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Editorial on the Research Topic

The role of imaging in gynecological malignancies
Despite the improvements recorded in the last decades, the outcome of patients with

gynecological cancer is still unfavorable, in particular for some tumors and for some risk

groups. At the same time, the evolution of imaging techniques in oncology is progressively

accelerating, with the growing importance of topics such as the application of artificial

intelligence and the study of body composition. The papers included in this Research Topic

present an interesting summary of novel and still controversial aspects in the field of

imaging of gynecological tumors (Scepanovic et al.; Hu et al.; Wang et al.; Matsuura et al.;

Zhu et al.; Rizzo et al.; Cordoba et al.; Matani et al.; deSouza et al.; Su et al.; Wang et al.;

Ciulla et al.; Jeon et al.; Ambrosio et al.; Wang et al.; Bi et al.; Shao et al.; Han et al.; Turco

et al.). As evidence of the evolving scenario, it is particularly interesting to note, in this

Research Topic, the lack of “classic” studies based on the evaluation of the diagnostic

performance of single methods or on the comparison between different imaging methods.

Some studies evaluated the accuracy of imaging in the non-invasive prediction of

malignancy in suspicious lesions of the female reproductive organs. In particular, it has

been observed that: i) diffusion-weighted MRI (Scepanovic et al.) and multi-parametric (mp)

MRI-based radiomic image analysis (Bi et al.) are able to effectively differentiate benign

endometrial masses from malignant ones; ii) the US-based ADNEX model can differentiate

benign adnexal masses from malignant or borderline ones (Hu et al.); iii) mpMRI can

distinguish uterine sarcomas from leiomyomas and atypical leiomyomas (Wang et al.); IV)

3T MRI can predict histological type and grading in cervical carcinomas (Shao et al.).

Conversely, mpMRI was unable to predict grading in endometrial tumors (Scepanovic et al.).

In terms of imaging-based prediction of tumor response, one study showed that superb

microvascular imaging (an US image processing method) predicts response to

chemoradiation in patients with locally advanced cervical cancer (Zhu et al.), while a

literature review achieved similar conclusions regarding MRI in the same setting (Matani

et al.). Other studies reported the possibility of predicting outcome by imaging in

gynecological malignancies. In particular, it has been observed that radiomics analysis of

CT and MRI images can predict recurrences in locally advanced cervical cancer (Wang

et al.) and that similar results can be achieved, in the same patients, through MRI-based

tumor monitoring during treatment (Cordoba et al.), as confirmed by a literature review on
frontiersin.org0156
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the role of MRI in cervical cancers (Matani et al.). Also, the increase

in abdominal fat in sarcopenic patients (assessed by CT) during

treatment is correlated with a greater risk of recurrences (Han

et al.). Conversely, tumor size estimation by US did not correlate

with prognosis in endometrial carcinomas (Ambrosio et al.).

Other studies reported on imaging assessments of tumor

biology. In particular, it was demonstrated that DCE-MRI is able

to effectively evaluate the degree of proliferation (Ki-67) in cervical

tumors (Wang et al.), while a literature review analyzed the role of

imaging in evaluating the degree of hypoxia in endometrial tumors

(deSouza et al.). Interestingly, two papers reported on the role of

imaging in predicting or analyzing anticancer drug toxicity. In

particular, a systematic review found variable association of body

composition by imaging and chemo-induced toxicity in ovarian

tumors (Rizzo et al.) while, in a case report, the authors observed

that MRI can help distinguish, between two drugs, which one is

responsible for the neurological toxicity (Matsuura et al.).

Instead, other studies evaluated the results of integrating different

imaging methods. One paper reported a higher sensitivity and

specificity, in discriminating adnexal masses, in case of

combination of ADNEX model (US) and MRI (Hu et al.), while

another study showed better results in the differential diagnosis

between uterine sarcomas and benign lesions with the combination

of conventional MRI and diffusion-weighted MRI (Wang et al.). In

addition, a paper reported effective risk stratification, in patients with

cervical cancer, by radiomics analysis based on CT and MRI (Wang

et al.). Finally, one study showed that, compared to a single method,

the combined CT-based assessment of both waist skeletal muscle

volume using an AI-based tool and waist fat gained during treatment

improves the prediction of outcomes (Han et al.).

Other studies reported on dynamic imaging assessments. A paper

reported reliable prediction of tumor response with US-based superb

microvascular imaging monitoring in patients with locally advanced

cervical cancer treated with chemoradiation (Zhu et al.). Furthermore,

in the same setting, a study showed that tumor monitoring by MRI

allows an effective prediction of disease-free survival and overall

survival (Cordoba et al.), as confirmed by a review of the literature

(Matani et al.). Finally, another literature review on advanced cervical

cancer discussed the role of different imaging methods (spectroscopy,

PET-MRI, radiomics) in tumormonitoring during radiotherapy and in

assessing clinical response (Ciulla et al.).

As further evidence of the growing importance of imaging in

the clinical management of patients with gynecological cancers, we
Frontiers in Oncology 0267
must underline the importance of a study evaluating the impact of
18FDG-PET-CT in 4167 patients with IB-IVA cervical cancer

treated with radiotherapy or chemoradiation. The study, which

categorized patients (propensity score-matching) based on whether

or not 18FDG-PET-CT was performed, showed, regardless of tumor

stage, a significant improvement in overall survival in patients

undergoing PET (HR: 0.88; 95%CI: 0.80-0.97; p=0.01) (Su et al.).

We sincerely hope that the papers contained in this Research

Topic (Scepanovic et al.; Hu et al.; Wang et al.; Matsuura et al.; Zhu

et al.; Rizzo et al.; Cordoba et al.; Matani et al.; deSouza et al.; Su

et al.; Wang et al.; Ciulla et al.; Jeon et al.; Ambrosio et al.; Wang

et al.; Bi et al.; Shao et al.; Han et al.; Turco et al.) represent a useful

update for researchers and health professionals involved in

gynecological cancers. Furthermore, we hope that these papers

will be a starting point and a stimulus for the design and conduct

of further clinical studies in this field. Finally, the growing role of

imaging not only in the diagnosis and staging of gynecological

cancers, but also in the prediction of the prognosis or even in its

refinement, suggest the need for an ever greater integration of

imaging in the multidisciplinary management of these neoplasms.
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Impact of Computed Tomography-
Based, Artificial Intelligence-Driven
Volumetric Sarcopenia on Survival
Outcomes in Early Cervical Cancer
Qingling Han1†, Se Ik Kim1†, Soon Ho Yoon2,3, Taek Min Kim3, Hyun-Cheol Kang4,
Hak Jae Kim4, Jeong Yeon Cho3 and Jae-Weon Kim1*
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Seoul National University College of Medicine, Seoul, South Korea, 4 Department of Radiation Oncology, Seoul National
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The purpose of this study was to investigate the impact of sarcopenia and body
composition change during primary treatment on survival outcomes in patients with
early cervical cancer. We retrospectively identified patients diagnosed with 2009
International Federation of Gynecology and Obstetrics stage IB1-IIA2 cervical cancer
who underwent primary radical hysterectomy between 2007 and 2019. From pre-
treatment CT scans (n = 306), the skeletal muscle area at the third lumbar vertebra (L3)
and the waist skeletal muscle volume were measured using an artificial intelligence-based
tool. These values were converted to the L3 and volumetric skeletal muscle indices by
normalization. We defined L3 and volumetric sarcopenia using 39.0 cm2/m2 and the first
quartile (Q1) value, respectively. From pre- and post-treatment CT scan images (n = 192),
changes (%) in waist skeletal muscle and fat volumes were assessed. With the use of Cox
regression models, factors associated with progression-free survival (PFS) and overall
survival (OS) were analyzed. Between the L3 sarcopenia and non-sarcopenia groups, no
differences in PFS and OS were observed. In contrast, volumetric sarcopenia was
identified as a poor prognostic factor for PFS (adjusted hazard ratio [aHR], 1.874; 95%
confidence interval [CI], 1.028–3.416; p = 0.040) and OS (aHR, 3.001; 95% CI, 1.016–
8.869; p = 0.047). During primary treatment, significant decreases in waist skeletal muscle
(median, −3.9%; p < 0.001) and total fat (median, −5.3%; p < 0.001) were observed. Of
the two components, multivariate analysis revealed that the waist fat gain was associated
with worse PFS (aHR, 2.007; 95% CI, 1.009–3.993; p = 0.047). The coexistence of
baseline volumetric sarcopenia and waist fat gain further deteriorated PFS (aHR, 2.853;
95% CI, 1.257–6.474; p = 0.012). In conclusion, baseline volumetric sarcopenia might be
associated with poor survival outcomes in patients with early cervical cancer undergoing
primary RH. Furthermore, sarcopenia patients who gained waist fat during primary
treatment were at a high risk of disease recurrence.

Keywords: uterine cervical neoplasms, body composition, sarcopenia, muscles, abdominal fat, prognosis, survival
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INTRODUCTION

Cervical cancer is a major health problem, as it ranks the fourth
highest incidence and mortality rates among cancers in women
worldwide (1). The incidence of cervical cancer shows a
geographical difference. Age-standardized incidence rate of
cervical cancer is higher in Korea than in the United States
and other Western countries (2, 3). However, owing to the
effective cervical cancer screening program, more than half
(55.8%) of cervical cancer cases are diagnosed at a localized
disease in Korea (4, 5). For early cervical cancer, primary radical
hysterectomy (RH) is recommended as one of the standard
treatment options (6, 7).

Body composition analysis refers to quantifying different
body compartments, such as fat and muscle, and assessing
their relative ratio in an individual. Researchers have mainly
focused on excessive fat accumulation, so-called obesity, and
they investigated the relationship between obesity and risk of
developing cancer (8, 9) and the role of obesity in cancer survival
and recurrence (10, 11). Sarcopenia, characterized by the loss of
skeletal muscle mass and function, recently emerged in the
cancer research field, as it was associated with higher
recurrence and mortality rates, surgical complications, and
treatment-related toxicity (12–15). In cervical cancer, only few
studies have investigated prognostic role of pre-treatment
sarcopenia, resulting in conflicting results (16–18). Moreover,
all these previous studies included patients who underwent
primary concurrent chemoradiation therapy (CCRT) or
radiation therapy (RT), rather than primary RH.

For body composition analysis, computed tomography (CT)
is widely used because it can quantify the body composition
components. Researchers have measured individuals’ area of
skeletal muscle and adipose tissue at the third lumbar vertebral
body (L3)-level cross-sectional image of CT scans, which is
known to reflect amounts of total body muscle and adipose
tissue well (19, 20). In addition, the latest high-throughput
technology a l lows automated and fas t volumetr ic
measurements of each component from CT scans (21, 22).
With the use of such an advanced tool, tracking the volumetric
change of specific body composition components is feasible (23),
which has not yet been investigated in early cervical cancer.

Thus, we aimed to investigate the impact of pre-treatment
sarcopenia determined by two different measurements (L3 level
skeletal muscle area and waist skeletal muscle volume) on
survival outcomes in Korean patients with early-stage cervical
cancer who underwent primary RH. Additionally, we traced the
change of body composition during primary treatment and
investigated their prognostic roles.
MATERIALS AND METHODS

Study Population
From the institution’s cervical cancer cohort database, we
identified and collected patients who met the following
conditions: 1) patients aged 20 years or older at the time of
diagnosis; 2) patients diagnosed with 2009 International
Frontiers in Oncology | www.frontiersin.org 289
Federation of Gynecology and Obstetrics (FIGO) stage IB1 to
IIA2 cervical cancer who were treated at Seoul National University
Hospital between January 2007 and December 2019; 3) patients
who underwent primary type B-C RH, according to Querleu–
Morrow classification (24), and pelvic lymphadenectomy by
faculty who finished gynecologic oncology fellowship; and
4) those whose pre-treatment CT scans, performed less than a
month before the primary surgery, were stored in the Picture
Archiving and Communication System.

Meanwhile, patients with the following conditions were
excluded: 1) those who received neoadjuvant chemotherapy
prior to RH; 2) those whose tumor had histologic types other
than squamous cell carcinoma, usual type adenocarcinoma, and
adenosquamous carcinoma; 3) those who were diagnosed with
other cancers before and/or at the time of cervical cancer
diagnosis; 3) those with insufficient clinicopathologic data;
4) those lost to follow-up before completion of primary
treatment; and 5) those for whom we were unable to obtain
pre-treatment CT scans.

In total, 306 patients were included in this analysis (study
population I). To assess changes in body composition
components, we further identified 192 patients whose post-
treatment CT scans were available (study population II). For
the patients who did not undergo adjuvant treatment, we
referred to CT scans obtained 3 months after the surgery. For
the patients who received adjuvant RT or CCRT, we used CT
scans obtained within a month after the completion of
RT (Figure 1).

Data Collection
We collected patients’ clinicopathologic features, such as age at
diagnosis, FIGO stage, surgical approach, histologic type,
radicality of hysterectomy, para-aortic lymphadenectomy,
pathologic risk factors, risk group, and adjuvant treatment.
Based on pre-treatment body mass index (BMI), patients were
divided into four groups, according to the WHO ’s
recommendation for Asian population (25): <18.5 kg/m2

(underweight), 18.5–22.9 kg/m2 (normal), 23.0–24.9 kg/m2

(overweight), and ≥25.0 kg/m2 (obese). Clinical cervical tumor
size was determined by either colposcopic examination or pre-
treatment magnetic resonance imaging (MRI).

During pre-treatment workup, advanced imaging modalities,
such as MRI and whole-body 18F-FDG positron emission
tomography (PET)/CT imaging, have been frequently conducted
at this institution. While we measure the cervical tumor size and
evaluate parametrium involvement using MRI, we evaluate distant
site metastasis using CT scans and PET/CT imaging. Pelvic and
para-aortic lymph node status is assessed from all the available
imaging modalities. Among the study population (n = 306), 15
(4.9%) received pre-treatment CT scans only, while 36 (11.8%)
and 63 (20.6%) received CT scans plus MRI and CT scans plus
PET/CT imaging, respectively. The other 192 (62.7%) patients
received all three imaging modalities.

After surgery, patients who had lymph node metastasis,
positive resection margins, or parametrium involvement were
classified as the high-risk group. According to the Sedlis criteria,
we classified patients with various combinations of the three
September 2021 | Volume 11 | Article 741071
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factors (tumor size, depth of invasion, and lymphovascular space
invasion) as the intermediate-risk group (26). High-risk and
intermediate-risk patients received adjuvant CCRT or RT
after RH.

Adjuvant RT consisted of a combination of external beam RT
(EBRT) with/without high-dose-rate intracavitary radiotherapy
(HDR-ICR). With regard to RT planning, our institution had
used 3D conformal RT before November 2015 and adopted
intensity-modulated RT (IMRT) since then. The prescribed dose
fractionation schedule for pelvic EBRT was 50.4 Gy in 28
fractions. For patients with pathologically confirmed para-
aortic lymph node metastasis, extended field RT consisting of
an additional boost dose of 9–10 Gy in five fractions to the para-
aortic lymphatics was delivered. HDR-ICR was implemented
with the dose fractionation schedule of 15 Gy in three fractions.
The treatment duration of RT usually took 5–6 weeks. As the
most common regimen for CCRT, 40 mg/m2 of cisplatin was
administered weekly for 4–6 cycles during EBRT.

From the patients’ medical records, we also collected
gastrointestinal toxicities that occurred during adjuvant RT.
Because of the retrospective study design, it was challenging to
identify the exact grade according to the Common Terminology
Criteria for Adverse Events version 5.0 (27). Instead, we checked
the presence or absence of any grade gastrointestinal toxicities.

Surveillance frequency for symptom review and examination
depended on FIGO stage, pathologic risk factors, and adjuvant
therapy (6, 7). In general, patients who completed the initial
treatment (hysterectomy and adjuvant treatment) consulted a
physician every 3 months in the first 2 years, and every 6 months
for the next 3 years. Thereafter, patients visited the clinic
every year.
Frontiers in Oncology | www.frontiersin.org 3910
We determined the progression or recurrence of the disease
from imaging studies based on the Response Evaluation Criteria
in Solid Tumors version 1.1 (28). Progression-free survival (PFS)
refers to the time interval between the beginning of treatment
and disease progression. Overall survival (OS) was defined as the
time interval between the date of diagnosis and the date of
cancer-related death or the last visit.

Imaging Analysis
Imaging analysis methods for this study were the same as our
previous study on patients with epithelial ovarian cancer (23),
including the use of the same commercially available, artificial
intel l igence-based software (DEEPCATCH v1.0.0.0;
MEDICALIP Co. Ltd., Seoul, Korea). In brief, we used this
deep neural network-based software for automatic volumetric
segmentation of body composition (skeletal muscle, abdominal
visceral fat, and subcutaneous fat) from anonymized, precontrast
CT images in DICOM format. According to the previous
validation study, the software’s average segmentation accuracy
was reported as 97% compared with manual segmentation (21).
After segmentation, the abdominal waist was automatically
labeled based on WHO’s waist definition (29): between the
lower end of the thoracic ribs and the upper end of the iliac
crest. One expert radiologist (SHY) confirmed the results of
automatic segmentation and labeling. Subsequently, the waist
volume (cm3) of skeletal muscle and total fat (sum of abdominal
visceral fat and subcutaneous fat) were quantified and
normalized to the height (m3), generating the volumetric
skeletal muscle index (SMI) and total fat index. This software
also automatically measured skeletal muscle area (cm2) from the
single cross-sectional CT image at the L3 level. The skeletal
FIGURE 1 | Flow diagram depicting selection of study population.
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muscle area was normalized to the height (m2) and reported as
the L3 SMI (Supplementary Figure 1).

Statistical Analysis
L3 sarcopenia was defined as an individual’s L3 SMI <39.0 cm2/m2,
per the cutoff value proposed by an international consensus of
cancer cachexia (30). This value was also used in our previous
study, which investigated the impact of sarcopenia on survival
outcomes in patients with advanced-stage high-grade serous
ovarian cancer (31). Because there is no study of volumetric SMI,
we used the Q1 value and divided patients into volumetric
sarcopenia and non-sarcopenia groups accordingly.

Differences in the pre- and post-treatment waist volume of
body compositions components were evaluated using the paired
t-test. Change (%) in a specific component was calculated as
follows:

xPost−treatment − xPre−treatment

xPre−treatment
� 100

We regarded a negative value as a loss during treatment. The
extent of changes in body composition components between the
two groups was compared using Student’s t-test, while that among
the three or more groups were compared using one-way ANOVA.

The characteristics and survival outcomes were compared
between the two groups, such as volumetric sarcopenia versus
non-sarcopenia groups. We used Student’s t-test or Mann–
Whitney U test to compare continuous variables, and
Pearson’s chi-square test or Fisher’s exact test to compare
categorical variables. Pearson’s correlation coefficient test was
used to calculate the correlation value. Kaplan–Meier methods
and log-rank tests were used for the survival analysis. In
multivariate analysis, we used the Cox proportional hazards
model to calculate adjusted hazard ratios (aHRs) and 95%
confidence intervals (CIs). IBM SPSS software (version 25.0;
IBM Corp., Armonk, NY, USA) was used for statistical analysis.
We considered a p-value <0.05 as statistically significant.

Ethics Statement
This study was approved by the Institutional Review Board of
Seoul National University Hospital (No. H-2012-061-117) and
performed according to the principles of the Declaration of
Helsinki. The requirement for informed consent was waived.
RESULTS

Patients’ Characteristics
Table 1 describes the clinicopathologic features of the study
population I (n = 306). Squamous cell carcinoma was the most
common histological type (74.2%), and 64.1% of the patients had
2009 FIGO stage IB1. The median clinical cervical tumor size was
26.5 mm (interquartile range [IQR], 10.0–40.1). After RH, 119
(38.9%) did not undergo adjuvant treatment, while 30 (9.8%) and
157 (51.3%) underwent adjuvant RT and CCRT, respectively.

Of 187 patients with (CC)RT, 154 (82.4%) and 33 (17.6%)
received EBRT and EBRT plus HDR-ICR, respectively
(Supplementary Table 1). For RT planning, 3D conformal RT
Frontiers in Oncology | www.frontiersin.org 41011
was conducted in 116 (62.0%), whereas IMRT was conducted in
71 (38.0%). Extended field RT was administered in nine (4.8%)
patients. Five patients refused RT due to poor general condition
(early termination of RT). During RT, more than a half (55.1%)
experienced nausea. Other common gastrointestinal toxicities
were as follows: diarrhea (45.5%), constipation (31.6%), anorexia
(22.5%), abdominal pain (20.3%), and vomiting (19.3%) (in the
order of frequency).

In terms of baseline body composition, the median values for
L3 SMI and volumetric SMI were 39.4 cm2/m2 (IQR, 34.0–44.3)
and 206.5 cm3/m3 (IQR, 181.5–236.2), respectively. As shown in
Supplementary Figure 2, baseline BMI was weakly correlated
with L3 SMI (Pearson’s correlation coefficient r = 0.249;
p < 0.001) and volumetric SMI (r = 0.423; p < 0.001). The L3
SMI and volumetric SMI also showed a very weak positive
correlation (r = 0.176; p = 0.002).

During a median observation period of 55.2 months, 50
(16.3%) patients experienced disease recurrence, and 14 (4.6%)
patients died.

Prognostic Role of Baseline Sarcopenia
With the use of the well-known cutoff value (39.0 cm2/m2) of L3
SMI, 141 (46.1%) and 165 (53.9%) patients were assigned to the
L3 sarcopenia and non-sarcopenia groups, respectively. Patients
in the L3 sarcopenia group had a significantly lower BMI (mean,
22.1 vs. 24.8 kg/m2; p < 0.001), than had the L3 non-sarcopenia
group. However, other clinicopathologic characteristics were
similar between the two groups (Supplementary Table 2). In
survival analysis, the L3 sarcopenia and non-sarcopenia groups
showed similar PFS (p = 0.415) and OS (p = 0.743)
(Figures 2A, B).

With the use of the Q1 value (181.5 cm3/m3) of volumetric
SMI, 76 (24.8%) and 230 (75.2%) were identified as the
volumetric sarcopenia and non-sarcopenia groups, respectively.
The volumetric sarcopenia group had a significantly lower BMI
(22.1 vs. 23.9 kg/m2; p < 0.001) than the volumetric non-
sarcopenia group, while other baseline clinicopathologic
characteristics were similar between the two groups (Table 1).

Among the patients who received (CC)RT (n = 187), the
proportions of patients who received HDR-ICR (12.8% vs. 19.3%;
p = 0.310) and extended field EBRT (2.1% vs. 5.7%; p = 0.454) were
also similar between the volumetric sarcopenia and non-sarcopenia
groups (Supplementary Table 1). However, IMRT was less
frequently used in the volumetric sarcopenia group (21.3% vs.
43.6%; p = 0.006). Regarding incidences of gastrointestinal
toxicities during RT, patients in the volumetric sarcopenia group
experienced diarrhea (59.6% vs. 40.7%; p = 0.025) and vomiting
(29.8% vs. 15.7%; p = 0.034) more frequently, but similar other
gastrointestinal toxicities.

In survival analysis, the volumetric sarcopenia group showed
significantly worse PFS (3-year PFS rate, 78.3% vs. 88.7%; p = 0.039)
and OS (5-year OS rate, 90.0% vs. 97.6%; p = 0.031), than the
volumetric non-sarcopenia group (Figures 2C, D). In multivariate
analysis that adjusted for clinicopathologic factors, volumetric
sarcopenia was identified as a poor prognostic factor for PFS
(aHR, 1.874; 95% CI, 1.028–3.416; p = 0.040) and OS (aHR,
3.001; 95% CI, 1.016–8.869; p = 0.047) (Table 2).
September 2021 | Volume 11 | Article 741071
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Changes in Waist Body Composition
From the study population I, 114 patients were excluded owing to
the absence of post-treatment CT scans. Compared with the study
population II (n = 192), these 114 patients had significantly
smaller clinical cervical tumor size (median, 20.0 vs. 30.0 mm;
p = 0.026) and less frequent lymph node metastasis (20.2% vs.
32.3%; p = 0.022) and, therefore, omitted adjuvant treatment more
frequently (46.5% vs. 34.4%; p = 0.036) (Supplementary Table 3).

Next, we evaluated changes in body composition components
among 192 patients in the study population II. Supplementary
Frontiers in Oncology | www.frontiersin.org 51112
Figure 3 depicts the distribution of the patients by extent of
changes in body composition components during the treatment:
while 65.1% of the patients experienced loss of waist skeletal
muscle volume, 61.5% experienced loss of waist total fat volume.
There were significant changes in waist skeletal muscle (p < 0.001)
and total fat (p < 0.001) volumes with median values of −3.9%
(IQR, −11.0 to 3.7) and −5.3% (IQR, −17.6 to 8.0), respectively.
Correlation analyses revealed that there were no correlations
between baseline BMI and changes in waist skeletal muscle and
total fat volumes (Supplementary Figures 4A, B). In contrast, a
TABLE 1 | Clinicopathologic characteristics of volumetric sarcopenia and non-sarcopenia groups.

Characteristics All (n = 306, %) Volumetric sarcopenia (n = 76, %) Volumetric non-sarcopenia (n = 230, %) p

Age, years
Mean ± SD 51.5 ± 11.3 52.6 ± 11.0 51.1 ± 11.4 0.295

BMI, kg/m2

Median (IQR) 23.4 (21.2−25.9) 22.1 (20.2−24.7) 23.9 (21.7−26.4) <0.001
Underweight (<18.5) 12 (3.9) 6 (7.9) 6 (2.6) 0.001
Normal (18.5–22.9) 132 (43.1) 42 (55.3) 90 (39.1)
Overweight (23.0–24.9) 58 (19.0) 15 (19.7) 43 (18.7)
Obesity (≥25.0) 104 (34.0) 13 (17.1) 91 (39.6)

Surgical approach 0.914
Open 143 (46.7) 37 (48.7) 106 (46.1)
Laparoscopy 131 (42.8) 31 (40.8) 100 (43.5)
Robot-assisted surgery 32 (10.5) 8 (10.5) 24 (10.4)

Conization 88 (28.8) 17 (22.4) 71 (30.9) 0.156
Histologic type 0.209
Squamous cell carcinoma 227 (74.2) 62 (81.6) 165 (71.7)
Adenocarcinoma 66 (21.6) 11 (14.5) 55 (23.9)
Adenosquamous carcinoma 13 (4.2) 3 (3.9) 10 (4.3)

2009 FIGO stage 0.293
IB1 196 (64.1) 47 (61.8) 149 (64.8)
IB2 49 (16.0) 9 (11.8) 40 (17.4)
IIA1 21 (6.9) 8 (10.5) 13 (5.7)
IIA2 40 (13.1) 12 (15.8) 28 (12.2)

Radicality of hysterectomy 0.285
Type B 27 (8.8) 9 (11.8) 18 (7.8)
Type C 279 (91.2) 67 (88.2) 212 (92.2)

Para-aortic lymphadenectomy 0.916
No 220 (71.9) 55 (72.4) 165 (71.7)
Sampling/dissection 86 (28.1) 21 (27.6) 65 (28.3)

Clinical cervical tumor size*, mm
Median (IQR) 26.5 (10.0−40.1) 26.5 (13.5−26.5) 26.5 (10.0−40.0) 0.839
<20 109 (35.6) 26 (34.2) 83 (36.1) 0.897
≥20 and <40 110 (35.9) 29 (38.2) 81 (35.2)
≥40 87 (28.4) 21 (27.6) 66 (28.7)

Pathologic risk factors
Parametrial invasion 62 (20.3) 18 (23.7) 44 (19.1) 0.392
Lymph node metastasis 85 (27.8) 21 (27.6) 64 (27.8) 0.974
Resection margin involvement 30 (9.8) 7 (9.2) 23 (10.0) 0.841
LVSI 154 (50.3) 36 (47.4) 118 (51.3) 0.552
Deep one-third stromal invasion 161 (52.6) 39 (51.3) 122 (53.0) 0.794

Risk group 0.735
Low risk 119 (8.9) 30 (39.5) 89 (38.7)
Intermediate risk 70 (22.9) 15 (19.7) 55 (23.9)
High risk 117 (38.2) 31 (40.8) 86 (37.4)

Adjuvant treatment 0.788
No 119 (38.9) 29 (38.2) 90 (39.1)
RT only 30 (9.8) 9 (11.8) 21 (9.1)
CCRT 157 (51.3) 38 (50.0) 119 (51.7)
September 2021 | Volume 11 | Article
BMI, body mass index; CCRT, concurrent chemoradiation therapy; FIGO, International Federation of Gynecology and Obstetrics; IQR, interquartile range; LVSI, lymphovascular space
invasion; RT, radiation, therapy; SD, standard deviation.
*Measured by either colposcopic examination or pre-treatment magnetic resonance imaging.
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positive, moderate relationship was observed between the extent of
skeletal muscle volume change and that of total fat volume change
(r = 0.556; p < 0.001) (Supplementary Figure 4C).

The extent of skeletal muscle volume change was not associated
with patients’ FIGO stage, pathologic risk group, adjuvant
treatment, and baseline BMI classification (Supplementary
Table 4). Meanwhile, the extent of total fat volume change was
associated with patients’ FIGO stage (p = 0.002) and administration
of (CC)RT, rather than no adjuvant treatment (median, −6.1% vs.
−2.3%; p = 0.034). Patients without baseline volumetric sarcopenia
showed significantly greater loss of skeletal muscle (median, −4.5%
vs. 1.2%; p = 0.003) and total fat (median, −6.7% vs. 6.0%; p = 0.011)
volumes, than did those with baseline volumetric sarcopenia.
Patients who received open RH, rather than minimally invasive
RH, also showed significantly greater loss of skeletal muscle
(median, −7.5% vs. −1.7%; p = 0.001) and total fat (median,
−12.9% vs. 0.2%; p < 0.001) volumes.

Among the patients who received (CC)RT (n = 126), the use
of IMRT, HDR-ICR, and extended field EBRT was not associated
with the extent of changes in skeletal muscle and total fat
Frontiers in Oncology | www.frontiersin.org 61213
volumes (Supplementary Table 5). Among the various
gastrointestinal toxicities during RT, none was associated with
the extent of body composition changes in body composition
components, except vomiting: patients who experienced
vomiting showed significantly greater loss of total fat volume
than those who did not (median, −17.1% vs. −5.6%; p = 0.049).

Next, we focused on prognostic implications of fat gain or loss
during cervical cancer treatment. As shown in Supplementary
Table 6, patients who gained waist total fat volume (n = 74) and
those who lost (n = 118) had similar clinicopathologic
characteristics, except for surgical approach and para-aortic
lymphadenectomy. Patients in the total fat gain group received
minimally invasive RH more frequently (66.2% vs. 40.7%;
p = 0.001) and para-aortic lymphadenectomy less frequently
(18.9% vs. 41.5%; p = 0.001), than did those in the total fat
loss group.

During a median observation period of 55.6 months, no
differences in PFS (3-year PFS rate, 79.3% vs. 87.0%; p = 0.071)
and OS (5-year OS rate, 91.6% vs. 99.1%; p = 0.148) were
observed between the total fat gain and loss groups (Figure 3).
A B

C D

FIGURE 2 | Survival outcomes of patients by skeletal muscle index. (Top) Calculated from L3 level cross-sectional image. (Bottom) Calculated from volumetric
measurement of the waist. (A, C) Progression-free survival. (B, D) Overall survival.
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However, in multivariate analyses adjusting for clinicopathologic
factors, total fat volume gain was identified as an independent
poor prognostic factor for PFS (aHR, 2.007; 95% CI, 1.009–3.993;
p = 0.047) (Table 3). Owing to the small events, we could not
conduct further analysis for OS.

Lastly, we classified patients by the combinations of baseline
volumetric sarcopenia and waist total fat change during primary
treatment. The baseline volumetric sarcopenia patients who
gained total fat (n = 22) showed significantly worse PFS (3-year
PFS rate, 64.8% vs. 86.6%; p = 0.014) than others (n = 170);
however, no difference in OS was observed (5-year OS rate, 86.6%
vs. 97.8%; p = 0.050) (Figure 3). The two groups had similar
clinicopathologic characteristics (Supplementary Table 7).
Multivariate analyses revealed that initial volumetric sarcopenia
with total fat gain during primary treatment was associated with
worse PFS (aHR, 2.853; 95% CI, 1.257–6.474; p = 0.012) (Table 3).
DISCUSSION

In this study, we found that the pre-treatment or baseline L3
sarcopenia did not affect survival outcomes in patients with early
cervical cancer who underwent primary RH. However, patients
with volumetric sarcopenia showed significantly higher disease
recurrence and mortality, than did those with volumetric non-
sarcopenia. Regarding changes in body composition components
during primary treatment, the volumetric total fat gain was
identified as a poor prognostic factor for PFS.

CT-determined L3 sarcopenia was reported as a poor
prognostic factor for many malignancies despite the cutoff
values varying among the studies. According to a Korean
retrospective study, sarcopenia, defined as L3 SMI ≤31 cm2/m2

for women and ≤49 cm2/m2 for men, was an independent poor
prognostic factor for OS in patients with advanced gastric cancer
(15). Defining sarcopenia as L3 SMI <29.9 cm2/m2 for women
and <49.5 cm2/m2 for men, Xie et al. reported that baseline
sarcopenia was closely related to the risk of recurrence,
postoperative complications, and long-term prognosis in
Chinese elderly colorectal cancer patients (32).

In contrast, studies conducted in cervical cancer have reported
inconsistent results. Yoshikawa et al. measured L3 psoas muscle
index (PMI) of Japanese patients with metastatic cervical cancer
(n = 40) and identified L3 PMI ≤3.72 cm2/m2 as an independent
poor prognostic factor for OS (16). In contrast, Lee et al. (17) and
Matsuoka et al. (18) observed no association between baseline
sarcopenia and survival in patients with locally advanced cervical
cancer who underwent primary CCRT or RT, similar to our results.
However, these two studies differed from our study in terms of
ethnicity (Taiwanese vs. Japanese vs. Korean) and sarcopenia
definition (L3 SMI, <41.0 vs. <36.55 vs. <39.0 cm2/m2), besides
the stage and primary treatment methods.

We recognize that the analysis of a single cross-sectional CT image
at the L3 level is a well-established, standard method for body
composition analysis. However, this method has limitations. Due to
the displacement of the gastrointestinal tract, the abdominal muscle
and visceral fat may be measured inaccurately on a single abdominal
T
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CT image; the distribution ofmuscle and visceral fat may vary as high
as twice the true value (33). Therefore, a volumetric measurement
might be a more accurate method than a single areal measurement.
Some might argue that ascites, bowel obstruction, or huge abdominal
mass might interfere with accurate volumetric measurement (22).
However, such cases were not identified in our study population, as
we included only those with early-stage disease.

Compared with L3 SMI, waist volumetric SMI is a relatively
new concept; thus, there is no established cutoff value for the
volumetric sarcopenia. In this study, we classified patients with
volumetric sarcopenia using the Q1 value of the waist volumetric
SMI, considering that many early studies on sarcopenia defined
cutoff values based on sex-specific, lowest 20% of the study group
(34), and recent studies on sarcopenia also use Q1 or quartiles to
investigate their impact on cancer prognosis or other health
outcomes, such as metabolic syndrome (35, 36). Further
population-based studies are warranted to determine an
optimal cutoff value for the presence of volumetric sarcopenia.
Frontiers in Oncology | www.frontiersin.org 81415
There are many reasons for decreased skeletal muscle in cancer
patients (37). To date, studies on sarcopenia in cancer patients
have been conducted in the context of cancer cachexia (38).
Patients with cancer cachexia, especially those with enlarging
tumor masses, suffer metabolic dysfunction towards catabolism.
Considering that the current study population had early-stage
disease, influence of cancer cachexia on the pre-treatment
sarcopenia seems to be minimal. However, we also admit that
even among patients with early cervical cancer, some might
already have cancer cachexia at the time of diagnosis. As
patients with volumetric sarcopenia were at high risk of disease
recurrence in our study, physicians may consider routine baseline
body composition analysis to screen for volumetric sarcopenia.

According to the sarcopenia working groups, early
recognition and intervention are key to proper management of
sarcopenia (34, 39). If the same methodology of the current study
is applied to the CT scans, obtained during diagnostic workup,
patients with volumetric sarcopenia can be identified easily in the
A B

C D

FIGURE 3 | Comparisons of survival outcomes according to changes in total fat volume (top) and combinations of baseline volumetric sarcopenia and waist total fat
change (bottom). (A, C) Progression-free survival. (B, D) Overall survival.
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early phase of the treatment. For those, further muscle loss
should be prevented by providing individualized consultation
with a nutritional expert, adequate nutritional supplementation,
and interventions with physical exercise, consisting of aerobic
and resistance exercises during the course of primary treatment
(40, 41).

To our knowledge, the current study is the first to report
volumetric changes in both skeletal muscle and fat during
primary treatment in patients with early cervical cancer. While
significant decreases in waist skeletal muscle (median, −3.9%;
p < 0.001) and total fat (median, −5.3%; p < 0.001) were observed
in our volumetric measurement study, L3 SMI did not decrease
significantly in the Taiwanese longitudinal study on locally
advanced cervical cancer (17). Nevertheless, that study
identified SMI loss >10% as an independent poor prognostic
factor for OS. Among the treatment-related factors, we identified
open RH, rather than minimally invasive RH, as an aggravating
factor for the loss of skeletal muscle and total fat volumes.
Compared with no adjuvant treatment, adjuvant (CC)RT was
associated with the greater loss of total fat volume. In the study of
Matsuoka et al. (18), anorexia and reduced food intake were
frequently observed during postoperative care and at the time of
adjuvant CCRT or RT (18). Similarly, we also observed high
incidence of gastrointestinal toxicities during adjuvant (CC)RT.
Especially, the presence of vomiting was significantly associated
with the loss of total fat volume. Considering that gastrointestinal
toxicities during adjuvant (CC)RT hinder patients’ food intake,
such toxicities should be relieved by using antiemetics,
antidiarrheal agents, and other drugs adequate to maintain
body compositions (42, 43). Persistent or recurrent bowel
obstruction, which might further aggravate malnutrition and
loss of body weight, should be also managed properly (44).

Interestingly, 38.5% of the study population experienced gain
of waist total fat volume, which was identified as a poor
prognostic factor for PFS. While we conducted a volumetric
approach, most previous studies have measured BMI and body
weight change during cancer treatment. For example, Kroenke
et al. reported relationship between weight gain after diagnosis
and higher recurrence and mortality in breast cancer (45).
Current evidence suggests that excessive visceral fat
accumulation, also known as visceral obesity, is associated with
adverse metabolic consequences, systemic inflammation, and
cancer development and progression (46). In the current study,
the patients who were initially volumetric sarcopenia and gained
total fat during primary treatment were identified to have higher
risk of disease recurrence than the others. Similar results were
also observed in previous studies on ovarian cancer (31) and
colorectal cancer (47). Worse PFS from the coexistence of
sarcopenia and fat gain might be explained by the concept,
sarcopenic obesity, known to affect the survival outcome of
patients, which is equal to or greater than the sum of the
respective risks of obesity and sarcopenia (48). As a possible
explanation, researchers have indicated adipose stem cells from
visceral and subcutaneous fat may promote the growth and
migration of cancer cells (49). Therefore, initial sarcopenia
patients should be cautious of excessive fat gain by avoiding
T
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excessive intake and lack of physical exercise (50, 51). It might be
necessary to monitor body composition changes during the
treatment courses.

Our study had several limitations. First, selection bias is one
of the most problematic issues originating from the retrospective
study design. For example, among the original study population,
we further excluded patients who did not receive post-treatment
CT scans to investigate the impact of changes in waist body
composition on survival outcomes. We recognize that the
excluded patients tended to belong to a favorable risk group,
thus omitting adjuvant treatment after surgery. Second, the small
sample size is also problematic. Owing to the small number of
intraoperative and postoperative complications, the relationship
between sarcopenia and complications related to surgery has not
been reported. Further subgroup analyses by the administration
of adjuvant treatment and detailed radiation methods were not
performed because of the small number of recurrent and death
cases. Third, we could not obtain BMI data after treatment or
conduct further analysis based on the changes in BMI. Lastly, the
precise underlying mechanisms for poor survival outcomes from
volumetric sarcopenia and total fat gain could not be elucidated
from the current study. Therefore, further cell line or animal level
proof-of-concept studies are warranted.
CONCLUSION

In conclusion, our study results demonstrate that waist
volumetric SMI might be a prognostic biomarker for early
cervical cancer. In particular, initial sarcopenia patients who
gained body fat during primary treatment were at a high risk of
disease recurrence. It is feasible to measure the waist volume of
each body component and their longitudinal changes using the
artificial intelligence-based volumetric tool. Further validation
studies verifying our findings are warranted.
Frontiers in Oncology | www.frontiersin.org 101617
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Introduction: A current challenge for endometriosis surgery is to correctly identify the
localizations of disease, especially when small or hidden (occult endometriosis), and to
exactly define their real extension. The use of near-infrared radiation imaging (NIR) after
injection of indocyanine green (ICG) represents one of the most encouraging method. The
aim of this study is to assess the diagnostic value of NIR-ICG imaging in the surgical
treatment of endometriosis compared with the standard of treatment.

Material and Methods: The Gre-Endo trial is a prospective, single-arm study
(NCT03332004). After exploring the operatory field using the white light (WL) mode,
patients were injected with ICG and then observed in NIR mode. All suspected areas were
classified and chronicled according to lesions visualized only in WL, NIR-ICG, or in the
combination of both. Lesion not visualized in WL was considered as suspect occult lesion
(s-OcL). In addition, a random control biopsy from an apparent negative peritoneum
visualized in WL and NIR-ICG imaging was taken for all patients (control cases). All lesions
removed were considered “suspect endometriosis” until pathology.

Results: Fifty-one patients were enrolled between January 2016 and October 2019. A
total of 240 suspected lesions have been identified with both methods (WL + NIR-ICG).
Two hundred and seven (86.2%) lesions out of the overall 240 were visualized with WL
imaging, and 200 were confirmed to be pathologic (true positive for WL). The remaining
33/240 (13.75%) (false negative for WL) lesions were identified only with NIR-ICG imaging
and collected as s-OcL. All 33 s-OcLs removed were confirmed to be pathologic (c-OcL =
100%). NIR-ICG vision showed PPV of 98.5%, NPV of 87.1%, Se of 87%, and Sp of
98.5%, confirming that this kind of imaging is an excellent diagnostic and screening test (p =
0.001 and p = 0.835, according to McNemar’s and Cohen’s kappa tests, respectively).
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Conclusions: TheuseofNIR-ICGvision alone andcombinedwithWLshowedgood results in
intraoperative detection rate and fluorescence-guided surgery of endometriosis. Furthermore,
NIR-ICG allowed surgeons to remove occult lesions that otherwise would remain, leading to
possible greater postoperative pain and a higher risk of persistence and relapse.
Keywords: near-infrared imaging, indocyanine green, deep infiltrating endometriosis, personalized medicine,
gynecological surgery
INTRODUCTION

Endometriosis is considered a public health problem
compromising the social, employment, financial, and
reproductive quality of life of the patients (1). When
pharmacologic treatment fails, surgical treatment can improve
quality of life and fertility by radically removing extra-ovarian
endometriosis localizations using the best minimally invasive
techniques such as laparoscopy, the current gold standard of
treatment (2–4).

Early technical difficulties have been overcome by surgeon
experience and the refinement of techniques; a frequent
current challenge involves identifying endometriosis
localizations, especially when small or hidden (occult
endometriosis) (5–9), to not leave out disease and determine a
possible “undertreatment” and/or to predispose patients to
possible recurrences.

Indeed, there is evidence that postoperative recurrence of
endometriosis may be due to incomplete resection during the
primary surgery (8).

Furthermore, eradicating surgery for endometriosis presents
the risk of “overtreatment” as well, since the surgeon usually may
remove lesions suspected of being endometriosis that are not
pathologically confirmed to be endometriosis from 16% to 53%
of cases (8). The excessive dissection and resection of heathy
tissues surrounding the diseased, moreover, could determine
postoperative surgical and functional morbidity (10–13).

Indocyanine green (ICG) is nowadays increasingly used in
gynecological surgery, both in oncological and benign fields (14–
16). It is frequently used in the identification of lymphatic tissue
(17, 18), but if injected intravenously, it binds to plasma proteins
and persists in the vascular system, helping in the definition of
the vascular network (19).

Given the typical neovascularization of endometriosis, related
to chronic inflammation, the visualization of abnormal areas of
peritoneal vascularization could be useful to better identify and
define the endometriosis lesions in their real extension and to
visualize the lesions even when not obvious, as in puckered
peritoneal lesions (8–11, 20). For all of this, several methods have
been proposed to improve the intraoperative treatment of
endometriosis through enhancing the human vision power,
with encouraging results (21–23).

The use of cameras with near-infrared radiation imaging
(NIR) after injection of ICG represents one of the most
encouraging methods in this experimental scenario,
demonstrating a good profile of safety and accuracy as an
intraoperative diagnostic method (9–11, 24).
22021
The aim of this study is to assess the diagnostic value of NIR-
ICG imaging in the surgical treatment of endometriosis
compared with the standard of treatment, that is laparoscopy
in white light (WL), and the standard diagnostic method, that is
pathologic finding.
MATERIALS AND METHODS

The Gre-Endo trial is a prospective, single-arm study
(ClinicalTrials.gov Identifier: NCT03332004) carried on at the
Fondazione Policlinico Universitario “A. Gemelli”—IRCCS,
Rome, Italy, and Gemelli-Molise, Campobasso, Italy. The local
ethics committee approved the experimentation (Prot.sf. A.287/
C.E./2013).

Materials
The NIR-ICG camera system adopted for the study was the
Olympus ICG Imaging System Prototype based on the VISERA
Pro System (custom camera head, modified light source, and
modified camera control unit; Olympus Europa Holding GmbH,
Hamburg, Germany), the merchandized camera head CH-S200-
XZ-EB connected to VISERA ELITE II system with NIR filter
(Olympus Europa Holding GmbH, Hamburg, Germany),
and the IMAGE1 S™ Rubina imaging technology from
KARL STORZ.

The ICG adopted for intravenous injection during the
procedures was Pulsion (PULSION Medical Systems SE,
Feldkirchen, Germany) and VerDye (Diagnostic Green GmbH,
Aschheim-Dornach, Germany).

Patients
Inclusion criteria were suspected endometriosis with surgical
indication for treatment needing laparoscopic and pathologic
confirmation. Patients were triaged to surgery according with the
common indications for endometriosis (25). Exclusion criteria
were age <18 and >47 years at the time of surgery. Other
exclusion criteria were a history of allergic reactions attributed
to compounds of similar chemical or biologic composition to
ICG; pregnancy or breastfeeding period; active participation
of the patient to other drug, biologic, and/or device study;
the presence of medical conditions contraindicating general
anesthesia or standard surgical approaches; and any
contraindicating medical condition, according to the discretion
of the investigator, that made the subject a poor candidate for the
investigational procedure.
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Patients with ovarian endometriosis and/or endometriosis of
the fallopian tubes were excluded from the study because of the
intraoperative lack of fluorescence of the ovaries and the diffuse
fluorescence of the tubes because of physiological vascular web
density at preliminary pilot surgeries.

After obtaining informed consent, patients were included in
the study and they could withdraw from the study at any
time without impacting treatment. Patient demographic
features and preoperative pain were scored using the visual
analog scale (VAS) (26), and the intraoperative classification
of endometriosis severity scheduled according to the revised
American Fertility Society (rAFS) (27). All data were
prospectively collected.

Method and Surgical Procedure
All the procedures were performed by a team of three well-
trained surgeons with >10 years of experience in minimally
invasive techniques for endometriosis.

During surgery, the abdomen and pelvis were visually
inspected using direct laparoscope visualization under WL
conditions. The surgeon prepared the operating field by
adhesion lysis exposing the torus uteri and the ovarian fossa
and freeing the bowel from eventual retrocervical nodule
attachment. All suspected areas were classified as either
peritoneal superficial endometriosis (PE) or deep infiltrating
endometriosis (DIE). All suspected PE was classified as white,
black, and red lesions and documented with their anatomic
location in the surgical record under WL condition. Similarly,
all suspected DIE lesions were also recorded with their anatomic
location in the surgical record (retrocervical, vaginal,
rectosigmoid, bladder lesions, etc.) (8) under WL condition.
The patient was then administered with 0.25 mg/kg of ICG
intravenously. After an interval of time from a minimum of 5
min, NIR-ICG imaging was activated and the whole surgical field
inspected with this filter (Figure 1). It was necessary to wait to
permit blood flow washout of ICG and its accumulation in the
third space of neovascularized areas. All suspected lesions for
endometriosis (PE and DIE) were tabulated and chronicled
according to lesions visualized only in WL, only in NIR-ICG,
or in the combination of both. In addition, a random control
biopsy from an apparent negative peritoneum visualized in WL
and NIR-ICG imaging was taken for all patients (control cases).
Every specimen resected during surgery was considered as
“suspect lesion” for endometriosis when visualized with WL
and/or with NIR-ICG until pathology confirmation. If a
suspect lesion had been visualized with NIR-ICG and not in
WL or, conversely, only with WL, it was named “suspect occult
lesion” (s-OcL), and only after conformation by pathology, it has
been considered “confirmed occult lesion” (c-OcL).

All specimens resected were analyzed by a dedicated
pathologist that, even when facing with macroscopically
negative tissue samples, embedded in paraffin the specimens in
toto and analyzed them at multiple levels. A surgical specimen
was considered as “pathologic” when containing endometriosis
foci (stroma and/or gland and/or hemosiderin) and/or acute or
chronic sclerosing inflammatory infiltrate (28, 29).
Frontiers in Oncology | www.frontiersin.org 32122
Perioperative complications have been reported with the
extended Clavien–Dindo classification (30).

Statistical Analysis
The primary objective of the study was to assess the feasibility of
NIR-ICG to identify endometriosis lesions and distinguish the
surrounding tissue in comparison with WL. The secondary
objective was to assess the power of identifying OcL and the
power of the test combining the two methods of visualization
(WL plus NIR-ICG).

Normally, WL is the intraoperative gold standard imaging
technique for detecting endometriosis, while pathology the
definitive confirmation test.

We tested the null hypothesis that the possibility of correctly
identifying endometriosis could improve from 85% with WL
visualization to 100% when assessed together with NIR-ICG. The
sample size was calculated according to the Simon two-stage
design (31) using an alpha error of 0.01 and a beta error of 0.90.
Considering a patient dropout of approximately 10%, the study
was planned to enroll at least 47 women.

Because the control biopsy was achieved from a negative
peritoneum using WL and NIR-ICG imaging for all women, the
true-negative lesions were defined as the negative lesions for
endometriosis that were correctly identified as negative byWL or
NIR-ICG imaging; the false-negative lesions were defined as not
correctly identified by WL or NIR-ICG imaging. The true-
positive lesions were the positive lesions for endometriosis that
were correctly identified by WL or NIR-ICG imaging; the false-
positive lesions were the lesions identified as positive for
endometriosis by WL or NIR-ICG imaging that were not
pathologically identified as endometriosis. Sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and overall accuracy were calculated for each
visualization. Sensitivity (Se) was defined as the number of
positive lesions for endometriosis that were correctly identified
(true positives) divided by the total number of positive lesions for
endometriosis (true positives + false negatives). Specificity (Sp)
was defined as the number of negative lesions for endometriosis
that were correctly identified (true negatives) divided by the total
number of negative lesions (true negatives + false positives). PPV
was calculated as the number of true positives divided by the total
number of positive results (true positives + false positives), and
NPV was defined as the number of true negatives divided by the
total number of negative results (true negatives + false negatives).
Accuracy was calculated as the number of true positives plus true
negatives (total correct number) divided by the total number of
patients studied. Sensitivity, specificity, and accuracy were
compared using McNemar’s and Cohen’s kappa tests. The
diagnostic performances of WL and NIR-ICG imaging were
calculated per patient as well as per lesion. Statistical
calculations were performed using the Statistical Package for
Social Sciences (Version 17.0; SPSS Inc., Chicago, IL, USA).

The receiver operating characteristic (ROC) curve was
designed to assess the diagnostic performance of WL and NIR-
ICG for identifying pathologic lesions compared to pathology.
The statistical significance was set at p-values <0.05.
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RESULTS

General Results
A total of 135 patients with symptomatic endometriosis were
screened and 51 were enrolled between January 2016 and
October 2019 (Figure 2). All patient demographics are listed
in Table 1. Patients were in premenopausal age between 26 and
47 years old (median age = 35 years) with a median body mass
index of 20.5. Nineteen (35%) women had already undergone
previous surgery for endometriosis. All patients suffered from
severe symptoms referred at the VAS scale. Forty-five patients
had an intraoperative assignment to III/IV stage by the rAFS.
Frontiers in Oncology | www.frontiersin.org 42223
All patients underwent laparoscopic surgery, and no
laparotomy conversions were recorded. The most performed
surgery was uterosacral ligament (USL) nodule removal in 80%
of the patients, while retrocervical nodule resection was
performed in 78% of the cases. Overall, segmental colorectal
resection represented 28% of the cases.

Table 2 reports the surgical procedures performed and the
perioperative outcomes observed. There was no increase in
operating times because of the use of NIR-ICG imaging
because injection of the ICG dye occurred during the
preparation of the operating field. ICG median dose injected
was 15 mg (range 10.25–24).
FIGURE 1 | Surgical images using white light (WL) and near-infrared indocyanine green (NIR-ICG) mode. The first two pictures represent a rectosigmoid nodule
using WL (A) and NIR-ICG mode (B). (C, D) Superficial peritoneal lesion in WL (D) and NIR-ICG (C). The last two pictures show retrocervical lesions with uterosacral
ligament involvement using the two vision systems [WL in (E) and NIR-ICG in (F)].
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No hemorrhages, allergic reactions, and/or any type of
intraoperative complications were reported. Postoperative
complications affected nine (17.6%) patients and were not
directly associated to the ICG infusion or to the experimental
plan. In particular, only early complications were registered:
among grade I, one case of urinary retention and one case of
fever; among grade II, one case of postoperative bleeding of
colorectal anastomosis in postoperative day 2 was noted and
controlled by hospitalization and the administration of 500 mg
tranexamic acid orally every 8 h for 3 days, three cases of fever
needing for antibiotic infusion, and one case of anemia needing
red cell-concentrated unit transfusion; among grade III, one case
of colorectal anastomosis dehiscence then subjected to resuturing
and loop ileostomy creation and one case of vaginal fornix
dehiscence after a posterior wall nodule resection needing to
be resutured.

Study Protocol Results
Fifty patients administered with ICG presented tissue
fluorescence, except one woman that was completely negative
even after a second repeated dose.

A total of 240 suspected lesions have been identified with both
methods (WL + NIR-ICG). Two hundred and seven (86.2%)
lesions out of the overall 240 ones were visualized with WL
imaging, and 200 were confirmed to be pathologic (true positive
Frontiers in Oncology | www.frontiersin.org 52324
for WL). The remaining 33 out of 240 (13.75%) (false negative
for WL) lesions were identified only with NIR-ICG imaging and
collected as s-OcL (Table 3 and Figure 3). The s-OcLs were so
distributed: 3 (9%) white lesions for PE, while 7 (21%) as
retrocervical, 3 (9%) as USL, 11 (33%) as periureteral/ovarian
fossa, 4 (12%) as rectal, and 5 (15%) as prevesical/vesical
localizations for DIE (Table 3). All 33 s-OcLs removed were
confirmed to be pathologic (c-OcL = 100%): in particular, 25
(76%) lesions out of 33 harbored occult endometrioses, while 8
(24%) harbored severe sclerosing inflammatory infiltrate.
Moreover, 30 (15%) lesions out of the 200 confirmed lesions
identified by WL have not visualized by NIR-ICG.

Table 4 reports the specific results obtained using NIR-ICG.
With NIR-ICG imaging, 206 suspected lesions were identified;
173 of them were already visualized in WL. Two hundred and
three suspected lesions out of 206 (98.5%) had pathologic
confirmation (true positive for NIR-ICG), while 3 lesions were
not confirmed as pathologic (false positive for NIR-ICG). As
reported above, 33 lesions further than conventional WL were
identified and confirmed at pathology (c-OcL) thanks to NIR-
ICG (Figure 3).

Regarding WL vision, the overall PPV and NPV were 96.6%
and 86.3%, while Se and Sp were 85.8% and 96.7% (Table 5).
NIR-ICG vision showed PPV of 98.5%, NPV of 87.1%, Se of 87%,
and Sp of 98.5% (Table 5), confirming that this kind of imaging
FIGURE 2 | Study flow diagram.
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is an excellent diagnostic and screening test (p = 0.001 and
p = 0.835, according to McNemar’s and Cohen’s kappa
tests, respectively).

As far as PE is concerned, NIR-ICG demonstrated higher
values of PPV and specificity than WL, while NPV and
sensitivity were lower. The accuracy of the NIR-ICG was lower
than WL regarding white lesion (40% vs. 46.7%); conversely, it
was superior in recognizing black lesion (60% vs. 50%).
Frontiers in Oncology | www.frontiersin.org 62425
As far as DIE is concerned, the two visualization approaches
demonstrated superimposable values of Sp, while Se and
accuracy resulted higher for NIR-ICG for the visualization of
periureteral/ovarian fossas and colorectal nodules (McNemar’s
test: p = 0.002 and 0.768 and Cohen’s kappa test: p = 0.01 and
0.876). Conversely, WL demonstrated superiority than NIR-ICG
in the recognition of prevesical/vesical lesions (McNemar’s test:
p = 0.001, Cohen’s kappa test: p = 0.705).

The overall accuracy of both methods was 46% with
McNemar’s (p = 0.001) and Cohen’s kappa tests (p = 0.83),
revealing that both methods, regardless of the operator, should
always be integrated to ensure complete eradication of
endometriotic lesions (Table 5).

Figure 4 details the ROC curves of the two approaches. The
areas under the curves (AUCs) were >0.8, and the diagnostic
powers of the two methods were not statistically different
(p = 0.31).
DISCUSSION

Results in the Context of Published
Literature
The role of surgery in endometriosis is to remove the affected
tissues to obtain pain relief, to improve fertility, and to abate not
only the persistence of disease but also the risk of recurrence that
occurs from 20% up to 50% of women at 2 and 5 years after
treatment (9, 32, 33).

On the other hand, endometriosis is not cancer, so the
excessive search for surgical radicality can imply an increase in
perioperative morbidity and can cause serious functional
damage, especially if the resection of tissues affected by
TABLE 1 | Characteristics of the patients.

Variables Value Percentage

All cases 51 100%
Age, years (range) 35 (26–47) –

Body mass index (range) 20.5 (14–33) –

ASA class
1 35 69%
2 16 31%
3 0 –

Previous delivery 18 35%
Prior surgery for endometriosis 19 37%
Preoperative symptoms (VAS)a

Dysmenorrhea 9 (3–10) 86%
Dyschezia 7 (2–10) 59%
Dysuria 7 (4–10) 18%
Dyspaurenia 8 (1–10) 67%
Chronic pelvic pain 6 (2–10) 69%

Stageb

Stage I (minimal) 0 –

Stage II (mild) 6 12%
Stage III (moderate) 19 37%
Stage IV (severe) 26 51%
Data are shown as median/range for the referred positive VAS. Percentage refers to the
number of patients according to symptoms.
aPain is valued with the visual analog scale (VAS) for symptomatic patients.
bAccording to the rAFS classification.
TABLE 2 | Surgical procedures and perioperative data.

Surgical procedure Value Percentage

Ovarian cyst removal 26 51%
Peritoneal removal 36 70%
Retrocervical nodule removal 40 78%
Vaginal nodule removal 14 27%
Uterosacral ligament nodule removal 41 80%
Rectal nodule shaving 12 23%
Segmental resection and anastomosis of sigma-rectum 10 20%
Segmental resection and anastomosis of sigma-rectum plus ileostomy 4 8%
Other procedures (appendectomy, salpingectomy, ureteral stent placement) 14 27%
Operative time (min)a 142 (65–375) –

Dose of ICG injecteda 15 (10.25–24) –

Intraoperative complications 0 –

Estimated blood loss (ml)a 100 (0–350) –

Postoperative complicationsb

Early 9 17.6%
I 2 –

II 5 –

III 2 –

IV 0 –

Late 0
Hospital stay (no. of days)a 2 (1–13) –
November 2021 | Volume 11 | A
aData are shown as median/range.
bAccording to Clavien–Dindo classification.
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endometriosis is associated with the removal of healthy tissues
surrounding the diseased or mimicking them (10, 34–43).

Furthermore, the sensory perception of the surgeon, albeit an
expert one, in identifying intraoperatively suspect lesions for
endometriosis based on location, color, size, and depth has
Frontiers in Oncology | www.frontiersin.org 72526
obtained well-known limits. Indeed, Stegmann et al. found that
the PPV of using only the impression of an experienced surgeon
to identify histologically positive lesions was 64.0%, and the NPV
was 88%, while the Se and Sp of using this method were 98% and
21%, respectively (34).
TABLE 3 | Intraoperative and pathologic data collection resulting from WL vision and the combination of the two techniques (WL plus NIR-ICG).

Variables WL
visualization

Overall visualization
(WL plus NIR-ICG)

Pathology
for WL

Overall pathology
(WL plus NIR-ICG)

True
positive
for WL

False
positive
for WL

True
negative
for WLa

False negative
for WL (s-OcL)

c-OcL

Peritoneal endometriosis
White lesion 21 24 17 20 17 4 21 3 3
Black lesion 16 16 15 15 15 1 16 0 0

Deep infiltrating endometriosis
Retrocervical

nodule
35 42 34 41 34 1 35 7 7

USL nodule 62 65 61 64 61 1 62 3 3
Periureteral/

ovarian fossa
nodule

20 31 20 31 20 0 20 11 11

Vaginal nodule 11 11 11 11 11 0 11 0 0
Sigma-rectum

nodule
26 30 26 30 26 0 26 4 4

Prevesical/vesical
nodule

16 21 16 21 16 0 16 5 5

Overall endometriosis
Total (PE and

DIE)
207 240 200 233 200 7 207 33 33
Novem
ber 2021 |
 Volume 11 | Article 7
WL, white light visualization mode/expert surgeon eye; c-OcL, confirmed occult endometriosis lesion at WL (=FN); PE, superficial peritoneal endometriosis; DIE, deep infiltrating
endometriosis.
aTrue negative for WL = 51 control biopsies performed in WL.
FIGURE 3 | Graphical representation of the collection of intraoperative and pathological data derived from WL vision and the combination of the two techniques (WL
plus NIR-ICG).
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Furthermore, the possibility of not recognizing outbreaks of
endometriosis that is not visible because it is microscopic or
hidden (occult endometriosis) in 6%–13% of the cases may
further worsen the effectiveness of surgical clearance (6, 9, 44).

For these reasons, different approaches to increase the
potential for intraoperative recognition of endometriosis
(enhanced vision) have been investigated using different dyes
or technologies such as 3D robotic vision, with different
efficacy and safety profiles (9–11, 21–24, 45–47). The results of
Frontiers in Oncology | www.frontiersin.org 82627
the Gre-Endo trial seem to answer to the need of an “enhanced
vision” and the utility of an intraoperative screening test.

Moreover, in association with the intraoperative diagnostic
role of NIR-ICG, a challenging additional advantage seems
to be the capability of distinguishing the diseased tissue
from the surrounding healthy ones and to evaluate the
residual vascularization of noble organs subjected to dissection
and/or eradicating surgery such as the rectum and ureter
(10, 11, 48, 49).
TABLE 4 | Intraoperative and pathologic data collection resulting from NIR-ICG.

Variables Overall NIR-ICG
visualization

NIR-ICG visualization
already seen in WL

Pathology
for NIR-ICG

True positive
for NIR-ICG

False positive
for NIR-ICG

True negative
for NIR-ICGa

False negative
for NIR-ICG

c-
OcL

Peritoneal endometriosis
White lesion 14 11 13 13 1 14 7 7
Black lesion 9 9 9 9 0 9 6 6

Deep infiltrating endometriosis
Retrocervical

nodule
41 34 40 40 1 40 1 1

USL nodule 61 58 57 57 1 58 4 4
Periureteral/

ovarian fossa
nodule

29 18 29 29 0 29 2 2

Vaginal nodule 10 10 10 10 0 10 1 1
Sigma-rectum

nodule
27 23 27 27 0 27 3 3

Prevesical/vesical
nodule

15 10 15 15 0 15 6 6

Overall endometriosis
Total (PE and

DIE)
206 173 203 203 3 206 30 33
Nov
ember 2021 | Volu
me 11 | Article 73
NIR-ICG, near-infrared visualization mode with indocyanine green; c-OcL, confirmed occult lesion at NIR-IGC (=FN at WL); PE, superficial peritoneal endometriosis; DIE, deep infiltrating
endometriosis.
aNumber of control biopsies performed in NIR-ICG + TN of PE and DIE.
TABLE 5 | Comparison between the NIR-ICG and WL for each surgical site in the whole population.

Variable Vision PPV (%) NPV (%) Sensitivity (%) Specificity (%) Accuracy (%) McNemar’s test Cohen’s kappa

Peritoneal endometriosis
White lesion WL 81.0 87.5 85.0 84.0 46.7 0.301 0.667

NIR-ICG 92.9 66.7 65.0 93.3 40.0
Black lesion WL 93.8 100 100 94.1 50.0 0.125 0.751

NIR-ICG 100 60.0 60.0 100 60.0
Deep infiltrating endometriosis
Retrocervical nodule WL 97.1 83.3 82.9 97.2 45.4 0.109 0.874

NIR-ICG 97.6 97.6 97.6 97.6 50.0
USL nodule WL 98.4 95.4 95.3 98.4 48.8 0.179 0.927

NIR-ICG 98.3 93.5 93.4 98.3 48.3
Periureteral/ovarian fossa nodule WL 100 64.5 64.5 100 39.2 0.002 0.768

NIR-ICG 100 93.5 93.5 100 48.3
Vaginal nodule WL 100 100 100 100 50.0 1.0 0.960

NIR-ICG 100 90.9 90.9 100 47.6
Sigma-rectum nodule WL 100 86.7 86.7 100 46.4 0.01 0.876

NIR-ICG 100 90.0 90.0 100 47.3
Prevesical/vesical nodule WL 100 76.2 76.2 100 43.2 0.001 0.705

NIR-ICG 100 71.4 71.4 100 41.6
Overall endometriosis
Total (PE and DIE) WL 96.6 86.3 85.8 96.7 46.3 0.001 0.835

NIR-ICG 98.5 87.1 87.0 98.5 46.5
NIR-ICG, near-infrared visualization vision with indocyanine green; WL, white light vision; PPV, positive predictive value; NPV, negative predictive value; PE, superficial peritoneal
endometriosis; DIE, deep infiltrating endometriosis.
The bold style means that the values reported are statistic significant.
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In this study, we confirmed what was already found in recent
literature about the identification of lesion and the definition of
the extent and limitation of lesions from healthy tissues (9–11,
21–25, 45, 48, 49). In addition, we defined the diagnostic power
of the method, which was not systematically investigated before.

In this cohort, NIR-ICG showed higher values of Se and Sp
compared with the standard WL (87% vs. 85.8% and 98.5% vs.
96.7%, respectively). Moreover, the overall values registered at
McNemar’s (p = 0.001) and Cohen’s kappa (p = 0.83) tests
showed that NIR-ICG is an excellent screening and diagnostic
confirmation test compared with WL. Cohen’s kappa is higher
than 0.4 for all types of lesion observed: it means that the
evaluation of the two tests is good and independent from
the observer.

In McNemar’s test, on the other hand, we noticed the
statistical significance in the overall results, in the USL lesions,
and on the rectum and bladder localization: it means that NIR-
ICG and WL should always be integrated to provide the most
complete eradication of endometriosis, in particular in the sites
described above.

Finally, the AUC of ROC curves for WL and NIR-ICG
resulted in values >0.8 that in association with the K Cohen
results >0.4 encountered, represents a positive evaluation of the
diagnostic tests with excellent diagnostic powers.

Subsequently, we could sustain that the two approaches
should be used sequentially during the same surgery to
compare the lack and the gains of one against the other.

Moreover, in this series, the diagnostic power of NIR-ICG
imaging seems also maintained in two situations of
vascularization impairment, i.e., i) in patients with previous
surgery and ii) after surgical dissection and tissue cruentation
Frontiers in Oncology | www.frontiersin.org 92728
(data not shown). However, considering the few cases analyzed,
further prospective studies are needed to confirm the excellent
result for this subset of patients.

Finally, it is necessary to underline, thanks to NIR-ICG, that
33 lesions (c-OcL), which otherwise would not have been
removed with standard approaches, had been resected, with a
gain of 16.5% in the count of lesions removed only by WL and a
gain of 14.16% in the overall count of lesions resected by the
combination of the methods.

Interestingly, no iatrogenic opening of the bowel during
conservative eradication procedures nor intraoperative ureteral
lesions or postoperative fistulas occurred; moreover, the
postoperative urinary retention observed was only 2%, lower
than the rate reported in the literature (36). These interesting low
rates of perioperative complications may be possible, thanks to
the already noticed benefits of fluorescence-guided surgery (10,
48–50). Only one case of anastomotic colorectal dehiscence
occurred, but the anastomotic vascularization (48) was not
investigated because of the washout of ICG employed at the
beginning of the surgery for the study purpose. Further studies
focused on complication rate with adequate population are
needed to confirm these results.

To our knowledge, this is the first prospective trial with the
most consistent population subjected to the same homogeneous
procedure (surgery, ICG dose of injection, time of observation,
dedicated pathologist) (51).

Recently, Siegenthaler et al. (11) found that NIR-ICG resulted
as useful for identifying the extent of lesions, allowing for the
resection of nodules and the preservation of healthy tissue
surrounding the diseased, but the results were not satisfactory
regarding detection rate. In fact, in this study, the PPV reported
FIGURE 4 | ROC curves of the two approaches (white light and near-infrared indocyanine green).
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for WL, NIR-ICG, and the combination of the two methods were
89.8%, 68.8%, and 86.7%, respectively, while in our cohort, the
values noticed were 96.6%, 98.5%, and 97.6%, respectively.
Moreover, s-OcLs for NIR-ICG in Siegenthaler et al. (11) were
at least 22%, but only one lesion was a c-OCL (4.5%). Those
results may differ from our results for several factors, identifiable
in the different selection of population for the rAFS stage:
different times of intraoperative observation for a subset of the
population [only 35 (55.6%) patients of that cohort received a
comparable observation time with the Gre-Endo trial] and
different doses of ICG adopted. Moreover, another difference
was the fact that we considered as pathologic not only
endometriosis per se but also lesions characterized by acute or
chronic sclerosing inflammatory infiltrate (28, 29, 51).

Strengths and Limitations of the Study
The strengths of this study are the single-center prospective
design, the considerable population enrolled subjected to the
same experimental procedure and the standardized surgery by a
limited team of high-volume surgeons, and a dedicated
pathologist (51).

The limitations of the present study include the exclusion by
the investigation of the adnexal endometriosis and the higher
percentage (~89%) of advanced endometriosis stage (stages III
and IV for rAFS) that could represent a bias of selection.

However, this type of population enrolment could be explained
by the fact that our hospital is a third referral center to triage
treatment of women with endometriosis who may be suffering
from an advanced stage that cannot be treated elsewhere.
Moreover, according to recent literature, the enrolment of higher
stage of disease may have worsened the detection rate results of the
present study (11). These limitations could be partially solved by
the fact that in our institutions, surgical care and laparoscopic
evaluation are standardized and there is the ability to partially
overcome differences such as preoperative patient selection,
surgical strategies, and intraoperative visualization.

Future Perspectives
This type of approach has recently been associated with a
promising improvement in the quality of life (25), but further
studies are needed to establish the real benefit in terms of pain
relief, recurrence rate, and fertility rate resulting from the
strengthening of the eradication power found. In addition,
another direction in which research should be directed should
be its use in a population that includes all stages of disease and,
therefore, also focuses on the lower stages of disease.
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Conclusions
The use of NIR-ICG alone and above all combined with WL
during laparoscopy for endometriosis showed good results in
intraoperative detection rate and fluorescence-guided surgery.
Furthermore, NIR-ICG allowed surgeons to remove occult
lesions that otherwise would remain, leading to possible greater
postoperative pain and a higher risk of persistence and relapse.

Further prospective studies that overcome the possible biases
of this study are warranted to validate and confirm these results
and permit a diffusion of fluorescence-guided endometriosis
surgery as a useful aid for a more effective and safe surgery.
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Objective: The objective of the study is to investigate the feasibility of using the fractional
order calculus (FROC) model to reflect tumor subtypes and histological grades of cervical
carcinoma.

Methods: Sixty patients with untreated cervical carcinoma underwent multi-b-value
diffusion-weighted imaging (DWI) at 3.0T magnetic resonance imaging (MRI). The mono-
exponential and the FROC models were fitted. The differences in the histological subtypes
and grades were evaluated by the Mann–Whitney U test. Receiver operating characteristic
(ROC) analyses were performed to assess the diagnostic performance and to determine
the best predictor for both univariate analysis andmultivariate analysis. Differences between
ROC curves were tested using the Hanley and McNeil test, while the sensitivity, specificity,
and accuracy were compared using the McNemar test. P-value <0.05 was considered as
significant difference. The Bonferroni corrections were applied to reduce problems
associated with multiple comparisons.

Results: Only the parameter b, derived from the FROC model could differentiate cervical
carcinoma subtypes (P = 0.03) and the squamous cell carcinoma (SCC) lesions exhibited
significantly lower b than that in the adenocarcinoma (ACA) lesions. All the individual
parameters, namely, ADC, b, D, and m derived from the FROC model, could differentiate
low-grade cervical carcinomas from high-grade ones (P = 0.022, 0.009, 0.004, and
0.015, respectively). The combination of all the FROC parameters showed the best overall
performance, providing the highest sensitivity (81.2%) and AUC (0.829).

Conclusion: The parameters derived from the FROC model were able to differentiate the
subtypes and grades of cervical carcinoma.

Keywords: magnetic resonance imaging, diffusion-weighted imaging, cervical carcinoma, cervical squamous cell
carcinoma, cervical adenocarcinoma
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INTRODUCTION

Cervical cancer is the fourth most common cancer in women
worldwide (1). In developing countries, probably due to the poor
access to the screening programs, most of the new cases present
advanced stages and remain poor prognosis. Both histological
subtypes and grades are the most common prognostic factors of
cervical cancer. The two main histological subtypes, squamous
cell carcinoma (SCC) and adenocarcinoma (ACA), account for
approximately 70 and 25% of all cervical cancers, respectively
(1). According to a previous study, the different cell types
probably have different patterns of failure and survival (2). The
aggressiveness of tumors represented by histological grade can
also provide critical information for selecting treatment plans.
Therefore, the clear insights into tumor subtypes and histological
grades are essential in cervical carcinoma diagnosis and
management. Despite biopsy being currently performed for the
assessment of cervical carcinoma and is considered as a gold
standard for patients presenting with advantage stages, it is an
invasive procedure associated with certain risks of bleeding and
infection, and sampling bias may occur especially for larger
tumors (3, 4).

Magnetic resonance imaging (MRI) emerged as a powerful
noninvasive diagnostic tool in oncology. Among MRI
techniques, diffusion-weighted imaging (DWI) probes tissue
microenvironment based on its sensitivity to water molecular
diffusion that can be quantified using apparent diffusion
coefficient (ADC) derived from the Gaussian diffusion model.
Previous studies reported the potential use of ADC to evaluate
cervical carcinoma subtypes and grades (5–7). However, this
conventional mono-exponential diffusion model lacks specific
parameters to reflect tumor microstructures, which are essential
for assessing tumor subtypes and grades. According to the
previous studies, the differentiation of cervical carcinoma
histological grades based on ADC alone was reported to be
difficult as the overlapped ADC values among different
histological grades would act as a confounder (8, 9). Similarly,
some overlap in ADC values were found between SCC and
ACA (6).

Recently, the fractional order calculus (FROC) model was
suggested to evaluate the microstructural and heterogeneity
changes in tumor tissues. The FROC model provides a new set
of parameters, including an anomalous diffusion coefficient D, an
intravoxel diffusion heterogeneity parameter b, and a spatial
parameter m (10). Collectively, these parameters offer a multi-
faceted characterization of cancerous tissues and can be used as a
new class of biomarker in tumor diagnosis (11–14). Prior
research proved that the FROC model could better reflect the
complexity and heterogeneity of tissue microstructure than
conventional diffusion model in gastric adenocarcinoma (15)
and prostate lesions (16).

This study aimed to investigate whether the parameters
derived from the FROC model can be used for imaging-based
assessment of histological subtypes and grades of cervical
carcinoma. Furthermore, the diagnostic performance results of
ADC and the FROC parameters were compared to find the
best predictor.
Frontiers in Oncology | www.frontiersin.org 23233
MATERIALS AND METHODS

Study Population
This prospective study was approved by our institutional
review board and written informed consents were obtained
from all participants. The inclusion criteria were as follows:
(1) no previous treatment for cervical carcinoma prior to the
MR examination; (2) no contraindications to the MR
examination; (3) clinically and radiologically suspected
cervical carcinoma patients. Exclusion criteria were as
follows: (1) poor image quality; (2) rare histological subtypes;
(3) lack of subtype classification and/or grade information
through pathological evaluation. With these criteria, one
patient with poor image quality, two patients with
adenosquamous carcinoma, and two patients without
pathological evaluation were excluded. Finally, between
January 2021 to November 2021, sixty patients (mean age,
53.0 years ± 10.1 [standard deviation]) were enrolled.

All cases involved in this study were confirmed to have cervical
carcinoma by the biopsy, which were further analyzed and
reconfirmed by an experienced pathologist specialized in
gynecological malignancies. Histological subtypes were
separated into an SCC group and an ACA group. Besides, all
the cases were classified into a high-grade group (poorly
differentiated tumor) and a low-grade group (well- or
moderately differentiated tumor).

MR Imaging
All the MRI examinations were performed on a 3.0T MR
scanner (uMR 780, United Imaging Healthcare, Shanghai,
China) with a commercial 12-channel body phased array
coil. MR sequences included: 1) axial T1-weighted (T1W)
fast spin echo (FSE) sequence; 2) axial T2-weighted (T2W)
FSE sequence; 3) coronal fat-suppressed T2W FSE sequence;
4) sagittal T2W FSE sequence; and 5) diffusion-weighted
imaging with a series of b-value 0, 20, 40, 80, 160, 200, 500,
1 ,000, and 2,000 s/mm2. Table 1 presents a l l the
detailed protocols.

Image Analysis
The conventional mono-exponential diffusion model was
applied to estimate ADC based on the images with two b-
values, 0 and 1,000 s/mm2.

The FROC model was set up following the equation (17, 18)

S = S0 exp½−Dm2(b−1)(gGdd)
2b (D −

2b − 1
2b + 1

d)� (1)

where S0 is the signal intensity without diffusion weighting, Gd is
the diffusion gradient amplitude, D is the anomalous diffusion
coefficient, b is the intravoxel diffusion heterogeneity parameter,
and m is the spatial parameter.

Two experienced radiologists with 8 and 19 years of
experience in gynecological imaging delineated the volumes of
the interest (VOIs) using a 3D slicer (19). The VOIs were placed
on the solid regions of tumors to avoid confounding effects
caused by other tissue compositions, such as necrosis, mucinous
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lake, and calcification. The VOIs were first determined on the
diffusion-weighted images with b = 0, and then propagated to the
corresponding D, b, m, and ADC map. The mean values of D, b,
m, and ADC were recorded.

Statistics
Statistical analyses were performed with the SPSS software
(Version 26, SPSS Inc., Chicago, IL, USA) and MedCalc
(Version 20; MedCalc Software, Ostend, Belgium). The
Mann–Whitney U tests were utilized to determine the
statistical significance in mean parametric differences between
the cervical carcinoma subtypes and differentiation grades.
With the histopathological results as a gold standard, the
receiver operating characteristic (ROC) analyses were
performed on individual FROC parameters and ADC for the
differentiation between a) SCC and ACA, and b) high-grade
tumor and low-grade tumor. Then, the significant predictors
were selected. Logistic regression analysis was performed to
determine the optimal linear combination of these significant
predictors in a model. The Youden index was exploited to
determine the cutoff value for both univariate analysis and
multivariate analysis, along with the area under the curve
(AUC), sensitivity, specificity, and accuracy. Differences
between ROC curves were tested using the Hanley and
McNeil test (20), while the sensitivity, specificity, and
accuracy were compared using the McNemar test. P-value
<0.05 was considered as statistically significant. Bonferroni
Frontiers in Oncology | www.frontiersin.org 33334
corrections were applied to reduce problems associated with
multiple comparisons.
RESULTS

Patient demographics and tumor characteristics are given for all
patients in Table 2. Of the 60 patients, 47 (78.3%) were SCC
patients and 13 (21.7%) were ACA patients. Besides, there were
28 (46.7%) patients with low-grade tumors, while 32 (53.3%)
patients with high-grade ones.

Comparative Analysis of ADC and the
FROC Parameters in Cervical
Carcinoma Subtypes
Figure 1 shows a set of representative anatomic images and
corresponding b, D and m maps for a 70-year-old patient with
SCC and a 56-year-old patient with ACA. The descriptive
statistics of ADC and the FROC model parameters from each
patient group are summarized in Table 3. As shown in Figure 2,
no significant result was found for ADC, D and m in
differentiation SCC lesions from ACA lesions. However, b
derived from the FROC model could differentiate cervical
carcinoma subtypes (P = 0.031 <0.05) and the SCC lesions
exhibited significantly lower b than that in the ACA lesions.
For the ROC analysis, b proved to be the significant predictor
with the best cut-off value 0.697 (AUC = 0.697, 95% confidence
TABLE 1 | MRI protocols.

Parameters Sequences

Axial T1W FSE Axial T2W FSE Coronal fat-suppressed T2W FSE Sagittal T2W FSE EPI-DWI

TR (ms) 586 2,268 4,139 2,103 6,152
TE (ms) 11.38 98.28 79.52 71.88 82.7
Flip angle (°) 130 105 105 105 90
FOV (cm) 22 × 22 22 × 22 22 × 22 22 × 22 30 × 26
Matrix 432 × 432 432 × 432 456 × 456 456 × 456 256 × 222
Slice Thickness (mm) 4 4 4 4 5
Intersection gap (mm) 0 0 0 0 0
Bandwidth (Hz/pixel) 200 220 200 180 2,120
Number of slices 30 30 23 23 25
b-value (s/mm2) / / / / 0, 20, 40, 80, 160, 200, 500, 1,000, 2,000
T1W, T1-weighted; T2W, T2-weighted; FSE, fast spin echo; EPI, echo-planar imaging; DWI, diffusion weighted imaging; TR, repetition time; TE, echo time; FOV, field of view.
TABLE 2 | Summary of the demographic and clinical features of the patients.

Variables Patients

Number (n) 60
Age, y (mean ± SD) 53.0 ± 10.1
Histological Subtypes, n (%)
SCC 47 (78.3%)
ACA 13 (21.7%)

Tumor grade, n (%)
Well-differentiated 15 (25.0%)
Moderately-differentiated 13 (21.7%)
Poorly differentiated 32 (53.3%)
April 2022 | Volume 12 | A
SD, standard deviation; SCC, cervical squamous cell carcinoma; ACA, cervical adenocarcinoma.
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interval 0.565 to 0.809; sensitivity = 63.8%, specificity = 84.6%,
accuracy = 68.3%).

Comparative Analysis of ADC and the
FROC Parameters in Cervical
Carcinoma Grade
Figure 3 shows a set of b, D, m and ADC maps for a 53-year-old
patient with low-grade cervical carcinoma and a 64-year-old
patient with high-grade one. As shown in Figures 4A–D, all the
individual parameters, namely, ADC, b, D and m, could
differentiate low-grade cervical carcinoma from high-grade
ones (P = 0.022, 0.009, 0.004, and 0.015, respectively). The
high-grade lesions exhibited significantly lower ADC, b, D and
m than those in the low-grade lesions. Figure 5A and associated
Table 4 show the results from the ROC analysis. Among all the
parameters, exhibited the best overall performance and
outperformed ADC in AUC D (0.714 vs. 0.673), sensitivity
(68.7% vs. 59.4%), and accuracy (73.3% vs. 70.0%). However,
the differences between sensitivities, specificities, accuracies,
and AUC values were not significant among all these
individual parameters.
Frontiers in Oncology | www.frontiersin.org 43435
The combinations of the FROC parameters further improved
the differentiation of low-grade tumors from high-grade ones.
All the combinations, namely, D + b, D+ m, b + m, and D+ b + m,
yielded significant differences (P <0.05). As shown in Figure 5B
and associated Table 5, the combination of all the FROC
parameters D + b + m showed the best overall performance,
producing the highest sensitivity (81.2%) and AUC (0.829).
Significantly higher sensitivity (P = 0.016) and AUC (P =
0.043) were observed in the combination D + b + m than in
ADC. The combination of D and b showed the highest specificity
(89.3%) and accuracy (80.0%). Though D + b had no significant
differences from ADC in specificity (P = 0.500), its accuracy was
significantly higher than ADC (P = 0.031).
DISCUSSION

In this study, the feasibility of using the FROC model to classify
cervical carcinoma subtypes and histological grades was
investigated. The results demonstrated that only b derived
from the FROC model could differentiate SCC from ACA. The
TABLE 3 | The descriptive statistics of ADC and FROC model parameters from different groups.

ADC b D m

SCC 0.92 ± 0.17 (0.90, 0.36) 0.67 ± 0.05 (0.68, 0.18) 0.77 ± 0.12 (0.74, 0.32) 8.19 ± 0.80 (8.28, 0.91)
ACA 1.00 ± 0.27 (1.04, 0.85) 0.71 ± 0.08 (0.72, 0.26) 0.80 ± 0.20 (0.83, 0.63) 8.40 ± 0.31 (8.50, 0.82)
P 0.286 0.031 0.673 0.110
Low-grade 0.98 ± 0.19 (0.96, 0.49) 0.73 ± 0.06 (0.72, 0.18) 0.82 ± 0.13 (0.80, 0.28) 8.27 ± 0.93 (8.48, 1.19)
High-grade 0.90 ± 0.20 (0.86, 0.65) 0.68 ± 0.08 (0.68, 0.23) 0.74 ± 0.14 (0.72, 0.47) 8.26 ± 0.36 (8.27, 0.53)
P 0.022 0.009 0.004 0.015
April 2022 | Volu
Values are given as mean ± SD (median, range). b is unitless; ADC and D with unit (×10−3 mm2/s); m with unit (mm).
P-values are statistical comparisons between different tumor subtypes and histological grades.
ADC, apparent diffusion coefficient; FROC, fractional order calculus; SCC, cervical squamous cell carcinoma; ACA, cervical adenocarcinoma.
FIGURE 1 | An example of SCC from a 70-year-old patient and ACA from a 56-year-old patient. (A) Transverse T2 image for patient with SCC; (B) DWI image
(b = 800 s/mm2) for patient with SCC; (C) b map for patient with SCC; (D) D map for patient with SCC; (E) m map for patient with SCC; (F) Transverse T2 image for
patient with ACA; (G) DWI image (b = 800 s/mm2) for patient with ACA; (H) b map for patient with ACA; (I) D map for patient with SCC; (J) m map for patient with
SCC. SCC, cervical squamous cell carcinoma; ACA, cervical adenocarcinoma; DWI, diffusion-weighted imaging.
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A B

D E

C

FIGURE 2 | Comparison of the mean ADC (A), D (B), m (C), and b (D) between different tumor subtypes using the Mann–Whitney U test. (E) The ROC curve of
using b for classification of SCC and ACA. ADC, apparent diffusion coefficient; ROC, receiver operating characteristic; SCC, cervical squamous cell carcinoma; ACA,
cervical adenocarcinoma.
FIGURE 3 | An example of low-grade tumor from a 53-year-old patient and high-grade from a 64-year-old patient. (A) b map for patient with low-grade tumor;
(B) D map for patient with low-grade tumor; (C) m map for patient with low-grade tumor; (D) ADC map for patient with low-grade tumor; (E) b map for patient with
high-grade tumor; (F) D map for patient with high-grade tumor; (G) m map for patient with high-grade tumor; (H) ADC map for patient with high-grade tumor.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 85167753536
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combination of all the FROC parameters provided the highest
overall performance in identifying high-grade tumors from low-
grade ones, demonstrating 0.829 AUC, 81.2% sensitivity, 75.0%
specificity, and 78.3% accuracy. Significantly higher sensitivity
(P = 0.016) and AUC (P = 0.043) were observed in the
combination D+ b + m than in ADC.

Prior studies suggested that different cervical carcinoma
subtypes had different treatment outcome and prognosis.
Hopkins et al. demonstrated that ACA had a worse 5-year
overall survival rate of 15–30% compared to SCC in all stages
(21). Katanyoo et al. reported that ACA had more radio
resistance than SCC. ACA in locally advanced cervical cancer
had poorer response rate from radiation therapy and concurrent
chemoradiation and also took a longer time to achieve complete
response than SCC (22). Consequently, differentiation between
SCC and ACA in an early time is critical for treatment decision
Frontiers in Oncology | www.frontiersin.org 63637
and patient management. With its sensitivity to tissue structural
and functional alterations, DWI has been routinely used in
conjunction with T2-weighted imaging for tumor detection. In
cervical cancer, the lower ADC in tumors compared with non-
tumor epithelium provides excellent tumor-to-normal-tissue
contrast (23, 24). However, the potential of ADC values to
differentiate the cervical carcinoma subtypes remains
controversial. Some studies reported that the ADC values of
SCC were significantly lower than those of ACA (6, 25), whereas
Winfield et al. showed that ADC values could not differentiate
SCC from ACA (26). In the present study, no significant
difference was found for ADC between the tumor subtypes,
while b was significantly lower for the SCC lesions than ACA
ones. The diffusion heterogeneity parameter in the FROC model
has been increasingly focused in recent literatures. Unlike all
previous studies on cervical carcinoma using conventional DWI
A B

C D

FIGURE 4 | (A) Comparison of the ADC between different tumor grades using the Mann–Whitney U test; (B) Comparison of the D between different tumor grades
using the Mann–Whitney U test; (C) Comparison of the b between different tumor grades using the Mann–Whitney U test; (D) Comparison of the m between different
tumor grades using the Mann–Whitney U test.
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model, the FROC model is able to probe the tissue
microstructural information with high b-values and increase
the diagnostic performance to some extent. Prior research
suggested that D reflected intrinsic diffusivity, m was related to
mean free length of diffusion, and b had a significant negative
correlation with increased intravoxel tissue heterogeneity (11, 17,
27, 28). This study suggested a significant increase of tissue
heterogeneity of SCC compared to ACA, which agreed with the
findings in previous conventional DWI and diffusion kurtosis
imaging (DKI) studies in cervical carcinoma. For instance, Wang
et al. reported that mean diffusivity (MD) in SCC was
significantly lower than that in ACA, and the lower MD in
cervical carcinoma was likely related to the restriction of free
water diffusion in more cellular packed tumor environment (29).

Aside from differentiation of the subtypes, cervical cancer
grading also relies on invasive biopsy, which introduces the
location bias. Therefore, developing non-invasive imaging
biomarkers to assist tumor grading on the basis of MR images
holds clinical significance. Previous studies reported that the
FROC parameters could effectively distinguish tumor grades in
glioma (30), pediatric brain tumor (28), and prostate cancer (16).
In this study, the high-grade lesions exhibited significantly lower
ADC, b, D, and m than those in the low-grade ones and D derived
from the FROC model provided the best individual parameter
performance in grading the tumors compared with the other
parameters. Similarly, prior studies found that ADC was
negatively correlated with tumor grades of cervical carcinoma,
indicating the aggressiveness of cervical carcinoma (31, 32).
Frontiers in Oncology | www.frontiersin.org 73738
Related literatures suggested that the high-grade tumor
resulted in increased cellular density, enlarged nuclei, and
higher nuclear-to-cytoplasmic ratio with a more heterogeneous
microenvironment (32, 33). However, the considerable overlap
of ADC values among different tumor grades may limit the value
of conventional DWI in diagnosis (8, 9). Furthermore, the high-
grade tumors can have a higher degree of tissue heterogeneity, a
characteristic that may not be adequately captured in a simple
ADC value obtained from a mono-exponential diffusion model
(34, 35).

It should be noted that b was found to be the only parameter
which showed significance among the different cervical cancer
subtypes; however, it is the one with the lowest diagnostic
accuracy in differentiation among the low- and high-grade
cervical carcinoma. These results may be attributed to the
complex network of tumor microenvironment. The mechanism
of differentiation of tumor subtype probably different from the
differentiation of tumor grade. Results were also mixed in
previous DWI-related studies. For instance, according to Wang
et al., MD derived from DKI model and conventional ADC were
significantly lower in squamous cell carcinoma than in
adenocarcinoma, while no difference was observed in different
tumor grade (29). Besides, Winfield showed that a from the
stretched exponential model, K from the kurtosis model, and f
and D* from the bi-exponential model were significantly
different between types of tumor, while ADC from the mono-
exponential model, DDC from the stretched exponential model,
DK from the kurtosis model, Ds’ from the statistical model and D
A B

FIGURE 5 | The ROC curves of using (A) individual and (B) different combinations of FROC parameters for differentiation of low-grade tumor and high-grade tumor.
ROC, receiver operating characteristic; FROC, fractional order calculus.
TABLE 4 | The ROC analysis results of using ADC and individual FROC model parameters to differentiate low-grade tumor from high-grade tumor.

ADC b D m

Sensitivity 59.4% 56.2% 68.7% 62.5%
Specificity 82.1% 82.1% 78.6% 82.1%
Accuracy 70.0% 68.3% 73.3% 71.7%
AUC* 0.673 (0.540–0.789) 0.696 (0.564–0.809) 0.714 (0.583–0.824) 0.683 (0.550–0.797)
April 2022 | Volume
ROC, receiver operating characteristic; ADC, apparent diffusion coefficient; FROC, fractional order calculus; AUC, are under the curve.
*Data in parenthesis are 95% confidence intervals.
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from the bi-exponential model were significantly different
between tumor grades (26).

Compared to the conventional mono-exponential diffusion
model that is limited to the single parameter ADC, the FROC
model has the preponderance of the ability of combining
multiple parameters, which greatly improved the diagnostic
performance. This combination approach suggests that
multiple tissue properties, namely, cellularity, microstructures,
and heterogeneity, can complement each other and contribute to
the diagnosis and prognosis of tumors simultaneously. In the
present study, the combination of all the FROC parameters
showed the best overall performance in grading the cervical
carcinoma, producing the highest sensitivity (81.2%) and AUC
(0.829). The D + b showed the highest specificity (89.3%) and
accuracy (80.0%). These multivariate analysis results further
suggested that a noninvasive DWI-based classifier which
reflected tumor grade of cervical carcinoma could be developed.

This study has several limitations. First, this is a single-site
study with relatively small sample size and only 13 cases of ACA
were included, which could reduce the accuracy of results. Further
study with more patients would be needed. Second, due to the
limited cases of ACA, we did not evaluate the tumor grade
separately based on different tumor subtypes, which may lead to
the potential bias and decrease the specificity of results. Third, rare
histological subtypes, especially adenosquamous carcinoma, were
excluded from this study. However, these rare tumor subtypes
tend to have a poorer prognosis and remain difficulty in imaging
diagnosis (36). Further investigation with more such cases should
be conducted to validate this preliminary result and provide more
robust support for clinical decision making. Finally, in order to
take full advantage of the FROC model, b-values must be
sufficiently high to accentuate non-Gaussian diffusion behaviors.
Nevertheless, in this study, the maximal b-value was limited to
2,000 s/mm2, and the higher b-values were more sparsely sampled
than the lower b-values due to the efficiency considerations. The
effect of the selection of b-value on the FROC model needs to be
investigated in future study.
Frontiers in Oncology | www.frontiersin.org 83839
In conclusion, this study demonstrated the feasibility of
using non-Gaussian diffusion FROC model to differentiate
the tumor subtypes and histological grades of cervical
carcinoma. In particular, the FROC model provided a set of
novel diffusion parameters and the combination of these
parameters contributed to the best diagnostic performance in
differentiation between low-grade and high-grade cervical
carcinoma. This advanced diffusion approach could be a
noninvasive and in vivo diagnostic technique in cervical
carcinoma, which is conducive to treatment decision and
patient management.
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Different multiparametric MRI-
based radiomics models for
differentiating stage IA
endometrial cancer from benign
endometrial lesions: A
multicenter study

Qiu Bi1†, Yaoxin Wang1†, Yuchen Deng1, Yang Liu2,
Yuanrui Pan3, Yang Song4, Yunzhu Wu4 and Kunhua Wu1*

1Department of MRI, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of
Kunming University of Science and Technology, Kunming, China, 2Department of Radiology, The
First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 3State Key Laboratory
of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical
University, Chongqing, China, 4MR Scientific Marketing, Siemens Healthineers, Shanghai, China
Purpose: The aim of this study was to evaluate the value of different

multiparametric MRI-based radiomics models in differentiating stage IA

endometrial cancer (EC) from benign endometrial lesions.

Methods: The data of patients with endometrial lesions from two centers were

collected. The radiomics features were extracted from T2-weighted imaging

(T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC)

map, and late contrast-enhanced T1-weighted imaging (LCE-T1WI). After data

dimension reduction and feature selection, ninemachine learning algorithmswere

conducted to determine which was the optimal radiomics model for differential

diagnosis. The univariate analyses and logistic regression (LR) were performed to

reduce valueless clinical parameters and to develop the clinical model. A

nomogram using the radscores combined with clinical parameters was

developed. Two integrated models were obtained respectively by the ensemble

strategy and stacking algorithm based on the clinical model and optimal radiomics

model. The area under the curve (AUC), clinical decisive curve (CDC), net

reclassification index (NRI), and integrated discrimination index (IDI) were used

to evaluate the performance and clinical benefits of the models.

Results: A total of 371 patients were incorporated. The LR model was the

optimal radiomics model with the highest average AUC (0.854) and accuracy

(0.802) in the internal and external validation groups (AUC = 0.910 and 0.798,

respectively), and outperformed the clinical model (AUC = 0.739 and 0.592,

respectively) or the radiologist (AUC = 0.768 and 0.628, respectively). The

nomogram (AUC = 0.917 and 0.802, respectively) achieved better

discrimination performance than the optimal radiomics model in two

validation groups. The stacking model (AUC = 0.915) and ensemble model
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(AUC = 0.918) had a similar performance compared with the nomogram in the

internal validation group, whereas the AUCs of the stacking model (AUC =

0.792) and ensemble model (AUC = 0.794) were lower than those of the

nomogram and radiomics model in the external validation group. According to

the CDC, NRI, and IDI, the optimal radiomics model, nomogram, stacking

model, and ensemble model achieved good net benefits.

Conclusions:Multiparametric MRI-based radiomics models can non-invasively

differentiate stage IA EC from benign endometrial lesions, and LR is the best

machine learning algorithm. The nomogram presents excellent and stable

diagnostic efficiency.
KEYWORDS

endometrial cancer, magnetic resonance imaging, radiomics, nomogram, benign
endometrial lesions
Introduction

Endometrial cancer (EC) and endometrial hyperplasia and

polyps are the most common malignant and benign uterine

endometrial cavity lesions, respectively (1). In order to avoid

insufficient curing or excessive treatment and to protect the

patient’s fertility, it is necessary to accurately identify benign and

malignant endometrial lesions before operation. Although

endometrial samplings such as dilatation and curettage,

endometrial cytology, and biopsy can preoperatively identify

some endometrial lesions (2), they do not always provide a

definitive diagnosis. Because these procedures are often

performed in a blind manner, they may be subject to sampling

error and cannot properly diagnose focal endometrial lesions

(3). Furthermore, they are difficult to perform in patients with

pelvic organ prolapse and vaginal or cervical stenosis (4). In

addition, endometrial sampling procedures are invasive with

some complications including pain, discomfort, and bleeding.

Hence, it is important to find a noninvasive method to

distinguish benign and malignant uterine lesions.

Magnetic resonance imaging (MRI) with excellent soft tissue

contrast resolution plays an important role in the preoperative

diagnosis and staging of EC in situations where it is difficult to

obtain histologic samples, and is more sensitive than transvaginal

sonography for diagnosing endometrial lesions (1, 5).

Multiparametric MRI, including T2-weighted imaging (T2WI),

contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging

(DWI), and apparent diffusion coefficient (ADC) are increasingly

being applied for diagnosing various endometrial lesions (1).

However, conventional imaging evaluation of the uterine cavity

lesions may present many challenges to the radiologist. The

endometrium structure is susceptible to age, menopausal status,
02
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menstrual cycle, and hormonal replacement therapy (6). There are a

variety of appearances and overlapping imaging features of early-

stage EC and benignmimickers (7). Moreover, the experience of the

radiologist usually contributes to high interobserver variation. All of

these factors lead to inaccurate diagnoses.

Radiomics is an emerging field of application of artificial

intelligence in medical imaging by extracting high-throughput

quantitative image features and is a problem-solving tool when

there is a dilemma in conventional imaging diagnosis (8).

Recently, MRI-based radiomics has been gradually applied in

the evaluation of EC including risk stratification (9–11), lymph

node metastasis (12–14), myometrial invasion (15–17),

prognosis and recurrence (18–20), and histological

characteristics (21–23). Chen et al. (24) had confirmed that

MRI-based radiomics was a valuable tool for distinguishing EC

from benign mimics. However, they included stage IB to IV ECs

that were easily distinguishable from benign uterine lesions, and

only one machine learning algorithm model was studied.

Therefore, this study aims to compare the performance of

various multiparametric MRI-based machine learning

radiomics models in differentiating stage IA EC from benign

endometrial lesions, and further assess the potential utility of

diverse integrated models utilizing clinical parameters and

radiomics features.
Materials and methods

Study population

Ethical approval was obtained for this retrospective study, and

written informed consent was waived. Between January 2017 and
frontiersin.org
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June 2021, consecutive patients with endometrial lesions from

center A and center B were collected. Inclusion criteria were as

follows: (1) patients with stage IA EC, endometrial hyperplasia, or

endometrial polyps confirmed by histopathology; (2) underwent

MR examination including T2WI, DWI, and dynamic contrast-

enhanced (DCE-MRI) within 2 weeks prior to treatment; and (3)

complete clinical data. Exclusion criteria were as follows: (1) MRI

quality did not meet the requirement of analysis; (2) received

treatment before the MR examination; (3) the maximum diameter

of the lesion was less than 1 cm; and (4) patients with other pelvic

diseases. Patients from center A were randomly allocated into the

training group and the internal validation group at a ratio of 3:1.

All patients from center B served as the external validation group.

Clinical and histological characteristics of all patients, including

histological subtypes, age, menopause, clinical manifestation,

metabolic syndrome, body mass index (BMI), actual treatment

options, and CA125 and CA199 level, and immunohistochemical

findings such as estrogen receptor (ER), progesterone receptor

(PR), P53, and Ki-67 were collected.
Imaging acquisition and lesion
segmentation

All MR examinations were performed using 1.5/3.0-T

scanners (GE Signa HDXt, Siemens Prisma, and Siemens

Aera) with eight-channel phased-array abdominal coils. Each

patient underwent preoperative MR scanning using the standard

protocol. In the study, uterus-axial T2WI, DWI (b-value = 1,000

s/mm2), ADC map, and late contrast-enhanced T1-weighted

imaging (LCE-T1WI) were acquired for lesion segmentation.

Parameter details are shown in Table 1. Some parameters would

be adjusted according to the individual differences of patients.

The ADC map was automatically reconstructed and generated

after scanning DWI by the Siemens MRI scanners, or manually
Frontiers in Oncology 03
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reconstructed on the Functool Software (ADW 4.7 Workstation)

by the GE MRI scanner. CE-T1WI was performed immediately

after administering a standard dose (0.1 mmol/kg) of

gadopentetate dimeglumine (Magnevist; Bayer Healthcare

Pharmaceuticals, Germany) at approximately 2 ml/s via the

elbow vein. Uterus-axial LCE-T1WI was obtained at 240 s into

the examination after the contrast agent injection.

The original MR images of uterus-axial T2WI, DWI, ADC

map, and LCE-T1WI in Digital Imaging and Communications

in Medicine (DICOM) format were loaded into 3D Slicer 4.11.0

software (https://www.slicer.org/). Region of interest (ROI) of

the lesion was manually delineated layer by layer to form three-

dimensional (3D) volume of interest (VOI) by two radiologists

(reader 1 and reader 2, with 3 years and 7 years of experience in

pelvic MRI, respectively), with unknown clinical information

and pathological diagnosis. Reader 1 delineated the boundary of

all lesions on uterus-axial T2WI, DWI, and LCE-T1WI,

respectively. After 2 months, reader 1 and reader 2 randomly

selected the same 50 patients to outline. Care was taken to avoid

including endometrial cavity fluid and hematocele and nearby

normal myometrium, but necrotic, bleeding, and cystic areas

inside the tumor can be included.
Feature extraction and selection

The open-source Python package Pyradiomics (https://pypi.

org/project/pyradiomics/) was used to extract radiomics features

from the VOI of each patient at the 3D Slicer platform. To obtain

isotropic voxels, the VOIs were resampled to 3 × 3 × 3 mm, then

cubic spline interpolation was performed. In order to reduce the

imaging differences among different MRI scanners, image

normalization was performed so that all gray-level values in

the images were distributed in the range of 0–600. A fixed bin

width of 1 was selected to ensure better comparability of MRI
TABLE 1 The parameter details of primary sequences.

Repetition time
(ms)

Echo time
(ms)

Field of view
(mm2)

Matrix Slice thickness
(mm)

Slice gap
(mm)

Siemens Prisma
3.0 T

T2WI 3,200 90 200 × 200 320 × 320 3 3.6

DWI 6,300 75 250 × 134 72 × 134 3 3.6

LCE-
T1WI

2.9 1.19 220 × 200 288 × 262 3 0

GE Signa HDXt
3.0T

T2WI 3,500 104 200 × 200 240 × 240 3 1.5

DWI 4,250 70 200 × 200 240 × 240 3 1

LCE-
T1WI

3.26 1.6 240 × 240 350 × 350 3 1.5

Siemens Aera 1.5
T

T2WI 3,900 90 320 × 320 512 × 512 3 1.5

DWI 5,600 90 200 × 200 256 × 256 4 1

LCE-
T1WI

3.41 1.3 240 × 240 320 × 320 2 1.5
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; LCE-T1WI, late contrast-enhanced T1-weighted imaging.
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gray values as suggested in a previous study (12). Before feature

extraction, several built-in filters such as gradient, exponent,

logarithm, square, square root, wavelet, and Laplacian of

Gaussian (LOG) filters were applied on the normalized MR

images, and derived images were achieved. The extracted

features were divided into the following categories (25): first-

order features, two-dimensional features, gray-level co-

occurrence matrix (GLCM), gray-level dependence matrix

(GLDM), gray-level size-zone matrix (GLSZM), gray-level run-

length matrix (GLRLM), and neighboring gray tone difference

matrix (NGTDM). A total of 1,781 radiomics features were

extracted from each MRI modality, resulting in 7,124 radiomics

features for each patient in total. All the above features were

standardized by the Z score.

The datasets of the patients with stage IA EC and benign

endometrial lesions were balanced by using the synthetic

minority oversampling technique in the training group. To

ensure repeatability and avoid the subjective difference in

lesion segmentation, the intraclass correlation coefficient (ICC)

of each feature was calculated. Only features with ICC values ≥

0.75 between observers and within observers were retained.

Pearson correlation coefficients were calculated for identifying

redundant features. If the correlation coefficient of two features

was ≥ 0.9, the feature with the largest mean absolute correlation

was deleted. Whereafter, least absolute shrinkage and selection

operator (LASSO) was used to select the most representative

features and 10-fold cross-validation was performed (26).
Model building

On the construction of the clinical model, firstly, univariate

analysis was conducted to compare the clinical characteristics of

benign and malignant endometrial lesions in the training group,

and find out the clinical parameters with statistically significant

difference. Secondly, the individual predictors of stage IA EC were

chosen according to the univariate logistic regression (LR) analysis.

Finally, the clinical model was constructed based on themultivariate

LR, and the efficient clinical predictive parameters were selected.

Different radiomics models were developed and tested

respectively to predict stage IA endometrial cancer based on

the following nine machine learning classification algorithms:

LR, support vector machine (SVM), stochastic gradient descent

(SGD), K nearest neighbor (KNN), decision tree (DT), random

forest (RF), extremely randomized trees (ET), eXtreme Gradient

Boosting (XGBoost), and Light Gradient Boosting Machine

(LightGBM). A fivefold cross-validation strategy was applied

to tune and optimize the model parameter, and assess the

performance of the models. Referring to a recently published

study (27), the machine learning algorithm with the highest

average area under the receiver operating characteristic (ROC)

curve (AUC) of the internal and external validation group was

used to construct the optimal radiomics model. Then, the
Frontiers in Oncology 04
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radiomics score (radscore) was calculated. A nomogram based

on the multivariate LR analysis was developed by using the

combination of clinical predictive parameters and radscore in

the training group.

The stacking model is an integrated learning technology,

which can combine the predictions of learned classifiers in order

to create prediction of new instances to improve overall

performance (28). In the study, a two-tier stacking model was

conducted; the first tier was the above clinical model and the

optimal radiomics model, and the second tier used the output of

the first tier as the input of the multivariate LR. The ensemble

algorithm is developed using superlearner (29), and belongs to

an integrated strategy. According to the accuracy weight, the

predictions obtained from the foregoing clinical model and

radiomics model were calculated by the weighted average

method and the new output as the final results.

Through the nomogram, stacking model, or ensemble model,

the clinical and radiomics features were combined, so as to achieve

model fusion. All model building was implemented in Python

(https://www.python.org/getit/), and the detailed process of model

building is shown in Figure 1. The AUC, accuracy, sensitivity,

specificity, and calibration curve were used as metrics to assess the

performance and goodness of fit of the models.
Clinical application of the models

One radiologist (reader 3, with 30 years of experience in

pelvic MRI) who was blind to the clinicopathological

information of the patient independently reviewed the MR

images to diagnose stage IA EC and benign uterine disease in

the training and validation groups. The AUC, accuracy,

sensitivity, and specificity of the radiologist were calculated.

Clinical decisive curve (CDC), net reclassification index (NRI),

and integrated discrimination index (IDI) were performed to

estimate the clinical usefulness and net benefit of different

models and the radiologist by comparing the actual treatment

options of patients.
Correlations between radiomics features
and immunohistochemical findings

In order to explore the correlation between radiomics

information and histological characteristics, Spearman correlation

coefficients were used to evaluate the correlations between the

selected radiomics features and immunohistochemical findings.
Statistical analysis

All statistical tests were performed using SPSS 26.0 (IBM,

New York, USA), R software 4.1.2 (https://www.r-project.org/),
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and Python 3.9.7 (https://www.python.org/). Continuous

variables and categorical variables were respectively expressed

as mean value ± standard deviation and counts. The

Kolmogorov–Smirnov test was used to check the normality of

the continuous data distribution. Continuous variables were

analyzed using one-way ANOVA, Mann–Whitney U test, or

Kruskal–Wallis test. Categorical variables were compared using

the Chi-square test or Fisher’s exact test. Univariate and

multivariate LR analyses were used to filtrate the clinical

predictors and model building. A p-value less than 0.05 was

considered statistically significant. Pearson correlation analyses

were performed to assess correlations between continuous

variables, and Spearman correlation analyses were used to

evaluate the correlations between continuous variables and

ranked data. If p < 0.05, there were correlations between

the variables.
Results

Clinical parameters

A total of 371 patients were divided into the training group

(245 patients from center A), the internal validation group (82

patients from center A), and the external validation group (44

patients from centers B). The clinicopathological characteristics

of incorporated patients are listed in Table 2. The 371 patients

included 234 patients with stage IA EC and 137 patients with

benign endometrial lesions. Three hundred and twenty patients

were treated following the protocol for EC and 51 patients for

benign endometrial disease. A total of 112 (30.2%) patients

received inappropriate treatment, including 13 (3.5%) patients

with stage IA EC who were undertreated and 99 (26.7%)

patients with benign endometrial lesions who were
Frontiers in Oncology 05
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overtreated. Univariate analysis showed that the mean age of

patients with stage IA EC (51.65 ± 7.94) was significantly older

than that of patients with benign uterine lesions (48.12 ± 8.35) in

the training group (p = 0.001). Compared with benign

endometrial lesions, there were more patients with irregular

vaginal bleeding and menopause in stage IA EC (p < 0.05). No

significant differences in metabolic syndrome, BMI, CA125, and

CA199 between patients with stage IA EC and benign

endometrial lesions were shown (p > 0.05). According to the

univariate and multivariate LR analysis, age and irregular vaginal

bleeding were the valid predictive parameters.
Feature selection and optimal machine
learning algorithm

Among all the extracted features, 3,356 features were

excluded because the ICC values between observers or within

observers were <0.75. There were 847 features retained after the

Pearson correlation analysis. Finally, the LASSO classifier

selected 18 features as shown in Figure 2.

The AUC and accuracy of radiomics models constructed by

nine machine learning algorithms are shown in Table 3, and the

broken line graphs of accuracy for different algorithms in the

training group, internal validation group, and external validation

group are presented in Figures 3A–C. The LR algorithm showed

the highest average AUC (0.854) in the validation groups, and

also had the highest average accuracy (0.802). Therefore, LR was

considered to be the optimal machine learning algorithm for

radiomics model building. The radscore was calculated based on

the coefficients and intercepts obtained from the LR model. The

selected features and weights are shown in Figure 3D. The top

four features that contribute most to the radiomics model were

CE_original_shape_flatness, T2_exponential_GLSZM_zone
FIGURE 1

The overall workflow of this study.
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percentage, DWI_LOG-sigma-6-0-mm-3D_first order_root

mean squared, and ADC_LOG-sigma-2-0-mm-3D_first

order_median, respectively.
Performance and clinical application of
different models

A nomogram was constructed by using the clinical

predictive parameters (age and irregular vaginal bleeding) and

the radscore (Figure 3E). The diagnostic performance of each

model and radiologist is displayed in Table 4. Figure 4 shows
Frontiers in Oncology 06
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ROC curves and calibration curves of different models. In the

training group, the AUCs of the clinical model, radiomics model,

nomogram, stacking model, ensemble model, and radiologist

were 0.760, 0.921, 0.922, 0.925, 0.916, and 0.769, respectively. In

the internal validation group, they were 0.739, 0.910, 0.917,

0.915, 0.918, and 0.768, respectively. In the external validation

group, they were 0.592, 0.798, 0.802, 0.792, 0.794, and 0.628,

respectively. According to the calibration curves, the Brier scores

of the clinical model, radiomics model, nomogram, stacking

model, and ensemble model were 0.200, 0.114, 0.114, 0.113, and

0.129, respectively in the training group. They were 0.206, 0.123,

0.118, 0.119, and 0.129, respectively, in the internal validation
A B

FIGURE 2

Feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. The cross-validation plot (A) and the
coefficient profile plot (B).
TABLE 2 Clinical and histological characteristics for patients.

Training group Internal validation group External validation group p

Total number 245 82 44

Patients

Stage IA endometrial cancer 155 53 26 0.824

Benign endometrial lesions 90 29 18

Histological subtypes

Endometrioid adenocarcinoma 155 53 26 0.673

Endometrial hyperplasia 60 21 13

Endometrial polyp 17 5 5

Endometrial hyperplasia+polyp 13 3 0

Age at diagnosis (years) 50.36 ± 8.26 50.52 ± 9.80 54.32 ± 9.34 0.136

Menopause (yes/no) 106/139 33/49 24/20 0.286

Irregular vaginal bleeding (yes/no) 135/110 34/48 36/8 <0.001

Metabolic syndrome (yes/no) 66/179 17/65 13/31 0.468

BMI (kg/m2) 25.11 ± 4.38 24.44 ± 3.54 24.80 ± 4.03 0.485

CA125 (U/ml) 37.29 ± 72.77 34.63 ± 64.67 29.52 ± 27.10 0.292

CA199 (U/ml) 23.86 ± 63.44 26.53 ± 46.34 28.39 ± 45.58 0.037
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group, and they were 0.274, 0.188, 0.184, 0.182, and 0.184,

respectively, in the external validation group. The radiomics

model, nomogram, stacking model, and ensemble model

demonstrated good goodness of fit due to their Brier scores

being <0.25.

The CDCs of the different models and the radiologist are

presented in Figure 5, and the NRI and IDI are shown in

Table 3. The results showed that the radiomics model,

nomogram, stacking model, and ensemble model for predicting

stage IA EC added benefit and performed better than the actual
Frontiers in Oncology 07
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treatment options in the training and validation groups (p < 0.05).

In the training group, the NRI and IDI of the clinical model,

radiomics model, nomogram, stacking model, ensemble model, and

radiologist were 0.130 and 0.023, 0.414 and 0.393, 0.429 and 0.396,

0.451 and 0.498, 0.410 and 0.397, and 0.319 and 0.242, respectively.

In the internal validation group, they were −0.163 and −0.034, 0.307

and 0.341, 0.395 and 0.362, 0.395 and 0.356, 0.395 and 0.366, and

0.216 and 0.137, respectively. In the external validation group, they

were −0.068 and −0.004, 0.423 and 0.272, 0.368 and 0.234, 0.423

and 0.255, 0.368 and 0.241, and 0.188 and 0.099, respectively.
TABLE 3 The performance of various machine learning algorithms.

Training group Internal validation group External validation group Validation groups

AUC Accuracy AUC Accuracy AUC Accuracy Average AUC Average Accuracy

LR 0.921 0.832 0.910 0.853 0.798 0.750 0.854 0.802

SVM 0.919 0.844 0.902 0.841 0.796 0.727 0.804 0.784

SGD 0.887 0.804 0.854 0.792 0.705 0.636 0.780 0.714

KNN 0.923 0.844 0.881 0.792 0.757 0.727 0.819 0.760

DT 1 1 0.720 0.719 0.795 0.795 0.758 0.757

RF 1 0.991 0.867 0.841 0.700 0.659 0.784 0.750

ET 1 1 0.905 0.841 0.675 0.613 0.790 0.727

XGBoost 1 1 0.889 0.804 0.813 0.727 0.851 0.766

LightGBM 1 1 0.884 0.792 0.795 0.704 0.840 0.748
AUC, area under the curve; LR, logistic regression; SVM, support vector machine; SGD, stochastic gradient descent; KNN, K nearest neighbor; DT, decision tree; RF, random forest; ET,
extremely randomized trees; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine.
A B

D E

C

FIGURE 3

Different model building. Broken line graphs of accuracy for different machine learning algorithms in the training group (A), the internal
validation group (B), and the external validation group (C). Bar chart of feature weight for the logistic regression model (D). Nomogram of the
training group (E).
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Correlations between radiomics features
and immunohistochemical findings

A heatmap (Figure 6) showed that the selected radiomics

features were not correlated with immunohistochemical findings

(ER, PR, P53, and Ki-67) (all p > 0.05). The selected sequences for

lesion segmentation and pathological and immunohistochemical

pictures are presented in Figure 7.
Frontiers in Oncology 08
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Discussion

In the study, age and irregular vaginal bleeding were the

valid predictive parameters in the clinical model. On the basis of

several common machine learning algorithms, the diverse

multiparametric MRI-based radiomics models were developed

to differentiate stage IA EC from benign endometrial lesions, and

the LR algorithm model was selected as the optimal radiomics
A B C

FIGURE 5

Clinical decision curves (CDCs) of different models and the radiologist in the training group (A), the internal validation group (B), and the external
validation group (C).
A B

D E F

C

FIGURE 4

Receiver operator characteristic (ROC) curves (A–C) and calibration curves (D–F) of different models in the training group (A, D), the internal
validation group (B, E), and the external validation group (C, F).
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model with the highest AUC and accuracy. Compared with the

clinical model and the radiologist, the optimal radiomics model

and the compositive models combining clinical parameters with

radiomics features, like the nomogram, stacking model, and

ensemble model, showed better diagnostic performance and

achieved good clinical net benefits. The nomogram had a

higher AUC than the optimal radiomics model, and revealed

more stable discrimination efficiency and better generalization

ability than stacking and ensemble models.

The standard surgery of early-stage EC is total hysterectomy

with bilateral salpingo-oophorectomy with or without

lymphadenectomy/radiotherapy/chemotherapy (30), while the

treatment for benign endometrial lesions is a minimally invasive

approach compared to hysterectomy, such as hysteroscopic

resection or conservative treatment (31, 32). In this study,

3.5% of patients with stage IA EC had undergone inadequate

surgery and 26.7% of patients with benign endometrial lesions

had undergone overtreatment. As a consequence, the

rationalization of treatment options is crucial for patients with

stage IA EC and benign mimickers. The most common

symptom of EC is irregular vaginal bleeding, which often

occurs in the early stage, and the American Cancer Society

recommended that all women older than 65 years should be

advised to seek risk evaluation of EC if bleeding occurs (33).

Therefore, age and irregular vaginal bleeding could be used as

effective clinical predictors of stage IA EC. Benign endometrial

lesions, such as endometrial hyperplasia and polyps, are highly

prevalent in postmenopausal women; symptoms include

abnormal uterine bleeding (31, 32). Due to the overlapping

clinical features of benign endometrial lesions and EC, the AUC
Frontiers in Oncology 09
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and the diagnostic accuracy of clinical model on the training

group and validation groups were low.

In radiomics, the digital medical images that hold

information of tumor pathophysiology are transformed into

quantitative high-dimensional data to improve medical

decision-making, and are gaining importance in cancer

research (8). In this study, the radiomics models had high

diagnostic performance, which was consistent with the

research of Chen et al. (24). The models with high efficiency

and reliability are fundamental factors driving the success of

radiomics (34), and the recognition of optimal machine learning

methods for radiomics models is crucial (35); thus, multiple

machine learning algorithms should be employed. We trained

nine common classification algorithms, namely, LR, SVM, SGD,

KNN, DT, RF, ET, XGBoost, and LightGBM, in model

establishment. LR performed best among all classifiers, and the

reason might be that complex models required more training

samples (36). The optimal radiomics model modeled by LR had

higher AUCs and diagnostic accuracies than those of the clinical

model and the radiologist in this study. This result further

confirmed that radiomics could be a problem-solving tool

when there is a dilemma in clinical diagnosis and the

observation of conventional imaging (8).

Unlike the study of Chen et al. (24), CE-MRI was included

and extracted features in our study. The top four vital features in

the optimal radiomics model were from CE-MRI, T2WI, DWI,

and the ADC map, respectively. Due to the differences in

vascular permeability and microvessel density between EC and

benign lesions, most ECs showed early maximal enhancement

and late gradual washout, and frequently showed lower signal
FIGURE 6

Heatmap of the correlations between the selected radiomics features and ER, PR, P53, and Ki-67.
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intensity than the myometrium on LCE-MRI. In contrast,

benign lesions showed delayed persistent enhancement

pattern, and tended to show higher signal intensity than the

myometrium on LCE-MRI (37). The shape of benign and

malignant endometrial lesions might be more clearly shown

on LCE-MRI. Flatness shows the relationship between the

largest and smallest principal components in the ROI shape
Frontiers in Oncology 10
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(8). In consequence, CE_original_shape_flatness was the most

contributing feature. Endometrial polyp and hyperplasia are rich

in fibrous stromal structures and endometrial glands (1). Specific

MRI findings such as a fibrous tissue (hypointensity on T2WI)

and intratumoral cysts (hyperintensity on T2WI) might

be useful to differentiate benign endometrial lesions from EC

(1). Additionally, the zone percentage of GLSZM features
A B D

E F G H

C

FIGURE 7

A 46-year-old woman with stage IA endometrial cancer (EC) whose main clinical complication was irregular vaginal bleeding for 3 months. The
selected MR images for lesion segmentation included uterus-axial T2-weighted imaging (T2WI) (A), diffusion-weighted imaging (DWI)
(B), apparent diffusion coefficient (ADC) map (C), and late contrast-enhanced T1-weighted imaging (LCE-T1WI) (D). The estrogen receptor (ER)
(E), progesterone receptor (PR) (F), P53 (G), and Ki-67 (H) immunohistochemical staining (40×) showed 90%, 90%, focal, and 80% positive cells,
respectively.
TABLE 4 Diagnostic efficiency and clinical benefit of different models.

Models AUC Accuracy Sensitivity Specificity NRI (p) IDI (p)

Training group Clinical model 0.760 0.694 0.690 0.700 0.130 (0.082) 0.023 (<0.001)

Radiomics model 0.921 0.833 0.838 0.833 0.414 (<0.001) 0.393 (<0.001)

Nomogram 0.922 0.841 0.877 0.800 0.429 (<0.001) 0.396 (<0.001)

Stacking model 0.925 0.853 0.903 0.800 0.451 (<0.001) 0.498 (<0.001)

Ensemble model 0.916 0.837 0.832 0.833 0.410 (<0.001) 0.397 (<0.001)

Radiologist 0.769 0.816 0.948 0.589 0.319 (<0.001) 0.242 (<0.001)

Internal validation group Clinical model 0.739 0.683 0.528 0.896 −0.163 (0.251) −0.034 (0.523)

Radiomics model 0.910 0.854 0.868 0.862 0.307 (0.011) 0.341 (<0.001)

Nomogram 0.917 0.817 0.887 0.827 0.395 (0.001) 0.362 (<0.001)

Stacking model 0.915 0.841 0.887 0.828 0.395 (0.001) 0.356 (<0.001)

Ensemble model 0.918 0.817 0.887 0.828 0.395 (0.001) 0.366 (<0.001)

Radiologist 0.768 0.780 0.811 0.724 0.216 (0.065) 0.137 (0.018)

External validation group Clinical model 0.592 0.591 0.500 0.611 −0.068 (0.572) −0.004 (0.780)

Radiomics model 0.798 0.750 0.731 0.833 0.423 (0.024) 0.272 (<0.001)

Nomogram 0.802 0.727 0.731 0.778 0.368 (0.049) 0.234 (0.001)

Stacking model 0.792 0.773 0.769 0.778 0.423 (0.024) 0.255 (<0.001)

Ensemble model 0.794 0.705 0.769 0.778 0.368 (0.049) 0.241 (0.001)

Radiologist 0.628 0.682 0.923 0.333 0.188 (0.220) 0.099 (0.054)
f

AUC, area under the curve; NRI, net reclassification index; IDI, integrated discrimination index.
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represents the coarseness of the texture, and can better

reflect the heterogeneity of different tumors (8). Thus

T2_exponential_GLSZM_zone percentage was also an

important feature. A previous study had suggested that DWI

with ADC values were a potential quantitative and qualitative

tool for differentiating between early-stage EC and benign

mimickers (38). On DWI, benign endometrial lesions showed

low signal intensity, which was an important point in

differentiating them from EC that showed high signal intensity

due to relatively high cellularity (39). Nevertheless, the top two

important features were not derived from DWI and the ADC

map in this study. The possible reason was that DWI was

acquired in different scanners, which might lead to

inconsistency in image quality and ADC estimation across

vendors, although the models remained effective after cross-

validation in datasets from scanners with different

manufacturers or with different Tesla. Another possible reason

was that benign uterine lesions rich in cystic areas and mucus

might increase DWI signal intensity due to the influence of the

T2-penetration effect, and hemorrhagic areas and mucous

components could reduce the signal intensity of the ADC

map, which would lead to a slight difference between DWI

and ADC maps of benign and malignant endometrial lesions,

thus resulting in the reduction of the weight of their features.

Gatenby et al. (40) believed that radiomics features could

offer information on the phenotype and microenvironment of

tumors, which was complementary to other data like clinical

parameters. Radiomics features combined with clinical

parameters and other pertinent data can produce accurate

robust evidence-based clinical-decision support systems (8). In

this study, according to ROCs, CDCs, NRI, and IDI, the

compositive models modeled by clinical parameters

and radiomics features, such as the nomogram, stacking, and

ensemble models, showed better diagnostic performance and

achieved better clinical net benefits than the clinical model

and the radiologist. Compared with the radiomics model, the

nomogram had a higher AUC. Yan et al. (11) developed anMRI-

and clinical-based radiomics nomogram to preoperatively assess

high-risk EC, and obtained a similar result to this study, which

was the prediction efficiency of nomogram was better than that

of the radiomics model. The advantage of the ensemble strategy

was that it can reduce the variance and bias of the model by a

powerful process of majority vote or group averaging, and it

improves the robustness and generalizability of the model in

prediction and classification (27). A recent study had confirmed

that the two-tier stacking model could further improve the

generalization ability of the radiomics model compared with

the single model (41). In the present study, the diagnostic

performance of the stacking model and ensemble model was

similar with that of the nomogram and better than that of the

radiomics model in the internal validation group, whereas the
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AUCs of the stacking model and ensemble model were lower

than those of the nomogram and radiomics model in the

external validation group. Therefore, the nomogram presented

more excellent and stable differential diagnostic efficiency than

stacking and ensemble models with good reproducibility

and reliability.

There were some limitations in the study. First, this study

only collected patients from two centers. Patients from more

centers need to be included to improve the universality of the

model in clinical application. Second, the MRI systems and

scanning parameters were not uniform, and it may influence the

models’ results, especially in the external validation group.

Third, only traditional radiomics features were extracted; the

deep-learning-based features were not investigated. In the

future, we will conduct in-depth learning combined with

traditional radiomics to build models. Last, manual lesion

segmentation is time-consuming and is easily affected by the

experience of readers; automatic or semiautomatic methods that

delineate lesions more accurately need to be explored in

the future.
Conclusions

The multiparametric MRI-based radiomics models can be

conveniently used for preoperative identification of patients with

stage IA EC and benign endometrial lesions, and the model

established by the LR algorithm has the highest accuracy.

Incorporating radiomics and clinical parameters (age and

irregular vaginal bleeding) into a combined model to estimate

patients was more accurate than the clinical model and the

radiologist. This study is beneficial in noninvasively identifying

benign and malignant endometrial lesions that are difficult to

determine by clinicians and radiologists before surgery, avoiding

misdiagnosis and missed diagnosis, and providing a basis for the

patient protocol of individualized diagnosis and treatment.
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Is preoperative ultrasound
tumor size a prognostic
factor in endometrial
carcinoma patients?
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Chiara Cini3, Francesco Filipponi3, Daniele Neola4,
Matilde Fabbri3, Alessandro Arena2,3, Diego Raimondo2*,
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Roberto Paradisi3, Antonio Mollo6, Renato Seracchioli2,3

and Paolo Casadio2

1Mother-Child Department, Ospedale Maggiore, Azienda Unità Sanitaria Locale di Bologna,
Bologna, Italy, 2Division of Gynaecology and Human Reproduction Physiopathology, IRCCS
Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, 3Department of Medical and Surgical
Sciences, University of Bologna, Bologna, Italy, 4Gynecology and Obstetrics Unit, Department of
Neuroscience, Reproductive Sciences and Densitry, School of Medicine, University of Naples
Federico II, Naples, Italy, 5Gynecopathology and Breast Pathology Unit, Department of Woman’s
Health Science, Agostino Gemelli University Polyclinic, Rome, Italy, 6Gynecology and Obstetrics
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Objective:We aimed to assess the prognostic value of preoperative ultrasound

tumor size in EC through a single center, observational, retrospective,

cohort study.

Methods: Medical records and electronic clinical databases were searched for

all consecutive patients with EC, preoperative ultrasound scans available to ad

hoc estimate tumor size, and a follow-up of at least 2-year, at our Institution

from January 2010 to June 2018. Patients were divided into two groups based

on different dimensional cut-offs for the maximum tumor diameter: 2, 3 and 4

cm. Differences in overall survival (OS), disease specific survival (DSS) and

progression-free survival (PFS) were assessed among the groups by using the

Kaplan–Meier estimator and the log-rank test.

Results: 108 patients were included in the study. OS, DSS and PFS did not

significantly differ between the groups based on the different tumor diameter

cut-offs. No significant differences were found among the groups sub-

stratified by age, BMI, FIGO stage, FIGO grade, lymphovascular space

invasion status, myometrial invasion, lymph nodal involvement, histotype,

and adjuvant treatment.

Conclusions: Preoperative ultrasound tumor size does not appear as a

prognostic factor in EC women.
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Highlights

Preoperative ultrasound assessment of tumor size in women

with endometrial cancer does not seem to be a prognostic factor

for OS, DSS or PFS.
Introduction

Endometrial carcinoma (EC) is the most common

gynecologic malignancy in western countries (1). In the last

two decades, it has shown an increase in number of deaths even

higher than that in incidence, because of an inaccurate risk

stratification (1, 2).

In 2020, in order to improve such an inaccurate risk

assessment, the ESGO-ESTRO-ESP guidelines for the

management of EC patients recommended to integrate The

Cancer Genome ATLAS (TCGA) molecular signature and

conventional histological factors (3). In particular, EC patients

are assigned to a risk group and therefore to a type of adjuvant

treatment based on the International Federation of Gynecology

and Obstetrics (FIGO) stage, histotype, FIGO grade,

l ymphonoda l s t a tus , myometr i a l invas ion depth ,

lymphovascular space invasion (LVSI) and molecular signature

(i.e., DNA polymerase epsilon mutations, p53 abnormal

expression and mismatch repair deficient expression) (3).

In accordance with the principles of the precision medicine,

an increasingly tailored approach is recommended to improve

survival in cancer patients (4–6), highlighting the need for

adding new prognostic factors and integrating them with the

current ones (3). In EC patients, the tumor size appears as one of

the histological prognostic factors remained to be further

investigated. In fact, although it has shown prognostic

significance in several malignancies (7, 8), its value is unclear

in EC patients. On the one hand, some studies suggested a

prognostic value as it could affect the risk of lymph node

metastasis (9–12). In particular, Schink et al. observed that

tumors larger than 2 cm were associated with an increased

risk of lymph node involvement (13). On the other hand, some

studies reported that tumor size was not an independent

prognostic factor as the rate of lymph node involvement was

similar regardless of the size of the lesion (14–16).

The aim of this study was to assess the prognostic value of

preoperative ultrasound tumor size in EC patients.
02
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Materials and methods

Study protocol and patient selection

The study was carried out according to an a priori defined

protocol, and was designed as a single center, observational,

retrospective, cohort study.

The Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guidelines and checklist were followed

for study reporting (17).

Medical records and electronic clinical databases were

searched for all consecutive patients with histological diagnosis

of EC after definitive surgery at our Institution from January

2010 to June 2018. Inclusion criteria were: patients with EC

diagnosis; availability of stored preoperative ultrasound scans

performed by an expert sonographer (i.e. sonographers with at

least 5 years of experience in onco-gynecological ultrasound) to

ad hoc estimate tumor size; follow-up of at least 2-year. Patients

who did not undergo definitive surgery were excluded. No

selection was made based on EC histological prognostic

factors, FIGO stage or adjuvant treatment.

Based on the data available in the Literature, although the

most common cut off used for the tumor diameter in EC patients

was 2.0 cm (12, 13, 15, 18), some authors used greater cut-offs

(11, 14, 19). Therefore, we divided our population into two

groups according to different dimensional cut-offs for the

maximum tumor diameter: 2.0, 3.0 and 4.0 cm. Differences in

survival outcomes were assessed among the groups.
Main outcome measures

The primary outcome measure was the difference in overall

survival (OS) between patients with tumor ≥ and < 2 cm.

Secondary outcome measures were the difference in OS,

disease specific survival (DSS) and progression-free survival

(PFS) among the groups according to the different tumor

diameter cut-offs.

The time of origin for patient survival was set as the date of

surgery. In particular, OS was defined as time from surgery until

death of any cause, DSS as time from surgery until death due to

EC, and PFS as time from surgery until there was evidence of

recurrent or progressive disease (diagnosed through either clinic

or imaging). In case of unknown event status at last follow-up
frontiersin.org
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date, data were considered missing. Patients died of an

intercurrent disease or an unspecified reason were not

considered in DSS analyses.
Ultrasound

All transvaginal ultrasound examinations were performed

using a Voluson™ E6 (GE Healthcare, Chicago, Illinois, United

States) equipped with a multifrequency endovaginal probe (4.0

to 9.0 MHz). The probe was introduced into the posterior

vaginal fornix, and the uterus was studied in sagittal and

transversal section. The tumor was evaluated by two-

dimensional gray-scale ultrasound. The three maximum

orthogonal diameters of the tumor were recorded and the

maximum diameter was used for analysis.
Data collection

Collected data included patient age, menopausal status, body

mass index (BMI), history of abnormal uterine bleeding (AUB),

hypertension, diabetes, previous use of tamoxifen, FIGO stage,

grade, histotype, LVSI, myometrial invasion, lymph nodes

involvement and adjuvant treatment.
Statistical analysis

Numerical and categorical variables were summarized as

median [range] and as frequencies and percentages, respectively.

Differences in the distribution of classic prognostic factors

(i.e. age >70 years, myometrial invasion, cervical stromal

invasion, LVSI, and lymph node involvement) between groups

of patients based on tumor diameter were evaluated using the

chi-squared test or Fisher’s exact test, where appropriate. We

used the Kaplan–Meier estimator to display OS, DSS and PFS in

the two groups; the equality of survivor functions was assessed

using the log-rank test. The same analysis was repeated

according to age (≤70, >70 years), BMI (<25, 25–29.9,≥30 kg/

m²), FIGO stage, FIGO grade (1-2; 3), LVSI status (LVS no, LVS

yes), myometrial invasion (<50%, >50%), lymph nodal

involvement (no, yes), histotype (endometrioid, non-

endometrioid), adjuvant treatment (no, yes).

If an association was found between tumor size and survival

outcomes, a Cox proportional hazards model including the

propensity score of belonging to one of the two groups given

the set of baseline potential confounders was planned to analyze

the adjusted association between tumor size and survival. Effect

sizes were expressed as hazard ratios (HRs) and 95% confidence

intervals (CIs).

All analyses were carried out using Stata software, version 15

(StataCorp, 2017, Stata Statistical Software: Release 15, College
Frontiers in Oncology 03
5556
Station, Texas, USA: StataCorp LP). The significance level was

set at 5%.
Ethical statement

The study received approval by the Institutional Review

Board of the IRCCS Azienda Ospedaliero-Universitaria di

Bologna, S. Orsola Hospital, University of Bologna, Italy (No.:

429/2021/Oss/AOUBo) and was carried out according to the

principles of the Declaration of Helsinki. All patients signed a

written informed consent, and all data were anonymized.
Results

Study population

A total of 108 patients meeting selection criteria were

included in the study. Characteristics of the study population

are summarized in Table 1, while the distribution of histological

prognostic factors both overall and by tumor size, is shown

in Table 2.

All patients were diagnosed with EC by hysteroscopic

endometrial biopsy. Regarding surgical treatment, 78 patients

(72.2%) underwent laparoscopic surgery, while 30 patients

(27.8%) underwent laparotomic surgery. Systematic

lymphadenectomy was performed in 60 patients (55.6%),

respect ively 47 patients (78.3%) underwent pelvic

lymphadenectomy and 13 patients (21.7%) pelvic and lombo-

aortic lymphadenectomy. Lymph node metastasis were reported

in 29 cases (26.9%). Sentinel lymph node biopsy was performed

in 48 (44.4%) cases and metastasis were found in 4 (3.7%)

patients (Table 1).

According to the tumor size, 26 patients (24.1%) were

included in the group with <2 cm tumor, 82 (75.9%) in ≥2 cm

group, 43 (39.8%) in <3 cm group, 65 (60.2%) in ≥3 cm group,

83 (76.8%) in <4 cm group and 25 (23.2%) in ≥4 cm group.

Among classic prognostic factors, LVSI was significantly more

frequent in ≥2, ≥3 and ≥4 cm groups compared to <2, <3 and <4

cm groups, respectively (Table 2).
Survival analyses

The cumulative incidence was 18.5% for death of any cause,

6.5% for death due to EC and 14.8% for disease recurrence. The

incidence density rates were 5.1×100, 1.8×100 and 4.3×100

person-years, respectively. Eighty-eight patients were alive at

the time of this analysis, with a median follow-up of 50 months

(47 months if extended to the whole sample).

OS, DSS and PFS did not significantly differ between the

groups based on the different tumor diameter cut-offs
frontiersin.org
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(Figures 1–3). No significant differences in OS, DSS and PFS

were found among the groups sub-stratified by age, BMI, FIGO

stage, FIGO grade, LVSI status, myometrial invasion, lymph

nodal involvement, histotype, and adjuvant treatment

(Supplementary Figures 1–9).
Frontiers in Oncology 04
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Discussion

Main findings and interpretation

This study shows that preoperative ultrasound tumor size

does not appear as a prognostic factor for death of any cause,

death due to EC and recurrence in EC patients. Moreover, no

significant differences in survival analyses were found among the

groups sub-stratified by other prognostic factors.

In accordance with the principles of the precision medicine

(4–6) and even more after the increase in number of deaths per

year reported in the last decades in EC patients (20), an

increasingly tailored and accurate risk assessment appears

crucial. New prognostic factors to be investigated may be

useful to refine the current risk stratification system. Beyond

the TCGA molecular advances, the tumor size remains the only

prognostic factor to be further assessed among the

histological ones.

Tumor size has shown prognostic significance in several

malignancies, such as lung, breast and ovarian granulosa cell

tumors (7, 8, 21). However, its value is unclear in EC patients. In

particular, while some authors found a significant association

between tumor size and some histological prognostic factors, its

impact on survival outcomes was uncertain (9, 10, 13, 22).

Berretta et al. found a significant difference in size between

FIGO stage IA (mean diameter 2,9 cm) and stage IB (mean

diameter 4,4 cm) ECs, showing an increased risk of deep

myometrial invasion and LVSI in tumor greater than 3 cm

(10). On the other hand, Laufer et al. showed that even tumors

greater than 2 cm were associated with an increased risk of deep

myometrial invasion, low FIGO grade and LVSI (21).

Furthermore, tumor size has also been associated with lymph

node involvement. Boyraz et al. reported that a tumor size

greater than 2 cm might be considered an independent

predictor of lymph node metastasis in patients with low-risk

EC (9). Mariani et al. reported no lymph node metastases among

patients with primary tumor diameter ≤2 cm (12). A similar

conclusion was reached by Vargas et al. assessing data from the

National Cancer Institute’s Surveillance, Epidemiology, and End

Results Program (SEER) registry. In particular, they found that
TABLE 1 Characteristics of the study population (n = 108).

Characteristic

Age, years 68 [35-90]

Body mass index, kg/m2 27.0 [19.5-49.0]

Presence of Abnormal Uterine Bleeding 99 (91.7)

Diabetes 17 (15.7)

Hypertension 61 (56.5)

FIGO stage

IA 61 (56.5)

IB 16 (14.8)

II 2 (1.9)

IIIA 0 (0.0)

IIIB 0 (0.0)

IIIC1 16 (14.8)

IIIC2 13 (12.0)

Grade

Grade 1 21 (19.5)

Grade 2 74 (68.5)

Grade 3 13 (12.0)

Histotype

Endometrioid 102 (94.4)

Non-endometrioid 6 (5.6)

Mean tumor size 3.3 cm

Type of surgery (Total Hysterectomy with BSO)

Laparoscopic 78 (72.2)

Abdominal 30 (27.8)

Evaluation of LN status during surgery

Sentinel LN 48 (44.4)

Systematic Lymphadenectomy 60 (55.6)

Pelvic 47 (78.3)

Pelvic and Lombo-Aortic 13 (21.7)
Data are presented as median [range] for continuous variables and as n (%) for categorical
variables. FIGO, International Federation of Gynecology and Obstetrics; BSO, bilateral
salpingo-oophorectomy; LN, lymph node.
TABLE 2 Distribution of histological prognostic factors in the study population, overall and by tumor size.

Prognostic factor All (n = 108) Tumor size

<2 cm ≥2 cm p <3 cm ≥3 cm p <4 cm ≥4 cm p
(n = 26) (n = 82) (n = 43) (n = 65) (n = 83) (n = 25)

Age >70 y 45 (41.7%) 10 (38.5%) 35 (42.7%) 0.704 17 (39.5%) 28 (43.1%) 0.715 34 (41.0%) 11 (44.0%) 0.787

Deep myometrial invasion 100 (92.6%) 22 (84.6%) 78 (95.1%) 0.093 38 (88.4%) 62 (95.4%) 0.261 76 (91.6%) 24 (96.0%) 0.678

Cervical stromal invasion 11 (10.2%) 0 (0.0%) 11 (13.4%) 0.063 1 (2.3%) 10 (15.4%) 0.047* 6 (7.2%) 5 (20.0%) 0.123

Lymph-vascular space invasion 57 (52.8%) 9 (34.6%) 48 (58.5%) 0.033* 15 (34.9%) 42 (64.6%) 0.002* 39 (47.0%) 18 (72.0%) 0.028*

Lymph node involvement 29 (26.9%) 5 (19.2%) 24 (29.3%) 0.314 8 (18.6%) 21 (32.3%) 0.116 19 (22.9%) 10 (40.0%) 0.091
frontiers
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lymph node involvement rate increased from 1.3% in grade 1

and 3.8% in grade 2 tumors ≤2 cm to 12.7% in grade 1 and 23%

in grade 2 tumors ≥ 5 cm, independently of myometrial

invasion. The increased risk of node metastasis was also

confirmed at multivariate analysis (23). In another study Cox-

Bauer et al. reported that a cut-off of 5 cm was significantly more

predictive of nodal involvement than a tumor diameter of 2

cm (11).

Concerning the impact of tumor size on survival outcomes,

conflicting results have been reported in the Literature. Some

Authors reported tumor size as an independent prognostic

factor for recurrence alone (19, 24) or for recurrence and

death due to EC (25); other Authors did not confirm an

independent association between tumor size and recurrence

(14, 15, 26). In particular, Chattopadhyay S. et al. found that a

tumor size cut-off of 3.75 cm could be considered a significant

independent prognostic factor of death due to EC and

recurrence in FIGO Stage I EC patients who did not undergo

lymphadenectomy (25). Senol T. et al. showed that the same cut-

off was a predictor for recurrence, but not for death of any cause

(p >0.05) (19). The association between tumor size and

recurrence was found even with a smaller cut-off (i.e. 2.5 cm)
Frontiers in Oncology 05
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in low-risk EC patients according to the European Society of

Medical Oncology-European Society of Gynecological

Oncology-European Society for Radiotherapy and Oncology

classification (24). On the contrary, other studies showed that,

although there was an increased risk of nodal metastasis in

patients with tumors >2 cm, tumor size did not appear as an

independent predictor of recurrence (15, 26). In another study,

the association with recurrence was not confirmed neither

considering a cut-off of 3.5 cm (14).

Beyond the conflicting findings, previous studies have

focused on tumor size at histological examination. In our

study, conversely, we focused on the tumor diameter at

ultrasound. In fact, this could improve the preoperative risk

stratification of EC patients. Although preoperative ultrasound

tumor size was associated with LVSI, we found that it was not a

prognostic factor for death of any cause, death due to EC and

recurrence in EC patients. These findings were confirmed even

adopting different tumor diameter cut-offs (i.e. 2, 3 and 4 cm).

Our results suggest that ultrasound tumor size does not appear

as an additional prognostic factor to further refine the

preoperative risk stratification of EC patients. However,

further studies are needed to confirm these findings.
FIGURE 1

Kaplan–Meier survival estimates of time to all-cause mortality, cancer mortality and disease recurrence after surgery, by 2 cm tumor diameter cut-off.
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Strengths and limitations

To our knowledge, our study may be the first study to assess

the prognostic value of tumor size in EC patients at preoperative
Frontiers in Oncology 06
5859
ultrasound. In fact, the impact of tumor size on cancer outcomes

has been mainly assessed at postoperative histological

examination so far, with only few studies assessing its

prognostic role preoperatively on magnetic resonance imaging
FIGURE 2

Kaplan–Meier survival estimates of time to all-cause mortality, cancer mortality and disease recurrence after surgery, by 3 cm tumor diameter cut-off.
FIGURE 3

Kaplan–Meier survival estimates of time to all-cause mortality, cancer mortality and disease recurrence after surgery, by 4 cm tumor diameter cut-off.
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(27, 28). Having an additional preoperative prognostic factor

might help plan surgical staging and further refine risk

stratification and management of EC patients.

A major limitation of our study underlies in the retrospective

design which affects data availability. However, missing data

from medical records and clinical electronic databases did not

affect our main analyses. Moreover, the inclusion of patients

from a single center minimized the biases arising from different

patient management and data collection. Another important

limitation of our study may be that we didn’t assess

postoperative pathological tumor size in addition to

preoperative ultrasound tumor size. Anyway, transvaginal

ultrasound has been established as an effective tool to evaluate

endometrial pathology (29–31). Lastly, as a further limitation,

we were unable to assess tumor size as a prognostic factor in each

TCGA molecular group. In fact, like other histological factors

(32–36), it might have a prognostic role only in selected

TCGA groups.
Conclusions

Preoperative ultrasound tumor size does not appear as a

prognostic factor for death of any cause, death due to EC and

recurrence in EC women. Its assessment does not seem to be

useful to further refine the preoperative risk stratification of

patients. Further studies are needed to confirm these findings.
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SUPPLEMENTARY FIGURE 1

Kaplan–Meier survival estimates of time to all-cause mortality, for
prognostic group (stage, grade, age, BMI, stage, grade, LVSI, myometrial

invasion, lymph node involvement, histotype, adjuvant treatment) and by
2 cm tumor diameter cut-off.

SUPPLEMENTARY FIGURE 2

Kaplan–Meier survival estimates of time to death from cancer, for

prognostic group (stage, grade, age, BMI, stage, grade, LVSI, myometrial
invasion, lymph node involvement, histotype, adjuvant treatment) and by

2 cm tumor diameter cut-off.

SUPPLEMENTARY FIGURE 3

Kaplan–Meier survival estimates of time to disease relapse, for prognostic
group (stage, grade, age, BMI, stage, grade, LVSI, myometrial invasion,

lymph node involvement, histotype, adjuvant treatment) and by 2 cm
tumor diameter cut-off.

SUPPLEMENTARY FIGURE 4

Kaplan–Meier survival estimates of time to all-cause mortality, for

prognostic group (stage, grade, age, BMI, stage, grade, LVSI, myometrial
invasion, lymph node involvement, histotype, adjuvant treatment) and by

3 cm tumor diameter cut-off.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.993629/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.993629/full#supplementary-material
https://doi.org/10.3389/fonc.2022.993629
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ambrosio et al. 10.3389/fonc.2022.993629
SUPPLEMENTARY FIGURE 5

Kaplan–Meier survival estimates of time to death from cancer, for
prognostic group (stage, grade, age, BMI, stage, grade, LVSI, myometrial

invasion, lymph node involvement, histotype, adjuvant treatment) and by
3 cm tumor diameter cut-off.

SUPPLEMENTARY FIGURE 6

Kaplan–Meier survival estimates of time to disease relapse, for prognostic group
(stage, grade, age, BMI, stage, grade, LVSI, myometrial invasion, lymph node

involvement, histotype, adjuvant treatment) and by 3cm tumordiameter cut-off.

SUPPLEMENTARY FIGURE 7

Kaplan–Meier survival estimates of time to all-cause mortality, for

prognostic group (stage, grade, age, BMI, stage, grade, LVSI, myometrial
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invasion, lymph node involvement, histotype, adjuvant treatment) and by
4 cm tumor diameter cut-off.

SUPPLEMENTARY FIGURE 8

Kaplan–Meier survival estimates of time to death from cancer, for
prognostic group (stage, grade, age, BMI, stage, grade, LVSI, myometrial

invasion, lymph node involvement, histotype, adjuvant treatment) and by
4 cm tumor diameter cut-off.

SUPPLEMENTARY FIGURE 9

Kaplan–Meier survival estimates of time to disease relapse, for prognostic

group (stage, grade, age, BMI, stage, grade, LVSI, myometrial invasion,
lymph node involvement, histotype, adjuvant treatment) and by 4 cm

tumor diameter cut-off.
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Differentiating cellular
leiomyoma from uterine
sarcoma and atypical
leiomyoma using
multi-parametric MRI

Cong Wang, Xianying Zheng, Zuofu Zhou, Yuequan Shi,
Qin Wu and Kaiwu Lin*

Department of Radiology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
Objectives: To evaluate the diagnostic performance of conventional magnetic

resonance imaging (cMRI) combined with diffusion-weighted MRI (DWI) in

discrimination of cellular leiomyoma, uterine sarcoma, and atypical

leiomyoma.

Methods: This retrospective study enrolled 106 patients with uterine masses,

including 51 cellular leiomyomas (CLs), 32 uterine sarcomas (USs) and 23

degenerated leiomyomas (LMs) confirmed by histopathologic examination.

Clinical data and imaging findings were assessed. Chi-squared test for

qualitative variables and one way ANOVA analysis for quantitative variables

were performed. Logistic regression analysis and the receiver operating

characteristic (ROC) analysis were performed to determine the cut-off point

and diagnostic performances for significant numeric values or multiple models.

Results: Morphology (Odds ratio [OR] = 6.36) and margin (OR = 13.84) derived

from cMRI were independent indicators for differentiating CLs fromUSs, and T2WI

signal (OR = 0.23) were an independent indicator for differentiating CLs from

degenerated LMs (all P < 0.05). The cutoff value of apparent diffusion coefficient

(ADC) derived from DWI for differentiating CLs from USs was 839 ×10-6 mm2/sec

and was 1239 ×10-6 mm2/sec for differentiating CLs from degenerated LMs.

Compared with the use of cMRI features and ADC value alone, combination of

independent indicators and ADC value achieved higher AUCs for both

differentiations (all P < 0.05).

Conclusions: cMRI is a reliable tool for differentiating CLs fromUSs and atypical

leiomyoma, especially degenerated LMs. The combined use of cMRI and DWI

can improve the differential diagnostic performance.

KEYWORDS

magnetic resonance imaging, uterine leiomyoma, uterine sarcoma, diffusion-
weighted MRI, atypical leiomyoma
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Introduction

Uterine leiomyomas (LMs) are the most common neoplasms

in gynecologic system, occurring in approximately 20%-30% of

women of reproductive age and up to 70% of premenopausal

women (1, 2). More importantly, up to 65% of LMs are present

with varied clinical symptoms and atypical imaging

manifestations, including a variety degree of degeneration or

cellular histologic subtype (3, 4). Although LMs are typically

recognized as benign entities, some atypical LMs, particularly

cellular leiomyomas (CLs), have now been defined as borderline

tumors with a potential of malignant transformation and a high

recurrence rate (5). Therefore, differentiation of CLs from other

types of atypical LMs (especially degenerated LMs) and

malignant tumors, is of great clinical relevance since their

prognosis and therapeutic implications are completely different

(1–7). In such condition, uterine sarcomas (USs) which are rare

malignant uterine tumors should also be included into clinical

differentiation because of their extremely aggressive biology

behavior and poor prognosis (8, 9).

Magnetic resonance imaging (MRI) has been recognized as a

highly useful modality in the diagnosis, localization, and

management determination of this entity (10). Conventional

MRI (cMRI) is capable of comprehensively evaluating the

localization, morphology, boundary, vascularity, and internal

components, especially when paramagnetic contrast is applied

(10). Advanced MRI techniques, such as diffusion-weighted MRI

(DWI), may supplement conventional imaging with respect to

the physiological and functional information obtained (11). As

previously reported, DWI holds a potential ability to

differentiate uterine sarcomas from benign leiomyomas (11).

In a very recent study, Abdel et al. (12) developed an algorithm

based on DWI to differentiate benign atypical leiomyomas from

malignant uterine sarcomas.

However, to the best of our knowledge, few studies have

systematically elucidated the discriminative value of cMRI

combined with DWI in distinguishing among atypical LMs,

including degenerated LMs and CLs, and USs. Thus, the purpose

of this study was to assess the benefit of adding DWI to the

conventional MRI for the differential diagnosis of atypical LMs

and leiomyosarcomas.
Materials and methods

Patients

This retrospective study was approved by our institutional

review board, and the requirements for informed consent forms

were waived. We retrospectively reviewed patients who

underwent pelvic MRI examination with at least one uterine

mass in our center between January 2014 and January 2022.
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Patients were selected according to the following condition (1):

surgically and pathologically proved degenerated LMs, CL or

USs (2); MRI features were different from typical leiomyomas.

Patients were excluded according to the following condition (1):

poor imaging quality or imaging data missing (2); metal or

motion artifacts in the imaging (3); lesions were obviously

located in endometrial. Finally, 106 patients were enrolled in

the study, including 51 CLs, 32 USs and 23 degenerated

LMs (Figure 1).
Imaging protocol

MRI examination was performed using a 1.5-T MRI scanner

(GE Signa HD MRI system). The conventional nonenhanced

MRI protocol consisted of the following sequence: axial

gradient-echo T1-weighted sequence (T1WI, TR/TE 450 msec/

15 msec) with a matrix of 320 × 256; and fat-suppressed T2-

weighted (fs-T2WI, TR/TE 2800-4200 msec/74-82 msec)

sequences in the axial, sagittal and coronal planes with a

matrix of 320 × 256; axial DWI (b = 800 sec/mm2) with a

matrix of 128 × 28; axial T1-weighted three-dimensional (3D)

gradient-recalled echo (LAVA) multiphase dynamic

enhancement sequence (TR/TE 3.5 msec/1.6 msec) was

obtained after a rapid intravenous injection of 0.1 mL/kg of

gadopentetic acid (0.5 mmol/ml) at an injection rate of 3 mL/s.
Image analysis

The image assessment was performed by 2 radiologists with

more than 10 years of radiographic experience in obstetrics and

gynecology. Two radiologists independently evaluated the image

manifestations, including (1): the number of the lesion (2);

maximum diameter, margin and border (3); hemorrhage,

necrosis and degeneration within the lesion; number of the

lesion (4); T1WI and T2WI signal intensity of the lesion (5);

DWI signal intensity and apparent diffusion coefficient (ADC)

value (6); degree of enhancement (7); the thickness of

endometrium. The morphology of lesions was described as

round/oval and irregular. Maximum diameter measurement

was taken in the axial plane. Compared with that of the

iliopsoas, T1WI signal intensity, T2WI signal intensity and

DWI signal intensity was graded as hypointense, isointense,

and hyperintense; T2WI signal intensity was defined as

hypointense, isointense, hyperintense. ADC value was assessed

in the ADC map by using the circular region of interest (15-25

mm2). Avoiding the degeneration, necrotic, and hemorrhage

parts within the tumor, several circular regions of interest were

placed in the solid area. Then the lowest value of mean ADC in

these regions was recorded. Thickened endometrium was

defined when the endometrium thickness was more than 10 mm.
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Statistical analysis

All statistical analyses were performed with statistical software

(GraphPad Prism, Version 8.1.0). We performed chi-squared test

for qualitative variables and one way ANOVA analysis for

quantitative variables. The variables that were significantly

different among the three groups would be further evaluated with

logistic regression analysis. The receiver operating characteristic

(ROC) analyses and logistic regression analyses were performed at

last to determine the cutoff point, sensitivity, specificity and area

under the ROC curves (AUC) for significant numeric values or

combined models. Statistical significance was considered when P

value less than0.05.Cohenkappacoefficientwasused toanalyze the

interobserver reliability betweenobserver 1 and observer 2:k<0.40,
poor; 0.40-0.75, fair to good; >0.75, excellent (13).
Results

The k values revealed excellent interobserver agreement (all

k > 0.75) for assessing all parameters. The conventional MR and
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DWI (ADC value) findings of all the lesions are summarized in

Table 1 and representative images are shown in Figures 2–4. We

found significant differences of morphology (P < 0.0001) and

margin (P < 0.0001) among degenerated LMs, CLs and USs, in

which LMs tended to display as round/oval and well-defined

masses, whereas USs were more likely to be irregular and poorly

defined. USs had a predilection for necrosis (18/32, 56.25%) and

higher chance of hemorrhage (12/32, 37.5%). There were no

significant differences in the probability of multiple lesion

occurrences, thickness of endometrial, ascites, and T1WI

signal among these three groups (all P > 0.05). Additionally,

we found no USs were associated with degeneration, and a

significant difference between benign and malignant lesions

regarding the presence of degeneration (P < 0.0001). On T2WI

images, the solid portions of both CLs and USs were present as

hyperintense, whereas most of degenerated LMs showed

hypointensity (P < 0.0001). Moreover, compared with

degenerated LMs, solid portions of both CLs and USs showed

higher DWI signal with lower ADC values (P < 0.0001).

As shown in Table 2, seven parameters, including patients’

age, morphology, margin, hemorrhage, necrosis, degeneration
FIGURE 1

Flowchart showing the patient enrollment process.
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and T2WI signal, were further enrolled into the multivariate

analysis with a forward manner for determining the independent

predictors for differentiation of CLs from USs and degenerated

LMs. Our multivariate analyses showed that morphology,

margin and T2WI signal of the mass were independent

predictors of CLs with odds ratios of 6.36, 13.84 and -1.47,

respectively (P = 0.035, 0.006 and 0.019, respectively). The ROC

curve analyses of ADC value for differentiating CLs from USs

and degenerated LMs are shown in Table 3. The ROC analyses

yielded a cutoff ADC value of 839 ×10-6 mm2/sec, with a

sensitivity of 59.38%, a specificity of 82.35% for differentiation
Frontiers in Oncology 04
6566
of CLs from USs, and a cutoff ADC value of 1239 ×10-6 mm2/sec,

with a sensitivity of 78.26%, a specificity of 90.20 for

differentiation of CLs from degenerated LMs (Figure 5).

To further improve the diagnostic performance, the

independent predictors derived from cMRI were combined

with ADC for distinguishing CLs from USs and degenerated

LMs. As shown in Table 3 and Figure 5, the combination of

cMRI parameters (morphology and margin) and ADC value

significantly improved the diagnostic performance with an

AUC of 0.915, a sensitivity of 90.62% and a specificity of

88.24% (ADC vs. cMRI+ADC: z statistic = 3.305, P < 0.0001;
TABLE 1 Comparisons of clinical demographics, conventional MRI and DWI/ADC values among CLS, USs and degenerated LMs.

Characteristics CLs USs Degenerated LMs P value

Age 43.0 ± 9.6 48.2 ± 9.2 43.0 ± 9.4 0.046

Number 0.0789

Single 47 25 17

Multiple 4 7 6

Morphology <0.0001

Round/oval 39 5 13

Irregular 12 27 10

Margin <0.0001

Well defined 39 7 15

Poorly defined 12 25 8

Endometrial thickness 0.7018

≤1mm 41 28 19

>1mm 10 4 4

Hemorrhage <0.0001

Yes 1 12 4

No 50 20 19

Necrosis <0.0001

Yes 1 18 1

No 50 14 22

Degeneration <0.0001

Yes 11 0 23

No 40 32 0

Ascites 0.2881

Yes 4 6 4

No 47 26 19

T1WI signal 0.9505

hypointense 1 1 1

isointense 49 30 21

hyperintense 1 1 1

T2WI signal <0.0001

hypointense 4 3 17

isointense 2 2 0

hyperintense 45 27 6

DWI signal <0.0001

hypointense 1 0 15

hyperintense 50 32 8

ADC value (×10-6 mm2/sec) 985.8 ± 188.1 838.4 ± 213.5 1451.2 ± 435.1 <0.0001
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FIGURE 2

A 43-year-old woman with a cellular leiomyoma. A mass was located in the uterine anterior wall (arrow) with a clear margin, showing
isointensity on T1WI (A) and hyperintensity on T2WI images (B). This mass showed high signal intensity on diffusion-weighted MR image (C) with
a low ADC value (ADC = 985 ×10-6 mm2/sec) (D).
TABLE 2 Logistic regression analysis of clinical demographics and conventional MRI for differentiating CLs from USs and degenerated LMs.

Variables Coefficient Odds ratio 95% CI P value

Differentiation of CLs from USs

Morphology 1.85 6.36 1.14-35.67 0.035

Margin 2.63 13.84 2.10-91.26 0.006

Differentiation of CLs from degenerated LMs

T2WI signal -1.47 0.23 0.067-0.790 0.019
Frontiers in Oncology
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TABLE 3 Measurements of the cut-off value, sensitivity, specificity, and AUC of ADC, conventional MRI parameters, and combination of ADC and
cMRI parameters for differentiating CLs from USs and degenerated LMs.

Cutoff value Youden index Sensitivity (%) Specificity (%) AUC

Differentiation of CLs from USs

ADC (×10-6 mm2/sec) 839 0.417 59.38 82.35 0.710

cMRI – 0.609 68.75 92.16 0.877

cMRI+ADC – 0.789 90.62 88.24 0.915

Differentiation of CLs from degenerated LMs

ADC (×10-6 mm2/sec) 1239 0.684 78.26 90.20 0.906

cMRI – 0.578 69.57 88.24 0.780

cMRI+ADC – 0.893 91.30 98.04 0.980
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FIGURE 3

A 49-year-old woman with a uterine sarcoma. A mass was found in the uterine-side wall (arrow) with an unclear margin, showing
heterogeneous iso-to-hyperintensity on T1WI (A) and heterogeneous hyperintensity on T2WI images (B). The tumor showed high signal
intensity on diffusion-weighted MR image (C) with a low ADC value (ADC = 736 × 10-6 mm2/sec) (D).
FIGURE 4

A 56-year-old woman with a hydropic degeneration leiomyoma. The mass was detected in the uterine right wall (arrow) with isointensity on
T1WI (A) and heterogenous iso-to-hyperintensity on T2WI images (B). The tumor showed high signal intensity on diffusion-weighted MR image
(C) with a high ADC value (ADC = 1339 × 10-6 mm2/sec) (D).
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cMRI vs. cMRI+ADC: z statistic = 2.292, P = 0.022) for the

differentiation of CLs from USs. The combination of T2WI

signal from cMRI and ADC value also significantly improved

the diagnostic performance for the discrimination of CLs

from degenerated LMs with an AUC of 0.980, a sensitivity of

91.30% and a specificity of 98.04% (ADC vs. cMRI+ADC: z

statistic = 2.083, P = 0.037; cMRI vs. cMRI+ADC: z statistic =

3.820, P < 0.0001).
Discussion

The incidence of CLs is low, and their signs and symptoms

are non-specific, whereas the biological behavior of CLs is

borderline, showing a potential of malignant transformation

and a high recurrence rate (14). Hence, differentiation of CLs

from other atypical CLs and USs is crucial for selecting optimal

treatment strategies and improving prognosis of patients. In this

current study, we systematically investigate the characteristics

from cMRI and found that irregular morphology, ill-defined

margin, and hyperintense signals on T2WI were most valuable

features that could dramatically differentiate CLs from USs or

degenerated LMs. With the combination of cMRI characteristics

and ADC value derived from DWI, optimal sensitivity and

specificity can be achieved in distinguishing these entities.

Uterine LMs are histologically composed of smooth muscle

cells with little or no mitotic activity; on the other hand, CLs

were defined as an atypical subset of uterine leiomyomas with

higher cellularity than the adjacent myometrium. In clinic,

diagnosis of typical LMs is not difficult when lesions in uterine

have imaging characteristics, such as isointense T1 signal with

regular morphology and well-defined margins (15). However,

when LMs present atypical imaging manifestations, particularly

with degeneration, the accurate differentiation will be very
Frontiers in Oncology 07
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challenging (16, 17). In this study, we found both CLs and

degenerated LMs can be associated with degeneration or cystic

changes, inducing hyperintensity on T2WI images. However, for

the solid portion of the uterine masses, we found CLs were more

likely to show a global or focal hyperintensity on fs-T2WI

images compared with degenerated LMs. Recent reviews have

shown a significantly higher signal on T2-weighted images in

hypercellular uterine tumors in comparison to benign

leiomyomas, which generally demonstrate homogenously low

signal on T2-weighted images (18, 19), which further helps in

explaining in the findings present in this study, as CLs are

increasingly recognized as a borderline tumor with

hypercellularity. Additionally, CLs is composed of densely

cellular fascicles of smooth muscle with little intervening

collagen (20). Mitotic figures are few, and there is little or no

cytologic atypia (20). Its hypercellular nature with little

collagenous tissue may both contribute to signal increase on

T2WI images. Moreover, an ADC value of 1239 ×10-6 mm2/sec

or less might indicate the diagnosis of CLs without manifestation

of malignant tumor, which was consistent with a previous study

(20). In that study, Takeuchi et al. (20) reported that the ADC

value of CLs were significantly lower than that of degenerated

LMs. Our finding indicated that the biological components of

CLs are different from those of degenerated LMs. LMs with

degeneration can still be considered as benign LMs which

enriched in extracellular matrix with abundant collagen types

I-III, whereas CLs are more hypercellular, resulting in higher

prevalence of high signal intensity on T2WI images and lower

ADC values (14). Of note, even though ADC can provider a

slightly higher sensitivity and specificity, the diagnostic

performance of ADC and cMRI is comparable. However,

when we combined cMRI with ADC value from the solid

portion of the mass, the diagnostic performance can be

significantly improved with an AUC of 0.980.
A B

FIGURE 5

ROC curves showing the diagnostic performances of cMRI, ADC and the combination of cMRI and ADC in differentiating CLs from degenerated
LMs (A) and USs (B).
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Moreover, a recent case-control study showed that CLs had a

distinct clinical phenotype from LMs and showed some

characteristics shared with USs (5). Thus, CL may be recognized as

a subgroup of leiomyoma variants where benign disease evolves to

malignancy (5). Importantly, in this present study, we found both

cMRI features, including morphology and margin, are independent

indicators of USs. Specifically, when the uterine mass is associated

irregular morphology and ill-defined margin, it highly suggests a

possibility of US, which were in good line with previous studies (14,

16).Histopathologically,USs are aggressivemalignant tumorswhich

can easily invade the normal surrounding tissue, demonstrating the

irregular and ill-defined margins. Additionally, compared with CLs,

USshada lowerADCvaluewith a cutoff of 839×10-6mm2/sec. Itwas

not surprising that CLs would be associated with higher ADC values

compared with USs due to lower cellularity. However, promisingly,

when ADC was added into the diagnostic flow of cMRI, the

diagnostic performance of differentiating CLs from USs can be

significantly improved with an AUC of 0.915.

Our study has several limitations. First, the number of patients

with sarcomaswas relatively small due to its extreme rarity. Second,

this retrospective study was conducted without validation.

Selection bias should be taken into consideration. An external

and/or prospective validation withmore numerous patients will be

performed to translate our results into the clinic. Third, considering

the rarityofuterineCLs, diseaseprevalence anda gradeof suspicion

would have influence on the results of the MRI systems.

In conclusion, we presented characteristic MRI features of

among cellular leiomyomas, degenerated leiomyomas and uterine

sarcomas. We also proved the ADC value of these lesions could

assist the diagnosis and differentiate cellular leiomyoma from

uterine sarcoma and atypical leiomyoma. The combination of

cMRI and ADC value can be a reliable tool for distinguishing

these entities, which is useful for optimization of treatment

strategies for uterine tumor, avoiding inappropriate less invasive

treatment options.
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(MRI), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 3Department of
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National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore, 7Jiangsu
Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou, China
Objectives: This study assessed the clinical value of parameters derived from

dynamic contrast-enhanced (DCE) MRI with respect to correlation with

angiogenesis and proliferation of cervical cancer, performance of diagnosis

and reproducibility of DCE-MRI parameters across MRI scanners.

Materials and Methods: A total of 113 patients with cervical carcinoma from

two centers were included in this retrospective study. The DCE data were

centralized and processed using five tracer kinetic models (TKMs) (Tofts, Ex-

Tofts, ATH, SC, and DP), yielding the following parameters: volume transfer

constant (Ktrans), extravascular extracellular volume (Ve), fractional volume of

vascular space (Vp), blood flow (Fp), and permeability surface area product (PS).

CD34 counts and Ki-67 PI (proliferation index) of cervical cancer and normal

cervix tissue were obtained using immunohistochemical staining in Center 1.

Results: CD34 count and Ki-67 PI in cervical cancer were significantly higher

than in normal cervix tissue (p<0.05). Parameter Ve from each TKM was

significantly smaller in cervical cancer tissue than in normal cervix tissue

(p<0.05), indicating the higher proliferation of cervical cancer cells. Ve of
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each TKM attained the largest AUC to diagnose cervical cancer. The

distributions of DCE parameters for both cervical cancer and normal cervix

tissue were not significantly different between two centers (P>0.05).

Conclusion: Parameter Ve was similar to the expression of Ki-67 in revealing

the proliferation of tissue cells, attained good performance in diagnosis of

cervical cancer, and demonstrated consistent findings on measured values

across centers.
KEYWORDS

imaging biomarker, dynamic contrast-enhanced imaging, reproducibility, multicenter
study, cervix cancer
Introduction

Cervical cancer is one of the top three most common

cancers in women under 45 years old worldwide.

Approximately 570,000 new cases and 311,000 deaths from

cervical cancer occurred in 2018 (1, 2). Studies have proved

that intra-tumoral microvessel density (MVD) are related

strongly to tumor aggressiveness (such as invasive growth,

lymphatic metastasis, and disease-free survival) (3–5).

However, tumor MVD and its proliferation is generally

obtained by immunohistochemical staining, which could be

expressed by CD34 and ki-67 proliferation index (PI) after

biopsy or operation. It would be desirable to identify

biomarkers that can be used to assess tumor biology and to

monitor the effects of treatment in vivo.

Dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) is a potential tool for characterizing tumor

microcirculation. A variety of tracer kinetic models (TKMs)

have been employed to diagnose various tumors and to assess

the effects of anti-angiogenic and anti-vascular drugs in clinical

trials (6–11). The Tofts model and the Extended Tofts (Ex-Tofts)

model are frequently used for analysis of DCE-MRI data in

clinical research or in clinical trials. A variety of two-

compartment (the compartment of intravascular space and the

extravascular extracellular space) models (2CXM) were

proposed, which separately describe the intravascular transport

using parameters blood (plasma) flow (Fp) and the exchange

between the intravascular and the extravascular space using

vessel permeability (PS), including the standard two-

compartment model (SC), the adiabatic approximation to

tissue homogeneity (ATH) and the distributed parameter

model (DP) (12–15). Five DCE parameters (Ktrans, Fp, Vp,

Ve, and PS) from above TKMs were obtained to assess tissue

microcirculation. Interested readers can refer to Koh et al. (14)

for a review on tracer kinetic modeling and the relevant

clinical applications.
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In spite of the advancement of tracer kinetic modeling and

the promising results in various clinical studies, it remains

challenging in developing robust imaging biomarkers, which

require that imaging measurements sensitively capture the tissue

biology of interest in a reliable and standardized fashion. A good

quantitative biomarker should have three properties (16):

biological relevance to the disease process under study,

sensitivity to the disease process, and reliability (i.e., good

reproducibility). Relevance and sensitivity could be established

in single-center studies. Reproducibility of measurements might

be good at single centers where the initial studies were carried

out (to establish the sensitivity). However, at multiple centers,

this will have to be established again.

Very few studies have been conducted to assess the kinetic

parameters derived using DCE-MRI TKMs from the view of

rigorous definition of biomarker, which has limited the

widespread use of DCE parameters in clinical practice. This

study attempted to (1) examine the relationship between DCE

parameters and immunohistochemical indicators (CD34 and ki-

67) in cervical cancer, (2) investigate the diagnostic performance

of DCE parameters in differentiating cervical cancer and normal

cervix tissue, and (3) evaluate the reproducibility of measured

DCE parameters from various TKMs in cervical cancer patients

using different scanners in a multicenter clinical setting.
Materials and methods

Subjects of study

This retrospective study was approved by the local ethics

review boards in two institutions of this study. A total of 166

consecutive female patients, who were diagnosed with cervical

carcinoma by histology and underwent MRI examination were

reviewed in this study in the period of April 2016 to May 2021 in

two centers. The inclusion criteria were: (1) patients diagnosed
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with cervical carcinoma by histology examination and (2) no

history of chemoradiotherapy or surgery before MRI

examination. Patients were excluded for the following reasons:

(1) poor image quality of DCE-MRI such as significant motion

artifacts or incomplete images (n=10), (2) patients with a history

of targeted chemotherapy or radiation therapy before

examination (n=16), (3) patients diagnosed with submucous

myoma of uterus (n=5) and the endometrial carcinoma (n=4),

and (4) no mass was identified for patients with stage Ia and Ib

on DCE and other MRI sequences (n=18). Finally, 95 patients

with cervix cancer and 18 cervical myoma were included in this

retrospective study. ROIs (regions-of-interest) of normal tissue

were obtained from cervical myoma and cervix cancer patients.

ROIs for the tumor were obtained from cervix cancer patients.
Imaging protocol

All MRI examinations were performed using two scanners: a

3T GE scanner (Discovery 750, GE Healthcare, Waukesha, WI,

USA) from Center 1 and a 3T Siemens scanner (Skyra, Siemens

AG, Erlangen, Germany) from Center 2.

T1-, T2-weighted and diffusion weighted images were

acquired before intravenous administration of a gadolinium-

based extracellular contrast agent (0.2 mmol/kg). The injection

rate was 2~3 ml/s, with a dose of 0.1 mmol/kg body weight,

followed by a 20 ml normal saline flush. DCE images were

acquired in the axial plane under quiet respiration. After that, a

routine late contrast-enhanced T1-weighted scan was acquired

in the sagittal plane. Parameter settings of DCE imaging

protocols were implemented based on the recommendation of

Quantitative Imaging Biomarkers Alliance (QIBA) (17) but with

improvement on temporal resolution according to the Nyquist-

Shannon sampling theorem as detailed in Table 1.
Immunohistochemical assessment and
histomorphometry of CD34 and Ki-67

Whether to perform the immunohistochemical analysis or not

was according to the requirement of diagnosis in pathology or the

treatment direction from clinician. Thus, immunohistochemical

analysis with CD34 and Ki-67 may not be available for all the cervix

cancer. In this study, the immunohistochemical analysis was

performed in 14 cervix cancer and 12 cervix myoma. Some cervix

masses were too large to accurately identify the normal cervix tissue

in the visual field when reviewing the immunohistochemistry slides.

Under 400 × magnification, we would exclude the CD34 count of

the normal tissue if the number of CD34 of the normal tissue

neighboring to the cervix mass was 0. Comparing with Ki-67, CD34

count of the normal tissue was evidently affected by the material

limitation. Finally, the CD34 count and Ki-67 PI of cervix cancer
Frontiers in Oncology 03
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mass were obtained from 14 cervix cancer patients. CD34 was

obtained from 11 normal cervix tissue samples, including six cervix

cancer and five cervix myoma. Ki-67 PI was obtained from 23

normal cervix tissue samples, including 13 cervix cancer and 10

cervix myoma.

The samples were fixed in 10% formalin and embedded in

paraffin, according to standard procedures. A 3 mm thick

sections were cut and mounted on glass slides. For each case,

the routine hematoxylin and eosin staining, toluidine blue

staining and immunohistochemical analysis with CD34 and

Ki-67 were performed. Negative control was performed in

immunohistochemical analysis. A gynecological pathologist

with more than 6 years of experience reviewed the

immunohistochemistry slides. The immunohistochemical

analysis enabled calculation of two parameters:

(1) Microvessel density (MVD). CD34 of each tumor nuclei

was labeled with CD34 monoclonal antibody (Maixin, Fuzhou,

China). Single endothelial cell or clusters of endothelial cells

positive for CD 34 was considered as a microvessel. The presence

of blood cells or fibrin without any detectable endothelial cells is

not sufficient to define a microvessel. Vessels with muscular

walls were not counted. For each tumor, four hot spots (areas

with the highest density of microvessels) were identified at low

magnifications (×100). Subsequently, MVD was counted in each

field (×400). The counts were expressed as the average of the

four fields examined for each tumor.

(2) Ki-67 proliferation index (PI). Ki-67 of each tumor tissue

was expressed as the percentage of tumor nuclei labeled with
TABLE 1 Parameters of DCE MRI acquisition protocol.

Center 1 Center 2

Vendor GE Siemens

Model Discovery 750 Skyra

Field strength 3.0T 3.0T

Basic sequence LAVA VIBE

DCE protocol

Pre-contrast FA 4°, 8°, 11° 3°, 5°, 8°

Post-contrast FA 11° 8°

TE (msec) 1.2 1.2

TR (msec) 3.3 2.4

FOV (mm2) 360×360 380×285

Matrix 256×256 224×134

Slice thickness (mm) 5 5

Number of slices 6 20

Pre-contrast phases 10 10

Post-contrast phases 180 180

Temporal resolution (sec) 2.0 2.0
fron
LAVA, liver acquisition with volume acquisition.
VIBE, volumetric interpolated breath-hold examination.
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anti-MIB-1 monoclonal antibody (Maixin, Fuzhou, China).

Under 400 × magnification, 1000 tumor cells were counted in

10 high-power visual fields at random. The Ki-67 PI was then

defined as the number of positive cells/total cell count.
Tracer kinetic models

DCE images were analyzed using a commercial software

(MItalytics, FITPU Healthcare, Singapore). The following

parameters were obtained: volume transfer constant (Ktrans,

min−1) and extravascular extracellular volume (Ve, ml/100 ml)

for Tofts; Ktrans, Ve, and fractional volume of vascular space

(Vp, ml/100 ml) for Ex-Tofts; blood flow (Fp, ml/min/100 ml);

permeability surface area product (PS, ml/min/100 ml), Vp, and

Ve for ATH, SC, and DP. Details of the five tracer kinetic models

(Tofts, Ex-Tofts, ATH, SC, and DP models) used in this study

can be found in several review papers (13, 14, 18). For

completeness, the operational equations of these models,

which specify the dependence of tissue tracer concentration

Ctiss(t) (as a function of time t) on AIF and relevant

physiological parameters were listed as follows:

Tofts model:

    Ctiss(t) =  AIF ⊗Ktransexpð − Ktrans

ve
t) (1)

Ex-Tofts model:

 Ctiss(t) =  AIF vp + AIF⊗  Ktransexpð − Ktrans

ve
t) (2)
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Fp

uðt) − u t −
vp
Fp

� �
+

u t −
vp
Fp

� �
1 − exp − PS

Fp

� �
1 +

Z t−
vp
Fp

0
exp −

PS
ve

t
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PS
ve

 
PS
Fp 

1
t

s
 I1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS
ve

 
PS
Fp

t

s !
dt

" #( )
8>>><
>>>:

9>>>=
>>>;
(3)

SC model:

Ctiss(t) =  AIF ⊗ Fp A   expða t) + (1 − A)expðb t)½ �; (4a)

where

a

b

 !
=
1
2

−
PS
vp

+
PS
ve

+
Fp
vp

 !
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS
vp

+
PS
ve

+
Fp
vp

 !2

−4
PS
ve

Fp
vp

vuut
2
4

3
5;

(4b)

   A =
a + PS

vp
+ PS

ve

a − b
;    (4c)

and
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DP model:
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Image post-processing

For each patient, ROIs for the tumor and the normal tissue

were manually delineated on the central slices of DCE images (to

avoid possible effects of inflow and inhomogeneity near

boundaries) by a radiologist with more than 10 years of

experience in gynecological radiology. Routine T1-weighted,

T2-weighted, and DW images were referenced to currently

delineate ROIs. The size of ROI was no less than 10 voxels to

ensure robustness of measurement. The normal ROIs were

selected in the normal cervix tissue away from the lesions. The

areas of necrotic, cystic, and hemorrhages were avoided when

drawing the lesion ROIs. All ROIs were confirmed by a senior

radiologist, and disagreements were resolved with consensus-

based discussion. The arterial input function (AIF) was sampled

from a voxel that clearly resided within the external iliac artery

on one of the central slices. Desirable features for AIF selection

included an early bolus arrival time, high peak value and signal-

to-noise ratio. The sampled AIF and concentration-time curve of

cervix cancer ROI and the normal tissue are showed in Figure 1.

The concentration of normal tissue is higher than the tumor in

each phase. In later phase, the enhanced pattern of normal tissue

is “persist”, and the cancer is “wash out”.
Statistical analysis

The median parameter value of voxels in tumor ROIs on

multiple slices for each patient was taken as a representative

statistic of the parameter. Kolmogorov-Smirnov test was

conducted to analyze the normality of CD34 counts, Ki-67 PI in

Center 1, and DCE parameters in two centers. Independent

sample t-test was used to compare the differences of CD34

counts between cervix cancer and the normal tissue in Center 1.

Mann–Whitney U test was used to compare the differences of Ki-

67 PI between cervical cancer and normal cervix tissue in Center

1. Pearson correlation coefficient r was used to explore possible

relationship between immunohistochemical indicators (CD34 and

Ki-67) and DCE kinetic parameters from the five models (Ex-

Tofts, Tofts, ATH, SC, and DP) of cervix lesion and normal tissue

in Center 1. A strong correlation was assumed for 0.8 < r ≤ 1, a

moderate correlation for 0.5 < r ≤ 0.8, a weak correlation for 0.3 <

r ≤ 0.5, and no correlation for r ≤ 0.3 (19). Receiver operating
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characteristic (ROC) analysis was performed to examine the

ability of each parameter of the two centers in discriminating

cervix tumor and normal tissue, and the discriminating power of

each parameter was quantified using the area under ROC curve

(AUC). Interpretation of AUC values is application-dependent,

and in general, it is appropriate that values ≥0.9 would be

“excellent”, ≥0.8 “good”, ≥0.7 “fair”, and<0.7 “poor” (20).

Mann–Whitney U test was used to compare the distribution

differences of various parameters in two centers. P<0.05

indicated statistical significance. Analyses were performed using

SPSS Statistics (version 21.0, IBM Corp., Armonk, NY, USA).
Results

Study population

Of the 166 cases, 113 cases met the criteria of inclusion and

formed the final study cohort with age mean and range of 56
Frontiers in Oncology 05
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years (37–75 years) and 48.5 years (31–72 years) in Center 1 and

Center 2, respectively (Figure 2). Characteristics for cervix

cancer patients were summarized in Table 2.
Cervical cancer microenvironment
characterization in center 1

CD34 counts in cervical cancer (20.35 ± 5.82) were

significantly higher than in normal cervix tissue (5.98 ± 2.77)

(P<0.05). Ki-67 PI in cervical cancer (65% ± 29%) was

significantly higher than in normal cervix tissue (1%) (P<0.05)

(Figure 3). Pearson correlation between immunohistochemical

indicators (CD34 and Ki-67) and DCE kinetic parameters from

the five models (Ex-Tofts, Tofts, ATH, SC, and DP) of cervix

lesion and normal tissue in Center 1 were showed in Table 3. For

Ex-Tofts and Tofts models, parameter Ktrans was negatively

correlated with Ki-67 PI (r>0.5, P<0.05) for cervical cancer, and

weak or little correlation was observed between parameters Vp
A B

C

FIGURE 1

Example of a patient with stage IIb cervix cancer. (A) ROIs for cervix cancer (bred) and normal cervix tissue (blue) are shown for one slice of the
DCE-MRI dataset, and the location within the iliac artery where the AIF was sampled was marked with a red dot. (B) Sample of AIF for the cervix
cancer patient. (C) The concentration-time curve of cervix cancer (red) ROI and the normal tissue (black).
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or Ve and Ki-67 PI (r<0.4, P >0.05). For 2CXMs (ATH, SC, and

DP), Vp was negatively correlated with Ki-67 PI (r>0.6, P<0.05)

for cervical cancer. Weak or little correlation was observed in

either cervical cancer or normal cervix tissue between Ve and Ki-

67 PI (r<0.3, P>0.05). Inconsistent correlation across 2CXMs in

cervical cancer was shown between PS and Ki-67 PI (r=-0.489,

P=0.076 for ATH; r=0.218, P=0.454 for SC; and r=-0.143,

P=0.627 for DP, respectively). Moderately, negative correlation

was noted on Fp from SC and DP with Ki-67 PI in cervical

cancer (r=-0.520, P=0.057 for SC; r=-0.537, P=0.047 for DP).

Correlations between DCE-MRI parameters and CD34 in

cervical cancer or normal cervix tissue were largely weak or not

correlated, except for Fp from ATH in normal cervix tissue

(r=-0.622, P<0.05).
Diagnostic performance of DCE-MRI
parameters in differentiating cervical
cancer from normal cervix tissue

For Center 1, 47 ROIs for cervical cancer were obtained. A

total of 63 ROIs for normal tissues were obtained from 16 cervix

myoma and 47 cervical cancer patients. For Center 2, 48 ROIs

for cervical cancer were obtained. A total of 50 ROIs for normal

tissues were obtained from two cervix myoma and 48 cervical

cancer patients.

AUC values of DCE kinetic parameters derived by five

models (Ex-Tofts, Tofts, ATH, SC, and DP) in differentiating

cervical carcinoma tissue from normal cervix tissue in two

centers were listed in Table 4, where Ve attained the largest

AUC in each TKM. Figure 4 showed the ROC of parameter Ve

from the five models (Ex-Tofts, Tofts, ATH, SC, and DP) in

Center 1 and Center 2, respectively. At least one parameter in
Frontiers in Oncology 06
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each TKM attained good performance (AUC value > 0.8) to

diagnose cervical cancer in both centers, except for parameter of

SC model in Center 2 (the highest AUC value=0.761). Figure 5

showed the parameter (Ve) maps generated using the ATH

model for cervix cancer and the normal tissue.
FIGURE 2

Flowchart of patient population.
TABLE 2 Cervix cancer patient characteristics.

Characteristics Center 1(n=47) Center 2(n=48)

Age average (range) 56(37–75) 48.5(31–72)

Histologic type

Squamous cell carcinoma (SCC) 45 39

Adenocarcinoma 2 6

Adenosquamous carcinoma 0 3

Grade

G1 13 3

G2 17 4

G3 2 34

Not graded 15 7

Clinic stage

Ia 6 3

Ib 17 33

IIa 12 7

IIb 7 3

IIIa 3 2

IIIc 1 0

IVa 1 0

IVb 0 0

Treatment before MR examination

Chemoradiotherapy 0 0

Surgery 0 0

No Treatment 47 48
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A B

DC

FIGURE 3

Microphotograph showing MVD and Ki-67 PI in cervix cancer mass and the normal tissue for stage IIb cervix cancer in Center 1 (GE 750).
(A) Magnification (×40) of one of the hot spots in cervix cancer reveals a high histological microvessel density. (B) Magnification (×40) of one of
the hot spots in normal cervix tissue reveals a low histological microvessel density. (C) Immunostain of a cervix cancer for Ki67 showing
labelling of roughly 70% of nuclei, 40×. (D) Immunostain of the normal cervix tissue for Ki67 showing positive expression is located in the base,
40×.
TABLE 3 Results of Pearson correlation immunohistochemical indicators (CD34 and Ki-67) and DCE kinetic parameters (Ktrans, Fp,Vp, Ve, PS)
from Tofts, Ex-Tofts, ATH, SC, and DP models of cervix lesion and normal tissue in Center 1, withcorrelation coefficients and p-values in the
bracket.

Ktrans (min−1) Fp (ml/min/100 ml) Vp (ml/100 ml) Ve (ml/100 ml) PS (ml/min/100 ml)

Tofts model

Cervix lesion

CD34 -0.024 (0.936) – – 0.09 (0.759) –

Ki-67 -0.550 (0.041) – – -0.216 (0.459) –

Normal tissue

CD34 -0.369 (0.264) – – -0.473 (0.142) –

Ex-Tofts model

Cervix lesion

CD34 -0.028 (0.924) – 0.353 (0.215) 0.07 (0.813) –

Ki-67 -0.554 (0.04) – -0.321 (0.263) -0.252 (0.384) –

Normal tissue

CD34 -0.404 (0.218) – 0.40 (0.223) -0.491 (0.125) –

ATH model

Cervix lesion

CD34 – -0.046 (0.877) 0.068 (0.817) 0.065 (0.824) -0.209 (0.473)

(Continued)
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Reproducibility of DCE-MRI parameters
across centers

The distribution differences among various parameters of

cervical cancer and normal tissue in different centers were

assessed by Man–Whitney U test, and shown in Table 5 for

the five models (Tofts, Ex-Tofts, ATH, SC, and DP). The

distribution of parameters Ktrans, Ve from Tofts for both

cervix cancer and normal tissue, showed similar in Center 1

and Center 2 (P>0.05). The distribution of parameters Fp, Vp,
Frontiers in Oncology 08
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Ve, PS from ATH for cervix cancer showed similar in Center 1

and Center 2 (P>0.05). The distribution of at least three

parameters from SC and DP models for cervix cancer showed

similar between the two centers (P>0.05).
Discussion

In this study, we investigated the potential of DCE-MRI

parameters as biomarkers with respect to correlation with
TABLE 3 Continued

Ktrans (min−1) Fp (ml/min/100 ml) Vp (ml/100 ml) Ve (ml/100 ml) PS (ml/min/100 ml)

Ki-67 – -0.057 (0.847) -0.661 (0.01) -0.198 (0.430) -0.489 (0.076)

Normal tissue

CD34 – -0.622 (0.041) 0.357 (0.282) -0.456 (0.158) -0.493 (0.123)

CC model

Cervix lesion

CD34 – 0.08 (0.786) -0.125 (0.669) 0.071 (0.808) -0.389 (0.170)

Ki-67 – -0.520 (0.057) -0.747 (0.002) -0.065 (0.824) 0.218 (0.454)

Normal tissue

CD34 – -0.146 (0.668) -0.243 (0.471) -0.245 (0.469) -0.340 (0.307)

DP model

Cervix lesion

CD34 – 0.023 (0.938) 0.080 (0.787) 0.033 (0.911) -0.329 (0.250)

Ki-67 – -0.537 (0.047) -0.673 (0.008) -0.268 (0.355) -0.143 (0.627)

Normal tissue

CD34 – -0.055 (0.872) -0.198 (0.559) -0.113 (0.742) -0.41 (0.164)
TABLE 4 AUC values of DCE kinetic parameters derived by various models in differentiating cervical carcinoma tissue from normal cervix tissue in
the three centers.

DCE kinetic parameters Center 1 Center 2

Tofts-Ktrans 0.503 0.517

Tofts-Ve (ml/100 ml) 0.894 0.847

Ex-Tofts–Ktrans 0.571 0.504

Ex-Tofts–Vp (ml/100 ml) 0.669 0.544

Ex-Tofts–Ve (ml/100 m) 0.891 0.864

ATH-Fp (ml/min/100 ml) 0.783 0.658

ATH-Vp (ml/100 ml) 0.693 0.508

ATH-Ve (ml/100 ml) 0.899 0.876

ATH-PS (ml/min/100 ml) 0.627 0.555

SC-Fp (ml/min/100 ml) 0.506 0.538

SC-Vp (ml/100 ml) 0.55 0.614

SC-Ve (ml/100 ml) 0.861 0.761

SC-PS (ml/min/100 ml) 0.782 0.668

DP-Fp (ml/min/100 ml) 0.505 0.504

DP-Vp (ml/100 ml) 0.504 0.612

DP-Ve (ml/100 ml) 0.915 0.884

DP-PS (ml/min/100 ml) 0.681 0.610
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FIGURE 4

The ROC of parameter Ve from the five models (Ex-Tofts, Tofts, ATH, SC, and DP) in Center 1 and Center 2, respectively.
A

B

D

C

FIGURE 5

Example of MRI scans for the same patient in Figure 3. (A) Cervix cancer exhibits slightly high signal intensity on axial T2-weighted image.
(B) The degree of enhancement for cervix cancer is lower than the normal cervix tissue on delayed contrast imaging. (C) Cervix cancer exhibits
high signal intensity on DW image. (D) The parameter Ve maps generated using the ATH model for cancer and the normal tissue ROIs. The
upper and lower images are for cancer and the normal tissue ROIs respectively. Parameter Ve value of cervix cancer is significantly smaller than
that of normal cervix tissue.
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TABLE 5 Measured values (median and inter-quantile range in the bracket) of DCE kinetic parameters (Ktrans, Fp,Vp, Ve, PS) derived from (Tofts,
Ex-Tofts, ATH, SC, and DP models) in cervical cancer and normal cervix tissue, and the corresponding p-values of Mann–Whitney U test.

Ktrans (min−1) Fp (ml/min/100 ml) Vp (ml/100 ml) Ve (ml/100 ml) PS (ml/min/100 ml)

Tofts model

Cervix lesion

Center 1 0.09 (0.08,0.13) – – 13.91 (11.32,17.30) –

Center 2 0.13 (0.08,0.19) – – 13.97 (10.07,17.61) –

Z value -1.858 – – -0.074 –

P value 0.063 – – 0.941 –

Normal tissue – – –

Center 1 0.11 (0.07,0.14) – – 30.74 (22.40,42.62) –

Center 2 0.12 (0.08,0.16) – – 28.46 (19.29,39.73) –

Z value -1.595 -1.350

P value 0.111 – – 0.177 –

Ex-Tofts model

Cervix lesion

Center 1 0.07 (0.05,0.10) – 1.71 (1.21,2.34) 12.65 (10.05,17.30) –

Center 2 0.10 (0.06,0.16) – 1.45 (1.02,2.20) 14.04 (11.14,17.78) –

Z value -2.066 – -1.042 -1.589 –

P value 0.039 – 0.297 0.112 –

Normal tissue – –

Center 1 0.09 (0.05,0.12) – 1.08 (0.27,2.06) 33.75 (24.63,45.38) –

Center 2 0.10 (0.07,0.13) – 1.72 (0.93,2.80) 29.77 (19.93,41.44) –

Z value -1.333 -1.827 -2.220

P value 0.182 – 0.068 0.026 –

ATH model

Cervix lesion

Center 1 21.88 (17.82,35.43) 2.43 (1.26,4.03) 11.16 (9.17,15.58) 7.10 (4.78,9.54)

Center 2 26.36 (18.03,36.74) 2.64 (1.64,3.97) 12.32 (8.62,17.35) 9.44 (5.61,13.21)

Z value -.897 -.707 -.175 -1.924

P value 0.370 0.479 0.861 0.054

Normal tissue

Center 1 39.25 (31.65,51.61) 1.00 (0.39,2.56) 33.89 (23.94,45.93) 9.57 (5.70,13.34)

Center 2 35.37 (24.98,46.73) 2.72 (1.43,6.29) 27.52 (18.14,38.91) 9.74 (6.43,14.76)

Z value -1.908 -3.645 -2.197 -0.853

P value P=0.056 P< 0.001 0.028 0.394

SC model

Cervix lesion

Center 1 15.26 (12.61,21.78) 6.12 (4.00,8.62) 8.74 (6.36,14.14) 4.76 (2.73,8.29)

Center 2 19.06 (15.40,30.82) 6.39 (5.01,8.27) 10.88 (6.68,19.83) 5.52 (3.13,10.82)

Z value -2.791 -0.197 -0.867 -0.878

P value 0.005 0.844 0.386 0.380

Normal tissue

Center 1 16.65 (12.15,20.51) 5.70 (2.99,9.91) 26.39 (19.25,39.25) 13.47 (6.61,22.14)

Center 2 22.14 (15.96,34.69) 8.49 (5.42,12.58) 31.11 (18.25,46.92) 9.39 (6.37,16.73)

Z value -3.512 -2.321 -0.425 -1.734

P value P< 0.001 0.02 0.671 0.083

DP model

Cervix lesion

Center 1 13.83 (11.64,17.00) 3.04 (2.08,5.37) 10.56 (8.63,14.83) 6.81 (4.92,9.33)

Center 2 14.81 (0.05,0.10) 4.04 (3.43,6.14) 10.48 (7.73,15.39) 8.31 (5.68,12.22)

(Continued)
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angiogenesis and proliferation of cervical cancer, performance

of differential diagnosis, and reproducibility of DCM-MRI

parameters across MRI scanners in different centers. It was

turned out that Ktrans of Tofts or Ex-Tofts, Vp of three

2CXMs, Fp of ATH, and DP, showed moderately negative

correlation with Ki-67 in cervical cancer tissue, and Fp of

ATH showed moderately negative correlation with CD34 in

normal cervix tissue. Ve of each TKM attained the largest

AUC. No significant differences were observed on the

distributions of most DCE-MRI parameters in either

cervical cancer or normal cervix tissue between Center 1

and Center 2, indicating certain degree of reproducibility

between these two scanners.

As a transmembrane glycoprotein expressed in capillary

endothelial cells, CD34 is a useful angiogenesis marker

reflecting the grade of microvascular modeling in cervical

cancer (21). This study found that the expression of CD34 in

cervical cancer tissue was significantly higher than that in

normal cervix tissue, indicating that there is an increased

neovascularization in cervical cancer tissue. In DCE tracer

kinetic modeling, Vp reflects the fractional volume of

intravascular space, with measurement corresponding to tissue

MVD. However, measured Vp values in TKMs were smaller in

cervical cancer than in normal cervix tissue, and showed little

correlation with the expression of CD34. Hauge et al. (22)

investigated the potential of DCE-MRI to assess MVD using

patient-derived cervical cancer xenografts and found that none

of the DCE-MRI parameters was related to MVD. The

discrepancy could be explained as follows. As pointed out by

Hylton (23), MVD, as measured using immunohistopathological

method, gives a partial picture of the tissue microvasculature,

but does not reflect the functional property of microvasculature,

including permeability, which contributes to the DCE-MRI

measurement. In addition, MVD is also a heterogeneous

property of tumors. MVD measurement methods are limited

by histopathologic sampling and are generally hotspot values,

which are, by definition, localized. Accurate correlation

necessitates precise comparison of anatomical MRI maps with

whole-mount histological tumor specimens rather than with

biopsy specimens that may only represent a small sample of the
Frontiers in Oncology 11
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tumor, so that comparably sized and geometrically oriented

regions of interest can be compared (24).

Instead of assessing direct association between global DCE-

MRI parameter and local histopathologic sampling data, a more

reasonable way could be relative comparison with self-reference.

In the context of current study, study object is cervical cancer

tissue and reference object is normal cervix tissue. Either DCE-

MRI parameter or histopathologic indicator independently

forms two sampled datasets in cervical cancer tissue and

reference tissue, from which sample statistic can be estimated

and inference between cervical cancer and reference tissue can

be conducted. With this in mind, we can proceed to the

interpretation of parameter Ve from the view point

of biomarker.

Ve measures the fractional volume of extravascular

extracellular space, which is inversely related to cellular

density and could be linked to cell proliferation. Sustained

proliferation of cells is one of the most important

characteristics of cancer (25). Ki67, a nuclear antigen

expressed in the nucleus of cells in active proliferation, is

considered a valid nuclear marker of cell proliferation. Studies

revealed that Ki67 is highly expressed in proliferative cells in

many kinds of cancers, but rarely in normal cells (26, 27). As

shown in the results, the expression of Ki-67 in cervical cancer

tissue (65% ± 29%) was significantly higher than in normal

cervix tissue (1%), indicating the higher proliferation of cervical

cancer cells. On the other hand, measured values of Ve of each

TKM were significantly smaller in cervical cancer tissue than in

normal cervix tissue (Table 5), suggesting the higher density of

cervical cancer cells, which was in accordance with the findings

from Ki-67 expression. In addition, Ve almost attained the

highest diagnostic performance in differentiating cervical

cancer from normal cervix tissue by all TKMs, and the

measured Ve values showed certain degree of reproducibility

between Center 1 and Center 2.

The study had the following limitations. The experiment of

immunohistopathologic staining was limited to a subset of cases

in one center for patients for whom it was requested by the

physician, which may have introduced bias. It would be desirable

to conduct the experiment in a larger dataset across different
TABLE 5 Continued

Ktrans (min−1) Fp (ml/min/100 ml) Vp (ml/100 ml) Ve (ml/100 ml) PS (ml/min/100 ml)

Z value -1.455 -2.099 -0.462 -1.012

P value 0.146 0.036 0.644 0.311

Normal tissue

Center 1 13.93 (0.08,0.13) 3.77 (1.80,6.03) 29.82 (23.59,39.35) 11.63 (6.21,17.87)

Center 2 16.22 (11.27,22.54) 5.58 (4.09,8.80) 24.52 (17.35,35.95) 11.46 (7.30,14.95)

Z value -2.017 -3.226 -2.208 -0.801

P value .044 0.001 .027 .423
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centers. The size of study cohort in each center was relatively

small, and the differences of sample demographics and tumor

grade distribution could be prone to sources of variations

between the two centers. Next step, we will continue to

explore the issue of parameter reproducibility in a larger

cohort with the same grade cervix cancer among centers.

In conclusion, this study assessed the potential of DCE-MRI

kinetic parameters as biomarkers in cervical cancer and found that,

in each tracer kinetic model, parameter Ve was similar to the

expression of Ki-67 in reflecting tissue cell proliferation, attained

good performance in differential diagnosis of cervical cancer and

normal cervix tissue, and demonstrated results on measured values

across centers without significant difference between distributions.

From this point of view, Ve measurements derived from primary

tracer kinetic models were equally applicable as potential imaging

biomarkers in cervical cancer diagnosis.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Ethics statement

This study was reviewed and approved by Ethics Committee

of the Second Affiliated Hospital and Yuying Children′s Hospital

of Wenzhou Medical University. The ethics committee waived

the requirement of written informed consent for participation.
Author contributions

XW and SL co-first authors because they did data collection,

compilation and postprocessing, literature study and manuscript

drafting, and neither of them is a trainee. ZY and ZH were the

senior author and corresponding author respectively, because they
Frontiers in Oncology 12
8283
contributed the conception of the work, were responsible for the

execution of the project in the respective institution, facilitated the

progress of this multicenter study, revised the manuscript and

approved the final manuscript for submission. Material

preparation, data collection and analysis were performed by

XiL, YL, ZJY, XuL, T-SK, JL, JJL, XM, JC, GN. All authors

contributed to the article and approved the submitted version.
Funding

This study has received funding from Wenzhou Science and

Technology Buteau in China (No.Y20220070) and Zhejiang

Provincial Medical and Health Project (No.2023RC212).
Acknowledgments

The authors were grateful to Mr Liuyang Chen of Fitpu

Healthcare for his assistance in software customization during

data processing.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Islami F, Chen W, Yu XQ, Lortet-Tieulent J, Zheng R, Flanders WD, et al.
Cancer deaths and cases attributable to lifestyle factors and infections in China,
2013. Ann Oncol (2017) 28:2567–74. doi: 10.1093/annonc/mdx342

2. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al.
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Post treatment imaging in
patients with local advanced
cervical carcinoma

S. Ciulla1†, V. Celli 1†, A. A. Aiello2, S. Gigli 1, R. Ninkova1,
V. Miceli 1, G. Ercolani1, M. Dolciami1, P. Ricci1, I. Palaia3,
C. Catalano1 and L. Manganaro1*

1Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome,
Rome, Italy, 2Department of Medical Sciences, University of Cagliari, Cagliari, Italy, 3Department of
Maternal and Child Health and Urological Sciences, Sapienza, University of Rome, Rome, Italy
Cervical cancer (CC) is the fourth leading cause of death in women worldwide

and despite the introduction of screening programs about 30% of patients

presents advanced disease at diagnosis and 30-50% of them relapse in the first

5-years after treatment. According to FIGO staging system 2018, stage IB3-IVA

are classified as locally advanced cervical cancer (LACC); its correct therapeutic

choice remains still controversial and includes neoadjuvant chemo-

radiotherapy, external beam radiotherapy, brachytherapy, hysterectomy or a

combination of these modalities. In this review we focus on the most

appropriated therapeutic options for LACC and imaging protocols used for

its correct follow-up. We explore the imaging findings after radiotherapy and

surgery and discuss the role of imaging in evaluating the response rate to

treatment, selecting patients for salvage surgery and evaluating recurrence of

disease. We also introduce and evaluate the advances of the emerging imaging

techniques mainly represented by spectroscopy, PET-MRI, and radiomics

which have improved diagnostic accuracy and are approaching to

future direction.
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1 Introduction

Cervical cancer (CC) is the fourth leading cause of death in

women worldwide, with an estimated global incidence of

470,000 new cases per-year (1).

Despite the introduction of screening programs about 30%

of patients presents advanced disease at diagnosis and 30-50% of

them relapse in the first 5-years after treatment (2).

Accurate staging is crucial to select a tailored treatment.

According to the new International federation of gynecology and

obstetrics (FIGO) staging system 2018, stage IA, IB1, IIa1 are

classified as early stage of disease and can be treated with

surgery, either fertility sparing trachelectomy or radical

surgery while stages IB3-IVA are classified as locally advanced

cervical cancer (LACC) (Supplementary Table I) (3). For this

group of patients surgery remains still controversial, and options

are neoadjuvant chemo-radiotherapy, external beam

radiotherapy, brachytherapy, hysterectomy or a combination

of these modalities (4–6).

Imaging plays a key role in therapeutic strategy allowing

selection of responding and non-responding patients after

treatment, early determination of additional surgical salvage if

needed in presence of residual tumor after radiotherapy and

detection of tumor recurrence during post treatment follow-up

(7–9).

In this review we focus on the main therapeutic options in

patients with LACC and on the wide spectrum of imaging

findings after radiotherapy and surgery; moreover, we discuss

the role of imaging in evaluating treatment response and

selecting patients for salvage surgery in presence of residual

tumor after radio-chemotherapy.
2 Research method

The literature search included articles published between

2002 and 2022 from MEDLINE, Embase, and the Cochrane

Library. The following MeSH keywords were matched to guide

the literature search on Pubmed: (LACC) AND (MRI) AND

((treatment) OR (follow-up)) 82; (LACC) AND (MRI) AND

(recurrence) 16; (LACC) AND (MRI) AND (complication) 14;

(cervical cancer) AND (MRI) AND (radiomics) 75; (cervical

cancer) AND (MRI) AND (spectroscopy) 61; (cervical cancer)

AND (MRI) OR (PET-MRI) 74. We included articles that

provided detailed information on imaging modalities,

treatment, follow-up, and recurrence of LACC, excluding

those that did not properly fulfill the goal of our review. Next,

case reports, case series, and articles providing views and

opinions were excluded.

Our initial literature search included approximately 322

articles; 227 articles were excluded based on the previous

criteria. 95 articles were selected for this review.
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3 LACC treatment

Nowadays, the treatment of choice for LACC is concomitant

chemoradiation therapy (CCRT). However, in case of disease

persistence after CCRT, some authors suggest switching to

salvage surgery although there is no shared consensus on this.

In addition, some authors support the advantage of NACT plus

RS as viable alternative treatment.
3.1 Concurrent chemoradiotherapy

Concurrent chemoradiation therapy (CCRT) which

generally consists of cisplatin-based chemotherapy and

external-beam radiotherapy followed by brachytherapy is the

standard organ-preservation treatment for LACC and has

become a cornerstone of treatment (4).

CCRT is the optimal choice for stages IB3, II, III and IVA of

the disease improving local control and reducing the risk of local

regional recurrence in comparison with radiation therapy alone.

CCRT provides active systemic cytotoxic agents against CC with

the potential to enhance tumor radiosensitivity and to eradicate

micro-metastasis.

CCRT allows to decrease of 30% to 50% the risk of death

compared to radiotherapy (RT) alone in accordance to the Meta-

analysis Group of Medical Research Council Clinical Trials Unit

of London which affirmed that chemoradiotherapy leads to a 6%

improvement in 5-year survival (HR, 0.81; P<.001) (10). Datta

et al. performed another meta-analysis in 2017 based on 2445

patients with > 95% squamous cell carcinoma (SCC) histology

receiving either CCRT or RT only without surgery. The results

confirmed that CCRT significantly improves outcomes, with

increased of local control rate (LCR) and overall survival (OS)

rates of 8.4% (p < 0.001) and 7.5% (p < 0.001), respectively (11).
3.1.1 CCRT followed by surgery
The role of completion surgery after CCRT is currently

controversial, since surgery has a high postoperative morbidity

(12, 13). The rate of residual disease after CCRT is 40%, and

these patients generally have a poor prognosis because they show

scarce response to cisplatin-based chemotherapy (14). In these

cases, some authors propose radical hysterectomy as an

adjunctive treatment, although no guidelines recommend it as

a treatment for residual tumors.

Recent literature affirms different results regarding the role

and benefit of surgery after CCRT.

Some authors supported the positive impact of adjuvant

surgery after CCRT: Lèguevaque et al. argued that completion

surgery could improve disease-free survival (DFS), in agreement

with Yoshida et al. who also obtained more favorable survival

results after adjuvant surgery (15, 16).
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On the other hand, Fanfani et al. and Cochrane et al.

observed no significant differences in DFS and OS (17,

18).According to Kim G. Van Kol, salvage surgery should be

performed only if residual disease is histologically confirmed by

biopsy in patients treated with CCRT, to avoid unnecessary

surgery and complications (14). Surgery after CCRT

undoubtedly leads to improved local control rates; however,

distant recurrence often occurs in LACC (19). Further

prospective randomized trials should be conducted to evaluate

the survival benefit of this strategy.
3.2 NACT followed by RS

Neoadjuvant chemotherapy (NACT) followed by radical

surgery (RS) is considered as a valid alternative for LACC and

is currently used in many countries (20, 21). Several advantages

have been suggested for NACT plus RS: tumor size reduction

and possibility of surgical resection, systemic action and

consequent loco-regional and distant disease control,

sterilization of micrometastasis (22, 23).

According to Benedetti Panici, RS after NACT is a feasible

option in LACC with an acceptable survival outcome and mild

surgical complications with marginal impact on quality of life

(24). Gupta et al. analyzed 635 patients with stages IB2, IIA and

IIB and compared NACT followed by surgery with platinum-

based CCRT. The authors found that 5-year DFS was lower

(69.3% vs 76.7%; HR 1.38, 95% CI 1.02-1.87, p = 0.038) in the

NACT group followed by surgery with no significant difference in

5-year OS (75.4% vs 74.7%; HR 1.02, 95% CI 0.75-1.40, p = 0.87)

(25). More recently, Zhao et al., on 2158 patients, demonstrated

no differences in terms of OS, Progression-Free Survival (PFS),

local or distant recurrences (26) (Supplementary Table II).
4 Imaging algorithm and follow-up

In patients with LACC a pre-treatment MRI (Magnetic

Resonance Imaging) is performed for loco-regional staging.

Mid-treatment MRI (after 5 weeks of concurrent cisplatin

chemotherapy with external beam radiation therapy (EBRT)

and before intra-cavitary brachytherapy) allows brachytherapy

dose-adjustment in proportion to the residual tumour volume

(4). This increases local tumour control, reduces toxicity and

improves survival. Choose proper sequences and correct plane

angles is extremely important to avoid pitfall in local staging of

CC. The central role in anatomic assessment of pelvic structures

is assigned to T2-weighted imaging (T2WI); T2 sequences

should be acquired with thin section (3-4 mm) and field of

view (FOV) of 20-24 mm to provide high anatomic resolution

and acquired on the cervical axis to provide better locoregional

staging (27). In fact, for patients undergoing chemo-

radiotherapy treatments, without hysterectomy, T2 sequences
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oriented on cervical axial and coronal planes are strongly

recommended; these are acquired along planes perpendicular

and parallel to the endocervical axis (para-axial and para-

coronal plane). According to the European Society of

Urogenital Radiology (ESUR) guidelines, at least one para-

axial oriented plane is required for diffusion weighted images

(DWI) (Supplementary Table III) (28).

Conversely, after complementary surgery no more angled

planes are required and all the sequences are acquired on sagittal,

coronal and axial pure plane. Axial/coronal T2WI or T1-

weighted imaging (T1WI) from the renal hilum to the groin

are suggested to assess the presence of hydronephrosis and bone

and lymph node metastases. Moreover, fluorodeoxyglucose-

positron emission tomography (FDG-PET) scanned during

radiotherapy treatment may facilitate tailored radiation (e.g.

adjustment of EBRT field in relation to the para-aortic lymph

node (LN) status) and, if standardized, potentially predict

outcome. According to National Comprehensive Cancer

Network (NCCN) guidelines, CC follow-up/surveillance

changes according to FIGO stage and MRI is considered the

preferred imaging modality for assessing locoregional tumor

extension while FDG-PET/Computed Tomography (CT) is

indicated for nodal and distant staging (4).

Follow-up protocols for LACC include: for stage IB3 or

patients who required post-operative adjuvant radiation or

chemoradiation a whole body PET/TC FDG usually performed

at 3-6 months after completion of CCRT; for stage II-IVa a

whole body PET/CT (preferred) or chest/abdomen/pelvic CT

with contrast within 3-6 months of completion of therapy,

moreover a MRI with contrast is to be considered 3-6 months

after the end of treatment. In all cases, the choice and addition of

imaging techniques should be evaluated based on

symptomatology or clinical concern for recurrence and PET/

CT and MRI are considered the techniques of choice (4).
4.1 MRI

MRI is now widely accepted as the most effective modality

for detection, staging, treatment planning and follow-up of CC;

on MRI, the tumor presents an intermediate signal intensity (SI)

on T2WI, a high signal intensity (SI) on DWI at high b-value

and a low SI on the apparent diffusion coefficient (ADC)

map (29).

Accurate evaluation of tumor regression after therapy can be

used to optimize therapeutic strategy and surgical procedure; to

this end MRI is the most reliable imaging modality for patients

with LACC due to its high tissue resolution in the pelvis. Tumors

treated with chemoradiotherapy (CRT) respond with a decrease

in size and signal intensity on MRI. The response may be

immediate (3–6 months) or, in larger tumors, delayed (6–9

months) (Figures 1–5).
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4.1.1 T2W-images
Reconstitution of the normal signal hypointensity of stromal

ring and homogeneous cervical low signal on T2-W images, is

the most important sign of a complete macroscopic response to

treatment (9).

Moreover, MRI has the advantages of a multiplanar

evaluation of the surrounding structures, providing a clear

assessment of the fornix and better definition of the vaginal

wall. Normal vaginal vault has a strongly hypointense muscular

wall in T2WI, with well-defined and regular contour.

In the first months after therapy, oedema and necrosis

caused by CRT may persist for up to 6 months. For this

reason the evaluation of the local response can be difficult

since the endocervical canal may be enlarged and/or the

cervical stroma may show hyperintensity in T2- WI, resulting

in a high risk of false positives (30).

In their study Vincens et al. corelated end of treatment MRI

results with histopathological findings in patients with CC and
Frontiers in Oncology 04
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found a sensitivity and specificity of 80% and 55% respectively

for the detection of residual disease (31).

4.1.2 Diffusion weighted sequences
The recent published ESUR guidelines (2021) for CC

provide a central role of DWI sequences which are strictly

recommended combined to T2-WI for a correct staging of CC

and evaluation recurrence and response after therapy (28).

Traditionally, DWI sequence provides a qualitative

evaluation of malignant tumors characterized by high cellular

density which causes a restricts water diffusion in the interstitial

space. Therefore, the residual disease appears as an area of high

signal, especially to high b-value, associated with lower ADC

values compared to normal cervical stroma. DWI allows to

distinguish the residual tumor from fibrosis, especially in the

patients treated with radiotherapy, which on the contrary,

presents low signal intensity at high b values and low signal

intensity in ADC maps.
A B

DC

FIGURE 1

45- year-old woman. Sagittal T2W and axial DWI MR images show an invasive CC with parametrial invasion and extension of the upper 2/3 of
the vagina (A, B). Stable disease (C, D) after CCRT, CC is changed in morphology and size; however, infiltration of the vaginal fornix, upper 2/3
of the vagina, and both parameters remain.
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A recent multicenter prospective study found that DWI

significantly increases the specificity of MRI in detecting local

residual tumor compared to T2W imaging alone when assessing

cervical cancer response after radiotherapy. In fact, a previous

study showed that T2-W sequence alone had a 50% false positive

rate (31). Thomeer et al. highlighted that the combination of

high intensity on T2-WI and high intensity on DWI was

associated with high specificity in the detection of loco-

regional residual disease (84%) (32).

Lucas et al. found that combination T2W/DWI had a

positive predictive value of 100% and an accuracy of 92.1% for

recurrence/residual disease detection, while T2W imaging alone

and the combination T2W/DCE-MRI (Dynamic contrast-

enhanced MRI) registered values of 93.3% and 80%,

respectively (33).

Recently, some studies evaluated how DWI could also

provide a quantitative data for CC. Specifically, quantitative

analysis of ADC values obtained from a mono-exponential fit

to DWI acquired using at least a value of b and b=0 s/mm2 may
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assume both a prognostic significance and a predictive value for

treatment response and local recurrence (34–39).

In particular, Fu C. et all advocated that patients treated with

neoadjuvant chemotherapy showed an early increased in ADC

values before tumor size reduction after 4 weeks of therapy; this

value correlates with a reduction in proliferating cell nuclear

antigen and cell density suggestive for response to therapy (40).

Somoye et al. demonstrated that median ADC values at mid-

treatment were higher in survivors (1.55 × 10-3 mm2/s) than in

non-survivors (1.36 × 10-3 mm2/s) with a difference of 14%

(41). Some studies, conducted in a large patient population, have

pointed out that in cases of complete response the increase of

ADC values in early assessment (≤ 2 weeks) is greater than in

partial response and therefore the change of ADC value could be

a potential biomarker in identifying tumor aggression and

treatment-unresponsive disease (40).

4.1.2.1 Intravoxel incoherent motion

Further improvement have been achieved with the
frontiersin.org
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FIGURE 2

48- year-old woman. Sagittal T2W and axial DWI MR images show an invasive CC extending from the uterine isthmus to the external uterine
orifice, laterally infiltrating both vaginal fornices, and extending beyond the stromal ring with extensive infiltration of the parameters. (A, B).
Partial response (C, D) approximately 30% reduction of cervical heteroplastic tissue.

https://doi.org/10.3389/fonc.2022.1003930
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ciulla et al. 10.3389/fonc.2022.1003930
introduction of intravoxel incoherent motion (IVIM) which uses

a bi-exponential model to fit diffusion signal decay at different b-

values (42, 43). IVIM allows to distinguishes the diffusion of

water molecules in the extracellular space from capillary micro-

perfusion through three quantitative parameters: diffusion “D”

(diffusion of water in extracellular space); pseudo-diffusion “D*”

(the movement of blood water molecules in the capillary

network) and perfusion fraction “fp” (volume percentage of

water flowing in the capillaries) (44). Different authors have

highlighted correlations between this IVIM parameters and CC

regarding: the detection of cervical cancer tissue, the presence of

lymph node metastasis and treatment response (45–53).

Moreover, recent studies suggested that a IVIM model may

also predict the tumor aggressiveness and therapy response

showing that D values were significantly higher in good

responders patients (p = 0.001) and in moderate/high TILs (p

= 0.018) and that fp showed significantly higher values in

squamous cell tumors (p = 0.006) (54).
Frontiers in Oncology 06
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4.1.3 Dynamic contrast enhanced: DCE-MRI
According to the ESUR guidelines, DCE-MRI is not

mandatory for local CC staging and its primary application is

limited to research setting (55). There is not agreement on the

most appropriate use of DCE-MRI and its application remains a

challenge. However, some authors have evaluated that DCE may

help to detect residual tumor and local recurrences (27, 56). DCE

MRI is especially useful in post-treatment imaging because it

improves the identification of complete or incomplete response

distinguishing between the radiation-induced changes and

residual disease (27). From the analysis of DCE time- signal

intensity curves, Jalaguier et al. observed that intense

enhancement of cervical tissue steeper than the myometrial

time- intensity curves in the early stage (type B time- signal

intensity curves) is significantly associated with the presence of

residual tumor, tumor aggressiveness, incomplete response,

worse prognosis, and early recurrence (55).

However, enhancement of the cervix is not specific and is
frontiersin.org
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FIGURE 3

37- year-old woman. Sagittal T2W and axial DWI MR images show CC infiltrating both parameters, the upper 1/3 of the vaginal canal, the
uterine body, and the left ureter (A, B). Complete response (C, D) significant post-CHT reduction of heteroplastic tissue (around 90%).
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also seen in post-radiotherapy fibrosis, inflammation and

necrosis. DCE-MRI in combination with DWI improves the

identification of residual/recurrent tumor compared to post-

radiotherapy changes. In fact, tumor tissue shows early

enhancement, hyperintensity at high b-values and low SI on

the ADC map, while fibrosis shows no signal restriction in DWI,

has no significant enhancement or shows enhancement in the

late phase. Inflammatory changes may show intense

enhancement and hyperintensity at high b-values, but have

hypersignal in the ADC map (57).

Some studies have evaluated that DCE-MRI during CRT

may also has prognostic value. High perfusion before and during

CRT suggests increased vascularization and high oxygenation of
Frontiers in Oncology 07
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the lesion and it is related to a better response to treatment and

prognosis (56, 58–60) (Supplementary Table IV).
4.2 PET/CT

In recent years, the role of fluorine-18 fludeoxyglucose (18F-

FDG) positron emission tomography (PET)/CT in the staging

and management of gynecological cancers has been increasing. It

is a useful imaging method in the assessment of lymph node and

distant metastases in patients with LACC and for assessing

response to treatment and disease recurrence (61, 62). Most

cervical tumors are 18F-fluorodeoxyglucose (FDG) avid, with
A B

DC

FIGURE 4

67- year-old woman. Sagittal T2W and axial DWI MR images show an invasive CC (A, B). Progression disease (C, D) CC infiltrates the uterine
body, lower 1/3 of the vaginal canal, mesorectum, anterior wall of the rectum, and posterior wall of the bladder.
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FIGURE 5

41- year-old woman. Sagittal and axial T2W (A, B) and axial DWI MR images with ADC map (C, D) show an invasive CC extending to the upper
third of the vaginal canal and anterior rectal wall with focal parametrial infiltrations. Sagittal and axial T2W (E, F) and axial DWI MRI images with
ADC map (G, H) shows a complete response after CCRT.
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exception to adenocarcinomas, which may reveal low FDG

uptake. The maximum standardized uptake value (SUVmax) is

currently the most commonly used parameter in 18F-FDG

PET/CT.

In the context of primary tumor staging, PET/CT plays a

valuable role in the evaluation of lymph node metastases. Nodal

metastases are frequent in patients with advanced disease (i.e.,

FIGO stages IIB to IVB) and FDG-PET has been demonstrated

to have a high specificity for the detection of nodes in this group

of patients). Prospective studies have found sensitivities of 75–

100% and specificities of 87–100% (63, 64).

In patients with advanced disease at presentation, PET or

PET/CT has been found to alter management in a significant

number of patients (65). Sistani et al. reported that the diagnostic

sensitivity and specificity of PET/CT to detect residual tumor in

patients with LACC were 86% and 95.5% respectively, while the

diagnostic sensitivity and specificity to detect distant metastases

were 97% and 99%, respectively (61, 62, 66).

Post-treatment FDG-PET/CT is usually performed at 3–6

months after completion of CCRT and it is a valid prognostic

biomarker. No FDG uptake indicates a complete metabolic

response and consequently a reduced risk of recurrence and

excellent survival. Reduced FDG avidity indicates a partial

metabolic response and thus a moderately high risk of

recurrence and poor survival. Finally, unchanged or new areas

of FDG uptake indicate persistent or progressive disease, which

is associated with poor survival (33, 67, 68). Early detection of

residual tumor is important to establish immediate curative

salvage therapy, such as pelvic exenteration or concomitant

CCRT (69, 70).
5 Complication

After chemoradiotherapy it is important to distinguish

between expected changes after radiation therapy in pelvic

organs and complications.

Post-radiotherapy complications can also be divided in to

acute and chronic complications. The addition of chemotherapy

potentiates the acute toxic effects of radiation and also possibly

the chronic effects.

Acute toxic effects typically involve the bladder and bowel in

the pelvis resulting in radiation cystitis and gastrointestinal

symptoms such as colicky abdominal pain, nausea and

diarrhea (71). Chronic complications tend to be due to the

fibrotic changes in irradiated organs e.g. cervical stenosis, bowel

and ureteric strictures. The parametrium soft tissues may also

undergo fibrotic changes and appear hypointense. This post-

radiation imaging appearance may mimic parametrial invasion

thus becoming indistinguishable from the tumor. Vaginal

adherents, stenosis, or atrophy are also usually determined.

Fistulas are generally late complications of radiotherapy
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treatment and can also occur as a consequence of a disease

recurrence affecting two adjacent organs. For the evaluation of

fistulas, MRI is the imaging of choice, which in the sagittal plane

are identifiable as hyperintense media in T2-fat suppression

sequences and which show impregnation with paramagnetic

contrast medium. Other common post-treatment changes are

thickening of the bladder and rectal walls, usually associated

with diffuse signal hyperintensity in T2-WI, thickening of the

utero-sacral ligaments, expansion of the pre-sacral space and

diffuse hyperintensity in images. Insufficiency fractures of the

sacrum in the post-radiation therapy patient can mimic

metastases (7).
6 Recurrence of cervical cancer

Recurrence of CC is defined as locoregional re-appearance

of the tumor or development of lymph node or distant

metastases at least six months after remission of the primary

lesion (72). The most frequent locations of recurrence can be

classified into central, regional and distant (lymph node or

haematogenic metastases).

The central/local site represents the most frequent site of

recurrence (30-45%) and includes the vaginal vault, cervix

and uterus.

Regional recurrence can be distinguished into anterior

(invasion of bladder, urethra), posterior (invasion of anal

sphincter, rectum, sigma), lateral (invasion of lateral pelvic

wall, iliac vessels, ureters, sciatic nerve, bone) or pelvic lymph

nodes (external and internal iliac nodes, obturator nodes).

Distant recurrence includes lymphadenopathies ,

distinguished into infra-diaphragmatic (para-aortic nodes,

inguinal nodes) or supra-diaphragmatic (hilar, mediastinal,

axillary, supraclavicular nodes) and distant organ metastases

(lungs, adrenal gland, liver, peritoneal carcinomatosis etc.).

The detection of metastatic lymph nodes by MRI and post-

contrast CT is based on size and morphological criteria.

Lymphadenopathy is characterized by a round shape, irregular

margins, internal inhomogeneity and short axis diameter >

10 m; however, recent guidelines suggest short axis of 8 mm as

pelvic lymph nodes cut-off (9).

18F-FDG PET/CT is better than the MRI or CT in

identifying pathological lymph nodes (18F-FDG PET/CT:

sensitivity 84%, specificity 90% and accuracy 87%; MRI:

sensitivity 76%, specificity 80% and accuracy 78%; CT:

sensitivity 68%, specificity 75% and accuracy 72% (73). 18F-

FDG PET/CT also has a high sensitivity (85.7-100%) and

specificity (86.7-100%) in the detection of abdominal and

extra-abdominal disease (74).

Conversely, MRI is the best imaging technique to detect local

recurrence after treatment showing sensitivity and specificity

rates of 82-100% and 78-100%, respectively (9).
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7 Emergent techniques

In the last few decades, ongoing scientific research and

technological developments have significantly improved

diagnostic accuracy and are approaching to future direction

mainly represented by spectroscopy, PET-MRI and radiomics.
7.1 Spectroscopy

MR spectroscopy (MRS) is a very sensitive technique that

reproduces tissue metabolism and can be used to increase the

specificity of non-invasive tissue characterization and prognosis.

A recent study analyzed the different lipid profiles in cervical

carcinomas with 7 T MRS. It was observed that the 2.1 ppm/1.3

ppm fatty acid ratio could be associated with tumor grade in

cervical cancer showing an increase in the amount of

unsaturated fatty acids in poorly differentiated tumors. The

medium chain of fatty acids becomes less saturated in poorly

differentiated tumors (grade III) than in well-differentiated

tumours (grade I) or in the normal cervix. Therefore, this ratio

may have the potential to characterize tumor grade non-

invasively and thus aid clinical diagnosis and management

(75). Another recent study demonstrated the feasibility of

MRS at 3 T in assessing the correlations between lipid changes

in cervical carcinoma and low-prognosis HPV genotypes. MRS

demonstrated a significantly elevated fat methyl resonance level

at 0.9 ppm in HPV genotypes with a poor prognosis compared

to those with a favorable prognosis. Prediction of HPV genotype

by MRS may be a useful predictor of the effect of CCRT in

patients with advanced cervical cancer, because CCRT is more

successful in patients with the poorer prognostic genotype

(HPV18- 58) Furthermore, methyl resonance at 0.9 ppm also

showed potential in the prediction of persistent tumors after

CCRT (76). In addition, methylene resonance at 1.3 ppm has

been reported to be more frequently elevated in carcinoma in

situ (CIN) than in the normal cervix with a sensitivity and

specificity of 77% and 94% respectively in predicting the

presence of cervical carcinoma (77, 78). MRS, together with

morphological and functional MRI, may have the potential to

become an integral part of routine MRI examination to add

aspects of clinical phenotyping and thus to manage the

treatment of cervical cancer patients.
7.2 PET/MRI

PET/MRI is an emerging hybrid technique which integrates the

high diagnostic accuracy for metastasis and pathological lymph

node of PET with the excellent soft tissue differentiation of MRI,

strongly required in the local evaluation of gynecological tumors.
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Therefore, PET/MRI technique integrates local and distant

staging by combining morphological and metabolic information

into a single examination that enables response monitoring,

surveillance and assessment of recurrence.

Emerging data suggest that for local staging of primary

cancer FDG-PET/MRI is equivalent to MRI and superior to

FDG-PET/CT; while for lymph node staging it is comparable to

FDG-PET/CT (79, 80). Moreover, FDG-PET/MRI is superior to

MRI for detecting local recurrence and is highly accurate for

identifying lymph nodes and distant metastases (81).

Other studies, highlighted that this hybrid technique has

high diagnostic potential in evaluated the suspected recurrence

of gynecologic pelvic cancer. Compared with MRI, PET/MRI has

been shown superior results in identifying pelvic regional

recurrence (82). For example, Sawicki et al. examined 71

women undergoing PET/MRI and MRI for pelvic cancer

recurrence and found that PET/MRI correctly identified

significantly more patients with cancer recurrence than MRI

alone (100 vs. 83.6%) (83).

Therefore, through this new technique we could combine the

advantages of two different investigations improving their

diagnostic accuracy; moreover, it avoids the ionized radiation

necessary for the common PET-CT examination. However, FDG-

PET/MRI is poorly used in clinical practice due to limited

availability and high cost.
7.3 Radiomics

In recent years, radiomics has been assuming a central role and

increasing interest in research field; it consists essentially of a cross-

disciplinary research area that correlates quantitative data extracted

from imaging technique and anatomopathological/clinical

information. The ultimate goal of these studies is to develop

predictive models that may help identify the most appropriate

therapeutic choice for the patient to improve outcome and reduce

treatment invasiveness.

Multiple diagnostic techniques are used to stage and evaluate

CC: ultrasound, CT, MR, [18F]- fludeoxyglucose (FDG) PET but

the latter two are widely considered the most appropriate and

therefore object of the main radiomics studies. The main topics

of these studies evaluated the correlation with tumor prognostic

factors risk facts (histology, parametric invasion and lymph node

localizations), response to therapy and prediction of recurrence

and distant metastasis.

In particular, in 2017, Tsujikawa et al. affirmed the second-

order texture feature extracted by PET/CT imaging discriminating

between squamous cell carcinomas (SCCs) and non-squamous cell

carcinomas (NSCCs); others studies applied radiomic nomogram

from features extracted by MRI and PET imaging to predict the

histological grade, lymphovascular space invasion (LVSI) or

parametrial invasion (84–86). In addition, other studies have
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stated that the status of lymph nodes could be predicted by the

radiomic pattern developed at first on PET-CT examinations, then

on MRI, and ultimately also on ultrasound (US) and CT (87–92).

It is known that around 40% of LACCs undergo disease

recurrence. Moreover, in these patients response to therapy is

closely related to clinical pathologic prognostic factors but also

to phenotypic and genomic features that cannot generally be

identified by random sampling or biopsy. Many studies have

tried to identify through radiomic analysis these different

features to decide pre-operatively the correct therapeutic

course. In this context, several studies conducted on both CT,

MRI, and PET-CT examination have shown presence of highly

predictive model to assess response to therapy (93–99).

Similarly, correlations were found between radiomics features

extracted from PET and MRI and regional or distant recurrence

of disease on which predictive models of recurrence have been

based (100). Recently, Lale Umutlu correlated texture features

extracted from the innovative hybrid PET-MRI to the presence

of N and M-stage resulting that a predictive model may by

applying and M-stage prediction was superior compared to N-

stage (101).
8 Conclusions

In the last decades, great progress has been made in the

treatment of patients with LACC (FIGO 2018 stages IB3-IVA).

The treatment of choice for LACC is concurrent chemo-

radiotherapy, which generally consists of cisplatin-based

chemotherapy and external beam radiotherapy followed by

brachytherapy. However, the treatment strategy for LACC is

still evolving, and there is no consensus on the role of surgery as

adjuvant treatment. Imaging plays an important role in the

initial and post-treatment evaluation, but also in the planning of

radiotherapy allowing to detect residual disease from post-

radiotherapy changes, allowing possible salvage therapies.

Imaging in combination with chemotherapy and RT increased

local disease control, also influencing DFS and OS. Future
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imaging techniques and scientific research may guide

therapeutic management towards more tailored treatment.
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Objectives: The main objective of this systematic review was to examine the

literature evaluating association of image-based body composition with

chemotherapy-related toxicity in ovarian cancer patients. A secondary

objective was to evaluate the different definitions of sarcopenia across studies.

Methods: This systematic review was conducted according to the PRISMA-

DTA statement and the protocol was registered on Prospero. A comprehensive

literature search of 3 electronic databases was performed by two authors. For

each eligible article, information was collected concerning the clinical setting;

basic study data; population characteristics; technical aspects; body

composition features; chemotherapy drugs administered; association of

body composition values and toxicities. The overall quality of the included

studies was critically evaluated.

Results: After the initial retrieval of 812 articles, the systematic review included

6 articles (5/6 studies were retrospective; one was prospective). The number of

patients ranged between 69 and 239; mean/median age ranged between 55

and 65 years; the percentage of sarcopenic patients ranged between 25% and

54%. The cut-off values to define sarcopenia and the vertebral levels for

evaluation of body composition were different. Five studies included

chemotherapy based on carboplatin and paclitaxel, 1 included chemotherapy

based on pegylated liposomal doxorubicin. Among the studies including

carboplatin and paclitaxel, 3/5 demonstrated an association with toxicity,

whereas 2/5 did not. Altogether, 4/6 papers demonstrated an association

between the body composition values and the development of

chemotherapy-related toxicities.

Conclusions: There is a wide variability of results about the association of body

composition and chemotherapy-related toxicity in ovarian cancer patients.
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Therefore further studies, possibly including a comprehensive assessment of

body compartments and where the definition of body composition cut-offs is

constant, are warranted to better understand this association.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42022337753, identifier (CRD42022337753).
KEYWORDS

ovarian cancer, chemotherapy, body composition, sarcopenia, toxicity
Introduction

Ovarian cancer (OC) is the second most frequent cancer

among gynecological malignancies, with 19.880 estimated new

cases in the US in 2022, and the most lethal, with 12.810

estimated deaths (1). The current standard treatment for OC

is primary cytoreductive surgery with complete resection of all

macroscopic disease, followed by adjuvant platinum-based

chemotherapy with or without the antiangiogenic agent

bevacizumab (2, 3). When the patient is considered not

operable or the disease is deemed not completely resectable,

interval debulking surgery after neoadjuvant chemotherapy

(NACT) is usually considered (4). In stage III-IV high grade

epithelial ovarian cancer, maintenance treatment with poly-

ADP-ribose inhibitors (PARPi) has been also incorporate in

first line (5–7).

In both scenarios (primary surgery followed by adjuvant

chemotherapy, neoadjuvant chemotherapy followed by interval

debulking surgery), chemotherapy is dosed aiming at a balance

between optimal efficacy and acceptable toxicity. Indeed, if severe

toxicity occurs during chemotherapy, the standard

chemotherapeutic regimen might not be administered or the dose

and schedule adjusted and this might potentially lead to suboptimal

treatment and decreased survival. Factors potentially predisposing

to toxicity are age, previous chemotherapy, genetic characteristics,

including toxicity-related polymorphisms or BRCA mutational

status (8, 9). Many authors have hypothesized that body

composition, indicating the amount and distribution of muscle

and fat compartments, is one of the factors that may predict

interpatient variation in toxicity profiles, accounting for different

metabolism of chemotherapeutic drugs (10–13). In fact, there is

substantial evidence of the variability in body composition in cancer

populations (14–16), as well as emerging evidence suggesting that

the size of body composition compartments relate to prognosis in

many cancer subtypes, including ovarian (17), lung (18), bladder
02
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(19) and pancreatic malignancies (20). As demonstrated by some

authors, sarcopenic patients may be prone to get higher doses of

chemotherapy agents for a rather small amount of muscle mass and

they may therefore encounter higher toxicity (21, 22).

Since cancer patients routinely performs imaging examinations

during their clinical management (23–25), imaging-based

assessment of body composition might be added to the reading of

imaging examinations (26, 27), so offering opportunistic clinical

information that currently go unused. For instance, fromComputed

Tomography (CT) images it is possible to extract the areas of

muscles at a pre-defined level, usually referred to as skeletal muscle

area (SMA); psoas index (PI), indicating only the area of the psoas

muscle; the area of visceral adipose tissue (VAT), indicating the fat

within the abdomen outside the solid organs; the area of

subcutaneous adipose tissue (SAT); the density of the skeletal

muscle, as indirect sign of its adipose infiltration (SMD). Despite

different definitions and a wide variability of cut-off values for the

definition of sarcopenia, this is a condition that can be found in

patients with OC and, although many studies have assessed its

association with survival, only few studies have assessed the

association with chemotherapy-related toxicity.

Therefore, the main objective of this systematic review was to

collect and examine all the available literature evaluating association

of image-based body composition with chemotherapy-related

toxicity in patients with OC. A secondary objective was to

evaluate the different definitions of sarcopenia across studies.
Methods

This systematic review was conducted according to the

PRISMA-DTA (Preferred Reporting Items for Systematic

Reviews and Meta-analysis for Diagnostic Test Accuracy)

statement (28). The review protocol was registered on Prospero

as CRD42022337753.
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Search strategy

Twoauthors (SR andGR)performed a comprehensive literature

search of the electronic databases PubMed, Cochrane and Web of

Science to find primary publications evaluating association between

body composition measures and chemotherapy-related toxicities in

OC. No beginning date limit or language restrictions were used; the

literature search was last updated on Aug 17th 2022; and the search

was expandedby also screening the references of the retrieved articles

for additional potentially eligible studies. The search terms consisted

of ((ovarian cancer) OR (ovarian carcinoma)) AND ((sarcopenia)

OR (body composition) OR (muscle) OR (fat) OR (adipose tissue))

AND ((complication) OR (complications) OR (chemotherapy-

related) OR (adjuvant) OR (neo-adjuvant) OR (toxicity) OR

(chemotoxicity) OR (chemo-toxicity)). Articles in which body

composition assessment was based on CT were obtained in full for

further independent evaluation by two authors (SR and GR). There

was no exclusion for any type of toxicity and neither for the type or

line of chemotherapy. Studieswere excluded if theywere case reports,

conference abstracts, reviews or short communications because they

do not provide sufficient information to assess the methodological

quality. Uncertainties were resolved in consensus.
Data extraction

For each eligible article, information was collected by 3 authors

(SR, GR, MDG) concerning the clinical setting (neo-adjuvant,

adjuvant, further lines); basic study data (year of publication,

country of origin, study design); population characteristics

(number of patients, age, BMI, percentage of sarcopenic patients,

cut-off values for sarcopenia used); technical aspects (axial level for

evaluation of body composition); body composition features

evaluated (SMA, SMI, VAT, SAT, SMD, PI, lean body mass
Frontiers in Oncology 03
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(LBM), fat mass (FM)); chemotherapy drugs administered;

association of body composition values and toxicities.
Quality assessment

The overall quality of the included studies was critically

evaluated based on the revised “Quality Assessment of

Diagnostic Accuracy Studies” tool (QUADAS-2) (29). This

tool comprises four domains for evaluation of risk of bias

(patient selection, index test, reference standard, and flow and

timing) and three domains for applicability concerns (patient

selection, index test, reference standard). Each domain was

assessed and graphs were constructed appropriately.
Results

Literature search

The initial search yielded 812 articles, all in English. According

to inclusion and exclusion criteria, 6 full-text articles were included

in this systematic review (17, 30–34). Details about the literature

search results are reported in Figure 1.

Given the small number of papers included, the clear

heterogeneity of the methods and, as a consequence, of the results,

it was not possible to perform a meta-analysis for pooled data.
Basic study data and population
characteristics

As shown in Table 1, among the 6 studies included, three were

from the US (30, 32, 34); the other were from different countries
FIGURE 1

Study selection flowchart.
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(17, 31, 33). 5/6 studies were retrospective (17, 30–33); one was

prospective (from a phase III clinical trial) (34). The number of

patients included ranged between 69 (17) and 239 (31); mean/

median age ranged between 55 (32, 34) and 65 years (17); the

percentage of sarcopenic patients ranged between 25% (17) and

54% (32). The BMI ranged between 24.9 (17) and 28 (32). The

cut-off values to define sarcopenia in different studies and the

percentage of sarcopenic patients are summarized in Table 1.
Body composition evaluation details;
chemotherapy administered and
association of body composition to
chemo-related toxicity

As shown in Table 2, 4/6 articles evaluated the body

composition values at the level of the 3rd lumbar vertebra (L3)

(17, 30, 31, 34); 1/6 at the level of the 4th lumbar vertebra (L4) (32);

1/6 at the level of the 5th lumbar vertebra (L5) (33). The main body

composition parameters evaluated were: SMI (derived from SMA)
Frontiers in Oncology 04
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in 3/6 studies (17, 30, 31); psoas index (PI) in 2/6 studies (32, 33);

SAT in 3/6 studies (17, 31, 32); SMD in 3/6 (17, 31, 34). Five studies

included chemotherapy based on carboplatin and paclitaxel (17,

30– 33), 1 included chemotherapy based on pegylated liposomal

doxorubicina (34).

Two studies (12, 28) included both the neo-adjuvant and

adjuvant settings; one declared only the first line setting (25); one

included only patients treated with a further line treatment (29).

Among the studies including carboplatin and paclitaxel, 3/5

demonstrated an association with toxicity (17, 31, 33), whereas 2/

5 did not (30, 31). Altogether, 4/6 papers demonstrated an

association between the body composition values and the

development of chemotherapy-related toxicities (17, 31, 33, 35),

with one showing association of VAT and SMDwith chemotherapy

cycle delays as well as of SMA and early discontinuation of

chemotherapy (17); one showing an association of SAT and SMD

with G3 adverse events and toxicity-induced modification of

treatment (31); one showing association of the psoas index with

neuropathy (33); one showing association of the FM/LBM ratio

with toxicity only in overweight and obese patients (35).
TABLE 1 Basic study and population characteristics.

Authors Year Country Study
design

N
patients

Mean/median age
(years)

BMI
(mean)

Percentage of sarcopenic
patients

Cut-off values for
sarcopenia

Prado (29) 2014 US Prospective 74 55 27.9 NA NA

Yoshikawa
(28)

2017 Japan Retrospective 76 62 NA 50% PI < 58.3 cm2/m2

Conrad (27) 2018 US Retrospective 102 55 28 54% PI<38.5 cm2/m2

Staley (25) 2020 US Retrospective 201 64 26.9 27% SMI<41 cm2/m2

Bruno (26) 2021 Brazil Retrospective 239 56 NA 35% SMI<38.9 cm2/m2

Del Grande
(12)

2021 Switzerland Retrospective 69 65 24.9 25% SMI<41 cm2/m2
NA, not available; BMI, body mass index; SMI, skeletal muscle index; PI, psoas index.
TABLE 2 Body composition evaluation details; chemotherapy administered and association of body composition to chemo-related toxicity (if
any).

Authors Vertebra level for body
composition assessment

Body composition
features evaluated

Chemotherapy Association of body composition and
chemo-related toxicity

Prado (29) L3 SMD; LBM; FM Pegylated liposomal
doxorubicina

FM/LBM ratio associated with toxicity only in overweight and
obese patients

Yoshikawa
(28)

L5 PI Carboplatin and
paclitaxel

PI associated with neuropathy

Conrad
(27)

L4 PA; PI, VAT, SAT Carboplatin and
paclitaxel

No association

Staley (25) L3 SMA, SMI Carboplatin and
paclitaxel

No association

Bruno (26) L3 SMI, SAT, SMD Carboplatin and
paclitaxel

SAT and SMD associated with G3 adverse events and toxicity-
induced modification of treatment

Del
Grande
(12)

L3 SMA, SMI, VAT, SAT,
SMD

Carboplatin and
paclitaxel

VAT and SMD associated with chemotherapy cycle delays;
SMA with early discontinuation of chemotherapy
L3, 3rd lumbar vertebra; L4, 4th lumbar vertebra; L5, 5th lumbar vertebra; SMA, skeletal muscle area; SMI, skeletal muscle index; VAT, visceral adipose tissue; SAT, subcutaneous adipose
tissue; SMD, skeletal muscle density; PA, psoas area; PI, psoas index; LBM, lean body mass; FM, fat mass; G3, grade 3.
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Quality assessment of the studies included

The overall quality assessment of the studies is reported

in Figure 2.

Discussion

This systematic review demonstrates that the association

between body composition and chemo-related toxicity in OC is

still unclear. Indeed, 4/6 studies demonstrated the presence of a

significant association, but 2/6 did not. Furthermore, the

significant associations were not among the same covariates

across studies.

Interestingly, the 2 studies showing no significant association of

body composition and toxicity are from the same country (US) (30,

32), that is also known for its high percentage of overweight/obese

patients. Indeed, the age-adjusted prevalence of obesity in the US in

2017–2018 was 42.4%, and the age-adjusted prevalence of severe

obesity was as high as 9.2% among adults (>20 years), especially

among women (35). This high prevalence of overweight/obese

patients, confirmed by the high mean BMI in both studies, might

have affected the results. Indeed, the low muscle mass may be

underestimated in obese patients.

What emerges from the analysis of the results of the included

studies, is that no study evaluated all the body compartments

available, therefore some information is still missing. Indeed, for

instance, Del Grande showed an association of SMA and early

discontinuation of chemotherapy, but SMI was not significant

(17). In the same study VAT and SMD were significantly

associated with cycle delays, but SAT was not (17). Bruno

et al. demonstrated the importance of SAT and SMD for G3

adverse events, but they did not evaluate the other

compartments (31). Conrad and Yoshikawa analyzed only the

PI, thus excluding all the other muscles in the same plane and

even the other body compartments (32, 33).
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102103
Nevertheless, various methods are available for assessing body

composition and they are based on an escalating level of complexity,

from a two-compartment model (evaluating only fat mass and fat

free mass), through a three-compartment model (including fat

mass, lean tissue mass and bone mineral content), and a four-

compartment model (including fat, mineral, total body water and

proteins) to more complex multi-compartment models (including

complex measurements of elements such as calcium, sodium,

chloride, phosphorus, nitrogen, hydrogen, oxygen and carbon)

(36). Therefore, other studies hypothesized that not only the

quality and quantity of muscle are important in the metabolism

of drugs, but also other compartments may contribute to the

metabolism of chemotherapeutic agents (37). Indeed, the body

proportions of lean and adipose tissues may be one of the

phenotypic factors that affect the metabolism, clearance, and

toxicity of antineoplastic agents (38). Accordingly, Schachar et al.

analyzed a large number of body composition measures to assess

predictors of toxicity in patients receiving chemotherapy for early

stage breast cancer, and they demonstrated that body composition

is extremely variable, demonstrating in their cohort that muscle

metrics were clearly related to toxicity, whereas adipose metrics

were not (39). Other studies tried to integrate the information of

quality and quantity of muscle introducing a relatively newmetric, a

product of SMI and SMD (40), and demonstrated that this metric

predicted G4 hematologic and G3/4 non-hematologic adverse event

toxicity when eribulin was administered as a treatment in advanced

soft tissue sarcoma (41).

As the technology advances, we may imagine that more

comprehensive body composition quantifications will be possible

as opportunistic assessments from imaging studies in patients with

OC, including but not limited to assessment of bonemineral density,

quantification of visceral and subcutaneous fat, assessment ofmuscle

bulk and density, and quantification of liver fat (42).

This systematic review has some limitations. The first is the lack

of a prospective cohort study evaluating the association of body
FIGURE 2

Overall quality assessment (risk of bias and applicability concerns) of the studies included in the Systematic Review, according to the QUADAS-2 Tool.
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composition and chemotherapy-related composition as primary

objective. However, this type of study is difficult to obtain and

usually have prognosis as primary outcome. Secondly, we included

studies where the body composition was based on CT images and we

do not know if other studies, based on DEXA or other techniques

may show different results. However, CT (along with magnetic

resonance) is currently considered as gold standard for assessment

of body composition, therefore we may affirm that the data collected

are reliable among the included studies. Lastly, the variability of

definition of sarcopenia among the included studies, and the lack of

reasons for the authors to choose different cut-offs, makes difficult an

appropriate comparison. Indeed, we cannot know if the use of the

same cut-off value for sarcopenia, would have led to more

consisting results.

In conclusion, this systematic review of the literature

demonstrated that there is a wide variability of results about the

association of body composition and chemotherapy-related toxicity

in patients with OC. Therefore further studies, possibly including a

comprehensive assessment of body compartments and a constant

definition of body composition cut-offs, are warranted to better

understand this association.
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Introduction

Tissues become hypoxic when their oxygen consumption exceeds their supply. In

tumors, neoangiogenesis results in disordered vascular morphology and this leads to

inadequate oxygen supply to rapidly growing cells (1). However, because vessels have

variations in their vascular tone, hypoxic status is a dynamic rather than a static event; it

may be transient and is often cyclical (2). Cyclical hypoxia with a median periodicity of

15 mins has been described in xenografts and head and neck cancers in patients (3).

Hypoxia is important because it is well accepted as a poor prognostic factor in for patients

with a range of cancer types (4–7) where it has been associated with disease that is

progressive, resistant and metastatic (8).

Under hypoxic conditions, oxygen-sensitive transcription factors (hypoxia inducible

factors [HIFs]) are upregulated. In the endometrium, HIF1a expression increases as the

tissue undergoes changes from normality to being premalignant and then to become

adenocarcinoma. This is paralleled by increased angiogenesis in the endometrium,

suggesting that HIF1a and thus tissue hypoxia might be a key regulator in

endometrial carcinogenesis (9). A poorer prognosis in patients with EC expressing

HIF-1a has been demonstrated in a metaanalysis with a hazard ratio of 2.29 (10), and its

link to tumor aggressiveness at other cancer sites is documented (11). Hypoxic status also

has been associated with mutations of multiple genes in endometrial cancer (EC) (12). In

other cancer types, driver mutations in p53, MYC and PTEN are enriched in hypoxic

tumors (13) with an effect of hypoxia on mutational load (14). Therefore, as hypoxia is
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likely to determine the evolutionary trajectories and as a result

the management and outcomes of cancer, imaging tumor

hypoxic status in EC may offer prognostic value and facilitate

personalisation of treatment strategies (15).
Endometrial cancer: Diagnosis,
staging and the changing
molecular landscape

EC, (9,300 new cases per annum in the UK (16), 65,620 new

cases in 2020 in USA (17) usually presents with post-

menopausal bleeding and is detected at an early stage.

Diagnostic confirmation on pipelle sampling of the

endometrium or at hysteroscopy is followed by pelvic

magnetic resonance imaging (MRI) for disease staging (18).

Endometrioid and mucinous carcinomas are classified as type I

and serous and clear cell carcinomas as type II. The former are

usually low grade and low stage at presentation and the latter

high grade and advanced stage. Disease outcome depends on

tumor grade, stage, subtype, depth of myometrial invasion,

lymphovascular space invasion and lymph node involvement

(19). In fact, in type I endometrial adenocarcinoma, high

expression of HIF-1 a showed a significant correlation with

higher grade of the tumor, depth of myometrial invasion,

adnexal invasion and clinical stage (20), which strengthens the

argument for hypoxia driving tumor progression by favouring

selection of adverse genetic clones.

Molecular classification is now used to define risk groups in

EC, namely deoxyribose nucleic acid (DNA) polymerase ɛ
ultramutated (POLEmut), mismatch repair-deficient (MMRd),

p53 mutant (p53abn) and those EC lacking any of these

alterations, referred to as NSMP (non-specific molecular

profile) (21). Prognosis is extremely good in POLE and poor

in p53 mutant cancers (22) with poor clinical outcomes in the

latter group being independent of histology grade or stage (23–

25); the other two categories fall between these two extremes.

TP53 mutations are highly prevalent in the serous (Type II)

subtype (88% of 42 serous ECs (26), and are also present in a

subset of endometroid (Type I) carcinomas (15% of 186

endometroid ECs (26). Recent data show that a subset of

p53mut EC is homologous recombination‐deficient (HRD),

and some of these EC can arise in the context of germline

breast cancer (BRCA)1/2 mutations (27–29). The exact

prevalence of HRD in p53mut EC is currently unknown; in a

small and selected set of cases it was 46% (28).

The biological and genetic mechanisms that causally link

hypoxia with progression of disease are being unravelled.

Hypoxia and associated acidosis activate the TP53 dependent

stress response and apoptosis (30). This then provides selective

evolutionary pressure for the emergence of mutants in the TP53

response (13). Such genetic variants then preferentially expand
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as a population. Their fitness benefit is however more than

simple survival. They are intrinsically more resistant to many of

the therapeutic modalities that operate via the TP53 apoptosis

pathway. Their failure to undergo TP53 driven cell cycle arrest

and DNA repair also leads to genetic instability (31).

Additionally, as hypoxia mimics the mesenchymal stem cell

niche (32), surviving TP53 mutants undergo Epithelial-

Mesenchymal transition (EMT) to migratory, stem cell

phenotypes. Hence the hypoxic microenvironment encourages

the selection of cancer cell populations that have an expanded

pool of stem cells (the critical units of selection in cancer

progression) that are likely to be genetically unstable. These

biological features fuel both disease progression and the

likelihood of treatment resistance (33).
Methodology and challenges
of imaging hypoxia

The prognostic relevance of hypoxia in EC has been

determined largely by using the expression of HIF-1a (12) and

the presence of tumor necrosis (34). Although the correlation of

HIF-1a with imaging estimates of hypoxia is variable (35), an

association has been demonstrated in EC (15). On imaging,

hypoxia may be measured indirectly or directly. Traditionally,

tumor vasculature has been imaged using ultrasound and

computerized tomography (CT). Doppler ultrasound, based on

the frequency shift of moving echo-generating components in

flowing blood, has been used to classify endometrial pathologies

(36). With contrast-enhanced CT, extracted metrics relate to

blood flow, blood volume and vascular permeability (37).

Although increased vascularity in tumors is highly

disorganised and leaky, often indicating an increased hypoxic

status (38), it is not a direct measurement.

Positron Emission Tomography (PET) uses hypoxia-specific

tracers such as 18F-labelled nitroimidazoles and copper (Cu)-

labelled diacetyl-bis(N4-methylthiosemicarbazone) analogues

(39). Under hypoxic conditions, free nitro radicals are retained

within the cell. Though commonly used 18F-fluoroimidazole

(18F-FMISO) (40) has relatively low uptake, slow kinetics and is

influenced by non-hypoxic metabolism. 18F-FAZA [1-(5-fluoro-

5-deoxy-a-D-arabinofuranosyl)-2-nitroimidazole)] offers better

resolution and signal-to-noise ratio (41). Cu complex agents

with diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) ligand

under hypoxic conditions cannot be reversibly oxidised by the

cell also making Cu-ATSM a possible means for evaluating

hypoxia in the clinic (42–44). However, its specificity is

debatable and validation with pimonidazole stained tissues has

been variable and tumor type specific (45, 46)

A shift to non-invasive hypoxia imaging with MRI is

advantageous (47). In blood oxygen level dependent (BOLD)

MRI, also known as intrinsic susceptibility-weighted MRI,
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paramagnetic deoxyhaemoglobin within red blood cells (in

contrast to non-paramagnetic oxyhaemoglobin) increases the

MR transverse relaxation rate (R2*, the inverse of the transverse

relaxation time T2*), of water in blood and surrounding tissues.

Variations in perfusion mean that the relationship between R2*

and tissue pO2 is non-linear and perfusion dependent.

Nevertheless, BOLD-MRI is sensitive to changes in pO2 within

vessels and in tissues adjacent to perfused vessels (48, 49). R2*

has been shown to correlate positively with tissue hypoxia score

(HP5) and oxygen pressure (50) and with HIF-2a expression in

colorectal cancer with different tumor stages (51, 52).

Advantages of the BOLD-MRI technique for measurement of

hypoxia are lack of need for externally administered contrast

media, easy repeatability, near real-time visualisation of time-

dependent changes and a measure independent of blood flow.

Nevertheless, the variability of the measurement (53), means

that measuring a change in R2* following an oxygen challenge

may be preferable particularly as they have been shown to

correlate strongly with pimonidazole staining in tumor

models (54).

Oxygen in solution and deoxy Hb also affect the longitudinal

relaxation rate of tissues (55) and are exploited in the technique

of oxygen-enhanced (OE)- MRI, also known as tumor oxygen

level dependent contrast (TOLD). Their effect on the rate of

longitudinal proton relaxation (R1) can be enhanced by the

inhalation of 100% O2 which results in an increase in the

relaxation rate in normoxic tissues, primarily due to an

increase in dissolved oxygen (56). A measurable signal change

of up to 20% is achievable in normoxic tissues with 100% O2

inhalation on clinical scanners (57) that can distinguish them

from hypoxic tissue (58). OE-MRI has been validated in pre-

clinical studies (59, 60) and had initial clinical translation (61,

62) with promising results. MRI measures of hypoxia can be

implemented as an extension of the imaging staging

examination but require standardisation of image acquisition

and analysis methodology prior to clinical use.
Endometrial cancer– opportunities
for adjusting management strategies
to hypoxic status

Management of EC is primarily surgical as patients with

uterus-confined low-risk disease are often cured by surgery.

Prognostic factors that describe groups by their risk of

recurrence (histological type and grade, age, tumor size, and

lymphovascular space involvement (63) are used to determine

need for adjuvant therapies. Several trials have compared

external beam radiotherapy (EBRT) after surgery versus

observation after surgery in intermediate and high-risk disease:
Frontiers in Oncology 03
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the PORTEC 1 (64), ASTEC/EN5 (65) and Gynecologic

Oncology Group (GOG) (66) trials all showed a reduced risk

of vaginal and pelvic relapse though overall survival did not

differ. PORTEC 2 then showed that equivalent locoregional

control could be achieved with vaginal brachytherapy without

the toxicity of EBRT, so that adjuvant brachytherapy is the

standard-of-care in patients with intermediate-risk disease

following surgery (67). More recently, the PORTEC-3 trial,

concluded that molecular classification has strong prognostic

value in high-risk EC, with significantly improved recurrence-

free survival with adjuvant chemoradiotherapy compared to

radiotherapy alone for p53abnormal tumors, regardless of

histologic type (68).

Hypoxia imaging and its link to TP53 status offers potential

to refine management strategies by selecting patients through

prognostic stratification. Pre-operative hypoxia imaging could

identify the women who would most benefit from adjuvant

radiotherapy and select women who might benefit from EBRT

rather than adjuvant brachytherapy alone. Also, in hypoxic

tumors post-surgery, where there is residual disease, it may be

possible to dose-escalate with either brachytherapy, external

beam radiotherapy or the use of a radiosensitiser, or omit or

dose de-escalation when tumor hypoxia is not demonstrated. In

locally advanced endometrial cancer (stage III) treated primarily

with chemoradiotherapy, hypoxia imaging may also indicate

those who would benefit from hypoxia modification with a

radiosensitiser. Drugs like carbogen and nicotinamide can be

combined with radiation without increasing late toxicity but

may improve survival outcomes as in muscle-invasive bladder

cancer (69). The effect of hypoxia on the immune tumor

microenvironment is complex, but it is likely to promote

resistance to immune modulatory approaches (70).

Neoadjuvant chemotherapy (NAC) has primarily been

trialled in patients with Stage 4 or metastatic disease at

presentation with uterine papillary serous carcinomas (71) to

facilitate optimal surgical cytoreduction. More recently this has

been extended to endometrioid adenocarcinoma (72, 73) where

the use of NAC to enable cytoreductive surgery resulted in an

increased progression-free and overall survival (74). It may be

possible to refine the use of NAC further if tumor hypoxic status

along with tumor stage and volume were considered to select

patients likely to respond. Finally, the association of hypoxia

with genetic instability and DNA damage repair efficacy

(supported by the prevalence of HRD in p53 mutated EC

(28)), indicates that hypoxia imaging could be an important

predictive selector for women who benefit from agents such as

poly adenosine diphosphate ribose polymerase (PARP)

inhibitors although their use in EC remains to be established.

As with EC in the primary setting, locally recurrent EC that

shows a high degree of hypoxia may benefit from dose-escalation
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or use of a radiosensitiser. Development of prognostic

models based on hypoxic status and molecular profiling (75)

may change approaches to maintenance therapies and

surveillance. Poor prognostic tumors at risk of progressive

disease thus identified may benefit from a more aggressive

surveillance strategy adapted to their risk. It may also enable

implementation of future maintenance therapy approaches in

suitable patient cohorts.
Discussion and concluding remarks

The technical validation and demonstration of target

monitoring with hypoxia imaging remains a major challenge.

Continuous measurements indicate variable O2 saturation, there

is heterogeneity within each tumor and between tumor sites in the

same patient (76) and thresholds for differentiating normoxic from
Frontiers in Oncology 04
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hypoxic tissues in imaging studies are lacking. The impact of

hypoxia on chemoresistance has been long established (77), but

the range of hypoxia particularly across the different molecular

subtypes needs to be understood. Recording hypoxia within tumors

requires obsessive attention to imaging technique, adherence to

imaging protocols such as those mandated by the Quantitative

Imaging Biomarkers Alliance, and as with all biomarker studies, an

establishment and understanding of the reproducibility of the

measurement (78, 79). Despite these restrictions, when

implemented according to protocol, hypoxia imaging with MRI

can be a simple add-on to the staging examination of endometrial

cancer. The additional imaging time of 10 mins for a BOLD

evaluation and 10 mins for a TOLD evaluation is clinically

achievable and can even be implemented in conjunction to

increase the robustness of hypoxia evaluation. Methods such as

MR fingerprinting may in future also allow simultaneous

acquisition of both the T2* and T1 information (80) before,
FIGURE 1

Diagnostic and management pathway for patients with endometrial cancer. Current diagnostic tests are shown in light blue and proposed
hypoxia imaging in dark blue; current management options are shown in light green and alternative strategies based on hypoxia imaging and
molecular stratification in dark green.
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during and after the oxygen challenge, markedly reducing image

acquisition time. The derived information is a useful adjunct to that

already available and has the potential to substantially alter and

enhance the management options offered to patients (Figure 1).
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Utilization of functional MRI in
the diagnosis and management
of cervical cancer

Hirsch Matani*, Ankur K. Patel , Zachary D. Horne
and Sushil Beriwal

Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
Introduction: Imaging is integral part of cervical cancer management.

Currently, MRI is used for staging, follow up and image guided adaptive

brachytherapy. The ongoing IQ-EMBRACE sub-study is evaluating the use of

MRI for functional imaging to aid in the assessment of hypoxia, metabolism,

hemodynamics and tissue structure. This study reviews the current and

potential future utilization of functional MRI imaging in diagnosis and

management of cervical cancer.

Methods: We searched PubMed for articles characterizing the uses of functional

MRI (fMRI) for cervical cancer. The current literature regarding these techniques in

diagnosis and outcomes for cervical cancer were then reviewed.

Results: The most used fMRI techniques identified for use in cervical cancer

include diffusion weighted imaging (DWI) and dynamic contrast

enhancement (DCE). DCE-MRI indirectly reflects tumor perfusion and

hypoxia. This has been utilized to either characterize a functional risk

volume of tumor with low perfusion or to characterize at-risk tumor voxels

by analyzing signal intensity both pre-treatment and during treatment. DCE

imaging in these situations has been associated with local control and

disease-free survival and may have predictive/prognostic significance,

however this has not yet been clinically validated. DWI allows for creation

of ADC maps, that assists with diagnosis of local malignancy or nodal disease

with high sensitivity and specificity. DWI findings have also been correlated

with local control and overall survival in patients with an incomplete response

after definitive chemoradiotherapy and thus may assist with post-treatment

follow up. Other imaging techniques used in some instances are MR-

spectroscopy and perfusion weighted imaging. T2-weighted imaging

remains the standard technique used for diagnosis and radiation treatment

planning. In many instances, it is unclear what additional information

functional-MRI techniques provide compared to standard MRI imaging.

Conclusions: Functional MRI provides potential for improved diagnosis,

prediction of treatment response and prognostication in cervical cancer.
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Specific sequences such as DCE, DWI and ADC need to be validated in a large

prospective setting prior to widespread use. The ongoing IQ-EMBRACE study

will provide important clinical information regarding these imaging

modalities.
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Introduction

Among women, cervical carcinoma ranks fourth for both

incidence and mortality worldwide. Within the United States in

2022, there are an estimated 14,100 cases and 4,280 deaths (1, 2).

The most common histology is squamous cell carcinoma,

accounting for 70-80% of all cervical cancers. Non-squamous

histologies represent the minority of histologies, although are

associated with worse prognosis (3). Prevalence of cervical

cancer is strongly associated with socioeconomic status, in part

due to differences in access to medical care and screening.

Historically, staging based on the Federation of Gynecology

and Obstetrics (FIGO) has been based upon clinical

examination and limited imaging modalities including plain

radiography, colposcopy, cystoscopy and proctoscopy, given

the prevalence of these tumors within underdeveloped

countries which often lack access to more advanced

technologies. Without these technologies, defining the extent

of primary tumor and the presence of pelvic and para-aortic

lymph disease is difficult. Because of this, cross-sectional

imaging is now included as an optional addition to assist with

staging and prognostication, and assist with treatment (4).

Imaging modalities commonly utilized in cervical cancer

include magnetic resonance imaging (MRI) to assess the

extent of local disease and define brachytherapy treatment

volumes, and computed tomography (CT) or PET/CT to

assess nodal status (5). Functional imaging is an even more

novel approach being used to help define cervical cancer and its

response to treatment, however its utility and implications

on management have yet to be defined (6). This is a primary

objective of the ongoing IQ-EMBRACE sub-study. In this study,

MRI with T1, T2, diffusion and dynamic contrast-

enhanced imaging will be obtained prior to treatment, along

with diffusion-weighted and T2 imaging at the time

of brachytherapy. Treatment will be delivered and patients will

then be followed with this information to assess outcomes. As a

novel imaging approach, we aim to review the current uses

of functional imaging in the diagnosis and treatment

cervical cancer.
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MRI techniques

Standard MRI is performed on the foundation of nuclear

magnetic resonance. The main component of this is the spin of

nuclei which is related to the nuclear makeup (7). A magnetic

field is applied to these atoms resulting in the synchronous

precession of protons resulting in “bulk magnetization” which

can be represented as a single vector precessing about the

magnetic field. This precessing magnetization is detected as

well as subsequent relaxation of these protons allowing for

both T1 and T2 weighted sequences (8). With improvements

in technology, there has been an increasing interest in functional

MRI sequences such as Dynamic-Contrast Enhanced (DCE)

MRI, diffusion-weighted MRI (DWI), and perfusion weighted

imaging. During Dynamic Contrast Enhanced Imaging a bolus

of contrast agent is administered to the patient prior to imaging.

Due to their low molecular weights, these agents are able to

move across vessel walls in tumor and distribute into the

extracellular space prior to being washed out. On T1-weighted

MRI imaging, signal intensity increases are seen and so rapid

image acquisition is performed to assess movement of the

contrast agent in tumor cells. As tumor vasculature exhibits a

large amount of permeability, the uptake is perfusion limited and

relies mainly upon blood flow and vascular density versus vessel

permeability. DCE is not able to provide a direct measurement of

tumor hypoxia, however with its characteristics, can indirectly

provide this information through assessing tumor physiology

with low-molecular weight contrast agents (9). DWI is a

standard imaging tool for disease processes such as stroke, and

relies upon apparent diffusion coefficient maps (ADC).

Important parameters of DWI imaging include “b-value”

relating to the strength of the motion probing gradient, and

resulting signal-to-noise ratio. This underlying mechanism

allows for diffusion changes that can be mapped. Increased

cellularity is a characteristic of malignancies and as a result,

diffusion is impeded at imaging. Therefore, signal intensity of

malignancies is higher than that of normal parenchyma (10).

Perfusion measurements with MRI can also be obtained utilizing

injection of an exogenous endovascular tracer. Arterial spin
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labeling is the idea of comparing the spin of inflowing blood

water to stationary water in tissue. This tagging occurs looking at

inversion of longitudinal magnetization. Images are obtained

after a time delay to allow inflow after bolus reaches

microvasculature and using signal differences, perfusion maps

can be obtained (11). Lymphadenectomy is associated with high

costs and so the addition of non-invasive methods for staging,

specifically for detection of pelvic lymphadenopathy would be

beneficial (12). The addition of MRI specifically for

brachytherapy has also been associated with increased

effectiveness of therapy and decreased costs by avoiding

downstream cost of recurrence and management of toxicity

from therapy (13). As a result, the costs of functional MRI

techniques are expected to further provide information that can

further improve diagnosis and therapies, and decrease costs.

Along with costs, specific benefits of these MRI techniques are

listed below.
Current use of magnetic resonance
imaging for cervical cancer

Magnetic resonance imaging is an important component of

staging for cervical cancer due to its superior soft tissue contrast
Frontiers in Oncology 03
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resolution compared to CT. This characteristic makes MRI the

preferred method for assessing the primary tumor and

accurately assessing parametrial invasion and pelvic sidewall

invasion with up to 95% accuracy or higher, ultimately allowing

clinicians to determine the appropriate treatment modality (11,

14–17) (Figure 1). In addition, on the basis of the EMBRACE

trials, MRI allows for image-guided adaptive brachytherapy

(IGABT) with individualized target and organ at risk

contouring, dose optimization and multiparametric dose

prescription allowing for improved patient outcomes. In the

Embrace cohort, 98% of patients could be treated with this

method and overall local control was 92% across all stages,

which was unprecendented (18). The mainstay of pelvic MRI to

assess cervical tumors is T2 weighted imaging. Thin sections of

3-4mm are recommended and images should be acquired angled

perpendicularly to the cervix (19).
Dynamic contrast enhanced MRI

Dynamic contrast enhanced (DCE) MRI is a widely accepted

sequence of multi-parametric MRI for prostate and breast cancer

imaging to assess suspicious findings on standard MRI and assist

with treatment planning (20, 21). It is also the most studied
FIGURE 1

Axial T2-weighted MRI in a patient with FIGO IIIC1, pathologic T2 squamous cell carcinoma of the cervix.
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functional imaging technique for locally advanced cervical

cancer thus far and it is used to characterize tumor

microvasculature, and therefore indirectly tumor perfusion

status (22, 23). Hypoxia is a well-known feature of solid

tumors and its presence is known to be associated with

increased aggression of the tumor, increased risk of local

invasion, metastasis and treatment failure. It is also known to

influence the outcome of treatment with chemotherapy or

radiotherapy, even in the case of microscopic tumor

involvement (24). This is not surprising, as tumor hypoxia in

cervical cancer specifically is an adverse risk factor and

associated with poor outcomes, regardless of treatment

modality (9). On this basis, DCE has been studied to predict

for recurrence and survival outcomes in cervical cancer.

(Figure 2) depicts tumor imaging on DCE. The largest study

aimed to characterize a high risk “functional risk volume” of

tumor voxels with low DCE signal intensity on MRI prior to and

during radiation therapy. Those voxels included in the

functional risk volume had a DCE signal intensity of <2.1

compared with pre-contrast imaging. At 6 years follow up,

primary tumor control (p=0.003) and disease-specific survival

(p=1.9 x 10-4) were significantly decreased in patients with a

higher functional risk volume, and this parameter was superior

to anatomic tumor volume as predictive and prognostic tool.

The authors also found that high perfusion prior to treatment

initiation or improved perfusion throughout treatment was
Frontiers in Oncology 04
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associated with improved outcomes, which was hypothesized

to reflect re-oxygenation and may have potential for monitoring

response to therapy (25, 26). Validation of using DCE thresholds

for characterizing voxels at risk for treatment failure has been

performed, with findings similar to the prior study. Optimal

signal intensity thresholds for differentiation of local recurrence

and control ranged from 2.1-2.2 and for death and survival

ranged from 1.8-2.2. A universal threshold based upon these

values of 1.9 was identified for prediction of outcomes either

prior to treatment or during treatment and this value remained

significant for prediction of early treatment failures (27). The

Mayr group has also published data regarding the use of DCE

imaging at 2-2.5 weeks into radiation therapy to predict the risk

of recurrence and death using a signal intensity cutoff of the

lower 10th percentile. Signal intensity was an independent

predictor of recurrence and death and was significantly better

than standard clinical prognostic factors in predicting outcomes

(28). At least two studies, however have shown no correlation

between DCE values and outcomes (29, 30). One study showed

earlier onset of DCE enhancement to be associated with higher

clinical stages, but not disease-free or overall survival. The other

aimed to determine response to therapy by analyzing changes in

tumor size and volume, for which pre-treatment DCE values did

not correlate. One reason for this difference could be a lack of

statistical power in the first study, which only had 12 patients

evaluated and a short mean follow up of 11 years. Since DCE
FIGURE 2

Post contrast dynamic contrast enhanced axial MRI showing increased signal intensity in a patient with FIGO IIIC1, pathologic T2 squamous cell
carcinoma of the cervix.
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values are indicative of the tumor microenvironment and

vasculature, they may not directly correlate with anatomic

tumor size or volume, which is a measure of the total number

of cells within a tumor. There is a variety of different techniques

that have been used to evaluate DCE, but given that the bulk of

data is positive, DCE-MRI has potential to be used as an

important predictive or prognostic factor in management of

cervical cancer, and to help determine who may benefit from

escalation of therapy.
Diffusion weighted imaging

Diffusion weighted imaging (DWI) is a method of signal

contrast generation based upon differences in diffusion, also

known as Brownian motion. Different tissues have a

characteristic cellular architecture and pathologic processes

can affect the water distribution within compartments,

allowing for new anatomic information that can be gathered

with conventional MRI sequences and is quantified by an

apparent diffusion coefficient (ADC) map (31). Its current uses

are mainly for diagnosis of central nervous system pathologies

such as pediatric brain development, ischemic injury and white

matter disease, although it has been used for diagnosis of

malignancies throughout the body, as malignancies have a

lower ADC compared with normal tissues (32). This feature is

why diffusion-weighted MRI based imaging has been studied in

the diagnosis of cervical and other gynecologic malignancies

with some success, based on its ability to separate normal tissue

from carcinomatous tissue (33). Particularly in the diagnosis of

cervical cancer, a low ADC has been useful to help separate

characterize the primary tumor as well as metastatic versus

benign pelvic lymph nodes (34–37). Although the ADC values

vary per study, using a value between 1.05 x 10-3 mm2s and 1.14

x 10-3 mm2/s as a cutoff yielded a sensitivity, specificity and

accuracy as high as 95.83%, 94.55% and 94.94% (33). Another

potential use of DWI is to characterize tumor histology. In one

study, the ADC value was noted to be significantly lower for

squamous cell carcinoma that for adenocarcinoma, however

there was overlap between the two values and so currently it

cannot be used to precisely separate the two (38). DWI has also

been used to help characterize or predict treatment response. In

one study out of Japan, for 9 patients ADC was correlated with

response to chemotherapy and/or radiation therapy with an

increase in mean ADC value of the lesion after treatment

associated with adequate response (35). For squamous cell

carcinoma specifically, the 90th percentile of ADC values was

lower in patients who responded to therapy compared to those

who did not respond (39).

With all of these potential uses, DWI could play a significant

role in the management of cervical malignancies through

accurate diagnosis. This could help, particularly with patients

who have equivocal post-treatment findings or lymph nodes
Frontiers in Oncology 05
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after therapy. It is known that patients with adenocarcinoma

have a worse prognosis with respect to progression free survival

and local recurrence (40). If we are able to more accurately assess

which patients with squamous cell carcinoma may be resistant to

therapy or assist with histologic determination using DWI, we

can potentially improve therapy to provide these patients with

the best chance of controlling their disease.

A recent retrospective review of patients with medically

inoperable stage I endometrial cancer treated with definitive

radiation therapy found that the addition of DWI to standard

post-contrast MRI to assess response to treatment increased

reader confidence and the authors concluded that this sequence

should be included as a standard addition (41). Another

retrospective review out of MD Anderson Cancer Center

analyzed patients with cervical cancer treated with definitive

chemoradiation who had an MRI scan with DWI performed at

baseline. They found that those with a higher mean pre-

treatment ADC had improved disease-free survival with a

trend toward improved overall survival and local recurrence.

These outcomes remain similar to those from other institutions

(42, 43).

For post-treatment follow up, the addition of DWI imaging

has been shown to increase the early detection of patients who

have a PET incomplete response after completion of definitive

chemoradiotherapy, in a large retrospective review by Kalash

et al. (Figure 3). Of 27 patients with a PET incomplete response

who had DWI imaging, 11 were interpreted as DWI positive,

with a median ADC of 0.973 x 10-3 mm2/s. Of those 11 patients,

81.8% experienced a histologically confirmed local recurrence at

mean interval of 4.1 months and of the 16 patients with negative

response, only 12.5% experienced a local recurrence. In addition,

a positive result on DWI was associated with significantly

decreased local control at 2 years (92% vs. 20%, p<0.005) and

decreased overall survival (83% vs. 36%, p=0.049). Overall the

positive predictive value was 81.8% and negative predictive value

was 87.5% (44).

Regarding its use for radiation treatment planning and

contouring, only one prospective study performed in India has

reported on the use of DWI in conjunction with T2 weighted

MRI for target delineation for delivering MRI-guided adaptive

brachytherapy and reported that per the GEC-ESTRO

contouring guidelines, although the DWI based plan resulted

in improved coverage of the high-risk CTV, doses to organs at

risk were not significantly increased and DWI is recommended

only as a supplement to standard T2-weighted imaging in the

delivery of radiation therapy (45).
Perfusion-weighted imaging

Perfusion is defined as the steady-state delivery of blood to

an element of tissue and specific MRI techniques have been

developed to measure this non-invasively. The two major MRI
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sequences to look at perfusion include use of DCE-MRI as briefly

described above and dynamic susceptibility contrast-enhanced

MRI. DCE MRI is obtained after injecting a contrast agent, often

gadolinium-based and obtaining T1-weighted sequences to

assess enhancement and other pharmacokinetic features. The

most frequently used metric is ktrans which can reflect blood

flow or vessel permeability depending on anatomic

characteristics. Dynamic susceptibility contrast-enhanced

(DSC) sequences also require injection of a contrast agent, but

rely on T2-weighted sequences leading to MRI hypointensity.

Cerebral blood volume and cerebral blood flowmaps can then be

derived from this information (46). Perfusion features of DCE

have been described above, but briefly, DCE-MRI has been used

as a predictive and prognostic tool. Low DCE-perfusion values

are associated with poor response to therapy, local control and

disease-free survival. They have also been shown in some small

studies to predict response to therapy and early recurrences (25–

27). Only one study has been recently published specifically

looking at the role of DSC-MRI in management of cervical

cancer. DSC-MRI values pre- and post-concurrent

chemoradiation were examined and it was found that

perfusion fraction of the tumor prior to concurrent

chemoradiotherapy was higher in patients who had a partial
Frontiers in Oncology 06
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response to therapy compared to those who had stable disease or

progression (47).
MRI-spectroscopy

MRI-spectroscopy is a functional MRI technique that

assesses the presence of small mobile molecules in vivo at the

commonly used MRI strengths of 1.5T and 3T. In normal

tissues, these molecules are choline, creatinine and N-acetyl-

aspartate, whereas pathologic conditions including malignancies

may increase the presence and detection of other molecules such

as lactate or alanine (48). It is commonly used in the diagnosis of

both benign and malignant central nervous system pathologies

as well as malignancies throughout the body including prostate,

colon, breast and cervical cancers (49, 50). Only a handful of

published data is found regarding this technique in the diagnosis

and management of cervical cancers. The most data, is regarding

the analysis of lipid levels using in-vivo and ex-vivo samples to

diagnose cervical cancer. Use of MR-spectroscopy to detect lipid

levels, in particular in-phase triglyceride (CH)-2 in vivo and

triglyceride (CH)-2 and (CH)-3 ex-vivo as able to predict the

presence of cervical cancer compared to control subjects with an
FIGURE 3

Axial diffusion-weighted MRI showing pre-treatment decreased tumor signal intensity in a patient with FIGO IIIC1, pathologic T2 squamous
carcinoma of the cervix.
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in-vivo sensitivity and specificity of 77.4% and 93.8%. Ex-vivo

sensitivity was 100% and specificity was 69%.55 Analysis of lipid

levels for diagnosis has been corroborated by multiple groups

(51–53). Using a 3T MRI to evaluate the presence of choline was

unfortunately however not significantly different between

different lesion types or in benign versus malignant disease (54).

To assess disease response, only a few studies have

investigated variations in metabolite peaks during or after

completion of treatment. Resolution of choline peak is

correlated with tumor regression after radiation therapy,

however its predictive value and clinical utility remain

uncertain (55). This technique has also been used to identify

increased choline signal along with T2-weighted imaging and

ADC to guide adaptive radiotherapy, but outcomes thus far are

unknown (56).
Future directions/conclusions

DCE and DWI are imaging techniques that have been useful

to assist with diagnosis of cervical cancer as well as for its

predictive/prognostic value. Future studies will be aimed at

providing validation of their capabilities and identifying the

specific clinical settings in which they provide the most

additional utility. Currently, this appears to be their role in

post-treatment follow up and management. Prospective data

with larger sample sizes are needed and will be provided in the

IQ-Embrace Cohort. MRI spectroscopy and other functional

MRI sequences should be further investigated along with DCE
Frontiers in Oncology 07
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and DWI to assess clinical uses and help improve care for

cervical cancer patients.
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Prognostic impact of tumor size
reduction assessed by magnetic
resonance imaging after
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with locally advanced
cervical cancer

Abel Cordoba1*, Benedicte Durand1, Alexandre Escande1,
Sophie Taieb2, Mariem Ben Haj Amor2, Marie Cecile Le Deley3,
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Objective: Pelvic magnetic resonance imaging (MRI) is a key exam used for the

initial assessment of loco-regional involvement of cervical cancer. In patients

with locally advanced cervical cancer, MRI is used to evaluate the early

response to radiochemotherapy before image-guided brachytherapy, the

prognostic impact of which we aimed to study.

Methods: Patients with locally advanced cervical cancer treated using

concomitant radiochemotherapy followed by closure treatment between

January 2010 and December 2015 were included in this study. Clinical,

anatomopathological, radiological, therapeutic, and follow-up data

were evaluated.

Results: After applying the inclusion and exclusion criteria to the initially

chosen 310 patients, 232 were included for evaluation (median follow-up

period, 5.3 years). The median age was 50 years (range, 25–83 years), and

the median tumor size was 47.5 mm (range, 0–105 mm). Based on the

International Federation of Gynaecology and Obstetrics classification system,

9 patients were in stage IB2; 20, IB3; 2, IIA; 63, IIB; 4, IIIA; 7, IIIB; and 127, IIIC1 or

higher. The re-evaluation MRI was performed at the median dose of 55.5 Gy,

and median reduction in tumor size was 55.2% (range, −20–100%). There was a

difference between the disease-free and overall survival rates of the patients

with a tumor response greater or lesser than 50%. The risk of recurrence or
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death reduced by 39% in patients with a tumor size reduction >50%. The overall

5-year survival rate of patients with a response greater and lesser than 50%

were 77.7% and 61.5%, respectively. The 5-year disease-free survival rate for

these two groups of patients were 68.8% and 51.5%, respectively.

Conclusion:Our study confirms the prognostic impact of tumor size reduction

using MRI data obtained after radiochemotherapy in patients with locally

advanced cervical cancer.
KEYWORDS

locally advanced cervical cancer, tumor shrinkage, MRI, radiochemotherapy, brachytherapy
Introduction

Cervical cancer is the fourth cause of cancer incidence and

mortality worldwide (1). Survival rates largely depend on the cancer

stage at diagnosis (2). Since 2018, the International Federation of

Gynecology and Obstetrics (FIGO) staging system has been revised

thanks to the evolution of imaging modalities and use of additional

procedures in everyday practice (3, 4). Locally advanced cervical

cancer comprises bulky tumors in FIGO stages IB3–IVA. The

standard treatment for such cervical cancers is pelvic (and

paraaortic, if indicated) radiochemotherapy that includes

radiation therapy and concurrent cisplatin chemotherapy,

followed by image-guided brachytherapy (5). Many factors, such

as age, FIGO stage, tumor width, uterine corpus involvement,

lymph nodes, and concurrent chemotherapy, are known to

negatively impact survival outcomes (6–8). While therapeutic

strategies, such as neoadjuvant and adjuvant chemotherapies, may

prevent systemic recurrence (9, 10), local or loco-regional

recurrences may be prevented with radical surgery (11).

Magnetic resonance imaging (MRI) is important during several

stages of cervical cancer treatment. Standard MRI protocols include

T1- and T2-weighted imaging of the pelvis in different planes. After

revision of the FIGO classification system, MRI data are being

considered while assessing the tumor stage. This imaging method is

superior to clinical examination alone to assess the extent of tumor

infiltration (12) and is particularly useful in determining the

requirement of adaptative radiotherapy for cervical cancer (13).

The extent of tumor shrinkage is considered to adjust the volume

and dose in adaptive radiotherapy and helps define the volume for

image-guided brachytherapy. Furthermore, the changes observed

on MRI, such as those in apparent diffusion coefficient and signal

intensity, can help predict outcomes after chemoradiotherapy for

cervical cancer (14–16).

Therefore, an easy, reproducible test, such as MRI, is best

suited in daily clinical practice to obtain information that can

help in early identification of patients at high risk of local and

loco-regional recurrence so that adjuvant therapies may be
02
121122
administered. We performed this study to test our hypothesis

that tumor response assessed by MRI after concomitant

radiochemotherapy for locally advanced cervical cancer has a

prognostic impact on recurrence.
Methods

Patients and treatment

In this single-center, observational study, we included

consecutive patients with a histologically proven diagnosis of

locally advanced cervical cancer (FIGO stages IB2– IVA) who

were treated with radiochemotherapy at our institution from

January 2010 to December 2015. The inclusion criteria were as

follows: age ≥18 years, cervix carcinoma observed on biopsy, and

availability of MRI data before and after radiochemotherapy on

the institution ’s radiological picture archiving and

communicating system at the time of the study. Patients who

did not provide consent for the use of personal data according to

the French national law regarding medical ethics in retrospective

studies (Act no. 2012-300 of March 5, 2012) were excluded from

the study. The treatment protocol that we implemented from

2010 to 2015 has been published previously (17, 18).
Data collection

We retrospectively evaluated the initial demographic and

clinical data, tumor characteristics, therapeutic data (radiation

therapy and chemotherapy protocol), closure treatments

(image-guided brachytherapy with or without radical surgery),

and follow-up data that we obtained from medical records.

Radiological data, including maximum tumor diameter at

the time of diagnosis, before image-guided brachytherapy, and

after concomitant radiochemotherapy, were collected by

performing MRI. MRI 1.5 T with gadolinium were performed
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at diagnosis and during the first week after completion of 45 Gy

external beam radiotherapy prior to brachytherapy. Diffusion

weighted imaging, and T1 and T2 weighted sequences with axial

and sagittal planes acquired obliquely axed on the cervical canal

were performed. Tumor size was defined as the largest tumor

dimension measured on MRI T2 weighted sequences. All MRI

examinations were evaluated by our radiologist specialized in

female pelvic radiology.

Historically, in the gynecologic tumor committee of our

center, MRI was performed the last week of radiochemotherapy

in order to adapt the following treatment according to the

response: Thus, for patients that tumor volume reduction was

50% ormore, (estimated asmaximum tumor diameter), treatment

continued with uterovaginal brachytherapy and such patients

were considered as good responders; on the other hand, those

patients whose tumors had reduced in size by less than 50% were

considered to be radioresistant and were offered surgical treatment

6-8 weeks after the end of radiochemotherapy.

Based in this argument, tumor size reduction rate of ≥50% was

considered a satisfactory response and no tumor visualization was

identified as a complete response.
Outcomes

The primary endpoint was disease-free survival that was

defined as the time period between the first day of

radiochemotherapy and any recurrence of the tumor (local,

regional, loco-regional, or metastatic) or death due to any cause.

Data were censored when there was no recurrence or death during

the last time the patient data were evaluated. The secondary

endpoint was overall survival defined as the time period between

the first day of radiochemotherapy and death due to any cause. Data

were censored when the patients were alive during the last time the

patient data were evaluated. Times until local, loco-regional, and

metastatic recurrence were calculated. Toxicities were assessed

using the Common Terminology Criteria for Adverse Events,

version 4.
Statistical analysis

Initial demographic and clinical data, treatment methods,

survival and recurrence rates, and post-therapeutic complications

were summarized using descriptive statistics. Missing data were

specified. Initial categorical variables were expressed as numbers

and percentages, while continuous variables were expressed as

median (range) or mean (standard deviation). Disease-free and

overall survival rates were assessed using the Kaplan–Meiermethod.

The cumulative impact of local, regional or loco-regional, and

metastatic recurrences was evaluated by the competing risks

method described by Kalbfleisch and Prentice. To compare

continuous and categorical variables, we used the Student’s t-test
Frontiers in Oncology 03
122123
or Mann–Whitney U test and Fisher’s exact or chi-square test,

respectively. The Fine and Gray model was used to compare the

MRI data at the end of radiochemotherapy between responsive and

non-responsive patients. The Cox regression analysis was used to

test the association between various prognostic factors and disease-

free survival. A p value <0.05 was considered statistically significant.

All statistical analyses were performed using Stata Statistical

Software, version 15 (StataCorp LP, College Station, TX, USA).
Results

The flowchart showing the selection criteria based on which

232 patients were included for evaluation is shown in Figure 1.

The median follow-up period was 5.3 years.
Clinical and tumor characteristics

At diagnosis, the median age was 50 years (range, 27–83

years) with a performance status of 0 for 193 patients (82.5%)

and ≥1 for 41 (17.5%). Active smoking was reported by 83

patients (35%), 81 (34.9%) never smoked, 20 (8.6%) stopped

before diagnosis, and data were not reported for 48 (20.7%). The

main clinical symptom was metrorrhagia that was reported by

180 patients (77.5%), 22 (9.4%) had other symptoms, and 30

(12.8%) displayed no symptoms.

The FIGO classification stage was IIIC1 or higher for 127

patients (54.7%), IB2 for 9 (3.8%), IB3 for 20 (8.6%), IIA for 2

(0.7%), IIB for 63 (26.9%), IIIA for 4 (1.7%), and IIIB for 7 (2.9%).

Histological examination revealed tumor type as squamous

carcinoma for 192 patients (82.8%), adenocarcinoma for 34

(14.5%), and other types for 6 (2.5%). The median tumor size at

diagnosis was 47.5 mm (range, 0–105 mm) (Table 1).
Response and outcomes

All the patients received concomitant chemotherapy; 210

(90.5%) received cisplatin weekly; 21 (9.0%), carboplatin; and 1

(0.4%), cisplatin–5-fluorouracil. The median overall treatment

time was 50 days (range, 37–225 days).

MRI was performed after radiochemotherapy (median

radiation dose, 55.6 Gy). The median maximum tumor diameter

before treatment was 47cm (0-105cm) and 21cm (0–53) after

radiochemotherapy. The median tumor size reduction rate was

55.2% (−20–100%). Satisfactory response was observed in 139

patients (59.4%) and 29 (12.4%) demonstrated a complete

response (Figure 2).

The risk of local recurrence after 1 and 5 years of follow-up

since the beginning of treatment was 10% (95% confidence

interval [CI]: 6.8%–14.7%) and 17% (95% CI: 12.5%–22.6%),

respectively. In terms of recurrence-free survival, there were 78
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events, namely, 67 recurrences followed by death, 11 recurrences

without death, and 0 deaths without recurrences. The median

time to recurrence-free survival was not achieved in this study

after 11 years of follow-up since the start of treatment. The

recurrence-free survival rates after 1, 3, and 5 years of follow-up

since the start of treatment were 84.3% (95% CI: 78.9%–88.4%),
Frontiers in Oncology 04
123124
69.7% (95% CI: 63.2%–75.3%), and 66% (95%CI: 59.2%–72.0%),

respectively. The overall survival rates after 1, 3, and 5 years of

follow-up were 97.4% (95% CI: 94.3%–98.8%), 80.0% (95% CI:

73.9%–84.6%), and 70.7% (95% CI: 64.0%–76.5%), respectively.

Complete response was never obtained for 28 patients

(12.1%) and 210 patients (89.7%) became disease free at one
FIGURE 1

Flowchart showing patient selection.
TABLE 1 Histological characteristics at diagnosis.

Characteristics N %

FIGO stage

IB1 1 0.00%

IB2 7 2.9%

IB3 21 8.9%

IIA 2 0.00%

IIB 63 26.9%

IIIA 4 1.7%

IIIB 7 2.9%

IIIC 59 25.2%

IVA 42 17.9%

IVB 20 8.5%

Clinical size of tumor at diagnosis (mm)

median (min, max) 40 (0, 100)

Histological type

Adenocarcinome 34 14.7%

Epidermoid 192 82.8%

Others 6 2.6%

Grade differentiation

1 43 18.5%

2 54 23.3%

3 42 18.1%

Missing 93 40.1%
frontie
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point. Recurrence was observed in 78 patients (33.3%) at a

median time of 12.5 months (range, 3.2–69.5 months), i.e., 25

(32.1%) with local recurrences; 17 (21.8%), regional; 14 (17.9%),

loco-regional; and 54 (69.2%), metastatic. While 67 patients

(28.6%) died, 167 (71.4%) were alive at the end of the study.

Therewas a statistically significant difference in the 1- and 5-year

overall survival rates between patients with a good tumor response

and those with an inadequate tumor response (98.5% [95% CI:

94.2%–99.6%] and77.5% [95%CI: 69.2%–83.8%] vs. 95.7% [95%CI:

88.8%–98.4%] and 61.0% [95% CI: 49.4%–70.7%]; p=0.005).

There was a statistically significant difference in the 1- and 5-

year recurrence-free survival rates between patients with a good

tumor response and those with a poor tumor response (91.1%

[95% CI: 85%–94.9%) and 73.3% [95% CI: 64.6%–80. 2%] vs.

(73.9% [95% CI: 63.7%– 81.7%) and 54.5% (95% CI: 43.2%–

64.5%]; p=0.0029).

There was a significant rise in the 1- and 5-year risks of local

recurrence in patients with an inadequate tumor response (18.5%

[95% CI: 11.9%–28.0%] and 26.2% [95% CI: 18.1%–36. 9%]) than

those of patients with a good tumor response (4.4% [95% CI: 2.0%–

9.5%] and 10.7% (95% CI: 6.5%–17.6%]; p=0.007).
Prognostic factors

The characteristics that demonstrated a statistically

significant association with disease-free survival in univariate

analysis are shown in Table 2.

Histologically, there was a statistically significant difference

between patients with squamous cell carcinoma and those with

adenocarcinoma both in in response (p=0.038) and overall survival

rates (p=0.02). Themedian overall survival rate was observed after 6

years of follow-up since the start of treatment in the adenocarcinoma

group, whereas patients with squamous cell carcinoma did not

achieve median survival even after 10 years of follow-up. The
Frontiers in Oncology 05
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overall survival after 5 years of follow-up in patients with

squamous cell carcinoma was 72.1% (95% CI: 64.5%–78.3%)

compared with 60.9% (95% CI: 42.2%–75.1%) in patients

with adenocarcinoma.

Multivariate analysis showed that the tumor response rate after

chemoradiotherapy had a statistically significant association with

disease-free survival after adjustment (p=0.008). Recurrence or

death risk showed a statistically significant reduction by 46% in

patients with a satisfactory response than the patients without a

satisfactory response did (hazard ratio [HR]=0.54, 95% CI:

0.34–0.85).

The other prognostic factors associated with disease-free

survival observed by multivariate analysis were performance

status ≥1 (p<0.001), histologic type (p=0.005) and total time of

treatment (p=0.003). Recurrence or death risk was three times

higher in patients with a performance score ≥1 than in patients with

a performance score of 0 (HR=3.49 [95% CI: 2.01–6.03], p<0.001).

Furthermore, this risk was twice as high in patients with

adenocarcinoma compared with that in patients with squamous

cell carcinoma (HR=2.16 [95% CI: 1.25–3.72], p=0.005) (Figure 3).

TTT superior to 50 days was associated in multivariate analysis to

higher risk of relapse free survival (HR=2.26 [95% CI: 1.33–

3.83], p=0.003)
Discussion

Summary of main results

In this study, we analyzed the MRI data of consecutive

patients with locally advanced cervical cancer treated between

2010 and 2015. We found that the 1- and 5-years local control

rates dropped significantly in patients with insufficient tumor

response than those in patients with good. Furthermore, there

was statistically significant reduction by 46% in recurrence or
A B

FIGURE 2

(A) OS and (B) DFS in patients with good response (>50%) or inadequate response (<=50%).
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TABLE 2 Prognostic value for disease-free survival using univariate and multivariate analyses.

Characteristics N Raw HR 95% CI Raw p value Adjusted HR 95% CI Adjusted p value

Tumor response 234

>50% 139 0.52 0.3– 0.81 0.004 0.54 0.34– 0.85 0.008*

<50% 95 1 1

Age at diagnosis 234 1.08 0.98– 1.17 0.087 0.97 0.88– 1.07 0.549

OMS 234

>1 41 2.94 1.83– 4.72 <0.001 3.49 2.01– 6.03 <0.001*

0 193 1 1

FIGO stage 234 0.1274 0.067

IB1–IIA 31 0.52 0.24– 1.16 0.55 0.33– 0.93

IIB–IIIB 75 0.69 0.42– 1.14 0.64 0.29– 1.43

IIIC1 and higher 128 1 1

Histological type 228 0.008 0.005*

Adenocarcinoma 34 2.04 1.20– 3.47 2.16 1.25– 3.72

Squamous carcinoma 194 1 1

Tobacco consumption 186 0.2355

Yes 82 0.7 0.43– 1.14

Ceased 20 0.59 0.25– 1.40

No 84 1

Clinical size of tumor at diagnosis 126 1.01 0.99– 1.03 0.292
Frontiers in Oncology
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HR, hazard ratio; 95% CI, 95% confidence interval; OS: FIGO, Federation of Gynecology and Obstetrics.
*p <0.05 in multivariate analysis.
FIGURE 3

Overall survival (OS) depending histologic type.
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death risk in the patients with satisfactory response compared

with that in those without a satisfactory response.
Results in the context of
published literature

MRI is the method of choice for local tumor staging at

diagnosis and tumor response evaluation in cases of cervical

cancer (19). Moreover, tumor size estimated by clinical

palpation or using MRI measurements is an important

prognostic factor in cervical cancer (20, 21). Recently, a

European multi-institutional study has demonstrated that

MRI-based image-guided brachytherapy is effective in

providing local control and improving outcomes in patients

with locally advanced cervical cancer (22). For selected elderly

patients who cannot undergo uterovaginal brachytherapy,

volumetric-modulated arc therapy with simultaneous

integrated boost can be useful (23). Moreover, the dose to

high-risk clinical target volume parameter and duration of

treatment inferior to 50 days are correlated to local control (7).

Mazeron et al. found that a high-risk clinical target volume >30

cm3 was an independent factor for local control with a relative local

relapse risk ratio of 2.51 (p=0.048), and in such cases, a dose of 92

Gy was required to achieve a 90% probability of local control.

However, a dose of 73.9 Gy was administered in cases of volumes

<30 cm3 (p =0.03) to achieve 90% local control (6). In a study by

Potter et al., the 5-year local control rate was 92%; 5-year pelvic

control rate, 87%; 5-year nodal control rate, 87%; 5-year overall

survival rate, 74%; and 5-year disease-free survival rate, 68% (7).

Dimopoulos et al. demonstrated a correlation between local control

and dose to high-risk clinical target volume parameter depending

on the residual tumor size after radiochemotherapy. The D90 for

high-risk clinical target volume >87 Gy resulted in an LR incidence

of 4% compared with 20% associated with D90 for high-risk clinical

target volume <87 Gy (22).

Furthermore, MRI data have an important role in the revised

cervical cancer FIGO classification system for local-regional

tumor staging, evaluation of the response to treatment, and

detection of tumor recurrence and possible complications (24)

The recommendations of the Groupe Européen de

Curiethérapie–European Society for Therapeutic Radiation and

Oncology (GEC-ESTRO) group state that MRI is the main tool

to identify the organs at risk and determine the target volume

during uterovaginal image-guided brachytherapy in patients

with locally advanced cervical cancer (25).

Similar to our findings, Schernberg et al. found that 247 patients

with locally advanced cervical cancer treated with combined

radiochemotherapy and image-guided brachytherapy demonstrated

a reduction in gross tumor volume of at least 90%, which is correlated

with reduced overall survival, progression-free survival, local control,

and distant metastasis control (p<0.001). Reduction in gross tumor

volume produces a survival impact that is greater than that by high-
Frontiers in Oncology 07
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risk clinical target volume (26). EMBRACE group has also evaluated

Local tumor regression evaluated by a T score, measured byMRI and

clinical examination and they showed its local control predictive

factor and also they demonstrated that it is useful to plan IGABT (27).

This aspect is of utmost importance. Having the right information in

terms of imaging with an MRI just before brachytherapy time will

optimize the implant guided by a thorough clinical examination.

Angeles et al. evaluated the impact of tumor volume and

regression after external beam radiotherapy measured by MRI on

overall survival and relapse-free survival and found that tumor

reduction rate ≥60% was significantly associated with a decreased

risk of relapse and death (28). Nam et al. determined the impact of

tumor regression measured by MRI at the beginning of

radiotherapy or radiochemotherapy, mid-radiotherapy, and 1

month after completion of radiotherapy and found that patients

with mid-radiotherapy regression ≥75% had 100% 5-year local

control rates and better disease-free survival than those with mid-

radiotherapy regression <75% (29). An important point to

consider is whether tumor reduction should be assessed by

regarding just the dimensions of the tumor or include volume

measurements as well. In this study, we did not evaluate the tumor

before treatment by diffusion-weighted MRI, which is known to

be associated with local control and relapse-free survival of

patients with locally advanced cervical cancer (14, 15, 30).

Concerning histologic type, adenocarcinomas have been

historically described as radioresistant tumors compared with

epidermoid carcinomas and are associated with poor clinical

outcomes mostly due to incomplete tumor regression after

radiochemotherapy (31). Our results showed an overall survival

rate of 72.1% after 5 years of follow-up in patients with squamous

cell carcinoma compared with 60.9% in patients with

adenocarcinoma. However, a recent study based on the

Surveillance, Epidemiology, and End Results database showed no

difference in overall survival between patients with locally advanced

cervica l cancer having squamous carc inomas and

adenocarcinomas (32).
Implications for practice and
future research

A question arises regarding the action required in cases of

non-responding patients and those with high-volume tumors

observed while performing image-guided brachytherapy. The

policy at our center before 2015 was to debate whether surgery

was an option. In this study, among the 15 patients who

underwent surgery after radiochemotherapy, tumors were not

observed in 7 patients. Moreover, surgery is associated with a high

risk of urinary disorders and bowel problems. Thus, the current

policy at our institution is to treat all such patients, including those

responding late to treatment, with radiochemotherapy and three-

dimensional image-guided brachytherapy independent of the

percentage of tumor regression observed on MRI.
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Furthermore, concomitant/adjuvant strategies based on the

addition of immunotherapy agents, such as atezolizumab

(NCT03612791) or cisplatin agents (NCT04016142), are being

evaluated in prospective studies. Overall, our study proves that

MRI is a useful tool in the management of patients with locally

advanced cervical cancer and the mandatory performance of MRI

after radiochemotherapy before image-guided brachytherapy

should be considered.
Strengths and weaknesses

The main strength of this study lies in the large, homogeneous

study population and the long follow-up duration. Nevertheless,

this study has a limitation, namely, the retrospective collection of

data and emergence of late comorbidities. The current radiotherapy

protocol has, therefore, been changed.
Conclusions

Our study highlights the importance of tumor shrinkage

after radiochemotherapy measured by MRI in determining

prognosis, which conforms to the findings of previous studies.
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and Byoungi-Gie Kim1

1Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University
School of Medicine, Seoul, Republic of Korea, 2Department of Radiology, Samsung Medical Center,
Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
Background: Invisible cervical cancers on MRI can indicate less invasive

surgery. Cervical cancers consist of squamous cell carcinoma (SCC) and

non-SCC, each with different long-term outcomes. It is still unclear if

surgical planning should be changed according to the histologic type of

cervical cancer when it is not visible on MRI.

Purpose: The purpose of the study was to determine if surgical planning for

cervical cancer that is not visible on MRI is influenced by the histologic type.

Materials and methods: Between January 2007 and December 2016, 155

women had Federation of Gynecology and Obstetrics (FIGO) stage 1B1

cervical cancer that was not visible on preoperative MRI. They underwent

radical hysterectomies and pelvic lymph node dissections. Among them, 88

and 67 were histologically diagnosed with SCC and non-SCC, respectively. The

size of the residual tumor, depth of stromal invasion, parametrial invasion, vaginal

invasion, lymphovascular invasion, and lymph node metastasis were compared

between these patients using the t-test, Mann–Whitney U test, Chi-squared test,

or Fisher’s exact test. The recurrence-free and overall 10-year survival rates were

compared between the groups by Kaplan–Meier analysis.

Results: The mean sizes of residual tumors were 8.4 ± 10.4 mm in the SCC

group and 12.5 ± 11.9 mm in the non-SCC group (p = 0.024). Themean depth of

stromal invasion in the SCC group was 12.4 ± 21.2% (0%–100%), whereas that in

the non-SCC group was 22.4 ± 24.4 (0%–93%) (p = 0.016). However, there was

no difference in parametrial or vaginal invasion, lymphovascular invasion, or

lymph node metastasis (p = 0.504–1.000). The recurrence-free and overall 10-

year survival rates were 98.9% (87/88) and 95.5% (64/67) (p = 0.246), and 96.6%

(85/88) and 95.5% (64/67) (p = 0.872), respectively.
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Conclusions: The non-SCC group tends to have larger residual tumors and a

greater depth of stromal invasion than the SCC group, even though neither is

visible on MRI. Therefore, meticulous care is necessary for performing

parametrectomy in patients with non-SCC cervical cancer.
KEYWORDS
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Introduction

Previously reported studies showed that postoperative

outcomes were good when Federation of Gynecology and

Obstetrics (FIGO) stage IB1 cervical cancer was not visible on

preoperative magnetic resonance imaging (MRI) (1–3). This

cancer has a much lower tumor burden than those visible on

MRI. Accordingly, the former has a better prognosis than the

latter. However, previous studies did not investigate whether

postoperative outcomes differed according to histologic type.

Patients with squamous cell carcinoma (SCC) frequently have

better long-term outcomes than those without SCC.

Moreover, the tumor conspicuity of non-SCC is not as good as

that of SCC, so it cannot be easily determined if non-SCC cervical

cancer is visible on MRI (4–6). Minimizing parametrectomy is

useful for avoiding postoperative complications (7–14). However,

false-positive results for invisible tumors may lead to

underestimating the extent of surgical resection needed. As a

result, unnecessary additional treatments may follow a minimally

invasive hysterectomy.

Thus, we hypothesized that the sizes of postoperative residual

tumors differ according to the histologic types of FIGO stage IB1

cervical cancer, even though these are not visible on preoperative

MRI. Rare studies have compared the postoperative outcomes of

SCC and non-SCC patients. The purpose of this study was to

determine if surgicalplanning for cervical cancernot visibleonMRI

is influenced by histologic type (SCC versus non-SCC).

Materials and methods

This study (File No.: 2022-04-030-001) was approved by

the Institutional Review Board at Samsung Medical Center and

the requirement for informed consent was waived due to the

retrospective design.
Patients

Between January 2007 and December 2016, a total of 747

patients with FIGO IB1 cervical cancer underwent MRI prior to
02
130131
radical hysterectomy. Among them, 52 patients were excluded

due to the poor image quality of the MRI examinations. Among

the remaining 695 patients, 540 and 155 had visible cancer and

invisible cancer, respectively, on preoperative MRI. Finally, 155

patients were included in the study population when they

underwent 1.5 T or 3.0 T MRI. Of them, 88 patients were

histologically confirmed to have squamous cell carcinoma (SCC)

(SCC group). The remaining 67 patients were histologically

confirmed to have other cervical cancers (non-SCC group).

The medical records of the patients in the SCC group (48.5 ±

12.1 years; 20–81 years) and the non-SCC group (44.4 ± 8.5

years; 29–64 years) were reviewed. Colposcopic biopsy and

conization were performed in 80.0% (124/155) and 60.0% (93/

155), respectively.

Bimanual pelvic and rectovaginal examinations were done to

determine the disease extent. Laboratory tests, chest radiography,

cystoscopy, and sigmoidoscopy were routinely performed for

clinical FIGO staging (15). The time interval between MRI and

hysterectomy ranged from 1 to 47 days (median, 16 days) in the

SCC group and from 0 to 39 days (median, 15 days) in the non-

SCC group.

The MR images were preoperatively interpreted by one of

two radiologists who had approximately five or more years of

experience in gynecologic imaging. They were additionally

reviewed by one radiologist who had approximately 19 years

of experience in gynecologic imaging.

Radical hysterectomy, vaginectomy, and lymph node (LN)

dissection were performed on all patients. Additional surgical

procedures depend on the clinical stage and the surgeon’s

decision. When pelvic LNs were suspicious for metastasis at

frozen sectioning, the para-aortic LNs were dissected.

Two pathologists examined the surgical specimens. They

recorded the size of the residual tumor, histologic type, depth of

stromal invasion, lymphovascular space (LVS) invasion,

parametrial invasion, vaginal invasion, resection tumor margin,

and LN metastasis.

After primary treatment, all patients received adequate follow-

up procedures. During this period, patients underwent physical

examinations, Pap smears, and tumor marker analysis every three

months for the first two years and every six months for the next
frontiersin.org
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three years. Imaging studies, such as abdominopelvic computed

tomography (CT) or pelvic MRI, were conducted every 6 – 12

months for the first two years and then annually for the next

three years.
MR imaging

Pelvic scans were conducted with a 1.5 (n = 27) MRI scanner

(Signa, GE Medical System, Milwaukee, USA) or 3 T (n = 128)

MRI scanner (Intera Achiva 3T; Philips Medical System, Best,

The Netherlands). The upper abdomen was scanned by MRI or

CT. The 1.5 TMRI sequences of the pelvis included T2-weighted

images (T2WI), T1-weighted images, and dynamic contrast-

enhanced (DCE) images. Diffusion-weighted imaging (DWI)

was added to the 3 T MRI examination. However, DWI could

not be scanned at the 1.5 T MRI because the MR software did

not have the capability. T2WI were obtained in the axial, sagittal,

and coronal planes. The other sequences were obtained in the

axial plane. The upper abdomen was scanned from the lower

lung to the aortic bifurcation. The same MR parameters as those

used by Park et al. were used (1).
Data analysis

Invisible cancer was defined when the cervical tumor was

invisible on T2W and DCE 1.5T MR images and when it was

invisible on T2WI, DWI, and DCE 3T MR images (Figures 1, 2).
Frontiers in Oncology 03
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When post-biopsy inflammation was differentiated from cervical

cancer on T2W because both were hypertense, DWI or DCE

images were reviewed; the former had no diffusion restriction or

showed iso- or higher enhancement compared to neighboring

cervical tissue, unlike the latter.

Patient age, biopsy type, histologic type, and SCC antigens or

other tumor markers were compared between the SCC and non-

SCC groups. The size of the residual tumor, depth of stromal

invasion, LVS invasion, parametrial invasion, vaginal invasion,

and LN metastasis were also compared between the groups.

Recurrent tumors were assessed on follow-up CT or MR

images. Recurrence-free and overall 10-year survival rates were

calculated and compared between the SCC and non-

SCC groups.
Statistical analysis

Patient age, the size of the residual tumor, and the depth of

stromal invasion were compared by the Mann–Whitney test

because these data did not show a Gaussian distribution. SCC

antigens were compared between two groups using the t-test.

The proportions of biopsy type, cancer histology, LVS

invasion, parametrial invasion, vaginal invasion, LN metastasis,

and recurrence rate were compared using the chi-square or

Fisher’s exact test.

Odds ratios (ORs) and 95% confidence intervals were

calculated using the Woolf approximation. When the value

was zero, 0.5 was added to each to make the calculation possible.
frontiersin.org
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FIGURE 1

A 35-year-old woman with squamous cell carcinoma. (A) The T2-weighted sagittal MR image shows no focal lesion in the cervix. The red
arrowhead indicates the external OS of the uterine cervix. (B) The delayed contrast-enhanced sagittal MR image shows no residual cancer in the
cervix. The red arrowhead indicates the external OS of the uterine cervix. The pathologic report confirmed no residual cancer in the resected
uterus. There was also no invasion of the lymphovascular space, vagina, parametrium, or lymph node metastasis.
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Recurrence-free and overall 10-year survival rates were

compared using Kaplan–Meier survival curves.

Commercially available SPSS 24.0 software for Windows (SPSS

Inc., Chicago, IL, USA) was used for the statistical analyses. A p-

value of <0.05 was considered statistically significant.
Results

The median age of the patients in the SCC group was

higher than that in the non-SCC group (p = 0.023) (Table 1). In

the SCC group, 65.9% (58/88) underwent conization and 80.7%

(71/88) had colposcopic biopsies, whereas in the non-SCC

group, 52.2% (35/67) underwent conization and 79.1% (53/

67) had colposcopic biopsies (p = 0.085 and p =0.808,

respectively). The histologic diagnoses in the non-SCC group

inc luded adenoca r c inoma in 89 . 6% (60/67 ) and

adenosquamous carcinoma in 10.4% (7/67). There was no

difference in tumor markers (p = 0.296–0.906) between

the groups.

The median size of the residual tumor was 8.4 ± 10.4 mm (0–

36 mm) in the SCC group and 12.5 ± 11.9 mm (0–55 mm) in the

non-SCC group (p = 0.024) (Table 2) (Figures 1, 2). The median

depth of stromal invasion was 12.4 ± 21.2% (0–100%) in the SCC

group and 22.4 ± 24.4% (0–93%) in the non-SCC group (p =

0.016) (Figures 1, 2). Residual tumors in these groups were
Frontiers in Oncology 04
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detected in 52.1% (50/88) and 68.7% (46/67) (p = 0.133),

respectively. SCC group (n = 88) underwent conization in 58

(65.9%) who had residual cancer in 27 (46.6%). Non-SCC group

(n = 67) underwent conization in 35 (52.2%) who had residual

cancer in 16 (45.7%). There was no difference between SCC and

non-SCC groups regarding the incidence of residual cancer

following conization (p = 1.000).

Parametrial invasion in the SCC and non-SCC groups was

detected at 0% (0/88) and 0% (0/67), respectively. LVS invasion

was 9.1% (8/88) in the SCC group and 7.5% (5/67) in the non-

SCC group, respectively (p = 0.701). LN metastasis was detected

in 2.3% (2/88) and 0% (0/67) of the SCC and non-SCC groups,

respectively (p = 0.504). Vaginal invasion was detected in 1.1%

(1/88) and 0% (0/67) of the SCC and non-SCC groups,

respectively (p = 1.000).

The tumor recurrence rate was 1.1% (1/88) in the SCC group

and 4.5% (3/67) in the non-SCC group on follow-up CT or MR

images (p = 0.316). The recurrence-free 10-year survival rate in

the SCC and non-SCC groups was 98.9% (87/88) and 94.5% (64/

67) (p = 0.246), respectively. The overall 10-year survival rate

was 96.6% (85/88) and 95.5% (64/67) in the SCC and non-SCC

groups, respectively (p = 0.872).

Recurrent tumors had the highest OR, at 4.078 in the SCC

group versus the non-SCC group. The other ORs ranged from 0

to 1.665 for residual tumor, LN metastasis, LVS invasion, and

vaginal invasion.
BA

FIGURE 2

A 48-year-old woman with endocervical adenocarcinoma. (A) The T2-weighted sagittal MR image shows no tumor in the uterine cervix. The
red arrows indicate a poorly demarcated cystic mass, which was preoperatively interpreted as normal endocervical glands. (B) The apparent
diffusion coefficient (ADC) axial image shows no focal lesion with low ADC values in the cervical canal (red arrowhead). However, the pathologic
report confirmed that there was a residual tumor in the endocervical canal. The tumor size was measured as 2.0 × 1.5 cm and the depth of
stromal invasion was 0.4 cm in a 1.3-cm cervical wall. It was well-correlated with the endocervical lesion in (A). Tumor invasion to the
lymphovascular space, vagina, and parametrium and lymph node metastasis were all negative.
frontiersin.org
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Discussion

Our results showed that the residual tumor size in the SCC

group was smaller than that in the non-SCC group, even though

none of these tumors were visible on MRI. The depth of stromal

invasion in the SCC group was also smaller than that in the non-

SCC group.

Currently, MRI is more available for women with cervical

cancer because it is more precise for measuring tumor size than a

physical examination (16–18). These MR images can be scanned

in the axial, sagittal, and coronal planes. Therefore, the greatest

tumor diameter and tumor volume are measured more

accurately by palpation. Gynecologists inspect the outer tumor

surface alone, but not the inner margin, which is well-depicted

on MRI. This imaging modality provides precise tumor staging,

and thus, it is more sensitive to detecting parametrial invasion or

endocervical cancer than visual assessment (16–18). MRI also

has the potential to avoid intravenous urography, cystoscopy,

and sigmoidoscopy if cervical cancer is in the early stages (19–

22). Moreover, current FIGO staging requires metastatic work-
Frontiers in Oncology 05
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up in iliac or paraaortic LNs, which are not palpable (22). T2WI

is useful for detecting morphologic changes, such as increased

size, round shape, and the obliterated fatty hilum of metastatic

LNs (23, 24). DWI is sensitive to changes in the tissue cellularity

of metastatic LNs (25, 26). These MRI findings are currently

used to determine if there is LN metastasis.

Cervical cancer that is not visible on MRI strongly suggests a

lower tumor volume compared to those that are visible onMRI (1–

3). Therefore, tumor invasion of the parametrium or vagina is

extremely rare in invisible cervical cancer.The likelihoodof cervical

stromal or lymphovascular space invasion ismuch lower in cervical

cancer that is not visible onMRI. LN, or hematogenousmetastasis,

is also rare. As a result, the long-term survival of patients with

invisible cancer is better than that of patients with cancer visible on

MRI. Moreover, additional post-operative treatments, such as

radiation therapy or chemotherapy, are rarely necessary for

women with invisible cervical cancer. Tumor invisibility on MRI

can be a strong indicator of minimally invasive surgery.

Huang et al. reported that DCEI improved the depiction of

cervical cancer that was not visible on T2WI and DWI (27).
TABLE 1 Demographics in patients with IB1 SCC and non-SCC cervical cancers.

FIGO stage IB1 cervical cancers P values

SCC (n=88) Non-SCC (n=67)

Age (years) 48.5± 12.1 (20–81) 44.4 ± 8.5 (29–64) 0.023

Conization 58 (65.9%) 35 (52.2%) 0.085

Colposcopic biopsy 71 (80.7%) 53 (79.1%) 0.808

SCC antigen (ng/ml) 1.3 ± 4.9 (0–46) 1.5 ± 2.8 (0–15) 0.869

CA-125 8.1 ± 5.7 (2–20) 13.3 ± 17.0 (0–107) 0.296

CA-19-9 5.9 ± 3.8 (2–10) 7.6 ± 6.1 (0–23) 0.906
fron
SCC, squamous cell carcinoma.
Mann-Whitney test was used to compare age, CA-125.
T-test was used to compare SCC antigen.
Chi-square test was used to compare types of biopsy or histological types of cervical cancers.
Age and SCC antigen were shown as median ± standard deviation (range).
TABLE 2 Pathologic comparison of SCC and non-SCC groups.

FIGO stage IB1 cervical cancers P values

SCC (n=88) Non-SCC (n=67)

Size of residual tumor (mm) 8.4 ± 10.4 (0–36) 12.5 ± 11.9 (0–55) 0.024

Depth of stromal invasion (%) 12.4 ± 21.2 (0–100) 22.4 ± 24.4 (0–93) 0.016

No residual tumor 38 (43.2%) 21 (31.3%) 0.133

Lymphovascular invasion 8 (9.2%) 5 (7.5%) 0.701

Parametrial invasion 0 (0.0%) 0 (0.0%) –

Vaginal invasion 1 (1.1%) 0 (0.0%) 1.000

Lymph node metastasis 2 (2.3%) 0 (0.0%) 0.504
T-test was used to compare size of tumor and depth of stromal invasion.
Chi-square test was used to compare no residual tumor and lymphovascular invasion.
Fisher’s exact test was used to compare vaginal invasion, and lymph node metastasis.
Size of tumor and SCC antigen were shown as median ± standard deviation (range).
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Quantitative analysis ofDCEI parameters helps enhance the residual

tumor after conization. Unfortunately, our study analyzed DCEI by

visual assessment alone. Therefore, DCE-MRI quantitative

parameters should be added to exclude the likelihood of residual

cancer after conization. Hu et al. reported that radiomics had the

potential to additionally detect cervical cancer that is not visible on

conventionalMRI (28).Theydemonstrated that analyzing radiomics

improved diagnostic performance for detecting residual cancer after

biopsy or conization. Xia et al. studied radiomics based on a

nomogram to predict pelvic LN metastasis in women with early

cervical cancer. They achieved high diagnostic accuracy for detecting

preoperative pelvic LN metastasis (29).

Park et al. showed that many residual cancers were detected

postoperatively even if the tumors were not visible on

conventional MR images (1). They tried to identify useful MRI

features to allow for minimally invasive surgery because radical

hysterectomy with LN dissection results in serious postoperative

morbidities. As such, invisible tumors on conventional MR

images alone help gynecologists minimize parametrectomy

procedures and reduce the extent of LN dissection.

We also agree with their point of view about the clinical

significance of cancer-invisible MRI findings. In their research,

almost half of the cases had a residual tumor, whose median size

was 5 mm. Their 10-year recurrence-free survival rate was

almost 100%. As a result, if small residual tumors are detected

with new MRI techniques, the patients may undergo

unnecessary radical surgery, which seems to be an excessive

treatment. When cervical cancer is invisible on T2WI, DWI, and

DCEI with visual assessment alone, these MRI findings can

provide a clue for indicating minimally invasive surgery.

SCC cervical cancer tends to manifest as a solid tumor on

MRI, and thus, the tumor size is easily measured (30). It is well

correlated with the tumor size on the hysterectomy specimen. In

contrast, the tumor margin of non-SCC cervical cancer is not

easily demarcated on preoperative MRI because a cystic

component is frequent (4–6). Therefore, if non-SCC is

composed mainly of cysts, it is frequently difficult to

differentiate from nabothian cysts. Besides, if a few cancer cells

are just lining the surface of cysts, current MRI techniques make it

difficult to determine if there is a residual tumor following a

biopsy. For these reasons, the size of the residual tumor and the

depth of stromal invasion in the non-SCC group could not be

easily identified on preoperative MRI. These findings in the non-

SCC group tend to be more frequent than in the SCC group,

although neither are visible on MRI.

Radical hysterectomy is the standard treatment for FIGO stage

IB1 cervical cancer and, subsequently, improves the long-term

survival rate. This surgical technique consists of parametrectomy

and LN dissection. Accordingly, patients have a higher risk of

postoperative complications, such as voiding difficulty (7–9),

anorectal dysfunction (10, 11), sexual dissatisfaction (10, 11), and

lymphedema (12–14), if parametrectomy or LN dissection

becomes aggressive. Therefore, greater attention is being paid to
Frontiers in Oncology 06
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minimally invasive surgery to minimize these postoperative

complications. The patients in our cases had a relatively younger

median age (less than 50 years) and a higher overall survival rate.

Because of the radical hysterectomy procedure, they have a high

likelihood of postoperative morbidities for a long period. From this

point of view, excessive surgical resection can be avoided in women

who have cervical cancer that is not visible on MRI because local

invasion or metastasis is histologically negative in almost all cases.

This study had several limitations. First, it was conducted

retrospectively. Therefore, the likelihood of selection bias cannot

be excluded. Second, the number of 1.5 T MRI examinations was

relatively large. Unfortunately, our 1.5 T scanner could not provide

DWI sequences because it was an old version. However, a 1.5 T

scanner has a lower signal-to-noise ratio than a 3 T scanner. Third,

the number of SCCcaseswas relatively small, and the proportion of

SCC cases was relatively less than that of non-SCC. There was no

difference in long-term survival rates, even though the recurrence

rate of SCC was not the same as that of non-SCC.
Conclusion

The non-SCC group tends to have a larger size of residual

tumor and a deeper depth of stromal invasion than the SCC

group. Despite these histologic results, non-SCC cervical cancer

is frequently invisible on preoperative MRI. Therefore, the extent

of parametrectomy for non-SCC cervical cancer should be

different from that for SCC cervical cancer, even though these

tumors are not visible on preoperative MRI.
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Quantitative analysis of superb
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Objectives: As an ultrasound (US) image processing method, superb

microvascular imaging (SMI) extracts and visualizes flow signals from vessels

through advanced clutter suppression technology. We investigated the

feasibility of SMI in monitoring treatment response in patients with locally

advanced cervical cancer (LACC) undergoing chemoradiotherapy (CRT).

Methods: Forty-nine patients underwent CRT and received SMI examination at

3 time points: before therapy (baseline), 3 weeks during, and 1 month after CRT.

The maximum tumor diameter (Dmax), vascularity index (VI), and their

percentage changes (DDmax and DVI) were calculated. DDmax was

compared with MRI results as the reference standard.

Results: Based on the MRI findings, 44 were classified as complete response

(CR) group and 5 as partial response (PR) group. The Dmax and DDmax showed

decrease in CR and PR groups at 3 weeks during CRT (P< 0.05), but no

significant difference between the two groups (P > 0.05). Compared to the

baseline, significant decrease in VI and DVI were observed at during and after

treatment in the two groups (P< 0.05). Moreover, there were significant

differences in VI and DVI at 3 weeks during CRT between the CR and PR

groups (P< 0.05). DVI at 3 weeks during CRT showed a better predictive

performance for responder prognosis than VI (AUC = 0.964, AUC = 0.950,

respectively, P = 0.001), with a cut-off value of 41.6% yielding 100% sensitivity

and 86.4% specificity.

Conclusions: The SMI parameters (VI and DVI) have potential for monitoring

treatment response in LACC.

KEYWORDS

cervical cancer, chemoradiotherapy, ultrasound, superb microvascular imaging,
vascularity index
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Introduction

Cervical cancer, as the fourth most common malignancy, has

become a global female health problem. Cervical cancer is estimated

to cause 570,000 new cases and 311,000 deaths each year (1, 2). At

the same time, the onset age of cervical cancer tends to be younger,

from the original 40-50 years old to 35 years old, with an annual

increase of 2%-3%. Especially in low- to middle-income countries

(LMIC), where lack the screen and adequate treatment,

approximately 90% of cervical cancer remains fatal (3). Locally

advanced cervical cancer (LACC) (FIGO stage IB2-IVA) has the

characteristics of large lesions (> 4 cm), easy distant metastasis,

difficult to operate directly, and poor therapeutic effect.

Concomitant chemotherapy and radiotherapy (CRT) consisting

of cisplatin-based chemotherapy, external-beam radiotherapy

(EBRT), and intracavitary brachytherapy (ICR) is considered the

recommended standard treatment for LACC (4). Due to tumor

heterogeneity, all cancers are unlikely to respond uniformly to a

specific treatment regimen, resulting in tumor uncontrolled,

locoregional recurrence, or distant metastases after treatment in

some patients (5, 6). Thus, surveillance of changes in tumor burden

associated with treatment will be helpful for adjusting treatment

strategy to obtain a better outcome in LACC (7, 8).

Current conventional imaging techniques, such as magnetic

resonance imaging (MRI), computed tomography (CT) and

ultrasound (US), rely on identifying morphological changes to

evaluate and monitor the effect of CRT or disease progression in

LACC. In fact, changes at the molecular or cellular level that

occur early in responders significantly precede changes in tumor

volume or size (9). Microstructural and microcirculatory

changes during anticancer therapy can be detected by

functional imaging (18F-fluorodeoxyglucose positron emission

tomography, dynamic contrast-enhanced MRI, diffusion-

weighted MRI, et al.) (10–12). However, these new approaches

have limitations such as increased radiation burden, potential

reaction effects of contrast agents, high cost, or technical

complexity, making them difficult to be used for monitoring in

the clinical routine (9, 13). Therefore, based on efficacy, safety

and health economics considerations, US remains the preferred

method for tracking curative effect, especially in LMIC.

Increased vascularization plays a crucial for sustain tumor

growth, invasion, and metastasis (14, 15). It is demonstrated that

angiogenesis is an important factor affecting cervical cancer

development and survival prognosis (16, 17). Some studies

have reported that the degree of tumor vascularity decline is

directly proportional to therapeutic response. Thus, the

assessment of tumor vascularity could become a novel means

of monitoring tumor response to CRT in LACC.

Color or power Doppler US plays an indispensable role in

assessing tumor angiogenesis and predicting the efficacy of CRT in

cervical cancer (18, 19). Unfortunately, color or power Doppler US

is limited by a wall filter to truly distinguish between low-flow

components and clutter motion artifacts, which makes the fine
Frontiers in Oncology 02
137138
vessels of cervical lesions potentially undetectable. In addition, color

or power Doppler US has demonstrated poor reproducibility (20).

With the advent of intravenous US contrast agent, contrast-

enhanced US (CEUS) significantly enhances the signal of slow

and low-volume blood flow to improve the visualization of with

microvascular (20 - 39 mm in diameter) (21). Cervical cancer has

markedly different quantitative and qualitative filling patterns with

CEUS. CEUS might be a valuable tool in predicting remaining

tumor on treatment (22). However, CEUS is an invasive imaging

and carries the risk of drug allergy. Superb microvascular imaging

(SMI) is a unique ultrasonic Doppler technology. SMI extracts and

visualizes flow signals from vessels through advanced clutter

suppression technology, enabling clear visualization of low

velocity small-volume blood vessels without the use of contrast

agents. Under the qualitative guidance of SMI images, tumor

angiogenesis was quantitatively evaluated by vascular index (VI)

(23). Although some preliminary experience reports have

demonstrated the benefits of SMI in the diagnosis of multiple

tumors (23, 24), the potential of this new US technique for efficacy

assessment in cervical cancer has not yet been fully evaluated.

We aimed to assess whether using SMI to evaluate tumor

vascularity could provide a means for monitoring tumor

response to CRT in a series of patients with LACC.
Materials and methods

Patients and treatment

Forty-nine patients with LACC (FIGO stage IIB to IVA) were

enrolled from September 2020 and May 2022. The exclusion

criteria were follows: (a) history of prior treatment; (b) dropping

out during therapy; (c) incomplete US or MRI data (Figure 1). All

patients received histopathological diagnosis through multiple

punch biopsies and had complete medical records.

All patients underwent external beam radiotherapy (EBRT)with

15-MV photon beams at a daily dose of 1.8-2.0 Gy (5/w), with a

median total dose of 50.4 Gy. Subsequently, high-dose-rate

intracavitary brachytherapy (ICR) was performed twice a week

with an iridium-192 source as 6 Gy per insertion in five fractions

(a total dose of 30 Gy). Four to six cycles of platinum-based

chemotherapy were supplemented at 3-week intervals. The

formulation of chemotherapy cycle is generally determined by

various factors such as FIGO stage, malignancy, and

physical condition.
Treatment response evaluation

MRI is the best currently acceptable and reproducible

method to assess objective response in cervical cancer. Whole-

pelvic cavity and perineum MR data from patients with LACC

were obtained from 3.0T MR scanner (Siemens Magnetom
frontiersin.org
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Skyra, Germany) within one week before treatment and 1 month

after therapy completion. The longest tumor diameter was

analyzed according to sagittal T2-weighted images and the

percentage change in tumor size was calculated as follows:

Change in tumor size%

=
(pre − longest diameter − post − longer diameter)

pre − longest diameter

� 100%

The clinical efficacy was assessed by two radiologists with more

than 5 years of experience in pelvic MRI diagnosis according to the

Response Evaluation Criteria for Solid Tumors (RECIST) guidelines

(version 1.1) (25). The radiologists reached consensus through

discussion to resolve differences in image interpretation. All

patients were divided into four groups: complete response (CR)

as disappearance of all target lesions; partial response (PR) as a

reduction in tumor diameter of more than 30%; progressive disease

(PD) as an increase in tumor diameter of more than 20%; stable
Frontiers in Oncology 03
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disease (SD) as neither sufficient regression to match PR nor

sufficient enlargement to match PD (25).
Transvaginal ultrasound examination

All real-time transvaginal US (TVUS) examinations and the

SMI analysis were performed by a group of three fellows with

more than 8 years of experience in US of gynecological oncology,

who were unaware of MRI findings and the treatment outcome.

TVUS examination was performed at 3 time points: pre-therapy

(baseline), 3 weeks during (mean, 18.4 days; range, 15 - 21 days),

and 1 month after CRT (Figure 2), using an Aplio i800 US

system (Canon Medical Systems, Tokyo, Japan) with a

multifrequency linear 3 - 11 MHz endovaginal transducer. All

SMI examination were acquired with the same settings

throughout the study: 8.5 cm depth, 3.5 focal zone, 5.8 MHz

Doppler frequency, 43 color gain, frame rate > 50 fps, to ensure

quantitative US comparison. VI value was obtained by manually

delineating the lesion (or cervix) boundary in a still SMI image

with the maximum Doppler signals. One fellow performed real-

time US including TVUS and measurement of the VI of SMI,

followed by the other two fellows obtaining additional VI

measurements for the lesion, then taking the average value.

The change in VI was calculated based on the following formula:

Change in VI(DVI) =
(VIpre − VIpost)

VIpre
� 100%

The change in the maximum long-axis diameter (Dmax) of

the primary tumor was calculated to quantitatively evaluate the

efficacy of CRT, according to the following formula:

Change in VI(DDmax) =
(Dmaxpre − Dmaxpost)

Dmaxpre
� 100%
Statistical analysis

Statistical analysis was put into action on SPSS software version

22.0 (SPSS Inc., Chicago, IL, USA). The difference in characteristics
FIGURE 1

Flowchart of patient enrollment. CRT, chemoradiotherapy.
FIGURE 2

The schedule of MRI, TVUS examination and treatment. CRT, chemoradiotherapy; EBRT, external beam radiotherapy; ICR, intracavitary brachytherapy.
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of the two groups was compared using Student’s unpaired t-test or

Mann-Whitney test. The multiple comparisons in VI, tumor Dmax

and their changes between the two groups were assessed using

repeated measures analysis of variance (ANOVA) and Student’s

unpaired t-test. Receiver operating characteristic (ROC) curve and

area under curve (AUC) were applied to analyze the value of each

index in predicting CRT. Intraclass correlation coefficients (ICCs)

were calculated to estimate interobserver and intraobserver

reproducibility. The ICC value was judged to provide excellent

reliability (0.81 - 1.00), good reliability (0.61 - 0.80), moderate

reliability (0.41 - 0.60), or poor reliability (0.00 - 0.20), fair reliability

(0.21 - 0.40). Two-sided test was used for all tests, and p< 0.05 was

considered statistically significant.

Results

Patient and tumor characteristics

The characteristics of the study patients are summarized in

Table 1. The mean age of the 49 patients was 54 ± 10.7 years,

ranging from 33 to 72 years. Based on the MRI findings, 44 were

classified as CR group, 5 as PR group, and 0 in SD/PD groups. The

mean age was 54.1 ± 11.0 years for the CR group and 52.8 ± 9.3

years for the PR group (p = 0.636). There was no significant

difference between the CR and PR groups in the primary tumor

Dmax (p = 0.147), FIGO stage (p = 0.504), histological type

(p = 0.554) or histological grade (p = 0.636). Figure 3 illustrated

the SMI images and corresponding axial T2-weighted MRI of a

typical CR case throughout the treatment, while showed Figure 4 a

representative PR case.
Predictive values of tumor size and
changes during CRT

At 3 weeks during CRT, Dmax of CR group was slightly lower

than that of PR group (p = 0.083), and CR group had higher DDmax

than PR group (p = 0.435), but there were no significant different

between the two groups. After treatment, Dmax was significantly

reduced in both CR and PR groups. Decrease in Dmax of CR group

(DDmax = 100%) is obviously more than that of PR group (DDmax

= 47.3 ± 6.8%) (p< 0.001) (Table 2). The results of DDmax of the two

groups showed good agreement with MRI. The ROC analysis

revealed no significant area-under-the-curve (AUC) values for

Dmax (AUC = 0.745, p = 0.087) and DDmax (AUC = 0.536, p =

0.792) at 3 weeks during CRT (Figure S1).
Predictive values of VI and changes
during CRT

Table 2 summarizes the mean VI and DVI of the tumors in

the CR and PR groups at each time point. Before starting
Frontiers in Oncology 04
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treatment, CR group and PR group demonstrated similar

tumor angiogenesis, with mean VI of 0.400 ± 0.060 and

0.401 ± 0.032, respectively. VI decreased during CRT (p<

0.001) in patients with LACC. The VIs were significantly

decreased from 3 weeks after treatment initiation to therapy

completion in the CR group (p< 0.001), and the difference

between CR and PR groups was found to be significant (p =

0.004 and p< 0.001). Compared to baseline at pre-therapy, VI of

the PR group slightly decreased at 3 weeks during treatment (p =

0.007). However, no significant difference of VI was seen from 3

week after treatment initiation to therapy completion in PR

group (p = 0.078). Similarly, DVI exhibited significant

differences between the two groups at 3 weeks during

treatment and after treatment (all p< 0.001). The VI as well as

DVI at 3 weeks during CRT was able to predict the responder

prognosis, with an AUC of 0.950 (p = 0.001) and 0.964 (p =

0.001), respectively. The optimal cut-off values for predicting

responder prognosis were 0.264 for VI and 41.6% for DVI,
TABLE 1 Characteristics of the study group.

Characteristics No. of patients (%)

Age (years)

≤ 50 14 (28.6)

51 - 60 20 (40.8)

> 60 15 (30.6)

FIGO stage

IIB 10 (20.4)

IIIA 15 (30.6)

IIIB 12 (24.5)

IIIC 8 (16.3)

IVA 4 (8.2)

Histologic type

Squamous cell carcinoma 42 (85.7)

Adenocarcinoma 7 (14.3)

Histological grade

G1 - G2 19 (38.8)

G3 30 (61.2)

Tumor diameter (primary)

< 4 cm 8 (16.3)

≥ 4 cm 41 (83.7)

Treatment outcome

Complete response 44 (89.8)

Partial response 5 (10.2)

G1, well differentiated; G2, moderately differentiated; G3, poorly differentiated; FIGO,
the International Federation of Gynecology and Obstetrics.
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respectively. Furthermore, DVI at 3 weeks during treatment

showed a better predictive performance for responder

prognosis than VI, with a 100% sensitivity and 86.4%

specificity (Figure S1).
Reproducibility analysis

The ICCs of VI for interobserver and intraobserver variability

of measurements were 0.911 (95% CI, 0.885 - 0.932; p< 0.001) and

0.925 (95% CI, 0.910 - 0.937; p = 0.001), respectively.
Discussion

CRT improves long-term survival and reduce local

recurrence in patients, which is one of the most important

methods of treatment for LACC (26). Due to cytotoxic effects,

chemotherapeutic drugs (such as cisplatin and paclitaxel) act
Frontiers in Oncology 05
140141
directly on microvascular and tumor cells to reduce tumor size,

leading to tumor re-oxidation and cell cycle entry into a

radiation-sensitive phase. Currently, imaging modalities are

used to effectively evaluate tumor size change to intuitively

reflect the treatment effect. We observed significant decreases

in tumor size during and after CRT in patients with LACC,

especially in the CR group. Although US is not recommended as

a general tool in RECIST guideline (27), our study confirmed

that tumor size reduction on US images were largely consistent

with that on MRI images after CTR. However, there was no

significant difference in tumor size between the CR and PR

groups at 3 weeks during treatment, which did not appear to be

useful in predicting tumor response at initial stage of treatment.

However, reduction in tumor size may occur after several weeks,

despite a positive functional response to therapy (28). Thus, an

early and accurate predicting marker of effective therapy is

needed to provide a basis for clinical optimization of

treatment regimens, while also reducing unnecessary post-

treatment toxicities and economic costs.
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FIGURE 3

A patient with locally advanced cervical cancer (FIGO stage IIIB) experienced complete response to chemo-radiotherapy (CRT). SMI images show a
significant decrease in VI in cervical cancer: (A) 0.367 prior to CRT; (B) 0.188 at week 3 during CRT; (C) 0.600 post CRT. Corresponding axial T2-
weighted images exhibited a significant decrease in the maximal diameter of tumor: (D) 5.3 cm at pre-therapy e and (E) 0 cm post therapy.
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Highly vascularized tumors are more aggressive and have a

poorer prognosis than less vascularized tumors, indicating that

highly vascularized tumors may be more resistant to

chemotherapy and radiotherapy. With the gradual regression

of vascularization during CRT, the tumor structure changed and

size decreased step in step (29). Changes of vascularization are
Frontiers in Oncology 06
141142
potential non-invasive markers for tumor response forecast to

CRT in patients with cervical cancer (30). According to previous

studies, using transvaginal color Doppler US (TVCD), 3-

dimensional power Doppler angiography (3D-PDA) and

CEUS to evaluate tumor vascularity correlates with some

tumor features and could provide a means for predicting
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FIGURE 4

A patient with locally advanced cervical cancer (FIGO stage IIB) experienced complete response to CRT. SMI images show a significant decrease
in VI in cervical cancer: (A) 0.398 prior to CRT; (B) 0.323 at week 3 during CRT; (C) 0.278 post CRT. Corresponding axial T2-weighted images
exhibited a significant decrease in the maximal diameter of tumor: (D) 3.5 cm at pre-therapy e and (E) 1.8 cm post therapy.
TABLE 2 The mean Dmax and VI value of the tumor in the complete and partial responders at each time point.

Time-points
Dmax (cm)

P
VI

P
DDmax (%)

P
DVI (%)

P
CR PR CR PR CR PR CR PR

Pre-therapy
(Baseline)

5.1 ±
1.1

5.9 ±
1.4

0.147 0.400 ±
0.060

0.401 ±
0.032

0.970

3 weeks during
CRT

3.1 ±
0.9

3.8 ±
0.7

0.083 0.237 ±
0.045

0.320 ±
0.014

0.004 38.3 ±
14.6

32.8 ±
17.4

0.435 40.8 ±
6.7

19.6 ±
9.3

<0.001

1 month after
CRT

0 3.1 ±
1.0

<0.001 0.072 ±
0.019

0.291 ±
0.023

<0.001 100 47.3 ±
6.8

<0.001 82.2 ±
3.5

26.6 ±
10.9

<0.001

Data are presented as mean ± standard deviation.
CR, complete responder; PR, partial responder; CRT, Concomitant chemotherapy and radiotherapy; Dmax, the maximum long-axis diameter; VI, vascularization index.
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clinical response to CRT in patients with LACC (18, 19, 28, 31).

Moreover, it is demonstrated that strain elastography was useful

as an early predictor of respond and long-term outcomes after

CCRT for patients with cervical cancer (13). But, there was no

consensus on the effectiveness of SMI and strain elastography in

the evaluation of tumors and treatment response (32, 33).

SMI can detect micro-vessels with diameter as small as 0.1

mm or low-velocity blood flow (≥ 0.8 cm/s), and is therefore

considered a promising, low-cost, and safe method for imaging

angiogenic changes in tumors. In several studies, SMI has

significant advantages over color and power Doppler imaging

in detecting ultra-low velocity blood flow in microvessels and

blood microperfusion of tumor (34, 35). For evaluation tumors

by assessing the microvasculature, the diagnostic performance of

SMI appears to be comparable to that of CEUS (24). SMI

quantitative analysis showed VI was in direct proportion to

the vascularization. We found that the VI showed a significant

downward trend compared with that before treatment. SMI is

expected to be a reliable method for monitoring intratumor

microvascular density changes after CRT. Our results showed

changes in quantitative SMI parameters (VI) indirectly reflected

the effectiveness of CRT, which were consistent with previous

reports using TVCD and 3D-PDA technology.

Multiple studies have shown that CEUS revealed changes in

tumor blood flow pattern during treatment precede anatomical

changes detected by imaging (28, 36). However, CEUS is difficult

to implement as a routine technique to track efficacy in daily

clinical practice. Our study investigated whether VI

discriminated between CR and PR groups at baseline and

following CRT. We found that the VIs of CR decreased more

significantly than that of PR group at 3 weeks during treatment

in the condition that there were no significant changes in tumor

size between the two groups. Our findings indicated that the

significant size reduction usually occurs at a later stage of

treatment, so the changes of tumor microvasculature can be

detected by SMI quantitative analysis to reflect the early

therapeutic effect.

The heterogeneity of tumor microvasculature distribution

determines the efficacy of anticancer drugs in killing tumor cells

by affecting the delivery of therapeutic drugs. Hypervascular

tumors allow enough anticancer drugs to penetrate deeper into

the tumor and be destroyed, whereas hypovascular tumors may

be more likely to survive due to exposure to lower drug

concentrations (37). Our study demonstrated that baseline VIs

was slightly higher in the CR group than in the PR group before

starting treatment, but no significant differences were obtained.

Due to the varying sample size of each group, the statistical

results may be biased. Although SMI quantitative analysis can

reflect the blood supply of tumor tissue, we cannot conclude that

the tumor response to CRT can be predicted by baseline VI.

Thus, further investigation will be needed to verify whether

baseline VI can guide the selection of pretreatment strategies for

cervical cancer and be is a predictor of antiangiogenic therapy.
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Our research has some limitations. First, this study was a

single-center retrospective study with a small sample size, which

may have limitations such as sample selection bias, short

observation time. Second, due to the lack of long-term follow-

up results of SMI in predicting clinical outcomes in LACC

patients, further studies are needed. Finally, signal intensity of

SMI is strongly dependent on depth and patient weight. We used

the same US unit and setup for each patient, and as far as

possible ensured that the tumor changes were evaluated with

similar anatomical sections throughout the treatment, so the

measurements at 3 time points were comparable.
Conclusion

SMI quantitative analysis can reflect changes in tumor

microvasculature, which likely precede changes in tumor size

following CRT. SMI is emerging as promising valuable vascular

imaging technique for monitoring tumor response to CRT in

LACC. Of course, multicenter, large-sample, controlled studies

are needed to further investigate the role of SMI in monitoring

clinic outcome in patients with LACC underwent CRT.
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SUPPLEMENTARY FIGURE 1

Receiver-operating characteristic (ROC) curve of morphological changes

during the CRT. Maximum tumor diameter (Dmax, A) and their percentage
changes (DDmax, B) cannot predict the long-term prognosis at 3 weeks

during CRT. Vascularity index (VI, C) and DVI (D) can predict the long-term
prognosis at 3 weeks during CRT.
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Case report: Posterior reversible
encephalopathy syndrome, an
adverse effect of lenvatinib and
pembrolizumab combination
therapy, in a patient with
advanced endometrial cancer

Yuki Matsuura, Haruka Nishida, Takashi Kosaka,
Kazuyuki Shigekawa, Kazuki Takasaki , Takayuki Ichinose,
Mana Hirano, Haruko Hiraike and Kazunori Nagasaka*

Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
Background: Lenvatinib-pembrolizumab combination (LEAP) is an approved

therapy in Japan for advanced endometrial cancer, based on the data from the

KEYNOTE-775 clinical trial. We report a case of posterior reversible

encephalopathy syndrome (PRES) in a patient who received LEAP therapy for

advanced endometrial cancer.

Case presentation: A 53-year-old patient with stage IVB endometrial cancer

having rectal metastases, after four cycles of paclitaxel-carboplatin therapy, was

found to have increased rectal invasion, peritoneal dissemination, and multiple

paraaortic lymph node metastases. She was treated with LEAP therapy and

discharged on day 12 without adverse events, except for mild anemia on day 11

of treatment. She was carefully managed in the outpatient department, but on day

18, she was admitted to the emergency department with severely impaired

consciousness and generalized seizures. Computed tomography of the head

and lumbar tap showed no abnormal findings, and the seizures resolved with

anticonvulsant medication alone. Based on a thorough physical examination and

findings on magnetic resonance imaging (MRI), which showed high signal intensity

in the left occipital lobe, encephalopathy, rather than encephalitis, was the likely

diagnosis. Symptomatic improvement was observed, and pembrolizumab

monotherapy was resumed.

Conclusions: If consciousness is impaired during LEAP treatment, it is necessary to

differentiate between immunogenic encephalitis caused by pembrolizumab or

encephalopathy caused by lenvatinib. MRI and lumbar tap can help in

distinguishing between the two and diagnosing the responsible drug.
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1 Introduction

Endometrial cancer is one of the most common gynecologic

malignancies, and its incidence has increased rapidly. Adenomyosis,

a condition in which ectopic endometrial glands and stroma develop

in the myometrium, can increase the risk of endometrial cancer

development, similar to leiomyomas or polycystic ovary syndrome

(1). Adenomyosis and endometrial cancer have similar traits: a local

microenvironment that promotes the growth of endometrial stromal

cells and an isoechoic area to the endometrial tissue around altered

junctional zone as an ultrasound characteristic. These traits indicate

the similarity in the pathophysiology of these conditions (1, 2).

Several novel biomarkers, such as relative telomere length in cell-

free DNA (3) and glandular cells in preoperative cervical smear (4),

have been reported for the early diagnosis and management of

endometrial cancer.

The traditional first line of treatment for endometrial cancer is

platinum-based chemotherapy (5). However, treatment for advanced

or recurrent endometrial cancer after platinum-based chemotherapy

is not standardized. In December 2021, a combination of lenvatinib

and pembrolizumab (LEAP) was approved in Japan for advanced

endometrial cancer, based on the result of the KEYNOTE-775 clinical

trial (6) and could be considered standard therapy for platinum-

resistant advanced endometrial cancer.

In contrast to the limited antitumor effects of each drug

individually, the combination of lenvatinib and pembrolizumab is

more effective in advanced or recurrent endometrial cancer,

regardless of the tumor’s genetic characteristics. Lenvatinib is a

multiple tyrosine kinase inhibitor acting on vascular endothelial

growth factor receptor (VEGFR), fibroblast growth factor receptor,

platelet-derived growth factor receptor a, RET proto-oncogene, and

KIT proto-oncogene. Lenvatinib has a limited efficacy against recurrent

endometrial carcinoma when used as a single agent (7).

Pembrolizumab is an inhibitor of programmed cell death 1, an

immune checkpoint inhibitor. Antitumor effects of pembrolizumab

have been reported in patients withmicrosatellite instability-high (MSI-

H) or mismatch repair-deficient (dMMR) advanced endometrial

carcinoma, while the effects are less significant in patients with

microsatellite-stable or mismatch repair-proficient disease (8, 9).

A characteristic of this combination therapy, as opposed to

traditional chemotherapy, is the variable adverse effects. The

antitumor effects of traditional chemotherapy are mediated by

cytotoxicity in malignant and benign cells. Contrarily, since

molecularly targeted drugs are specifically toxic to malignant cells

expressing the target protein, the adverse effects are also related to the

target protein. Since immune checkpoint inhibitors mediate their

antitumor effects by modulating the patient’s immune system, the

associated adverse effects include autoimmune diseases. Medical

professionals should be more aware of these adverse effects because

several such adverse effects may be asymptomatic.

Posterior reversible encephalopathy syndrome (PRES) is

characterized by neurological symptoms such as disturbance of

consciousness, seizures, headache, visual disturbances, focal

neurological deficit, and status epilepticus (10). It is thought to

occur due to impaired autoregulation caused by damaged vascular

endothelial cells.
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PRES is one of the various adverse effects of lenvatinib. Because

autoimmune encephalitis is also an adverse effect of pembrolizumab,

it is difficult to diagnose PRES in patients with advanced endometrial

cancer receiving a combination of lenvatinib and pembrolizumab.

The similar phenotypes make it difficult to differentiate between these

two conditions.

Herein, we report a case of advanced endometrial cancer with

neurological manifestations of PRES caused by lenvatinib. The patient

provided informed consent for the publication of this case report,

including images.
2 Case description

The patient was a 53-year-old woman with no relevant medical

history. She experienced discomfort and pain in the anal region, and a

colonoscopy detected a tumor in the colon. On the basis of imaging and

endometrial sampling cytology with conventional biopsy findings, she

was diagnosed with International Federation of Gynecology and

Obstetrics stage IVB endometrial cancer (endometrioid

adenocarcinoma Grade 1) with colon metastasis and lymphadenopathy

in the bilateral obturator lymph nodes and sacrum. She received

neoadjuvant chemotherapy (four cycles of paclitaxel 175 mg/m2 and

carboplatin area under curve 6). Two months later, Hartmann surgery

was performed to prevent the tumor from occluding the colon.

Pathological evaluation of the tumor specimen confirmed endometrial

cancer, surgical stage IVB. MSI testing revealed the tumor was MSI-H.

After the surgery, computed tomography (CT) showed an

enlarged recurrent tumor in the colon, with peritoneal

dissemination and multiple metastases in the paraaortic lymph

nodes. Hence, she was started on a combination of lenvatinib (20

mg, administered orally once daily) and pembrolizumab (200 mg,

administered intravenously as a 30-minute infusion every 3 weeks).

On day 11 after the LEAP therapy, she received 4 units of red blood

cells due to a fall in her hemoglobin level to 7.3 g/dL. She was

discharged on day 12. On day 15, she developed a gait disorder and

tremors. Hypothyroidism (thyroid stimulating hormone [TSH] level:

5.350 ng/mL, free thyroxine 4 [FT4] level: 0.99 pg/mL, free thyroxine

3 [FT3] level: 2.08 pg/mL) was also detected on the same day on

consultation with endocrinologists.

On day 18, she was referred to the emergency room for an altered

sensorium. On arrival , her Glasgow Coma Scale score

(Supplementary Figure 1) was E3V4M6. Her blood pressure

showed a continued increase (Figure 1). There was no electrolyte

imbalance or renal or liver failure (Table 1). An emergency CT scan

found no brain metastasis or intracranial hemorrhage (Figure 2).

Magnetic resonance imaging (MRI) showed a slightly high signal

intensity in the left occipital lobe, with no apparent cerebral infarction

(Figure 2). LEAP therapy was discontinued. Although there were no

visual complaints or findings given the location of the MRI

abnormalities and electroencephalogram was normal, her

consciousness level gradually worsened, resulting in convulsions,

which were suppressed by an intravenous injection of diazepam (5

mg). She was started on levetiracetam (200 mg) to prevent

convulsions. For further investigation, additional blood tests and

multiple lumbar taps were performed. While serum vitamin B1,
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TSH, FT4, and FT3 levels were normal, a slight increase was seen in

the anti-thyroid peroxidase antibody levels (Table 1). The blood

glucose level was 110 mg/dL. Analysis of the cerebrospinal fluid

found cells (5/µL), protein (154 mg/dL), and glucose (50 mg/dL)

(Table 1), suggesting that meningitis was unlikely. The disturbance in

consciousness gradually improved with time, indicating the low

probability of Hashimoto encephalopathy.

Previous clinical trials have revealed that the incidence of adverse

effects of lenvatinib and pembrolizumab on the central nervous system
Frontiers in Oncology 03147148
was 0.4% (11) and less than 0.1% (12), respectively, and could have

caused PRES and encephalitis, respectively. The absence of markers of

inflammation in the cerebrospinal fluid and a high signal intensity in the

left occipital lobe on MRI suggested PRES, rather than encephalitis.

Therefore, it was concluded that these symptoms were caused by

lenvatinib, not pembrolizumab. She was resumed on treatment with

pembrolizumab. Although no long-term sequalae of PRES were

observed, unfortunately, CT showed multiple lymph node metastases

after four cycles of pembrolizumab monotherapy, indicative of further
FIGURE 1

Computed tomography scan and magnetic resonance imaging of the brain. The emergent computed tomography scan of the brain shows no brain
metastasis and intracranial hemorrhage. Magnetic resonance imaging shows a slightly high signal in the left occipital lobe axial and coronal.
TABLE 1 Laboratory results on day 18.

Laboratory results

Blood test g-GTP 36U/L Cort 9.5ug/dL

RBC 303 × 104/µL CK 215U/L ACTH 6.3pg/mL

Hb 9.3 g/dL BUN 14.9mg/dL TgAb 10.0IU/mL

Plt 7.8 × 104/µL Cr 0.68mg/dL

WBC 24 × 102/µL UA 5.8mg/dL VBG

PT% 100.0% Na 144mEq/L pH 7.403

INR 0.98 K 3.3 mEq/L PCO2 47.3mmHg

APTT 31.6sec Cl 104mEq/L PO2 48.4mmHg

Fib 237mg/dL Ca 9.2mg/dL HCO3 28.8mEq/L

D-dimer 5.3 ug/mL P 3.7mg/dL BE 3.5mEq/L

TP 6.5g/dL BS 78mg/dL

Alb 3.1g/dL NH3 22µg/dL CSF

T-Bil 0.91mg/dL CRP 1.25mg/dL Cells 5/µL (Lym 5/µL)

D-Bil 0.15mg/dL TSH 7.970µIU/mL Protein 154mg/dL

AST 67U/L FT4 0.96ng/dL Glu 50mg/dL

ALT 44U/L FT3 1.91 pg/mL Cl 126Eq/L

LD 384U/L VitB1 24ng/mL ADA 3.6U/L

ALP 137U/L HbA1c 5.5% Viruses negative
Venous Blood Gas (VBG), Cerebrospinal Fluid (CSF). Laboratory test abnormalities are in bold.
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disease progression. Pembrolizumab was discontinued, and she is now

enrolled in another clinical trial in Japan.
3 Discussion

Patients with advanced or recurrent endometrial cancer could

experience neurological symptoms for many reasons. Lenvatinib and

pembrolizumab adversely affect the central nervous system and may
Frontiers in Oncology 04148149
cause PRES and encephalitis, respectively. Cancer-related thrombophilia

can cause cerebral infarction, and associated brain metastases may result

in hyperten sive intracranial hemorrhage. Identifying the cause of

neurological symptoms is crucial, especially when it is drug related. If

lenvatinib causes PRES in MSI-H/dMMR patients, effective therapy with

pembrolizumab alone can be restarted after cessation of lenvatinib.

The difference between encephalopathy and encephalitis is key to

distinguishing between lenvatinib- and pembrolizumab-related

adverse effects. Although both present with neurologic symptoms,
FIGURE 2

Patient’s blood pressure during lenvatinib-pembrolizumab therapy. The patient’s blood pressure was not monitored at home. It was abnormally high at
the time of admission to the emergency room.
FIGURE 3

Steps to treat neurological adverse effects.
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encephalitis is characterized by inflammation in the brain, while

encephalopathy is non-inflammatory. A hyperimmune response

due to high cytokine levels or cerebral edema due to vascular

hyperpermeability can cause encephalopathy. A lumbar puncture is

the best procedure to distinguish between these two conditions by

confirming or ruling out brain inflammation (Figure 3).

PRES is characterized by interstitial edema caused by hyperperfusion

resulting from a disruption in autoregulation due to damaged vascular

endothelial cells. This damage is thought to be caused by hypertension,

sepsis, pre-eclampsia, eclampsia, autoimmune disorders, and

immunosuppressive or cytotoxic drugs (10). Cytokines, such as tumor

necrosis factor-a, interleukin-1, and VEGF, increase vascular

permeability. A common side effect of lenvatinib is hypertension.

Lenvatinib-induced hypertension and VEGFR inhibition are closely

associated with vascular endothelial cell damage. Pembrolizumab,

when given in combination with lenvatinib, also acts as an

immunomodulator and further increases vascular permeability. Hence,

LEAP therapy increases the risk of PRES.

Brain imaging in PRES shows several distribution patterns, of which

the holohemispheric watershed superior frontal sulcus and dominant

parietal-occipital patterns are the most common. High signal intensity on

T2-weighted/fluid-attenuated inversion recovery images and high

apparent diffusion coefficient are seen, reflecting vasogenic edema. This

patient showed a dominant parietal-occipital pattern (13).

Following the development of PRES, the LEAP therapy was

suspended, and pembrolizumab monotherapy was instituted. The

limitation of this case report is that the patient was fully informed

about the side effects of the treatment on day 12 and was given

discharge instructions, including home blood pressure monitoring.

However, blood pressure control at home was inadequate, and the

patient’s physical condition was unknown until the emergency

department visit on day 15. To the best of our knowledge, this is

the first report of resuming chemotherapy after a differential

diagnosis of urgent intervention-indicated encephalopathy. Our

findings highlight that a thorough causal inference is critical for

continuing effective therapy.
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on cervical cancer: Image-guided
intensity-modulated radiation
therapy era
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Ben-Chang Shia2,3* and Szu-Yuan Wu2,3,4,5,6,7,8,9,10*
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Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan,
3Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan, 4Department of
Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University,
Taichung, Taiwan, 5Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai
Hospital, Yilan, Taiwan, 6Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital,
Yilan, Taiwan, 7Department of Healthcare Administration, College of Medical and Health Science, Asia
University, Taichung, Taiwan, 8Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital,
Yilan, Taiwan, 9Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital,
Taipei Medical University, Taipei, Taiwan, 10Department of Management, College of Management, Fo
Guang University, Yilan, Taiwan
Condensed abstract: No large-scale, well-designed randomized study with a

long-term follow-up has evaluated the survival effect of pretreatment 18-

fluorodeoxyglucose positron emission tomography–computed tomography

(18FDG-PET–CT) on patients with stage IB–IVA cervical cancer receiving image-

guided intensity-modulated radiation therapy (IG-IMRT). This is the first head-to-

head propensity score–matched, nationwide population-based cohort study

evaluating this survival effect. The results revealed that pretreatment 18FDG-

PET–CT might be associated with longer survival in patients with stage IB–IVA

cervical cancer receiving radiotherapy or concurrent chemoradiotherapy,

especially in the IG-IMRT era.

Purpose: No large-scale, well-designed randomized study with a long-term

fol low-up has evaluated the surv iva l effect of pretreatment 18-

fluorodeoxyglucose positron emission tomography–computed tomography

(18FDG-PET–CT) on patients with stage IB–IVA cervical cancer receiving image-

guided intensity-modulated radiation therapy (IG-IMRT). Therefore, in this

propensity score–matched, population-based cohort study, we investigated

these survival effects.

Patients and methods: We included 4167 patients with stage IB–IVA cervical

cancer receiving radiotherapy (RT) or concurrent chemoradiotherapy (CCRT)

through the IG-IMRT technique. The patients were categorized into two 1:2

propensity score–matched groups depending on whether they underwent

pretreatment 18FDG-PET–CT, and their outcomes were compared.

Results: We included 2778 and 1389 patients with cervical cancer in the

nonpretreatment and pretreatment PET–CT groups, respectively. Univariable

and multivariable analyses revealed an association between pretreatment PET–

CT and improved survival in the patients (in the adjusted model, the adjusted
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hazard ratio [aHR] was 0.88; 95% confidence interval [CI], 0.80–0.97: P = 0.010).

Regardless of the cancer stage (early or advanced), pretreatment PET–CT was

significantly superior to nonpretreatment PET–CT in terms of all-cause death

(aHR, 0.78; 95% CI, 0.60–0.92; P = 0.013 and aHR, 0.90; 95% CI, 0.81–0.99; P =

0.039 for the early [IB–IIA] and advanced stages [IIB–IVA], respectively).

Conclusions: Pretreatment 18FDG-PET–CT might be associated with longer

survival in patients with stage IB–IVA cervical cancer receiving RT or CCRT,

especially in the era of IG-IMRT.
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Introduction

Although cervical cancer is the fourth most common cancer in

women globally, the number of cervical cancer cases has continuously

declined in regions that have implemented screening programs (1).

However, in resource-poor areas with no well-established screening

programs, the incidence and mortality rates of cervical cancer remain

disproportionately high. (1) Cervical cancer is the leading cause of

cancer deaths in 42 countries, with the majority of cases being

reported from sub-Saharan Africa and Southeast Asia (1).

Compared with other gynecological cancers, cervical cancer more

commonly affects younger women, with a mean age at diagnosis of

49 years.

Following the diagnosis of cervical cancer, a pretreatment staging

evaluation is performed in all women to determine the treatment

approach, which can then be stratified on the basis of whether the

disease is early or locally advanced at presentation (2). Accurate cancer

staging is the most vital for planning optimal treatments and thus for

optimal survival (3). For patients with early-stage cervical cancer,

surgery alone without adjuvant therapy or radiotherapy (RT)

alone might be suitable based on the National Comprehensive

Cancer Network (NCCN) guidelines. However, for patients with

advanced-stage cervical cancer without metastasis, concurrent

chemoradiotherapy (CCRT) might be necessary (2).
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Prior to RT or CCRT, whole-body 18-fluorodeoxyglucose

(18FDG) positron emission tomography (PET)–computed

tomography (CT) is conducted to evaluate the extent of the disease,

with a particular focus on lymph node metastases, for obtaining

information necessary to design RT fields (4). Compared with CT

alone, PET–CT exhibits higher sensitivity for the detection of

abdominal lymph node metastasis, a feature that affects the RT

fields and estimates of patient prognosis (5, 6). However, no long-

term follow-up study with an adequate sample size has evaluated the

benefits of pretreatment PET–CT, which offers the most accurate

imaging results for lymph node metastasis (7, 8), and its contribution

to overall survival (OS) in patients with cervical cancer receiving RT

or CCRT, especially in the era of image-guided intensity-modulated

radiation therapy (IG-IMRT).
Patients and methods

Study design and patient data source

This retrospective study was conducted using data from the

Health and Welfare Data Center (HWDC), established by Taiwan’s

Ministry of Health and Welfare. Data gathered by the Taiwanese

government from various sources are consolidated by HWDC,

deidentified, and made available for research purposes based on

case-by-case approval. We particularly used data from the Taiwan

Cancer Registry (TCR), which includes the detailed staging and

treatment information of patients with cancer; the Cause of Death

database, which lists all death certificates issued in Taiwan (9–11); and

the National Health Insurance Research Database (NHIRD), which

contains the claims data of all National Health Insurance (NHI)-

reimbursed examinations, medications, and treatments. Absence of

the evidence of death cannot be considered the evidence of life

because all death certificates issued are government system–specific

judgments. Without a death certificate, property inheritance,

abandonment of inheritance to the court, burial, or cremation

cannot be performed in Taiwan. The NHI program has been

implemented since 1995 and covers more than 99% of Taiwan’s

population. Since July 2004, the NHI has been reimbursing 18F-FDG-

PET performed for the initial staging of cervical cancer when optimal
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staging was unachievable through conventional imaging modalities.

All PET-CT scans were reviewed and reported by a professional

nuclear medicine physician in the study. All HWDC databases are

linked through a common but anonymized identifier to ensure

privacy. The requirement for informed consent was waived because

of the retrospective nature of the study and the use of

deidentified data.
Inclusion and exclusion criteria

Patients were enrolled if they were diagnosed as having cervical

cancer on the basis of pathological reports between January 1, 2008,

and December 31, 2018, were aged ≥20 years, and had an American

Joint Committee on Cancer (AJCC) clinical stage of IB–IVA based on

the eighth edition. The diagnoses were confirmed using pathological

data, and patients who were newly diagnosed as having cervical

squamous cell carcinoma or adenocarcinoma were confirmed to

have no other cancer. Patients with distant metastasis, cancer of

unknown pathologic type, missing sex data, age <20 years, or unclear

staging were excluded. In addition, patients were excluded if they did

not receive RT within 3 months of diagnosis, RT involving

contemporary IG-IMRT techniques, or a weekly platinum-based

chemotherapy regimen during RT. Moreover, we excluded patients

who received only sequential chemotherapy and RT. In this study,

pelvic RT comprised external beam radiotherapy (EBRT) delivered

once daily for 25–28 days for a total median dose of 50.4 Gy with IG-

IMRT. Radiation oncologists in Taiwan prescribed total intracavity

brachytherapy (ICBT) with a high-dose rate system, with a median

dose of 25 Gy in five fractions when administered with or without

concurrent chemotherapy. IMRT, a highly conformal EBRT

technique, and its iteration—image-guided volumetric modulated

arc therapy—were allowed in the study.
Covariates and outcome definition

Data regarding age, histology, AJCC clinical stages, treatments

(RT alone or CCRT), tumor differentiation, EBRT cumulative dose,

platinum cumulative dose, ICBT cumulative dose, Charlson

comorbidity index (CCI) scores, diagnosis year, and hospital levels

(medical or nonmedical center) at the last follow-up were extracted

from the TCR. Age was considered a continuous variable. All patients

with nonmetastatic cervical cancer underwent RT alone or definitive

CCRT in accordance with NCCN guidelines. The date of RT initiation

was the index date.

From the NHIRD, we identified patients who underwent 18F-

FDG PET–CT within 0–90 days before the index date. Only patients

with a record of 18F-FDG-PET–CT were considered to have

undergone pretreatment PET–CT. All patients in the control group

(nonpretreatment 18FDG-PET–CT) received pelvic magnetic

resonance imaging (MRI) with contrast to determine the local

disease extent and chest/abdominal/pelvis CT for at least metastatic

staging. The primary outcome of interest was all-cause death, which

was calculated from the initial date to the date of death. Information

on OS was obtained from the Cause of Death database. Patients with
Frontiers in Oncology 03153154
no death records were considered alive and censored on the last day of

the database record (December 31, 2019).
Propensity score matching

After adjustment for confounders, we performed Cox

proportional hazards regression to model time from the index date

to all-cause death for patients with cervical cancer who underwent RT

or CCRT. We used propensity score matching (PSM) to reduce

confounding factors, thus controlling these factors and elucidating

the directionality of the survival effect of pretreatment PET–CT. The

following matching variables were employed: age, histology,

differentiation, AJCC clinical stages, treatments, cumulative EBRT

dose, cumulative platinum dose, cumulative ICBT dose, CCI scores,

diagnosis year, and hospital levels. However, because a residual

imbalance was noted in covariates, (12) multivariable Cox

proportional regression models were used. For the CCI score

calculation, comorbidities were determined according to the

International Classification of Diseases, Ninth or Tenth Revision,

Clinical Modification (ICD-9-CM or ICD-10-CM) codes in the main

diagnosis of inpatient records or those in outpatient records if the

number of outpatient visits was ≥2 within 1 year. Comorbidities with

onset 12 months before the index date were recorded. We matched

the cohorts at a ratio of 2:1 by using a greedy matching method, and

covariates were matched with a propensity score within a caliper of

0.2. (13).
Statistical analysis

Continuous data are presented as the mean ± standard deviation

or median (interquartile range), as applicable, and categorical data as

the number and percentage. The distribution of patient characteristics

was compared using the c2 test for categorical variables and the

independent t test or Kruskal–Wallis test for continuous variables.

Survival curves were generated using the Kaplan–Meier and

compared using the log-rank test. In addition, the Kaplan–Meier

curves of overall survival (OS) for different stages of cervical cancer

with or without pretreatment PET–CT were compared using the log-

rank test. Cox proportional hazards models were used to estimate the

hazard ratio (HR) and 95% confidence interval (CI) and to determine

the effects of covariates on OS. Stratified analysis was performed to

investigate the effect of pretreatment PET–CT on various AJCC

clinical stages (IB–IIA and III–IVA) and on OS across various

subgroups. All statistical analyses were performed using SAS

(version 9.4; SAS Institute). A two-sided P value of <0.05 was

considered significant.
Ethical approval

The study protocols were reviewed and approved by the

Institutional Review Board of Tzu-Chi Medical Foundation

(IRB109-015-B).
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Results

Patient characteristics

A total of 4167 patients with cervical cancer met the inclusion

criteria after PSM (Table 1). Of them, 2778 and 1389 patients who

underwent RT or CCRT were included in the nonpretreatment and

pretreatment PET–CT groups, respectively. All covariates were

balanced between the groups after PSM (Table 1). The crude mean

follow-up periods and crude mortality rates of the pretreatment and

nonpretreatment PET–CT groups were 4.72 and 4.70 years and

45.64% and 51.08% (P < 0.001), respectively.
Frontiers in Oncology 04154155
Predictors of survival

The findings of univariable and multivariable analyses revealed an

association between pretreatment PET–CT and improved survival for

the patients with cervical cancer (in the adjusted model, the adjusted

hazard ratio [aHR] was 0.88; 95% CI, 0.80–0.97: P = 0.010; Table 2).

Moreover, the results indicated that known prognostic factors,

namely age > 60 years (P = 0.014); advanced clinical stages of IIA

(P = 0.026), IIB (P = 0.002), III (P < 0.001), and IVA (P < 0.001); RT

alone (P < 0.001); adenocarcinoma (P < 0.001); CCI score ≥ 1 (P <

0.001); and no ICBT (P < 0.001), were associated with poor

OS (Table 2).
TABLE 1 Clinicodemographic characteristics of patients with cervical cancer with and without pretreatment PET–CT scan before RT or CCRT (after
propensity score matching).

Nonpretreatment PET–CT Pretreatment PET–CT P value SMD

N = 2778 N = 1389

N % N %

Age (mean ± SD) 61.81 ± 14.15 61.65 ± 13.95 0.224 0.051

Age, median (IQR), y 60.20 (51.00, 71.00) 60.00 (50.00, 70.00) 0.311

Age 0.187 0.010

Age ≤ 40 y 612 22.03% 309 22.25%

40 y < Age ≤ 50 y 833 29.99% 432 31.10%

50 y < Age ≤ 60 y 667 24.01% 289 20.81%

Age > 60 y 666 23.97% 359 25.85%

Years of diagnosis 0.188 0.067

2008–2010 532 19.15% 241 17.35%

2011–2014 1086 39.09% 531 38.23%

2015–2018 1160 41.76% 617 44.42%

CCI scores (mean ± SD) 0.41 ± 1.00 0.41 ± 0.88 0.709 0.017

CCI scores 0.371 0.016

0 2093 75% 1064 76.60%

1 685 25% 325 23.40%

AJCC stages 2778 1389 0.279 0.083

IB 437 15.73% 190 13.68%

IIA 207 7.45% 90 6.48%

IIB 891 32.07% 446 32.11%

III 671 24.15% 346 24.91%

IVA 566 20.37% 313 22.53%

Missing 6 0.22% 4 0.29%

Differentiation 0.220 0.072

I (well-differentiated) 84 3.02% 42 3.02%

II (moderately differentiated) 1532 55.15% 814 58.60%

III (poorly differentiated) 1089 39.20% 467 33.62%

(Continued)
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Stratified analysis of the effect of
pretreatment PET–CT

To determine the effect of pretreatment PET–CT on various AJCC

clinical stages, we stratified the stages (IB–IIA and III–IVA) by using a

Cox regression model after adjustment for age, histology, tumor

differentiation, AJCC clinical stages, treatments, cumulative EBRT

dose, cumulative platinum dose, cumulative ICBT dose, CCI scores,

diagnosis year, and hospital levels (Tables 3, 4). The prognostic factors

were similar to those determined in the nonstage stratification analysis.

Regardless of the cancer stage (early or advanced), pretreatment PET–

CT was significantly superior to nonpretreatment PET–CT in terms of

all-cause death (aHR, 0.78; 95% CI, 0.60–0.92; P = 0.013 and aHR, 0.90;

95% CI, 0.81–0.99; P = 0.039 for early and advanced stages,

respectively). In the pretreatment and nonpretreatment groups, the

5-year OS was 54.56% and 50.11%, respectively, for all disease stages
Frontiers in Oncology 05155156
(P < 0.001); 71.87% and 64.92%, respectively, for stage IB–IIA disease

(P = 0.031); and 50.73% and 46.832, respectively, for stage IIB–IVA

disease (P = 0.038; Figures 1A–C). In both the groups, we noted the

association of early- and advanced-stage cervical cancer treated with RT

or CCRT with OS.
Discussion

Cervical cancer may metastasize to the pelvic or paraaortic lymph

nodes as well as more distal nodes (14). Lymph node involvement is

associated with poor prognosis and affects decisions regarding the

design of RT fields (14). Whole-body FDG-PET–CT, in which both

PET and CT are performed using an integrated PET–CT scanner, is

the preferred imaging modality for detecting lymph node metastases

(5, 6, 15). If the technology is not available, lymph nodes are evaluated
TABLE 1 Continued

Nonpretreatment PET–CT Pretreatment PET–CT P value SMD

N = 2778 N = 1389

N % N %

IV (undifferentiated) 73 2.63% 66 2.38%

Treatments 0.861 0.022

CCRT 2111 75.99% 1055 75.95%

RT alone 667 24.01% 334 24.05%

EBRT cumulative dose, Gy

Mean (SD) 50.40 ± 18.70 50.40 ± 19.24 0.999 0.1000

Median (Q1–Q3) 50.40 (39.33, 60.00) 50.40 (46.00, 60.00) 0.999

Chemotherapy, Platinum cumulative dose, mg

Mean (SD) 632.33 ± 593.38 639.02 ± 577.10 0.753 0.011

Median (Q1–Q3) 500.00 (350.00, 600.0) 500.00 (350.00, 650.0) 0.224

Brachytherapy dose, Gy

Mean (SD) 24.68 ± 6.57 24.14 ± 6.55 0.717 0.014

Median (Q1–Q3) 25.00 (20.00, 30.00) 2500.00 (20.00, 30.00) 0.999

Histological type 0.974 0.002

Adenocarcinoma 298 10.73% 150 10.80%

Squamous cell carcinoma 2480 89.27% 1239 89.20%

Medical centers 0.426 0.019

Nonmedical centers 1517 10.73% 745 53.64%

Medical centers 1261 45.39% 644 46.36%

Mean (SD) follow-up (y) 4.70 ± 2.83 4.72 ± 2.64 0.828

Median (IQR) follow-up (y) 4.04 (1.27, 5.52) 4.07 (1.46, 5.54) 0.235

All-cause death <0.001

No 1359 48.92% 755 54.36%

Yes 1419 51.08% 634 45.64%
frontie
PET–CT, positron emission tomography–computed tomography; AJCC, American Joint Committee on Cancer; CCI, Charlson comorbidity index; EBRT, external beam radiotherapy; RT,
radiotherapy; CCRT, concurrent chemoradiotherapy; SD, standard deviation; IQR, interquartile range; y, years; SMD, standardized mean difference.
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through abdominopelvic CT with contrast (2). Pelvic MRI without or

with contrast is another second-line alternative because its diagnostic

performance is comparable to that of CT (2, 5, 6, 15). All women with

cervical cancer should undergo a lymph node evaluation for

appropriate staging and treatment (16, 17). For women with

cervical cancer (stage IB–IVA) for whom primary RT or CCRT is

planned, imaging prior to RT can be performed to evaluate the disease

extent, with particular focus on lymph node metastases, to provide

information necessary for designing RT fields (18, 19). A meta-

analysis of 72 studies including 5042 patients with cervical cancer

reported the following sensitivity and specificity values for the

detection of lymph node metastasis: PET (75% and 98%), MRI

(56% and 93%), and CT (58% and 92%), respectively (5). The more
Frontiers in Oncology 06156157
accurate detection of lymph nodes results in a more accurate RT field,

thereby possibly contributing to OS benefits. However, studies have

reported conflicting results regarding the association between OS and

pretreatment PET in patients with cervical cancer (20–23). Only one

short-term follow-up randomized controlled trial (RCT) including a

small sample size and using conventional 2D-RT reported that

pretreatment PET (instead of PET–CT) improved the detection of

pelvic metastasis or paraaortic lymph nodes in patients with cervical

cancer with pelvic lymph node positivity on pelvic MRI (AJCC stage

III at least); however, the improved detection may not translate into a

survival benefit (23). No study with an adequate sample size and a

long-term follow-up and using a head-to-head PSM design

mimicking the RCT has examined the survival benefit of
TABLE 2 Cox proportional hazard regression analysis of the risk of all-cause death in propensity score–matched patients with cervical cancer.

Crude HR (95% CI) P value Adjusted HR (95% CI) P value

Pretreatment PET–CT (ref. = No)

Yes 0.88 (0.80, 0.96) 0.005 0.88 (0.80, 0.97) 0.010

Age (ref. Age ≤ 40 y)

40 y < Age ≤ 50 y 1.02 (0.81, 1.15) 0.211 1.07 (0.76, 1.09) 0.233

50 y < Age ≤ 60 y 1.04 (0.81, 1.08) 0.376 1.08 (0.76, 1.12) 0.184

Age > 60 y 1.71 (1.51, 1.94) <0.001 1.12 (1.07, 1.30) 0.014

CCI score (ref. = 0)

≥1 1.65 (1.51, 1.82) <0.001 1.37 (1.24, 1.52) <0.001

Years of diagnosis (ref. = 2008–2010)

2011–2014 0.96 (0.91, 1.24) 0.1157 0.99 (0.91, 1.18) 0.6025

2015–2018 0.97 (0.94, 1.21) 0.3046 0.98 (0.84, 1.12) 0.7025

AJCC stages (ref. = Stage IB)

IIA 1.05 (1.01, 1.54) 0.030 1.39 (1.04, 1.86) 0.026

IIB 1.09 (1.04, 1.27) 0.046 1.38 (1.12, 1.70) 0.002

III 1.51 (1.25, 1.83) <0.001 2.04 (1.68, 2.48) <0.001

IVA 4.21 (3.50, 5.05) <0.001 4.03 (3.32, 4.89) <0.001

Treatment (ref. = CCRT)

RT alone 2.51 (2.28, 2.77) <0.001 1.91 (1.69, 2.16) <0.001

Differentiation (ref. = Grade I)

Grade II 1.01 (0.66, 1.28) 0.623 1.20 (0.85, 1.67) 0.297

Grade III 1.00 (0.72, 1.4) 0.986 1.12 (0.8, 1.57) 0.502

Grade IV 1.61 (0.91, 2.54) 0.343 1.38 (0.87, 2.21) 0.170

Histological type (ref. = Squamous cell carcinoma)

Adenocarcinoma 1.77 (1.55, 2.01) <0.001 1.75 (1.53, 2) <0.001

Medical center (ref. = Nonmedical centers)

Yes 0.89 (0.81, 1.97) 0.279 0.95 (0.86, 1.05) 0.3251

Brachytherapy (ref. = No brachytherapy)

Yes 0.24 (0.22, 0.26) <0.001 0.42 (0.38, 0.46) <0.001
fron
PET–CT, positron emission tomography–computed tomography; HR, hazards ratio; aHR, adjusted hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer; CCI, Charlson
comorbidity index; RT, radiotherapy; CCRT, concurrent chemoradiotherapy; y, years.
*All covariates mentioned in Table 2 were adjusted.
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pretreatment PET–CT in patients with stage IB–IVA cervical cancer.

In the current study including the largest sample size and a long-term

follow-up and using modern RT techniques and PET facilities

integrated with the CT scan, pretreatment PET–CT was

significantly superior to nonpretreatment PET–CT in terms of all-

cause death (aHR, 0.78; 95% CI, 0.60–0.92; P = 0.013 and aHR, 0.90;

95% CI, 0.81–0.99; P = 0.039 for early and advanced stages,

respectively; Table 3).

This is the largest study using the head-to-head PSM design to

balance potential confounding factors associated with mortality in

patients with cervical cancer receiving IG-IMRT with or without

pretreatment PET–CT. After PSM, all cofounding factors were

balanced (Table 1). We believe that the selection bias would be

minimal between the case and control groups. The results of

multivariable Cox regression model analysis revealed that age > 60

years; advanced clinical stages of IIA, IIB, and IVA; RT alone;
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adenocarcinoma; CCI score ≥ 1; no ICBT; and nonpretreatment

PET–CT were associated with poor OS. The poor prognostic factors

are consistent with those reported by previous studies (24–27). Our

study is the first to report poor prognostic factors for OS in patients

with cervical cancer receiving the modern RT technique of IG-IMRT.

Old age, advanced stages, RT alone, adenocarcinoma, CCI score ≥ 1,

no IBCT, and nonpretreatment PET–CT were determined as poor

prognostic factors for OS, even in the era of IG-IMRT. Moreover,

although patients with cervical cancer were treated with the

contemporary RT technique of IG-IMRT, ICBT was still necessary

and IG-IMRT was insufficient as an alternative treatment to ICBT;

this finding is consistent with that of a previous study (27).

Uncertainty regarding patient positioning requires clinicians to

add extra margins to target volumes beyond those based on original

tumor images (28–30). This uncertainty may be due to imprecision in

patient positioning used on a daily basis, despite immobilization, or to
TABLE 3 Cox proportional hazard regression analysis of the risk of all-cause death in propensity score–matched patients with AJCC stage IB–IIA cervical cancer.

Crude HR (95% CI) P value Adjusted HR (95% CI) P value

Pretreatment PET–CT (ref. = No)

Yes 0.74 (0.57, 0.95) 0.019 0.78 (0.60, 0.92) 0.013

Age (ref. Age ≤ 40 y)

40 y < Age ≤ 50 y 1.04 (0.74, 1.48) 0.8091 1.05 (0.73, 1.49) 0.8064

50 y < Age ≤ 60 y 1.12 (0.77, 1.63) 0.5591 1.02 (0.69, 1.53) 0.9052

Age > 60 y 2.11 (1.54, 2.88) <0.001 1.64 (1.12, 2.38) 0.0101

CCI score(ref. = 0)

≥1 1.87 (1.48, 2.36) <0.001 1.61 (1.26, 2.07) <0.001

Years of diagnosis(ref. = 2008–2010)

2011–2014 1.20 (0.86, 1.65) 0.281 1.16 (0.82, 1.65) 0.393

2015–2018 1.20 (0.85, 1.68) 0.301 1.02 (0.7, 1.50) 0.913

AJCC stage(ref. = Stage IB)

IIA 1.16 (0.86, 1.56) 0.334 1.39 (1.01, 1.89) 0.040

Treatment(ref. = CCRT)

RT alone 1.07 (0.56, 1.49) 0.373 1.04 (0.58, 1.11) 0.228

Differentiation(ref. = Grade I)

Grade II 1.36 (0.50, 3.69) 0.543 2.81 (0.99, 7.97) 0.154

Grade III 1.37 (0.50, 3.76) 0.535 2.25 (0.79, 6.39) 0.129

Grade IV 2.07 (0.52, 8.29) 0.303 2.65 (0.64, 11.00) 0.179

Histological type(ref. = Squamous cell carcinoma)

Adenocarcinoma 1.60 (1.17, 2.18) 0.0033 1.86 (1.34, 2.6) 0.0002

Medical center (ref. = No)

Yes 0.76 (0.61, 1.15) 0.2182 0.77 (0.59, 1.19) 0.2439

Brachytherapy (ref. = No)

Yes 0.22 (0.17, 0.27) <0.001 0.31 (0.24, 0.4) <0.001
fron
PET–CT, positron emission tomography–computed tomography; HR, hazard ratio; aHR, adjusted hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer; CCI, Charlson
comorbidity index; RT, radiotherapy; CCRT, concurrent chemoradiotherapy; y, years.
*All covariates mentioned in Table 2 were adjusted.
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inherent organ motion (28–30). During each treatment, the real-time

imaging of the treatment target and normal organs allows for the

minimization of such additional margins and the reduction of

irradiated volumes, leading to a decreased risk of missing a target

(28–30). This technology is collectively referred to as IGRT and

employs various methods for real-time imaging and treatment

adjustment. Refinements to 3D-CRT include IMRT and IGRT.

Conformal therapy is generally used to reduce toxicity (28–30). The

reduction in toxicity has enabled performing dose escalation trials for

improving long-term tumor control or OS. Tsai et al. performed a

RCT by including a small sample size and a short-term follow-up and

demonstrated that pretreatment PET did not result in survival

benefits but only enhanced the detection of extrapelvic metastasis,

mainly paraaortic lymph nodes (23). These findings might be

attributed to the use of old RT techniques (2D-RT) that resulted in
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more toxicity or insufficient irradiation doses to extrapelvic

metastasis or paraaortic lymph nodes (23). However, compared

with old RT techniques, such as 2D-RT, the dose escalation in IG-

IMRT might result in less toxicity and more precision, leading to the

accurate delineation of cervical cancer (31). Therefore, pretreatment

PET–CT might be associated with longer OS compared with

nonpretreatment PET–CT in the era of IG-IMRT.

In the future, a large and well-designed RCT may be necessary to

confirm the survival benefit of pretreatment PET–CT for patients

with stage IB–IVA cervical cancer receiving RT or CCRT in the era of

IG-IMRT, although the inclusion of a control arm (nonpretreatment

PET–CT) for patients with cervical cancer, especially for those with

advanced stages, can be an ethical problem because of the accurate

detection of extrapelvic metastasis or paraaortic lymph nodes (23).

Owing to the difficulty in performing this type of RCT, a large
TABLE 4 Cox proportional hazard regression analysis of the risk of all-cause death in propensity score–matched patients with AJCC stage IIB–IVA
cervical cancer.

Crude HR (95% CI) P value Adjusted HR (95% CI) P value

Pretreatment PET–CT (ref. = No)

Yes 0.88 (0.80, 0.97) 0.014 0.90 (0.81, 0.99) 0.039

Age (ref. Age ≤ 40 y)

40 y < Age ≤ 50 y 1.06 (0.75, 1.11) 0.054 1.03 (0.72, 1.06) 0.113

50 y < Age ≤ 60 y 0.88 (0.75, 1.03) 0.104 1.04 (0.72, 1.09) 0.135

Age > 60 y 1.65 (1.44, 1.89) <0.001 1.04 (1.01, 1.22) 0.044

CCI score (ref. = 0)

≥1 1.65 (1.49, 1.83) <0.001 1.33 (1.19, 1.48) <0.001

Years of Diagnosis (ref. = 2008–2010)

2011–2014 1.12 (0.99, 1.27) 0.082 1.02 (0.89, 1.18) 0.747

2015–2018 1.08 (0.95, 1.23) 0.258 0.96 (0.82, 1.11) 0.562

AJCC stage (ref. = Stage IIB)

III 1.16 (1.03, 2.93) 0.015 1.14 (1.09, 2.88) 0.036

IVA 2.67 (1.11, 6.43) 0.028 3.00 (1.24, 7.26) 0.014

Treatment (ref. = CCRT)

RT alone 3.11 (2.79, 3.47) <0.001 2.02 (1.76, 2.31) <0.001

Differentiation (ref. = Grade I)

Grade II 0.87 (0.61, 1.23) 0.432 1.10 (0.77, 1.57) 0.590

Grade III 0.93 (0.65, 1.32) 0.667 1.05 (0.73, 1.49) 0.809

Grade IV 1.55 (0.95, 2.52) 0.078 1.33 (0.81, 2.18) 0.265

Histological type (ref. = Squamous cell carcinoma)

Adenocarcinoma 1.89 (1.64, 2.17) <0.001 1.77 (1.52, 2.05) <0.001

Medical center (ref. = Nonmedical centers)

Medical centers 0.92 (0.84, 1.02) 0.109 0.99 (0.89, 1.11) 0.909

Brachytherapy (ref. = No)

Yes 0.26 (0.24, 0.29) <0.001 0.45 (0.4, 0.5) <0.001
fron
PET–CT, positron emission tomography–computed tomography; HR, hazard ratio; aHR, adjusted hazard ratio; CI, confidence interval; AJCC, American Joint Committee on Cancer; CCI, Charlson
comorbidity index; RT, radiotherapy; CCRT, concurrent chemoradiotherapy; y, years.
*All covariates mentioned in Table 2 were adjusted.
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retrospective observational study might be necessary. However, in a

large cohort, with in-depth postprocessing such as PSM, a

retrospective study of an existing database without randomization

cannot mimic a RCT, possibly resulting in a selection bias. Thus, a

study with the PSM design can be performed to address the question

regarding the use of available data and complement the lack of well-

designed RCTs.

Our study strengths are as follows. This is the first, largest, long-

term follow-up cohort study using a homogenous modality with
Frontiers in Oncology 09159160
integrated PET–CT to estimate the survival outcomes of pretreatment
18This study investigated the effects of FDG-PET–CT or

nonpretreatment PET–CT on patients with cervical cancer stratified

by different clinical stages. Comparative reports for different clinical

stages, sufficient sample sizes, long-term follow-up periods,

homogenous 18FDG-PET–CT modalities, and PSM design

mimicking the RCT are lacking. In the present study, pretreatment
18FDG-PET–CT was associated with survival benefits for the patients

with stage IB–IVA cervical cancer. Our result suggests that
frontiersin.org
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FIGURE 1

Kaplan–Meier overall survival curves for propensity score–matched patients with cervical cancer. (A) All stages; (B) stage IB–IIA; (C) stage IIB–IVA.
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pretreatment 18FDG-PET–CT is necessary for patients with cervical

cancer receiving RT or CCRT, especially in the era of IG-IMRT. Our

findings should be considered in future clinical practice and

prospective clinical trials.

This study has some limitations. First, because all patients with

cervical cancer were enrolled from the Asian population, the

corresponding ethnic susceptibility compared with the non-Asian

population remains unclear; hence, our results should be cautiously

extrapolated to non-Asian populations. However, no evidence

demonstrates differences in survival outcomes between Asian and

non-Asian patients with cervical cancer receiving RT or CCRT.

Second, although the main advantage of PSM is that it enables a

more precise estimation of the intervention response, PSM cannot

control for factors not accounted for in the model and is based on an

explicit selection bias toward patients who could be matched (i.e.,

those who could not be matched are not part of the scope of

inference). Third, we do not have data for young cervical cancer

patients who may require fertility-sparing treatment, and this may

limit the generalizability of our findings to this population. Fourth,

the diagnoses of all comorbidities were based on ICD-9-CM or ICD-

10-CM codes. However, the combination of the TCR and NHIRD

appears to be a valid resource for population studies on comorbidities

(32–34). Moreover, the TCR administration randomly reviews charts

and interviews patients to verify the accuracy of diagnoses, and

hospitals with outlier chargers or practices may be audited and

subsequently heavily penalized if malpractice or discrepancies are

identified. Despite these limitations, a major strength of the present

study is the use of a nationwide population-based registry with

detailed baseline and treatment information. Lifelong follow-up was

possible through the linkage of the registry with the national Cause of

Death database. Considering the magnitude and statistical

significance of the observed effects in the current study, the

limitations are unlikely to affect our conclusions.

Conclusion

Pretreatment 18FDG-PET–CT might be associated with longer

survival in patients with stage IB–IVA cervical cancer receiving RT or

CCRT, especially in the era of IG-IMRT.
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Objectives: Recurrence risk evaluation is clinically significant for patients with

locally advanced cervical cancer (LACC). We investigated the ability of transformer

network in recurrence risk stratification of LACC based on computed tomography

(CT) and magnetic resonance (MR) images.

Methods: A total of 104 patients with pathologically diagnosed LACC between July

2017 and December 2021 were enrolled in this study. All patients underwent CT

and MR scanning, and their recurrence status was identified by the biopsy. We

randomly divided patients into training cohort (48 cases, non-recurrence:

recurrence = 37: 11), validation cohort (21 cases, non-recurrence: recurrence =

16: 5), and testing cohort (35 cases, non-recurrence: recurrence = 27: 8), upon

which we extracted 1989, 882 and 315 patches for model's development,

validation and evaluation, respectively. The transformer network consisted of

three modality fusion modules to extract multi-modality and multi-scale

information, and a fully-connected module to perform recurrence risk

prediction. The model's prediction performance was assessed by six metrics,

including the area under the receiver operating characteristic curve (AUC),

accuracy, f1-score, sensitivity, specificity and precision. Univariate analysis with

F-test and T-test were conducted for statistical analysis.

Results: The proposed transformer network is superior to conventional radiomics

methods and other deep learning networks in both training, validation and testing

cohorts. Particularly, in testing cohort, the transformer network achieved the

highest AUC of 0.819 ± 0.038, while four conventional radiomics methods and

two deep learning networks got the AUCs of 0.680 ± 0.050, 0.720 ± 0.068, 0.777 ±

0.048, 0.691 ± 0.103, 0.743 ± 0.022 and 0.733 ± 0.027, respectively.

Conclusions: The multi-modality transformer network showed promising

performance in recurrence risk stratification of LACC and may be used as an

effective tool to help clinicians make clinical decisions.

KEYWORDS

cervical cancer, recurrence risk stratification, multi-modality data, deep learning,
transformer network
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1 Introduction

Cervical cancer is one of the most common malignancies in

females worldwide, which ranks as the 4th leading cause of death

among cancers in women (1). Locally advanced cervical cancer

(LACC), as the cervical cancer in IB2, IIA2 and IIB~IVA stages, is

generally considered as a local mass with the size larger than 4cm or

invades the surrounding tissues, in which distant metastasis does not

occur (1). In clinical practices, the treatment for patients with LACC

does not follow the same pattern (2). Most LACC patients are

routinely treated with concurrent chemoradiation therapy, and the

prognosis is heterogeneous (3). Despite neoadjuvant and adjuvant

therapies are being tentatively introduced into the treatment regimen,

the overall outcomes are not significantly improved (4, 5). The

potential reason may be associated with the small-scale cohorts

benefited from the neoadjuvant and adjuvant treatments, and all of

these patients are from the high-risk recurrence group (6). Therefore,

an interesting and crucial topic is to accurately predict recurrence risk

so as to formulate the individualized therapeutic schedule for

LACC patients.

With the rapid development of imaging techniques, imaging

examinations has been considered as a routine for patients with

cervical cancer. Currently, several studies have conducted recurrence

and prognosis analysis for cervical cancer by extracting and

evaluating high-throughput imaging features (7, 8). For example,

some work has carried out texture analysis based on positron

emission tomography (PET) or magnetic resonance (MR) images to

predict the recurrence risk of cervical cancer (9, 10). In addition, the

ultrasound (US) and computed tomography (CT) images were also

used in recurrence-related tasks, such as lymph node metastasis

prediction and survival assessment (11, 12). However, few studies

have tried to focus on the recurrence risk stratification of LACC.

Moreover, previous methods only utilized the information from

mono-modal i ty data and did not take mult i-modal i ty

complementary information into consideration. Consequently, it is

desirable to design an efficient model to make full use of multi-

modality data (i.e., CT and MR images) for accurately stratifying the

recurrence status of LACC.

In recent years, deep learning has demonstrated its superiority over

conventional radiomics methods based on hand-crafted features (13),

and it avoids the complex hand-crafted feature extraction (14).

Transformer, as one of the most popular deep learning architectures,

has been successfully applied to various medical image analysis tasks

and shows promising performance (15–17). In this study, we

investigated the ability of transformer network in recurrence risk

stratification of LACC by using non-contrast enhanced CT images

and T1-Weighted MR images. Specifically, the transformer network
Abbreviations: LACC, locally advanced cervical cancer; CT, computed

tomography; MR, magnetic resonance; AUC, the area under the receiver

operating characteristic curve; CI, confidence interval; PET, positron emission

tomography; US, ultrasound; FIGO, International Federation of Gynecology and

Obstetrics; VOI, volume of interest; BN, batch normalization; MLP, multi-layer

perceptron; ViT, vision transformer; KNN, k-nearest neighbor; SVM, support

vector machine; CPU, Central Processing Unit; GPU, Graphics Processing Unit;

ROC, receiver operating characteristic; ESUR, European Society of

Urogenital Radiology.
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consisted of three modality fusion modules to extract multi-modality

and multi-scale information, and a fully-connected module to perform

recurrence risk prediction. The performance of the model was assessed

by six metrics. The results showed that our proposed model

significantly outperformed the conventional radiomics methods.
2 Materials and methods

2.1 Patients

This study was approved by the Institutional Review Board, and

written informed consent requirement was waived. Totally, 104

patients with pathologically diagnosed LACC between July 2017

and December 2021 were retrospectively enrolled. For all

participants, the inclusion criteria were as follows: (1) patients who

pathologically confirmed LACC; (2) patients who underwent

radiotherapy as the main treatment; (3) patients who underwent

both CT and MR examinations within three weeks before

radiotherapy. The exclusion criteria were as follows: (1) external

irradiation treatment was interrupted for more than one month; (2)

the radiation dose to tumor was less than 80Gy; (3) surgery was

performed before radiotherapy. All enrolled participants with

matched multi-modality data were randomly divided into training

and testing cohorts at a ratio of 2: 1 to develop and assess the

network, respectively.

Recurrent tumors were classified into local, regional, or distant

progressive tumors after concurrent chemoradiotherapy was

completed. Clinical follow-up exams of the patients were performed

every 3 months until 36 months. Physical examination and tumor

markers were checked. Imaging examination of pelvic MRI (CT for

special patients) was performed when suspected of recurrence and the

biopsy was performed for confirmation.

The clinicopathologic data of all enrolled patients, including age,

tumor stage (FIGO 20091), pathologic diagnosis, lymph node status

and dose of radiotherapy, were obtained from medical records for

statistical analysis and the recurrence status of all patients was also

followed up.
2.2 CT and MR image acquisition

The CT images were collected from the CT scanner (Philips

Healthcare, Best, The Netherlands). The scanning current and voltage

were 300 mAs and 120 kV, respectively. Both slice thickness and slice

distance were set to 3 mm, and the resolution was 512×512 pixels. The

scanning range of CT was from the diaphragm to the proximal femur.

The MR images were acquired from four MR scanners: an Achieva 3T

MR scanner (Philips Medical Systems, Best, The Netherlands), with

the repetition time of 431.5-697.4 msec, echo time of 10 msec, slice

thickness of 5 mm, flip angle of 90°, percentage phase field of view of

100%, and matrix of 320×320 or 560×560; an Ingenia 3T MR scanner

(Philips, Best, The Netherlands), with the repetition time of 431.5-
1 Since the data were collected from 2017, we uniformly used the FIGO 2009

staging system instead of the newly revised FIGO 2018.
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697.4 msec, echo time of 10 msec, slice thickness of 5 mm, flip angle of

90°, percentage phase field of view of 100%, and matrix of 320×320 or

560×560; a Signa HDxt 1.5T MR scanner (GE Medical Systems,

Milwaukee, Wis, USA), with the repetition time of 200-620 msec,

echo time of 8.104 msec, slice thickness of 6 mm, flip angle of 90°,

percentage phase field of view of 100%, and matrix of 512×512; an

OPTIMA MR360 1.5T MR scanner (GE Healthcare, Milwaukee, Wis,

USA), with the repetition time of 393-1179 msec, echo time of 12.36

msec, slice thickness of 5-7.5 mm, flip angle of 90°, percentage phase

field of view of 100%, and matrix of 512×512. The scanning range of

MR scanners was the whole pelvic area.
2.3 Imaging registration and
VOI segmentation

In this study, we mainly focused on the imaging information of

the primary tumor regions for recurrence risk stratification. The

lymph node status was not included in the model. The specific

reason is that the patients included in this study were all patients

who had not undergone surgery, and there was no gold standard

(pathological result) to verify the presence of lymph node metastasis.

Previous studies (18, 19) have also shown that it is sufficient to use

only the imaging information of primary lesions for cancer prognosis

analysis, and the method selection of this study is generally in line

with the previous research norms.

We chose non-contrast enhanced CT and T1-weighted MR

images to carry out imaging analysis and used T1-weighted MR to

contour the tumor. The main reason is that MR imaging has

higher soft-tissue contrast resolution, so cervical cancer, which

originates in the pelvis and is mixed with surrounding soft tissues,

can be well identified. In order to ensure that the primary lesion area

can be accurately located in CT images, we registered them with the

MR images and then used the VOIs (i.e., primary tumor regions) of

MR images to extract lesion regions in both registered CT images and
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original MR images. Specifically, as shown in Figure 1, we first

cropped CT images to focus on the pelvic area, and then aligned

cropped CT images to the MR images via elastic registration (3D

Slicer software 4.11). The VOIs were manually delineated on T1-

weighted MR images by using ITK-SNAP 3.6 (ITK-SNAP 3.x Team,

www.itksnap.org) by a radiologist with 10 years of experience.
2.4 Patch extraction

The lesion regions of all patients were resampled into a volume

with the specified resolution of 86×86×12, and then zero-mean

normal izat ion was appl ied to each volume for image

standardization so as to eliminate the bias introduced by

inconsistent imaging parameters (20). Subsequently, each volume

was split into nine patches with the size of 32×32×12, in which

adjacent patches had 5-voxel overlap alone coronal and sagittal

directions. Finally, paired multi-modality patches were taken as the

input of transformer network for recurrence risk prediction.
2.5 Transformer network

The flow chart of transformer network is shown in Figure 1. The

transformer network was composed of three modality fusion modules

and a fully-connected module. The modality fusion module (as shown

in Figure 2) consisted of two spatial pyramid units and a transformer

unit. The former was used to extract the multi-scale image features

effectively. The spatial pyramid features were obtained by utilizing

three paralleled 3×3×3 convolutional layers with the dilation rates of

1, 3 and 5, respectively. Then, a pixel-wise summation operator and a

1×1×1 convolution layer were used to aggregate these features. In

order to avoid gradient vanishing and accelerate convergence, a batch

normalization (BN) layer and a Leaky ReLU nonlinearity operation

were plugged after each convolutional layer. Subsequently, a
FIGURE 1

The flow chart of the proposed model for the recurrence risk stratification of LACC.
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transformer unit was utilized to capture semantic features between

two modalities data (21). Specifically, we performed two multi-head

self-attention operations for each modality to learn modality-specific

information, and two multi-head cross-attention operations to extract

complementary features from the other modality. Afterwards, weight

average operator was adopted to aggregate all feature maps, and the

weights of different features were learned automatically. A multi-layer

perceptron (MLP) layer and a vision transformer (ViT) unit (17) were

then applied to further extract semantic representations.

Subsequently, CT and MR features were fed into the fully-

connected module that contained a global average pooling layer,

three stacked fully-connected layers (with the node number of 8, 4, 1,

respectively) and a Sigmoid activation function to generate the patch-

level predictions for CT and MR images, respectively. Another weight

average operation was then used to aggregate the predicted

probabilities of two modalities. Finally, we adopted the voting

strategy to integrate the predicted probabilities of nine paired

patches to obtain patient-level recurrence risk prediction.
2.6 Conventional radiomics methods and
deep neural networks

To verify the effectiveness of our method, we compared the

proposed method with some conventional radiomics methods and

deep neural networks. For conventional radiomics methods, followed

by (22), we extracted 4 non-texture features (including volume, size,

solidity and eccentricity) and 10320 texture features from each

modality for each patient. Subsequently, we utilized a filter-based

feature selection method, namely Relief algorithm (23), to select the

features with the best distinguishing power. The selected features were

then used to construct the decision tree classifier (24), naive bayes

classifier (25), k-nearest neighbor (KNN) classifier (26) and support

vector machine (SVM) classifier (27), respectively, for recurrence risk

prediction. For comparison with deep neural networks, we

reproduced ResNet18 (28) and MobileNetV1 (29) networks. We
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employ the same data preprocessing strategy as the proposed

method, and then utilized the input-level fusion strategy to fuse

multi-modality images into deep networks by multi-channel.
2.7 Implementation details and
statistical analysis

We conducted data augmentation strategy (i.e., random affine

transformation) to generate sufficient images to train the transformer

network so as to alleviate the overfitting and data imbalance issues (30).

Specifically, all VOIs were first scaled to the volume with the size of

560×560×20 and then underwent rotation (within p/18, p/18, p/4 in the

coronal, sagittal and transverse sections, respectively) and zoom (between

0.75 and 1.25) operations, followed by patch extraction. For eachmethod,

we randomly divided the training and validation sets five times to verify

the robustness of the method. In the training stage, we utilized binary

cross entropy as the loss function and recurrence status as the label. And

Kaiming initialization (31) and Adam optimizer (32) were adopted to

initialize and optimize model's parameters. The model was

complemented under the PyTorch (version 1.10.1) based on Python

(version 3.8.0). All intensive calculations were offloaded to a workstation

with Central Processing Unit (CPU) of Intel(R) Xeon(R) CPU E5-2623

v3@ 3.00GHz, Graphics Processing Unit (GPU) of NVIDIA Pascal Titan

X, and 125 GB RAM. The conventional radiomics model was carried out

by MATLAB software (version 2020a).

Continuous variables were expressed as means (standard

deviation), and categorical data were expressed as numbers

(percentage). The model's prediction performance was assessed by

six metrics, including the area under the receiver operating

characteristic curve (AUC), accuracy, f1-score, sensitivity, specificity

and precision. Univariate analysis with F-test was conducted to

compare differences between clinical variables and recurrence status

of LACC, while T-test for the difference comparison of AUCs, and

significant difference was defined by P < 0.05. All statistical analyses

were implemented using R software (version 4.0.2).
FIGURE 2

The architecture of modality fusion module. D is dilation rate in the convolutional layers and N is the number of convolutional kernels, which is set to 4,
8 and 16, respectively, in the three modality fusion modules.
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3 Results

3.1 Clinical characteristics

The clinical baseline characteristics of the enrolled participants are

shown in Table 1. The inclusion and exclusion criteria are shown in

Figure 3 (left). To develop and assess the proposed model, the enrolled

patients were randomly divided into the training cohort and testing

cohort with an approximate ratio of 2: 1. Then, in the training cohort,

we further portioned two-thirds samples for training the network and

the rest for validating the network, respectively. We performed three-

fold augmentation for non-recurrence cases and ten-fold augmentation

for recurrence cases in the training set to bridge the quantitative gap
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between two categories. Totally, 1989 (non-recurrence: recurrence =

999: 990), 882 (non-recurrence: recurrence = 432: 450) and 315 (non-

recurrence: recurrence = 243: 72) patches were generated from training,

validation and testing cohorts. The flow chart of the study is shown in

Figure 3 (right). The all cohorts maintained the same class distribution.
3.2 Training process and prediction
performance of transformer network

The training process of transformer network is shown in Figure 4,

which suggests that the loss of model gradually converged and the

accuracy gradually stabilized as iterations number increased. The
TABLE 1 Clinical characteristics of recurrence and non-recurrence cohorts.

Total Non-recurrence cohort Recurrence cohort P-value*

Number N = 104 N = 80 N = 24

Characteristics

Age (year) 56.68 (8.88) 55.24 (7.89) 59.00 (10.12) 0.2023

FIGO1 (2009 stage) 0.0008

IB2 5 5 (100%) 0 (0%)

IIA1 3 3 (100%) 0 (0%)

IIA2 9 8 (89%) 1 (11%)

IIB 46 37 (80%) 9 (20%)

IIIA 7 6 (86%) 1 (14%)

IIIB 30 21 (70%) 9 (30%)

IVA 2 0 (0%) 2 (100%)

IVB 1 0 (0%) 1 (100%)

Unknown 1 0 (0%) 1 (100%)

Pathologic diagnosis 0.9002

Squamous cell carcinoma 96 74 (77%) 22 (23%)

Adenocarcinoma 4 3 (75%) 1 (25%)

Unknown 4 3 (75%) 1 (25%)

Lymph node status 0.2674

Pelvic + Retroperitoneal 33 24 (73%) 9 (27%)

Pelvic + groin 2 1 (50%) 1 (50%)

Pelvic 15 11 (73%) 4 (27%)

Retroperitoneal 3 2 (67%) 1 (33%)

Unknown 51 42 (82%) 9 (18%)

Dose of radiotherapy 0.8471

45Gy/25F 9 7 (78%) 2 (22%)

45-60Gy/25F 6 6 (100%) 0 (0%)

50.4Gy/28F 2 2 (100%) 0 (0%)

50.4-60Gy/28F 46 31 (67%) 15 (33%)

Unknown 41 34 (83%) 7 (17%)
1 FIGO, International Federation of Gynecology and Obstetrics.
* P-value is derived from the univariate analysis with F-test.
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prediction performance of transformer network on recurrence risk

prediction of LACC is listed in Table 2. From Table 2, we can observe

that the transformer network can accurately predict the recurrence

status of all samples in the training cohort. Meanwhile, it achieved

good performance with AUC of 0.819 ± 0.038, accuracy of 0.869 ±

0.023, f1-score of 0.914 ± 0.016, sensitivity of 0.911 ± 0.038, specificity

of 0.725 ± 0.094 and precision of 0.919 ± 0.025 in the testing cohort.
3.3 Comparison with conventional radiomics
methods and deep neural networks

We compared the proposed transformer network with

conventional radiomics methods and deep neural networks. The

results are shown in Table 2. We can find that the transformer

network is generally superior to other methods in both training,

validation and testing cohorts. Particularly, in testing cohort, the

transformer network achieved the highest AUC of 0.819 ± 0.038,

while conventional radiomics methods got the AUCs of 0.680 ± 0.050,
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0.720 ± 0.068, 0.777 ± 0.048 and 0.691 ± 0.103, respectively. The

AUCs of the ResNet18 and MobileNetV1 were 0.743 ± 0.022 and

0.733 ± 0.027, respectively, which did not show competitive

performances. We analyzed that these two classical networks both

used the input-level modality fusion strategy, which made it difficult

to establish the intrinsic relationship between different modalities of

the same patient, resulting in the degradation of the model

performance (15). By contrast, we adopted the transformer

structure, and used its unique attention mechanism to fully learn

the complementary information between modalities and mined

discriminative semantic features. Therefore, the proposed model

was more accurate and robust. Figure 5 (left) plots the ROC curves

of all competing methods in testing cohort.
3.4 Efficacy of multi-modality data

We compared the prediction performance of the proposed model

on mono-modality data (i.e., only trained with CT or MR images) and
FIGURE 3

Patient inclusion and exclusion criteria, and the study flow chart.
FIGURE 4

The training process of transformer network.
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multi-modality data. The detailed experimental design can be found

in Supplementary Materials. Table 3 shows the experimental results,

and Figure S1 depicts the training process of transformer network on

mono-modality data. We can see that the model with multi-modality

data obtained the best results when compared with the models with
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only mono-modality data. Figure 5 (right) exhibits the corresponding

ROC curves, further validating the above-mentioned contents. It is

not surprising about the observation, in that multi-modality data can

provide more complementary information for the recurrence risk

stratification of LACC.
TABLE 2 Comparison results of the proposed method and other competing methods.

AUC Accuracy F1-score Sensitivity Specificity Precision P-value*

Proposed Training 0.987±0.025 0.986±0.029 0.984±0.031 0.971±0.058 1.000±0.000 1.000±0.000

Validation 0.989±0.021 0.988±0.024 0.987±0.027 0.975±0.050 1.000±0.000 1.000±0.000

Testing 0.819±0.038 0.869±0.023 0.914±0.016 0.911±0.038 0.725±0.094 0.919±0.025

Decision Tree Training 0.968±0.017 0.957±0.016 0.972±0.010 0.974±0.009 0.900±0.075 0.970±0.022 4.20e-05

Validation 0.953±0.053 0.943±0.036 0.962±0.023 0.950±0.025 0.920±0.098 0.975±0.031

Testing 0.680±0.050 0.703±0.034 0.787±0.026 0.711±0.028 0.675±0.061 0.881±0.023

Bayes Classifier Training 0.867±0.020 0.878±0.015 0.924±0.009 0.970±0.015 0.575±0.047 0.883±0.011 7.54e-05

Validation 0.903±0.066 0.867±0.019 0.915±0.013 0.950±0.025 0.600±0.000 0.884±0.003

Testing 0.720±0.068 0.691±0.042 0.777±0.030 0.696±0.028 0.675±0.100 0.879±0.037

KNN Training 0.925±0.031 0.843±0.023 0.905±0.014 0.966±0.014 0.437±0.068 0.851±0.016 1.40e-03

Validation 0.929±0.067 0.838±0.023 0.904±0.012 1.000±0.000 0.320±0.098 0.825±0.021

Testing 0.777±0.048 0.731±0.053 0.807±0.047 0.741±0.084 0.700±0.100 0.895±0.030

SVM Training 0.989±0.013 0.980±0.012 0.987±0.007 0.996±0.008 0.925±0.047 0.978±0.014 7.39e-07

Validation 0.975±0.038 0.952±0.030 0.969±0.020 0.987±0.025 0.840±0.080 0.952±0.024

Testing 0.691±0.103 0.646±0.023 0.737±0.020 0.644±0.030 0.650±0.050 0.862±0.017

MobileNetV1 Training 0.979±0.031 0.977±0.033 0.976±0.035 0.961±0.054 0.994±0.012 0.993±0.014 7.70e-03

Validation 0.975±0.040 0.973±0.044 0.971±0.048 0.954±0.073 0.992±0.016 0.990±0.020

Testing 0.743±0.022 0.811±0.023 0.875±0.020 0.859±0.054 0.650±0.094 0.894±0.020

ResNet18 Training 0.968±0.053 0.966±0.055 0.964±0.060 0.948±0.082 0.984±0.029 0.981±0.034 7.60e-03

Validation 0.977±0.040 0.971±0.052 0.967±0.062 0.946±0.108 0.996±0.008 0.996±0.008

Testing 0.733±0.027 0.800±0.031 0.863±0.026 0.822±0.049 0.725±0.050 0.910±0.011
fro
* P-value is calculated by T-test to measure significant differences from proposed model.
FIGURE 5

The ROC curves of models in testing cohort. The model with the best test result was shown. Left: ROC curves of all competing methods; Right: ROC
curves of the proposed model with mono-modality and multi-modality data.
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3.5 Efficacy of key modules in
transformer network

We also validated the efficacy of key modules in transformer

network. The detailed experimental design and results can be found in

Supplementary Materials.
4 Discussion

In this study, we developed and evaluated a transformer network

for the recurrence risk stratification of locally advanced cervical

cancer (LACC) based on computed tomography (CT) and magnetic

resonance (MR) images. The proposed method achieved excellent

prediction performance, which could be potentially used as an

effective tool for the decision-making support in a non-invasive way.

The individualized treatment of cervical cancer is guided by the

FIGO staging (33, 34). For patients with LACC, the preferred

treatment is concurrent chemoradiation rather than surgery (3).

However, unlike surgery treatment that can evaluate recurrence risk

based on the resected tumor, the concurrent chemoradiation lacks of

the conditions for adequate pathological evaluation after local biopsy.

Hysteretic risk assessment and intervention would lead to cancer

recurrence for partial patients. Therefore, it is desirable to accurately

predict the recurrence risk of LACC so as to determine appropriate

adjuvant treatment strategies.

Under the current advocacy of precision medicine (35) powered

by patient data (36), personalized treatment is the inevitable trend of

current medical technology development. The FIGO 2018 staging

system has acknowledged the value of imaging for optimal risk

stratification and treatment planning (37, 38) and European Society

of Urogenital Radiology (ESUR) guidelines also affirmed the

important role of MR images in the risk assessment of cervical

cancer recurrence (39). Additionally, medical imaging acquisition

and storage techniques enable the non-invasive analysis for various

diseases, which efficiently assists clinicians in disease diagnosis,

treatment and prognosis (40, 41). Typically, radiomics signatures

have been widely used and show promising value (42, 43). With the

widespread promotion of deep learning technology, the threshold for

mastering such high-precision models has been completely lowered.
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Compared to conventional radiomics methods, deep learning

simplifies the multi-step pipeline by automatically learning useful

features from images, and exhibits better predictive performance (44).

As one of the challenges of deep learning, large-scale data are needed

for model training. However, the low incidence of LACC might lead

to insufficient training data. To this end, in our work, we employed

the patch-based strategy to extract a large amount of image patches

from each patient and additionally performed data augmentation to

scale up training data and prevent overfitting. Furthermore, we

designed a relatively simple network, which embedded three

modality fusion modules and a fully-connected module, and the

satisfactory results demonstrated its ability of recurrence

risk stratification.

Computed tomography (CT) and magnetic resonance (MR) have

been considered as the routine examinations of cervical cancer

patients. Previous studies have suggested that CT and MR images

help identify metastatic lymph nodes and distant metastases for

patients with cervical cancer (45) and MR images can also evaluate

the extent of tumors in the cervix and in the pelvis (46). Additionally,

CT and MR images can provide information of tumors, such as lesion

size and invasion degree, which is crucial for preliminary clinical

staging and prognosis evaluation (47–51). Therefore, many models

based on CT or MR images have been proposed for the subtype

identification (52), staging analysis (53, 54), lymph node metastasis

prediction (54, 55) and prognosis analysis (12, 56, 57) of cervical

cancer. Compared to the above methods, the main contributions of

this paper lie in the following aspects: (I) We first investigated the

feasibility of deep learning method in accurately predicting recurrence

risk so as to help formulate the individualized therapeutic schedule for

LACC patients. (II) With matched CT and MR images, we proposed a

multi-modality model to fully extract modality-specific and modality-

sharable features for improving model's performance. (III) We

developed a transformer network which can utilize multi-scale and

multi-modality discriminative information and experimental results

demonstrated its efficacy.

Our study had some limitations. First, our model was constructed

only based on imaging (i.e., CT and MR) features, and more

integrable factors (e.g., tumor size and tumor marker level) can be

collected for further analysis. Second, the VOI segmentation was still

a manual process, which was time-consuming and experience-
TABLE 3 Comparison results of the proposed method on mono-modality data and multi-modality data.

AUC Accuracy F1-score Sensitivity Specificity Precision P-value*

CT+MR Training 0.987±0.025 0.986±0.029 0.984±0.031 0.971±0.058 1.000±0.000 1.000±0.000

Validation 0.989±0.021 0.988±0.024 0.987±0.027 0.975±0.050 1.000±0.000 1.000±0.000

Testing 0.819±0.038 0.869±0.023 0.914±0.016 0.911±0.038 0.725±0.094 0.919±0.025

CT Training 0.998±0.005 0.997±0.005 0.997±0.005 0.995±0.010 1.000±0.000 1.000±0.000 5.75e-04

Validation 0.996±0.008 0.996±0.008 0.996±0.009 0.992±0.017 1.000±0.000 1.000±0.000

Testing 0.677±0.021 0.737±0.042 0.813±0.039 0.748±0.068 0.700±0.061 0.895±0.013

MR Training 0.996±0.008 0.996±0.009 0.995±0.009 0.991±0.018 1.000±0.000 1.000±0.000 2.82e-03

Validation 0.996±0.008 0.996±0.008 0.996±0.009 0.992±0.017 1.000±0.000 1.000±0.000

Testing 0.676±0.068 0.720±0.066 0.795±0.049 0.704±0.052 0.775±0.146 0.914±0.055
fro
* P-value is calculated by T-test to measure significant differences from proposed method on multi-modality data.
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dependent. Last but not the least, this work was a retrospective and

single-site study, and a prospective and multi-site cohort is required

to further evaluate the model's performance. Nevertheless, to the best

of our knowledge, this is the first work to predict the recurrence risk of

LACC patients via the deep learning technique, which might supply a

valuable reference for the application of deep learning in LACC.

In conclusion, we investigated the ability of transformer network

in recurrence risk stratification of LACC based on CT and MR

images. The promising results demonstrated that the proposed

models might help clinicians make clinical decisions for patients

with LACC.
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Diagnostic value of the apparent
diffusion coefficient in
differentiating malignant from
benign endometrial lesions

Bojana Scepanovic1*, Nikola Andjelic1,2*,
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4Department of Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia, 5Faculty of
Sciences, University of Novi Sad, Novi Sad, Serbia, 6Center for Radiology, Clinical Center of Vojvodina,
Novi Sad, Serbia
Introduction: Magnetic resonance imaging (MRI) with its innovative techniques,

such as diffusion-weighted imaging (DWI) and apparent diffusion coefficient

(ADC), increases the diagnostic accuracy in distinguishing between malignant

and benign lesions of the endometrium. The aim of the study was MRI

differentiation between malignant and benign endometrial lesions and

correlation with histopathological findings with a special emphasis on

quantitative analysis. An additional aim was to correlate the ADC values and

histological tumor grades.

Methods: The prospective study included 119 female patients with or without

vaginal bleeding and pathological values of endometrial thickness, who

underwent MRI examinations. According to MRI reports the patients were

divided into 45 suspicious malignant and 74 suspicious benign endometrial

lesions. The radiological diagnosis was compared to the histopathological

evaluation, which confirmed 37 malignant lesions while the rest were benign.

Results: The mean ADC value for malignant lesions was 0.761 ± 0.13×10−3 mm2/

s and for benign lesions was 1.318 ± 0.20×10−3 mm2/s. The ADC values for

malignant lesions were expectedly lower than those of benign lesions (p<0.001).

The ADC cut-off value was 1.007×10−3 mm2/s with a sensitivity of 100%,

specificity of 92.7%, a positive predictive value of 60.3%, and a negative

predictive value of 100%. In comparison with the histopathological findings,

the sensitivity of MRI was 100%, specificity 90.2%, positive predictive value was

82.2%, and negative predictive value was 100%. Observing the histological grades

1, 2, and 3 of endometrial carcinoma, no statistically significant differences of

mean ADC values were found. The mean ADC values for histological tumor

grades 1,2 and 3 were 0.803 ± 0.13×10−3 mm2/s, 0.754 ± 0.12×10−3 mm2/s and

0.728 ± 0.13×10−3 mm2/s, respectively.
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Abbreviations: EC, Endometrial cancer; MRI, Magne

DWI, Diffusion-weighted imaging; ADC, Apparent diffu

Transvaginal ultrasound; T2W FR FSE, T2-weighted fa

echo sequence; T1W FSE, T1-weighted fast spin-echo; T1

fast spin-echo with fat suppression; T2W FR FSE, T2-weig

spin-echo; LAVA, Liver Acquisition with Volume Acqu

time; TE, Echo time; FOV, Field of view; ROI, Region

World Health Organization; FIGO, International Federa

Obstetrics; PPV, Positive predictive value; NPV, Negativ
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Conclusion: DWI and ADC values represent clinically useful tools for the

differentiation between malignant and benign endometrial lesions with high

sensitivity and good specificity, but the results failed to demonstrate their

usefulness in differentiating histological grades of endometrial cancer.
KEYWORDS

diffusion magnetic resonance imaging, endometrium, endometrial cancer,
gynecology, pathology
1 Introduction

Endometrial cancer (EC) is ranged as the most common

gynecological cancer in developed countries with an incidence of 15-

25 per 100.000 women annually (1). Although EC is predominantly

revealed in postmenopausal women, it is also estimated in 10-15% of

premenopausal or perimenopausal women, with 2-5% of them being

younger than 40 years (2, 3). The most common symptom of EC is

vaginal bleeding which can often lead to early diagnosis, but in 5-10%

of postmenopausal women it is asymptomatic (4–6). In these patients,

EC is the cause of vaginal bleeding in about 1-14% of cases (7).

EC is divided into type I and type II. Type I is the most common

and includes endometrioid adenocarcinoma accounting to 75-80%

of all endometrial cancers according to literature data, while type II

is more aggressive and shows a tendency to greater infiltration of

the myometrium (8). The most common histological subtypes of

type II are serous, clear-cell and undifferentiated EC.

In addition to EC, benign endometrial lesions are often diagnosed

as causes of abnormal uterine bleeding and, among them, endometrial

hyperplasia and endometrial polyps are most common (4). Both can

undergo a malignant transformation in EC. Endometrial lesions are a

diagnostic challenge for both gynecologists and radiologists (9). It is

considered that magnetic resonance imaging (MRI) can replace the

limitations of the ultrasound examination in the assessment of the

nature of endometrial lesions and that, its innovative techniques, the

diffusion-weighted imaging (DWI) and the apparent diffusion

coefficient (ADC), can increase the diagnostic accuracy in

distinguishing between malignant and benign lesions of the

endometrium (10). DWI is used to display tissue characteristics

based on the Brownian diffusion motion of water molecules and is

useful in assessing the extension and stage of the EC, detection of

metastatic lymph nodes and the assessment of the response of the EC

to therapy (8, 11). ADC is joined to DWI and represents quantitative
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information about the diffusion of water molecules between tissue cells.

In previous research ADC is considered as a reliable auxiliary

parameter in differentiating between malignant and benign lesions of

the endometrium and normal tissue.

In this research we focused on MRI differentiation between

malignant and benign endometrial lesions in correlation with

histopathological findings. A special emphasis was on the use of

quantitative MRI analysis, DWI and ADC techniques, which are

irreplaceable in radiological oncology. In some cases, biopsy and

histopathological analysis may be limited due to the localization and

size of the observed endometrial lesion, the size of the uterine cavum,

congenital malformations in younger women, cervical stenosis, and the

size of the obtained sample which may be insufficient for

histopathological analysis. High accuracy of DWI and ADC in

assessing the existence of malignant and benign lesions would

contribute to the affirmation of MRI as a non-invasive method for

evaluation of endometrial pathology. Another aim of the study was to

correlate the ADC values and histological grade of the tumor.
2 Materials and methods

2.1 Patients

The prospective study was conducted in the period from

September 2017 to June 2022 on a total sample of 143 female

patients who were examined by a gynecologist due to vaginal

bleeding or as a routine control and were reported to have a

pathological endometrial thickness on transvaginal ultrasound

(TVUS) examination. Subsequently, all patients were examined on

MRI with DWI. Twenty-four patients were excluded from the study

based on the exclusion criteria and the total number of patients was

119. According to the MRI results, patients were divided into two

groups. The first group consisted of 45 patients with reported suspected

malignant endometrial lesions, and the second group of 74 patients

with reported suspected benign endometrial lesions onMRI. AfterMRI

examination the final diagnosis was established according to

histopathological evaluation, and the results were compared to MRI

reports. The study was approved by the institutional ethical committee.

All patients gave written informed consent to take part in this study.

Inclusion criteria were: postmenopausal patients with bleeding and

TVUS measured endometrial thickness greater than 5 mm,

asymptomatic postmenopausal patients with TVUS measured
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endometrial thickness greater than 11 mm, premenopausal or

perimenopausal women with abnormal uterine bleeding and TVUS

measured endometrial thickness greater than 16 mm, no

contraindications for MRI examination, indication set by the

gynecologist to perform exploratory curettage or hysteroscopy and

some of the patients were indicated for operation.

The main exc lus ion cr i t e r i a were pa t i en t s w i th

contraindications for MRI examination, large submucosal myoma

of the uterus that protruded into the lumen of the uterine cavum

limiting the evaluation, endometrial changes that were unclearly

displayed on the DWI and ADC map making their evaluation

impossible, and the absence of subsequent histological finding.

The following flowchart presents methodological steps from

patients’ selection phase to MRI examination and analysis (ADC

measurements), histopathological evaluation and comparation

between MRI and histopathology data (Figure 1).
Frontiers in Oncology 03174175
2.2 MRI protocol

MR examination of the pelvis in all patients was performed

using a 1.5 Tesla MR unit (Signa HDxt, General Electric Healthcare,

Boston, MA, USA). Images were acquired with an 8-channel body

array coil using the lower configuration in the supine position. The

following sequences were used: T2-weighted fast relaxation fast

spin-echo sequence (T2W FR FSE) sagittal, coronal and axial plane,

T1-weighted fast spin-echo (T1W FSE) axial plane, T1-weighted

fast spin-echo with fat suppression (T1W FSE FS) axial plane, T2-

weighted fast relaxation fast spin-echo sequence (T2W FR FSE)

axial oblique (perpendicular) to the uterine cavity, diffusion-

weighted imaging (DWI) in the axial plane, Liver Acquisition

with Volume Acquisition (LAVA) sequence in the axial plane

before and after contrast administration. Apparent diffusion

coefficient (ADC) maps were generated with the manufacturer’s
FIGURE 1

The general flowchart shows the methodological steps of the study.
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software. The parameters of the MRI sequences are presented in

Table 1. To prepare for the examination, patients fasted between 3

and 6 hours (except those with diabetes). Patients received an

intramuscular injection of antiperistaltic agent hyoscine

butylbromide (Buscopan ampoule 20 mg) to decrease artifacts

due to peristaltic movements, except in cases it was contraindicated.
2.3 Image analysis

Image analysis and measurements were done on a clinical

picture archiving and communication system workstation

monitor and post-processed using the General Electric Functool

software package (Advantage 4.7; GE Medical Systems/Healthcare,

Waukesha, WI, USA). Quantitative and qualitative analyses of the

images were performed by two experienced radiologists

independently, who then came to a joint conclusion. First, an

evaluation of conventional and post-contrast sequences was

made, which were then correlated with DWI sequence and

corresponding ADC map, including both qualitative and

quantitative analysis. The ADC map itself poorly shows

anatomical details, so it is necessary to perform the analysis

together with other MR images, which, besides DWI sequence,

include high-resolution anatomical images and post-contrast

images. On T2W sequence, morphological characteristics of the

uterus were observed, i.e., its appearance, size, shape, as well as

zonal anatomy. The corpus and cervix of the uterus were

particularly observed. Then an evaluation of the appearance of

the uterine cavity and the presence of any content was checked.

Special emphasis was placed on the evaluation of the endometrium
Frontiers in Oncology 04175176
and its lesions as the subject of this study. The thickness of the

endometrium was measured, with careful observation of its signal-

morphological characteristics. On T1W sequence, the appearance

of the uterus was observed, i.e., external contours, the presence of

any hematometra or hemorrhagic content, the appearance of the

endometrium, and lymph nodes. On T2W sequences, DWI, and

post-contrast images, we evaluated the tumor invasion of

the myometrium.

The characteristics of endometrial lesions were observed with

an emphasis on DWI images. Lesions and areas that were suspected

of malignancy showed high signal intensity on DWI images with

the b value of 1200 mm2/s and corresponding low signal intensity

on ADC maps which indicated signs of diffusion restriction. In

other cases, when hyperintensity on DWI corresponded to a high

signal intensity on ADC maps, lesions were suspected to be benign.

The ADC values of both suspected malign and suspected benign

endometrial lesions were measured manually using a circular region

of interest (ROI). The ROI was manually drawn and placed on a

representative region as large as possible to include only the solid

parts of the endometrial lesion. We cautiously avoided areas of

normal myometrium and junctional zone, cystic or necrotic areas

and hemorrhagic content. To do so, the conventional and

postcontrast MRI sequences were evaluated and correlated with

DWI and ADC maps. The size of ROI in each case depended on the

size of the endometrial lesion. The ROI was set on the T2-weighted

image and was manually copied to the corresponding ADC map,

whereupon ADC values were automatically calculated. Three

individual ROIs were drawn at different sections of each lesion,

based on which the average ADC value for each patient

was calculated.
TABLE 1 Parameters of MRI sequences for pelvis examination.

Sequence T2W FR
FSE

T2W
FR FSE

T2W
FR FSE T1W FSE T1W FSE fs T2W FR FSE DWI

LAVA before and after con-
trast administration

Imaging
plane Sagittal Axial Corona Axial Axial Perpendicular to

the uterus Axial Axial

TR/TE (ms)
(Repetition time/

Echo time)
2760/10 2220/102 7240/102

460/min full
(13.9 -37.1)

440/min full
(13.1-35.0)

5560/102
10760/
78.7

3.1/1.3-11.0

Matrix size 384x256 320x224 416x224 352x224 320x224 256x224 82x128 160x160

FOV (cm)
(Field of view)

33x33 30x30 34x34 30x30 30x30 24x24 30x30 40x40

Slice thickness/
Gap (mm)

5/1 5/1 4/1 5/1 5/1 4/1 5/1 2/-

Number of slices 30 39 34 39 39 25 39 140-248

Bandwidth (Hz) 41.67 25.00 31.25 31.25 31.25 25.00 – 62.50

NEX (Number of
excitations)

2.00 3.00 2.00 2.00 2.00 6.00 – –

b values (s/mm2) – – – – – –
0;

1200
–

Scan time (min:
s)

3:30 4:54 3:59 3:49 6:23 6:13 4:40 0:33
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2.4 Histopathological evaluation

Definitive diagnoses were set based on histopathological

evaluation and reports after fractionated exploratory curettage,

hysteroscopy and/or surgical operation. They were made by two

pathologists experienced in gynecological pathology and were in

compliance with the WHO (The World Health Organization)

Classification of Tumors and FIGO (International Federation of

Gynecology and Obstetrics) grading of endometrial carcinoma.
2.5 Statistical analysis

Statistical analysis was performed using the Statistical Package

for Social Science – IBM SPSS Statistics 21. Numerical variables

were presented through mean values (arithmetic mean) and

measures of variability (value range, standard deviation),

and attributive variables were presented using frequencies and

percentages. We checked a normal distribution using the

Kolmogorov-Smirnov test, and appropriate tests were used in

relation to that. The comparison of numerical values between two

groups was performed using the Student’s t-test and Mann-

Whitney test, while one-way analysis of variance (ANOVA) was

used to compare values between three and more groups of data.

Testing the difference in frequencies of attributive variables was

performed using the c2 test. ROC analysis was used to define the
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cut-off value of the test that gives the best ratio of specificity and

sensitivity. Values of significance level p<0.05 are considered

statistically significant. The results are presented in tables

and figures.
3 Results

In our study the mean age of female patients was 63.28 ± 8.02

(range 44-82 years) and among them 112 were in postmenopausal

and 7 in perimenopausal period. Mean endometrial thickness

measured at TVUS examination was 15.51 ± 6.05 mm (range 7-

35 mm). Vaginal bleeding was noted in 80 patients, while in 39 cases

it was asymptomatic. Endometrial thickness values in patients with

benign lesions were statistically significantly lower than in those

with malignant lesions (t=3,850; p<0,001). Significantly more

patients with malignant lesions had vaginal bleeding compared to

those with benign lesions (c2 = 14,826; p<0,001).

Based on the MRI analysis, in 74 cases endometrial changes

were reported as probably benign, with the mean ADC value of

1.361 ± 0.161×10−3 mm2/s (range 1.044-1.858×10−3 mm2/s) and in

45 cases they were reported as probably malign, with the mean ADC

value 0.790 ± 0.14×10−3 mm2/s (range 0.542-1.059×10−3 mm2/s).

Figures 2, 3 show the MRI appearance of the malignant and

benign lesions of the endometrium from the samples of

our patients.
FIGURE 2

MR images of a 55-year old woman with a history of vaginal bleeding, high suspicious EC on MRI, and histopathologically proven endometrial
endometrioid carcinoma, HG2 (FIGO stage II): (A) sagittal and (B) axial T2W FR FSE image shows endometrial mass (arrow) in uterine cavity which is
hyperintense on axial DWI (b=1200 s/mm2) (C) and has correlation on ADC map with the measured ADC value of 0.817 × 10−3 mm2/s (D).
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According to histopathological reports, malignancy was

confirmed in 37 out of 45 cases reported as malignant on MRI,

and the rest of 82 cases were proved to be benign. The mean ADC

value of confirmed malignant lesion was 0.761 ± 0.13×10−3 mm2/s

(range 0.542-1.007×10−3 mm2/s), whereas the mean ADC value of

benign lesions was 1.318 ± 0.20×10−3 mm2/s (range 0.756-
Frontiers in Oncology 06177178
1.858×10−3 mm2/s). The histopathological findings are

summarized in Table 2.

The box-and-whisker plots presented in Figure 4 show the

distribution of ADC values between the group of benign and

malignant endometrial lesions. According to the pathological

findings, the mean ADC values of malignant lesions were
FIGURE 3

MR images of a 66-year old woman with a history of vaginal bleeding, suspicious benign lesion on MRI, and histopathologically proven endometrial
hyperplasia: (A) sagittal and (B) axial T2W FR FSE image shows thickened endometrium in uterine cavity (arrow) which is slightly hyperintense on axial
DWI (b=1200 s/mm2) (C) and has no correlation on ADC map with the measured ADC value of 1.792 × 10−3 mm2/s (D).
TABLE 2 Histopathological diagnoses of benign and malignant endometrial lesions.

Pathohistological findings

Benign
lesions

Malignant
lesions Total

Mean ADC (x10−3 mm2/s) ± SD

N % N % N %

Endometrial endometrioid carcinoma 0 0.0 29 78.4 29 24.4 0.758 ± 0.13

Serous carcinoma 0 0.0 5 13.5 5 4.2 0.778 ± 0.09

Clear cell adenocarcinoma 0 0.0 2 5.4 2 1.7 0.660 ± 0.11

Undifferentiated carcinoma 0 0.0 1 2.7 1 0.8 0.954

Endometrial polyp 44 53.7 0 0.0 44 37.0 1.311 ± 0.20

Simple endometrial hyperplasia without atypia 30 36.6 0 0.0 30 25.2 1.344 ± 0.19

Endometrial polyp with simple endometrial hyperplasia without atypia 6 7.3 0 0.0 6 5.0 1.249 ± 0.28

Adenomyoma 2 2.4 0 0.0 2 1.7 1.292 ± 0.08

Total 82 100 37 100 119 100
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statistically significantly lower than those of benign lesions

(t=15.289; p<0.001). In the group of patients with benign lesions

were some outlier values represented by circles. Two values were

more than 1.5 x interquartile range below the first quartile which

were the mild outliers. In our data set this were case numbers 19 and

27 with the ADC values of 0.782 x 10-3 mm2/s and 0.756 x 10-3

mm2/s, respectively. The case number 82 with the ADC value of

1.858 x 10-3 mm2/s was an extreme outlier. This value is more than

3.0 x interquartile range above the third quartile.

The results of ROC curve analysis presenting sensitivity and

specificity of ADC values in differentiation between malignant and

benign endometrial lesions are shown in Figure 5. Based on the area

under the curve (AUC=0.985; CI (confidence interval) 0.968-1.000),

we can see that lower ADC values predict malignant lesions with

98.5% accuracy. The ADC cut-off value was 1.007 x 10-3 mm2/s.

Using this value, the sensitivity for distinguishing malignant from
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benign lesions was 100%, specificity was 92.7%, positive predictive

value (PPV) was 60.3%, and negative predictive value (NPV)

was 100%.

Figure 6 shows a comparison of the two ROC curves.

Explanation for ROC curve analysis (marked blue) that represents

sensitivity and specificity of ADC values in differentiation between

malignant and benign endometrial lesions is given in previous

paragraph. The second ROC curve analysis (marked green)

represents sensitivity and specificity of endometrial thickness

measured by TVUS in differentiation between malignant and

benign endometrial lesions. Based on the area under this curve

(AUC=0.676; CI 0.566-0.787), we can see that prediction for

malignant lesions is 67.6% compared to benign lesions in patients

with thickened endometrium. The cut-off value for endometrial

thickness was 14.85mm. Using this value, the sensitivity for

distinguishing malignant from benign lesions was 70.3%,

specificity was 61%, PPV was 16.69%, and NPV was 94.87%. By

comparing the areas under these curves, our results showed that

ADC values are a statistically significantly better predictor of

malignancy than TVUS-measured endometrial thickness.

By comparing the MRI findings with the findings obtained after

the histopathological analysis, the sensitivity of MRI in relation to

histopathological findings was 100%, specificity was 90.2%, PPV

82.2% and NPV was 100%.

In the group of proved malignant lesions, the mean ADC value

for histological grade 1 tumors (n=11) was 0.803 ± 0.13×10−3 mm2/

s (range 0.620-1.007×10−3 mm2/s), for grade 2 (n=15) 0.754 ±

0.12×10−3 mm2/s (range 0.542-0.953×10−3 mm2/s) and for grade 3

(n=11) was 0.728 ± 0.13×10−3 mm2/s (range 0.579-0.954×10−3

mm2/s). There was no statistically significant difference (F=1.018;

p=0.372) in the mean ADC values depending on the histological

grade of the malignant lesions, as demonstrated in Figure 7.

In cases where EC was confirmed, FIGO stage was determined.

According to MRI analysis and histopathological reports, the stages

IA, IB, II, IIIA and IV were present (Table 3). Based on MRI
FIGURE 4

The box-and-whisker plots show the ADC values of benign and
malignant endometrial lesions according to histopathological analysis.
FIGURE 6

Comparison of the ROC curves of ADC values (blue curve) and
endometrial thickness measured by TVUS (green curve) in
differentiation between malignant and benign endometrial lesions.
FIGURE 5

ROC curve analysis of ADC values in differentiation between
malignant and benign endometrial lesions.
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analysis in the current study, FIGO stage IA was present in 20

patients (54.1%), IB in eight (21.6%), II in two (5.4%), III also in two

patients (5.4%) and stage IV in five patients (13.5%). Referring to

histopathological reports, stage IA was present in 16 patients

(43.3%), IB in seven (18.9%), II in four (10.8%), III in five

(13.5%) and IV stage also in five patients (13.5%). The largest

number of patients had confirmed stage IA with the mean ADC

value of 0.811 ± 0.13 ×10−3 mm2/s and stage IB with the mean ADC

value of 0.696 ± 0.12×10−3 mm2/s. We noticed that the stages IA

and IB were most represented and there was no statistically

significant difference in the mean ADC values between the

mentioned stages (U=29,000; p=0.071).
4 Discussion

In oncological imaging the functional DWI technique is

recognized as an imaging biomarker due to its ability to detect

microscopic changes in the tumor structure (12, 13). As the lack of

universal, standardized range and cut-off values of the ADC for

different tissue is indicated in the literature, it would be useful for

each radiological center to establish specific ADC values

for different tissues. In current research this has been done for EC
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and benign endometrial lesions based on the measurements

obtained for a certain number of examined female patients (14).

Invasive diagnostic methods for obtaining tissues for

histopathological analysis of the endometrium have limitations. In

2-28% of cases they cannot provide a diagnosis due to possible

errors in collecting a tissue sample or obtaining an insufficient

sample (10). In such cases MRI with its DWI, ADC map and ADC

values may have a significant role in reaching a diagnosis.

Moreover, when EC is present, they can also contribute to

determining the stage of the disease and thus serve as one of the

prognostic factors.

Histopathological verification of the accuracy of the DWI and

ADC in the differentiation of malignant and benign changes of the

endometrium would contribute to verifying the reliability of

radiological MRI findings and to the affirmation of MRI as a non-

invasive and preferred method in diagnostics. At the same time, the

number of invasive diagnostic procedures, exploratory curettage

and hysteroscopy could be reduced. It is predicted that MRI with

DWI and ADC may become a method for monitoring women with

risk factors for development of EC and with an initially benign

endometrial lesion, which is primarily important for the early

detection of EC.

In previous research the most attention has been devoted to

examining the role of DWI and ADC in the differentiation of EC

from various benign endometrial lesions in a more precise diagnosis

of EC, as well as to the possibility of determining its histological

grade (10, 15–17).

In our study the results show that there is a statistically

significant difference in the ADC values for malignant versus

benign endometrial lesions. The mean ADC value for malignant

lesions was 0.761± 0.13×10−3 mm2/s and for benign lesions 1.318 ±

0.20×10−3 mm2/s, where the cut-off ADC value was 1.007×10−3

mm2/s. The results of most studies confirm that there is a

statistically significant difference in the mean ADC value of EC in

relation to benign endometrial lesions (16, 18–23). Bakir et al. and

Ahmed et al. agreed that quantitative analysis with ADC map is

fundamental for endometrial lesion characterization (24, 25).

Kececi et al. also evaluated the quantitative values of diffusion

and showed that the ADC values of EC were significantly lower than

the values of benign lesions, which was also confirmed by our

results (22). Kececi and associates reported that the mean ADC

value for EC was 0.94 ± 0.18×10−3 mm2/s, while our values were

lower (0.761 ± 0.13×10−3 mm2/s), but there was a correlation with
TABLE 3 FIGO stages of EC based on MRI analysis and histopathological reports.

FIGO stage
MR analysis Histopathological reports

N % Mean ADC (x10-3mm2/s) ± SD N % Mean ADC (x10-3mm2/s) ± SD

IA 20 54.1 0.797 ± 0.13 16 43.3 0.811 ± 0.13

IB 8 21.6 0.688 ± 0.11 7 18.9 0.696 ± 0.12

II 2 5.4 0.667 ± 0.10 4 10.8 0.748 ± 0.15

IIIA 2 5.4 0.689 ± 0.04 5 13.5 0.657 ± 0.05

IV 5 13.5 0.805 ± 0.07 5 13.5 0.804 ± 0.07
FIGURE 7

The box-and-whisker plots show the ADC values in different
histological grades (G1, G2, and G3) of malignant lesions.
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the cut-off value of 1.007×10−3 mm2/s (22). It should be noted that

the detection of small endometrial changes and their evaluation is

not always possible, and this was not the focus of our research.

Çavus ̧oğlu et al. conducted MRI examination also using 1.5

Tesla and made evaluation on DWI obtained with the b value of 0

and 1000 s/mm2. In our study DWI sequence was obtained using b

values 0 and 1200 s/mm2. The authors also reported that the mean

ADC values of EC were significantly lower (0.88 ± 0.10×10−3 mm2/

s) than those of benign lesions with the calculated cut-off value of

1.18×10−3 mm2/s (26). The mean ADC value for benign lesion

according to their results was 1.78 ± 0.27×10−3 mm2/s, which is

higher compared with our mean ADC values.

Based on the calculated ADC cut-off value of 1.007×10−3 mm2/s

on MRI examination, 45 cases in our research were diagnosed as

probably malignant endometrial lesions, while 74 cases were

identified as benign endometrial lesions. The sensitivity was

100%, specificity 92.7%, PPV 60.3% and NPV was 100%. Based

on histopathological findings, malignant endometrial lesions were

confirmed in 37 cases, while the rest were benign. MRI analysis had

a sensitivity of 100%, specificity 90.2%, PPV 82.2% and NPV was

100% in relation to histopathological findings.

In the work of Moharamzad et al. where the results of eleven

studies were summarized, the sensitivity ranged from 80 to 100%

and the specificity was between 75 and 100%, while the cut-off

values were in the range from 0.90 to 1.20×10−3 mm2/s. The highest

sensitivity (100%) and specificity (97%) were observed in two

studies at cut-off ADC values of 0.90 and 0.98×10−3 mm2/s (27).

Elsammak et al. also showed that the mean ADC values of

malignant lesions were statistically significantly lower than the

values of benign lesions (p<0.001), where the mean ADC values

for malignant and benign lesions were 0.82 ± 1.09×10−3 mm2/s and

1.44 ± 0.15×10−3 mm2/s, respectively (21). In their protocol authors

used three different b values to obtain DWI: 0, 800 and 1000 s/mm2.

Based on the calculated ADC cut-off value of 1.19×10−3 mm2/s, 16

patients were diagnosed to have malignant lesions and 26 benign

lesions (21). Based on histopathological diagnosis, malignancy was

present in 18 cases and benign changes in 24 cases. At the cut-off

value of 1.19×10−3 mm2/s for distinguishing malignant from benign

lesions, sensitivity was 88.9%, specificity 100%, PPV 100% and NPV

92% (21). In our work, the sensitivity was 100%, and the specificity

was lower.

A study by Shen et al. showed that on a sample of 24 EC and 7

benign lesions of the endometrium, based on DWI analysis (b=1000

s/mm2) and ADC value measurements, the mean ADC values for

carcinoma were 0.864 ± 0.31×10−3 mm2/s and 1.277 ± 0.22×10−3

mm2/s for benign lesions with a statistically significant

difference (28).

On the basis of histopathological findings of the current study,

in a total of 31.1% of cases of EC, the most common subtype was

endometrial endometrioid carcinoma with the mean ADC value of

0.758 ± 0.13×10−3 mm2/s. Yan et al. also reported that the

endometrial endometrioid carcinoma was most common, with

the mean ADC value of 0.936 ± 0.223×10−3 mm2/s, which is

higher than our recorded value. In the study by Çavus ̧oğlu et al.

all malignant lesions were endometrioid adenocarcinomas with the

mean ADC value of 0.88 ± 0.10×10−3 mm2/s (26, 29).
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In the current study, benign lesions were present in 68.9% of

female patients, with endometrial polyp and simple endometrial

hyperplasia being the most common, as in the study of Elsammak

et al. and Gharibvand et al. (17, 21). Literature data point to a risk of

progression of endometrial hyperplasia to EC up to 5% for

endometrial hyperplasia without cell atypia and even 30% in the

case of hyperplasia with atypia (30). In women diagnosed with

atypical hyperplasia of the endometrium after explorative curettage,

EC may also coexist, which is diagnosed later based on

postoperative histopathological findings (31). In the examined

sample, two patients had altered endometrium suspicious for EC,

based on MRI findings, and endometrial hyperplasia with atypia

was diagnosed on the histopathological reports after explorative

curettage. The post-operative histopathological reports definitively

confirmed the diagnosis of EC. In their study Natarajan et al. have

shown that MRI has a potential diagnostic value for identifying a

concurrent malignancy or malignant transformation in patients

with endometrial hyperplasia with atypia (32).

Important prognostic factors for EC are the histological subtype

of tumor, histological grade, stage, the depth of myometrial invasion

and the presence of lymphovascular invasion, among which the

stage and histological grade correlate with the risk of lymph node

metastasis and the patient’s prognosis (33–35). EC with a low

histological grade has a lower cell density and greater movement

of water molecules in the matrix and therefore tends to have higher

ADC values. Conversely, EC with a higher histological grade has a

higher cell density and therefore is expected to have lower ADC

values (11). In previous publications on the possibility of ADC in

determining the histological grade of a tumor, the results are

inconsistent. Some studies have shown that there is no

statistically significant correlation between the ADC value and a

certain histological grade of the tumor, which is in line with our

results (15, 18, 20, 24, 26, 28, 36–38). In the present study, we did

not obtain a statistically significant difference in ADC values

between three different histological grades of tumors that would

enable their differentiation. Some authors, such as Tamai et al.

showed that the ADC values of the histological grade 3 were

significantly lower compared to the grade 1 (15, 39–41). There

were also overlaps in ADC values between individual histological

grades, as was the case with our results. The mean ADC values

overlapped and were similar between the grades 2 and 3, 0.754 ±

0.12×10−3 mm2/s and 0.728 ± 0.13×10−3 mm2/s, respectively. The

mean ADC value for grade 1 was 0.803 ± 0.13×10−3 mm2/s.

Yan et al. reported a statistically significant difference in the

mean ADC values between grade 1 (0.921 ± 0.133×10−3 mm2/s) and

grade 2 (0.968 ± 0.240×10−3 mm2/s) in relation to the value in grade

3 (0.917 ± 0.184×10−3 mm2/s) (29).

Kakkar et al. reported that the mean ADC values of endometrial

cancer for histologic grades 1, 2 and 3 were 0.72 ± 0.13×10−3 mm2/s,

0.76 ± 0.17×10−3 mm2/s and 0.74 ± 0.12×10−3 mm2/s, respectively

(42). There were statistically significant differences between grade 1

and grade 2. Ozturk et al. found that high-grade EC had

significantly lower ADC values compared to low-grade EC (43).

DWI can be used with great diagnostic accuracy to determine

the depth of tumor invasion in the myometrium of the uterus,

which strongly correlates with the presence of metastases in the
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lymph nodes (3% with superficial myometrial invasion and 46%

with deep myometrial invasion) (33, 44). This is why it is clinically

important to differentiate between superficial and deep invasion of

the myometrium to plan a further therapeutic approach (33, 44). In

our study the largest number of patients had confirmed stage IA

with the mean ADC value of 0.811 ± 0.13 ×10−3 mm2/s and stage IB

with the mean ADC value of 0.696 ± 0.12×10−3 mm2/s. As for our

results, no statistically significant difference in the mean ADC

values was obtained between the mentioned stages, and this

corroborates with the results of several earlier studies (15, 26, 45).

In contrast, Husby et al. have shown that there was a statistically

significant difference in the mean ADC values of ECs with deep

myometrial invasion (0.75×10−3 mm2/s), which were significantly

lower than the mean ADC values of tumors with superficial

invasion (0.85×10−3 mm2/s) (46).

Recent articles that have attracted the interest of prestigious

medical scientific journals are about the application of artificial

intelligence, specifically its subfield of deep learning-based methods.

The literature indicates that weakly-supervised learning-based deep

learning methods using convolutional neural networks have shown

significant results in image pattern recognition (47). Published

articles about deep learning-based methods in MRI diagnostics of

EC include staging early EC onMR, predicting myometrial invasion

in patients with stage I EC, determining the depth of myometrial

invasion, and identifying lesions on MR images (48–53). In a

retrospective study, Urushibara et al. examined the effectiveness

of a deep learning model based on using convolutional neural

networks in the diagnosis of EC on MRI images, compared to the

evaluation made by three radiologists (47). The research included

both histopathologically confirmed EC and benign lesions.

According to their results, this model showed significantly better

results based on a single image of the ADC map and axial contrast-

enhanced T1-weighted image in differentiating the presence of EC

compared to the radiologist’s evaluation (47). Adding other types of

images with different sequences improved the diagnostic value in

some cases, but without a significant difference (47). The authors

pointed out several limitations in their study, including the

evaluation of only one selected image. In contrast, our study

evaluated all sequences to accurately place the ROI in the lesion

and measure the ADC value.

In our country and other developing countries, such models of

deep learning methods are currently unavailable. Our method has

the advantage of being widely available and simple to apply, with

the possibility of implementation in routine clinical practice in the

evaluation of MR images, without requiring better computer

equipment. Deep learning methods are trained to perform a

specific task, and they require verification, as they may have some

shortcomings depending on the input data and how they were

trained (54). Based on the input data, the model can learn certain

characteristic parameters of the uterus region (48). In our sample of

female patients, we had one case with a bicornuate uterus where we

measured ADC values in the corpus with endometrial thickening,

while the endometrium in the other corpus was thin. The question

is whether the deep learning method can adequately recognize and

evaluate certain cases, such as those with a different shape or

position of the uterus or the presence of additional lesions in or
Frontiers in Oncology 10181182
around the uterus that would require additional control by

a radiologist.
5 Conclusion

According to the results obtained in our study DWI with ADC

map and measurements of ADC values represents a clinically useful

tool in differentiation between malignant and benign endometrial

lesions. Determination of the cut-off ADC value increases the

diagnostic accuracy. The mean ADC values of malignant lesions

are significantly lower than those of benign lesions and our results

are in line with most of previous studies. In correlation to

histopathological reports, MRI had a high sensitivity (100%) and

good specificity of 90.2%. In our study population, there was no

statistically significant difference in ADC values between different

histological grades of tumors, and therefore grade prediction was

impossible. The limitation may be due to the small number of

patients with EC in the total sample. Future research on a larger

sample of patients with EC could contribute to the determination of

the histological grade of the tumor as an important prognostic

factor. In determining FIGO stage, the most common were stages

IA and IB, and there was no significant difference in the mean

ADC values.
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Comparison of ultrasound
−based ADNEX model with
magnetic resonance imaging for
discriminating adnexal masses: a
multi-center study

Yanli Hu1,2,3, Bo Chen4, Hongmei Dong1,2*, Bo Sheng3,
Zhibo Xiao3, Jia Li3, Wei Tian5,6 and Furong Lv3*

1Department of Ultrasonography, Chongqing Health Center for Women and Children,
Chongqing, China, 2Department of Ultrasonography, Women and Children’s Hospital of Chongqing
Medical University, Chongqing, China, 3Department of Radiology, The First Affiliated Hospital of
Chongqing Medical University, Chongqing, China, 4Department of Ultrasonography, The First
Affiliated Hospital of Chongqing Medical University, Chongqing, China, 5Department of Radiology,
Women and Children’s Hospital of Chongqing Medical University, Chongqing, China, 6Department of
Radiology, Chongqing Health Center for Women and Children, Chongqing, China
Objectives: The ADNEX model offered a good diagnostic performance for

discriminating adnexal tumors, but research comparing the abilities of the

ADNEX model and MRI for characterizing adnexal tumors has not been

reported to our knowledge. The aim of this study was to evaluate the

diagnostic accuracy of the ultrasound-based ADNEX (Assessment of Different

NEoplasias in the adneXa) model in comparison with that of magnetic resonance

imaging (MRI) for differentiating benign, borderline and malignant

adnexal masses.

Methods: This prospective study included 529 women with adnexal masses who

underwent assessment via the ADNEX model and subjective MRI analysis before

surgical treatment between October 2019 and April 2022 at two hospitals.

Postoperative histological diagnosis was considered the gold standard.

Results: Among the 529 women, 92 (17.4%) masses were diagnosed

histologically as malignant tumors, 67 (12.7%) as borderline tumors, and 370

(69.9%) as benign tumors. For the diagnosis of malignancy, including borderline

tumors, overall agreement between the ADNEX model and MRI pre-operation

was 84.9%. The sensitivity of the ADNEX model of 0.91 (95% confidence interval

[CI]: 0.85–0.95) was similar to that of MRI (0.89, 95% CI: 0.84–0.94; P=0.717).

However, the ADNEX model had a higher specificity (0.90, 95% CI: 0.87–0.93)

than MRI (0.81, 95% CI: 0.77–0.85; P=0.001). The greatest sensitivity (0.96, 95%

CI: 0.92–0.99) and specificity (0.94, 95% CI: 0.91–0.96) were achieved by

combining the ADNEX model and subjective MRI assessment. While the total

diagnostic accuracy did not differ significantly between the two methods

(P=0.059), the ADNEX model showed greater diagnostic accuracy for

borderline tumors (P<0.001).
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Conclusion: The ultrasound-based ADNEX model demonstrated excellent

diagnostic performance for adnexal tumors, especially borderline tumors,

compared with MRI. Accordingly, we recommend that the ADNEX model,

alone or with subjective MRI assessment, should be used for pre-operative

assessment of adnexal masses.
KEYWORDS

adnexal mass, ovarian cancer, magnetic resonance imaging, adnex, ultrasound
Introduction

Adnexal malignancy is an uncommon, life-threatening

gynecological tumor with a high recurrence rate and low survival

rate (1). It is usually detected at an advanced stage, contributing to

the low 5-year survival rate. However, when detected in the early

stage, the 5-year overall survival rate is more than 90% (2), such as

borderline ovarian tumors (BOTs) survival is 95% at 5 years (3).

Therefore, accurate early diagnosis of adnexal tumors is not only

crucial for improving patient survival by applying appropriate

treatments, which differ according to the status of tumor (4–6),

but also important for the young female patients who want to

preserve their fertility potential (7). Benign masses can be observed

via follow-up or locally excised via laparoscopic surgery and BOTs

could even adopt a strategy of fertility-sparing surgery because of its

excellent reproductive outcome and long-term survival (7), whereas

malignant masses must to properly stage and debulking surgery

performed by a gynecological oncologist (8).

Imaging techniques, including transvaginal ultrasound and

magnetic resonance imaging (MRI), are important tools for the

preoperative evaluation of adnexal tumors (5, 6, 8). Although

transvaginal ultrasound is a preferred method for the detection of

adnexal masses, the value of this method for the diagnosis of adnexal

masses is strongly dependent on the ultrasound operator’s experience

(9). To increase the diagnostic accuracy and repeatability of

ultrasonic assessment for adnexal tumors, the International

Ovarian Tumor Analysis (IOTA) group created a new ultrasound-

based ADNEX (Assessment of Different NEoplasias in the adneXa)

model that offers better performance for identifying malignant

tumors among adnexal tumors (10). This model can predict the

probability of malignancy based on three clinical and six ultrasonic

characteristics. Multiple studies have confirmed that the ADNEX

model offers better diagnostic performance than previous IOTA

models (11–13), with a higher sensitivity (0.98, 95% confidence

interval [CI]: 0.93–1.00). However, its specificity was lowest among

all models (0.62, 95% CI: 0.55–0.68) (14).

MRI is a helpful tool for distinguishing benign and malignant

adnexal tumors. However, the cost and operative time of MRI limit

its routine use in the screening of adnexal tumors. According to the

European Society of Urogenital Radiology (ESUR) guidelines, MRI
02185186
is recommended only for masses that cannot be discriminated by

ultrasound (15). Previous studies have indicated that the IOTA LR2

model and MRI give comparable results (16–18). However, a multi-

center research comparing the abilities of the ADNEX model and

MRI for characterizing adnexal tumors has not been reported to our

knowledge. The aim of this multi-center study was to compare the

diagnostic performances of the ultrasound-based ADNEX model

and subjective MRI evaluation for distinguishing benign and

malignant adnexal masses. Furthermore, we aimed to assess the

diagnostic performance of the combination of the ADNEX model

and subjective MRI assessment.
Material and methods

Study design and patients

This multi-center, prospective cohort study was carried out at

gynecological oncology center of the First Affiliated Hospital of

Chongqing Medical University and the Women and Children’s

Hospital of Chongqing Medical University (Figure 1). A total of 529

women treated at these two hospitals were enrolled consecutively

between October 2019 and April 2022, and their adnexal masses

were assessed using both ultrasound and MRI. This study was

approved by the institutional ethics committees of the two hospitals,

and all patients voluntarily provided informed consent.

The inclusion criteria were as follows: (a) at least one adnexal

mass that had been evaluated by ultrasound and MRI examination

at either of the two hospitals. The most complicated or largest mass

was chosen for the final analysis if bilateral adnexal masses were

detected; and (b) planned surgical excision of the mass, as

recommended by a gynecological oncologist. The exclusion

criteria were as follows: (a) history of ovarian tumor; (b)

pregnancy; (c) refusal to undergo ultrasound or MRI

examination; and (d) lack of surgical excision of the mass within

120 days after the imaging examinations (16).

All the patients underwent ultrasound and MRI examinations,

and the results of the evaluations were recorded simultaneously.

The results for serum CA125 were unknown at the time of the

ultrasound and MRI examinations.
frontiersin.org
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Ultrasound acquisition and analysis

All the adnexal masses were assessed by an ultrasound doctor

using the IOTA ADNEX model before MRI examination. For all

masses, transvaginal ultrasound was performed with a Voluson S6®

or Voluson E8® ultrasound system with probe frequencies ranging

between 5 and 9 MHz (GE Healthcare Ultrasound, Milwaukee, WI,

USA). Transabdominal ultrasound was performed if the masses

were so large so that their complete shape could not be seen using

transvaginal probes.

The eight variables factored into the calculation were as follows:

(a) patient’s age (year); (b) maximum diameter of the lesion (mm);

(c) maximum diameter of the largest solid part (mm); (d) > 10

locules in the tumor (yes = 1, no = 0); (e) presence of acoustic

shadows (yes = 1, no = 0); (f) number of papillary projections; and

(g) presence of ascites (yes = 1, no = 0); (h) Gynecological oncology

center (yes=1, no=0). In the IOTA ADNEX assessment for patients,

we set 0.15 as the cut-off value of probability of malignancy (POM),

and masses were considered malignant if POM >0.15 (19).
MRI acquisition and analysis

MRI data were preoperatively analyzed subjectively by a

radiologist who was blinded to the results of the ADNEX model.

MRI examinations were conducted using a 1.5-T MR scanner

(Ingenia Ambition; Philips Healthcare, Erlangen, Germany or

Signa HD Excite, GE Healthcare, Milwaukee, WI, USA) with a

phase-array body coil. The MRI protocol was as follows: axial and

sagittal T2-weighted fast spin-echo sequences followed by axial T1-

weighted gradient recall echo and diffusion weighted image (DWI: b

= 0, 1,000 mm2/s) sequences. Then dynamic contrast-enhanced MR

images were acquired via axial fat-saturated T1-weighted imaging

after intravenous injection of a bolus of 0.2 ml/kg gadodiamide as

the contrast agent (GE Healthcare).

According to the ESUR guideline (20), the radiologist judged

whether the mass was possibly malignant, borderline or benign via
Frontiers in Oncology 03186187
subjective assessments. MRI data were analyzed by two experienced

radiologists. The final MRI results were decided through discussion

if the two radiologists originally had conflicting findings for a case.
Reference standard

After surgery, all excised specimens were examined

histologically at one of the two hospitals in the study, and the

masses were classified according to the guidelines of the World

Health Organization for the classification of tumors (21). For each

case, the histopathological diagnosis was considered as the

reference standard.
Statistical analysis

All statistical analyses were using SPSS 25.0 software (IBM,

Armonk, NY, USA). The descriptive statistics included mean ±

standard deviation for continuous variables and number

(percentage) for categorical variables (ultrasound-ADNEX results).

The sensitivity, specificity, negative predictive value (NPV), positive

predictive value (PPV), and 95% Wilson score confidence intervals

were calculated for evaluation of the diagnostic performance of the

ultrasound-based ADNEX model and MRI evaluation. Analyses of

agreement (percent total agreement) was used to compare the ability

of the two methods to detect malignancy. McNemar’s exact c2 test
was applied to analyze the differences in discriminatory ability

between the two strategies or the two hospitals. We also analyzed

the diagnostic efficacy of combining the ADNEX model and

subjective MRI assessment. If the two methods produced different

results for a case, the mass was then considered a malignant tumor.

For analysis of the six variables of the ultrasound-based ADNEX

model, one-way analysis of variance (ANOVA) or Mann–Whitney

U test (if appropriate) was used to compare variables among benign,

borderline, and malignant tumors. Statistical significance was

assumed at a level of P<0.05 for all comparisons.
FIGURE 1

Flowchart of enrollment in study cohort of women diagnosed with adnexal mass in two hospitals.
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Results

Diagnoses of patients with adnexal masses

The histologically confirmed diagnoses of 529 patients with at

least one adnexal mass are shown in Table 1. Overall, 370 (69.9%)

masses were benign tumors, and 159 (30.1%) masses were

malignant tumors (including 67 borderline and 92 malignant

tumors). Malignant tumors were seen in 23.4% (65/278) of

patients treated at the First Affiliated Hospital of Chongqing

Medical University and in 11% (27/245) treated at the Women

and Children’s Hospital of Chongqing Medical University. No

statistically significant difference in the diagnostic accuracy rate

was detected between the two centers (P=0.563, Table 2). Although

the characteristics of patients treated at the two hospitals were

acquired by different researchers, the ultrasound-based ADNEX

model and MRI assessments conducted at the two hospitals showed

similar diagnostic performance, suggesting the results of this study

are generalizable (Tables 2, 3).
Frontiers in Oncology 04187188
Validation of the IOTA ultrasound-based
ADNEX model

The clinical and sonographic features considered in the

ADNEX model are presented in Table 4. The patients with

malignant tumors were older than those with benign and

borderline tumors (both P<0.001), and the patients with

borderline tumors were older than those with benign tumors

(P<0.001). Several variables were closely related to the properties

of the adnexal masses. For example, the maximum diameter of the

lesion and largest solid part of the lesion were greater in cases with

malignant tumors than in cases with benign and borderline tumors

(all P<0.001). However, the maximum diameter of the lesion and

largest solid part of the lesion did not differ significantly between

benign tumors and borderline tumors (P=0.786 and P=0.187,

respectively). The risk of malignancy was closely related to the

presence of ascites (odds ratio [OR]=12.88, 95% confidential

interval [CI): 6.45–25.74, P<0.001]. However, acoustic shadows

were significantly related with benign tumors (OR=7.576, 95% CI:
TABLE 1 Histological subtypes of adnexal tumors in patients treated in two institutions.

Histology All(n=529) By center

Hosp. A (n=284) Hosp. B(n=245)

Benign 370(69.9%) 176 (62.0%) 194 (79.2%)

Teratoma 110(29.7%) 46 (26.1%) 64(33.0%)

Serous cystadenoma 84(22.7%) 50 (28.4 %) 34(17.5%)

Mucinous cystadenoma 49(13.2%) 18(10.2%) 31(16…)

Cystadenofibroma 2(0.5%) 2(1.1%) 0(0)

Fibroma 6(1.6%) 2(1.1%) 4(2.1%)

Brenner tumor 4(1.1%) 3(1.7%) 1(0.5%)

Ovarian torsion 31(8.4%) 20(11.4%) 11(5.7%)

Functional cyst 76(20.5%) 29(16.5%) 47(24.2%)

Other benign lesion 8(2.2%) 6(3.4%) 2(1.0%)

Borderline 67(12.7%) 43(15.1%) 24(9.8%)

Serous borderline tumor 41(61.2%) 29(67.4%) 12(50%)

Mucinous borderline tumor 22(32.8%) 13(30.2%) 9(37.5%)

Other borderline tumor 4(6.0%) 1(2.3%) 3(12.5%)

Malignancy 92(17.4%) 65(22.9%) 27(11.0%)

Serous adenocarcinoma 48(52.2%) 32(49.2%) 16(59.3%)

Clear cell carcinoma 20(21.7%) 14(21.5%) 6(22.2%)

Granulosa cell tumor 7(7.6%) 6(9.2%) 1(3.7%)

Mucinous adenocarcinoma 6(6.5%) 3(4.6%) 3(11.1%)

Sertoli leydig 2(2.2%) 2(3.1%) 0(0.0%)

Ovarian metastasis 9(9.8%%) 8(12.3%) 1(3.7%)
Hosp A: The First Affiliated Hospital of Chongqing Medical University; Hosp B: Women and Children's Hospital of Chongqing Medical University.
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2.32–24.69, P<0.001). The feature of >10 locules was statistically

different only between benign and malignant tumors (P=0.001).

The ADNEX model had a sensitivity of 0.91 (95% CI: 0.85-0.95),

specificity of 0.90 (95% CI: 0.87–0.93), PPV of 0.79 (95% CI: 0.73–

0.85), and NPV of 0.95 (95% CI: 0.93–0.98; Table 3). Among the

529 women, the ADNEX model classified only 54 (10.2%) adnexal

tumors incorrectly, including 16 benign tumors as malignant and

38 malignant tumors (including borderline tumors) as benign.

Figures 2 showed representative case.
Subjective MRI assessment results

For distinguishing malignant tumors, including borderline

tumors, from benign adnexal tumors, MRI had a sensitivity of

0.89 (95% CI: 0.84–0.94), specificity of 0.81 (95% CI: 0.77–0.85),

PPV of 0.67 (95% CI: 0.61–0.74), and NPV of 0.94 (95% CI: 0.92–

0.97; Table 3). Among the 529 cases, MRI classified 87 (16.4%)

adnexal tumors incorrectly, including 18 malignant tumors

(including borderline tumors) as benign and 69 benign tumors as

malignant. Figures 2 showed representative case.
Comparison of the diagnostic
performances of the ADNEX model and
subjective MRI assessment

The results for the preoperative diagnostic accuracy and agreement

of the twomethods are shown in Table 5. Good total agreement (84.9%)
Frontiers in Oncology 05188189
between the ADNEX model and subjective MRI assessment was

observed, but poor agreement between the ADNEX model and MRI

was observed for borderline tumors (67.2%). From the comparison of

diagnostic performance, the sensitivity of the ADNEXmodel (0.91; 95%

CI: 0.85-0.95) for detecting malignant tumors, including borderline

tumors, was similar to that of MRI (0.89; 95% CI: 0.84–0.94; P=0.717;

Table 4). However, the specificity of the ADNEX model (0.90; 95% CI:

0.87–0.93) was higher than of MRI (0.81; 95% CI: 0.77–0.85; P=0.001;

Table 4). The accuracy of the ADNEX model (0.90; 95% CI: 0.87–0.92)

did not differ significantly from that of MRI assessment (0.84; 95% CI:

0.80-0.87, P=0.059, Table 5). However, when we compared the

agreement rate between the ADNEX model and MRI for borderline

tumors, the ADNEX model showed superior accuracy compared with

MRI (P<0.001, Table 5). No statistically significant differences were

detected between the two methods for benign and malignant tumors

(P=0.721 and P=0.246 respectively, Table 5). When we combined the

ADNEX model with subjective MRI assessment, the sensitivity

increased to 0.97 (95% CI: 0.94–1.00) and the specificity increased to

0.94 (95%CI: 0.91–0.96), and these values were significantly higher than

those for either the ADNEXmodel (P=0.013 and P=0.001, respectively)

or MRI (P=0.005 and P<0.001) alone.
Discussion

The IOTA ultrasound-based ADNEX model performed well in

distinguishing malignant and benign adnexal masses using data

obtained in two hospitals in China, especially for borderline tumors,

even though CA125 level data were not included in this study. Although
TABLE 2 Comparison of the diagnostic performances of the methods at the two institutions.

Imaging method US-based IOTA ADNEX
model

P MRI subjective assess-
ment

P Combination of ADNEX and
MRIa

P

Hosp. A Hosp. B Hosp. A Hosp. B Hosp. A Hosp. B

Correctly classified 253 222 0.563 237 205 0.945 270 232 0.844

Incorrectly classified 31 23 47 40 14 13
frontier
aCases of disagreement were classified as malignant. Hosp A: The First Affiliated Hospital of Chongqing Medical University; Hosp B: Women and Children's Hospital of Chongqing
Medical University.
TABLE 3 Comparison of the diagnostic performances of the ADNEX model and subjective MRI assessment.

Imaging
method

Correctly classified Incorrectly classified Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95%
CI)

NPV
(95%
CI)

Accuracy
(95% CI)

Malignant benign Malignant
as benign

Benign as
malignant

US-based IOTA ADNEX model

All 143 332 16 38 0.91 (0.85-
0.95)

0.90 (0.87-
0.93)

0.79
(0.73-
0.85)

0.95 (0.93-
0.98)

0.90 (0.87-
0.92)

Hosp A 98 155 10 21 0.92 (0.85-
0.96)

0.88 (0.83-
0.93)

0.88
(0.75-
0.89)

0.97 (0.90-
0.98)

0.89 (0.85-
0.93)

(Continued)
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CA125 is one of the clinical variables (www.iotagroup.org/adnexmodel/

), the applications allow risk calculation even without information on

serum CA-125 level despite the decrease in performance and it is

important for good discrimination between stage II-IV cancer and stage
Frontiers in Oncology 06189190
I and secondary metastatic cancer in the ultrasound-based ADNEX

model (10). Besides, previous studies also demonstrated that the CA125

level had no significant impact on the diagnostic accuracy of the

ADNEX model (22–24). This is because CA125 is not a specific
TABLE 3 Continued

Imaging
method

Correctly classified Incorrectly classified Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95%
CI)

NPV
(95%
CI)

Accuracy
(95% CI)

Malignant benign Malignant
as benign

Benign as
malignant

Hosp B 45 177 6 17 0.92 (0.79-
0.97)

0.91 (0.87-
0.95)

0.80
(0.61-
0.84)

0.97 (0.94-
0.99)

0.91 (0.87-
0.94)

MRI subjective assessment

All 141 301 18 69 0.89 (0.84-
0.94)

0.81 (0.77-
0.85)

0.67
(0.61-
0.74)

0.94 (0.92-
0.97)

0.84 (0.80-
0.87)

Hosp A 96 141 12 35 0.89 (0.83-
0.95)

0.80 (0.74-
0.86)

0.73
(0.66-
0.81)

0.92 (0.88-
0.97)

0.83 (0.79-
0.88)

Hosp B 45 160 6 34 0.88 (0.79-
0.97)

0.82 (0.77-
0.88)

0.57
(0.46-
0.68)

0.96 (0.94-
0.99)

0.84 (0.79-
0.88)

Combination of ADNEX and MRIa

All 154 346 5 24 0.97 (0.94-
1.00)

0.94 (0.91-
0.96)

0.87
(0.82-
0.92)

0.99 (0.97-
1.00)

0.95 (0.93-
0.97)

Hosp A 105 165 3 11 0.97 (0.94-
1.00)

0.93 (0.90-
0.97)

0.91
(0.85-
0.96)

0.98 (0.96-
1.00)

0.95 (0.93-
0.98)

Hosp B 49 183 2 11 0.96 (0.91-
1.00)

0.94 (0.91-
0.98)

0.82
(0.71-
0.92)

0.99 (0.97-
1.00)

0.95 (0.92-
0.97)
aCases of disagreement were classified as malignancy. Hosp A: The First Affiliated Hospital of Chongqing Medical University; Hosp B: Women and Children's Hospital of Chongqing Medical
University.
Malignant tumor included the borderline tumor. Malignant include borderline tumor.
TABLE 4 Sonographic features of adnexal masses in 529 women treated in two institutions.

Variables included in IOTA ADNEX model Benign borderline Malignant P

Age (years) 47.4±13.4 51.0±13.6 56.5±11.3 <0.001

Ascites 11(3.0) 2(3.0) 43(46.7) <0.001

Maximal diameter of the lesion (mm) 118.1±58.8 122.2±46.6 157.4±73.4 <0.001

Maximal diameter of the largest solid part (mm) 34.3±29.2 55.6±28.0 93.0±48.9 <0.001

>10 locules 52(14.1) 11(16.4) 28(30.4) 0.001

Number of papillary projections NA

0 346(93.5) 45(67.2) 75(81.5)

1 10(2.7) 12(17.9) 7(7.6)

2 4(1.1) 3(4.5) 0(0)

3 6(1.6) 0(0) 3(3.3)

>3 4(1.1) 7(10.4) 7(7.6)

Acoustic shadows 89(24.1) 2(3.0) 1(1.1) <0.001
frontie
Data are given as mean ± SD or n (%). Groups compared using McNemar’s exact c2, one-way analysis of variance or Kruskal–Wallis test, if appropriate. Max, maximum; NA, not applicable.
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marker for ovarian cancer, and it can be increased in cases with benign

lesions, such as endometriosis and uterine fibroids (25, 26). Human

epididymal protein-4 (HE-4) has been identified as a new tumormarker

for ovarian cancer (27), and research has verified that HE-4 is more

valuable than CA125 for ovarian cancer (28). As a result, the ADNEX

model may be further optimized for the diagnosis of adnexal masses in

the future.

In the present study, the diagnostic performance of the two

methods showed no statistically significant difference between the two

hospitals, suggesting good repeatability of these methods in two

institutions. In addition, the diagnostic performance for the ADNEX

model was similar to that of the expert US examiners’ subjective

assessment in the analysis of 3511 adnexal masses (29). These

observations indicate that the IOTA ultrasound-based ADNEX model

is a widely applicable tool in different populations and institutions to

assist sonographers, gynecologists, and even non-professional doctors

with various training backgrounds and levels of experience in the

diagnosis of adnexal tumors. However, the sensitivity and specificity

of the ADNEX model in our study was lower than that calculated in by

Valentin et al. (29), whereas the specificity in our study was higher than

that in other studies (11, 14). This may be related to differences in the

study samples, but another reason could be use of the cut-off value of

0.15 for the ADNEX model results. Because Huang X et al. have found

that the cut-off value of 0.15 for the ADNEXmodel had high diagnostic

accuracy in identifying ovarian malignant tumor (19).
Frontiers in Oncology 07190191
We noted obvious differences in the maximum diameter of lesions

and the largest solid component of tumors in the present study, but these

findings differed from those in a previous study (11). Moreover, in our

study, the ultrasound feature of acoustic shadowing was applied as a

predictive criterion for benign adnexal tumors and the risk of

malignancy was closed related with the presence of ascites, findings

which were similar to those of the previous study (11). These results

indicate the importance of the features of acoustic shadowing and ascites.

The present study showed good agreement between the ADNEX

model and MRI assessment. Additionally, the sensitivity of the

ADNEX model was similar to that of MRI. However, the ADNEX

model had a higher specificity, suggesting that the ADNEX model

provided fewer false-positive cases compared with MRI. Among the

benign, borderline and malignant tumors, the agreement rate between

the ADNEX model and MRI was lowest for borderline tumors (only

67.2%), suggesting that the diagnostic accuracy of the ADNEX model

for borderline tumors was superior to that of MRI. Although previous

studies have reported characteristics of borderline tumors, few

parameters can reliably differentiate borderline tumors from benign

tumors on MRI (30, 31). Perhaps this was a reason that the specificity

of the ADNEX model was higher than that of MRI. As a result, the

ADNEX model may play an additional important role in determining

the appropriate surgical management before operation and can be

helpful to promote optimal patient management in the future due to its

good diagnostic accuracy rate.
FIGURE 2

The ultrasound and MR images of a 28-year-old female patient with adnexal mass. The mass was diagnosed borderline tumor preoperatively by
ADNEX-US and subjective MRI assessment. (A) Axial T 2 WI displays intermediate SI of the solid component (arrow) and high SI of cystic component.
(B) Postcontrast axial T1-fat-suppressed image shows obvious persistent enhancement of the solid component (arrow) and walls of the cystic
component. (C) Ultrasound images (Gray scale) displayed an anechoic mass with equal echo of the solid component (arrow). (D) Ultrasound images
(color Doppler) displayed the solid component of mass has dotted blood flow signal. Surgery was performed, and the diagnosis was confirmed on
histopathology as the borderline tumor.
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In the current study, the ADNEX model classified 54 (10%)

adnexal tumors incorrectly. A collaborative analysis of IOTA studies

reported that only a small portion (approximately 7%) of adnexal

masses cannot be accurately classified preoperatively, even when

subjective ultrasound assessment is performed by an experienced

sonographer (29). However, this collaborative analysis aimed to

discriminate between benign and malignant tumors using a logistic

regression (LR) model only for masses that were deemed unclassifiable

by the sonographer. This is likely the reason that the rate of inaccurate

classification was higher in our study than in the previous analysis.

The combination of the ADNEX model and MRI provided

improved accuracy for the preoperative diagnosis of adnexal tumors

than either method alone, likely because subjective MRI assessment

underestimated the risk of malignancy. In the present study, the

greatest sensitivity and specificity also were obtained by combining

the ADNEX model and subjective MRI assessment. Therefore, to

decrease the risk of misclassification, combination of both imaging

strategies should be recommended for preoperative assessment of

adnexal masses.

This study has some limitations to consider. First, the numbers of

enrolled patients and institutions were small for a multi-center study.

Although the ADNEXmodel demonstrated greater specificity thanMRI

in the present study, these limitations likely affected the diagnostic

performance of both methods. Second, all MRI examinations were

performed on a 1.5T MR system, and we did not compare differences

between results obtained with a 3.0T MRI system and the ADNEX

model. Third, the ADNEXmodel was not used for clinical management,

and therefore, the influence of this model on patient management is

unknown. Fourth, because the ADNEX model is still not commonly

used, it remains unfamiliar to many clinicians. Moreover, it is still under

modification in China, especially for use in primary hospitals.

In conclusion, the IOTA ultrasound-based ADNEX model is as

sensitive as subjective MRI assessment for distinguishing adnexal

tumors, but has a higher specificity compared with MRI and a higher

accuracy rate for borderline tumors compared with benign and

malignant tumors. These findings reveal that the ADNEX model is a

reliable points-scoring system for the preoperative diagnosis of adnexal

mass. We recommend the addition of the ADNEX model, either alone

or in combination with MRI, for preoperative assessment of

adnexal masses.
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