World Health Organization on 3 November 2020. Till 26 
June 2022, this disease has infected over 541 million individuals 
and caused over 6.3 million deaths (COVID Live—Coronavirus 
Statistics—Worldometer, 2022). COVID-19 has exacerbated 
human suffering, damaged the global economy, and seriously 
affected the health, environmental and social fields worldwide 
(Mofijur et  al., 2021). It has still indirectly affected the global 
educational and religions level. Moreover, it has caused healthcare 
service resources to the brink in many countries and regions and 
will deeply affect medical research (Harper et  al., 2020). 
Furthermore, middle-income countries especially low-income 
countries remain more vulnerable in preventing COVID-19 and 
need to face more serious challenges (Peters et al., 2020).

The COVID-19 pandemic has caused severe challenges to 
global public health (Wang et al., 2020; Sun et al., 2022a). The 
screening of massive samples each day overwhelms laboratories 
worldwide (Agaoglu et  al., 2022). Detection of SARS-CoV-2 
through RT-PCR from a nasopharyngeal swab sample is the most 
common avenue to diagnose COVID-19. However, RT-PCR does 
not demonstrate powerful sensitivity and specificity (Pu et al., 
2022). Moreover, it need spend about 6 h for sampling and 
consecutive tests to distinguish false positives and false negatives 
(Lee et  al., 2022). Multiple patients demonstrate clinical, 
laboratorial, and radiological features related to COVID-19, 
however, their RT-PCR test results are negative (Saad Menezes 
et al., 2022).

Many evidences have suggested that chest Computer 
Tomography (CT) is an accurate and efficient COVID-19 
diagnosis avenue (Chung et al., 2020; Pan et al., 2020; Wang C C 
et al., 2021; Wang B et al., 2021). It has high sensitivity and low 
misdiagnosis rate, thus is an efficient complement to RT-PCR 
(Fields et al., 2021). Although it is vital to rapidly detect patients 
with the COVID-19 infection by CT images, expert thoracic 
radiologists are not likely to immediately diagnose positive cases 
at all times, which may not only cause treatment delay, but also 
urge further transmission of COVID-19 because the COVID-19 
patients are not promptly isolated (Jin et al., 2020; Shorten et al., 
2021; Afshar et  al., 2022). In this situation, it is especially 
important to aid doctors and health care workers to distinguish 
COVID-19-related CT images from non-COVID-19-realted CT 
images using artificial intelligence techniques.

Many studies have suggested that artificial intelligence (AI) 
techniques including machine learning obtained enormous 
success in bioinformatics and medical image analysis (Chen et al., 
2018a,b, 2019; Wang B et al., 2021; Wang C C et al., 2021; Zhang 
et  al., 2021; Yang et  al., 2022; Liu et  al., 2022a). Over the last 
decade years, deep learning techniques have outperformed 
numerous state-of-the-art machine learning algorithms and 
demonstrated excellent learning ability in many fields including 

image recognition (Voulodimos et al., 2018; Wang B et al., 2021; 
Wang C C et al., 2021;Sun et al., 2022; Liu et al., 2022a,b).

Under the situation of no standardization, artificial 
intelligence technologies, especially deep learning, have been 
widely applied to data collection and performance evaluation 
for COVID-19 (Roberts et  al., 2021). Abbas et  al. (2021) 
proposed a novel convolutional neural network (CNN) model, 
DeTraC, to classify COVID-19-related chest X-ray images based 
on feature extraction, decomposition and class composition. 
Shalbaf and Vafaeezadeh (2021) designed a deep transfer 
learning-based ensemble model with different pre-trained CNN 
architectures to detect CT images for novel COVID-19 
diagnosis. Zhang et al. (2020) developed a deep learning-based 
anomaly detection system to screen COVID-19 from chest 
x-ray images. Zhou et al. (2021) explored an ensemble deep 
learning framework to detect COVID-19 from CT images. 
Karbhari et  al. (2021) introduced an auxiliary classifier 
generative adversarial network to generate synthetic chest X-ray 
images and further detect COVID-19 based on custom-made 
deep learning model. Chouat et  al. (2022) exploited deep 
transfer learning algorithm to screen COVID-19 positive 
patients based on CT scan and chest X ray images. Fan et al. 
(2022) proposed a branch network model by combining CNN 
and transformer structure for the identification of COVID-19 
using CT scan images. Ter-Sarkisov (2022) built a COVID-CT-
Mask-Net model to diagnose COVID-19 through regional 
features from chest CT scan images. Chieregato et al. (2022) 
presented a deep learning-based COVID-19 prognostic hybrid 
model to support clinical decision making.

These models are mainly based on CNN and attention 
mechanism and effectively classify COVID-19-related images and 
non-COVID-19-related ones. However, they remain to improve 
the classification performance. In this study, we developed an 
ensemble deep learning framework (DeepDSR) by integrating 
three state-of-the-art neural networks including DenseNet, Swin 
transformer, and RegNet for the COVID-19 diagnosis.

Materials and methods

Materials

We use three available CT image datasets related to COVID-19 
to investigate the performance of our proposed DeepDSR model. 
Dataset 1 can be  downloaded from https://www.kaggle.com/
datasets/plameneduardo/a-covid-multiclass-dataset-of-ct-scans. 
It contains publicly available 4,173 CT scan images from 210 
different patients, out of which 2,168 images are from 80 patients 
infected by COVID-19 and confirmed by RT-PCR in hospitals 
from Sao Paulo, Brazil (Soares et  al., 2020). Dataset 2 can 
be  downloaded from https://www.kaggle.com/datasets/
plameneduardo/sarscov2-ctscan-dataset. It contains 1,252 CT 
scan images from patients infected by COVID-19 and 1,230 CT 
scan images for patients non-infected by COVID-19 in hospitals 
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from Sao Paulo, Brazil (Soares et  al., 2020). Dataset 3 can 
be downloaded from https://github.com/UCSD-AI4H/COVID-
CT. It contains 349 COVID-19 CT images from 216 patients and 
463 non-COVID-19 CT images (Zhao et al., 2020).

To boost the generalization ability of our proposed DeepDSR 
model, we integrate the above three datasets to one larger dataset. 
Consequently, DeepDSR can be used to effectively classify CT 
images in both individual datasets and other datasets. And 
we remove images with poor imaging and ones nonconforming to 
specifications. Finally, we obtain one dataset with 7,398 pulmonary 
CT images, which include 3,768 CT images from patients with the 
COVID-19 infections, 1,247 ones with other pneumonia 
infections, and 2,383 ones from normal lungs. We  use 3,768 
COVID-19-related images and 2,383 normal CT images to train 
the models for binary classification problems and use all 7,398 
images for three classification problems. As shown in Figure 1, 
Lines 1–3 show pulmonary CT images from patients with 
COVID-19 infections, normal lungs, and patients with other 
pneumonia infections, respectively.

The pipeline of DeepDSR

It is difficult to obtain the best prediction accuracy when only 
thousands of images are trained. Thus, we design an ensemble 
model to reduce the limitation of lack of data through transfer 
learning. The ensemble model integrates three state-of-the-art and 
different network architectures, that is, DenseNet, Swin 
transformer and RegNet. The pipeline is shown as Figure 2. As 
shown in Figure 2, first, we preprocess data by integrating three 
available COVID-19-related CT image datasets to one larger 
dataset. Second, we  pretrain weights of DenseNet, Swin 
transformer, and RegNet on the ImageNet dataset based on 
transformer learning. Third, we continue to train DenseNet, Swin 
Transformer, and RegNet on the integrated larger dataset. Finally, 

the classification results are obtained by integrating results from 
the above three models and the soft voting approach.

DenseNet

CNNs can implement accurate and efficient train when they 
contain shorter connections between layers close to the input and 
those close to the output. Traditional convolutional networks 
composed of L  layers connect each layer to its subsequent layer. 
Inspired by the model proposed by Huang et  al. (2017), 
we  introduced a Dense convolutional Network, DenseNet, to 
classify COVID-19-related CT scan images. DenseNet implements 
connection between each layer in a feed-forward fashion to 
accurately and efficiently train the model. DenseNet with L  

layers has 
1
2

1L L+( )  direct connections. At each layer, as shown 

in Figure 3A, the CT image feature maps from all previous layers 
are taken as its inputs and its outputs are taken as the inputs at 
next layer. For ResNet (Radosavovic et  al., 2020), the original 
features and the new features are added by element by element to 
achieve the sample features. Differed from ResNet, DenseNet 
obtains shortcut through direct concatenation. DenseNet reduces 
the vanishing-gradient problem, boosts feature propagation, 
advances feature reuse while greatly decrease the number 
of parameters.

Swin transformer

Transformer has difficulty in application from language to 
vision because of differences between the two areas. Thus, Liu 
et  al. developed a hierarchical transformer to obtain data 
representation by shifted windows (Liu et al., 2021). For an image, 
first, transformer splits it into fixed-size patches. Second, the 
patches are linearly embedded and added position embeddings. 
Third, the embedded results are feed to a standard Transformer 
encoder. Finally, an extra learnable “classification token” is added 
to the sequence to classify images. Inspired by model proposed by 
Liu et al. (2021), we use the window-shift technique and design a 
Swin transformer to classify COVID-19-related CT scan images.

The window-shift technique and the sliding window approach 
are similar in modeling ability, but the former is beneficial for 
all-MLP architectures and has much lower latency than the latter. 
Swin transformer focuses on shifting window partition between 
consecutive self-attention layers. As shown in Figure  3B, the 
shifted windows connect with the windows in the previous layer, 
thus significantly enhancing the modeling ability. The window-
shift technique limits self-attention computation to 
non-overlapping local windows as well as supports cross-window 
connection, thereby effectively improving the image classification 
ability of models. Furthermore, Swin transformer utilizes the 
window-shift technique and demonstrates the flexibility when 

FIGURE 1

Image examples in dataset.

65

https://doi.org/10.3389/fmicb.2022.995323
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT


Peng et al. 10.3389/fmicb.2022.995323

Frontiers in Microbiology 04 frontiersin.org

modeling on COVID-19-related image identification as well as 
computational complexity linearly with image size.

RegNet

Neural architecture search and RegNet are two representative 
neural network design paradigms. The two complementary design 
paradigms can improve the efficiency of search algorithms while 
develop better models. Neural architecture search mainly focuses 
on the search strategy to more efficiently find the best network 
instances in a fixed and manually designed search space. In 

contrast, RegNet (Radosavovic et  al., 2020) more focuses on 
designing paradigms on novel design spaces.

RegNet is a novel neural network design paradigm. It used a 
residual network to simplify the deeper network training. It can 
boost the understanding of network design and further investigate 
design principles with strong generalize abilities across different 
settings. Instead of concentrating on individual network instance 
design, RegNet designs network design spaces that can 
parameterize network populations. The design process is similar 
to manually design network while advances the design space level. 
Consequently, we  can obtain a low-dimensional design space 
composed of multiple simple and regular networks.

FIGURE 2

The pipeline for COVID-19-related CT image classification based on an ensemble of DenseNet, RegNet, and Swin transformer.
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In this study, RegNet composes a stem with the stride of 2 and 
32 3 3×  convolution kernels, followed by a network body 
composed of a series of stages, and finally a head. In the network 
body, each stage operates at gradually reduced resolution. It 
consists of multiple identical blocks with the stride of 1 except that 
the first block uses stride-two convolution kernel. The head is 
composed of an average pooling layer and a fully connected layer. 
It is used to output n  classes.

In addition, RegNet contains RegNetX and RegNetY 
composed of RegNetX and squeeze-and-excitation network. As 
shown in Figure 3C, the squeeze-and-excitation network generally 
composed of one global average pooling layer and two fully 
connection layers that separately use ReLU and sigmoid as 
activation functions.

Ensemble

Although machine learning techniques achieve significant 
successes in knowledge discovery, they fail to obtain powerful 
performance because of imbalanced, high-dimensional and noisy 
features of data. Consequently, ensemble learning, which 
effectively integrates the prediction results from multiple 
individual classifiers, has been widely applied to image processing 
(Sagi and Rokach, 2018).

Ensemble learning methods first generate multiple weak 
predictive results using different machine learning models, 
and obtain better performance by ensemble of the results from 
each individual model with different voting strategies. It 
composes of five main types: bagging, AdaBoost, gradient 

A

B

C

FIGURE 3

(A) The DenseNet Block; (B) Shifted-Window technique; (C) The Squeeze-and-Excitation network.
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boosting, random forest, and random sub-space (Dong et al., 
2020). Bagging generates sample subsets based on the random 
sampling approach, and train basic learners in a parallel 
manner (Breiman, 1996). AdaBoost concentrates on improving 
classification ability of individual models via iteratively 
adjusting weights for all misclassified samples (Hastie et al., 
2009). Gradient boosting achieves sample subsets based on the 
random sampling approach, and trains each classifier to 
alleviate the residuals caused by the previous model. Thus, 
gradient boosting better fits the real data (Friedman, 2002). 
Random forest takes decision trees as predictors and separately 
trains multiple models to reduce the overfitting problem 
(Breiman, 2001). Random subspace constructs a set of feature 
subspaces based on the random sampling approach, and trains 
learners on the feature subspace set. Finally, it obtains the final 
classification by combining the results from each individual 
classifier (Ho, 1995).

Ensemble learning utilizes different ensemble strategies to 
ensemble results from individual models. For regression 
estimation, it gains the final results via averaging all 
predictions. For classification, ensemble learning uses the 
voting method to achieve the final classification by combining 
each individual classifier. The absolute majority voting 
approach takes the same classification result as one from more 
than half of individual classifiers as the final result, and the 
relative majority voting approach takes the classification result 
where the number of individual predictors involved in a 
certain prediction is the largest as the final result. Therefore, 
we  combine DenseNet, Swin transformer, and RegNet and 
develop an ensemble deep learning model, DeepDSR, to 
improve the COVID-19 classification performance of 
the model.

The classification scores from the three individual classifiers 
are integrated based on the soft voting approach. Given a query 
image, for a binary classification problem, suppose that its scores 
classified to COVID-19-related image by DenseNet, Swin 
transformer, and RegNet are S1 19covid- , S2 19covid- , and 

S3 19covid- , respectively, its final score S final
covid-19  classified to 

COVID-19-related sample can be represented by Eq. (1):

 
S S S Sfinal
covid covid covid covid- - - -= + +19

1
19

2
19

3
19

 
(1)

Similarly, its final score S final
non covid- -19  classified to 

non-COVID-19-related image can be represented by Eq. (2):
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The image will be  taken as COVID-19 related when 
S Sfinal
covid

final
non covid- - ->19 19 , it will be taken as non-COVID-19 

related, otherwise.

Furthermore, for a three-classification problem, suppose that 
its scores classified to COVID-19 related by DenseNet, Swin 
transformer, and RegNet are S1 19covid- , S2 19covid- , and 

S3 19covid- , respectively, its final score S final
covid-19  classified to 

positive sample can be computed by Eq. (3):

 
S S S Sfinal
covid covid covid pcovid- - - -= + +19

1
19

2
19

3

19

 
(3)

Similarly, its final score S final
other  classified to other pneumonia 

can be computed by Eq. (4):

 
S S S Sfinal
other other other other= + +1 2 3  

(4)

And its final score S final
normal  from normal lung can 

be computed by Eq. (5):

 
S S S Sfinal
normal normal normal normal= + +1 2 3  

(5)

Finally, the image will be taken as COVID-19 related when 
S final
covid-19  is larger than S final

other  and S final
normal ; it will be taken as 

other pneumonia when S final
other  is larger than other two values; it 

is from normal lung otherwise.

Transfer learning and pre-training

CNNs usually need to train a mass of parameters. However, it 
is almost impossible to learn such massive parameters only 
through a few training images (Zhuang et al., 2020; Zhu et al., 
2021). In particular, transfer learning can utilize existing 
knowledge and transfer knowledge from source domains to the 
target domain and thus has been widely applied to solve problems 
in different while relevant fields (Pan and Yang, 2009; Weiss et al., 
2016). It usually pretrains weights on a large-scale dataset using a 
standard neural architecture and then fine-tunes the weights on a 
target dataset. It has been successfully applied to medical image 
classification, for instance, cancer classification, pneumonia 
detection, and skin lesion identification (Chang et  al., 2017; 
Deepak and Ameer, 2019; Khalifa et  al., 2019; Chouhan 
et al., 2020).

Furthermore, existing lung CT scan images do not satisfy the 
need of a powerful image identification model because most of 
lung CT images are not publicly available. In addition, a image 
processed by random affine transformation, random crop or flip 
may not be a complete lung CT image because of the specificity of 
CT scanning techniques. The above two situations may easily 
produce the overfitting problem of image classification models in 
small datasets. Therefore, we  want to pretrain the proposed 
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DeepDSR model by transfer learning to advance the training 
speed, reduce overfitting, alleviate problems produced by 
insufficient data, and further improve the classification 
performance (Hijab et al., 2019; Cherti and Jitsev, 2021; Mustafa 
et al., 2021).

Finally, we developed an ensemble deep model (DeepDSR) to 
analyze COVID-19 CT images by combining DenseNet, Swin 
transformer, and RegNet. First, we  integrate three COVID-19 
image dataset to one larger dataset. Second, we pretrain weights 
of DenseNet, Swin Transformer, and RegNet on the ImageNet 
dataset. Third, we repeatedly select 80% of CT images from the 
integrated larger dataset as the training set and the remaining 20% 
as the test set. Fourth, the training set is used to train DenseNet, 
Swin transformer, and RegNet, respectively. The test set is used to 
test the performance of DenseNet, Swin transformer, and RegNet, 
respectively. Finally, the final classification results are obtained by 
integrating the results from the above three models.

Results

Experimental evaluation and parameter 
settings

To evaluate the performance of the proposed DeepDSR 
framework, we use six measurement metrics: precision, recall, 
accuracy, F1-score, AUC and AUPR. Suppose that True Positive 
(TP), True Negative (TN), False Negative (FN), and False Negative 
(FN) are defined as Table 1. We can compute precision, recall, 
accuracy, F1-score, True Positive Rate (TPR), and False Positive 
Rate (FGR) as follows:

 
Precision TP

TP FP
=

+  
(6)

 
Recall TP

TP FN
=

+  
(7)

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(8)

 
1

2 × ×
- =

+
Precision RecallF score

Precision Recall  
(9)

 
TPR TP

TP FN
=

+  
(10)

 
FPR FP

TN FP
=

+  
(11)

And AUC is the area under the TPR-FPR curve, and AUPR is 
the area under the precision-recall curve. For each sample (image), 
its classification scores from three individual networks (DenseNet, 
Swin transformer, and RegNet) are computed by the softmax layer, 
respectively. Its final classification probability is obtained by 
averaging the scores from the three single models. AUC and 
AUPR can be  computed based on the obtained final 
classification probability.

Moreover, the six metrics are not equally important to 
COVID-19 CT image classification. The results caused by false 
negatives are more severe than ones caused by false positives for 
medical image classification. Therefore, recall and AUPR are more 
important compared to the other four evaluation metrics.

The experiments are performed for 100 epochs to obtain the 
optimal parameter settings. In addition, DenseNet and RegNet use 
stochastic gradient descent algorithm and Swim transformer uses 
AdamW as optimizer to update parameters. The detailed 
parameters are set in Table  2. In Table  2 and the following 
Tables 2–5, the bold font in each column represents the best 
performance computed by corresponding method.

The performance comparison of 
DeepDSR with other three models for 
COVID-19 image binary classification

We compare the proposed DeepDSR method to three 
state-of-the-art deep learning models (efficientNetV2, ResNet, 
and Vision transformer) when classifying CT scan images to 
two classes: COVID-19 related or non-COVID-19 related. 
EfficientNetV2 (Tan and Le, 2021) aims to solve the problem 
of slow training when the size of the training image is large in 
efficientNetV1. Moreover, it replaced some MBConv 
structures in shallow layers with Fused-MBConv structures 
and found the optimal combination through neural 
architecture search technology to improve the network 
training speed. Finally, efficientNetV2 used a non-uniform 
scaling strategy to scale the model and thus make the model 
more reasonable.

ResNet (He et al., 2016) aims to solve the vanishing gradient 
and network degradation problems in traditional neural networks. 

TABLE 1 The confusion matrix.

True results

Positive Negative

Predicted results Positive TP FP

Negative FN TN

TABLE 2 Parameter settings.

Model Parameter setting

Swin transformer epochs = 100, batch_size = 8, lr = 0.0001

RegNet epochs = 100, batch_size = 16, lr = 0.001, lrf = 0.01

DenseNet epochs = 100, batch_size = 16, lr = 0.001, lrf = 0.01
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ResNet solved the vanishing gradient problem through data 
preprocessing and batch normalization layer, and reduced the 
network degradation problem through a residual structure. 
ResNet used a connection model of shortcut to add interlayers in 
the feature matrix and thus greatly improve the depth of 
the network.

Transformer (Vaswani et al., 2017) has been broadly used in 
the natural language processing field. Attention mechanism has 
been widely used in the computer vision field. Inspired by the 
transformer mechanism, Vaswani et al. divided each image into 
patches, and took the linear embedded sequence of these image 
blocks as the input of the transformer. The processing method of 
image patches is the same as marks in NLP applications. Vision 
transformer (Dosovitskiy et al., 2020) achieved excellent results 
when both pretraining on a sufficient scale dataset and migrating 
to tasks with fewer data points.

We first selected 80% images as training set and 20% as 
test set from the integrated COVID-19-related CT scan 
images. We then train DeepDSR, efficientNetV2 (Tan and Le, 
2021), ResNet (He et  al., 2016), and Vision transformer 
(Dosovitskiy et  al., 2020) for 100 epochs, respectively. The 
results are shown in Table 3 and Figure 4A. We can find that 
DeepDSR significantly outperforms efficientNetV2 in terms 
of precision, recall, accuracy, F1-score, AUC and AUPR. For 
examples, DeepDSR outperforms 21.93% and 33.42% 
compared to efficientNetV2 based on AUC and AUPR, 
respectively. DeepDSR also performs better than ResNet and 
Vision transformer although the improvement is slight. 
Figures 4B,C illustrate the AUC and AUPR values of DeepDSR 
and other models when classifying COVID-19-related CT 
images to two classes. The above results show that DeepDSR 
can efficiently identify CT scan images for patients infected by 
COVID-19.

The performance comparison of 
DeepDSR and three individual models for 
COVID-19 image binary classification

To investigate the image classification performance of the 
proposed DeepDSR model with DenseNet, Swin transformer, and 
RegNet, we conduct experiment for 100 epochs. At each epoch, 
we  select 80% samples to train DeepDSR, DenseNet, Swin 
transformer, and RegNet and the remaining 20% to test their 
performance. Table 4 and Figure 5A demonstrate the prediction 

results of the above four models. The results show that the 
proposed ensemble model, DeepDSR, outperforms other three 
individual models in terms of precision, recall, accuracy, F1-score, 
AUC, and AUPR. Figures 5B,C illustrate the AUC and AUPR 
values obtained from the above four models. We  find that 
DeepDSR, ensemble of DenseNet, Swin transformer, and RegNet, 
can more effectively classify CT images to two classes: COVID-
19-related or not.

Statics of true positives/negatives and 
false positives/negatives

We investigate the classification results on 1,231 COVID-19-
related CT images from the test set to more intuitively illustrate 
the affect of DeepDSR on CT image identification performance. 
Table 5 and Figure 6 give the number of true positives (TP), false 
positives (FP), false negatives (FN), and true negatives (TN) 
computed by DeepDSR, DenseNet, Swin transformer, and RegNet, 
respectively.

The results show that DeepDSR, DenseNet, Swin transformer, 
and RegNet misclassify a few samples. DeepDSR computes the 
most TPs and TNs while the least FPs and FNs. Furthermore, 
efficientNetV2, ResNet, and Vision transformer compute much 
more FPs and FNs compared with DeepDSR, demonstrating 
higher error rates. Moreover, DeepDSR, ensemble of DenseNet, 
Swin transformer, and RegNet, outperforms all other three 
individual models. Thus, the neural network, combining the 
predictions obtained from all the base models, can significantly 
improve the CT image classification performance of models. In 
addition, the stacking ensemble consisting of all three base models 
outperforms all other combinations. DeepDSR is tuned to utilize 
those predictions that help improve the classification performance 
and ignore the wrong predictions made by the base models.

TABLE 4 The performance comparison of DeepDSR and three 
individual models for binary classification problem.

Precision Recall Accuracy F1-
score

AUC AUPR

Swin 

transformer

0.9619 0.9539 0.9675 0.9579 0.9943 0.9924

RegNet 0.9571 0.9832 0.9764 0.9700 0.9963 0.9949

DenseNet 0.9770 0.9790 0.9829 0.9780 0.9981 0.9973

DeepDSR 0.9833 0.9895 0.9894 0.9864 0.9991 0.9986

The bold fonts represent the best performance in each column.

TABLE 3 The performance comparison of DeepDSR and other models for COVID-19 image binary classification.

Precision Recall Accuracy F1-score AUC AUPR

EfficientNetV2 0.5077 0.9015 0.6231 0.6495 0.7800 0.6649

ResNet 0.9786 0.9602 0.9764 0.9693 0.9960 0.9943

Vision transformer 0.9811 0.9769 0.9838 0.9790 0.9982 0.9975

DeepDSR 0.9833 0.9895 0.9894 0.9864 0.9991 0.9986

The bold fonts represent the best performance in each column.
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The affect of transfer learning on the 
performance

In the above sections, we pretrain the weights of DenseNet, 
Swin transformer, and RegNet on the ImageNet dataset and 
continue to train the three models on the integrated larger dataset 

for 100 epochs. We set up a group of control experiments without 
pretraining (100 epochs and 200 epochs) to validate the 
importance of pretraining weights of the models for 100 epochs. 
The results are shown in Table 6 and Figure 7.

From Table  6 and Figure  7, we  can observe that the 
performance of network architecture with the pretrained weights 
is much better than that of the network without pretraining 
weights for 100 epochs and 200 epochs. For example, under 100 
epochs, the pretrained network computes accuracy of 0.9894, 
AUC of 0.9991, and AUPR of 0.9986, outperforming 7.88%, 
2.83%, and 5.61% than the network without pretraining, 
respectively. In addition, we also investigate the performance of 
DeepDSR with pretraining for 100 epochs and ones without 
pretraining for 200 epochs. The results show that the pretrained 
network significantly outperforms the network without 
pretraining even for 200 epochs. Accuracy, AUC, and AUPR 

TABLE 5 Statistical analyses of four models on 1,231 images.

DenseNet Swin 
transformer

RegNet DeepDSR

TN 743 736 733 746

FN 10 22 8 5

FP 11 18 21 8

TP 467 455 469 472

The bold fonts represent the best performance in each column.

A

B C

FIGURE 4

(A) The performance comparison of DeepDSR and other models for COVID-19 image binary classification. (B,C) The AUC and AUPR values of 
DeepDSR and other models for COVID-19 image binary classification.
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computed by the pretrained network are better 3.83%, 1.27%, and 
1.68% than ones without pretraining for 200 epochs, respectively. 
The results demonstrate that pretraining based on transfer 
learning can reduce the training time while improve the 
classification performance. Finally, when adding epochs on the 
pretrained network, however, the performance improvement is 
not obvious. On the contrary, it even produces drifts and thus 
causes poorer performance.

Performance comparison for 
three-classification problem

Finally, we classify CT scan images to three classes to further 
evaluate the robustness and credibility of DeepDSR. We use 7,398 
lung CT scan images, which contain 3,768 lung CT scan images 

from patients infected by COVID-19, 2,383 ones from normal 
lung, and 1,247 ones from patients infected by other pneumonia. 
And 80% images are selected the training set and the remaining 
images are the test set. We  repeatedly conduct the three-
classification experiments on the obtained 7,398 images for 100 
epochs. Table 7 and Figure 8 give precision, recall, accuracy, and 
F1-socre of DeepDSR, other three comparative methods, and 
three individual models.

The results from Table  7 and Figure  8 show that the 
proposed DeepDSR framework significantly outperforms 
efficientNet-V2 and Vision transformer in terms of precision, 
recall, accuracy, and F1-score. DeepDSR is also better than 
ResNet and three individual models based on the above 
measurement metrics. For example, DeepDSR computes the 
best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, 
and F1-score of 0.9695, outperforming 1.93%, 1.27%, 1.31%, 

A

B C

FIGURE 5

(A) The performance comparison of DeepDSR and three individual models for COVID-19 binary classification problem; (B,C) The AUC and AUPR 
values of DeepDSR and three individual models for COVID-19 binary classification problem.
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and 1.59 compared the second-best methods (DenseNet, 
DenseNet, RegNet, and DenseNet), respectively. The results 
demonstrate that DeepDSR has better generalization ability 
and can thus be  applied to classify COVID-19-related CT 
scan images.

Conclusion

COVID-19 detection through CT scan images has the 
characteristics of high sensitivity, low misdiagnosis rate, and high 
commercial practicability. Therefore, it has been a research 
hotspot to detect COVID-19 through CT scan images based on 
deep learning. In this study, we developed a deep ensemble model, 
DeepDSR to identify CT scan images for patients infected by 
COVID-19. DeepDSR combined three different state-of-the-art 
network architectures, DenseNet, Swin transformer, and RegNet. 

FIGURE 6

Statistical analysis of four methods on 1,231 images.

TABLE 6 The affect of transfer learning on the performance.

Precision Recall Accuracy F1-
score

AUC AUPR

With 

pre-train

0.9833 0.9895 0.9894 0.9864 0.9991 0.9986

Without 

pre-train

0.8773 0.914 0.9171 0.8953 0.9716 0.9455

Without 

pre-train 

(200 

epoch)

0.9544 0.9224 0.9529 0.9382 0.9866 0.9821

The bold fonts represent the best performance in each column.

FIGURE 7

The affect of transfer learning on the performance.

TABLE 7 The performance of DeepDSR and other models for three-
classification problem.

Precision Recall Accuracy F1-
score

EfficientNet V2 0.4023 0.4479 0.5132 0.3736

ResNet 0.9487 0.9397 0.9541 0.9439

Vision 

transformer

0.7112 0.6264 0.7373 0.6301

Swin 

transformer

0.9488 0.9371 0.9548 0.9424

RegNet 0.9492 0.9463 0.9568 0.9476

DenseNet 0.9552 0.953 0.9608 0.9541

DeepDSR 0.974 0.9653 0.9737 0.9695

The bold fonts represent the best performance in each column.

FIGURE 8

The performance of DeepDSR and other models for three-
classification problem.
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It obtained the best performance compared to three classical deep 
learning models (efficientNetV2, ResNet, and Vision transformer) 
as well as three individual models when classifying CT images to 
two classes (COVID-19-related or non-COVID-19-related) or 
three classes (COVID-19-related, normal pneumonia, and 
healthy lung).

EfficientNetV2, ResNet, and Vision transformer are three 
state-of-the-art deep learning models with different network 
architectures. The proposed DeepDSR model computed the 
best measurement values compared with the three network 
architectures, demonstrating its optimal image classification 
ability. Moreover, DeepDSR aggregated three individual deep 
models, DenseNet, Swin transformer, and RegNet. Lower 
correlations between the three individual models more 
obviously reduced the variance of DeepDSR. In addition, 
DeepDSR also reduced its variance due to the ensemble 
nature. Therefore, DeepDSR, ensemble of different single 
models, significantly outperforms the three individual models, 
thereby suggesting its powerful performance.

Our proposed DeepDSR has three advantages: first, three 
COVID-19-related CT image datasets were fused to boost the 
generalization ability of DeepDSR. Moreover, multiple 
methods including batch normalization were adopted to 
prevent overfitting. Finally, DeepDSR, ensemble of DenseNet, 
Swin transformer, and RegNet, can more accurately classify 
CT images and thus improve the classification performance. 
However, the training of DeepDSR was more complex than 
single model, it also spend more time to train and test the 
model, and more parameters need to be  adjusted, thereby 
requiring more computing resources. In the future, we will 
design more robust ensemble deep learning models to 
accurately classify images for query diseases including 
COVID-19 and cancer. In particular, we will further consider 
deep heterogeneous ensemble framework to accurately 
identify images for related diseases by ensemble of deep 
learning model and supervised learning model.
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Many disease-related genes have been found to be associated with cancer

diagnosis, which is useful for understanding the pathophysiology of cancer,

generating targeted drugs, and developing new diagnostic and treatment

techniques. With the development of the pan-cancer project and the ongoing

expansion of sequencing technology, many scientists are focusing on mining

common genes from The Cancer Genome Atlas (TCGA) across various cancer

types. In this study, we attempted to infer pan-cancer associated genes by

examining the microbial model organism Saccharomyces Cerevisiae (Yeast)

by homology matching, which was motivated by the benefits of reverse

genetics. First, a background network of protein-protein interactions and a

pathogenic gene set involving several cancer types in humans and yeast

were created. The homology between the human gene and yeast gene was

then discovered by homology matching, and its interaction sub-network was

obtained. This was undertaken following the principle that the homologous

genes of the common ancestor may have similarities in expression. Then,

using bidirectional long short-term memory (BiLSTM) in combination with

adaptive integration of heterogeneous information, we further explored the

topological characteristics of the yeast protein interaction network and

presented a node representation score to evaluate the node ability in graphs.

Finally, homologous mapping for human genes matched the important genes

identified by ensemble classifiers for yeast, which may be thought of as genes

connected to all types of cancer. One way to assess the performance of the

BiLSTM model is through experiments on the database. On the other hand,

enrichment analysis, survival analysis, and other outcomes can be used to

confirm the biological importance of the prediction results. Youmay access the

whole experimental protocols and programs at https://github.com/zhuyuan-

cug/AI-BiLSTM/tree/master.
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1. Introduction

Cancer is a malignant and complex kind of disease that

seriously endangers human existence. Because of its rapid

spread, early onset, and high death rate, cancer is a disease that is

challenging to cure. According to the American Cancer Society,

there will be 608,570 cancer-related deaths and 1,898,160 new

cases of cancer in the nation in 2021 (Xia et al., 2022). The

prevention and treatment of cancer have evolved into a public

health issue that requires collective human effort. A growing

number of scholars are dedicating themselves to pan-cancer

research as it is a hot topic globally. The therapeutic treatment

of viral diseases, genetic diseases, and other diseases may

be improved by the use of gene therapy (Ma et al., 2020).

Therefore, accurate detection of pan-cancer genes is essential

for understanding cancer and provides better benefits for its

prevention, treatment, and development of anti-cancer drugs,

which is relevant from a social and economic perspective

(Aromolaran et al., 2021).

Currently, the identification of essential genes is the main

source of the issue with pan-cancer associated genes prediction.

In previous decades, biological experiments including single

gene knockout, conditional knockout, and RNA interference

were used as the typical methods for identifying essential

proteins. These experimental techniques require lengthy and

expensive procedures, and the experimental settings frequently

affect the outcomes. The same organismmay respond differently

to different experimental settings (Zhong et al., 2021).

An enormous number of protein-protein interactions (PPI)

enriched with gene expression data have been available in recent

years benefiting from the advancement of high-throughput

technology (Li et al., 2017).

According to the two sides, studies on cancer-related

genes can be roughly split into two categories. It is intended

to investigate the tissue-specific driver genes, on the one

hand. The ideas pertaining to complex network analysis were

transferred and utilized to biological network analysis by

merging cancer sample data onto biological networks. Each

node in the network structure had its level of importance

evaluated, and the genes with the highest value were found

to be the cancer driver genes. Since genes only selectively

express proteins, essential proteins can be used to discover

essential genes. Numerous effective network-based techniques

have been put forth over years to identify crucial proteins

from PIN. The most well-known and straightforward one is

degree centrality (DC) (Jeong et al., 2001). According to a

molecular theory known as the centrality-lethality rule, the

highly linked nodes within the PIN serve as its fundamental

structural components and are generally more significant than

other nodes (Jeong et al., 2001; Zotenko et al., 2008). Other node

topological feature-based methods, such as subgraph centrality

(SC) (Estrada and Rodriguez-Velazquez, 2005), eigenvector

centrality (EC) (Bonacich, 1987), betweenness centrality (BC)

(Joy et al., 2005), closeness centrality (CC) (Wuchty and Stadler,

2003), information centrality (IC) (Stephenson and Zelen, 1989)

and others, are also used to identify proteins in addition

to DC. These techniques assess each node according to its

topological structure. In general, network-based approaches

are extensively employed in the early stages since they can

predict important proteins directly without the need for further

information. However, these techniques feature low recall

rates and identification precision due to the abundance of

false positive and false negative data in PPI networks (Li

et al., 2016). The intrinsic biological importance of necessary

proteins is also disregarded by these techniques, which ignores

essential proteins with low connectivity (Li et al., 2016). Recent

research has attempted to incorporate biological knowledge into

network-based techniques, which not only reduce the impact

of false positives in PPI data but also significantly increase

the prediction accuracy of essential proteins (Li et al., 2012;

Zhang et al., 2019; Wang et al., 2021). Ess-NEXG (Wang et al.,

2020) and DeepEP (Zeng et al., 2019; Liu et al., 2022b) are two

related algorithms for finding essential proteins that have been

developed as a result of the rapid growth of deep learning. Other

algorithms have also been presented to predict other associations

(Zhang et al., 2021; Liu et al., 2022a,b).

On the other side, it seeks to identify potential disease-

related genes across a variety of malignancies. Several

computational methods have been proposed to uncover pan-

cancer related genes or driver module types by integrating

multi-omics data across various malignancies (Cao and Zhang,

2016; Zhang and Zhang, 2016, 2017; Yang et al., 2017; Li et al.,

2020), which is motivated by the objectives of the cancer

genome program named The Cancer Genome Atlas (TCGA)

(Weinstein et al., 2013). By combining existing information

on cancer from various types of tumors, potential patterns

and biological processes are investigated. For example, Park

et al. (2016) proposed an algorithm called NTriPath based on

matrix decomposition to identify and complement pathogenic

gene pathways, which overcomes the limitation of studying

a single cancer and can complement the existing set of

pathogenic pathway genes in multiple cancers. In order to

identify possible pan-cancer related genes, Zhu et al. (2022)

combined the network representation method with differential

expression analysis.

Geneticists have long noted that functional relationships

frequently exist between mutations that result in the same

biological manifestation. Utilizing these predictions to connect

particular genes to phenotypes opens the door to using similar

techniques to directly find new disease genes in the study of

human genes. In reverse genetics, it is feasible to infer linked

phenotypes based on linkages in functional gene networks

(Sommer, 2008). Homologous genes are genes found in several

species that descended vertically from a single gene found in

the last common ancestor, which is how organisms evolved

from a common ancestor. Highly identical DNA sequences
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between two homologous genes, which may also have the same

function, are extremely likely to be found in two animals with

very close affinity (Müller, 2003). The concept of homology

allows us to more easily study human genes with gene sequences

from other species. Similar structures and functionalities are

shared by genes that are crucial for life’s functions in model

organisms. Furthermore, there is mounting evidence that model

species are essential for addressing issues connected to the

gene variations that underlie human disease. Using model

organisms for homology mapping can help us understand

human pathogenic genes (Bleackley and MacGillivray, 2011).

Due to its genetic flexibility, small genome size, and

manipulability, yeast is one of the model organisms with the

highest genetic adaptability. Yeast is a single-cell eukaryote

that helps to uncover many fundamental concepts in biology

and reveals the activity of human cells. Consequently, yeast

is essential for identifying genetic variations in human genes

related to illnesses and encoding genetic variations in proteins

engaged inmultiple pathways. The study revealed a link between

the microbiota and associated diseases, and it is crucial to

understand the molecular mechanisms of these diseases in

order to develop new microbiome-based therapies. Microbiota

is the microbial population colonizing multiple organ systems

in humans and impacting the outcomes of microbiota-related

diseases (Belkaid and Hand, 2014; Sun et al., 2022). Among

them, gut microbiota, a dense microbial community in human

intestines, has been found closely associated to acute kidney

injury (Lei et al., 2022), atherosclerosis (Anto and Blesso,

2022), reduced bone mineral density (Wan et al., 2022), age-

related neuroinflammation and cognitive decline (Alsegiani

and Shah, 2022), carcinogenesis and cancer immunotherapy

resistance (Hersi et al., 2022), and metabolic disorders such

as hyperlipidemia, hyperglycemia, hypertension, obesity and

diabetes (Beg et al., 2022). Manipulation of the gut microbiota

has broad application prospects on diseases. Fecal microbiota

transplant (FMT) is one of the microbiome-based therapeutics

with clinical application potential in clostridioides difficile

colitis, graft-vs.-host disease, and inflammatory bowel disease

(Sorbara and Pamer, 2022). In addition, engineered bacteria,

postbiotics, and phages are also used as precision microbiome-

centered therapies (Bajaj et al., 2022).

Multiple biological data are currently available due to

the advancement of sequencing technologies, enabling it to

integrate multi-omics data from various tumors to uncover

genes associated to pan-cancer. In this study, we use the

yeast network to predict human disease genes. We gathered

a pathogenic gene set from multiple cancers. Homologous

mapping is then utilized to locate the homologs integrating all

of the pathogenic genes of ten tumors. We propose a parameter

adaptive model for characterizing node representation ability by

merging Subcellular localization information, Gene expression

data, and Protein Complexes data with the specifically designed

topological properties of the PPI network, which is called PSGN

score for short. Additionally, the BiLSTM, a LSTM model with

adjacency constraint and multiple features, is proposed for the

prediction of essential proteins. The yeast genes that are similar

to the seed genes are screened as candidate genes using the

BiLSTM algorithm. In order to identify the final predicted

human pan-cancer associated genes, homolog mapping of these

candidate genes was performed.

Comparative experiments were conducted on the publicly

accessible PPI data of Yeast, in order to validate the effectiveness

of the proposed evaluation PSGN score and the classification

results of BiLSTM. We verified the efficacy of the new proposed

score by contrasting the performance of PSGN with classic

unsupervised approaches including DC, BC, CC, EC NC, LAC,

PeC, and WDC. Further, we compared our BiLSTM model

to established machine learning techniques like SVM, decision

tree, ensemble learning-based methods, and the most recent

deep learning-based approach put forth by Zeng et al. (2019).

According to the experimental findings, BiLSTM may identify

essential proteins with superior overall outcomes than other

cutting-edge techniques. Besides, some biological significance

experiments were conducted on real datasets, the results

validated the effectiveness of the new proposed algorithm

from the reverse genetics perspective. The remaining parts

are organized as follows. Section 2 presents the material and

methods of the new proposed method. Experimental results

and discussions are illustrated in Section 3. Finally, Section 4

concludes the work.

2. Materials and methods

2.1. Datasets

PPI networks: among other species, the PPI network

dataset of yeast is the most reliable and complete, making it

popular for use in evaluating and identifying essential proteins.

Therefore, in this study, we also selected the yeast PPI network

dataset. The DIP database is used to gather the PPI data of

yeast (Xenarios et al., 2002). There are 5,093 proteins and

24,743 interactions in total after subtracting self-interactions and

repetitive interactions.

Essential protein datasets: A list of essential proteins of

yeast were collected from the following databases: MIPS (Mewes

et al., 2006), SGD (Cherry et al., 2012), and DEG (Zhang and

Lin, 2009). A protein in the yeast protein interaction network

is considered as an essential protein if it is marked as essential

at least in one database. This data has 1,285 essential proteins,

1,167 of which are included in the PPI network constructed from

the DIP database. Hence, we take the 1,167 proteins as essential

proteins and the rest 3,926 proteins as non-essential ones.

Subcellular localization dataset: the dataset is available in

the knowledge channel of COMPARTMENTS database (Binder

et al., 2014), which combines the UniProtKB (Magrane, 2011),
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A B C D

FIGURE 1

An overview of our proposed method to predict pan-cancer related genes via orthologs matching. The main algorithm consists of (A–D) four

parts. (A) data integration and pre-processing. (B) Homologous mapping. (C) Evaluation of node representation ability in graph. (D) Prediction of

pan-cancer related genes.

MGD (Eppig et al., 2012), SGD (Cherry et al., 2012), FlyBase

(Mcquilton et al., 2012), and WormBase datasets (Harris et al.,

2010). There are 206,831 subcellular localization records in this

dataset, which can be further subdivided into 830 categories.

Protein complex datasets (Luo and Qi, 2015):

it is comprised of four real protein complex sets

(CM270, CM425, CYC408, and CYC428). Seven hundred

and forty-five protein complexes are included in the

consolidated dataset.

Gene Expression Omnibus (GEO) dataset: GSE3431

derives from GEO and samples 12 time points during each of

three yeast successive metabolic cycles (the interval between two

time points is 25 min). The dataset contains 36 samples with

6,777 genes.

Online Mendelian Inheritance in Man (OMIM) dataset:

we retained only disease-related variants linked to a genetic

disorder listed in the OMIM database. Cross-references were

used to directly access annotations for each OMIM disease by

downloading the DO (Human Disease Ontology) OBO (Open

Biological and Biomedical Ontology) file release. Each retrieved

leaf DO term connected to a single OMIM was expanded

to include all ancestors and the ontological root term. Term

expansion was calculated by parsing the OBO file with an

impromptu script.

The Cancer Genome Atlas (TCGA) Database: the Human

Genome Research Institute (HGRI) and National Cancer

Institute (NCI) launched the Cancer Genome Mapping

Project in 2006. The database contains more than 20,000

samples from 33 cancer types, including transcriptome

expression data, genome variation data, methylation

data, clinical data, and others, which can be accessed

via https://portal.gdc.cancer.gov/exploration.

2.2. Overview of the new proposed
method

The current proposed method, which consists of four

main steps of data integration and pre-processing, homologous

mapping, evaluation of node representation ability, and

prediction of pan-cancer related genes, is shown in detail in

Figure 1.

2.2.1. Data integration and pre-processing

The gene expression data of 10 cancers were obtained from

TCGA database, including esophageal carcinoma, pancreatic

cancer, lung cancer (lung adenocarcinoma, lung squamous cell

carcinoma), breast invasive carcinoma, colon adenocarcinoma,

rectum adenocarcinoma, cholangiocarcinoma, gastric cancer

and ovarian cancer. Due to the duplications and deletions in the

pathogenic genes of each cancer, they are used as experimental

data after sorting and deletion. We uploaded the TCGA data

of 10 cancers selected in the CVCDAP database (https://

omics.bjcancer.org/cvcdap/home.do), successfully generated the

pan-cancer related pathogenic gene set, and completed the

analysis of the pan-cancer network driving genes with

the help of the analysis tool of CVCDAP database. We

obtained the data of Yeast protein interaction network on

DIP database (https://dip.doe-mbi.ucla.edu/dip/Main.cgi) and
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downloaded the connection information between Yeast protein

nodes directly.

2.2.2. Homologous mapping

We believe that the homologous genes of co-ancestors

express themselves similarly. The NCBI Homologene database

(https://www.ncbi.nlm.nih.gov/homologene/) compiles

homologous gene data for species with complete genome

sequencing. In this section, we used Homologene package

in the R language, the imported human pathogenic genes

were annotated by homology mapping, and the homologous

genes of human and yeast genes were taken as seed genes.

After identifying the proteins expressed by the seed genes,

the interaction network among these yeast proteins can be

determined by the STRING database (https://cn.string-db.org/).

2.2.3. Evaluation of node representation ability

Yeast is one of the most genetically model organism. In this

study, we firstly explore the essential proteins in the yeast PPI

network to further find potential disease related genes. Thus, a

new score is defined to evaluate the node representation ability.

The PPI network is denoted as graph G = (V ,E), where V =

{v1, · · · , vm} and E =
{

ei,j, 1 ≤ i, j ≤ m
}

represent the node set

and edge set of the graph, respectively. Specifically, vi denotes the

i-th protein while eij denotes protein-protein interaction linkage

between protein vi and vj. |V| = m represents the number of

total proteins within G.

The features of our new proposed score considers node-

aided biological information, edge-aided biological information

and network topological features. We’ll go through how to

use and integrate this data to create the attributes needed to

determine a protein’s essentiality in the subsections that follow.

The establishment process requires three specific steps.

Step 1: Construction of node represented features

1) Protein complexes score: previous studies indicated

that intracellular proteins always tend to connect with their

neighbors to form densely connected modules, which are

called protein complexes and by this way proteins could take

part in more complex and diverse biological activities and

functions (Luo and Qi, 2015). Given that essential proteins

are crucial in maintaining the main structure and functions in

protein complexes (Zotenko et al., 2008), protein complexes

data could be used for the identification of essential proteins

(Lei et al., 2018).

For the protein vi, the essentiality tends to be higher if it

is found in more protein complexes. In order to calculate the

protein complexes (PC) score, we do the following:

PC(i) = |Complex(i)| (1)

where Complex(i) denotes the sets of protein complexes

including vi, and |Complex(i)| is the number of protein

complexes including vi.

2) Subcellular localization score: it has been proved that

proteins must be localized at their appropriate subcellular

compartments to perform their desired functions and thus

the subcellular localization information is beneficial for the

identification of essential proteins (Peng et al., 2015). To ensure

the relationships of subcellular localization with the topological

features of PPI network, refer to Li et al. (2016), we firstly use

the previous feature NNC to sort the proteins within the PPI

network, and then calculate the numbers of subcellular location

l where the top k% proteins appear and where the bottom k%

proteins appear, respectively.

Given the data’s false positives, counting proteins at higher

rates may result in more errors; as a result, we use k = 5 in

this work as Li et al. (2016) sets, i.e., that the top/bottom 5%

proteins are selected. Besides, we define Tl as the frequency of

the localization l where the top k% proteins appear and Bl as

the frequency of the localization l where the bottom k% proteins

appear. Subcellular localization correlation coefficient SLCC(l)

can be calculated by Equation (2)

SLCC(l) =















1−
Bl
Tl

, Tl < Bl;

Tl
Bl

− 1, otherwise,
(2)

when Tl < Bl, it means that more proteins with low NNC

values tend to appear in the location l and it is assumed that

the relationship between the location l and the essentiality of

proteins is negative. On the other hand, when Tl ≥ Bl, there

should also be a positive correlation between the location l and

the essentiality of proteins. When Tl = 0, we set SLCC(l) as the

maximum of 1 −
Bl
Tl

with Tl 6= 0. And when Bl = 0, we set

SLCC(l) as the maximum of
Tl
Bl

− 1 with Bl 6= 0.

Besides, considering that a protein may appear in multiple

subcellular locations, take protein vi for instance, its subcellular

localization score SL(i) could be calculated as the sum of SLCC(l)

of all the subcellular locations where it appears. Moreover, the

normalized value NSL(i) of SL for each protein vi is used by

Equation (3)

NSL(i) =
SL(i)+max_SL

Max(SL(i)+max_SL)
, (3)

wheremax_SL represents the maximum value of SL(i) for all the

proteins within the PPI network. Maxin the denominator takes

for all the nodes within the PPI network.

In order to strengthen the identification precision of

subcellular localization, we combine the NSL score with a

network topological feature NNEC that is proposed in Zhu

and Wu (2018) and has a good compatibility with biological
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information. The combined feature is called NNSL for short,

for each protein vi, its NNSL(i) score can be calculated by

Equation (4)

NNSL(i) = NSL(i)× NNEC(i), (4)

where NNEC(i) =
∑

j∈N(i) NECC(i, j) and NECC can be

obtained by Equation (5)

NECC(i, j) =
T(i, j)3 × C(j)

∏

t={i,j}(d(t)− 1)
, (5)

where T(i, j) denotes the number of triangles made up of

proteins vi and vj, C(j) =
2Ej

d(j)(d(j)− 1)
is the clustering

coefficient of protein vj,Ej is the number of non-repetitive edges

consisting of all nearest neighbors of vj. d(t) denotes the degree

for protein t, for t = i or j.

Step 2: Construction of edge represented features

Gene expression data is a type of biological information that

has been utilized for a long time to compute edge correlations

and identify essential proteins. PeC is a method that combines

gene expression data with edge clustering coefficient ECC in

order to reduce the impact of false positives on the PPI network.

As a result, we apply PeC in this study to extract pertinent

information from gene expression data. For a protein vi, its PeC

score PeC(i) can be computed by Equation (6)

PeC(i) =
∑

j∈N(i)

ECC(i, j)× PCC(i, j), (6)

where ECC(i, j) is the edge coefficient between edge ei,j, PCC(i, j)

is the Pearson’s correlation coefficient of a pair of proteins (vi

and vj). s denotes the length of the gene expression data, which

can be calculated by Equation (7)

PCC(i, j) =
1

s− 1

s
∑

t=1

[
g(i, t)− ḡ(i)

σ (i)
]× [

g(j, t)− ḡ(j)

σ (j)
], (7)

where g(i, t) and g(j, t) are the expression level of vi and vj

in the sample time t under a specific condition, ḡ(i) and ḡ(j)

represent the mean expression level of vi and vj, and σ (i) and

σ (j) represent the standard deviation of expression level of vi

and vj, respectively.

To extract the topological information of proteins within

the PPI network, it is necessary to construct an effective

feature representing the network structures of the nodes and

connections with neighbors. Network centrality (NC) is a

representative topology basedmethodwidely used for predicting

essential proteins (Wang et al., 2012). Hence, we choose it for

network topological feature construction. For the protein vi, its

network centrality NC(i) can be calculated as the sum of edge

clustering coefficients ECC(i, j) of each edge ei,j connected with

vi by Equation (8)

NC(i) =
∑

j∈N(i)

ECC(i, j)

=

∑

j∈N(i)

T(i, j)

min(di − 1, dj − 1)
,

(8)

where N(i) is the set of nodes which directly connect with

protein vi.

In order to match other features based on biological

information, here we use the normalized NC value (denoted as

NNC) for each protein. Then for vi, its normalized valueNNC(i)

is defined by Equation (9)

NNC(i) =
NC(i)

max(NC(i))
, (9)

where max(NC(i)) denotes the maximum NC value of all the

proteins in the graph G, and the value of NNC(i) will be

normalized between 0 and 1.

Step3 : Feature integration by liniear model with

adaptive parameters

The structure of hetergeous feature integration involves

Protein complex PC(i), Subcellular localization NNSL(i), Gene

expression PeC(i) and Network topology NNC(i) multiple

information (PSGN). Here, we reconcile these features using

a linear model in order to fully integrate this information.

Take protein vi within the PPI network for instance, its

evaluation score could be calculated by PSGN score presented

in Equation (10)

PSGN(i) = ((PC(i)+ NNSL(i)× a+ PeC(i)× (1− a))

× b+ NNC(i)× (1− b)
(10)

where a and b are two weights to balance these heterogeneous

features. And a is utilized for combining the node based and

edge based biological features, b is set to integrate the topological

features and biological features.

When integrating numerous pieces of information, several

methods for identifying essential proteins require for the

adjustment of parameters and the setting of an optimal one for

feature combinations. In contrast, our approach proposes an

adaptable parameter strategy to deal with various information

based on the unique number of essential proteins that must be

identified. These are the concepts: depending on the number of

essential proteins we need to identify, the adaptive domain of

each piece of information varies.

For example, we use PC and NNC two features to identify

essential proteins of Yeast PPI dataset respectively. Through
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FIGURE 2

The number of essential proteins predicted by PC and NNC in

di�erent scales.

Figure 2, PC can capture more essential proteins compared with

NNC when dealing with proteins with higher ranking positions.

And for proteins with lower positions in rank, the effect of PC

is not so significant as NNC. That means when we need to

identify the proteins with higher ranking positions (like Top

50, Top 100), we need to assign larger weights on PC. On

the contrary, to predict essential proteins with lower ranking

positions (like Top 150, Top 200), NNC should be assigned

with larger weights. However, most methods will give constant

parameters which ignore the variation of functions of different

biological information for identification when the number of

essential proteins needed to be predicted changes.

In general, the effect of biological information is more

reliable than topological features of network when dealing

with proteins with higher ranking positions. Therefore, the

weight should be adjusted adaptively according to the number

of essential proteins needed to be identified. The parameter

adaptive model is proposed by Equation (11)

P = αi + βi × input, (11)

where input is the expected number of essential proteins needed

to be identified. In this research, i = 1 or 2, when i = 1, P = a,

by test, we take α1 = 0.49, β1 = −0.0005, when i = 2, P = b,

by test, we take α2 = 1, β2 = −0.0003. This parameter model

means that, the weights of biological information are greater

when calculating the top ranked essential proteins, especially

the node-aided biological information (PC and NNSL). With

the increase of input, the weight of network-based topological

feature (NNC) gradually increases, and the weight of edge-aided

biological information (PeC) also increases gradually.

2.3. Prediction of potential pan-cancer
related genes

As we discussed above, for proteins in the PPI network,

the proteins’ feature can be represented by NNC, NNSL, PC,

PeC and PSGN. As it is shown in Figure 1B, the seed proteins

are labeled as 1 and other proteins in yeast PPI network

are labeled as 0. The final prediction results via enhanced

BiLSTM model via repeated experiments as shown in Figure 3.

Then the representation can be divided into training dataset

and testing dataset, we sample the data from the embedding

vector of pan-cancer network based on cross-validation. As

shown in Figure 1, this process is trained by multiple classifiers

on the sampled data. After obtaining the trained classifiers,

we use them to pre- dict pan-cancer-related genes. For each

predicted node, the frequency of the node can be considered

as the decision metric in the training processes. Finally, the

final node representation ability can be calculated by counting

the frequency. We take nodes with proper frequencies as

potential candidate pan-cancer genes. The whole procedures

of our proposed approach AI-BiLSTM are presented in

Algorithm 1.

3. Results and discussion

In this research, we investigate the interaction network

of the model microbial Yeast, and find potential pan-cancer

related genes by homologous mapping. Firstly, the LSTM

model was used to categorize the essential genes in the

Yeast interaction network, and then homology matching

was used to further mine the disease genes. Therefore, the

experimental analysis was carried out from two aspects. On

the PPI datasets for yeast, we compared the performance of

the novel proposed BiLSTM model with several conventional

approaches. Secondly, we validated biological significance of

the predicted genes through GO enrichment analysis, pathway

analysis, survival analysis, clustering analysis and so forth. All

of the approaches that are compared in this study adopt their

default parameters. All the experiments are run on a personal

computer with Windows 10 OS, Intel Core i7 2.3GHz CPU, and

16GB memory.

3.1. E�ectiveness of the new proposed
BiLSTM model

3.1.1. Evaluation of PSGN

For PSGN, similar to most of validation methods for the

identification of essential proteins, we also ranked all proteins

by using each essential protein identification method in a

descending order. And then we selected a certain number of top
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A B C

FIGURE 3

An overview of our proposed BiLSTM model. (A) Feature construction, (B) Feature integration, and (C) Identification of essential proteins.

Input: The PPI network G = (V , E), protein

complex, subcellular localization, gene

expression data, threshold

Output: The classification label for proteins;

1: Calculate PC for each protein by using

Equation (1);

2: Calculate NNSL for each protein by using

Equation (4);

3: Calculate PeC for each protein by using

Equation (6);

4: Calculate NNC for each protein by using

Equation (9);

5: Incorporate PC, NNSL, PeC and NNC by using

the adaptive parameters through Equation 10 to

obtain PSGN score;

6: Integrate protein feature representation

enhanced by [NNC, NNSL, PC, PeC, PSGN];

7: for i (1 → n) do

8: Random select (1/n)% data as training dataset,

others as test dataset;

9: Classification and fix the protein label by

BiLSTM;

10: end

11: Count the frequency of the predicted essential

gene (labeled 1)

12: return The genes with frequencies greater

than the threshold.

Algorithm 1. BiLSTM for prediction of potential pan-cancer

related genes.

ranked proteins as the essential protein candidates (like top 100),

after that the accuracy of identification could be computed by

counting the number of true essential proteins.

Figure 4 gives a specific comparison of the results of

identification of essential proteins. As shown in the figure, PSGN

can identify more essential proteins compared with the other

eight methods. The number of true essential proteins identified

by PSGN is higher than other methods in the top 100, top 200,

top 300, top 400, top 500, and top 600 proteins. In addition, by

observing the results of the top 100 proteins, we find that PSGN

can obtain a prediction precision of 90%, which is much higher

than other methods.

For better comparison, the precision-recall (PR) curve,

a common methodology for evaluating the performance of

essential proteins identification methods, is used in this paper.

The comparison of our method with the other methods for

predicting essential proteins on the Yeast PPI network by

using the PR curve is shown in Figure 5. The PR curve of

PSGN obtains the better result compared to the PR curves of

other methods. Our method significantly exceeds other methods

with the largest AUC value, illustrating the effectiveness of

our method.

To further evaluate its effectiveness, we take the jackknife

curve to compare the prediction results of our proposed method

PSGN with other methods. The results are shown in Figure 6.

The x-axis denotes the number of proteins ranked by each

essential protein identification method and the y-axis is the

number of truly identified essential proteins of eachmethod. The

areas under the jackknife curves can measure the performances

of the method for identifying essential proteins. As shown in

Figure 6, the jackknife curve of our proposed method PSGN

can identify more essential proteins from the Yeast PPI network

compared with other methods, demonstrating that PSGN is

more effective and can get better results than other state-of-

art methods.

For interpreting the advantages of our method in deeper

levels, we also choose 5 widely usedmetrics (sensitive, specificity,
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A B C

D E F

FIGURE 4

The number of essential proteins predicted by PSGN, BC, CC, DC, EC, LAC, PageRank, PeC, and WDC. (A–F) show the results of these methods

when selecting top 100 to 600 ranked proteins as candidates of essential proteins.

FIGURE 5

Comparison of PSGN, BC, CC, DC, EC, LAC, PageRank, PeC, and WDC using precision-recall (PR) curve method.

precision, F-measure, and accuracy) to evaluate all the methods.

Figure 7 shows the results of 5 evaluation metrics obtained by

all identification methods on the PPI network of Yeast. As

shown in the figure, it is obvious that our proposed PSGN

can outperform other methods significantly in terms of all 5

evaluation metrics.

Frontiers inMicrobiology 09 frontiersin.org

85

https://doi.org/10.3389/fmicb.2022.963704
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2022.963704

FIGURE 6

Comparison of PSGN, BC, CC, DC, EC, LAC, PageRank, PeC, and WDC using Jackknife method.
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FIGURE 7

Comparative experiments on the Yeast PPI networks in terms of sensitive (A), specificity (B), precision (C), F-measure (D), and accuracy (E)

obtained by PSGN, BC, CC, DC, EC, LAC, PageRank, PeC, and WDC.

3.1.2. Evaluate of the classified performance of
BiLSTM

Machine learning algorithms like SVM, decision tree (DT),

random forest (RF) and adaboost are widely used in the tasks of

bioinformatics. For fair comparison with thesemachine learning

methods, as the setting in the work of Zeng et al. (2019), we

use the sequences composed of integrated biological features

PC, PeC, NNSL, the topological feature NNC and the integrate

feature PSGN as the input of these machine learning algorithms

for training and testing. Besides, we also compared with the

algorithm proposed by Zeng et al. (2019).

AI-BiLSTM proposed in this research achieved improved

performance compared with other state-of-the-art algorithms

with the highest value marked in bold in Table 1. Our model

TABLE 1 Comparison of performance between our model and other

machine learning algorithms.

Classifier Accuracy Precision Recall F-measure AUC

SVM 0.7654 0.4931 0.3037 0.3759 0.6045

RF 0.7252 0.4295 0.5527 0.4833 0.6651

DT 0.7134 0.3809 0.3713 0.3760 0.5942

Adaboost 0.7409 0.4347 0.3797 0.4054 0.6150

Zeng et al. (2019) 0.7055 0.3802 0.4219 0.3999 0.6067

BiLSTM 0.7369 0.4803 0.5742 0.5231 0.6829

obtains recall, F-measure and AUCwith values of 0.5674, 0.5134,

and 0.6781, respectively, which are better than SVM, decision

tree, random forest, Adaboost, and Zeng et al. (2019). Although
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our model does not show the highest values in terms of accuracy

and precision and the performance is slightly weaker than SVM

in these two assessments, our model owns much better recall,

F-measure and AUC. In general, BiLSTM is superior to all

other methods.

Besides, for verifying the significance of each feature, we

make an ablation test on the features including PC, PeC, NNC,

and NNSL. In the ablation experiments, we remove a feature to

observe its effect on the identification of essential proteins.

Table 2 shows that NNSL takes the most crucial role

in prediction of essential proteins (lowest value marked in

bold). The score of accuracy, F-measure, and AUC will drop

dramatically without NNSL.

In this section, we compared our BiLSTM with the

traditional methods like DC, CC, BC, EC, NC, LAC, PeC,WDC,

and PSGN. For fair comparision, 20% of top ranked proteins

scored by classical methods are treated as the essential proteins,

the rest are regarded as non-essential proteins. Comparing with

the list of essential proteins, we can calculate the scores of

accuracy, precision, recall, F-measure and AUC of each method.

As the experimental results shown in Table 3, we can find

that the scores of our BiLSTM in terms of precision, recall,

F-measure, and AUC are significantly higher than the results

TABLE 2 Experimental results for ablation test.

Features Accuracy Precision Recall F-measure AUC

Without PC 0.7409 0.4615 0.4918 0.476 0.6556

Without NNSL 0.7222 0.4111 0.5086 0.4547 0.6469

Without PeC 0.7242 0.3833 0.5769 0.4606 0.6694

Without NNC 0.7311 0.4491 0.5637 0.5000 0.6736

Without PSGN 0.7340 0.4688 0.5674 0.5134 0.6781

BiLSTM 0.7369 0.4803 0.5742 0.5231 0.6829

TABLE 3 Comparison of performance between our proposed

non-local GNN and other classical methods.

Method Accuracy Precision Recall F-measure AUC

DC 0.7335 0.4050 0.3470 0.3737 0.5977

CC 0.7150 0.3580 0.3067 0.3304 0.5716

BC 0.7139 0.3550 0.3041 0.3276 0.5699

EC 0.7194 0.3690 0.3161 0.3405 0.5777

LAC 0.7563 0.4630 0.3967 0.4273 0.6299

NC 0.7469 0.4390 0.3761 0.4051 0.6166

PeC 0.7555 0.4610 0.3950 0.4254 0.6288

WDC 0.7630 0.4800 0.4113 0.4430 0.6394

PSGN 0.7614 0.4771 0.4301 0.4524 0.6450

LSTM-AM 0.7340 0.4688 0.5674 0.5134 0.6781

BiLSTM 0.7369 0.4803 0.5742 0.5231 0.6829

Bold values mean best scores.

of DC, BC, CC, EC, NC, LAC, PeC, WDC, and PSGN, which

also illustrates the remarkable performance of our method for

identifying essential proteins.

3.2. Analyze biology significance of the
new proposed method

Human disease phenotypes share corresponding orthologs

in Yeast gene sets. The BiLSTM model, which was firstly

established based on Yeast gene sets, has been further validated

in human disease gene sets. In order to reasonably extrapolating

the proposed model in microbiota-diseases, genes known to

be associated formed a seed set. For the test of human

disease gene prediction, we collected sets of Yeast genes whose

human orthologs were linked to the same OMIM disease.

Human disease phenotypes from OMIM were collapsed into

major categories.

3.2.1. Identification of pan-cancer related
genes

In the experiments, we selected 10 kinds of cancers as the

research objects, including esophageal carcinoma, pancreatic

cancer, lung cancer (lung adenocarcinoma, lung squamous cell

carcinoma), breast invasive carcinoma, colon adenocarcinoma,

rectum adenocarcinoma, cholangiocarcinoma, gastric cancer

and ovarian cancer, which can be obtained from the TCGA

dataset. Due to the duplications of pathogenic genes between

cancers, a total of 17,126 pathogenic genes were obtained after

weight removal.

We believed that the common ancestor genes were similar

in expression, so we did homology mapping on the background

PPI network to find the homologous genes of human genes

and Yeast genes. Then we take these genes as seed genes,

a total of 1,166 homologous genes were found. Besides, we

collected a total of 1,166 proteins expressed by seed genes

and obtained the protein-protein interaction network using the

STRING database. As it is shown in Figure 8A, it can be found

that the corresponding Yeast proteins have a strong correlation

with each other, which lays a foundation for our subsequent

experiments. Through inputting the seed genes combined with

the constructed PSGN features into the proposed BiLSTM

algorithm, potential genes which are similar to seed genes

will be predicted with corresponding scores. Predicted genes

with score greater than 8 were screened out and regarded as

candidate genes. By homologous mapping candidate genes, the

homologous genes of these genes in human were found as the

final predicted genes, and a total of 365 final predicted genes

were obtained which is shown in Figure 8B. To further validate

the biological significance of the predicted cancer related genes,

we conducted a series of biological analysis like GO enrichment
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A B

FIGURE 8

We found a total of 1,166 proteins expressed by seed genes and obtained the interaction network between these Yeast proteins screening in the

background Yeast PPI network. (A) Generated Yeast protein interaction network. (B) Clustered protein interaction network with nine

communities.

analysis, KEGG pathway analysis, clustering analysis in the

following sections.

3.2.2. GO enrichment analysis

For the GO items, we analyzed the relationships of

final predicted genes with pan-cancers. According to the

ranking of the error rate (FDP), 10 functional annotations

with the largest statistical significance were obtained from

Biological Process (BP), Cellular Component (CC) and

Molecular Function (MF) three branches of GO datasets.

As is shown in Table 4, we can find that genes are highly

correlated with several important biological processes such as

transcription, mRNA splicing, rRNA binding and processing,

and cytokinesis, which proved the inner correlations with

these predicted genes. What’s more, the occurrence sites also

involve several cellular sites such as nucleoplasm, ribosome and

cytosols, which indicates that these predicted genes are highly

related to cell development and possibility with the growth

of tumors.

Besides, during clustering analysis, eight modular

subneworks M0 to M7 enriched in much more CGC genes

with higher compactness structures are showed in Figure 9A.

Specifically, we find that six of our predicted pan-cancer related

genes are enriched in these modulars. Besides, for each module

of gene lists, pathway and process enrichment analysis has been

carried out with the ontology sources. The results are showed in

Figure 9B.

3.2.3. KEGG pathway enrichment analysis

By KEGG pathway enrichment analysis of the predicted

genes, we obtained five pathways with the highest correlation

with these genes like Proteasome (map03050), Valine, leucine

and isoleucine degradation (map00280), Terpenoid backbone

biosynthesis (map00900), Mismatch repair (map03430),

and Glutathione metabolism (map00480). Among these

pathways, the proteasome pathway was the most enriched

pathway, which are usually used as an inhibitor in the

cancer therapy.

3.2.4. Survival analysis

To verify the biological significance of the experimental

results, we conducted further survival analysis. As shown in

Figure 10, EIF4A3, NHP2L1, and UBA52 are the three genes

with the highest moderate prediction of human genes, which

are closely related to RNA metabolic function. Here, we carried

out a survival analysis of these three genes, respectively, and

it can be seen from the results that all these three genes have

a significant impact on the survival time of Bladder urothelial

carcinoma (BLCA) patients, which verifies the performance of
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TABLE 4 Ten functional annotations with the largest statistical significance for three branches in GO database.

Category Term Function p-value FDR

BP GO:0006412 Translation 4.59573E-17 3.92797E-20

GO:0000398 mRNA splicing via spliceosome 1.06421E-14 1.81916E-17

GO:0061640 Cytoskeleton-dependent cytokinesis 2.2982E-11 5.89282E-14

GO:0006749 Glutathione metabolic process 7.84992E-10 2.68373E-12

GO:0006364 rRNA processing 1.48788E-09 6.35848E-12

GO:0002181 Cytoplasmic translation 2.12271E-09 1.25302E-11

GO:0034613 Cellular protein localization 2.12271E-09 1.27E-11

GO:1903241 U2-type prespliceosome assembly 4.36481E-08 2.98449E-10

GO:0006351 Transcription, DNA-templated 2.9991E-07 2.307E-09

GO:0016575 Histone deacetylation 4.39654E-07 3.75773E-09

CC GO:0005654 Nucleoplasm 1.91891E-33 5.1171E-36

GO:0005829 Cytosol 1.29113E-15 8.91902E-18

GO:0005940 Septin ring 1.29113E-15 1.72151E-17

GO:0032153 Cell division site 1.29113E-15 1.72151E-17

GO:0031105 Septin complex 1.29113E-15 1.72151E-17

GO:0071005 U2-type precatalytic spliceosome 1.28732E-14 2.05972E-16

GO:0005681 Spliceosomal complex 3.15875E-13 5.89633E-15

GO:0005840 Ribosome 3.95972E-12 8.44741E-14

GO:0046540 U4/U6× U5 tri-snRNP complex 5.04467E-11 1.21072E-12

GO:0005666 DNA-directed RNA polymerase III complex 4.88524E-10 1.30273E-11

MF GO:0003735 Structural constituent of ribosome 5.78912E-16 3.91157E-18

GO:0003899 DNA-directed 5’-3’ RNA polymerase activity 7.15936E-13 7.2561E-15

GO:0005515 Protein binding 1.02098E-11 1.3797E-13

GO:0060090 Binding, bridging 5.14905E-09 8.69772E-11

Proton-transporting ATP synthase activity,

GO:0046933 Rotational mechanism 1.20677E-06 2.44616E-08

GO:0003743 Translation initiation factor activity 1.45514E-06 3.44121E-08

GO:0000340 RNA 7-methylguanosine cap binding 1.51118E-06 4.08426E-08

GO:0050291 Sphingosine N-acyltransferase activity 1.71826E-06 5.22443E-08

GO:0015179 L-amino acid transmembrane transporter activity 2.08402E-06 7.04059E-08

GO:0019843 rRNA binding 2.57108E-05 9.55469E-07

the new proposed prediction method from the respective of

homologous matching.

4. Conclusion

High-throughput techniques and machine learning

approaches, combined with an increasing understanding of

the microbiota and their collective genome from preclinical

and large-scale clinical studies, offer exciting opportunities

for modernizing microbe-based strategies from untargeted to

precision microbiome-centered therapies. Essential proteins

have drawn attention for their crucial roles in controlling

signal transduction, individual variation in treatment response,

and a wide range of other microbiome-related processes. The

properties and purposes of biological data used to identify

critical proteins are explored in this study. In light of the

findings, we suggest a linear adaptive model PSGN, which

may adaptively modify the weights for balancing each type

of biological or topological property. We have demonstrated

that the NNSL feature is significantly more important than

other features through experimental validation. Moreover,

the new algorithm PSGN improved the ability to represent

features discriminatively. In the experiments, we first contrasted

the PSGN with established methods including PageRank,

DC, BC, CC, EC NC, LAC, PeC, and WDC. The results

demonstrated that PSGN outperforms the other approaches

in terms of overall performance. Furthermore, we evaluate

our BiLSTM with machine learning methods and the most

recent deep learning-based methods. The results of experiments
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A B

FIGURE 9

Clustering analysis for matched homologous genes in human. (A) Topological organization for eight modular sub-networks marked with

di�erent colors. (B) Enrichment biological functions of pan-cancer sub-networks. Each row represents a GO BP term and each column

corresponds to a pan-cancer sub-network for each subnetwork.

A B C

FIGURE 10

Survival analysis of three genes with the highest moderate prediction of human genes, which are closely related to RNA metabolic function for

Bladder urothelial carcinoma (BLCA) patients. (A) EIF4A3, (B) NHP2L1, and (C) UBA52.

may potentially establish the capability of the new proposed

BiLSTM. Our suggested models for biological information have

considerable generality, making them suitable for integrating

almost all biological features. In the future, we will continue

to test and search for more suitable biological information for

identifying essential proteins in more species.
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Since the outbreak of COVID-19, hundreds of millions of people have been

infected, causing millions of deaths, and resulting in a heavy impact on

the daily life of countless people. Accurately identifying patients and taking

timely isolation measures are necessary ways to stop the spread of COVID-

19. Besides the nucleic acid test, lung CT image detection is also a path to

quickly identify COVID-19 patients. In this context, deep learning technology

can help radiologists identify COVID-19 patients from CT images rapidly. In

this paper, we propose a deep learning ensemble framework called VitCNX

which combines Vision Transformer and ConvNeXt for COVID-19 CT image

identification. We compared our proposed model VitCNX with E�cientNetV2,

DenseNet, ResNet-50, and Swin-Transformer which are state-of-the-art deep

learning models in the field of image classification, and two individual models

which we used for the ensemble (Vision Transformer and ConvNeXt) in binary

and three-classification experiments. In the binary classification experiment,

VitCNX achieves the best recall of 0.9907, accuracy of 0.9821, F1-score of

0.9855, AUC of 0.9985, and AUPR of 0.9991, which outperforms the other

six models. Equally, in the three-classification experiment, VitCNX computes

the best precision of 0.9668, an accuracy of 0.9696, and an F1-score of

0.9631, further demonstrating its excellent image classification capability. We

hope our proposed VitCNX model could contribute to the recognition of

COVID-19 patients.
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Introduction

In March 2020, the World Health Organization declared

COVID-19 as an international pandemic disease due to its

rapid and strong transmission (Cascella et al., 2022). Until

22 April 2022, the pandemic has caused about 6.213 million

deaths worldwide, over 505.8 million people have been infected

with this virus, and there are up to ∼700 thousand new cases

within 24 h of that time (Geneva: World Health Organization,

2020; Wang et al., 2021). Different from SARS, the new

coronavirus did not disappear quickly or cause limited losses

(Stadler et al., 2003). On the contrary, its Delta and Omicron

variants induced new pandemics worldwide after multiple

mutations (Vasireddy et al., 2021; V’kovski et al., 2021; Yu

et al., 2021; Del Rio et al., 2022). It has also caused a sustained

impact on the global economy. Long-term shutdowns left many

people unemployed.Many countries enforced lockdowns during

periodical outbreaks, which resulted in a global economic

recession (Alshater et al., 2021; Padhan and Prabheesh, 2021).

Although vaccines have been researched and developed to

prevent COVID-19 transmission to a certain extent, there is still

a need to adopt various methods to detect the virus and prevent

its spread.

As a highly contagious respiratory disease, the clinical

symptoms of COVID-19 are similar to the common flu and

common pneumonia, for instance, coughing, dyspnea, dizziness,

and some mild symptoms (Zhang et al., 2020). But the patient

infected by the novel coronavirusmay deteriorate into fatal acute

respiratory distress syndrome in a very short period of time

(Guan, 2020). As a result, it greatly increases the difficulty of

its early detection and places higher demands on the healthcare

system for its treatment. Therefore, the efficient and accurate

identification of COVID-19 in patients has become a key to

preventing its spread. The nucleic acid test is currently the most

widely used due to its high accuracy, simple operation, and low

cost (Tahamtan and Ardebili, 2020). But the paucity of standard

laboratory environments with specially trained staff has limited

the entire testing process.

As an alternative, the non-invasive detection technology,

Computed Tomography (CT) provides a new rapid detection

method for detecting COVID-19. After the patient has

undergone a lung CT scan, experienced radiologists can quickly

find typical lesions in the patient’s lungs, such as ground-glass

opacity, consolidation, and interlobular interstitial thickening by

reading the CT images (Chung et al., 2020; Xu et al., 2020). We

can also detect COVID-19 in a short time by combining patients’

clinical symptoms and investigating recent social situations

using epidemiological survey methods. It can help medical

workers and epidemic management departments to quickly deal

with patients and deploy new prevention and control strategies,

and thus intervene in the treatment of patients as early as

possible to control its contagion.

However, during the initial stage of the epidemic outbreak,

the massive influx of patients often means medical staff and

healthcare professionals have to work 24 h a day, which has a bad

effect on the physical and mental health of doctors and affects

the accuracy and efficiency of the medical diagnosis (Zhan

et al., 2021). Alternatively, artificial intelligence technology

is a quite efficient strategy and obtains wide application in

various fields (Chen et al., 2019; Liu et al., 2021a, 2022a,b; Tang

et al., 2021; Wang et al., 2021; Zhang et al., 2021; Liang et al.,

2022; Sun et al., 2022; Yang et al., 2022), and can be used to

complement the work of radiologists. It can efficiently assist

medical staff in judging symptoms, for example, pre-classifying

pathological images or predicting sampling results, and thus

can greatly reduce their working intensity. Particularly, deep

learning has achieved optimal performance in medical image

processing (Munir et al., 2019). For instance, Sohail et al.

(2021) used a modified deep residual neural network to detect

pathological tissue images of breast cancer and implemented

automated tumor grading by detecting cell mitosis. Similarly,

Codella et al. (2017) introduced a deep ensemble model

for pathological image segmentation of skin cancer and the

detection of melanoma to improve the detection efficiency of

skin cancer. Dou et al. (2016) established a three-dimensional

multi-layer convolution model to detect pulmonary nodules in

lung stereoscopic CT images, thereby reducing the false positive

rate of automated pulmonary nodule detection. Farooq and

Hafeez (2020) proposed a ResNet-based COVID-19 screening

system to assist radiologists to diagnose. Aslan et al. (2021)

developed a new type of COVID-19 infection detection system

based on convolutional neural networks (CNN) by combining

the long short-term memory (LSTM) network model. These

methods effectively improved the identification performance of

COVID-19-related CT images. In this paper, we propose a deep-

learning ensemble model by integrating Vision Transformer

(Dou et al., 2016) and ConvNeXt (Liu et al., 2022c) to effectively

improve the prediction accuracy of COVID-19-related

CT images.

Materials and methods

Materials

We constructed a comprehensive dataset by integrating and

screening data from three lung CT datasets (Soares et al., 2020;

Yang et al., 2020). Dataset 1 contained a total of 4,171 images,

where 2,167 images were from COVID-19 patients, 757 were

from healthy people, and 1,247 were from other pneumonia

patients. Dataset 2 contained a total of 2,481 images, where

1,252 images were from COVID-19 patients, and 1,229 were

from healthy people; both datasets 1 and 2 were from São Paulo,

Brazil. Dataset 3 was fromWuhan, China, and included 746 CT
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images, of which 349 were from COVID-19 patients and 397

were from healthy people. Using these datasets we constructed

an integrated dataset with a total of 7,398 CT images, which

had 3,768 CT images of COVID-19 patients, 2,383 healthy CT

images, and 1,247 CT images of other pneumonia patients.

Methods

We investigated various CNN and transformer models and

chose Vision Transformer and ConvNeXt as the basic classifier

of the ensemble model.

Vision transformer

Transformers have been widely used in the natural language

processing field since it was proposed in 2017 (Vaswani et al.,

2017). It constructs basic decoder units by connecting the

feed-forward neural network and the self-attention mechanism

(Bahdanau et al., 2014), as well as adding an encoder-

decoder self-attention layer between the two network structures.

It creates a brand-new structure that differs from CNN

while obtaining relatively high accuracy. The self-attention

mechanism used in the transformer first converts the input text

into an embedding vector based on word embedding progress.

Next, the obtained embedding vectors are used as inputs (named

Queries, Keys, and Values) of the self-attention mechanism by a

series of multiplication operations. Finally, the output of the self-

attention layer is computed using Equation (1) and is fed to the

next fully connected layer.

Attention (Q,K,V) = softmax

(

QKT

√

dk

)

V (1)

dk = dim (K)

In 2020, Dosovitskiy et al. built Vision Transformer for

image classification. It achieved powerful classification ability

comparable to the top CNN models on multiple datasets

(CIFAR-100, ImageNet, etc.) (Dosovitskiy et al., 2020).

As shown in Figure 1, the main architecture of the Vision

Transformer model is mainly composed of three parts: First is

the embedding layer which is used to convert an image into

a vector that the transformer encoder can recognize. It also

plays a role in embedding position information. The second

is the transformer encoder layer which is used to extract

features. Finally, a multi-layer perceptron head is used to feature

dimension reduction and classify images.

The embedding layer

We used Vision Transformer-B/16-224 to classify COVID-

19-related images. The procedure for embedding the layer

is shown in Figure 2. First, an original image is resized to

the following dimensions: 224∗224∗3. Second, the image is

segmented into blocks of 16∗16∗3 according to the VIT-B/16-

224 configuration, thereby generating 14∗14 = 196 (224/16 =

14) blocks. Third, each block is mapped on a 768-dimensional

vector through linear mapping. Finally, a matrix of 196∗768 size

is obtained as the basic input token.

In the original transformer model, all vectors need to embed

position vectors to represent the spatiotemporal information

of the original input. Similarly, Vision Transformer takes the

location information as a trainable parameter and adds it to

the token after the image is converted into a vector. The token

is extended by one dimension, and a trainable parameter that

represents the class or label is added to this new dimension to

represent the original class or label of the token for training. The

obtained final vector is input into the Transformer Encoder as

a token.

Transformer encoder layer

As shown in Figure 3, the encoder layer mainly includes

layer normalization (LN), multi-head attention (MHA) block,

dropout, and multi-layer perceptron (MLP) block. The core of

this structure is the parallel attention mechanism processing

layer called multi-head attention. First, the input token matrix is

normalized through layer normalization. Second, three matrices

Q, K, and V are obtained by multiplying WQand WK , which

are the same as the self-attention module. Third, Q, K, and

V are divided into a matrix equal to the number of heads h

by multiples ofW
Q
i ,W

K
i ,W

V
i . The corresponding Qi, Ki, Vi

matrix of each head is then used to compute the respective

attention score using Equation (2):

headi = Attention
(

QW
Q
i ,KW

K
i ,VW

V
i

)

(2)

W
Q
i ∈ R

dmodel×dq ,WK
i ∈ R

dmodel×dk ,WV
i ∈ R

dmodel×dv ,

dq = dk = dv = dmodel/h

Finally, the output of the MHA layer is obtained by

concatenating all heads and multiplying a matrix-like full

connection using Equation (3):

MultiHead(Q,K,V) = Concat
(

head1, . . . , headh
)

Wo (3)

Wo
∈ R

hdv×dmodel

The output of the entire transformer encoder layer can be

obtained through a residual connection both before and after the

MHA andMLP layers. And the encoder layer of the entire model

is usually formed by stacking multiple transformer encoders.

MLP head

The main role of the MLP head is to obtain the high-

dimensional features and obtain the final classification result.
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FIGURE 1

Concise structure of Vision Transformer.

FIGURE 2

Structure of embedding layer in Vision Transformer. The darker green wider rectangles represent the flattened feature vector of each block of an

image, while the pink wider rectangles represent the feature vectors corresponding to classes, and the brown narrower rectangle represents the

spatiotemporal information of the image.

The outputs of the transformer encoder layer (197∗768 in VIT

B16/224) are used to compute the classification probability of an

image. That is, the output of the transformer encoder layer is

a 197∗768 matrix, whose sizes are the same as the input of the

transformer encoder layer. Finally, only one 768-dimensional

vector is used as the input for the MLP head to obtain the

classification result of an image corresponding to the matrix.

ConvNeXt

CNN is a classic neural network structure. Lenet was used

for handwritten digit recognition as the earliest convolutional

neural network model (LeCun et al., 1989). Due to the

limitation of the lack of computer performance and the

difficulty of collecting large-scale datasets in the 1990s, CNN

did not achieve outstanding results in the 20 years that followed.

In 2012, Krizhevsky et al. (2012) proposed the AlexNet CNN

model, which defeated all image classification models at the

ILSVRC2012 competition (Russakovsky et al., 2015). The

following CNN models, for instance, VGGNet (Simonyan

and Zisserman, 2014) and GoogleNet (Szegedy, 2015),

have become prevalent in many AI application fields. The

concept of residual and bottleneck layer proposed by the

ResNet (He et al., 2016) model in 2015 again improved the

performance of CNN. It effectively avoids the gradient problem

caused by deeper layers. The generative adversarial network

(GAN) proposed by Goodfellow et al. (2014) divided the

network into two parts including generation and discriminator

based on game theory to achieve better performance through

iterative evolutions.

Since the transformer structure came into being in 2020,

CNN has not become obsolete. On the contrary, the ConvNeXt

network was introduced. ConvNeXt absorbs the advantages

of multiple transformer structures in the network structure

setting and parameter selection. It outperformed the most

powerful transformer model named swin-transformer (Liu

et al., 2021a,b) on the ImageNet-1K dataset by adjusting

training parameter settings, optimizer, and convolution

kernel sizes.

As shown in Figure 4, ConvNeXt has a pretty concise

structure. Its performance is greatly improved to the original

ResNet although it is quite similar to ResNet. Moreover, it not
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FIGURE 3

Structure of encoder layer in Vision Transformer.

FIGURE 4

Concise structure of ConvNeXt.

only demonstrates better performance than many classic CNN

models but also outperforms many transformer models.

First, ConvNeXt starts training ResNet-50 using techniques

similar to training transformer models, such as better

optimizers, more efficient hyper-parameter settings, and

new data augmentation methods. Second, various new

optimization strategies are gradually applied to optimize the

model, for instance, setting new layer numbers and larger

convolution kernels. And eventually, ConvNeXt outperforms

the transformer model on the ImageNet-1K dataset.

The overall structure of ConvNeXt is very similar to ResNet-

50. It includes the feature extraction layer of the head, the

Frontiers inMicrobiology 05 frontiersin.org

97

https://doi.org/10.3389/fmicb.2022.1024104
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tian et al. 10.3389/fmicb.2022.1024104

middle layer where the bottleneck structure of four different

dimensions is separately stacked, and the final high-dimensional

feature classification layer. However, the strategy of stacking

and the interior of each layer has undergone several changes.

The changes include: (i) In each stage of the original ResNet-

50, the stacking number of each block is 3:4:6:3; in ConvNeXt

this has been revised to 3:3:9:3, which is similar to the block

stacking of the transformer model. (ii) In the block of ResNet-

50, the bottleneck design is to reduce the dimension first, then

feature extraction, and finally increase the dimension. However,

as shown in Figure 5, the bottleneck in ConvNeXt is designed

to run feature extraction first, then reduce the dimension, and

finally increase the dimension. (iii) It has modified the size of

the convolution kernel to 7∗7 from the ResNet 3∗3. (iv) Its

activation function has also been replaced from ReLU to GELU,

and cut back the usage count of activation functions. (v) Its

normalization has changed to layer normalization from batch

normalization as well as reduced usage count of normalization.

The performance of ConvNeXt has gradually improved and

even outperforms the VIT through the above five strategies

and a few other settings including new parameters, structures,

and functions.

Ensemble

As shown in the pipeline in Figure 6, we can obtain the

final classification results by integrating the results of the

Vision Transformer and ConvNeXt based on the soft voting

mechanism using Equation (4):

Sf = αSv + (1− α) Sc (4)

Where S v and S c denote the classification scores from

Vision Transformer and ConvNeXt for all images, respectively.

FIGURE 5

Di�erences between ConvNeXt and ResNet in bottleneck.
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FIGURE 6

Pipeline of ViTCNX.
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Results

Experimental evaluation and parameter
settings

We used six metrics to evaluate the performance of all

classification models, that is, precision, recall, accuracy, F1-

score, AUC, and AUPR. These six evaluation metrics are defined

as follows:

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

F1− Score =
2∗Precision∗Recall

Precision+ Recall
(8)

TPR (Ture Positive Rate) =
TP

TP+ FN
(9)

FPR
(

False Positive Rate
)

=
FP

TN+ FP
(10)

AUC is the area under the TPR-FPR curve. AUPR is the

area under the precision-recall curve. For COVID-19-related

image binary classification, precision means the proportion

of images that are COVID-19-related images in the dataset

and are predicted to be COVID-19-related among all the

predicted COVID-19 images. Recall represents the proportion

of images that are COVID-19-related images in the dataset

and are predicted to be COVID-19-related among all COVID-

19-related images in the dataset. Accuracy represents the

proportion that is correctly predicted. F1-Score, AUC, and

AUPR are comprehensive metrics that consider precision,

recall, and FPR.

To investigate the performance of our proposed ViTCNX

model in different classification situations, we conducted

experiments under binary classification and three-class

classification, respectively. In the ViTCNX, the dataset

was randomly initialized with seed = 8. ConvNeXt uses

ConvNeXt_tiny to construct and initialize parameters,

and its initial learning rate was set to 5e-4, and the initial

weight adopted the convnext_tiny_1k_224_ema. The Vision

Transformer uses vit_base_patch16 to construct and initialize

parameters, and its initial learning rate was set to 1e-3. It

adopted the initial weight vit_base_patch16_224_in21k. In

all image classification algorithms, the training epoch and

the batch size were set to 100 and 8, respectively. DenseNet,

ResNet-50, Swin Transformer, and EfficinetNetV2 used

densenet121, resnet50-pre, swin_tiny_patch4_window7_224,

and pre_efficientnetv2-s to initialize their weight parameters,

respectively. The corresponding learning rates were 1e-3, 1e-4,

1e-4, and 1e-3, respectively. ViTCNX used the same parameter

settings as individual Vision Transformer and ConvNeXt.

After comparing the image classification ability under different

TABLE 1 Performance of ViTCNX and the other six models under the

binary classification.

Metrics Precision Recall Accuracy F1-score AUC AUPR

EfficientNetV2 0.9920 0.3293 0.5875 0.4945 0.9609 0.9738

ConvNeXt 0.9650 0.9894 0.9715 0.9770 0.9952 0.9968

DenseNet 0.9788 0.9814 0.9756 0.9801 0.9973 0.9983

Swin

Transformer

0.9587 0.9548 0.9471 0.9568 0.9911 0.9945

ResNet-50 0.9892 0.9695 0.9748 0.9792 0.9970 0.9979

Vision

Transformer

0.9815 0.9854 0.9797 0.9834 0.9985 0.9990

ViTCNX 0.9803 0.9907 0.9821 0.9855 0.9985 0.9991

Bold values means the highest score under this metric.

values of α, we set α = 0.6 where ViTCNX computed the

best performance.

Binary classification for CT images

Under the binary classification of images, there were a total

of 6,151 CT images, including 3,768 CT images from COVID-

19 patients and 2,383 CT images from healthy individuals. The

6,151 images were divided into a ratio of 0.8:0.2. Consequently,

4,922 images were used as the training set, including 3,015

COVID-19-related images and 1,907 CT images from healthy

individuals. The remaining 1,229 images were used as the

test set, including 753 COVID-19-related CT images and 476

healthy images. We compared our proposed ViTCNX model

with four state-of-the-art image classification algorithms, that is,

DenseNet (Huang et al., 2017), ResNet-50, Swin Transformer,

and EfficinetNetV2 (Tan and Le, 2021). In addition, ViTCNX

was also compared with the two individual models it was

comprised of, that is, Vision Transformer and ConvNeXt. The

results are shown in Table 1. The bold font in each column

represents the best performance computed by the corresponding

method among the above seven methods. Table 1 and Figure 7

show the precision, recall, accuracy, F1-score, AUC, and AUPR

values and curves of these models.

From Table 1 and Figure 7, we can find that ViTCNX

obtained the best recall, accuracy, F1-score, AUC, and

AUPR, significantly outperforming the other six methods.

EfficientNetV2 achieved the best score of precision. This

result is consistent with the prediction results on the

confusion matrix. In the experiments, EfficientNetV2 computed

higher precision than ViTCNX. The reasons may be that

different models perform very differently on different parameter

settings, different datasets, and different sizes, which have a

significant impact on the classification performance of the

model. In particular, ViTCNX outperforms its two individual

models, Vision Transformer and ConvNeXt, demonstrating

that an ensemble of single classification models can improve

image identification performance. Figures 7B,C show the AUC
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FIGURE 7

(A) The performance comparison of VitCNX and six other models for COVID-19 in binary classification problems; (B,C) The AUC and AUPR

values of VitCNX and six other models for COVID-19 in binary classification problems.

and AUPR values obtained by the seven models. ViTCNX

outperforms the other six models, elucidating that it can

effectively classify related CT images as COVID-19-related

or not.

Three-classification for CT images

To further investigate the performance of the seven models

under the three-classification challenge, we considered a total

of 7,398 CT images, including 3,768 images from COVID-

19 patients, 2,383 from healthy individuals, and 1,247 from

other pneumonia patients. The 7,398 images were divided in

a ratio of 0.8:0.2, resulting in 5,920 images in the training

set and 1,478 images in the test set. The 5,920 images in the

training set consisted of 3,015, 1,907, and 998 images from

COVID-19 patients, healthy individuals, and other pneumonia

patients, respectively. The 1,478 images in the test set consisted

of 753, 476, and 249 images from COVID-19 patients, healthy

individuals, and other pneumonia patients, respectively. We
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trained ViTCNX and the other comparable models using the

training set and then evaluated their performance using the test

set. Table 2 and Figure 8 show the precision, recall, accuracy, and

F1-score values of ViTCNX and the other six models for the

three-classification situation.

From Table 2 and Figure 8, we can observe that ViTCNX

computed the best precision, accuracy, and F1-score,

greatly outperforming the other six models. Although it

calculated a relatively lower recall of 0.9597 than Vision

Transformer with a recall of 0.9599, the difference is very

minor. Particularly, compared with Vision Transformer,

ConvNeXt, DenseNet, ResNet-50, Swin Transformer, and

EfficientNetV2, ViTCNX computed a F1-score of 0.9631,

better by 0.04, 1.58, 1.89, 5.32, 6.74, and 64.11% than

the six models, respectively. These results demonstrate

that ViTCNX can more accurately classify CT images

from COVID-19, from other pneumonia cases, and

healthy individuals.

TABLE 2 Performance of ViTCNX and the other six models under

three classification.

Metrics Precision Recall Accuracy F1-Score

EfficientNetV2 0.7783 0.4188 0.4526 0.3221

ConvNeXt 0.9562 0.9397 0.9574 0.9473

DenseNet 0.9487 0.9402 0.9560 0.9442

Swin Transformer 0.9259 0.8754 0.9127 0.8957

ResNet-50 0.9369 0.8936 0.9317 0.9100

Vision Transformer 0.9657 0.9599 0.9689 0.9627

ViTCNX 0.9668 0.9597 0.9696 0.9631

Bold values means the highest score under this metric.

The confusion matrix analysis

We further evaluated the number of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN)

obtained by Vision Transformer, ConvNeXt, DenseNet, ResNet-

50, Swin Transformer, EfficientNetV2, and ViTCNX under

binary classification. Table 3 and Figure 9 present the statistical

data of TP, TN, FP, and FN from the above seven models for

binary classification. The importance of these four evaluation

metrics is not equal. For COVID-19 image recognition, TP

denotes the number of images that are COVID-19 images in

the dataset and are predicted to be COVID-19-related. FN

denotes the number of images that are COVID-19 images but

are predicted to be non-COVID-19-related. FN denotes that

there are undetected COVID-19 patients, which may cause the

spread of the pandemic. TP and FN are more important than the

other two metrics. Higher TP and lower FN represent the better

performance of ViTCNX.

TABLE 3 Statistics of ViTCNX and other six models for binary

classification.

Metrics TP TN FP FN

EfficientNetV2 248 474 2 505

ConvNeXt 745 449 27 8

DenseNet 739 460 16 14

Swin Transformer 719 445 31 34

ResNet-50 730 468 8 23

Vision Transformer 742 462 14 11

ViTCNX 746 461 15 7

Bold values means the highest score under this metric.

FIGURE 8

The performance of VitCNX and six other models for three-classification problem.
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FIGURE 9

The confusion matrix of results of VitCNX and six other models.
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FromTable 3 and Figure 9, we can observe that our proposed

ViTCNXmodel screens the most TP, and the least FN compared

to the other six models. Our proposed ViTCNXmodel computes

the highest TP of 746 and the lowest FN of 7 among 1,229 test

samples, demonstrating that it can most efficiently recognize

COVID-19-related images of COVID-19 patients.

Discussion and conclusion

With the rapid development of AI technology and high-

performance computing platforms, using deep learning models

to detect COVID-19 through lung CT images has become

a research hotspot. Not only because this method has a

higher performance and faster speed, but also lower time and

economic cost. In this paper, we proposed an ensemble deep

learning model (ViTCNX) to recognize COVID-19-related CT

images by combining Vision Transformer and ConvNeXt. We

compared ViTCNX with six other state-of-the-art deep learning

models (Vision Transformer, ConvNeXt, DenseNet, ResNet-

50, Swin Transformer, and EfficientNetV2). We conducted a

series of comparative experiments to evaluate the performance

of ViTCNX. The results show that ViTCNX computed the

best recall, accuracy, F1-score, AUC, and AUPR under binary

classification and the best precision, accuracy, and F1-score

under three-classification tests. Moreover, ViTCNX obtained

the highest TP and the lowest FN in binary classification. The

results show that our proposed ViTCNX model has powerful

COVID-19-related image recognition ability.

We adopted several techniques to reduce over-fitting. First,

we used three different datasets of COVID-19 to evaluate the

performance of ViTCNX. The three datasets were collected from

two different places (Wuhan, China, and São Paulo, Brazil).

We integrated the three different datasets into one dataset

to increase the differences in datasets and further enhance

the generalization performance of ViTCNX. Additionally, we

used techniques including layer normalization and dropout

to prevent over-fitting. The ensemble learning strategies also

helped to improve the model’s generalization ability and

reduce over-fitting.

There are two advantages of the proposed ViTCNX model:

First, the variance is reduced through the ensemble of multiple

models, thereby improving the robustness and generalization

ability of the model. Second, Vision Transformer and ConvNeXt

are greatly different in structure. An ensemble of them can

lower their correlation and further reduce the classification

error. Although ViTCNX obtains better performance, it does

increase a large number of training parameters, which increases

the training and testing time of the model and requires higher

computational resources.

In the future, we will continuously update data to build

larger COVID-19 datasets to enhance the generalization ability

of ViTCNX. We will also design a new deep learning

framework, adopt efficient training methods, and optimize

parameter settings to improve the prediction ability of the

model. Additionally, we will establish an automatic annotation

model to autonomously label hot spots. We anticipate that our

proposedViTCNXmodel can contribute to the clinical detection

of COVID-19.
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The global coronavirus disease 2019 (COVID-19) pandemic caused by the

severe acute respiratory syndrome coronavirus-2 (SARS-CoV) has led to a huge

health and economic crises. However, the research required to develop new

drugs and vaccines is very expensive in terms of labor, money, and time. Owing

to recent advances in data science, drug-repositioning technologies have

become one of themost promising strategies available for developing e�ective

treatment options. Using the previously reported human drug virus database

(HDVD), we proposed a model to predict possible drug regimens based on

a weighted reconstruction-based linear label propagation algorithm (WLLP).

For the drug–virus association matrix, we used the weighted K-nearest known

neighbors method for preprocessing and label propagation of the network

based on the linear neighborhood similarity of drugs and viruses to obtain the

final prediction results. In the framework of 10 times 10-fold cross-validated

area under the receiver operating characteristic (ROC) curve (AUC), WLLP

exhibited excellent performance with an AUC of 0.8828 ± 0.0037 and an area

under the precision-recall curve of 0.5277 ± 0.0053, outperforming the other

four models used for comparison. We also predicted e�ective drug regimens

against SARS-CoV-2, and this case study showed that WLLP can be used to

suggest potential drugs for the treatment of COVID-19.

KEYWORDS

COVID-19, drug repositioning, linear neighborhood similarity, label propagation,

WKNKN

1. Introduction

In November 2019, a novel coronavirus disease broke out in Wuhan, China,

for unknown reasons, which was named coronavirus disease 2019 (COVID-19) by

the World Health Organization (WHO) (Zhu et al., 2020). COVID-19 is caused

by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, seven

human coronaviruses (HCoV) have been identified, namely HCoV-229E, HCoV-OC43,
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HCoV-NL63, HCoV-HKU1, SARS-CoV, Middle East

respiratory syndrome (MERS) coronavirus (MERS-CoV),

and SARS-CoV-2. Specifically, HCoV-229E, HCoV-OC43,

HCoV-NL63, and HCoV-HKU1 are frequently found and

have low pathogenicity, generally causing only common cold

symptoms, whereas MERS-CoV and SARS-CoV are zoonotic

viruses that are first reported in the twenty-first century (Sohrabi

et al., 2020). SARS-CoV-2 is recognized as the most pathogenic

human coronavirus ever discovered (Guan et al., 2020). As of

September 2022, 613 million confirmed SARS-CoV-2 infections

were reported around the world, with nearly 6 million deaths

(Organization, 2020). Until now, there is no cure for COVID-19.

Despite substantial increases in investment by

pharmaceutical companies in response to COVID-19, the

successful development and approval of a new drug typically

requires billions of dollars and an average of 10 years (Liu S.

et al., 2020), with the disadvantages of being time consuming

(Pushpakom et al., 2019), expensive, and risky. Therefore, drug

repositioning (drug repurposing) has been identified as a viable

solution to improve the overall process of drug development,

especially following recent advances in information technology

and data science. The primary goal of drug repositioning is

the use of existing drugs to treat new symptoms. Compared

with traditional drug development methods, drug repositioning

can significantly reduce research and development time and

costs while minimizing risks. In short, drug repositioning is

considered a promising strategy to accelerate the development

of COVID-19 therapeutics.

As Xue et al. (2018) described, current work on drug

repositioning is supported by various prediction models, among

which the association prediction models for computational drug

repositioning applicable to COVID-19 can be broadly classified

into the following three categories (Dotolo et al., 2021): (I)

network-basedmodels, (II) artificial intelligence algorithms, and

(III) matrix completion.

Network-based approaches construct heterogeneous

networks by integrating multiple data to predict drug–

virus associations. Such approaches are mostly based on

the assumption that drugs with similar functions are often

associated with viruses having similar phenotypes (Chen et al.,

2018b). Prediction approaches based on complex networks (Liu

et al., 2022b) have important and widespread applications in

drug repositioning because of their ability to integrate multiple

datasets of interest (Fan et al., 2020; Zhou et al., 2020). More

specifically, network nodes represent drugs, diseases, viruses,

or genes, while edges represent interactions or relationships

between nodes (Re and Valentini, 2013; Chen et al., 2015).

The obtained predictions may contribute to the process of

structure-directed drug and diagnostic research and help to

identify new potential biological targets (Barlow et al., 2020). In

this regard, there are two network-based approaches applicable

to drug repositioning for COVID-19: the network-based

clustering approach and the network-based propagation

approach. Macropol et al. (2009) proposed the repeated random

walks (RRW) method that uses RRW on the protein–protein

interaction (PPI) network for local clustering of the network and

then predicts some protein complexes. Although this was found

to be a precise and general approach, it requires a great deal

of time and memory overhead and cannot detect overlapping

clusters. King et al. (2012) introduced a new model named

restricted neighborhood search clustering (RNSC), which is a

global network algorithm for identifying protein clusters on

PPI networks. It considers both global and local information

from the network and can also detect overlapping clusters, but

some information may be lost if the cluster size is too small. Luo

et al. (2016) proposed the bidirectional random walk (BiRW)

algorithm for predicting relationships between diseases and

drugs. It uses the similarity of diseases and drugs with the

original correlation matrix to form a heterogeneous network

and then clusters this network by a double random walk. The

resulting prediction is accurate, but more biological information

is needed to improve the confidence of the similarity metric.

In addition to the network clustering approach, Vanunu et al.

(2010) proposed an overall propagation algorithm called

PRINCE, which combines weighted PPI and disease similarity

networks for overall disease gene ranking and protein complex

association inference. An integrated propagation method for

predicting propagation strategies in different sub-networks was

proposed by Martinez et al. (2015) and named DrugNet. Zhang

et al. (2017b) developed the linear neighborhood similarity

(LNS) method to calculate drug–drug similarities in the drug

characteristic space. Peng et al. (2021), in response to COVID-

19, combined the virus–drug association network topology and

a random walk with restart method (VDA-RWR) to predict

potential drug–virus associations using a 2× 2 similarity matrix

and known associations between drugs and viruses. Zhang et al.

(2021b) developed a network distance analysis model for the

prediction of lncRNA–miRNA association (NDALMA). It is

worth mentioning that the primary approach in recent years has

been to update the network mainly by similarity and network

inference (Zhang et al., 2021a; Liu et al., 2022a).

For drug repositioning, artificial intelligence-based models

mainly use machine learning methods. Numerous common

machine learning algorithms have been applied to predict

potential therapeutic agents, such as decision trees (Chen

et al., 2019b) and Laplacian regularization (Chen and Huang,

2017). The influence of deep learning models that belong

to machine learning has been particularly remarkable (Chen

et al., 2019a, 2021a; Keshavarzi Arshadi et al., 2020). In

terms of prediction, graph convolutional neural networks

(GCNNs) are the most popular tools for drug discovery

applications because they can process graphs and extract

features by encoding adjacency information within features to

learn representations from molecules. Based on drug-target

interactions in this model, Torng and Altman (2019) made

correlation predictions. In recent years, sequence-based models,
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such as genomics, proteomics, and transcriptomics, have also

attracted considerable attention. Vaswani et al. (2017) and

Devlin et al. (2018) advanced a transformer model for extracting

features from sequences through the attention mechanism and

self-supervision, which are widely used in the field of natural

language processing. Moreover, Shin et al. (2019) demonstrated

that drug-target interactions can be predicted by using the

transformer model. Pollastri et al. (2002) demonstrated that

recurrent neural networks (RNNs) and long short-termmemory

(LSTM) networks can predict the secondary structure of

molecular or protein sequences. Through an ensemble strategy

of three mainstream machine learning algorithms, Hu et al.

(2018) proposed a model named HLPI-Ensemble that was

specifically designed for human lncRNA–protein interactions.

Matrix completion mainly relies on the matrix decomposition

algorithms (Chen et al., 2018a,c). Specifically, these algorithms

decompose a matrix into two lower-order potential factor

matrices based on known association matrices of diseases and

drugs (Liu H. et al., 2020). Gönen (Gönen, 2012) put forward

a prediction method by using Bayesian probabilistic matrix

factorization (BPMF) based on chemical and nuclear genomes.

Yang et al. (2019) developed a model based on bounded nuclear

norm regularization for drug repositioning. Considering the

similarity information between drugs and diseases, Meng et al.

(2021) proposed a method called similarity-constrained PMF

(SCPMF) to examine the potential value of existing drugs. Liu

et al. (2022b) proposed a new computational method via deep

forest ensemble learning based on an autoencoder (DFELMDA)

to predict miRNA–disease associations.

The novel similarity measure of LNS proposed by Zhang

et al. has been successfully applied to several bioinformatics

problems (Zhang et al., 2017a, 2018a). In this method, the data

points are reconstructed by linear neighborhood information

and are used to measure the similarity between two points in the

association network. Inspired by this, we applied this similarity

measure to our model. In recent years, label propagation has

been widely used for biological association prediction owing to

its various advantages, such as simple logic algorithm and fast

optimization. Thus, we adopted the label propagation method

for network propagation of the drug–virus association matrix.

Herein, we reported on the development of amethod termed

label propagation through linear neighborhood similarity for

the prediction of undetected drug–virus associations. More

specifically, we represented drugs or viruses as feature vectors

and treated them as data points in the feature space, from

which we computed pairwise linear neighborhood similarities

between drugs and drugs or between viruses and viruses.

The computed drug and virus similarities and the known

disease–virus association networks were treated as a weighted

directed graph, which was then input to the label propagation

algorithm. Each drug–virus interaction was scored using the

label propagation method. Experiments showed that the WLLP

model offered superior prediction results when compared

with other models, with an area under the receiver operating

characteristic (ROC) curve (AUC) of 0.8828 in the framework

of 10 times 10-fold cross-validated.

2. Materials and methods

2.1. Experimental data

2.1.1. Human drug virus database

The collection of data concerning viruses, drugs, and drug–

virus associations is a crucial precursor to using bioinformatics

methods to predict novel drug–virus associations. Moreover,

systematic collection and management of relevant information

are important for further studying the mechanism of virus

action (Wang et al., 2021). Meng et al. (2021) collected a

large number of experimentally validated drug–virus interaction

entries from the literature by using text mining techniques and

then constructed the HDVD, which is a database of human

drug–virus associations. The HDVD includes 34 viruses, 219

drugs, and 455 confirmed human drug–virus interactions.

2.1.2. Construction of the drug–virus
interaction network

From the HDVD dataset, we constructed an association

network using known drug–virus interactions, where the points

represent the drugs and viruses and the edges represent drug–

virus associations. Let G = (D,V , I) represents the drug–virus

association network, where D = {d1, d2, . . ., dn} represents the

known drugs in the dataset, V = {v1, v2, . . ., vm} represents the

known viruses in the dataset, and I represents the interaction

relationship between D and V . Let An×m represents the

adjacency matrix of graph G. If di and vj are related, Aij = 1;

otherwise,Aij = 0. Also, letAT represent the inversion ofAn×m.

2.1.3. Chemical structure similarity of drug pairs

The chemical structure similarity between two drugs can

be calculated from their molecular structure information. In

the current study, we downloaded the chemical structure

information of drugs from the DrugBank database in the

SMILES format (Öztürk et al., 2016) and then calculated their

molecular access system (MACCS) fingerprints (O’Boyle et al.,

2011). Finally, we used the Tanimoto index to measure the

absolute similarity between two molecules (Bajusz et al., 2015).

Specifically, we set two drug molecules as A and B, respectively,

a is the number of bits in molecule A, and b is number of bits in

molecule B. c is the number of bits that are in both molecules.

The formula is as follows:

T = c/(a+ b− c) (1)

We used this formula to construct the drug chemical

structure similarity matrix DDn×n. This is a two-dimensional
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matrix whose values represent the chemical fingerprint

scores between drugs. In general, the size of this score is

between 0 and 1, with larger values representing greater

drug–drug similarity.

2.1.4. Genomic sequence similarity of virus
pairs

The sequence similarity between viruses can be calculated

from their genomic nucleotide sequences. We downloaded the

FIGURE 1

Flowchart of the weighted reconstruction-based linear label propagation algorithm (WLLP) framework for drug–virus association prediction.
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genomic nucleotide sequences of viruses from the National

Center for Biotechnology Information (Wheeler et al., 2002). To

calculate the sequence similarity, we used the multiple sequence

alignment program MAFFT on account of its high performance

(Katoh and Standley, 2013). Finally, the virus sequence similarity

matrix VVm×m was constructed, which is a two-dimensional

matrix whose values represent the sequence similarity between

viruses. In general, the value of this matrix is between 0 and 1,

and larger values represent greater virus–virus similarity.

2.2. Methods

2.2.1. Overview of WLLP

In this study, we developed the WLLP framework

for predicting disease–virus associations based on LNS in

conjunction with label propagation. As shown in Figure 1,

the framework consists of three main steps: (I) Label set

preprocessing: considering the sparse nature of the drug–virus

interaction matrix, we introduced the weighted K-nearest

known neighbors (WKNKN) algorithm to make a correction

for the potential interactions between the drugs and viruses. (II)

LNS information for the drugs and viruses was mined separately

based on drug–virus interaction information. (III) Label

propagation: a weighted directed graph consisting of known

association information, drug–drug LNS, and virus–virus LNS

matrices was constructed, and the drug label information was

iteratively updated by the label propagation algorithm to reveal

unknown potential drug–virus associations.

The flowchart of the WLLP algorithm is shown in

Algorithm 1. The details of the principle and process of each

WLLP module are described in the following sections.

2.2.2. WKNKN

Because it is hard to construct expression datasets, coming

up with datasets that contain a large number of samples is

generally difficult. A small number of samples complicates the

knowledge discovery task (Sirin et al., 2016). The unknown

nature of a large part of the information makes the drug–virus

association matrix very sparse. Here, we used the WKNKN

algorithm to preprocess the original association matrix (Ezzat

et al., 2016). Specifically, WKNKN replaces A0ij=0 with the

interaction likelihood in the following three steps:

Step 1. For each known drug, the chemical structure

similarities of the closest K known drugs are calculated by the

k-nearest neighbors (KNN) method and their corresponding

interaction profiles are used to estimate the interaction

likelihood profiles. The derived formula is

Ad(i, :) =
6K
k=1

Tk−1DD(i,Dk)A(Dk, :)

6K
k=1

DD(i,Dk)
, (2)

Input: Matrices An×m, DDn×n, and VVm×m; Number

of neighbors K and decay factor r; LNS size

parameters dN and DN; Probability retention

factors for drugs and viruses, α and β,

respectively;

Output: Predictive association matrix A∗
m×n

1: Step 1: Reconstruct the association matrix

2: for i = 1 to n do

3: construct Ad using Equation (2)

4: for i = 1 to n do

5: construct Av using Equation (3)

6: Adv =
(

Ad + AT
v

)

/2

7: A = max(A,Adv)

8: Step 2: Construct the drug LNS matrix Wd

9: for i = 1 to DN do

10: construct refactoring weight wi for each

drug using Equation (5)

11: Step 3: Similarly, construct the virus LNS

matrix Wv

12: Step 4: Update the associated network by label

propagation

13: Predict new association matrix A∗

d
using

Equation (8) and weight Wd

14: Similarly, predict the new association matrix

A∗
v

15: A∗
=

(

A∗

d
+ A∗ T

v

)

/2

16: return A∗

Algorithm 1. WLLP.

where i denotes the drug index, T is the decay factor, and

in general, T ≤ 1. Dk denotes the k-th drug index that is

most similar to drug i. It is worthwhile to mention that the

denominator part is the normalization term.

Step 2. For each known virus, the sequence similarities of the

closest K known viruses are calculated by the KNN method and

their corresponding interaction profiles are used to estimate the

interaction likelihood profiles:

Av(:, j) =
6K
k=1

Tk−1VV(j,Vk)A
T(Vk, :)

6K
k=1

VV(j,Vk)
, (3)

where j denotes the virus index, T is the decay factor, and

in general, T ≤ 1. Vk denotes the k-th virus index that is

most similar to virus j. Similarly, the denominator part is the

normalization term.

Step 3. If Aij = 0, then we average the interaction likelihood

values calculated by Equations (2) and (3) and replace the

original values. Using WKNKN, we finally calculate a weighted

nearest neighbor interaction spectrum, which we will substitute

into the prediction model later.
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2.2.3. LNS

Previous studies have demonstrated that each data point

can be perfectly reconstructed with linear neighborhood

information (Wang and Zhang, 2006; Chen et al., 2021b). Based

on these studies, we used the known drug–virus interactions to

update the degree of drug–virus similarity. Inspired by Zhang

et al. (2018b), we established linear neighborhood similarity. In

the following, we analyzed the drugs as an example. We take

the association matrix of drugs as X = {x1, x2, . . . , xn}, and

each vector xi is reconstructed from a linear combination of its

neighboring data points. The objective function is to minimize

the reconstruction loss with the following expression:

min
wi

Li =

∣

∣

∣

∣

∣

∣

∣

|xi −
∑

ij : xij∈N(xi)

wi,ijxij |

∣

∣

∣

∣

∣

∣

∣

2

= ωT
i G

iωi

s.t.
∑

ij;xij∈N(xi)

ωi,ijxij = 1,ωi ≥ 0, j = 1, . . . , DN,

(4)

where N(xi) denotes the set of DN nearest neighbors and

DN(0 < DN < n) is a conditioning parameter that indicates

the number of neighbors. xij denotes the j-th neighbor of the

vector xi. wi = {wi,i1 ,wi,i2 , . . .,wi,iDN }is a vector whose size is

DN×1 representing the weight size of the k nearest neighbors

of xi and also indicates the similarity between xij and xi. Gi

denotes the gram matrix whose size is DN×DN, where Gi
ip,iq

=

(xi−xip )(xi−xiq )
T . To prevent overfitting, we incorporated the

Tikhonov regularization term, which makes the minimization

reconstruction loss normalized. The formula is as follows:

min
wi

Li = ωT
i G

iωi + µ||ωi||
2
1 = ωT

i

(

Gi
+ µI

)

ωi,

s.t.
∑

ij : xij∈N(xi)

ωi,ijxij = 1,ωi ≥ 0, j = 1, . . . , DN,

(5)

whereµ is the regularization factor. For simplicity, we setµ to 1.

Finally, we used the standard quadratic programmingmethod to

solve the objective function, and the result can be regarded as the

reconstruction weight of each data point xi. We thus obtained

two weight matrices,Wd ∈ Rn×n andWv ∈ Rm×m, which were

the LNS matrices for the drugs and viruses, respectively.

2.2.4. Label propagation

From the previous calculation steps, we finally obtained

three matrices: the drug–virus association matrix An×m after

WKNKN processing, the drug–drug LNS matrix Wd, and the

virus–virus LNS matrixWv. In the following, as a representative

example, we considered the drug–drug LNS matrix as a directed

weighted graph, with drugs as the nodes and the degree of

similarity as the weights of the lines. It is worth noting that the

similarity matrix is not diagonally symmetric, i.e., wij 6= wji.

Based on this, we used a label propagation approach to circularly

and iteratively propagate the label information of the drugs

to reveal potential drug–virus associations. On the association

network, the neighboring edge information of each drug was

computed and updated at each label propagation. Meanwhile,

we set a probability parameter α to retain its updated state and

retain its initial state with a probability of 1 − α. The specific

updated equation is as follows:

At+1
j = αWdA

t
j + (1− α)A0

j (6)

where, for the exact virus vj, A
0
j denotes all known original drug

interaction relationships and At
j denotes the predicted label at

iteration t. For all viruses, we expressed the prediction matrix as

At
= {At

1,A
t
2, . . .,A

t
m} and represented the equation further by

the following matrix form:

At+1
= αWdA

t
+ (1− α).A0 (7)

As t tends to infinity, the expression converges to the

following form:

A∗
= (1− α)

(

I − αWd

)−1
A0 (8)

where I ∈ Rn×nis the identity matrix and A∗ is

the association score matrix. For more details on the

convergence analysis of label propagation, please refer to

the analysis (Wang and Zhang, 2006).

3. Results

3.1. Experimental setting

In this study, we used 10 times 10-fold cross-validation

to evaluate the performance of our proposed WLLP method.

Specifically, 90% of the interaction data was used as the training

set, and the remainder was used as the test set. For the evaluation

results of the 10 prediction matrices, we averaged them. The true

positive rate (TPR or recall), false positive rate (FPR), precision,

AUC, and area under the precision-recall curve (AUPR) were

used as evaluation metrics. The TPR and FPR indicate the ability

of the model to correctly predict positive and negative labels.

Precision is the ratio of correctly predicted positive labels to all

predicted positive labels, and greater precision indicates better

prediction performance. The formulas for the TPR, FPR, and

precision are as follows:

TPR =
TP

TP + FN
, (9)

FPR =
FP

TN + FP
, and (10)

Precision =
TP

TP + FP
, (11)
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where TP denotes the number of labels correctly predicted as

positive, TN denotes the number of labels correctly predicted as

negative, FP denotes the number of labels incorrectly predicted

as positive, and FN denotes the number of labels incorrectly

predicted as negative.

Area under the receiver operating characteristic curve and

AUPR are widely used to evaluate the performance of binary

classifiers. We constructed the ROC curve and the precision-

recall (PR) curve by calculating the TPR, FPR, and precision.

The ROC curve is a probability curve with FPR on the x-

axis and TPR on the y-axis at various thresholds (Kumar

and Indrayan, 2011; Pegoraro et al., 2021; Sun et al., 2022).

The AUC is then the area under the ROC curve, which is

primarily used to describe the global prediction performance,

where larger values indicate better performance (Tang et al.,

2022). An AUC of 1 indicates excellent performance and an

AUC of 0.5 indicates stochastic performance (Peng et al., 2020).

In addition, the PR curve is more effective than the ROC

curve for representing highly unbalanced data, thus we also

used the AUPR to fully evaluate the performance of the WLLP

model. Similar to the AUC, a larger AUPR corresponds to better

prediction performance.

3.2. Model comparison

In this study, we compared the WLLP model with

four other models, namely SCPMF (Meng et al., 2021),

NTSIM (Zhang et al., 2018c), TP-NRWRH (Liu et al.,

2016), and VDA-RWR (Peng et al., 2021), for the same

HDVD dataset. SCPMF is a drug–virus interaction

prediction algorithm based on a novel SCPMF. NTSIM

is a drug–disease association prediction method that

considers only LNS and label propagation. TP-NRWRH

uses the bipartite network projection to enhance similarity

and propagates it over a heterogeneous network of

drugs and diseases with the help of RWR. VDA-

RWR applies RWR to the prediction of the newest

drug-coronavirus association.

Table 1 shows a comparison of the results obtained from

the five prediction models for the HDVD dataset with 10 times

10-fold cross-validation. Figure 2 shows the corresponding

ROC and PR curves for the five models. The experimental

results demonstrated that the ROC and PR curves of our

WLLP model were higher than those of the other four

models. It was also apparent that our proposed model offered

the best performance in terms of the average AUC and

AUPR values. More concretely, the AUC value of WLLP

was 0.8828, which was higher than that of the other four

approaches (SCPMF: 0.8596; NTSIM: 0.8552; TP-NRWRH:

0.8090; and VDA-RWR: 0.7999). Meanwhile, the AUPR value

of WLLP was 0.5277, which was also higher than the other

four methods (SCPMF: 0.4958; NTSIM: 0.4778; TP-NRWRH:

0.4929; and VDA-RWR:0.4781). It was not difficult to find

TABLE 1 Performances of the five prediction methods on the human

drug virus database (HDVD) dataset.

Method 10 times

10-fold CV

AUC

10 times 10-fold CV AUPR

WLLP 0.8828 ± 0.0037 0.5277 ± 0.0053

SCPMF 0.8596± 0.0011 0.4958± 0.0010

NTSIM 0.8552± 0.0051 0.4778± 0.0110

TP-NRWRH 0.8090± 0.0079 0.4929± 0.0175

VDA-RWR 0.7999± 0.0071 0.4781± 0.0143

that the NTSIM model produced much better results on AUC

than the TP-NRWRH and VDA-RWR models, which implied

that using LNS was superior to using the original similarity

alone, and indicated that using more complex and effective

similarity performance provided more important information

for association prediction. Due to the effect of the WKNKN

pre-training method on the sparsity of the original interaction

matrix, the WLLP model produced better prediction results

than the NTSIM model, and it also supported the usefulness

of the preprocessing procedure (WKNKN) by comparing with

the SCPMF model. In summary, the WLLP model exhibited

excellent performance.

4. Discussion

4.1. Ablation experiments

To investigate the plausibility of the WLLP structure, we

also tested the model with ablation experiments. We again

applied 10 times 10-fold cross-validation to calculate the

AUC and AUPR values of the compared models, and the

average results were used as the final evaluation indices. The

WLLP model comprises three components: WKNKN, LNS,

and label propagation (LP). As shown in Table 2, model 1

uses only LNS to set the weights between the nodes on the

original label graph and uses label propagation for network

diffusion, while model 2 directly applies label propagation to the

association network.

The results presented in Table 2 demonstrated that the

WLLP model resulted in better AUC and AUPR values for

the HDVD dataset than the other two models. Specifically,

for model 1, owing to the sparsity of the original drug–

virus association matrix, the lack of diffusion channels

without preprocessing using the WKNKN algorithm made

the nodes with blank labels received little or no resources

during network diffusion, and the propagated information was

concentrated on the nodes with high association probability in

the global prediction. The introduction of WKNKN alleviated

the sparsity of the matrix, and the association prediction of

blank labels by WLLP became very simple. Therefore, the
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FIGURE 2

Area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve (AUPR) values of the five prediction

methods on the human drug virus database (HDVD) dataset. (A) AUC values of the five prediction methods. (B) AUPR values of the five

prediction methods.

WKNKN algorithm can be considered an indispensable part

of WLLP. Furthermore, a comparison of model 2 and model

1 clearly revealed that the label propagation algorithm in

conjunction with LNS took more information into account

than using the chemical structure and sequence similarity

alone. The lack of a linear relationship between nodes can

make the connections less compact, which in turn leads to

poor association prediction for highly unbalanced samples,

which is the main reason why the AUPR of model 2 was

only 0.1028.
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TABLE 2 Results of ablation experiments for the weighted reconstruction-based linear label propagation algorithm (WLLP) model.

Model WKNKN LNS LP 10 times 10-fold CV AUC 10 times 10-fold CV AUPR

WLLP X X X 0.8828± 0.0037 0.5277± 0.0053

Model X X 0.8552± 0.0051 0.4778± 0.0110

Model X 0.7886± 0.0045 0.1028± 0.0005

4.2. Parameter settings

We conducted experiments to analyze the effect of

parameters on model WLLP. To determine the optimal

combination of parameters, we used the grid search method.

TheWLLP model used seven parameters, namely K, T,DN, dN,

α, β , and w, where K and T are the parameters appearing in

theWKNKN algorithm. K denotes the maximum neighborhood

value in the KNN function, while T denotes the decay factor.

The adjustment range of parameter K is from 1 to 10, while the

adjustment range of parameter T is from 1 to 0.1. We end up

with K set to 8 and T set to 1 (Figure 3). DN and dN correspond

to the number of elements in the set of nearest neighbors for the

drugs and viruses in the LNS calculation process. The number

of drug neighbors DN should be less than the number of all

drugs, and the same is true for the number of virus neighbors

dN based on previous experience (Chen et al., 2021b). We

varied the values from 10 to 100, increasing by 10 each time.

In Figure 4, for the label propagation algorithm, we used α and

β to represent the retention probability of the update status

for drugs and viruses. Thus, we set the different values of α

and β from 0.1 to 1 with step 0.1 (Figure 5). Meanwhile, w

is the label fusion parameter for the final matrix from 0.9 to

0.1 with step 0.1. The effect of the parameter selection of w is

shown in Figure 6, where we observed that good performance

is achieved at w = 0.4. The optimal parameter values for the

best model performance were found to be as follows: K =

8, T = 1, DN = 100, dN = 6, α = 0.2, β = 0.5,

and w = 0.4.

4.3. Case study

The overall aim of this work was to identify possible clues for

the treatment of COVID-19 after confirming the performance of

the WLLP model. Table 3 lists the top 15 drugs predicted from

the HDVD dataset, showing the ranking, drug name, DrugBank

ID, and literature evidence for each drug. It can be observed

that a majority (80%) of the predicted drugs were supported

by a variety of literature evidence. Ribavirin was initially

recommended for clinical use in China 2019-nCoV Pneumonia

Treatment Plan Version 5-Revised (Khalili et al., 2020). It is

the eight predicted drug candidate for the potential treatment

of COVID-19. Remdesivir is a nucleotide analog precursor

drug with a broad viral spectrum that includes filoviruses,

pneumoviruses, parvoviruses, and coronaviruses (Al-Tawfiq

et al., 2020; Grein et al., 2020). Remdesivir inhibits viral RNA

polymerase and displays in vitro activity against COVID-19 (Al-

Tawfiq et al., 2020; De Wit et al., 2020; Grein et al., 2020). The

combination of remdesivir with emetine may provide better

clinical efficacy (Touret and de Lamballerie, 2020). Chloroquine

is an inexpensive, safe, and widely administered antimalarial

drug that has been used for more than 70 years and is

very effective in controlling COVID-19 infection in vitro and

therefore may be used for the clinical treatment of COVID-

19 (Choy et al., 2020). The combination of chloroquine and

remdesivir was reported to be very effective in controlling

COVID-19 infection in vitro (Wang et al., 2020). Based on their

combined pathophysiological and pharmacological potential,

camostat and nitazoxanide may be recommended for early

evaluation and clinical trials against COVID-19 (Khatri and

Mago, 2020). Another study provided preliminary evidence for

the use of favipiravir in the treatment of SARS-CoV-2 infection

(Cai et al., 2020). Umifenovir is a broad-spectrum antiviral

drug. In recent years, clinical trials of umifenovir have been

initiated in China (O’Boyle et al., 2011). Sodium lauryl sulfate,

an anionic surfactant with protein denaturing ability, effectively

inhibits the infectivity of several enveloped viruses through

denaturation of the viral envelope. Mouthwash containing

sodium lauryl sulfate may be effective in preventing SARS-CoV-

2 infection through the oral cavity (Sawa et al., 2021). The 18-

kDa cytoplasmic protein procyclin A is an important cellular

biomolecule required for RNA virus replication, and recent

studies have shown that non-immunosuppressive analogs, such

as alisporivir, inhibit the activity of procyclins (Almasi and

Mohammadipanah, 2020). Saracatinib, sirolimus, and suramin

have also been indicated as therapeutic agents for COVID-19 in

recent studies (Romanelli andMascolo, 2020; Salgado-Benvindo

et al., 2020; Tatar et al., 2021).

For hexachlorophene, rifamycin, and tacrolimus, there are

no studies proving their activity against COVID-19. However,

hexachlorophene is a common detergent additive used for

hand washing and disinfection, while rifamycin is an anti-

tuberculosis agent that exhibits antiviral properties against

various infectious viruses. Tacrolimus, an immunosuppressant,

is commonly used in immunotherapy. Although no studies
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FIGURE 3

Analytical plots of AUC and AUPR for K and T in the weighted K-nearest known neighbors (WKNKN) algorithm. (A) Analytical plots of AUC for K

and T. (B) Analytical plots of AUPR for K and T.
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FIGURE 4

Analytical plots of AUC and AUPR for DN and dN in the linear neighborhood similarity (LNS) algorithm. (A) Analytical plots of AUC for DN and dN.

(B) Analytical plots of AUPR for DN and dN.
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FIGURE 5

Analytical plots of AUC and AUPR for α and β in the LP algorithm. (A) Analytical plots of AUC for α and β. (B) Analytical plots of AUPR for α and β.
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FIGURE 6

Analytical plots of AUC and AUPR for w in the label propagation (LP) algorithm. (A) Analytical plots of AUC for w. (B) Analytical plots of AUPR

for w.

have been conducted to demonstrate the efficacy of these three

drugs against COVID-19, they still have considerable potential,

which remains to be further validated by subsequent work of

drug developers.

5. Summary

To prevent the spread of SARS-CoV-2, it is critical to

deepening our understanding of the association between the
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TABLE 3 Top 15 drugs predicted from the HDVD dataset.

Rank Drug name (DrugBank ID) Evidence

1 Chloroquine (DB00608) Choy et al., 2020

2 Hexachlorophene (DB00756) Unknown

3 Nitazoxanide (DB00507) Khatri and Mago, 2020

4 Rifamycin (DB11753) Unknown

5 Remdesivir (DB14761) Al-Tawfiq et al., 2020;

Grein et al., 2020; Meng

et al., 2021

6 Odium lauryl sulfate (DB00815) Sawa et al., 2021

7 Camostat (DB13729) Zhou et al., 2015;

Hoffmann et al., 2020

8 Ribavirin (DB00811) Khalili et al., 2020

9 Saracatinib (DB11805) Tatar et al., 2021

10 Alisporivir (DB12139) Almasi and

Mohammadipanah, 2020

11 Tacrolimus (DB00864) Unknown

12 Favipiravir (DB12466) Cai et al., 2020

13 Sirolimus (DB00877) Romanelli and Mascolo,

2020

14 Suramin (DB04786) Salgado-Benvindo et al.,

2020

15 Umifenovir (DB13609) McKee et al., 2020

virus, target proteins, and potential drugs. In the short term,

it may be unrealistic to rely on conventional laboratory

techniques to develop new drugs against COVID-19, and drug

repositioning may represent a more powerful approach. Drug

repositioning provides an effective method for prioritizing

chemical agents associated with SARS-CoV-2. In this study, a

WLLP approach was used to predict the relevance of unknown

associations based on drug-virus heterogeneous association

networks by combining LNS with LP. The algorithm performs

LP on the drug–virus association network, the drug–drug

LNS network, and the virus–virus LNS network to diffuse the

existing information.With 10 times 10-fold cross-validation, our

model achieved an AUC of 0.8828 and an AUPR of 0.5277,

both of which were higher than the other methods used for

comparison. Furthermore, the information and feasibility of

the first 15 drugs were determined by a case study of SARS-

CoV-2. Even so, our model still has room for improvement.

The predictive performance of the proposed method is limited

owing to the current scarcity of data. In the future, we will

attempt to tap into drug library and pharmacological resources,

and with the addition and integration of more data from

recent studies, the prediction results of our model should

be improved.
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Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders caused 

by the disruption of immune tolerance to the gut microbiota. MicroRNA-31 

(MIR31) has been proven to be up-regulated in intestinal tissues from patients 

with IBDs and colitis-associated neoplasias. While the functional role of 

MIR31 in colitis and related diseases remain elusive. Combining mathematical 

modeling and experimental analysis, we systematically explored the regulatory 

mechanism of MIR31  in inflammatory and epithelial regeneration responses 

in colitis. Level of MIR31 presents an “adaptation” behavior in dextran sulfate 

sodium (DSS)-induced colitis, and the similar behavior is also observed for the 

key cytokines of p65 and STAT3. Simulation analysis predicts MIR31 suppresses 

the activation of p65 and STAT3 but accelerates the recovery of epithelia in 

colitis, which are validated by our experimental observations. Further analysis 

reveals that the number of proliferative epithelial cells, which characterizes 

the inflammatory process and the recovery of epithelia in colitis, is mainly 

determined by the inhibition of MIR31 on IL17RA. MIR31 promotes epithelial 

regeneration in low levels of DSS-induced colitis but inhibits inflammation with 

high DSS levels, which is dominated by the competition for MIR31 to either 

inhibit inflammation or promote epithelial regeneration by binding to different 

targets. The binding probability determines the functional transformation of 

MIR31, but the functional strength is determined by MIR31 levels. Thus, the 

role of MIR31 in the inflammatory response can be described as the “spring-

like effect,” where DSS, MIR31 action strength, and proliferative epithelial cell 

number are regarded as external force, intrinsic spring force, and spring length, 

respectively. Overall, our study uncovers the vital roles of MIR31 in balancing 

inflammation and the recovery of epithelia in colitis, providing potential clues 

for the development of therapeutic targets in drug design.
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Introduction

Inflammatory bowel diseases (IBDs), including ulcerative colitis 
(UC) and Crohn’s disease (CD), are chronic inflammatory disorders 
that impact gastrointestinal tract (Kaser et  al., 2010). Chronic 
inflammatory disorders are characterized by submucosal 
accumulation of immune cells, resulting in damage to the epithelial 
layer (Maloy and Powrie, 2011; Cader and Kaser, 2013). The 
prevalence and incidence of IBD have continued to increase over 
the past few decades around the world (Xavier and Podolsky, 2007; 
Kaplan and Ng, 2017; Ng et al., 2017), but the precise etiology and 
pathogenesis of IBD have not been fully revealed. Recent studies 
have shown the significant role of gut microbiota in IBD (Seksik, 
2010; Dalal and Chang, 2014; Sheehan et  al., 2015). A widely 
accepted pathogenesis is that environmental or genetic factors 
trigger an abnormal immune response to the gut microbiota in a 
genetically susceptible host (Fava and Danese, 2011; Becker et al., 
2015; Matsuoka and Kanai, 2015). IBD is associated with marked 
changes in gene expression and protein level (Neurath, 2014; Kumar 
et al., 2016). Increasing studies show that microRNAs (miRNAs) 
play vital roles in the regulation of IBD (Dalal and Kwon, 2010; Kalla 
et al., 2015; Xu and Zhang, 2016; Soroosh et al., 2018). MiRNAs are 
a class of small noncoding RNAs with a length of approximately 
18–25 nucleotides (Bartel, 2004; Emde and Hornstein, 2014), which 
are widely found in nematodes, fruit flies, plants and eukaryotes 
(Bartel, 2009; Carthew and Sontheimer, 2009; Fabian et al., 2010). 
MiRNAs have been estimated to regulate over 60% of protein-
coding genes (Garzon et al., 2010; Lin et al., 2013a; Hammond, 
2015; Treiber et al., 2018) by base pairing with target mRNAs and 
repressing translation (Krol et  al., 2010; Ha and Kim, 2014). 
Abnormal expression of miRNAs is highly correlated with many 
diseases including cancer (Wu et al., 2008; Schaefer et al., 2015; Tili 
et al., 2017) and neurodevelopmental disorders (Ha and Kim, 2014).

Among miRNAs, microRNA-31 (MIR31) is increased in 
colorectal cancer (Wang et al., 2009) and patients with IBD (Béres 
et  al., 2017). MIR31 is also proven to be  up-regulated during 
IBD-associated neoplastic transformation (Olaru et  al., 2011). 
Targeting MIR31 pathways involved in the inflammatory response 
paves the way for disease treatments (Yu et al., 2021). MIR31 can 
promote epithelial regeneration during skin wound healing by 
mediating inflammatory signaling (Shi et al., 2018), and target 
IL-25 to regulate IL-12/23-mediated Th1/Th17 inflammatory 
responses during colitis (Shi et al., 2016). We previously showed 
that MIR31 promotes the self-renewal of mammary stem cells and 
mammary tumor growth by regulating the WNT signaling 
pathway (Lv et al., 2017). Our recent study also indicated that 
MIR31 can reduce inflammatory responses in colonic epithelium 

by inhibiting inflammatory cytokines receptors, and promote 
epithelial regeneration through regulating WNT and Hippo 
signaling pathways (Tian et al., 2019). However, the mechanism 
underlying the regulation of MIR31 in these pathways is not yet 
clear. More importantly, the questions of whether and how these 
two functions (i.e., inflammatory response inhibition and 
epithelial regeneration promotion) compete for MIR31 during 
colitis require further clarification.

Experiment-based network modeling is a powerful approach 
to investigate the biological dynamics in animals (Li et al., 2021b, 
2022), plants (Wu et al., 2021), and bacteria (Liu et al., 2021), and 
is also widely applied to investigate the role of miRNAs (Lai et al., 
2018). To systematically analyze the regulatory mechanism of 
MIR31 in inflammation and epithelial regeneration, experimental 
analysis is performed and a corresponding phenomenological 
model is proposed. Experimental observations suggest that the 
expression of MIR31, phosphorylated p65 (p-65), and 
phosphorylated STAT3 (p-STAT3) present an “adaptation” behavior 
in dextran sulfate sodium (DSS)-induced mouse colitis (Ma et al., 
2009), which are well reproduced by our model. Dynamics of the 
number of proliferative epithelial cells and the expression of p-65 
and p-STAT3 in MIR31 knockout (KO) mice are also predicted and 
validated, indicating that MIR31 restrains the activation of p65 and 
STAT3 but promotes epithelial regeneration. Further analysis 
suggests the behavior of the epithelial cell number exhibits the 
“spring-like effect.” Acting as an external force, DSS drives the 
system to a “spring compressing process” by reducing the epithelial 
cell number which is analogous to spring length. MIR31 acts as the 
intrinsic force and fine-tunes the epithelial cell number, propelling 
the system to a “spring compression state” with a small cell number 
and a high level of MIR31. Highly expressed MIR31 then accelerates 
epithelial regeneration by promoting cell proliferation after the 
withdrawal of DSS, corresponding to “spring recovery process.” 
Overall, this study provides quantitative new insights into the 
regulatory mechanism of MIR31, offering possible therapeutic 
strategies for colitis and related diseases.

Materials and methods

Animal experiments

Wild-type (WT) C57BL/6 mice were purchased from Beijing 
Vital River Laboratory Animal Technology Company (Beijing). 
MIR31 knockout (MIR31-KO) and control mice have been 
previously described (Tian Y. et al., 2017). About three to four 
8-week-old mice were used at each time points for analysis in this 
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study. All mice were fed under specific pathogen-free conditions. 
All experiments were approved by the guidelines of the Institutional 
Animal Care and Use Committee of China Agricultural University.

DSS treatment

Adult mice were fed 3.5% wt/vol DSS with molecular weight 
36,000 to 50,000 (MP Biochemicals, Santa Ana, CA) in drinking 
water for 5 days, and then DSS was withdrawn for recovery for 
3 days. Tissues were harvested at the indicated time points. The 
colonic tissues were fixed in 4% paraformaldehyde for 24 h, 
embedded in paraffin, sectioned, and stained with hematoxylin 
and eosin.

Immunofluorescence staining

The paraffin-embedded 5 μm sections were dehydrated with 
graded alcohol, and antigen retrieval was performed by heating 
slides for 20 min in 0.01 M citrate buffer (pH 6.0) with a microwave 
oven. The sections were blocked for 1 h at room temperature with 
blocking buffer (Beyotime) and incubated with primary antibodies 
at 4°C overnight. Next, the sections were washed with PBS three 
times, each time for 5 min, incubated with secondary antibodies 
for 1 h at room temperature and counterstained with DAPI. For 
immunohistochemistry staining, antigen retrieval was performed 
by heating slides for 20 min in 0.01 M citrate buffer (pH 6.0) with 
a microwave oven. Then, the sections were stained according to 
the SP Kit (ZSGB-Bio) manufacturer’s instructions. The following 
primary antibodies were used: Ki67 (1:1,000, ab15580, Abcam), 
β-catenin (1:500, sc-7,963, Santa Cruz), pStat3 (1:400, 9,145, CST), 
and p65 (1:1,000, 8,242, CST). The following secondary antibodies 
were used: Alexa Fluor 488 goat anti-mouse IgG (H + L) and Alexa 
Fluor 594 goat anti-rabbit IgG (H + L).

In situ hybridization

The MIR31 in situ hybridization assay was performed as 
described previously with modifications (Tian Y. et  al., 2017). 
Digoxigenin-labeled LNA probes (Exiqon, Vedbaek, Denmark) 
were used following the manufacturer’s protocol. Both 
digoxigenin-labeled MIR31 and scrambled LNA probes (Exiqon) 
were hybridized at 61°C. The U6 probe was used as a positive 
control. In situ signals were detected by staining with anti-
digoxigenin-AP antibody (Roche, Basel, Switzerland) and 
developed using BM purple substrate (Roche).

Model construction

In WT model, the DSS-induced inflammatory response is 
composed of four processes: DSS-induced inflammatory cytokines 

production, MIR31 induction, MIR31-inhibited inflammatory 
cytokines production and MIR31-promoted epithelial 
regeneration. While in KO model, MIR31 is knocked out and the 
correlated processes of MIR31 exist no more. We only consider 
the epithelial regeneration by intrinsic cell proliferation. A system 
of ordinary differential equations (ODEs) is a common approach 
to describe dynamics of biochemical reactions and interactions of 
signaling molecules (Li et al., 2021a). Based on the Hill equation, 
the evolution of molecular concentrations with time in the model 
can be described
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= k ×
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l +Y

,i = , mi

j

s
ij

j
n

ij
n
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n∑ …1

where dYi/dt is the rate at which the concentration of molecule 
i changes over time. m represents the number of molecules with 
concentration dYi. s denotes the number of reactions with rate kij, 
the half-saturation constant lij and the Hill coefficient n. Yj is the 
concentration of molecule involved in the reaction. The ODEs that 
describe the reactions of different modules in the signaling model 
are shown in Supplementary Text.

Parameter values and initial amount 
selection

All parameters in the signaling model are first limited to the 
typical biological ranges depending on the types of reaction (Alon, 
2006) and further estimated based on the experimental results 
(Tian et al., 2019). The initial values of the parameters are random 
selected to avoid convergence to local minimums, and then 
mainly determined by a global optimization method to minimize 
the deviations between simulation results and experimental 
results, including the expressions of MIR31, p-p65 and p-STAT3, 
as well as the number of proliferative cells. The descriptions, values 
and units of all parameters in the signaling model are given in 
Supplementary Tables S1, S2.

Results

“Adaptation” behavior of MIR31 In 
DSS-induced colitis

A feasible theory of the pathogenesis of IBD is that the barrier 
of intestinal epithelial cells loses its function, with luminal 
organisms or their products entering the lamina propria. One of the 
most widely used IBD animal models is the DSS-induced colitis 
mice model (containing a simple microbiota), which is similar to 
UC in terms of pathology, pathogenesis and other aspects (Wirtz 
and Neurath, 2007; Solomon et al., 2010; Mizoguchi, 2012; Nguyen 
et al., 2015; Eichele and Kharbanda, 2017). A common mechanism 
for DSS-induced colitis involves damage to the intestinal epithelial 
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barrier, which allows luminal bacteria and associated antigens to 
enter the mucosa (Figure 1A). The entry induces immune responses 
from immune cells (e.g., macrophages and T cells) in the epithelial 
lamina propria and the release of inflammatory cytokines, triggering 
acute inflammation (Kiesler et al., 2015). Receptors (Gp130 and 
IL17RA) of inflammatory cytokines localize to the colonic 
epithelium (Zhang et  al., 2006; Ernst et  al., 2014) and activate 
epithelial STAT3 and NF-κB signaling pathways (De Robertis et al., 
2011), inducing MIR31 activation. In addition, MIR31 promotes 
epithelial regeneration by activating the WNT signaling pathway 
and inhibiting the Hippo signaling pathway through several target 
genes, such as Axin1 and Lats1/2 (Tian et al., 2019).

DSS-induced inflammatory response is a complicated 
biological process that involves different cells, such as macrophages 
and intestinal epithelial cells (IECs; Saleh and Trinchieri, 2011), 
and the major biological network is shown in Figure  1B. The 
signaling network is composed of four modules, including the 
production of DSS-induced inflammatory cytokine (green 
background), the induction of MIR31 (yellow background), the 
inhibition of inflammatory cytokine production by MIR31 (blue 
background), and the epithelial regeneration promoted by MIR31 
(purple background). After DSS administration, immune cells can 
recognize the agents and rapidly release inflammatory cytokines 
IL1β and IL6 (Francescone et al., 2015), accompanied by increased 
TNFα expression (Zelov and Hošek, 2013; Kany et  al., 2019). 
When TNFα reaches high concentrations, the NF-κB signaling 
pathway is activated in the form of phosphorylated p65 (p-p65) 
via the canonical pathway (Giridharan and Srinivasan, 2018), 
which promotes the production of IL1β (Kelley et al., 2019) and 
further exacerbates inflammation. The NF-κB signaling pathway 
also induces IL6 expression, which can activate the STAT3 
signaling pathway (Ernst et al., 2014). Then, the activated STAT3 
(p-STAT3) promotes the secretion of the inflammatory cytokine 
IL17, in turn facilitating the activation of the NF-κB pathway (Razi 
et al., 2019). In addition, IL1β can slightly accelerate the activation 
of STAT3 (Parker et  al., 2015; van de Wetering et  al., 2020). 
We previously identified one STAT3 and two NF-kB binding sites 
in the promoter of MIR31 (Lv et al., 2017; Tian Y. et al., 2017) and 
proved that the induction of MIR31 is due to the activation of 
NF-κB and STAT3 signaling pathways (Tian et  al., 2019). 
Moreover, our former study also demonstrated that MIR31 
directly inhibits inflammation through the suppression of receptor 
Gp130 and receptor IL17RA (Tian et al., 2019). The canonical 
WNT signaling pathway is a key regulator of epithelial 
regeneration (Moparthi and Koch, 2019). Hippo signaling pathway 
also drives epithelial regeneration in colon after DSS-induced 
injury (Deng et al., 2018; Xie et al., 2021). We previously revealed 
that MIR31 promotes epithelia regeneration by modulating the 
WNT and Hippo pathways, restoring the ability of epithelial cells 
to resist inflammation (Tian et  al., 2019). Besides, Axin1 and 
β-catenin, as well as Lats1/2 and Yap, are the two groups of 
important transducers in WNT and Hippo pathways, respectively.

To qualitatively investigate the regulatory mechanism of 
MIR31 in colitis, experimental analysis is performed to explore the 

dynamics of the core transducers, i.e., MIR31, p-p65, and 
p-STAT3, in response to the DSS-induced colitis in WT mice. 
Figure 1C shows the normal colonic tissues (0 days) and colonic 
tissues at 5 days of DSS treatment from WT mice. In situ 
hybridization for MIR31 in colons in Figures 1D,E is obtained 
from untreated WT mice and WT mice after 5 days of DSS 
treatment, respectively. As the quantified experimental data shows, 
an obvious up-regulation of MIR31 in the colonic epithelium is 
observed (Figure 1F). After 5-day DSS administration, MIR31 
expression increased to a high peak and then rapidly decreased to 
the baseline of pretreatment after DSS withdrawal, presenting an 
“adaptation” behavior (Figure 1F). A phenomenological network 
model is also developed based on the signaling pathways shown 
in Figure 1B, which can provide a more quantitative diagram to 
further explore the role of the signaling pathways in the 
pathogenesis of colitis. The model is described by a cast of ordinary 
differential equations and the complete model descriptions are 
presented in the Supplementary material. Simulation results 
suggest that our model can well reproduce the “adaptation” 
behavior of MIR31 expression after DSS treatment (Figure 1G).

Dynamical expressions of the two core transducers p-p65 and 
p-STAT3 that directly facilitate the activation of MIR31 are 
quantified as well. Abnormal increases in p-p65 are associated 
with many chronic diseases such as rheumatoid arthritis and IBD 
(Simmonds and Foxwell, 2008; Giridharan and Srinivasan, 2018). 
With DSS treatment, the NF-κB signaling pathway is activated, 
accompanied by a sustained increase in p-p65, which can 
be detected in the nucleus by immunohistochemistry (Figure 2A). 
Then, p-p65 expression is gradually restored to its initial level 
along with the reduction of inflammation. The quantified 
experimental data shown in Figure 2B indicates that p-p65 also 
presents an “adaptation” behavior, which can be reproduced by 
our model (Figure 2C). The p-STAT3 mediated inflammation is 
shown by immunohistochemistry in Figure  2D and the 
experimental result suggests the “adaptation” behavior of 
p-STAT3 (Figure 2E). Simulation results of p-STAT3 and p-p65 
expressions suggest that the “adaptation” behavior of p-STAT3 
and p-p65 are slightly different. After 5 days of DSS treatment, 
p-STAT3 seems to decrease at a constant rate (Figure 2F), while 
p-p65 declines at first rapidly and then gradually (Figure 2C). 
When quantifying the experimental results, ilastik, an interactive 
machine learning for (bio)image analysis, was used to binarily 
classify the images firstly (Berg et al., 2019). Then the objects in 
the processed images were statistically analyzed with ImageJ 
which was widely used in the biological sciences and other 
projects (Schindelin et al., 2012).

MIR31 suppresses p-p65 and p-STAT3, 
but accelerates the recovery of epithelia 
in colitis

Dysregulation of the intestinal epithelium homeostasis has been 
detected in IBD (Podolsky, 2002). The intestinal epithelium 
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A

B

C D F

E G

FIGURE 1

The role of MIR31 in DSS-induced colitis signaling network. (A) Simplified signal transduction network of DSS-induced colitis to show the main 
interactions between MIR31 and four pathways of NF-κB, STAT3, WNT and Hippo signals. (B) Detailed signal transduction network. The network is 
composed of four modules, which are highlighted by different backgrounds. The green background is for the module of DSS-induced 
inflammatory cytokine production, the yellow for the module of MIR31 induction, the blue for the module of MIR31-inhibited inflammatory 
cytokine production, and the purple for the module of MIR31-promoted epithelial regeneration. (C) WT mice used in our experiments and colonic 
tissues collected from WT mice at 0 day and 5 day of DSS treatment. (D) In situ hybridization for MIR31 in normal colons without DSS treatment. 
(E) In situ hybridization for MIR31 in colons from mice treated with DSS for 5 days. (F) qRT–PCR analysis showing MIR31 expression levels in the 
colonic epithelium from DSS-treated mice at the indicated time points. n = 4 at each time point. (G) Simulation results of the MIR31 expression level 
over time in DSS-induced WT model.
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homeostasis depends on the IECs, the intestinal microbiota, and the 
intestinal immune system (Hooper and Macpherson, 2010), in 
which the IECs provide a mucosal barrier to segregate host immune 
system and commensal bacteria (Roda et al., 2010; Peterson and 
Artis, 2014; Okumura and Takeda, 2017). The proliferation and 
apoptosis of IECs are also studied to evaluate the clinical symptoms 
in colitis (Renes et al., 2002). Thus, the number change of proliferative 
cells is considered to characterize the inflammatory process and the 
recovery of epithelia in colitis. Figure  3A shows the double 
immunofluorescence of the proliferative cells at different time points 
in WT mice upon DSS treatment. For double immunofluorescence 
of Ki67 and β-catenin in the colons, we  count the number of 
proliferative cells per crypt. The quantified data indicates that the 
number of proliferative cells declines first and then recovers to the 
initial state (Figure 3B). Dynamics of the proliferative cells can also 
be well reproduced by our model (Figure 3C), confirming that our 

model has the potential for exploring the signaling properties and 
giving mechanistic insights of MIR31 in colitis.

We next apply our model to quantitatively dissect the functional 
roles of MIR31 in colitis. Simulation results predict that deletion of 
MIR31 in mice increases the peak value of p-p65 compared to the 
WT mice (Figure 4A). Immunofluorescence experimental analysis 
for p-p65 is performed in MIR31-KO mice to validate the 
prediction (Figure 4B). As the quantified results shown (Figure 4C), 
deletion of MIR31 indeed amplifies the “adaptation” behavior of 
p-p65, revealing that MIR31 suppresses the activation of p65 in 
colitis. Similar predictions and experimental validations of 
p-STAT3 suppressed by MIR31 are also determined (Figures 4D,F). 
Thus, both the activation of p65 and STAT3 are restrained by 
MIR31 in colitis. The role of MIR31 in mediating the proliferative 
cell number is investigated as well. As shown in Figure 4G, our 
model predicts that the proliferative cell number decreases faster 

A

D

B

C

E

F

FIGURE 2

Experimental and modeling results of p65 and STAT3 activation. (A) Immunohistochemistry for p65 in the colons from WT mice at the indicated 
time points following DSS treatment. n = 3 at each time point. (B) Statistical histogram of experimental immunohistochemistry results for p65 in 
panel (A). (C) Simulation results of p-p65 expression in WT model over time after DSS treatment. P65 is phosphorylated when it is transferred to 
the nucleus. (D) Immunohistochemistry for p-STAT3 in the colons from WT mice at the indicated time points following DSS treatment. n = 3 at 
each time point. (E) Statistical histogram of experimental immunohistochemistry results in panel (D). (F) Simulation results of p-STAT3 expression 
in WT model over time after DSS treatment. Here, the results in (B,C,E,F) are normalized to the corresponding maximum of p-p65 and p-STAT3, 
respectively.
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and recovers slower in the absence of MIR31. Analysis of 
immunofluorescence for Ki67 and β-catenin in MIR31-KO and 
WT mice is performed (Figure 4H) and our prediction matches 
well with the quantified experimental results (Figure 4I). Hence, 
above observations determine that MIR31 regulates inflammatory 
response through suppressing p65 and STAT3 activation, but 
promoting the recovery of epithelia during colitis.

MIR31-involved reactions in determining 
proliferative epithelial cell number

To dissect whether and how MIR31 mediate or is mediated by 
the transducers in colitis, we further analyze the effect of MIR31-
involved reactions on the proliferative epithelial cell number, 
including the inhibitions of MIR31 on Gp130, IL17RA, Axin1 and 

A

B C

FIGURE 3

Dynamics of the number of proliferative epithelial cells. (A) Double immunofluorescence for Ki67 and β-catenin in colons from WT littermates at 
the indicated time points following DSS treatment. n = 3 at each time point. (B) Statistical histogram of experimental results for the proliferative cell 
number in panel (A). (C) Simulation results of the proliferative cell number in WT model over time after DSS treatment. Here, the cell numbers of 
proliferative epithelial cells are normalized by the maximum value.
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Lats1/2 (represented by parameters γGpMIR, γI17RMIR, γAxiMIR and 
γLatMIR, respectively), and the promotions of p-p65 and p-STAT3 
on MIR31 (represented by kMIRp65 and kMIRpST, respectively) as 
shown in Figure 5A. We scale the parameters by multiplying the 
factor of λi and define the change ratio δi(t) of the proliferative cell 
number as δi(t) = |Nλi(t)-N(t)|/N(t). Nλi(t) is the proliferative cell 
number in the modified model with the scaling factor of λi, i 
represents the corresponding reaction parameters, and N(t) is the 
proliferative cell number in the WT model.

We first discuss the effect of γI17RMIR (the inhibition strength of 
MIR31 on IL17RA) on the proliferative cell number. As shown in 
Figure 5B, when the inhibition strength γI17RMIR is increased by 10 
times, the proliferative cell number increases significantly, 
indicating that the inhibition of MIR31 on IL17RA exhibits a 
strong impact on the inflammatory process. Effects of all the six 
MIR31-involved reactions on the proliferative cell number are 
discussed. The corresponding strengths change from 0.01 fold to 
100 fold by tuning the scaling factor λi from 0.01 to 100, and the 

A

C

D

F

G H

I

E

B

FIGURE 4

Modeling predictions and experimental confirmations in WT and MIR31-KO mice. (A,D,G) Model predictions of p65 activation (A), STAT3 activation 
(D) and the proliferative cell number (G) for the WT and MIR31-KO models over time after DSS treatment. (B,E,H) Immunofluorescence for p65 (B), 
p-STAT3 (E), and Ki67/β-catenin (H) in colons from WT and MIR31-KO mice at the indicated time points following DSS treatment. n = 3 at each time 
point. (C,F,I) Corresponding statistical histograms of experimental results for p65 in panel (B), for p-STAT3 in panel (E), and for the proliferative cell 
number in panel (H), respectively. All the results in (A,C,D,F,G,I) are normalized to the corresponding maximum values.
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variations of δi(t) at 5 days of DSS treatment are shown in 
Figure 5C. One can see that the reaction of MIR31 inhibiting 
IL17RA (γI17RMIR), and the reactions of p-p65 (kMIRp65) and p-STAT3 
(kMIRpST) promoting MIR31 exhibit significant effects on the 
changes of proliferative epithelial cell number. The impacts of 
enhanced strengths on the proliferative cell number are greater 
than those of decreased strengths. While the variation of the other 
reactions, i.e., the inhibitions of MIR31 on Gp130, Axin1, and 
Lats1/2 (γGpMIR, γAxiMIR and γLatMIR), barely influence the proliferative 
cell number (Figure 5C). Dynamic evolutions in the change ratio 
of the proliferative cell number δi(t) as a function of time when the 
scaling factor λi is varied continuously are studied and shown in 
Figures 5D–I, which further indicate that the parameters such as 
γI17RMIR, kMIRp65 and kMIRpST are still important on time scales, while 
the parameters of γGpMIR, γAxiMIR and γLatMIR still exhibit little 
impacts. These results further display the significant roles of the 
reaction of MIR31 inhibiting IL17RA (Figure  5D), and the 
reactions of p-p65 (Figure  5E) and p-STAT3 (Figure  5F) 
promotion on MIR31 on the proliferative epithelial cells.

Competition of MIR31 for inflammation 
inhibition and regeneration promotion

Previous studies indicate that the DSS-induced inflammation 
response is concentration dependent (Naito et al., 2003; Perše and 
Cerar, 2012), while the underlying regulatory mechanism remains 
unclear. To address this issue, quantitative analysis of the influence 
of DSS concentration in colitis is performed. Figures 6A–C show 
the dynamics of MIR31, IL1β, and the proliferative cell number, 
under continuous variation in DSS concentrations. Low 
concentrations (<2.5% wt/vol) of DSS treatment barely affect the 
signaling dynamics (Figures  6A–C). With high DSS 
concentrations, MIR31 is increased rapidly (Figure 6A), leading 
to the secretion of the inflammatory cytokine IL1β and 
inflammation induction during the first 5 days (Figure 6B). The 
induction of inflammation results in a significant decrease of the 
proliferative cell number (Figure 6C).

Since MIR31 can both suppress inflammation and promote 
epithelial regeneration (Figure  4), the competition of the two 

A B C

D E F

G H I

FIGURE 5

The effects of MIR31-involved reactions on the proliferative cell number. (A) The relationship between MIR31 and the related six proteins Gp130, 
IL17RA, Axin1, Lats1/2, p-p65 and p-STAT3. (B) The change ratio δ of the proliferative cell number varies with the scaling factor λ = 10 for the 
inhibition of MIR31 on IL17RA (i.e., γI17RMIR increases with 10 times). (C) The variations δi(t) for the inhibitions of MIR31 on Gp130, IL17RA, Axin1, and 
Lats1/2 (γGpMIR, γI17RMIR, γAxiMIR, γLatMIR), and the promotions of p-p65 and p-STAT3(kMIRp65 and kMIRpST) on MIR31 with the scaling factor λ at 5 days of DSS 
treatment. (D–I) The change ratio δi(t) as a function of time under continuous changes in the scaling factors λi for all six parameters.
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functional roles for MIR31 as well as the influence of DSS 
concentration on such competition are subsequently discussed. 
There are four major MIR31 target proteins, Gp130, IL17RA, 
Axin1, and Lats1/2, with certain probabilities of acting on 
inflammation and regeneration in colitis (Figure  1B). The 
probability of MIR31 binding to Gp130 and IL17RA are defined 
as p1 and p2, which mainly contribute to inflammatory responses 
(Figure 6D). The probability of binding to Axin1 and Lats1/2 are 
defined as p3 and p4, which mediates the epithelial regeneration. 
The constraint is p1(t) + p2(t) + p3(t) + p4(t) = 1-p0(t), where p0 
represents the probability of MIR31 in a resting state without any 
binding. MIR31 inhibits inflammation with a probability of 
p1 + p2 and promotes regeneration with a probability of p3 + p4. 
Dynamics of the MIR31 binding probability assignment for 
inhibiting inflammation and promoting regeneration are plotted 
in Figure 6E.

In healthy conditions without DSS (0 days), the main function 
of MIR31 is to promote regeneration. With DSS administration, 
the binding probability of MIR31-inhibited inflammation 
gradually increases (Figure  6E, red line) and the binding 
probability of MIR31-promoted regeneration conversely decreases 
(Figure 6E, blue line), indicating that the major function of MIR31 
changes from regeneration promotion to inflammation inhibition. 
After DSS is withdrawn, the binding probability of MIR31-
inhibited inflammation decreases, and correspondingly, the 
binding probability of MIR31-promoted regeneration increases. 
As shown in Figure 6E, the two binding probabilities intersect at 
the 3rd day and 10th day with intersections D1 and D2. This 
indicates a larger binding probability of MIR31 for inflammation 
inhibition than for regeneration promotion during the 3rd to the 
10th days to prevent the inflammation caused by DSS.

To discuss the influence of DSS concentration on the 
competition of MIR31-inhibited inflammation and MIR31-
promoted regeneration, the time corresponding to D1 and D2 
with the change in DSS concentration is studied. As the result 
shows in Figure 6F, when the DSS concentration is smaller than 
1.1% wt/vol, the binding probability of MIR31-promoted 
regeneration is typically larger than the binding probability of 
MIR31-inhibited inflammation without intersection, suggesting 
that the major function of MIR31 is to promote regeneration in 
weak DSS-induced colitis. The probability of MIR31-inhibited 
inflammation increases gradually as the DSS concentration 
increases. In the case of strong DSS-induced colitis (DSS > 3.0% 
wt/vol), the major function of MIR31 changes to inhibiting 
inflammation rather than to promoting regeneration (Figure 6F).

MIR31 expression ([MIR31]) increases obviously after 
DSS treatment (Figure  1F). Thus, the action strength of 
MIR31-inhibited inflammation can be  defined as 
F1(t) = [MIR31(t)] × (p1(t) + p2(t)), and the action strength of 
MIR31-promoted regeneration as F2(t) = [MIR31(t)] ×  
(p3(t) + p4(t)), giving the total action of MIR31 on the system 
as F(t) = F0(t) + F1(t) + F2(t), where F0(t) = [MIR31(t)] × p0(t) 
represents the action strength of MIR31 in a resting state without 
any binding. Interestingly, the action strength of MIR31-inhibited 

inflammation (F1) increases significantly after DSS treatment, 
while the action strength of MIR31-promoted regeneration (F2) 
shows less enhancement in Figure  6G. The maximal action 
strength is obtained at approximately the 5th day.

Considering the influence of DSS concentration on the action 
strengths of MIR31, as shown in Figure 6H, the maximal action 
strengths of MIR31 remain at low levels when the DSS 
concentration is small, while they increase rapidly with increasing 
DSS concentration when DSS is larger than 3.0% wt/vol, especially 
for the maximal action strength of MIR31-inhibited inflammation 
(F1max). Surprisingly, we  found that the probability of MIR31-
promoted regeneration decreases in a stepwise manner with 
increasing DSS concentration (Figure  6I, blue line), which is 
contrary to the trend of the action strength of MIR31-promoted 
regeneration (Figure 6H, blue line). Further analysis determines 
the reason for this to be the corresponding increase in MIR31 
expression as shown in Figure 6J being much greater than the 
decrease in the probability of MIR31-promoted regeneration 
(Figure  6I). Thus, the changes in the binding probabilities of 
MIR31 determine the transformation of its functions, while the 
expression level of MIR31 determines the action strengths of its 
functions for inhibiting inflammation and promoting regeneration.

Discussion

Previous studies demonstrated that miRNAs are associated 
with various diseases including COVID-19 (Li et al., 2020; de 
Gonzalo-Calvo et  al., 2021) and have the potential to 
be therapeutic targets (Guterres et al., 2020; Hum et al., 2021). 
MIR31 is identified as a key regulator in diseases (Valastyan and 
Weinberg, 2010; Liu et al., 2010a; Laurila and Kallioniemi, 2013; 
Stepicheva and Song, 2016). MIR31 acts as an oncogenic miRNA 
in lung cancer by targeting specific tumor suppressors for 
repression (Liu et al., 2010b). In addition, MIR31 is proven to be a 
target for inhibiting tumor growth and metastasis (Tian C. et al., 
2017). The down-regulation of MIR31 disrupts cellular 
homeostasis and promotes the evolution and progression of 
prostate cancer (Lin et  al., 2013b). The pathogenesis of colitis 
involves many complex signaling pathways that are related to 
various types of cells at tissue level (Perše and Cerar, 2012). 
Understanding the mechanism of MIR31 in colitis is therefore 
urgently needed for developing therapies for diseases.

Combining experimental analysis and a proposed 
phenomenological network model, we quantitatively explored the 
important roles of MIR31  in modulating inflammation and 
epithelial regeneration, and identified effective targets for clinical 
treatment of inflammation. Our study indicates that MIR31 
exhibits an “adaptation” behavior in WT model of DSS-induced 
colitis and similar “adaptation” behavior also occurs in p-p65 and 
p-STAT3. The number of proliferative cells decreases gradually 
and then recovery to normal state after DSS treatment (Figure 3). 
In MIR31 KO model, the “adaptation” behavior of p-p65 and 
p-STAT3 is magnified, indicating the suppression of MIR31 on 
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the activation of NF-κB and STAT3 signaling pathways. The 
number of proliferative cells decreases more quickly with fewer 
survival cells and recovers slower, suggesting a promotion of 
MIR31 on epithelial regeneration (Figure  4). As a novel 
therapeutic target, MIR31 has been extensively studied in various 
diseases such as colorectal cancer (Zhao et  al., 2020), 
nasopharyngeal carcinoma (Wu et al., 2016). PEX5, a novel target 
of MIR31, is also proven to be  a therapeutic option in 
hepatocellular carcinoma (Wen et al., 2020). Our analysis shows 
that the inhibition of MIR31 on IL17R, the promotions of p-p65 
and p-STAT3 on MIR31 exhibit virtual influences on the number 
of proliferative cells, which can be  considered as a potential 
therapeutic target in future studies.

To intuitively present the mechanism of MIR31, we propose 
that the MIR31 response process in colitis can be characterized by 
the “spring-like effect” (Figure 7A). In this analogy, DSS acts as the 
external pressure on the spring, the number of prolifertive cells is 

the spring length, and the MIR31 action strength, which involves 
MIR31-promoted regeneration and MIR31-inhibited 
inflammation, is the intrinsic spring force. With such a view, DSS 
drives the system into the “spring compressing process” and thus 
the cell number decreases. Meanwhile, MIR31 expression 
increases gradually to prevent DSS-induced colitis (Figure 7B). 
When DSS remains high, the action strength of MIR31 on 
inflammation also remains strong with a small cell number. Even 
immediately after DSS is withdrawn, the residual DSS in the 
system is still strong, which leads to low cell numbers. We name 
this state the “spring compression state.” Then, DSS becomes 
attenuated while the action strength of MIR31 on inflammation 
inhibition still holds dominant, resulting in a rapid increase in cell 
number. This process corresponds to the “spring recovery process,” 
in which MIR31 expression decreases, leading to a gradual 
reduction in the action strength of MIR31. Finally, the system 
returns to the normal state. Note that in the MIR31-KO model, 

A B C

D E F

G H I J

FIGURE 6

Effects of DSS concentration on inflammatory response and epithelial regeneration. (A–C) Dynamic results of MIR31 expression (A), IL1β 
expression (B), and the proliferative cell number (C) under continuous changes in DSS concentration. (D) The probabilities of MIR31 binding to 
Gp130 (p1), IL17RA (p2), Axin1 (p3), and Lats1/2 (p4). (E) Dynamics of the probability assignment of MIR31, where p1 + p2 and p3 + p4 correspond to 
MIR31-inhibited inflammation probability and MIR31-promoted regeneration probability, respectively, and p0 represents the probability that MIR31 
is in a resting state. (F) The influence of DSS concentration on two intersections D1 and D2 of the two probability curves in (E). (G) Dynamics of the 
action strengths of MIR31-inhibited inflammation and MIR31-promoted regeneration. The influence of DSS concentration on the maximal action 
strengths (H) and on the probabilities of MIR31-inhibited inflammation and MIR31-promoted regeneration (I) and the MIR31 expression 
(J) corresponding to the two maximal action strengths in (G). The results of (C) are compared with the maximum proliferative cell number. In 
(E,G), MIR31 is divided into three categories: MIR31 in the resting state (black), MIR31 inhibiting inflammation (red) and MIR31 promoting 
regeneration (blue).
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A

C

B

FIGURE 7

The spring-like effect and the seesaw model of MIR31 in balancing inflammatory and regenerative responses. (A) Schematic diagram of the 
spring-like effect of inflammatory response to DSS treatment. (B) The specific correspondence between the inflammatory response process to 
DSS and the spring system. Considering the trend of MIR31 expression trend was consistent with that of MIR31 action strength, it was used to 
characterize the trend of the MIR31 action strength. (C) The seesaw model of MIR31 competition mechanism in the WT model from the 
viewpoints of the binding probability (left) and the action strength of MIR31 (right).

the inflammatory response process can also be described by the 
“spring-like effect,” while the spring compressing process 
(compression state and recovery process) occurs on a time scale 
shorter (longer) than that in the WT model.

In our study, we  simply compared the inflammatory 
response to “spring-like effect” as the response presents a 
process similar to that of a spring from compression to 
recovery. The inflammatory response is a nonlinear process 
that depends on time and external force. Actually, the process 
can also be  regarded as a visco-elastic system, such as the 
“spring-dashpot model.” Recently, a visco-elastic system has 

been proposed in which the cytoplasm contributes to mitotic 
spindle positioning through its visco-elastic property (Xie 
et al., 2022). Besides, a commentary also defines this visco-
elastic property as the “spring-like behavior” (Bai and 
Mitchison, 2022).

Due to the competitive binding mechanism for MIR31 to 
either inhibit inflammation or promote regeneration, as well as 
the influence of MIR31 level on the competition, we suggest that 
such a competition mechanism can be understood by a “seesaw 
model” (Figure 7C). The seesaw is balanced by MIR31-inhibited 
inflammation and MIR31-promoted regeneration. Based on the 
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concept of the binding probabilities, the change in the seesaw is 
induced by the change of MIR31 binding probabilities to different 
proteins (Figure  6E). In detail, MIR31 displays an increased 
binding probability for inflammation inhibition and a decreased 
binding probability for regeneration promotion during the 
inflammation process (0 day–5 day). During the recovery process, 
there is a diminution in MIR31 binding probability for 
inflammation inhibition and an enhancement of MIR31 binding 
probability for regeneration promotion (5 day–10 day). Notably, a 
different mechanism can be  obtained in the seesaw from the 
viewpoint of the MIR31 action strength. Both the action strengths 
of MIR31-promoted regeneration and MIR31-inhibited 
inflammation increase with time during the inflammation 
process, with the action strength of MIR31-inhibited 
inflammation gradually becoming dominant (0 day–5 day). 
However, during the recovery process, both the action strengths 
of MIR31-promoted regeneration and MIR31-inhibited 
inflammation decrease with time, with the action strength of 
MIR31-promoted regeneration finally becoming dominant 
(5 day–10 day).

In summary, the seesaw model and the spring-like effect for 
MIR31 functions highlight the importance of MIR31  in the 
inflammatory response process. MIR31 can effectively alleviate 
inflammation by inhibiting inflammatory cytokine receptors and 
can promote epithelial regeneration by modulating the WNT and 
Hippo signaling pathways. With the model, we suggest that the 
inhibition of MIR31 on cytokine receptors is crucial to 
inflammation control and can be regarded as a therapeutic target 
for drug design.
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CircRNA is a new type of non-coding RNA with a closed loop structure. 

More and more biological experiments show that circRNA plays important 

roles in many diseases by regulating the target genes of miRNA. Therefore, 

correct identification of the potential interaction between circRNA and 

miRNA not only helps to understand the mechanism of the disease, but 

also contributes to the diagnosis, treatment, and prognosis of the disease. 

In this study, we propose a model (IIMCCMA) by using network embedding 

and matrix completion to predict the potential interaction of circRNA-

miRNA. Firstly, the corresponding adjacency matrix is constructed based 

on the experimentally verified circRNA-miRNA interaction, circRNA-

cancer interaction, and miRNA-cancer interaction. Then, the Gaussian 

kernel function and the cosine function are used to calculate the circRNA 

Gaussian interaction profile kernel similarity, circRNA functional similarity, 

miRNA Gaussian interaction profile kernel similarity, and miRNA functional 

similarity. In order to reduce the influence of noise and redundant 

information in known interactions, this model uses network embedding to 

extract the potential feature vectors of circRNA and miRNA, respectively. 

Finally, an improved inductive matrix completion algorithm based on 

the feature vectors of circRNA and miRNA is used to identify potential 

interactions between circRNAs and miRNAs. The 10-fold cross-validation 

experiment is utilized to prove the predictive ability of the IIMCCMA. The 

experimental results show that the AUC value and AUPR value of the 

IIMCCMA model are higher than other state-of-the-art algorithms. In 

addition, case studies show that the IIMCCMA model can correctly identify 

the potential interactions between circRNAs and miRNAs.

KEYWORDS

circRNA-miRNA interaction, multi-biological interaction fusion, inductive matrix 
completion, network embedding, computational method
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1. Introduction

Different from traditional linear non-coding RNA, circRNA 
is a new type of non-coding RNA with a closed loop structure (3′ 
and 5′ in circRNA are connected together; Wilusz and Sharp, 
2013; Lan et  al., 2015b). The unique molecular structure of 
circRNA ensures that it cannot be affected by RNA exonuclease. 
In addition, the expression of circRNA is more stable and not 
easily degraded than other linear non-coding RNA. Further 
experiments proved that circRNA is rich in miRNA binding sites, 
which can act as a miRNA sponge in cells to splice, transcribe, and 
modify the expression of parental genes (Qu et al., 2015; Rybak-
Wolf et al., 2015).

Recent experimental results show that circRNA plays an 
important role in many diseases. For example, quantitative real-
time PCR (qRT-PCR) detection found that circRNA BCRC-3 
is low expressed in bladder cancer tissue cells. Moreover, 
cricRNA BCRC-3 can directly bind to miRNA miR-182-5p, and 
then act as a sponge for miRNA miR-182-5p to promote the 
activity of its target genes. Therefore, circRNA BCRC3 can 
be used as a tumor suppressor to inhibit the proliferation of 
bladder cancer cells (Xie et  al., 2018). The expression of 
circRNA hsa_circ_0008068 is significantly down-regulated in 
prostate cancer cells. There are multiple binding sites between 
the circRNA and the anticancer miRNA miR-145-3p. CircRNA 
hsa_circ_0008068 can play an anti-cancer role in prostate 
cancer cells by regulating miR-145-3p and its target gene 
WISP1. Therefore, circRNA hsa_circ_000806 may be  an 
important target for the diagnosis and treatment of prostate 
cancer (Zheng et al., 2020).

With the continuous development of high-throughput 
sequencing technology, more and more circRNA-miRNA-disease 
interactions have been confirmed. At the same time, a large 
number of databases have been developed to store the basic 
information of circRNA and interactions related to circRNA such 
as circBase (Glažar et al., 2014), circBank (Liu et al., 2019), circad 
(Rophina et al., 2020), and circR2Cancer (Lan et al., 2020c). As a 
benchmark database in the circRNA field, the circBase database 
stores basic information related to circRNA such as the position 
of circRNA, the genomic length, the spliced sequence length, and 
the gene symbol (Glažar et al., 2014). circBank is a professional 
database dedicated to standardizing circRNA naming (Liu et al., 
2019). This database not only provides basic information about 
circRNA, but also names some newly discovered circRNAs 
uniformly. The Circad database collects 1,388 experimentally 
verified circRNA-disease interactions from five different species 
(Homo sapiens, mice, rats, chickens, and wild boars; Rophina 
et al., 2020). CircR2Cancer is a new database that stores circRNA-
cancer interactions. This database not only stores experimentally 
verified circRNA-cancer interactions but also circRNA-miRNA 
interactions and miRNA-cancer interactions (Lan et al., 2020c). In 
addition to storing experimentally verified interactions, the 
circR2Cancer database also stores basic information about 
circRNA and diseases.

The emergence of circRNA-related databases provides a data 
basis for circRNA-related interaction prediction based on 
computational methods. Compared with traditional biological 
identification method, the interaction prediction model based on the 
computational method has higher accuracy and less time 
consumption. Guo et al. (2022) presented a computational model to 
predict circRNA-miRNA interactions by using Word2vec, Structural 
Deep Network Embedding, Convolutional Neural Network, and 
Deep Neural Network. Qian et al. (2022) proposed a computational 
model (CMASG) for circRNA-miRNA interactions prediction based 
on graph neural network and singular value decomposition. It utilized 
the graph neural network to learn feature representations of nodes 
and the lightGBM to predict circRNA-miRNA association. Lan et al. 
(2021b) developed a computational framework (NECMA) to identify 
interactions between circRNAs and miRNAs by using network 
embedding. It extracted features of circRNA and miRNA based on 
network embedding and predict circRNA-miRNA associations based 
on neighborhood regularization logic matrix decomposition and 
inner product. He et al. (2022) proposed a computational approach 
(GCNCMI) to predict the potential interactions between circRNAs 
and miRNAs based on graph convolutional neural network. It used 
the graph convolutional neural network to exact the potential 
interactions of adjacent nodes and then utilized the embedded 
representations generated by each layer to predict the final score. Qian 
et al. (2021) introduced a computational framework (CMIVGSD), to 
predict circRNA-miRNA interaction by using singular value 
decomposition and graph variational auto-encoders. Yu et al. (2022) 
proposed a computational model (SGCNCMI) to identify circRNA-
miRNA interactions by combining multimodal information and 
graph convolutional neural network. Wang et al. (2022) presented a 
computing method (KGDCMI) to predict the interactions between 
circRNA and miRNA based on multi-source information fusion. It 
exacts RNA attribute information from sequence and similarity and 
captures the behavior information in RNA association based on 
graph-embedding algorithm. Then, the principal component analysis 
is used to obtain feature vector, and further the deep neural network 
is utilized to identify potential circRNA-miRNA interactions. Fang 
and Lei (2019) fused circRNA-miRNA interaction network, circRNA 
functional similarity network, and miRNA functional similarity 
network to construct a circRNA-miRNA heterogeneous network. 
Then use the K-nearest neighbor algorithm based on restart random 
walk to predict the potential interaction of circRNA and miRNA.

In this paper, we  propose a circRNA-miRNA interaction 
prediction model (IIMCCMA) based on multi-biological interaction 
data. This model uses experimentally verified circRNA-miRNA 
interaction, circRNA-cancer interaction, and miRNA-cancer 
interaction to construct circRNA-miRNA adjacency matrix, 
circRNA-cancer adjacency matrix, and miRNA-cancer adjacency 
matrix, respectively. On the basis of the above adjacency matrix, this 
model uses Gaussian kernel function and cosine function to calculate 
circRNA GIP kernel similarity and circRNA functional similarity, as 
well as miRNA GIP kernel similarity and miRNA functional 
similarity. In order to reduce the negative impact of noise or 
redundant information in the known circRNA-miRNA interaction 

139

https://doi.org/10.3389/fmicb.2022.987930
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yao et al. 10.3389/fmicb.2022.987930

Frontiers in Microbiology 03 frontiersin.org

on the prediction model, the IIMCCMA model first uses the known 
circRNA-miRNA interaction to construct a heterogeneous network. 
Then we  use the network embedding algorithm to extract the 
potential feature vectors of circRNA and miRNA in heterogeneous 
networks. In order to make full use of the information contained in 
different data sources, this model uses a feature fusion method to 
integrate the similarity features and topological features of entities in 
the interaction network to form circRNA fusion features and miRNA 
fusion features, respectively. Finally, on the basis of circRNA fusion 
features and miRNA fusion features, an improved inductive matrix 
completion algorithm is used to predict the potential interaction of 
circRNA and miRNA. The 10-fold cross-validation experiment was 
used to evaluate the predictive performance of the IIMCCMA 
model. The experimental results show that the IIMCCMA model 
achieves better performance than other advanced interaction 
prediction models. In addition, the case study results show that the 
IIMCCMA model can correctly identify the potential interaction 
between circRNA and miRNA.

2. Materials and methods

2.1 Materials

We use two datasets as gold standard set inhere which is 
downloaded from circR2Cancer (Lan et  al., 2020c) and 
KGNACDA (Lan et  al., 2022a). In dataset 1, there are 756 
interactions between 514 circRNAs and 461 miRNAs, 647 
interactions between 514 circRNAs and 62 cancers, and 732 
interactions between 461 miRNAs and 62 cancers. In dataset 2, 
there are 330 circRNAs, 79 diseases and 245 miRNAs, 346 
circRNA-disease interactions, 146 circRNA-miRNA interactions, 
and 106 miRNA-disease interactions. Further, we construct an 
adjacency matrix to represent the above-mentioned interaction 
network. The adjacency matrix CM represents the circRNA-
miRNA interactions. If circRNA CMi  is related to miRNA CM j
, CM i j,( ) =1 , otherwise, CM i j,( ) = 0 . Similarly, the adjacency 
matrix CC represents the circRNA-cancer interactions. If circRNA 
CCi  is related to cancer CC j , CC i j,( ) =1 , otherwise, 
CC i j,( ) = 0 . The adjacency matrix MC represents the miRNA-
cancer interactions. If miRNA  is related to cancer MC j , 
MC i j,( ) =1 , otherwise, MC i j,( ) = 0 .

2.2 circRNA and miRNA similarity 
calculation

Based on the assumption that circRNAs with similar functions 
are often associated with similar miRNAs (Lan et al., 2020a, 2021a, 
2022c), circRNA GIP kernel similarity and miRNA GIP kernel 
similarity are calculated based on the circRNA-miRNA interaction 
network, respectively. We define GCS to represent the Gaussian 
interaction profile kernel similarity network of circRNA.

The definition of GIP kernel similarity between circRNA ci  
and circRNA c j  is as follows:

 
GCS c c CM i CM ji j cs, , ,( ) = - ( ) - ( )( )exp : :g 2
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where, CM i, :( )  represents the i-th row of the circRNA-
miRNA interaction network CM. ncirc  represents the number of 
rows of the interaction network CM. g cs  represents the 
kernel bandwidth.

Similarly, we define GMS to represent the Gaussian interaction 
profile kernel similarity network of miRNA. The definition of GIP 
kernel similarity between miRNA mi  and miRNA mj  is 
as follows:
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where, CM i: ,( )  represents the i-th column of the circRNA-
miRNA interaction network CM. nmi  represents the number of 
columns of the interaction network CM. gms  represents the 
kernel bandwidth.

In addition, we also use the cosine function to calculate the 
circRNA functional similarity and the miRNA functional 
similarity on the basis of circRNA-cancer interaction network 
and miRNA-cancer interaction network. The cosine similarity 
measures the similarity between two vectors by the angle 
between two vectors in a two-dimensional space. If the two 
vectors point in the same direction, it means that the two 
vectors are more similar, otherwise, the similarity is lower. 
Therefore, according to the above cosine similarity theory, the 
circRNA functional similarity and miRNA functional similarity 
are defined as follows:
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where CCS and CMS represent the circRNA functional 
similarity network and the miRNA functional similarity network, 
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respectively. CCS c ci j,( )  represents the functional similarity 
between circRNA ci  and circRNA c j . CC i, :( )  represents the 
i-th row in the circRNA-cancer network CC. ncirc  represents the 
number of rows in the network CC. CMS m mi j,( )  represents the 
functional similarity between miRNA mi  and miRNA mi . 
MC i, :( )  represents the i-th row in the miRNA-cancer network 
MC. nmi  represents the number of rows in the network MC.

In order to make better use of the circRNA and the miRNA 
similarity characteristics, we integrate the above two similarities 
to obtain the circRNA similarity circsim and miRNA similarity 
misim , which are defined as follows:

 
circ c c
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where circ c csim i j,( )  represents the integrated similarity 
between circRNA ci  and circRNA c j . mi m msim i j,( )  represents 
the integrated similarity between miRNA mi  and miRNA mj . 
GCS represents circRNA GIP kernel similarity. CCS represents the 
circRNA functional similarity. In the same way, GMS represents 
miRNA GIP kernel similarity. CMS represents the miRNA 
functional similarity.

2.3 Potential feature extraction and 
fusion of circRNA and miRNA

In order to reduce the influence of noise or redundant 
information in the known circRNA-miRNA interaction network, 
we  construct the heterogeneous network Hcirc mi- . The 
heterogeneous network is composed of the circRNA-miRNA 
interaction adjacency matrix CM and the transposed matrix 
CMT of the circRNA-miRNA adjacency matrix. It is defined 
as follows:

 
H

CM

CM
circ mi T- =

é

ë
ê
ê

ù

û
ú
ú

0

0

After obtaining the heterogeneous network, the NetMF 
algorithm (Qiu et al., 2018) is used to obtain the circRNA-miRNA 
latent feature matrix with size equals to m n d+( )´ . Among 
them, m  represents the number of circRNA in the heterogeneous 
network and Hcirc mi- . n  represents the number of miRNAs. 𝑑 
represents the dimensions of circRNA and miRNA 
low-dimensional space vectors. Experiments have verified that the 
model has the best prediction effect when the dimension of the 
low-dimensional space vector of circRNA and miRNA is set to 16.

In order to make full use of the information of different 
interaction, we use a fusion method to fuse the circRNA and 
miRNA topological features ( circNet , miNet ) obtained 
through the NetMF algorithm with the integrated circRNA 
similarity features and miRNA similarity features, respectively. 
The fused information can not only describe the characteristics 
of different data sources, but also describe the complex 
relationship between circRNA and miRNA more 
comprehensively. The fusion feature of circRNA circ feature_  
and the fusion feature of miRNA mi feature_  are defined 
as follows:

 circ f circ circNet sim_ =éë ùû,

 mi f mi miNet sim_ =éë ùû,

where circNet  and miNet  represent the topological 
characteristics of circRNA and miRNA based on the NetMF 
algorithm, respectively. circsim  and misim  represents the 
circRNA integrated similarity and miRNA integrated similarity, 
respectively.

2.4 Prediction of potential interaction 
between circRNA and miRNA

In this paper, we  propose a circRNA-miRNA interaction 
prediction model (IIMCCMA) based on an improved inductive 
matrix completion algorithm. This model is implemented based 
on the known circRNA-miRNA interaction, the fusion feature of 
circRNA and the fusion feature of miRNA. The specific 
implementation process of the IIMCCMA model is shown in 
Figures 1A,B.

Many studies have found that the sparsity problem of 
biological interaction networks is very serious. Taking the 
circRNA-miRNA interaction network used in this paper as an 
example, the circRNA-miRNA interaction network CM is 
composed of 756 interactions between 514 circRNAs and 461 
miRNAs. Obviously, the interaction network CM is very 
sparse (the matrix density is 0.0032). In addition, in the 
calculation process of the inductive matrix completion 
algorithm (Jain and Dhillon, 2013; Lan et al., 2015a; Si et al., 
2016; Nazarov et al., 2018), due to the high sparsity of the 
known interaction matrix, a relatively large amount of 
effective information will be  lost in the process of 
low-dimensional mapping, which will affect the prediction 
effect of the circRNA-miRNA potential interaction prediction 
model. Therefore, in order to alleviate the negative impact of 
the high sparsity of the interaction network on the model, 
we modify the mapping method of the low-rank matrix in 
the inductive matrix completion algorithm. Specifically, in 
order to better protect the structural information in the 
sparse matrix, we  perform multiple low-dimensional 
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mapping operations to obtain multiple low-rank matrices 
with different dimensions. Then we use low-rank matrices 
of different dimensions to calculate the potential 
interaction prediction scores of circRNA and 
miRNA. Finally, the prediction score matrix calculated from 
the low-rank matrix of different dimensions is integrated to 
realize the potential interaction prediction of circRNA 
and miRNA.

In summary, the objective function of the circRNA-miRNA 
potential interaction prediction model based on the fusion feature 
and the improved inductive matrix completion algorithm is 
as follows:

 

min , ,

,W H
Pre F i

d
F i

d
F i

d
i
dCM CM W H W Hi i i i

1

2 2 2

0 0
2 1 2 2 2

     - + + ³ ³
q q

A

B

FIGURE 1

(A) Overview of interaction prediction model for circRNA and miRNA based on multi-biological interaction (1). (A) Mainly shows the construction 
of the incidence matrix, the calculation of similarity, and the fusion of similarity. (B) Overview of interaction prediction model for circRNA and 
miRNA based on multi-biological interaction (2). (B) Mainly shows the construction of heterogeneous networks, feature extraction based on 
NetMF algorithm, feature fusion, and calculation of interaction prediction scores.
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 CM mi fW H circ fPre i
d

i
d T Ti i= _ _

where 𝐶𝑀 represents the known circRNA-miRNA 
interaction matrix. CM pre  represents the predicted circRNA-
miRNA interaction matrix. Wi

di  and Hi
di  represent the 

𝑑-dimensional low-rank matrix obtained through the i-th 
complete iteration of the circRNA-miRNA interaction matrix. 
𝜃1 and 𝜃2 represent the regularization parameters. According 
to the previous research, we  set q q1 2 1= =  

. F  
represents the Frobenius norm of the matrix (F-norm). 
q1 2

2
 Wi

d
Fi  and q2 2

2
 Hi

d
F

i  are used to prevent overfitting. In 
order to find the minimum value of the objective function, 
we first set up the random dense matrices of Wi

di  and Hi
di , 

and then update the matrices Wi
di  and Hi

di  through iterative 
equations. When the convergence condition is met, we will 
stop iteration. The iterative equation are defined as follows:
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where circ feature_  and mi feature_  represent the fusion 
characteristics of circRNA and the fusion characteristics of 
miRNA, respectively. circ featureT_  and mi featureT_  
represent the transposition matrix of the circRNA fusion feature 
matrix and the transposition matrix of the miRNA fusion feature 
matrix, respectively. CMT  represents the transposed matrix of 
the known circRNA-miRNA interaction matrix. Wini  and Hini  
represent the initial random dense matrix of the low-rank matrix 
Wi
di  and Hi

di , respectively.
Finally, the calculation method of the circRNA and miRNA 

correlation prediction score matrix is defined as follows:

 
Pre

i featureW H circ feature

kcircRNA miRNA
i
k

i
d

i
d Ti i

- =
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where PrecircRNA miRNA-  represents the final circRNA-
miRNA potential interaction prediction score matrix. Each item 
in the matrix represents the interaction probability score between 
circRNA and miRNA. The higher the score, the greater the 
probability that there is an exact interaction between circRNA and 
miRNA. 𝑘 indicates the number of complete iterations of the 
iterative equation. The best prediction performance is obtained 
when 𝑘 = 2 and d1  = 128, d2 = 64.

2.5 Performance evaluation

In order to evaluate the performance of model in predicting 
the potential interaction between circRNA and miRNA, the 
10-fold cross-validation experiment is used to evaluate the 
performance. In 10-fold cross-validation, the known circRNA-
miRNA interactions are randomly divided into 10 subsets. Then, 
in each round of cross-validation experiments, nine subsets are 
taken from 10 subsets as the training set for model training and 
the remaining subset is used as the test set. The final interaction 
prediction score of circRNA and miRNA is obtained. The higher 
the score, the higher the probability that there is a biological 
interaction between circRNA and miRNA. Afterward, we ranked 
the interaction prediction scores between circRNA and miRNA in 
descending order. Then, the true positive rate (TPR) and false 
positive rate (FPR) are calculated by modifying the threshold. The 
calculation of TPR and FPR are defined as follows:

 
TPR TP

TP FN
=

+

 
FPR FP

FP TN
=

+

Finally, a receiver operating curve (ROC) based on the true 
positive rate and false positive rate is plotted, and the area under 
the ROC curve (AUROC value) is calculated to evaluate the 
predictive ability of the model. Similarly, the area of the curve 
(AUPR value) based on precision and recall is also used to evaluate 
the performance of the predictive model. The calculation of 
precision and recall is defined as follows:

 
Precision TP

TP FP
=

+

 
Recall TP

TP FN
=

+

where TP  means that the classifier predicts the number of 
positive samples in the actual positive samples. FP  represents the 
number of positive samples is predicted in the actual negative 
samples. TN  means that the classifier predicts the number of 
negative samples in the actual negative samples. FN  indicates the 
number of actual positive samples that are predicted to be negative.

3. Results and discussion

3.1 Compare with other models

In order to further demonstrate the performance of 
IIMCCMA, we compare it with the other six prediction methods 

143

https://doi.org/10.3389/fmicb.2022.987930
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yao et al. 10.3389/fmicb.2022.987930

Frontiers in Microbiology 07 frontiersin.org

(NECMA; Lan et al., 2021b, GCNCMI; He et al., 2022, CMIVGSD; 
Qian et al., 2021, CCD-LNLP; Zhang et al., 2019, RWR; Vural 
et  al., 2019, and KATZCPDA; Fan et  al., 2018). As shown in 
Figure 2, under the 10-fold cross-validation experiment on dataset 
1, the AUROC value of NECMA is 0.4898, the AUROC value of 
CMIVGSD is 0.5755, the AUROC value of GCNCMI is 0.5679, 
the AUROC value of CD-LNLP is 0.5424, the AUROC value of 
RWR is 0.6070, the AUROC value of KATZCPDA is 0.5036, and 
the AUROC value of IIMCCMA is 0.6702. Therefore, from the 
experimental results, it can be found that the IIMCCMA model 
has a higher AUROC value than other interaction prediction 
models on dataset 1.

As shown in Figure  3, under the 10-fold cross-validation 
experiment on dataset 1, the AUROC value of NECMA is 0.0003, 
the AUPR value of CMIVGSD is 0.0007, the AUPR value of 
GCNCMI is 0.0004, the AUPR value of CD-LNLP is 0.0004, the 
AUPR value of RWR is 0.0008, the AUPR value of KATZCPDA is 

0.0008, and the AUPR value of the IIMCCMA model is 0.0009. It 
can be found from the experimental results that the IIMCCMA 
model achieves a higher AUPR value than the other models on 
dataset 1.

The Figure 4 shows the performance comparison in term of 
AUROC on dataset 2. It can be found that the AUROC value of 
NECMA is 0.5021, the AUROC value of CMIVGSD is 0.7081, the 
AUROC value of GCNCMI is 0.4789, the AUROC value of 
CD-LNLP is 0.6751, the AUROC value of RWR is 0.6729, the 
AUROC value of KATZCPDA is 0.6292, and the AUROC value of 
IIMCCMA is 0.7333. It demonstrates that IIMCCMA outperforms 
than other prediction models on dataset 2.

As shown in Figure 5, the AUPR value of NECMA is 0.0002, 
the AUPR value of CMIVGSD is 0.0011, the AUPR value of 
GCNCMI is 0.0002, the AUPR value of CD-LNLP is 0.0008, the 
AUPR value of RWR is 0.0007, the AUPR value of KATZCPDA is 
0.0006, and the AUPR value of the IIMCCMA model is 0.0011. It 
can be found that the IIMCCMA model achieves a higher AUPR 
value than the other models on dataset 2. In conclusion, under the 
10-fold cross-validation experiment, we  can find that 
theIIMCCMA has achieved higher AUROC and AUPR values 
than the other prediction models. Thus, it can be proved that 
theIIMCCMA performs better in the potential circRNA-miRNA 
interactions identification.

3.2 Ablation experiment

In order to verify the effectiveness of the improvements of 
IIMCCMA, we  conduct ablation experiment on dataset 1: 
CircRNA-miRNA potential interaction prediction model based on 
multi-source similarity and inductive matrix completion 
(IIMCCMA without improved IMC and topological features). 
CircRNA-miRNA potential interaction prediction model based on 
fusion features and inductive matrix completion (IIMCCMA 
without improved IMC). We adopt the 10-fold cross-validation 
experiment and use the AUROC value as the evaluation metrics. As 
shown in Figure  6, the AUROC value of the circRNA-miRNA 
potential interaction prediction model based on multi-source 
similarity (IIMCCMA without improved IMC and topological 
features) is 0.6728. The AUROC value of the circRNA-miRNA 
potential interaction prediction model based on fusion features 
(IIMCCMA without improved IMC) is 0.6816. The AUROC value 
of IIMCCMA is 0.6938. In summary, based on the original 
inductive matrix completion algorithm, fusion of similarity features 
and topological features can improve the predictive ability of the 
model. Adding improved inductive matrix completion on the basis 
of fusion features can further improve the performance of the 
prediction model.

3.3 Case study

In order to prove the ability of the circRNA-miRNA potential 
interaction model (IIMCCMA) based on the multi-source 

FIGURE 2

Performance comparison between IIMCCMA and other models 
on dataset 1 in term of AUROC.

FIGURE 3

Performance comparison between IIMCCMA and other models 
on dataset 1 in term of AUPR.
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biological interaction data to identify the potential interaction 
between circRNA and miRNA. This paper builds a case study 
based on miRNA miR-145-5p. Finally, this paper selects the top 10 
circRNAs predicted by the IIMCCMA model that are related to 
miRNA miR-145-5p, and manually searches the existing literature 
to prove their relevance.

The top 10 circRNAs related to miRNA miR-145-5p predicted 
by the IIMCCMA model are shown in Table 1. From Table 1, 10 
circRNAs related to miRNA miR-145-5p (hsa_circ_0058063, 
hsa_circRNA_101981, hsa_circRNA_091420, hsa_circ_100242, 
circPTN, circPVT1, hsa_circRNA_101996, circCEP128, hsa_
circ_0003855, and hsa_circ_0001955) have been confirmed by 
existing literature. Specifically, the first circRNA hsa_circ_0058063 
can be used as the sponge of miRNA miR-145-5p to regulate the 
expression of miRNA target gene CDK6 and promote the 
development of bladder cancer (Sun et al., 2019a). In prostate 

cancer cells, the expression pattern of the second-ranked circRNA 
hsa_circRNA_101981 was significantly down-regulated. Further 
experiments showed that miRNA miR-145-5p can regulate the 
expression of circRNA hsa_circRNA_101981 (He et al., 2018). The 
expression pattern of the third-ranked circRNA hsa_
circRNA_091420  in prostate cancer cells was significantly 
upregulated. Overexpressed miRNA miR-145-5p can inhibit the 
expression of circRNA hsa_circRNA_091420 (He et al., 2018). 
Experimental results show that the fourth-ranked circRNA hsa_
circ_100242 can interact with miRNA miR145-5p in bladder 
cancer cells (Zhu et al., 2020). Experiments show that the fifth-
ranked circRNA circPTN is overexpressed in glioma cells and 
tissues. Further experiments showed that circRNA circPTN can 
spongy miRNA miR-145-5p and thus play a carcinogenic effect in 
glioma cells (Chen et al., 2019). CircRNA circPVT1, ranked sixth, 
was significantly up-regulated in lung adenocarcinoma cells. 
Experiments show that in lung adenocarcinoma cells, circRNA 
circPVT1 can be  used as an ceRNA for miRNA miR145-5p 
(Zheng and Xu, 2020). Experiments show that the seventh-ranked 
circRNA hsa_circRNA_101996 can interact with miRNA 
miR-145-5p in prostate cancer cells. In addition, overexpressed 

FIGURE 4

Performance comparison between IIMCCMA and other models 
on dataset 2 in term of AUROC.

FIGURE 5

Performance comparison between IIMCCMA and other models 
on dataset 2 in term of AUPR.

FIGURE 6

Performance comparison between IIMCCMA model and 
benchmark model.

TABLE 1 Case study based on microRNA miR-145-5p.

Rank CircRNA Evidence Reference

1 hsa_circ_0058063 PMID: 30362519 Sun et al. (2019a)

2 hsa_circRNA_101981 PMID: 30136305 He et al. (2018)

3 hsa_circRNA_091420 PMID: 30136305 He et al. (2018)

4 hsa_circ_100242 PMID: 32218853 Zhu et al. (2020)

5 circPTN PMID: 31511040 Chen et al. (2019)

6 circPVT1 PMID: 31986409 Zheng and Xu (2020)

7 hsa_circRNA_101996 PMID: 30136305 He et al. (2018)

8 circCEP128 PMID: 30939216 Sun et al. (2019b)

9 hsa_circ_0003855 PMID: 31776711 Zhang et al. (2020)

10 hsa_circ_0001955 PMID: 31822654 Yao et al. (2019)
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miRNA miR-1455p can inhibit the expression of circRNA hsa_
circRNA_101996 (He et al., 2018). The eighth-ranked circRNA 
circCEP128 can promote the development of bladder cancer by 
regulating miRNA miR-145-5p and miRNA’s target gene MYD88 
(Sun et  al., 2019b). The expression pattern of circRNA hsa_
circ_0003855, ranked ninth, was significantly increased in gastric 
cancer cells. Experimental results show that circRNA hsa_
circ_0003855 can take on the sponge effect of miRNA miR-145-5p 
to promote the proliferation and migration of gastric cancer cells 
(Zhang et al., 2020). The tenth-ranked circRNA hsa_circ_0001955 
can assume the role of miRNA miR-145-5p sponge. Additionally, 
the downregulated circRNA hsa_circ_0001955 can inhibit the 
growth of hepatocellular carcinoma tumors (Yao et al., 2019). In 
summary, through the case study results based on miRNA 
miR-145-5p, it can be  found that the IIMCCMA model can 
correctly identify the potential biological interaction between 
circRNA and miRNA.

4. Conclusion

Experiments show that circRNA can play an important role 
in cancer as a miRNA sponge. Therefore, correct identification of 
the interaction between circRNA and miRNA not only helps to 
understand the complex disease mechanism, but also contributes 
to the diagnosis, treatment and prognosis of the disease. Based 
on circRNA-miRNA interaction, circRNA-cancer interaction and 
miRNA-cancer interaction, this paper proposes a circRNA-
miRNA potential interaction prediction model based on multi-
source biological interaction data, IIMCCMA. This model first 
uses the Gaussian kernel function to calculate the GIP kernel 
similarity of circRNA and the GIP kernel of miRNA based on the 
circRNA-miRNA interaction network. Then, on the basis of the 
circRNA-cancer interaction network and the miRNA-cancer 
interaction network, the cosine function is used to calculate the 
functional similarity of circRNA and miRNA, respectively. 
Afterward, the different similarities of circRNAs and the different 
similarities of miRNAs were integrated separately. The known 
circRNA-miRNA interaction network is used to construct a 
heterogeneous network for extracting topological features of 
circRNA and miRNA, and the network embedding algorithm 
(NetMF) is used to obtain the low-dimensional space vectors of 
circRNA and miRNA, respectively. Finally, based on the fusion 
features, an improved inductive matrix completion algorithm is 
used to predict the potential interaction between circRNA and 
miRNA. In order to test the performance of the IIMCCMA, this 
paper selects four circRNA-disease potential interaction 
prediction models for comparison. The 10-fold cross-validation 
results show that compared with the other four models, the 
IIMCCMA achieved higher AUROC and AUPR values. 
Therefore, it is proved that IIMCCMA has better predictive 
ability. Moreover, the results of a case study based on miRNA 
miR-1455p show that the IIMCCMA model can correctly identify 
the potential interaction between circRNA and miRNA.

Although, the IIMCCMA model has shown excellent 
performance in predicting the potential interaction between 
circRNA and miRNA. However, there are still some shortcomings 
and limitations. (1) The imbalance of positive and negative 
samples in interaction data. Because the efficiency of identifying 
circRNA and miRNA interactions through biological 
experiments is low, in the existing circRNA-miRNA interaction 
network, the experimentally verified interactions are far less than 
the unknown interactions. The sparse circRNA-miRNA 
interaction network greatly affects the performance of the 
prediction model (Lan et  al., 2016b, 2020b; Lei et  al., 2020). 
Therefore, in the follow-up work, we  will try to pre-fill the 
original interaction matrix to alleviate the sparsity of the known 
interaction network and enhance the performance of the model. 
(2) Parameter setting. There are a certain number of parameters 
in the IIMCCMA model that need to be set manually. The quality 
of the parameters needs to be confirmed through experimental 
verification. In addition, too many parameters will reduce the 
learning and generalization capabilities of the model. Therefore, 
no parameter or self-learning parameter model will be the main 
work in the future (Lan et  al., 2016a, 2017, 2022b; Chen 
et al., 2021).
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Introduction: The industrial yeast Pichia pastoris is widely used as a cell

factory to produce proteins, chemicals and advanced biofuels. We have

previously constructed P. pastoris strains that overexpress protein disulfide

isomerase (PDI), which is a kind of molecular chaperone that can improve the

expression of an exogenous protein when they are co-expressed. Chicken

cystatin (cC) is a highly thermostable cysteine protease inhibitor and a

homologous protein of human cystatin C (HCC). Wild-type cC and the two

mutants, I66Q and 1W (a truncated cC lacking the á-helix 2) represent

proteins with different degrees of stability.

Methods: Wild-type cC, I66Q and 1W were each overexpressed in P. pastoris

without and with the coexpression of PDI and their extracellular levels

were determined and compared. Transcriptomic profiling was performed to

compare the changes in the main signaling pathways and cell components

(other than endoplasmic reticulum quality control system represented by

molecular chaperones) in P. pastoris in response to intracellular folding stress

caused by the expression of exogenous proteins with different stabilities.

Finally, hub genes hunting was also performed.

Results and discussion: The coexpression of PDI was able to increase the

extracellular levels of both wild-type cC and the two mutants, indicating

that overexpression of PDI could prevent the misfolding of unstable proteins

or promote the degradation of the misfolded proteins to some extent. For

P. pastoris cells that expressed the I66Q or 1W mutant, GO (Gene Ontology)

and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of the

common DEGs in these cells revealed a significant upregulation of the genes

involved in protein processing, but a significant downregulation of the genes

enriched in the Ribosome, TCA and Glycolysis/Gluconeogenesis pathways.

Hub genes hunting indicated that the most downregulated ribosome protein,

C4QXU7 in this case, might be an important target protein that could be
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manipulated to increase the expression of foreign proteins, especially proteins

with a certain degree of instability.

Conclusion: These findings should shed new light on our understanding of

the regulatory mechanism in yeast cells that responds to intracellular folding

stress, providing valuable information for the development of a convenient

platform that could improve the efficiency of heterologous protein expression

in P. pastoris.
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1 Introduction

Human cystatin C (HCC) is a papain-like cysteine protease
inhibitor that belongs to the cystatin superfamily, and it is
also one of the most extensively studied endogenous inhibitors
as well as an important biomarker of renal function (Dubin,
2005). Abnormal changes in the expression and secretion of
HCC in the brain have been described for various neurological
disorders such as amyotrophic lateral sclerosis (ALS), rare
heritable neurodegenerative disorders, ischemia, some forms of
epilepsy, Alzheimer’s disease (AD) (Mathews and Levy, 2016)
and recurrent hemorrhagic stroke (Merz et al., 1997; Zhou et al.,
2015).

Previous studies have reported that the fatal amyloid
disease, hereditary cystatin amyloid angiopathy (HCCAA),
found in young Icelanders is mainly caused by the HCC
hereditary amyloidogenic mutant L68Q, which has a high
dimerization potential that can lead to self-aggregation and
hyper-amyloidosis (Janowski et al., 2001; Palsdottir et al.,
2006). The instability of the soluble HCC monomer has
constrained any structural studies on its physicochemical
properties. Meanwhile, chicken cystatin (cC) has a number of
characteristics similar to HCC, and both proteins share about
44% sequence homology. Thus, cC is considered an ideal model
for studying protein domain exchange and amyloid-related
diseases (Bode et al., 1988; Yu et al., 2010). Residue 66 in cC
corresponds to residue 68 in HCC, and the I66Q mutant of cC
has similar amyloidogenic properties to L68Q of HCC under
physiological conditions (Bjarnadottir et al., 2001).

The AS (appending structure) region of cC contains α-helix
2, which is crucial for the stability of cC and is considered to be
the biggest difference between HCC and cC (Grubb et al., 1984).
Therefore, the α-helix 2-truncated mutant (1W) with a deletion
at residues 77–85 was constructed as the unstable cC model
protein. Based on our previous results, the secreted amount of
1W is much lower than that of WT cC or I66Q when expressed
in P. pastoris, indicating that the absence of α-helix 2 in the AS
region may be one of the factors contributing to the structural
instability of HCC (Zhou et al., 2019).

Pichia pastoris (reclassified as Komagataella phaffii/pastoris)
is a methylotrophic yeast and a highly successful system for

producing recombinant proteins in the pharmaceutical and
biofuel industries (Yu et al., 2017). The ability of P. pastoris
to express recombinant proteins is facilitated by the strong
promoter of its alcohol oxidase 1 (AOX1) gene. The activity
of the AOX1 promoter is tightly regulated by the carbon
source. Thus, recombinant proteins expressed from the AOX1
promoter in P. pastoris cells can be induced with methanol
once cell growth has reached high densities to obtain a high
level of expression for the proteins. For example, a His-Qtagged
lipase A from Beauveria bassiana has been successfully produced
in P. pastoris and shown to have potential use for biodiesel
production via ethanolysis (Vici et al., 2015). Another example is
the expression of α-L-arabinofuranosidase (ARA) in P. pastoris,
which can be improved 5.5-fold by codon optimization. The
recombinant ARA has significant potential in the catalytic
conversion of corn stover to fermentable sugars during biofuel
production (Vici et al., 2015). However, overexpression of
recombinant proteins may lead to more misfolded proteins and
trigger endoplasmic reticulum (ER) stress (Jolly and Morimoto,
2000; Oakes and Papa, 2015). The cells might then respond
to ER stress by increasing the expression of some molecular
chaperones, including PDI, HSP90, and HSP72 (Vogl and
Glieder, 2013; Delic et al., 2014; Gu et al., 2015). To prevent
protein misfolding and aggregation, the newly synthesized
molecular chaperones would increase folding efficiency by
capturing the folded intermediates and promoting refolding or
degradation. Co-expression of PDI has been used to improve the
expression of heterologous proteins in P. pastoris by overcoming
the burden of protein folding and secretion (Inan et al., 2006;
Navone et al., 2021a). In our previous study, the overexpression
of PDI in P. pastoris GS115 strains was found to significantly
increase the expression of cC (Zhou et al., 2019). On this basis,
three representative proteins with different stabilities (WT cC
and its two mutants I66Q and 1W) (Figure 1) were used as
model proteins to screen for factors other than the ER quality
control system represented by the molecular chaperone PDI that
could influence the expression of foreign proteins that may not
be properly folded in P. pastoris. Subsequently, transcriptomic
profiling was performed to identify the transcriptomic changes
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FIGURE 1

Schematic diagram of the workflow conducted in this study.

and pathways involved in the molecular network and changes
in the dynamic mechanism of the foreign protein secretion
pathway in P. pastoris.

2 Materials and methods

2.1 Strains, plasmids, and culture
conditions

Pichia Pastoris GS115 strain was provided by Dr. Shutao
Liu at Fuzhou University. The plasmids pPIC3.5K and
pPICZαA were purchased from Invitrogen. GS115 strain and
the previously constructed GS115 PDI-overexpressing strain
were used as starting strains for the construction of the PDI
and cC co-overexpressing strains. The yeast cells were first
cultured at 30◦C in Yeast Peptone Dextrose medium (YPD)
(1% yeast extract, 2% peptone, and 2% glucose) to logarithmic
growth phase (OD600 = 5.0) followed by methanol induction
in Yeast Extract Peptone Medium (YPM) [1% yeast extract,
2% peptone, 0.5% Methanol (v/v)] for 72 h to induce the
expression of PDI and cC.

2.2 Construction of recombinant
strains

GS115 competent cells were transformed with the
linearized plasmid pPICZαA-cC, pPICZαA-I66Q, and

pPICZαA-1W by electroporation to generate GS115-
cC, GS115-I66Q, GS115-1W recombinant strains,
respectively. Similarly, GS115-PDI-cC, GS115-PDI-I66Q,
GS115-PDI-1W strains were obtained by transforming
GS115 PDI with pPICZαA-cC, pPICZαA-I66Q, and
pPICZαA-1W, respectively.

2.3 Protein expression analysis

Extracellular protein samples were obtained as previously
described (Zhou et al., 2019). Intracellular protein samples
were extracted from yeast cells after treatment with Yeast
Protein Extraction Reagent (Takara, Dalian, China). SDS-
PAGE and western blotting were carried out following the
procedure described previously (Zhou et al., 2019). The
protein bands in one gel were visualized by staining the
gel with PAGE Gel Silver Staining Kit (Takara, Beijing,
China) whereas the protein bands in the other gel were
transferred to a PVDF membrane (Millipore, MA, USA)
for western blot analysis. After protein transfer, the PVDF
membrane was incubated in a blocking buffer containing
TBST plus 5% skimmed milk powder for 2 h. This was
followed by three 10 min washes in TBST buffer, and 1 h
of incubation in rabbit anti-cC antiserum (1:2000) at room
temperature. After that, the membrane was again washed
three times in TBST, with each wash lasting for 10 min.
Finally, the blot was incubated with anti-rabbit peroxidase
conjugate (1:10000) for 1 h at RT, and then subjected
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to detection using the eECL Reagent (Beyotime, Shanghai,
China).

2.4 RNA sequencing

Total RNA was extracted from the different GS115
strains using Yeast RNAiso Kit (Takara, Dalian, China). The
extraction was performed according to the manufacturer’s
protocol. The mRNA fraction was purified from the total
RNA using MicroPoly Purist kit (Takara, Dalian, China)
according to the manufacturer’s protocol. The concentration
and integrity of the mRNA were measured using a NanoDrop
2000 (Thermo Fisher Scientific, MA, USA) and the Agilent
2100 LabChip system (Agilent Technologies, CA, USA).
The RNA was sheared, and reverse transcribed using
random primers to obtain the cDNA, which was then
used for the construction of a cDNA library. Illumina
RNA sequencing (RNA-Seq) libraries were subsequently
performed using VAHTS Universal V6 RNA-seq Library
P the SMARTer Stranded RNA Seq Kit (Vazyme Biotech
Co. Ltd.) according to the manufacturer’s instructions.
Finally, RNA-Seq data were generated in Fastq format. The
sequencing data have been submitted to National Center
for Biotechnology Information (NCBI) under accession
PRJNA8928871.

2.5 Screening for differentially
expressed genes

The differentially expressed genes (DEGs) for WT vs.
I66Q, PDI-WT vs. PDI-I66Q, WT vs. 1W and PDI-
WT vs. PDI-1W were identified by the BioMarker
cloud platform with adjusted p-value <0.01 and log2

fold change (FC) >2. Moreover, the common DEGs
between different groups have been identified by
the same method.

2.6 Functional enrichment analyses for
common DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed on the BioMarker
cloud platform with a p-value <0.05. ClueGo plug-in in
Cytoscape software (3.8 version) was used for showing the
ClueGO network diagram.

1 https://submit.ncbi.nlm.nih.gov/subs/bioproject/SUB12189176/
overview

2.7 Protein–protein interaction
network construction and hub gene
identification

Common DEGs were used to construct the protein–protein
interaction (PPI) network by using the SRTING online database
with a confidence score of more than 0.7. Hub genes of
the PPI network were identified using a degree algorithm
from cytoHubba, a plugin in Cytoscape, and visualized using
Cytoscape (v3.8.0).

3 Results

3.1 Effect of PDI-overexpression on the
expression of WT cC and cC mutants

To investigate the intracellular distribution pattern and
retention level of recombinant cC as well as its extracellular
secretion in P. pastoris, WT cC, I66Q and 1W were expressed
in both P. pastoris GS115 strains without and with the
overexpression of PDI. The extracellular secretion of wild-
type cC and its two mutants was detected by silver staining
(Figure 2A). Overexpression of PDI (57 kDa) can significantly
enhance the expression of WT cC (14 kDa) and the I66Q
mutant. In the case of 1W, the protein was only secreted
when it was co-expressed with PDI (Figure 2B). As shown
in Figure 2B, almost no I66Q and 1W were detected as an
intracellular form in both PDI-overexpressing GS115 and wild-
type GS115 strains. Interestingly, for WT cC, no significant
difference in intracellular level was observed between the two
yeast strains. This might suggest that when the yeast expressed
WT cC, most of the proteins were capable of folding into the
native form and were subsequently secreted out of the cell, with
little misfolded protein being produced and residing in the ER
despite an increase in the amount of the newly synthesized
protein entering the ER. For the mutant I66Q, its intracellular
level was proportional to its extracellular level in either yeast
strain because of its amyloidogenic properties. Consequently,
the three cC-overexpressing GS115 strains and the three cC-
overexpressing GS115 strains that also co-expressed PDI were
used for the following transcriptomic studies.

3.2 Transcriptomic analysis of different
recombinant GS115 strains

It has been proven that genes are being expressed at
different levels in different individual organisms as a result of
biological variability (Robasky et al., 2014). Therefore, biological
replicates were included to ensure the validity of the following
experiments. The Pearson Correlation Coefficient r refers to
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FIGURE 2

Analysis of the expression of the different versions of chicken cystatin (cC) (MW: 13 kDa) in both GS115 strains that did and did not overexpress
PDI (MW: 57 kDa). (A) Secretion of the WT cC, I66Q and 1W as detected in the culture supernatant after centrifugation as shown by SDS-PAGE.
The gel was visualized by silver staining. (B) Expression of WT cC, I66Q and 1W in GS115 as analyzed by western blot. Intracellular refers to the
soluble fraction of cell lysate, and Extracellular refers to the culture supernatant. “+” and “–” indicates the cells were transfected with and
without the corresponding cC-coding gene, respectively.

TABLE 1 Summary of the samples analyzed by
RNA—sequencing (RNA-seq).

Samples for RNA-seq Strain Overexpressed
protein

T1, T2, T3 GS115 /

T4, T5, T6 GS115-PDI PDI

T7, T8, T9 GS115-cC cC

T10, T11, T12 GS115-PDI-cC PDI/cC

T13, T14, T15 GS115-I66Q I66Q

T16, T17, T18 GS115-PDI-I66Q PDI/I66Q

T19, T20, T21 GS115-1W 1W

T22, T23, T24 GS115-PDI-1W PDI/1W

the biological assessment of repeated samples and it was
used to analyze the correlation between every two samples
(Schulze et al., 2012). The closer r2 is to 1, the stronger the
correlation between the two replicates (Figure 3). Subsequently,
24 samples were subjected to the transcriptomic analysis after
RNA-sequencing was completed, with three replicates included
for each strain and the data are summarized in Table 1. The
clean reads of each sample were compared with the designated
P. pastoris GS115 genome. The mapped data obtained after
alignment were used to evaluate the quality of the library such
as randcheck, insert size, and saturation test. Typically, FPKM
(Fragments Per Kilobase of transcript per Million fragments
mapped) was used as an indicator to measure the expression
level of a gene (Zhao et al., 2021). Identification of DEGs was
carried out according to the gene expression levels in different
samples.

Different numbers of up-and down-regulated DEGs were
obtained by comparing each of the two sample groups
as shown in Figure 4. Interestingly, when the WT cC-
overexpressing strain was compared with either the I66Q-

or 1W-overexpressing strain, the DEGs, especially the up-
regulated genes, were significantly increased. Nevertheless, this
trend was not observed in the comparison of PDI-WT vs.
PDI-I66Q/1W, implying a healthy intracellular cell condition
in GS115-PDI-I66Q and GS115-PDI-1W afforded by the
overexpression of PDI. From this point, it became important to
investigate the common DEGs identified from the comparison
of both WT vs. I66Q/1W and PDI-WT vs. PDI-I66Q/1W,
since these common DEGs are vital for the overexpression of
foreign proteins that are less stable. The total number of up-
regulated and down-regulated genes in each comparison group
was depicted in a Venn diagram (Figure 4B). Among all the
compared genes, 203 and 210 common DEGs indicated in
Figure 4B were selected for subsequent KEGG analysis, GO
annotation, and hub gene identification.

3.3 KEGG analysis of common DEGs

Kyoto encyclopedia of genes and genomes analysis was
applied to explore the potential molecular functions and
molecular mechanisms associated with the functions of the
common DEGs. As shown in Figure 5A, for WT vs. I66Q and
PDI-WT vs. PDI-I66Q comparisons, several signaling pathways
were significantly enriched, including the pathways for the
biosynthesis of amino acids, citrate cycle, and Tricarboxylic
Acid cycle (TCA cycle), and the metabolic pathways. In the
comparison of WT vs. 1W and of PDI-WT vs. PDI-1W, in
addition to the pathways that were enriched in both WT vs. I66Q
and PDI-WT vs. PDI-I66Q, the DNA replication and ribosome
pathways were also indicated, suggesting that the activation of
genes in different KEGG pathways may be due to the different
physicochemical properties of the I66Q and 1W cC mutants
(Figure 5B).

Enrichment analysis was performed on the 203 and 210
common DEGs using the ClueGO v2.5.4 plugin. After setting
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FIGURE 3

Correlation heat map for two pairs of samples.

the P-value as <0.05 and the Kappa Score Threshold as 0.4,
25, and 24 GO terms were identified from the group WT vs.
I66Q and PDI-WT vs. PDI-I66Q, WT vs. 1W and PDI-WT vs.
PDI-1W, respectively. For the comparison of WT vs. I66Q and
PDI-WT vs. PDI-I66Q, the enriched genes were mainly involved
in protein folding, translation, and the acetyl-CoA metabolic
and monocarboxylic acid biosynthetic processes (Figure 6A).
For WT vs. 1W and PDI-WT vs. PDI-1W, the enriched genes
were not only distributed in the above pathways but also in the
DNA metabolic process and porphyrin-containing compound
biosynthetic process (Figure 6B). The result obtained from
ClueGO enrichment analysis provided a global understanding
of the scenario when proteins with different stabilities were
expressed in P. pastoris. The common DEGs enriched in both
the metabolic and protein processing pathways were quite
noticeable in the comparison of WT vs. I66Q and that of WT

vs. 1W, suggesting that when amyloid mutants and unstable
exogenous proteins are expressed in the P. pastoris, there might
be a need to adjust the basic metabolic speed/efficiency and
reproduction speed of the cells.

3.4 PPI network construction and hub
genes identification

To further investigate the key cellular components and
biological processes in the wild-type GS115 (I66Q/1W) and
PDI-overexpressing GS115 strains (I66Q/1W), both of which
were found to have common enriched DEGs, the STRING
(Search Tool for the Retrieval of Interacting Genes) online
tool was used to construct a PPI network of common DEGs.
A combined score of >0.7 was set as the cut-off criterion for
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FIGURE 4

Count of differentially expressed genes (DEGs) in WT vs. I66Q/1W and PDI-WT vs. PDI-I66Q/1W comparisons. (A) Total number of up and
downregulated DEGs in the four pairs: WT vs. I66Q, WT vs. 1W, PDI-WT vs. PDI-I66Q and PDI-WT vs. PDI-1W. (B) Venn diagram depicting the
total number of proteins, including the up and down-regulated genes in the four groups.

FIGURE 5

Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of common differentially expressed genes (DEGs). (A) KEGG
pathway enrichment of 203 common DEGs identified from the WT vs. I66Q and PDI-WT vs. PDI-I66Q comparisons. (B) KEGG pathway
enrichment of 210 common DEGs from the WT vs. 1W and PDI-WT vs. PDI-1W comparisons.

statistical significance. Next, the PPI network was downloaded
and visualized as shown in Figure 7. A total of 132 nodes
and 101 edges were identified for the common genes belonging
to the comparison of WT vs. I66Q and of PDI-WT vs. PDI-
I66Q (Figure 7A). According to the Degree sores in the

cytoHubba, the top ten highest-scored genes were selected
as the hub genes, including the common DEGs that encode
the proteins C4QXU7, C4QZL4, C4R7T6, C4R447, C4R196,
C4R0F8, C4R7T7, C4R7D3, C4R596 (Figure 7B). As for the
comparison of WT vs. 1W and of PDI-WT vs. PDI-1W,
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FIGURE 6

ClueGO enrichment analysis. (A) Significantly enriched gene ontology (GO) terms of the common differentially expressed genes (DEGs)
identified from the WT vs. I66Q and PDI-WT vs. PDI-I66Q comparisons. (B) Significantly enriched GO terms of the common DEGs from the WT
vs. 1W and PDI-WT vs. PDI-1W comparisons.

140 nodes and 118 edges were found in the PPI network
(Figure 7C), and the Hub genes included the common DEGs
that encode C4QXU7, C4QVA2, C4R0T8, C4R447, C4QZE7,
C4R7A1, C4R8M3, C4QWG3, C4R7T6, C4R7T6, C4QWY6
(Figure 7D).

C4QXU7, C4R7T6, and C4R0F8 were the top three key
proteins identified in the comparison of WT vs. I66Q and of
PDI-WT vs. PDI-I66Q. C4QXU7 is a small subunit of ribosomal
protein S28e, whereas C4R7T6 is the large subunit of the
ribosomal protein LP1, and C4R0F8 is a small subunit of the
ribosomal protein S26e. In the case of WT vs. 1W and PDI-WT
vs. PDI-1W comparisons, the top three key proteins included
C4QXU7, C4QVA2, and C4R0T8. C4QVA2 is a small subunit
of ribosomal protein S3e, and C4R0T8 is a small subunit of
ribosomal protein S15A. All of the above-mentioned proteins
are responsible for the structural integrity of the ribosome and
the protein translation rate. Interestingly, all the top three hub
genes belong to the components of ribosomal subunits and they
were found to be downregulated. Moreover, they were all found
to be enriched in the translation pathway. This observation
underlined the importance of the rate of protein synthesis by
ribosomes and suggested that protein synthesis by ribosomes
may be the ultimate goal that yeast cells need to adjust when
an exogenous unstable protein is expressed in P. pastoris.

4 Discussion

It is generally believed that the amount of secreted amyloid
mutant proteins and unstable mutant proteins is usually lower
than that of their wild-type counterparts when eukaryotic
expression systems are used (Whyteside et al., 2011; Bou Ali
et al., 2013; He et al., 2019). When yeast cells express foreign
proteins, the misfolded proteins may become toxic to the cells,
and therefore, the co-overexpression of molecular chaperones

may promote the folding and posttranslational modifications
of the expressed proteins, thereby facilitating the secretion of
the foreign proteins. Our results showed that co-expression of
PDI with wild-type cC or mutated cC (I66Q or 1W) could
improve the secretion of cC to different extents. However, the
distinct client-recruiting system of molecular chaperones may
have a limit in improving the secretion of foreign proteins
that may not be properly folded (Yan et al., 2021). This
limitation could prevent P. pastoris from becoming an ideal
protein production platform that can accommodate a variety
of production requirements. Although modifications of specific
transcription factors have been adopted to alter the regulation
mode, it is still difficult to markedly increase the expression
of foreign proteins in wild-type P. pastoris (Nusse and Lindau,
1988; Wang et al., 2017; Vogl et al., 2018). In this context,
it is essential to pursue other regulatory genes and related
cellular pathways that are capable of increasing the expression
of foreign proteins in P. pastoris. Accordingly, WT, I66Q and
1W were designed to be secreted by P. pastoris cells that
did not overexpress PDI and those that did overexpress PDI,
since both cell types could achieve different levels of protein
expression in response to the various stabilities of WT cC
and the two cC mutants. Our results, along with previously
reported results, have shown that following their expression
in P. pastoris, improperly folded foreign proteins may be
found in lower levels compared with those that are properly
folded, such as the improperly folded cC mutants versus their
wide-type counterpart. Interestingly, the two cC mutants had
different stabilities, which directly impacted their extracellular
and intracellular levels. Consequently, the order of decreasing
stability for WT cC, I66Q and 1W turned out to be well-
suited for establishing P. pastoris strains that could be used to
investigate the key regulatory genes that the host cell would
modulate when expressing foreign proteins that may not be
properly folded.
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FIGURE 7

Protein–protein interaction (PPI) network of the proteins encoded by the common differentially expressed genes (DEGs) and selection of hub
genes. (A,B) PPI network and the top 10 common DEGs between WT and I66Q and between PDI-WT and PDI-I66Q. (C,D) PPI network and the
top 10 common DEGs between the group WT and 1W and between PDI-WT and PDI-1W.

Both P. pastoris GS115 which did not overexpress PDI and
P. pastoris GS115 overexpressed PDI were used as the starting
strains to express different variants of cC having different
stabilities (WT cC, I66Q and 1W). RNA-seq analysis was
then performed in order to screen for the common DEGs
between the WT cC-expressing strain and I66Q-expressing
strain or 1W-expressing strain. For the comparison of WT
vs. I66Q with PDI-WT vs. PDI-I66Q, GO analysis indicated
the consumption of energy by the host cells as an important
factor in the case of foreign protein expression since protein

synthesis is an energy-costing process. Glycolysis and the
TCA cycle are processes of energy acquisition, so reducing
energy acquisition is a way to force the slow-down of
protein synthesis because, without ATP and GTP, protein
synthesis cannot occur. Glycolysis also leads to the pentose
phosphate pathway, which provides nucleotides for nucleic acid
synthesis. Thus, lowering glycolysis also affects RNA synthesis,
and hence protein synthesis. The result of KEGG pathway
analysis showed that in both groups, the common DEGs
were enriched in the ribosome and TCA cycle, as well as in
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carbon metabolism and glycolysis/gluconeogenesis, consistent
with the results of GO analysis. The basal metabolic level of
P. pastoris is closely related to the protein expression level
(Liang et al., 2012; Renuse et al., 2014). When P. pastoris
expressed I66Q and 1W during the methanol induction stage,
the common DEGs enriched in the TCA and glycolytic pathways
were significantly decreased compared with those in the WT
cC-expressing strain. At the same time, the common DEGs
enriched in the protein translation and protein folding processes
were up-regulated, indicating an initial increased expression of
protein synthesis-related genes, and even glycolysis and the TCA
cycle-related genes in the case of the I66Q- and 1W-expressing
strains. At a later time, the burden caused by these misfolded
proteins started to affect the cells and resulted in an adjustment
to reduce the expression of the foreign proteins. However, the
selective pressure of methanol induction was still ongoing, so
protein synthesis could only be slowed down by reducing the
flow of energy to protein synthesis (Sola et al., 2007; Orman
et al., 2009). These findings indicated that when foreign proteins
that may not be properly folded are expressed in P. pastoris,
the cells need to adjust their own metabolic states in order
to maintain intracellular homeostasis, based on the degree of
protein instability.

Hub genes are considered to be key genes that play vital
roles in biological processes and can affect the regulation
of other genes in a related pathway (Liu et al., 2022; Shu
et al., 2022). It is of significance to note that the key gene
C4QXU7, a small subunit of the ribosomal protein S28e, was
identified by both the comparisons of WT vs. I66Q/1W
and PDI-WT vs. PDI-I66Q/1W (Figure 4B). Yeast ribosomal
proteins play important roles in the biogenesis and function
of the ribosome (Aw et al., 2017). Deletion of a particular
ribosome protein can delay or impair the subunit assembly,
indicating that the decelerated elongation stage of translation
might promote the co-translational folding rate of heterologous
proteins (Liao et al., 2019). In P. pastoris, overexpression
of xylanase A (a foreign protein) can lead to a significant
down-regulation of numerous ribosomal proteins, resulting
in decelerated translation elongation and enhanced folding
efficiency for xylanase A (Navone et al., 2021b). Meanwhile,
studies have shown that knocking out the C4QXU7 gene in
P. pastoris does not affect its growth, but can lead to a significant
increase in the secretion levels of exogenous proteins (e.g.,
Pfu and Phytase), indicating that the decelerated elongation
rate caused by the loss of C4QXU7 might promote the co-
translational folding rate of heterologous proteins, increasing
the expression of Pfu and Phytase (Liao et al., 2019). Together
with our data on protein expression in P. pastoris, these
observations could collectively indicate that knocking out the
C4QXU7 gene may promote the expression of foreign proteins
that are not easily folded in P. pastoris.

On the other hand, because P. pastoris is widely used for the
expression of foreign proteins in industrial protein production,
how to design and develop a new P. pastoris expression system
capable of yielding a high expression level and flexible regulation

characteristics is one of the key problems and important goals
faced by bioengineering and synthetic biotechnology. In this
study, the protein expression levels of three model proteins
with the order of decreasing stability WT > I66Q > 1W were
significantly increased in P. pastoris GS115 that simultaneously
overexpressed PDI. In addition to molecular chaperones, our
data also revealed that some ribosomal proteins, e.g., C4QXU7,
may also be important targets that can be modulated to increase
the expression of foreign proteins. The modulation of key
P. pastoris ribosomal protein genes will expand its application
potential in a broader scenario. From this viewpoint, our
research has provided valuable information for developing a
convenient platform to improve the efficiency of heterologous
protein expression in P. pastoris, which may also contribute to
the application of synthetic biology in a special field, such as in
the field of biofuel production.
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Background: Radiation proctitis is a common complication after radiotherapy 

for cervical cancer. Unlike simple radiation damage to other organs, radiation 

proctitis is a complex disease closely related to the microbiota. However, 

analysis of the gut microbiota is time-consuming and expensive. This study 

aims to mine rectal information using radiomics and incorporate it into a 

nomogram model for cheap and fast prediction of severe radiation proctitis 

prediction in postoperative cervical cancer patients.

Methods: The severity of the patient’s radiation proctitis was graded according 

to the RTOG/EORTC criteria. The toxicity grade of radiation proctitis over or 

equal to grade 2 was set as the model’s target. A total of 178 patients with 

cervical cancer were divided into a training set (n = 124) and a validation set 

(n = 54). Multivariate logistic regression was used to build the radiomic and 

non-raidomic models.

Results: The radiomics model [AUC=0.6855(0.5174-0.8535)] showed better 

performance and more net benefit in the validation set than the non-

radiomic model [AUC=0.6641(0.4904-0.8378)]. In particular, we applied 

SHapley Additive exPlanation (SHAP) method for the first time to a radiomics-

based logistic regression model to further interpret the radiomic features 

from case-based and feature-based perspectives. The integrated radiomic 

model enables the first accurate quantitative assessment of the probability 

of radiation proctitis in postoperative cervical cancer patients, addressing the 

limitations of the current qualitative assessment of the plan through dose-

volume parameters only.
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Conclusion: We successfully developed and validated an integrated radiomic 

model containing rectal information. SHAP analysis of the model suggests that 

radiomic features have a supporting role in the quantitative assessment of the 

probability of radiation proctitis in postoperative cervical cancer patients.

KEYWORDS

radiomics, nomogram, radiation proctitis, SHapley Additive exPlanation (SHAP), 
microbiota

1. Introduction

Cervical cancer is a malignant neoplasm at the junction of the 
squamous epithelial cells of the vaginal or transitional zone of the 
cervix and the endocervical canal columnar epithelial cells. Cervical 
cancer is the fourth most common cancer worldwide (Sung et al., 
2021). Radiotherapy is one of the most effective methods for 
treating pelvic malignancies and has an irreplaceable role in treating 
cervical cancer at all stages. The main complication of radiotherapy 
for pelvic malignancies is radiation proctitis (Yeung et al., 2020). 
Fifty percent of patients with cervical cancer or endometrial cancer 
who received postoperative intensity-modulated radiotherapy 
developed acute rectal toxicity, and 5%–10% developed chronic 
rectal toxicity (Zelefsky et al., 2008; Yeung et al., 2020).

Unlike simple radiation damage to other organs, radiation 
proctitis is a complex disease closely related to the microbiota. A 
study using a rectal radiation mouse model showed that radiation 
affected both host and intestinal microbiota (Gerassy-Vainberg 
et  al., 2018). Radiation therapy could induce local microbial 
ecological dysbiosis, and the dysbiosis microbiota could exert a 
direct pro-inflammatory effect on epithelial cells. In another study 
of 32 female patients with chronic radiation proctitis, differential 
patterns of dysbiosis were observed after analyzing the gut 
microbiota of patients with or without hematochezia (Liu et al., 
2021). Gut microbiota could offer a set of biomarkers for radiation 
enteritis prediction, disease activity evaluation, and treatment 
selection (Wang et al., 2019).

However, the current prediction models of radiation 
proctitis were focused mainly on clinical and radiotherapy dose 
features. Several univariate and multivariate analyses showed 
that features, including tumor size, pathological characteristics, 
and radiological parameters, were significantly correlated with 
post-radiotherapy comorbidities in patients undergoing pelvic 
radiotherapy (Albert et al., 2008; Schmidt et al., 2022). A study 
by Fiorino et al. showed that rectal function was significantly 
correlated with treatment volume, PTV margins, radiation 

therapy dose, hemorrhoids presence, anticoagulant use during 
follow-up, and relative (%) and absolute (cm3) values of rectal 
V38Gy and V40Gy correlated with rectal bleeding (Fiorino 
et  al., 2008). A study by Mahal et  al. also noted that total 
radiation dose, dose per fraction, radiotherapy techniques, and 
treatment volume affected the rectum of patients (Mahal 
et al., 2014).

Another review also suggested features associated with 
radiation proctitis, including vascular diseases such as smoking, 
diabetes, hypertensive diabetes and atherosclerosis, collagen 
vascular disease, comorbid inflammatory bowel disease, and 
human immunodeficiency virus infection. Also, the review noted 
that specific underlying genetic changes could affect patients’ 
sensitivity to radiation. There was a correlation between genes and 
higher risks of gastrointestinal and genitourinary tract 
radiotoxicity after radiotherapy (Shadad et al., 2013).

The above studies have shown a strong correlation between 
patients’ oncologic features, pathologic features, and radiologic 
dose and the appearance of radiation proctitis in postoperative 
radiotherapy for pelvic cancer. However, the conclusions of these 
studies are inconsistent, and the accuracy of the prediction of 
radiation proctitis is unsatisfactory.

In recent years, computer-aided diagnosis, especially machine 
learning methods, has also been used for postoperative 
radiotherapy side effects and comorbidities prediction in oncology 
patients. Lee et al. applied machine learning methods such as 
random forest and bioinformatics to genome-wide data to predict 
and interpret advanced urogenital toxicity (Lee et al., 2018). They 
designed more robust predictive models and identified plausible 
biomarkers and biological processes associated with late urogenital 
toxicity. A study by Lewis & Kemp et  al. showed that the 
integration of machine learning and genome-scale metabolic 
modeling identified multi-group biomarkers of radiation 
resistance (Lewis and Kemp, 2021).

However, it should be noted that the machine learning models 
above were developed using clinical features only. It ignored the 
large number of features embedded in computed tomography 
images (CT) that are imperceptible to the naked eye. Moreover, in 
the process of treatment plan determination, physicians are more 
focused on extracting focal area information and lack awareness 
of pelvic rectal information. Therefore, a comprehensive model is 
urgently needed to deepen the understanding of patient rectal 
image information to accurately assess radiotherapy treatment 
plans and reduce severe complications of radiation proctitis.

Abbreviations: SHAP, SHapley Additive exPlanation; CT, computed tomography; 

ROI, Regions of Interest; LASSO, the least absolute shrinkage and selection 

operator regularization; DCA, decision curve analysis; AUC, area under curve; 

OR, odds ratio; ROC, receiver operating characteristic analysis; ECCR, Ethics 

Committee in Clinical Research; RTOG, Radiation Therapy Oncology Group; 

EORTC, European Organization for Research and Treatment of Cancer.
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Deep learning, as well as dynamical modeling, is demonstrating 
powerful feature extraction and modeling capabilities in various 
medical fields (Li et al., 2021; Qian et al., 2021; Chen et al., 2022; 
Hu et al., 2022; Li Y. et al., 2022; Li X. et al., 2022). In data-driven 
disease research, a graph neuro network was used to predict the 
potential associations of disease-related metabolites (Sun et al., 
2022). Deep learning can also be used to explore the identification 
of circRNA-disease associations (Wang et al., 2021) and predict the 
potential human lncRNA interactions (Zhang et al., 2021; Jingxuan 
et al., 2022; Wang et al., 2022). In drug metabolism research, deep 
learning can be  used to predict the ability of a compound to 
permeate across the blood–brain barrier (Tang et al., 2022) and 
drug response (Kuenzi et  al., 2020). At the same time, deep 
learning is also a popular tool for radiotherapy research. Zhong 
et al. developed a deep learning-based radiomic nomogram that 
could predict the prognosis of patients with different treatment 
regimens (Zhong et al., 2021). Qiang et al. established a prognosis 
prediction system based on deep learning for locoregionally 
advanced nasopharyngeal carcinoma (Qiang et  al., 2021). 
Although deep learning has been widely applied in the analysis and 
prediction of various diseases, the poor interpretability of the deep 
learning model makes it difficult for clinicians to understand and 
trust these tools (Huff et al., 2021).

Radiomics can extract biomedical images containing 
information reflecting the underlying pathophysiology and reveal 
the relationships through quantitative image analysis (Le et  al., 
2021; Lam et al., 2022). In previous studies, radiomics has been used 
to predict postoperative radiotherapy-induced toxicity in prostate 
cancer patients. Mostafaei et al. showed that models based on CT 
radiomics, clinical features, and dose-volume parameters could 
predict radiation toxicity. The combination of imaging and clinical 
features could improve the performance of radiotoxicity prediction 
models (Mostafaei et  al., 2020). However, no study has been 
performed to predict postoperative radiotherapy comorbidity in 
cervical cancer patients using radiomic features. Due to the limited 
resolution, the information on microbiota is almost impossible to 
extract directly by radiomics in theory, and no relevant studies have 
been reported. However, it is feasible that radiomics can indirectly 
reflect the effect of microbiota on the rectum.

Therefore, this study uses radiomics to extract the rectal 
information from medical images and improve the model 
performance and diagnostic accuracy through quantitative image 
analysis. Moreover, this study creatively introduces SHapley Additive 
exPlanation (SHAP)  values to explore the interpretability of 
nomogram to improve the clinicians’ understanding of the model 
and its radiomic features, which facilitates later clinical promotion.

2. Materials and methods

2.1. Patients

The study protocol was reviewed and approved by the Ethics 
Committee in Clinical Research (ECCR) of the First Affiliated 

Hospital of Wenzhou Medical University. It was conducted 
following the Declaration of Helsinki. The Transparent Reporting 
of Individual Prognosis or Diagnosis Multivariate Predictive 
Models (TRIPOD) guidelines and the Strengthening Reports of 
Observational Studies in Epidemiology (STROBE) statement were 
applied. As this study was a retrospective cohort study, informed 
consent was waived, and all patient data were anonymized 
and desensitized.

Patients with cervical cancer from 1st January 2015 to 31st 
December 2020  in the First Affiliated Hospital of Wenzhou 
Medical University were collected for this study. These patients 
received a cervical cancer diagnosis, oncological surgery, and 
postoperative radiotherapy at the First Affiliated Hospital of 
Wenzhou Medical University.

The inclusion criteria (Figure  1) include (a) no severe 
symptoms at the time of diagnosis and good general physical 
condition; (b) patients with relatively intact organ functions, 
basically standard hematological system, and no 
contraindications to treatment; (c) no previous history of 
other malignant tumor diseases and radiotherapy; (d) 
postoperative pathological examination results confirming the 
diagnosis of cervical cancer; (e) postoperative radiotherapy; 
(f) patients with postoperative treatment; (g) the patient had 
complete pathology, imaging, and radiation therapy dose 
information; (h) no intracavitary brachytherapy 
was performed.

The exclusion criteria include (a) no definite postoperative 
pathological findings; (b) no complete clinicopathological data; 
(c) no CT scan was performed before postoperative radiotherapy; 
(d) patient’s pathology, imaging, and radiation treatment dose data 
are missing; (e) intolerance to radiotherapy or chemotherapy, and 
treatment plan was not completed due to severe acute toxic 
reactions during treatment; (f) Have received 
intracavitary brachytherapy.

The Mann–Whitney U-test and the Chi-square test were used 
to evaluate the performance of clinical and dose-volume features. 
Patients were randomly divided into a training set and a 
validation set.

2.2. Extraction of radiomic features

The entire rectal region on the patient’s CT image was defined 
as the Regions of Interest (ROI). Using ITK-SNAP software 
(Yushkevich et  al., 2006), a pelvic radiologist with 10 years of 
experience at the First Affiliated Hospital of Wenzhou Medical 
University outlined this target region manually. Another 
radiologist with 20 years of experience reviewed it. Extraneous 
components other than the rectum, such as peripheral vessels, 
peripheral tissues, and peripheral organs, were not outlined by 
radiologists to minimize interfering information. The two 
radiologists did not know the patient’s information. If the two 
doctors had the same opinion, the ROI would be included in the 
imaging data set.
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Quantitative radiological features were automatically 
extracted using a feature extraction platform based on the Python 
package PyRadiomics (van Griethuysen et  al., 2017). After 
segmentation and reconstruction of the patient CT, each patient 
extracted ROI was imported into Python in nrrd format. 
We extracted 1,409 radiomic features, including 8 feature classes 
used for further analysis and regression modeling. Radiomics 
features were dependent on the CT hardware, scanning 
parameters, and contrast agents. The process of generation and 
selection of radiomic features was illustrated in Figure 2.

2.3. Feature selection and model 
development

The variance equality of radiomics features was assessed by 
Levene’s test. Independent t-test or Wilcoxon’s test was used for 
feature selection. After standardizing the radiomic features using 
the z fraction transform, the high-dimensional imaging features 
extracted from the ROI were selected by the least absolute 
shrinkage and selection operator (LASSO) regularization 
algorithm. We performed univariate logistic regression on all 
features to screen out the key features significantly associated 
with the severity of radiation proctitis. The value of p was usually 
set at p < 0.2, but can also be set at p < 0.05 or p < 0.1. It requires 

the researcher to adjust the value of p according to the sample 
size. Due to the limited amount of data in this study, we set p < 0.2 
as the threshold. Features with p > 0.2 in the univariate logistic 
regression were excluded, and features with p < 0.2 were included. 
Finally, the features left after multiple screenings were introduced 
into a stepwise logistic regression analysis to build a 
comprehensive model.

2.4. Model simplification and model 
evaluation

The critical features remained after multiple screenings were 
included in the multivariate logistic regression model generated 
by the stepwise forward and backward methods. Finally, to 
transform the complex regression equations into simple and visual 
graphs and make the prediction models’ results more readable, a 
visual nomogram was constructed based on these features that can 
be stably present in the unified model. All model evaluations were 
performed on the unseen validation set. In addition, calibration 
curves were used to evaluate the model performance of 
the nomogram.

To further validate the performance of the radiomic features, 
we  built a simplified non-radiomic model by removing the 
radiomic features. To evaluate the performance of these two 

FIGURE 1

Flow diagram of the study enrolment patients.
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models, we  assessed the discrimination using the receiver 
operating characteristic (ROC) analysis. The area under the 
receiver operating characteristic curve (AUC) was used to assess 
the predictive discrimination of these two models. In addition, in 
order to verify the validity of the model from another perspective, 
a k-Nearest Neighbor (KNN) model was built using the same data 
as the radiomic nomogram. The root-mean-square error (RMSE) 
and 10-fold cross-validation were used to select the optimal 
hyperparameter of the KNN model. We  used decision curve 
analysis (DCA) to assess clinical validity by quantifying the net 
benefit at each threshold probability. All statistical analyses were 
performed using R (version 4.2.2), Python (version 3.9.12), and 

SPSS (version 24.0, IBM). The workflow of the model analysis 
process after modeling was shown in Figure 2.

2.5. Model interpretation

SHapley Additive exPlanation (SHAP) method is a game-
theoretic-based model interpretation method. From a game 
theory perspective, SHAP treats each feature variable as a player. 
The predicted outcome obtained by the model is considered as the 
gain from the cooperation of many players to complete a project. 
It connects optimal credit allocation with local explanations using 

FIGURE 2

Workflow of the radiomic model development and model analysis process. The orange arrows in the flow chart represented the processing of the 
radiomic features. The radiomic features were generated by the PyRadiomics package after outlining the rectal region on the original image. After 
feature selection by T-test, LASSO and univariate logistic regression, multivariate logistic regression models were developed and visualized as 
nomograms. The model analysis consists of three parts: model simplification, model evaluation, and model interpretation. By comparing the 
performance change before and after model simplification, we could measure the importance of the radiomic features. In particular, we applied 
SHapley Additive exPlanation (SHAP) values for the first time to a radiomics-based logistic regression model to further interpret the radiomic 
features from case-based and feature-based perspectives.
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the classical Shapley values from game theory and their related 
extensions (Lundberg and Lee, 2017). We  used scikit-learn 
(Pedregosa et al., 2011) to build the logistic regression model and 
used the SHAP package to calculate the SHAP values for the 
logistic regression model and further analyze the SHAP values 
with the SHAP plot module. The decision process of each patient 
could be presented by force plot. By overlaying the force plots and 
sorting the output values, we could see how all patients made their 
decisions. In addition to analyzing the model from the patient’s 
perspective, we can also use SHAP to understand the model from 
the feature’s perspective. SHAP provides bar plots and scatter plots 
of features to help us understand which feature was most 
important to the model.

3. Results

3.1. Baseline information of patients

This study included 1,093 patients with cervical cancer who 
needed to initiate radiotherapy at the First Affiliated Hospital of 
Wenzhou Medical University between 1st January 2015 and 31st 
December 2020. After screening and exclusion, a total of 178 
patients were finally included in our study. The study included 40 
patients (22.5%) with a toxicity grade greater than or equal to 
grade 2 after radiation therapy and 138 patients (77.5%) less than 
grade 2 after radiation therapy. The patients were divided into a 
training set (n = 124) and a validation set (n = 54). Table 1 shows 
the baseline information of the patients.

3.2. Radiomic features selection and 
multivariate analysis

We extracted a total of 1,409 radiomic features from the 
patients’ CTs and selected them using the LASSO algorithm. 
Multivariate logistic regression analysis was performed on all 
features selected by LASSO and univariate logistic regression. The 
results of the multivariate logistic regression are shown in Table 2. 
Radiotherapy techniques [OR = 0.000 (0.000–0.086), p = 0.005], 
Maximum rectal dose [OR = 1.006 (1.001–1.011), p = 0.020], 
Contrast [OR = 0.000 (0.000–0.002), p = 0.046] were independent 
risk factors for severe radiation proctitis.

3.3. Establishment of nomogram and 
model evaluation

In order to develop a clinically applicable method to predict 
the occurrence of radiation proctitis, we constructed a radiomics 
nomogram. The results of the nomogram were shown in 
Figure 3A. All model evaluations were performed on the unseen 
validation set. The calibration curve of the combined radiomics 
nomogram was shown in Figure  3B. To further validate the 

performance of the radiomic features, we  built a simplified 
non-radiomic model based only on the clinical feature and dose-
volume feature by removing the radiomic feature and comparing 
its performance with the full radiomic model. The ROC curves 
for the two nomogram models (Figure  3C) showed that the 
prediction effect of the radiomic model [AUC = 0.6855 (0.5174–
0.8535)] performed better than the non-radiomic model 
[AUC = 0.6641 (0.4904–0.8378)]. The AUC of radiomic 
nomogram [AUC = 0.6855 (0.5174–0.8535)] was close to that of 
the KNN model [AUC = 0.7051 (0.5602–0.85)]. It illustrated the 
validity of the model from another perspective. The decision 
curve analysis (DCA; Figure 3D) was used to assess the utility of 
both prediction models by calculating the net benefit at various 
probability thresholds. According to the decision curves, the 
radiomic model showed more benefit in predicting the risk of 
radiation proctitis than the non-radiomic model. It suggested 
that radiomic features were supporting features for severe 
radiation proctitis prediction.

3.4. Model interpretation

3.4.1. Case-based model interpretation
To further understand how decision-making occurred for 

individual and entire patient populations, we used SHAP to analyze 
from a case-based perspective. Figure 4A represented the decision 
process for SHAP values across all patients, with the vertical axis 
representing the magnitude of the SHAP values. As the graph was 
ordered by model output, we could clearly see the boundary line 
between red and blue. Features pushing the prediction higher were 
shown in red, and those pushing the prediction lower were in blue.

In addition to the model interpretation for all cases, we could 
also provide a clearer picture of the decision-making situation for 
individual patients through the waterfall or force plot. For 
example, by selecting the patient on the far right of Figure 4A, the 
decision-making process could be  visualized in Figure  4B or 
Figure  4C. Although the presentation was different, the 
information in Figures  4B,C was consistent. These two plots 
indicated the proportion and absolute SHAP value of various 
features in the decision-making process for that patient. SHAP 
could provide a quantitative and visual representation of the 
decision mechanisms of the radiomics model for any patient.

3.4.2. Feature-based model interpretation
We calculated and visualized the SHAP values for each feature 

in the radiomics model. The beeswarm plot (Figure  5A) 
demonstrated an overview of the feature contribution of all 
patients. In the beeswarm plot, features were sorted by the sum of 
SHAP value magnitudes over all samples, and SHAP values were 
used to show the distribution of each feature’s impacts. The bar plot 
shown in Figure 5B demonstrated the mean absolute value of the 
SHAP values for each feature. The plot showed that radiotherapy 
techniques and the maximum rectal dose have a high mean value. 
Since SHAP values represented a feature’s responsibility for a 
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change in the model output, Figures  5A,B indicated that the 
radiotherapy technique and the maximum rectal dose 
were essential.

To understand how each feature affected the model’s output, 
we plotted gray bar plots to show the SHAP values for each feature 
and scatter plots to show the SHAP values of the other features 
most relevant to that feature (Figures 5C,D).

4. Discussion

With the advancement of radiotherapy techniques, the 
postoperative survival rates of cancers such as cervical cancer 
have increased dramatically (Citrin, 2017). However, 
complications and side effects caused by postoperative 
radiotherapy or chemotherapy are difficult to avoid. Radiation 
proctitis is one of the most common complications of 

postoperative radiotherapy in patients with pelvic tumors 
(Rustagi et al., 2015; Qian et al., 2021), with mild diarrhea or mild 
rectal exudate in mild cases and even intestinal necrosis or 
bleeding in severe cases, endangering patients’ lives (Citrin, 
2017). In clinical practice, doctors currently rely on the dose-
volume features of radiotherapy plans to assess the risk of 
radiation proctitis. However, there is a lot of valuable information 
in pathology and clinical imaging that is not considered by 

TABLE 2 Result of multivariate logistic regression.

Features B P OR (95% CI)

Therapy −8.225 0.005 0.000(0.000–0.086)

Maximum rectal dose 0.006 0.020 1.006(1.001–1.011)

Contrast −349.316 0.046 0.000(0.000–0.002)

Constant −23.030 0.026 0.000

TABLE 1 Baseline information of all patients.

Variables Primary queue (n = 178)

<grade 2 (n = 138) ≥grade 2 (n = 40) p-value

Age (years) 53.5 (46–61) 52(47.75–60.75) 0.957

Therapy 3D-CRT 53 (63.9%) 30 (36.1%) <0.001

VMAT 85 (89.5%) 10 (10.5%)

Vascular invasion 48 (69.6%) 21 (30.4%) 0.043

FIGO Staging 2(1–2) 1(1–2.75) 0.800

Total rectal volume 65.937 (51.421–94.235) 69.422 (51.921–89.546) 0.875

Minimum rectal dose 1320.85 (417.6–2205.55) 583.35 (407.775–1817.025) 0.189

Maximum rectal dose 4907.35 (4145.175–5293.575) 4187.7 (4136.525–4819.25) 0.038

Average rectal dose 3958.55 (3738.35–4144.6) 3928.8 (3831.325–3996.2) 0.289

V5Gy(cm3) 63.444 (47.286–89.492) 69.422 (51.921–89.546) 0.427

V5Gy(%) 100 (98.148–100) 100(99.555–100) 0.987

V10Gy(cm3) 62.984 (47.127–90.466) 69.422 (53.625–92.057) 0.260

V10Gy(%) 99.95 (95.415–100) 99.245 (98.365–100) 0.976

V15Gy(cm3) 62.511 (46.688–90.466) 69.422 (53.625–91.919) 0.283

V15Gy(%) 99.18 (93.693–100) 98.52 (97.268–100) 0.837

V20Gy(cm3) 62.511 (46.234–89.878) 69.422 (53.625–90.757) 0.274

V20Gy(%) 97.755 (92.235–100) 97.855 (95.11–99.743) 0.705

V25Gy(cm3) 61.865 (45.854–87.485) 68.366 (53.122–88.878) 0.240

V25Gy(%) 95.475 (89.273–99.065) 96.645 (92.355–98.093) 0.304

V30Gy(cm3) 59.571 (42.243–80.618) 67.518 (52.789–87.533) 0.181

V30Gy(%) 90.145 (84.488–95.985) 95.06 (87.873–97.298) 0.028

V35Gy(cm3) 56.05 (39.968–76.027) 61.987 (48.092–86.923) 0.203

V35Gy(%) 83.955 (75.073–91.188) 92.34 (84.098–95.993) 0.001

V40Gy(cm3) 42.149 (27.754–60.107) 50.823 (33.909–65.466) 0.108

V40Gy(%) 59.66 (50.4–70.375) 65.595 (58.38–76.108) 0.035

V45Gy(cm3) 16.175 (0–30.87) 0(0–15.492) 0.003

V45Gy(%) 26.465 (0–38.913) 0(0–16.76) 0.001
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clinicians. Moreover, the sensitivity of the rectum to radiotherapy 
radiation also varies significantly between individuals.

To further refine the assessment of radiation proctitis, 
we selected radiomic features associated with radiation proctitis 
by univariate regression and the LASSO algorithm. Radiotherapy 
techniques (OR = 0.000 (0.000–0.086), p = 0.005), Maximum 
rectal dose (OR = 1.006 (1.001–1.011), p = 0.020), Contrast 
(OR = 0.000 (0.000–0.002), p = 0.046) were independent risk 
factors for radiation proctitis. Finally, we developed an integrated 
prediction model based on clinical and radiomic features 
[AUC = 0.6855 (0.5174–0.8535)]. Current studies of radiation 
proctitis had mainly focused on local radiotherapy dose limits 
rather than comprehensive predictive models (Snyder et  al., 
2001; Huang et  al., 2004). There was only one study using 
radiomics to build a predictive model for radiation proctitis 
(Mostafaei et al., 2020). In gastrointestinal toxicities modeling, 
the AUC of radiomic model of their study was 0.71, which was 
relatively higher compared with our study. However, the study 

was conducted based on data from only 64 patients and was only 
suitable for patients with prostate cancer.

The radiomic features of the model potentially incorporated 
the effect of microbiota on rectal radiosensitivity. The model 
without radiomic features showed lower validity, while the model 
containing both radiomic features and clinical features showed 
better performance on the ROC curve. The change of net benefit 
in Figure  3D suggested that radiomic features had played a 
supporting role in predictive models. And as a measure of the 
local intensity variation, a larger contrast correlated with a greater 
disparity in intensity values among neighboring voxels. In our 
study, the contrast suggested that a lower tissue density compared 
to the surrounding tissue was associated with 
higher radiosensitivity.

In most cases, PyRadiomics followed the image biomarker 
standardization initiative (IBSI)'s definition of features. 
PyRadiomics development was also involved in the 
standardization effort by the IBSI team. Still, there were some 

A

B C D

FIGURE 3

Nomogram for severe radiation proctitis prediction in postoperative cervical cancer patients, calibration of the nomogram, and decision curves in 
the overall patients. The combined nomogram (A) incorporated clinical, dose-volume, and radiomic features. By accumulating the points for each 
feature, we could quickly calculate the probability of radiation proctitis. All model evaluations were performed on the validation set. The 
Calibration curves of the combined radiomics nomogram (B) illustrated the relationship between the observed outcome frequencies and the 
predicted probabilities. The ROC curves (C) demonstrated the accuracy of the radiomic and non-radiomic models and KNN radiomic model. The 
DCA curves (D) demonstrated the net benefit of the radiomic and non-radiomic models.
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differences between PyRadiomics and feature extraction as 
defined in the IBSI documents. Most notably were the 
differences in gray value discretization (just for the fixed bin 
size type) and resampling. In summary, the definitions of 
PyRadiomics and IBSI were slightly different, but did not 
represent one over the other. Moreover, IBSI was only an 
initiative, not a standard. For these reasons, IBSI would not 
significantly impact the reproducibility and validity of 
this study.

While SHAP was often used to explain features in machine 
learning algorithms and neural network models (Bang et al., 
2021; Park et al., 2022; Shaji et al., 2022; Shi et al., 2022), SHAP 
analysis of logistic regression models had not yet been 
mentioned. Although logistic regression algorithms were 
simpler and more explicit than other machine learning 
algorithms and neural networks, logistic regression models 
were more challenging to understand than they may seem. 
Users could not directly measure the importance of features 

between continuous and categorical variables through odds 
ratio (OR) or coefficients (Table 2). In particular, for radiomic 
models, the significant variation in the magnitude of radiomic 
features made it more challenging to understand the actual 
decision-making process of the model through the coefficients 
and OR values of logistic regression. We wanted to help users 
better understand each feature’s role in the model. In 
subsequent clinical treatment, model users can further 
quantify the contribution of radiomic features in each 
model output.

To address this issue, we introduced SHAP for the first time 
to a radiomics-based logistic regression model, which further 
revealed the model’s decision-making mechanism (Figure 4A). 
The total contribution of SHAP for each feature included in the 
model was analyzed (Figure 5B). Radiotherapy techniques and 
the maximum rectal dose occupied vital positions in the model 
contribution. Notably, the SHAP value of the radiomic feature 
was the lowest. It suggested that the radiomic feature was 

A

B

C

FIGURE 4

SHAP plots demonstrated SHAP values from a case-based perspective. Sampled by model output, the overall SHAP plot (A) showed the decision 
process of all patients. The force plot (B) and the waterfall plot (C) demonstrated the proportion and absolute SHAP value of various features in the 
decision-making process for a single patient.
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weaker than the clinical feature and dose-volume feature. The 
SHAP could also analyze correlations between variables 
(Figures 5C,D). Correlations in SHAP values were observed 
between the three features. It may suggest an inter-collaborative 
relationship between variables in the model. However, this can 
only indicate a correlation between SHAP values, not between 
the values of the variables. In the subplot of therapy (Figure 5C), 
we can find that the most relevant variable was the maximum 
rectal dose. There was a harmful effect of maximum rectal dose 
in the decision-making process of these VMAT therapy samples. 
However, no fixed pattern was observed in the subplot of 
contrast (Figure 5D).

SHAP had a unique role in radiomics-based logistic models 
as a game-theoretic approach. SHAP helped us understand 
radiomic features that vary significantly in magnitude. 
Furthermore, SHAP provided a quantitative and visual 
representation of the decision mechanisms within the model for 
each patient.

We recommend that clinicians can reduce the value of the 
maximum rectal dose by modifying the plan when the model 
suggests that the current radiotherapy plan has a high probability 
of radiation proctitis. Clinicians can rely on interpretable models 
to precisely control the risk of the final plan to an acceptable level. 
Patients with cervical cancer can reduce unnecessary radiation 
doses and the incidence of radiation proctitis with the help of the 
comprehensive model.

5. Conclusion

We successfully developed and validated an integrated 
radiomic model containing rectal information in this study. The 
integrated radiomic model enables the accurate quantitative 
assessment of the probability of radiation proctitis in 
postoperative cervical cancer patients, addressing the 
limitations of the current qualitative assessment based on dose-
volume parameters only. Based on the model output and SHAP 
values analysis, we  suggest that clinicians can adjust the 
radiation dose to minimize the occurrence of severe radiation 
proctitis while not compromising the effectiveness of 
radiation therapy.
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